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Abstract

Study and Developement of Whipsering Gallery Mode Resonators for

Technological Applications

Mathieu Couillard

Whispering gallery mode resonators (WGR) are optical cavities with very low loss.
This property makes them particularly interesting for many applications including
sensors and nonlinear optics. Despite all the research devoted to these cavities, many
basic aspects of WGR are not completely understood and many issues still inhibit
these technologies from being used in real world applications. This thesis aims to ad-
dress some of these issues. First, this thesis presents an attempt of a non-destructive
techniques to accurately measure the absolute radius and refractive index of a WGR.
In order to do so, instrumental techniques were developed to first accurately deter-
mine the mode order number without relying on approximations and, second, de-
termine the axial position where the radius is being measured. Perturbations of the
modes are then studied using the interactions of a tapered fiber and optically trapped
nanoparticle. An earlier experiment demonstrated a frequency shift occurs when the
nanoparticle is in proximity of the tapered fiber. This effect was not observed in our
experiment. This thesis then reviews the Pound-Drever-Hall technique and describes
an implementation using a single board computer for many of the electrical com-
ponents. Lastly, packaging was developed to improve the robustness of the tapered
fiber and reverse the degradation of the Q factor due to adsorbed water on the surface
of silica SNAPs. The packaging is robust enough to transport the fiber to different
laboratories but cannot withstand the temperatures required to remove the adsorbed
water.
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Chapter 1

Introduction

Over the past century, electronics have transform society, improving many aspects of
life ranging from entertainment to life saving medical equipment and world commu-
nication. As revolutionary as these technologies were, they have certain limitation
in which other platforms are better suited. One alternate is photonics, which has
improved on the shortcomings of electronics in many fields including telecommunica-
tion[1], LIDAR[2], gyroscopes[3, 4] and atomic clocks[5], to name a few.

Electronics have often been improved by increasing the frequency range at which
they operate. By shortening the period, the frequency can me measured in a shorter
time. However, this has restricted electronics to the radio frequencies because as
frequencies are increased into the terahertz range, the material losses attenuate the
signal beyond practicality.

In contrast to guiding electromagnetic fields by current in metallic wires, photonics
guide light through a dielectric using total internal reflection. By using photonics,
much higher frequencies can be used with less attenuation[1]. These two properties
were key in proliferation of fiber optic telecommunication in which the current record
transmission rate has reached 178.08 Tbit/s [6].

One component which has shown promising results for photonics technologies is
the whispering gallery mode resonator (WGR). These resonators consist of a circular
dielectric in which light reflects by total internal reflection, as shown in Figure 1.1.
When light is continuously pumped into the cavity, the light will circulate around the
resonator and interfere with the light entering the cavity after one round trip. Due
to the high frequency and low losses, light will build up, and store the energy in the
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Figure 1.1: Light propagating around a circular dielectric by total internal reflection.
Due to the circular shape, the light will circulate in a closed loop, producing a cavity.

optical fields for a long period of time.
Assuming the volume is sufficiently small, this build up allow physical phenom-

ena, usually restricted by large threshold powers, to be observed using modest source
power. Some examples of observed phenomena include non-linear optics[7, 8], nanopar-
ticle trapping[9, 10], stimulated Raman scattering[11] and stimulated Brillouin scat-
tering[12].

A second consequence of the high frequency and low loss is the narrow resonance
peaks. These peaks are useful because the resonance wavelength an be more ac-
curately measured. Since the resonance wavelength is dependent on many physical
phenomena, WGR can behave as accurate sensors. Some examples of sensors in-
clude temperature[13–16], pressure[17–20], rotation[21–23], single nanoparticles[24–
26], , electromagnetic field[27, 28], and gases[29–32]

This thesis focuses on surface nanoscale axial photonic (SNAP) resonator. A
particular WGR which is characterized by its small radius variation in the out-of-plane
direction of the circular path, as shown in Figure 1.2 a). This variation confines the
light in 3 dimensions while allowing the light to slowly reflect back and forth, along
the axis, to produce a standing wave along the axis. This property of slow light is a
very active field of research with applications in optical switches[33], delay lines[34]
and optical quantum memory[35].
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Figure 1.2: a) A SNAP resonator characterized by its small radius variation. Due to
the slowly changing radius, the potential felt by the light will move it slowly along
the axis in comparison to most other WGR. b) A microbubble with a hollow core
that allows fluids to be sent though and interact with the light.

A second type of WGR on which this thesis focuses are microbubble. Microbub-
bles can be recognized by their hollow interior as seen in Figure 1.2 b). Similarly to
SNAPs, variations in the radius confine the light in 3 dimensions. However, these
WGR are interesting because the hollow interior can be filled with fluids to interact
with the light. These resonators have shown to have many applications in nanoparti-
cle detection[16], nanoparticle trapping[10]pressure sensors[20] and temperature sen-
sors[16] among others.

Despite all the progress made, there are still a number of improvements needed
before WGR’s can be used in every day applications. The goal of this thesis is to
address some of these issues. First, by developing precise measurement techniques
that accurately determines the radius and refractive index of a SNAP. Secondly by
studying the perturbation of the mode through the interaction of the tapered fiber
and a nanoparticle. Lastly, to develop some packaging that can improve robustness
while removing impurities that bind to the surface.
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Chapter Overview and Collaborative Work

An general description of each chapters is given in this section. Many parts of the
work for this thesis depended on previous work and collaboration with colleagues and
supervisors.

Chapter 2 presents the basic concepts for understanding WGR and SNAPs which
will be relevant to the other chapters. A derivation of the modes, Q factor, loss mech-
anisms, evanescent fields, cavity transfer function and coupling regimes is presented.

Chapter 3 describes a procedure to measure the refractive index and radius of a
SNAP. It also describes the fabrication of SNAPs, tapered fiber and the experimental
setup. The hardware for the experimental setup was built by Dr Tabassom Hamidfar
while the program used for data collection were written in part by Matias Rittatore,
Pablo Bianucci and the Author.

Chapter 4 describes an attempt to measure a resonance shift in a microbubble,
when a nanoparticle, in an optical carousel trap, was near the tapered fiber. The
chapter begins with the theory of nanoparticle trapping, nanoparticle detection, and
describes how the hollow core and more spherical geometry modified the modes.
This work was carried out at the Okinawa Institute of Science and Technology, with
the Light Matter Interaction Unit as part of the JSPS-Mitacs Summer Program in
partnership with SOKENDAI. The project was supervised by Prof. Sile Nic Chormaic
and Staff Scientist Dr. Jonathan Ward. Much of the experimental setup and was built
by Ward.

Chapter 5 describes a Pound-Drever-Hall lock to be used in subsequent experiment
This lock will help increase the resolution of our measurements which is help measure
very small variations in wavelength. This project was part of a collaboration with One
Silicon Chip Photonics through an NSERC Engage grant with the goal of building a
prototype optical gyroscope.

Chapter 6 describes the fabrication of packaging for a SNAP and taper system.
The chapter also includes a description the testing of the device against impact and
attempts to reverse the effects of the quality(Q) factor degradation.

Chaper 7 discussed the results and future work. It proposes a method to simul-
taneously sense changes in two physical phenomena, methods to increase improve
the detection of the nanoparticle near the tapered fiber and how to overcome the
limitations of our packaging.
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Chapter 2

Surface Nanoscale Axial Photonic

Resonators

This chapter introduces the theory of SNAPs and important concepts that will be
need to understand the subsequent chapters. We start by describing the electro-
magnetic modes in a whispering gallery mode resonator. These modes describe the
time independent fields on resonance. Next the quality (Q) factor, its relation to loss
mechanisms and how it affects the modes are presented. Following this is a derivation
of evanescent fields, and a discussion of mode coupling. The chapter continues with
a derivation of the amplitude of the fields inside the cavity and the transfer function,
defined as change in the light’s field amplitude and phase due to the cavity. Finally,
three different coupling regimes as discussed.

2.1 Maxwell’s Equations

We start with Maxwell’s equations for a linear, homogeneous, isotropic, and source
free material. Using SI units, Maxwell’s equations are

∇ ·D = 0 ∇ ·B = 0 (2.1)

∇× E = −∂B

∂t
∇×H =

∂D

∂t
. (2.2)

E is the electric field, H is the magnetic field, D is the electric displacement and B is
the magnetic inductance. E is related to D and H is related to B by the constitutive
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relations:

D = ϵE B = µH. (2.3)

Where ϵ and µ are the permittivity and permeability of the medium, respectively. We
now take the curl of the Ampere and Faraday’s laws and substitute the constitutive
relations to express everything in terms of the E and B

∇×∇× E = −∇× ∂B

∂t
∇×∇× B

µ
= ∇× ∂ϵE

∂t
. (2.4)

On the left hand side of both equations, we use the vector calculus identity ∇×∇×
A = ∇(∇ ·A)−∇2A where the divergence terms are zero due to Gauss’s law and its
magnetic analog. On the right hand side, the differentials can be interchanged, and
we assume the permittivity and permeability to be constant (low power and small
wavelength range)

∇2E, = −∂∇×B

∂t

1

µ
∇2B = ϵ

∂∇× E

∂t
. (2.5)

Using Ampere’s law, Faraday’s laws and the constitutive relations we obtain 2 wave
equations

∇2E =
1

ϵµ

∂2E

∂t2
∇2B =

1

ϵµ

∂2B

∂t2
. (2.6)

Where ϵµ = 1/v2 is the speed of light in the medium. Since the two equations have
identical form, the solutions will also have the same form. From this point on, we only
solve for the electric field equation and assumed the magnetic field has an analogous
solution. Noticing that the temporal variable is separated on the right hand side of
(2.6) we can identify the time dependence as

E = Er(r)e
iωt. (2.7)

Inserting this in the wave equation and dividing by E yields

∇2Er(r) = −k2Er(r). (2.8)

Where k2 = µϵω2 is defined as the magnitude squared the wave vector.
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2.2 Normal Modes

The normal modes are the spacial solution of the electric field everywhere inside
the resonator for the time harmonic solution. We follow the derivations done by
Louyer[36] and Bianucci[37], with a modification to include modes that propagate
farther from the surface. We make one approximation in this derivation which is that
the radius variation along the fiber is small enough that the SNAP can be treated as
a cylinder.

2.2.1 Separation of Variables

Due to the cylindrical symmetry, we look for a solution in cylindrical coordinates
as described in Figure 2.1. The electric field for the transverse electric (TE) mode,
where the transverse direction points along the SNAP’s axis, is assumed to have the
form

E(r) = F (r, z)Φ(ϕ)Z(z)ẑ. (2.9)

Where F (r, z) is the quasi-radial function, Φ(ϕ) is the azimuthal function and Z(z)

is the axial function. Entering this solution into (2.8), we obtain

1

rF (r, z)

∂

∂r

(
r
∂F (r, z)

∂r

)
+

1

Φ(ϕ)r2
∂2Φ(ϕ)

∂ϕ2
+

1

F (r, z)Z(z)

∂2(F (r, z)Z(z))

∂2z
= −k2(z).

(2.10)

Due to the radial dependency on the last term of the left hand side, the differential
equation is only separable in the approximation that the dependency is small. Typi-
cally, the radius variation is about 5 orders of magnitude less than the variation along
the axis, as seen in Figure 2.1. Explicitly we assume, Zd2F/dz2 ≪ (dZdF )/dz2 ≪
Fd2Z/dz2 and the smaller terms can be ignored. The differential equation then re-
duces to

1

rF (r)

∂

∂r

(
r
∂F (r)

∂r

)
+

1

Φ(ϕ)r2
∂2Φ(ϕ)

∂ϕ2
+

1

Z(z)

∂2(Z(z))

∂2z
= −k2(z). (2.11)

We start by separating the ϕ dependent term

1

Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2
= −m2. (2.12)
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Figure 2.1: A SNAP, the cylindrical symmetry and nanoscale radius variations provide
3 dimensional confinement.

where m is the separation constant and represents all the terms in Equation (2.11)
independent of ϕ, multiplied by r2. Using periodic boundary conditions we recognize
this as a sinusoidal function where m must be an integer.

Φ(ϕ) = eimϕ. (2.13)

Plugging (2.12) back into Equation (2.11) and rearranging

1

F (r)

∂2F (r)

∂r2
+

1

F (r)r

∂F (r)

∂r
+

(
k2
⊥(z)−

m2

r2

)
= − 1

Z(z)

∂2Z(z)

∂z2
+
(
k2
⊥(z)− k2

)
,

(2.14)

where k⊥(z) is the magnitude of the wave vector perpendicular to the axis. It is added
to the separation constant to make both sides equal to zero, where k2

⊥(z)−m2/r2 = k2
r

on the left hand side and k2
⊥(z)− k2 = −k2

z on the right hand side. kr and kz are the
radial and axial components of the wave vector, respectively. These two sides do not
completely separate due to the z dependence of k⊥, which must be included to account
for the change in radius along the axial direction. To show that k⊥ is approximately
constant, we note that kr/kz = (dF/dz) ≪ 1[36] which is approximately true as long
as the separation of variables is valid. The z dependence of the k⊥ can be found
by conservation of angular momentum. At any point along the fiber, the azimuthal
number is k⊥Reff (z) = m where Reff (z) is the effective radius. This can be thought
of as the the radius corresponding to the same angular momentum if the field was
completely located, as a Dirac delta function, at the SNAP-air interface. This effective
radius differs from the physical radius of the SNAP because the modes are fields with
an average radius inside the resonator. Using the cylindrical symmetry, we define the
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relation R(z) = fReff (z) to relate it to the physical radius, where f will be solved
for after applying the interface conditions. We now have

k⊥(z) = f
m

R(z)
. (2.15)

Substituting the left hand side of (2.14) to zero and substituting (2.15) we obtain

∂2Z(z)

∂z2
=

[
f 2 m2

R(z)2
− k2

]
Z(z). (2.16)

We need to define the radius profile to find modes. For this example we specify
1/R2(z) = [1 + (αz)2]/R2

0 for a maximum radius R0 at the center and small pertur-
bation from a cylinder, by the constant α. After rearranging we have

−∂2Z(z)

∂z2
+

(
fmαz

R0

)2

Z(z) =

(
k2 − f 2m

2

R2
0

)
Z(z). (2.17)

We see that this choice of radius profile gives an equation with the same form as the
quantum harmonic oscillator. In analogy, we define E = k2 − (fm)2/R2

0 and V =

(∆Emz/2)
2 where ∆E = 2fmα/R0. The solution to this equation is the Hermite-

Gauss function,

Zmq(z) = CmqHq

(√
∆Em

2
z

)
e−

∆Em
4

z2 . (2.18)

Where q is the axial mode number, which indicated the number of field extrema in
the standing wave along the axis, Cmq = 4

√
∆Em/[π22q+1(q!)]2 is the normalization

factor and Hq(x) is the hermite polynomial of degree q.
The axial component of the wave vector at the center is given by

k2
z =

(
q +

1

2

)
∆E. (2.19)

The right hand side of Equation (2.14) can be identified as Bessel’s equation.

∂2F (r)

∂r2
+

1

r

∂F (r)

∂r
+m2

(
f 2

R(z)2
− 1

r2

)
F (r) = 0 (2.20)
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where the substitution of Equation (2.15) was made.
The solutions to this equation are

F (r) =

⎧⎨⎩AmJm(k⊥r) , r ≤ R(z)

BmH
(2)
m (k⊥r/n) , r > R(z)

(2.21)

where Jm(k⊥r) is the cylindrical Bessel functions of first kind and H
(2)
m (k⊥r) is the

Hankel functions of second kind. Am and Bm are respectively real and complex
coefficients which are related by applying the electromagnetic interface conditions.
Their ratio at the interface is given by [38]

Am

Bm

=
H

(2)
m (k⊥R(z)/n)

Jm(k⊥R(z))
(2.22)

One of the coefficients will vary with the field amplitude. We are now in a position to
find the effective radius which will give f and therefore the modes’ wave number. We
compute the same ratio using the continuity of the first derivative of the fields and
equate the two to remove all reference to the coefficients and obtain the transcendental
equation(TEq) [38].

P
((k⊥R)1/2Jm(k⊥R))′

(k⊥R)1/2Jm(k⊥R)
=

((k⊥R/n)1/2Hm(k⊥R/n))′

(k⊥R/n)1/2Hm(k⊥R/n)
. (2.23)

Where P = n or 1/n for the TE and transverse magnetic(TM) modes, respectively.
The free parameters in this equation are m, k⊥ and R and the p-th solution, in
increasing magnitude of k⊥R. The parameter p is defined as the radial mode number.
We can now calculate the value for f , which is given by

f(m, p) =
k⊥R

m
. (2.24)

No analytical solution for the roots of Equation (2.23) are known and their values
must either be calculated numerically or by analytical approximation. The solutions
to Equation (2.23) can be substituted in Equation (2.24) for f . The total wave vector
at can now be found at R = R0 to be

k =

[(
fm

R0

)2

+

(
q +

1

2

)
∆E

]1/2
. (2.25)
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The resonance frequency is then given by

ω =
c

n

[(
fm

R0

)2

+

(
q +

1

2

)
∆E

]1/2
. (2.26)

We can now describe any mode by defining the three mode numbers m, p and q and
multiplying the three spacial solutions, Equations (2.13),(2.18), (2.21) and the tem-
poral solution, Equation (2.7).

We can see from Equation (2.21) that there exists a nonzero field at the exterior
of resonator. The real portion of this field are so called evanescent fields and will be
discussed further in Section 2.4, and the imaginary part is propagating, representing
a fundamental loss mechanism of whispering gallery modes.

2.3 Quality Factor

The Q factor is one of the most frequently used metrics to describe a cavity. Due
to time and frequency’s relation as canonically conjugate variables, the Q describes
both the time the cavity can store energy and the bandwidth of the resonance. A
large Q factor is often desirable because it can store large quantities of energy and
have very narrow linewidths. In this section we define the Q factor and show how it
is usually measured experimentally using the relation given by Zangwill[39, p. 702].
Then discuss the loss mechanisms that limit the Q factor in silica WGRs.

2.3.1 Energy and Linewidth

The Q is defined as

Q =
⟨UEM(ω)⟩
⟨PEM⟩/ω0

. (2.27)

Where UEM is the electromagnetic energy stored in the mode, PEM is the energy
exiting the mode per unit time, and ω0 is the resonance angular frequency. The
denominator expresses the energy lost during a 2π phase shift of the of the electric
field. We start by expressing the power leaving the cavity as the time derivative of
the internal energy.

Q
d⟨UEM(t)⟩

dt
= ω0⟨UEM(t)⟩. (2.28)
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Which is a separable first order linear differential equation. Separating the two vari-
able and integrating gives

⟨UEM(t)⟩ = ⟨UEM(0)⟩exp
[
−ω0t

Q

]
. (2.29)

Since the cavity produces a phase shift, light will interfere as it circulates many times
around the cavity. This means the time-average energy needs to take into account the
phase. We therefore need the electric field which is proportional to the square root of
the energy. Since the electric field is assumed to have a harmonic time dependence,
the usual phase factor is multiplied to the expression, giving

E(t) = E(0)exp

[
−ω0t

2Q

]
exp[−iω0t]. (2.30)

We can identify τ = 2Q/ω0 as the characteristic decay time. τ is often too short to
be measured with standard photodiodes. For this reason, it is often easier to measure
the Q in frequency space. Taking the Fourier transform and multiplying by the the
result’s complex conjugate gives the energy in the cavity as a function of the input
power and laser frequency.

⟨UEM(ω)⟩ = U(0)

(ω0 − ω)2 + (ω0/2Q)2
(2.31)

Where ω is the laser angular frequency.This is the familiar solution to the damped
driven harmonic oscillator, the Lorenzian, plotted in Figure 2.2. We can see this
equation is at a maximum when the first term in the denominator is zero, ω2

0 = ω2,
and is half the value when both terms in the denominator are equal, |ω0−ω| = ω0/2Q.
Applying this calculation to both sides of the peak gives

|ω0 − ω−1/2|+ |ω+1/2 − ω0| =
ω0

Q
. (2.32)

Where ω−1/2 and ω+1/2 are the frequency at half maximum on the lower and upper
sides of resonance, respectively. This expression if more commonly written as

Q =
ω0

δω
. (2.33)

Where δω is the full width at half maximum in the spectrum, Figure 2.2.
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Figure 2.2: The full width half maximum of a resonance peak. Useful to measure Q
factor.
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Figure 2.3: Loss mechanisms by a) capillary waves created during fabrication, b)
bending loss , c) material loss (ie.: dipole radiation) , and d) chemisoption

2.3.2 Loss Mechanisms

As mentioned, Equation (2.30) indicates that the electric field in a mode behaves like
a classical damped harmonic oscillator with characteristic decay time τ . The loss is
in general due to a number of mechanisms and, assuming these mechanisms are all
independent, τ is the sum of the inverse of the individual components.

1

τ
=
∑
i

1

τi
or

ω0

2Q
=
∑
i

ω0

2Qi

. (2.34)

Silica WGRs have 4 types of intrinsic loss mechanisms which limit the Q[40].
These can be seen in Figure 2.3. The first is due to surface scatterers, Qs.s. ≈ 1010,
and is caused by capillary waves frozen into place during fabrication[40]. The second
is radiation loss, Qrad ≥ 1010, and is due to the curvature of the surface which couples
light into free space modes[40, 41] and is expressed as the imaginary part of the
solution of the radial equation, (2.21). The third is material loss, Qmat ≈ 1010, which
are bulk material losses. In the best cases this is mainly due to Rayleigh scattering
but can also be caused by impurities and vacancies scattering[40, 42]. The fourth is
contaminant scattering, Qcont ≈ 108, due to hydroxide groups chemically binding to
the surface of the silica. These contaminant are the main source of loss and limits the
Q. There are also external or coupling losses which add in the same way as (2.34) but
since these losses are used as a readout they will be discussed in their own section.
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2.4 Evanescent Field Coupling

In order to excite the modes and measure their response, light is coupled in and
out of the WGR. The coupling methods can be categorized into 2 types[43]: free-
space coupling and evanescent field coupling. Free space coupling refers to focusing a
beam almost tangentially to the edge of a WGR. This is a rather inefficient method
because even if the frequency matches the resonance condition, the wave vectors
will differ due to the difference in refractive index, reflecting most of the light off the
surface. Evanescent field coupling solves this problem by bringing a material of similar
refractive index in proximity to the mode. There are a few types of evanescent field
coupling methods but we only focus on tapered fiber coupling. The method requires
bringing a fiber with a diameter slightly smaller than the wavelength of light near
the WGR. This is currently the most efficient methods which can reach over 99%

efficiency[44]. This method is also easy to set up due to the ease of manipulation
of the optical fiber. In this chapter, we derive the evanescent fields and how light
can couple across a section of low refractive index when incident at angles greater
than the critical angle. We adapt these derivations from Cao and Yin[45]. Using
this coupling method we derive the WGR transfer function and cavity field buildup
factor[46]. The chapter concludes with a description of the three coupling regimes:
under-coupling, critical coupling and over-coupling.

2.4.1 Evanescent Fields

Consider Maxwell’s equations near a vacuum-dielectric interface where the material
has refractive index n1. The wave vector of the incident light has one component
tangent and another normal to the interface, as shown in Figure 2.4. The magnitudes
of fields can be expressed as

E =E(y)ei(kxx−ωt) H =H(y)ei(kxx−ωt) (2.35)
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Figure 2.4: Refracting light propagating from glass to vacuum with the electric field
in the z direction.

We choose the polarization of the electric field to be parallel to the interface. Using
Ampere and Faraday’s laws, the nonzero components are

kxEz =− ωµHy (2.36)
∂Ez

∂y
=− iωµHx (2.37)

ikxHy −
∂Hx

∂y
=− iωϵEz (2.38)

Solving for Ez we find the Helmholtz equation.

∂2Ez

∂y2
+
(
k2
0nj − k2

x

)
Ez = 0 (2.39)

The term in brackets is ky, the y component of the wave vector. We can see from
this equation that if k2

0nj > k2
x then ky is real1 and the solution is a propagating

sinusoidal function. In regions where k2
0nj < k2

x then ky is imaginary and the solution
is exponential. Conservation of energy ensures the field will decay towards infinity,

1The convention is to factor in an i and call the wave vector real for propagating waves and
imaginary for decaying field.
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implying the light is completely reflected. The critical angle from normal incidence
can be found by setting the term in the brackets equal to zero and solving to find

θc = arcsin
n0

n1

(2.40)

as expected. From this we see that even for the case of total internal reflection, there
is a non-zero electric field on the low refractive index side. A similar result can be
derived for the magnetic field which, together with the electric field, forms a basis for
all polarizations.

2.4.2 Frustrated Total Internal Reflection

We now add to Figure 2.4 a second section of identical dielectric placed a distance
d away from the first with a plane wave moving towards the two interfaces at an
incident angle greater than the critical angle as shown in the Figure 2.5a). Again,
due to the continuity of the electric field parallel to the interface, kx, will remain
constant, but now, a portion of the exponentially decaying field will penetrate into
the second dielectric. At that point, by Equation (2.39), the wave vector will become
real again and light will propagate in the second dielectric. From this we can see that,
despite total internal reflection, light can couple through a region of low refractive
index even at greater incidence angle than the critical angle. This “optical tunneling",
in analogy with quantum mechanics, is used to couple light in and out of WGRs, as
shown in Figure 2.5 b).

2.5 Cavity Field Amplitude and Transfer Function

The amount of light which couples through the low index medium can be calculated
using coupled mode theory[46]. However, coupled mode theory leads to a system of
differential equations with coefficients expressed by complicated integrals for which
no exact closed form analytical solution is known[46]. For this reason, we simplify
the system, describing it with a scattering matrix equation and solve for the electric
fields at the different ports, as shown in Figure 2.6. The cavity field buildup is the
ratio at the port entering the cavity divided by the input and the transfer function
is defined as the ratio of the port leaving the cavity, divided by the input field The
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Figure 2.5: The non-zero electric field that penetrates through the region of low
refractive index and into the other region of high refractive index will couple light to
a propagating mode on the other side.
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Figure 2.6: The field at all four ports, labeled 1-4, which are related through a
scattering matrix equation. E1 is the input, E3 is the output. The light enters the
cavity at E4 and circulates towards E2 in the counterclockwise direction.

coupling region is considered weak enough to not perturb the wave vector in either
medium. The scattering matrix equation is[47]

[
E3

E4

]
= (1− γ)1/2

[
(1− κ)1/2 iκ1/2

iκ1/2 (1− κ)1/2

][
E1

E2

]
=

[
S11 S12

S21 S22

][
E1

E2

]
. (2.41)

Where κ is the power coupling ratio and γ is the loss due to coupling. After propa-
gating through the cavity, the electric field E2 and E4 are related by

E2 = E4e
−αLeikeffL (2.42)

where α is the intrinsic loss of the resonator per unit length, L is the length of the
mode and keff is the wave vector of the mode. The total field at ports 3 and 4 are
given by the sum of the fields due to every round trip.

E3 =E1S11 + E1S21[S12A+ (S12A)
2 + (S12A)

3 + ...] (2.43)

E4 =E1S21[1 + S22A+ (S22A)
2 + (S22A)

3 + ...] (2.44)

19



Where A = e−αLeikeffL is the loss and phase factor due to the fiber during a round
trip. We identify the geometric series and, after some algebra, express them as

E3

E1

=

√
1− γ

1− κ
eikeffL

(
1− κ− κB(eiϕ −B)

1 +B2 − 2B cos(ϕ)

)
(2.45)

E4

E1

=

√
κ(1− γ)eikeffL+π/2(1−Be−iϕ)

1 +B2 − 2B cos(ϕ)
(2.46)

Where B2 = (1 − γ)(1 − κ)s−2αL is the power lost in a round trip and ϕ = kL is
the phase shift due to one round trip[46, 47]. Equation (2.45) is the cavity transfer
function and gives the amplitude and phase response to an input electric field. The
magnitude squared is proportional to the power which is typically the measured quan-
tity at the detector. The phase information is usually lost because the photodectors
don’t have the bandwidth to respond to infrared frequencies. Certain experiments,
however, involving heterodyne or lock-in detection do allow us to measure the phase
information as we shall see in chapter 5. Equation (2.46) gives the field at port 4,
and approximately the whole cavity.

2.6 Coupling Regimes

As mentioned in Section 2.3.2, the process of coupling light out of a WGR consti-
tutes an external loss mechanism which decreases the Q and can be characterized by
the decay time τcoup. This loss mechanism can be tuned by adjusting the tapered
fiber’s radius and distance from the WGR. Mathematically, these parameters change
κ and the couple is classified into three regimes: undercoupling, critical coupling and
overcoupling.

• When the coupling is weak κ < 1 − (1 − γ)e−2αL the system is said to be
undercoupled. We can see from the transfer function that in this regime,
when on resonance ϕ = 2πm for some integer m some light will always reach
the detector. This portion of light effectively does not enter the cavity.

• When κ = 1− (1− γ)e−2αL the system is said to be critically coupled. This
condition occurs when the cavity’s intrinsic decay time τint is equal to the
coupling decay time τcoup. This is easily recognizable by the transfer function
being equal to zero on resonance. At this frequency all the light enters the
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cavity and all the light is lost by the mechanisms discussed in 2.3.2. It may
seem odd that none of the light is lost due to coupling out of the resonator,
however this is due to π/2 phase shifts experienced during frustrated total
internal reflection[46] which cause destructive interference at port 3. These
phase shifts appear in the off diagonal terms of the scattering matrix (2.41)[46].
At this coupling, the fields inside the cavity are at their maxima, and is desirable
for most applications requiring large power.

• When κ > 1− (1−γ)e−2αL the system is said to be overcoupled and a portion
of the light coupled in will be coupled out before being lost by the intrinsic loss
mechanisms. In this regime a portion of light will always reach the detector.
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Chapter 3

Measurement of SNAP Radius Profile

and Mode Refractive Index

This chapter presents a technique which, assuming separation of variables is valid,
can measure the refractive index and absolute radius of a SNAP. This work improves
work done by Sumetsky and Dulashko[48], and Birks et al.[49] who measured the
radius variation given the refractive index. The improvements are that we measured
the absolute radius and not radius variation. We also drop the assumption that the
modes are near the interface, which is equivalent to setting f = 1. Furthermore, these
papers do not have an accurate way of differentiating between variations in radius
and variation in refractive index. This differentiation is particularly useful because
it would provide a way to measure two physical phenomena simultaneously with one
resonator(i.e.: temperature and pressure). Besides the application to sensing, this
would also provide a platform to study the physics and chemistry of surfaces, since
the radius could be determined to the accuracy of the standard deviation of the
surface roughness.

In this experiment, the procedure was attempted on a SNAP, for which separation
of variables is only valid for the first few significant figure but, at very high precision,
the coupling between the two directions is too large to ignore. This means we could
not obtain accurate values beyond the precision in which separation of variables is
valid. For this method to work, we would either need a WGR with a smaller radius
variation, or a better theoretical model that can more accurately account for the
radius variations.
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Figure 3.1: The tapered fiber and SNAP fabrication setup. As the flame heats the
fiber, the two stages pull the fiber apart while moving it back and forth to heat the
entire region being pulled. The tunable laser, photodiode and readout are only used
for the fabrication of the tapered fiber.

We start this chapter by describing the fabrication and the experimental setup
and present the data. Once the data is properly visualized, the theory of the analysis
is presented. Then these methods are applied to the data, and the final result is
presented.

3.1 Fabrication

Both the tapered fiber and SNAP are fabricated by elongating a single mode optical
fiber, using the flame brush technique described by Bilodeau et al.[50] and Birks[51].
The fiber is first stripped of its protective jacket and cleaned with isopropanol, leaving
the cladding exposed. The fiber is then clamped to two linear stages as seen in
Figure 3.1. While being heated with a hydrogen-oxygen torch, the stages pull the
fiber while sweeping over the flame.

3.1.1 Fabrication of a Tapered Fiber

The shape of the tapered fiber is cylindrically symmetric with a double exponential
radius profile as described in [51]. When fabricating the tapered fiber, a laser, photo
detector and readout are used to monitor the transmission as shown in Figure 3.1.
During the pulling process, the diameters of the core and cladding are both reduced.
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Figure 3.2: A depiction of light traveling through a tapered fiber from left to right.
The light starts in the core’s single mode, once the core is too small to support the
mode the cladding will guide multiple modes until all the mode are funneled into a
single mode with an evanescent field outside the fiber.

The core is eventually reduced beyond the diffraction limit and the light is only
guided by the cladding. The light leaks out of the core and is strongly guided by the
cladding in multiple modes which interfere at the detector. As the fiber is reducing,
the interference changes producing oscillations in the transmission readout. The fiber
is further pulled until all the modes converge to the fundamental mode. This is
identified when the transmission ceases to vary and occured when the narrowest part
of the fiber is approximately 1 µm. This strongly guided single mode now has a an
evanescent field, which is accessible for coupling into the SNAP. Figure 3.2 depicts the
end result where we can spatially see all three regions described in the pulling process.
It is worth nothing that the evanescent fields increase with decreasing radius[52]. We
can use this to tune the coupling regime by moving the SNAP to parts of the taper
with different radii.

The tapered fibers are fragile and must be epoxied to a mount before the clamps
are removed as shown in Figure 3.2.

3.1.2 Fabrication of a SNAP

SNAPs are fabricated using the flame brush technique developed by Hamidfar[53].
Manufactures fabricate optical fiber such that the radius variations are too small to
stably confine a modes in 3 dimensions. This means only one mode can be supported,
where there is no propagation along the fiber. To create the radius variations for a
SNAP we us the same setup as the tapered fiber minus the laser, detector and readout.
The non-uniformity of our pulling system creates variation in the radius that are large
enough to confine the light along the axis as shown in Figures 2.1 and 3.3.
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Figure 3.3: Picture of a SNAP with an excited mode[54] producing a standing wave
pattern along the axis.

3.2 Experimental Setup

We wish to plot a spectrogram to visualize the transmission as a function of position
along the fiber, and laser wavelength. To collect this data, we need a series of spectra
along the SNAP at a high enough resolution to see the standing wave pattern along
the axis. A schematic of the setup can be seen in Figure 3.4 and the list of equipment
used in Table 3.1. To collect a single spectrum, a tunable laser scans over a range of
wavelength, sending a small portion of the light to a wavelength locker with known
resonance frequencies. The electronic outputs of the wavelength locker are then sent
to the oscilloscope. This acts as a ruler in frequency space for which all frequencies
between resonances can be interpolated during the laser’s scan. Most of the light
is sent to the SNAP, where it is coupled in and out as described by the transfer
function, Equation (2.45). The power of the transmitted light will be detected at the
photodiode and shown on the oscilloscope. The direct connection from the laser to
the oscilloscope is the trigger which signal the start of the scan.

After collecting one spectrum, a micro-motion controller moves the SNAP along
its axis by 1 micron and collects the next spectrum, repeating these steps for 1000
spectra. Thus acquiring spectra along a 1mm length of the fiber containing the SNAP.
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Figure 3.4: Schematic of the experimental setup. TL: tunable laser, iso: isolator,
BS: 90/10 beam splitter, PC: polarization controller, SNAP: resonator, MMC: micro
motion controller, PD: photo detector, oscill: oscilloscope, WL: wavelength locker,
CPU: computer. Optical fibers are represented by thin lines and electrical wires by
thick lines.

Component Manufacturer Model
Tunable laser GN-Nettest TUNICS-plus 3644HE-15
Isolator E-TEK IW DM A410CRV 06
Beam splitter Fiber Optics C-WS-AL-05-S-1210-15-AP/AP

Communications Inc.
Wavelength locker JDS Uniphase FPWL 211501100
Polarization controller OZ Optics FPC-100
Micro motion controller Micronix USA PPS-20 (x3)
Photo detector Thorlabs PDA 10CF
Oscilloscope Tektronix MDO 4034

Table 3.1: List of components used in experimental setup (Figure 3.4).
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This is coordinated using an in house Python script written by Matias Rittatore,
Pablo Bianucci, and the author. While the laser repeatedly scans over the wavelength
range, the program signals the oscilloscope to acquire a single spectrum upon the
next trigger. Once triggered, the oscilloscope starts collecting data, sending it to
the program which saves it to a file. The program then moves the SNAP to the
next position and restarts the loop by signaling the oscilloscope to acquire the next
spectrum.

3.2.1 Spectrum Calibration and Spectrogram

The raw data consists of 4 channels: transmission, wavelength locker Fabry-Perot,
Trigger and Wavelength locker power monitor. An example of the raw transmission
data and the wavelength locker data is plotted in Figure 3.5a) and b) respectively.
To convert this data to transmission as a function of wavelength, a calibration script
was written in R programming language by the author, then implemented in Python
by Pablo Bianucci.

The wavelength locker is calibrated such that the known frequencies are where
the Fabry-Perot and power monitor cross with an downwards slope, when plotted for
scans of increasing wavelength. These points are marked by red lines in Figure 3.5 b).
The trigger’s low and high values are dependent on the scanning range. The script
uses this to identify the starting wavelength. All the points between the wavelength
locker’s known frequencies are linearly interpolated.

The laser and optical circuit has many frequency dependent losses which results
in power oscillations in the transmission. To separate these effects from the effects
of the SNAP and to convert the photo detector output to a normalized transmission,
every spectrum’s transmission is normalized by the transmission of a scan without a
SNAP. A spectrum after wavelength and power calibration is shown in Figure 3.5 c).

Separate Python and R scripts were written by Pablo Bianucci and the author
to take all the calibrated spectra, at each position along the SNAP, and plot the
transmission as function of wavelength and position. The resulting spectrogram can
be seen in Figure 3.6.
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Figure 3.5: Conversion of raw data from time domain to wavelength domain. a)
Transmission as a function of time during scan. b) Wavelength locker data, the known
wavelengths are where the Fabry-Perot(blue) crosses the monitor(orange) indicated
by the vertical read lines. c) Data after power and wavelength calibration.
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Figure 3.6: Spectrogram of transmission as a function of wavelength and position
along the SNAP’s axis. a) and b) are spectrogram showing multiple azimuthal mode
numbers of orthogonal polarizations, respectively. c) and b) are enlarged portions of
a) and b), respectively. We can see two of sets of modes, the strongly coupled modes
are the 1st order radial modes and the weaker coupled modes are the 2nd order ones.
e) and f) are the enlarged sections of c) and d). The red boxes indicated the rows
that were averaged when finding the turning points.29



3.3 Theory

Simply put, we pick a large set of modes that correspond to the same axial mode
number and adjust the parameters in the TEq until all the modes are consistent with
one value for the radius and refractive index.

The value of the radius will be determined at the turning points because, at these
points, the wave vector is completely in the azimuthal direction. We can therefore
set k⊥ = k, dropping the subscript.

From the spectrogram, we can make the following assumptions about the set of
modes with a given axial mode number:

• The radial mode number can be determined by the coupling strength. The more
strongly coupled modes are the 1st order and the more weakly coupled modes
are the 2nd order radial modes.

• Consecutive modes with the same radial mode number differ only by 1 azimuthal
mode number.

• The modes have a common turning point and common radius at the turning
points.

• The initial, approximate, refractive index is good enough to calculate the mode
numbers and polarization.

From these, we will show that the azimuthal mode numbers and polarizations can
be determined. Once these are found, the refractive index can be varied such that all
the modes give the same value for the radius.

This section is divided into 3 parts. First, the method to determine turning points
along the fiber is presented. Then, the method for determining the mode numbers
and polarization is derived. Finally, the improved error is derived when the refractive
index is varied to minimized the difference between the model and the data of the
two modes of orthogonal polarizations.

3.3.1 Location of the Turning Points

The turning points are the two points along the axis where there is no propagation
along the axis and therefore kz = 0. By setting this value in the differential equation
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for the axial direction, Equation (2.16), we find

∂2Z(z)

∂z2
= 0. (3.1)

Since the second derivative is also zero where the Z(z) = 0, we must specify that only
the zeros at the far edges of the mode are of interest. This is indicated by the red
lines in Figure 3.7, where the field amplitude, and its second derivative are plotted.
We now need to obtain a similar plot from the data. In the spectrogram, Figure 3.6
e) and f), we can select a subset of rows, like the ones boxed in red, that couple into
a single mode. These rows can be averaged over to obtain the transmission at every
position. From this, we can plot the stored energy in the resonator as function of
position. By Poynting’s theorem, the square root of this yields a function proportional
to the absolute value of the fields. Taking the second derivative of this new function
and finding the roots on either edge will give us the turning points.

3.3.2 Determining Mode Numbers and Polarization

For large azimuthal mode numbers, the free spectral range is approximately, but not
exactly, equal for consecutive modes. This small difference can be used to determine
the azimuthal mode numbers. We do this by finding the roots of the TEq, Equation
(2.23), for two modes numbers that differ by a known number of azimuthal mode
numbers q and dividing them.

kmR

km+qR
=

λm+q

λm

. (3.2)

This value can be measured as it is the ratio of two resonance wavelengths, with
identical axial mode number and known difference in azimuthal mode number. This
ratio is monotonic with increasing m, allowing us to try different values for m until
the theoretical and the experimental values are consistent.

3.3.3 Determining the Refractive Index and Radius

To visualize how the refractive index is determined, Figure 3.8 shows a plot of the
TEq for two axial modes, for a theoretical SNAP of 40µm. The TEq’s were plotted
as a function of radius instead of the product kR. This was done by calculating the
TEq for correct mode numbers and multiplying by λres/2π. Figure 3.8 b) and c)
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Figure 3.7: Field(gray) due to an effective harmonic potential along the axis and its
second derivative(black). a) First axial mode and b) third axial mode. The turning
points are marked by red lines.
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focuses on the first zero, which corresponds to the radial mode number of interest
for this theoretical SNAP. In b), the refractive index is the correct value, confirmed
by the fact that both TEq’s correspond to the same radius. If the refractive index
is varied, we can see from c) that the TEq’s have different zeros, corresponding to
different values of the radius at the position of the turning point. This is a physically
impossible scenario. In our experiment, the value of n will start off as having some
error which will be varied such that the two modes coincide.

The initial error is given as a function of the two continuous parameters in the
TEq: the wavelength and the refractive index,

δR =
∂R

∂λres

δλ+
∂R

∂n
δn (3.3)

Where δR is the error in the measured radius of the modes, λres is the free space
resonance wavelength, δλ is the error in the measured resonance wavelength and δn

is the error in the refractive index.
The manufacturer of the wavelength locker guaranties the measurement to within

20 pm, and since this error is larger than the 1 pm random noise observed in the
data, this is a bias. The initial, approximate refractive index will also bias our values,
which means the difference in measured radius is just the difference in their errors.

R1 −R2 = δR1 − δR2 =

(
∂R1

∂λres

− ∂R2

∂λres

)
δλ+

(
∂R1

∂n
− ∂R2

∂n

)
δn, (3.4)

where the subscripts identify the mode.
By the assumption that the exact radius is common for both modes, the approx-

imate refractive index can be varied such that the left hand side is zero. This can
be seen from Figure 3.8 B) and C) where the difference in measured radius is zero
when correct refractive index is used. In the correct refractive index, Equation (3.4)
reduces to

δn′ =

(
∂R2

∂n
− ∂R1

∂n

)−1(
∂R1

∂λres

− ∂R2

∂λres

)
δλ, (3.5)

where δn′ is the error of the improved refractive index, after varying. The new value
of the refractive index can then be used to calculate the radius, and the new error can
be substituted back into Equation (3.3) to obtain the improved error in the radius.
To minimize δn, the modes need to be chosen such that the coefficient of δλ in
Equation (3.5) is small. By choosing modes of orthogonal polarization, the different
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Figure 3.8: The TEq for a TE and a TM mode as a function of radius. The theoretical
resonator has a radius of 40 µm. b) is an enlargement on the first zero in a) where
the refractive index was the correct value of 1.445. In c) the TEq was calculated with
a varied refractive index of 1.444. It can be identified as wrong by the fact that the
modes indicate a different radius.
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dependencies of the TEq on the refractive index will lead to a large difference in the
coefficients of n in Equation (3.3) when compared to mode of same polarization. For
this reason, use of orthogonal polarizations is favorable, giving

δn′ =

(
∂RTM

∂n
− ∂RTE

∂n

)−1(
∂RTE

∂λres

− ∂RTM

∂λres

)
δλ. (3.6)

3.4 Analysis and Results

We are now in a position to measure the refractive index and radius. In this section
we apply the methods of the previous section to the first and third axial modes in
the spectrogram, Figure 3.6 e) and f), boxed in red.

3.4.1 Determining the Turning Points

We select axial modes 1 and 3, boxed in red in Figure 3.6 e) and f). The average
transmission for every position was computed. Figure 3.9 a) and b) shows this
averaged transmission, subtracted and normalized to obtain the power, as a function
of position, lost in the cavity. A 6µm moving average filter was used to remove high
spatial frequency noise. A square root was applied to obtain a function proportional
to the absolute value of the electric field. The second derivative of this was computed
using a second order accurate central differences, then plotted in Figure 3.9 c) and
d). The turning points are marked by red lines.

3.4.2 Determining the Mode Numbers and Polarizations

The mode numbers were determined by comparing the theoretical and measured
values from Equation (3.2) and picking the best fit. Figure 3.10 shows the plot of
the theoretical wavelength ratio for modes that are 8 mode numbers apart. The blue
dots correspond to the TM modes and the orange dots to the TE modes. The red
line indicates the experimental value of quotient of two modes separated by 8 axial
mode numbers. The correct value correspond with the dot that coincides with the
red line. The only combination of mode numbers that was possible is shown in Table
3.3. Some comparisons of theoretical and measured values are shown in Table 3.2.
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Figure 3.9: a) and b):Power lost in axial modes 1 and 3. c) and d): Second derivative
of the square root of the a) and b), respectively. The turning points are marked by
red lines.

Theoretical λ1/λ2 Measured λ1/λ2 Error(×10−5) m1 m2 p Polarization
1.037145 1.037155 1.0 182 189 0 TM
1.032146 1.032172 2.6 175 181 1 TM
1.015561 1.015552 -0.9 187 190 0 TE
1.043246 1.043211 -3.6 174 182 1 TE

Table 3.2: Comparison of theoretical and measured values of the ratio of pairs of
wavelength for the first axial mode number. These values show both polarizations,
where both the first and second radial mode numbers must be within the allowed
error.

36



Figure 3.10: Ratio of resonance wavelengths for modes separated by 8 azimuthal mode
numbers as a function of the smaller mode number. The red line is the experimental
value and the error is ±10−5. The correct data point is where the dot coincides with
the line.
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λ(nm) m p Polarization λ(nm) m p Polarization
1548.237 189 0 TM 1542.710 190 0 TE
1556.186 188 0 TM 1550.635 189 0 TE
1564.239 187 0 TM 1558.624 188 0 TE
1572.369 186 0 TM 1566.702 187 0 TE
1580.586 185 0 TM 1574.861 186 0 TE
1588.892 184 0 TM 1583.107 185 0 TE
1597.282 183 0 TM 1591.439 184 0 TE
1605.761 182 0 TM 1599.858 183 0 TE
1614.333 181 0 TM 1608.369 182 0 TE
1548.205 181 1 TM 1542.818 182 1 TE
1556.302 180 1 TM 1550.855 181 1 TE
1564.466 179 1 TM 1558.965 180 1 TE
1572.722 178 1 TM 1567.165 179 1 TE
1581.063 177 1 TM 1575.448 178 1 TE
1589.500 176 1 TM 1583.821 177 1 TE
1598.014 175 1 TM 1592.283 176 1 TE
1606.628 174 1 TM 1600.839 175 1 TE
1615.333 173 1 TM 1609.484 174 1 TE

Table 3.3: Mode numbers computed using Equation (3.2) for all the first axial mode
number.
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Polarization Axial Number R(µm) ∆R(nm) Left TP(µm) Right TP(µm)
TM 1 33.554 1.9 95 110
TM 3 33.543 2.0 70 135
TE 1 33.489 5.5 95 110
TE 3 33.478 5.8 70 135

Table 3.4: Average radius of all the modes with the given polarization and axial mode
number. ∆R is the standard error of measured radius. The two last columns are the
location of the turning points.

Figure 3.11: Picture of a SNAP from an optical microscope shows a diameter of about
65µm.

3.4.3 Radius Measurement

The radius was calculated by multiplying the root of the TEq by λres/2π for the corre-
sponding mode numbers and polarization. The initial refractive index was estimated
using the manufacturer’s specification for the core refractive index and the numerical
aperture. The value was n = 1.462. The results are shown in Table 3.4 and are
consistent with measurements from an optical microscope of a 65µm diameter shown
in Figure 3.11

We see a discrepancy for the measured radius given by each polarization. If
separation of variables were valid, the refractive index would be varied until both
values matched. In our case, the variation is too large, and this procedure gives
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a value well below 1.4, which cannot be correct. To estimate the limit for which
separation of variable is valid, we calculate the ratio [36] using a linear approximation
between the two calculated radii at the two turning points.

kr
kz

=
dR

dz
≈ 1.5× 10−3, (3.7)

where the profile was assumed to be parabolic. This is consistent with the discrepancy
of the two polarizations. Multiplying the radius by this value gives an estimate of the
precision in the model of the model.

33.5× 10−6m× 1.5× 10−3 = 50 nm (3.8)

Since this correspond to a radius of 33.5± 0.05 µm, we cannot improve our measure-
ment of the refractive index, or of the radius, using this theoretical model.

This error in the model must be added to Equation (3.3) using our estimate
refractive index. The error in the model will be the largest contributor, giving a total
error of 69 nm.

3.5 Discussion and Outlook

The radius variation of the SNAP was too large to use this technique with the given
model. A more accurate model is needed to take into account the fact that the modes
have a non-negligible radial component. Alternative, a SNAP with a smaller radius
variation, such that the ratio of the components of the wave vectors in the radial
and axial directions, Equation (3.7), is less than 10−6. This would give 6 significant
figures, enough to have have 0.1 nm precision with a radius on the order of 10 µm.

Regardless of the failure to measure the absolute radius and refractive index, we
were able to accurately determine the mode’s azimuthal number, radial numbers,
polarization and the turning points using only the spectrogram while not relying on
the approximation of the light being near the interface.
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Chapter 4

Nanoparticle Carousel Induced

Periodic Resonance Shift

Nanoparticle trapping was largely pioneered by Ashkin et al. in 1970s and 1980s
[55–57], where particles, suspended in water, were trapped by a laser beam or a
combination of a laser beam and gravity. These effect were much later studied in
WGRs by Arnold et al. [9], where nanoparticles were trapped in the evanescent field
of a microsphere. These trapped particles also experience a scattering force which
propels the nanoparticle in the direction of the propagating light. The previous year,
Vollmer et al.[25] showed a single nanoparticles would shift the resonance frequency
of the WGM when in the resonator’s evanescent field.

Hollow WGRs are interesting because they provide a region inside the WGR where
the light can interact with the contained substance[16]. Since this region is inside of
the curved surface, the fields are propagating waves with maxima located inside the
WRG but not in the glass guiding structure.

Ward et al.[10, 58] showed that during carousel motion, the resonance frequency
shifted when in proximity of the tapered fiber, indicating a stronger interaction be-
tween the field and the particle. A picture of trapped nanoparticles are shown in
Figure 4.1a). There are three particles in the image but only the blurred out particle
is trapped and being scattered around the resonator. The tapered fiber is located
behind and perpendicular to the bubble. As the nanoparticle approaches the tapered
fiber, the wavelength shift as shown in Figure 4.1b) with a period of roughly 8.5
second.
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This chapter describes an attempt to recreate this mode shift and show in what
regimes this effect can be observed. This work was carried out in the Light Matter
Interaction Unit at the Okinawa Institute of Science and Technology during an in-
ternship with the Japanese Society for the Promotion of Science. The first section
describes the theory of nanoparticle trapping and nanoparticle detection by resonance
shifts, followed by the fabrication of micro-bubble resonators and tapered fiber. Then
the experimental and imaging setup are described. The results are then given fol-
lowed by a discussion of how to improvement the sensitivity of the system to observe
these effects.

4.1 Theory

For a sufficiently small tapered fiber, placed far enough from the WGR’s mode, will
not perturb the mode enough to noticeably break the cylindrical symmetry. If the ta-
pered fiber is large, it will break the symmetry, creating a region where the nanopar-
ticle interacts more strongly with the light. To describe this effect, first the force
driving the nanoparticle around the trap is shown, then, that the particle can be de-
tected near the taper using perturbation theory. This section ends with a description
of how the modes differ compared to those in SNAPs due to the hollow interior and
mode circular geometry.

4.1.1 Force on a Neutral Polarizable Particle

This section follows the work of Zangwill[39] to derives force on a neutral, polarizable,
molecule, consisting of a collection of charged particles, interacting with a slow varying
electric field. The Lorentz force on such a particle is

F =
∑
α

qα

[
E(Rα) + Ṙα ×B(Rα)

]
. (4.1)

Where qα is the charge of an individual particle making up the molecule, E(Rα) is the
electric field at Rα, Ṙα is the velocity of the particle and B(Rα) is the magnetic field
at Rα. Using the slow spatially varying field approximation and that the particles
never move far from the center of mass, we Taylor expand the fields about the center
of mass. Setting Rα = R + rα and Ṙα = v + ṙα for center of mass position and
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Figure 4.1: Results from a previous experiment done by Ward et al.[58] where a mode’s
resonance frequency shifted as a nanoparticle came in proximity of the tapered fiber.
a) A few nanoparticles in a microbubble. Only one of the nanoparticles is trapped and
moving around the microbubble by the scattering force. b) The resonance frequency
shift during multiple periods of the particle moving around the trap. The period is
roughly 8.5 seconds.
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velocity R and v, respectively and position and velocity relative to the center of mass
rα and ṙα, respectively.

F =
∑
α

qα(E+ v×B) +
∑
α

qα(rα · ∇)E+
∑
α

qα(rα · ∇)(v×B) (4.2)

+
∑
α

qαṙα ×B+
∑
α

qα(ṙ · ∇)(ṙα ×B). (4.3)

The first term is zero because the nano-particle is neutral. By the definition of a
dipole moment p =

∑
α qαrα the equation can be written as

F = (p · ∇)E+ ṗ×B+ (p · ∇)(v×B) +
∑
α

qα(r · ∇)(ṙ×B). (4.4)

We are only interested in the time average force on the particle. Since the optical
fields are oscillating harmonically in time we only keep terms with an even number of
oscillating factors of frequency ω. Since the polarizability and center of mass velocity
will follow that periodicity, the two last terms will average to zero.

⟨F⟩ = 1

2
Re{(p∗ · ∇)E+ ṗ∗ ×B}. (4.5)

Using the definition of polarization p = ϵ0αE with complex polarizability α = α′+iα′′.
For the second term, the product rule, Ampere’s Law ∇ × E = iωB and the time
independence of E×B gives

⟨F⟩ = 1

2
Re{(α∗E∗ · ∇)E+ α∗E∗ × (∇× E)}. (4.6)

We factor out the phase from the amplitude E(r) = E(r)eik·r where E is real and, use
Gauss’s Law ∇ · E = E · k = 0 to find

⟨F⟩ = 1

2
Re{α∗(E · ∇)E + α∗[E × (∇× E) + i|E|2∇(k · r)]}. (4.7)

This simplifies using the vector calculus identity ∇|E ·E| = 2(E ·∇)E+2E× (∇×E),
to

⟨F⟩ = 1

4
ϵ0α

′∇|E|2 + 1

2
ϵ0α

′′|E|2k. (4.8)

These two terms are known as the gradient and scattering forces

Fg =
1

4
ϵ0α

′∇|E|2 Fs =
1

2
ϵ0α

′′|E|2k (4.9)
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Figure 4.2: Nanoparticle trapped and scattered in bottle modes. a) Nanoparticles
trapped at caustics. b) Nanoparticles trapped near the inner edge of the resonator
while being accelerated in the direction of the wave vector.

The gradient force is always in the direction of the local maximum electric field
which traps the particle at the field maximum. The scattering force is due to Mie
scattering which transfers the optical energy and momentum to the particle. In a
microbubble, the gradient force will trap the nanoparticle near the inner edge, at
one of the caustics, while the scattering force will push the particles around the in
carousel motion as shown in Figure 4.6.

4.1.2 Resonance Shift

The resonance shift is caused by the electric field interacting with a material of differ-
ent polarizability and therefore changes the mode’s optical path length. If the particle
is small enough and the difference in polarizability small compared to the surrounding
medium, the shift in resonance frequency can be treated as a perturbation[59]. Using
a semi-classical model the perturbation is the time averaged excess energy required
to polarize the particle

ℏ∆ω = −1

2
⟨∆p∗E⟩t = −1

4
Re{∆αE∗E}. (4.10)
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Where ℏ is Plank’s constant, ∆ω is the frequency shift, ∆p and ∆α are the excess
dipole moment and polarizability compared to the surrounding medium. The total
energy in the mode is similarly given by

ℏω =
1

2

∫
ϵ(r)E∗EdV. (4.11)

Dividing these two equations gives the fractional resonance shift.
∆ω

ω
=

Re{∆αE∗E}
2
∫
ϵ(r)E∗EdV

(4.12)

In the case at hand, the shift occurs when the nanoparticle, with the slightly different
polarizability ∆α, enters the region of larger electric field, near the tapered fiber.

4.1.3 Microbubble Resonators

The modes in a microbubble are different compared to the results from Chapter
2. The first difference arises from the microbubbles more spherical shape. For this
reason, separation of variables in spherical coordinates is used [38] and the differential
equation becomes

1

R(r)

∂2F (r)

∂r2
+

1

Φ(ϕ)r2 sin2 θ

∂2Φ(ϕ)

∂ϕ2
+

1

Θ(θ)r2 sin θ

∂

∂θ

(
sin θ

∂Θ(θ)

∂θ

)
= −k2, (4.13)

where the field is assumed to have the form

Er(r) = R(r)Φ(ϕ)Θ(θ)θ̂. (4.14)

For the angular coordinates, this leads to the well known solution of spherical
harmonics

Φ(ϕ)Θ(θ) = [Pm
n (cos θ)] [cos θ] . (4.15)

Where Pm
n (x) are the Legendre polynomials. For the radial function, the different

refractive index at the center region of the microbubble means there will be a second
matching condition which is treated in the same way as the other. The piecewise
solution is [37]

R(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
AJm+1/2(k0nwaterr) , r ≤ R1(z)

BJm+1/2(k0nglassr) + CH
(2)
m+1/2(k0nglassr) , R1(z) < r ≤ R2(z)

DH
(2)
m+1/2(k0nairr) , r > R2(z)

. (4.16)

Where the Bessel and Hankel function are of half integer order. The coefficients
A,B,C,D are determined by the boundary conditions,
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Figure 4.3: Microbubble fabrication setup. M: mirror, BS: beam splitter, S: stage,
L: lens, N2: high pressured nitrogen. First the laser heats a capillary fiber while
stages pull, elongating the capillary. Second, the laser heats the capillary while high
pressure nitrogen gas is pumped in, inflating the microbubble.

4.2 Fabrication

The method used to fabricate the microbubble was developed by Yang et al.[20] and
consisted of pumping high pressure gas in a capillary fiber while heating with a CO2

laser. Fabrication of tapered fiber was the same described in Section 3.1.1

4.2.1 Microbubbles

A schematic of the microbubble fabrication setup can be seen in Figure 4.3. A CO2

laser was used to heat the capillary above the glass transition temperature, making
it malleable. The beam is split into two, and guided to heat the capillary from either
side, providing uniform heat and canceling radiation pressure effects. There are two
stages holding the capillary in place. One of which is fixed and the other can moves
linearly, pulling the capillary.

Starting with a capillary of 250 µm inner diameter and 350 µm outer diameter.
The first step consists of heating the capillary with the laser while the movable stage
pulls, reducing the diameter to approximately 18 µm. The second step consists
of pumping compressed nitrogen gas into the capillary while heating the previously
thinned out region. The softened glass and pressure difference causes the bubble to
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Figure 4.4: Nanoparticle trapping and sensing setup. TL: Tunable laser, FG: Func-
tion generator CPU: computer, PD: photodiode, DAQ: data acquisition card. The
computer is connected to a camera.

inflate at a rate controllable by the laser power. Once the desired size is reached, the
bubble is mounted in the same manner as the taper.

4.3 Experimental Setup

A schematic of the experimental setup can be viewed in Figure 4.4. A laser with
center wavelength at 780nm scans over over a wavelength range, sending the light
down the tapered fiber to couple light in and out of the microbubble modes. The
transmitted light reaches the photodiode and an electrical signal is sent to a National
Instrument data acquisition card (DAQ). To scan the laser frequency, a function
generator was split, sending part of a ramp signal to a modulation input of the laser
and the other part to the DAQ for triggering and wavelength calibration.

A solution of distilled water with a low concentration of 500 nm polystyrene
nanoparticles was pumped into the microbubble using a syringe. A very small pressure
difference will produce a small flow through the microbubble. With the laser is on,
the a nanoparticle would enter the microbubble and become trapped in the mode.

For imaging, the nanoparticles were doped, by the manufacturer, to fluoresce. As
shown in Figure 4.5, 532nm laser light is reflected off a dichroic mirror before exciting
the fluorescent nanoparticles. The nanoparticles emit 570nm light back towards the
dichroic mirror, which will pass though to reach the CCD camera. Two filters were
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used to block any unwanted scattered light. A band-pass filter was placed between
the mirror and the microbubble to block everything but the 532nm and 570nm, and
a low-pass filter was placed just before the camera to block out any scattered 532nm
light.

4.4 Results and Outlook

The nanoparticles were trapped, and propelled around the microbubble but no mode
shift or acceleration of the particle was observed when passing near the tapered fiber.
One reason this experiment may have failed is due to the small regime of optical power.
At low power, the light may not trap the nanoparticle strongly enough to keep it near
the electric field maximum, allowing the mode to shift due to Brownian motion[60].
At too large power, turbulence will prevent any steady modes from forming on the
timescale required.

A possible way to circumvent this problem would be to make a larger tapered
fiber to create a larger localization in that region. Conversely, instead of increasing
the fields, the sensitivity could be increased by using a mode locking technique that
would allow much smaller resonance shifts to be measured.
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Figure 4.5: Camera used for imaging the trapped nanoparticles. 532nm light is
reflected off a dichroic mirror to excite the fluorescent nanoparticles. The lower fre-
quency light passes the mirror and landing on the CCD camera. A filters was used
between the mirror and nanoparticles, and another between the mirror and CCD
sensor to block out any unwanted light.
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Figure 4.6: Data from a nanoparticle trapped near the inner edge of a microbubble. a)
Image of the fluorescent nanoparticle, propelled by the scattering force. b) Spectrum
showing the mode trapping the nanoparticle.
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Chapter 5

Locking to a Mode

5.1 Introduction

Locking a laser to a cavity mode is a useful technique, both for stabilizing a laser and
for tracking changes in resonance frequency. The best method known today is the
Pound-Drever-Hall technique[61], which uses frequency modulation to measure how
far off the laser is from resonance, and feeds that signal back to laser for correction.

In order to lock a laser to a mode, we need a error signal, a linear function of
frequency with a non-zero slope to indicate which side of resonance the laser is on.
Older techniques would lock the transmitted or reflected light to the a value near the
midpoint of the intensity, where the slope is large. The problem with this method
is that on cannot differentiate between changed in frequency and changes in power.
The advantages of the Pound-Drever-Hall technique is that the corrections always
brings the error signal to zero, decoupling the signal from the power fluctuations[62].
Secondly, because this technique is based on lock-in detection, the frequency modula-
tion can be chosen at a frequency such that the noise spectral density is low, avoiding
many sources of noise completely.

When used to track a resonance, the lock is particularly useful for resolving the
resonance much more accurately and at much higher sampling rate than by measuring
the transmission during sequential scans[61].

Applying this technique to chapter 3, given an adequate theoretical model, would
allow more precise measurements of the mode’s refractive index and measurements
of the radius. Since these two parameters are measured in sensing applications, as in

52



Figure 5.1: Pound-Drever-Hall feedback loop for locking a laser to a cavity. Thick
lines represent electrical connection while thin lines represent optical fiber.PID: pro-
portional integral differential, LPF: low pass filter, RFM: radio frequency mixer, PD:
Photo-diode, FG: function generator, PS: phase shifter, PM: phase modulator, TL:
tunable laser, FC fiber coupler.

chapter 4, it improves the resolution of sensors.
In this chapter, the Pound-Drever-Hall technique is theoretically explained and

the results of a laser locking to a fiber ring resonator are shown. Locking to a fiber ring
resonator was advantageous because it is a more robust platform than ones involving
a tapered fiber. This technique can easily be applied to SNAPs or microbubbles by
replacing the fiber ring with a tapered fiber and a SNAP or microbubble.

5.2 Theory

This section theoretically describes the Pound-Drever-Hall technique. Closely follow-
ing the original paper by Drever et al.[61] and the work of Black[62] starting with
frequency modulation, lock-in detection(mixing and low pass filter), feedback ampli-
fication and noise analysis.

5.2.1 Error Signal

The basic setup for a Pound-Drever-Hall lock is shown in Figure 5.1. Starting at the
laser, light is sent towards the phase modulator with an electric field

E = E(x)eiωt. (5.1)

53



The light passes through the phase modulator and emerges with an electric field[62]

E = E(x)ei(ωt+β sin(Ωt)). (5.2)

Where β is the modulation depth and Ω is the modulation frequency. Using the
Fourier-Bessel expansion, this can be expressed as

E ≈ E(x)[J0(β) + J1(β)2i sin(Ωt)]e
iωt (5.3)

E ≈ E(x)[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t] (5.4)

using Euler’s identity in the last step. This approximation is valid if the modulation
depth is near 1. This value is chosen such that only the zeroth and first order Bessel
functions have significant contributions and higher order sidebands can be neglected.
Expressed this way, it appears as three beams of light are incident on the cavity, a
carrier at frequency ω and two sidebands at frequencies ω±Ω. The time and frequency
domain plots of this can be seen in Figure 5.2. Note that despite the multiple beams
of light, there is no beating of the whole signal.

The carrier and sidebands couple in and out of the cavity, interacting with the
cavity independently. The emerging field is given by the sum of each frequency, carrier
and sidebands, multiplied by the transfer function, Equation (2.45), at the respective
frequencies. The emerging field is

E ≈ E(x)[F (ω)J0(β)e
iωt + F (ω + Ω)J1(β)e

i(ω+Ω)t − F (ω − Ω)J1(β)e
i(ω−Ω)t] (5.5)

Where F (ω) = E3/E1 is the transfer function at frequency ω. The Power is propor-
tional to the square of the electric field[62].

P =Pc|F (ω)|2 + Ps

[
|F (ω + Ω)|2 + |F (ω − Ω)|2

]
(5.6)

+2
√

PcPs Re [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cos(Ωt) (5.7)

+2
√

PcPs Im [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin(Ωt) (5.8)

+(2Ω terms) (5.9)

Where Pc and Ps is the power in the carrier and each sideband, respectively. The
important terms are those proportional to sin(ωt) and cos(ωt). These terms can be
interpreted as the carrier beating with one of the side-bands while the ignored terms,
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Figure 5.2: Electric field of a phase modulated light in: a) the time domain and b) the
frequency domain. When there is only phase modulation, no amplitude modulation
is observed.
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proportional to sin(2ωt) and cos(2ωt) are due to the two side-bands beating together.
While on resonance, the beating of both sidebands with the carrier cancel out, but as
the carrier moves away from resonance, some amplitude modulation will occur. As
the carrier’s frequency is shifted to the opposite side of resonance, the modulation is
be 180◦ radians out of phase. This beating is slow enough that the photodiode can
follow, and send the signal to the mixer. The mixer multiples this signal with the
reference signals from the function generator. If the reference signal is in phase with
the cos(Ωt) term, the output will be

Vm =Vr

(
Vc|F (ω)|2 + Vs

[
|F (ω + Ω)|2 + |F (ω − Ω)|2

])
cos(Ωt) (5.10)

+2Vr

√
VcVs Re [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cos2(Ωt) (5.11)

+2Vr

√
VcVs Im [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin(Ωt) cos(Ωt) (5.12)

+(Ω and 3Ω terms) (5.13)

Where Vm is the mixer output voltage, Vr is the voltage of the reference signal, Vc

and Vs are the voltages from the photodiode associated with the carrier and sideband
power. Using trigonometric identities this becomes

Vm =Vr

(
Vc|F (ω)|2 + Vs

[
|F (ω + Ω)|2 + |F (ω − Ω)|2

])
cos(Ωt) (5.14)

+Vr

√
VcVs Re [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] (1 + cos(2Ωt)) (5.15)

+Vr

√
VcVs Im [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin(2Ωt) (5.16)

+(Ω and 3Ω terms) (5.17)

The low pass filter is set with a cutoff frequency to remove all but the DC component,
leaving

Ver = Vr

√
VcVs Re [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] . (5.18)

Where Ve is the error signal. If the reference signal was shifted by a 90◦ to be in
phase with the imaginary term, a similar calculation would give

Vei = Vr

√
VcVs Im [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] . (5.19)

When the modulation frequency is less than the cavity linewidth, Ver gives a more
desirable error signal and when the modulation frequency is larger than the linewidth,
Vei is more desirable[62]. For the interested reader, a thorough study of the error
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signal for the two phase relations, at different modulation frequencies can be seen in
Bjorklund et al. work[63]. Both cases are plotted as a function of the relative carrier
frequency from resonance in Figure 5.3.

Up to this point, we’ve described frequency modulation spectroscopy, using the
error signal given in Figure 5.3 we can determine resonances with much more precision
than from a Lorantzian peak. For the Pound-Drever-Hall technique, we are interested
in working near resonance, where the signal is approximately linear and the slope is
large. Around that point, small mismatches in resonance will produce a large voltage
at the low pass filter output. This voltage is then amplified by the PID controller
and fed into one of the laser’s modulation input, correcting the laser’s wavelength to
match the cavity’s resonance. The voltage output of the PID can also be used as a
readout of the laser’s wavelength since there is a linear relation between the applied
voltage and the laser’s wavelength.

The PID controller takes the error signal from as an input and outputs the voltage
given by

Vout = kpVin(t) + ki

∫ t

0

Vin(t
′)dt′ + kd

dVin(t)

dt
(5.20)

The kp, ki and kd are the proportional, integral and differential constant coefficients.
kp makes high frequency correction, ki tracks the mode when the frequency changes,
as it would typically do in sensing applications and kd prevents overshooting the zero
point error. When the frequency corrections are always small, kd can be set to zero.

5.2.2 Noise

The closed loop noise spectral density dictates how closely the laser can match the
resonance and is given by[64]

Sf,cl =

√
s2f,laser + |KSv,PID|2 + |KkpSv,error|2

|1 +KkpDv|
(5.21)

Where Sf,cl and Sf,laser are the closed loop and laser’s, noise spectral density noise,
respectively, in dimensions of frequency. SV,PID and sV,error are the PID and error
signal’s, noise spectral density noise, respectively, with dimensions of voltage. K is
the laser input’s modulation frequency coefficient, and Dv is the slope of the error
signal at resonance.
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Figure 5.3: Error signals for different modulation frequencies. a) The modulation
frequency is less than the mode’s linewidth and the reference is in phase with the
cos(Ωt) term. b) The modulation frequency is larger than the resonance and the
reference signal is in phase with the sin(Ωt) term.
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Figure 5.4: Experimental setup, RP: Red PitayaTM, PD: photo-diode, LPF: low pass
filter, TL: tunable laser, PM: phase modulator, PMD: phase modulator driver, FC:
fiber coupler

We can see that if the gain of the PID, Kp, is very large, this equation is approx-
imately

Sf,cl =
Sv,error

Dv

(5.22)

In this regime, the only source of error is from the error signal output. In the best
case, this will be dominated by the shot noise of the photons on the photodiode[62]
but can also be dominated by the electronic noise in the photodiode, lock-in amplifier
or from poorly chosen modulation and cut-off frequency.

5.3 Experimental set-up

Figure 5.4 shows a schematic of the setup and table 5.1 shows the list of equipment.
The ring resonator was fabricated by splicing two ends of the 99/1 fiber coupler such
that the ends coupling 99% are fused together. The resonance peaks have a FWHM
of 3.2 MHz as shown in Figure 5.5. For this linewidth, the slow and fast modulation
frequencies were chosen to be 2MHz and 31MHz, respectively.

Many of the components were digitally embedded in the Red PitayaTM (RP),
a single board computer with two input and two output field programmable gate
arrays (FPGA). The program used was the open source Lock-in+PID program, which
can be installed through the RP Marketplace. This program, written by Luda et
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Component Manufacturer Model
Tunable laser GN-Nettest TUNICS-plus 3644HE-15
Polarization controller OZ Optics FPC-100
Photo detector Thorlabs PDA 10CF
FPGA signle board compter Red PitayaTM Stemlab125-14
Low pass filter Minicircuits BLP-1.9+ (slow modulation)

BLP-27+ (fast modulation)
Fiber coupler Thorlabs PNH1550R1A2
Phase modulator iXBlue MPX-LN-0.1
Phase modulator driver iXBlue DR-VE-0.1-MO

Table 5.1: List of components used in experimental setup (Figure 3.4).

Figure 5.5: Fiber ring spectrum. Modes have a full width half maximum of 3.2MHz
corresponding to a Q-factor of 60 million.
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la. [65], includes a lock-in amplifier(function generator, mixer, low pass filter) and
proportional-integral-derivative(PID controller). It also includes tools to help set up
the lock including a ramp scan generator, oscilloscope and Lock Controller. These
components are controlled over the network through an internet browser. Screenshots
of the graphical user interface(GUI) can be seen in Figure 5.6 and Figure 5.7 .

Input 1 was connected to the photodiode signal, output 1 was the sending the
lock-in’s modulation signal to the phase modulator and output 2 was sending the
Lock Controller signal to the laser. For the modulation frequencies we were working
with, we used the fast, square wave, modulation. This was needed because a sinusoidal
function is more difficult to implement electronically at high frequencies[66]. However,
thought of as a Fourier series, a square wave is a sum of sinusoidal waves. The
higher harmonics, if not removed, will produce extra sidebands that interfere with
the desired signal. These frequencies were therefore removed with the low pass filter
which was connected between output 1 of the RP and the phase modulator driver.
The modulation signal was then amplified to produce a modulation depth near 1.

To set up the lock, the RP oscilloscope displayed the error signal and the ramp scan
for triggering. The lock-in amplifier’s modulation frequency was set to the desired
frequency, either 2MHz or 31MHz. The ramp scan was then set to a frequency of 50Hz
with maximum amplitude. The Lock Controller was set to output the ramp signal
to the laser,displaying the error signal on the oscilloscope. The lock-in amplifier’s
low pass filter’s cutoff frequency was set just low enough to be remove any noticeable
modulation in the error signal, 100kHz. Lastly, the phase was adjusted to achieve the
desired error signal as in 5.3.

In the PID module, the error offset set to make the average error zero, as indicated
on the right side of the Figure 5.6 . In our case, the slope of the error signal was
positive during the upwards scan meaning the PID coefficients should be positive 1.
The proportional coefficient (kp) was set to have a maximum value which didn’t clip
the error signal at the RP output (1V). The integral coefficient (ki) was set to its
minimum non-zero value and increased after locking just below the value when it
became unstable. The derivative coefficient was set to zero.

The Lock Controller initially sent the ramp signal to the laser, scanning over a
wavelength range. The module was set to monitor the error signal and was triggered

1The program includes an overall negative sign in the PID
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Figure 5.6: Part of the graphical user interface for Lock-in+PID program. The
electrical signal from the photodiode is sent to the lock-in amplifier which outputs
the error signal to the PID controller (next figure). The oscilloscope is used to set all
the parameters. The oscilloscope shows the photodiode input and error signal during
a ramp scan. The 4 modes in the center are during the upwards scan while the two
on the side are during downwards scans as seen by the slope direction change.
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Figure 5.7: Part of the graphical user interface for Lock-in+PID program. The Ramp
Controller is used to scan the laser’s wavelength while tuning the lock-in amplifier
parameters until the error signal looks like Figure 5.3 on the internal oscilloscope.
The PID module receive the error signal from the lock-in amplifier and is fed back to
the laser. The Lock Controller switches the output going to the laser’s modulation
input, from the Ramp Controller to the PID module when the carrier is close to
resonance enough to lock.
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when error signal was near a maxima. At that point the Lock Controller switches the
output from the ramp to the PID controller.

It’s worth pointing out that in the slow modulation case, the laser will automat-
ically lock to a mode without the lock control and that even if it unlocks, it will
automatically re-rock to that, or another mode. When the modulation is fast, the
laser will re-lock to resonance as long as the cavity frequency remains within the two
sidebands. This can be seen by the fact that the error signal always has the correct
sign to push it in the right direction.

5.4 Results

The error signal for both slow and fast modulations are shown in Figure 5.8. When
the PIDs were activated, the lock is working when the error signal mean and standard
deviation are reduced to zero. The values can be read off the GUI as seen on the
right side of Figure 5.7

5.5 Outlook

Locking was achieved but certain modifications can be made to improve the lock.
First, the PID output signal would need to be amplified. Since the RP can only
output ±1V , amplification would ensure that most of the noise is suppressed and the
spectral density is accurately described by Equation (5.22).

A second improvement would be to condition the signal between the photodiode
and the RP input. Since the only part of the signal that matters are the terms oscil-
lating at the modulation frequency, a bandpass filter would remove any unnecessary
parts of the signal. Removing these unnecessary terms would allow the range of the
RP 14 bit ADC to be detracted to the relevant modulation terms.

This mode locking technique could detect much smaller wavelength shifts in the
nanoparticle trapping experiment. Applying this lock to Chapter 3 would give a more
accurate value for wavelength shifts in real time. The spectrogram gives a nice visual
to identify the mode numbers and polarization but once that has been determined,
only two modes of orthogonal polarization are needed. This could be used to improve
sensing and differentiate between temporal changes in the refractive index and the
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Figure 5.8: The error signal during a ramp scan for a) 2MHz modulation and b)
32MHz modulation. a) the small error signals that appear between the large signals
are mode of orthogonal polarization. b) For each mode, the expected Pound-Drever-
Hall signal can be seen with the addition of the second order sideband crossing the
axis on the outside of the Pound-Drever-Hall signal. The signal in a) use a more
stable laser (Rio Orion 1550 nm Laser Module) The signal in b) is quite unstable and
would stabilize once locked.
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radius.
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Chapter 6

Packaging of Surface Nanoscale Axial

Photonic Resonators

Throughout this thesis, light was coupled into the resonator through a tapered fiber.
This method is preferred due to the tapered fiber’s strong evanescent field and easy
of alignment but, suffers from the fragility of the fiber, which breaks easily.

Another issue, related to the SNAP itself, is scattering due to a monolayer of
silanols that bind to the surface. Shortly after fabrication atmospheric water in the
proximity of the surface will chemisorb to the surface as shown in Figure 6.1a). Two
hydroxide groups will be left bonded to the surface, creating a dipole. This dipole
will then adsorb to more atmospheric water[67] as shown in Figure 6.1b).

These layers scatter light, therefore reducing the Q. It was also shown that the Q
factor could be partially restored by heating the resonator[40].

This chapter describes an attempt to address both these issues. Packaging was
designed, fabricated and tested to hold a coupled SNAP and tapered fiber as a two
port device. The packaged device was first tested against impact for its durability.
Then subjected to heat and vacuum to remove the layer of water in an attempt to
partially restore the Q factor.

6.1 Fabrication

The packaging was designed with a computer aided design software and printed with
a 3D printer. It consists of 2 parts: a base to which the SNAP and taper are epoxied
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Figure 6.1: a) Atmospheric water will chemosorb to the surface, producing to produce
silanols. b) The dipole in due to a silanol will adsorb atmospheric water[67].

to, and a lid, glued on top, to protect the components as shown in Figure 6.2a).
There are 4 steps in the fabrication. First, the tapered fiber is fabricated is

described in Chapter 3 but with the mount replaced by the new base as seen in
Figure 6.2b). For the vacuum experiment, the epoxy was degassed before curing.
The second step is to fabricate a SNAP using the same method as in Chapter 3. The
SNAP is then taped to a temporary mount as can be seen in Figure 6.2c). The SNAP
is then positioned to couple into the desired mode with the desired coupling strength.
This was done using the same experimental setup as in Figure 3.4. Once the desired
parameters are obtained, the SNAP is epoxied to either edge of the base as shown in
Figure 6.2c). Lastly the lip is glued to the device, shutting it as seen in Figure 6.2d).

6.2 Drop Test

The experimental setup consisted of a packaged SNAP attached to a linear rail with
an accelerometer and an iron plate at one end of the rail as shown in Figure 6.3.
During the duration of the test, the transmission spectrum was monitored using a
tunable laser, photodiode and oscilloscope. The SNAP was drop repeatedly with
increasing heights until the taper broke. Changes to the transmission were noted and
the results are tabulated in Table 6.1
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Figure 6.2: Packaging of a SNAP. a) The 3D printed mount. The base is on the left
and the lid is on the right. b) Tapered fiber, epoxied to a mount while still clamped
in the fiber puller’s stages. c) SNAP after being positioned and epoxied to couple
with the taper. The SNAP is still taped to the temporary mount. d) Final device
sealed with the lid.

Figure 6.3: Drop test experimental setup. a) Osc: oscilloscope, acc: accelerometer,
TL: tunable taser, PD: photodiode. The arrows show the directions the linear rail
moves
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Acceleration (height) Result
0-140g (0-5cm) no effect

140-280g (5-10 cm) changed coupling
>280g (10cm) no transmission

Table 6.1: Results from the drop test. The device was dropped from increasing heights
one centimeter increments until breaking.

Temperature(◦C) Result
<70 no change

70-110 changed coupling
>110 broke

Table 6.2: Results from heating the fiber to remove adsorbed water vapors. The
temperature was adiabatically increased while the transmission was monitored.

6.3 Dehydration

After atmospheric water was allowed to adsorb on the surface of the SNAP overnight,
two methods were used to attempt to boil off the adsorbed water. First by heating
and then by vacuum.

During the heating experiment, the packaged SNAP was place in a furnace while
the transmission was monitored with a tunable laser, photodiode and oscilloscope.
The Q factor was not noticeably improved. The coupling started to change above
70◦C and broke over 110◦C. The results are tabulated in Table 6.2

In the vacuum experiment, the packaged SNAP was placed in a 10 µbar vacuum,
well below water’s room temperature boiling point pressure of 21 mbar. The lack of
optical fiber ports connecting to the vacuum chamber meant the spectrum could not
be monitored while in the vacuum but needed to be reconnected at the laboratory
pressure and humidity. Reconnecting the SNAP to the laser and oscilloscope took less
than 2 minutes. The Q factors were not improved and different resonance frequencies
were observed before and after, indicating that the tapered moved related to the
SNAP.

6.4 Discussion and Outlook

The packaging is durable for research purposes but any impact on a hard surface,
even from low height will break the tapered fiber. With some engineering and proper
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choice of material, the mount could be made to dampen accelerations. For our current
use, this device is robust enough for our use of transporting to different facilities.

Both attempts at improving the Q factor by removing the layer of adsorbed water
failed. This is consistent with the silanols being the primary scatterer. To reverse
these effects, a minimum temperature of 400◦C[67] to remove all the vicinal silanols.
Removing all the other, isolated, silanols would require temperature of over 1000◦C.
to do this, the mounts need to be fabricated with a material that does not deform or
expand significantly between room temperature and the desired temperature. Alter-
natively, locally heating the SNAP such that the mount remains at room temperature
could circumvent the issue of the mount deforming.
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Chapter 7

Conclusion and Outlook

Despite SNAP’s being a very promising platform due to their ultrahigh Q factor and
easy of fabrication, there are still many issues inhibiting them from being used as in
practical applications. The purpose of this thesis was to address some of these issues.
The main results and future work is described below.

Radius and Refractive Index Measurement

A procedure was developed to measure the refractive index and radius which was ap-
plied to a SNAP. The measurement was not accurate because separation of variable
could not describe the radius beyond 3 significant figures when 5 was need to reach
the the standard deviation of the material’s surface. This experiment could be re-
done on a WGR where separation of variables more accurately describes the system.
Alternatively, a better theoretical model would allow measurements of the radius and
refractive index.

Nanoparticle Carousel Induced Periodic Resonance Shift

As an example application of WGR, a nanoparticle carousel trap was set up in a
hollow microbubble however, no periodic shift was observed due to the nanoparticle
passing near the coupling region. If the effect was present, random fluctuations due
to Brownian motion were too strong at low laser power. At higher power, the modes
would not be stable enough due to what appears to be turbulence in the water.
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Modes Locking

The Pound-Drever-Hall mode locking technique was review and applied to a fiber
ring resonator. Locking to a cavity mode is useful for both detecting mode shifts
with greater precision than with the transmission spectroscopy[] and for pumping
consistent amounts of power into a mode[]. This will be useful in future experiments
to very precisely measure resonance frequencies and will . In this chapter, we showed
that a laser could be locked to a cavity with a Q factor of 108 using an inexpensive
Red PitayaTM(∼ 350 USD) to replace the lock-in amplifiers, function generator and
PID controller.

Packaging of Surface Nanoscale Axial Photonic Resonators

The packaging is adequate for research use but susceptible to breaking on impact.
The vacuum was high enough that most of the hydrogen bonded water was re-

moved[67]. This is consistent with the hydrogen bonded water molecule not signif-
icantly reducing the Q factor and that the silanols must also be removed in restore
the Q. which can be done by subjecting the SNAP to much higher temperatures.

Future Work

More work needs to be done to improving the model of the SNAP beyond sepa-
ration of variables in order to properly measure the SNAP’s radius and refractive
index. Regardless of the this shortcoming, the procedure implies that the relative
shift in resonances for orthogonal polarization is different for changes in refractive
index compared to changes in radius. This difference is of linear order which implies
that, by tracking both modes, a basis can be formed to sense two physical phenomena
simultaneously.

More work needs to be done to observe the mode shift in the carousel experi-
ment. Since the shift is thought to be caused by the tapered fiber perturbing the
microbubble’s mode, one possibility for our failure to observe the mode shift is that
the taper may have been too small noticeable perturb or positioned to only weakly
overlap with the mode. Some extra preparation may be able to produce a larger
perturbation. Alternatively, the sensitivity can be improved by locking to the mode
using the mode locking technique described in Chapter 5.
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Some packaging could be engineered to better absorb the impact, however, it may
not be worth improving because this design serves its purpose and the fabrication
process is simple. For more robust applications like commercial products, other solu-
tions have been proposed like coupling to photonic crystal silicon waveguides [68] or
spot packaging[69], however, these are more complicated to fabricate. To remove the
silanols from the silica surface, either a material with negligible deformation between
room temperature and 400◦C is required to restore the Q factor. Another option
would be to locally heat the SNAP while leaving the packaging at room temperature.

This thesis contributed to by developing precise measurement techniques that may
accurately determines the radius and refractive index of a SNAP given a accurate
mode. Secondly, efforts were made to study the effects of a perturbation of the mode
on a nanoparticle. Lastly, packaging was develop to improve robustness while trying
to removing adsorbed water vapors that adsorb to the surface of silica.
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