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Abstract

Manipulating states of light in optical ring resonators

Kathleen McGarvey, Ph.D.

Concordia University, 2021

An optical ring resonator is a fundamental element of an integrated photonic circuit

due to its ability to confine optical waves. Composed of a dielectric waveguide closed

in a loop, the periodic geometry of the ring allows for the build-up of high-intensity

electric fields at particular wavelengths of light known as resonances. These resonances

can be used for applications in fields such as non-linear optics, biosensing, and high-

precision spectroscopy. The intended operation of a ring resonator is often limited by the

underlying material dispersion of the ring’s waveguide. To counteract these effects, the

dispersion of the waveguide can be designedly engineered via precise geometric patterning

of the material. In this work, several dispersion engineering methods are proposed. In

particular, condensed matter theories including Bloch’s theorem, the Su-Schrieffer-Heeger

model, and synthetic dimensions are applied to the periodic dielectric function of the ring.

Using these principles, photonic analogs of band structures, topologically-protected edge

states, coupled degenerate two-level systems, and a synthetic modal dimension in an

optical ring resonator will be shown.
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Chapter 1

Introduction

All-optical control of light on an integrated chip has persisted as an overarching theme

in 21st-century photonics research. The ability to manipulate on-chip light propagation

has been a long-held goal of the community, leading to the development of integrated

devices such as optical waveguides [1], mode-size converters [2], grating couplers [3], po-

larizer converters [4], and directional couplers [5]. A variety of integrated optical cavities,

including optical microdisks [6], microtoroids [7], and three-dimensional micropillars [8],

have likewise emerged as devices capable of confining light to compact footprints.

Within the scope of capturing light on a chip, few devices have proved as versatile as

the optical ring resonator. Composed of a dielectric waveguide closed in a loop, a ring

resonator confines light to its core via the mechanism of total internal reflection. Certain

wavelengths of light, known as the ‘resonances’ or ‘modes’ of the ring, satisfy phase

matching conditions imposed by the ring’s geometry. A resonance will constructively

interfere with itself as it makes multiple circuits around the ring, resulting in the build-

up of high intensity electric fields [9]. The compact scale of a ring resonator, in addition

to the resonant accumulation of light within its material, has allowed the ring resonator

to serve as the platform for a multitude of research areas.

State-of-the-art fabrication techniques, such as electron-beam [10] and optical lithog-

raphy [11], have enabled the on-chip integration of ring resonators. Specifically, the

well-developed technologies of the electronics industry have been leveraged to advance

the burgeoning field of integrated silicon photonics [12]. The excellent optical properties

of silicon, in addition to the nanometer-scale precision of existing lithography techniques,

have allowed for the development of micron-scale ring resonators operating at optical fre-

quencies [13]. On-chip rings have been used to explore fundamental physics phenomena,

such as generation of multi-photon entangled states [14], topologically-protected photonic
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edge states [15], and dissipative Kerr solitons [16]. Ring resonators have additionally been

used for more practical purposes in fields like telecommunications, biosensing, and high-

precision spectroscopy. Silicon-based, integrated rings interface easily with existing opti-

cal communications networks and have been used as optical filters [17], power-efficient,

all optical switches [18], and dense wavelength multiplexers [19]. The sharp spectral fea-

tures of the ring have also been used for label-free biosensing [20,21] and refractive index

sensing [22]. Within the context of high-precision spectroscopy, the equidistantly spaced

resonances of a ring have enabled the generation of octave-spanning optical frequency

combs [23–25]. The versatility of its optical features has thus solidified the ring resonator

as a fundamental building block in photonic integrated circuits.

To enhance control over the performance of ring-resonator-based optical devices, it

is often desirable to engineer the dispersion of the ring. The intrinsic dispersion of the

ring’s material can lead to deleterious effects, such as non-equidistant spacing of adjacent

resonances [26] and temporal broadening of optical pulses [27], that can limit a device’s

bandwidth. While the material properties of the ring are fixed for a given wavelength,

the underlying geometric dispersion of the waveguide can be manipulated using various

degrees of freedom. To date, current dispersion engineering techniques include geometric

tailoring of the waveguide cross section [27–29], multi-resonator systems [30, 31], modal

coupling [32,33], and layer deposition schemes [34,35].

The aim of this work is to build upon existing dispersion engineering techniques to ob-

tain finer control over light propagation in an optical ring resonator. Drawing inspiration

from condensed matter systems, the periodic nature of the ring’s dielectric profile will be

utilized to generate photonic crystal lattices and band gaps that provide a high degree

of control over the ring’s dispersion relation. The proposed dispersion engineering meth-

ods will then be utilized to describe coupled degenerate two-level systems, non-trivial

topological geometric phases, and synthetic dimensions in optical ring resonators.

To begin, a theoretical framework for this work will be laid through a discussion

of Maxwell’s equations in an optical ring resonator. Key concepts related to dielectric

waveguides and ring resonators will be detailed. A discussion on material platforms is

then offered in Chapter 3 and the choice of silicon photonics is motivated.

The first of the dispersion engineering techniques offered will overview photonic crystal

lattices in optical ring resonators. The theory of light propagation in periodic dielectric

materials will be discussed and parallels between Maxwell’s equations and Schrödinger’s

equations will be drawn. Using these parallels, the photonic equivalent of a material band

gap will be shown both computationally and experimentally. Additionally, the slow light
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nature of the ring’s resonances will be demonstrated and a method for direct measurement

of the ring’s dispersion will be given.

The concepts of photonic crystal lattices in ring resonators are extended in Chapter

5. The Su-Schrieffer-Heeger model is applied to a dimerized photonic crystal lattice su-

perimposed onto a ring resonator. Discussion of geometric phases in a diatomic photonic

crystal lattice will be given. The dimerization of the photonic crystal lattice and the ap-

pearance of a topologically-protected edge state will be demonstrated computationally.

Additionally, experimental verification of topological edge states in dimerized photonic

crystal lattices will be proposed.

Chapter 6 reframes the geometry of the optical ring resonator to consider it as an

infinitely-long dielectric waveguide. It will be shown that perturbations of the ring’s

material imposes a periodicity of lattice constant P to the infinitely-long waveguide.

Through application of a Fourier analysis, it will be demonstrated theoretically, com-

putationally, and experimentally that a frequency-degenerate pair of resonances can be

designedly coupled through periodic patterning of the material. To conclude, the con-

cepts of Chapter 6 will be applied to a spatially modulated ring resonator to demonstrate

how a synthetic dimension can be projected along the ring’s modal degree of freedom.
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Chapter 2

Maxwell’s equations in an optical

ring resonator

2.1 Maxwell’s equations for optical materials

The general form of Maxwell’s equations is given by [36]:

∇ · E =
ρ

ϵ0
∇× E = −∂B

∂t

∇ ·B = 0 ∇×B = µoJ+
1

c2
∂E

∂t
(1)

In these equations, E is the electric field, B is the magnetic induction, ρ is the electric

charge density, and J is the electric current density. ϵ0 and µ0 are the vacuum permittivity

and permeability, respectively, which are related to the speed of light by c = 1√
ϵ0µ0

. These

equations encompass the information required to describe the propagation of an electric

field in a material.

When selecting a material to serve as the basis for an optical device, several assump-

tions about the material properties can be made. These conditions simplify the form of

Maxwell’s equations, yet are sufficient to describe the operation of a large class of devices.

These conditions include [36]:

1. The material has no charge or current sources.

In the absence of charge or current sources (i.e. ρ = J = 0), Maxwell’s equations

can be reduced to:

∇ · E = 0 ∇× E = −∂B
∂t

∇ ·B = 0 ∇×B =
1

c2
∂E

∂t
(2)
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2. The polarization of the material is linearly proportional to the electric

field.

The non-linear response of a material can be described by expanding the material’s

dielectric polarization in a Taylor series. This form of the polarization relates

the response of a dielectric material to an externally applied electric field. The

coefficients of the Taylor series are given by the i-th order electric susceptibilities

of the material, χ(i):

P(t) = ϵ0[χ
(1)E(t) + χ(2)E2 + χ(3)E3 + ...] (3)

If the electric field intensities are low enough, the higher-order terms of the expan-

sion can be neglected, resulting in a linear relation between the polarization and

the applied electric field:

P(t) = ϵ0χ
(1)E(t) (4)

A great many optical devices operate in the linear regime of a material, and thus

the approximation is valid for much of this work. However, it should be highlighted

that many optical materials offer interesting non-linear properties (e.g. non-trivial

ith-order susceptibilities) which can be utilized for applications that depend on

photon-photon interactions.

The electric displacement of an electromagnetic field in a material is given by:

D = ϵ0E+P (5)

Combining 4 and 5:

D = ϵ0E+P

= ϵ0E+ ϵ0χ
(1)E

= ϵ0ϵrE (6)

where the relative permittivity of the material has been defined as ϵr = 1 + χ(1).

A similar relationship can be derived for the magnetic fields. A linear relation is

assumed for the magnetization, M, of the material:

M(t) = χmH(t) (7)
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where χm is the magnetic susceptibility of the material and H is the magnetic field.

The magnetic induction can then be represented as:

B = µ0(H+M)

= µ0H+ µ0χmH

= µ0µrH (8)

where µr = 1 + χm is the relative permeability of the material. Equations 6 and 8

represent the electromagnetic constitutive relations which detail the response of a

material to an externally applied electric or magnetic field.

3. The material is isotropic.

When considering the relative permittivity of the material, it is necessary to de-

termine whether the material is iso- or anisotropic in nature. In an anisotropic

material, the relative permittivity can be represented as a tensor to account for

optical properties such as birefringence. Alternatively, the relative permittivity of

an isotropic material is a frequency-dependent scalar, ϵr(ω).

4. The material has no magnetic susceptibility

For many optical materials, the magnetic susceptibility is negligible, implying that

the relative permeability of the material is:

µr = 1 + χm = 1 (9)

and the magnetic induction of the material will behave as in vacuum.

5. The material is transparent for the wavelength ranges of interest.

To maximize the efficiency of a device, optical losses due to material absorption

must be minimized. This is achieved by selecting materials that have transparency

windows with large bandwidths. To determine where these transparency windows

lie, the relative permittivity of a material can be decomposed into its real and

imaginary components:

ϵr = ϵ′ − iϵ′′ (10)

The real portion of ϵr indicates the degree of phase lag between the driving electric

field, E(t), and the response frequency of the material. The imaginary component of

the relative permittivity acts as a damping coefficient; as light propagates through

the material the amplitude of the field will be attenuated due to material absorption

losses. The rate of this attenuation is given by ϵ′′. A material is said to be “trans-

parent” if it possess a negligible ϵ′′ over a particular range of wavelengths. Within
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this window, the relative permittivity of the material can be approximated as real-

valued. Thus, the performance of an optical device can be optimized by designing

its operating wavelength to fall within a transparency window of a material.

6. The material has negligible dispersion

In an isotropic material, the relative permittivity of the material is treated as a

scalar quantity. Near absorption features of the material, the frequency-dependency

of the permittivity plays a crucial role in describing the behavior of the material.

However, away from these features, the permittivity of the material can often be

approximated as a constant, namely:

ϵr(ω) = ϵr (11)

Using the above assumptions, Maxwell’s equations can be reduced into a set of second-

order partial differential equations [36]. Inserting Eqs. 4 and 7 into Eq. 2 and applying

the vector identity ∇(∇ ·A)−∇2A = ∇×∇×A yields:

∇2E =
1

v2
∂2E

∂t2
(12)

∇2B =
1

v2
∂2B

∂t2
(13)

Maxwell’s equations in this form indicate that photons propagate as waves with a phase

velocity of vp = 1√
ϵ0µ0

1√
ϵrµr

. Recalling the definition of the speed of light in vacuum, the

phase velocity becomes:

vp =
c

√
ϵrµr

=
c

n
(14)

Here the refractive index of the material, n, has been defined in terms of the relative

permittivity and permeability. Because the magnetic susceptibility of the material is

assumed to be negligible (i.e. µr = 1), the refractive index is approximately equal to the

square root of its relative permittivity.

The wave equation can be decomposed into a pair of coupled ordinary differential

equations by first assuming a solution of the form E(r, t) = X(r)T (t):

∇2XT =
1

v2
∂2

∂t2
(XT)

=⇒ ∇2X

X
=

1

v2
T′′

T
(15)

As the left and right hand sides of the equations depend on separate variables, both sides

of the equation can be set equal to a constant:

∇2X

X
= k2 =

1

v2
T′′

T
(16)
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The time-dependent portion of Equation 16 is satisfied by harmonic, time-oscillating

complex exponentials of the form:

T(t) = eiωt (17)

where ω = kvp = ck
n

is the angular frequency of the field. Using this definition, it is

evident that the constant k must have dimensions of inverse length. This quantity thus

represents the wavenumber of the field. The angular frequency of the field also yields the

material’s dispersion relation, allowing for formal definitions of the the electromagnetic

wave’s phase and group velocities [36]:

vp =
ω

k
=
c

n
(18)

vg =
dω

dk
=

c

ng

(19)

where ng is referred to as the group refractive index. Provided the dispersion relation is

linear (i.e. n is a constant), the phase and group velocities are equivalent.

In the context of Eq. 17, the wave number is a scalar given by the amplitude of its

vector components:

k = |k| =
√︂
k2x + k2y + k2z (20)

However, the full vectorial nature of k must be taken into account when considering the

spatial component ofE. The spatial differential equation can be recognized as Helmholtz’s

equation,

∇2X− k2X = 0 (21)

which is likewise satisfied by complex exponentials:

X(r) = e−ik·r (22)

The final solutions for the fields are given by [36]:

E(r, t) = E0(r)e
−i(k·r−ωt) (23)

B(r, t) = B0(r)e
−i(k·r−ωt) (24)

In an homogeneous medium, this equation describes a plane wave with an amplitude of

E0(r). With no spatial restrictions on the wavevector, k acts as a continuous variable.

With the above assumptions in place, a photon can be understand as an electromag-

netic wave whose propagation is modified by the presence of a material. The dielectric

response of the material acts as a retarding force which slows the vacuum speed of a

photon by a factor of n.
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2.1.1 Boundary conditions at a dielectric interface

With an understanding of how the propagation of light is modified in a material, it is

now worth exploring how light will behave at a dielectric interface. At the boundary be-

tween two dielectric materials (Figure 2a), a propagating wave must satisfy the following

boundary conditions [36]:

Ei∥ = Et∥ (25)

Hi∥ = Ht∥ (26)

Di⊥ = Dt⊥ (27)

Bi⊥ = Bt⊥ (28)

where ∥ and ⊥ represent the tangential and normal components of the fields, respectively.

These equations, along with Eqs. 23 and 24, can be used to compute reflection and trans-

mission coefficients for the interface. Additionally, they provide information concerning

the relative angle between an incident and transmitted wave. Applying Eq. 25 to 23:

eiki∥·r∥ = eikt∥·r∥

=⇒ ki∥ = kt∥

=⇒ |ki| sin θi = |kt| sin θt (29)

Using |ki| = k0ni and |kt| = k0nt, where k0 = 2π
λ

is the vacuum wavenumber, Equation

29 becomes [36]:

ni sin θi = nt sin θt (30)

This relation is known as the law of refraction and dictates the behavior of transmitted

light at a material interface.

An interesting feature of this equation occurs when the transmitted beam has an angle

of θt =
π
2
(Figure 2b). The corresponding incident angle which permits a transmitted

beam parallel to the interface is given by:

θc = arcsinnt/ni (31)

Known as the ‘critical angle’, θc has two conditions. If nt > ni, nt/ni is outside the

domain of the arcsine function and no critical angle exists. If nt < ni, the phenomenon

of total internal reflection can be observed. Not only does the critical angle have a finite

value, but light with an incident angle satisfying θi > θc will be totally internally reflected

at the interface, ensuring that 100% of the incident light is retained in the ni material
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a)

ϴiki kr

kt
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ϴt
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b)

nt
ni

ϴc ϴr

ϴt=π/2

ki kr

kt = 0

c)

Total internal reflection 

nt

ni

ϴc

d)

nt

ni

ni

Evanescent field

k

Figure 2: (a) An incident ray of light with wavenumber ki is incident on a dielectric

interface between two materials with refractive indices of ni and nt. The reflected and

refracted beams are indicated by wavenumbers kr and kt, respectively. (b) When light

is incident on the interface at the critical angle, the transmitted beam has an angle

of θt = π/2, implying the transmitted beam is parallel to the dielectric interface. (c)

When θi exceeds the critical angle, the incident beam is totally internally reflected at

the interface. (d) Multiple reflections occur in a three layer dielectric stack, forming a

waveguide.
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(Figure 2c). Although no power is transferred to the nt material, there remains an imag-

inary portion of the perpendicular component of kt. Correspondingly, an exponentially

decaying electric field can be found in the nt medium. Known as the ‘evanescent’ field,

it provides the primary mechanism for coupling between photonic devices on a chip.

Light which is totally internally reflected will undergo a phase shift. For an input

electric field which is perpendicular to the plane of incidence, the phase shift can be

written as [36]:

ϕ⊥ = arctan
[︂√︂

sin (θi)
2 − (nt/ni)2/ cos (θi)

]︂
(32)

For an incident wave which is parallel to the plane of incidence, the phase shift becomes

[36]:

ϕ∥ = arctan
[︂
(ni/nt)

2

√︂
sin (θi)

2 − (nt/ni)2/ cos (θi)
]︁

(33)

2.2 Optical waveguides

Conveniently, the simple concept of total internal reflection is sufficient to provide the

primary light-guiding mechanism for photonic circuits. Placing a layer of high refractive

index material between two lower index cladding layers allows for multiple total reflections

(Figure 2d). These reflections can be utilized to guide light in a particular direction and

form the basis for a device fittingly referred to as a ‘waveguide’. Guided modes in optical

waveguides can be found through a simple geometric analysis. Considering a plane wave

that enters an interface at an angle θ, the wavevector in the direction of propagation can

be written as:

β = k0nt sin θ (34)

Applying a simple vector analysis, the phase shift obtained by the light along the axis

perpendicular to the direction of propagation becomes:

kt⊥ =
√︁

(k0nt)2 − β2 (35)

In order for light to be guided within the high refractive index core of the waveguide, the

light must undergo a total transverse phase shift of Φ = 2πn where n ∈ Z upon reflection

at the top and bottom interfaces of the waveguide. The condition for a guided mode

becomes:

Φ = 2kt⊥t− 4ϕ = 2πn (36)

where t is the thickness of the high refractive index core and ϕ can be determined utilizing

Equations 32 and 33.
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The wavevector of light in the waveguide now contains contributions from both ma-

terial properties and the geometry of the waveguide. As such, it is common to define an

effective refractive index for the waveguide which encompasses both effects [36]:

neff =
β

k0
(37)

The effective index plays a key role in the design of a waveguide. While the material

index is fixed by the operating temperature and wavelength of the device, the effective

index can easily be varied by changing the waveguide configuration. As a result, the

dispersion of the waveguide can be engineered through careful design of the waveguide’s

geometry.

The effective refractive index can be found computationally using a finite-difference-

eigenmode solver (FDE) [37] or finite-element methods (FEM) [38] to solve Maxwell’s

equations over a cross section of the waveguide. In particular, Equation 21 is solved

using eigenequation mode solvers. The eigenvalues of the equation yield the allowed

propagation constants in the waveguide with corresponding eigenfunctions composed of

the transverse electric field profiles. These field profiles are referred to as the ‘modes’ of

the waveguide. If the dimensions of the waveguide are large enough, multiple solutions to

the eigenequation exist, resulting in a ‘multi-mode’ waveguide (Figure 3). Single-mode

waveguides can likewise be engineered by reducing the dimensions of the waveguide cross-

section so that it supports a single transverse-mode [36].

An example of dispersion engineering is shown in Figure 4. A eigenmode solver

[38] is used to compute the effective refractive indices of several different waveguide

configurations. For a one-dimensional planar waveguide, the geometry of the guiding

layer is isotropic. If the thickness of the guiding layer is larger than the wavelength of

light under consideration, the effective and material indices are approximately equivalent.

However, as the layer thickness approaches λ, geometric effects effect the propagation of

the wave and the effective refractive index decreases (Figure 4a). A similar, yet more

pronounced, effect occurs in a two-dimensional, rectangular waveguide. The guiding

material is now discrete in two dimensions. Both the waveguide width and layer thickness

influence the effective refractive index of the waveguide, providing greater control over

engineering the dispersion of the waveguide (Figure 4b).
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|E|

500 nm

neff = 3.21 neff = 2.92 neff = 2.51

Figure 3: The normalized electric field profile of the modes of a rectangular optical

waveguide. The field profiles were calculated on a cross-section of the waveguide using

finite-element computational methods. The waveguide has a width of w = 1 µm and a

layer thickness of t = 0.5 µm. The confining layer has a refractive index of ncore = 3.5 and

is clad with a low index material of nclad = 1.45. The waveguide can support multiple

modes, as can be seen in the increasing number of nodes in the transverse electric field

profile. The effective refractive indices vary depending on the electric field profiles of the

mode.

Figure 4: (a) The geometry of a planar waveguide, the cross section of the waveguide

used for effective refractive index computations, and the effective refractive index as a

function of the layer thickness. (b) The geometry of a rectangular waveguide, the cross

section of the waveguide used for effective refractive index computations, and the effective

refractive index as a function of the layer thickness and waveguide width.
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2.2.1 Polarization

An additional degree of freedom for waveguide dispersion engineering is provided by a

propagating wave’s polarization. In a planar waveguide, the material is isotropic in two-

dimensions, implying that the modal profiles of the waveguide must be invariant when

transformed about the two symmetry axes of the system. These conditions restrict the

orientations of the fields in the waveguide, allowing for two different polarizations [36]:

Transverse magnetic (TM) mode Ex, Ez, and Hy = 0 (38)

Transverse electric (TE) mode Hx, Hz, and Ey = 0 (39)

These polarizations are only valid in a planar waveguide, however can be applied to

rectangular waveguides under certain conditions. Typically the polarization of light in

a rectangular waveguide forms a hybrid mode composed of both TE and TM fields. As

the thickness of the waveguide layer is reduced to below that of the operating wavelength

of the waveguide, the electric/magnetic fields oriented along that direction become very

small. As a result, it is common to refer to modes in a rectangular waveguide with a thin

core layer as ‘quasi’-TE or -TM.

The boundary conditions given by Eqs. 25 - 28 yield different modal configurations

for TE or TM modes and can be utilized to alter the effective refractive index of the

waveguide (Figure 5). TE modes are well-confined to the core of the waveguide and thus

have a higher refractive index. In comparison, the TM modes have discontinuous electric

fields at the dielectric boundaries of the waveguide, lowering its index and making it more

susceptible to optical losses due to imperfections found on the dielectric interface. Thus,

a single waveguide can support two different polarizations that possess distinct dispersion

relations.

2.3 Ring resonators

While optical waveguides provide control over the direction of light propagation on a chip,

another essential element of a photonic circuit is the ability to confine light. A large class

of optical cavities is available for this purpose. While the confinement mechanisms of these

cavities vary, all share a resonant, intra-cavity buildup of light at certain wavelengths due

to constructive interference effects. These resonances occur when the wavelength of light

in the cavity can be related to the optical path length (OPL) as [13]:

Optical path length = mλ (40)
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250 nm

TE polarization TM polarization 

neff = 2.67 neff = 1.90

Figure 5: The normalized electric field profile of the TE and TM modes of a rectangular

optical waveguide. The field profiles were calculated on a cross-section of the waveguide

using finite-element computational methods. The waveguide has a width of w = 0.75

µm and a layer thickness of t = 0.22 µm. The confining layer has a refractive index of

ncore = 3.5 and is clad with a low index material of nclad = 1.45. The transverse electric

mode is tightly confined to the waveguide core, while the transverse magnetic mode has

large overlap of its electric fields with the dielectric boundaries of the waveguide. Due to

their different field configurations, the TE and TM modes have widely different refractive

indices, despite sharing the same waveguide geometry.

where m ∈ Z is a discrete variable. Thus at the wavelengths of light satisfying Equation

40, the cavity will support the build-up of high-intensity electric fields. A common figure

of merit used to quantify the losses of the optical cavity is the quality (Q) factor, defined

as [13]:

Q =
λ

δλ
(41)

δλ represents the full-width-half-maximum (FWHM) of a resonance centered on λ. The

width of the resonance depends on the losses of the ring due to absorption, scattering,

and radiative processes. In the time domain, the quality factor is proportional to the

lifetime of a photon in the cavity.

The ring resonator (RR) is a commonly-used optical cavity formed by closing a waveg-

uide in a loop. The geometry of the cavity ensures discrete translational symmetry along

the direction of light propagation, imposing phase matching conditions on the wavevectors

in the ring. Equation 40 becomes:

β =
m

R
(42)

where R is the radius of the ring. The spacing between adjacent resonances is given by

the ring’s free spectral range (FSR). Using Equation 42 the spacing between the allowed
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Ring radius, R

Width, w

Figure 6: A ring resonator of radius R is formed by closing a waveguide of width w in a

loop.

wavevectors in the ring is:

∆β = βm+1 − βm =
m+ 1

R
− m

R
=

1

R
(43)

The wavelength-dependence of the free spectral range of the ring can be found by ex-

panding β = neffk0 in a Taylor series in λ [9]:

∂β

∂λ
= −β

λ
+ k0

∂neff

∂λ
(44)

Provided the effective refractive index of the ring is constant (i.e. ∂neff

∂λ
= 0), the free

spectral range becomes [9]:

∆λ = − 1

R

(︂∂β
∂λ

)︂−1

≈ λ2

2πneffR
(45)

Equation 45 describes an optical spectrum composed of evenly spaced resonances which

scale inversely with the perimeter of the ring. Thus for applications requiring large

spacing between adjacent resonances, tight bend radii on the order of tens of micron are

needed. While these tight bend radii enable dense integration of devices on a chip, the

propagating light must be tightly confined to the core of the ring’s waveguide to ensure
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low optical losses around sharp bends. To maximize this confinement and reduce losses,

a material platform possessing a high refractive index contrast can be used.

Characterization of an optical ring resonator often occurs in an basic two-port con-

figuration consisting of a coupling waveguide and a ring resonator. Light propagating

through the waveguide is evanescently coupled to the ring and the transmission of the

waveguide is monitored at the other end. The ring is considered to support a single,

uni-directional mode with a single polarization and lossless coupling parameters. Under

these assumptions, the complex modal amplitudes of the fields can be found using the

matrix formalization [9]: ⎡⎣Et1

Et2

⎤⎦ =

⎡⎣ t κ

−κ∗ t∗

⎤⎦⎡⎣Ei1

Ei2

⎤⎦ (46)

Here κ and t represent the coupling parameters in the ring and waveguide, Et1 is the

transmitted field at the output port of the coupling waveguide, and Et2 is the circulating

field in the ring (see Figure 7). The transmitted power of the configuration can be found

by solving Equation (46) and taking the squared magnitude of the fields. To simplify the

equation, Et1 is set equal to 1. The modal amplitude of the field after a single round trip

in the ring is given by [9]:

Ei2 = αeiθEt2 (47)

where α represents the loss coefficient of the ring and θ gives the phase change accumu-

lated during a round trip [9]:

θ = β ∗ 2πR =
4π2neffR

λ
(48)

Finally, the time-reversal symmetry of the system requires the reciprocity condition [9]:

|κ2|+ |t2| = 1 (49)

Using Equations 46-49, the transmitted power in the coupling waveguide is:

Pt1 = |Et1|2 =
α2 + |t|2 − 2α|t| cos (θ + ϕt)

1 + α2|t2| − 2α|t| cos (θ + ϕt)
(50)

and the circulating power in the ring is given by:

Pi2 = |Ei2|2 =
α2(1− |t|2)

1 + α2|t|2 − 2α|t| cos (θ + ϕt)
(51)

where ϕt is the phase introduced by the coupler and t = |t|eiϕt . The relative values of α

17



a) b)

Δλδλ

λ

Figure 7: (a) A ring resonator evanescently coupled to an optical waveguide in a point

coupler configuration. The coupling between the complex modal amplitudes of the two-

port configuration are given by the parameters κ and t, which can be tuned by changing

the evanescent gap between the input waveguide and the ring. The losses of the ring are

denoted by α. (b) The transmission spectrum of a ring with nneff = 2.83, R = 50 µm,

and α = t = 0.8.

and t define three different coupling regimes for the ring-waveguide system [13]:

α > |t| Overcoupled

α < |t| Undercoupled

α = |t| Critically coupled

When the ring is critically coupled, the transmitted power goes to zero on resonance.

Equation 50 is plotted in Figure 7b for a critically coupled ring of radius R = 50 µm,

neff = 2.83, and α = t = 0.8. Wavelengths of light meeting the resonant phase matching

conditions of the ring’s geometry (i.e. (θ+ϕt) = 2πm) correspond to dips in transmission

at the drop port of the waveguide.

Utilizing the concepts detailed in this chapter, a suitable material platform must now

be selected. The following chapter will highlight several commonly used optical materials

and motivate the choice of silicon photonics for this work.
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Chapter 3

Silicon-based optical devices

3.1 The silicon-on-insulator fabrication platform

Silicon-based integrated devices have long been the powerhouse of the electronics industry.

A readily available natural resource, silicon (Si) has been widely used for the fabrication

of low-cost, integrated electronic circuits. Its semiconductor properties have been utilized

to construct fundamental electronic components such as diodes and transistors, the latter

of which have formed the foundation for modern electronics. Decades of research have

culminated in mature fabrication processes compatible with high throughput manufac-

turing of devices via wafer-scale processes. It is thus logical to leverage the groundwork

laid by the silicon electronics industry when choosing a platform for integrated photonics.

Silicon incidentally possesses excellent optical properties when considering the in-

tended operation of an integrated photonic circuit. It has a high refractive index (n =

3.51) which results in strong modal confinement when clad with a low index material such

as air or silica (n = 1.44) [39]. This confinement allows for tight bend radii on the order

of microns, essential for the compact integration of optical components. It is transpar-

ent in the infrared (∼1.1 - 7 µm) [40] and is thus compatible with existing fiber-optics

communications networks, making silicon-based photonic devices attractive candidates

for optical filters [17], buffers [41], and wavelength (de)multiplexers [42]. Additionally,

its nonlinear properties have proven useful for optical parametric oscillators, wherein the

large Kerr non-linearity of the material can be utilized for frequency generation via the

process of four-wave-mixing (FWM) [43]. This effect has also been employed for Kerr fre-

quency combs [44], which use a continuous-wave pump laser in an optical cavity to create

a cascade of coherent frequency generation. The evenly spaced ’teeth’ of the frequency

1Unless otherwise specified, the given refractive indices in this chapter are at 1550 nm
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Figure 8: The silicon-on-insulator platform utilizes a standard silicon wafer for fabrica-

tion of photonic devices. A 2-µm-thick layer of silica is deposited on the surface of the

wafer, followed by a 220-nm-thick layer of silicon. Photonic devices can be monolithically

integrated into the surface of the chip via lithography processes.

comb can serve for optical metrology or high-precision spectroscopy purposes [45].

To integrate these applications on a silicon chip, the silicon-on-insulator (SOI) plat-

form is commonly employed. A 220-nm-thick layer of silicon is deposited on top of a

2-µm-thick silica layer. A standard silicon wafer, typically 300-450 mm in diameter,

is used as the substrate for the platform (see Figure 8). Fabrication of photonic de-

vices is achieved using complementary-metal-oxide-semiconductor (CMOS) methods to

monolithically integrate photonic devices into the surface of the thin layer of silicon.

The precision of the CMOS fabrication processes allow for feature sizes down to tens of

nanometers, giving an ultra-high degree of control over the on-chip geometry of devices.

This precision plays a crucial role in the design and operation of photonic systems-

on-a-chip. Many applications depend heavily upon the ability to engineer the underlying

dispersion of the device. Through precise modification of the waveguide’s dimensions,

different effective refractive indices can be engineered that meet the requirements of a

given application.

Modification of waveguide geometry can additionally alter the electric field mode pro-

files of a propagating wave. Subwavelength grating waveguides (Figure 9b) demonstrate

strong overlap of the electric field with the surfaces of the waveguide which can be utilized

to increase the sensitivity of biosensing devices [46–48]. Strip waveguides (Figure 9c) of-

fer compact integration of devices to the tight confinement of the optical mode and are

thus well suited for telecommunication applications [49,50]. Slot waveguides (Figure 9d)

concentrate the electric field in a channel which can be filled with active materials [51]

or a non-linear organic cladding [52]. Overall, the versatility of the SOI platform, along
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Figure 9: .

(a) Examples of the various geometries employed for silicon photonic waveguides. (b)

The electric field modal profile of a latitudinal cross section of a subwavelength grating

waveguide. (c) The electric field modal profile of a longitudinal cross-section of a

standard strip waveguide. (d) The electric field modal profile of a longitudinal

cross-section of a slot waveguide.

with its precise, foundry-scale processes, portend its potential to extend the success of

silicon electronics to the photonics industry.

3.2 CMOS-compatible fabrication methods

Dense integration of photonic devices depends on the ability to pattern a silicon chip

with sub-micron precision. Commonly employed patterning technologies for the SOI

platform use electron-beam or optical deep-UV lithography. The underlying principles of

the fabrication techniques are similar: the silicon device layer is covered with a electro-

(photo-)sensitive resist and then exposed to a pattern. The solubility of the resist changes

depending on the exposure dose of the electron beam (light), allowing for patterning of

the silicon via etching techniques (see Figure 10). However, the exposure methods of each

technique lead to differences in resolution and production yields.

Electron-beam lithography utilizes a ‘direct-write’ technique, wherein an electron-

beam is used to directly pattern the resist. This method allows for fine feature sizes (∼10

nm) [10], making it the most precise of the two techniques. However, the direct-write
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Figure 10: Fabrication of silicon photonic devices via deep-UV optical lithography (a)

A silicon-on-insulator chip with a photosensitive resist layered on top. (b) The chip is

exposed to a pattern using deep-UV light. The light passes through a patterned mask and

is then focused with a lens onto the chip. Repeated exposure of this pattern on different

regions of the wafer allow for high throughput fabrication of devices. (c) The devices

are formed by etching the 220-nm-thick layer of silicon underlying the exposed resist. (c)

The remaining photoresist is removed and the devices are clad with a low-refractive index

material.
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method limits the production yields of devices, making it incompatible with wafer-scale

commercial manufacturing. Conversely, optical lithography uses a mask pre-patterned

with the desired device geometries. The resist is then exposed to deep-UV light through

the mask. This method increases the allowable resolutions to tens of nanometers, yet

allows for high throughput of photonic devices. As deep-UV lithography advances, optical

sources with varying wavelengths can offer a higher degree of precision. State-of-the-

art lithography processes currently use 193-nm deep-UV light [53], allowing for on-chip

dimensions of ∼150 nm. Optical lithography has the potential to move to the extreme-

UV, where light sources with wavelengths of 13 nm can push the allowed dimensions

of photonic devices to those that are comparable with electron-beam lithography [11].

Overall, both lithography processes provide a high degree of control over on-chip device

dimensions which can be utilized to engineer the dispersion of devices.

3.3 Drawbacks of silicon-on-insulator optical devices

Optical losses due to two photon absorption (TPA) are one of the main limitations of

silicon photonics. The process of TPA frequently occurs at high optical intensities where

two energy-matched photons are absorbed by the material to create free carriers. This

effect introduces both unwanted heat and non-linear losses that can limit the performance

of a device [54]. Silicon also lacks a native χ2 non-linearity due to the centrosymmetry

of its crystalline structure. Although this property limits the potential of silicon pho-

tonic devices as electro-optic modulators, it has been shown that induced strain to the

crystalline structure can create a second-order non-linearity in the system [55].

Another major roadblock to silicon photonics is fabrication-induced sidewall surface

roughness. During fabrication, small scatterers are formed on the dielectric interfaces

between a silicon device and its surrounding cladding material. The strong refractive

index contrast of the SOI platform results in large optical losses when the confined electric

field overlaps with these interfaces. Engineering of a waveguide’s cross section can be

used to reduce the overlap of a propagating field with the sidewalls. Additionally, the

polarization degree of freedom can be exploited; TM-polarized modes are typically more

sensitive to sidewall roughness due to their modal profile. As a result, TE-polarized

modes are frequently employed for low-loss propagation in silicon waveguides.

Despite the fact that the transparency window of silicon extends into the mid-IR, the

typical bandwidth of SOI devices are limited by the material absorption of silica; losses

due to leaking of light into the buried oxide layer occur above ∼4 µm. However, it is
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possible to extend the operating bandwidth of SOI devices by underetching the silica

layer in post-processing steps [56]. These steps would allow SOI devices to be utilized

in the mid-IR, where many absorption bands of chemical and biological molecules lie.

Such devices could be utilized for atmospheric sensing or precise probing of molecular

transitions [40]. Finally, silicon’s lack of direct band gap has limited the integration of

on-chip laser sources. Proposals for integration of active III-IV materials into the SOI

platform have provided promising options for on-chip light sources which can allow for

full optical control of light on a chip [57].

3.4 Alternative integrated photonics platforms

While the silicon-on-insulator platform is known for the maturity of its fabrication meth-

ods, several alternative platforms for integrated optical devices have arisen in recent years

(Table 3). Most notably, the silicon-nitride and lithium-niobate platforms have been uti-

lized to advance the monolithic integration of novel optical devices due to their distinct

non-linear material properties.

3.4.1 Silicon nitride

Silicon nitride (Si3N4) is a CMOS-compatible material which has a moderate refractive

index (n = 1.98) and a large transparency window ranging from the visible to mid-IR

(0.45 - 4.0 µm) [56] (Figure 11). The low material absorption of the material over a

large range of wavelengths makes it an attractive candidate for wide-bandwidth linear

optical devices. The platform is also compatible with foundry-scale fabrication processes,

giving a large degree of control over the dispersion engineering of Si3N4 waveguides. In

particular, high-aspect-ratio integrated silicon nitride waveguides have been engineered

to reduce the overlap of the confined mode with the surface roughness of the waveguide

sidewalls, resulting in ultra low propagation losses (0.045 ± 0.04 dB/m) [58].

While silicon nitride is a promising material for linear devices, it is perhaps best

known for its non-linear properties. The material has a third-order Kerr non-linearity

of n2 = 2.4 × 10−15 cm2/W, making it suitable for ultra-fast non-linear devices. As

opposed to silicon, Si3N4 also possesses a wide energy band gap resulting in negligible

two-photon absorption. The silicon nitride platform thus holds a major advantage over

the SOI platform in regards to non-linear device operation [59].

Enhancement of the non-linear response of the system can be achieved via use of

low-aspect-ratio waveguides which tightly confine the modal profile to the silicon nitride
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χ2 (pm/V) Kerr coefficient (cm2/W) TPA coefficient (cm/GW)

Silicon 0 6.3 ×10−14 [60] 0.614 [60]

Silicon dioxide 0 2.3× 10−16 [61] negligible

Silicon nitride 0 2.4× 10−15 [59] negligible

Lithium niobate 30 [62] 9.0 ×10−16 [63] 0.38 [63]

Table 3: Comparison of the non-linear properties of several integrated photonic materials.

core. Fabrication of such waveguides has been limited by tensile-stress-induced cracking

of silicon nitride layers thicker than 250 nm [64]. However, recent improvements in

fabricating 500-700-nm-thick layers of silicon nitride have the enabled the low aspect

ratios required for non-linear device operation [59, 65]. This advancement has opened

the door to the development of on-chip optical parametric oscillators requiring sub-mW

powers [66] and broadband, coherent optical frequency combs [16].

3.4.2 Lithium niobate

Similar to silicon nitride, lithium niobate (LiNbO3) possesses a relatively high refractive

index (n = 2.2) and low material absorption in the telecommunications window (λ =

0.35 - 5 µm). In addition, the material notably has a large second-order non-linearity

(χ2 = 30 pm/V), making the material an excellent candidate for devices such as electro-

optic modulators [62]. Today, the electro-optic response of lithium niobate is widely used

to reduce the effects of dispersion in fiber-optics communications systems [67]. However,

current fabrication techniques limit the miniaturization of a LiNbO3 waveguide to the

centimeter-scale, restricting the potential for compact, on-chip integration of devices [68].

To enable dense integration of LiNbO3-based optical devices, several different fabri-

cation methods have been proposed. Firstly, a hybrid technique combines the fabrica-

tion capabilities of the SOI platform with the second-order susceptibility of high-quality

LiNbO3 thin films. Nanopatterning of a silicon wafer using standard lithography tech-

niques is then followed by deposition of a thin layer of LiNbO3, resulting in integrated

LiNbO3-on-SOI optical devices. This method has been utilized to fabricate micron-scale

ring resonator and Mach-Zender modulators [69, 70]. The second promising fabrication

technique for lithium niobate is monolithic, relying on direct etching of LiNbO3 thin films.

While technologically challenging, the monolithic technique has been shown to produce
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Figure 11: Transparency windows of various integrated photonics materials. [56, 62]

LiNbO3 waveguides with losses as low as 2.7 ± 0.3 dB/m [62]. This technique has en-

abled the on-chip integration of devices such as LiNbO3 Kerr frequency combs [71] and a

“photonic molecule” which can be programmed via gigahertz microwave signals [72]. The

advancement of lithium niobate fabrication techniques has opened a wide-range of pos-

sibilities for on-chip integration of wide-bandwidth electro-optic modulators compatible

with optical telecommunication networks. When applied to standard on-chip photonic

devices, lithium niobate has the potential to revolutionize microwave-addressable pho-

tonics.
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Chapter 4

Photonic crystal ring resonators

The first of the dispersion engineering techniques explored in this work will focus on

photonic crystals. The following sections will detail how slow light can be implemented

in a standard ring resonator via periodic patterning of the material. Computational and

experimental confirmation of the highly dispersive nature of the ring will be offered.

4.1 Light propagation in periodic dielectric struc-

tures

To examine the behavior of a periodically patterned dielectric waveguide, it is useful to

reframe Maxwell’s equations as a hermitian eigenvalue problem [73].

∇×

(︄
1

ϵ(r)
∇×H(r)

)︄
=
(︂ω
c

)︂2
H(r) (52)

Defining the differential hermitian operator as Θ̂ = ∇× 1
ϵ(r)

∇×, Equation 52 becomes:

Θ̂H(r) =
(︂ω
c

)︂2
H(r) (53)

Here, the differential operator acts on the magnetic field, yielding eigenvalues of
(︁
ω
c

)︁2
[73].

Due to the hermicity of Θ̂, many parallels between electrodynamics and quantum

mechanics can be drawn (Table 4). Schrödinger’s equation describes the behavior of a

particle propagating through a potential energy landscape. Similarly, Maxwell’s equations

dictate the motion of a photon, where the dielectric function of the medium acts as

the ‘potential energy’ of the equation. This correspondence sheds light on how light

propagates through a periodic dielectric material, known as a photonic crystal (PhC)

[74,75].
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Maxwell’s equations Schrödinger’s equation

Hermitian operator Θ̂ = ∇× 1
ϵ(r)

∇× Ĥ = − ℏ2
2m

∇2 + V (r)

Field H(r, t) = H(r)e−iωt Ψ(r, t) = Ψ(r)e−iEt/ℏ

Eigenvalues
(︁
ω
c

)︁2
E

Table 4: Comparison of the properties of Maxwell’s equations and Schrödinger’s equation

formulated as hermitian eigenvalue problems

The dielectric function of a material possessing discrete translational symmetry in

one-dimension (e.g. the x̂-direction) is given by:

ε(x) = ε(x+ l) (54)

where l is the lattice constant of the dielectric function. An example of an one-dimensional

photonic crystal can be seen in Figure 12. An optical waveguide is perforated with holes

of radius r with a spacing of l between adjacent holes. The holes introduce a periodicity

to the waveguide that imposes restrictions on the allowed wavevectors in the material.

These constraints can be found by applying Bloch’s theorem [76]. Bloch states are most

commonly used in condensed matter systems to describe the behavior of an electron in

an atomic lattice. The periodicity of the potential energy function of the lattice results

in the condition [77]:

Ψk(x) = uk(x)e
ikx·x (55)

where

uk(x) = uk(x+ l) (56)

Correspondingly, the magnetic fields in a material possessing a dielectric function de-

scribed by Equation 54 must satisfy:

H(r) ∝ uk(x)e
ikxx (57)

where uk(x) is given by Equation 56.

As a result of Bloch’s theorem, an electromagnetic eigenvector of the periodic system

is invariant when a wavevector undergoes a translation of the form:

kx = kx + pq (58)

where q = 2π
l
is the reciprocal lattice vector of the system and p ∈ Z. Consequently, the

eigenfrequencies corresponding to each allowed wavevector must satisfy:

ω(kx) = ω(kx + pq) (59)
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Figure 12: A photonic crystal waveguide of thickness t and width w. The filling factor of

the photonic crystal is given by the ratio of the hole radius r to the lattice constant l.

The nonredundant wavevectors in reciprocal space
(︁
i.e. −π

l
≤ kx ≤ +π

l

)︁
form the first

Brillouin zone of the system. At the Brillouin zone edge, the eigenvalues become two-fold

degenerate and the frequency levels split. This results in the formation of a photonic

band structure (Figure 13a). The allowed frequencies of light in the photonic crystal

waveguide can possess only certain values; any light of a frequency falling within a band

gap of the system is forbidden from propagating in the material.

The physical mechanism of the formation of photonic band gaps can be understood

by examining the band-edge field configurations. In a two-fold degenerate system, a

perturbation couples the degenerate states of the system. Two new eigenvectors are

formed through symmetric and anti-symmetric linear combinations of the original states

of the non-perturbed system. If H0
a(r) and H0

b(r) are the original degenerate eigenvectors

of Equation 52, the new eigenvectors of the system are given by:

H±(r) = α±H
0
a(r) + β±H

0
b(r) (60)

where α+(−) and β+(−) are normalized constants for the symmetric (anti-symmetric) field

configuration. Because the new eigenvectors of the system are distinct, they necessarily

oscillate at different frequencies, resulting in the splitting of frequencies at the photonic

band edge [73].
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Figure 13: The first two photonic bands of a TE-polarized photonic crystal waveguide

with neff = 2.83, w = 1.0l and f = 0.3l. The states lying in the light cone are considered

’leaky’ modes of the waveguide. A photonic band gap is formed due to the periodicity

of the waveguide’s dielectric function. The magnetic-field energy density of the first (b)

and second (c) photonic bands at kx = 0.5
(︁
π
l

)︁
.

Breaking the continuous translational symmetry of an optical waveguide provides

a new degree of freedom for dispersion engineering. As described in Chapter 2, the

dispersion relation of a waveguide is approximately linear, with a slope of vg =
c
ng

≈ c
neff

.

In a photonic crystal waveguide, frequency splitting at the photonic band edge causes

the dispersion relation to flatten out as it approaches kx = π
l
. Recalling Equation 19, the

group velocity of a wave in a photonic crystal waveguide becomes:

vg =
dω

dk
=

c

neff

+ ck
∂neff

∂k
(61)

An additional term appears in the expression due to the wavelength-dependence of the

effective index of the waveguide. The effect of this term is most prominent near the

photonic band edge; the slope of the dispersion relation approaches zero, resulting in a

wave with a negligible group velocity. Such states are referred to as ‘slow light’ modes

of the photonic crystal waveguide. Thus, through periodic, geometric patterning of a

standard optical waveguide, the velocity of a propagating wave can be finely-tuned to

meet the requirements of a given application.
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Figure 14: A photonic crystal ring resonator composed of a standard ring resonator with

an overlying photonic crystal lattice.

4.2 Photonic crystal lattices in ring resonators

The optical features of a standard ring resonator can be modified by utilizing the slow light

properties of a photonic crystal. A photonic crystal ring resonator (PhCRR) is a hybrid

device composed of a ring resonator with an overlying photonic crystal lattice (Figure

14) [78]. The dispersive properties of the photonic crystal lattice alter the propagation of

the ring’s modes, resulting in resonances which possess low group velocities [79,80]. Slow-

light resonances can exhibit properties such as enhanced light-matter interactions [81]

and improved microcavity lifetimes [82], both effects of which can be highly desirable for

non-linear optics and biosensing applications.

In order to maximize the slow-light effect of a photonic crystal in a ring resonator,

a precise design method is required. The following section details a clear-cut method

which ensures a ring resonance found exactly at the photonic band edge of the PhC

lattice, where the slow-light effect is at its greatest [83]. Additionally, the design method

accounts for the feasibility of integrating such a device on a chip by considering geometric

parameters which can be manufactured using CMOS-compatible fabrication techniques

on the silicon-on-insulator material platform.
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4.3 Design method and computational results

To reduce the group velocity of a given ring resonance, the phase matching conditions

of the resonance must be selected so as to correspond with the non-linear region of the

PhC’s dispersion relation. The slow-light effect is maximized at the photonic band edge,

where kx = π
l
. Inserting this value into the phase matching conditions imposed by the

ring (Equation 42) yields:

mBE =
πR

l
(62)

To ensure discreteness of the photonic crystal lattice, an integer number of unit cells must

fit within the perimeter of the ring:

Nl = 2πR (63)

where N ∈ Z. The photonic band edge mode number of a PhCRR can be found by

combining Equations 62 and 63:

mBE =
N

2
(64)

This equation indicates that a slow-light resonance placed directly at the photonic band

edge (i.e. where vg = 0) can occur in any ring possessing an even number of unit cells.

Away from the photonic band edge, the group velocity of the ring resonances will be

determined by the finite slope of the dispersion relation. Variations in the waveguide

width, filling factor, and effective index of the photonic crystal are degrees of freedom

which can be utilized to modify the dispersion relation. The following section details

how computational methods can be employed to calculate the dispersion relation of a

photonic crystal ring and in turn design slow light resonances in PhCRRs.

4.3.1 Computation of ring’s dispersion relation

To model the dispersion relation of the photonic crystal ring, it is first assumed that the

radius of curvature of the ring is much larger than the wavelength of light in the material:

R >>
λ

neff

(65)

Under this approximation, the radius of curvature can be neglected and the ring can be

modeled as an infinitely-long photonic crystal waveguide of width w, filling factor f , and

effective index neff.

To compute the dispersion relation of the PhC waveguide, the MIT Photonic Bands

(MPB) frequency-domain eigenmode solver is used [84] (Appendix A). The effective re-

fractive index is set depending on the geometry of the material platform under consider-

ation. The PhC waveguide geometry is then defined by fixing the waveguide width and
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Figure 15: (a) The photonic dispersion relation of an infinitely long, photonic crystal

waveguide of parameters w = 1.3l, f = 0.243l, and neff = 2.83. The vertical lines

denote the phase matching conditions imposed by the ring’s geometry. Every intersection

between the PhC waveguide’s dispersion relation and the ring’s phase matching conditions

correspond to a resonance of the photonic crystal ring resonator. The magnetic field

densities of the (b) fundamental and (c) dipole mode of a PhCRR with R = 4.985 µm,

l = 348 nm, w = 452 nm, r = 85 nm, N = 90 and neff = 2.83
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filling factor. While a wider waveguide can lower optical losses by reducing overlap of

the mode with the waveguide sidewalls, the width is restricted to allow for propagation

of a single radial mode. Finally, the filling factor of the waveguide is selected based on

the minimum feature resolution of the chosen fabrication method.

The solid black line in Figure 15a shows the first photonic band of a TE-polarized,

1D photonic crystal of parameters w = 1.3l, f = 0.243l, and neff = 2.83. The dispersion

relation is computed in two-dimensions due to computational constraints. The chosen

effective refractive index corresponds to the silicon-on-insulator platform described in

Chapter 3, while the filling factor and waveguide width are chosen to fall within the

fabrication tolerances of 193-nm deep-UV lithography.

4.3.2 Selection of ring’s geometric parameters

To find the resonant modes of the ring, the phase matching conditions given by Equation

42 are imposed on the dispersion relation of the 1-D photonic crystal waveguide. Graphi-

cally, these phase matching conditions are represented as the vertical lines in Figure 15a;

each intersection between the phase matching conditions and the PhC’s dispersion rela-

tion corresponds to a resonance of the ring. Thus the phase matching conditions of the

spatially-bound RR structure serve the purpose of discretizing the continuous dispersion

relation of the infinitely long PhC waveguide.

The band-edge, or ‘fundamental’, mode of the system is indicated by the light blue

diamond in Figure 15a. Because the mode falls directly at the band-edge, this resonance

will possess a zero group velocity. Moving away from the band edge, the resonant modes

become two-fold frequency-degenerate due to the symmetry of the photonic crystal’s band

structure about the edge of the first Brillouin zone (the green circles in Figure 15a). The

wavenumbers of the resonances found away from the photonic band edge are given by:

kx =
mBE ± j

R
(66)

where j ∈ Z. Recalling Equation 19, the finite slope of the dispersion relation close to the

band edge indicates that the frequency-degenerate modes will possess a non-trivial, yet

low, group velocity. This implies that the group velocity of resonances around the band

edge can be varied by changing the radius of the ring to ensure that the phase matching

conditions intersect the dispersion relation at a particular point.

To select the final geometric parameters for a photonic crystal ring possessing slow

light resonances, the design wavelength of the system is specified and the dimensionless

frequency of the photonic band edge resonance is scaled to the proper dimensions. MPB
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accounts for the scale invariance of Maxwell’s equations by computing the dispersion

relation in dimensionless frequency units of νD ( c
l
). Resultingly, the wavelength of the

PhC waveguide modes can be scaled by changing the magnitude of the lattice constant l:

λ =
l

νD
(67)

Once the lattice constant is set, an approximate ring radius is chosen and inserted

into Equation 63. N is scaled to the closest even integer yielded by Equation 63 and the

final radius of the ring is in turn recomputed.

4.3.3 Computational characterization of slow light resonances

Upon selection of the PhCRR’s geometric parameters, the time evolution of slow light

resonances in a ring can be found by performing finite-difference, time-domain simulations

using the MIT Electromagnetic Equation Propagation (MEEP) software [85] (Appendix

B.1). For a TE-polarized mode, the fields can be expressed as:

Hz(x, y) = H0(y)e
ikxx (68)

Correspondingly, a broadband Gaussian dipole source is used to excite the z-component

of the magnetic fields and a time monitor measures the field evolution as a function of

time. A Fourier transform of these fields yields the ring’s optical spectrum. Once the

optical spectrum of a ring is determined, a narrowband Gaussian dipole source is centered

on each slow light resonance to characterize the magnetic field configurations of the mode.

Figure 15b shows the magnetic field density of the band-edge fundamental mode for a

ring of radius R = 4.985 µm, l = 348 nm, w = 452 nm, r = 85 nm, N = 90 and neff = 2.83.

These particular dimensions are chosen to ensure slow light resonances falling on the first

photonic band of the PhC with a design wavelength of λ0 = 1550 nm. The magnetic

field is concentrated in the holes of the ring, consistent with the fields computed for the

first photonic band of a TE-polarized photonic crystal waveguide in Figure 13b. The

‘dipole’ mode possesses a similar field configuration, yet exhibits spatial beating with two

nodes around the ring. This beating is due to the degeneracy of the modes about the

photonic band edge. The dipole mode of the system is composed of a linear combination

of the original frequency-degenerate modes with wavevectors kx = mBE±1
R

. Inserting

this expression into Equation 68, the magnetic field configuration for the dipole mode

becomes:

Hz ∝ ei
(mBE+1)

R
x + ei

(mBE−1)

R
x = ei

π
l
x cos

(︃
2π

Nl
x

)︃
(69)
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As a consequence of the cosine function in the expression for Hz, two nodes appear in

the magnetic field configuration of the two-fold mode. For higher-order modes (i.e. for

j > 1) the cosine function will oscillate at a higher frequency:

Hz ∝ ei
π
a
x cos

(︃
2πj

Nl
x

)︃
(70)

While this particular ring was designed to operate on the first photonic band of the

PhC, the result can easily be generalized so as to target resonances falling on the second

band of the PhC lattice, where the resonances focus the magnetic field strength in the

material of the PhC [86].

4.4 Fabrication and experimental characterization

To verify the validity of the proposed design method, PhCRRs are fabricated on the

silicon-on-insulator platform using 193-nm deep-UV lithography (IMEC Silicon Photon-

ics Platform). Design biases are added to the dimensions of the resist mask to ensure

correspondence of the on-chip dimensions of the waveguide width and PhC hole radius

to the geometric parameters computed above. The resulting mask dimensions of these

parameters are thus w = 462 nm and r = 120 nm. A full etch of the silicon layer is used

for the photonic crystal lattice and an air cladding is used to maximize the refractive

index contrast of the material platform (Figures 16 and 17).

Photonic crystal ring resonators of radii R = 10.081 and 19.939 µm (corresponding to

N = 182 and 360, respectively) are fabricated and characterized. Standard ring resonators

of similar sizes are placed on the chip for comparative purposes. Each ring is evanescently

coupled to a strip waveguide of width W = 450 nm with an evanescent gap of g = 150

nm (see Appendix C). A standard SMF-28 optical fiber is used to input light from a

tunable C-band laser via an input grating coupler. A second optical fiber is placed at the

output grating coupler and a power meter is utilized to monitor the rings’ transmission

spectrum (Figure 18)

4.5 Experimental results

The mean band-edge wavelength of the thirty measured PhCRRs is 1546.2 ± 5.8 nm,

a variation of 0.2% from the target design wavelength of 1550 nm [87]. The spectral

characteristics of a PhCRR can be seen in Figure 19. The experimental transmission

spectrum of a 20-µm-radius PhCRR is indicated in black. The vertical lines indicate
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a)

150 μm

b)

Figure 16: (a) Scanning electron microscope image of photonic crystal ring resonators

and standard ring resonators integrated on a silicon chip. (b) The on-chip configuration

of a ring, the input and output grating couplers, and the coupling waveguide.

1 μm

a) b)

100 nm

Figure 17: (a) Scanning electron microscope image of the evanescent coupling region

between the input waveguide and a photonic crystal ring resonator. (b) The photonic

crystal lattice of a PhCRR.
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Figure 18: The experimental setup employed for the characterization of on-chip devices.

An optical fiber inputs light from a tunable C-Band laser onto the chip via a grating

coupler. Each ring is evanescently coupled to a strip waveguide and the transmission

spectrum is monitored via an output grating coupler.
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Figure 19: The normalized transmission spectrum of a 20-µm-radius photonic crystal ring

resonator. The photonic band gap is indicated by the shaded grey region. The vertical

lines denote the wavelengths of fundamental, dipole, and quadrupole modes predicted

using the design method detailed above.

the wavelengths of the fundamental (j = 0), dipole (j = 1), and quadrupole (j = 2)

modes predicted using the above design method, showing strong agreement between the

experimental and computational results. The PhCRR possesses a large photonic band

gap, within which no resonances of the ring can be found. Additionally, the PhCRR

displays non-equidistant spacing between adjacent resonances which can be attributed

to the strong dispersion of the PhC lattice. Splittings of several slow light resonances is

observed due to coupling of degenerate propagating and counter-propagating resonances

in the ring. In comparison, the transmission spectrum of a 20- µm-radius standard ring

resonator (Figure 20) displays no photonic band gap and possesses a constant free spectral

range between adjacent resonances.

4.5.1 Experimental determination of ring’s dispersion relation

The unique characteristics of a PhCRR allow for experimental determination of the un-

derlying dispersion relation of the PhC waveguide [87]. Each resonance of the PhCRR

is assigned a mode number according to its proximity to the photonic band edge using
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Figure 20: The normalized transmission spectrum of a 20-µm-radius standard ring res-

onator.

Equation 64. The corresponding wavevector of each mode is then computed using Equa-

tion 66. The dimensionless frequency of each mode is found by inserting the resonant

wavelength of each mode and the lattice constant of the PhC obtained from scanning-

electron-microscope images into Equation 67. Figure 21 compares the experimentally

determined dispersion relation of a 10- µm-radius ring to the 2D computational disper-

sion relation calculated using MPB, showing strong agreement. The non-linearity of

the dispersion relation demonstrates the strong dispersion of the PhC lattice near the

photonic band edge.

The group index of each resonance is computed using the relation

ng =
c

vg
= c

(︄
dω

dk

)︄−1

(71)

Figure 22 shows the experimental group index of a 10-µm-radius ring compared to the

computational group index, again showing strong agreement. At the photonic band edge,

the group index is ≈ 23.4, nearly an order of magnitude greater than the effective index

of a standard silicon ring resonator. The experimental group index of the dipole mode is

noticeably larger than the predicted group index derived from computational results. This

could potentially be attributed to fabrication-induced splitting of frequency-degenerate

modes. If the mode splitting is comparable to the free spectral range between adjacent
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Figure 21: The experimental dispersion relation of a 10-µm-radius photonic crystal ring

resonator compared to the dispersion relation of an infinitely long photonic crystal waveg-

uide computed using the MIT Photonic Bands software.

modes, the splitting may contribute to modal interactions resulting in flat-band regions of

the dispersion relation found away from the photonic band edge. This effect can provide

an additional degree of freedom in engineering the dispersion relation of the PhC lattice.

4.6 Conclusion

In summary, the dispersion relation of a standard optical ring resonator can be engi-

neered via periodic patterning of the material. The resultant photonic crystal lattice is

highly dispersive, resulting in slow light regions of the photonic band structure. The

phase matching conditions of the ring can be finely tuned to correspond directly with

the photonic band edge of the PhC lattice via precise design of the ring’s geometric

parameters.

The proposed design method has been applied to rings fabricated on the silicon-

on-insulator platform via CMOS-compatible 193-nm deep-UV lithography. The optical

spectrum of a photonic crystal ring exhibits a photonic band gap and nonequidistant

spacing between adjacent resonances. The unique features of the PhCRR allow for ex-

perimental determination of the ring’s dispersion relation. Using this method, the highly
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Figure 22: The experimental group index of a 10-µm-radius photonic crystal ring res-

onator compared to the group index of an infinitely long photonic crystal waveguide

computed using the MIT Photonic Bands software.

dispersive nature of a PhCRR has been show with a maximum calculated group index of

∼ 23.6.

In the next chapter, the principles related to photonic crystal ring resonators will be

extended into engineering non-trivial topological geometric phases in dimerized photonic

crystal lattices.
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Chapter 5

Topological edge states in photonic

crystal ring resonators

5.1 Topological photonics

The discovery of the integer quantum Hall effect (QHE) has offered interesting insights

into the topological properties of low-dimensional electron gases [88]. Experimental veri-

fication of the integer QHE in room-temperature graphene has further intensified explo-

ration of geometric phases in crystalline structures [89]. Intriguingly, the mathematical

principles underpinning the quantum Hall effect can be extended to electromagnetic fields.

A proposal of an optical quantum Hall effect in a photonic crystal lattice possessing bro-

ken time-reversal symmetry [90, 91], followed by experimental observation of microwave

photonic edge states in a magneto-optic photonic crystal [92, 93], opened the field of

topological photonics. However, extending these concepts to optical frequencies has been

hindered by the lack of materials possessing magneto-optic properties.

To overcome this challenge, the geometry of a photonic crystal can be engineered

so as to possess non-trivial topology [94, 95]. This method reduces the need for an

external-magnetic field and is highly compatible with the tight fabrication resolutions of

state-of-the-art lithography processes. The following sections will explore the topologi-

cal features of various one-dimensional photonic crystal lattices. Different crystal bases

(dimer, trimer, and tetramer) are applied to the one-dimensional PhC lattice and the

topological characteristics of each lattice are classified using symmetry operators. Ad-

ditionally, the dimerized PhC lattice is mapped to an optical ring using the concepts

of Chapter 4 and computational results demonstrate the appearance of topological edge

states in the photonic band gap of the dimerized PhCRR.
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5.2 Symmetries of topological insulators

All topological insulators can be sorted into one of ten different symmetry classes via a

classification scheme known as the “ten-fold way” [96]. These classes are distinguished

by the transformation of a topological insulator’s irreducible, single-particle Hamiltonian

under three generic symmetry operators:

1. Time-reversal symmetry

All time-reversal symmetric Hamiltonians satisfy:

T HT −1 = +H (72)

where T is the anti-unitary time-symmetry operator. If the Hamiltonian is time-

reversal symmetric, the corresponding topological insulator is assigned a value of

either +1 (T 2 = +1) or -1 ( T 2 = −1). In the absence of time-reversal symmetry,

the insulator is given a value of 0.

2. Charge conjugation symmetry

All charge-conjugation symmetric Hamiltonians satisfy:

CHC−1 = −H (73)

where C is the charge conjugation operator. As in the case of time-symmetry, a

Hamiltonian can be assigned a value of either C = 1 (C2 = 1), -1 (C2 = −1), or 0.

3. Chiral symmetry

In select cases, a Hamiltonian is found to be invariant after combined application

of the T and C operators. Such Hamiltonians are categorized as chirally symmetric

and satisfy:

SHS−1 = −H (74)

where S is the chiral-symmetry operator defined as:

S = T C (75)

Hamiltonians are assigned a value of either 0 (no chiral symmetry) or +1 (chiral

symmetry). Hamiltonians that possess chiral symmetry can be written in the form:

H(k) =

⎛⎝ 0 h†(k)

h(k) 0

⎞⎠ (76)
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Considering all possible combination of the above symmetries results in a total of ten

different symmetry classes. This classification provides useful information concerning the

topological invariant of an insulator. For each symmetry class, the spatial dimensionality

of the system determines whether the topology of the system is trivial or possesses a Z or

Z2 topological invariant (Table 5). Within the context of photonic systems, the ten-fold

way can be used to categorize optical systems which possess non-trivial topology. The

following section will detail the application of the Su-Schreefer-Heeger model to a one-

dimensional photonic crystal. Classification of the SSH model via the ten-fold way will

be used to categorize the topology of the system.

5.3 Topological photonic crystal ring resonators

5.3.1 The Su-Schrieffer-Heeger model

The energy band structure of a dimerized atomic lattice can be found through applica-

tion of the Su-Schreefer-Heeger (SSH) model, which considers particles ‘hopping’ in a

periodic potential composed of two sublattices, A and B [97]. Hopping parameters a and

b represent the probabilities that a particle will move from one sublattice to the next

Cartan label T C S d = 0 d = 1 d = 2 d = 3

A (unitary) 0 0 0 Z 0 Z 0

AI (orthogonal) +1 0 0 Z 0 0 0

AII (symplectic) -1 0 0 2Z 0 Z2 Z2

AIII (ch. unit.) 0 0 1 0 Z 0 Z

BDI (ch. orth.) +1 1 1 Z2 Z 0 0

CII (ch. sympl.) -1 -1 1 0 2Z 0 Z2

D (BdG) 0 -1 0 Z2 Z2 Z 0

C (BdG) 0 -1 0 0 0 2Z 0

DIII (BdG) -1 +1 1 0 Z2 Z2 Z

CI (BdG) +1 -1 1 0 0 0 2Z

Table 5: The ten symmetry classes of topological insulators. [96]
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(Figure 23). The Hamiltonian for a dimerized lattice can be written as [98]:

H = a
N∑︂

n=1

(︂
|n,A⟩ ⟨n,B|+ h.c.

)︂
+ b

N−1∑︂
n=1

|n+ 1, A⟩ ⟨n,B|+ h.c.
)︂

(77)

where n denotes the unit cell index, N is the number of unit cells in the chain, and A and

B are the sublattice indices. It is convenient to decompose the Hamiltonian describing

the system into a tensor product of its internal (the sublattice index) and external (unit

cell index) degrees of freedom:

H = Hexternal ⊗Hinternal (78)

⇒ ⟨n,A| = ⟨n| ⊗ ⟨A| (79)

The Hamiltonian can now be written in terms of the Pauli matrices, σi:

H = a
N∑︂

n=1

(︁
|n⟩ ⟨n| ⊗ σx + h.c.

)︂
+ b

N−1∑︂
n=1

(︂
|n+ 1⟩ ⟨n| ⊗ σx + iσy

2
+ h.c.

)︂
(80)

where the Pauli matrices are defined as:

σ0 =

⎛⎝1 0

0 1

⎞⎠ ; σx =

⎛⎝0 1

1 0

⎞⎠ ; σy =

⎛⎝0 −i

i 0

⎞⎠ ; σz =

⎛⎝1 0

0 −1

⎞⎠ (81)

If the length of the bulk dimer chain approaches infinity, Born-van Karman boundary

conditions can be imposed [77]:

Ψ(x) = Ψ(x+Nl) (82)

where l is the length of dimer unit cell. Due to the periodicity of the bulk dimer chain,

Bloch wave eigenstates of the Hamiltonian can be used:

|Ψm(k)⟩ = |k⟩ ⊗ |um(k)⟩ (83)

where |um(k)⟩ = am(k) |A⟩ + bm(k) |B⟩ are the internal DOF eigenstates of the bulk

momentum-space Hamiltonian and |k⟩ are a basis of plane wave states defined as:

|k⟩ = 1√
N

N∑︂
n=1

eink |n⟩ (84)

The bulk momentum-space Hamiltonian can be found by taking the Fourier transform of

Equation 80:
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Figure 23: A dimerized atomic chain of lattice constant l and two sublattices, A and B.

The probabilities of a particle hopping from one sublattice to the other are denoted by a

and b.

H(k) = ⟨k|H|k⟩ (85)

=

⎛⎝ 0 a+ be−ik

a+ beik 0

⎞⎠ (86)

Schrödinger’s equation now reads:

H(k)

⎛⎝a(k)
b(k)

⎞⎠ = E(k)

⎛⎝a(k)
b(k)

⎞⎠ (87)

The energy eigenvalues, E(k), of Schrödinger’s equation can be found by taking the

determinant of Equation 86. The energy spectrum as a function of wavevector k across

the first Brillouin zone of the dimer unit cell’s reciprocal lattice is plotted in Figure 24.

Depending on the values of the hopping parameters, a and b, the energy spectrum of the

bulk dimer chain will either be continuous (Figure 24a) or gapped (Figure 24b). This

implies that dimerization of a one-dimensional atomic chain converts the bulk properties

of the material from conductive to insulating.

5.3.2 Symmetries of the dimerized lattice

To classify the topology of a dimerized atomic lattice, the mathematical framework of

the ten-fold way can be applied to the Hamiltonian of the system. The time reversal

symmetry operator can be defined as:
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Figure 24: The bulk energy dispersion relation of the SSH model for (a) a one-dimensional

atomic lattice with a = b = 1.0 and (b) a one-dimensional dimerized atomic lattice with

a = 0.8 and b = 1.0.

T = γ

⎛⎝1 0

0 1

⎞⎠ (88)

where γ indicates the complex conjugation operator (i.e. γi = −i, γ2 = 1). Applying

this operator to the dimerized Hamiltonian (Equation 86) yields:

T HT −1 = γ

⎛⎝1 0

0 1

⎞⎠⎛⎝ 0 a+ be−ik

a+ be+ik 0

⎞⎠ γ

⎛⎝1 0

0 1

⎞⎠ (89)

= γ

⎛⎝1 0

0 1

⎞⎠⎛⎝ 0 a+ be+ik

a+ be−ik 0

⎞⎠ (90)

=

⎛⎝ 0 a+ be−ik

a+ be+ik 0

⎞⎠ = +H (91)

This result indicates that the dimerized Hamiltonian is time-reversal symmetric and can

be assigned a value of T = ±1. To determine the sign of T , the value of T 2 is computed:

T 2 = γ

⎛⎝1 0

0 1

⎞⎠ γ

⎛⎝1 0

0 1

⎞⎠ = γ21 = 12 (92)

Hence, T for a dimerized lattice is 1.
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The chiral operator is defined as:

S =

⎛⎝1 0

0 −1

⎞⎠ = σz (93)

The chirality of the dimer chain is found by applying S to the dimer bulk momentum-

space Hamiltonian:

SHS−1 =

⎛⎝1 0

0 −1

⎞⎠⎛⎝ 0 a+ be−ik

a+ be+ik 0

⎞⎠⎛⎝1 0

0 −1

⎞⎠ =

⎛⎝ 0 −a− be−ik

−a− be+ik 0

⎞⎠ = −H

(94)

The Hamiltonian is chirally symmetric and is thus assigned a value of S = 1.

With knowledge of the form of the time-symmetry and chiral symmetry operators,

the charge-conjugation operator can be constructed:

S = σz = T C (95)

⇒ σz =
(︁
γ · 1

)︁
C (96)

The charge-conjugation symmetry operator is necessarily:

C = γσz (97)

Applying this operator to the dimer bulk Hamiltonian yields:

CHC−1 = γ

⎛⎝1 0

0 −1

⎞⎠⎛⎝ 0 a+ be−ik

a+ be+ik 0

⎞⎠ γ

⎛⎝1 0

0 −1

⎞⎠ (98)

= γ

⎛⎝1 0

0 −1

⎞⎠⎛⎝ 0 −(a+ be+ik)

a+ be−ik 0

⎞⎠ (99)

=

⎛⎝ 0 −(a+ b−ik)

−(a+ be+ik) 0

⎞⎠ = −H (100)

This result implies that the dimer chain has charge-conjugation symmetry. To determine

the sign of C, the charge-conjugation operator is squared:

C2 = γ

⎛⎝1 0

0 −1

⎞⎠ γ

⎛⎝1 0

0 −1

⎞⎠ = 1 (101)

Accordingly, the total classification of the dimer Bulk Hamiltonian is (T , C,S) =

+1,+1, 1, corresponding to the BDI symmetry group. As the dimer chain has a spatial

dimension of d = 1, the system will possess a Z topological invariant.
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5.3.3 The Zak phase and topological edge states

To quantify the topological phase of the dimer bulk Hamiltonian, the Berry connection is

integrated over the first Brillouin zone of the system. This topological invariant, known

as the Zak phase, is defined as [99]:

Z =
i

π

∮︂
dk ⟨uk|∂kuk⟩ (102)

where uk are the Bloch wave functions. Due to the dimerization of the photonic crystal

lattice, the Zak phase can take one of two distinct values:

Z =

⎧⎨⎩0, a > b Trivial

1, a < b Topological
(103)

It can be shown that in the large M limit, Z can be related to the number of bulk

states as [100]:

Mbulk =

⎧⎨⎩2N when Z = 0

2N − 1 when Z = 1
(104)

This equation highlights the bulk-edge correspondence of the SSH model. A dimerized

atomic lattice with a < b will possess a state localized on the edges of the chain. This edge

state represents the bulk state that has been pulled into the band gap of the insulator to

allow for the topological phase transition that occurs at the edge of the atomic chain.

In general, the number of edge states found in the insulating gap is determined by

the difference in topological invariant in the two bulk materials. In the case of the SSH

model, the interface of the trivial and topological bulk materials will support one edge

state [100]:

number of edge states = Ztopo −Ztrivial = 1 (105)

The confinement of the edge state is determined by the contrast of the intra- and intercell

hopping parameters [100]:
a

b
≈ exp

(︃
l

δ

)︃
(106)

where δ is the edge state’s localization length. Spectrally, the edge state will be found

precisely mid band gap.

Topologically-protected edge states are highly robust to perturbations. The confine-

ment of the edge state can be attributed to the topological phase transition occurring

at the interface between two bulk materials of different invariants. Perturbations to the

material are insufficient to alter the topological invariant of each bulk lattice. As a result,

the confinement of the edge state is largely unaffected by small perturbations found in

the bulk.
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Figure 25: The SSH model implemented in a photonic crystal waveguide. The lattice

is dimerized by varying the intra and intercell spacing, denoted as a and b respectively.

When the intracell spacing is larger than the intercell spacing (i.e. a < b), the Zak phase

of the dimer PhC bulk is Z = 1.

5.3.4 The SSH model in a one-dimensional photonic crystal lat-

tice

The SSH model can be implemented in a one-dimensional photonic crystal via dimeriza-

tion of the PhC lattice (Figure 25). The degree of dimerization in the PhC crystal is

controlled by changing the spacing between two adjacent holes. Decreasing the distance

between two holes corresponds to a stronger coupling parameter between the two sites.

This method introduces a new degree of freedom for engineering the dispersion relation

of a waveguide. Recalling Equation 106, the size of the system’s band gap is directly

related to the contrast of the intra- and intercell hopping parameters. As a result, the

band gap of the photonic crystal can be engineered by tuning the lattice’s intra- and

intercell spacing.

A photonic, topologically-protected edge state can be realized by interfacing the two

dimerized PhC bulk chains (Figure 26). The photonic edge state forms a basis for a

photonic crystal cavity which is robust against perturbations to the photonic crystal

lattice. Photonic crystal cavities have proven interesting platforms for the study of light-

matter interactions and cavity quantum electrodynamics due to their low modal volumes

and high quality factors [101, 102]. Typical one-dimensional photonic crystal cavities
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Figure 26: A topological phase transition occurs at the interface between a topological

and trivial dimerized photonic crystal waveguide. A topologically-protected edge state

will form at the interface between the bulk materials.

are formed through an adiabatic tapering of the PhC hole size [103]. While effective in

creating high-Q cavities, this method is susceptible to fabrication imperfections that per-

turb the taper profile of the PhC holes. Alternatively, a topologically-protected photonic

edge state is highly robust against perturbations to the bulk PhC lattice. As a result,

edge states in PhC lattices are interesting candidates for highly robust photonic crystal

cavities.

To examine the dispersion relation of the dimerized photonic crystal lattice and the

presence of photonic edge states, the concepts of Chapter 4 can be applied. By mapping

the dimerized photonic crystal lattice onto a ring resonator, the ring’s phase matching

conditions allows for direct calculation of the dimerized photonic crystal’s underlying dis-

persion. Additionally, the geometry of the ring allows for the design of two topologically-

protected edge states formed at the interfaces of the trivial and topological dimerized

bulk PhC lattices (Figure 27) which can be easily accessed via evanescent coupling to the

ring.
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𝑍 = 0

𝑍 = 1

Figure 27: A dimerized photonic crystal ring with two topologically-protected cavities.

The ring has parameters R = 4.991 µm, l = 560 nm, w = 280 nm, r = 56 nm, and dd =

0.15l. The topological edge states will be localized at the interfaces (blue lines) between

the trivial (Z = 0) and topological (Z = 1) bulk dimerized PhC lattices.

5.3.5 Computational results

Frequency-domain eigenmode solver simulations

2D-FDE simulations [84] are performed on an infinitely-long, one-dimensional photonic

crystal waveguide of effective refractive index neff = 2.83, w = l
2
, and PhC hole radius

r = 0.15l (Appendix A). Only the TE-polarized, fundamental mode of the waveguide

is considered. The degree of dimerization of the lattice, dd, is varied by changing the

spacing between the two holes in the simulation’s unit cell.

Simulations are run for the parameters dd = 0, ±0.05 and ±0.1 (l). When dd = 0, the

unit cell is equivalent to a standard photonic crystal waveguide. For dd > 0, the Zak phase

of the bulk Hamiltonian is trivial, while dd < 0 corresponds to a Zak phase of Z = 1.

Figure 28 shows the computational dispersion relation of the trivial dimerized photonic

crystal lattice. As dd increases, a photonic band gap opens at the point kx = π
l
. Unlike

the theoretical results of the SSH model shown in Figure 24, the bands of the photonic

dispersion relation are asymmetric about the photonic band gap. This can be attributed

to material dispersion effects which reduce the slope of the dispersion relation in the

second band. Figure 29 shows the results for dd < 0. Similar to the dispersion relations

for dd > 0, dimerization of the PhC lattice results in the appearance of a photonic band
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gap.

Finite difference time-domain simulations

Following the method detailed in Chapter 4, the dimerized PhC lattice is mapped on to an

optical ring resonator. Half of the lattice is dimerized in the trivial (dd > 0) configuration,

while the second half if dimerized with dd < 0. At the interfaces of the two bulk chains,

the dimerized photonic crystal ring resonator can support topologically-protected edge

states.

To probe the time evolution of the topologically-protected PhC cavities, 2D-FDTD

simulations [85] are performed on a ring of parameters R = 9.90 µm, l = 622 nm, w = 467

nm, r = 78 nm, dd = 0.15l, and neff = 1.786 (Appendix B.1). A Gaussian dipole source is

centered on λ = 1550 nm with a width of 1 µm and the resultant fields are monitored in

time. Figure 30a shows the optical spectrum of the ring. As predicted, the ring possesses

a photonic band gap due to the dimerization of the lattice. Additionally, a photonic edge

state is found at the center of the band gap at a value of λ = 1547 nm. A Gaussian

dipole source centered on λ = 1547 ± 15 nm is used to characterize the fields of the edge

state. As seen in Figure 30b, the field is localized about one of the interfaces between the

trivial and topological PhC waveguides and decays exponentially into the bulk lattice.

Additionally, the field is localized on a single sub-lattice, consistent with the predictions of

the SSH model [98]. By reducing the spacing between the topological interfaces, coupling

between the photonic edge states can be induced. The degree of coupling between the

states depends on the overlap of the frequency-degenerate wave functions. By reducing

the number of unit cells of the trivial dimerized PhC bulk waveguide, Ntriv, the overlap of

the edge state fields increases. This coupling can be observed in the optical spectrum of

the ring as splitting of the edge state found in the center of the photonic band gap. Figure

31 demonstrates this effect; the number of unit cells between the two topological interfaces

is decreased from (a) Ntriv = 45, (b) Ntriv = 40, and (c) Ntriv = 35. As the overlap of the

edge states increase, the computational optical spectra demonstrate symmetric splitting

of the degenerate edge state about the center of the photonic band gap. This effect could

prove useful for engineering coupled photonic cavities. The topological protection of the

edge states ensures the modes will be frequency degenerate; as a result, topologically-

protected photonic nanocavities can be coupled without the need for any external tuning

of the resonances.
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Figure 28: The computational dispersion relation of a one-dimensional photonic crystal

waveguide with w = 0.5l, r = 0.15l, and neff = 2.83. The degree of dimerization is given

in units of the lattice constant l. As the dimerization of the lattice increases, a photonic

band gap opens at the point kx = π
l
. The dimerized unit cell corresponds to a bulk

topological Zak phase of Z = 0.
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Figure 29: The computational dispersion relation of a one-dimensional photonic crystal

waveguide with w = 0.5l, r = 0.15l, and neff = 2.83. The dimerized unit cell corresponds

to a bulk topological Zak phase of Z = 1.
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Figure 30: (a) The 2D-FDTD computational optical spectrum of a dimerized photonic

crystal ring of parameters R = 9.90 µm, l = 622 nm, w = 467 nm, r = 78 nm, dd = 0.15l,

and neff = 1.786. The photonic band gap of the ring is shaded in grey. The photonic edge

state can be found in the center of the band gap. (b) The magnetic field density of the

photonic edge state. The field strength is localized about the bulk-bulk interface (white

line) and decays exponentially into the surrounding material.

5.4 Proposed experimental verification

The degree of dimerization of the photonic crystal lattice depends on the spacing between

two holes in a unit cell. In practice, the maximum degree of dimerization is limited by the

resolution of the fabrication processes (∼ 50−150 nm). To optimize the degree of dimer-

ization, we have chosen to fabricate dimerized photonic crystal rings on silicon nitride via

electron beam lithography. The reduced refractive index contrast of the material plat-

form, in combination with the tight fabrication resolution of the e-beam process, allows

for sufficient dimerization of the PhC lattice. Devices fabricated with ANT Technologies

are currently being characterized (see Appendix D)

5.5 Generalized result for unit cells of L = 3 and 4

The SSH model can easily be extended to consider nearest-neighbor hopping in a unit

cell of L sites. In particular, the Hamiltonian for a trimerized lattice (L = 3) is given as:

H = a
N∑︂

n=1

(︂
|n,A⟩ ⟨n,B|+h.c.

)︂
+b

N∑︂
n=1

(︂
|n,B⟩ ⟨n,C|+h.c.

)︂
+c

N−1∑︂
n=1

(︂
|n+ 1, A⟩ ⟨n,C|+h.c.

)︂
(107)
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Figure 31: The 2D-FDTD computational optical spectrum of a dimerized photonic crystal

ring of parameters R = 9.90 µm, l = 622 nm, w = 467 nm, r = 78 nm, dd = 0.15l, and

neff = 1.786. The number of unit cells between the two topological interfaces is decreased

from (a) Ntriv = 45, (b) Ntriv = 40, and (c) Ntriv = 35 unit cells. The photonic band gap of

the ring is shaded in grey. The splitting of the coupled photonic edge states is symmetric

about the center of the band gap (dotted black line) and increases with decreasing Ntriv.
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where n denotes the unit cell index, N is the number of unit cells in the chain, and A,

B, and C are the sublattice indices (Figure 32).

Following the same method as in Section 5.3 1, the bulk-momentum space Hamiltonian

for the trimer unit cell is [105]:

H =

⎛⎜⎜⎜⎜⎝
0 a ce−ik

a 0 b

ceik b 0

⎞⎟⎟⎟⎟⎠ (108)

Plotting the eigenvalues of Equation 108 across the first Brillouin zone of the trimer

unit cell demonstrates the features of the lattice. As compared to a standard photonic

crystal lattice (Figure 33a), a trimerized lattice with a = b = 0.8 and c = 1 (Figure 33b)

possesses two photonic band gaps.

It can be shown that this Hamiltonian again possesses time-reversal symmetry with

a T 2 value of +1. However, it is evident that the trimer Hamiltonian cannot be written

in off-diagonal form (i.e. in the form of Equation 76), indicating the trimer chain is not

chirally-symmetric. As a result, it is not expected that the trimer chain will support

topologically-protected edge states.

However, the geometry of the system allows for definition of a new symmetry operator.

When |a| = |b|, the unit cell possesses inversion symmetry about its midpoint, which can

be characterized by the operator, P , where [105]:

P =

⎛⎜⎜⎜⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎟⎟⎟⎠ (109)

1The Hilbert space of the single-particle Hamiltonian is now 3-dimensional. The results of Section
5.3 can be generalized to three dimensions by using the Gell-Mann matrices [104], defined as:

λ1 =

⎛⎜⎝0 1 0

1 0 0

0 0 0

⎞⎟⎠ λ2 =

⎛⎜⎝0 −i 0

i 0 0

0 0 0

⎞⎟⎠ λ3 =

⎛⎜⎝1 0 0

0 −1 0

0 0 0

⎞⎟⎠

λ4 =

⎛⎜⎝0 0 1

0 0 0

1 0 0

⎞⎟⎠ λ5 =

⎛⎜⎝0 0 −i

0 0 0

i 0 0

⎞⎟⎠

λ6 =

⎛⎜⎝0 0 0

0 0 1

0 1 0

⎞⎟⎠ λ7 =

⎛⎜⎝0 0 0

0 0 −i

0 i 0

⎞⎟⎠ λ8 =
1√
3

⎛⎜⎝1 0 0

0 1 0

0 0 −2

⎞⎟⎠
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Figure 32: A trimerized atomic chain of lattice constant l and three sublattices, A, B, and

C. The probabilities of a particle hopping from one sublattice to the other are denoted

by a, b, and c.
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Figure 33: The bulk energy dispersion relation for (a) a one-dimensional atomic lattice

with a = b = c = 1.0 and (b) a one-dimensional trimerized atomic lattice with a = 0.8,

b = 0.8, and c = 1.0.
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Similar to chiral symmetry in the SSH model, the topological properties of a one-dimensional

bulk Hamiltonian possessing inversion symmetry can be determined via calculation of the

Zak phase. In particular, the Zak phase for the trimer phase is defined as [105]:

Z =

⎧⎨⎩0, |a| = |b| > |c|

1, |a| = |b| < |c|
(110)

While the trivial configuration of the trimer cell does not exhibit any topological prop-

erties, the nontrivial configuration will possess a topologically-protected edge state. As

opposed to the dimer edge state which is found at both ends of the chain, the trimer edge

state is localized at a single bulk-bulk interface. It has additionally been proposed that

trimer chains with broken inversion symmetry can also support edge states, provided the

hopping amplitudes satisfy certain conditions [105,106].

For L = 4, chirality is returned to the system. The Hamiltonian for a tetramized

lattice is given as:

Ĥ =a
N∑︂

n=1

(︂
|n,A⟩ ⟨n,B|+ h.c.

)︂
+ b

N∑︂
n=1

(︂
|n,B⟩ ⟨n,C|+ h.c.

)︂
+c

N∑︂
n=1

(︂
|n,C⟩ ⟨n,D|+ h.c.

)︂
+ d

N−1∑︂
n=1

(︂
|n+ 1, A⟩ ⟨n,D|+ h.c.

)︂ (111)

where n denotes the unit cell index, N is the number of unit cells in the chain, and A, B,

C, and D are the sublattice indices (Figure 34). The bulk momentum-space Hamiltonian

becomes:

Ĥ(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a de−ik

0 0 b c

a b 0 0

deik c 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(112)

The Hamiltonian of the tetramer unit cell has been returned to block off-diagonal form.

Application of the chiral operator indicates that the tetramer Hamiltonian possesses chiral

symmetry:

SĤS−1 =

⎛⎝1 0

0 −1

⎞⎠⎛⎝ 0 h†(k)

h(k) 0

⎞⎠⎛⎝1 0

0 −1

⎞⎠ =

⎛⎝ 0 −h†(k)

−h(k) 0

⎞⎠ = −Ĥ (113)

where h(k) =

⎛⎝ a b

deik c

⎞⎠. The chirality of the tetramer chain is evidenced in its dispersion

relation (Figure 35b), which displays a symmetric energy spectrum about the zero-energy
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Figure 34: A tetramer atomic chain of lattice constant l and four sublattices, A, B,

C, and D. The probabilities of a particle hopping from one sublattice to the other are

denoted by a, b, c, and d.
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Figure 35: The bulk energy dispersion relation for (a) a one-dimensional atomic lattice

with a = b = c = d = 1.0 and (b) a one-dimensional tetramer atomic lattice with a = 0.8,

b = 0.8, c = 1.0, and d = 1.0.
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point of the system. Similar to the dimer, the tetramer unit cell belongs to the BDI

symmetry class and possesses non-trivial topological features quantified by the Zak phase.

Beyond the chirality of the Hamiltonian, the increased parameter space of the tetramer

unit cell opens the door for exploration of additional symmetries that may lead to non-

trivial topology in the bulk.

5.6 Conclusions

In conclusion, the Su-Schrieffer-Heeger model has been discussed and applied to a one-

dimensional photonic crystal waveguide. The lattice is dimerized via variation of the

spacing between two adjacent PhC holes. FDE simulations confirm the appearance of a

photonic band gap as the PhC lattice is dimerized.

The dimerized 1D photonic crystal lattice is mapped to an optical ring resonator.

FDTD simulations are used to verify the dispersion relation of the dimerized PhC lattice.

Additionally, the appearance of a photonic edge state found precisely midgap is observed.

Coupling of edge states in the ring can be achieved by reducing the number of unit cells

in the trivial PhC bulk lattice. As the fields of the edge states overlap, the coupled edge

states split symmetrically about the center of the photonic band gap.

The realization of dimerized photonic crystal ring resonators possessing topological

edge states on silicon nitride is proposed. Finally, the ten-fold way is applied to the SSH

Hamiltonian and the results are generalized to consider non-trivial topology in unit cells

of L = 3 and L = 4.
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Chapter 6

Bloch waves in optical ring

resonators

In Chapter 4, modal splitting was observed in the transmission spectrum of a photonic

crystal ring resonator. This effect can be attributed to backscattering of a clockwise

propagating mode into a frequency-degenerate, counterclockwise propagating mode. This

scattering occurs due to fabrication-induced disorder on the dielectric surfaces of the

ring, resulting in modal coupling which lifts the degeneracy of the resonances. This

phenomenon has been well-described via several different approaches, including temporal

coupled mode theory [17, 107–111], steady-state loop equations [112], and the transfer-

matrix method [113, 114]. While these methods are robust, they are generally restricted

to analyzing the splitting of a single mode.

The following chapter will reframe the problem of modal splitting in a ring resonator

by mapping the ring’s structure to an equivalent, condensed-matter-inspired system.

Specifically, the dielectric profile of the ring is considered as an infinitely-long, periodic

dielectric structure and application of Bloch-Floquet theory is utilized to quantify the

modal splitting of an arbitrary resonance of the ring. Additionally, this analysis will be

extended to show how disorder can be purposefully integrated into the system in order

to modify the dispersion of the ring.

6.1 Theoretical prediction

The theoretical analysis of the problem begins with Maxwell’s equations in the form given

by Equation 21, where the fields are considered to be harmonic in time (i.e. E(r, t) =

E(r)eiωt) [115]. Several assumptions can now be made which simplify the form of Equation
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21. As in Chapter 4, the radius of curvature of the ring is considered to be much larger

than the wavelength of light under consideration (Equation 65), allowing the ring to be

considered as an infinitely long waveguide with a dielectric function of:

ε(r) = ε(x) (114)

In such a system, the wavevector of the ring can be written as:

k(r) = k(x) (115)

Finally, it is assumed that the electric field is linearly polarized, reducing the electric

field to E(r) = E(x)ŷ. The above assumptions, in combination with the linear dispersion

relation ω = ck
neff

, yield a one-dimensional Helmholtz equation of the form:

ε−1(x)
∂2E

∂x2
= −

(︃
ω

c

)︃2

E(x) (116)

This equation is analogous in form to the time-independent Schrödinger’s equation and

thus allows for direct comparison between the dielectric function of an optical ring res-

onator and a periodic potential energy landscape in a solid state system.

While this analysis is similar to the discussion of photonic crystals in Chapter 4, a

crucial difference lies in the defined lattice constant of the system. In a standard PhC,

the lattice constant of the crystal is engineered into the system and its dimensions are

on the order of the wavelength of light propagating through the material. Conversely,

the periodicity of the ring is innate to the structure, with a lattice constant equal to its

perimeter P = 2πR (Figure 36). This allows Equation 114 to be written as:

ε(x) = ε(x+ 2πR) (117)

Applying the Bloch-Floquet theorem to Equation 116, it can be shown [116] that the

fields propagating in the ring must satisfy:

E(x) = E(x+ 2πR) (118)

The periodicity of the ring results in the formation of Bragg planes at the points of

symmetry in the reciprocal lattice of the ring, given by:

kx = ±nπ
P

= ± n

2R
(119)

where n ∈ Z. At these symmetry points, the frequency-degeneracy of the propagating and

counterpropagating modes of the ring is lifted, resulting in the appearance of photonic
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Figure 36: A standard ring resonator of radius R with point surface scatterers represented

as an infinitely long dielectric waveguide.

band gaps in the ring’s dispersion relation. The relation between the ring’s Bragg planes

and the ring’s resonances is found by applying the phase matching conditions required

by the ring’s geometry. Combining Equations 42 and 119, it is found that a resonance of

the ring coincides with a Bragg plane whenever n = {2m : m ∈ Z}. Figure 37 depicts the

ring’s first Brillouin zone in reciprocal space. In the reduced zone scheme of the ring’s

dispersion relation, only the m = 0 phase matching condition is applicable. The n = 0

Bragg plane aligns with this phase matching condition, resulting in resonances which are

susceptible to modal splitting.

6.1.1 Quantitative Fourier analysis of modal splitting

The magnitude of this splitting can be determined via a Fourier analysis of the ring’s

dielectric profile. Due to the periodicity of the ring, the dielectric profile can be decom-

posed into a Fourier series [115]. More specifically, the inverse dielectric profile can be

written as:

ε−1(x) =
∞∑︂

l=−∞

κle
i2πlx (120)
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 Bragg plane Bragg plane 

Figure 37: The photonic dispersion relation of a ring resonator in the reduced zone scheme

(assuming linear waveguide dispersion). A resonance of the ring is found wherever the

phase matching boundary conditions intersect with dispersion relation of the infinitely-

long waveguide. (solid green line at kx = 0). Phase matching conditions are separated by

one reciprocal-lattice vector (kx = 2π
P
); as a result, only the m = 0 boundary condition

represents a physically distinct state in the reduced zone scheme.
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where l ∈ Z and κl are the dielectric function’s Fourier coefficients. Similarly, Bloch-

Floquet theory allows the electric fields to be expressed as:

E(x) =
∞∑︂

l=−∞

Ele
i(kx+2πl/P )x (121)

Following the derivation detailed in Reference [116], it is first assumed that the Fourier

expansion of the inverse dielectric function is dominated by the l = 0 and l = ±n
components, where n is an arbitrary integer. Under this assumption the inverse dielectric

function becomes:

ε−1(x) = κ0 + κne
i2πnx/P + κ−ne

−2πnx/P (122)

Equations 121 and 122 are now inserted into the 1D Helmholtz equation given by Equation

116:

−
1∑︂

p=−1

∞∑︂
l=−∞

κn×pe
i
2π(n×p)x

P Ele
i(k+ 2πl

P
)x

(︃
k +

2πl

P

)︂2
= −

(︃
ω

c

)︂2 ∞∑︂
l=−∞

Ele
i(k+ 2πl

P
)x

⇒ −
∞∑︂

l=−∞

κ−nEl+ne
−i 2πnx

P ei
2π(l+n)x

P

[︃
k +

2π(l + n)

P

]︃
2 − κnEl−ne

i 2πnx
P ei

2π(l−n)
P

x

[︃
k +

2π(l − n)

P

]︃2
=

∞∑︂
l=−∞

[︃
κ0

(︂
k +

2πl

P

)︂2
−
(︂ω
c

)︂2]︃
Ele

i 2πl
P

x

⇒
∞∑︂

l=−∞

κ−n

[︃
k +

2π(l + n)

P

]︃2
El+n + κn

[︃
k +

2π(l − n)

P

]︃2
El−n

=
∞∑︂

l=−∞

[︃(︂ω
c

)︂2
− κ0

(︂
k +

2πl

P

)︂2]︃
El

(123)

When l = 0, Equation 123 becomes:

κ−n

(︂
k +

2πn

P

)︂2
En + κn

(︂
k − 2πn

P

)︂2
E−n =

[︃(︂ω
c

)︂2
− κ0k

2

]︃
E0

⇒ E0 ≃
1

(ω
c
)2 − κ0k2

[︃
κ−n

(︂
k +

2πn

P

)︂2
En + κn

(︂
k − 2πn

P

)︂2
E−n

]︃
(124)

Likewise, for l = −n:

κ−nk
2E0 + κn

(︂
k − 4πn

P

)︂2
E−2n =

[︃(︂ω
c

)︂2
− κ0

(︂
k − 2πn

P

)︂2]︃
E−n

⇒ E−n ≈ 1

(ω
c
)2 − κ0(k − 2πn

P
)2

[︃
κn

(︂
k − 4πn

P

)︁2
E−2n + κ−nk

2E0

]︃
(125)
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For a linear dispersion relation, the terms given by Equations 124 and 125 will dominate

the Fourier series of the electric field whenever k ≈ ±2πn
P
. Near these symmetry points

of the ring’s dispersion relation, Equations 124 and 125 are reduced to a coupled set of

linear equations: [︃(︂ω
c

)︂2
− κ0k

2

]︃
E0 − κn

(︂
k − 2πn

P

)︂2
E−n = 0

κ−nk
2E0 +

[︃(︂ω
c

)︂2
− κ0

(︂
k − 2πn

P

)︂2]︃
E−n = 0

(126)

The solutions to the coupled equations can be found by taking the determinant of the

resultant coefficient matrix:⃓⃓⃓⃓
⃓⃓⃓
(︂

ω
c

)︂2
− κ0k

2 −κn
(︂
k − 2πn

P

)︂2
κ−nk

2
(︂

ω
c

)︂2
− κ0

(︂
k − 2πn

P

)︂2
⃓⃓⃓⃓
⃓⃓⃓ = 0 (127)

Defining h = k − πn
P
, Equation 127 can be rewritten as:⃓⃓⃓⃓
⃓⃓⃓
(︂

ω
c

)︂2
− κ0

(︂
h+ πn

P

)︂2
−κn

(︂
h− πn

P

)︂2
−κ−n

(︂
h+ πn

P

)︂2 (︂
ω
c

)︂2
− κ0

(︂
h− πn

P

)︂2
⃓⃓⃓⃓
⃓⃓⃓ = 0 (128)

⇒
[︃(︂ω

c

)︂2
−κ0

(︂
h+

πn

P

)︂2]︃[︃(︂w
c

)︁2−κ0(︂h− πn

P

)︂2]︃
−κ2n

(︂
h+

πn

P

)︂2(︂
h− πn

P

)︂2
= 0 (129)

Because the dispersion relation for the ring is approximately linear, only the terms ∝ h0

and h4 are considered, yielding an approximate solution to Equation 129:(︂ω
c

)︂4
≃ h4

(︂
κ20 − κ2n

)︂
+
(︂πn
2P

)︂4(︂
κ20 − κ2n

)︂
(130)

Near the photonic band edge (i.e. the RR phase matching condition h = 0), the dispersion

relation is determined by the intercept of Equation 130:(︂ω
c

)︂4
≃
(︂πn
2P

)︂4
κ20

(︂
1− κn

κ20

)︂

⇒ ω2± ≃ ω2
n

4

√︄
1− κ2n

κ20
(131)

where ωn ≡ cn
√
κ0

2P
(s−1) =

n
√
κ0

2

(︂
c
P

)︂
. For a small perturbation to the ring (i.e. for

κn ≪ κ0), a Taylor expansion of Equation 131 yields:

ω2 =

⎧⎨⎩+ω2
n

4

(︂
1± κ2

n

2κ2
0

)︂
, positive roots

−ω2
n

4

(︂
1± κ2

n

2κ2
0

)︂
, negative roots

(132)
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Imposing realness on the frequency eigenvalues of the system, the negative eigenvalues of

Equation 132 are discarded, while the positive eigenvalues are used to solve for ∆ω:

∆ω2 =
ω2
n

4
+

1

2

(︂ωnκn
2κ0

)︂2
− ω2

n

4
− −1

2

(︂ωnκn
2κ0

)︂2
=
(︂ωnκn

2κ0

)︂2 (133)

Thus, a small perturbation to the ring of magnitude κn and spatial period T = 2πR
n

will

result in the formation of a photonic band gap of magnitude:

∆ω = ωn
κn
2κ0

(134)

As this photonic band gap corresponds to the phase matching conditions for the m = n
2

resonance of the ring, frequency splitting determined by Equation 134 will occur in the

ring’s optical spectrum (Figure 37).

6.2 Computational results

To verify the theoretical prediction of 6.1, simulations are performed on an example

device with the aim of designedly splitting the m = 48 resonance of a 5-µm-radius SOI

ring resonator [115]. Both a frequency-domain eigenmode solver (FDE) and a finite-

difference-time-domain approach are utilized and compared.

6.2.1 Frequency-domain eigenmode solver simulations

2D-FDE simulations [84] are used to compute the effect of a small dielectric perturbation

on the 1D dispersion relation of an infinitely-long, 2D SOI waveguide of width w = 0.45

µm. The effective index of the SOI waveguide is computed assuming an air cladding,

yielding a value of neff = 2.83. Only the fundamental, TE polarized mode of the waveguide

is considered.

To induce modal coupling of the m = 48 resonance, a perturbation whose periodicity

matches the modal order is turned on. The inverse dielectric function of the waveguide

in real space can be defined as:

ϵ−1(x) = κ0 +
∑︂

2m:m∈Z

κm cos
(︂2πmx

P

)︂
(135)

where κ0 = 1
n2
eff
. Thus, the effective index of the waveguide is varied with a modulation

of period T = 2π·5µm
96

, corresponding to a physical modulation of lattice constant a =
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Figure 38: The numerical prediction of Equation 134 as compared to FDE and FDTD

computational results for various values of κ48. The dimensionless frequency of the FDE

results has been scaled to the characteristic length unit for the system, the ring’s perimeter

P , while the FDTD results are given in THz.

0.33 µm. In this particular work, it is proposed that the refractive index of the ring

can be perturbed by varying the width of the ring’s waveguide, resulting in a slight

change in the effective index due to waveguide dispersion effects. Because the material

is assumed to be lossless, ϵ−1(x) is considered to be entirely real. Additionally, the

Fourier expansion of ϵ−1(x) is independent of frequency and therefore does not account

for material dispersion. To simplify the definition of the simulation’s geometry, a material

function is defined which periodically varies the strength of the dielectric function in a

one-dimensional waveguide with periodic boundary conditions. Simulations are run for

the parameters κ48 = 0, 0.00125, 0.0025, 0.00375, 0.005, 0.00625, and 0.0075. The results

are seen in Figure 38, showing good agreement with the prediction given by Equation

134.

6.2.2 Finite-difference time-domain simulations

2D-FDTD simulations [85] are used to probe the time evolution of the coupled modes

(Appendix B.2). A SOI ring resonator of radius 5.042 µm and a width modulation of

period T = 2πR
48

is simulated in two dimensions. A broadband Gaussian dipole source

centered at 1550 nm is used to excite the modes of the ring. The fields are measured in

time and a Fourier transform yields the optical spectrum of the ring. As the magnitude
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Δw = 25 nm Δw = 75 nm Δw = 125 nm

R

m = 48

Figure 39: The dielectric profile of three ring resonators of radius R = 5 µm with per-

turbations of magnitude κ48 = 0.015 (∆w = 25 nm), 0.003 (∆w = 75 nm), and 0.0045

(∆w = 125) nm.

of κ48 is increased (Figure 39), splitting of the 48th resonance is observed (Figure 40),

corresponding well with the linear prediction of Equation 134. No frequency splitting in

the m ̸= 48 resonances is observed, indicating that all l ̸= m-resonances are unaffected by

a mth-order perturbation. However, the computational results show a higher slope than

predicted (Figure 38). This could potentially be attributed to curvature effects which

were not considered in the theoretical model.

6.3 Experimental results

In the previous section, the computational analysis was restricted to SOI optical ring res-

onators. In practice, the waveguide width modulations required to split the resonances of

a 5-µm-radius SOI ring are on the order of 5-10 nm. Such a small modulation is outside of

the fabrication resolutions of either optical or electron-beam lithography. Alternatively,

the reduced refractive index contrast of the silicon nitride platform requires waveguide

width modulations on the order of 50-100 nm, which are easily fabricated using stan-

dard lithography techniques. As a result, the silicon nitride platform was chosen for the

experimental portion of this work.

Rings of radii ∼20 µm where fabricated on a silicon nitride chip via electron beam
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Figure 40: The computational spectra of 5 µm SOI rings with various magnitudes of κ48

obtained using 2D finite-difference time-domain simulations. A standard ring resonator

(lower spectrum, κ48 = 0) exhibits no splitting in the m = 48 resonance. As κ48 increases,

splitting of the 48th resonance is observed. If κ48 is large enough, the split modes will

begin to interact with the resonances found directly adjacent. (top spectrum)
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m = 48 m = 47, 48 m = 46, 47, 48

Figure 41: The dielectric profile of three ring resonators of radius R = 5 µm with per-

turbations of order m = 46, m = 46 and 47, and m = 46, 47, and 48.
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Figure 42: The computational spectra of 5-µm SOI ring with multiple perturbations

obtained using 2D finite-difference time-domain simulations. A standard ring resonator

(lower spectrum, κ48 = 0) exhibits no splitting in the m = 48 resonance. By adding four

modulations to the ring’s dielectric function (κ46 = κ47 = κ48 = κ49 = 0.0023), the free

spectral range of the device is halved.
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lithography (AEPONYX) and evanescently coupled to a waveguide and grating coupler

for characterization (Appendix F). The rings were characterized via a tunable-C-band

laser. Figure 43 shows a transmission spectrum of a 20.282-µm-radius-ring that has been

modulated with periodic perturbations of order m = 122, 123, and 124 and waveguide

width modulations of 100, 90, and 90 nm, respectively. The experimental normalized

transmission spectrum is seen in black, with the analytically-derived transmission spec-

trum of a standard 20-µm-radius ring resonator denoted as a dotted green line. The

resonances with λ < 1550 nm are unaffected by the waveguide width modulations and

correspond well with the theoretical prediction for a standard ring resonator. They are

equidistantly spaced, with an average free spectral range of 9 nm.

The four resonances found above 1550 nm demonstrate resonance splitting. The

waveguide width modulations were designed so as to split the m = 122, 123, and 124

resonances a value of ∆λ ∼ 4.5 nm. The resonances in question experimentally demon-

strated splittings of ∆λ122 = 8.0 nm, ∆λ123 = 6.0 nm, and ∆λ124 = 4.5 nm. Additionally,

the n = 125 resonance exhibits slight splitting. While the ring in question was not de-

signed to split the n = 125 resonance, it is possible that the waveguide width modulations

of the ring are large enough that they can no longer be considered as a small perturba-

tion to the ring’s dielectric profile. Reducing the amplitude of the modulations in future

fabrications may diminish this effect.

6.4 Conclusion

The above chapter proposes selective modal coupling of frequency-degenerate, counter-

propagating modes via periodic waveguide width modulations. The magnitude of split-

ting between the coupled modes has been theoretically shown to scale proportionally

with the mode’s corresponding coefficient in the Fourier expansion of the ring’s dielectric

function. Frequency-domain and finite-difference-time-domain computations both show

correspondence with the linear prediction of the theoretical model.

The proposed dispersion engineering method has been applied to rings fabricated on

the silicon nitride platform via electron-beam lithography. The transmission spectrum of a

20-µm-radius ring exhibits multiple modal splittings induced by waveguide modulations

that correspond well to the theoretical predictions. These modal splittings effectively

reduce the free spectral range of the ring in a targeted wavelength range.
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Figure 43: The transmission spectrum of a 20.282-µm-radius silicon-nitride ring resonator

modulated with periodic perturbations of order m = 122, 123, and 124 and waveguide

width modulations of 100, 90, and 90 nm, respectively.
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Figure 44: Scanning electron microscope image of a 20 µm-radius ring resonator with a

m = 123 modulation added.
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Chapter 7

Ring resonators as synthetic

dimension platforms

In Chapter 5, non-trivial geometric phases were engineered into photonic crystals via

dimerization of the PhC lattice. This method was introduced as an alternative to us-

ing photonic crystals with broken time reversal symmetry due to the lack of materials

possessing magneto-optic properties at optical frequencies. An additional technique to

overcome this roadblock involves engineering photonic gauge potentials that can generate

an effective magnetic field for photons [117].

A fine degree of control can be obtained over engineered gauge fields through use

of a synthetic dimension. Synthetic dimensions utilize internal degrees of freedom (e.g.

particle spin [118], orbital angular momentum [119], or frequency [120]) to simulate a

spatial dimension. This technique allows for exploration of high-dimensional physics and

facilitates generation of complex couplings that may be difficult to achieve in real-space

lattices. The following chapter will apply the concepts of synthetic dimensions to a single

ring resonator and demonstrate how the dimensionality of the system can be increased

by projecting a synthetic axis along the ring’s propagation axis.

7.1 Synthetic dimensions in photonics

Synthetic gauge fields were first introduced in cold-atom lattices [118, 121] and have

recently been extended to photonics systems [119, 120]. In particular, arrays of ring

resonators have proven interesting platforms for exploration of synthetic dimensions [122–

124]. A single ring resonator represents a 0D system, with light propagation confined to

the high refractive index of the core (Figure 45a). The dimensionality of the system is
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Figure 45: (a) A 0D optical array, consisting of a single ring resonator. (b) A 1D array

of ring resonators. The strength of the evanescent coupling between adjacent rings is

denoted by the hopping parameter α. (c) A 2D array of ring resonators. Evanescent

coupling occurs along both the x̂ and ŷ axes, denoted by the hopping parameters α and

β, respectively.

increased by creating a linear array of ring resonators evanescently coupled to each other

(Figure 45b). The tight-binding Hamiltonian for the system can be written as [120]:

H =
∑︂
l

ωma
†
lal + α(a†lal+1 + a†l+1al) (136)

where al (a
†
l ) is the annihilation (creation) operator for the mth resonance of the lth ring,

α is the hopping parameter between adjacent rings, and ωm is the frequency of the ring’s

mth-resonance. Similar Hamiltonians can be written in 2- or 3-dimensions (Figure 45c),

however the order of the array is ultimately restricted by the dimensions of physical space.

This limitation can be overcome by utilizing an alternative degree of freedom upon which

to project a synthetic axis. For instance, the frequency axis of a single ring resonator

can be used as a synthetic dimension by inducing coupling between adjacent resonances

of the ring [120]. The coupling enables a photon to ‘hop’ from one resonance to the next

along the frequency axis (Figure 46). The ring is assumed to have equidistantly spaced
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Figure 46: A 1D synthetic array consisting of a single ring resonator. Nearest-neighbor

hopping between adjacent resonances of the ring (ω → ω±Ω) is induced with a hopping

amplitude of κ. The resultant coupling along the frequency axis of the system increases

the dimensions of the 0D physical array to a 1D synthetic array.

resonances, such that the frequency of a given mode can be written as:

ωm = ω0 +mΩ (137)

where Ω is the free spectral range of the ring. When the ring is modulated at the

frequency Ω, coupling between adjacent resonances of the ring is induced. The resultant

Hamiltonian of the system is [120]:

H =
∑︂
m

ωma
†
mam + 2κ cos (Ωt+ ϕ)(a†m+1am + a†mam+1) (138)

where am (a†) is the annihilation (creation) operator for the mth-resonance of the ring,

κ is the hopping amplitude between adjacent resonances, and ϕ is the phase of the

modulation. Similar in form to Equation 136, the Hamiltonian demonstrates nearest

neighbor coupling along the synthetic frequency axis. The hopping parameters of the

system can be controlled through variation of the modulation’s amplitude. Additionally,

the phase factor of the modulation can be utilized to implement a photonic gauge in the

system [120]. Experimentally, 1- and 2-dimensional synthetic frequency spaces have been

engineered in 0D ring resonators [124,125].

Synthetic dimensions in photonics have similarly been achieved by utilizing a waveg-

uide’s modal degree of freedom. Arrays of waveguides possessing spatial modulations can

80



effectively couple light along a modal synthetic axis. This effect can be attributed to the

close correspondence between Schrödinger’s equation and Maxwell’s equations under the

paraxial waveguide approximation. Provided the refractive index contrast between the

waveguide’s core and cladding is low, Maxwell’s equations can be written as:

i∂xψ(x, y, z) = − 1

2k0
∇2ψ(x, y, z)− k0∆n(x, y, z)

n0

ψ(x, y, z) (139)

where ψ(x, y, z) is the envelope function of the electric field (E(x, y, z) = ψ(x, y, z)eik0x−iωtẑ)

and k0 is the wavenumber of the light in a material of refractive index n0. The x̂-axis is

defined as the direction of light propagation and the Laplacian operator ∇2 is restricted

to the transverse y − z plane. This equation is alike in form to the time-dependent

Schrödinger’s equation, where the propagation axis of the waveguide serves as the time

axis and the change in refractive index ∆n(x, y, z) acts as an effective potential for the

electromagnetic fields. Modal synthetic dimensions in waveguides have led to the experi-

mental realization of photonic Floquet topological insulators and topologically-protected

edge states in modal space [126,127].

7.2 Synthetic dimensions in spatially modulated ring

resonators

The optical Schrödinger’s equation can be applied to a weakly guiding optical ring res-

onator through application of the concepts described in Chapter 6. The ring’s geometry

allows the dielectric profile to be represented as an infinitely-long waveguide. Perturba-

tions to the ring’s dielectric material imposes a periodicity on the system, with a lattice

constant of l = P = 2πR. The ring can thus be considered as a synthetic, one-dimensional

chain of ring resonators. The optical Schrödinger’s equation implies that a photon with

propagation constant β can be coupled to its nearest neighbor, provided the ring is given

a spatial modulation whose period matches the periodicity of the ring (i.e. T = 2πR).

Figure 47 shows the dielectric profile of the proposed ring’s geometry. A single modula-

tion of the ring’s width creates a synthetic axis where a photon’s propagation constant

can be coupled to the propagation constant of its nearest neighbor.

Using a one-dimensional tight binding model, the Hamiltonian of the system can be

written as:

H =
∑︂
n

βma
†
nan − κ(a†n+1an + a†nan+1) (140)

where an (a†n)is the annihilation (creation) operator for the ring’s mth-mode with propa-

gation constant βm on the nth circuit of the ring’s perimeter, κ is the hopping amplitude
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Synthetic axis

Frequency space Modal space

Eigenvalue ω β

Modulation period T = Ω T = 2πR

Synthetic wavenumber kt (s) kθ (m−1)

First Brillouin zone kt ∈
[︁
− π

2Ω
,+ π

2Ω

]︁
kθ ∈

[︁
− π

2P
,+ π

2P

]︁
Table 6: Comparison of synthetic dimensions in frequency and modal space.

between adjacent rings along the synthetic axis, and the summation over n is dependent

on the losses of the optical ring resonator. To transform the Hamiltonian into momentum-

space, the summation is rewritten over nearest neighbors. Considering only the second

term, the Hamiltonian becomes:

Htb = −κ
∑︂
n

∑︂
q

(a†nan+q + a†n+qan) (141)

where q is summed over the nearest neighbor vectors of the system (i.e. q = ±P )
and an+q (a†n+q) is the annihilation (creation) operator for the ring’s mth-mode with

propagation constant βm and position xn + q. The creation and annihilation operators

are now rewritten in momentum space [128]:

a†n =
1√
N

∑︂
k

e−ikxna†k (142)

an =
1√
N

∑︂
k

e+ikxnak (143)

where k = kx. The momentum space operators transform the tight-binding Hamiltonian

to:

Htb = − κ

N

∑︂
n,q

∑︂
k,k′

e−ikxne+ik′(xn+q)a†kak′ + e−ik′(xn+q)e+ikxna†kak′ (144)

= −κ
∑︂
q,k

(︂
e+ikq + e−ikq

)︂
a†kak (145)

= −2κ
∑︂
q,k

cos (kq)a†kak (146)

which yields a synthetic space dispersion relation of:

β(k) = −2κ
∑︂
q

cos (kq) (147)

82



2πR 2πR 2πR
R

Figure 47: A ring resonator of radius R with a width modulation of spatial period 2πR.

Provided the ring’s dimensions satisfy R >> neffλ, the ring can be represented as a

periodic, infinitely-long dielectric waveguide.

The two reciprocal lattice vectors of the system are:

q1 = 2πR and q2 = −2πR (148)

Inserting Equation 148 into Equation 147 gives a final dispersion relation of:

β(k) = −4κ cos (kP ) (149)

This result implies that a 0D ring resonator can possess a 1D dispersion relation in

synthetic momentum space. The dispersion relation can be measured by probing the

propagation constant of the ring across the first Brillouin zone of the system.

7.3 Computational results

To confirm the theoretical prediction of Equation 149, 2D FDTD simulations [85] are

used to measure the time evolution of a spatially modulated ring (Appendix B.2). A

ring resonator of radius 50 µm is simulated in two dimensions. With consideration of

the weakly-guiding waveguide approximation used in the optical Schrödinger’s equation,

a silica waveguide of cross section of 1 µm x 1 µm and an air cladding is chosen, corre-

sponding to an effective index of neff = 1.208. The ring is given a width modulation with

period T = 2πR, corresponding to nearest neighbor coupling along the synthetic axis.

To probe the local propagation constant of the ring at a particular point, the ring is

placed next to a 1 µmwide silica waveguide of effective index neff = 1.208 in a point coupler

configuration (Figure 7). The evanescent coupling gap between the input waveguide and

the ring is set to g = 0 nm. A broadband Gaussian dipole source centered at 1550

nm of width δλ = 100 nm is placed at the input port of the coupling waveguide and the
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Figure 48: 2D finite-difference time-domain computational transmission spectra of a 50-

µm-radius, spatially-modulated silica ring rotated from θ = 0 to π w.r.t. the thinnest

portion of the ring. The ring’s modulation has an amplitude of 250 nm and a spatial

period of T = 2πR. As the ring is rotated, the effective index of the ring evanescently

coupled to the input waveguide increases. As a result, the resonance of the ring is

blueshifted.
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Figure 49: 2D finite-difference time-domain computational transmission spectra of a 50-

µm-radius, spatially-modulated silica ring rotated from θ = π to 2π radians with respect

to the thinnest portion of the ring. The ring’s modulation has an amplitude of 250 nm

and a spatial period of T = 2πR. The effective index of the ring evanescently coupled to

the input waveguide now decreases, resulting in a redshift of the ring’s resonance.
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transmission spectrum of the ring is monitored at the output port. A single, TE-polarized

mode of the ring is characterized.

Figure 48 shows the computational transmission spectrum of a silica ring with a width

modulation of 250 nm. The thinnest portion of the ring (w = 150 nm) is aligned next to

the coupling waveguide and the transmission spectrum of the ring is measured. The ring

is then rotated π radians by steps of θ = π
6
about its center axis and the simulation is

repeated. As the ring rotates, the local effective index of the ring at the point of coupling

increases. As a result, the resonant wavelength coupled into the ring is blueshifted. The

simulation is then repeated for the angles θ = π to 2π. The spatial modulation of the

ring is symmetric about its center axis, thus the local effective index of the ring now

decreases, resulting in a redshifted resonance (Figure 49).

The resonant wavelength computed in the FDTD simulations can be related to the

propagation constant of the mode using Equation 37:

β = neffk0 =
2πneff

λ
(150)

Applying Equation 150 to the simulated resonant wavelengths, the dispersion relation of

the one-dimensional synthetic space can be computed. Figure 50 shows the results of

simulations for three different width modulation amplitudes, ∆w = 0.25, 0.50, and 1.0

µm. The dispersion relation for the ring’s propagation constant corresponds well with

the prediction of Equation 149. The result also indicates that the strength of the hopping

parameter between nearest neighbors along the synthetic axis can be tuned by changing

the amplitude of the ring’s width modulation.

7.4 Proposed experimental method

To experimentally determine the synthetic dispersion relation, a spatially modulated

optical ring resonator can be fabricated on an undercut silica chip, resulting in a silica

ring with an air cladding. The proposed ring is supported by a silica pedestal and spokes

designed to minimize opto-mechanical effects within the ring. The ring is coupled to a

tapered optical fiber and characterized using a tunable laser. The tapered fiber can be

fabricated from a standard SMF-28 optical fiber which has been tapered using a flame-

brushing technique [129]. The pulled fiber possess a large evanescent field at its thinnest

portion and is thus highly suitable to coupling to an undercut silica ring [130]. Once a

transmission spectrum is obtained, the ring is rotated utilizing a high-precision rotational

stage, the tapered fiber is recoupled to the ring, and a new transmission spectrum is

obtained. GDS files for the proposed devices can be found in Appendix G.
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Figure 50: The dispersion relation of the 1D synthetic ring array. The propagation

constant β is calculated using the resonant wavelengths from the FDTD computational

spectra and the effective index of the ring at the coupling point. As the amplitude of the

waveguide width modulation increases, the strength of nearest neighbor hopping along

the synthetic axis increases.
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Figure 51: The proposed experimental setup for measurement of a 1D synthetic dimension

in a spatially modulated optical ring resonator. The ring is rotated in the θ direction

and the optical spectrum of the ring is characterized via evanescent coupling to a tapered

optical fiber.
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7.5 Conclusions

In summary, optical ring resonators can be engineered to possess a synthetic dimension

by utilizing the periodicity of the ring’s material. This allows the ring to be represented

as an infinitely long chain of coupled resonators separated by a lattice constant of l =

P = 2πR. The optical Schrödinger equation is applied to the ring’s waveguide and the

axis of propagation is cast as the ‘time’ axis of the system. A modulation of the refractive

index creates an effective potential for the electromagnetic fields. If the spatial period

of the ring’s modulation matches the perimeter of the ring, the 0D ring resonator can

be represented using the 1D tight binding model for a chain of coupled resonators in

synthetic space.

The theoretical prediction of the tight binding model is confirmed using FDTD simu-

lations. The transmission of a 50-µm-radius silica ring with a width modulation of period

T = 2πR in a point coupler configuration is simulated. As the ring is rotated about its

center axis, the resonant wavelength of a particular mode shifts as a function of the local

effective index of the ring. The dispersion relation of the propagation constant of the

ring is then plotted, showing good agreement with theory. Additionally, a proposal for

the experimental observation of synthetic modal dimensions in optical ring resonators is

given.
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Chapter 8

Conclusions and outlook

In summary, this work has utilized condensed matter theories to engineer the dispersion of

an optical ring resonator. The tight fabrication resolutions of CMOS-compatible lithog-

raphy techniques have been leveraged to modify the ring’s dispersion through precise

design of its geometry. The proposed devices have been fabricated on the silicon-on-

insulator and silicon nitride platforms, making them suitable for applications in optical

communications, biosensing, non-linear optics, and optical metrology.

Through application of Bloch’s theorem, it has been shown that a photonic crystal

ring resonator possesses a non-linear dispersion relation near its photonic band edge. This

effect can be used for the generation of slow-light resonances in rings. It has additionally

been demonstrated that the unique characteristics of a photonic crystal ring resonator

allow for direct experimental characterization of the device’s underlying dispersion rela-

tion.

Dimerization of the photonic crystal lattice provides an additional degree of freedom

for dispersion engineering. Tuning of the intra- and intercell spacing of the two PhC holes

in the dimer unit cell provides control over the size of the resultant photonic band gap.

This degree of freedom also enables the engineering of non-trivial topological geometric

phases in dimer PhC lattices. It has been demonstrated computationally that PhC cavi-

ties can be formed in an optical ring resonator by interfacing two bulk dimer PhC lattices

that possess different topological invariants. The resultant edge state is found precisely

mid-photonic gap and is localized on a single sublattice of the photonic crystal, consistent

with the predictions of the SSH model. Additionally, the degenerate edge states can be

coupled by tuning the distance between the PhC cavities in the ring.

The intrinsic periodicity of the ring imposes an additional geometric constraint on

the system which can be utilized for dispersion engineering. A theoretical model has
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been proposed which relates the magnitude of coupling between a frequency-degenerate

pair of resonances to the mode’s corresponding coefficient in the Fourier expansion of the

ring’s dielectric function. This model can be utilized to engineer disorder into the system

to selectively control modal coupling between an arbitrary pair of frequency-degenerate,

counterpropagating resonances. This effect has been demonstrated both computationally

and experimentally, opening the door for engineered ring resonances immune to disorder-

induced resonance splitting.

The periodicity of the ring can also be utilized to project a synthetic axis in modal

space. A weakly guiding optical ring resonator can be considered as a chain of coupled

ring resonators in synthetic space, where the number of resonators in the chain is limited

by the quality factor of the ring. The optical Schrödinger’s equation implies that nearest-

neighbor modal coupling of each ring’s propagation constant, β, can be induced provided

the ring is given a spatial modulation that matches the lattice constant of the system

(i.e. P = 2πR). The synthetic modal dispersion relation of a 1D tight-bonding model for

a chain of optical resonators has been demonstrated computationally and a proposal for

the on-chip characterization of the dispersion relation has been offered.

The outlook for future research can be decomposed into several different areas. The

concepts of Chapter 4 can easily be extended to design slow light ring resonators in

the mid-IR. In particular, silicon nitride photonic crystal ring resonators could prove

to be promising chemical or biosensors. Topologically-protected edge states in photonic

crystal ring resonators may prove interesting candidates for exploration of non-linear

optics or cavity quantum electrodynamics. The robustness of the cavity can be utilized

to overcome current challenges related to fabricating high-Q photonic crystal cavities.

The Hamiltonians of the trimer and tetramer lattices additionally possess unexplored

parameters spaces that may possess non-trivial topological features.

Spatially modulated optical ring resonators have been realized on the silicon nitride

platform due to its low refractive index contrast. To transfer this technology to the SOI

platform, subwavelength grating ring resonators may be utilized. The effective index

of the ring can be reduced using the SOI subwavelength gratings, which can poten-

tially enable modulation dimensions that fall within the fabrication resolutions of current

lithography techniques.

Finally, the concepts of synthetic dimensions in a spatially modulated optical ring

resonator can be confirmed utilizing the experimental proposal given in Chapter 7. The

dimensionality of the synthetic space can be increased by creating an array of evanescently

coupled, spatially modulated ring resonators. This system could potentially be used to
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engineer synthetic gauge fields by inducing a phase shift (i.e. relative rotation) between

adjacent rings. Higher order modulations (e.g. T = 2πR
2
) can also be implemented in an

optical ring resonator to consider more complex couplings in a 1D chain.
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Appendix A

Python scripts for frequency-domain

eigenmode simulations

The following file can be used to simulate either a standard waveguide (r = 0), a photonic

crystal waveguide (d = 0), or a dimerized photonic crystal ring resonator (d = 1).

Python files can be downloaded directly .

## Compute the band structure of a photonic crystal waveguide

## using the frequency-domain eigenmode solver MPB

## https://mpb.readthedocs.io/en/latest/ May 2020 KWM

import math

import meep as mp

from meep import mpb

import numpy as np

import matplotlib.pyplot as plt

def main(args, sim_dir):

# Simulation parameters

resolution = args.res # pixels/a

plotfields = args.p # Plot the fields (0 = off, 1 = on)

num_bands = args.n # Number of photonic bands to compute

nks = args.nks # Number of k-points to interpolate in the

FBZ↪→
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## Compute the band structure of a photonic crystal waveguide
## using the frequency-domain eigenmode solver MPB
##  https://mpb.readthedocs.io/en/latest/    May 2020 KWM


import math
import meep as mp
from meep import mpb
import numpy as np
import matplotlib.pyplot as plt

def main(args, sim_dir):

    # Simulation parameters
    resolution = args.res     # pixels/a
    plotfields = args.p       # Plot the fields (0 = off, 1 = on)
    num_bands = args.n        # Number of photonic bands to compute
    nks = args.nks            # Number of k-points to interpolate in the FBZ
    dimer = args.dimer        # Simulate a dimerized PhC unit cell (0 = off, 1 = on)
    pol = args.P              # excitation polarization (0 = TE (Hz), 1 = TM (Ez))

    
    # Waveguide parameters
    nwg = args.i     # Waveguide refractive index
    kwg = 0        # Waveguide extinction coefficient
    w = args.w       # Width of waveguide (in units of the lattice constant
    relem = args.r   # Radius of periodic elements (in units of the lattice constant
    h = args.d     # Hopping parameter (in units of the lattice constant)
    nelem = args.nelem        # Periodic element refractive index
    kelem = 0        # Periodic element extinction coefficient
  
    # Define the ring material
    re_eps_wg = (nwg ** 2) - (kwg ** 2)
    im_eps_wg = 2 * nwg * kwg
    mysigmad_wg = (2 * math.pi * fcen * im_eps_wg) / re_eps_wg
    wg_material = mp.Medium(epsilon = re_eps_wg, D_conductivity = mysigmad_wg)

    # Define the periodic element material
    re_eps_elem = (nelem ** 2) - (kelem ** 2)
    im_eps_elem = 2 * nelem * kelem
    mysigmad_elem = (2 * math.pi * fcen * im_eps_elem) / re_eps_elem
    elem_material = mp.Medium(epsilon = re_eps_elem, D_conductivity = mysigmad_elem)

    # Define the lattice cell
    if dimer == 0:
        sx = 1
    else: 
        sx = 2
        
    sy = 5
    sz = 0
    cell = mp.Vector3(sx, sy)
    geometry_lattice = mp.Lattice(size=cell)

    # Define the cell's geometry
    if dimer == 0:
        geometry = [mp.Block(center=mp.Vector3(), material=wg_material, size = mp.Vector3(1,w,0)),
            mp.Cylinder(center=mp.Vector3(), material=elem_material, radius=relem)]
    else:
        geometry = [mp.Block(center=mp.Vector3(), material=wg_material, size = mp.Vector3(2,w,0)),
            mp.Cylinder(center=mp.Vector3(-0.5 + h), material=elem_material, radius=relem),
            mp.Cylinder(center=mp.Vector3(0.5 - h), material=elem_material, radius = relem)]
    
    # Define the k-points in the FBZ
    k_points = [mp.Vector3(), mp.Vector3(0.5)]    # K-points of the first Brillouin zone
    k_points = mp.interpolate(nks, k_points)   # Number of k-points to interpolate in the first Brillouin zone

    # Define the mode solver
    ms = mpb.ModeSolver(num_bands=num_bands,
                  k_points=k_points,
                  geometry=geometry,
                  geometry_lattice=geometry_lattice,
                  resolution=resolution)

    if pol == 0:
        if plotfields == 0:
            ms.run_te()
        else:
            ms.run_te(mpb.output_at_kpoint(mp.Vector3(0.5), mpb.output_hfield_z, mpb.output_dpwr)
    else:
        if plotfields == 0:
            ms.run_tm()
        else:
            ms.run_tm(mpb.output_at_kpoint(mp.Vector3(0.5), mpb.output_efield_z, mpb.output_bpwr)
                      
    ms.output_epsilon()

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-res', type=int, default=20, help='Simulation resolution (pixels/lattice constant) (default: 20)')
    parser.add_argument('-p', type=int, default=0, help='Plot the fields (0 = off, 1 = on) (default: 0)')
    parser.add_argument('-n', type=int, default=1, help='Number of bands to compute (default: 1)')
    parser.add_argument('-nks', type=int, default=4, help='Number of k points to interpolate (default: 4)')
    parser.add_argument('-dimer', type=int, default=0, help='Simulate a dimerized PhC unit cell (0 = off, 1 = on)')
    parser.add_argument('-P', type=int, default=0, help='(0 = TE, 1 = TM) (default: 0)')                      
    parser.add_argument('-i', type=float, default=2.0, help='Effective refractive index of the waveguide (default: 2.00)')
    parser.add_argument('-w', type=float, default=1, help='Width of the ring (units of the lattice constant) (default: 1.0)')
    parser.add_argument('-r', type=float, default=0.3, help='Radius of periodic elements (units of the lattice constant) (default: 0.3)')
    parser.add_argument('-nelem', type=float, default=1.00, help='Effective refractive index of the periodic elements (default: 1.00)')
    parser.add_argument('-d', type=float, default=0.2, help='Hopping parameter (in units of the lattice constant) (default: 0.2)')
    args = parser.parse_args()


    # Create a directory name for the run
        sim_dir = 'phc-wg-res_' + str(args.res) + '-num-bands_' + str(args.n) +  '-nwg_' + str(args.i) +'-w_' + str(args.w) + '-relem_' + str(args.r) + '-hop_' + str(args.hop) 

    # Check to see if directory already exists
    if os.path.isdir(sim_dir + '.old') == True:
        shutil.rmtree(sim_dir + '.old')

    if os.path.isdir(sim_dir) == True:
        os.rename(sim_dir, sim_dir + '.old')
        
    main(args, sim_dir)

    # Print simulation parameters to a file
    
    with open(sim_dir + '/cmdline.txt', 'w') as f:
        f.write(' '.join(sys.argv[1:]))


    







dimer = args.dimer # Simulate a dimerized PhC unit cell (0 =

off, 1 = on)↪→

pol = args.P # excitation polarization (0 = TE (Hz), 1

= TM (Ez))↪→

# Waveguide parameters

nwg = args.i # Waveguide refractive index

kwg = 0 # Waveguide extinction coefficient

w = args.w # Width of waveguide (in units of the lattice

constant↪→

relem = args.r # Radius of periodic elements (in units of the

lattice constant↪→

h = args.d # Hopping parameter (in units of the lattice

constant)↪→

nelem = args.nelem # Periodic element refractive index

kelem = 0 # Periodic element extinction coefficient

# Define the ring material

re_eps_wg = (nwg ** 2) - (kwg ** 2)

im_eps_wg = 2 * nwg * kwg

mysigmad_wg = (2 * math.pi * fcen * im_eps_wg) / re_eps_wg

wg_material = mp.Medium(epsilon = re_eps_wg, D_conductivity =

mysigmad_wg)↪→

# Define the periodic element material

re_eps_elem = (nelem ** 2) - (kelem ** 2)

im_eps_elem = 2 * nelem * kelem

mysigmad_elem = (2 * math.pi * fcen * im_eps_elem) / re_eps_elem

elem_material = mp.Medium(epsilon = re_eps_elem, D_conductivity =

mysigmad_elem)↪→

# Define the lattice cell

if dimer == 0:

sx = 1
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else:

sx = 2

sy = 5

sz = 0

cell = mp.Vector3(sx, sy)

geometry_lattice = mp.Lattice(size=cell)

# Define the cell's geometry

if dimer == 0:

geometry = [mp.Block(center=mp.Vector3(), material=wg_material,

size = mp.Vector3(1,w,0)),↪→

mp.Cylinder(center=mp.Vector3(), material=elem_material,

radius=relem)]↪→

else:

geometry = [mp.Block(center=mp.Vector3(), material=wg_material,

size = mp.Vector3(2,w,0)),↪→

mp.Cylinder(center=mp.Vector3(-0.5 + h),

material=elem_material, radius=relem),↪→

mp.Cylinder(center=mp.Vector3(0.5 - h),

material=elem_material, radius = relem)]↪→

# Define the k-points in the FBZ

k_points = [mp.Vector3(), mp.Vector3(0.5)] # K-points of the

first Brillouin zone↪→

k_points = mp.interpolate(nks, k_points) # Number of k-points to

interpolate in the first Brillouin zone↪→

# Define the mode solver

ms = mpb.ModeSolver(num_bands=num_bands,

k_points=k_points,

geometry=geometry,

geometry_lattice=geometry_lattice,

resolution=resolution)
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if pol == 0:

if plotfields == 0:

ms.run_te()

else:

ms.run_te(mpb.output_at_kpoint(mp.Vector3(0.5),

mpb.output_hfield_z, mpb.output_dpwr)↪→

else:

if plotfields == 0:

ms.run_tm()

else:

ms.run_tm(mpb.output_at_kpoint(mp.Vector3(0.5),

mpb.output_efield_z, mpb.output_bpwr)↪→

ms.output_epsilon()

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('-res', type=int, default=20, help='Simulation

resolution (pixels/lattice constant) (default: 20)')↪→

parser.add_argument('-p', type=int, default=0, help='Plot the fields

(0 = off, 1 = on) (default: 0)')↪→

parser.add_argument('-n', type=int, default=1, help='Number of bands

to compute (default: 1)')↪→

parser.add_argument('-nks', type=int, default=4, help='Number of k

points to interpolate (default: 4)')↪→

parser.add_argument('-dimer', type=int, default=0, help='Simulate a

dimerized PhC unit cell (0 = off, 1 = on)')↪→

parser.add_argument('-P', type=int, default=0, help='(0 = TE, 1 = TM)

(default: 0)')↪→

parser.add_argument('-i', type=float, default=2.0, help='Effective

refractive index of the waveguide (default: 2.00)')↪→

parser.add_argument('-w', type=float, default=1, help='Width of the

ring (units of the lattice constant) (default: 1.0)')↪→
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parser.add_argument('-r', type=float, default=0.3, help='Radius of

periodic elements (units of the lattice constant) (default:

0.3)')

↪→

↪→

parser.add_argument('-nelem', type=float, default=1.00,

help='Effective refractive index of the periodic elements

(default: 1.00)')

↪→

↪→

parser.add_argument('-d', type=float, default=0.2, help='Hopping

parameter (in units of the lattice constant) (default: 0.2)')↪→

args = parser.parse_args()

# Create a directory name for the run

sim_dir = 'phc-wg-res_' + str(args.res) + '-num-bands_' +

str(args.n) + '-nwg_' + str(args.i) +'-w_' + str(args.w) +

'-relem_' + str(args.r) + '-hop_' + str(args.hop)

↪→

↪→

# Check to see if directory already exists

if os.path.isdir(sim_dir + '.old') == True:

shutil.rmtree(sim_dir + '.old')

if os.path.isdir(sim_dir) == True:

os.rename(sim_dir, sim_dir + '.old')

main(args, sim_dir)

# Print simulation parameters to a file

with open(sim_dir + '/cmdline.txt', 'w') as f:

f.write(' '.join(sys.argv[1:]))
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Appendix B

Python scripts for

finite-difference-time-domain

simulations

B.1 Photonic crystal ring resonator

The following file can be used to simulate either a standard ring resonator (r = 0), a

photonic crystal ring resonntor (r ̸= 0, hop = 0), a dimerized photonic crystal ring

resonator (hop ̸= 0, topo = 0), or a dimerized PhCRR with topological cavities (topo =

1) Python files for the photonic crystal ring resonator can be downloaded directly .

## Compute the time response of a photonic crystal ring resonator

## using the finite-difference-time-domain software MEEP

## https://meep.readthedocs.io/en/latest/ KM Oct 2020

import meep as mp

import sys, os, shutil

import argparse

import math

import numpy as np

import matplotlib.pyplot as plt

import sys

import subprocess

import random
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## Compute the time response of a photonic crystal ring resonator
## using the finite-difference-time-domain software MEEP
## https://meep.readthedocs.io/en/latest/              KM Oct 2020

import meep as mp
import sys, os, shutil
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import sys
import subprocess
import random

def main(args, sim_dir):
    
    # Simulation parameters
    resolution = args.res     # pixels/um
    fixt = args.t             # Run the simulation as a function of time or field decay (0 = time, 1 = decay)
    runtime = args.T          # MEEP time units
    decayfrac = args.D        # Run the simulation until the absolute value squared of the field decays by 'decayfrac'
    plotfields = args.p       # Plot the fields after simulation (0 = off, 1 = on)

    # Ring parameters
    nring = args.i   # Ring refractive index
    kring = 0        # Ring extinction coefficient
    r0 = args.R      # Center radius of ring (um)
    w = args.w       # Width of ring (um)
    topo = args.topo # Trivial (0) or topological (1) ring 

    # Periodic element parameters
    N = args.N     # Number of periodic elements
    nelem = 1      # Periodic element refractive index
    kelem = 0      # Periodic element extinction coefficient
    relem = args.r # Radius of periodic elements
    dr = args.dr   # Standard deviation on the radius (um)
    seed = 142857  # Random seed 
    h = args.hop   # Hopping parameter (in units of the lattice constant)
    reduc = args.u # Number of lattice constants by which to reduce the spacing between topo defects
 
    # Ring surface roughness parameters
    rough = 0   # Option for running simulation with surface roughness (0 = off, 1 = on)
    Ra = 0.003  # Average radius of surface scatterer (um)
    Rd = 100    # Linear surface scatterer density (um^-1)

    # Coupling waveguide parameters
    coup = args.c    # Add a coupling waveguide for flux simulations (0 = off, 1 = on)
    g = args.g       # Evanescent coupling gap width (um)
    wgw = args.wgw   # Coupling waveguide width (um)
    nwg = args.i     # Coupling waveguide refractive index
    kwg = 0          # Coupling waveguide extinction coefficient

    # Background material parameters
    nback = 1   # Background material refractive index
    kback = 0   # Background material extinction coefficient
    
    # Excitation parameters
    lcen = args.l                       # pulse center wavelength (um)
    dl = args.dl                        # pulse width (um)
    pol = args.P                        # excitation polarization (0 = TE (Hz), 1 = TM (Ez))
    fcen = 1/lcen                       # pulse center in frequency (dimensionless)
    df = ((1/lcen) - (1/(lcen + dl)))   # pulse width in frequncy (dimensionless)
    print("fcen: " + str(fcen) + ", df = " + str(df))

    # Define the PMLs and padding
    pad = 2 * lcen  # Padding before PML (wavelengths in vacuum)
    dpml = 3 * lcen # Thickness of PML (wavelengths in vacuum)
    pml_layers = [mp.PML(dpml)]

    # Define the cell geometry
    sx = dpml + pad + wgw + g + (2 * r0) + pad + dpml
    sy = dpml + pad + wgw + g + (2 * r0) + pad + dpml
    sz = 0
    cell = mp.Vector3(sx, sy)

    # Define the ring material
    re_eps_ring = (nring ** 2) - (kring ** 2)
    im_eps_ring = 2 * nring * kring
    mysigmad_ring = (2 * math.pi * fcen * im_eps_ring) / re_eps_ring
    ring_material = mp.Medium(epsilon = re_eps_ring, D_conductivity = mysigmad_ring)
 
    # Define the periodic element material
    re_eps_elem = (nelem ** 2) - (kelem ** 2)
    im_eps_elem = 2 * nelem * kelem
    mysigmad_elem = (2 * math.pi * fcen * im_eps_elem) / re_eps_elem
    elem_material = mp.Medium(epsilon = re_eps_elem, D_conductivity = mysigmad_elem)

    # Define the background material
    re_eps_back = (nback ** 2) - (kback ** 2)
    im_eps_back = 2 * nback * kback
    mysigmad_back = (2 * math.pi * fcen * im_eps_back) / re_eps_back
    back_material = mp.Medium(epsilon = re_eps_back, D_conductivity = mysigmad_back)

    # Geometry definitions
    delta = 2 * math.pi / N     # angle of the period
    hop = (h * delta) / 2       # angle of the hopping parameter
    print("Length period: " + str(delta * r0) + " um")
    random.seed(seed) # Random seed generator for radius variation

    geometry_back = [mp.Block(size = mp.Vector3(mp.inf, mp.inf, mp.inf), material = back_material)]

    geometry_ring = [mp.Cylinder(radius = r0 + (w/2), center = mp.Vector3(0, 0, 0), material = ring_material, height=mp.inf),
                     mp.Cylinder(radius = r0 - (w/2), center =mp.Vector3(0, 0, 0), material = back_material, height=mp.inf)]

    geometry_elem = []

    if topo == 0:
        for i in range(0, N, 2):
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) - hop), r0*math.sin((i*delta) - hop), 0)))
        for i in range(1, N, 2):
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) + hop), r0*math.sin((i*delta) + hop), 0)))
    else:
        for i in range(0, math.ceil(N/2) - reduc, 2):
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) + hop + np.pi/2), r0*math.sin((i*delta) + hop + np.pi/2), 0)))
        for i in range(1, math.ceil(N/2) - reduc, 2):
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) - hop + np.pi/2), r0*math.sin((i*delta) - hop + np.pi/2), 0)))
        for i in range((math.ceil(N/2) - (2 * reduc)), N, 2):    
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) - hop + np.pi/2), r0*math.sin((i*delta) - hop + np.pi/2), 0)))
        for i in range(((math.ceil(N/2) - (2*reduc)) + 1), N, 2):
            geometry_elem.append(mp.Cylinder(radius = random.normalvariate(relem, dr), height = mp.inf, material = elem_material, center = mp.Vector3(r0*math.cos((i*delta) + hop + np.pi/2), r0*math.sin((i*delta) + hop + np.pi/2), 0)))
            
        
    geometry_wg = [mp.Block(center = mp.Vector3(0, r0 + g + wgw/2 + w/2, 0), size = mp.Vector3(mp.inf, wgw, 0), material = ring_material)]

    if coup == 0:     # Use this option to find the resonances of the ring
        geometry = geometry_back + geometry_ring + geometry_elem

    if coup == 1:     # Use this option to calculate transmission spectrum of the ring
        geometry = geometry_back + geometry_ring + geometry_elem + geometry_wg


    # Source definitions
    disp = w / 20   # Small displacement from original coordinate to avoid field nodes
    if pol == 0:
        my_component = mp.Hz
    else:
        my_component = mp.Ez
    
    if coup == 0:
        sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3(r0*math.cos(delta + disp), r0*math.sin(delta+disp), 0)),
                   mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3(r0*math.cos((delta*2) + disp), r0*math.sin((delta*2) + disp), 0))]
    else:
        sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3((-sx/2) + dpml, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, wgw, 0))]

    
    # Simulation definition
    sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
    
    sim.use_output_directory(sim_dir)

    # Define a function to plot the dielectric function of the structure
    def plot_epsilon():
        # Plot the dielectric function
        eps_data = sim.get_array(center=mp.Vector3(), size=cell, component=mp.Dielectric)
        plt.figure(dpi=1000)
        plt.imshow(eps_data, interpolation='spline36', cmap='binary')
        plt.axis('off')
        plt.savefig(sim_dir + '/epsilon_profile.png')
     
    # Field measurement definitions

    # Define the positions where the fields should be measured ! Must be placed far from the source position
    meas1 = mp.Vector3(r0*math.cos(((N/2) * delta) + disp + np.pi/2), r0*math.sin(((N/2) * delta) + disp + np.pi/2), 0)
    meas2 = mp.Vector3(r0*math.cos(((N/2) * delta) - (delta / 2) + disp + 2*np.pi/3), r0*math.sin(((N/2) * delta) - (delta / 2) + disp + 3*np.pi/2), 0)

    # Define a function which measures the fields
    def get_fields(sim):
        f = open(sim_dir + '/meas1.dat', "a+")
        f.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas1))) + '\n')
        f.close()
        g = open(sim_dir + '/meas2.dat', "a+")
        g.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas2))) + '\n')
        g.close()

   

    # Define flux regions for transmission spectum run
    nfreq = 2000

    # Incident flux
    inc_flux = mp.FluxRegion(center = mp.Vector3((-sx/2) + dpml + 1, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))
    inc = sim.add_flux(fcen, df, nfreq, inc_flux)

    # Transmitted flux
    trans_flux = mp.FluxRegion(center = mp.Vector3((sx/2) - dpml - 1, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))
    trans = sim.add_flux(fcen, df, nfreq, trans_flux)

    # Run the simulation
    if coup == 0 and fixt == 0:   # Run simulation with no coupling waveguide for 'runtime' MEEP time units
        sim.run(mp.at_beginning(mp.output_epsilon),
                mp.after_sources(get_fields, 
                                 mp.Harminv(my_component, meas1, fcen, df),
                                 mp.Harminv(my_component, meas2, fcen, df)),
                                 until_after_sources=runtime)
        # Plot the fields
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)

    if coup == 0 and fixt == 1:  # Run simulation with no coupling waveguide until absolute value squared of fields have decayed to 'decayfrac' of original value
        sim.run(mp.at_beginning(mp.output_epsilon),
                mp.after_sources(get_fields,
                                 mp.Harminv(my_component, meas1, fcen, df),
                                 mp.Harminv(my_component, meas2, fcen, df)),
                                 until_after_sources=mp.stop_when_fields_decayed(25, my_component, meas1, decayfrac))

        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)


    # Perform the Fourier transform of the fields
    if coup == 0:
        # Load and sort data into structured arrays
        d1 = np.loadtxt(sim_dir + '/meas1.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=", ")
        d2 = np.loadtxt(sim_dir + '/meas2.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=", ")
        data1 = np.sort(np.unique(d1), order='time')
        data2 = np.sort(np.unique(d2), order='time')

        # Resave the sorted data to a compressed file
        np.savetxt(sim_dir + '/meas1.dat.gz', data1, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        np.savetxt(sim_dir + '/meas2.dat.gz', data2, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        os.remove(sim_dir + '/meas1.dat')
        os.remove(sim_dir + '/meas2.dat')

        # Compute the Fourier transform
        time = data1['time']
        field1 = data1['fields']
        field2 = data2['fields']

        fft1 = np.abs(np.fft.rfft(field1))
        fft2 = np.abs(np.fft.rfft(field2))
        n = fft1.size
        timestep = time[1] - time[0]
        freqs = np.fft.rfftfreq(n, timestep*2)


        # Plot the result

        plt.clf()
        plt.plot(freqs, fft1[0:math.ceil(n/2)]/n, 'k-', freqs, fft2[0:math.ceil(n/2)]/n, 'r-')
        plt.xlabel("Dimensionless frequency (c/a)")
        plt.ylabel("Arbitrary amplitude")
        plt.axis('on')
        plt.axis('tight')
        plt.autoscale(axis='y')
        plt.xlim(0.4, 0.8)
        plt.savefig(sim_dir + '/fft.png')


    if coup == 1 and fixt == 0:  # Run simulation with coupling waveguide for 'runtime' MEEP time units
        sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources = runtime)
        incident = mp.get_fluxes(inc)
        transmission = mp.get_fluxes(trans)

        
        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)
        
        # Reinitialize the simulation region for normalization run
        sim.reset_meep()
        geometry = geometry_back + geometry_wg
        sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
        trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)
        sim.run(until_after_sources = runtime)
        trans_norm = mp.get_fluxes(trans_norm_flux)
        

    if coup == 1 and fixt == 1:  # Run simulation with coupling waveguide until absolute value squared of fields have decayed to 'decayfrac'
        sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources = mp.stop_when_fields_decayed(25, my_component, meas1, decayfrac))
        incident = mp.get_fluxes(inc)
        transmission = mp.get_fluxes(trans)

        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)
        
        # Reinitialize the simulation region for normalization run
        sim.reset_meep()
        geometry = geometry_back + geometry_wg
        sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
        trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)
        sim.run(until_after_sources = runtime)
        trans_norm = mp.get_fluxes(trans_norm_flux)


    # Plot the transmission spectrum
    if coup == 1:
        T1 = []
        T2 = []
        T_norm = []
        lmbda = []
        flux_freqs = mp.get_flux_freqs(trans)

        for i in range(nfreq):
            lmbda = np.append(lmbda, 1/flux_freqs[i])
            T1 = np.append(T1, transmission[i])
            T2 = np.append(T2, trans_norm[i])
            T_norm = np.append(T_norm, transmission[i]/trans_norm[i])

        plt.clf()
        plt.plot(lmbda, T_norm, 'k-', label='Transmitted flux')
        plt.legend(loc="upper right")
        plt.xlabel("Wavelength (microns)")
        plt.axis('on')
        plt.axis('tight')
        plt.savefig(sim_dir + '/transmission.png')
        T1_zip = list(zip(lmbda, T1))
        T2_zip = list(zip(lmbda, T2))
        T_norm_zip = list(zip(lmbda, T_norm))
        np.savetxt(sim_dir + '/flux.dat.gz', T1_zip, fmt='%5e, %5e') 
        np.savetxt(sim_dir + '/flux_wg.dat.gz', T2_zip, fmt='%5e, %5e')
        np.savetxt(sim_dir + '/flux_norm.dat.gz', T_norm_zip, fmt='%5e, %5e')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-res', type=int, default=20, help='Simulation resolution (pixels/um) (default: 20)')
    parser.add_argument('-t', type=int, default=0, help='Run a fixed time simulation (0 = on, 1 = off) (default: 0)') 
    parser.add_argument('-T', type=int, default=100, help='Run the simulation for <<t>> MEEP time units (default: 100)')
    parser.add_argument('-D', type=float, default=1e-5, help='Run the simulation until the fields have decayed to <<D>> of max value (default: 1e-5)')
    parser.add_argument('-p', type=int, default=0, help='Plot the fields (0 = off, 1 = on) (default: 0)')
    parser.add_argument('-i', type=float, default=2.0, help='Effective refractive index of the ring (default: 2.00)')
    parser.add_argument('-R', type=float, default=2.5, help='Radius of the ring (um) (default: 2.5)')
    parser.add_argument('-w', type=float, default=0.45, help='Width of the ring (um) (default: 0.45)')
    parser.add_argument('-N', type=int, default=60, help='Number of periodic elements (default: 60)')
    parser.add_argument('-r', type=float, default=0.075, help='Radius of periodic elements (um) (default: 0.075)')
    parser.add_argument('-dr', type=float, default=0, help='Standard deviation variation on radius of periodic elements (default: 0)')
    parser.add_argument('-hop', type=float, default=0.2, help='Hopping parameter (in units of the lattice constant) (default: 0.2)')
    parser.add_argument('-c', type=int, default=0, help='Add coupling waveguide and calculate transmission spectrum of ring (0 = off, 1 = on) (default: 0)')
    parser.add_argument('-g', type=float, default=0.15, help='Evanescent coupling gap width (um) (default: 0.15)')
    parser.add_argument('-wgw', type=float, default=0.45, help='Coupling waveguide width (um) (default: 0.45)')
    parser.add_argument('-l', type=float, default=1.55, help='Center wavelength (um) (default: 1.55 um)')
    parser.add_argument('-dl', type=float, default=1, help='Excitation linewidth (um) (default: 1.00 um)')
    parser.add_argument('-P', type=int, default=0, help='Polarization (0 = TE, 1 = TM) (default: 0)')
    parser.add_argument('-topo', type=int, default=0, help='Trivial (0) or topological (1) ring (default: 0)')
    parser.add_argument('-u', type=int, default=0, help='Number of lattice constants by which to reduce the spacing between topo defects (default: 0)')
    args = parser.parse_args()


    # Create a directory name for the run
    if args.topo == 0:
        ring = 'triv'
    else:
        ring = 'topo'


    if args.c == 0:
        sim_dir = ring + '-dimer_ring-res_' + str(args.res) + '-r0_' + str(args.R) + '-lcen_' + str(args.l) + '-dl_' + str(args.dl) + '-nring_' + str(args.i) +'-w_' + str(args.w) + '-N_' + str(args.N) + '-rad_' + str(args.r) + '-dr_' + str(args.dr) + '-hop_' + str(args.hop) 

    else:
        sim_dir = ring + '-dimer_ring-res_' + str(args.res) + '-r0_' + str(args.R) + '-lcen_' + str(args.l) + '-dl_' + str(args.dl) + '-nring_' + str(args.i) + '-w_' + str(args.w) + '-N_' + str(args.N) + '-rad_' + str(args.r) +'-dr_' + str(args.dr) + '-hop_' + str(args.hop) + '-g_' + str(args.g) + '-wg_' + str(args.wgw)


    # Check to see if directory already exists
    if os.path.isdir(sim_dir + '.old') == True:
        shutil.rmtree(sim_dir + '.old')

    if os.path.isdir(sim_dir) == True:
        os.rename(sim_dir, sim_dir + '.old')
        
    main(args, sim_dir)

    # Print simulation parameters to a file
    
    with open(sim_dir + '/cmdline.txt', 'w') as f:
        f.write(' '.join(sys.argv[1:]))




def main(args, sim_dir):

# Simulation parameters

resolution = args.res # pixels/um

fixt = args.t # Run the simulation as a function of time

or field decay (0 = time, 1 = decay)↪→

runtime = args.T # MEEP time units

decayfrac = args.D # Run the simulation until the absolute

value squared of the field decays by 'decayfrac'↪→

plotfields = args.p # Plot the fields after simulation (0 =

off, 1 = on)↪→

# Ring parameters

nring = args.i # Ring refractive index

kring = 0 # Ring extinction coefficient

r0 = args.R # Center radius of ring (um)

w = args.w # Width of ring (um)

topo = args.topo # Trivial (0) or topological (1) ring

# Periodic element parameters

N = args.N # Number of periodic elements

nelem = 1 # Periodic element refractive index

kelem = 0 # Periodic element extinction coefficient

relem = args.r # Radius of periodic elements

dr = args.dr # Standard deviation on the radius (um)

seed = 142857 # Random seed

h = args.hop # Hopping parameter (in units of the lattice

constant)↪→

reduc = args.u # Number of lattice constants by which to reduce the

spacing between topo defects↪→

# Ring surface roughness parameters

rough = 0 # Option for running simulation with surface roughness

(0 = off, 1 = on)↪→

Ra = 0.003 # Average radius of surface scatterer (um)
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Rd = 100 # Linear surface scatterer density (um^-1)

# Coupling waveguide parameters

coup = args.c # Add a coupling waveguide for flux simulations (0

= off, 1 = on)↪→

g = args.g # Evanescent coupling gap width (um)

wgw = args.wgw # Coupling waveguide width (um)

nwg = args.i # Coupling waveguide refractive index

kwg = 0 # Coupling waveguide extinction coefficient

# Background material parameters

nback = 1 # Background material refractive index

kback = 0 # Background material extinction coefficient

# Excitation parameters

lcen = args.l # pulse center wavelength (um)

dl = args.dl # pulse width (um)

pol = args.P # excitation polarization (0 =

TE (Hz), 1 = TM (Ez))↪→

fcen = 1/lcen # pulse center in frequency

(dimensionless)↪→

df = ((1/lcen) - (1/(lcen + dl))) # pulse width in frequncy

(dimensionless)↪→

print("fcen: " + str(fcen) + ", df = " + str(df))

# Define the PMLs and padding

pad = 2 * lcen # Padding before PML (wavelengths in vacuum)

dpml = 3 * lcen # Thickness of PML (wavelengths in vacuum)

pml_layers = [mp.PML(dpml)]

# Define the cell geometry

sx = dpml + pad + wgw + g + (2 * r0) + pad + dpml

sy = dpml + pad + wgw + g + (2 * r0) + pad + dpml

sz = 0

cell = mp.Vector3(sx, sy)
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# Define the ring material

re_eps_ring = (nring ** 2) - (kring ** 2)

im_eps_ring = 2 * nring * kring

mysigmad_ring = (2 * math.pi * fcen * im_eps_ring) / re_eps_ring

ring_material = mp.Medium(epsilon = re_eps_ring, D_conductivity =

mysigmad_ring)↪→

# Define the periodic element material

re_eps_elem = (nelem ** 2) - (kelem ** 2)

im_eps_elem = 2 * nelem * kelem

mysigmad_elem = (2 * math.pi * fcen * im_eps_elem) / re_eps_elem

elem_material = mp.Medium(epsilon = re_eps_elem, D_conductivity =

mysigmad_elem)↪→

# Define the background material

re_eps_back = (nback ** 2) - (kback ** 2)

im_eps_back = 2 * nback * kback

mysigmad_back = (2 * math.pi * fcen * im_eps_back) / re_eps_back

back_material = mp.Medium(epsilon = re_eps_back, D_conductivity =

mysigmad_back)↪→

# Geometry definitions

delta = 2 * math.pi / N # angle of the period

hop = (h * delta) / 2 # angle of the hopping parameter

print("Length period: " + str(delta * r0) + " um")

random.seed(seed) # Random seed generator for radius variation

geometry_back = [mp.Block(size = mp.Vector3(mp.inf, mp.inf, mp.inf),

material = back_material)]↪→

geometry_ring = [mp.Cylinder(radius = r0 + (w/2), center =

mp.Vector3(0, 0, 0), material = ring_material, height=mp.inf),↪→
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mp.Cylinder(radius = r0 - (w/2), center

=mp.Vector3(0, 0, 0), material = back_material,

height=mp.inf)]

↪→

↪→

geometry_elem = []

if topo == 0:

for i in range(0, N, 2):

geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) - hop),

r0*math.sin((i*delta) - hop), 0)))

↪→

↪→

↪→

↪→

for i in range(1, N, 2):

geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) + hop),

r0*math.sin((i*delta) + hop), 0)))

↪→

↪→

↪→

↪→

else:

for i in range(0, math.ceil(N/2) - reduc, 2):

geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) + hop + np.pi/2),

r0*math.sin((i*delta) + hop + np.pi/2), 0)))

↪→

↪→

↪→

↪→

for i in range(1, math.ceil(N/2) - reduc, 2):

geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) - hop + np.pi/2),

r0*math.sin((i*delta) - hop + np.pi/2), 0)))

↪→

↪→

↪→

↪→

for i in range((math.ceil(N/2) - (2 * reduc)), N, 2):
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geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) - hop + np.pi/2),

r0*math.sin((i*delta) - hop + np.pi/2), 0)))

↪→

↪→

↪→

↪→

for i in range(((math.ceil(N/2) - (2*reduc)) + 1), N, 2):

geometry_elem.append(mp.Cylinder(radius =

random.normalvariate(relem, dr), height = mp.inf,

material = elem_material, center =

mp.Vector3(r0*math.cos((i*delta) + hop + np.pi/2),

r0*math.sin((i*delta) + hop + np.pi/2), 0)))

↪→

↪→

↪→

↪→

geometry_wg = [mp.Block(center = mp.Vector3(0, r0 + g + wgw/2 + w/2,

0), size = mp.Vector3(mp.inf, wgw, 0), material = ring_material)]↪→

if coup == 0: # Use this option to find the resonances of the

ring↪→

geometry = geometry_back + geometry_ring + geometry_elem

if coup == 1: # Use this option to calculate transmission

spectrum of the ring↪→

geometry = geometry_back + geometry_ring + geometry_elem +

geometry_wg↪→

# Source definitions

disp = w / 20 # Small displacement from original coordinate to

avoid field nodes↪→

if pol == 0:

my_component = mp.Hz

else:

my_component = mp.Ez

if coup == 0:
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sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center =

mp.Vector3(r0*math.cos(delta + disp),

r0*math.sin(delta+disp), 0)),

↪→

↪→

↪→

mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center =

mp.Vector3(r0*math.cos((delta*2) + disp),

r0*math.sin((delta*2) + disp), 0))]

↪→

↪→

↪→

else:

sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center = mp.Vector3((-sx/2) + dpml,

r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, wgw, 0))]

↪→

↪→

# Simulation definition

sim = mp.Simulation(cell_size=cell,

boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)

sim.use_output_directory(sim_dir)

# Define a function to plot the dielectric function of the

structure↪→

def plot_epsilon():

# Plot the dielectric function

eps_data = sim.get_array(center=mp.Vector3(), size=cell,

component=mp.Dielectric)↪→

plt.figure(dpi=1000)

plt.imshow(eps_data, interpolation='spline36', cmap='binary')

plt.axis('off')

plt.savefig(sim_dir + '/epsilon_profile.png')

# Field measurement definitions
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# Define the positions where the fields should be measured ! Must

be placed far from the source position↪→

meas1 = mp.Vector3(r0*math.cos(((N/2) * delta) + disp + np.pi/2),

r0*math.sin(((N/2) * delta) + disp + np.pi/2), 0)↪→

meas2 = mp.Vector3(r0*math.cos(((N/2) * delta) - (delta / 2) + disp +

2*np.pi/3), r0*math.sin(((N/2) * delta) - (delta / 2) + disp +

3*np.pi/2), 0)

↪→

↪→

# Define a function which measures the fields

def get_fields(sim):

f = open(sim_dir + '/meas1.dat', "a+")

f.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas1))) +

'\n')

↪→

↪→

f.close()

g = open(sim_dir + '/meas2.dat', "a+")

g.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas2))) +

'\n')

↪→

↪→

g.close()

# Define flux regions for transmission spectum run

nfreq = 2000

# Incident flux

inc_flux = mp.FluxRegion(center = mp.Vector3((-sx/2) + dpml + 1, r0 +

g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))↪→

inc = sim.add_flux(fcen, df, nfreq, inc_flux)

# Transmitted flux

trans_flux = mp.FluxRegion(center = mp.Vector3((sx/2) - dpml - 1, r0

+ g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))↪→
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trans = sim.add_flux(fcen, df, nfreq, trans_flux)

# Run the simulation

if coup == 0 and fixt == 0: # Run simulation with no coupling

waveguide for 'runtime' MEEP time units↪→

sim.run(mp.at_beginning(mp.output_epsilon),

mp.after_sources(get_fields,

mp.Harminv(my_component, meas1, fcen,

df),↪→

mp.Harminv(my_component, meas2, fcen,

df)),↪→

until_after_sources=runtime)

# Plot the fields

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

if coup == 0 and fixt == 1: # Run simulation with no coupling

waveguide until absolute value squared of fields have decayed to

'decayfrac' of original value

↪→

↪→

sim.run(mp.at_beginning(mp.output_epsilon),

mp.after_sources(get_fields,

mp.Harminv(my_component, meas1, fcen,

df),↪→

mp.Harminv(my_component, meas2, fcen,

df)),↪→

until_after_sources=mp.stop_when_fields_decayed(25,

my_component, meas1, decayfrac))

↪→

↪→

# Plot the fields

plot_epsilon()

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→
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# Perform the Fourier transform of the fields

if coup == 0:

# Load and sort data into structured arrays

d1 = np.loadtxt(sim_dir + '/meas1.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=", ")↪→

d2 = np.loadtxt(sim_dir + '/meas2.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=", ")↪→

data1 = np.sort(np.unique(d1), order='time')

data2 = np.sort(np.unique(d2), order='time')

# Resave the sorted data to a compressed file

np.savetxt(sim_dir + '/meas1.dat.gz', data1, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

np.savetxt(sim_dir + '/meas2.dat.gz', data2, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

os.remove(sim_dir + '/meas1.dat')

os.remove(sim_dir + '/meas2.dat')

# Compute the Fourier transform

time = data1['time']

field1 = data1['fields']

field2 = data2['fields']

fft1 = np.abs(np.fft.rfft(field1))

fft2 = np.abs(np.fft.rfft(field2))

n = fft1.size

timestep = time[1] - time[0]

freqs = np.fft.rfftfreq(n, timestep*2)

# Plot the result

plt.clf()
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plt.plot(freqs, fft1[0:math.ceil(n/2)]/n, 'k-', freqs,

fft2[0:math.ceil(n/2)]/n, 'r-')↪→

plt.xlabel("Dimensionless frequency (c/a)")

plt.ylabel("Arbitrary amplitude")

plt.axis('on')

plt.axis('tight')

plt.autoscale(axis='y')

plt.xlim(0.4, 0.8)

plt.savefig(sim_dir + '/fft.png')

if coup == 1 and fixt == 0: # Run simulation with coupling

waveguide for 'runtime' MEEP time units↪→

sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources =

runtime)↪→

incident = mp.get_fluxes(inc)

transmission = mp.get_fluxes(trans)

# Plot the fields

plot_epsilon()

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

# Reinitialize the simulation region for normalization run

sim.reset_meep()

geometry = geometry_back + geometry_wg

sim = mp.Simulation(cell_size=cell,

boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)

trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)

sim.run(until_after_sources = runtime)
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trans_norm = mp.get_fluxes(trans_norm_flux)

if coup == 1 and fixt == 1: # Run simulation with coupling

waveguide until absolute value squared of fields have decayed to

'decayfrac'

↪→

↪→

sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources =

mp.stop_when_fields_decayed(25, my_component, meas1,

decayfrac))

↪→

↪→

incident = mp.get_fluxes(inc)

transmission = mp.get_fluxes(trans)

# Plot the fields

plot_epsilon()

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

# Reinitialize the simulation region for normalization run

sim.reset_meep()

geometry = geometry_back + geometry_wg

sim = mp.Simulation(cell_size=cell,

boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)

trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)

sim.run(until_after_sources = runtime)

trans_norm = mp.get_fluxes(trans_norm_flux)

# Plot the transmission spectrum

if coup == 1:

T1 = []

T2 = []
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T_norm = []

lmbda = []

flux_freqs = mp.get_flux_freqs(trans)

for i in range(nfreq):

lmbda = np.append(lmbda, 1/flux_freqs[i])

T1 = np.append(T1, transmission[i])

T2 = np.append(T2, trans_norm[i])

T_norm = np.append(T_norm, transmission[i]/trans_norm[i])

plt.clf()

plt.plot(lmbda, T_norm, 'k-', label='Transmitted flux')

plt.legend(loc="upper right")

plt.xlabel("Wavelength (microns)")

plt.axis('on')

plt.axis('tight')

plt.savefig(sim_dir + '/transmission.png')

T1_zip = list(zip(lmbda, T1))

T2_zip = list(zip(lmbda, T2))

T_norm_zip = list(zip(lmbda, T_norm))

np.savetxt(sim_dir + '/flux.dat.gz', T1_zip, fmt='%5e, %5e')

np.savetxt(sim_dir + '/flux_wg.dat.gz', T2_zip, fmt='%5e, %5e')

np.savetxt(sim_dir + '/flux_norm.dat.gz', T_norm_zip, fmt='%5e,

%5e')↪→

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('-res', type=int, default=20, help='Simulation

resolution (pixels/um) (default: 20)')↪→

parser.add_argument('-t', type=int, default=0, help='Run a fixed time

simulation (0 = on, 1 = off) (default: 0)')↪→

parser.add_argument('-T', type=int, default=100, help='Run the

simulation for <<t>> MEEP time units (default: 100)')↪→
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parser.add_argument('-D', type=float, default=1e-5, help='Run the

simulation until the fields have decayed to <<D>> of max value

(default: 1e-5)')

↪→

↪→

parser.add_argument('-p', type=int, default=0, help='Plot the fields

(0 = off, 1 = on) (default: 0)')↪→

parser.add_argument('-i', type=float, default=2.0, help='Effective

refractive index of the ring (default: 2.00)')↪→

parser.add_argument('-R', type=float, default=2.5, help='Radius of

the ring (um) (default: 2.5)')↪→

parser.add_argument('-w', type=float, default=0.45, help='Width of

the ring (um) (default: 0.45)')↪→

parser.add_argument('-N', type=int, default=60, help='Number of

periodic elements (default: 60)')↪→

parser.add_argument('-r', type=float, default=0.075, help='Radius of

periodic elements (um) (default: 0.075)')↪→

parser.add_argument('-dr', type=float, default=0, help='Standard

deviation variation on radius of periodic elements (default: 0)')↪→

parser.add_argument('-hop', type=float, default=0.2, help='Hopping

parameter (in units of the lattice constant) (default: 0.2)')↪→

parser.add_argument('-c', type=int, default=0, help='Add coupling

waveguide and calculate transmission spectrum of ring (0 = off, 1

= on) (default: 0)')

↪→

↪→

parser.add_argument('-g', type=float, default=0.15, help='Evanescent

coupling gap width (um) (default: 0.15)')↪→

parser.add_argument('-wgw', type=float, default=0.45, help='Coupling

waveguide width (um) (default: 0.45)')↪→

parser.add_argument('-l', type=float, default=1.55, help='Center

wavelength (um) (default: 1.55 um)')↪→

parser.add_argument('-dl', type=float, default=1, help='Excitation

linewidth (um) (default: 1.00 um)')↪→

parser.add_argument('-P', type=int, default=0, help='Polarization (0

= TE, 1 = TM) (default: 0)')↪→

parser.add_argument('-topo', type=int, default=0, help='Trivial (0)

or topological (1) ring (default: 0)')↪→
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parser.add_argument('-u', type=int, default=0, help='Number of

lattice constants by which to reduce the spacing between topo

defects (default: 0)')

↪→

↪→

args = parser.parse_args()

# Create a directory name for the run

if args.topo == 0:

ring = 'triv'

else:

ring = 'topo'

if args.c == 0:

sim_dir = ring + '-dimer_ring-res_' + str(args.res) + '-r0_' +

str(args.R) + '-lcen_' + str(args.l) + '-dl_' + str(args.dl)

+ '-nring_' + str(args.i) +'-w_' + str(args.w) + '-N_' +

str(args.N) + '-rad_' + str(args.r) + '-dr_' + str(args.dr) +

'-hop_' + str(args.hop)

↪→

↪→

↪→

↪→

else:

sim_dir = ring + '-dimer_ring-res_' + str(args.res) + '-r0_' +

str(args.R) + '-lcen_' + str(args.l) + '-dl_' + str(args.dl)

+ '-nring_' + str(args.i) + '-w_' + str(args.w) + '-N_' +

str(args.N) + '-rad_' + str(args.r) +'-dr_' + str(args.dr) +

'-hop_' + str(args.hop) + '-g_' + str(args.g) + '-wg_' +

str(args.wgw)

↪→

↪→

↪→

↪→

↪→

# Check to see if directory already exists

if os.path.isdir(sim_dir + '.old') == True:

shutil.rmtree(sim_dir + '.old')

if os.path.isdir(sim_dir) == True:

os.rename(sim_dir, sim_dir + '.old')
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main(args, sim_dir)

# Print simulation parameters to a file

with open(sim_dir + '/cmdline.txt', 'w') as f:

f.write(' '.join(sys.argv[1:]))

B.2 Bloch waves in ring resonators

The following file can be used to simulate a spatially-modulated ring resonator with

various different modulations. Python files for the Bloch rings can be downloaded directly

.

## Compute the optical spectrum of a spatially modulated ring

resonator↪→

## using the finite-difference-time-domain software MEEP

## https://meep.readthedocs.io/en/latest/ KM May 27, 2019

import meep as mp

import sys, os, shutil

import argparse

import math

import numpy as np

import matplotlib.pyplot as plt

import sys

import subprocess

import random

def main(args, sim_dir):

# Simulation parameters

resolution = args.res # pixels/um

fixt = args.t # Run the simulation as a function of time

or field decay (0 = time, 1 = decay)↪→

runtime = args.T # MEEP time units
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##  Compute the optical spectrum of a spatially modulated ring resonator
##  using the finite-difference-time-domain software MEEP
##  https://meep.readthedocs.io/en/latest/    KM May 27, 2019

import meep as mp
import sys, os, shutil
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import sys
import subprocess
import random

def main(args, sim_dir):
    
    # Simulation parameters
    resolution = args.res     # pixels/um
    fixt = args.t             # Run the simulation as a function of time or field decay (0 = time, 1 = decay)
    runtime = args.T          # MEEP time units
    decayfrac = args.D        # Run the simulation until the absolute value squared of the field decays by 'decayfrac'
    plotfields = args.p       # Plot the fields after simulation (0 = off, 1 = on)

    # Ring parameters
    nring = args.i   # Ring refractive index
    kring = 0        # Ring extinction coefficient
    r0 = args.R      # Center radius of ring (um)
    w = args.w       # Width of ring (um)

    # Fourier coefficients
    a1 = args.a1   # Define the order number of the Fourier coefficients
    a2 = args.a2
    a3 = args.a3
    a4 = args.a4

    a1mag = args.a1mag # Magnitude of Fourier coefficients
    a2mag = args.a2mag
    a3mag = args.a3mag
    a4mag = args.a4mag
 

    # Coupling waveguide parameters
    coup = args.c    # Add a coupling waveguide for flux simulations (0 = off, 1 = on)
    g = args.g       # Evanescent coupling gap width (um)
    wgw = args.wgw   # Coupling waveguide width (um)
    nwg = args.i     # Coupling waveguide refractive index
    kwg = 0          # Coupling waveguide extinction coefficient

    # Background material parameters
    nback = 1   # Background material refractive index
    kback = 0   # Background material extinction coefficient
    
    # Excitation parameters
    lcen = args.l                       # pulse center wavelength (um)
    dl = args.dl                        # pulse width (um)
    pol = args.P                        # excitation polarization (0 = TE (Hz), 1 = TM (Ez))
    fcen = 1/lcen                       # pulse center in frequency (dimensionless)
    df = ((1/lcen) - (1/(lcen + dl)))   # pulse width in frequncy (dimensionless)
    print("fcen: " + str(fcen) + ", df = " + str(df))

    # Define the PMLs and padding
    pad = 2 * lcen  # Padding before PML (wavelengths in vacuum)
    dpml = 3 * lcen # Thickness of PML (wavelengths in vacuum)
    pml_layers = [mp.PML(dpml)]

    # Define the cell geometry
    sx = dpml + pad + wgw + g + (2 * r0) + pad + dpml
    sy = dpml + pad + wgw + g + (2 * r0) + pad + dpml
    sz = 0
    cell = mp.Vector3(sx, sy)

    # Define the ring material
    re_eps_ring = (nring ** 2) - (kring ** 2)
    im_eps_ring = 2 * nring * kring
    mysigmad_ring = (2 * math.pi * fcen * im_eps_ring) / re_eps_ring
    ring_material = mp.Medium(epsilon = re_eps_ring, D_conductivity = mysigmad_ring)
 
     # Define the background material
    re_eps_back = (nback ** 2) - (kback ** 2)
    im_eps_back = 2 * nback * kback
    mysigmad_back = (2 * math.pi * fcen * im_eps_back) / re_eps_back
    back_material = mp.Medium(epsilon = re_eps_back, D_conductivity = mysigmad_back)

    # Define field measurement helpers
    delta = 2*np.pi/a1
    if coup == 0:
        disp = w / 50
        disp = dpml + 1

    # Define a material function for the ring material
    def ring_medium(p):
        index = mp.Medium(epsilon = re_eps_ring + a1mag*np.cos(a1* math.atan2(p.y, p.x))+ a2mag*np.cos(a2* math.atan2(p.y, p.x)) + a3mag*np.cos(a3* math.atan2(p.y, p.x)) + a4mag*np.cos(a4* math.atan2(p.y, p.x)))
        return index
        

    geometry_back = [mp.Block(size = mp.Vector3(mp.inf, mp.inf, mp.inf), material = back_material)]

    geometry_ring = [mp.Cylinder(radius = r0 + (w/2), center = mp.Vector3(0, 0, 0), material = ring_medium, height=mp.inf),
                     mp.Cylinder(radius = r0 - (w/2), center =mp.Vector3(0, 0, 0), material = back_material, height=mp.inf)]
        
    geometry_wg = [mp.Block(center = mp.Vector3(0, r0 + g + wgw/2 + w/2, 0), size = mp.Vector3(mp.inf, wgw, 0), material = ring_material)]

    if coup == 0:     # Use this option to find the resonances of the ring
        geometry = geometry_back + geometry_ring

    if coup == 1:     # Use this option to calculate transmission spectrum of the ring
        geometry = geometry_back + geometry_ring + geometry_wg


    # Source definitions
    disp = w / 20   # Small displacement from original coordinate to avoid field nodes
    if pol == 0:
        my_component = mp.Hz
    else:
        my_component = mp.Ez
    
    if coup == 0:
        sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3(r0*math.cos(delta + disp), r0*math.sin(delta+disp), 0)),
                   mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3(r0*math.cos((delta/2) + disp), r0*math.sin((delta/2) + disp), 0))]
    else:
        sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df), component = my_component, center = mp.Vector3((-sx/2) + dpml, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, wgw, 0))]

    
    # Simulation definition
    sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
    
    sim.use_output_directory(sim_dir)

    # Define a function to plot the dielectric function of the structure
    def plot_epsilon():
        # Plot the dielectric function
        eps_data = sim.get_array(center=mp.Vector3(), size=cell, component=mp.Dielectric)
        plt.figure(dpi=1000)
        plt.imshow(eps_data, interpolation='spline36', cmap='binary')
        plt.axis('off')
        plt.savefig(sim_dir + '/epsilon_profile.png')
     
    # Field measurement definitions

    # Define the positions where the fields should be measured ! Must be placed far from the source position
    meas1 = mp.Vector3(r0*math.cos(((a1/4) * delta) + disp), r0*math.sin(((a1/4) * delta) + disp), 0)
    meas2 = mp.Vector3(r0*math.cos(((a1/4) * delta) - (delta / 2) + disp), r0*math.sin(((a1/4) * delta) - (delta / 2) + disp), 0)
    meas3 = mp.Vector3(r0*math.cos(((a1/2) * delta) + disp), r0*math.sin(((a1/2) * delta) + disp), 0)
    meas4 = mp.Vector3(r0*math.cos(((a1/2) * delta) - (delta / 2) + disp), r0*math.sin(((a1/2) * delta) - (delta / 2) + disp), 0)
    
    
    # Define a function which measures the fields
    def get_fields(sim):
        f = open(sim_dir + '/meas1.dat', "a+")
        f.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas1))) + '\n')
        f.close()
        g = open(sim_dir + '/meas2.dat', "a+")
        g.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas2))) + '\n')
        g.close()
        h = open(sim_dir + '/meas3.dat', "a+")
        h.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas3))) + '\n')
        h.close()
        j = open(sim_dir + '/meas4.dat', "a+")
        j.write(str(sim.meep_time()) + ", " + str(np.real(sim.get_field_point(my_component, meas4))) + '\n')
        j.close()


    # Define flux regions for transmission spectum run
    nfreq = 2000

    # Incident flux
    inc_flux = mp.FluxRegion(center = mp.Vector3((-sx/2) + dpml + 1, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))
    inc = sim.add_flux(fcen, df, nfreq, inc_flux)

    # Transmitted flux
    trans_flux = mp.FluxRegion(center = mp.Vector3((sx/2) - dpml - 1, r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))
    trans = sim.add_flux(fcen, df, nfreq, trans_flux)

    # Run the simulation
    if coup == 0 and fixt == 0:   # Run simulation with no coupling waveguide for 'runtime' MEEP time units
        sim.run(mp.at_beginning(mp.output_epsilon),
                mp.to_appended("hz", mp.at_every(1, mp.output_hfield_z)), 
                mp.after_sources(get_fields, 
                                 mp.Harminv(my_component, meas1, fcen, df),
                                 mp.Harminv(my_component, meas2, fcen, df)),
                                 until_after_sources=runtime)
        # Plot the fields
      #  if plotfields == 1:
            #sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)
            #sim.run(mp.to_appended("hz", mp.at_every(1, mp.output_hfield_z)), until=runtime)

    if coup == 0 and fixt == 1:  # Run simulation with no coupling waveguide until absolute value squared of fields have decayed to 'decayfrac' of original value
        sim.run(mp.at_beginning(mp.output_epsilon),
                mp.after_sources(get_fields,
                                 mp.Harminv(my_component, meas1, fcen, df),
                                 mp.Harminv(my_component, meas2, fcen, df)),
                                 until_after_sources=mp.stop_when_fields_decayed(25, my_component, meas1, decayfrac))

        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)


    # Perform the Fourier transform of the fields
    if coup == 0:
        # Load and sort data into structured arrays
        d1 = np.loadtxt(sim_dir + '/meas1.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=", ")
        d2 = np.loadtxt(sim_dir + '/meas2.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=",")
        d3 = np.loadtxt(sim_dir + '/meas3.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=",")
        d4 = np.loadtxt(sim_dir + '/meas4.dat', dtype={'names': ('time', 'fields'), 'formats':(float, float)}, delimiter=",")
        data1 = np.sort(np.unique(d1), order='time')
        data2 = np.sort(np.unique(d2), order='time')
        data3 = np.sort(np.unique(d3), order='time')
        data4 = np.sort(np.unique(d4), order='time')


        # Resave the sorted data to a compressed file
        np.savetxt(sim_dir + '/meas1.dat.gz', data1, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        np.savetxt(sim_dir + '/meas2.dat.gz', data2, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        np.savetxt(sim_dir + '/meas3.dat.gz', data3, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        np.savetxt(sim_dir + '/meas4.dat.gz', data4, delimiter=", ", newline='\n', header="MEEP time units,    Field")
        os.remove(sim_dir + '/meas1.dat')
        os.remove(sim_dir + '/meas2.dat')
        os.remove(sim_dir + '/meas3.dat')
        os.remove(sim_dir + '/meas4.dat')
        
        # Compute the Fourier transform
        time = data1['time']
        field1 = data1['fields']
        field2 = data2['fields']
        field3 = data3['fields']
        field4 = data4['fields']

        fft1 = np.abs(np.fft.rfft(field1))
        fft2 = np.abs(np.fft.rfft(field2))
        fft3 = np.abs(np.fft.rfft(field3))
        fft4 = np.abs(np.fft.rfft(field4))
        n = fft1.size
        timestep = time[1] - time[0]
        freqs = np.fft.rfftfreq(n, timestep*2)


        # Plot the result

        plt.clf()
        plt.plot(freqs, fft1[0:math.ceil(n/2)]/n, 'k-', freqs, fft2[0:math.ceil(n/2)]/n, 'r-', fft3[0:math.ceil(n/2)]/n, 'b', fft4[0:math.ceil(n/2)]/n, 'g')
        plt.xlabel("Dimensionless frequency (c/a)")
        plt.ylabel("Arbitrary amplitude")
        plt.axis('on')
        plt.axis('tight')
        plt.autoscale(axis='y')
        plt.xlim(0.4, 0.8)
        plt.savefig(sim_dir + '/fft.png')


    if coup == 1 and fixt == 0:  # Run simulation with coupling waveguide for 'runtime' MEEP time units
        sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources = runtime)
        incident = mp.get_fluxes(inc)
        transmission = mp.get_fluxes(trans)

        
        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)
        
        # Reinitialize the simulation region for normalization run
        sim.reset_meep()
        geometry = geometry_back + geometry_wg
        sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
        trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)
        sim.run(until_after_sources = runtime)
        trans_norm = mp.get_fluxes(trans_norm_flux)
        

    if coup == 1 and fixt == 1:  # Run simulation with coupling waveguide until absolute value squared of fields have decayed to 'decayfrac'
        sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources = mp.stop_when_fields_decayed(25, my_component, meas1, decayfrac))
        incident = mp.get_fluxes(inc)
        transmission = mp.get_fluxes(trans)

        # Plot the fields
        plot_epsilon()
        if plotfields == 1:
            sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component, "-C $EPS -Zc dkbluered")), until = 1 /fcen)
        
        # Reinitialize the simulation region for normalization run
        sim.reset_meep()
        geometry = geometry_back + geometry_wg
        sim = mp.Simulation(cell_size=cell,
                        boundary_layers=pml_layers,
                        sources=sources,
                        geometry=geometry,
                        resolution=resolution)
        trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)
        sim.run(until_after_sources = runtime)
        trans_norm = mp.get_fluxes(trans_norm_flux)


    # Plot the transmission spectrum
    if coup == 1:
        T1 = []
        T2 = []
        T_norm = []
        lmbda = []
        flux_freqs = mp.get_flux_freqs(trans)

        for i in range(nfreq):
            lmbda = np.append(lmbda, 1/flux_freqs[i])
            T1 = np.append(T1, transmission[i])
            T2 = np.append(T2, trans_norm[i])
            T_norm = np.append(T_norm, transmission[i]/trans_norm[i])

        plt.clf()
        plt.plot(lmbda, T_norm, 'k-', label='Transmitted flux')
        plt.legend(loc="upper right")
        plt.xlabel("Wavelength (microns)")
        plt.axis('on')
        plt.axis('tight')
        plt.savefig(sim_dir + '/transmission.png')
        T1_zip = list(zip(lmbda, T1))
        T2_zip = list(zip(lmbda, T2))
        T_norm_zip = list(zip(lmbda, T_norm))
        np.savetxt(sim_dir + '/flux.dat.gz', T1_zip, fmt='%5e, %5e') 
        np.savetxt(sim_dir + '/flux_wg.dat.gz', T2_zip, fmt='%5e, %5e')
        np.savetxt(sim_dir + '/flux_norm.dat.gz', T_norm_zip, fmt='%5e, %5e')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-res', type=int, default=20, help='Simulation resolution (pixels/um) (default: 20)')
    parser.add_argument('-t', type=int, default=0, help='Run a fixed time simulation (0 = on, 1 = off) (default: 0)') 
    parser.add_argument('-T', type=int, default=100, help='Run the simulation for <<t>> MEEP time units (default: 100)')
    parser.add_argument('-D', type=float, default=1e-5, help='Run the simulation until the fields have decayed to <<D>> of max value (default: 1e-5)')
    parser.add_argument('-p', type=int, default=0, help='Plot the fields (0 = off, 1 = on) (default: 0)')
    parser.add_argument('-i', type=float, default=2.0, help='Effective refractive index of the ring (default: 2.00)')
    parser.add_argument('-R', type=float, default=2.5, help='Radius of the ring (um) (default: 2.5)')
    parser.add_argument('-w', type=float, default=0.45, help='Width of the ring (um) (default: 0.45)')
    parser.add_argument('-a1', type=int, default=122, help='Order of first Fourier coefficient (default: 122)')
    parser.add_argument('-a2', type=int, default=124, help='Order of second Fourier coefficient (default: 124)')
    parser.add_argument('-a3', type=int, default=126, help='Order of third Fourier coefficient (default: 126)')
    parser.add_argument('-a4', type=int, default=128, help='Order of fourth Fourier coefficient (default: 128)')
    parser.add_argument('-a1mag', type=float, default=0, help='Magnitude of first Fourier coefficient (default: 0)')
    parser.add_argument('-a2mag', type=float, default=0, help='Magnitude of first Fourier coefficient (default: 0)')
    parser.add_argument('-a3mag', type=float, default=0, help='Magnitude of first Fourier coefficient (default: 0)')
    parser.add_argument('-a4mag', type=float, default=0, help='Magnitude of first Fourier coefficient (default: 0)')
    parser.add_argument('-c', type=int, default=0, help='Add coupling waveguide and calculate transmission spectrum of ring (0 = off, 1 = on) (default: 0)')
    parser.add_argument('-g', type=float, default=0.15, help='Evanescent coupling gap width (um) (default: 0.15)')
    parser.add_argument('-wgw', type=float, default=0.45, help='Coupling waveguide width (um) (default: 0.45)')
    parser.add_argument('-l', type=float, default=1.55, help='Center wavelength (um) (default: 1.55 um)')
    parser.add_argument('-dl', type=float, default=1, help='Excitation linewidth (um) (default: 1.00 um)')
    parser.add_argument('-P', type=int, default=0, help='Polarization (0 = TE, 1 = TM) (default: 0)')
    args = parser.parse_args()


    # Create a directory name for the run
    sim_dir ='floquet_ring-res_' + str(args.res) + '-r0_' + str(args.R) + '-lcen_' + str(args.l) + '-dl_' + str(args.dl) + '-nring_' + str(args.i) +'-w_' + str(args.w) + '-a1_' + str(args.a1) + '-mag_' + str(args.a1mag) + '-a2_' + str(args.a2) + '-mag_' + str(args.a2mag) + '-a3_' + str(args.a3) + '-mag_' + str(args.a3mag)


    # Check to see if directory already exists
    if os.path.isdir(sim_dir + '.old') == True:
        shutil.rmtree(sim_dir + '.old')

    if os.path.isdir(sim_dir) == True:
        os.rename(sim_dir, sim_dir + '.old')
        
    main(args, sim_dir)

    # Print simulation parameters to a file
    
    with open(sim_dir + '/cmdline.txt', 'w') as f:
        f.write(' '.join(sys.argv[1:]))




decayfrac = args.D # Run the simulation until the absolute

value squared of the field decays by 'decayfrac'↪→

plotfields = args.p # Plot the fields after simulation (0 =

off, 1 = on)↪→

# Ring parameters

nring = args.i # Ring refractive index

kring = 0 # Ring extinction coefficient

r0 = args.R # Center radius of ring (um)

w = args.w # Width of ring (um)

# Fourier coefficients

a1 = args.a1 # Define the order number of the Fourier

coefficients↪→

a2 = args.a2

a3 = args.a3

a4 = args.a4

a1mag = args.a1mag # Magnitude of Fourier coefficients

a2mag = args.a2mag

a3mag = args.a3mag

a4mag = args.a4mag

# Coupling waveguide parameters

coup = args.c # Add a coupling waveguide for flux simulations (0

= off, 1 = on)↪→

g = args.g # Evanescent coupling gap width (um)

wgw = args.wgw # Coupling waveguide width (um)

nwg = args.i # Coupling waveguide refractive index

kwg = 0 # Coupling waveguide extinction coefficient

# Background material parameters

nback = 1 # Background material refractive index

kback = 0 # Background material extinction coefficient
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# Excitation parameters

lcen = args.l # pulse center wavelength (um)

dl = args.dl # pulse width (um)

pol = args.P # excitation polarization (0 =

TE (Hz), 1 = TM (Ez))↪→

fcen = 1/lcen # pulse center in frequency

(dimensionless)↪→

df = ((1/lcen) - (1/(lcen + dl))) # pulse width in frequncy

(dimensionless)↪→

print("fcen: " + str(fcen) + ", df = " + str(df))

# Define the PMLs and padding

pad = 2 * lcen # Padding before PML (wavelengths in vacuum)

dpml = 3 * lcen # Thickness of PML (wavelengths in vacuum)

pml_layers = [mp.PML(dpml)]

# Define the cell geometry

sx = dpml + pad + wgw + g + (2 * r0) + pad + dpml

sy = dpml + pad + wgw + g + (2 * r0) + pad + dpml

sz = 0

cell = mp.Vector3(sx, sy)

# Define the ring material

re_eps_ring = (nring ** 2) - (kring ** 2)

im_eps_ring = 2 * nring * kring

mysigmad_ring = (2 * math.pi * fcen * im_eps_ring) / re_eps_ring

ring_material = mp.Medium(epsilon = re_eps_ring, D_conductivity =

mysigmad_ring)↪→

# Define the background material

re_eps_back = (nback ** 2) - (kback ** 2)

im_eps_back = 2 * nback * kback

mysigmad_back = (2 * math.pi * fcen * im_eps_back) / re_eps_back
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back_material = mp.Medium(epsilon = re_eps_back, D_conductivity =

mysigmad_back)↪→

# Define field measurement helpers

delta = 2*np.pi/a1

if coup == 0:

disp = w / 50

disp = dpml + 1

# Define a material function for the ring material

def ring_medium(p):

index = mp.Medium(epsilon = re_eps_ring + a1mag*np.cos(a1*

math.atan2(p.y, p.x))+ a2mag*np.cos(a2* math.atan2(p.y, p.x))

+ a3mag*np.cos(a3* math.atan2(p.y, p.x)) + a4mag*np.cos(a4*

math.atan2(p.y, p.x)))

↪→

↪→

↪→

return index

geometry_back = [mp.Block(size = mp.Vector3(mp.inf, mp.inf, mp.inf),

material = back_material)]↪→

geometry_ring = [mp.Cylinder(radius = r0 + (w/2), center =

mp.Vector3(0, 0, 0), material = ring_medium, height=mp.inf),↪→

mp.Cylinder(radius = r0 - (w/2), center

=mp.Vector3(0, 0, 0), material = back_material,

height=mp.inf)]

↪→

↪→

geometry_wg = [mp.Block(center = mp.Vector3(0, r0 + g + wgw/2 + w/2,

0), size = mp.Vector3(mp.inf, wgw, 0), material = ring_material)]↪→

if coup == 0: # Use this option to find the resonances of the

ring↪→

geometry = geometry_back + geometry_ring
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if coup == 1: # Use this option to calculate transmission

spectrum of the ring↪→

geometry = geometry_back + geometry_ring + geometry_wg

# Source definitions

disp = w / 20 # Small displacement from original coordinate to

avoid field nodes↪→

if pol == 0:

my_component = mp.Hz

else:

my_component = mp.Ez

if coup == 0:

sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center =

mp.Vector3(r0*math.cos(delta + disp),

r0*math.sin(delta+disp), 0)),

↪→

↪→

↪→

mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center =

mp.Vector3(r0*math.cos((delta/2) + disp),

r0*math.sin((delta/2) + disp), 0))]

↪→

↪→

↪→

else:

sources = [mp.Source(mp.GaussianSource(fcen, fwidth = df),

component = my_component, center = mp.Vector3((-sx/2) + dpml,

r0 + g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, wgw, 0))]

↪→

↪→

# Simulation definition

sim = mp.Simulation(cell_size=cell,

boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)
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sim.use_output_directory(sim_dir)

# Define a function to plot the dielectric function of the

structure↪→

def plot_epsilon():

# Plot the dielectric function

eps_data = sim.get_array(center=mp.Vector3(), size=cell,

component=mp.Dielectric)↪→

plt.figure(dpi=1000)

plt.imshow(eps_data, interpolation='spline36', cmap='binary')

plt.axis('off')

plt.savefig(sim_dir + '/epsilon_profile.png')

# Field measurement definitions

# Define the positions where the fields should be measured ! Must

be placed far from the source position↪→

meas1 = mp.Vector3(r0*math.cos(((a1/4) * delta) + disp),

r0*math.sin(((a1/4) * delta) + disp), 0)↪→

meas2 = mp.Vector3(r0*math.cos(((a1/4) * delta) - (delta / 2) +

disp), r0*math.sin(((a1/4) * delta) - (delta / 2) + disp), 0)↪→

meas3 = mp.Vector3(r0*math.cos(((a1/2) * delta) + disp),

r0*math.sin(((a1/2) * delta) + disp), 0)↪→

meas4 = mp.Vector3(r0*math.cos(((a1/2) * delta) - (delta / 2) +

disp), r0*math.sin(((a1/2) * delta) - (delta / 2) + disp), 0)↪→

# Define a function which measures the fields

def get_fields(sim):

f = open(sim_dir + '/meas1.dat', "a+")

f.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas1))) +

'\n')

↪→

↪→

f.close()

g = open(sim_dir + '/meas2.dat', "a+")
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g.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas2))) +

'\n')

↪→

↪→

g.close()

h = open(sim_dir + '/meas3.dat', "a+")

h.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas3))) +

'\n')

↪→

↪→

h.close()

j = open(sim_dir + '/meas4.dat', "a+")

j.write(str(sim.meep_time()) + ", " +

str(np.real(sim.get_field_point(my_component, meas4))) +

'\n')

↪→

↪→

j.close()

# Define flux regions for transmission spectum run

nfreq = 2000

# Incident flux

inc_flux = mp.FluxRegion(center = mp.Vector3((-sx/2) + dpml + 1, r0 +

g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))↪→

inc = sim.add_flux(fcen, df, nfreq, inc_flux)

# Transmitted flux

trans_flux = mp.FluxRegion(center = mp.Vector3((sx/2) - dpml - 1, r0

+ g + (wgw/2) + (w/2), 0), size = mp.Vector3(0, 2 * wgw, 0))↪→

trans = sim.add_flux(fcen, df, nfreq, trans_flux)

# Run the simulation

if coup == 0 and fixt == 0: # Run simulation with no coupling

waveguide for 'runtime' MEEP time units↪→

sim.run(mp.at_beginning(mp.output_epsilon),

mp.to_appended("hz", mp.at_every(1, mp.output_hfield_z)),

mp.after_sources(get_fields,

130



mp.Harminv(my_component, meas1, fcen,

df),↪→

mp.Harminv(my_component, meas2, fcen,

df)),↪→

until_after_sources=runtime)

# Plot the fields

# if plotfields == 1:

#sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C £EPS -Zc dkbluered")), until = 1 /fcen)↪→

#sim.run(mp.to_appended("hz", mp.at_every(1,

mp.output_hfield_z)), until=runtime)↪→

if coup == 0 and fixt == 1: # Run simulation with no coupling

waveguide until absolute value squared of fields have decayed to

'decayfrac' of original value

↪→

↪→

sim.run(mp.at_beginning(mp.output_epsilon),

mp.after_sources(get_fields,

mp.Harminv(my_component, meas1, fcen,

df),↪→

mp.Harminv(my_component, meas2, fcen,

df)),↪→

until_after_sources=mp.stop_when_fields_decayed(25,

my_component, meas1, decayfrac))

↪→

↪→

# Plot the fields

plot_epsilon()

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

# Perform the Fourier transform of the fields

if coup == 0:

# Load and sort data into structured arrays
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d1 = np.loadtxt(sim_dir + '/meas1.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=", ")↪→

d2 = np.loadtxt(sim_dir + '/meas2.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=",")↪→

d3 = np.loadtxt(sim_dir + '/meas3.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=",")↪→

d4 = np.loadtxt(sim_dir + '/meas4.dat', dtype={'names': ('time',

'fields'), 'formats':(float, float)}, delimiter=",")↪→

data1 = np.sort(np.unique(d1), order='time')

data2 = np.sort(np.unique(d2), order='time')

data3 = np.sort(np.unique(d3), order='time')

data4 = np.sort(np.unique(d4), order='time')

# Resave the sorted data to a compressed file

np.savetxt(sim_dir + '/meas1.dat.gz', data1, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

np.savetxt(sim_dir + '/meas2.dat.gz', data2, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

np.savetxt(sim_dir + '/meas3.dat.gz', data3, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

np.savetxt(sim_dir + '/meas4.dat.gz', data4, delimiter=", ",

newline='\n', header="MEEP time units, Field")↪→

os.remove(sim_dir + '/meas1.dat')

os.remove(sim_dir + '/meas2.dat')

os.remove(sim_dir + '/meas3.dat')

os.remove(sim_dir + '/meas4.dat')

# Compute the Fourier transform

time = data1['time']

field1 = data1['fields']

field2 = data2['fields']

field3 = data3['fields']

field4 = data4['fields']
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fft1 = np.abs(np.fft.rfft(field1))

fft2 = np.abs(np.fft.rfft(field2))

fft3 = np.abs(np.fft.rfft(field3))

fft4 = np.abs(np.fft.rfft(field4))

n = fft1.size

timestep = time[1] - time[0]

freqs = np.fft.rfftfreq(n, timestep*2)

# Plot the result

plt.clf()

plt.plot(freqs, fft1[0:math.ceil(n/2)]/n, 'k-', freqs,

fft2[0:math.ceil(n/2)]/n, 'r-', fft3[0:math.ceil(n/2)]/n,

'b', fft4[0:math.ceil(n/2)]/n, 'g')

↪→

↪→

plt.xlabel("Dimensionless frequency (c/a)")

plt.ylabel("Arbitrary amplitude")

plt.axis('on')

plt.axis('tight')

plt.autoscale(axis='y')

plt.xlim(0.4, 0.8)

plt.savefig(sim_dir + '/fft.png')

if coup == 1 and fixt == 0: # Run simulation with coupling

waveguide for 'runtime' MEEP time units↪→

sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources =

runtime)↪→

incident = mp.get_fluxes(inc)

transmission = mp.get_fluxes(trans)

# Plot the fields

plot_epsilon()

if plotfields == 1:
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sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

# Reinitialize the simulation region for normalization run

sim.reset_meep()

geometry = geometry_back + geometry_wg

sim = mp.Simulation(cell_size=cell,

boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)

trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)

sim.run(until_after_sources = runtime)

trans_norm = mp.get_fluxes(trans_norm_flux)

if coup == 1 and fixt == 1: # Run simulation with coupling

waveguide until absolute value squared of fields have decayed to

'decayfrac'

↪→

↪→

sim.run(mp.at_beginning(mp.output_epsilon), until_after_sources =

mp.stop_when_fields_decayed(25, my_component, meas1,

decayfrac))

↪→

↪→

incident = mp.get_fluxes(inc)

transmission = mp.get_fluxes(trans)

# Plot the fields

plot_epsilon()

if plotfields == 1:

sim.run(mp.at_every(1/fcen/10, mp.output_png(my_component,

"-C $EPS -Zc dkbluered")), until = 1 /fcen)↪→

# Reinitialize the simulation region for normalization run

sim.reset_meep()

geometry = geometry_back + geometry_wg

sim = mp.Simulation(cell_size=cell,
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boundary_layers=pml_layers,

sources=sources,

geometry=geometry,

resolution=resolution)

trans_norm_flux = sim.add_flux(fcen, df, nfreq, trans_flux)

sim.run(until_after_sources = runtime)

trans_norm = mp.get_fluxes(trans_norm_flux)

# Plot the transmission spectrum

if coup == 1:

T1 = []

T2 = []

T_norm = []

lmbda = []

flux_freqs = mp.get_flux_freqs(trans)

for i in range(nfreq):

lmbda = np.append(lmbda, 1/flux_freqs[i])

T1 = np.append(T1, transmission[i])

T2 = np.append(T2, trans_norm[i])

T_norm = np.append(T_norm, transmission[i]/trans_norm[i])

plt.clf()

plt.plot(lmbda, T_norm, 'k-', label='Transmitted flux')

plt.legend(loc="upper right")

plt.xlabel("Wavelength (microns)")

plt.axis('on')

plt.axis('tight')

plt.savefig(sim_dir + '/transmission.png')

T1_zip = list(zip(lmbda, T1))

T2_zip = list(zip(lmbda, T2))

T_norm_zip = list(zip(lmbda, T_norm))

np.savetxt(sim_dir + '/flux.dat.gz', T1_zip, fmt='%5e, %5e')

np.savetxt(sim_dir + '/flux_wg.dat.gz', T2_zip, fmt='%5e, %5e')
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np.savetxt(sim_dir + '/flux_norm.dat.gz', T_norm_zip, fmt='%5e,

%5e')↪→

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('-res', type=int, default=20, help='Simulation

resolution (pixels/um) (default: 20)')↪→

parser.add_argument('-t', type=int, default=0, help='Run a fixed time

simulation (0 = on, 1 = off) (default: 0)')↪→

parser.add_argument('-T', type=int, default=100, help='Run the

simulation for <<t>> MEEP time units (default: 100)')↪→

parser.add_argument('-D', type=float, default=1e-5, help='Run the

simulation until the fields have decayed to <<D>> of max value

(default: 1e-5)')

↪→

↪→

parser.add_argument('-p', type=int, default=0, help='Plot the fields

(0 = off, 1 = on) (default: 0)')↪→

parser.add_argument('-i', type=float, default=2.0, help='Effective

refractive index of the ring (default: 2.00)')↪→

parser.add_argument('-R', type=float, default=2.5, help='Radius of

the ring (um) (default: 2.5)')↪→

parser.add_argument('-w', type=float, default=0.45, help='Width of

the ring (um) (default: 0.45)')↪→

parser.add_argument('-a1', type=int, default=122, help='Order of

first Fourier coefficient (default: 122)')↪→

parser.add_argument('-a2', type=int, default=124, help='Order of

second Fourier coefficient (default: 124)')↪→

parser.add_argument('-a3', type=int, default=126, help='Order of

third Fourier coefficient (default: 126)')↪→

parser.add_argument('-a4', type=int, default=128, help='Order of

fourth Fourier coefficient (default: 128)')↪→

parser.add_argument('-a1mag', type=float, default=0, help='Magnitude

of first Fourier coefficient (default: 0)')↪→

parser.add_argument('-a2mag', type=float, default=0, help='Magnitude

of first Fourier coefficient (default: 0)')↪→
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parser.add_argument('-a3mag', type=float, default=0, help='Magnitude

of first Fourier coefficient (default: 0)')↪→

parser.add_argument('-a4mag', type=float, default=0, help='Magnitude

of first Fourier coefficient (default: 0)')↪→

parser.add_argument('-c', type=int, default=0, help='Add coupling

waveguide and calculate transmission spectrum of ring (0 = off, 1

= on) (default: 0)')

↪→

↪→

parser.add_argument('-g', type=float, default=0.15, help='Evanescent

coupling gap width (um) (default: 0.15)')↪→

parser.add_argument('-wgw', type=float, default=0.45, help='Coupling

waveguide width (um) (default: 0.45)')↪→

parser.add_argument('-l', type=float, default=1.55, help='Center

wavelength (um) (default: 1.55 um)')↪→

parser.add_argument('-dl', type=float, default=1, help='Excitation

linewidth (um) (default: 1.00 um)')↪→

parser.add_argument('-P', type=int, default=0, help='Polarization (0

= TE, 1 = TM) (default: 0)')↪→

args = parser.parse_args()

# Create a directory name for the run

sim_dir ='floquet_ring-res_' + str(args.res) + '-r0_' + str(args.R) +

'-lcen_' + str(args.l) + '-dl_' + str(args.dl) + '-nring_' +

str(args.i) +'-w_' + str(args.w) + '-a1_' + str(args.a1) +

'-mag_' + str(args.a1mag) + '-a2_' + str(args.a2) + '-mag_' +

str(args.a2mag) + '-a3_' + str(args.a3) + '-mag_' +

str(args.a3mag)

↪→

↪→

↪→

↪→

↪→

# Check to see if directory already exists

if os.path.isdir(sim_dir + '.old') == True:

shutil.rmtree(sim_dir + '.old')

if os.path.isdir(sim_dir) == True:

os.rename(sim_dir, sim_dir + '.old')
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main(args, sim_dir)

# Print simulation parameters to a file

with open(sim_dir + '/cmdline.txt', 'w') as f:

f.write(' '.join(sys.argv[1:]))
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Appendix C

Photonic crystal rings GDS library

The GDS files for the devices used for the experimental data in Chapter 4 can be found

. The library contains the following files:

• Row 1:

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm
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– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 120 nm

• Row 2:

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

• Row 3:

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm
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– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 117 nm

• Row 4:

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm
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– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

• Row 5:

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 123 nm

• Row 6:

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm
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– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

• Row 7:

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm
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– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 115 nm

• Row 8:

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

• Row 9:

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm
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– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 5.096-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 9.970-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 20.162-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 30.132-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

– 40.102-µm-radius photonic crystal ring resonator: g = 150 nm, W = 450 nm,

w = 462 nm, l = 348 nm, r = 125 nm

• Row 10:

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 5.096-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm
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– 9.970-µm-radius standard ring resonator: g = 150 nm, W = 450 nm, w = 462

nm

– 20.162-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 30.132-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

– 40.102-µm-radius standard ring resonator: g = 150 nm,W = 450 nm, w = 462

nm

• Stand-alone rings:

– I-: 5.096-µm-radius standard ring resonator: w = 462 nm

– II-: 5.096-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 120 nm

– III-: 5.096-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 117 nm

– IIII-: 5.096-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 123 nm

– T-: 5.096-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 115 nm

– TI-: 5.096-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 125 nm

– TII-: 9.970-µm-radius standard ring resonator: w = 462 nm

– TIII-: 9.970-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 120 nm

– IX-: 9.970-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 117 nm

– X-: 9.970-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 123 nm

– XI-: 9.970-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 115 nm

– XII-: 9.970-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 125 nm

146



– XIII-: 20.162-µm-radius standard ring resonator: w = 462 nm

– XIT-: 20.162-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 120 nm

– XT-: 20.162-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 117 nm

– XTI-: 20.162-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 123 nm

– XTII-: 20.162-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 115 nm

– XTIII-: 20.162-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 125 nm

– XIX-: 30.132-µm-radius standard ring resonator: w = 462 nm

– XX-: 30.132-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 120 nm

– XXI-: 30.132-µm-radius photonic crystal ring resonator: w = 462 nm, l = 348

nm, r = 117 nm

– XXII-: 30.132-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 123 nm

– XXIII-: 30.132-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 115 nm

– XXIT-: 30.132-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 125 nm

– XXT-: 40.102-µm-radius standard ring resonator: w = 462 nm

– XXTI-: 40.102-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 120 nm

– XXTII-: 40.102-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 117 nm

– XXTIII-: 40.102-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 123 nm

– XXIX-: 40.102-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 115 nm
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– XXX-: 40.102-µm-radius photonic crystal ring resonator: w = 462 nm, l =

348 nm, r = 125 nm

148



Appendix D

Dimerized photonic crystal rings

GDS library

The GDS files for the dimerized photonic crystal ring resonators discussed in Chapter 5

can be found . Additionally, spatially modulated optical ring resonators are included

in the layout. The GDS file contains the following devices:

• Row 1:

– 20-µm-radius standard ring resonator: g = 200 nm, W = 700 nm, w = 1.0 µm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius standard ring resonator: g = 175 nm, W = 700 nm, w = 1.0 µm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius standard ring resonator: g = 150 nm, W = 700 nm, w = 1.0 µm
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– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ127 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ127 = 90

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ127 = 70

nm
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– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ127 = 90

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ127 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ127 = 90

nm

• Row 2:

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm
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– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ600124 =

70 nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ124 = 70

nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ124 = 70

nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 700 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 700 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm
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– 20-µm-radius ring resonator: g = 150 nm,W = 700 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm

– 20-µm-radius standard ring resonator: g = 200 nm, W = 700 nm, w = 1.0 µm

– 20-µm-radius standard ring resonator: g = 175 nm, W = 700 nm, w = 1.0 µm

– 20-µm-radius standard ring resonator: g = 150 nm, W = 700 nm, w = 1.0 µm

• Row 3:

– 20-µm-radius standard ring resonator: g = 200 nm, W = 600 nm, w = 1.0 µm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius standard ring resonator: g = 175 nm, W = 600 nm, w = 1.0 µm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius standard ring resonator: g = 150 nm, W = 600 nm, w = 1.0 µm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm
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– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ127 = 70

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ127 = 90

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ127 = 70

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ127 = 90

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ127 = 70

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ127 = 80

nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ127 = 90

nm
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• Row 4:

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 70

nm, κ126 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 80

nm, κ126 = 80 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ125 = 90

nm, κ126 = 90 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 70

nm, κ127 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 80

nm, κ127 = 80 nm
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– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ126 = 90

nm, κ127 = 90 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ124 = 70

nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ124 = 70

nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ124 = 70

nm, κ125 = 70 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ124 = 80

nm, κ125 = 80 nm

– 20-µm-radius ring resonator: g = 200 nm,W = 600 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm

– 20-µm-radius ring resonator: g = 175 nm,W = 600 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm

– 20-µm-radius ring resonator: g = 150 nm,W = 600 nm, w = 1.0 µm, κ124 = 90

nm, κ125 = 90 nm

– 20-µm-radius standard ring resonator: g = 200 nm, W = 600 nm, w = 1.0 µm

– 20-µm-radius standard ring resonator: g = 175 nm, W = 600 nm, w = 1.0 µm

– 20-µm-radius standard ring resonator: g = 150 nm, W = 600 nm, w = 1.0 µm

• Row 5:

– 19.745-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a
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– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.02a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.04a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.06a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.08a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a

– 19.745-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.02a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.04a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.06a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.08a

– 19.745-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a

– 21.008-µm-radius photonic crystal ring resonator: g = 120 nm, W = 430 nm,

w = 495 nm, a = 330 nm, f = 0.24a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.02a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.04a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.06a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.08a
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– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a

– 18.398-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.02a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.04a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.06a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.08a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a

– 21.008-µm-radius photonic crystal ring resonator: g = 150 nm, W = 430 nm,

w = 495 nm, a = 330 nm, f = 0.24a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.05a

– 21.008-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a

– 18.398-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.05a

– 18.398-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a

• Row 6:

– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a

– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.02a
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– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.04a

– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.06a

– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.08a

– 29.603-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a

– 31.513-µm-radius photonic crystal ring resonator: g = 120 nm, W = 430 nm,

w = 495 nm, a = 330 nm, f = 0.24a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.02a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.04a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.06a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.08a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.02a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.04a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.06a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.08a

– 27.597-µm-radius photonic crystal ring resonator: g = 120 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a
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– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a

– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.02a

– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.04a

– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.06a

– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.08a

– 29.603-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.05a

– 31.513-µm-radius dimerized photonic crystal ring resonator: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a

– 27.597-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a

– 27.597-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.05a

– 27.597-µm-radius photonic crystal ring resonator: g = 150 nm, W = 400 nm,

w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a

• Row 7:

– 19.745-µm-radius dimerized PhCRR with topological cavities, g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 19.745-µm-radius dimerized PhCRR with topological cavities, g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 21.008-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0
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– 21.008-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0

– 18.398-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, reduc = 0

– 18.398-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, reduc = 0

– 29.603-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 29.603-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 31.513-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0

– 31.513-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0

– 27.597-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, reduc = 0

– 39.470-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 39.470-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, reduc = 0

– 42.017-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0

– 42.017-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, reduc = 0

– 36.797-µm-radius dimerized PhCRR with topological cavities: g = 120 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, reduc = 0

– 36.797-µm-radius dimerized PhCRR with topological cavities: g = 150 nm, W

= 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, reduc = 0

• Row 8:

– 19.745-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

161



– 19.745-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

– 21.008-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 21.008-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 18.398-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a

– 18.398-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a

– 29.603-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

– 29.603-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

– 31.513-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 31.513-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 27.597-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a

– 27.597-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a

– 39.470-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

– 39.470-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a, defect = 0.25a

– 42.017-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 42.017-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a, defect = 0.25a

– 36.797-µm-radius dimerized PhCRR with trivial cavities: g = 120 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a
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– 36.797-µm-radius dimerized PhCRR with trivial cavities: g = 150 nm, W =

400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a, defect = 0.25a

• Row 9:

– 19.745-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd =

0.1a, reduc = 0

– 19.745-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd =

0.1a, reduc = 0

– 21.008-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd =

0.1a, reduc = 0

– 21.008-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd =

0.1a, reduc = 0

– 18.398-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd =

0.1a, reduc = 0

– 18.398-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd =

0.1a, reduc = 0

– 29.603-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd =

0.1a, reduc = 0

– 29.603-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd =

0.1a, reduc = 0

– 31.513-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd =

0.1a, reduc = 0

– 31.513-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd =

0.1a, reduc = 0
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– 27.597-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd =

0.1a, reduc = 0

– 27.597-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 150 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd =

0.1a, reduc = 0

– 39.470-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd =

0.1a, reduc = 0

– 42.017-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd =

0.1a, reduc = 0

– 36.797-µm-radius dimerized PhCRR with topological cavities - homodyne cou-

pler: g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd =

0.1a, reduc = 0

• Row 10:

– 19.745-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a,

defect = 0.25a

– 19.745-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 150 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a,

defect = 0.25a

– 21.008-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a,

defect = 0.25a

– 21.008-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 150 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a,

defect = 0.25a

– 18.398-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a,

defect = 0.25a

– 18.398-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:
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g = 150 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a,

defect = 0.25a

– 29.603-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a,

defect = 0.25a

– 29.603-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 150 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a,

defect = 0.25a

– 31.513-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a,

defect = 0.25a

– 31.513-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 150 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a,

defect = 0.25a

– 27.597-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a,

defect = 0.25a

– 27.597-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 150 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a,

defect = 0.25a

– 39.470-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 465 nm, a = 326 nm, f = 0.22a, dd = 0.1a,

defect = 0.25a

– 42.017-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 430 nm, w = 495 nm, a = 330 nm, f = 0.24a, dd = 0.1a,

defect = 0.25a

– 36.797-µm-radius dimerized PhCRR with trivial cavities - homodyne coupler:

g = 120 nm, W = 400 nm, w = 434 nm, a = 300 nm, f = 0.23a, dd = 0.1a,

defect = 0.25a
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Appendix E

Python scripts for the SSH model

E.1 Dimerized lattice

##Plot the energy band structure of a dimerized one-dimensional

lattice.↪→

##Derived using the SSH model. KML Nov 23, 2018

import numpy as np

import scipy as sp

import sympy as sym

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'serif'

# Define the strength of the dimer unit cell hopping parameters

a = 1.0

b = 1.0

# Define the eigenvalues of the dimer bulk momentum space Hamiltonian

as a function of the wavevector, k:↪→

def A(k):
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return -np.sqrt((a + b*np.exp(1j*k))*(a*np.exp(1j*k) +

b)*np.exp(-1j*k))↪→

def B(k):

return np.sqrt((a + b*np.exp(1j*k))*(a*np.exp(1j*k) +

b)*np.exp(-1j*k))↪→

# Plot the eigenvalues over the first Brillouin zone (-pi < k < pi) of

the dimerized lattice:↪→

k1 = np.linspace(start = -np.pi, stop = np.pi, num = 50)

fig = plt.figure()

disp = fig.add_axes([0.15,0.15,0.8,0.8])

disp.plot(k1/np.pi, A(k1), 'ko-', k1/np.pi, B(k1), 'ko-', linewidth=1.5,

markersize=4)↪→

disp.set_xlabel('Wavevector, $k_x$ $(\pi / \ell$)')

disp.set_ylabel('Energy, E')

disp.set_xticks([-1.0, 0, 1.0])

disp.set_yticks([-1.5, 0, 1.5])

for item in ([disp.title, disp.xaxis.label, disp.yaxis.label] +

disp.get_xticklabels() + disp.get_yticklabels()):

item.set_fontsize(15)

plt.show()

E.2 Trimer lattice

##Plot the energy band structure of a trimerized one-dimensional

lattice.↪→

##KML Nov 23, 2018

import numpy as np

import scipy as sp

import sympy as sym

import matplotlib.pyplot as plt
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# Define the strength of the trimer unit cell hopping parameters

a = 1.0

b = 0.8

c = 0.8

# Define the eigenvalues of the trimer bulk momentum space Hamiltonian

as a function of the wavevector, k:↪→

def A(k):

return -(np.sqrt(729*(-a*b*c*np.exp(2*1j*k) -

a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2 +

27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3)/3 -

(3*a**2 + 3*b**2 + 3*c**2)/(3*(np.sqrt(729*(-a*b*c*np.exp(2*1j*k)

- a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2

+ 27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3))

↪→

↪→

↪→

↪→

↪→

def B(k):

return -(-1/2 + np.sqrt(3)*1j/2)*(np.sqrt(729*(-a*b*c*np.exp(2*1j*k)

- a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2

+ 27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3)/3 -

(3*a**2 + 3*b**2 + 3*c**2)/(3*(-1/2 +

np.sqrt(3)*1j/2)*(np.sqrt(729*(-a*b*c*np.exp(2*1j*k) -

a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2 +

27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3))

↪→

↪→

↪→

↪→

↪→

↪→

def C(k):

return -(-1/2 - np.sqrt(3)*1j/2)*(np.sqrt(729*(-a*b*c*np.exp(2*1j*k)

- a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2

+ 27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3)/3 -

(3*a**2 + 3*b**2 + 3*c**2)/(3*(-1/2 -

np.sqrt(3)*1j/2)*(np.sqrt(729*(-a*b*c*np.exp(2*1j*k) -

a*b*c)**2*np.exp(-2*1j*k) - 4*(3*a**2 + 3*b**2 + 3*c**2)**3)/2 +

27*(-a*b*c*np.exp(2*1j*k) - a*b*c)*np.exp(-1j*k)/2)**(1/3))

↪→

↪→

↪→

↪→

↪→

↪→

# Plot the eigenvalues over the first Brillouin zone (-pi < k < pi) of

the trimerized lattice:↪→
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k1 = np.linspace(start = -np.pi, stop = np.pi, num = 50)

fig = plt.figure()

disp = fig.add_axes([0.15, 0.15, 0.8, 0.8])

disp.plot(k1/np.pi, A(k1), 'ko', k1/np.pi, B(k1), 'ko', k1/np.pi, C(k1),

'ko', linewidth=1.5, markersize=4)↪→

disp.set_xlabel('Wavevector, $k_x$ $(\pi / \ell$)')

disp.set_ylabel('Energy, E')

disp.set_xticks([-1.0, 0, 1.0])

disp.set_yticks([-1.5, 0, 1.5])

for item in ([disp.title, disp.xaxis.label, disp.yaxis.label] +

disp.get_xticklabels() + disp.get_yticklabels()):

item.set_fontsize(15)

plt.show()

E.3 Tetramer lattice

##Plot the energy band structure of a tetramized one-dimensional

lattice.↪→

##KML Nov 23, 2018

import numpy as np

import scipy as sp

import sympy as sym

import matplotlib.pyplot as plt

# Define the strength of the tetramer unit cell hopping parameters

a = 1.0

b = 0.7

c = 0.7

d = 0.7

# Define the eigenvalues of the tetramer bulk momentum space

Hamiltonian as a function of the wavevector, k:↪→

def A(k):
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return -np.sqrt(2)*np.sqrt(a**2 + b**2 + c**2 + d**2 -

np.sqrt(a**4*np.exp(2*1j*k) + 2*a**2*b**2*np.exp(2*1j*k) -

2*a**2*c**2*np.exp(2*1j*k) + 2*a**2*d**2*np.exp(2*1j*k) +

4*a*b*c*d*np.exp(3*1j*k) + 4*a*b*c*d*np.exp(1j*k) +

b**4*np.exp(2*1j*k) + 2*b**2*c**2*np.exp(2*1j*k) -

2*b**2*d**2*np.exp(2*1j*k) + c**4*np.exp(2*1j*k) +

2*c**2*d**2*np.exp(2*1j*k) +

d**4*np.exp(2*1j*k))*np.exp(-1j*k))/2

↪→

↪→

↪→

↪→

↪→

↪→

↪→

def B(k):

return np.sqrt(2)*np.sqrt(a**2 + b**2 + c**2 + d**2 -

np.sqrt(a**4*np.exp(2*1j*k) + 2*a**2*b**2*np.exp(2*1j*k) -

2*a**2*c**2*np.exp(2*1j*k) + 2*a**2*d**2*np.exp(2*1j*k) +

4*a*b*c*d*np.exp(3*1j*k) + 4*a*b*c*d*np.exp(1j*k) +

b**4*np.exp(2*1j*k) + 2*b**2*c**2*np.exp(2*1j*k) -

2*b**2*d**2*np.exp(2*1j*k) + c**4*np.exp(2*1j*k) +

2*c**2*d**2*np.exp(2*1j*k) +

d**4*np.exp(2*1j*k))*np.exp(-1j*k))/2

↪→

↪→

↪→

↪→

↪→

↪→

↪→

def C(k):

return -np.sqrt(2)*np.sqrt(a**2 + b**2 + c**2 + d**2 +

np.sqrt(a**4*np.exp(2*1j*k) + 2*a**2*b**2*np.exp(2*1j*k) -

2*a**2*c**2*np.exp(2*1j*k) + 2*a**2*d**2*np.exp(2*1j*k) +

4*a*b*c*d*np.exp(3*1j*k) + 4*a*b*c*d*np.exp(1j*k) +

b**4*np.exp(2*1j*k) + 2*b**2*c**2*np.exp(2*1j*k) -

2*b**2*d**2*np.exp(2*1j*k) + c**4*np.exp(2*1j*k) +

2*c**2*d**2*np.exp(2*1j*k) +

d**4*np.exp(2*1j*k))*np.exp(-1j*k))/2

↪→

↪→

↪→

↪→

↪→

↪→

↪→

def D(k):
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return np.sqrt(2)*np.sqrt(a**2 + b**2 + c**2 + d**2 +

np.sqrt(a**4*np.exp(2*1j*k) + 2*a**2*b**2*np.exp(2*1j*k) -

2*a**2*c**2*np.exp(2*1j*k) + 2*a**2*d**2*np.exp(2*1j*k) +

4*a*b*c*d*np.exp(3*1j*k) + 4*a*b*c*d*np.exp(1j*k) +

b**4*np.exp(2*1j*k) + 2*b**2*c**2*np.exp(2*1j*k) -

2*b**2*d**2*np.exp(2*1j*k) + c**4*np.exp(2*1j*k) +

2*c**2*d**2*np.exp(2*1j*k) +

d**4*np.exp(2*1j*k))*np.exp(-1j*k))/2

↪→

↪→

↪→

↪→

↪→

↪→

↪→

# Plot the eigenvalues over the first Brillouin zone (-pi < k < pi) of

the tetramer lattice:↪→

k1 = np.linspace(start = -np.pi, stop = np.pi, num = 50)

fig = plt.figure()

disp = fig.add_axes([0.15,0.15,0.8,0.8])

disp.plot(k1/np.pi, A(k1), 'ko', k1/np.pi, B(k1), 'ko', k1/np.pi, C(k1),

'ko', k1/np.pi, D(k1), 'ko', linewidth=1.5, markersize=4)↪→

disp.set_xlabel('Wavevector, $k_x$ $(\pi / \ell$)')

disp.set_ylabel('Energy, E')

disp.set_xticks([-1.0, 0, 1.0])

disp.set_yticks([-1.5, 0, 1.5])

for item in ([disp.title, disp.xaxis.label, disp.yaxis.label] +

disp.get_xticklabels() + disp.get_yticklabels()):

item.set_fontsize(15)

plt.show()
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Appendix F

Bloch-Floquet rings GDS library

The GDS files for the devices used for the experimental data in Chapter 6 can be found

. The library contains the following files:

• 10-µm-radius standard ring resonator

• 10-µm-radius ring resonator: κ61 = 120 nm, κ62 = 100 nm

• 10-µm-radius ring resonator: κ61 = 130 nm, κ62 = 110 nm

• 10-µm-radius ring resonator: κ61 = 140 nm, κ62 = 120 nm

• 10-µm-radius ring resonator: κ61 = 150 nm, κ62 = 130 nm

• 10-µm-radius ring resonator: κ61 = 160 nm, κ62 = 140 nm

• 10-µm-radius ring resonator: κ62 = 165 nm

• 10-µm-radius ring resonator: κ62 = 175 nm

• 10-µm-radius ring resonator: κ62 = 185 nm

• 20-µm-radius standard ring resonator

• 20-µm-radius ring resonator: κ122 = 70 nm, κ123 = 60 nm, κ124 = 60 nm

• 20-µm-radius ring resonator: κ122 = 80 nm, κ123 = 70 nm, κ124 = 70 nm

• 20-µm-radius ring resonator: κ122 = 90 nm, κ123 = 80 nm, κ124 = 80 nm

• 20-µm-radius ring resonator: κ122 = 100 nm, κ123 = 90 nm, κ124 = 90 nm
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• 20-µm-radius ring resonator: κ123 = 70 nm

• 20-µm-radius ring resonator: κ123 = 80 nm

• 20-µm-radius ring resonator: κ123 = 90 nm

173



Appendix G

Synthetic dimensions rings GDS

library

The GDS files for the spatially modulated optical ring resonators proposed in Chapter 7

can be found . The library contains the following files:

• 100 µm-radius standard ring resonator

• 100-µm-radius ring resonator: κ1 = 100 nm

• 100-µm-radius ring resonator: κ1 = 150 nm

• 100-µm-radius ring resonator: κ1 = 200 nm

• 100-µm-radius ring resonator: κ1 = 250 nm

• 100-µm-radius ring resonator: κ1 = 300 nm

• 100-µm-radius ring resonator: κ1 = 350 nm

• 100-µm-radius ring resonator: κ1 = 400 nm

• 100-µm-radius ring resonator: κ1 = 450 nm

• 100-µm-radius ring resonator: κ1 = 500 nm

• 100-µm-radius ring resonator: κ1 = 550 nm

• 100-µm-radius ring resonator: κ1 = 600 nm

• 100-µm-radius ring resonator: κ1 = 650 nm
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• 100-µm-radius ring resonator: κ1 = 700 nm

• 100-µm-radius ring resonator: κ1 = 750 nm

• 100-µm-radius ring resonator: κ1 = 800 nm

• 100-µm-radius ring resonator: κ1 = 850 nm

• 100-µm-radius ring resonator: κ1 = 900 nm

• 100-µm-radius ring resonator: κ1 = 950 nm

• 100-µm-radius ring resonator: κ1 = 1 µm
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