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Abstract

Bayesian Learning Frameworks for Multivariate Beta Mixture Models

Mahsa Amirkhani

Mixture models have been widely used as a statistical learning paradigm in various

unsupervised machine learning applications, where labeling a vast amount of data is

impractical and costly. They have shown a significant success and encouraging per-

formance in many real-world problems from different fields such as computer vision,

information retrieval and pattern recognition. One of the most widely used distribu-

tions in mixture models is Gaussian distribution, due to its characteristics, such as

its simplicity and fitting capabilities. However, data obtained from some applications

could have different properties like non-Gaussian and asymmetric nature.

In this thesis, we propose multivariate Beta mixture models which offer flexibility,

various shapes with promising attributes. These models can be considered as decent

alternatives to Gaussian distributions.

We explore multiple Bayesian inference approaches for multivariate Beta mixture

models and propose a suitable solution for the problem of estimating parameters using

Markov Chain Monte Carlo (MCMC) technique. We exploit Gibbs sampling within

Metropolis-Hastings for learning parameters of our finite mixture model. Moreover,

a fully Bayesian approach based on birth-death MCMC technique is proposed which

simultaneously allows cluster assignments, parameters estimation and the selection

of the optimal number of clusters. Finally, we develop a nonparametric Bayesian

framework by extending our finite mixture model to infinity using Dirichlet process

to tackle the model selection problem. Experimental results obtained from challeng-

ing applications (e.g., intrusion detection, medical, etc.) confirm that our proposed

frameworks can provide effective solutions comparing to existing alternatives.
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Chapter 1

Introduction

Data mining and machine learning tools have received much attention recently be-

cause of their capability in modeling and analyzing collected data in various fields

and applications such as computer vision, information retrieval and pattern recogni-

tion [1]. One of the important approaches that has been widely adopted for knowledge

discovery and finding the underlying structure of the data is clustering. Clustering

is an unsupervised learning approach which involves portioning data into different

groups with similar characteristics. The idea is to assign unlabeled data into clus-

ters such that data within a cluster are similar to each other and far from data in

other clusters [2]. Among statistical learning techniques, finite mixture models have

demonstrated high capability to model complex data sets by considering that each

observation has arisen from one of the different groups or components [3,4]. Further-

more, choosing the most proper probability distribution plays an important role in

adapting this model in order to well describe the components. In particular, Gaus-

sian mixture models (GMM) have been widely used for categorization problems and

demonstrated satisfactory fitting abilities on different applications and situations [5].

However, the Gaussian assumption under more general circumstances is not realistic

and data obtained with different properties from various real-life applications may

have non-Gaussian and asymmetric nature [6–8]. Recently, the results of several

works have shown that other alternative distributions such as Beta-Liouville [9, 10],

Dirichlet [11, 12], inverted Dirichlet [13], generalized Dirichlet [14] could outperform

the Gaussian and be a better choice for data clustering in different applications.
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In this thesis, we propose multivariate Beta as the main distribution for our mix-

ture model. This distribution is a multivariate generalization of the bivariate Beta

distribution. Indeed, we explore multivariate Beta mixture to model directly the data

due to its flexibility, various shapes and promising attributes that can be then con-

sidered as an alternative to Gaussian distribution [15]. The results of previous works

have confirmed the convincing performance of this mixture models in different data

mining applications such as object detection, image categorization, outlier detection

and medical applications [16–18].

Deploying mixture models involves two challenging aspects. The first one is the

learning of model parameters and the second one is the estimation of the model com-

plexity or the selection of the number of components which best describes the data

without overfitting or underfitting [3]. To tackle the first problem, several approaches

have been developed. One categorization of these approaches can be deterministic

and Bayesian methods. In deterministic approaches, the inference is based on the

maximum likelihood (ML) estimation, using the well-known expectation maximiza-

tion (EM) algorithm. This technique has been widely used due to its simplicity,

ease of use, and low computational complexity. However, EM algorithm suffers from

several drawbacks such as convergence to local maxima instead of global maximum,

dependency on initialization and overfitting problems [19,20]. With the improvement

of computational methods, Bayesian inference as a particular approach in statisti-

cal inference can be suggested to overcome previous drawbacks. Moreover, these

computational methods have been recently incorporated in many machine learning

applications because of their capabilities and more accurate results compared to EM.

The idea behind Bayesian method is to derive properties of probability distribution

from data using Bayes’ theorem. Indeed, we use our prior beliefs about parameters

and update them using knowledge extracted from the observations to obtain posterior

probability [21]. Bayesian approaches are based on sampling techniques and Markov

Chain Monte Carlo (MCMC) is commonly used as a means of Bayesian inference to

draw samples from probability distribution. Thus in this thesis, first we introduce

a Bayesian inference framework based on MCMC algorithm, where Gibbs sampling

within Metropolis-Hastings is applied for the problem of estimating the parameters

of the finite multivariate Beta mixture model. Moreover, we propose a fully Bayesian
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approach based on birth-death MCMC, which simultaneously performs the estima-

tion of model parameters and model selection. Finally, a nonparametric Bayesian

framework is developed in this thesis by extending our finite model to infinity using a

mixture of Dirichlet processes. This method will address the second major challenge

in deploying mixture model; i.e., determining the accurate number of clusters.

1.1 Contribution

The major contributions of this thesis are as follows:

+ Bayesian learning of finite multivariate Beta mixture models:

We present a Bayesian analysis of finite multivariate Beta mixture model

and propose a solution for the problem of estimating parameters using

MCMC technique. We exploit Gibbs sampling within Metropolis-Hastings

for Monte Carlo simulation. We also obtained prior distribution which is a

conjugate for multivariate Beta. The performance of our proposed method

is evaluated via challenging applications, including cell image categoriza-

tion and network intrusion detection. This contribution has been published

in 2020 IEEE 21st International Conference on Information Reuse and In-

tegration for Data Science (IRI) [22].

+ Birth-death MCMC approach for multivariate Beta mixture models:

We propose a Bayesian method based on the birth-death MCMC for mul-

tivariate Beta mixture model. It allows automatic and simultaneous esti-

mation of the parameters and model selection by constructing birth and

death moves. The effectiveness of the proposed approach is evaluated us-

ing real-world medical applications. This work has been submitted to the

34th International Conference on Industrial, Engineering and Other Ap-

plications of Applied Intelligent Systems.

+ A nonparametric Bayesian framework for multivariate Beta mixture

models:

We extend the finite multivariate Beta mixture model to the infinite case

through a nonparametric Bayesian framework namely Dirichlet process.
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Infinite model addresses the model selection problem; i.e., determination

of the number of components that best describe data and and allows si-

multaneous data clustering. This work has been submitted to Journal

of Annals of Mathematics and Artificial Intelligence (Springer) and is in

review process of the revised version.

1.2 Thesis Overview

The rest of this thesis is organized as follows:

r In chapter 2, we introduce the multivariate Beta mixture model. In addition,

a Bayesian learning framework for our finite mixture model is presented based

on Gibbs sampling within Metropolis-Hastings algorithm where we develop the

conjugate prior and show the results of our proposed model on real-world ap-

plications.

r In Chapter 3, we propose birth-death MCMC algorithm as a fully Bayesian

approach for multivariate Beta mixture model with unknown number of com-

ponents. We show the capability of our model in data clustering and finding

the number of components through medical applications.

r Chapter 4 is devoted to infinite mixture model of multivariate Beta distributions

by applying nonparametric Bayesian estimation and inference techniques. We

demonstrate the effectiveness of the proposed approach via a set of challenging

applications and our achieved results are compared to other different methods.

r In chapter 5, we briefly summarize our contributions.
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Chapter 2

Bayesian Learning of Finite

Multivariate Beta Mixture Models

In this chapter, we present a Bayesian approach to analyze finite multivariate Beta

mixture models. Bayesian approaches are based on sampling techniques and Markov

Chain Monte Carlo (MCMC) is commonly used as a means of Bayesian inference to

draw samples from probability distribution. Gibbs sampling and Metropolis-Hastings

are specific cases of MCMC class which allow to simulate samples from complex pos-

terior distributions over parameters and their stochastic nature, prevents the prob-

lem of local maxima [19, 23]. Hence, we introduce a Bayesian framework based on

MCMC algorithm, where Gibbs sampling within Metropolis-Hastings is applied for

the problem of estimating the model parameters. We evaluate the performance of our

proposed model on two real-world and challenging applications including cell image

categorization and network intrusion detection. For each application, the results are

compared with Bayesian Gaussian mixture model in terms of data clustering.

2.1 Model Specification

In this section, first we introduce multivariate Beta distribution. Then, we explain

how finite mixture model is constructed based on this distribution.
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2.1.1 Multivariate Beta Distribution

The multivariate Beta (MB) distribution is constructed by generalization of the bi-

variate Beta distribution to D variate distribution. This distribution, as proposed

in [24, 25], has the capability to model non-Gaussian data due to its flexibility and

various shapes. To describe it, lets assume that a data point, originated from a MB

distribution is a D-dimensional vector, ~Xi =
(
xi1, . . . , xid

)
, such that 0 < xid < 1.

The shape parameters of this distribution are ~αj =
(
αj1, . . . , αjD

)
, such that αjd > 0

for d = 1, . . . , D and |αj| =
∑D

d=1 αjd. The joint density function of this observation

p( ~Xi|~αj) is:

p( ~Xi | ~αj) = c

∏D
d=1 x

αjd−1

id∏D
d=1(1− xid)(αjd+1)

[
1 +

D∑
d=1

xid
(1− xid)

]−|αj |
(1)

where

c =
Γ(αj1 + · · ·+ αjD)

Γ(αj1) . . .Γ(αjD)
=

Γ(| αj |)∏D
d=1 Γ(αjd)

(2)

Γ(.) denotes the Gamma function. Examples of MB distribution with different shape

parameters are shown in Fig. 1.

Figure 1: Two examples of multivariate Beta distribution

2.1.2 Finite Multivariate Beta Mixture Model

Lets consider X = { ~X1, . . . , ~XN} be a data set containing N D-dimensional vectors,

independent and identically distributed, such that each vector ~Xi =
(
xi1, . . . , xid

)
is

originated from a finite but unknown MB mixture model. The likelihood of a finite

6



mixture of MB distributions with M components, represented by X is denoted by:

p
(
X | ~P , ~α

)
=

N∏
i=1

M∑
j=1

pjp
(
X | ~αj

)
(3)

In this equation, ~αj =
(
αj1, . . . , αjD

)
for j = 1, . . . ,M are the shape parameters

for jth component. The complete set of parameters are ~α =
(
~α1, . . . , ~αM

)
as shape

parameters and ~P = (p1, . . . , pM) as mixing weights with two following conditions:∑M
j=1 pj = 1 and pj >= 0.

Figure 2 illustrates four examples of this mixture model with multiple components.

(a) Two components (b) Three components

(c) Four components (d) Five components

Figure 2: Examples of multivariate Beta mixture models

2.2 Bayesian Learning Framework

A challenging issue in the learning phase of mixture models, is the estimation of

model parameters. Generally the estimation is based on the EM algorithm and maxi-

mization of the likelihood of the data [26] by introducing the latent indicator variable

7



Z = {~Z1, . . . , ~ZN}. For each observation ~Xi, ~Zi = (Zi1, . . . , ZiM) indicates which

component it belongs to [15], such that:

Zij =

1 if ~Xi belongs to component j

0 otherwise
(4)

In other words, if ~Xi has the highest probability of being in cluster j, then Zij = 1

and for other clusters Zij = 0. Thus, by considering the membership vectors for X ,

we have a complete form of data as (X ,Z) which follows p(X ,Z | Θ). The symbol

Θ = (~α, ~P ) indicates the entire set of parameters. The complete likelihood function

is then obtained by combining Eq. 3 and Eq. 4:

p
(
X ,Z | Θ

)
=

N∏
i=1

M∏
j=1

(
p
(
~Xi | ~αj

)
pj

)Zij
(5)

Among various deterministic and stochastic approaches for the problem of learning

model parameters, we propose a Bayesian framework for MB mixture model due to

its remarkable properties and advantages over the likelihood-based approaches. The

main difference between Bayesian and likelihood-based methods is that in Bayesian

inference, we incorporate our prior knowledge with the likelihood of data, to determine

the final posterior probability. The prior belief about parameter Θ, is specified in a

prior distribution p(Θ). This means that here we consider the model parameters as

random variables and our final goal is to estimate the distribution over the parameters

rather than a single set of parameters. This relationship can be shown using well-

known Bayes theorem:

p(Θ | X ,Z) =
p(X ,Z | Θ)p(Θ)∫
p(X ,Z | Θ)p(Θ)

∝ p(X ,Z | Θ)p(Θ) (6)

The proposed Bayesian learning framework is based on estimating the posterior dis-

tribution of the mixture model using MCMC techniques. By having the posterior

distribution, we are able to simulate Θ ∼ p(Θ | X ,Z), with the help of most com-

monly used simulation techniques, namely Gibbs sampling [19]. This method updates

each parameters in turn from its conditional posterior distribution. Then we com-

bine Gibbs sampler with Metropolis-Hastings algorithm, where it leads to a flexible

solution and convincing performance.

8



Accordingly, by taking a missing multinomial variable ~Zi into account for each

~Xi, such that ~Zi ∼M(1; Ẑi1, . . . , ẐiM), we have:

Ẑij =
p
(
~Xi| ~αj

)
pj∑M

j=1 p
(
~Xi| ~αj

)
pj

(7)

The density function of the mixing weights is independent of X , so it can be defined

as [27]:

p(~P | Z,X ) = p(~P | Z)

p(~P | Z) ∝ p(Z | ~P )p(~P )

(8)

For the mixing weight parameters pj, considering the nature of that (0 < pj < 1 and∑M
j=1 pj = 1), the natural choice of the prior is Dirichlet distribution [28], which is

defined by Eq. 9, where η = (η1, . . . , ηM) is the Dirichlet distribution’s parameter

vector:

p(~P ) =
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j (9)

Moreover we have:

p(Z | ~P ) =
N∏
i=1

p(Zi | ~P ) =
N∏
i=1

pZi11 , . . . , pZiMM

=
N∏
i=1

M∏
j=1

p
Zij
j =

M∏
j=1

pj
nj

(10)

where nj =
∑N

i=1 IZij=j. Hence, with having the information in Eq. 9 and Eq. 10,

the posterior is defined as:

p(~P | Z) =
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j

M∏
j=1

p
nj
j

=
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

P
ηj+nj−1
j

∝ D(η1 + n1, . . . , ηM + nM)

(11)

where D is a Dirichlet distribution with parameters (η1 + n1, . . . , ηM + nM).

In order to find a proper prior p( ~αj), for the shape parameter of MB mixture

model ( ~αj), we consider the fact that MB distribution belongs to the exponential

9



family. In fact, if a S-parameter density p belongs to the exponential family and we

assume θ as its distribution parameter, then we have the form of [29, 30]:

p( ~X | θ) = H( ~X)exp
[ S∑
l=1

Gl(θ)Tl( ~X) + Φ(θ)
]

(12)

For a vector of parameters, T ( ~X) is called the natural sufficient statistic. In this case,

a conjugate prior on θ is given by following equation where ρ = (ρl, . . . , ρS) ∈ RS and

κ > 0 are hyperparameters:

p(θ) ∝ exp
( S∑
l=1

ρlGl(θ) + κΦ(θ)
)

(13)

By writing MB in an exponential density form, we have:

p( ~Xi | ~αj) = exp

[
log Γ(| αj |)−

D∑
d=1

log Γ(αjd) +
D∑
d=1

αjd logXid (14)

−
D∑
d=1

logXid −
D∑
d=1

αjd log(1−Xid)

−
D∑
d=1

log(1−Xid)− | αj | log(1 +
D∑
d=1

Xid

1−Xid

)

]
Then, by letting

Φ( ~αj) = log Γ(| αj |)−
D∑
d=1

log Γ(αjd) (15)

H( ~X) = exp
[
−

D∑
d=1

logXid −
D∑
d=1

log(1−Xid)
]

G′d( ~αj) = αjd d = 1, . . . , D T ′d(X) = logXid

G′′d( ~αj) = −αjd d = 1, . . . , D T ′′d (X) = log(1−Xid)

G( ~αj) = − | αj | T (X) = log(1 +
D∑
d=1

Xid

1−Xid

)

The prior distribution is thereby as follows, with hyperparameters (ρ′d, ρ
′′
d, ρ, κ) for

10



d = 1, . . . , D:

p( ~αj) ∝exp
[ D∑
d=1

ρ′dαjd −
D∑
d=1

ρ′′dαjd − ρ | αj | +κ
(

log Γ(| αj |)−
D∑
d=1

log Γ(αjd)

)]
(16)

Having the prior for ~αj, we can determine the posterior distribution as follows:

p( ~αj | Z,X ) ∝ p( ~αj)
∏
Zij=1

p( ~Xi | ~αj) (17)

∝ exp

[ D∑
d=1

(
ρ′d +

∑
Zij=1

logXid

)
αjd +

D∑
d=1

(
ρ′′d +

∑
Zij=1

log(1−Xid)
)
αjd

+

(
ρ+

∑
Zij=1

log
[
1 +

D∑
d=1

Xid

1−Xid

])
| αj |

+ (κ+ nj)

(
log Γ(| αj |)−

D∑
d=1

log Γ(αjd)

)]
Since the prior and posterior distributions have the same form, we conclude that

p( ~αj) is a conjugate prior on ~αj. We choose the hyperparameters fixed at: ηj = 1, j =

1, . . . ,M and ρ′d, ρ
′′
d, ρ = 1, for d = 1, . . . , D and κ = 1.

Having all the posterior probabilities in hand, we can apply Gibbs sampler for our

mixture model. It simulates each parameter from its posterior successively, given the

previously sampled values. The standard Gibbs sampling is described in the following

steps [27]:

1. Initialization

2. Step t: For t = 1, . . .

(a) Generate ~Z
(t)
i ∼M(1; Ẑ

(t−1)
i1 , . . . , Ẑ

(t−1)
iM )

(b) Compute n
(t)
j =

∑N
i=1 IZ(t)

ij =j

(c) Generate ~P (t) from (11)

(d) Generate ~αj
(t) for j = (1, . . . ,M) from (17) using the Metropolis-Hastings

(M-H) algorithm.

11



where M(1; Ẑ
(t−1)
i1 , . . . , Ẑ

(t−1)
iM ) denotes a Multinomial distribution of order one with

parameters (Ẑ
(t−1)
i1 , . . . , Ẑ

(t−1)
iM ). In order to simulate from ~αj posterior distribution,

Metropolis-Hastings method (M-H) is suggested [31]. It is used to avoid direct sam-

pling of mixture parameters. For a specific iteration t, the steps of the M-H algorithm

are as follows [32]:

1. Generate α̃jd ∝ q( ~αj | ~αj(t−1)) and U ∝ U [0, 1]

2. Compute r =
p(α̃j |Z,X )q( ~αj

(t−1)|α̃j)
p( ~αj

(t−1)|Z,X )q(α̃j | ~αj(t−1))

3. If r < u then ~αj
(t) = α̃j else ~αj

(t) = ~αj
(t−1)

The important issue related to this algorithm is the choice of proposal distribution.

Since all α̃jd > 0, d = 1, . . . , D, we considered a random walk M-H with the following

proposal distribution:

α̃jd ∼ LN (log(α
(t−1)
jd ), σ2) (18)

where LN (log(α
(t−1)
jl ), σ2) is the log-normal distribution with mean log(α

(t−1)
jl ) and

variance σ2. Note that Eq. 18 is equivalent to:

log(α̃jd) = log(α
(t−1)
jd ) + ε1 (19)

and ε1 ∼ N (0, σ2). In the second step of the M-H algorithm, an acceptance ratio

r needs to be calculated in order to make a decision whether the new samples at

iteration t should be accepted or rejected for the next iteration. Having the proposal

distribution, the random walk M–H algorithm is composed of the following steps:

1. Generate α̃jd ∼ LN (log(a
(t−1)
jd ), σ2), d = 1, . . . , D and U ∝ U [0, 1]

2. Compute:

r =
p(α̃j | Z,X )

∏D
d=1 LN ((α

(t−1)
jd ) | log(α̃jd), σ

2)

p( ~αj
(t−1) | Z,X )

∏D
d=1 LN (α̃jd | log(α

(t−1)
jd ), σ2)

=
p(α̃j | Z,X )

∏D
d=1 α̃jd

p( ~αj
(t−1) | Z,X )

∏D
d=1 α

(t−1)
jd

3. If r < u then ~αj
(t) = α̃j else ~αj

(t) = ~αj
(t−1)

To summarize the complete Bayesian learning method proposed in this chapter,

algorithmic version of that based on M-H-within-Gibbs sampler is consolidated in the

following algorithm:
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Algorithm 1 M-H-within-Gibbs sampling Algorithm

1. Initialization

(a) Apply K-means algorithm

(b) initialize ~αj for each component j

Repeat

2. Gibbs Sampling

(a) Generate ~Z
(t)
i ∼M(1; Ẑ

(t−1)
i1 , . . . , Ẑ

(t−1)
iM )

(b) Compute n
(t)
j =

∑N
i=1 IZ(t)

ij =j

(c) Generate ~P (t) from (11)

3. Metropolis-Hastings

(a) Generate α̃jd ∝ q( ~αj | ~αj(t−1)) and U ∝ U [0, 1]

(b) Compute r =
p(α̃j |Z,X )q( ~αj

(t−1)|α̃j)
p( ~αj

(t−1)|Z,X )q(α̃j | ~αj(t−1))

(c) If r < u then ~αj
(t) = α̃j else ~αj

(t) = ~αj
(t−1)

until Convergence of parameters.

2.3 Experimental Results

In this section, we evaluate the performance of our proposed multivariate Beta mix-

ture model with Bayesian approach (BMBMM) by testing it on two real-world appli-

cations, namely cell image categorization and network intrusion detection. Moreover,

we compare its effectiveness with Bayesian Gaussian mixture model (BGMM). It

should be noted that as an important step of the preprocessing in our algorithm, we

use min-max normalization (Eq. 20) since one of the assumptions of MB distribution

is that the values of all observations are positive and less than one.

X ′ =
X −Xmin

Xmax −Xmin

(20)

In addition, it should be pointed out that our experiments are based on clustering with

no training step as entire data is given into the algorithm with no prior knowledge

about the labels. For this, we first removed the original labels of datasets and with
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the help of our proposed clustering model, we found the predicted labels of each

observation. Then, the accuracy is measured by confusion matrix, comparing the

predicted labels with true ones. In order to assess our model performance against

other method, we use standard metrics based on confusion matrix which are defined

as follows:

Accuracy =
TP + TN

Total no of observations
Precision =

TP

TP + FP
(21)

Recall =
TP

TP+FN
F1-score = 2× precision× recall

precision+ recall

where TP, TN, FP, and FN represent the total number of true positives, true nega-

tives, false positives, and false negatives respectively.

2.3.1 Cell Image Categorization

Pattern recognition methods have achieved remarkable attention in medicine and

biomedical researches and have been successfully applied across various problem do-

mains, such as cell image classification. These machine learning algorithms provide

the ability to differentiate various types of cells based on their biological behaviors

and characteristics. These automated methods could be applied in cell biology and

screening experiments for the diagnosis and prognosis of diseases from label-free cel-

lular images obtained from an optical microscope.

Malaria is an infectious and life-threatening disorder caused by Plasmodium parasites

that are transmitted by the bites of infected types of mosquitoes. Based on WHO

Malaria facts, 219 million cases of Malaria and 435,000 deaths associated with this

disease were globally reported in 2017 [33]. This is a motivation to make an accurate

diagnosis and early detection in order to decrease morbidity and mortality. Malaria

parasites can be identified by examining blood smear to find the cells infected with

malaria which are identified by the small clot inside the cellular images in contrast

with uninfected cells which are clean without any clot. Figure 3 illustrates 8 image

samples of cells.

In our experiment, we used NIH Malaria dataset [34]. We examined 159 images

including 79 uninfected cells and 80 parasitized cells from the thin blood smear slide

images of segmented cells. Scale-Invariant Feature Transform (SIFT) [35] and Bag

of Visual Words (BoVW) are used to extract important features from these images.
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Figure 3: Some random images of Malaria cell database. Top row samples are unin-
fected and bottom row samples are parasitized blood smear.

After normalizing data in the first step, K-means is applied to obtain M clusters.

Then for each component j, we initialize the parameters ~αj. For evaluating the per-

formance of our cluster analysis, we use standard metrics such as accuracy, precision,

recall and F1-score.

The confusion matrices of our proposed Bayesian model and BGMM are shown in

Table 1. Actual labels and predicted labels are denoted by (AC) and (P), respectively.

Table 2 reveals the comparison between different results of performance metrics for

both models which shows that BMBMM outperforms BGMM.

Table 1: Confusion matrices for Malaria cells

BMBMM
Healthy (P) Infected (P)

Healthy (AC) 70 9
Infected (AC) 11 69

BGMM
Healthy (P) Infected (P)

Healthy (AC) 72 7
Infected (AC) 15 65
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Table 2: Model performance results for Malaria images

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
BMBMM 87.42 88.46 86.25 87.34
BGMM 86.16 90.27 81.25 85.53

2.3.2 Intrusion Detection

Network security as part of cyber-security systems has recently become an extremely

important issue for users and service providers, while a huge amount of devices can

connect to the internet and communicate through the network. Nevertheless, a large

variety of attacks, mobile threats and intrusion attempts can be occurred in many

networking environments and computing facilities. These anonymous and malicious

activities may cause network crashes, communication failure and loss of sensitive

data. To that end, detecting and preventing such activities should be a mandate

in current computer networks. Intrusion Detection Systems (IDSs) are developed

to discover and detect any abnormal actions, such as identify unauthorized access,

alteration and destruction within the networks by monitoring the network traffics

permanently [36].

According to the constant changes in network connections and environments, in-

telligent and reliable intrusion detection systems should be designed to cover dynamic

patterns and behavior of the networks. Machine learning and data mining based so-

lutions can be leveraged to create robust and effective IDS. These systems are able to

analyze and learn from the existing traffic patterns to accurately predict the upcom-

ing traffic and the behaviors of users [37]. Supervised machine learning algorithms

have been proposed to detect abnormal activities (anomaly) considering the normal

network behavior and already known intrusion scenarios. Such supervised algorithms

suffer from significant drawbacks, where they are not robust to network traffic changes

and newly founded intrusions. Since they are trained on historical data under prede-

fined patterns, they may fail to perform accurately due to overfitting problems. On

the other hand, unsupervised machine learning based solutions can provide flexibility

and robustness in accurate intrusion detection and adapt themselves with the latest

network behavior [38].

In this paper, the NSL-KDD data [39], a refined version of famous KDD-CUP’99

intrusion detection dataset is employed. We used 20% of whole data which contains
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25,192 entries. The data has two categories of 13449 normal and 11743 anomaly

instances. All various attacks such as DoS, Probe, R2L and U2R are grouped together

in anomaly class. Each connection has 41 quantitative and qualitative features. In the

preprocessing step, we need to convert all categorical attributes to numerical before

normalizing the data. The confusion matrices obtained by using our proposed model

and BGMM are shown in Tables 3.

Table 3: Confusion matrices for intrusion detection dataset

BMBMM
Normal (P) Anomaly (P)

Normal (AC) 10617 2832
Anomaly (AC) 2103 9640

BGMM
Normal (P) Anomaly (P)

Normal (AC) 10895 2554
Anomaly (AC) 4191 7552

Four performance measures for BMBMM and BGMM are represented in Table 4.

Table 4: Model performance results for intrusion detection

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
BMBMM 80.41 77.29 82.09 79.62
BGMM 73.22 74.72 64.31 69.13

Statistics in Table 4 reveal the fact that comparing to BGMM, BMBMM provides

higher accuracy, precision, recall anf F1-score indicate that BMBMM outperforms

BGMM. Additionally, another important metric in binary classification is False Neg-

ative Rate (FNR = FN
FN+TP

). This ratio shows the incorrect identification of anomaly.

It means classifying data as normal incorrectly, which is in fact the attack. For our

model, FNR is 17.9% which is significantly lower than the result provided by BGMM

(35.69%), showing the efficiency and capability of MB mixture model in detecting

intrusions.
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Chapter 3

Birth-Death MCMC Approach for

Multivariate Beta Mixture Models

In this chapter, we present birth-death MCMC (BDMCMC) approach for MB mixture

model. It is based on continuous time birth-death events which simultaneously per-

forms the estimation of model parameters and model selection. Moreover, we present

the experimental results obtained from two real-world medical applications namely

heart failure detection and Thyroid disease detection to demonstrate the effectiveness

of the proposed algorithm.

3.1 Bayesian Inference via BDMCMC

In this section, we propose our Bayesian framework for parameters estimation of

our mixture model and determining the proper number of mixture components as

two major challenges in mixture modeling. Concerning parameters estimation, we

employed Bayesian learning and with the help of the most commonly used MCMC

techniques, namely Gibbs sampling and Metropolis–Hastings algorithm, the posterior

distribution of the mixture model can be approximated.

Another challenge in the context of the mixture of distributions is model selection,

for which several approaches have been suggested within Bayesian inference such as

Bayes factors, Bayesian Information Criterion (BIC), reversible jump MCMC (RJM-

CMC) and birth and death processes [40–43]. For variable dimension problems, a

common approach in literature is RJMCMC, where it consists of split/combine and
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birth/death moves for changing the number of components. However, the extension

of this method to multivariate cases is difficult. Therefore, a birth-death MCMC

(BDMCMC) algorithm has been introduced in [40] which we use in this chapter for

learning of MB mixture model. It is based on generating an ergodic Markov Chain

with the joint posterior distribution of the parameters and the model as its stationary

distribution, where the number of components is considered as unknown. It is also

proved that RJMCMC converges to BDMCMC under certain conditions [44]. More-

over, the results of several studies based on this algorithm have shown convincing

performance in the case of mixture of various distributions such as gamma, Dirichlet

and Beta [45–47].

3.1.1 Priors and Posteriors

In fully Bayesian framework, the unknown number of components M with the other

parameters of the model (~P , ~α) are regarded as random variables drawn from some

prior distributions that we have to determine. The joint distribution of all these

variables is:

p(M, ~P , Z, ~α,X ) =p(M)p(~P |M)p(Z | ~P ,M) (22)

p(~α | Z, ~P ,M)p(X | ~α, Z, ~P ,M)

Following [42], by imposing common conditional independencies, the joint distribution

can be written as following:

p(M, ~P , Z, ~α,X ) = p(M)p(~P |M)p(Z | ~P ,M)p(~α |M)p(X | ~α, Z) (23)

Then, the main goal of the Bayesian inference is to create realizations from the con-

ditional joint density p(M, ~P , Z, ~α | X ).

One of the important steps in Bayesian learning is the choice of suitable prior

distributions for the parameters of mixture model. First for the number of components

M , we assume a truncated Poisson prior as below:

p(M) ∝ λM

M !
, (M = 1, . . . ,Mmax) (24)

Assuming that the parameters of the MB are statistically independent, for the shape

parameters ~α, an appealing choice as a prior is a Gamma distribution denoted by
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G(.) that can be written as follows:

p(~αj) = G(~αj | ~u,~v) =
D∏
d=1

vudd
Γ(ud)

αud−1
jd e−vdαjd (25)

Here {ujd} and {vjd} are hyperparameters which have constraint such that ujd > 0

and vjd > 0. Having this prior in hand, the full conditional posterior distribution for

~αj is:

p( ~αj | . . . ) ∝ p( ~αj | ~u,~v)
N∏
i=1

p( ~Xi | ΘZi) (26)

∝
D∏
d=1

vudd
Γ(ud)

αud−1
jd e−vdαjd

×
[

Γ(| αj |)∏D
d=1 Γ(αjd)

]nj ∏
Zi=j

[ ∏D
d=1 x

αjd−1

id∏D
d=1(1− xid)(αjd+1)

(
1 +

D∑
d=1

xid
(1− xid)

)−|αj |]

where nj =
∑N

i=1 IZi=j indicates the number of observations belonging to cluster j and

symbol | . . . represent conditioning on all other variables. Moreover, for the mixing

weight vector ~P , we know that it is defined on (p1, . . . , pM) :
∑M−1

j=1 pj < 1, then the

typical prior choice is a Dirichlet distribution with parameters η = (η1, . . . , ηM) as

following:

p(~P |M, η) =
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j (27)

Also, the prior for the latent variable Z is:

p(Z | ~P ,M) =
M∏
j=1

p
nj
j (28)

Then, using Eqs. 27 and 28 we obtain:

p(~P | . . . ) ∝ p(Z | ~P ,M)p(~P |M, η) (29)

∝
M∏
j=1

p
nj
j

Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

π
ηj−1
j

∝
M∏
j=1

p
nj+ηj−1
j
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which indicates a Dirichlet distribution with parameters (η1+n1, . . . , ηM+nM). More-

over, recalling p(Zi = j) = pj for (i = 1, . . . , N ; j = 1, . . . ,M), we can obtain the

posterior for the membership variables as follows:

p(Zi = j | . . . ) ∝ pjp( ~Xi | ~αj) (30)

3.1.2 BDMCMC Methodology

Now we follow the BDMCMC algorithm proposed in [40] to obtain a sample from the

posterior distributions of the parameters. The method is designed based on generating

a continuous time Markov birth-death process with considering prior for number of

mixture components. In this approach, the model parameters can be considered as

observations from a marked point process, where each point represents a component

of the mixture [48]. In order to create an ergodic Markov chain, the mixture size, M ,

can change, where it can allow new components to be born or existing components

to die. Therefore, births and deaths may happen in continuous time, where their

happening rates could define the stationary distribution of the process [45].

In this process, birth of new components happen at a constant rate from the prior

distribution of M , while the death occurs at a rate which is high for less significant

components and very low for important components which describe the data well.

Whenever the birth event occurs, the weight of new component is calculated from a

Beta distribution with parameters (1,M) and the number of components is increased.

Then, in order to keep the sum of all the weights equal to unity, the old component

weights are scaled down proportionally through multiplying each mixing weight by

(1 − p∗), where p∗ is the weight of the new component. On the other hand, after

eliminating a component, each mixing weight is divided by (1− p∗), (p∗ is the weight

of the removed component) [47]. A death event decreases the number of mixture

components, where the death rate for each component is computed as a likelihood

ratio of the model with and without that component as follows [45]:

∆j =
N∏
i=1

(
p
(
~Xi | Θ

)
− pjp( ~Xi | ~αj)

(1− pj)p
(
~Xi | Θ

) )
, j = 1, . . . ,M (31)

Where p
(
~Xi | Θ

)
=

M∑
j=1

pjp
(
~Xi | ~αj

)
. Then, the total death rate of the process at

any time is obtained by the sum of the individual death rates, i.e., ∆ =
∑

j ∆j,
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for j = 1, . . . ,M . Since births and deaths are independent Poisson processes, the

time between each birth or death occurrence is exponentially distributed with mean

1/(∆ + λ). We assume the constant λ from prior of M in Eq. 24 for birth rate of

mixture component.

The complete BDMCMC algorithm can be summarized in Algorithm 2.

Algorithm 2 Birth-Death MCMC learning of MBMM

Initialize parameters M (0), ~P (0), ~α(0)

1. Begin the birth-death process for a virtual fixed time t0 and let the birth rate
equivalent to λ.

(a) Calculate the death rates for each component, ∆j , and the total death
rate, ∆ =

∑
j ∆j.

(b) Simulate the time to the next jump from an exponential distribution with
mean 1/(∆ + λ).

(c) If the run time is lower than t0 continue otherwise jump to step 2.

(d) Simulate the type of jump: birth or death with probabilities: p(birth) =
λ

λ+∆
, p(death)= ∆

λ+∆

(e) Make the adjustment for mixture components.

MCMC steps

2. Update the allocation Z(i+1).

3. Update the mixing parameters ~P (i+1).

4. Update the parameters ~αj
(i+1)

5. Set i = i+ 1 and iterate

The first step of this algorithm is the birth-death process, while the rests are

standard Gibbs sampling moves. In order to sample from ~αj posterior, we exploit

Metropolis-Hastings (M-H) method that we introduced and used in Chapter 2 . It

is used to avoid direct sampling of mixture parameters since the full conditional

distribution given by Eq. 26 is complex and does not have a well-known form.

For a specific iteration t, the steps of the M-H algorithm, to sample ~αj, are as follows

[32]:

1. Generate α̃jd ∼ q
(
~αj | ~αj(t−1)

)
and u ∼ U[0,1]
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2. Compute r =
p(α̃j |... )q

(
~αj

(t−1)|α̃j
)

p( ~αj
(t−1)|... )q

(
α̃j | ~αj(t−1)

)
3. If r < u then ~αj

(t) = α̃j else ~αj
(t) = ~αj

(t−1)

The main issue related to this algorithm is the choice of proposal distribution. Since

all α̃jd > 0, d = 1, . . . , D, we assumed a random walk M-H with the following proposal

α̃jd ∼ LN (log(α
(t−1)
jd ), σ2), where LN (log(α

(t−1)
jl ), σ2) is the log-normal distribution

with mean log(α
(t−1)
jl ) and variance σ2.

In this algorithm, by producing samples from posterior distributions over the Markov

Chain, the parameters of interest including M , can then be estimated by forming the

sample path averages after a burn-in period.

3.2 Experimental Results

In this section, we validate the performance of our proposed BDMCMC algorithm

for MB mixture model (BD-MBMM) on real-world medical tasks. We investigate

its ability to estimate the mixture parameters and simultaneously select the proper

number of components. We compared our proposed model with similar algorithm for

GMM (BD-GMM) and present the results in comparison tables. In our experiments,

we consider Mmax = 10 and the effectiveness of the model is evaluated in terms of

the accuracy, precision, recall and F1-score based on confusion matrix.

3.2.1 Heart Failure Detection

Cardiovascular diseases (CVDs) as serious health issues still remain the leading cause

of death globally. In particular, heart failure is a condition caused by CVDs in which

the pumping power of the heart is not sufficient to move blood and oxygen in the

body. The CVDs can be preventable if the underlying main risk factors, such as

high blood pressure, level of cholesterol, diabetes and stress be under control. For

this purpose, medical records can be considered as useful resources for designing

automatic diagnosis systems using data mining tools [49].

In this experiment, we used real-world data set obtained from the UCI Repository

[50], which includes medical records of 299 patients having heart failure to evaluate

our proposed model. It consists of 13 features derived from multiple medical tests,
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lifestyle and body information. The data set is comprised of two target classes that

imply whether patients with heart failure died or survived. The confusion matrices

obtained using the models are given in Table 5. Actual labels and predicted labels are

denoted by (AC) and (P), respectively. Table 6 represents the comparison between

different results of performance metrics for both models which shows that BD-MBMM

outperforms BD-GMM.

Table 5: Confusion matrices for heart failure

BD-MBMM
Survive (P) Not Survive (P)

Survive (AC) 188 15
Not Survive (AC) 44 52

BD-GMM
Survive (P) Not Survive (P)

Survive (AC) 179 24
Not Survive (AC) 61 35

Table 6: Model performance results for heart failure

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
BD-MBMM 80.27 77.61 54.16 63.8
BD-GMM 71.57 59.32 36.45 45.15

3.2.2 Thyroid Disease Detection

Thyroid as a primary gland produces hormones to regulate the metabolism of the

body. The most common thyroid disorders can occur when the thyroid hormones

are abnormal. Hyperthyroidism and hypothyroidism are the two main diseases of

the thyroid that happen either by releasing too much T4 hormone or by releasing

less. Most thyroid problems can be treated by early detection and proper diagnosis.

In medical field, data mining has emerged to assist the healthcare experts in early

detection, diagnosis and prevention of this disease [51].

In our study, we applied our model on a publicly available data set [52], which

includes a sample of 215 patients. The features are the results of the five laboratory

tests, namely: RT3U, T4, T3, TSH and DTSH. The data set has three classes which
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indicate the diagnosis of thyroid operation as Hypo, Normal, and Hyper. The confu-

sion matrices in Table 7 and the results presented in Table 8 illustrate the potential

of our proposed model performance in this application for data clustering and finding

the proper number of components.

Table 7: Confusion matrices for Thyroid disease

BD-MBMM
Hyper (P) Normal (P) Hypo (P)

Hyper (AC) 22 8 5
Normal (AC) 0 144 6
Hypo (AC) 2 5 23

BD-GMM
Hyper (P) Normal (P) Hypo (P)

Hyper (AC) 20 15 0
Normal (AC) 1 132 17
Hypo (AC) 4 7 19

Table 8: Model performance results for Thyroid disease

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
BD-MBMM 87.9 83.67 78.5 81.0
BD-GMM 79.53 72.83 69.49 71.12
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Chapter 4

A Nonparametric Bayesian

Framework for Multivariate Beta

Mixture Models

In this chapter, we adapt and investigate infinite mixture model based on MB dis-

tribution. For this, we develop a nonparametric Bayesian approach by extending

finite MB mixture model proposed in chapter 2 to infinity using a mixture of Dirich-

let processes. Our approach relies on the estimation of the posterior distribution

using Gibbs sampling and Metropolis-Hastings algorithm. Finally, the experimen-

tal results are presented to show the effectiveness of our model compare to different

other models, which involves four balanced and imbalanced real-world applications

namely intrusion detection, Hepatitis diagnosis, software defect categorization and

image categorization.

4.1 The Infinite Multivariate Beta Mixture Model

Choosing the accurate number of clusters M that can correctly describe the data is an

important, yet challenging issue in designing mixture models. Therefore, the ability

to define the number of components in advance can be considered as a major limi-

tation in finite mixture approaches [53]. To address the before-mentioned challenge,

nonparametric Bayesian approaches have been proposed in the literature, where they

can automatically obtain the number of clusters according to the specific choice of
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prior for mixing weights [54,55]. Such infinitely complex models have shown remark-

able theoretical and computational progress over the recent years [56]. The number

of mixture components in nonparametric Bayesian approaches can be adjusted as

new data arrives and is allowed to increase to infinity, where it resolves the problem

of model selection. This prominent characteristic of infinite mixture models makes

them more realistic approach and adaptive to the given circumstances in contrast

with assuming a fixed number of components. In addition, overfitting and under-

fitting of mixture models can be handled through this assumption. In this context,

previous works have provided acceptable and reliable performance in several appli-

cations by deploying Dirichlet process mixture model based on various probability

distributions [37,57,58].

Here we illustrate the main idea behind Dirichlet process mixture model and its

capability to create or remove clusters.

4.1.1 Conditional Posteriors

In Bayesian inference, one important step is defining the prior distributions. For

each ~αj, we consider the same previous approach that we employed in chapter 2

for developing conjugate prior by take into account that MB distribution belongs to

exponential family of distribution. The prior distribution is thereby as follows, with

hyperparameters (ρ′d, ρ
′′
d, ρ, κ) for d = 1, . . . , D:

p( ~αj) ∝exp
[ D∑
d=1

ρ′dαjd −
D∑
d=1

ρ′′dαjd − ρ | αj | +κ
(

log Γ(| αj |)−
D∑
d=1

log Γ(αjd)

)]
(32)

By having the prior for ~αj, posterior distribution can be determined as follows:
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p( ~αj | Z,X ) ∝ p( ~αj)
∏
Zij=1

p( ~Xi | ~αj) (33)

∝ exp

[ D∑
d=1

(
ρ′d +

∑
Zij=1

logXid

)
αjd +

D∑
d=1

(
ρ′′d +

∑
Zij=1

log(1−Xid)
)
αjd

+

(
ρ+

∑
Zij=1

log
[
1 +

D∑
d=1

Xid

1−Xid

])
| αj |

+ (κ+ nj)

(
log Γ(| αj |)−

D∑
d=1

log Γ(αjd)

)]

For ~P , the mixing weights coefficients, we know that it is defined on (p1, . . . , pM) :∑M−1
j=1 pj < 1, then a possible choice as a prior is a symmetric Dirichlet distribution

with a concentration parameter η
M

.

p(~P | η) =
Γ(η)∏M

j=1 Γ( η
M

)

M∏
j=1

p
η
M
−1

j (34)

Recalling ~Zi as a latent variable to show Xi belongs to which cluster, such that

pj = p(Zij = 1), j = 1, . . . ,M , then the inference of ~P can be performed through the

inference of ~Zi [59] as follows:

p(Z | ~P ) =
N∏
i=1

p( ~Zi | ~P ) =
N∏
i=1

p1
Zi1 . . . pM

ZiM (35)

=
N∏
i=1

M∏
j=1

pj
Zij =

M∏
j=1

pj
nj

where Z = {~Z1, . . . , ~ZN} and nj =
∑N

i=1 IZij=1 represents the number of elements that

are associated with cluster j. As the Dirichlet is a conjugate prior to the multinomial,

then we can integrate out the mixing proportions ~P to obtain the prior for Z:

p(Z | η) =

∫
~P

p(Z | ~P )p(~P | η)d~P =
Γ(η)∏M

j=1 Γ( η
M

)

∫
~p

M∏
j=1

p
nj+

η
M
−1

j d~p (36)

=
Γ(η)

Γ(N + η)

M∏
j=1

Γ( η
M

+ nj)

Γ( η
M

)
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By combining all Eqs. 34 to 36, Eq. 37 can be written as follows:

p(~P | Z, η) =
p(Z | ~P )p(~P | η)

p(Z | η)
=

Γ(η +N)∏M
j=1 Γ( η

M
+ nj)

M∏
j=1

p
nj+

η
M
−1

j (37)

which indicates a Dirichlet distribution with parameter (n1 + η
M
, . . . , nM + η

M
), then

the conditional prior for a single indicator is defined by [55]:

p(Zij = 1 | η,Z−i) =
n−ij + η

M

N − 1 + η
(38)

Where Z−i = {~Z1, . . . , ~Zi−1, ~Zi+1, . . . , ~ZN} , n−i,j is the number of observations ex-

cluding ~Xi in component j. The conditional posterior is then calculated by the

product of the prior Eq. 38 and the likelihood of ~Xi.

As we have mentioned, an important task in adopting mixture models is the selec-

tion of model’s complexity. In this section we overcome this problem by considering

M →∞ in Eq. 38 which gives us the following limits [60]:

p(Zij = 1 | η;Z−i) =


n−i,j
N−1+η

if n−i,j > 0 (j ∈ R)

η
N−1+η

if n−i,j = 0 (j ∈ U)
(39)

Where R and U denote the sets of represented and unrepresented clusters, respec-

tively. Indeed, this equation indicates each observation with a certain probability will

be assigned to either the represented or an unrepresented component. In the case

of represented component, the conditional prior will depend on the number of obser-

vations already allocated to this cluster, while a new component (unrepresented) is

only proportional to η and N [59, 61]. Having the conditional priors in Eq. 39, then

we can determine the conditional posteriors as following [54,55]:

p(Zij = 1 | ~αj, η;Z−i) =


n−i,j
N−1+η

p( ~Xi | ~αj) if j ∈ R∫ ηp( ~Xi| ~αj)p( ~αj)
N−1+η

d ~αj if j ∈ U
(40)

This equation can be explained as Dirichlet process mixture of MB distributions. If a

given observation is assigned to the unrepresented cluster, a new represented cluster

will be generated accordingly, which means there is always an empty cluster to justify

the infinite mixture model concept. While, if all observations within the represented

cluster are assigned to other clusters due to sampling iterations, this cluster will be

empty and converted to unrepresented cluster.
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The proposed infinite model can be imagined as Chinese restaurant process that

follows the analogy described in [62]. In this analogy, a restaurant with countably

infinite tables is considered as the mixture components. During the process, the first

customer (i.e., data observation) always occupies the first table. The next customer

is able to choose between the first unoccupied table or an occupied table with a

probability related to the number of people who are already at that table [55,63]. A

graphical model representing our infinite MB mixture is shown in Fig.4.

Figure 4: Graphical model representation of proposed Bayesian infinite MBMM. The
random variables are in circles, and the Rounded boxes are for the fixed hyperparam-
eters. Boxes show the process of repetition (with the number of repetitions in the
lower right) and the arcs describe the conditional dependencies between the variables.

MCMC methods are used to provide estimates of the posterior distribution for

infinite MBMM. These statistics-based sampling methods can appropriately generate

samples from complicated distributions. Since posterior distributions in mixture mod-

els can have intractable forms, two relevant MCMC techniques called Gibbs sampling

and Metropolis-Hastings (M-H) are exploited in our work. The complete proposed

algorithm can be summarized in Algorithm 3.

In the initialization step, first we assume that all the observations are in the same

cluster. Then, the updating of the number of represented components step is based

on the previous step which is the generation of the ~Zi. Indeed, the number of clusters

M , is increased by one when a sample is assigned to an unrepresented cluster, while

M is decreased by one if a component becomes empty during the iterations [9].

Note that, for the sampling of the vectors ~Zi, we need to evaluate the integral in

Eq. 40, which is analytically intractable. Hence, we used the proposed approach
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Algorithm 3 Nonparametric Bayesian learning of MBMM

1. Process

2. initialize assignments and parameters

3. repeat

4. Generate ~Zi from Eq. (40) and then update nj, for i = 1, . . . , N , j = 1, . . . ,M .

5. Update the number of represented components denoted by M.

6. Update the mixing parameters for the represented components by pj =
nj
N+η

,
j = 1, . . . ,M

7. Update the mixing parameters pU = η
N+η

of the unrepresented clusters.

8. Generate the mixture parameters ~αj from Eq. (33) for j = 1, . . . ,M using
Metropolis-Hastings

9. until Convergence

in [54, 55] for approximating this integral. This approach generates a Monte Carlo

estimate by sampling from the prior of ~αj. Moreover, in order to simulate from ~αj

posterior distribution, M-H method is used which we earlier described its algorithm

in chapter 2.

4.2 Experimental Results

In this section, we evaluate the performance of our infinite multivariate Beta mixture

model (IMBMM) by validating it on four real-world applications, namely network

intrusion detection, hepatitis diagnosis and software defect categorization and image

categorization. We compare the effectiveness of our proposed IMBMM with finite

MB mixture models using Bayesian approach (BMBMM), infinite Gaussian mixture

model (IGMM) [55] and finite Gaussian mixture model (GMM).

For each of the experiment, we ran the algorithm with varying initial hyper-

parameter values and different numbers of iterations. Then, we used the mean of

summaries obtained for the last 10% of iterations for parameter estimation of our

infinite model. Our specific choice for concentration parameter for each application is
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η = (1, 1, 1, 0.8), respectively. In order to assess our model performance against other

methods, we use standard metrics such as accuracy, precision, recall and F1-score.

4.2.1 Intrusion Detection

With massive growth of internet and interconnected devices, the need to secure the

networks have currently become a very concerning problem for users and service

providers. Every day, many attacks and new threats are created by intruders that

may cause crash of the networks and loss of data. In order to tackle this major issue,

Network Intrusion Detection Systems (NIDSs) are developed to properly find the

attacks by monitoring the network’s traffic for any abnormal actions [64]. With the

continuous changing patterns in network behavior, it is inevitable to have a dynamic

and automated approach to detect and prevent intrusions. Hence, machine learning

and data mining techniques can be employed to create robust and effective NIDS.

In this experiment, we apply our model on the NSL-KDD data [39], a refined

version of KDD-CUP’99 intrusion detection dataset that we previously described and

used in section 2.3.2 of chapter 2. The data has two categories of 13,449 normal

and 11,743 anomaly instances with 41 quantitative and qualitative features. The

BMBMM, IGMM and GMM are considered for comparison in order to better evaluate

the performance of our proposed model.

The confusion matrices of these four models for normal and anomaly data are

shown in Table 9. Table 10 demonstrates the overall performance of our proposed

model as compared to the other models. According to the results presented in Table

10, we can notice that IMBMM and BMBMM approaches perform comparably while

both have higher accuracy than IGMM and GMM. Moreover, our model outperforms

the others in terms of F1-score, showing the efficiency and capability of the proposed

model in detecting intrusions.

4.2.2 Hepatitis Prediction

Data mining and pattern recognition techniques have achieved considerable attention

in medicine and biomedical researches and have been successfully applied across vari-

ous problem domains, such as hepatitis diagnosis. Viral hepatitis as a life-threatening
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Table 9: Confusion matrices for intrusion detection dataset

Normal (P) Anomaly (P)

IMBMM
Normal (AC) 10299 3150
Anomaly (AC) 1492 10251

BMBMM
Normal (AC) 10617 2832
Anomaly (AC) 2103 9640

IGMM
Normal (AC) 10921 2528
Anomaly (AC) 3246 8497

GMM
Normal (AC) 11294 2155
Anomaly (AC) 3652 8091

Table 10: Model performance results for intrusion detection

IMBMM(%) BMBMM(%) IGMM(%) GMM(%)

Accuracy 81.57 80.41 77.08 76.94
Precision 76.49 77.29 77.07 78.96

Recall 87.29 82.09 72.36 68.9
F1-Score 81.54 79.62 74.64 73.59

disease is among the most important global health issues in the world. The hepati-

tis is an inflammation of the liver which is commonly caused by some main viruses,

referred to as types A, B, C, D and E [65]. However, its root could be other factors

such as infections, autoimmune diseases or toxic substances. The blood test is a main

method for identifying this disease. Based on WHO hepatitis facts, 257 million people

infected by hepatitis B were globally reported in 2015 [66]. This is a motivation to

develop automatic systems that can make an accurate diagnosis and early detection

by employing machine learning and statistical tools. That can be the main motivation

to design automatic diagnosis systems using machine learning and statistical based

techniques in order to make accurate and early detection. These techniques can be

employed as a decision support system to assist experts (e.g., doctors and specialists)

in analyzing unlabeled patient’s data and provide useful hepatitis detection.
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In our experiment, we used real-world hepatitis dataset obtained from the UCI

Repository [67] to evaluate our proposed model. It contains 155 samples with 19

features which are obtained from different results of medical tests of patients to predict

Hepatitis patient survivability. The dataset consists of imbalance data class, with 26%

of the patient die and 74% of the patient alive. The confusion matrices of different

models are given in Table 11. Table 12 also reveals the performance comparison

among different models.

Table 11: Confusion matrices for hepatitis prediction

Death (P) Alive (P)

IMBMM
Death (AC) 12 14
Alive (AC) 5 110

BMBMM
Death (AC) 13 13
Alive (AC) 17 98

IGMM
Death (AC) 16 10
Alive (AC) 24 91

GMM
Death (AC) 19 7
Alive (AC) 28 88

Table 12: Model performance results for hepatitis prediction

IMBMM(%) BMBMM(%) IGMM(%) GMM(%)

Accuracy 86.52 78.72 75.88 75.35
Precision 70.58 43.33 40.0 40.42

Recall 46.15 50.0 61.54 73.08
F1-Score 55.81 46.43 48.48 52.05

As observed in Table 12, the proposed IMBMM yields superior results compared

to other approaches and it provides the highest accuracy rate (86.52%). Moreover,

our model provide higher F1-socre which is and important metric in imbalanced data

classification.
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4.2.3 Software Defect Categorization

With rapid advancement in software development tools and activities in the last

decades, software quality becomes an important and crucial aspect in user function-

ality of current software-based systems. The quality assessment in such complex

software systems is quite costly and time-consuming. Thus, detection of software

defects and failures is a critical process during the product quality assurance phase in

order to enhance software reliability, avoid any additional costs, as well as, increasing

software security. To address this problem, suitable metrics should be defined that

can be representative of the software attributes. To that end, some relevant metrics

such as the code size, McCabes cyclomatic complexity and the Halsteads complexity

have been considered for evaluating software quality [68]. The Halsteads and Mc-

Cabes complexity measures are based on the characteristics of the software modules

as explained in [69]. The McCabes metric includes essential, cyclomatic and design

complexity and the number of lines of code. While the Halsteads metric consists of

base and derived measures and line of code (LOC). Software defects can be identified

with machine-learning and statistical-based tools. these tools are capable of detecting

software issues in a real-time manner and help to reduce manual quality assurance

and testing activities.

In this work, we examined our model on two datasets, namely JM1 and KC2 from

the PROMISE data repository [70] obtained from NASA software projects which are

currently used as benchmark datasets in this area of research. JM1 is written in

C and is a real-time predictive ground system, while KC2 is a C++ dataset raised

from system implementing storage management for receiving and processing ground

data. The quality of software source code is described into McCabe and Halstead

features, where these datasets are highly imbalanced with binary classes of defective

and normal (non-defective). Some properties of JM1 and KC2 datasets are outlined

in Table 13.

Table 13: Software modules defect dataset properties

JM1 KC2
Language C C++
Modules 10885 522
Defects 2106 105
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Table 14 summarizes the results of performance metrics applying different models

for software defect categorization.

Table 14: Results on software modules defect categorization using different models

Dataset Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

JM1
IMBMM 82.18 27.09 32.07 29.39
BMBMM 80.32 24.22 33.02 27.94
IGMM 70.46 16.05 36.79 22.35
GMM 74.01 17.44 33.5 22.94

KC2
IMBMM 79.55 51.06 68.57 58.53
BMBMM 74.74 44.32 78.09 56.55
IGMM 76.35 46.01 71.43 55.97
GMM 71.94 41.38 80.0 54.55

Statistics in Table 14 reveal the fact that comparing to the other models, IMBMM

provides higher accuracy, where it can also find the proper number of clusters. Since

these datasets are highly imbalanced, F1-measure is more representative, which com-

bining both precision and recall into one single score. Therefore, our model can

provide higher level of performance due to higher F1-score.

4.2.4 Image Categorization

Image categorization becomes an extremely important task according to the vast

amount of images generated daily from various resources. Hence, different solutions

have been designed to regroup similar images belonging to the same categories. Clus-

tering is among the most suitable approaches for this task as it can alleviate the cost

of image labeling. To evaluate the efficiency of our model, Caltech 101 dataset has

been used in this experiment [71]. We chose our images from four classes: 90 images

of Motorbike, 85 images of Sunflower, 80 images of Watch and 96 images of Leopard

class. Sample images from each group are shown in Fig. 5.
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Figure 5: Sample images from four categories of Caltech 101 dataset

Before applying our model, we need to extract representative features from images.

Hence, we used one of the most popular feature extractor algorithms, SIFT (scale

invariant feature transform) for detection the features and extraction of descriptors

of each image [35]. Then the obtained SIFT descriptors are clustered using K-means

algorithm to form the bag of visual words (BoVW). In this representation, each image

will be characterized with a histogram of visual words. The resulted vectors are then

used as an input to our model for clustering. Figure 6 depicts the confusion matrix

obtained by IMBMM. The Motorbike class has the highest accuracy compared to

the other classes, however as can be observed many images of Leopard have been

misclassified as Motorbike. The comparison results with other models are presented

in Table 15. We used the macro average of precision, recall and F1-score. According to

this table, the proposed IMBMM outperforms the other models with 78.63% accuracy,

where it can also find the accurate number of components.
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Figure 6: IMBMM Confusion matrix, Caltech dataset

Table 15: Model performance results for Caltech dataset

IMBMM(%) BMBMM(%) IGMM(%) GMM(%)

Accuracy 78.63 75.21 71.22 69.23
Precision 79.81 76.78 75.88 71.11

Recall 78.66 75.20 71.20 69.5
F1-Score 79.23 75.98 73.47 70.3
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Chapter 5

Conclusion

Cluster analysis as an unsupervised learning method has been widely adopted for

knowledge discovery and finding underlying structure of the data and finds its way

into many applications from different domains, such as computer vision, information

retrieval and pattern recognition.

Among various techniques, mixture models have been widely used for clustering

problems in statistical modeling. In this thesis, we presented different Bayesian frame-

works for multivariate Beta mixture models. The consideration of this distribution is

due to its flexibility and capability in modeling non-Gaussian data.

First, we designed a Bayesian learning framework for the parameter estimation of

our mixture model based on Markov Chain Monte Carlo technique through a hybrid

sampling-based Metropolis-Hastings within Gibbs learning algorithm. We developed

the proper posteriors in order to simulate parameters. Furthermore, we validated the

effectiveness and performance of the proposed Bayesian inference over challenging

real-world applications that concern cell image categorization and network intrusion

detection. The results have shown that our model outperformed compare to other

model.

Second, we introduced a fully Bayesian approach for finite mixtures of MB with

an unknown number of components. To perform Bayesian analysis for our model,

we adopted a Birth-Death MCMC algorithm with birth and death moves for simul-

tanously updating the number of components and learning parameters by defining

prior on number of components. The effectiveness of the proposed framework was

evaluated using real-world medical applications, where the experimental results have
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revealed that the performance of the proposed approach is convincing.

Third, a nonparametric Bayesian framework was developed to addressed the prob-

lem of learning infinite MB mixture models. Then, we estimated the posterior dis-

tributions through sampling-based MCMC technique. The efficiency of the proposed

framework was demonstrated through different real-world applications including both

balanced and imbalanced datasets, such as network intrusion detection, hepatitis di-

agnosis, software defect categorization and image categorization.

In conclusion, experimental results have shown that our Bayesian frameworks

based on MB mixtures can outperform other standards methods which are mostly

based on Gaussian assumption with effective estimation and selection of model pa-

rameters resulting in better performance. As potential future works, feature selection

could be incorporated to our proposed frameworks. Moreover, other applications can

be explored to further assess the performance of our Bayesian models.
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