
The Diverting Fast Radix Algorithm

Stuart Thiel

A Thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Computer Science) at
Concordia University

Montréal, Québec, Canada

February 2021

© Stuart Thiel, 2021



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Stuart Thiel
Entitled: The Diverting Fast Radix Algorithm

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

Dr. Chun Wang
Chair

Dr. Robert Sedgewick
External Examiner

Dr. Ferhat Khendek
External to Program

Dr. Todd Eavis
Examiner

Dr. Hovhannes Harutyunyan
Examiner

Dr. Gregory Butler
Thesis Supervisor

Approved by
Dr. Leila Kosseim, Graduate Program Director

March 26, 2021
Dr. Mourad Debbabi, Interim Dean
Gina Cody School of Engineering and Computer Science



Abstract

The Diverting Fast Radix Algorithm

Stuart Thiel, Ph.D.
Concordia University, 2021

Radix sort is a classical algorithm to sort # records with integer keys. The keys are represented
using digits of a radix. The classical algorithm executes a pass through the records to count the
frequency of each digit to determine the digits bucket size, and then a pass to deal the records to
the corresponding bucket. The algorithm may proceed from the most significant digit to the least
significant, or from the least significant digit to the most significant.

This thesis presents the Fast Radix and the Diverting Fast Radix algorithms, which replace all
but one count pass with estimation of bucket sizes and correction of overflow, and may, in addition,
divert to another sorting algorithm such as insertion sort when the subproblem size is below a
threshold.

Extensive performance experiments compare the implementations of the two algorithms against
the native std::sort in the C++ Standard Library, radix sort, and RADULS2, which is currently
considered the fastest radix sort available.

We develop a mathematical model of the average-case performance, when keys have a uniform
distribution of digits, that support the observed performance improvements. The modeling
demonstrates that the costs of estimation and correction quickly approach zero, falling under 5% of
the costs of traditional counting for # as low as 11100. The modeling also provides a formula to
calculate the thresholds for diversion that conform to the experimental results.

Our focus is on algorithms, so our implementation is fixed-digit, single-threaded and avoids
optimizations such as parallelism, cache, translation lookaside buffer (TLB), or the specific input
distribution, which are utilised by RADULS2. Nevertheless, Diverting Fast Radix is more than
twice as fast as std::sort on inputs of size up to one billion (and beyond), and approximately 10%
faster than RADULS2 for one million records (even faster on smaller inputs). It is notable that the
compiled code size of Diverting Fast Radix is two orders of magnitude smaller than RADULS2.
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Notations

# the length of a file
'1, '2, . . . , '# the the records in a file
" the number of possible values for a digit, which is the number of buckets for

storing records that share keys with the same digit
: the average number of records in a bucket, or the index of a summation relating

to such values
�, �, �,

�, �, �

components of a partial-fraction decomposition

#! factorial ∏#
:=1 :

# : falling factorial notation as used in Knuth, #!
(#−:)!(#

:

)
binomial coefficient, # :

:!
d #
"
e the smallest 2 ∈ / where 2 ≥ #

"

b #
"
c the largest 2 ∈ / where 2 ≤ #

"

Slice Notation

Much of this thesis considers code that performs some algorithm. There are a variety of lists and
arrays as both inputs, intermediary structures and outputs. The management of these can obfuscate
pseudo code. To alleviate that, I will make use of the slice notation popularized in languages such
as Python. This is strictly a means to communicate more cleanly.

3868CB[8] represents the access to the 8Cℎ element in an array/list 3868CB

3868CB[−8] represents accessing the 8Cℎ element from the end, or the (;4=6Cℎ(3868CB)−8)Cℎ element

3868CB[0 : 8] represents the subset of values from 0 inclusively to 8 exclusively

3868CB[ 9 : 8] represents the subset of values from 9 inclusively to 8 exclusively where 9 < 8

3868CB[: 8] represents the subset of values from 0 inclusively to 8 exclusively

3868CB[ 9 :] represents the subset of values from 9 inclusively to the end

3868CB[−8 :] represents the subset of values from (;4=6Cℎ(3868CB) − 8)Cℎ inclusively to the end
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3868CB[BC0AC : 4=3 : BC4?] represents the slice of values from position BC0AC inclusively to 4=3
exclusively stepping by BC4? by default the step size is 1.

3868CB[:: 2] is new structure representing every element in an even position

3868CB[1 :: 2] is new structure representing every element in an odd position

3868CB \ B><4 uses set difference notation to represent all entries in 3868CB except those in B><4.

Throughout this thesis we assume a little-endian bit-representation for our data.

Throughout this thesis we refer to the least-significant digit as the 0Cℎ digit, using a 0-based
indexing; given a number with 8 digits, we would refer to the most significant digit as the 7Cℎ digit.
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Chapter 1

Introduction

“In the early days of computing, the common wisdom was that up to 30 percent of all computing

cycles was spent sorting. If that fraction is lower today, one likely reason is that sorting algorithms

are relatively efficient, not that sorting has diminished in relative importance.” [Sedgewick and

Wayne, 2011, p.243]

It is difficult to say what fraction of sorting could be replaced by radix sorts, the focus of this

thesis. The current trend in research on that topic suggests that the promise of linearly scaling

performance, advances is competitive cache sensitivity and scalabillity across processing cores is

drawing increasing attention.

This thesis presents significant average-case improvements on radix sorts given the most

commonly used input distribution used in radix sort literature. An exact mathematical model will

be presented for the difference in performance between Fast Radix and traditional least-significant

digit (LSD) radix sort. We will also develop an exact mathematical model of how the standard

technique of diversion reduces passes of the traditional diverting most-significant digit (MSD) radix

sorts, and then show that a diverting LSD radix sort is possible. The model of passes performed for

the presented LSD radix sort will be proven to be identical to that of diverting MSD radix sorts.

Diverting Fast Radix is presented as the combined algorithm. Results of the implementation of these

theoretical improvements will be shown to match the presented models. The approaches considered

in this thesis are orthogonal to most recent research and focus on stochastic analysis to show that

less work can be performed reliably without needing technical improvements to do so. The goal is
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that other researchers apply their future improvements to Diverting Fast Radix as a better starting

point than other radix sort variants that currently get attention.

Knuth begins the third volume of The Art of Computer Programming, Sorting and Searching

[Knuth, 1998] with an explanation of the ambiguity around the term sorting in and out of Computer

Science. He lays the groundwork for an extensive discussion of sorting, and we will use his

terminology with respect to sorting # records that each have an accessible key.

We are given # items

'1, '2, . . . , '#

to be sorted; we shall call them records, and the entire collection of # records will

be called a file. Each record ' 9 has a key,  9 , which governs the sorting process.

Additional data, besides the key, is usually also present; this extra "satellite information"

has no effect on sorting except that it must be carried along as part of each record.

Knuth [1998, p. 4]

In this thesis, we outline our contribution to sorting when “keys are known to be randomly

distributed with respect to some continuous numerical distribution” [Knuth, 1998, p.5]. Specifically,

we will consider the sorting of records whose keys are accessible and whose keys can be broken

into a fixed number of digits, where all possible values of a digit obey a total ordering and each key

contains the same number of digits. We order digits in terms of significance, such that the order of

two records is only affected by a digit in their keys when all more significant digits are the same.

A simple example of a representative file for our purposes would be an array of positive 64 bit

integers, with the key being the records in the array, each key also constituting the record and being

composed, in this case, of eight digits, each of one byte. While the implementations developed for

this thesis sort unsigned integer types, signed integers and floating-point standards exist that are
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known to work well with radix sorts. Using stochastic analysis will identify reliable and measurable

improvements which will be demonstrated in our empirical results.

1.1 Sorting

Sorting algorithms are pervasive in Computer Science. According to Chen and Reif [1993], servers

perform an estimated ∼20% of their work on sorting. Modern Big Data processing uses sorting in

graph processing, bioinformatics and real-time analytics, often benefiting from non-comparison-

based approaches to achieve linear sorting performance[Kokot et al., 2018, Polychroniou et al., 2015,

Thiel et al., 2016].

People have developed sorting algorithms for a long time, with the application of sorting using

simple machines dating back at least a century to Hollerith’s sorting and tabulating machines that

were used in the US Census Office[Knuth, 1998, p.384]. How algorithms sort varies wildly, as do

the algorithms that sort, each having particular characteristics that render them more or less effective

given hardware, software or the characteristics of the input to be sorted. Most sorting algorithms

either iteratively or recursively perform on inputs to achieve a sorted result, with each iteration or

recursion constituting a pass through some or all of the data. Each pass changes the characteristics

of the input data in such a way that after the last pass, the result has the same input records, but

they are in sorted order. A simple algorithm can be applied repeatedly in this fashion to sort large

amounts of data.

More complex algorithms adapt their approach based on the new characteristics of the data

dictated or identified by prior passes. This adaptation can involve using another known algorithm to

process the current pass or subset of data. Using another algorithm in this context is called diverting,

a technique used in this thesis and the subject of the next section.
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1.1.1 Diverting

A typical example of a diverting opportunity is when a prior pass identifies small, isolated,

contiguous subsets of data, as described in Knuth [1998, p. 115] description of Quicksort. When

the characteristics of such a subset are that it can be identified and processed more effectively by

another strategy, as in the case where the amount of data in it is small and that the position of that

subset of data is known relative to all the data before and after it, then diverting is appropriate. A

simple algorithm like Insertion Sort can efficiently finish the sorting on such subsets of data.

Unsorted

28 7E 2D 83 26 03 52 19 28 A4 2F 0D 12 BF 2C 11 7C 2B 4A 20 2A 2E F6 2B 27 25 37 90 69 21 25 24

(0
0

Sorted by high-order digit

0D 03 19 11 12 21 25 28 2B 2D 2F 26 20 2B 2A 25 2C 24 28 2E 27 37 4A 52 69 7C 7E 83 90 A4 BF F6

(1
0 (1

1 (1
2 (1

3 (1
4 (1

5 (1
6 (1

7 (1
8 (1

9 (1
10 (1

11 (1
12

Figure 1: A simple example of showing unsorted data, and then small groups after a first sorting
pass.

In Figure 1, we show an unsorted array of two-digit keys and propose to sort them using a

two-pass algorithm. In the first pass, values would be ordered by their highest-order digit, as shown

in Figure 1. In the second pass, each group of keys with the same high-order digit, represented by

alternately shaded backgrounds, would be ordered by their low-order digit. Diversion via Insertion

Sort could instead sort those smaller groups. Diversion can be quite flexible; in this example,

we identify many small groups, but we would more profitably run Insertion Sort once for each

contiguous set of small groups, only running Insertion Sort twice [Knuth, 1998, p. 115].

The choice of diversion can then be thought of as an optimization problem to minimize the cost

of sorting an input, the sum of the average amortized operational costs for processing a given group

of keys times the number of keys processed. Without going into details on what the analysis would

be to yield those costs, imagine that the cost functions were known for this example, either A46D;0A

or 8=B>AC for the digit-based ordering cost and the Insertion Sort cost respectively, with each cost

4



being calculated based on the number of keys being sorted. Each cost would include any setup cost

and the cost to perform the sorting-related action on each element given. The cost of the diverting

algorithm would also include any cost related to deciding whether to divert.

Let us consider # to be the number of keys being sorted, and let us consider ( to be the set of all

groups of keys in all passes, and ( 9 to be the set of groups in a given pass with ( 9
8

representing the

8Cℎ group in the 9 Cℎ pass. Lastly, let us consider �) which is the diversion threshold below which

we know 8=B>AC will return a lower cost than A46D;0A . The overall cost would be:

�>BC = A46D;0A((0
0) +

|(1 |∑
8


8=B>AC((1

8
), |(1

8
|<= �)

A46D;0A((1
8
), otherwise

(1.1.1)

We know that in general, as larger groups are passed into A46D;0A, the average cost per key

asymptotically approaches 21 whereas 8=B>AC asymptotically approaches 22 ∗ # . However, we

also know that 22 will generally be much smaller than 21. As such, �) is often heuristically

or empirically determined to be the value that should minimize the total cost of performing the

sort. While Quicksort will not be discussed at any length in this thesis, the canonical example for

diversion to Insertion Sort with that algorithm is to choose a �) somewhere between 9 and 15.

Knuth provides a detailed analysis for the determination of �) for Quicksort/Insertion Sort written

in MIX[Knuth, 1998, p.117-121].

Equation 1.1.1 is just an example to see how cost can be minimized with diversion. The length

of a subset is commonly used for diversion, but diversion is not restricted to this approach. There

may be more than one diversion algorithm and the cost to determine if one should divert may be

more complicated. Anecdotally, more complicated systems cost more and so most examples of

diversion keep it simple.
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1.1.2 Insertion Sort

Insertion Sort is a simple and effective sorting algorithm in the correct context, and well studied

[Knuth, 1998, p.80-105]. While common implementations are usually based off of what Lorin

[1975] describes as Sifting, wherein records are swapped into their final place, Straight Insertion

Sort, as described by Knuth [1998, p. 80,81], more accurately represents –complete with MIX code–

the algorithm we consider wherein the record is copied into place after all the previously in-the-way

records are moved over.

If we consider the first eight records from our previous diversion example, shown in Figure

2, we note that every non-empty set of records is a non-empty sorted set of records denoted by (,

followed by a potentially empty unsorted set of records denoted by*. When we start our Insertion

Sort, we know the first element can be considered a sorted set of records, but we do not know

anything about the rest of the records. In each step of the example we identify a cursor, denoted by

� underneath the first element in the unsorted list. We will compare this record to each record in the

sorted set, from right to left, until we find one that is smaller, and we will denote this insertion point

with a < immediately following this smaller record in the sorted set. In the next step, the shaded

element is where the previously unsorted element has been placed in the sorted set, which is now

one larger. When we are out of unsorted records, we have completed our Insertion Sort. In this

example, 23 records are compared (plus two additional boundary comparisons) and 23 records are

moved (including moving the record at the cursor out of place, if needed). This is typically fast for

small Insertion Sorts.

Modern research focuses on Insertion Sort as a diversion algorithm. As we saw previously,

Knuth [1998, p.117-121] gave a direct analysis to determine a size to divert and Sedgewick has

discussed delaying the actual running of the diverting algorithm as an optimization, as well as

running a variant after the first time to benefit from the creation of a sentinel that allows for fewer

boundary checks.
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( *

�

<

28 7E 2D 83 26 03 52 19

( *

�

<
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Figure 3: 50 unordered random 64-bit integers, each column representing one integer and each row
representing corresponding bits. Most significant bits are at the top. Bits are grouped by byte to
form digits, indicated by alternating shading, and each digit is labeled on the left with its index.
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Our approach to Insertion Sort leans on this work. While we consider some empirical analysis

to decide on diversion thresholds, and we take advantage of the context to inline and re-use small

buffers for quicker multiple-writes; this is strictly a practical extension to what is described in the

current literature.

1.2 Radix Sorts

A key subset of sorting algorithms are those that sort based on the radix of data instead of by using

comparisons. Each element in an input has a key that is considered in terms of a radix to break it

into digits. These sorts achieve linear asymptotic complexity in all cases, and are thus generally

more favorable when dealing with data that can be broken conveniently into digits.

Four important terms are used here, and they will be used often in this thesis. pass, bucket, deal

and count. We pass through our input. During a pass we process each element, and this process

is either a count or a deal, with both the dealing and the counting based on a specific digit of the

key. During a single pass we only deal based on one digit. The count gathers information about the

occurrence of a digit in the data in order to build buckets that we will deal into during a subsequent

pass. We deal records into buckets, which means somehow moving them into place. Our initial

input can be considered a single bucket, but after the first pass where we deal, the input is organized

into buckets, and we will process the records in subsequent passes based on which buckets they are

in.

A simple form of radix sort is a counting sort, sometimes referred to as a bucket sort, though

Knuth does not make the distinction between radix and bucket (or digital) sorts [Knuth, 1998, p.169].

In this algorithm, we consider that there is a single digit and we can pass through the input twice,

counting the occurrence of each key in the first pass, and dealing into buckets during the second

pass. In between the two passes, we convert the count into indices where records should be placed.

9



0
0
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
0
0
0
0
1
0
0
0
1
1
0
1
1
0
1
1
1
0
1
0
1
1
1
0
1
0
0
0
0
0
0

1
1
1
0
0
1
0
0
0
1
1
1
1
0
1
0
1
0
0
0
1
1
1
1
1
0
1
0
0
0
0
1
1
1
1
0
0
1
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0

0
0
1
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
1
1
0
0
0
0
0
0
1
0
1
0
0
1
0
1
1
0
1
0
1
1
0
0
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0

0
1
1
0
1
0
1
1
0
1
0
0
1
1
1
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
0

1
1
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
0
1
1
1
1
1
1
0
0
1
0
1
0
1
0
1
1
0
0
1
1
1
1
1
1
0
1
1
0
0
0
1
1
0
0
1
0
1
0
1
1
1
0
0
0
0

1
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
1
1
1
0
0
0
1
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
0
1
0
0
1
0
1
1
0
1
0
1
0
0
0

1
0
1
1
0
0
1
1
0
1
0
0
0
1
1
1
1
1
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
0
1
1
0
1
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
0
0

1
1
1
1
1
0
1
0
1
0
0
1
0
1
0
0
0
1
0
1
1
0
0
1
0
0
1
1
1
1
0
1
0
0
0
1
0
0
1
0
1
0
1
1
1
1
1
0
0
1
0
0
1
1
1
1
0
1
0
0
0
1
0
0

1
1
0
0
1
1
1
1
1
1
1
0
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
1
1
0
0
0
0
0
1
1
1
0
0
1
0
0
1
1
0
0
0
0
1
0
1
0
0

1
0
0
1
0
0
1
0
0
1
1
1
0
1
0
0
1
0
0
0
1
0
1
0
1
1
1
1
0
1
0
1
0
0
0
1
0
0
1
0
0
1
0
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
0

1
0
0
1
0
1
0
1
1
0
0
0
1
1
0
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
0
0
1
0
1
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
0
0

1
0
0
0
0
1
1
0
1
1
1
0
1
1
0
0
1
1
1
1
0
0
0
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
1
0
0
1
1
1
0
1
1
1
1
1
1
0
0

0
1
0
1
1
0
1
1
0
1
0
0
0
1
1
1
0
1
1
1
0
0
0
1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
1
0

0
0
0
0
1
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
1
1
1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
1
0
1
1
0
0
0
1
1
0
1
1
0
0
1
0
0
1
1
0
0
0
0
0
1
0

0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
1
0
0
0
1
1
0
0
1
1
0
1
0
0
1
0

0
1
1
0
1
0
0
0
1
0
1
1
0
1
1
0
1
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
0
0
0
1
1
0
0
1
0

1
0
1
1
1
0
1
0
0
1
0
1
0
0
0
0
0
1
1
1
0
1
1
1
0
0
0
1
0
1
1
0
1
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
0
0
0
1
1
0
1
0

0
0
0
0
1
0
0
0
1
0
1
1
0
0
1
0
1
0
1
1
1
0
0
1
0
1
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
1
1
1
1
0
1
1
1
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0

0
1
1
0
1
1
0
0
1
0
1
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
1
0
1
0
1
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1
1
0
1
1
1
0
1
0
1
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
1
1
0
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
1
1
1
0

0
1
1
1
0
1
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
1
0
0
1
1
1
1
0
1
1
1
1
1
1
0
1
0
0
1
0
0
1
0
1
1
1
1
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
1

1
1
1
1
0
1
1
0
1
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1
1
1
0
1
0
0
1
0
1
1
1
0
1
0
1
0
1
0
0
0
0
0
0
1

0
1
0
1
1
1
0
0
0
0
1
1
0
0
0
1
0
0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0
0
1
1
1
0
1
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
1

1
0
1
1
0
0
0
1
1
0
1
0
1
0
1
1
1
1
0
1
0
1
1
1
1
0
0
1
0
1
1
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0
0
1
1
1
0
0
0
0
0
1

1
0
0
1
0
0
0
1
1
0
1
1
0
0
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
1
1
1
1
0
0
1
0
1
1
1
0
0
1
0
1
0
1
0
0
0
1

1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
1
1
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
0
1
0
1
1
1
1
1
0
0
1
0
0
1

1
1
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
1
0
1
1
1
1
0
0
0
1
0
0
0
1
1
1
0
1
1
1
1
1
1
0
1
1
0
0
0
0
1
1
1
0
1
0
0
1

0
1
0
1
1
0
1
0
0
1
1
1
0
1
1
1
0
1
0
0
0
1
1
0
1
1
0
0
0
1
0
0
1
1
1
1
0
1
1
1
0
1
0
1
1
0
0
1
1
1
1
1
1
1
0
0
0
1
0
1
1
0
0
1

0
0
1
0
0
1
1
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
1
1
0
0
1
0
1
0
0
1
0
1
1
0
0
0
1
0
1
0
1
1
0
0
1

0
0
1
1
0
0
1
1
0
1
0
0
0
1
1
1
0
0
1
0
0
1
1
0
0
0
0
1
0
1
0
0
1
0
1
0
1
0
1
1
0
1
0
0
0
0
1
1
0
1
1
0
0
0
1
1
1
0
1
1
1
0
0
1

0
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
0
1
1
0
1
0
0
0
1
1
1
0
0
0
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
1
0
0
0
1
0
1
1
1
1
1
0
0
1

1
0
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
1
1
1
0
1
1
0
1
0
0
0
0
1
0
1

1
1
0
1
1
1
1
0
0
0
1
1
1
0
0
0
0
1
0
1
1
1
0
0
1
1
0
0
1
0
1
1
1
1
1
1
1
1
0
1
0
1
1
0
1
1
1
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1

1
0
1
0
0
1
0
1
0
0
0
1
0
1
0
0
1
1
0
0
1
1
1
0
0
0
1
1
1
1
0
1
0
1
1
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
0
0
1
1
0
1

0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
1
1
1
0
1
0
1
1
0
1
1
1
0
1

0
0
0
1
0
0
1
1
0
1
0
1
0
0
0
0
0
0
1
0
1
1
0
0
1
0
0
0
0
0
1
0
1
1
1
1
0
1
0
1
1
1
1
0
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1

0
1
1
0
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
0
1
0
0
1
0
1
1
1
1
1
1
0
1
0
0
0
1
0
1
0
0
0
0
0
0
1
1

1
1
0
0
0
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
1
0
0
0
1
0
1
0
0
1
0
1
1
1
1
1
1
0
1
1
0
0
0
1
0
0
1
1

0
1
0
1
0
1
1
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
0
1
1
1
1
0
0
1
0
0
1
1

1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
1
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0
0
1
0
0
0
1
0
0
1
1
1
1
0
0
1
0
1
1

1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
1
0
0
1
1
1
0
1
0
0
0
1
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
0
0
0
0
0
1
0
1
0
0
1
1
0
1
1

0
0
0
1
1
1
0
0
1
1
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
0
1
1
0
0
0
1
0
1
1
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
0
1
1

1
0
0
1
0
0
0
1
0
1
0
0
1
0
0
1
1
0
0
0
1
1
1
1
1
1
0
1
0
1
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1

0
0
1
0
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
1
1
0
0
0
1
0
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
1
1
1

0
1
1
1
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
1
1
1
0
0
0
0
1
0
1
1
1
1
1
0
0
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
0
0
1
0
0
1
0
1
0
0
1
1
1

1
0
1
1
0
0
0
1
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
0
0
1
0
1
1
1

0
0
1
0
1
1
0
0
0
0
1
1
0
0
1
0
1
1
1
0
0
0
1
1
0
1
1
0
1
1
0
0
0
0
1
1
0
0
0
1
1
1
1
0
0
0
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
1

1
1
0
0
0
1
0
1
1
1
1
1
1
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
1
1
1
0
0
0
0
1
0
1
0
0
1
1
0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1

0
0
1
0
0
1
1
1
1
1
1
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
1
1
1

1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
1
0
0
1
1
0
0
0
1
1
1
0
1
1
1
1
0
1
0
1
1
0
0
1
1
1
0
0
1
1
1
1
1

0

1

2

3

4

5

6

7

Figure 4: The integers from Figure 3, now ordered. The ordering is visible in the 7�ℎ digit, but not
elsewhere.

10



With the indices established, a second pass through the input places everything in order. The areas

where records will be placed, where the indices point, are referred to as buckets.

Consider an input whose contents were # records with random keys between 0 and 9. To put

this in order one could create an array 2>D=C[10], initialize its contents to zero, then examine each

element in # , increasing the count 2>D=C[#[8].:4H] + + for each element in # . This set of counts

could then be converted into a set of indices where records with the same keys would be directed to

the same index. The 0Cℎ index would point to enough space to hold all the records that have a 0 for

the given digit, the next index would point to enough space to hold all the records that have a 1 and

so forth. Passing through the input once more, each record would be placed into the space allocated

based on the counts, incrementing the corresponding index so it is pointing to the next free space

1D 5 5 [8=34G[#[8].:4H] + +] = # . When complete, the records would be sorted based on their keys,

and each index would point to the space immediately following the records that had been placed.

While a simple example, the counting sort above does cover some assumptions that clarify some

characteristics with respect to approaches to implementation and application of radix sorts. The

characteristics of concern are the digit size of a byte, whether the number of digits is fixed, the use

of extra space and the allocation of buckets.

Digit Size of a Byte

Besides the trivial example of the counting sort, in practice the digit size itself is considered fixed,

specifically a byte. A byte gives 256 different possible values, which is small enough that processing

it is not too costly, and big enough that sufficient data is processed at a time. The size of digit directly

affects how many times we pass through the input before achieving a sorted result, so that further

encourages the choice of a larger byte, but the cost of processing the counts increases exponentially

with the size of the digit. Technical issues around cache also encourage a smaller digit, but in

practice there is less wiggle room here than might be expected. Lastly, most computers work very

quickly with bytes on all operations one might find during a radix sort. As such, we will use a byte

as our digit size, but it is worth understanding that there were options to consider that might become
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practical under different computing environments.

Figure 3 shows one-byte digits, with each grouping of eight rows (distinguished by shading)

representing corresponding digits from each of 10 64-bit integers shown. In this case, the choice of

eight bits, or a byte, creates eight digits for 64-bit integers, thus a radix sort would have eight passes.

A Radix Exchange Sort[Knuth, 1998, p122,123] is a radix sort with an optimization that uses a

single bit as the digit allowing that algorithm to skip counting. In the example integers from Figure

3, 64 passes of Radix Exchange Sort would be needed to sort the data. This larger number of passes

generally leaves this algorithm as an historical footnote.

Fixed-Digit Radix Sorts

Figure 3 shows 10 64-bit integers with a one-byte digit. Computers regularly specify integer types

by their size, either implicitly or explicitly, so sorting a bunch of integers of the same type, as is the

common case, yields a fixed number of digits. While radix sorts can be performed on variable digit

inputs, this thesis will focus on the the most common usage of radix sorts with fixed digits.

Allocating # Extra Space

The Radix Exchange Sort mentioned previously uses no extra space, but is otherwise of limited

practical use. There are in-place radix sorts that also use no extra space, such as Malte Skarupke’s

Ska Sort1, that have good performance characteristics. This thesis will focus on the more common

radix sorts that allow the use of Θ(#) extra space and which make up for the extra space usage with

faster performance.

While this extra space can be in a variety of forms, either linked-lists or additional contiguous

space, depending on the characteristics of inputs, this thesis will focus on the latter, allocating the

extra space as arrays. It is worth noting that the usage of linked lists removes the need to count data,

but otherwise has poor performance characteristics.

1It is well explained, well-optimized, diverts and the author went to the trouble of supporting a variety of non-standard
types of input that we know how to support, but we rarely do
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Algorithm 1 MSD Radix Sort
Input: input, buf, digits
Output: sorted input on digits

1: 8=8C80;8I4()
/* count and deal */

2: 2 ← 3 ← 3868CB[−1] // deal/count digit
3: 2>D=C(8=?DC, 1D 5 , 2)
4: 340;(8=?DC, 1D 5 , 3)

/* recurse for subsequent passes */
5: if length(digits) == 1 then
6: return
7: end if
8: for 9 ∈ 1D2:4CB do
9: A42DAB4( 9 , 8=?DC, 3868CB[: −1])

10: end for

Allocating Buckets

Aside from when using linked lists, a radix sort needs to allocate buckets. All implementations

reviewed in this research do this by counting values ahead of time to create the buckets that are then

dealt into. In this thesis, we will use buckets, but we will demonstrate a more effective approach for

their allocation.

When using buckets, records are accessed sequentially within a bucket, which performs more

efficiently than accessing values at arbitrary locations in memory in environments with memory

hierarchies. While the use of linked lists avoids the need to count, it loses the guarantee of sequential

access and incurs additional pointer operations, and thus it is rarely used.

1.2.1 Most Significant Digit (MSD) Radix Sorts

MSD radix sorts process each digit, starting at the most significant digit. For each digit processed,

each record will be passed over twice. In the first pass, the digits being considered are counted

in order to create buckets of the appropriate size for dealing. In the second pass, the digit being
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considered is used to identify the properly sized bucket to deal the record into. After all digits are

dealt, each bucket is sorted recursively. After each digit is processed anything in a bucket will be

greater than anything in all buckets to its left and less than anything in all buckets to its right. By the

time the least significant digit is processed, each bucket for that digit will either be empty or will

have one or more records with the same key, and thus is entirely sorted.

A common variant on MSD radix sort is to apply diversion, what we describe as a diverting

MSD radix sort. Unless all records are dealt into the same bucket, when each bucket is processed

recursively it will be smaller than the original input. Processing smaller buckets is more cache

efficient as buckets fit into ever more local levels of cache. Further, if buckets become small enough,

diverting to another algorithm can be efficient, with anywhere from 10 to 50% of total time of the

sort involving the sorting of these tiny buckets Kokot et al. [2018].

MSD radix sort can be implemented in-place, but will not be stable due to the way records

are swapped around. The in-place process swaps records from the free spots in identified buckets,

from left to right, into the first free spots in their destination buckets. The next record from the

first free spot in the left-most bucket with free spots is then processed. The savings in space come

at a potential increase in cost to access records and a guaranteed increase in swaps. Ska Sort,

implemented by Skarupke [2017], is an example of a diverting MSD radix sort that makes use of

many technical optimizations and ease-of-use measures to demonstrate that this type of sort is still

relevant when memory must be conserved. As the performance times of in-place implementations

are generally slower than corresponding Θ(=) space implementations, and we will not consider

in-place algorithms any further.

MSD radix sorts can be stable when implemented using an extra buffer of the same size as the

input. However, diverting using a non-stable algorithm removes the stability guarantee. Kokot et al.

[2018] uses sorting networks to divert in their RADULS2 implementation, and thus give up stability

for the performance gains of their diversion algorithm. Using a Merge Sort as a diversion algorithm

would be stable, and would take advantage of the already existing buffer space. Using Insertion Sort
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Algorithm 2 Diverting MSD Radix Sort
Input: input, buf, digits
Output: sorted input on digits

1: if end-start <= DIVERSION then
2: 8=B4AC8>=(>AC(8=?DC)
3: if isOdd(length(digits)) then
4: <4<2>?H(8=?DC, 1D 5 )
5: end if
6: return
7: end if
8: 8=8C80;8I4()

/* count and deal */
9: 2 ← 3 ← 3868CB[−1] // deal/count digit

10: 2>D=C(8=?DC, 1D 5 , 2)
11: 340;(8=?DC, 1D 5 , 3)

/* recurse for subsequent passes */
12: if length(digits) == 1 then
13: return
14: end if
15: for 9 ∈ 1D2:4CB do
16: A42DAB4( 9 , 8=?DC, 3868CB[: −1])
17: end for
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would be stable and would perform very well, but only on the smallest buckets.

Algorithm 1 shows MSD radix sort pseudocode given records in 8=?DC, a suitably sized extra

buffer in 1D 5 and a set of digits ordered least-to-most significant in 3868CB. For the current

most-significant digit, the algorithm counts the different values for that digit in the input and then

deals into buckets located in 1D 5 (lines 3–4). The algorithm is then recursively called on each

bucket, using the now available space in 8=?DC and no longer considering the now counted digit

(lines 8–10). The recursion ends all digits have been processed (lines 5–7).

For simplicity sake, the pseudocode in Algorithm 1 hides some details that are less immediately

relevant to the general flow of the algorithm. The pseudocode leaves out the creation and management

of buckets between the count and deal functions (lines 3–4). The pseudocode also hides that some

fiddling with offsets may need to be done when reusing 8=?DC as the buffer during recursion (line 9).

Lastly, the pseudocode of Algorithm 1 also hides the assumption that there are an even number of

digits.

In Algorithm 2 we consider a simple diverting MSD radix sort. The algorithm is almost the

same as Algorithm 1 but with a check for the input being smaller than the diversion threshold (line

1), in which case it diverts to Insertion Sort (line 2). As we can no longer take for granted an even

number of passes, we must track whether an even or odd number of MSD passes have been made.

Any code that calls the MSD radix sort will expect the sorted records to be in the original input

when the sorting completes, but during recursion the input and buffer are swapped. If Algorithm 2

diverted after an odd number of passes, the sorted records for that bucket would be in the buffer

space instead of in the original input space. This situation is remedied by copying from the buffer

holding the sorted records back into the corresponding space in the original input (lines 3–5).

Historically, improvements to MSD radix sorts focus on parallelization, improving cache-locality

and effective diversion algorithms, with examples of all these improvements in Kokot et al. [2018],

and an example of diversion with an in-place and broadly usable implementation in Skarupke [2017].
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Algorithm 3 LSD Radix Sort
Input: input, buf, digits
Output: sorted input on digits

1: 8=8C80;8I4()
/* count first digit */

2: 2 ← 3868CB[0] // counting digit
3: 2>D=C(8=?DC, 1D 5 , 2)

/* deal on first digit, and count on second */
4: 3 ← 3868CB[0] // dealing digit
5: 2 ← 3868CB[1] // counting digit
6: 340;�>D=C(8=?DC, 1D 5 , 3, 2)

/* loop to deal/count-next for each digit save last */
7: for 8 = 1 to ;4=6Cℎ(3868CB − 1) do
8: BF0?'>;4(8=?DC, 1D 5 )
9: 3 ← 3868CB[8] // dealing digit

10: 2 ← 3868CB[8 + 1] // counting digit
11: 340;�>D=C(8=?DC, 1D 5 , 3, 2)
12: end for

/* process last digit, but do not count in deal pass */
13: BF0?'>;4(8=?DC, 1D 5 )
14: 340;(8=?DC, 3868CB[−1])

Parallelization and cache-locality improvements are generally architecture dependent, whereas

diversion is more dependent on data distribution.

1.2.2 Least Significant Digit (LSD) Radix Sorts

LSD sorts stably process data from the least significant digit to the most significant digit,

performing fewer additional operations per input value, relative to an MSD approach that does not

divert.

Historically, improvements to LSD radix sorts focus on improving cache-locality and skipping

unneeded passes. Cache-locality improvements are generally architecture dependent, whereas

pass-skipping is dependent on data distribution.
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We contribute a new improvement to LSD radix sorts which does not rely on architecture and

which applies to a broad range of realistic data distributions[Thiel et al., 2016]. We also demonstrate

that one can also reliably apply diversion to LSD radix sorts at a trivial cost, demonstrating a further

performance boost that was hitherto limited to MSD radix sorts.

1.3 Contributions

The work presented in this thesis will create a new baseline for radix sort algorithm research. The

Diverting Fast Radix algorithm presented in this thesis will demonstrate better performance than

std::sort on all but the smallest input sizes. Diverting Fast Radix will also be shown to perform

competitively against start-of-the-art algorithms in modern literature. Where Diverting Fast Radix

does not out perform modern competitors, it will be shown that the cause of the deficiencies is well

known and can be overcome by technical optimizations which are well documented, but outside the

scope of this thesis.

Previous work in Thiel et al. [2016] will be extended to show that all but one counting pass can

be omitted by the Fast Radix algorithm without significant cost. The cost savings from the omission

of counting passes via estimation in Fast Radix will be modeled mathematically, in the average case,

and a reference implementation of this improvement will be shown to demonstrate the predicted

improvement.

Independently of the removal of counting passes, this thesis will demonstrate that diversion

can be consistently applied to LSD radix sorts to reduce passes in a manner consistent with how

diversion reduces passes in MSD radix sorts. The number of passes performed will be modeled for

both diverting MSD and LSD radix sorts. The models of both these algorithms will be shown to be

equivalent. Reference implementations of this algorithms will show that they accurately predict

actual passes performed. The review of literature in this thesis will highlight that diverting LSD
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radix sorts have not previously been seriously explored.

The algorithms will be explained in full, with pseudo-code and reference implementations made

available.

1.4 Organization of Thesis

Chapter 2 will begin the discussion of background with a brief history of the terms used in

discussing radix sorts. This language will be used to organize a survey of literature on radix sort

implementations and their reported improvements. A discussion of trends in how efficiency has

been considered over the history of radix sorts will situate these improvements and this work. The

background chapter will wrap up with a review of the standard approaches to algorithm analysis

applicable in the cases we consider int his thesis.

In Chapter 3, the pseudo-code for both Fast Radix and Diverting Fast Radix will be presented. A

general cost model will supplement an explanation of the considerations underlying these algorithms.

In Chapter 4, the performance results of our reference implementations will be shown against

optimized std::sort and the current best implementation identified in the literature. A detailed

explanation of the techniques applied in the algorithms will given, including both a discussion of

chosen approaches and a discussion of some approaches that did not show expected improvement.

In Chapter 5, mathematical models of the presented algorithms will be developed. A model to

predict the average cost of overflow from the count estimations in Fast Radix will show that the

overflow cost as a percentage of the input size goes to zero quickly as the input size increases. The

model of average passes performed of the standard diverting MSD radix sort will be developed.

The model of the diverting LSD radix sort used by Diverting Fast Radix will also be developed and

shown to be equivalent to that of the MSD radix sort.
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The thesis will conclude with a reiteration of contributions and a consideration of future work.
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Chapter 2

Background

2.1 Radix Sort

Exactly how Radix Sort came to be is unclear. Knuth cite’s Hollerith’s sorting and tabulating

machines that were used in the US Census Office of the late 1800s and into the early 1900s[Knuth,

1998, p.384] as a solid early example of sorting, but Cormen et al. summarizes it well with the

following quote:

“Knuth credits H.H. Seward with inventing counting sort in 1954, as well as with the idea of

combining counting sort with radix sort. Radix sorting starting with the least significant digit

appears to be a folk algorithm widely used by operators of mechanical card-sorting machines.”

[Cormen et al., 2009, p.211]

Its origins as a folk algorithm, often referenced to the 1880s in terms of mechanical use, the

fact that there are both most and least significant flavors of the algorithm and even changes in use

of language over time lead to some confusion. In Friend [1956], care is taken to distinguish the

term digit used in the “Internal Digital Sorting” as separate from the radix, which need not be

10-based, but they note that it is “...important to recognize that the positions in the control field must

be considered in order from "least significant" to "most significant" with each one requring[sic] a

separate pass”[Friend, 1956, p.18]. In Rahman and Raman [2001] the standard 8-bit radix is used

and the terms least/most-significant-bit (LSB/MSB) first radix sort are considered, which appears to
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be easily interpreted as least or most-significant-byte, so that form occurs regularly. After 2000,

least/most-significant-digit (LSD/MSD) radix sort, the terms we use in this paper, becomes more

common in spite of Friend’s careful admonishment on the use of language; in particular Cormen

et al., p.211’s analysis of the linear time of LSD radix sort (though they do not call it exactly that)

refers to “3-digit numbers in which each digit can take on up to : possible values.”

There is occasional conflation with counting sort, though when only one pass is involved, they

are the same. Bucket sort is occasionally conflated with MSD radix sort. In some works, for

example Lee et al. [2002], one sees the terms “left-to-right” or “right-to-left” sort that appear to be

based on a big-endian interpretation of the actual encoding. Maus [2002] refers to MSD radix sort

as also being “top down radix sort”, with the “left radix” (again, big-endian) variety being a “bottom

up radix sort.” Lee et al. [2002] and Al-Badarneh and El-Aker [2004] both refer to LSD radix sort

as a “straight radix sort”. Lorin [1975] and Andersson and Nilsson [1994] use the term “lexographic

sort,” though this is implied as being for variable key sized inputs (e.g. variable length strings), and

it is generally of the MSD variety, as Andersson and Nilsson [1994] also refer to it as “forward radix

sort” and note that it is often best to divert to comparison-based-sorts when buckets become small.

The terminology used for the components of a radix sort is more consistent, with most variance

being early on or based on the appearance of terms when they are considered important, and their

absence otherwise. Pass is used consistently going as far back as Friend [1956]. Friend [1956]

refers to the “recipient area” for a particular position, but this is synonymous to what is called the

buffer in most latter papers; they do note that the “sending area” (what is now referred to as input, in

general) and the “recipient area” alternate with each pass. Cormen et al. [2009] refers to bins. The

majority of other papers refer to the specific target area for elements with like digits as buckets.

Counting, or frequency counting is quite consistent. Where terminology around counting varies

is in consideration of performance impacts of those counts, so papers that concern themselves with

these issues include mention of more details related to the counting, such as the initialization of the

counts and the “prefix sum” of the counts[Rahman and Raman, 2001], and not just the count itself,
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Topic Source
Count Friend [1956], Rahman and Raman [2001], Thiel et al. [2016], Thiel

[2019], Kumar [2019], Hanel et al. [2020]
Deal LSD: LaMarca and Ladner [1999], Rahman and Raman [2001], Satish

et al. [2009], MSD: Jiménez-González et al. [2003], Kokot et al. [2017],
Kokot et al. [2018], Hanel et al. [2020]

Diversion LSD: Sedgewick [1998], Al-Badarneh and El-Aker [2004], Thiel [2019]
MSD: Maus [2019], Maus [2002], Jiménez-González et al. [2003], Kokot
et al. [2017], Kokot et al. [2018]

Parallelization Lee et al. [2002], Satish et al. [2009], Delorme et al. [2013]
Variable Radix Size LaMarca and Ladner [1999], Maus [2002]
Variable Key Size Paige and Tarjan [1987], Mcllroy et al. [1993], Andersson and Nilsson

[1994], Bentley and Sedgewick [1997], Nilsson [2000], Kärkkäinen and
Rantala [2009]

Table 1: This table identifies literature where improvements have been made or discussed, organized
by parts of the radix sort where improvements have been applied and specific areas of research that
affect the radix sort as a whole. Whether the improvement was specific to LSD or MSD radix sorts
was specified for clarity.

which is their primary focus.

The term for dealing varies significantly across papers. Friend [1956, p.18] uses the term

disbursement. [Rahman and Raman, 2001] calls this a permutation phase, what appears to be a nod

to in-place MSD radix sort’s unstable approach to dealing1. There are also some papers that refer to

the dealing phase as the distribution phase, as radix sorts fall into the class of distribution sorts;

Cormen et al. [2009] describes how mechanical card-sorting machines would “... examine a given

column of each card in a deck and distribute the card...”[Cormen et al., 2009, p.197] though they do

not use the term deal that one might readily associate with deck and card. It is difficult to say if the

term deal is the most common term in the literature, but it is in the running.

Table 1 outlines key changes in radix sort over the last several decades to situate this thesis. The

most significant improvements outside of this work fall into improvements in the performance of

dealing, primarily through improving cache and Translation Lookaside Buffer (TLB) performance

1While some papers consider this approach, which is not applicable in this thesis, the well-developed non-academicly
published Ska Sort[Skarupke, 2017] gives it an impressive treatment, and it should not be overlooked.
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and work on applying diversion to radix sorts, primarily to MSD radix sorts. In addition, there is

significant work on parallelization which, while falling outside of the scope of this thesis, identifies

important research in the area and highlights opportunities for future work on this thesis material.

There are several instances of the use of variable radix size in the literature, and we note some of

them here as, while they often lack an immediate performance gain, their regular recurrence in the

literature suggests that this approach at least has some niche application, particularly in conjunction

with other techniques.

In this section we will introduce the background for key concepts underpinning this thesis. A

brief discussion of efficiency will introduce key supporting concepts that will give reason for different

approaches used in this work and related work, which otherwise may seem arbitrary. We will then

introduce sorting, the concept of diverting (as used in sorting), and the classes of sorting algorithms

considered in this thesis, introducing both historical and contemporary work in those areas. We will

round out this section by considering relevant analysis techniques in sorting algorithms, including

analysis techniques that are more commonly used elsewhere that become relevant for the stochastic

approaches introduced in this thesis.

2.2 Efficiency

Efficiency is often used to describe the desirable metric around some process. Often we refer to

things as space-efficient or time-efficient. Energy-efficiency is also mentioned to mitigate that simple

time-efficiency really just means more energy is being expended to do something mostly in parallel.

Compute-time-efficiency, by comparison, is about the time a processor spends doing something and

thus is not affected by parallelization and is a better counter-point to energy-efficiency. In this thesis,

we will focus on compute-time efficiency when efficiency is discussed, though the general goals

of this thesis are to do fewer things than we used to, not just to do the same things faster or more

energy efficiently.
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Often we see reference to the number of records that can be sorted in a given amount of time or

with a given amount of energy. If an algorithm can sort more records in the same amount of time or

energy, then that algorithm is more efficient in that respect. If an algorithm sorts more records in a

given amount of time and energy, but takes more space, is it more efficient? All things scaling in the

same way, it is really about limiting factors in the environment where the sorting is taking placel

usually that is tied to money.

These days, space is the least relevant limiting factor. In practical terms, we will consider sorting

things that can be held entirely in memory, though, particularly with the algorithms we will consider,

this is not so relevant a restriction as it once was, both because memory is cheap and plentiful, and

because cache-efficient writing to disk does not have as significant an impact is it might in other

times or with different algorithms.

Compute-time and energy are where money comes in. Considering parallel computing, a

business is not concerned with how fast they can sort a single large input, they are concerned with

sorting many large inputs all the time. In that sense, it is more efficient to sort 10 inputs on 10

processors by having each processor sort one input instead of having each input be sorted in parallel

by 10 processors. That is not to say that there is no application to being able to parallelize an

algorithm, only that this is just a special case worth noting, not the general target.

Where compute-time and energy are not exactly the same are when individual operations

performed on a single processor have differing costs and can be interchanged. This can either relate

to low-level parallelism or actual differences in performance. On a specific hardware, does the

energy cost of accessing a certain level of cache scale linearly with the time cost? Most of the

accessible research in this area deals with access to cache and the varying flavors of cache misses that

can impact compute-time and energy, specifically there is a lot of research around cache-sensitive

algorithms and minimizing TLB misses. Discussion of low-level parallelism is generally relegated to

low-level programming heuristics, but there is some research on surveys of algorithms and variants

as well as results for specific implementations of pieces of algorithms that are practical to consider.
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In practical terms, this generally translates to taking care to access data in a cache-sensitive

fashion, for both reading and writing. It also impacts balancing the cost of recording and processing

meta-information such as counts (or even sampling data) against other approaches to achieve the

algorithms goals.

An example of the issue of cache-sensitivity was an implementation of a sorting algorithm that

processed pointers that were contiguous in memory, so accessing these pointers was cache friendly,

but it then looked up information at a position in memory unrelated to the relative position of the

pointer. Since the pointers were initially just the relative positions of the records in memory, the first

pass was cache friendly and efficient when interacting with the underlying data. When the amount of

data was not very large, it was somewhat slower, but not too much so. However, when many millions

or billions of records were involved, as the pointers were shuffled around during the sorting process,

subsequent access to the underlying data appeared to lead to cache misses on virtually ever access,

with the possibility that main memory was accessed most of them, taking orders of magnitude more

time for those operations than had been taken in the initial pass. We had no immediate measure of

the energy efficiency in this example, but the compute-time efficiency was clearly impacted.

In this thesis, we focus on compute-time efficiency, and indirectly energy-efficiency, though this

is not our direct goal. The primary goal is to just do less, but we consider compute-time-efficiency

when weighing the cost of doing less, and use this consideration to balance against making the

algorithms we propose small, simple and easy to use. In general, the approaches we use for our

implementation are relatively standard practices and are not contentious, and more importantly

we stress that the benefits of our algorithm are still present when contemporary alternatives to

implementation details are used.

26



2.3 Analysis of Sorting Algorithms

2.3.1 Concepts

Certain concepts from the analysis of algorithms covered in this thesis come up often.

Occupancy Distribution

Given the standard ball-and-urn model where #, " ∈ /≥1, we can use Sedgewick and Flajolet’s

description:

The average number of urns with : balls, when # balls are randomly distributed in "

urns, is:

"

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

[Sedgewick and Flajolet, 2013, p. 503, Theorem 9.5]

Further, Sedgewick and Flajolet’s specify the average number of balls per urn is #
"

and the

standard deviation is
√

#
"
− #

"2 [Sedgewick and Flajolet, 2013, p. 503, Second Corolooary].

So the sum of all average possible values for : must therefore be ":

" =
#∑
:=0

"

(
#

:

)
(

1
"

): (1 − 1
"

)#−: (2.3.1)
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2.3.2 Transformations

Throughout this thesis, many results are mathematically established. The equations, in context, can

appear complicated. In order to simplify, we note here the transformations that we rely on, and we

will refer back to the transformations identified here to clarify what we are doing later.

Pascal’s Rule or Addition/Induction

Given the nature of binomial coefficients, and for #, : ∈ R>0, we can always decompose a binomial

coefficient into a sum of two other binomial coefficients:

(
#

:

)
=
(
# − 1
:

)
+
(
# − 1
: − 1

)
(2.3.2)

[Graham et al., 1994, p.174, Table 174, 4Cℎ identity]

This is useful when we need to increase or decrease the number of terms. For the analysis in this

thesis, when intuition suggests a solution of a certain form, but what we have does not seem to fit,

this is one of the first things we attempt.

Trinomial Revision

(
#

9

) (
9

:

)
=
(
#

:

) (
# − :
9 − :

)
(2.3.3)

[Graham et al., 1994, p.174, Table 174, 6Cℎ identity]

Equation 2.3.3 is the number of ways to pick the 9 men from the # mortals times the number of

ways to pick the : Socrates from those 9 men is the same as the number of ways to pick the same :

Socrates from those # mortals times the number of ways to pick the 9 − : men who are not Socrates
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from the # − : mortals who are not Socrates2. It is a way of getting a
(#
:

)
factor when you have

something in the form of
(#
9

) ( 9
:

)
.

Partial-Fraction Decomposition

Sometimes we have sums of fractional terms that are not of the form that we want. Often we have

too many, or too few terms; more significantly, the denominators or numerators may not be in an

obviously useful or familiar form. When we need an extra term and we know what denominators we

will need, then we have guidance to attempt such a transformation. When we have too many terms,

this can be trickier, but if we know the denominator we want, then at least we can look for two terms

with denominators that have the desired denominator as their product. The numerators are often less

obvious, but in walking through the process of decomposing or recomposing partial fractions things

often come together.

�

�
=
�

�
+
�

�
(2.3.4)

where

� = �� + �� (2.3.5)

and

� = �� (2.3.6)

Graham et al. refer to this more generally as partial fraction expansion[Graham et al., 1994,

p.298-299] (in the other direction, of course) and show a “slick trick”[Graham et al., 1994, p.299] to

solve for �
�

, even when terms are not simple.

2My mnemonic for this is Binomial Syllogism
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The Ceiling of Rational Numbers

In this thesis, we will often refer to the ceiling of a very specific fraction, d #
"
e, which we will discuss

later. For our purposes, positive integer # is of interest. Given that, we can consider # in two parts,

some multiple of " and some integer between 1 and ". We represent this as # = 2" + 0 for

2 ∈ Z≥0, # ∈ Z>0, " ∈ Z>0, 0 ∈ Z : 1 ≤ 0 ≤ " . Of further interest is the relationship between #
"

and d #
"
e :

#

"
=

0 + 2"
"

= 2 +
0

"
= 2 + 1 − " − 0

"
(2.3.7)

d #
"
e = d0 + 2"

"
e = 2 + d 0

"
e = 2 + 1 (2.3.8)

This leads to the fact that #
"

is just d #
"
e taking away "−0

"
parts that were rounded up by in the

process of performing the ceiling operation. When 0 = " , # is 2" +" , therefore #
"

= d #
"
e = 2 + 1

We can expand further:

#

"
=d #
"
e − " − 0

"
(2.3.9)

#

"
=(
0

"
+
" − 0
"

)d #
"
e − " − 0

"
(2.3.10)

#

"
=
0

"
d #
"
e +

" − 0
"

(d #
"
e − 1) (2.3.11)

Equation 2.3.11 splits #
"

in terms of "−0
"

and its complement with respect to d #
"
e, which provides a

practical representation that we will use in analyzing Fast Radix later.
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2.3.3 Classification of Input

While sorting algorithms themselves cover the operations involved in going about sorting, the sorting

itself is applied to some input. Understanding of that input and what it means is potentially quite

complex. However, such considerations can yield improved performance, and more specifically, a

better understanding of what operations are appropriate – and when – for potential algorithms.

To tie it all together in a simple way that will hopefully make clear why it is useful in this

research, we present the following: An input for a sorting algorithm is a List ! containing = elements

�8, where 8 is from 0 to =. All elements �8 are drawn from the Set (. ! is a permutation of the

ordered List !>A3 . In these terms, we identify “Types of Input” as per Stevens’ Scales, and suggest

that this applies a classification of what relations are appropriate to apply to any List of elements

drawn from ( within the context of !. Similarly, we identify “Distributions” as a classification

describing how elements �8 can be drawn from (, indicating how many will be drawn, and the

probability that any given element will be drawn, but not at all pertaining to the order in which the

List ! is filled; treating ( as continuous, then this applies equally well. Lastly, we identify “disorder”

as a classification of the specific permutation of elements in !.

The likelihood of presortedness is not explicitly identified by these classifications, but as noted

by Estivill-Castro, “nearly sorted sequences are common in practice” Estivill-Castro and Wood

[1992]. Thus a fourth indirect classification appears to be “Presortedness” of several input Lists,

which is to say an expected measure of disorder that is consistent over a set of actual or expected

practical inputs. In most cases, authors appear to imply this by identifying the specific measure

of disorder and a numeric range of expected values (or a loose textual qualification) while further

qualifying the source of the sets with natural language e.g. “. . . ordered by reversed spelling, which

mixes the data well.” Mcllroy et al. [1993], which identifies a high value of disorder for some

implied yet ambiguous measure of disorder, qualified by natural language indicating that this set of

Lists is coming from the reverse ordering of dictionaries. However, when the term “presortedness”
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Figure 5: Stevens Scales of Measurement taken directly from “On the Theory of Scales of
Measurement” Stevens [1946]

Class example allows Worst case Big O
nominal shapes = Θ(=2)
ordinal favorite foods ≤ Θ(= log =)
interval date - Θ(=)

Table 2: How Stevens’ Scales of Measurement impacts the complexity of sorting. Sorting of
nominal things would just be grouping like things.

is applied to a specific List, it appears that it is always meant as a measure of disorder.

Types of Input

Around the 40s Stevens Stevens [1939, 1946] proposed a scale of measurement based around

the idea that such scales are the assignment of numerals to things by a set of rules, and that these

rules defined appropriate interaction on the things being measured. Our interest in this scale lies in

its application to the input needing sorting and whether the specification of scale has implications

on the type of sorting that is optimal to use.
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The nominal scale is of little interest for this purpose, as it is concerned only with identifying

whether two elements are the same, but offers no insight on any rank relation. On the other hand,

the ratio scale may be more than is immediately useful when analyzing these inputs, at least given

the types of algorithms and inputs being considered thus far.

That leaves ordinal and interval scales to consider. The former supports identifying equality or

rank between elements, exactly what traditional comparison sorting does, and the latter supports

those tests, as well as identifying equality or difference of intervals between elements. This additional

property can allow the encoding to a radix-based system that one can see corresponds to radix

sorting.

While this sounds trivial, it offers terminology to distinguish between two known input types, as

well as introducing Stevens’ cautions with regards to their applicability. To paraphrase, you can

number ordinal things and apply statistics, pretending that the intervals are the same, and maybe

even get good results, but that does not mean that this is a good idea and that you will always get

good results. Conversely, just because one has inputs that appear numeric or to have distance does

not guarantee that the intervals are relevant and that the encoding allows for anything more useful

than tests of equality or rank ordering.

Distributions

Input distributions are well known in terms of sorting algorithm input, particularly uniform

distributions and normal distributions. Binomial distributions and Cauchy distributions are brought

up by Chakraborty, Singh and Sourabh in their various papers, but they appear not to be generally

considered in sorting algorithms [Chakraborty et al., 2007, Singh, 2012, Singh and Chakraborty,

2012a,b, 2011, Sourabh and Chakraborty, 2008].

Additional ambiguity in distributions stems from the fact that distributions have different meaning

when applied to ordinal scales than when applied to interval scales. With ordinal scales, you have
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the occurrence of duplicate keys discussed in detail by Sedgewick in “Quicksort With Equal Keys”

Sedgewick [1977], where multisets feature prominently.

When dealing with interval scales and radix sorting, distributions affect how many things will

get assigned to buckets, which can directly affect the structure of an algorithm, or can have just as

significant an impact based on properties of the underlying computational model/memory model

that it is implemented on. Even under cases of comparison-based sorts on interval data, such as

with meansort, a distribution based on the frequency of duplication of keys would have a different

performance impact than a continuous distribution around a certain integer value, though both might

be described as normal distributions.

Fortunately, such ambiguity appears as rare as the overlap between such approaches. When

dealing with comparison based-sorts, distribution usually implies some sort of histogram of frequency

of occurrence of equal keys, and when dealing with radix sort distributions are continuous, or at

least are impacted by proximity vs. equality.

Measures of Disorder and Presortedness

Several measures of disorder are outlined in Estivill-Castro’s “A Survey of Adaptive Sorting

Algorithms” [Estivill-Castro and Wood, 1992]. (Inv) Inversions is the measure of how frequently

a given element occurs before an element that should precede it, summing these counts for each

element. Thus, an ordered list has no inversions and a reverse-ordered list would have the maximum

inversion count for its length and distribution. (Dis) Distance is a measure of the degree of separation

between inversions. (Max) Max is a measure of the maximal distance between elements and their

correct sorted position. (Exc) Exchanges is a count of the minimal number of exchanges (or other

unit-operations) required to put a sequence back in order. (Rem) Removed measures the minimum

number of elements needed to be removed in order to be left with an ordered sub-sequence. (Runs)

Runs measure the number of ordered runs (vs. reverse-ordered runs) in a sequence, as measured by
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Figure 6: Estivill-Castro’s partial ordering of measures of disorder [Estivill-Castro and Wood, 1992].

the boundary between such runs. (SUS) Shuffled Up-Sequences measures the minimum number

of ascending sub-sequences that an input can be partitioned into, the “shuffled” suggesting the

interleaved nature of these sequences in the original input. (SMS) Shuffled Monotone Subsequences

is similar to SUS, but considered both ascending and descending order for valid runs. (Enc)

Encroaching Lists measures the number of such lists that can be generated by melsort [Skiena,

1988], and is identified as one of a variety of such measures that have been specifically designed to

accommodate the identifications of good permutations for specific algorithms or research. (Osc)

measures the oscillations between large and small elements in heapsort. (Reg) Regional is a measure

proposed by Petersson and Moffat which is designed to cover all the previously mentioned measures

[Petersson and Moffat, 1995]. [Estivill-Castro and Wood, 1992]

Petersson and Moffat identify a partial ordering of these measures and Estivill-Castro appear to

adjust this slightly [Estivill-Castro and Wood, 1992, Petersson and Moffat, 1995]; Estivill-Castro’s

partial ordering can be seen in Figure 6. It is unclear how Estivill-Castro adjusted the partial
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ordering, but Moffat introduces it as follows:

We introduce a natural relation, denoted ⊇, which defines a partial order on the set

of measures. If "1 and "2 are two measures of presortedness, and "1 ⊇ "2, every

sorting algorithm that optimally adapts to "1 optimally adapts to "2 as well. [Petersson

and Moffat, 1995]

In either case, these measures are used to define an algorithm as adaptive, that is an algorithm

which sorts faster when some measure of disorder is small [Estivill-Castro and Wood, 1992, Mannila,

1985]. Such adaptive algorithms are considered useful to study as “...nearly sorted sequences

are common in practice, and adaptive sorting algorithms are more efficient [Knuth 1973, p. 339;

Mehlhorn 1984, p. 54].” [Estivill-Castro and Wood, 1992, as cited by]. The approaches and

considerations identified here can guide the creation of new adaptive algorithm, or offer insight and

alternatives approaches that might add adaptive qualities to a new or existing algorithm at little or

no cost.

While empirical analysis of sorting algorithms is most common in recent literature, one can also

mathematically model algorithms, or the differences between algorithms to more exactly understand

them. A comparison of the models of different classes of algorithms can demonstrate the differences

in their asymptotic analysis, e.g. comparing Quicksort to a radix sort. One can also compare the

models of very similar algorithms, or their differences, to model costs and benefits.

One of the more commonly considered models for visualizing many classes of algorithm analysis

are the Ball and Urn Models[Berg, 2014]. Stochastic analysis lends itself to such models, and thus

one can more readily show comparisons between algorithms and approaches in varying fields by

using these familiar models. Further, an extensive body of research exists showing how the study

of characteristics of Ball and Urn Models apply to a variety of problems, both within Computer

Science and elsewhere.
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In this thesis, we focus on the variant of the Ball and Urn Models where there is a fixed number

M urns and N balls randomly distributed among them, evaluating how many urns contain balls

beyond a fixed threshold g and what percentage of balls overflow on average as N increases. This is

a specific configuration of the Occupancy Problem. Considering a brief history of Ball and Urn

Models, the Occupancy Problem and their related problems will situate our contribution within the

literature.

The Occupancy Problem

The general occupancy problem is set up as # balls placed randomly into " urns with the probability

? 5 that the ball will remain (instead of falling through) and the probability ?< that the next ball will

end up in any urn <. The problem is to determine some characteristic of such a system, or how

that characteristic changes as one of the parameters changes. If we consider the special case where

? 5 = 1, " is fixed and all values of ?< are the same, then we can model various characteristics

relevant to this research.

Williamson et al. have examined a random variable - , effectively describing the average number

of urns that will contain at least one ball after # balls have been placed [Williamson et al., 2009].

This is the same form of the Occupancy Problem described above, and a simple solution can be

shown based on the occupancy function D(:, #, "), “[t]he average number of urns with : balls,

when # balls are randomly distributed in " urns”[Sedgewick and Flajolet, 2013, p.503].

D(:, #, ") = "
(
#

:

)
(

1
"

): (1 − 1
"

)#−: (2.3.12)

This is derived from the probability function ?(:, #, %), that “an event will occur exactly : times

out of [#]”[Freedman et al., 2007, p.259] where “[P] is the probability that the event will occur on
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any particular trial”:

?(:, #, %) =
(
#

:

)
%: (1 − %)#−: (2.3.13)

Specifically, we consider the case where the possible outcomes are equally probable, i.e. % = 1
"

, as

an event : represents a ball being placed in an urn and we have " equally probably urns for each

ball to be placed into. In that case, we have D(:, #, ") = ?(:, #, 1
"

)"

The variable X described by Williamson et al., which we denote as the function -(#, "), is

simply " − D(0, #, "):

-(#, ") = "(1 − (
" − 1
"

)# ) (2.3.14)
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Chapter 3

Fast Radix Algorithms

In previous work, Thiel et al. [2016], we have demonstrated the improvements of Simple Fast Radix

(referred to as “Fast Radix” in that work) over radix sorts, showing that omitting the first counting

pass leads to faster performance. This chapter will discuss the Simple Fast Radix algorithm, our

improved Fast Radix algorithm, our diverting LSD radix sort algorithm and our Diverting Fast

Radix algorithm. The chapter will complete with a summary of the discussed algorithms.

Each section will provide a brief introduction to the corresponding algorithm that highlights

the introduced improvements. The algorithm’s details will then be discussed, describing variables,

structures and functions used in the pseudocode. The section will then present high-level pseudocode

for its respective algorithm and then describe in natural language that references the pseudocode. An

example that refers to the pseudocode will be presented, including additional lower-level pseudocode

as warranted. Each section will finish with a proof of correctness and discussion of the areas,

often glossed over by the pseudocode, where there are opportunities for future work. Exceptionally,

Diverting Fast Radix will only include pseudocode and a brief discussion of how it is just a direct

combination of Fast Radix and diverting LSD Radix Sort.

The Simple Fast Radix section will highlight how that algorithm compares to the LSD radix

sort algorithm with a review of the LSD radix sort pseudocode from Chapter 1. Similarly, we will

briefly revisit the diverting MSD radix sort pseudocode from Chapter 1 when comparing diverting

MSD radix sort and diverting LSD radix sort.
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Throughout this chapter, there are commonalities in how we refer to the records passed to the

sorting algorithms and the notations we use. The input to radix sorts is an array of # records to be

sorted identified as input and an array of the digits on which to perform the radix sort identified as

digits. We omit the case of a single digit, and in general, the case of an odd number of digits.

With a one-byte digit (i.e. where M=256) and a key of 8 bytes, digits would contain the values

[0, 1, 2, 3, 4, 5, 6, 7], with 0 being the least significant digit. Specific records in input are accessed

via array notation, e.g. if input contained [65539, 27] we would access the 0Cℎ record, 65539, using

the notation input[0]. The algorithms similarly will access the digits within the key of a record

via array notation, e.g. If we had a one-byte digit and wanted to access the least significant digit of

the 0Cℎ record, 65539, which would be 3, we would use input[0][0]. The length of an array can

be accessed using the .length notation, e.g. the length of input would be input.length. The

pseudocode will use an array notation [], even when no index is specified, as a reminder that a

variable is an array. The pseudocode will similarly use a brace notation {} to specify that a variable

is a structure with dot notation access to internals.

3.1 Simple Fast Radix

Simple Fast Radix performs its first dealing pass using estimations instead of counting. This first

pass estimates bucket sizes, deals into buckets or the overflow and then processes overflow. The

subsequent pass deals from each predicted bucket and its overflow counterpart if necessary, such

that the algorithm will still perform the pass in stable, bucket order. All other passes deal from input

contiguously into exact buckets, as would an LSD Radix Sort.

Simple Fast Radix differs from LSD radix sort in that it can omit the initial standalone counting

pass. Instead, Simple Fast Radix estimates bucket sizes for the first pass and processes any overflow

afterward. The second pass deals from the estimated buckets and corresponding overflow buckets

but otherwise, deals into the same buckets as LSD radix sort would, and all subsequent passes are
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Algorithm 4 LSD Radix Sort Revisited
Input: input, buf, digits
Output: sorted input on digits

1: 8=8C80;8I4()
/* count first digit */

2: 2 ← 3868CB[0] // counting digit
3: 2>D=C(8=?DC, 1D 5 , 2)

/* deal on first digit, and count on second */
4: 3 ← 3868CB[0] // dealing digit
5: 2 ← 3868CB[1] // counting digit
6: 340;�>D=C(8=?DC, 1D 5 , 3, 2)

/* loop to deal/count-next for each digit save last */
7: for 8 = 1 to ;4=6Cℎ(3868CB − 1) do
8: BF0?'>;4(8=?DC, 1D 5 )
9: 3 ← 3868CB[8] // dealing digit

10: 2 ← 3868CB[8 + 1] // counting digit
11: 340;�>D=C(8=?DC, 1D 5 , 3, 2)
12: end for

/* process last digit, but do not count in deal pass */
13: BF0?'>;4(8=?DC, 1D 5 )
14: 340;(8=?DC, 3868CB[−1])
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the same as for LSD radix sort.

3.1.1 Algorithm Details

Simple Fast Radix uses some labeled placeholders for specific digits of interest and arrays that act as

buffers for dealing from input or holding counts and offsets for specific buckets. For clarity, we

refer to d as the current digit being dealt to, c as the next digit to count exactly all but the last pass

and overflowCount as the number of records that have overflown in the first pass. In Simple Fast

Radix, the buffer buf is the same size as input, with alternating passes first dealing from input

into buf and then swapping roles, via swapRole, to deal from buf into input.

In Simple Fast Radix, various bucket arrays store information about the " buckets used in each

pass, representing each bucket’s count or index for their corresponding digit. Simple Fast Radix uses

four bucket arrays: cur, next, over and exact. cur stores the current buckets that the algorithm

deals from during the second pass. The algorithm stores the estimated buckets in next for the

first pass and then uses next to store exact buckets for all other passes. over stores the counts for

overflow buckets, and after the overflow is processed, it stores the overflow buckets that extend the

buckets stored in cur during the second pass. exact stores the counts for buckets in the next pass,

which are converted to exact buckets at the end of each dealing pass after the first one, and then

assigned to next. On the first pass, cur is unused as input is the single source bucket. Neither cur

nor over are used after the second pass as no more overflow is tracked. After the second pass, the

input can be treated as a single bucket as the deal from the previous pass has ordered all its buckets

contiguously. As with buf and input, the next and exact bucket arrays swap roles after each

pass using swapRole. In the last pass, next refers to the indices generated from the exact counts in

exact in the previous pass, but exact is not used as there are no additional passes.

To avoid clutter, we specify two structures as variables for the input data and the overflow data

which are cumbersome to pass around. The variable inputData uses input, cur, overflow
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and over. The variable overflowData uses as fields the variables input, overflow, over and

overflowCount. This structure allows us to pass inputData and overflowData as needed, and

then refer to the components with the dot notation, e.g. oD.overflowCount if overflowData

were passed as oD.

Some high level operations are used in the description of Simple Fast Radix, summarized

here. estimate() populates the next array with estimates for the locations of buckets in buf.

estimatedDealCount() deals records, based on their d-digit, into the buckets in buf which are

specified in next or into overflow space if an estimated bucket is full, also counting the c-digit into

exact for use in the next pass. processOverflow() sorts any overflow into buckets (specified in

over) into the newly created overflow array. dealCount() deals like estimatedDealCount()

save that it uses exact buckets so there is no need to check for overflow. 340;() deals like

dealCount() save that there is no counting of the next pass.

Aside from arithmetic operations, the assignment operation← and the array notation, we use

some operations without further definition. initialize() manages the creation of arrays and

zeroing the count arrays. prefixSum() converts counts in an array into corresponding indices.

swapRole() swaps the roles of arrays, making for a simpler notation, but not creating new arrays or

materially changing contents. swapRoleClear() acts like swapRole, but zeroes the second array,

re-initializing it for subsequent use. est() yields the exclusive end of an estimated bucket given a

digit from a key, the size of the input and the number of buckets.

In this context getNext() encapsulates the logic behind accessing the next value from either

buckets specified by cur on input, buckets specified by over on overflow or from input all but

the second pass. How getNext() processes inputData will be omitted for clarity. The important

thing is that getNext() ensures that estimated and overflow buckets are processed in order.
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Algorithm 5 Simple Fast Radix
Input: input[], digits[]
Output: sorted input on digits

1: 8=8C80;8I4()
/* estimate first digit */

2: 3 ← 3868CB[0] // estimate/deal digit
3: 2 ← 3868CB[1] // counting digit
4: 4BC8<0C4(=4GC[], #)

/* deal first and count second digit */
5: 4BC8<0C43�40;�>D=C(8=?DC�0C0{}, 1D 5 [], >E4A 5 ;>F�0C0{}, =4GC[], 4G02C[], 3, 2)

/* process overflow */
6: ?A>24BB$E4A 5 ;>F(>E4A 5 ;>F�0C0{}, 3)
7: ?A4 5 8G(D<(4G02C[])
8: BF0?'>;4(8=?DC[], 1D 5 ][)
9: BF0?'>;4�;40A(=4GC[], 4G02C[])

/* deal for remaining digits save last, counting for next digit*/
10: for 8 = 1 to ;4=6Cℎ(3868CB) − 1 do
11: 3 ← 3868CB[8] // dealing digit
12: 2 ← 3868CB[8 + 1] // counting digit
13: 340;�>D=C(8=?DC�0C0{}, 1D 5 [], =4GC[], 4G02C[], 3, 2)
14: ?A4 5 8G(D<(4G02C[])
15: BF0?'>;4(8=?DC[], 1D 5 ][)
16: BF0?'>;4�;40A(=4GC[], 4G02C[])
17: end for
18: 3 ← 3868CB[−1] // dealing digit

/* deal last digit */
19: 340;(8=?DC�0C0{}, 1D 5 [], =4GC[], 3)

3.1.2 Pseudo-code

We can break Algorithm 5 into four parts. The first part is the initialization on line 1 where

variables and structures are initialized (overflowCount, inputData and overflowData), internal

arrays are initialized, creating new space and zeroing the bucket arrays. The second part is from

lines 2 to 9 and is where the estimation is performed and overflow from that initial pass is processed.

The third part is from lines 10 to 17 where all pass but the last are performed, dealing from the

estimated buckets and any overflow in the first of those passes but then dealing from input as in LSD
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radix sort. In lines 18 to 19 the final exact deal is performed without additional counting, leaving

the array sorted.

The loop making up the second part of Algorithm 5 processes the first pass on the first, least

significant, digit in digits, counting on the second digit. On lines 2 and 3 the current digit for

dealing and the next digit for counting are stored in d and c respectively. Line 4 calls estimate()

to fill next with the estimated indices of the buckets that will be subsequently dealt into given # (the

length of input). Line 5 calls estimatedDealCount() to deal all records (access to all records

coming from inputData), based on the current digit d, into either their estimated buckets in buf,

as specified in next or into overflow space when the estimated buckets are full. Overflow space will

be the beginning of input. During this dealing step, the bucket array exact will be updated with

counts on digit c, the bucket array over will be updated with exact counts for the overflown records,

given digit d, and the number of records overflown will be recorded in overflowCount. Line 6

calls processOverflow(), which will create an overflow as a buffer of size overflowCount.

With enough space assured in overflow, the processing of overflow will convert the bucket array

over from counts into indices for the exact overflow buckets in overflow and will then deal into

that space from the beginning of input where overflow is stored. Finally, in lines 8 and 9, the roles

of arrays are swapped forinput and buf as well as for next and exact, with exact being cleared

for subsequent use.

The third part of Algorithm 5 deals the middle passes, dealing and performing counting for

each pass. Lines 11 and 12 store the digit to deal on in d and the digit to count on in c. In line 13,

dealCount() deals exactly as estimatedDealCount() on line 5, save that there is no overflow

as next refers to exact buckets. Line 14 calls prefixSum to convert the bucket array exact into

exact bucket indices for the next round of dealing. As in the previous part, the pass completes with

the roles of arrays being swapped in lines 15 and 16.

The final part of Algorithm 5 deals the last pass into place, leaving input sorted. Line 18

assigns the last digit to d and line 19 calls deal() to deal exactly into buf, which is just the original
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Algorithm 5.1 estimatedDealCount
Input: iD, buf[], oD, next, exact, d, c

1: estimatedDealCount /* Θ(#) */
2: for 8 = 0 to # − 1 do
3: A42>A3 ← 64C#4GC()
4: 4G02C[A42>A3[2]]++

/* If we have not overflowed */
5: if next[record[d]] < est(record[d], N, next.length) then
6: 1D 5 [=4GC[A42>A3[3]]]← A42>A3 /* Deal into buf based on next */
7: =4GC[A42>A3[3]]++ /* Increment next for the bucket that was dealt into */

/* Else we have overflowed */
8: else
9: >�.8=?DC[>�.>E4A 5 ;>F�>D=C − >�.B8I4]← A42>A3

10: >�.>E4A 5 ;>F�>D=C++
11: >�.>E4A[A42>A3[3]]++ /* Increment over for the digit that was dealt into overflow*/
12: end if
13: end for

input array after an even number of passes, but now it is guaranteed sorted.

3.1.3 Simple Fast Radix Example

In order to examine the details of Algorithm 6 we will consider the example used inThiel et al.

[2016] that uses an input of # = 16 records [�1, �7, 5�, 89, �6, 18, �3, 39, 98, �3, 52, �9, �6,

67, 9�, 05]. Each key is represented by four hexadecimal digits, so " = 16 and digits are [0, 1].

A more thorough example of estimation and processing is given for Fast Radix later.

The initial estimation pass is shown in Figure 7 and is performed by estimatedDealCount

as shown in Algorithm 5.1. The most significant digit is counted and stored in exact on line 4,

identified as the underlining of the most significant digit (c from line 3 of Algorithm 5) of records

dealt into buf or the overflow area of input. The overflow area also uses an underscore on the

current digit (d from line 2 of Algorithm 5) to prepare the overflow counts for the subsequent

overflow processing pass. The arrows are labeled in the order that records are processed.
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input
39

98

F3

F9

F6

67

A3

39

98

F3

52

F9

F6

67

9A

05

ov
er

flo
w

input
A1

D7

5D

89

B6

18

A3

39

98

F3

52

F9

F6

67

9A

05

buf

A1

52

A3

05

B6

D7

18

89

9A

5D

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

01

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

A

A

B

B

C

C

D

D

E

E

F

F

Figure 7: Dealing and counting pass. Dealing from top to bottom in the second input is shown with
arrows, with dealing into estimated buckets going to buf and overflow going to the beginning of the
first input. Based on the example from Thiel et al. [2016]

Records 0 through 6 are dealt into empty estimated buckets as the check for a bucket having

room on line 5 passes, with the dealing happening on line 6 and the index of the bucket dealt into

being incremented on line 7. Record 7 fails the check for space in the estimated bucket as record 3

was already placed there, and so it is placed into the beginning of input on line 9, the overflow

count is increased on line 10 and the overflow count for the bucket in digit d in over is incremented

on line 11. All other records are processed in the same way on this pass.

After the estimated dealing pass, any overflow must be processed. The overflow processing is

described by Algorithm 5.2 and shown in Figure 8. The overflow counts in over are converted into

bucket indices on line 2 and an an overflow buffer to hold these buckets is initialized on line 3. Each

record in the input is then dealt into these buckets on lines 4 to 6.
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Algorithm 5.2 ProcessOverflow
Input: oD, d
Output: oD.over[] points to populated buckets in oD.overflow

1: ����������� � ��� /* O(N) */
2: ��� � �����(�.����)
3: �.���� � ��� ← ��������
[�.���� � ���	���� ∗ 2]
4: for � = 0 to �
.���� � ���	���� do
5: �.���� � ���[�.����[�.�����[�][
]]] ← �.�����[�]
6: �.����[�.�����[�][
]]++
7: end for

input
39

98

F3

F9

F6

67

A3

39

98

F3

52

F9

F6

67

9A

05

ov
er

flo
w

overflow
F3

F6

67

98

39

F9

3

6

7

8

9

0

0

1

1

2

2

3

3

4

4

5

5

Figure 8: Overflow at the beginning of input is dealt into the new overflow buffer with the
buckets built from the overflow counts in the previous pass.
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buf

A1

52

A3

05

B6

D7

18

89

9A

5D

input
05

18

39

52

5D

67

89

98

9A

A1

A3

B6

D7

F3

F6

F9

overflow
F3

F6

67

98

39

F9

1

2

3

5

6

7

8

9

A

D

3

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 9: Dealing pass. The buckets’ low-order hex digits are shown with braces on B and Over.
The interleaving is shown in the dealing, represented by numbered arrows.

Algorithm 5.3 deal
Input: iD, buf[], exact, d

1: 
��� /* Θ(�) */
2: for � = 0 to � − 1 do
3: �����
 ← �������()
4: �� � [�����[�����
[
]]] ← �����
 /* Deal into buf based on next */
5: �����[�����
[
]]++ /* Increment next for the bucket that was dealt into */
6: end for
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The final pass on the last digit is described in Algorithm 5.3 and shown in Figure 9. Each record

is pulled from their estimated buckets in buf or the overflow buckets in overflow in the order

shown on the labeled arrows, shown on line 3. getNext ensures that each estimated bucket that

has records is processed in turn, and that any overflow buckets that contain records are processed

immediately after their corresponding estimated bucket, with corresponding buckets identified by

the labeled braces on the sides of buf and overflow. The dealing happens on line 4 and the index

for the bucket of the dealt digit in exact is incremented on line 5. With the records in buf and

overflow dealt exactly back into input, input is sorted.

3.1.4 Discussion

In this section we have seen how Simple Fast Radix omits the initial counting pass. The subsequent

section on Fast Radix contains a more thorough discussion of the details that it has in common with

Simple Fast Radix.

Theorem 1. Simple Fast Radix (Algorithm 5) sorts an input correctly.

Proof. Simple Fast Radix deals the same digits in the same order as LSD radix sort in every pass.

The used portion of an estimated bucket combined with any corresponding overflow bucket in

Simple Fast Radix has the same records as a corresponding exact bucket in LSD radix sort after the

first pass. The exact buckets identified during the first pass in Simple Fast Radix and LSD radix sort

are the same. All passes after the first are otherwise the same for both Simple Fast Radix and LSD

Radix Sort. LSD radix sort is known to sort input correctly. Therefore, Simple Fast Radix must

yield the same sorted result as LSD radix sort. �
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3.2 Fast Radix

Fast Radix performs its dealing passes using estimations instead of counting for all but the last pass,

including an overflow processing step in between passes. Each pass estimates bucket sizes, deals into

buckets or the overflow and then processes overflow. Subsequent passes deal from each predicted

bucket and then from its overflow counterpart if necessary, such that the algorithm still performs the

next deal in stable, bucket order. The algorithm counts the last digit in the penultimate pass to ensure

exact buckets in the last pass, avoiding an extraneous copy pass and putting everything in order.

Fast Radix differs from Simple Fast Radix in that only the last pass gets exact counts, with all

other passes using estimates. While Simple Fast Radix could deal overflow directly to the beginning

of input during its initial estimation pass, as there was no opportunity for conflict, Fast Radix

cannot make that assumption on subsequent passes. When overflow found on a pass exceeds the

overflow space already available in overflow, the Fast Radix algorithm creates a new overflow

buffer that can hold twice the amount of overflow found. The algorithm can then assign overflow

buckets to the first half of overflow and overflow from the subsequent pass can be dealt into

the second half, with the algorithm dealing any excess safely into the beginning of input. The

algorithm avoids a conflict where dealing overflow would overwrite parts of input that it had not

yet dealt out by first dealing overflow into an overflow space that is at least as big as the existing

overflow buckets.

3.2.1 Algorithm Details

Fast Radix uses some labelled placeholders for specific digits of interest and arrays that act as buffers

for dealing from input or holding counts and offsets for specific buckets. For clarity, we refer to d

as the current digit that the algorithm will use to deal, c as the digit that the algorithm will use to

count exactly during the penultimate pass and overflowCount as the number of records that have
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overflown in a given pass. In Fast Radix, the buffer buf is the same size as input, with alternating

passes first dealing from input into buf and then swapping roles, via swapRole, to deal from buf

into input. Fast Radix also uses an overflow buffer overflow that is twice the size of the current

overflow (initially 0).

In Fast Radix, various bucket arrays store information about the " buckets used in each pass,

representing the count or index of each bucket for their corresponding digit. Fast Radix uses four

bucket arrays, the current buckets being dealt from cur, the overflow buckets over which extend the

buckets in cur as needed, the exact buckets of the last digit last to allow for exact dealing on the

final pass and the target buckets for the next pass, next which is populated by estimates save on the

last pass where it is populated based on the exact counts in last. On the first pass cur and over

are unused as input is the single source bucket. As with buf and input, the cur and next bucket

arrays swap roles after each pass using swapRole. The array last is unused until the penultimate

pass when it is populated with the exact counts for the last pass. In the last pass, next refers to the

indices generated from the exact counts in last.

To avoid clutter, we specify two structures as variables for the input data and the overflow data

which are cumbersome to pass around. The variable inputData uses input, cur, overflow

and over. The variable overflowData uses as fields the variables input, overflow, over

and overflowCount, as well as a convenience field size that is just half of overflow.length.

This structure allows us to pass inputData and overflowData as needed, and then refer to the

components with the dot notation, e.g. oD.overflowCount if overflowData were passed as oD.

Some high level operations are used in the description of Fast Radix, summarized here.

estimate() populates the next array with estimates for the locations of buckets in buf.

estimatedDeal() deals records, based on their d-digit, into the buckets in buf which are

specified in next or into overflow space if an estimated bucket is full. processOverflow()

creates a bigger overflow array if needed, and then sorts any overflow into buckets (specified in

over) in the first half of either the existing overflow array or the newly created overflow array
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(which then becomes the overflow array). estimatedDealCount() behaves exactly like

estimatedDeal(), save that it will also take care to perform an exact count of the last digit in the

keys for all records. deal() deals like estimatedDeal() save that it uses exact buckets so there is

no need to check for overflow.

Aside from arithmetic operations, the assignment operation← and the array notation, we use

some operations without further definition. initialize() manages the creation of arrays and

zeroing the count arrays. prefixSum() converts counts in an array into corresponding indices.

swapRole() swaps the roles of arrays, making for a simpler notation, but not creating new arrays

or materially changing contents. est() yields the exclusive end of an estimated bucket given a digit

from a key, the size of the input and the number of buckets.

In this context getNext() encapsulates the logic behind accessing the next value from either

buckets specified by cur on input, buckets specified by over on overflow or from input during

the first pass. How getNext() processed inputData will be omitted for clarity. The important

thing is that getNext() ensures that estimated and overflow buckets are processed in order.

3.2.2 Pseudo-code

Algorithm 6 can be broken into four parts. The first part is the initialization on line 1 where

variables and structures are initialized (overflowCount, inputData and overflowData), internal

arrays are initialized, creating new space and zeroing the bucket arrays. The second part is from

lines 2 to 9 and is where all but the last two passes are performed. The third part is from lines 10

to 17 where the penultimate pass is performed. In lines 18 to 20 the final exact deal is performed,

leaving the array sorted.

The loop making up the second part of Algorithm 6 processes the passes for all but the last two

digits specified in digits, from least to most significant. On line 3 the current digit for dealing
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Algorithm 6 Fast Radix
Input: input[], digits[]
Output: sorted input on digits

1: 8=8C80;8I4()
/* estimate and deal for remaining digits save last two*/

2: for 8 = 0 to 3868CB.;4=6Cℎ − 2 do
3: 3 ← 3868CB[8] // deal digit
4: 4BC8<0C4(=4GC[], #)
5: 4BC8<0C43�40;(8=?DC�0C0{}, 1D 5 [], >E4A 5 ;>F�0C0{}, =4GC[], 3)
6: ?A>24BB$E4A 5 ;>F(>E4A 5 ;>F�0C0{}, 3)
7: BF0?'>;4(8=?DC[], 1D 5 [])
8: BF0?'>;4(2DA[], =4GC[])
9: end for

/* get exact count of final digit during second-to-last deal*/
10: 3 ← 3868CB[−2] // deal digit
11: 2 ← 3868CB[−1] // counting final digit
12: 4BC8<0C4(=4GC[], #)
13: 4BC8<0C43�40;�>D=C(8=?DC�0C0{}, 1D 5 [], >E4A 5 ;>F�0C0{}, =4GC[], ;0BC[], 3, 2)
14: ?A>24BB$E4A 5 ;>F(>E4A 5 ;>F�0C0{}, 3)
15: ?A4 5 8G(D<(;0BC[])
16: BF0?'>;4(8=?DC[], 1D 5 [])
17: BF0?'>;4(2DA[], =4GC[])

/* deal last digit */
18: =4GC[]← ;0BC[] // next should point to exact counts
19: 3 ← 3868CB[−1] // deal digit
20: 340;(8=?DC�0C0{}, 1D 5 [], =4GC[], 3)
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is stored in d. Line 4 calls estimate() to fill next with the estimated indices of the buckets that

will be subsequently dealt into given # (the length of input). Line 5 calls estimatedDeal() to

deal all records (access to all records coming from inputData), based on the current digit d, into

either their estimated buckets in buf, as specified in next or into overflow space when the estimated

buckets are full. Overflow space will be in the first half of overflow and the beginning of input,

respectively. During this dealing step, the bucket array over will be updated with exact counts

for the overflown records, given digit d, and the number of records overflown will be recorded in

overflowCount. Line 6 calls processOverflow(), which will expand the overflow buffer to

twice overflowCount if overflowCount is more than half the length of the existing overflow

buffer overflow. With enough space assured in overflow, the processing of overflow will convert

the bucket array over from counts into indices for the exact overflow buckets in the last half of

overflow and will then deal into that space from the first half of overflow and if warranted, from

the beginning of input. Finally, in lines 7 and 8, the roles of arrays are swapped forinput and buf

as well as for cur and next, clearing n.

The third part of Algorithm 6 deals the penultimate pass while also counting for the last pass.

Lines 10 and 11 store the next-to-last digit in d and the last digit, which will be counted during

this pass, in c. Line 12 fills next with the estimated indices as done previously. In line 13,

estimatedDealCount() deals exactly as estimatedDeal() on line 5, save that the bucket array

last is filled with the exact counts of digit c on the records dealt. Line 14 processes overflow as

normal. Line 15 calls prefixSum to convert the bucket array last into exact bucket indices for the

final round of dealing. As in the previous part, the pass completes with the roles of arrays being

swapped in lines 16 and 17.

The final part of Algorithm 6 deals the last pass into place, leaving input sorted. On line 18,

instead of next being populated with estimates as done previously, it is assigned the exact bucket

positions as determined on line 15 of the previous pass. Line 19 assigns the last digit to d. Finally,

line 20 calls deal() to deal exactly into buf, which is just the original input array after an even
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Algorithm 6.1 estimate
Input: next[], N
Output: next[] will be populated with estimated bucket sizes

1: estimate /* Θ(") */
2: =4GC[0]← 0
3: for 8 = 0 to next.length-1 do
4: =4GC[8 + 1]← 4BC(8, #, =4GC.;4=6Cℎ)
5: end for

number of passes, but now it is guaranteed sorted.

3.2.3 Fast Radix Example

In order to examine the details of Algorithm 6 we will consider as an example an input of # = 16

records [�482, 7��9, �602, 792� , 4�3�, 0140, �4�1, 9�14, 8�91, 4�1�, 2�2�, 226�, ��92,

1��7, 573�, 9�13]. Each key is represented by four hexadecimal digits, so " = 16 and digits

are [0, 1, 2, 3].

The loop between lines 2 and 9 will cover the first two passes over the lowest order digits. In

each pass, an estimate will be performed using the estimate function described in Algorithm 6.1. As

next.length is 16 and the size of input is 16, est will estimate that each bucket is of size 1, and

estimate will populate next with bucket locations as shown by the brace brackets to the right of

buf in Figure 10.

The first call of the estimatedDeal function described in Algorithm 6.2 is shown in Figure 10.

The labeled arrows show the order in which records are returned by getNext and the bold digit of

each record in input shows the result of calls to record[d]. As the check for space in the target

bucket on line 4 passes for the 0Cℎ and 1BC records, they get moved into the estimated 2 and 9 buckets

in buf respectively and their bucket pointers are incremented. Since the test on 4 fails for the 3A3

record, as the estimated bucket for 2 only had space for one record and the 0Cℎ record was already

56



Algorithm 6.2 estimatedDeal
Input: iD, buf[], oD, next, d

1: estimatedDeal /* Θ(#) */
2: for 8 = 0 to # − 1 do
3: A42>A3 ← 64C#4GC()

/* If we have not overflowed */
4: if next[record[d]] < est(record[d], N, next.length) then
5: 1D 5 [=4GC[A42>A3[3]]]← A42>A3 /* Deal into buf based on next */
6: =4GC[A42>A3[3]]++ /* Increment next for the bucket that was dealt into */

/* Else we have overflowed */
7: else
8: if overflowCount <= oD.size then
9: >�.>E4A 5 ;>F[>�.B8I4 + >�.>E4A 5 ;>F�>D=C]← A42>A3

10: else
11: >�.8=?DC[>�.>E4A 5 ;>F�>D=C − >�.B8I4]← A42>A3

12: end if
13: >�.>E4A 5 ;>F�>D=C++
14: >�.>E4A[A42>A3[3]]++ /* Increment over for the digit that was dealt into overflow*/
15: end if
16: end for

placed there, an deal to overflow must be made between lines 7 and 15. As the initial overflow

buffer has no space (shown just as a label in Figure 10), the check on line 8 fails and the 3A3 record

is dealt into the beginning of the input on line 11. In dealing to the overflow, overflowCount is

increased (line 13) and the bucket count over is also increased for bucket record[d] (line 14),

with record[d] being show in Figure 10 as the underlined digits in the overflow area. The first

overflow is dealt to the 0Cℎ position in input as overflowCount was 0 and oD.size was also also

0. Dealing proceeds similarly for the remaining 12 records.
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Figure 10: The first estimated dealing pass of our Fast Radix example, dealing on the least significant
digit. Dealing is from input. The copy of input in the center shows the state of the input before
this dealing pass, with the digit currently being dealt shown in bold and all other digits obscured.
As overflow has not been assigned any space yet, it is shown only as a label at the top. Overflow is
dealt to the beginning of input; given its double-duty input is shown again on the left as it would
be after dealing is completed for this pass. The overflow area at the beginning of input is identified
with the brace labeled “overflow”. Digits in the overflow area with an underscore are counted for use
when processing overflow in the next step (shown in Figure 11). The estimated buckets are labeled
with braces to the right of buf, which is shown as it would be after dealing is completed for this
pass. Labeled arrows show dealing into estimated buckets that correspond to the identified digit
being dealt on or to the overflow if the corresponding bucket is already full. The labels on arrows
showing the order in which records are dealt, with labels appearing on both sides of the arrow for
clarity. Greyed cells represents areas that are unused during dealing in this pass. The ∗ on input
denotes that it is the original input.
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Algorithm 6.3 ProcessOverflow
Input: oD, d
Output: over[] point to populated buckets in the beginning of overflow

1: ?A>24BB$E4A 5 ;>F /* O(N) */
2: ?A4 5 8G(D<(>�.>E4A)
3: if oD.overflowCount > oD.size then
4: >E4A_C<? ← >E4A 5 ;>F]
5: >E4A 5 ;>F(>DA24 ← >E4A_C<?[−>�.B8I4 :] /* Slice the last half into overflowSource */
6: >�.>E4A 5 ;>F ← =4FA42>A3[>�.>E4A 5 ;>F�>D=C ∗ 2]
7: else
8: >E4A 5 ;>F(>DA24 ← >E4A 5 ;>F[−>�.B8I4 :] /* Slice the last half into overflowSource */
9: end if

10: for 8 = 0 to "0Cℎ.<8=(>3.>E4A 5 ;>F�>D=C, >�.B8I4) do
11: >�.>E4A 5 ;>F[>�.>E4A[>E4A 5 ;>F(>DA24[8][3]]]← >E4A 5 ;>F(>DA24[8]
12: >�.>E4A[>E4A 5 ;>F(>DA24[8][3]]++
13: end for
14: for 8 = 0 to >�.>E4A 5 ;>F�>D=C − >�.B8I4 do
15: >�.>E4A 5 ;>F[>�.>E4A[>�.8=?DC[8][3]]]← >�.8=?DC[8]
16: >�.>E4A[>�.8=?DC[8][3]]++
17: end for
18: >�.B8I4 ← >�.>E4A 5 ;>F�>D=C/2
19: >�.>E4A 5 ;>F�>D=C ← 0

The first call of procesOverflow shown in Algorithm 6.3 is described in Figure 11. The

buckets identified with braces along the top of overflow in Figure 11 are created on line 2 when

the counts on the current digit of the overflow records are prefix summed. As the overflowCount

exceeds the old size of the overflow area (oD.size), a new overflow is created in lines 3 to 7. As

5 elements had overflown, the new length of overflow is twice that amount, 10. The overflow,

entirely at the beginning of input can then be moved into the newly prepared buckets on lines 14 to

16. In Figure 11, the bold digit in each record of the input is represented by oD.input[i][d].

Before the next dealing pass, the algorithm switches the buffers’ roles, denoted by the ∗ changing

from input to buf and vice versa on each pass.
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Figure 11: The first overflow processing pass of our Fast Radix example, processing overflow on the
least significant digit. The size of overflow is set to 10, twice the overflowCount established
during the first dealing pass (shown in Figure 10), since that is greater than its previous size of
0. Exact buckets based on overflow counts from the first dealing pass (shown in Figure 10) are
identified with braces above the left half of overflow. Dealing is from beginning of input, that
overflow area identified by a brace labeled “overflow”, with the digit currently being dealt shown in
bold and all other digits obscured. Labeled arrows show the dealing into exact buckets in the left
half of overflow, with the label showing the order in which records are dealt into the buckets that
correspond to their identified digit. Greyed cells represents areas that are unused during overflow
processing in this pass. The ∗ on input denotes that it is the original input.
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The second call of the estimatedDeal function described in Algorithm 6.2 is shown in Figure

12. Like the first call of estimatedDeal, estimate buckets are shown as braces on the right of buf

(as expected, the same estimates). However, this pass now as an input split into several buckets,

not all contiguous, with some corresponding overflow buckets. These buckets are ordered by the

braces to the left of input and the braces above overflow. The arrows are still labeled in the

order in which getNext will return records, with a bucket in input being dealt out and then any

corresponding bucket in overflow being dealt out before moving to the next available bucket in

input. In this second pass, there is overflow space available at the end of overflow, so the first 5

overflows pass the check on line 8 of Algorithm 6.2 and are dealt to the second half of overflow

on line 9. However, the last element (� Cℎ) dealt had its estimated bucket filled by the �Cℎ element

and thus the check on line 4 fails and the overflow space is full so the check on line 8 also fails,

leaving 573� to be dealt to the beginning of input on line 11.
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Figure 12: The second estimated dealing pass of our Fast Radix example, dealing on the next
least significant digit. Dealing is from the buckets specified with braces to the left of input and
from the buckets specified with braces above the left half of overflow. The copy of input in the
center shows the state of the input before this dealing pass. The non-empty buckets in input and
overflow show the digit currently being dealt in bold and all other digits obscured. Any overflow
that would not fit in the right half of overflow will be dealt to the beginning of input; given its
double-duty input is shown again on the left as it would be after dealing is completed for this pass.
The overflow areas on the right half of overflow and the beginning of input are identified with
the braces labeled “overflow”. Digits in the overflow areas with an underscore are counted for use
when processing overflow in the next step (shown in Figure 13). The estimated buckets are labeled
with braces to the right of buf, which is shown as it would be after dealing is completed for this
pass. Labeled arrows show dealing into estimated buckets that correspond to the identified digit
being dealt on or to the overflow if the corresponding bucket is already full. The labels on arrows
showing the order in which records are dealt, with labels appearing on both sides of the arrow for
clarity. Greyed cells represents areas that are unused during dealing in this pass. Note that the roles
of input and buf have been swapped, with the ∗ on buf identifying that it is the original input.
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The second processOverflow pass highlights how overflow is dealt from the old overflow,

over_temp, into the newly define overflow buckets in the new, larger overflow before dealing

overflow from input as in the first processOverflow pass.
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Figure 13: The second overflow processing pass of our Fast Radix example, processing overflow
on the next least significant digit. The size of overflow is set to 12, twice the overflowCount
established during the second dealing pass (shown in Figure 12), since that is greater than its previous
size of 10. The old overflow is shown as over_tmp and exists only long enough to deal out its
records into the new overflow. Exact buckets based on overflow counts from the second dealing
pass (shown in Figure 12) are identified with braces above the left half of overflow. Dealing is
from the right half of over_tmp and then the beginning of input, with overflow areas identified by
a brace labeled “overflow”. The digit currently being dealt is shown in bold and all other digits
obscured inside the overflow areas. Labeled arrows show the dealing into exact buckets in the left
half of overflow, with the label showing the order in which records are dealt into the buckets that
correspond to their identified digit. Greyed cells represents areas that are unused during overflow
processing in this pass.
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Algorithm 6.4 estimatedDealCount
Input: iD, buf[], oD, next, last, d, c

1: estimatedDealCount /* Θ(#) */
2: for 8 = 0 to # − 1 do
3: A42>A3 ← 64C#4GC()
4: ;0BC[A42>A3[2]]++

/* If we have not overflowed */
5: if next[record[d]] < est(record[d], N, next.length) then
6: 1D 5 [=4GC[A42>A3[3]]]← A42>A3 /* Deal into buf based on next */
7: =4GC[A42>A3[3]]++ /* Increment next for the bucket that was dealt into */

/* Else we have overflowed */
8: else
9: if overflowCount <= oD.size then

10: >�.>E4A 5 ;>F[>�.B8I4 + >�.>E4A 5 ;>F�>D=C]← A42>A3

11: else
12: >�.8=?DC[>�.>E4A 5 ;>F�>D=C − >�.B8I4]← A42>A3

13: end if
14: >�.>E4A 5 ;>F�>D=C++
15: >�.>E4A[A42>A3[3]]++ /* Increment over for the digit that was dealt into overflow*/
16: end if
17: end for

The penultimate deal pass uses Algorithm 6.4 instead of Algorithm 6.2 and is shown in Figure

14. The main practical difference is that every dealt record is used to increment the counts stored

in last on line 4, identified as the underlining of the most significant digit (c from line 11 of

Algorithm 6) of records dealt into buf or the overflow area of overflow. The overflow area also

has the usual underscore on the current digit (d from line 10 of Algorithm 6) to prepare the overflow

counts for the subsequent overflow processing pass.
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Figure 14: The penultimate dealing pass of our Fast Radix Example, dealing on the next most
significant digit into estimated buckets and counting the final digit in preparation for the last pass.
Dealing is from the buckets specified with braces to the left of input and from the buckets specified
with braces above the left half of overflow. input shows the state of the input before this dealing
pass. The non-empty buckets in input and overflow show the digit currently being dealt in bold
and all other digits obscured. The overflow area on the right half of overflow is identified with a
brace labeled “overflow”. Digits in the overflow area with an underscore are counted for use when
processing overflow in the next step (shown in Figure 15). The estimated buckets are labeled with
braces to the right of buf, which is shown as it would be after dealing is completed for this pass.
Labeled arrows show dealing into estimated buckets that correspond to the identified digit being
dealt on or to the overflow if the corresponding bucket is already full. The labels on arrows showing
the order in which records are dealt, with labels appearing on both sides of the arrow for clarity.
Greyed cells represents areas that are unused during dealing in this pass. Note that the roles of
input and buf have been swapped, with the ∗ on input identifying that it is the original input. In
this pass, the beginning of input is not needed for overflow as the space in overflow is sufficient
for this pass, as such the extra input shown in previous dealing passes is omitted for clarity.
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Figure 15: The overflow processing during the penultimate pass of our Fast Radix example,
processing overflow on the second most significant digit. The size of overflow is unchanged at 12,
as twice the overflowCount established during the penultimate dealing pass (shown in Figure 14)
would not be larger. Exact buckets based on overflow counts from the penultimate dealing pass
(shown in Figure 14) are identified with braces above the left half of overflow. Dealing is from the
right half of overflow, with the overflow area identified by a brace labeled “overflow”. The digit
currently being dealt is shown in bold and all other digits obscured inside the overflow area. Labeled
arrows show the dealing into exact buckets in the left half of overflow, with the label showing the
order in which records are dealt into the buckets that correspond to their identified digit. As there
was no overflow in input, it is omitted for clarity.
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Algorithm 6.5 deal
Input: iD, buf[], next, d

1: 340; /* Θ(#) */
2: for 8 = 0 to # − 1 do
3: A42>A3 ← 64C#4GC()
4: 1D 5 [=4GC[A42>A3[3]]]← A42>A3 /* Deal into buf based on next */
5: =4GC[A42>A3[3]]++ /* Increment next for the bucket that was dealt into */
6: end for

The final deal is shown in Figure 16, using deal from Algorithm 6.5. As the algorithm

determined the exact bucket counts in the penultimate pass, the buckets shown with braces to the

right of buf are exact, and there is no contention while dealing.

3.2.4 Discussion

Fast Radix, as explained here, does not describe sorting when there is an odd number of digits or

precisely where there is a single digit. As Diverting Fast Radix can request that Fast Radix sort an

odd number of passes, this comes up and is an issue with some LSD radix sort implementations.

This thesis’s implementations demonstrate trivial solutions, and there is room for future work to

pick solutions that work well with specific technical optimizations.

The pseudocode uses the getNext function to avoid a detailed description of how the algorithm

processes buckets in order. A comprehensive examination of approaches to do this appears

uninformative. Implementations used for results in Chapter 4 use a few approaches, with few

showing direct performance benefits; some approaches are shorter, if not more transparent than

others.
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Figure 16: The final dealing pass of our Fast Radix Example deals all records exactly into sorted
position based on the most significant digit. Dealing is from the buckets specified with braces
to the left of input and from the buckets specified with braces above the left half of overflow.
input shows the state of the input before this dealing pass. The non-empty buckets in input and
overflow show the digit currently being dealt in bold and all other digits obscured. As this is an
exact dealing pass, there is no need for the overflow areas identified in the previous dealing passes.
The exact buckets are labeled with braces to the right of buf, which is shown as it would be after
dealing is completed for this pass. Labeled arrows show dealing into exact buckets that correspond
to the identified digit being dealt on. The labels on arrows show the order in which records are dealt,
with labels appearing on both sides of the arrow for clarity. Greyed cells represents areas that are
unused during dealing in this pass. Note that the roles of input and buf have been swapped, with
the ∗ on buf identifying that it is the original input, and at the end of this pass contains all records in
sorted order.
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A decision on the optimal approach to managing overflow is an area for future work. Some

technical approaches in the literature might be adjusted to take on this overflow area’s role. There

are also edge cases where, for example, more than half the records overflow and the algorithm could

apply different strategies for better results. The best starting size of the overflow is also a detail that

one could consider in future work; in this chapter, the algorithm initially left it empty for simplicity.

There are different viable approaches for the estimation of bucket sizes. The use of an input size

that is a multiple of the number of buckets in the examples in this chapter hides the simple approach

used. An optimal approach is outside the scope of this thesis. However, future work should weigh

the advantages of cache-aligning buckets, using smaller buckets, using larger buckets with a larger

overflow buffer and the impact of various technical approaches in the literature on estimated bucket

size.

Theorem 2. Fast Radix (Algorithm 6) sorts an input correctly.

Proof. Fast Radix deals the same digits in the same order as LSD radix sort in every pass. The used

portion of an estimated bucket combined with any corresponding overflow bucket in Fast Radix has

the same records as a corresponding exact bucket in LSD radix sort after every pass before the last

pass. The exact buckets identified for the last pass in both Fast Radix and LSD radix sort are the

same. LSD radix sort is known to sort input correctly. Therefore, Fast Radix must yield the same

sorted result as LSD radix sort. �

3.3 Diverting LSD Radix Sort

Diverting LSD radix sort estimates the number of most significant digits over which an LSD radix

sort must run to achieve optimal diversion for the remaining partially ordered records. After an LSD

radix sort runs on those high-order digits, the diverting LSD radix sort will perform a scan using

the signature of the sorted most significant digits to determine if any large buckets remain. Small
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Algorithm 7 Diverting MSD Radix Sort Revisited
Input: input, buf, digits
Output: sorted input on digits

1: if end-start <= DIVERSION then
2: 8=B4AC8>=(>AC(8=?DC)
3: if isOdd(length(digits)) then
4: <4<2>?H(8=?DC, 1D 5 )
5: end if
6: return
7: end if
8: 8=8C80;8I4()

/* count and deal */
9: 2 ← 3 ← 3868CB[−1] // deal/count digit

10: 2>D=C(8=?DC, 1D 5 , 2)
11: 340;(8=?DC, 1D 5 , 3)

/* recurse for subsequent passes */
12: if length(digits) == 1 then
13: return
14: end if
15: for 9 ∈ 1D2:4CB do
16: A42DAB4( 9 , 8=?DC, 3868CB[: −1])
17: end for

buckets are sorted in bulk using a simple, stable sort, most readily Insertion Sort. Any large buckets

are sorted recursively with diverting LSD radix sort.

Diverting LSD radix sort differs from diverting MSD radix sort. It estimates the number of

passes required to reach optimal diversion and then performs an LSD radix sort on those passes,

recursing on remaining large buckets or diverting on runs of small buckets. On the other hand,

diverting MSD Radix sort runs recursively on each level at an ever-increasing cost before diverting.

Suppose the algorithms use the same diversion threshold. In that case, diverting LSD radix sort can

accurately estimate the average number of passes for input with random records from a uniform

distribution, which we will prove in Chapter 5.
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3.3.1 Algorithm Details

Diverting LSD radix sort makes use of some labeled placeholders for specific sets of digits of

interest and an array which acts as a buffer for use in any called sorting algorithms. In diverting

LSD radix sort, the buffer buf is the same size as input. top and bottom represent subsets of

digits with top holding most significant digits and bottom holding least significant digits.

To avoid clutter, we specify two structures as variables for the ranges discovered when scanning

input after initial sorting on the top digits. The structures, r1 and r2 store the same type of data,

but by convention r1 will contain zero or more consecutive small buckets and r2 will contain a

single large bucket. The ranges themselves can be used as inputs when passed to other sorting

algorithms and expose the inclusive start and exclusive end of their ranges using the dot notation

(eg. r1.start).

Aside from arithmetic and set operations, the assignment operation← and the array notation, there

are several operations that we use without further definition. initialize() manages the creation

of arrays and the zeroing of the count arrays. estimateRelevant() returns an estimate of the most

significant digits from digits that are needed to partially sort input such that appropriate diversion

can happen on the resulting records. DivertingLSDRadixSort is a recursive call to the algorithm

described here. LSDRadixSort() is any LSD radix sort implementation. hasMoreRecords()

takes input to determine if there are more records to scan. scanForLargeBucket() scans an

input for buckets based on top digits as the input will be ordered on those digits and consecutive

records with the same top digits will constitute a bucket, with the current bucket in the scan being

recorded internally for the next call on foundLargeBucket(). foundLargeBucket() returns a

range containing a single large bucket or null. divert() performs an in-place sort of the array of

records passed in.
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Algorithm 8 Diverting LSD Radix Sort
Input: input, buf, digits
Output: sorted input on digits

1: 8=8C80;8I4()
2: C>? ← 4BC8<0C4'4;4E0=C(8=?DC, 3868CB)
3: 1>CC>< ← 3868CB \ C>?
4: !(�'038G(>AC(8=?DC, 1D 5 , C>?)

/* scan for large buckets */
5: if bottom.length > 0 then
6: A1.BC0AC ← 0
7: while ℎ0B">A4'42>A3B(8=?DC) do
8: while (A2 = 5 >D=3!0A64�D2:4C(8=?DC))! = =D;; and ℎ0B">A4'42>A3B(8=?DC) do
9: B20=�>A!0A64�D2:4C(8=?DC, C>?)

10: end while
/* If a large bucket, r2, is found, r1 is the prior range containing 0..* small buckets. */

11: if r2 != null then
12: A1.4=3 ← A2.BC0AC
13: end if

/* Otherwise, r1 is the range containing 0..* small buckets until the end of input. */
14: if r2 == null then
15: A1.4=3 ← 8=?DC.4=3

16: end if
17: 38E4AC(A1)
18: if r2 != null then
19: �8E4AC8=6!(�'038G(>AC(A2, 1D 5 [A2.4=3 :], 1>CC><)
20: A1.BC0AC ← A2.4=3
21: end if
22: end while
23: end if

3.3.2 Pseudo-code

Algorithm 8 begins by initializing buf, and r1 on line 1. The top most significant digits

required to partially sort input enough to benefit from a diverting sort are estimated on line 2. Any

remaining digits from digits are assigned to bottom on line 3. On line 4 an LSD radix sort is

performed on the top digits of input. If a check for bottom digits fails on line 5, then input is

sorted. Otherwise a the scanning loop on lines 5 through 5 begins. The first potential set of small
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buckets is set to start at the beginning of input on line 6 and if input is not empty, the first large

bucket is searched for between lines 8 and 10. If a large bucket is found, then its beginning is used

to terminate any range of small buckets in r1 on line 12. If no large bucket was found then the

list of small buckets is set to the end of input on line 15, and the loop will not continue when

hasMoreRecords is next checked. In any event, the range of small buckets in r1 is sorted using

divert on line 17. If a large bucket was found, it will be in r2 which will be recursively sorted with

diverting LSD radix sort on line 19, passing a section of buf that corresponds to the position of r2

in input. Once r2 is sorted, a new potential range of small buckets is started in r1 on line 20.

3.3.3 Diverting LSD Radix Sort Example

We can examine diverting LSD radix sort in Algorithm 8 using an example input with # = 64

records which have 16-bit keys and 2-bit digits (i.e. " = 4). We can specify a Diversion Threshold

(DT) of 4. We compare against diverting MSD radix sort and diverting LSD radix sort to highlighted

how similarly passes are performed before diversion.

After a given number of passes ? we can describe the remaining buckets using sets. We consider

the predicate (? testing that an element is a set of zero or more contiguous small buckets bound by

the input boundaries or a large bucket on the left and by a large bucket on the right, the predicate �?

testing for a single large bucket and the set �? being all buckets. We also consider the predicate

� testing that an element B? ∈ (?(B?) and an element 1? ∈ �?(1?) represent contiguous elements

with any buckets in B? occurring prior to the bucket in 1?. We then consider the set B?′ representing

the zero or more contiguous small buckets bound by the input boundaries or a large bucket on the

left and by the input boundary on the right. We can then say that the union of all {2? ∈ � ?(2?)} and

B?′ is �?.

A traditional diverting MSD radix sort would take the records represented in Figure 17 and

deals them into four buckets. These four buckets, shown in Figure 18 as the columns grouped by
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Figure 17: 64 unordered random 16-bit integers, each column representing one integer and each row
representing corresponding bits. Most significant bits are at the top. Bits are grouped by 2-bits to
form digits, indicated by alternating shading, and each digit is labeled on the left with its index.
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Figure 18: The 64 random 16-bit integers from Figure 17 ordered by their highest digit. Grouping
along the top indicates buckets with more than � = 4 records. As expected, there are four large
buckets.

braces along the top, would each have the diverting MSD radix sort recursively called on them.

This pass would, in turn, yield the buckets shown in Figure 19, where only the larger sub-buckets

identified would warrant an additional recursive call of diverting MSD radix sort; the algorithm

would individually sort the other buckets using a diversion algorithm. The largest remaining buckets

shown in Figure 20 fall below the diversion threshold, and thus each of those buckets is sorted with

the diversion algorithm.

Diverting LSD radix sort differs from diverting MSD radix sort. It takes an initial LSD approach

instead of a recursive MSD approach, reducing the extra cost of count initialization and prefix

summing on the initial ��� passes.

In this example, Diverting LSD radix sort could return 2 for ���������������� (line 2). After
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Fast Radix ran on the input from Figure 17 (line 4), the resulting set of records would be those in

Figure 19. Each loop through through lines 7 and 22 would yield either r1 containing buckets B2

and r2 containing bucket 12 if a large bucket were found, or r1 containing buckets B2′.

The pairs of small and large buckets and small trailing buckets are shown in each of the partially

sorted cases for this example, with empty buckets omitted. In Figure 18 there are only four sets of

large buckets for the one sorted digit. Figure 19 shows the same buckets for the most significant

digit along the top, and immediately below that shows the five pairs of small and large buckets, with

a trailing set of small buckets, for the two sorted digits. In Figure 20, the sets of buckets for the top

two digits are show as in Figure 19 with the set of buckets, being solely B3′ show for three digits.

The entire input would be scanned for small-bucket runs and large buckets (lines 5–23). This

scanning is broken down into scans for large buckets (lines 8–10) where diverting LSD radix sort

would examine the C>? bits (labeled 7 and 6 on the left of the Figures) until a bucket with more

than �) records is found. When a large bucket is found it is identified as the range A2 (line 8), and

anything unprocessed prior to that bucket must therefore be a run of smaller buckets identified as A1

(line 12). Whenever the end of the input is reached without finding a new large bucket, the run at the

end must also contain only smaller buckets (line 15).

The diverting LSD radix sort scan for small-bucket runs and large buckets (lines 5–23) after two

digits yields {B20, 1
2
0, B

2
1, 1

2
1, B

2
2, 1

2
2, B

2
3, 1

2
3, B

2
4, 1

2
4, B

3′} with B21 and B22 being empty sets

and not shown in Figure 19. Diverting LSD radix sort would recursively call itself on line 19 five

times, on each large bucket in {12
0, 1

2
1, 1

2
2, 1

2
3, 1

2
4}, and would called the diversion algorithm six

times, on each set of small buckets in {B20, B
2
1, B

2
2, B

2
3, B

2
4, B

2′}. As Figure 20 shows that the third

pass is all small buckets, it can be inferred that the recursive call would sort on only one additional

digit for those records before calling diversion on a single run of small buckets.
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Figure 19: The 64 random 16-bit integers from Figure 17 ordered by their highest two digits. Braces
along the top represent the heirarchical tree of large buckets. Braces along the bottom represent
sequences of small buckets, labeled sequentially by letter and sequence length.
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Figure 20: The 64 random 16-bit integers from Figure 17 ordered by their highest three digits.
Braces along the top represent the heirarchical tree of large buckets for the first two digits, and small
buckets bigger than 1 for the third digit. By the third digit, there are no buckets with more than
� = 4 records.

3.3.4 Discussion

While a developer must take some care to guarantee that the diversion algorithm’s approaches and

the LSD radix sort ensure that the ordered input ends in the correct original location, there are few

challenging technical pitfalls.

As described in the discussion section for Fast Radix, digits’ parity can be an issue when calling
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other sorting algorithms that perform passes by digit and do not expect an odd number of digits.

Managing this, or even benefiting from it while incorporating technical optimization outside the

scope of this thesis, is an avenue for future research. One can expect that top will be an odd number

of digits. On average, when recursion is required, the top in that recursive call will likely contain a

single digit, as will be seen in Chapter 5.

While this thesis focuses on proving that diverting LSD can perform the same number of passes

as diverting MSD given a common diversion threshold, that may not always be desirable. As the

choice of a diversion threshold and an algorithm is dependent on the costs related to continuing

with the existing algorithm, the criteria will differ between diverting LSD, and MSD radix sorts as

diverting MSD radix sorts become more expensive with each pass. Future work examining diversion

thresholds and diversion algorithms combined with future work on performing more cache-sensitive

passes in LSD radix sort are one of the most promising future avenues for this research. The

opportunities of that avenue of research belie the simplistic (yet still practical) approach used here.

At a higher level, one can think of scanning as favouring left-to-right approaches that ignore

recording of supplemental bucket information as is done in most diverting MSD radix sorts. In turn,

this favours diversion algorithms like Insertion Sort that allow empty buckets to be collapsed at no

cost and consecutive small buckets to be processed together. This thesis has used such approaches,

but there may be other approaches to consider in future work that examine less strictly left-to-write

approaches or which otherwise improve the characteristics of either scanning or the incorporation of

diversion algorithms with this process.

Theorem 3. Diverting LSD radix sort (Algorithm 8) sorts input correctly.

Proof. Diverting LSD radix sort sorts on some number of most significant digits using LSD radix

sort, which is known to sort correctly. The sorting on those most significant digits implicitly

partitions the input into disjoint ordered subsets of the input, where records in each subset are larger

than all records in subsets before them and smaller than all records in subsets after them. One can
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sort any subset that is smaller than a given diversion threshold with a diversion algorithm known to

sort correctly. One can recursively sort any other subset by calling diverting LSD radix sort on the

remaining digits not already sorted on. Records sorted on all digits are sorted. Therefore diverting

LSD radix sort must sort input correctly. �

3.4 Diverting Fast Radix

Diverting Fast Radix differs from diverting LSD radix sort only in the use of Fast Radix instead of

LSD Radix Sort, shown in line 4 of Algorithm 9.

Theorem 4. Diverting Fast Radix (Algorithm 9) sorts input correctly.

Proof. As Diverting Fast Radix is just diverting LSD radix sort using Fast Radix, which is known

to sort correctly, it must also sort correctly. �

3.5 Summary of Algorithms

We have shown our four algorithms. Our Simple Fast Radix algorithm (initially Fast Radix) from

2016 omitted the first counting pass in place of estimation. Our subsequent Fast Radix algorithm

omitted all but the last counting pass. Our diverting LSD radix sort algorithm showed that LSD

radix sorts could divert as effectively as MSD radix sorts. Our Diverting Fast Radix showed the

combination of Fast Radix and diverting LSD radix sort that is the culmination of this research.

The first two algorithms identify that one can almost entirely avoid counting. The bulk of

the gains come from skipping the first counting pass as presented in Simple Fast Radix, but with

additional gains commensurate to the number of additional passes where Fast Radix omits counting.
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Algorithm 9 Diverting Fast Radix
Input: input, buf, digits
Output: sorted input on digits

1: 8=8C80;8I4()
2: C>? ← 4BC8<0C4'4;4E0=C(8=?DC, 3868CB)
3: 1>CC>< ← 3868CB \ C>?
4: �0BC'038G(8=?DC, 1D 5 , C>?)

/* scan for large buckets */
5: if bottom.length > 0 then
6: A1.BC0AC ← 0
7: while ℎ0B">A4'42>A3B(8=?DC) do
8: while (A2 = 5 >D=3!0A64�D2:4C(8=?DC))! = =D;; and ℎ0B">A4'42>A3B(8=?DC) do
9: B20=�>A!0A64�D2:4C(8=?DC, C>?)

10: end while
/* If a large bucket, r2, is found, r1 is the prior range containing 0..* small buckets. */

11: if r2 != null then
12: A1.4=3 ← A2.BC0AC
13: end if

/* Otherwise, r1 is the range containing 0..* small buckets until the end of input. */
14: if r2 == null then
15: A1.4=3 ← 8=?DC.4=3

16: end if
17: 38E4AC(A1)
18: if r2 != null then
19: �8E4AC8=6�0BC'038G(A2, 1D 5 [A2.4=3 :], 1>CC><)
20: A1.BC0AC ← A2.4=3
21: end if
22: end while
23: end if
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The last two algorithms show that one can apply diversion to LSD radix sorts, with Diverting Fast

Radix representing the combination of all improvements covered in this chapter.
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Chapter 4

Experimental Results

In this chapter, we will present the methodology used to evaluate our algorithms’ implementations.

The methodology will focus on what inputs were used (data sets and distributions), what architectures

were used, and what was measured in various experiments. Over time, the focus of experiments

reported here changed. While the reported results’ applicability warrants their inclusion, individual

sections provide context to situate them better.

Work before 2015 focused on Java in Windows desktop environments using positive 32-bit

integers (effectively 31-bit integers) with synthetic data sets pulled randomly from uniform and

normal distributions. Java simplified development, but its use limited the number of competitive

algorithms that considered technical optimizations beyond Java’s abstractions. Sufficient memory

for casual testing in desktop environments, given that Java tends to require a great deal, limited

viable input sizes to approximately 108 records.

At the end of 2014, given feedback from reviewers and the thesis committee, the focus shifted to

C++ implementations and 64-bit unsigned integers on Linux. Real data sets were researched to

provide a better baseline for comparison against other algorithms, with the large data sets exceeding

109 records needing sorting. In 2016, results using a C++ implementation of a Simple Fast Radix

(replacing just the first counting pass) were published in Thiel et al. [2016]. In that publication,

Simple Fast Radix replaced the PBBS radix sort implementation in GraphChi[Kyrola et al., 2012], a

software that performed Big Data graph processing. Thiel et al. [2016] reported timing improvements

and the overflow.
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By the end of 2017, pre-prints of Kokot et al. [2018] were available, and the authors were

responsive and generous in sharing their implementation. Their technical improvements built upon

their previous work in Kokot et al. [2017], which in turn built on Satish et al. [2009], to quickly

sort large input. With a faster competitor on the horizon and concern regarding what constituted

a significant performance improvement in the field, the focus shifted to extending this research’s

algorithmic improvements.

The most apparent adjustment was to skip counting on all but the last pass, the algorithm that

we call Fast Radix (not shown here), but this did not improve on Simple Fast Radix enough to be

competitive against RADULS2[Kokot et al., 2018]. Kokot et al. [2017, 2018] credited the use of

diversion in their MSD radix sort as providing much of the gains over the LSD radix sort approach

in Satish et al. [2009]. We considered the novel approach of diverting in LSD radix sorts in place

of relying on technical improvements relating to cache-optimization that were well-researched

elsewhere.

Kokot et al. [2017] focused on uniform random distributions, and all radix sort papers reviewed

used this distribution, sometimes exclusively. This distribution’s frequent use led us to adopt 64-bit

unsigned integers with uniformly random distributions for this research. on As the implementation

in Thiel et al. [2016] showed little impact from differences between real data sets and random inputs

drawn from uniform distributions, after accounting for inexpensive approaches used to filter for

structure (e.g. when high-order bytes were unused in the social media graphs where user ids

started at 1 and counted up), our focus changed to

This chapter’s remainder is broken into sections presenting the general methodology for the

experiments in this chapter, noting how it changed over time. The remaining sections present results

for a Java implementation of Simple Fast Radix, the C++ implementation of Simple Fast Radix

used in Thiel et al. [2016], a C++ implementation of Fast Radix to show the progression of the

improvements, and the C++ implementation of Diverting Fast Radix. Each section summarizes the

algorithms compared, gives any context for the experiment on those algorithms, describes the setup,
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and shows results with a brief discussion.

4.1 Methodology

Initial experiments involved a Java implementation of Simple Fast Radix on a Windows desktop

with other things running. Initial experiments varied the input size in steps of 106 until 108, with ten

runs for each algorithm at each step. As results were consistent, subsequent experiments recorded

the average of two tests over the same range of input sizes, shown here. Running time was taken

from System.nanoTime() and we discarded the least significant three digits of precision.

The 2016 experiments used a C++ implementation of Simple Fast Radix[Thiel et al., 2016] on a

shared computational resource at Concordia University. All experiments ran via a script, and the

results shown here are from a consistent set of the results of those runs; the impact of contention

with other jobs was not subtle and recorded runs were from off-hours and repeatable on a “quiet”

server. These experiments used GraphChi[Kyrola et al., 2012] to generate the records from the

imported graphs, which GraphChi then sorted. GraphChi’s timing reporting system tracked sorting

time.

In 2017, to avoid contention with other user jobs, hardware funded through Hexagram’s CFI grant

and generously made available exclusively for this research was used. This server was a bare-metal

system, with no windowed environment, no other users, and minimal services. We performed all

subsequent experiments in this chapter on this environment. As test runs were relatively consistent

in this environment, experiments were run once and recorded. As all algorithms were C++ code, we

took a consistent approach to generate inputs from uniform distributions. Experiments used the

chrono library for timing on standalone runs.
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4.2 Java Simple Fast Radix

Simple Fast Radix’s initial implementation capitalized on a revelation regarding inputs’ properties

in general: the least significant bits do not matter. MacLaren noted a similar thing when writing

that “. . . much time will be wasted examining low order digits, and these seldom affect the order of

the records.” [MacLaren, 1966]. Our analysis in Chapter 5 bears this out, as do the results here

comparing Simple Fast Radix to the default Arrays.sort, a standard implementation of Quicksort

and a generic LSD radix sort.

Here we compare the results of timing experiments on the Java implementation of Simple Fast

Radix, the default Arrays.sort, a standard implementation of Quicksort and a generic LSD radix

sort.

4.2.1 Setup

The hardware used was a 3.4GHz Intel Core i7-2600 (4-core) with 4x4GB DDR3-1066 RAM

running Windows 7. The script which performed the experiments automatically generated inputs up

to 108 at intervals of 106 and recorded the average of two runs for each step. uniform and normal

distributions were generated using java.util.Random. The two uniform distributions used were

on unsigned integers up to 231 − 1 and up to 224 − 1. The two normal distributions used were

unsigned integers with a mean of 230 and standard deviation of 230

3 and a mean of 230 and standard

deviation of 224 − 1
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Figure 21: Time of Sorting Algorithm vs. Input Size for a Uniform Distribution from 0 to (231 − 1) .

4.2.2 Results

Figure 21 shows the first uniform distribution between 1–231 − 1 (the full range of positive int in

Java), and Figure 22 shows the second uniform distribution between 1–224 − 1. Figure 23 shows

the wider normal distribution with a mean value of 230 and ar standard deviation of 1
3 of the mean.

Figure 24 shows the results of a much narrower distribution with a standard deviation of 224 − 1

around the same mean.

4.2.3 Discussion

The main takeaway from these results is that skipping the initial counting pass reliably reduces an

LSD radix sort’s overall time. The use of normal distributions had a minimal impact, even narrow

ones (given that the skipped pass was the least significant digit). It is also visible that radix sorts

perform much better than the standard sorting, at least in Java. In the two constrained distributions
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Figure 22: Time of Sorting Algorithm vs. Input Size for a Uniform Distribution from 0 to (224 − 1) .
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Figure 23: Time of Sorting Algorithm vs. Input Size for a Normal Distribution with mean of 230

and stdev of 230

3 .
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Figure 24: Time of Sorting Algorithm vs. Input Size for a Normal Distribution with mean of 230

and stdev of 224 − 1 .

in Figure 22 and Figure 24, we see that dealing into very few buckets in the most significant digit

pass significantly reduced the overall time taken for radix sorts.

4.3 C++ Simple Fast Radix

In our previous work, we demonstrated a significant improvement in graph operations using

GraphChi[Kyrola et al., 2012] applied to traditional social media big data sets[Thiel et al., 2016].

The only change in the GraphChi software was replacing the PBBS Radix Sort[Shun et al., 2012]

implementation used in the initial work with Simple Fast Radix[Thiel et al., 2016].
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Graph Name Vertices Edges Citation
google 900K 5M Leskovec et al. [2008]

live-journal 4.8M 69M Backstrom et al. [2006]
hollywood 1.1M 113M Boldi and Vigna [2004], Boldi et al. [2011]
twitter-2010 42M 1.5B Kwak et al. [2010]
friendster 66M 1.8B Yang and Leskovec [2012]
uk-union 134M 5.5B Boldi et al. [2008]

Table 3: Summary of Big Data Graphs
This table shows Vertices and Edges in each of the graphs used in Thiel et al. [2016].

Graph Name Vertices Edges GraphChi Fast Radix Δ Sort overflow
google 900K 5M 0.15s 0.077s 99% 0.65%

live-journal 4.8M 69M 5.4s 5.4s 0% 0.72%
hollywood 1.1M 113M 7.2s 4.9s 47% 0.50%
twitter-2010 42M 1.5B 128s 106s 21% 1.54%
friendster 66M 1.8B 165s 133s 24% 0.12%
uk-union 134M 5.5B 469s 329s 43% 0.49%

Table 4: Summary of Fast Radix improvements in GraphChi over PBBS Radix Sort.
This table shows the number of Vertices and Edges for each graph. The GraphChi and Fast
Radix columns show the total sort times for GraphChi sharding using PBBS radix sort and Fast
Radix, respectively; Δ Sort is the percentage improvement. The overflow column shows the
percentage of elements that overflow during Fast Radix. Taken from Thiel et al. [2016] with
minor formatting adjustments.

4.3.1 Real Data Setup

The experiment recorded the timings reported by GraphChi[Kyrola et al., 2012] when sorting with a

C++ implementation of Simple Fast Radix and the default PBBS radix sort[Shun et al., 2012] which

shipped with GraphChi. We ran the experiment on a 2.60GHz Intel Xeon E5-2697 (4 x 14-core)

with 768GB RAM running Linux. All inputs were generated internally by GraphChi based on the

identified Big Data graphs shown in Table 3.
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Graph Name Vertices Edges GraphChi Fast Radix Δ Time
google 900K 5M 1.7s 1.5s 14%

live-journal 4.8M 69M 32s 32s 0%
hollywood 1.1M 113M 45s 38s 18%
twitter-2010 42M 1.5B 759s 693s 9.4%
friendster 66M 1.8B 1022s 921s 11%
uk-union 134M 5.5B 2549s 2135s 19%

Table 5: Pre-processor timing changes on experiment graphs.
This table shows he number of Vertices and Edges for each graph. The GraphChi and Fast
Radix columns show the total pre-processing times for GraphChi using PBBS radix sort and
Fast Radix, respectively; Δ Time is the percentage improvement. Taken from Thiel et al. [2016]
with minor formatting adjustments.

4.3.2 Real Data Results

Data sets were selected based on those reported initially in [Kyrola et al., 2012], with additional

similarly sized data sets replacing those that were not readily available, and in the case of the smallest

data set, filling out what seemed like a gap in the range. Table 4 shows that Edges range from 5× 106

to 5.5 × 109, with edges representing the size of inputs being sorted during GraphChi runs. Sorted

data included the key to sort on, but GraphChi also included payload data in the records.

We performed single timing runs on each graph for each algorithm using an automated script.

Separate runs with instrumented code allowed for the reporting of percentage overflow in Table

4 without interfering with timings. In Table 5 the overall pre-processing times were reported for

the same graph runs, demonstrating the impact of improving sorting as a component of another

software.

4.3.3 Discussion

As discussed in Thiel et al. [2016], the results showed that Simple Fast Radix provided a notable

improvement. In a few cases, there was unexpectedly no improvement, and in general, both Simple

Fast Radix and PBBS Radix sort slowed down significantly with the larger data sets.
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4.3.4 Synthetic Data Setup

These experiments were run on a 2.90GHz Intel Xeon E5-2690 (8-core) with 16GB RDIMMS-

1600MHz RAM with a 512GB SSD running Linux. We set this server up explicitly to support this

research, and we did not allow other users to log onto it. As results on the server were consistent, we

ran experiments recorded here once. Random inputs from a uniform distribution were generated using

the standard random library with std::mt19937 as a generator and uniform_int_distribution

as a distribution and using the chrono library for timing.

The experiments with synthetic data differed in several ways besides the source of data. Both

Simple Fast Radix[Thiel et al., 2016] and PBBS Radix[Shun et al., 2012]) implementations included

optimizations to take advantage of extra information provided by GraphChi to allow for the sort

to skip some unused passes. The records in GraphChi consisted of a combination of source and

destination data, so GraphChi performed sorting on one or the other part as key but moved the

entire record around; the experiments on synthetic data used a single key for the entire record. The

GraphChi implementations used signed long integers, and while Simple Fast Radix was adjusted

to accommodate unsigned long integers, PBBS Radix sort needed a more significant adjustment.

Hence, its test was still on 63-bit unsigned integers, though the impact here was likely minor.

4.3.5 Synthetic Data Results

In Figure 25 we show the performance of Simple Fast Radix, PBBS Radix and std::sort on 64-bit

integers generated from a uniform distribution, with the raw data in Table 6.
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N Simple Fast Radix PBBS Radix std::sort
100 36�s 20�s 9�s
1000 99�s 66�s 99�s
10000 605�s 701�s 1297�s
100000 7520�s 8667�s 14260�s
1000000 55286�s 55024�s 99030�s
10000000 968203�s 996272�s 762735�s
100000000 8733755�s 9423967�s 8109444�s
1000000000 123499985�s 135640439�s 91525398�s

Table 6: Timing comparison of Simple Fast Radix[Thiel et al., 2016], PBBS Radix[Shun et al.,
2012] and std::sort on a log scale using random 64-bit unsigned integers from a uniform distribution,
with PBBS Radix sort using 63-bit unsigned integers.
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Figure 25: Timing comparison of Simple Fast Radix[Thiel et al., 2016], PBBS Radix[Shun et al.,
2012] and std::sort on a log scale using random 64-bit unsigned integers from a uniform distribution,
with PBBS Radix sort using 63-bit unsigned integers.
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4.3.6 Discussion

We posit that the improved results were due to having almost no overflow when estimating bucket

sizes while having saved the traditional first pass through the data, which would have counted bucket

sizes exactly. Real data showed slightly higher amounts of overflow than predicted for random data

from a uniform distribution. However, it was still less than 1% in most cases, as shown in Table 4.

Synthetic data, as expected, matched the predicted results.

Simple Fast Radix’s results, now programmed in C++, support the initial experimental results,

which showed an improvement when skipping the first counting pass. As noted in Table 4, Simple

Fast Radix generally performed better by upwards of 20%, with similar performance for the

live-journal data set (which was repeatable) and was not related to overflow processing. While

overflow was more than it might be for random inputs from a uniform distribution, it was still

minimal. Table 5 shows that an improvement in sorting can yield a noticeable improvement in overall

application performance, as the changes in sorting time yielded between 10 and 20% improvements

in the pre-processing step of GraphChi, save with the live-journal data set where performance

remained the same. “Given that the pre-processing time often exceeds the actual graph processing

time, this improvement has practical benefit”[Thiel et al., 2016].

The synthetic experiments showed more muted results. There was a mixed improvement on the

smaller data sets, near-identical results on the 106 and 107 data sets and a modest 10% improvement

on the 108 and 109 data sets, compared to the more considerable improvements noted in Thiel et al.

[2016]. The improvement over PBBS Radix sort is still notable, and showing these experiments

using synthetic data allows a common baseline for comparison with the algorithms presented later

in this chapter. The use of std::sort in these timing results reinforces that baseline as the same

results for std::sort will be used when showing the later results in this chapter. The comparison

with std::sort also highlights the cache-performance issue that begins to impact results with

radix sorts at some point, in this case after inputs of 106.
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N Simple Fast Radix Fast Radix Diverting Fast Radix
100 400% 2800% 800%
1000 100% 367% 107%
10000 47% 74% 28%
100000 53% 53% 27%
1000000 56% 61% 31%
10000000 127% 83% 53%
100000000 108% 67% 52%
1000000000 135% 67% 47%

Table 7: Timing comparison of Simple Fast Radix, Fast Radix, Diverting Fast Radix, normalized
to std::sort. Synthetic data generated from random 64-bit unsigned integers from a uniform
distribution.

4.4 Fast Radix

Fast Radix is an intermediate step between Simple Fast Radix and Diverting Fast Radix. We include

results for an implementation of the Fast Radix algorithm presented in this thesis, situated with

respect to the other presented Fast Radix algorithms and showing the progressive improvement over

the course of this research. Table 7 shows that Fast Radix performed between 50 to 100% faster than

Simple Fast Radix on # ≥ 107, in part due to savings from reduced counting effort. As expected,

Diverting Fast Radix performs better than Fast Radix in all cases.

4.5 Diverting Fast Radix

Results from Diverting Fast Radix in Figure 26 show that our implementation is faster on all save the

smallest input sizes up until input sizes on the order of one million (106), without any of the cache

optimizations that support RADULS2. Even after cache-related performance impacts of Diverting

Fast Radix, it remains competitive with RADULS2 and is faster than std::sort. We also present

results for Ska SortSkarupke [2017], a diverting MSD Radix sort with publicly available (and easy

to use) source code that does not use the cache-optimization found in RADULS2.
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Figure 26: Timing comparison of Diverting Fast Radix, RADULS2[Kokot et al., 2017], std::sort,
Ska Sort[Skarupke, 2017] on a log scale using random 64-bit unsigned integers from a uniform
distribution.

4.5.1 Setup

This experimental setup is the same as in Section 4.3.4, using the Intel Xeon E5-2690, running

experiments once and using standard libraries for random number generation and timing.

4.5.2 Results

In Figure 26 we show the performance of Diverting Fast Radix, RADULS2, std::sort and Ska Sorton

64-bit integers generated from a uniform distribution, with the raw data in Table 8.
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Figure 27: Timing comparison of Diverting Fast Radix, RADULS2[Kokot et al., 2017], std::sort,
Ska Sort[Skarupke, 2017] relative to std::sort using random 64-bit unsigned integers from a uniform
distribution.

N Diverting Fast Radix RADULS2 std::sort Ska Sort
100 72�s 35�s 9�s 12�s
1000 106�s 2495�s 99�s 57�s
10000 357�s 4050�s 1297�s 555�s
100000 3915�s 6344�s 14260�s 7829�s
1000000 30305�s 33106�s 99030�s 54260�s
10000000 400963�s 279323�s 762735�s 973693�s
100000000 4188510�s 1813349�s 8109444�s 8789985�s
1000000000 43092593�s 26701920�s 91525398�s 88402766�s

Table 8: Timing comparison of Diverting Fast Radix, RADULS2[Kokot et al., 2017], std::sort, Ska
Sort[Skarupke, 2017] using random 64-bit unsigned integers from a uniform distribution.
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N Diverting Fast Radix RADULS2 Ska Sort
100 800.00% 388.89% 133.33%
1000 107.07% 2520.20% 57.58%
10000 27.53% 312.26% 42.79%
100000 27.45% 44.49% 54.90%
1000000 30.60% 33.43% 54.79%
10000000 52.57% 36.62% 127.66%
100000000 51.65% 22.36% 108.39%
1000000000 47.08% 29.17% 96.59%

Table 9: Timing comparison of Diverting Fast Radix, RADULS2[Kokot et al., 2017]Ska
Sort[Skarupke, 2017], normalized to std::sort, using random 64-bit unsigned integers from a
uniform distribution.

4.5.3 Discussion

Diverting Fast Radix, std::sort and Ska Sort used the usual random input generation and timing.

On the other hand, RADULS2[Kokot et al., 2018] generated random numbers and did timing on their

own, though the implementation of their approach was consistent with our methods. RADULS2

also prepared, and memory aligned the standard additional buffers. They ensured that the input

array was also memory aligned and touched the data in arrays to prime the system before timing

commenced. This difference had a material effect on timing. Developers might not traditionally

do some of these things or do them inside the sorting algorithm implementations where timing

experiments would count them. Their documentation provided reasoning for these approaches and

indicated how some aspects were necessary for their implementation’s technical optimizations. As

such, we used the timings reported by their implementation.

Figure 26 is a log-scaled graph of the timing results from 102–109 scaling by 10 with each step.

We performed each experiment once. Timings for RADULS2, in particular, varied from run-to-run,

but the log graph elides this degree of sensitivity to show a general trend. Somewhere shortly after

input sizes pass 1000, Diverting Fast Radix is markedly faster than the other considered algorithms.

Table 8 is the underlying data for Figure 26. The takeaway here is that despite the slowdowns
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Figure 28: The impact of cache misses as a function of input size[LaMarca and Ladner, 1999, p.
33].

due to cache misses, std::sort’s non-linear complexity allows Diverting Fast Radix to run more

than twice as fast at inputs of size 109. While Diverting Fast Radix does start to lose ground

to RADULS2, falling behind as input sizes grow beyond 106, it maintains its lead on the other

algorithms. LaMarca and Ladner describes how the separation in target buckets and the randomness

of selecting from several buckets for the next element dealt (among other things that might occupy

cache lines) leads to an increase in cache misses that becomes prominent between input sizes of 105

and 106, shown in Figure 28. In exactly this range, we see RADULS2, using its non-temporal writes

to avoid the cache beginning to make ground.

Table 9 shows timing results normalized against std::sort. For tiny input sizes, the approaches

of both Diverting Fast Radix and RADULS2 are not well-optimized. Starting at inputs of size 104,

Diverting Fast Radix holds a clear advantage at nearly four times as fast as std::sort. While at

104, there is a small-input optimization issue for RADULS2 that ceases to be an issue at 105, where

Diverting Fast Radix is more than 60% faster than RADULS2 and still nearly four times as fast
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as std::sort. At 106, Diverting Fast Radix is still almost 10% faster than RADULS2, and three

times as fast as std::sort. Beyond that range, the lack of cache and TLB-optimization is clear

in both Diverting Fast Radix and Ska Sort as RADULS2 maintains its linear performance against

std::sort’s higher-order algorithmic complexity. However, while Diverting Fast Radix is slower

than RADULS without cache and TLB-optimization in the 107 to 109 range, it is still roughly twice

as fast as std::sort.
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Chapter 5

Analysis

In the previous chapter, we showed how our specific implementations of standard radix sorts, as well

as Fast Radix and Diverting Fast Radix, performed against other recognized implementations of

radix sorts and also against std::sort. In this chapter, we will analyse the count estimation approach

used in the Fast Radix algorithm and separately, the diversion approach we use with LSD Radix Sort

as compared to the established diversion approach with MSD Radix Sort. Our analysis will consider

the cost of an average pass and then the number of passes performed on average. Our Diverting

Fast Radix algorithm combines those two approaches such that their separate analysis will show

the overall improvement due to reduced passes and less work per pass which allows Diverting Fast

Radix to perform competitively against state-of-the-art algorithms.

Previous research in radix sorts highlights that the amortized cost for per-pass work is less in

LSD Radix Sorts than in MSD Radix Sorts due primarily to the many extra buckets that one must

keep track of [Cormen et al., 2009, p. 197]. We will model the difference in average cost to perform

a given radix sort pass when comparing a traditional LSD Radix Sort pass to that of Fast Radix,

showing that Fast Radix allows for a lower cost by avoiding counting.

In considering the average number of passes performed by diverting radix sorts, we will consider

diverting MSD Radix Sort and our proposed diverting LSD Radix Sort. Current research on MSD

Radix Sorts consider diversion as a means to reduce cost[Kokot et al., 2018]. There is limited

occurrence of any diverting LSD Radix Sorts, with the summary consideration of diversion after a

constant number of passes[Sedgewick, 1998, Ch.10] and a more recent approach involving LSD Radix
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Sorting floating point numbers that proposed diverting after “"0Cℎ.<8=(log 2= + 9, 32)"[Maus,

2019] bits. We will model the passes performed by both diverting MSD Radix Sort and our diverting

LSD Radix Sort, where diversion is based on bucket size, to show that the average number of passes

performed is the same in either case.

5.1 Recap on the LSD Algorithms

The difference between Fast Radix and LSD Radix Sort can be described as a reduction in counting

passes by way of estimation of counts and the processing of any overflow due to difference from the

estimation.

The LSD Radix Sort algorithm (LSD) sorts an array of # records by iteratively sorting into

" buckets, one for each of the possible digits 3 ∈ D for each of the component digits D ∈ K in

increasing order of their significance in the key, K . Note that " is |D|.

The steps of each pass of the algorithm are

Count the number #3 of entries with digit 3, for each 3 ∈ D, by making one scan of the array;

Deal the entries of the array into their corresponding bucket of size #3 , by making one scan of the

array;

Iterate by applying these steps to the newly dealt buckets in order of corresponding digit 3 for the

next most significant D ∈ K.

The time, )!(�(#), for the LSD Radix Sort algorithm on # records, can be expressed in terms of

)�(!(�)(#) the time for the counting step on # records;

)�(!(�)(#) the time for the dealing step on # records into " buckets of size #3 , for 3 ∈ D;
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Iteration ∑
D∈K ()!(�(#)) across the |K | subproblems of size # , for D ∈ K.

We define the constants for the basic steps of the LSD Radix Sort algorithm: 28=8C , the cost to

initialize each of the " counts to zero; 2�(!(�), the cost to process each of the # array entries and

increment the corresponding count; 2?BD<, the cost to convert the " counts to indexes representing

the dealing destinations of corresponding buckets; 2�(!(�), the cost to deal each of the # array

entries into the corresponding bucket;

Hence, )�(!(�)(#) =
( (
28=8C + 2?BD<

)
× " + 2�(!(�) × #

)
and )�(!(�)(#) = 2�(!(�) × # .

So we can express )!(�(#) as the summation

)!(�(#) =
∑
D∈K

(
)�(!(�)(#) + )�(!(�)(#)

)
(5.1.1)

where ∑D∈K represents iteration over the digits in the key from least to most significant.

The Fast Radix Sort algorithm (FR) sorts an array of # records by recursively sorting into "

buckets, one for each of the digits 3 ∈ D. The counting step is replaced by estimates of the bucket

sizes; the dealing step is done using an additional overflow bucket, and then a step to process the

overflow corrects the bucket contents by performing a counting pass on the overflow bucket and

a second deal of entries from the overflow bucket to extension buckets that correspond to the full

buckets. Prior to the last pass, counting is performed identically to LSD Radix Sort and the last

dealing pass is the same.

The steps of each pass of the algorithm are

Estimate the number -3 of entries with digit 3, for each 3 ∈ D;

Deal the entries of the array into their corresponding bucket of size -3 , or the overflow bucket, by

making one scan of the array;
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Process Overflow by counting the number $3 of entries with digit 3 in the overflow bucket and

then by dealing the ->E entries of the overflow bucket into their corresponding buckets of size

$3 , such that #3 = $3 + -3 where bucket -3 became full and #3 is the amount of -3 that

was filled otherwise;

Iterate by applying these steps to the newly dealt buckets in order of corresponding digit 3, first

from the corresponding estimated bucket and than from any overflow bucket, for the next most

significant D ∈ K.

The time, )(�')(#), for the Fast Radix Sort algorithm on # records, can be expressed in terms of

)�(�')(#) the time to initialize the estimates -3 , 3 ∈ D;

)�(�')(#) the time for the dealing step on # records into " buckets of size -3 , for 3 ∈ D, or into

the overflow bucket;

)%6>(�')(#) the time for processing the overflow by scanning the overflow bucket of size ->E and

dealing the entries into the corresponding bucket;

Iteration ∑
D∈K ()�'(#)) across the |K | subproblems of size # , for D ∈ K.

We define the constants for the basic steps of the Fast Radix Sort algorithm: 2�(�'), the cost

to initialize each of the " estimates; 2�(�'), the cost to deal each of the # array entries into the

corresponding bucket, or the overflow bucket; 2%6>(�'), the cost to count and then deal each of the

-3 entries of the overflow bucket into the corresponding bucket;

Hence, )�(�')(#) = 2�(�') × " )�(�')(#) = 2�(�') × # . and )%6>(�')(#) = 2%6>(�') × ->E.

So we can express )�'(#) as a single LSD Radix Sort pass on the most significant digit and a

summation over the remaining digits

)(�')(#) =
(
)�(!(�)(#) + )�(!(�)(#)

)
+

∑
D∈K ′

(
)�(�')(#) + )�(�')(#) + )%6>(�')(#)

)
(5.1.2)
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where ∑D∈K ′ represents iteration over the digits in the key from least to most significant, excluding

the most significant digit.

5.2 Recap on the Diverting Algorithms

The concept of diversion is relevant to hybrid sort algorithms which utilise multiple sort algorithms

at the different passes during recursion [Kokot et al., 2018]. Diversion strategies in radix sort are

predicated on a threshold of a bucket size #3 . If the size is below the threshold then the recursive

call to radix sort on that bucket defaults to a different sort algorithm. For our analysis, we will

assume the diverting sort algorithm is non-recursive so does not involve further passes. We deal

with the non-diverting case by regarding it as adopting a null diversion strategy which never diverts

from the radix sort.

The diverting MSD Radix Sort algorithm (dMSD) sorts an array of # records by recursively

sorting into " buckets, one for each of the possible digits 3 ∈ D for each of the component digits

D ∈ K in decreasing order of their significance in the key, K . If a bucket is of size �) or smaller, a

diversion algorithm is used to finish the sorting of that bucket with no further recursion. Note that

" is |D|.

The steps of each pass of the algorithm are

Count the number #3 of entries with digit 3, for each 3 ∈ D, by making one scan of the array;

Deal the entries of the array into their corresponding bucket of size #3 , by making one scan of the

array;

Recurse by applying by applying Radix Sort to each of the " buckets of size #3 , for 3 ∈ D, so

long as �) < #3 .

Divert by applying the diverting algorithm to buckets #3 < �) .
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The time, )3"(�(#), for the dMSD Radix Sort algorithm on # records, can be expressed in

terms of

)�(3"(�)(#) the time for the counting step on # records;

)�(3"(�)(#) the time for the dealing step on # records into " buckets of size #3 , for 3 ∈ D;

)��+ (#) the time for running the diversion sort on # records;

Recursion ∑
3∈D ()3"(�(#3)) across the |D| subproblems of size #3 , using the next most

significant digit D ∈ K.

We define the constants for the basic steps of the dMSD Radix Sort algorithm: 28=8C , the cost

to initialize each of the " counts to zero, defined previously; 2�(3"(�), the cost to process each

of the # array entries and increment the corresponding count; 2?BD<, the cost to convert the "

counts to indexes representing the dealing destinations of corresponding buckets, defined previously;

2�(3"(�), the cost to deal each of the # array entries into the corresponding bucket;

Hence, )�(3"(�)(#) =
( (
28=8C + 2?BD<

)
× " + 2�(3"(�) × #

)
and)�(3"(�)(#) = 2�(3"(�)×# .

So we can express )3"(�(#) as the recursion

)3"(�(#) =



)��+ (#), # <= �)

Do Nothing, all digits processed(
)�(3"(�)(#) + )�(3"(�)(#) + ∑

3∈D ()3"(�(#3))
)
, otherwise

(5.2.1)

where # = ∑
3∈D #3 .

The diverting LSD Radix Sort algorithm (dLSD) sorts an array of # records by performing

LSD Radix Sort on %(#) high-order digits D ∈ K, then recursively sorting any remaining buckets

that are larger than the diversion threshold �) .
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The steps of each pass of the algorithm are

Sort using LSD Radix Sort into "%(#) buckets of size #3 of records with digit 3, for each 3 ∈ DP

where DP is the digit composed of the %(#) high-order digits D ∈ K;

Recurse by sorting each of the buckets of size #3 , for 3 ∈ DP , so long as �) < #3;

Divert by applying the diverting algorithm to buckets #3 <= �) ;

The time, )3!(�(#), for the dLSD Radix Sort algorithm on # records, can be expressed in terms

of

)!(�(#) the time to perform LSD Radix Sort on # records for the %(#) high-order digits D ∈ K ,

defined previously;

)((3!(�)(#) the time to find if any buckets of size #3 <= �) , for 3 ∈ DP ;

)��+ (#) the time for running the diversion sort on # records, defined previously;

Recursion ∑
3∈DP ()3"(�(#)) across the |D| subproblems of size #3 , using the next %(#3) most

significant digits D ∈ K (or just any remaining digits if there are too few).

We define the constants for the basic steps of the dLSD Radix Sort algorithm: 2B20=(3!(�), the

cost to scan the array for buckets larger than �) ; Hence, )((3!(�)(#) = 2B20=(3!(�) × # .

So we can express )3!(�(#) as the recursion

)3!(�(#) =



)��+ (#), # <= �)

Do Nothing, all digits processed(
)!(�(#) + )((3!(�)(#) + ∑

3∈DP ()3!(�(#3))
)
, otherwise

(5.2.2)

where # = ∑
3∈DP #3 .
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5.3 The Analysis in Overview

We use uniformly random input to mean that the input to be sorted contains records which have

fixed-digit keys, where each possible key has the same probability of occurring in each record.

We only consider cases where the key takes a fixed number of bits and do not consider the

implications on distribution choice for cases such as variable length string sorting considered in some

work[Andersson and Nilsson, 1994]. As in this analysis, most authors chose keys from a uniform

distribution for at least some of their results, allowing for any possible key to occur and allowing

duplicates. While some work considered digits of variable length[Al-Badarneh and El-Aker, 2004,

Maus, 2002], for both practical reasons and simplicity of analysis, this work implements and

performs analysis using a fixed-length digit of eight bits, a common decision in most other work.

We use the term pass to describe an algorithm processing all records in an input. A pass generally

encompasses the processing of all records where that processing is based on the consideration of the

same parts of each record’s key, but need not be the same as a pass described in an algorithm or

implementation. The sum of all passes performed by an algorithm encompasses all work on the

input for that algorithm. The processing within a pass need not be contiguous in time, it is strictly a

measure of how much of an input was processed by the same criteria overall once the algorithm was

completed. A pass may be incomplete if not all records are processed, and when counting such

passes, only the fraction of the pass completed is counted.

It is important to distinguish a pass considered during this analysis from how one might consider

a pass in an algorithm or how an implementation may loop through its input. This distinction can

be illustrated by considering the cost summation from the LSD Radix Sort algorithm as defined

above, )!(�(#) = ∑
D∈K

(
)�(!(�)(#) + )�(!(�)(#)

)
. In practical implementations, all but the first

counting pass would happen in conjunction with a dealing pass[Friend, 1956], and thus the cost of

the first counting pass as implemented would be more than the counting component of subsequent

passes that were also dealing[Thiel et al., 2016]. In some implementations, multiple digits may be
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counted in a single dealing pass[Rahman and Raman, 2001]. There are also hidden costs relating to

cache and TLB misses that are impacted by counting while dealing[Rahman and Raman, 2001] that

are not distinctly attributable to either a counting or a dealing pass. The definition of pass we use

here wraps such details in constants, as in 2�(!(�) for counting on the LSD Radix Sort algorithm,

amortizing costs across like passes and eliding issues of difference in cache and TLB miss timing

that are outside the scope of this analysis.

Our primary approach to analysing work in radix sorts is to model radix sorts through occupancy

distribution, specifically the uniformly random occupancy distribution. This is often referred to as

the ball and urn model as one can imagine the problem space as that of a number of balls having

been randomly placed into a number of urns; the theory of this model deals with the characteristics

of such a system.

Given the standard ball and urn model where #, " ∈ /≥1, we can use Sedgewick and Flajolet’s

description:

The average number of urns with : balls, when # balls are randomly distributed in "

urns, is:

"

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

[Sedgewick and Flajolet, 2013, p. 503, Theorem 9.5]

Given the average number of urns with : balls, we can also know the average number of balls

going into urns with : balls by multiplying the occupancy distribution equation by : . If we want

to know the number of urns with up to a certain number of values, we can perform a summation

between 0 and that number, using : as the index. The number of balls in urns that contain values

above a threshold is the total number of balls take away the previous summation. The term inside

the summation can also be multiplied by : to find average numbers of balls in the specified urns.
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We represent the average number of balls within urns containing exactly : balls when uniformly

distributing # balls among " urns as 5 (#, ", :):

5 (#, ", :) = :"
(
#

:

)
(

1
"

): (1 − 1
"

)#−: (5.3.1)

This is applicable to Radix Sort analysis as the number of urns " represents the number of

ways a digit can be represented, which is the number of buckets radix sorts use, and is 256 for the

standard 8-bit digit. The number of balls # , corresponds directly to the number of records in an

input. This approach groups urns by the number of balls they hold, and so : represents that number.

The summing of these groups from 0 to ) is just the sum over 5 (#, ", :), and we consider it as

6;(#, ", ?, )):

6;(#, ", ?, )) =
)∑
:=0

5 (#, " ?, :) =
)∑
:=0

:" ?

(
#

:

)
(

1
" ?

): (1 − 1
" ?

)#−: (5.3.2)

? represents the passes considered, where ? = 1 in cases where only one pass of radix sort is

considered. For our purpose, when summing over : , the threshold ) corresponds to one of two

cases: 1) a static diversion threshold representing how few records must be in buckets before they

are sorted by diverting to another algorithm; or 2) an overflow threshold representing how many

records we allow into a bucket before we must overflow. In either case, we will supplement our

application of the ball and urn model with Pascal’s Rule and the Trinomial Revision identity.

Given the nature of binomial coefficients, and for #, : ∈ R>0, Pascal’s Rule allows us to

decompose a binomial coefficient into a sum of two other binomial coefficients:

(
#

:

)
=
(
# − 1
:

)
+
(
# − 1
: − 1

)
(5.3.3)

[Graham et al., 1994, p.174, Table 174, 4Cℎ identity]
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Equation 5.3.3 is useful when we need to increase or decrease the number of terms. In this

thesis, Pascal’s Rule is often the immediate path to change an equation into a suitable form.

When working with binomial coefficients, it is not uncommon to find that one does not have a

particular binomial coefficient that one is looking for, but Trinomial Revision can often be used to

reshuffle binomial coefficients:

(
#

9

) (
9

:

)
=
(
#

:

) (
# − :
9 − :

)
(5.3.4)

[Graham et al., 1994, p.174, Table 174, 6Cℎ identity]

Equation 5.3.4 describes how the number of ways to pick the 9 men from the # mortals times

the number of ways to pick the : Socrates from those 9 men is the same as the number of ways to

pick the same : Socrates from those # mortals times the number of ways to pick the 9 − : men who

are not Socrates from the # − : mortals who are not Socrates. It is a way of getting a
(#
:

)
factor

when you have something in the form of
(#
9

) ( 9
:

)
.

Given the recap of algorithms that detail how cost will be considered in this analysis, the

clarification of terms used and the general mathematical model and approach so defined, we can

approach the analysis in two parts. Firstly, we will consider Theorem 8 where we will compare the

cost of counting in LSD Radix Sort with the modeled cost of overflow processing in Fast Radix,

showing that Fast Radix costs less. Secondly, we will consider Theorem 11, where we will model

the cost of diverting MSD Radix Sort and compare it with the model of our diverting LSD Radix

Sort and show that they perform the same number of passes on average. Diverting Fast Radix

combines both these improvements and is thus shown to have a lower cost, the details of which will

be discussed in our interpretation of the analysis at the end of this chapter.
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5.4 Diverting Fast Radix Average Work Per Pass

In this section we consider the average cost per pass, focusing on the removal of the cost of counting

and the analysis of the cost of processing overflow. We can compare the cost of counting in LSD

Radix Sort against the overflow processing of Fast Radix and similarly compare the cost of their

corresponding dealing.

)�(!(�)(#) =
( (
28=8C + 2?BD<

)
× " + 2�(!(�) × #

)
)�(!(�)(#) =2�(!(�) × #

)�(�')(#) =2�(�') × "

)�(�')(#) =2�(�') × #

)%6>(�')(#) =2%6>(�') × ->E

While " << # in many cases rendering the " component less significant in LSD Radix Sorts,

we note that the per-bucket cost to initialize in LSD Radix Sorts 28=8C is about same as the per-buck

cost to set bucket estimations in Fast Radix 2�(�'), as it is either initializing to zero or initializing

to the estimated bucket sizes. Fast Radix has no cost that corresponds to the prefix summation

2?BD< × " in LSD Radix Sort.

The difference between the per-record cost of joint dealing and counting in LSD Radix Sort

2�(�') + 2�(!(�) and the corresponding per-record cost of dealing 2�(�') in Fast Radix consists

of an extra check against overflow in Fast Radix compared to reading a count, incrementing it and

writing it back out in LSD Radix Sort. As there is no corresponding initial counting pass in Fast

Radix[Thiel et al., 2016], the difference in cost is even higher.

If this per-record difference in cost exceeds the overflow processing cost 2%6>(�') × ->E then Fast
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Radix must have a lower cost for that pass. What follows is a model of the average size of overflow

>E as a function of # and the effectively fixed value " which shows that >E
#

quickly becomes

insignificant as # increases, showing that Fast Radix costs less per pass, save on the last pass where

it costs the same as LSD Radix Sort.

As we know that the average number of records in each bucket must be #
"

when randomly

distributing # records into " buckets, it makes sense that the total capacity for records, distributed

randomly over " buckets is the same.

The specific approach to distributing capacity at random can vary, but we can consider the

approach where some buckets have an integer capacity of 2 and the remaining buckets have a

capacity of 2 + 1 and the total capacity of all buckets is # . It does not matter which buckets have

which capacities as the bucket a record ends up in is random, and the likelihood of ending up in that

bucket is not related to the capacity of that bucket.

The actual capacity of each bucket must be an integer value. It is practical to consider that " − 0

random buckets have a capacity of b #
"
c = 2 records and the remaining 0 buckets have a capacity of

d #
"
e = 2 + 1 records where # = 2" + 0, 0 < " and 2, 0 ∈ Z≥0.

If 0 = 0 then each bucket contains 2 = #
"

records. If 0 > 0 then the average bucket has a capacity

of ("−0)2
"

+ 0(2+1)
"

= 2"+0
"

= #
"

records.

Theorem 5. Given uniformly random input. Then the fraction of # that overflows can be modeled

as:

6>(#, ") =
1
#

d #
"
e−1∑

:=0
(
#

"
− :)"

(
#

:

)
(

1
"

): (1 − 1
"

)#−: (5.4.1)

If we consider the capacity in and average bucket that contains : records is 2(#, ", :) and the

average number of records in those buckets as the already defined 5 (#, ", :) from Equation 5.3.1,

then we can define overflow in terms of the difference of those functions over the range of buckets
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with more records than capacity.

5 (#, ", :) = :"
(
#

:

)
(

1
"

): (1 − 1
"

)#−: (5.3.1 revisited)

Proof. As Equation 5.3.1 represents the number of records in buckets that contain k records, we can

represent the capacity of those buckets as 2(#, ", :) by multiplying the number of buckets with :

records times the average capacity #
"

:

2(#, ", :) =
#

"
"

(
#

:

)
(

1
"

): (1 − 1
"

)#−: (5.4.2)

As such, the fraction of # that is overflow or underflow within buckets containing : records can be

defined as 6>(#, ", :), which must be the difference between average capacity in buckets with :

records and those records.

6>(#, ", :) =
1
#
2(#, ", :) − 1

#
5 (#, ", :) (5.4.3)

As overflow must happen in buckets containing d #
"
e or more records, no underflow can happen in

that range of buckets and as overflow is a zero-sum system, the overflow and underflow are the same,

then the average overflow must be the difference between capacity and balls allocated in urns with :

values where the range of : is from 0 to d #
"
e − 1:

6>(#, ") =
d #
"
e−1∑

:=0
6>(#, ", :)

=
d #
"
e−1∑

:=0
(
#

"
− :)

"

#

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

�

Theorem 6. The overflow for buckets containing : records can be defined recursively as:

6>(#, ", :) =
1
"
6>(# − 1, ", : − 1) + (1 − 1

"
)6>(# − 1, ", :) (5.4.4)
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Proof. First we note the expansion of Equation 5.4.3.

6>(#, ", :) = (
#

"
− :)

"

#

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

If we apply this to # + 1 we get the following:

6>(# + 1, ", :) = (
# + 1
"
− :)

"

# + 1

(
# + 1
:

)
(

1
"

): (1 − 1
"

)#+1−:

We can then apply Pascal’s Rule to split the right side into two terms:

6>(# + 1, ", :) =(
# + 1
"
− :)

"

# + 1

(
#

: − 1

)
(

1
"

): (1 − 1
"

)#+1−:

+(
# + 1
"
− :)

"

# + 1

(
#

:

)
(

1
"

): (1 − 1
"

)#+1−:

We can then factor out the 1
"

and 1 − 1
"

factors, adjusting the probability exponents appropriately:

6>(# + 1, ", :) =
1
"

(
# + 1
"
− :)

"

# + 1

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)(
# + 1
"
− :)

"

# + 1

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

At this point we note that it looks very close to what we want, but there is an uncooperative factor in

each term.

6>(# + 1, ", :) =
1
"

# + 1 − :"
# + 1

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)
# + 1 − :"
# + 1

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

We know that #+1−:"
#+1 can be decomposed as follows:

# + 1 − :"
# + 1

=
# − :"
#

+
:"

#(# + 1)

#−:"
#

is the factor that we are looking for, so we can pull out the unneeded term and collapse the
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remainder into the desired 6>(#, ", :) term:

6>(# + 1, ", :) =
1
"

# + 1 − :"
# + 1

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)
:"

#(# + 1)

(
#

:

)
(

1
"

): (1 − 1
"

)#−:

+(1 − 1
"

)6>(#, ", :)

We can adjust the second term such that the binomial coefficient matches by noting the following

identity derived from considering the binomial coefficient’s factorial form:

(
#

:

)
=
# + 1 − :

:

(
#

: − 1

)
This yields the following:

6>(# + 1, ", :) =
1
"

# + 1 − :"
# + 1

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)
# + 1 − :

:

:"

#(# + 1)

(
#

: − 1

)
(

1
"

): (1 − 1
"

)#−:

+(1 − 1
"

)6>(#, ", :)

We can once again adjust the probability exponents appropriately, which also changes the (1 − 1
"

)

factor into the desired (1 − 1
"

) form:

6>(# + 1, ", :) =
1
"

# + 1 − :"
# + 1

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+
1
"

# + 1 − :
:

:"

#(# + 1)

(
#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)6>(#, ", :)
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We can then refactor once more given that the binomial theorem parts are the same in both terms:

6>(# + 1, ", :) =
1
"

(
# + 1 − :"
# + 1

+
# + 1 − :

:

:"

#(# + 1)
)(

#

: − 1

)
(

1
"

):−1(1 − 1
"

)#−(:−1)

+(1 − 1
"

)6>(#, ", :)

We now collapse the last undesirable factor using the following:

# + " − :"
#

=
# + 1 − :"
# + 1

+
# + 1 − :

:

:"

#(# + 1)

which yields:

6>(# + 1, ", :) =
1
"
6>(#, ", : − 1) + (1 − 1

"
)6>(#, ", :)

6>(#, ", :) =
1
"
6>(# − 1, ", : − 1) + (1 − 1

"
)6>(# − 1, ", :)

�

Theorem 7. The average overflow can then be defined recursively as:

6>(#, ") = 6>(# − 1, ") − 1
"
6>(# − 1, ", d #

"
e − 1) (5.4.5)

Proof. If we replace the internals of the summation in the equation 6>(#, ") = ∑d #
"
e−1

:=0 6>(#, ", :)

with Equation 5.4.4 from Theorem 6, we see that we have two paired summations and some extra

terms:

6>(#, ") =
1
"
6>(# − 1, ",−1) +

1
"

(
d #
"
e−2∑

:=0
6>(# − 1, ", :))+0

+0 +
" − 1
"

(
d #
"
e−2∑

:=0
6>(# − 1, ", :))+

" − 1
"

6>(# − 1, ", d #
"
e − 1)

As the a negative term for the bucket size yields a zero term, it can be discarded. The summations
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are identical internally, and their factors merge cleanly as 1
"

+ "−1
"

= 1:

6>(#, ") = (
d #
"
e−2∑

:=0
6>(# − 1, ", :)) +

" − 1
"

6>(# − 1, ", d #
"
e − 1)

By adding 1
"
6>(# − 1, ", d #

"
e − 1) to the second term and collapsing it into the summation, raising

its upper bound and subtracting it again afterward, we arrive at the desired equation. �

Theorem 8. Given uniformly random input. Given that a sufficiently large input size is used. Then,

on average, Fast Radix has a lower cost on a given pass than LSD Radix Sort.

Proof. The counting component of LSD Radix Sort has a linear cost associated with it. By not

counting, the cost of each pass is reduced by a factor. The cost of counting is replaced by the cost of

processing overflow. The cost of processing overflow as a fraction of # decreases monotonically as

the size of the input increases, as shown by Theorem 6, and thus the cost of processing overflow

must be sub-linear. Evaluating 6>(#, ") shows that it becomes small quickly. �

5.5 Diverting Radix Sort Average Number of Passes

Evaluating the recursive costs for )3"(�(#) and )3!(�(#) becomes about measuring how many

records recurse after a certain number of passes. We define these costs more formally as

6<(#, ", %, �)) and 6;(#, ", %, �)) respectively, where they represent the number of records

that divert after pass %. Assuming that these are mathematically identical and that a %(#) exists

wherein there is no diversion in prior passes, then the difference in overall cost is the difference

between the exponential cost of count initialization and prefix summing for MSD Radix

Sort∑%(#)−1
?=0

( (
28=8C + 2?BD<

)
× " ?

)
on the one hand and the linear cost of that counting work in

LSD Radix Sort along with the scan for large buckets

%(#) ×
( (
28=8C + 2?BD<

)
× "

)
+ 2B20=(3!(�) × # , where the scan for large buckets 2B20=(3!(�)
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represent sequential reads, registry updates and comparisons that can be optimized to be quite small.

If we show that diversion on one pass means that any remaining diversion will happen on the

next pass, then the difference in cost narrows as every bucket that did not divert will need to perform

an additional pass which will have an identical cost (effectively a simple counting sort on that digit)

for both algorithms, with this cost eclipsing diverting MSD Radix Sort’s counting costs for all prior

passes as the number of buckets requiring an additional pass approaches "%(#).

This section of the analysis proves that the assumptions made here are valid and that the expected

number of passes before diversion %(#) can be known for a given input size # , digit size " and

diversion threshold �) .

In considering how distribution during radix sorts leads to diversion, we examine the following

equivalence: If one randomly deals # balls into "0+1 urns, the fraction of those "0+1 urns that

would get : balls would be the same as if one first randomly deals # balls into "0 urns and then

randomly deals the balls from each of those "0 urns into a separate set of "1 urns, adding up the

fraction that get : balls (either emptying the "1 urns between each of these secondary dealings, or

using new ones). A simple sanity check suggests that this makes sense, as if one has "0 sets of "1

urns then one would have the same number of urns as in the first approach and how one randomly

distributes should not affect the average urns getting : balls as long as all approaches to dealing are

completely random.

Theorem 9. Given #, : ∈ Z≥0. Given : ≤ # . Given ", �) ∈ Z>0. Given 0, 1 ∈ Z>1. Then

(
#

:

)
(

1
"0+1 ): (1 − 1

"0+1 )#−: =
#∑
9=0

(
#

9

)
(

1
"0

) 9 (1 − 1
"0

)#− 9
(
9

:

)
(

1
"1

): (1 − 1
"1

) 9−:

Proof. The approach used will be to transform the right-hand side into the left-hand side. We can

perform trinomial reversion,
(#
9

) ( 9
:

)
=
(#
:

) (#−:
9−:

)
, to convert the binomial coefficients to the desired
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form, factoring
(#
:

)
outside of the summation.

(
#

:

)
#∑
9=0

(
# − :
9 − :

)
(

1
"0

) 9 (1 − 1
"0

)#− 9 (
1
"1

): (1 − 1
"1

) 9−:

As the ( 1
"0+1 ): (1− 1

"0+1 )#−: factor from the left-hand side is independent of the summation, we

can multiple it against the outside of our summation and divide by the inside of the summation to

give the form of the left-hand side equation outside of the summation:

(
#

:

)
(

1
"0+1 ): (1 − 1

"0+1 )#−:

so long as the summation being multiplied against equals 1:

#∑
9=0

(
# − :
9 − :

)
(

1
"0

) 9 (1 − 1
"0

)#− 9 (
1
"1

): (1 − 1
"1

) 9−: (
1

"0+1 )−: (1 − 1
"0+1 )−(#−:) = 1

To complete the proof, we transform the equation such that it looks like the binomial theorem.

Shifting the index by : is an intuitive starting point:

#−:∑
9=−:

(
# − :
9

)
(

1
"0

) 9+: (1 − 1
"0

)#− 9−: (
1
"1

): (1 − 1
"1

) 9 (
1

"0+1 )−: (1 − 1
"0+1 ):−# = 1

While perhaps not as intuitive, we note that Knuth defines
(#
:

)
= 0 when # is a non-negative

integer and : is less than 0[Knuth, 1997, p. 53]. Accordingly, we can start the index at zero as the

terms we are ignoring are all equal to zero:

#−:∑
9=0

(
# − :
9

)
(

1
"0

) 9+: (1 − 1
"0

)#− 9−: (
1
"1

): (1 − 1
"1

) 9 (
1

"0+1 )−: (1 − 1
"0+1 ):−# = 1

If we define # − : = #′ and replace, we get
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# ′∑
9=0

(
#′

9

)
(

1
"0

) 9+: (1 − 1
"0

)#
′− 9 (

1
"1

): (1 − 1
"1

) 9 (
1

"0+1 )−: (1 − 1
"0+1 )−#

′
= 1

We can then factor into the form ∑# ′

9=0
(# ′
9

)
� 9�#

′
�: = 1, given:

� =
1
"0

"0

"0 − 1
"1 − 1
"1

=
"1 − 1

("0 − 1)"1

� =
"0 − 1
"0

"0+1

"0+1 − 1
=

("0 − 1)"1

"0+1 − 1

� =
1
"0

1
"1

"0+1 =1

As � = 1, we can reform this as the binomial theorem given that we know �� + � = 1:

# ′∑
9=0

(
#′

9

)
(��) 9�#

′− 9 = 1 (5.5.1)

�

Whereas Theorem 9 considered counting the fraction of urns filled with only : balls, here we

extend that to a range of values for : and consider the result in terms of number of balls in those

urns.

Theorem 10. Given # ∈ Z≥0. Given ", �) ∈ Z>0. Given 0, 1 ∈ Z>1. Then

�)∑
:=0

:"0+1
(
#

:

)
(

1
"0+1 ): (1 − 1

"0+1 )#−:

is equal to
#∑
9=0

"0

(
#

9

)
(

1
"0

) 9 (1 − 1
"0

)#− 9
�)∑
:=0

:"1

(
9

:

)
(

1
"1

): (1 − 1
"1

) 9−:

Proof. As this is only the summation to �) of : in Theorem 9, scaled by : and "0+1, this is

directly true. �
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We can now consider our model for LSD Radix Sort diversion by pass %.

Lemma 1. Given # ∈ Z≥0. Given ", �) ∈ Z>0. Given % ∈ Z≥1. Then

6;(#, ", %, �)) =
�)∑
:=0

5 (#, "%, :) =
�)∑
:=0

:"%

(
#

:

)
(

1
"%

): (1 − 1
"%

)#−:

Proof. We can directly use the first summation in Theorem 10 by replacing 0 + 1 with %. This is

simply Equation 5.3.2. �

We can also consider our model for MSD Radix Sort diversion by pass %.

Lemma 2. Given # ∈ Z>0. Given " ∈ Z>0. Given �) ∈ Z>0. Given % ∈ Z≥1. Then

6<(#, ", %, �)) =
#∑
9=0

"

(
#

9

)
(

1
"

) 9 (1 − 1
"

)#− 96<( 9 , ", % − 1, �))

and

6<(#, ", 1, �)) = 6;(#, ", 1, �))

Proof. By noting that the second summation in Theorem 10 can represent a recursive expansion

that models MSD Radix Sort’s recursive approach in dealing to buckets, we can replace 0 + 1 with

% as in Lemma 1. While Theorem 10 has the restriction 0, 1 ∈ Z>1, as in Lemma 1, we can take

advantage of the special of Equation 5.3.2. �

Theorem 11. Given uniformly random input. Then the models for the average number of passes for

diverting MSD Radix Sort and diverting LSD Radix Sort are the same.

Proof. Lemma 1 and Lemma 2 show the models for diversion by a given pass in LSD and MSD

Radix Sorts and Theorem 10 shows that these models are equivalent. �

Corollary 1. Given uniformly random input. Given an input size # . Given buckets of size " and a

diversion threshold �) that is not significantly larger than ". Given that after %<0G passes all
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records can be said to have diverted. Given there is a minimum number of passes % after which

some, but not all records will divert. Then all records will divert after % + 1 passes.
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=
%

+
1
−
6
;(#

,
"
,
%
,
�
)

)

%0E6 for different values of %

% = 1
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% = 4
% = 5
% = 6
% = 7
% = 8

Figure 29: This graph shows the change in %0E6 for diverting LSD Radix Sort, given undiverted
buckets requiring one additional pass, as # increases given �) = 16, " = 256 and %<0G = 8.

Proof. If we interpolate a graph of %0E6 = % + 1 − 6;(#, ", %, �)) for all values of % that shows

very distinctly that diversion happens in either one pass or the next, as shown in Figure 29. While

we cannot be sure that this corollary holds for all " and �) , if it did not hold for practical values,

as considered in Figure 29 it would be immediately apparent that the transition areas (centered on

the units of the log scale in the x-axis) would begin to overlap. �

Corollary 2. % can be defined as a function of # , " and �) for the purpose of identifying the

number of passes before diversion is practical.

Proof. Given Corollary 1, one can pre-calculate a lookup table that can be used at runtime by

an implementation to determine an appropriate number of passes to perform before attempting

diversion. �
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#%

�) 12 13 14 15 16

2 2152 2369 2587 2807 3028
3 568543 624985 681781 738891 796283
4 1.515134e+08 1.662638e+08 1.81093e+08 1.959924e+08 2.109549e+08
5 4.088219e+10 4.476093e+10 4.865587e+10 5.256526e+10 5.648764e+10
6 1.128276e+13 1.231412e+13 1.334814e+13 1.438454e+13 1.542307e+13
7 3.284352e+15 3.565789e+15 3.847232e+15 4.128679e+15 4.41013e+15
8 8.646911e+17 9.367487e+17 1.008806e+18 1.080864e+18 1.152922e+18

Table 10: Calculated values of the first # at which 6;(#, ", % − 1, �)) is effectively 0. �) are
common diversion thresholds and #% is the number of passes that should be performed at the
specified threshold.

Table 10 is an example lookup table with standard values of �) for Insertion Sort, the diversion

algorithm used by our implementation of Diverting Fast Radix and " = 256 as it is in most cases.

This table provides a conservative approach in that a large proportion of buckets could be required

to perform one additional pass, similar to the costs incurred by MSD Radix Sorts on their last pass.

5.6 Interpretation of Analysis: Diverting Fast Radix

Avoiding the counting pass in Fast Radix provides a clear reduction in cost. Diverting LSD Radix

Sort can be shown to perform no more passes than diverting MSD Radix Sort and the cost can be

shown to be similar. Where there is ambiguity in the cost of diverting LSD Radix Sort is in the

scan for large buckets. If we use Fast Radix instead of LSD Radix Sort then we have our proposed

Diverting Radix Sort algorithm and the removal of counting directly offsets any cost of the single

scanning pass, with even a single counting pass being comparable in terms of operations performed

during the scan for buckets.

The results of this analysis suggest further considerations. Depending on compile-time

characteristics, where to move the transition threshold would be adjusted to balance the cost of this

extra pass before checking for diversion against the cost of a partial pass after the initial diversion.
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While such discussion is outside the scope of this thesis, building such lookup tables via calculation

(such as Table 10) takes only seconds.
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%0E6 of diverting LSD radix sort

%0E6

Figure 30: This figure represents the calculated average number of passes performed by diverting
LSD Radix Sort given �) = 16, " = 256 and %<0G = 8 using values from Table 10 to adjust % as
# increases. A logarithmic scale is used as in Table 10 and highlights that this graph is composed
of the best pieces of Figure 29.

Given Corollary 1 and the thresholds from Table 10, we see that Figure 30 demonstrates the

average passes of Diverting Fast Radix for varying # . The conservative thresholds in Table 10 were

chosen such that Figure 30 is also the graph of the average passes for a diverting MSD Radix Sort

with a comparable diversion algorithm.
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Chapter 6

Conclusion

“I’m glad my genes for cynicism as well as my genes for computers have been transmitted.”

–(Larry Thiel, personal communication, February 1, 2021)

Sorting consumes a major proportion of computing cycles, so improvements in sorting algorithms

and implementations address a key concern in today’s age of Big Data. This thesis looks at

improvements to radix sort, both in terms of algorithm and implementation, with a focus on

algorithms, as we believe algorithm improvements have “more bang for the buck” especially over

the long term. Specifically, the thesis outlines our contribution to sorting when “keys are known to

be randomly distributed with respect to some continuous numerical distribution” [Knuth, 1998, p.5].

Specifically, we will consider the sorting of records whose keys are accessible and whose keys can

be broken into a fixed number of digits. While the implementations developed for this thesis sort

unsigned integer types, signed integers and floating-point standards exist that are known to work

well with radix sorts. Using stochastic analysis will identify reliable and measurable improvements

which will be demonstrated in our empirical results.

This thesis presents three new algorithms: Algorithm 6, Fast Radix; Algorithm 8, a diverting

least significant digit (LSD) radix sort algorithm that performs just as many passes as a diverting

most significant digit (MSD) radix sort; and Algorithm 9, the Diverting Fast Radix algorithm.

These algorithms offer significant average-case improvement on radix sorts given the most

commonly used input distribution used in radix sort literature. An exact mathematical model is
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developed for the difference in performance between Fast Radix and traditional least-significant

digit (LSD) radix sort. We also develop an exact mathematical model of how the standard technique

of diversion reduces passes of the traditional diverting most-significant digit (MSD) radix sorts,

and then show that a diverting LSD radix sort is possible. The model of passes performed for the

presented LSD radix sort is shown to be identical to that of diverting MSD radix sorts. Diverting

Fast Radix is presented as the combined algorithm. Experimental results of the implementation of

these theoretical improvements is shown to match the models.

The approaches considered in this thesis are orthogonal to most recent research on technical

implementation where the promise of linearly scaling performance, advances is competitive cache

sensitivity and scalability across processing cores is forefront. Our analysis of the algorithm

improvements show that less work can be performed on average without needing technical

improvements to do so. The goal is that other researchers apply their future technical improvements

to Diverting Fast Radix as it is a better starting point than other radix sort variants that currently get

attention.

The survey of literature around radix sorts shows an increase in activity and a focus on technical

optimizations, particularly around cache and TLB efficiency that is often identified as the main

failing of radix sorts, and parallelization which is ever more relevant with the ubiquity of multi-core

computing. These improvements are applied to either traditional LSD radix sorts or diverting MSD

radix sorts without considering that these established algorithms, themselves, may be holding back

performance.

6.1 Contributions

The work presented in this thesis creates a new baseline for radix sort algorithm research. Even

before popular optimizations are applied, Diverting Fast Radix, shows a consistent improvement in
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execution time over optimized std:sort once past a threshold in the range of # ∼ 103, running several

times as fast. Even after the impact of cache and TLB misses, described in LaMarca and Ladner

[1999], Diverting Fast Radix is on the order of twice as fast as std:sort for inputs as large as # = 109.

When compared to the current best cache-optimized diverting MSD radix sort, RADULS2[Kokot

et al., 2018], Diverting Fast Radix is comparable or faster for # ≤ 106, falling behind only on larger

inputs due to the absence of cache and TLB optimization.

The work in Thiel et al. [2016] has been extended to show that all but one counting pass can be

omitted by our Fast Radix algorithm without significant cost. The cost savings from the omission of

counting passes via estimation in Fast Radix has been modeled mathematically in the average case,

with the predicted improvement being borne out in implementation showing it to be 50 to 100%

faster than Simple Fast Radix on # ≥ 107.

Independently of the removal of counting passes, this thesis demonstrates that diversion can be

consistently applied to LSD radix sorts to reduce passes in a manner consistent with how diversion

reduces passes in MSD radix sorts. The number of passes performed has been modeled for both

diverting MSD and LSD radix sorts. The models of both these algorithms have been shown to

be equivalent, accurately representing actual passes performed in implemented algorithms. This

is all-the-more significant as it appears diverting LSD radix sorts have never been more than

superficially explored in the literature.

The RADULS2 code measures in the 10s of thousands of lines of source code and optimized

binaries approach 10MB in size. The reference implementations of the algorithms presented in this

thesis have source code that is more than an order of magnitudes smaller and optimized binaries are

more than two orders of magnitude smaller. The code is small enough to fit in an appendix of this

thesis and has also been made available on a public GitHub repo (https://github.com/ramou/dfr/)

To summarize, this thesis makes the following contributions to the field:
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• The Fast Radix algorithm, an LSD radix sort that omits all but one counting pass

• A diverting LSD radix sort algorithm that performs just as many passes as a diverting MSD

radix sort

• The Diverting Fast Radix algorithm, Fast Radix using a diverting LSD radix sort

• A mathematical model of the average case overflow when estimating counts in Fast Radix

• A mathematical model of the average case number of passes in diverting MSD radix sort

• A mathematical model of the average case number of passes in diverting LSD radix sort

• A proof that the mathematical models of diverting LSD and MSD radix sorts are equivalent

• Public implementations of the three original algorithms presented in this thesis

6.2 Limitations

While it might otherwise go without mention, though this work demonstrates that some counting

passes may be reduced and pass estimation eliminates entire passes, the overall algorithm remains

asymptotically linear.

The work in this thesis serves to provide a baseline model for future research about radix sorts.

The work itself does not assert the null hypothesis for the proposed algorithm’s impact on all

distributions. However, it does provide a baseline by which the null hypothesis can be examined and

likely discarded as models for other distributions are developed and shown to be different from the

one proposed herein. LaMarca and Ladner remarks that “the choice of randomly chosen data yields

a fair comparison among the algorithms” in considering records drawn randomly from a uniform

distribution, but this does not deny the value of analysis with other distributions.
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The current work models sorting random inputs drawn from a uniform distribution. The impact

on the algorithms’ performance described herein, given other distributions or pathological cases, will

yield different results. Notwithstanding, many non-uniform distributions impact bucket estimations

most noticeably on the most significant digits, which are not estimated. Even in cases where inputs

are such that estimates are entirely wrong on many or all digits and the algorithm would deal all

records into a single bucket, the impact causes performance to degenerate effectively into that of an

LSD radix sort. If all but " records overflow, then the dealing pass becomes a glorified counting

pass. The algorithm counts each of the # − " digits as they overflow, and the overflow processing

becomes a dealing pass, thus limiting performance impact compared to a traditional LSD radix sort.

We have not modelled the impact of distribution on pass estimation in this work, but it tentatively

appears limited compared to the impact on diverting MSD radix sorts. The current model cannot

estimate more passes than required by a corresponding diverting MSD radix sort, and other

distributions similarly impact diverting MSD radix sort average passes negatively. A degenerate case

where Diverting Fast Radix estimated one pass and then recursed would emulate a diverting MSD

radix sort but also supposes a trivially small input size to estimate that only a single pass is required.

Diverting Fast Radix should not perform significantly worse than a diverting MSD radix sort with

these distributions. Without a model, we cannot predict the exact difference in performance caused

by different distributions and the performance gains reported here. The results presented here do

not imply a similar impact for various structured inputs or random inputs drawn from non-uniform

distributions.

Aside from focusing on random inputs drawn from uniform distributions, this thesis identifies

several areas as out of scope. This thesis’s results do not address comparison-based sorting, save

in the use of comparison-based algorithms for diversion; we do not show the results in this thesis

as having any impact on the nature of comparison-based sorting. Our implementation focuses

on sorting integers and our results were tested specifically with 64-bit integers, but we note that

“[i]nteger sorting is not an exotic special case, but in fact is one of the sorting problems most
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frequently encountered” and that “the IEEE 754 floating-point standard was designed specifically to

facilitate the sorting of floating-point numbers by means of integer-sorting subroutines”[Andersson

et al., 1998].The algorithms developed in this thesis do not replace technical optimizations related

to parallel processing, cache/TLB sensitivity or any other technical work researched elsewhere but

instead work in conjunction with advances in these areas. We demonstrate the calculation of pass

estimation thresholds in Chapter 5. We do not suggest that any diversion or pass thresholds hold

special significance; these values are machine-specific. Their calculation is trivially fast enough

that a user could perform them at compile-time instead of run-time. Lastly, we note that this work

describes an algorithm designed for in-memory application, with input sizes in not exceeding

# = 1010, and even less on machines with smaller amounts of RAM; as with other technical

optimizations, one should take care to implement approaches that preserve locality of reference to

expand this algorithm beyond in-memory usage.

6.3 Impact

At the time of the writing, the two established areas of impact are at Texas A & M University and a

Rust developer in France.

A doctoral thesis by Sarker Tanzi Ahmed references our early unpublished Fast Radix work from

2015 in their section on “High-Performance” sorting[Ahmed, 2016]. In 2018, Di Xiao requested

source code from our Graph Chi publication to include our 2016 work in a performance survey; in

return, they shared a table of its results compared to other work in the field, showing the previously

cited RADULS2 being faster. While ultimately Di Xiao did not publish the survey, in 2020, a

copy of the 2018 results appear in Hanel et al. [2020] using Simple Fast Radix as an example of

an out-of-place “LSB radix” sort. The common thread is Texas A & M University, with Dmitri

Loguinov acting as the chair of Sarker Tanzi Ahmed’s thesis committee while also being an author

along with Di Xiao in Hanel et al. [2020].
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In late 2019, Axelle Piot found a bug in the Diverting Fast Radix code published on GitHub.

We quickly patched the bug and exchanged some email regarding their final, very positive results.

Nearly a year later, at the end of 2020, he published a Rust container for his Voracious Sort[Piot,

2020] whose documentation referenced both the early unpublished work used by Sarker Tanzi

Ahmed’s doctoral thesis and the Diverting Fast Radix GitHub. Aside from Voracious Sort, he also

implemented a few other algorithms in this container, including Ska Sort, Simple Fast Radix and a

diverting LSD radix sort. He implemented his Simple Fast Radix as described in the unpublished

work and based on a GitHub repository that appears unrelated to this work (mistakenly cited as

mine). He implemented his diverting LSD radix sort based on our Diverting Fast Radix code,

not using count estimation, citing concerns regarding non-uniform distributions, estimating passes

before diversion differently and using a variable radix. Still, this implementation capitalized on the

diversion component of this work. They used diverting LSD radix sort instead of Voracious Sort for

unsigned integers up to # = 105, irrespective of data distribution.

6.4 Future Work

The most obvious future work is to apply cache optimizations to Diverting Fast Radix. According to

LaMarca and Ladner [1999], counting while doing a dealing pass impacts cache/TLB performance,

but the bulk of the problem still lies with the random bucket locations. While Diverting Fast Radix

reduces the interference from the counting, applying approaches from Rahman and Raman [2001]

should remove a significant amount of the remaining performance hit. Kokot et al. [2018] discusses

improvements on the order of doubling speed on regular passes, and a similar improvement on

Diverting Fast Radix’s regular passes should allow Diverting Fast Radix to end up on the order of

25% faster than RADULS2 when # = 109. While RADULS2 used what would be described as a

“block” approach to cache efficiency, Rahman and Raman [2001] also described other approaches

that would be worth consideration.
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When working with real data in Thiel et al. [2016], some effort was made to deal with standard

input structural issues, such as high-order bits being unused. During the development of Diverting

Fast Radix, similar considerations were made and a handful of techniques were attempted to deal

with this. An important future work would be to more systematically consider sampling, and other

approaches to best deal with the impact of structure on both counting estimates and the estimates of

passes in the initial Fast Radix component of Diverting Fast Radix.

The mathematical models in this thesis were for an input pulled from a uniform distribution.

While the impact of normal distributions on diverting MSD radix sorts are significant, it would seem

useful for future work to consider how closely Diverting Fast Radix could be made to approximate

the number of passes or how to estimate when it is more expedient to do more initial passes to

save on the extra cost of a significant portion of the input not diverting. Research on sampling for

normal distributions would also benefit count estimations. It would potentially be informative to see

whether the impact of a normal distribution on digits of different significance could play a role in

either count estimations or for performance reasons.

Both Kokot et al. [2018] and Hanel et al. [2020] used sorting networks for their diversion

algorithm. At least with Kokot, this had a significant impact on the size of compiled code, so much

so that it adversely impact the sorting of inputs that were orders of magnitude smaller than the

code being loaded to sort them. At the same time, our estimates on the performance impact of the

diversion pass on a cache-sensitive diverting radix sort place it at between 10 and 20% of overall

time used at # = 109, and approaching 50% for much smaller inputs where you effectively only

have one or two regular passes. To that end, a study of diversion strategies, and potentially ways to

combine them with the Diverting Fast Radix scanning pass might yield very tangible performance

benefits.
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6.5 Postscript

After submitting this thesis, Larry Thiel[Thiel, 2021] produced an implementation of Diverting

Fast Radix with cache-sensitive writes: ThielSort. A summary of the results is shown in Table 11,

normalized to std::sort. These results validate our theory that Diverting Fast Radix is a suitable

baseline for future radix sort research into technical optimizations, with ThielSort sorting records

50% faster at # = 109 and otherwise outperforming RADULS2 at all measured values.

ThielSort uses intermediary buckets to achieve more locality of reference before block writes to

actual buckets. This approach achieves the block-based class of cache/TLB sensitivity described

in Rahman and Raman [2001], whereas RADULS2 uses non-temporal writes via AVX/AVX2

(dependent on what is available at compile-time) for the same purpose. We note that the overhead

involved is noticeable at smaller # , where Diverting Fast Radix outperforms both RADULS2 and

ThielSort as cache sensitivity is not a noticeable issue and Diverting Fast Radix has no penalty when

it deals directly into buckets.

N Diverting Fast Radix RADULS2 ThielSort

100 800.00% 388.89% 2922.22%

1000 107.07% 2520.20% 992.93%

10000 27.53% 312.26% 85.04%

100000 27.45% 44.49% 29.30%

1000000 30.60% 33.43% 23.93%

10000000 52.57% 36.62% 24.15%

100000000 51.65% 22.36% 20.84%

1000000000 47.08% 29.17% 20.07%

Table 11: Timing comparison of Diverting Fast Radix, RADULS2 and ThielSort normalized to
std::sort, using random 64-bit unsigned integers from a uniform distribution.
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