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Abstract 
 

Short-term forecasting for the electrical demand of Heating, Ventilation, and 

Air Conditioning systems 

Jason Runge, Ph.D. 

Concordia University, 2021 

 
The heating, ventilation, and air conditioning systems (HVAC) of large scale commercial and 

institutional buildings can have significant contributions to the buildings overall electric demand. 

During periods of peak demand, utilities are faced with a challenge of balancing supply and 

demand while the system is under stress. As such, utility companies began to operate demand 

response programs for large scale consumers. Participation in such programs requires the 

participant to shift their electric demand to off-peak hours in exchange for monetary compensation. 

In such a context, it is beneficial for large scale commercial and institutional buildings to 

participate in such programs. In order to effectively plan demand response based strategies, 

building energy managers and operators require accurate tools for the short-term forecasting of 

large scale components and systems within the building. This thesis contributes to the field of 

demand response research by proposing a method for the short-term forecasting for the electric 

demand of an HVAC system in an institutional building. 

Two machine learning based approaches are proposed in this work: a component method and a 

system based method. The component-level approach forecasts the electric demand of a 

component within the HVAC system (e.g. air supply fans) using an autoregressive neural network 

coupled with a physics based equation. The system-level approach uses deep learning models to 

forecast the overall electric demand of the HVAC system through forecasting the electric demand 

of the primary and secondary system. Both approaches leverage available data from the building 

automation system (BAS) without the need for additional sensors. The system based forecasting 

method is validated through a case study for a single building with two data sources: measurement 

data obtained from the BAS and from an eQuest simulation of the building. The building used as 

the case study for the work herein consists of the Genomic building of Concordia University 

Loyola campus.    
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Chapter 1: Introduction  

1.1 Problem Statement  

Utility companies are faced with a constant challenge of balancing supply with demand. For 

periods of high demand, there is a greater potential for disruptions to the electric grid. High demand 

periods may be caused by such things as: extreme weather days (high system demands), power 

station outages (low system capacity), and/or reduced delivery capacity (damaged transmission 

lines or scheduled maintenance) etc. With the purpose of reducing the pressures on the electric 

grid during high demand periods, utility companies operate demand response (DR) based 

programs. The aim of such programs is for large-scale consumers to reduce and/or shift their 

electric demand to off peak hours, thus, reducing the pressure on the electric grid [1]. Companies 

and participants which participate in such programs are offered monetary incentives for their 

shifts/or reductions in electric demand [1].  

Large scale commercial and institutional buildings (CI), can benefit from participating in such DR 

based programs due to their large scale heating, ventilation, and air conditioning systems (HVAC). 

Such HVAC systems may have a significant contribution to the buildings overall electrical demand 

(19-76% depending on the type of commercial building [2]); additionally such buildings typically 

have automated monitoring and control systems that facilitate the implementation of different 

control strategies. Furthermore, due to the inertia of such large scale CI buildings and their thermal 

mass, the building loads may be reduced or even temporarily shut off at key locations without a 

compromise to the health and safety of the occupants. 

In such a context, accurate and fast tools are required for building energy managers to forecast the 

future electric demand of the HVAC system and its components. Such a tool is required for the 

assessment of different demand-response based strategies.   

1.2 Thesis Scope   

The scope of this thesis is focused on the short-term forecasting of the electric demand for demand 

response-based programs. Artificial intelligence, specifically machine learning based models can 

be useful in leveraging available data from existing buildings in order to provide both fast and 

accurate forecasting models. In addition, such machine learning based models can be automated 

once applied and therefore, require little human effort for updating.  
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The main purpose of this thesis is to provide a forecasting tool for building energy managers to 

assess different demand response based scenarios. This forecasting tool will target future 

estimations for the electric demand of the HVAC system and components within. Machine 

learning algorithms will be applied in this thesis leveraging available data from currently installed 

sensors without the need for additional installations.  

As forecasting underpins many different approaches to the management, optimization, and control 

of energy related fields; there are many tasks which could be incorporated into this work, or 

applications of such approaches developed herein. While such work may be relevant and useful, it 

is beyond the scope of this thesis which is limited to the development of the forecasting models.  
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Chapter 2: Literature Review  

This chapter reviews studies applied for the forecasting of energy use and demand in buildings. 

Section 2.1 begins with an overview for energy models and a categorical breakdown for such 

models. Section 2.2 provides a literature review of artificial neural network (ANN) models for 

forecasting energy use in buildings. Next, section 2.3 provides a literature review for deep learning 

(DL) models applied for forecasting energy use in buildings. Section 2.4 presents the objectives 

for this thesis. Section 2.5 concludes this chapter with an overview of the thesis.   

2.1 Forecasting and energy prediction in buildings 

The challenge of forecasting both building and HVAC energy usage can be relatively complex due 

to a large number of diverse factors which influence the system. Such factors can include HVAC 

system operations, thermal properties of the building envelop, weather and climate conditions, 

occupants use and their behaviors, usage of the building, efficiency or COP of equipment, etc.  

Merriam-Webster defines the action, to forecast as “to predict (some future event or condition) 

usually as a result of study and analysis of available and pertinent data” [3]. In addition, Merriam 

Webster defines the action, to predict as “to declare or indicate in advance, foretell on the basis of 

observation, experience or scientific reason” [4]. Comparing the two terms, an overlap can be seen. 

This is indicative for illustrating a problem of the two terms within industry. Often, both words are 

used interchangeably and/or as synonyms with each other further adding to the confusion and a 

lack of standardization. In order to address this, the following definitions will be used:  

(a) Prediction is the estimation of a current value(s)   

(b) Forecast is the estimation of a future value(s) 

Herein, to estimate will refer to Oxford’s definition, “to roughly calculate the value, number, 

quantity or extent of” [5]. The focus of this review and thesis is on forecasting models. 

2.1.1 Classifications of forecasting models based on forecast horizon  

In this work, the forecast horizon is defined as the length of time into the future for which the 

forecasts are estimated. The forecast horizon can vary depending on the application for the model 

and the data available. There is no set standard for the classification of forecasting models, 

however, this work will follow published research, references [6, 7, 8] , which classify forecasting 
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models based on the time range of the forecast horizon. The three main categories are short, 

medium, and long term models and are based on the time ranges presented in Table 1.  

Long term forecasts are used by electric utilities and building managers to manage the reserves of 

energy, and generate plans over longer periods of time. Such forecasts are typically applied for 

policy making goals. Medium term forecasting consists of horizons from a few weeks to a few 

years ahead and are used for scheduling maintenance, negotiating contracts, construction, etc. 

Short term forecasting consists of forecast horizons ranging from sub hourly to a couple weeks 

ahead. The applications of such forecast are more important for the day to day operations and 

include: demand side management, demand response, system control, fault detection, and system 

optimization.  

Table 1: Forecast range classification 

Classification Time Range 

Short term load forecasting (STF) 0 - 2 weeks 

Medium term load forecasting (MTF)  2 weeks - 3 years 

Long term load forecasting (LTF)  +3 years  

 

The scope of this thesis is on the short-term forecasting for demand response based applications. 

Therefore, the subsequent sections will discuss two main types of energy forecasting models for 

building and HVAC systems as specified by reference [9]: physics based and data-driven models.   

2.1.2 Physics based models  

Physics-based models, often referred to as forward/classical or white-box models, are those based 

off of a comprehensive set of governing mathematical and physics-based equations [9]. These 

models offer insights into the relationship between the load/forecast along with its driving factors. 

Physics-based models can estimate the behavior of the whole building energy consumption, the 

thermal comfort, thermal dynamics of the building, and similarly to the HVAC system. The strong 

detail to the governing laws, equations, and parameters allow them to precisely describe the 

dynamics of a system.  

Physics-based models have widely been used for several decades and are still in use today. These 

types of models have been implemented into several building simulation software such as DOE-

2, eQuest, TRNSYS, EnergyPlus, and ESP-r among others. Simulations of buildings (with 

different architectures, windows, HVAC systems, etc.) can be performed at various locations, each 
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with its own dedicated weather files. The simulation outputs are often detailed reports about the 

predicted hourly and yearly building energy consumption. As such, these models are often used in 

the sizing and design of a building’s HVAC system.  

The main advantage of physics-based models is that they offer insight into the relationships and 

variables which govern the system. In addition, they can be accurate, can precisely describe the 

model, and address both weakness and strengths within the model. The disadvantage of these type 

of models is that they often require a lot more information (for calibration) and statistical analytical 

skills. Thus, these models can be extremely time-consuming and expensive to both develop and 

solve. A significant amount of time is required for users to obtain all the details and the necessary 

parameters in order to compute the results. In addition, a significant amount of detailed information 

may be needed about the building’s structure, HVAC equipment installed, its current conditions, 

weather conditions, HVAC schedules, etc. In a lot of cases, obtaining all the necessary parameters 

cannot be accomplished, or is extremely difficult to achieve. In addition, equipment parts and 

components degrade over time, thus stressing the need for on-site measurements whenever 

applicable.   

The aim of this work is to forecast the electric demand of an existing HVAC building under current 

operating conditions. The interest of this work is not for the design or retrofit, rather the analysis 

of HVAC performance. In the context of demand response, calibrated physics-based models are 

not used due to time and monetary constraints, extensive detailed knowledge requirements, and 

their limited flexibility in allowing for adaptive changes in HVAC operation. In contrast, data-

driven models and artificial intelligence are continually being developed and present an alternative 

for forecasting of the electric demand of existing buildings. Therefore, the literature review from 

this point focuses on such data-driven models.  

2.1.3 Data-driven models 

Data-driven models, in contrast to physics based models, apply a mathematical model which is 

calibrated or tuned with measurement data [9]. Consequently, data-driven models do not require 

extensive detailed knowledge about the internal parameters and settings for the components within 

the building or system as they are mostly based on measured data obtained. Furthermore, such data 

is typically easier to obtain from their monitoring and control systems (e.g. building automation 

systems or BAS, building energy management systems or BEMS). Therefore, such readily 
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available data can be leveraged for energy improving strategies and may potentially hold a plethora 

of information regarding the current and past operating conditions for the building and systems 

within. There are several factors which may influence the performance of the data-driven models 

including: (i) the quality and quantity of the data obtained, (ii) the data-preprocessing steps applied, 

(iii) the data-driven model selected, and (iv) the tuning/optimization of the data-driven models. 

Despite the challenges in their development, data driven models have become quite popular in 

recent years due to the increasing available data, their ease of development compared to physics 

based-models, and performance results for energy forecasting in buildings [10]. Furthermore, 

some data-driven models are quite adaptive to new data and modeling nonlinear data. Despite their 

advantages, data driven models do have some disadvantages as well. Purely data driven models do 

not derive a relationship between the target variable and the driving factors for it as seen in physics 

based models. Furthermore, such models are reliant on the quantity and quality of the data 

obtained. 

The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), 

provides a classification for the two main types of data-driven models as: (i) the black-box model, 

or strictly mathematical model, and (ii), the grey box model coupling physics-based equations with 

a mathematical model(s) [9]. 

Black-box models are a type of data-driven model based solely on measurements. The models can 

also be viewed in terms of inputs and outputs. Therefore, the relationship between the load and its 

driving physical law-based functions are not explored. Such models are often used to estimate the 

energy consumption at various levels of a building including: sectors, districts, whole buildings, 

component level, etc. Black-box models can model non-linear phenomena and adapt well to 

changes in the data by training and learning based off of new observations.  

Grey-box models, typically apply a mathematical model based on measurements to a physics based 

model in order to provide its output forecasts. Such models have the advantage of the black-box 

models accuracy and the ability to see the governing relations behind the output forecast with the 

physics based equation(s). Furthermore, such models may be able to provide multiple output 

forecasts from a single model (e.g. supply air flow rate and electric demand). However, such 

models typically have a slightly larger forecasting error when compared to a strictly black-box 

based approach.  
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Typically, the mathematical model applied in a data-driven model can be broken into two sub-

categories based on the type of mathematical approach selected: (i) statistical models, and (ii) 

machine learning based models. Statistical models can include regression and time series-based 

models. Machine learning (ML) models can include: Fuzzy systems, state vector machines, group 

method of handling data, random forests, and artificial neural networks, etc. While both statistical 

and ML approaches are similar, there are a couple clear distinctions between the two. Firstly, 

statistical models typically apply a pre-set mathematical function calibrated with measurements to 

provide their forecasts e.g. regression models. In contrast, ML models typically apply an algorithm 

approach. Secondly, ML models often non-linearly transform their data in comparison to statistical 

models which do not [11]. 

2.1.3.1 Statistical models 

2.1.3.1.1 Regression  

An overview of regression techniques applied for prediction of residential energy consumption 

can be found in reference [12]. Regression based models have been widely used in forecasting and 

prediction for energy loads in buildings [13-15]. Regression is a common technique due to its 

relative ease of implementation, less computational time, satisfactory results, and it does not 

require detailed information about the building structure/HVAC system [12]. Regression based 

models identify a relationship between the dependent variable(s) and independent variable(s). 

Within this work, the dependent variables will be termed the target variables, and the independent 

variables will be termed regressors. There exist multiple regression-based techniques with the most 

commonly used including: simple linear regression, multiple linear regression, and non-linear 

regression. Regressors selected are important factors for the forecasting of any model, such things 

can represent outdoor air temperature, outdoor humidity, historical load, climate conditions, 

building/HVAC conditions, etc. However, in terms of short term forecasting for both HVAC and 

building energy, regression models often provide less accuracy than AI-based models [16-18]. 

This is due to regressions inability to model non-linear information as accurately as AI-based 

methods. In addition, regression-based models are more sensitive to outliers than AI-based models.   

2.1.3.1.2 Time series  

Time series forecasting is one of the most prominent and popular methods. These methods have 

been widely applied in the business, economic, and financial sectors. A review of time series 
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forecasting models, dating back to 1980, can be found in reference [19]. In addition, a review of 

time series forecasting techniques applied for building energy use can be found in reference [20]. 

Beginning with a definition, a time series is an ordered sequence of values recorded in time and 

over equal intervals [20]. Time series models have many different models and approaches; the 

following paragraphs will briefly discuss a couple of the most prominent techniques.   

The moving average technique is one of the most common time series techniques available, similar 

to exponential smoothing. Both techniques assume that the time series is locally stationary 

(constant average and constant variance) within the past few time steps. Forecasts are calculated 

using averages of weighted values from previous time steps. The difference between the two 

techniques is that the moving average assigns equal weights to the coefficients within the average. 

In contrast, exponential smoothing gives greater weights to the most recent values. Grant et al. 

[21] compared the application of a few time series techniques with artificial neural networks in 

order to forecast the peak demand in a large government building. The results showed that the 

ANN models contained smaller forecasting errors than both linear regressions and simple moving 

average techniques.  

The autoregressive integrated moving average (ARIMA) models are one of the most popular 

forecasting models applied throughout many different industries. The models are applied to 

stationary time series, that is, a time series with a constant mean and constant variance over time. 

The ARIMA forecasts values of a time series through weighted values of previous lags and lagged 

errors. The ARIMAX is an extended version of the ARIMA model which incorporates the use of 

regressor variables. Newsham and Brit developed an ARIMAX model in order to forecast the 

power demand of an office building [22]. The author’s main contribution was the exploration of 

including occupancy as an independent variable. Occupancy information was obtained by: (i) 

using login information or (ii) via motion sensor. The authors noted that the addition of occupancy 

did not improve the model’s accuracy significantly. By the addition of occupancy into the model, 

the error decreased to 1.217% (mean absolute percent error) from 1.224% without the use of 

occupancy as a regressor. Thus, a small increase was achieved using occupancy data as a regressor 

for the model.  
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2.1.3.1.3 Kalman filter 

The Kalman filter is named after its founder, Rudolph Kalman, who introduced the algorithm in 

1960 [23]. The Kalman filter is a linear model based on discreet state-space representation that 

performs its forecast in a recursive one-step ahead method. It is an explicit mathematical model 

which estimates the next steps value of the system and minimizes the covariance at each step 

during the iterations. These filters have widely been applied in navigation, navigation systems as 

well as signal processing and econometrics. However, they have not been widely applied in 

forecasting energy consumption in buildings.  

2.1.3.2 Artificial Intelligence and Machine Learning    

Artificial intelligence (AI) models are present in an increasingly large number of fields, and their 

applications can be seen to be growing throughout our daily lives. A few of the scientific fields 

include: computer science, linguistics, mathematics, psychology, neuroscience, business, sciences, 

and engineering. A few literature reviews of AI-based models and their applications to energy 

related studies within buildings is presented in papers [24-27]. Based on these papers, a few of the 

most popular algorithms are briefly presented within the following subsections along with their 

applications for forecasting of energy in buildings.  

Machine learning (ML) is a subfield within the overall field of AI. To date, there are numerous 

definitions for both AI and ML as there has been no yet standard and agreed upon definition. 

Therefore, for the sake of this work the definition of ML which will be followed is based on 

reference book [28]: “a program is said to learn from experience E, with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E”. An addendum to this definition is based on reference [11], which states that 

typically ML provides an algorithmic approach which nonlinearly transforms the data.  

A main advantage to ML algorithms is that they are adaptive, non-linear, and can learn by being 

presented data to improve on a certain task. To date, there are numerous ML algorithms and hybrid 

(combined) ML algorithms. A few of the most prominent algorithms include: k-nearest neighbors, 

k-means, decision trees, random forests, support vector machines, hidden Markov models, group 

method of handling data, artificial neural networks, etc. A few of the most prominent ML 

algorithms applied to forecasting building energy will be discussed in the following subsections.  
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2.1.3.2.1 Support vector machines  

Support vector machines (SVM) are a supervised machine learning algorithm first developed by 

Vapnik in 1995 and are used for classification and/or regression analyses [29]. SVM are developed 

on the concept of distributing datasets by a decision hyperplane. The idea underlying the SVM 

model is based on finding the hyperplane which contains the largest margin between datasets. 

Details to the governing equations and theory of SVM can be found in reference [29]. SVMs were 

originally developed for classification problems, however, they extended to regression problems 

and time series-based forecasting after they showed promising results. In the case of regression, 

the input data is transformed using a non-linear kernel function, which maps the inputs into a high-

dimensional feature space. As the model depends on the transformation to a nonlinear feature 

space, the general performance of SVM models depends on selecting the optimal kernel 

parameters. SVM models are among the most popular AI-based algorithms applied to forecasting 

and prediction in buildings. Examples of published work related to SVM and the forecasting of 

energy in buildings are presented in the subsequent paragraphs.  

In references [30, 31], SVM models were applied in order to predict the hourly cooling load of an 

office building using data obtained from simulation. In both papers, the SVM showed slightly 

better performance than the ANN models applied (SVM 1.15-1.18%, ANN 1.19-2.36%). The 

authors noted that the architecture of an ANN was difficult to design. However, the neural network 

architecture was designed in a trial and error approach. Nevertheless, the papers did show the 

successful application of SVM for prediction with promising results.  

Le Cam et al. applied an SVM in a cascaded based approach for various components of an HVAC 

in an institutional building [32]. The SVM model was coupled with physics-based equations to 

provide a hybrid grey box model. Target variables included: the supply air flow rate of an air 

handling unit, cooling coil load, building cooling load, and the electric demand of the fan, chiller, 

and cooling tower up to six hours in advance. The models presented within the paper showed good 

forecasting results. As such the originality of this paper is the overall cascade-based forecasting 

for the electric demand of an HVAC system incorporating an SVM as a hybrid grey box.  

2.1.3.2.2 Random forest  

Random forest (RF) is a supervised ensemble machine learning method used for both 

classification, regression, and feature selection. In essence, a random forest is a collection 
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(ensemble) of multiple decision trees working in parallel where the result of each tree is then 

combined for a final output. RF have successfully been applied for a variety of forecasting 

applications within buildings.  

Chae et al. [33] applied the RF algorithm for feature selection through permutation importance. 

The selected features were then applied to an ANN model in order to forecast the electricity usage 

and peak demand of a commercial building up to a day ahead. The selected variables were 

validated with the correlation coefficient. The overall forecasting results of the ANN over the 24-

hour forecast horizon were promising.  

Wang et al. applied RF models in order to predict the hourly building energy consumption of two 

educational buildings [34]. Models were compared to a regression tree technique along with a 

support vector regression technique. Within this work, RF was found to contain the lowest 

prediction errors among the forecasting methods. In addition, features were selected through 

permutation importance. Therefore, the contribution of this paper was the application of RF for 

both feature selection and prediction of building energy.   

2.1.3.2.3 Artificial neural networks  

Artificial neural networks (ANN) models are one of the most popular AI based methods. Such 

models are inspired by biological systems and the interconnection of neurons. McCulloch and Pitts 

first hypothesized how neurons may work and presented models based on simple electrical circuits 

in 1943 [35]. Next, in 1958 Rosenblatt modeled a simple single-layer perceptron for the 

classification of continuous values [36]. Since then, ANN models have obtained many 

breakthroughs which has aided their growth and popularity. One of the primary reasons for their 

continued application and growth is their abilities. ANN algorithms have the ability to capture and 

model nonlinear relationships between inputs and outputs learnt from data. Thus, such models are 

quite useful and adaptable for modeling complex systems. A more in depth look and review into 

how have ANN models been applied to research to date is presented in section 2.2. 

2.1.3.2.4 Deep learning  

Deep learning (DL) models are an emerging trend within AI. Deep learning has been defined as 

“representation-learning methods with multiple levels of representation, obtained by composing 

simple but non-linear modules that each transform the representation at one level (starting with the 
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raw input) into a representation at a higher, slightly more abstract level” [37]. The classification 

of DL models is based on the levels of nonlinear transformations/operations within the overall 

structure. Shallow architectures, or traditional architectures, have been the majority of the research 

to date and refer to such models with one to three levels of non-linear operations. In contrast, deep 

architectures contain four of more levels of such nonlinear operations [38].  

Compared to traditional methods, deep learning based models offer some potential advantages and 

disadvantages. Starting with the advantages, firstly, it is common practice for the developer to 

select and extract good features between the input regressors and the output target values. The 

efficacy of the developed models depends on selecting good quality inputs. Thus, the selection of 

inputs requires domain expertise and engineering skill in order to develop effective models. In 

contrast, deep learning based methods can apply a general learning procedure and automatic 

learning, thus, not requiring such domain expertise. Therefore, a key advantage of DL based 

models in comparison to traditional models is that feature extraction may be automatically learnt 

[37]. Secondly, DL models can better handle and learn with large amounts of data; thus, as big 

data has become a problem in recent years, DL based models offer a potential solution to set 

problem. Finally, DL models can hold and store significantly more information within their models 

compared to conventional and traditional ML models. Therefore, this allows for more learning of 

distribution representations (learning many-to-many relationships between types of 

representations) and thus enables generalization to new values not explicitly shown in the learning 

data. However, DL models do have disadvantages as well. Such models may be more difficult and 

slower to train. This is a result of a larger number of hyperparameters needed for tuning and larger 

datasets. A more in depth review into how DL models have been applied to energy forecasting in 

buildings is presented in section 2.3. 

2.1.4 Summary forecasting energy models  

All energy forecasting models have their respective merits. Some are more applicable than others 

based on the data available, current conditions of the building (design stage or currently in 

operation), application, etc. A summary is provided for the different categories of energy 

forecasting models based on review papers [10, 39] and is presented in Table 2. The scope of this 

work is for the short term forecasting of the electric demand of an HVAC system. Due to their 

respective advantages, data driven models are to be applied within this work.  



13 

 

 

 

Table 2: Summary breakdown for categories of energy forecasting models  

Approach Required information Software 
Model 

complexity 

Processing 

speed 
Accuracy 

Physics based Detailed physical 

information 

DOE-2, EnergyPlus, 

TRYSYS, etc. 
Fairly high Low High 

Data driven 

(Grey box) 

Simplified physical 

information and 

historical data 

Matlab, Python, 

C++, etc. 
High Low Fairly high 

Data driven 

(Black box) 
Historical data 

Matlab, Python, 

C++, etc. 

High to fairly 

high 
High 

High to very 

high 

 

2.1.5 Summarizing review papers for the applications of forecasting and prediction of building 

energy models  

As data driven models have begun to increase in popularity in recent years, there have been a 

number of review papers published each focusing on a different aspect of building energy models. 

Therefore, this section is meant to provide a summary of the literature review papers over the past 

decade (2010 to 2020) and highlight the specific focus of each journal. It should be noted, that 

within such review papers, the distinction between forecasting and prediction was not stated; rather 

both words were used interchangeably. However, the lessons learnt and the overview of both data 

driven forecasting and prediction models is beneficial for understanding the effectiveness and 

limitations of such models.  

The methodology for this review consisted of keyword based searches over available publication 

sources. Papers were screened to ensure that the review paper discussed forecasting and prediction 

energy models for buildings. As the primary focus of this review was directed towards forecasting 

building energy use; papers reviewing forecasting for electricity grids, electricity generation, grid 

management, etc. were omitted from the review. After the relevant review papers were found and 

screened, they were recorded over a standard set of criteria including: purpose/focus of literature 

review, summary results/ findings within, research gaps identified, and suggestions for future 

research. A chronological summary of the review journals is presented below discussing the focus 

of each review and some of the key points the authors recommended for future work.  

In 2012, Zhao and Magoules provided a review for energy prediction models for buildings [10]. 

The authors compared the main categories of energy models including physics based, statistical, 

and AI based models. Future research directions proposed by the authors included: (i) the 

development of more accurate and effective prediction models, (ii) improved AI based 
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hyperparameters searches, and (iii) the establishment of a database for various buildings and cases 

to help future researchers.  

In 2013, Kumar et al. reviewed ANNs for building energy modeling and prediction [40]. Papers 

were reviewed for their applications throughout the building including: thermal loads, energy 

loads, indoor air temperature prediction, etc. Based on their review, the authors suggested that 

future work should focus on testing the performance and adaptability of ANN models for changing 

environments.  

In 2014, Li et al. reviewed the integration of energy models with building operations and control 

[14]. The authors concluded that future work should focus on the reduction of computational costs 

while maintaining accuracy. Amhad et al. (2014) reviewed SVM, ANNs, and hybrid models for 

forecasting building electrical energy use [25]. Amhad et al. noted that each of the algorithms have 

their merits; therefore, it is difficult to decide which in fact may be better. However, combining 

models may help improve the forecasting performance.  

In 2017, Wang and Srinivasan investigated AI based building energy prediction models comparing 

single point and ensemble forecasting models (multiple single point forecasting models integrated 

together into an overall forecasting model) [24]. The authors recommended that future work should 

include: (i) further applications of ensemble models, (ii) exploration of occupants and their impacts 

for building energy prediction, (iii) residential case studies, and (iv) studies which focus on the 

selection of optimal training size. Daut et al. (2017) reviewed both conventional and AI based 

forecasting approaches for building electric energy use [26]. Deb et al. (2017) reviewed time series 

based forecasting of building energy consumption with a focus on prominent and hybrid 

techniques [20]. Deb et al. noted that few papers explored: (i) the financial costs of building 

performance/control and, (ii) studies which cover wireless sensor networks for smart homes 

integrated with energy saving strategies. 

Amasyali and El-Gohary (2018) provided a granular review of machine learning algorithms 

applied for building energy prediction [41]. Among their conclusions and recommendations for 

future research, the authors noted that deep learning based models have not yet been sufficiently 

studied and therefore require future research efforts. Furthermore, in 2018, Wei et al. reviewed 

data-driven approaches for prediction and classification of building energy use; focusing on 

mapping, benchmarking, retrofitting and prediction of building energy [39]. Ahmad et al. (2018) 
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reviewed forecasting, benchmarking, mapping, and profiling of building energy use [42]. Future 

work recommended by the authors included further studies applied to large scales and districts.  

In 2019, Bourdeau et al. reviewed data-driven models for forecasting building energy [43]. 

Prominent algorithms (time series, statistical, and ML) for data processing and model applications 

were reviewed along with a breakdown of trends. Furthermore, in 2019 Mohandes, et al. provided 

a comprehensive review of ANN models for building analysis, HVAC applications (e.g. COP 

estimation) and indoor air temperature prediction [44]. Among their recommendations the authors 

proposed that future research work should focus on applying deep learning based techniques and 

non-typical target variables. In 2020, Sun et al. presented a review for data-driven models applied 

to energy predictions of buildings with a focus on a review: (i) for feature engineering, (ii) data-

driven algorithms (statistical and ML), and (iii) factors considered for outputs (e.g. temporal 

granularity, scale, updating, etc.) [45]. The suggestions for future work in this review included: (i) 

industrial and hotel based case studies, (ii) using the same dataset to compare different data-driven 

models and approaches, and (iii) case studies focusing on the practical application of data-driven 

models.   

To summarize and conclude a few of the key points over the various literature review papers 

focusing on data driven models for forecasting and prediction of energy in buildings: (i) AI 

methods are among the highest performing models, (ii) ANN and SVM models are the most 

popular AI based algorithms due to their high performance and flexibility, (iii) the most commonly 

applied ANN has been the standard feed forward neural network, and (iv) most case studies have 

been applied to commercial buildings, with hourly data, and forecast horizons of 1 hour or 24 

hours ahead. In addition, it was noted among various literature review papers that future studies 

should focus on (i) component and occupant driven loads, (ii) apply sub-hourly data, (iii) explore 

the performance of ensemble based models, (iv) explore different types of ANN models, and (v) 

explore improved hyperparameter based searches. Due to their good performance, flexibility, and 

fast computational time, ANN models are selected for this work and further reviews of such models 

is to follow.   

2.2 Literature review for the application of ANN in forecasting energy in buildings  

This section conducts a literature review in order to identify relevant trends and gaps for the 

application of ANN for forecasting of energy within buildings. To date, there have been numerous 
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ANN models applied in published works; however, no two such papers are the same and there are 

variations among all papers. To further complicate matters, there are no set standard methods for 

definitions, creating models, tuning models, classifications, performance metric to use, etc. This 

makes understanding the work accomplished a challenging endeavor. In order to overcome this, a 

table was created in order to record the publications over a standardized set of criteria to 

systematically capture, quantify and process the data related to publications. Within the table each 

column corresponded to a specific section of relevant information regarding publication 

information, forecasting model, case study, and model performance. Examples of the columns 

used include: year of publication, application of the model, type of forecasting model(s), target 

variable(s), forecast horizon, features used, feature selection method, data size, ANN architecture 

selection method, and performance. After the construction of the table, a search for papers was 

conducted over the time range of 1990 until 2019 over available publication sources. Relevant 

papers were then cataloged within the table. The processing and analysis allowed for the objective 

questions of this literature review to be met, and highlighted relevant research trends, gaps and 

emerging techniques. Most of the contents of this chapter was published as J. Runge and R. 

Zmeureanu, "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," 

Energies, vol. 12, no. 17, 2019. 

2.2.1 Objectives of ANN literature review 

The objective of this literature review aimed to answer the question, “How have ANNs been 

applied to forecasting the energy use and demand in buildings?” This was accomplished by 

answering the following questions: How and where have ANNs been deployed? How have such 

models been developed before deployment? What are the performances of such models? What 

new trends are emerging?  

2.2.2 Methodology for literature review  

In order to answer the objective question of this literature review, a methodology was created to 

systematically capture information within each publication over a standard set of criteria. Each 

column would record information within the publication that was a common element in overall 

forecasting models (e.g. what forecast horizons were applied). From this point, each specific 

criteria could then be analyzed to provide a look at the big picture for how ANN models have been 
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used at this specific element. The methodology used in order to conduct the literature review was 

composed of five main steps presented in Figure 1 and is outlined below.   

Step 1: Conducting key-word based searches 

Keyword(s) based searches of relevant articles was conducted through sites related to scientific 

publications of buildings and energy. Examples of keywords include: forecasting, prediction, 

neural networks, buildings, energy, data-driven models, electricity, heating, cooling, artificial 

intelligence, deep neural networks, etc. Keywords were combined in order to create overall 

keyword-based searches. Examples of keyword-based searches include: neural network 

forecasting prediction energy buildings, data-driven building energy, buildings forecast, deep 

learning forecasting, etc.  

Step 2: Screening articles   

Articles were downloaded and filtered based on the following criteria: (i) they contained a 

forecasting model targeting an energy load for a building, (ii) one or more forecasting models was 

an ANN, (iii) they contained sufficient information at a high granularity about the ANN forecasting 

approach, and (iv) the results of the forecast are presented within the paper. If a paper did not pass 

through the filters and meet all the criteria, it was removed from the cataloging process.  

Step 3: Identifying and screening of additional articles  

Articles which cited relevant publications were also used in order to help accumulate potential 

candidate articles. The selected articles were screened as well as per the process in Step 2 to ensure 

they were appropriate for cataloging.  

Step 4: Reviewing all relevant articles 

All relevant forecasting articles filtered were cataloged with high granularity in order to define 

their: purpose, application, data characteristics, forecasting model properties, model optimization, 

and performance.  

Step 5: Analyzing the results of the articles  

The results of the catalog were analyzed to find research trends of published work, limitations of 

models, and future research directions. A summary of set findings is presented in section 2.2.4. 
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Figure 1: Literature review methodology 

2.2.3 Limitations of literature review 

Limitations for the state-of-the-art literature review include the allowed publication sources via 

Concordia University library’s website. As such, only a few well-known publication sources were 

utilized and included: Google Scholar, Elsevier, Taylor and Francis, IEEE Xplore, ASHRAE 

transactions, and IBSPA.  
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2.2.4 Analysis of trends for ANN energy forecasting in buildings  

The results of the data collection and filtering process found 91 papers over the specified time 

range. This section presents the results and analysis of trends found for the field. The references 

used for this analysis are [33, 47-136].   

2.2.4.1 Timeline 

The amount of publications per year is shown in Figure 2. An increase in forecasting publications 

can be seen to begin to occur in 2011, this may be attributed in part due to the breakthroughs in 

deep learning in 2010-2012 which began to re-popularize AI. Please note, that while the overall 

search for this review was conducted over the time range of 1990 until 2019; all papers found in 

the 1990s were prediction-based models. Thus, Figure 2 omitted the years 1990 to 1999.  

 
Figure 2: Timeline of ANN publications 

2.2.4.2 Forecasting model types  

ANNs are a data-driven model, which are typically broken into black box and hybrid model types 

as previously defined by ASHRAE in section 2.1.3. The majority of ANN forecasting models have 

been applied as black-box based models (84%), followed by hybrid-ensemble models (12%) and 

hybrid-grey-box models (4%) as shown in Figure 3. Despite their lack of publications, grey-box 

models should be used more, due to their flexibility in applications and their incorporation of the 

physical laws governing the system(s).  
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Figure 3: Application of ANN in forecasting model types 

Further exploration of hybrid-ensemble based ANN models, revealed an approximate 75% to 25% 

breakdown between homogenous and heterogeneous models. This could be a result of the ease of 

development between the two. After creating an initial forecasting model, it is quicker to make a 

similar model rather than create a new model using a different technique. However, it should be 

noted, that the overwhelming majority of hybrid homogenous ensemble models applied a standard 

feed-forward neural network approach. Thus, there is a lack of heterogeneous ensemble models 

and homogenous ensemble models utilizing different artificial neural networks.   

2.2.4.3 Application levels  

The application level of the applied forecasting model refers to the level at which the target 

variable(s) were applied in relation to a building. The levels used in this study consist of: territory, 

building, sub-meter, and component. The territory level refers to a group of two or more buildings. 

As such, this can refer to a district system, neighborhood, or the full residential sector of a country. 

The building level refers to a target variable applied to a single building’s load. Examples of these 

include a buildings overall heating, cooling, or electricity consumption. The sub-meter level refers 

to forecasting models were the target variable was applied on a sub-meter(s) within a building. For 

example, on a single circuit breaker for the kitchen or laundry room or mechanical room. The 

application is less than that of a whole building, however, contains multiple components or 

appliances together in a single dataset. The final level refers to a component-based application. 

These occur when the target variable was a single appliance or component within an overall 

building. Examples include a chillers electricity demand, the electric demand for an air handling 

unit fan, etc.  
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From the selected papers, most of the applications were found to focus on the building level (81%). 

This is perhaps due to the easier access to whole building meters and their data. The applications 

for the territory level accounted for 13%, component level 5%, and the remaining 1% accounted 

for the sub-meter level. Focusing within the 81% applied to the whole building, a breakdown of 

83% to 17% was found between commercial and residential buildings. This higher prevalence 

towards commercial buildings may be a result of leveraging existing data from Building 

Automation Systems (BAS) already installed in commercial buildings. It can be more difficult and 

costlier to obtain data from residential building, sub-meters, and components without incurring 

extra costs associated with the installation of sensors and recording systems.  

 
Figure 4: Building application level of ANN forecasting in buildings 

Forecasting at the component level could be more beneficial for building energy management 

rather than at the whole building level. This could help identify where the largest consumers are 

and apply energy saving applications to such components. Hence, future research should focus on 

applications of components within buildings which consume a large amount of energy demand 

and usage.   

2.2.4.4 Target variables  

The target variables of the ANN forecasting models were classified into six main categories: whole 

building, heating, cooling, lighting, natural gas and components (Figure 5). The whole building 

category refers to such target variables applied to the demand/consumption of the: (i) buildings 
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electricity, (ii) buildings overall energy, and (iii) buildings yearly energy. Next, the heating loads, 

cooling loads, and lighting load categories refer to published work in which the target variable was 

either a thermal or lighting load to be forecasted by the models. Finally, the component category 

refers to target variables which consisted of component(s) within the overall building. Examples 

include: ground source heat pump, electricity consumption of the chiller, plant, fans, etc.  

 
Figure 5: Categorical breakdown of ANN forecasting model target variables 

Whole building target variables accounted for 49%, heating 11%, cooling 23%, lighting 1%, 

natural gas 4%, and components 12%. Within the component target variables, pumps accounted 

for 2%, AHU 1%, chiller 2%, HVAC 3% and other 4% (Figure 5). Other refers to devices such as 

a ground source heat pump, reheat, sub-meter, fans. 

2.2.4.5 Forecast horizons  

The forecast horizon is the length of time into the future over which the forecast is made. This can 

be composed of a single step model or multiple step ahead model. Short term forecasting (sub-

hourly to a day ahead) were found to constitute the majority of case studies applied to date. Sub-

hourly here refers to forecasts below a one-hour horizon (e.g. 1, 15, 30, and 40 minutes). Please 

note, that for the daily horizon, a single value for the entire day energy consumption can be 

predicted, or a load profile for the day can be forecasted (e.g. using hourly steps of a 24 hr. load 

profile). Both these are differentiated in Figure 6. The distribution of the number of papers with 

respect to the forecast horizon is illustrated in Figure 6: sub-hourly 10%, hourly 25%, multiple 
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hours 6%, daily (profile) 29%, daily total load (6%), multiple days 6%, week ahead 5%, multiple 

weeks 1%, monthly 5%, multiple months 1%, and 6% for yearly horizons.  

 
Figure 6: Forecast horizons for ANN models 

Hourly horizons corresponded to the most common forecast horizon. This may be a result of a few 

reasons. First, the granularity of the data obtained contributes to the overall time step of the final 

model. Many papers used weather dependent variables as inputs into their models. The weather 

data was typically obtained off-site and through an online and open source which contained data 

on an hourly scale. Thus, the forecasting models are typically built with the time step of the data 

obtained. Secondly, a few papers which presented data on a shorter time steps (e.g. 1 min) and 

aggregated their data to hourly intervals in order to reduce the error of time and system delay [137]. 

Thirdly, a factor which could contribute to the prevalence of hourly models is the cost of energy. 

Typically, utilities bill on an hourly time scale (for electricity) [138].  

2.2.4.6 Data applied 

Three types of data are available for models: (i) synthetic/simulated, (ii) benchmark, (iii) and 

real/measurement data. Real data refers to measured data obtained from various BAS, electricity 

meters, weather/climate stations/utility bills/national reports, and surveys. Synthetic and simulated 

data was obtained from building simulation software such as: EnergyPlus, eQuest, TRYNSYS, 
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and DeST. Benchmark data is obtained from publically available datasets e.g. ASHRAE great 

energy shootout. Data obtained from measurements contributed to the majority (85%) of the cases 

presented with synthetic or simulated data accounting for 14%, and benchmark accounting for 1% 

of the type of data used (Figure 7).  

 
Figure 7: Data type breakdown for ANN models 

2.2.4.7 Performance range 

The performance metrics found in reviewed papers are the: mean absolute percent error (MAPE), 

coefficient of variation of root-mean-square-error (CV(RMSE)), mean absolute error (MAE), 

mean bias error (MBE), mean squared error (MSE), and the coefficient of determination (R2).      

 
Figure 8: Breakdown of performance measures applied for ANN models 

Prior to beginning the literature review, a problem concerning which performance metric to catalog 

became apparent; many papers presented multiple performance metrices (as there is no set standard 

for forecasting models). The recording of all metrices would result in the overall cataloged table 

becoming cumbersome. Therefore, an approach for selecting which performance metrics to record 
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was created. First, the CV(RMSE) / CV % was the main or first performance measure to be 

selected. If CV(RMSE) was unavailable, the RMSE was recorded. These two measures were 

selected first as they are the recommended performance measures by ASHRAE [139]. If 

CV(RMSE) or RMSE was unavailable, then MAPE was selected. If MAPE was unavailable, then 

R2 was selected. If R2 was unavailable, then the most relevant error metrices was selected as 

indicated by other in Figure 8. Figure 8 presents the breakdown of performance indices used: 

MAPE (38%), CV(RMSE) (20%), other(18%), R2 (17%), and RMSE (7%). 

Table 3: Performance range of ANN forecasting models 

Sub-hourly 

Paper ID # Time step 

 

Forecast horizon Error  

[100] 15 min 15 min  0.001-0.059% (MAPE) 

[112] 30 min 30 min 0.939-8.34% (MAPE) 

[60] 5 min 40 min 13.2-14.4% (MAPE) 
 

Hourly 

Reference Time step Forecast horizon Error 

[112] 1 hr 1 hr 0.95 – 19.1% (MAPE) 

[95] 1 hr 1 hr 36.5 % (MAPE) 

[127] 15 mins 1 hr 4.5-5.4 % (MAPE) 

[96] 5 mins  1 hr 8.59-23.86% (MAPE)  
 

Multiple hours 

Reference Time step Forecast horizon Error 

[106] 12 hrs 12 hrs 5.03-7.4% (MAPE) 

[84] 1 hr 1-6 hrs 7.30-8.09% (CV(RMSE)) 

[67] 15 mins 1-6 hrs 30% (CV(RMSE)) 
 

Daily (profile) 

Reference Time step Forecast horizon Error 

[78] 1 hr 24 hrs 1.04-4.64% (MAPE) 

[123] 1 hr 24 hrs 11.56% (MAPE) 

[56] 15 mins 24 hrs 2.59-5.42% (MAPE) 

[111] 15 mins 24 hrs 36.86-42.31% (MAPE) 
 

Daily (load) 

Reference Time step Forecast horizon Error 

[59] Daily Day ahead 4.75% (MAPE) 

[55] Daily Day ahead 6.63-17.64% (MAPE) 

 

Table 3 presents the breakdown of the performance ranges for ANN models. Only the short-term 

(sub-hourly to daily) forecasting values are presented as this is the main scope of this work. In 
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addition, it should be noted that only errors of the forecasting energy demand/use are presented. A 

few papers provided the results of target variables different than energy consumption (e.g., air flow 

rate, temperature, supply fan modulation, relative humidity), the error range of those variables 

were omitted from Table 3. Furthermore, when selecting the error range with each paper, only the 

highest and lowest values were recorded (regardless of ANN architecture, type, dataset). Within 

Table 3, first the single step forecasts (t+1) are provided followed by multistep forecasts (t+1 to 

t+n).  

2.2.5 Summary and conclusions of ANN literature review 

Generalizing the results found from the type of ANN models applied; the overwhelming majority 

of ANN models were applied as black-box based approaches, applied a feed forward neural 

network (FFNN), and heuristically selected the architecture of the ANN model. Furthermore, 

generalizing the results of the case studies to which such models have been applied showed: the 

majority of such models have been applied to CI buildings, used hourly data, targeted a whole 

building energy load (overall energy, electricity, thermal), and had a forecast horizon of up to 24-

hours ahead.   

Due to the results of this analysis, the following research gaps can be observed:  

 Grey-box or ensemble forecasting models  

 ANN models other than FFNN  

 Iterative forecasting models  

 Target variables of natural-gas, lighting, residential, sub-meters, and components 

 Forecasting models applying sub-hourly data  

 Forecasting models using sub-hourly, multiple hours, or multiple days in advance 

 Case studies of industrial, territorial, and residential buildings  

Furthermore, the analysis conducted found the overall performance ranges for ANN energy 

forecasting in buildings to be: (I) 0.001–36.5% (MAPE) for single step ahead forecasting, and (II) 

1.04–42.31% (MAPE) for multistep ahead forecasting. Additionally it can be observed in multistep 

ahead forecasting that the performance ranges have be 1.04–11.92% (MAPE) with the application 

of hourly data and 2.59–42.31% (MAPE) with sub-hourly data. Finally, the results of this analysis 
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showed a new emerging trend within recent years for ANN forecasting, the emergence of deep 

learning and deep neural networks.  

2.3 Literature review for the application of DL techniques in forecasting building energy  

In the literature review of section 2.2 focusing on ANNs, an emerging trend was observed in recent 

years with the emergence of deep learning (DL) and deep neural networks (DNN) forecasting 

models. This section conducts a literature review for the application of DL for forecasting building 

energy use. Most of the contents of this chapter was published as J. Runge and R. Zmeureanu, "A 

Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, vol. 

14(3), no. 608, 2021. 

2.3.1 Objectives of DL literature review 

The objective of this literature review is to answer fundamental questions related to the 

applications of deep learning techniques for forecasting energy in buildings. Therefore, this 

literature review aims to answer: (i) How and where have deep learning based techniques been 

applied for forecasting energy use in buildings? (ii) What are the prevailing DL forecasting model 

types which have been deployed? (iii) Has there been any performance effects from applying the 

DL based techniques compared with other ML or data-driven models?  

2.3.2 Methodology for literature review  

The methodology applied for the collecting, filtering, and cataloging of papers is similar to the 

literature review methodology presented in section 2.2.2. However, an additional filter was used 

for screening to ensure that a deep learning based model was applied within the published work. 

It should be noted, that DL and DNN are not exactly the same. DL refers to ML models which 

contain multiple levels of nonlinear transformation; whereas DNN models are the application of 

such strategies to neural networks. To the best of the author’s knowledge, there have been three 

main ways to date in which DNN have been applied as DL based techniques: 

I. Increasing the number of  hidden layers in feed forward neural networks  

II. The application of recurrent neural networks. Such models may have a single or 

multiple hidden layers, however, even single layer recurrent neural networks may be 

considered deep learning due to training approaches. Unfolded, which occurs in 
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training of the network, such models are consider networks with very deep structures 

as information from previous states is passed to current states [141].  

III. Through the sequential coupling of different types of algorithms into overall structures 

(example, an autoencoder coupled with an SVR forecasting model) 

This work applied the same review methodology previously described in section 2.2.2. However, 

an adjustment was made to the filtering process to ensure DL based techniques were applied within 

the published paper. Furthermore, the range of dates from this literature review was modified and 

is from January 2000 until October 2020.  

2.3.3 Limitations of literature review 

The first limitation of this literature is similar to that of section 2.2.3, and refers to the available 

publication sources. Only such well known sources available through Concordia University 

library’s website were used. Such publication sources include: Elsevier, Taylor and Francis, 

Google Scholar, IBSPA, IEEE Xplore, and ASHRAE transactions.  

The second limitation for this review is a restriction on the applied DL techniques for forecasting. 

Specifically this review focuses on DL techniques applied to forecasting energy use in buildings. 

While the applications, developed models, and approaches applied in other fields may have useful 

information or approaches, they are beyond the scope of this review as they fail to contribute to 

answering the underlining questions.   

2.3.4 Analysis of trends for DL energy forecasting in buildings 

The results of this work found 63 papers over the time period of January 2000 until October 2020 

which have applied DL based techniques for the forecasting of building energy. This section 

presents the results of the analysis of trends found and is based on references [119 - 136] and [142 

- 185]. 

2.3.4.1 Timeline 

Figure 9 presents the results for the number of publications each year over the specified time range 

of January 2000 until October 2020. An increase in publications can be seen beginning in 2016, 

this may be attributed to breakthroughs in DL achieved in 2010 to 2012 [37] which then began to 

branch out to various fields including forecasting energy use in buildings.  
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Figure 9: Timeline of DL building energy forecasting publications 

2.3.4.2 Forecasting model types 

To date, the overwhelming majority of models (91%) have been applied as a black-box based 

approach while the remaining 9% have been applied as ensemble models. Based on this review, 

no such DL models have been applied as grey-box models to date.  

2.3.4.3 Application levels 

The breakdown for the application levels of the applied case studies is presented in Figure 10. As 

previously described, the application level refers to the level at which the DL forecasting model 

has been applied and consists of: territory (multiple buildings), whole building level (an overall 

energy load for a single building), sub-meter (an energy load within a building, less than an overall 

energy load, that consists of a group of components aggregated together), and component (a 

component or system within the building). Based on this review, the distribution of applications 

were found to be: whole building (53%) followed by territory (37%), sub-meter 6%, and 

component (4%). A table for the territory based applications is shown in Appendix A, whole 

building based in Appendix B, and both subsystem and component in Appendix C. 

 
Figure 10: Application level for DL forecasting models 
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2.3.4.4 Target variables 

The target variables for the DL forecasting models were similarly cataloged into six main 

categories as previously described in section 2.2.4.4 and consist of: whole building, heating 

cooling, lighting, natural gas, and components. Whole energy, heating, and cooling, lighting, and 

natural gas refer to an energy load for a whole building. In contrast, component(s) refer to target 

variables which consists of component(s) and systems within the overall building. Examples of 

component based models include: HVAC system, ground source heat pump, compressor pump, 

etc. Figure 11 presents the breakdown for target variables applied for the DL forecasting based 

models. A distribution of the target variables over published work was found showing: whole 

building (54%), heating (19%), cooling (15%), lighting (0%), natural gas (6%) and components 

(6%).  

 
Figure 11: Target variable breakdown for the DL forecasting models 

2.3.4.5 Temporal granularities  

Forecasting models have two main temporal characteristics to consider: the time step of the data 

and the forecast horizon. Based on this analysis, the time steps for the applied deep learning models 

were found to be 1% yearly, 0% monthly, 3% weekly, 6% daily, 41% hourly, and 49% sub-hourly. 

Focusing on the forecast horizon, this analysis found a breakdown of sub-hourly (19%), hourly 

(22%), multiple hours ahead (11%), 24-hours ahead (27%), a day ahead (2%), multiple days ahead 

(7%), a week ahead (5%), a month ahead (2%), and a year ahead (5%). The distribution of the 

forecast horizon for DL models is presented in Figure 12. 
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Figure 12: Forecast horizons for DL forecasting models 

2.3.4.6 Data properties  

Data properties refer to the type of data applied as case studies and the length of data for each case 

study. Based on the analysis it was observed that the majority (95%) of DL models have been 

applied to case studies based on measurement data, followed by 3% for synthetic data case studies 

and 2% for benchmark data case studies. Focusing on the time length of data used in each case 

study, it was observed that 17% of the models applied under six months of data, 22% used six-

months to one-year, 58% applied greater than one year of data, and 3% did not specify the amount 

of data applied in their case studies.  

2.3.4.7 DNN forecasting models applied  

The type of DNN forecasting model(s) was recorded in each paper and for each case study. The 

most common types include: deep feed forward neural network (D-FFNN), Convolutional neural 

network (CNN), Restricted Boltzmann machine (RBM), Recurrent neural network (RNN), Gated 

recurrent unit (GRU), Long short term memory neural network (LSTM), Deep belief neural 

network (DBN), and other. Here other refers to combined models, modified models, or deep 

deterministic policy gradient. Figure 13 provides a breakdown for the type of the DNN models 

found through this analysis.  
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Figure 13: DL forecasting models applied 

2.3.5 Summary and conclusions of DL literature review 

Generalizing the results found from this review, the majority of DL models applied have been an 

LSTM or Deep FFNN based model, applied as a black box based approach, used hourly input data 

from existing buildings, targeted and overall energy load within a building or territory, and applied 

a forecast horizon of one-hour or 24 hours ahead. 

In spite of their short age, DL based techniques have begun to be applied to building energy 

forecasting based research in increasing amounts. However, there still remain numerous gaps in 

research related to such models; a few of the key research gaps identified include: 

• A lack of DNN models applied to a component or system within a building 

• Few papers which have applied DL feature extraction models coupled with DNN 

forecasting models 

• A lack of grey-box and ensemble based DL models  

• Few papers which have applied multiple hour forecast horizons, multiple days ahead, and 

medium to long term forecasts  

• The enrichment of DL techniques across a variety of building types, with an emphasis on 

comparison based papers and studies 

• The establishment of guidelines for DL model development; including automation of the 

hyperparameter selection  

• The establishment of scalable DL based models which can be developed and tuned in a 

timely manner for practical implementations across different buildings and systems 
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• The development of robust models which can continue to provide accurate forecasts in the 

event of changes of operation, sensor failure, etc. 

Furthermore, the analysis conducted found that a DL based technique applied for feature extraction 

purposes typically led to an increase in forecasting performance compared to other such 

techniques. However, there were a few instances observed in which it did not. Moreover, when 

the DL based techniques were applied as forecasting models, similar observations were observed.  

2.4 Thesis objectives  

In the domain of demand response, fast and accurate tools are needed in order to forecast the 

electric demand of the HVAC system. Such models can help building operators and energy 

managers to plan fast DR-based strategies. This thesis contributes to the DR research field by 

presenting methods to forecast the electric demand of an HVAC system and components with a 

short-term forecast horizon. The main objectives of this work include:  

1.) Firstly, this thesis proposes a short-term grey box model consisting of an ensemble of 

nonlinear autoregressive neural networks coupled with a physics-based model to forecast 

the electric demand of a supply fan (component-level) of an existing HVAC system. This 

forecasting model will be developed and validated using measurements from a building 

automation system.  

2.) Secondly, this thesis proposes the application of deep learning techniques in order to 

forecast the electric demand of an HVAC system (system-level) and validation of the 

forecasting model on a case study building using synthetic data and measurement data.  

2.5 Thesis overview 

Chapter 3 describes the proposed methodologies applied for the short term forecasts of the HVAC 

electric demand within the scope of this thesis. First, the overall forecasting methodology is 

presented. Next, two different methods are presented, the component level and the system-level 

method. In addition, the governing equations for the system-level forecasting model are presented 

within Chapter 3 as this approach is applied within two separate chapters (5 and 6) over different 

case studies. Therefore, to prevent the repetition of the governing equations for the DL models, 

they were placed with the methodology of the system-based model. Finally, the methodology 

applied for data conversion is presented at the end of Chapter 3.  
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Chapter 4 presents the application of the component based method. The component model is 

applied to forecast the electric demand of a supply fan of an air handling unit for an institutional 

building.  

Chapter 5 and 6 explores the application of the system-based methods applied to a single case 

study with two different data sources. The case study is the Genomic research center located at the 

Concordia University Loyola campus. Chapter 5 presents the system based approaches applied 

with a synthetic data source while chapter 6 applies the same models to measurement data from 

the building BAS system. 

Chapter 7 provides a comparison of the system based monolithic model using airport weather data 

as an input to the forecasting model through two different approaches. First, the monolithic model 

is applied substituting current and past historical data from the closest airport as inputs to the 

forecasting model. Next, a monolithic model incorporating future weather forecasts of airport data 

as an input is applied.  

Chapter 8 concludes this research with a discussion of the contributions, limitations and the 

potential for future work. 
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Chapter 3: Proposed methods 

The scope of this research is the development of forecasting methods for estimating the future 

electric demand of the HVAC system. Within this work, two methods have been proposed: the 

component based method and the sequential based method. The component based method provides 

forecasts for the electric demand of a component within the overall HVAC system. In contrast, the 

system based method provides forecasts for the overall HVAC system’s electric demand. The 

governing equations for the system level forecasting model is presented in section 3.3. This is a 

result of the application of the model in both chapters 5 and 6. Therefore, in order to avoid 

confusion and repetition, such equations are presented alongside a description of the approach. 

However, the physics based equations for each case study will be presented within each of its 

respective chapters.  

3.1 Forecasting methodology  

The forecasting methodology used within the proposed thesis is shown in Table 4. This method is 

the generalized forecasting methodology that will be applied to all models within the thesis with 

minor modifications as necessary (e.g. development of multiple models). The methodology is 

based on a forecasting methodology originally proposed in reference [186], however, it has been 

modified in order to meet the objectives for this work.  

Table 4: Proposed forecasting methodology 

Step 

Number 
Description of Tasks  Definition of Tasks 

1 Problem Definition 

- Identifying problem 

- Listing of objectives  

- Listing of governing equations and assumptions  

2 Information Gathering 
- Exploration search for data over available data sources  

- Extracting the data from available data source(s) 

3 Preprocessing of data 

- Organization and time synchronisation of data  

- Identification, removal or replacement of missing data, 

outlier data, and erroneous data 

4 Preliminary analysis  

- Exploratory analysis; graphing of data, simple statistics 

- Feature selection  

- Breakdown of data into training, validation, and testing sets 

5 
Forecasting model  

construction  

- Feature scaling (normalization) 

- Hyperparameter selection based on tests in training data  

- Selection of forecasting architectures 

6 Evaluation of forecasting models  

- Training, validation, and application of forecasting  

   models selected to the testing data 

- Recording the performance of the applied models  

7 Comparison of approaches - Comparison of forecasting models and/or approaches 
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3.2 Component-level forecasting model 

The component-level model is applied to target forecasting a component within the overall HVAC 

system. The model applies the overall forecasting methodology as shown in Table 4. For this 

approach, the forecasting model is applied to a variable which is monitored and controlled within 

the overall HVAC system by the BAS. However, the electric demand of that component is not a 

measured and recorded variable. Therefore, the future forecasts for the electric demand of the 

component are obtained from the forecasts of the control variable applied to a physics based 

equation for that component. Consequently, this approach leverages existing BAS controlled 

variables without the need for additional permanent sensor placement. For this work, the regressors 

applied to the forecasting model are limited to those of current and past historical measurements.  

This work will, extract the controlled variable from the available BAS data and then apply 

processing steps to the data. Next, an automated hyperparameter search is conducted in order to 

find the optimal hyperparameter values to apply for the selected model. The application of the top 

performing architectures will then be applied to the testing data in order to forecast future values 

of the controlled variable. The output forecasts of the controlled variable will then be passed to a 

physics based equation in order to forecast the future electric demand of a component within the 

overall HVAC system. A copy of the Matlab code for the component model is provided in 

Appendix D.  

3.3 System-level forecasting model 

This section presents the system based forecasting model proposed. One of the main differences 

for the system based model compared to that of the component based model is that this method 

targets forecasting the overall system, whereas, the component based method targets a component 

within the overall system. In addition, while the component-level model applies a hybrid-grey box 

approach, the system-level model applies a black-box based approach.  

Two different system level forecasting approaches are applied: a monolithic approach and a 

sequential approach. Furthermore, both approaches apply the same overall forecasting model, the 

autoencoder and LSTM ensemble. Both system-level approaches are explored over a case study 

of a building with two different data sources. The first data source is a calibrated eQuest simulation 

of the building previously completed and shown in reference [187], the output of this simulation 

thus provides a synthetic data source. The second data source for this building is the BAS currently 



37 

 

 

 

installed and monitoring the operations within the building. Based on the two system level 

approaches and the two sources of data; this work explores four different scenarios:  

I. Synthetic data case study with a system-level monolithic approach;  

II. Synthetic data case study with a system-level sequential approach;  

III. Measurement data case study with a system-level monolithic approach; and,  

IV. Measurement data case study with a system-level sequential approach. 

3.3.1 Monolithic approach  

The system level monolithic approach consist of a single large DL forecasting model targeting the 

electric demand of both the primary and secondary systems over the forecast horizon. Figure 14 

presents the monolithic forecasting model. The input regressors for this model rely strictly on 

current and historical values. This approach is desired to explore the effectiveness of DL for 

forecasting with a large amount of inputs when applied to the HVAC system.  

 
Figure 14: Monolithic approach 

3.3.2 Sequential approach  

The second system level model consists of the sequential approach. This approach applies multiple 

DL models each targeting a specific energy load within the HVAC system. Forecasts are generated 

by a DL model, and then sequentially passed on to be used as an input along with historical data 

to the next DL forecast model. Thus, this approach sequentially forecasts multiple target variables, 

and sequentially passes the output forecasts to be used as an input to the subsequent model. Figure 
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15 presents the sequential model to be applied, the target variables for the models, and a few of 

the input regressors which will be applied based on reference [188]. The sequential approach is 

desired in order to apply smaller DL based models and explore the ability of such models in 

learning more information from historical data.  

 
Figure 15: Sequential approach  

3.3.3 System based forecasting model: An autoencoder-LSTM ensemble  

The system based forecasting models (monolithic and sequential) will consist of an autoencoder 

coupled with an ensemble of LSTM neural networks as depicted in Figure 16. An ensemble 

approach was desired due to their ability to increase the stability of the forecasting performance 

through time. The ensemble will consist of four LSTM models each coupled together through an 

equal weights approach to provide the final output forecasts for the respective target variable. A 

copy of the Python code for the system based forecasting model is provided in Appendix E. 
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Figure 16: Auto-encoder and LSTM ensemble 

3.3.4 Autoencoder applied for feature extraction  

Feature extraction is the process of taking the original dataset and reducing the dimensionality to 

a more manageable group for processing [189]. For this work, the encoder section of an 

autoencoder is applied in order to reduce the dimensionality of the input data. An autoencoder 

(AE) is an ANN model which is trained to reconstruct the input of the ANN as an output. Figure 

17 presents the overall structure of the AE, which consists of two main parts: an encoder model 

and a decoder- model [141]. The purpose of the encoder model is to map the input dataset into a 

hidden representation in a hidden space. The decoder takes the hidden representation and maps it 

to an output. Therefore, given an input dataset X, the encoder maps the input to a hidden space 

h=f(x). The decoder then takes the hidden representation in order to provide an output g(h)=X’. 

Autoencoders can be classified into two main types: (i) under complete and (ii) overcomplete. An 

under complete AE is where the number of hidden layer neurons is less than the number of 

input/output neurons. In contrast, and overcomplete AE is where the number of hidden layer 

neurons is greater than the input/outputs. For this work, an undercomplete AE is applied as an 

overcomplete AE may fail to learn meaningful information from the data [141]. The principle 

advantages of the autoencoder are the reduction in dimensionality and denoising. This work will 

apply the autoencoder for dimensionality reduction purposes.  
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Figure 17: Under-complete autoencoder model 

3.3.5 Governing equations for the long short term memory neural networks model 

From the literature review, it was concluded that the majority of DL models have been applied to 

whole building energy loads and the application of such models to HVAC systems still requires 

further investigation. Due to their ability to learn and model sequential information, the long short 

term memory (LSTM) neural network models will be applied. The LSTM network is a model first 

introduced by Hochreiter and Schmidhuber in 1997 [190]. Compared to other types of recurrent 

neural networks, the LSTM models have the advantage of constant error backpropagation within 

the memory cell which allows the LSTM model to learn long term dependencies. The LSTM 

resolve the vanishing gradient problem experienced by other recurrent neural network through the 

use of gate controllers. Furthermore, the authors specified that LSTM models are able to generalize 

well, handle distributed presentation of continuous data, and have reduce hyper parameter tuning 

[190]. The mapping of data, xt, is accomplished to the output, ht, by the use of three different gates: 

the forget gate, input gate, and the output gate. Equations 3-1 to 3-6 provide the governing 

equations for a LSTM model: 

 ft =  σ (Wf ∙ [ht−1, xt] + bf)  3-1 

 it =  σ (Wi ∙ [ht−1, xt] + bi)  3-2 

 C̃t =  Relu(WC ∙ [ht−1, xt] + bC) 3-3 

 Ct =  ft ∗ Ct−1 + it ∗ C̃t 3-4 

 ot =  σ(Wo ∙ [ht−1, xt] + bo) 3-5 

 ht =  ot ∗ Relu (Ct) 3-6 
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Where xt, is the input, ft corresponds to the forget gate, it to the input gate, ot corresponds to the 

output gate, and ht is the hidden state vector (output). In addition, Ct corresponds to the cell state, 

C̃t corresponds to the candidate cell state, W, and b corresponds to parameters of the LSTM cell. 

3.4 Inclusion of off-site weather data  

For this work, it was desired to explore the performance of using off-site weather data applied to 

a forecasting model calibrated with on-site data. The objective is to explore the performance effects 

of: (i) the inclusion of off-site weather data from a publically available source and applied as an 

input in the event of a failure in the on-site weather station, and (ii) when publically available 

forecasted weather data is applied as an input.  

 Both such scenarios are to be applied for the case study involving BAS measurement data from a 

system level forecasting model. Therefore, based on the case study of the GE building located in 

Concordia University Loyola campus, the closest weather station with publically available data is 

the weather station at Montréal-Pierre Elliott Trudeau International Airport located approximately 

8 km away. However, local airport data is measured and recorded with hourly time steps, in 

contrast, the BAS measurement data uses data at 15 minute time steps. Therefore, a methodology 

was required in order to extract, process, convert and then substitute the airport weather data. The 

methodology applied for the weather conversion is presented in Table 5. 

Table 5: Data conversion methodology 

Step 

Number 
Description of Tasks  Definition of Tasks 

1 Problem Definition 

- Identifying problem 

- Listing of objectives  

- Listing of governing equations and assumptions  

2 Information Gathering 
- Exploration search for data over available data sources  

- Extracting the data from available data source  

3 Preprocessing of data 

- Organization and time synchronisation of data  

- Identification, removal or replacement of missing data, outlier data, and 

erroneous data 

4 Data conversion    
- Application of data conversion techniques  

- Verification of conversion techniques (comparison to on-site data) 

5 Substitution of data  - Substitution for local weather sensor data to local airport data  
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Chapter 4: Component based forecasting method 

4.1 Objectives  

The overarching scope of this research is the short term forecasting for the electric demand for 

demand response based programs. The primary objective of this chapter is to present a high 

performing forecasting model targeting the electric demand of a component within the HVAC 

system. This forecasting model is developed with sub-hourly data obtained from the buildings 

BAS, thus, this model leverages currently available data for a component without the need for an 

additional permanent sensor. The forecast horizon for this work will be up to six hours in advance. 

The objective of the component model achieves thesis objective number one, listed in section 2.4. 

Most of the contents of this chapter was published as J. Runge, R. Zmeureanu and M. Le Cam, 

"Hybrid short-term forecasting of the electric demand of supply fans using machine learning," 

Journal of Building Engineering, vol. 29, 2020. 

4.2 Methods 

The forecasting methodology applied for this work is described in section 3.1. This section 

outlines: the forecasting model, the preprocessing steps applied, the preliminary analysis, the 

techniques applied for the construction of the forecasting models, techniques for the application of 

the forecasting models, and the performance metrics applied in this work.   

4.2.1 Forecasting method 

Forecasting methods typically apply one of two different approaches: a multistep ahead approach 

or an iterative approach [192, 89, 158]. In multistep ahead forecasting, the forecasting model is 

developed with multiple outputs, each at a time step over the forecast horizon. For instance, one 

model may have input regressors at t, to t-n and the outputs of the model would be t+1 to t+k steps 

ahead. In contrast, the iterative forecasting strategy uses a repetition of single step ahead forecasts 

with the same forecasting model and continues the repetitions until the forecast horizon has been 

achieved. For instance, the first forecast estimated by a model is a value for the target variable at 

t+1 using current and historical values for the regressors. The estimated value at t+1 is then past 

backwards and used as an input regressor in order to estimate the value at t+2. This iteration repeats 

until the desired forecast horizon has been achieved. Equations 4-1 to 4-3 provides an example 

over a three step forecast horizon.  
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 ŷ(t + 1) = f(y(t), y(t − 1), … , y(t − n)) 4-1 

 ŷ(t + 2) = f(ŷ(t + 1), y(t), y(t − 1), … , y(t − n + 1)) 4-2 

 ŷ(t + 3) = f(ŷ(t + 2), ŷ(t + 1), y(t), y(t − 1), … , y(t − n + 2)) 4-3 

 

Where ŷ is a forecasted value and y is a measured value, t is the time step, and n is the step number. 

In this study, an iterative approach is applied using a single input regressor of the current and 

previous historical values. Work shown in [32, 188] demonstrated that the target variable is 

influenced by previous usage and occupants for the building. This work will apply strictly an 

autoregressive approach and compare the forecasting results to the model developed in references 

[32, 188]. Furthermore it was shown that between a multistep ahead approach and iterative 

approach, there is minimal differences in error [158].  

4.2.2 Preprocessing of data 

The preprocessing of data includes the cleaning and corrective actions of obtained measurement 

data. This includes: the identification of missing data, outlier values, erroneous data, and the 

application of corrective actions. The goal of the present research was to obtain a training dataset 

of no more than 30 days. This would occur at 15-minute time intervals and correspond to 2,880 

observations total. Missing data corresponded to “No data” or “0” values occurring within the BAS 

trend data. Missing data can occur randomly due to faults in the sensors, recording system, and/or 

periodic maintenance of the HVAC system. All outliers and missing data observations were 

omitted from the training, validation, and testing data sets based on the following approach: (i) if 

four or more consecutive observations had missing data, the corresponding rows of observations 

were removed from the dataset (ii) if the number of missing data was less than four, the values 

were linearly interpolated from the previous and future time steps. Four consecutive observations 

corresponds to one-hour of data. In order to compensate for the removal of data observations as a 

result of preprocessing actions, additional observations were added in order to have a constant 

overall length of the training dataset.  

4.2.3 Preliminary analysis  

4.2.3.1 Exploratory analysis 

An exploratory analysis is first performed on the target variable in order to help understand the 

operation of the component and help identify patterns in its operations. It is also beneficial to help 

view the data itself and see if there are any unusual observations or characteristics. The exploratory 
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analysis consists of: (i) data visualization, and (ii) descriptive statistics. The exploratory analysis 

helps to identify different operational modes through the use of graphs and plots. Several tools are 

available such as carpet plots, day plots, and histograms. Carpet plots help provide an overall 

visualization of the data over time within a compact figure. This is especially effective if viewing 

lengthy data and helps to identify the operational trends on a component and if they change over 

time. During the data visualization, all graphs are plotted using the Part Load Ratio (PLR) provided 

by equation 4-4 [193].   

 
Part Load Ratio (PLR) =

Ms

Mdesign 
 4-4 

Where Ms is the air flow rate of the fan and Mdesign is the rated capacity of the fan.  

4.2.3.2 Feature selection 

Feature selection is the process of selecting relevant features to be applied as input values. Previous 

work demonstrated that the target variable was highly correlated by historical values and occupants 

during occupied/unoccupied periods [32, 188]. However, for this work only previous usage was 

applied as an input regressor in order to compare a multivariate and univariate model. The removal 

of a regressor may help alleviate model development time and computational time needed to train 

the forecasting models. Autocorrelation was used to verify that the target variable was highly 

correlated to the previous usage. The number of previous time lags to be used as input regressors 

was found through the automated extensive search algorithm which is discussed in section 4.2.4.2.   

4.2.3.3 Feature scaling 

Prior to constructing the forecasting method, due to large values occurring within the data, 

normalization of the data is required. If data entering the activation function of the neural network 

is too large or small, it can drive the output of the neuron to zero or infinity. This in turn can cause 

significant errors and poor performance. The min-max normalization method was applied to the 

data, as this is best suited for cases where the bounds are known and not well suited for cases with 

many and varying outliers [194]. The governing equation for the min-max method is provided in 

equation 4-5: 

 
xk

′ =
xk − xmin

xmax − xmin
 4-5 
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Where xk is the specific point in the time series, xmin refers to the minimum value within the time 

series, and xmax refers to the maximum value within the time series. This process shifts the time 

series data to lie within the range of 0 and 1.  

4.2.4 Forecasting model construction  

4.2.4.1 Forecasting model  

The forecast of the target variable (supply air flow rate) is accomplished by using a nonlinear 

autoregressive neural network. The training of the neural network aims at approximating the 

unknown function f( ) by using the measurement data to tune the weights within the neural 

network. The governing equation for a nonlinear autoregressive model is shown in equation 4-6. 

 y(t + 1) = f(y(t), y(t − 1), … , y(t − n)) + et 4-6 

The topology of the ANN is shown in Figure 18. 

 
Figure 18: ANN forecasting at time t+1 

The general architecture of the ANN is composed of three layers: the input layer, one hidden layer, 

and the output layer. The input layer corresponds to the time delays of the variable of interest 

(supply fan air flow rate) at time steps t, t-1,…,t-n. The output layer corresponds to the supply air 

fan flow rate at future time steps. The ANN is trained in Matlab with measurement data applying 

the Levenberg-Marquardt algorithm. The algorithm tunes the weights of the ANN to minimize the 

error between the forecast and the output during training. Training stops for the ANN when one of 

two criteria have been met: (i) the error falls below the threshold value of 1.0e-7, or (ii) the 

maximum amount of iterations has been reached. The activation function applied to the hidden 

layer is a hyperbolic tangent sigmoid function (Equation 4-7), and the output neuron activation 

function is given by Equation (4-8). 

 
tanh(𝑥) =

exp(2𝑥) − 1

exp(2𝑥) + 1 
  4-7 
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 id(x) = x 4-8 

In order to apply the ANN over the forecast horizon, an iterative approach is used. The ANN is 

provided the input values from y(t), y(t-1) to y(t-n) in order to forecast the value at y(t+1) as 

illustrated in Figure 18. The forecasted value of y(t+1), is recorded and then fed back as an input 

to the ANN in order to forecast the next value y(t+2). The ANN keeps a constant number of inputs, 

thus in forecasting the value at time y(t+2), the input values are: y(t+1), y(t), y(t-1)….y(t-n+1) 

(Figure 19). This iterative forecasting process continues until the forecast horizon has been 

achieved.  

 
Figure 19: ANN forecasting at time t+2 

4.2.4.2 Hyperparameter optimization  

The architecture of the ANN is determined by its topological structure [195]. This can constitute 

a variety of different parameters including: the number of input neurons, number of hidden layers, 

number of hidden layer neurons, number of output layer neurons, and the transfer function for each 

node. Given a learning task, too many connections within the ANN model and it may over-fit noise 

learnt during the training period. Conversely, an ANN with too few connections may not perform 

well due to its limited learning abilities [195]. Therefore, the selection of an ANN architecture is 

an essential element to its successful application. Despite the importance, to date, there remains 

no exact method in order to select the near-optimize architectures. Three main approaches exist to 

find the optimal ANN architecture: (i) heuristics, (ii) evolutionary algorithms, and (iii) cascade-

correlations algorithm.  

Heuristics consists of approaches which rely on trial-and-error, or ‘rules of thumb’ based 

equations. Within the heuristics approach, trial-and-error remains the most popular with examples 

found in (but not limited to) references [48, 196, 197]. 
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Evolutionary algorithms have been applied to neural networks; however, this has mainly been 

applied to the optimization of ANN weights rather than ANN architectures as shown in papers [26, 

69, 198]. To date, few papers have applied evolutionary algorithms to architecture selection of 

neural networks. Both genetic algorithm and auto-correlation analysis were applied for finding the 

near optimal ANN architecture in reference [67].  

The cascade-correlation algorithm is another approach for ANN architecture selection [33, 199]. 

This is an adaptive learning approach which grows the ANN. In the beginning, the ANN consists 

of a small architecture, typically with a single hidden layer neuron. The ANN is trained, applied 

to testing data (within the training dataset), and the results are recorded. Another neuron is then 

added to the hidden layer, and the ANN is re-trained and tested again on the same dataset. If the 

ANN has a lower error than the previous architecture, the process continues until the error no 

longer decreases. Disadvantages of this approach are that it can be computationally intensive in 

the beginning, and the search could stop at a local optima. 

The approach to be applied to the component model was based on an automated cascade-

correlation algorithm. The optimal ANN architecture is selected through an extensive search which 

automates the growth of an ANN and explores all combinations of input neurons ranging from 1 

to 50 neurons (𝑛𝑖) and the number of hidden layer neurons from 1 to 𝑛ℎ = 𝑛𝑖 − 1 [200]. 

Furthermore, each architecture is trained varying the length of training from 1 to 30 days. Hence, 

the extensive search is carried out over 36,750 possible architectures. The extensive search 

algorithm is suitable when computational time is not excessive and input values are discreet 

numbers [201]. For each architecture and specified length of training data, the training algorithm 

(Levenberg-Marquardt) and transfer functions were kept constant. Once trained, each specified 

ANN was tested (within the training dataset) over a six-hour forecasting horizon and the results of 

the forecast were recorded. The results were recorded using the root mean square error (equation 

4-12) between the forecasted values and measurements. The ANN architecture that gives the 

minimum average RMSE, corresponding to five starting times (01:00, 05:00, 09:00, 13:00 and 

17:00) over the day prior to testing is selected as the optimum ANN architecture. By exploring the 

full solution space, the global minima of RMSE can be found and used as a future reference 

solution. In contrast to an EV algorithm, which can get trapped in local minima [195].  
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A drawback of this approach is that it can be computationally intensive; however, this can be 

reduced by running on several multi-core computers simultaneously, or using cloud computing. 

With regards to implementation, this method is time intensive in the beginning in order to find and 

apply an optimum ANN architecture with a sliding window approach (similar to implementation). 

An additional benefit of this method is that it finds multiple optimum architectures, which is 

beneficial in creating a homogenous ensemble.  

4.2.4.3 Ensemble forecasting approach  

A crucial aspect of ensemble forecasting models is the combination of generated forecasts into an 

overall output forecast. This involves determining appropriate weights to assign to each output 

forecast or each forecasting model. Currently, several different methods are available, including 

equal weights, Bayesian, and genetic algorithms. Within the following work, an equal weights 

approach was implemented as this was demonstrated to provide robust results [202].  

4.2.4.4 Sliding window retraining technique 

As new data becomes available from the BAS, this can be applied to the ANN for retraining in 

order to help maintain accuracy through the progression of time. Three main retraining techniques 

have been applied within literature, static, accumulative and sliding window. With regards to the 

static technique, the ANN is trained initially and as new data becomes available, the ANN is not 

retrained. With such a technique, there is a high possibility that the forecasting model becomes 

invalid and offers poor performance when new patterns begin to emerge.  

Accumulative retraining entails the accumulation of data with periodic retraining. When new data 

becomes available from the control system, it is combined with the initial training dataset. The 

ANN is then retrained with the larger historical dataset and applied to provide the next forecasts. 

Thus, for this method the training dataset continually grows larger.  

The sliding (receding) window technique holds a constant and fixed length of training data that is 

shifted in time. As new data becomes available, the newly available data is added to the training 

dataset. When the new data is added, the oldest data of equal length is removed from the initial 

dataset in order to keep the overall length constant. The ANN is then retrained periodically with 

the newest available data to provide its forecasts. A comparison of these three retraining techniques 
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are presented in [33, 203, 204]. Within such case studies, it was concluded that the sliding window 

technique can provide among the highest performance. 

For this work, a sliding window technique was applied. Furthermore, the application of the sliding 

window technique was explored through two different approaches: batch and iterative. In the case 

of the batch approach, retraining is applied when a batch of new data becomes available. In the 

case of the iterative approach, retraining is applied when a single new data point becomes 

available. In addition to the two approaches, two separate processes for retraining can be applied: 

(1) the initial weight and biases are randomly selected, and (2) the weights and biases from the 

previous ANN are used for initialization of the new ANN. Thus, applying both sliding window 

approaches and the processes, four different scenarios are presented and evaluated within this 

research:  

I. Batch updating with the random initialization of weights and biases; 

II. Batch updating starting with the weights and biases of the previous ANN;   

III. Iterative updating with the random initialization of weights and biases; and 

IV. Iterative updating starting with the weights and biases of the previous ANN. 

4.2.5 Forecast for the electric demand of an HVAC component 

The forecasted electric demand of the AHU supply fans is calculated using the ANN forecasted 

supply air flow rate, (V̇for), and a physical model Eqs (4-9 to 4-11). 

 EAHU = Edes ∗ Y 4-9 

 Y = a3X3 +  a2X2 +  a1X +  a0 4-10 

 
X =

V̇for

V̇des

 4-11 

Where Edes is the design electric demand, V̇des is the design supply fan volumetric flow rate, and 

the coefficients a3 = 0.8732, a2 = 0, a1 = 0.1268, and a0 =0 of supply fans were found through the 

analysis of measurements of supply air flow rates from BAS, and of electric current from portables 

sensors [188].  
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4.2.6 Performance evaluation  

The performance of the forecasting model is presented in terms of the Root Mean Square Error 

(RMSE) and the Coefficient of Variation of the RMSE or, CV(RMSE) as per ASHRAE standard 

[139] and the Efficiency Valuation Organization (EVO) [205].   

 

RMSE =  √
∑ ( �̂�𝑖 − 𝑦𝑖 )2𝑛

𝑖=1

𝑛
     4-12 

 
CV(RMSE)  =

RMSE

�̅�
 4-13 

Where �̂�𝑖 is the forecasted value, 𝑦𝑖 is the recorded value of the ith observation. 

4.3 Case study using real measurements 

4.3.1 Case study description 

The proposed forecasting model is applied to the Genomic research center (GE) building of 

Concordia University in Montreal. The building has a total floor area of 5,400 m2, with four stories 

and a one level basement. The building has a window to wall ratio of 33%, contains 48 offices, 

three conference rooms and corridors which account for 53% of the floor area, laboratories with 

fume hoods account for 30%, and the remaining space occupied by kitchen/lounge and restrooms 

[187].  

 
Figure 20: Genomic research center [206] 

There are two main components of the cooling systems for GE: the primary system feeding 

multiple buildings, and the secondary/local system supply within GE. The primary system supplies 

chilled water to several buildings on campus and includes two 900-ton chillers (3,165 kW) with a 
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coefficient of performance of 5.76 at design conditions. Heat is removed from the chillers by two 

cooling towers with a capacity of 4,750 kW (1,350 tons/each). During the summer months, the 

operation of the chillers is alternated. Both chillers are operated simultaneously only when the 

demand cannot be met from a single chiller. The primary system supplies chilled water (6.70C) to 

several buildings by two constant speed pumps connected in parallel with each other. The pumps 

are operated in relation to the chillers, one pump for each chiller operating them both 

simultaneously. In addition to the supply pumps, two constant speed pumps are used in order to 

extract heat from the condenser line and send it to the cooling tower. More information regarding 

the operation of the primary cooling equipment is presented in [207].  

The cool water supplied by the primary systems is connected to the cooling coils in Genome 

buildings’ Air Handling Unit (AHU), otherwise known as the secondary/local system (Figure 21).  

 
Figure 21: GE secondary system 

The secondary system contains four supply fans each with a capacity of 10,618 L/s and an input 

demand of 29.8 kW. For the following work, the forecasting model will be applied to the total 

AHU supply air flow rate and electric demand.  
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4.3.2 Preliminary analysis results 

Data for the model was obtained by the building automation system (BAS) of the supply air flow 

rate recorded at 15-minute intervals from June 1st to August 31st, 2014. The target variable is the 

total air supply flow rate for the air handling unit and the electric demand of the secondary system 

AHU. The following section explores the data obtained to help identify trends and patterns with 

the dataset.  

The daily operation of the AHU is presented in Figure 22. The vertical axis corresponds to the day, 

while the horizontal axis corresponds to the hour of the day. The color of each cell refers to the 

intensity of the part load ratio. The maximum possible range of the AHU PLR varies from zero to 

one, the full capacity of the system (42,727 L/s). For Figure 22, a legend is provided in the figure 

for the PLR, the lowest (blue) corresponds to zero values and the highest (orange) corresponds to 

highest recorded values (approximately 65% of the total capacity). Figure 22 presents the full 

dataset, with preprocessing steps applied. As such, this contains missing, erroneous, or outlier data 

which can appear as zeros (blue). The periodic dark blue lines on the right-hand side within the 

figure correspond to scheduled maintenance of the AHU and system occurring on Sundays. Figure 

22 demonstrates that the AHU has a typical operating range of 0.3 to 0.65 PLR, with increased 

usage (0.5 to 0.65) occurring from 08:00 to approximately 18:00. 

 
Figure 22: Carpet plot total supply air flow rate 
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Figure 23 presents the PLR as a day plot. Taking one week of data, 20/07/14 to 26/07/14 or one 

full week prior to the testing dataset, each day is plotted against the hour of the day. This helps 

visualize the daily trends occurring within the dataset. The horizontal axis corresponds to the hour 

of the day and the vertical axis corresponds to the PLR. The daily variations of supply air usage 

can be seen, with an approximate 0.44 of the total capacity providing the base demand.  

 
Figure 23: PLR Day Plot 

Separating data into occupied (08:00 to 17:45) and unoccupied (00:00 to 07:45 and 18:00 to 23:45) 

times, the frequency of operational supply occurrences is presented in Figure 24. The vertical axis 

corresponds to the frequency of occurrence and the horizontal axis corresponds to the PLR. The 

occupied distribution is presented in the blue color while the unoccupied is presented as orange, 

the unoccupied contains a larger distribution due to a larger number of samples. The median PLR 

for the occupied times was 0.49 (20,811 L/s) in contrast to the unoccupied times of 0.44 (18,688 

L/s). The most frequent values occur over the range of 0.4 to 0.45% and account for the base 

supply of the air handling unit. In addition, it can be seen that the maximum demand of the AHU 

corresponds to 65%. 
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Figure 24: Frequency histogram PLR 

4.3.3 Forecasting model construction: Hyperparameter optimization results  

As previously mentioned, the architecture of an ANN plays an important role in the performance 

of the forecasting model. Through the application of the extensive search approach, section 4.2.4.2, 

36,750 different possible architectures where explored in order to find the optimal architecture. 

The optimize architecture is selected (#1 of Table 6), which was observed to have the lowest 

average of 740 L/s. The selected architecture has 33 inputs consisting of current and past values 

(over the last 8 hours and 15 mins), a single hidden layer with four neurons, one output layer 

neuron (33-4-1), and requires 18 days of training data. The RMSE for the selected architecture has 

the lowest average of 740 L/s, which was calculated by six-hour forecasts within the training 

dataset.  

The top five (#1 to #5) ANN architectures were selected and applied in ensemble-based 

forecasting. In addition, another ANN architecture that needs only six inputs, one hidden layer 

with three neurons, one output (6-3-1), and 16 days of training is also selected for comparison (#6 

in Table 6). The ANN architecture of (49-47-1) with 17 days of training data provides the worst 

forecasting performance with the highest RMSE of 24,881 ± 11,188 L/s (Table 6).  
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Table 6: Ranking of the ANN architectures obtained from the extensive search of the optimum 

architecture. 

Rank 
ANN 

architecture 

Training dataset 

(days) 

Average 

RMSE  

(L/s) 

Standard deviation of 

RMSE  

(L/s) 

1 33-4-1 18 740 175 

2 37-4-1 15 746 291 

3 29-3-1 29 764 316 

4 38-3-1 24 768 372 

5 45-4-1 19 775 366 

6 6-3-1 16 776 293 

7 10-2-1 15 777 211 

8 36-8-1 28 788 371 

9 50-5-1 24 790 196 

10 48-6-1 15 795 398 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

36, 748 50-49-1 30 20,870 6,543 

36, 749 50-47-1 15 21,005 5,233 

36,750 49-47-1 17 24,881 11,188 

 

Figure 25 presents a small snippet within the overall results obtained from the extensive search. 

Selecting the architecture with 33 input neurons and a constant amount of training days, Figure 25 

presents the error as additional hidden layer neurons are added. With the increasing number of 

hidden neurons, the results show the increasing forecasting error, expressed by RMSE. The units 

of RMSE relate to the air supply flow rate (L/s) which contains an overall capacity of 42,472 L/s.  

 
Figure 25: RMSE of the ANN architecture #1 with an increase of hidden layer neurons 
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4.3.4 Forecasting results 

The data is broken into three sections, training, validation and testing datasets. The ANN models 

(optimized. un-optimized, and ensembles) are trained each with their own required length of 

training data until July 30th, 2014 at 05:30. The models are then applied to the validation dataset 

from 05:45 to 08:45 on July 30th, 2014. The testing data begins at 09:00 and forecasts over the next 

six hours until 14:45.   

Table 7: Comparison of the forecasts over the time horizon of six hours starting on 09:00 July 

30th, 2014. 

Forecasting model 

Supply air flow rate Electric demand 

RMSE  

(L/s) 

CV(RMSE) 

(%) 

CV(RMSE) 

(%) 

Optimized ANN #1   386 1.8 5.2 

Un-optimized ANN #6  506 2.4 6.9 

Optimized SVR   479 2.2 4.8 

Un-optimized SVR   724 3.4 7.3 

Homogenous ensemble model  

(ANN #1 to #4) 

387 1.8 5.3 

Heterogeneous ensemble model 

(Optimized ANN#1+ optimized SVR) 

417 2.0 5.7 

Simple Forecasting Approach (SFA) 479 2.2 6.5 

 

For comparison purposes, the forecasting results obtained from two SVR models [32] and a simple 

forecasting approach (SFA) is also applied. The SFA approach assumes that the supply air flow 

rate at time (t+1) is equal to the measured value (BAS trend data) from the same time of the 

previous day [208]. Table 7 presents the results of the forecasting models applied to the testing 

datasets for both the total air supply flow rate and the electric demand of the AHU.  

Various ensemble forecasting models applying an equal weight approach are explored in this case 

study. The top five (#1 to #5) architectures presented in Table 6 were trained, validated, and then 

applied to the forecasting dataset. Homogenous ensembles were created by combining forecasts 

of consecutive architectures into final output forecasts of the target variable. The forecasting 

performance of the different homogenous ensembles were recorded and is presented in Table 8. 

The performance results demonstrate a negligible difference between the CV(RMSE) values of 

the four homogenous ensembles in order to forecast the supply air flow rate. A heterogeneous 

ensemble consisting of the optimized SVR and optimized ANN were also applied to the testing 

dataset; the results of the heterogeneous model is presented in Table 8.  
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Table 8: Comparison of the homogeneous and heterogeneous ensembles over the time horizon of 

six hours starting on July 30, 2014 at 9:00. Forecasting of supply air flow rate. 

 

  
Homogenous ensemble  Heterogeneous ensemble  

(ANN and SVR) #1-#2 #1 -#3 #1-#4 #1-#5 

RMSE (L/s) 410 398 387 384 417 

CV(RMSE) (%) 1.9 1.9 1.8 1.8 2.0 

 

4.3.5 Forecasting results: Comparison of sliding window retraining technique 

This section explored the performance of different scenarios for applying a sliding window 

technique. The optimized ANN was selected and applied to the testing data based on the four 

different scenarios presented in section 4.2.4.4. For the purposes of this work, a batch length was 

set equivalent to the length of the forecast horizon and the testing period is extended from six hours 

to 12-hours (48 points). The extension of the testing period allows for each scenario to be evaluated 

over 48 consecutive forecasts (F+1 to F+48).  

Table 9 presents the average performance of each scenario over the 48 consecutive forecasts. 

Scenario (i), batch updating and random weight initialization, has the lowest error with a RMSE 

of 413 L/s and CV(RMSE) of 2.1%. In addition, scenarios (iii) and (iv) have also low performance 

errors with a CV(RMSE) value not exceeding 3.7%. Scenario (i) offers the advantage of less 

computational time as retraining is repeated only after 24-steps; in contrast to retraining iteratively. 

Table 9: Comparison of the forecasts of the supply air flow rate by using the sliding window 

retraining techniques with the forecast horizon of 12 hours over 48 forecasting sets (F+1 to 

F+48). 

 Scenario  

(i) 

Scenario  

 (ii) 

Scenario  

 (iii) 

Scenario  

 (iv) 

Average RMSE (L/s) 413 2,110 576 737 

Average CV(RMSE) (%) 2.1 10.7 2.8 3.7 

 

4.3.6 Comparison with other studies  

This section compares the performance of the forecasting models applied in this case study, Table 

7, with ANN forecasting models in published work and shown in Table 10. All such models 

presented in Table 10 apply ANN models to forecast various energy loads within a building. The 

performances presented in Table 10 maybe different in a variety of ways. For instance, the ANN 

models applied within each published work could be an optimized architecture or un-optimized 
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model. It is beyond the scope of this comparison to discuss each presented paper in detail, as they 

are presented for comparing a general benchmark for performance.  

It is discussed in reference [67] that it is comparatively easier to achieve a good performing 

forecasting model which targets a whole energy load for a building rather than a model which 

targets the electric demand of HVAC equipment. This is a consequence of a whole energy load 

integrating all energy uses into a single profile. In contrast to HVAC profiles which may be more 

sensitive to changes in operation and/or occupants. The results of Table 10 supports the discussion 

presented in reference [67].  

Table 10: Example of CV(RMSE) values of forecasting using ANN models 

Application CV(RMSE) (%) Reference 

Forecasting of whole building energy performance   

Electricity consumption over a one-hour horizon using hourly 

benchmark data 

2.6-3.1 [54] 

Electricity consumption of an institutional building with a horizon 

of 1 to 6 hours using hourly measurements 

7.3-8.5 [84] 

Electricity consumption of an office building over the horizon of 

24 h using hourly measured data  

3.0-16.5 [53] 

Residential energy consumption using hourly measurements and a 

24-hour horizon 

14.3-27.6 [97] 

Cooling load over a 24 hr horizon of an institutional building 

using 30-mn measurements 

20.1-25.1 [136] 

Electricity consumption of a medical clinic over the horizon of 1 

day using 15-mn measurements 

7.0-11.1 [58] 

Forecasting of performance of HVAC equipment   

Electricity demand of a chiller in an office building over the 

horizon of 24 h using hourly synthetic data  

4.0-40.0 [203] 

Electricity demand of a chiller in a research center building over 

the horizon of 24 h using hourly measurements 

23.0-253.0 [203] 

Supply fan modulation in an office building over the horizon of 

six hours using 15-mn measurements  

17.6 [67] 

Supply fan electric demand in an office building over the horizon 

of six hours using 15-mn measurements 

30.0 [67] 

 

Focusing on the performance of whole building energy loads, when hourly measurements are used 

the CV(RMSE) performance range is from 2.6-27.6%. Furthermore, when sub-hourly data is used 

the performance range for whole building energy loads is 7.0-25.1% CV(RMSE). In contrast, when 

ANN models have been applied to forecasting HVAC equipment the CV(RMSE) results in a larger 

performance range. For instance, when hourly measurement data is used the ANN models have 
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achieved the performance range of 4.0-253% CV(RMSE) and 17.6-30.0% CV(RMSE) with sub-

hourly data. 

Therefore, the results obtained in this study which applied sub-hourly data at 15-mn intervals and 

achieved a performance range of 1.8-3.4% for the supply fan air flow rate and 4.8-7.3% for the 

electric demand demonstrate an improved performance in comparison to those of other 

publications.  

4.4 Conclusion of the component model    

The results shown in section 4.3.4 are obtained from the case study applied. Therefore, they cannot 

be generalized to all cases and across multiple case studies. The results presented demonstrate that 

when an optimized ANN or an optimized SVR are applied, they both can obtain good forecasting 

performance [139]. Overall all models obtained a good performance with performances not 

exceeding 3.4% CV(RMSE) for the supply air flow rate, and 7% CV(RMSE) for the electric 

demand of the AHU. When comparing all forecasting models within this case study, both the 

optimized ANN #1 and the homogenous ensemble model provided the best performance results 

with a CV(RMSE) of less than 2% for the supply air flow rate and less than 6% CV(RMSE) for 

the electric demand of the AHU.  

It should be noted that due to the similarities between the daily profiles of July 30th and July 29th, 

the SFA obtained good forecasting results with a CV(RMSE) of 2.2% and 6.5%, respectively. 

However, when the SFA was applied at 09:00 over 30 days of data, the performance of the SFA 

obtained a much larger performance range of 1.75% to 24.47% CV(RMSE) solely when 

forecasting the supply air flow rate. This increased range and error is a result of diverse HVAC 

patterns in operation. Furthermore, it should be noted that when errors were large, they were 

typically repeated over multiple days.  

In comparison of the ensemble based models, it is observed that the homogenous model obtained 

a slightly better performance than the heterogeneous model. The major difference between the two 

models is in the construction time of the forecasting models. The creation time for a homogenous 

model is less than that of a heterogeneous model. This is a result of the automated hyperparameter 

approach which can leverage multiple high performing models of a single type (ANN) without the 

need to then optimize the hyperparameters of a second model (e.g. SVR).   
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Chapter 5: System-level forecasting method using synthetic data  

5.1 Objectives  

The overarching scope of this research is a short term forecasting model for demand response 

based programs. One of the main objectives of this thesis is to present a high performing 

forecasting model targeting the overall electric demand of a HVAC system. The system based 

forecasting models are explored on two different case studies. The building with both case studies 

is the same; however, the difference between the two studies is the source of data. The first case 

study obtains synthetic data from a calibrated eQuest simulation of the building. The second case 

study obtains its data from the building BAS system. This chapter explores the system based 

models applied to the case study using synthetic data.  

5.2 A preliminary LSTM forecasting model development  

This section presents a preliminary comparison of artificial neural network models (FFNN and 

LSTM) previously discussed in sections 2.2 and 2.3. In addition to the two previously mentioned 

single point forecasting models, a forecasting approach consisting of an ensemble of long short 

term memory neural networks was applied. The forecasting model and approaches in this work are 

applied to the case study of a Research Center for Structural Genomics in Concordia University. 

The data source for this study is obtained from a calibrated eQuest simulation of this building 

completed in reference [187]. Synthetic hourly data from the eQuest simulation was extracted for 

the components of the HVAC system. These values were then summed, based on equation 1, in 

order to generate the dataset of the overall HVAC systems electric demand. While a full year of 

data was obtained from the eQuest’s simulation, this work is limited to applying the models during 

the summer period. The dataset consisting of the total electric load for the HVAC systems during 

the cooling season was applied to train, validate, and test the forecasting models presented in this 

case study.   

ĖGE,HVAC
t+i  = Ėfan,supply

t+i +  Ėpump,CHWS
t+i +  ĖChiller

t+i +  Ėpump,CDS
t+i + ĖCT

t+i  5-1 

5.2.1 Preliminary analysis  

A preliminary analysis is conducted on the generated dataset and presented in Figure 26 through a 

carpet plot. The dataset extracted for this work consisted of two full months of data, starting from 

June 1st, 2014 at 00:00 and ending on August 1st, 2014. The color of each cell within Figure 26 

represents the total electric demand of the HVAC system. From the figure, periods of low demand 



61 

 

 

 

can be seen in the color blue, and operate over the range of 60 kW to 90 kW during unoccupied 

times. The high demand times are shown with the color red and occur during occupied periods 

(08:00 to 19:00) and operate over a range of 100 kW to 170 kW.  

 

Figure 26: Carpet plot of the Total HVAC’s electric demand 

5.2.2 Forecasting models  

The forecasting models and approaches to be applied within this work consists of: 

1. Single point LSTM forecasting model with tuned hyperparameters  

2. Single point FFNN forecasting model with tuned hyperparameters  

3. Simple forecasting approach 

4. Ensemble of LSTM models with randomized hyperparameters based on simple heuristics  

5.2.3 Hyperparameter selection  

For this work, the hyperparameter searches of the machine learning models were conducted 

through a grid search technique. The computer used was an Intel Core 2.8 GHz CPU with 8 GB 

RAM and operating Windows 10 with a 64 bit operating system. All models constructed in this 

work were built in Python. For this work, H# refers to the hidden layer which will be used in order 

to describe the number of hidden layer neurons within. Thus, H1 refers to the first hidden layer 

within the overall neural network architecture. The hyperparameter search was conducted within 

the training dataset, splitting the data into 90% training and 10% validation (of the training dataset). 
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In addition, each architecture was evaluated multiple times and the performance results were then 

averaged. Finally, the computational time for the evaluation of each model was recorded.  

For a single layered neural network (LSTM and FFNN), the number of hidden layer neurons was 

varied from 1 to 10, then 10, 15, 25, 50, 75, 100, 125, 150, 175, and 200. For the single layered 

LSTM model, it was found that architectures over a range of 75 to 125 units within the hidden 

layer performed with the least error. Thus, such heuristics will be applied as boundary conditions 

within the overall LSTM ensemble. After the single point forecasting models were searched over 

the aforementioned range, a localized search was conducted in order to find the optimal number 

of neurons within the single hidden layer for both the LSTM and FFNN network models.  

Furthermore, a search of deeper LSTM models was conducted with 2 or more hidden layers. With 

regards to two layered LSTM models, the search was varied from the range of 5, 10, 25, 50, 75, 

100, 125, 150, and 175 for H1. For each value of H1, H2 was searched over the range of 5, 10, 15, 

20, and 25. The reduction of search range for H2 compared to H1 arose from the result of the 

increasing computational time in training the models without a significant performance change.  

For LSTM models with two or more hidden layers, the range of step sizes was reduced further due 

to increasing computational time. The range of values consisted of 5, 10, and 15 neurons each. A 

sample of the hyperparameter search results are provided in Table 11 showing the performance 

and computational time required to train the models. From Table 11 it can be observed that with 

the addition of hidden layers, the performance did not drastically change. However, the training 

time significantly increased with the addition of more hidden layers and deeper architectures. 

Furthermore, for this work it was observed that increasing the amount of hidden layer neurons did 

not lead to a significant performance reduction in error. The result appear consistent with those 

from other fields (such as natural language processing, time series, etc.). For instance, during the 

M4 time series competition it was observed that increasing the number of hidden layer neurons 

did not lower the result of performance and rather led to non-convergence of such models in 

training [209]. Furthermore, Reimers and Gurevych (2017), explored various hyperparameter 

adjustments for LSTM models [210]. From this, it was found that LSTM models are more sensitive 

to hyperparameters such as epochs, activation function and the random weight initialization. In 

addition, it was observed with their work that the number of hidden units are of less importance. 
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Table 11: Hyperparameter results for LSTM 

H1 H2 H3 H4 
RMSE 

(kW) 

CV(RMSE) 

(%) 

Training Time 

(sec) 

15 0 0 0 5.75 5.66 198 

15 15 0 0 5.68 5.58 309 

15 15 15 0 13.72 13.39 481 

15 15 15 15 8.57 8.39 860 

 

5.2.4 Ensemble approach  

For this work, an ensemble consisting of four LSTM single point forecasting models is applied. 

The hyperparameter of the models within the overall ensemble consists of randomized values 

based on the heuristics found during the hyperparameter search. This overall forecasting approach 

is inspired by a competitor in an ASHRAE Great Energy Shootout competition. Within the 

competition, the competitor forgone hyperparameter tuning for FFNN and leveraged a large 

homogenous ensemble model to provide the output prediction [211]. The outcome of the approach 

was third place within the overall competition, however, where the top two performers spent long 

periods of time on the development and tuning of their models, this approach spent half a day. 

However, the work herein differs from the competitor in that a quick automated grid search is 

applied to learn some heuristics of the model. Such heuristics are then used as boundary conditions 

to create randomized architectures in a homogeneous ensemble. The single point forecasts within 

the ensemble are then combined in an equal weights approach.  

5.2.5 Retraining approach  

For this work, the accumulative window retraining approach was applied as new data became 

available for the models. With the accumulative approach, the forecasting models are trained on 

the initial dataset. As new data becomes available, the new data is added to the original dataset and 

the model is retrained on the new larger dataset. This process continues through time, continually 

adding to the initial dataset in batches and retraining the models. For this work, the addition of 

newly acquired data and the retraining of the machine learning models occurs every 12-hours.  

5.2.6 Error Indices  

This work applies the root mean squared error (RMSE) and the coefficient of variation of the root 

mean square error CV(RMSE) as the forecasting error indices (eq. 4-12 and 4-13). These error 
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indices were selected as they are recommended by ASHRAE Guideline 14 [139] and are shown in 

section 4.2.6.   

5.2.7 Results and discussions 

This section presents the results of the single point and ensemble models applied to forecast the 

future electric demand for the HVAC with a horizon of six-hours in advance. The models applied 

historical lags as inputs to the machine learning model with current and past usages from t to t-n 

hours behind. The full datasets were broken into training, validation, and testing data. The 

validation set consists of the 12-hours prior to the testing dataset. At each hour over the testing 

dataset, the forecasts for the next six hours were generated and compared with that of the synthetic 

eQuest data in order to calculate and record the error of each forecasting model. Retraining occurs 

for the machine learning models every 12 hours. After each model has been applied to the full 

testing dataset, the average of each model is then calculated. Table 12 presents the average 

performance results for each model. For this work, the testing dataset is from 08:00 07/30/2014 to 

08:00 07/31/2014, or one full day.  

The results can be observed that the LSTM models provided the top two performing models over 

the testing data. Furthermore, the LSTM ensemble model obtained the lowest forecasting error 

with 5.73% CV(RMSE) while the optimized single point LSTM model was a close second with 

and error of 5.77% CV(RMSE).  

Table 12: Performance results over testing dataset for the preliminary study  

Forecasting Model 
RMSE 

(kW) 

CV(RMSE) 

(%) 

LSTM ensemble 5.58 5.73 

LSTM (24-100-6) 5.55 5.77 

FFNN (24-50-6) 6.66 6.91 

SFA 11.33 11.60 

 

5.2.8 Verification of code development  

In order to verify the code developed for this work, a single point LSTM forecasting model was 

applied to generated datasets. These generated datasets consisted of two daily profiles with a larger 

and smaller operational time. The first generated dataset will consist of a high/low period over an 

eight-hour duration, while the second generated dataset will consist of a high/low period over a 

five-hour duration. Both daily profiles were applied over a total length of two months, similar of 
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the previous work (June 1st to August 1st, 2014). Furthermore, the single point LSTM model was 

applied in an accumulative window approach, used only historical lags as inputs, and consisted of 

the same overall LSTM architecture (24-90-6). Similarly, the goal is to forecast up to six-hours 

ahead.  

Figure 27 presents the operational profile for both generated datasets constructed. The longer 

(eight-hour) set begins an operational high (300 kW) at 10:00 which remains until 18:00 when an 

operational low (100 kW) begins and continues until the following day. The shorter generated 

dataset begins its operational high at 11:00 which remains until the low period beginning at 16:00.  

 

Figure 27: Five and eight-hour generated datasets for verification 

Table 13 presents the average forecasting errors as the LSTM model was applied through the 

testing dataset. It can be seen that the forecasting models provided an average CV(RMSE) of 

1.49% when applied to the five-hour operational profile and an average CV(RMSE) of 1.81% with 

the longer eight-hour operation load profile.  

Table 13: Performance Results for generated datasets 

 Five-hour duration Eight-hour duration 

 RMSE (kW) CV(RMSE) (%) RMSE (kW) CV(RMSE) (%) 

Error 2.30 1.49 2.53 1.81 

STD of Error 3.02 1.75 1.82 1.48 

 

5.2.9  Preliminary LSTM furcating model conclusions  

The models demonstrate an ability to capture the general shape of the electric demand profiles, 

however, some phenomena remain difficult to forecast. It was observed that LSTM models are 
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more sensitive to hyperparameters such as epochs and activation functions rather than additional 

hidden neurons. Furthermore, the additional layers drastically increased the training time required 

for the LSTM models without a significant performance effect. The models developed and 

presented in this work showed acceptable performance with a CV(RMSE) of less than 7% for the 

machine learning models over the forecast horizons when applied to the testing dataset.  

From the literature review of artificial neural networks applied to forecast energy in buildings, it 

has been shown that the majority of applications have been applied to whole building based energy 

loads [24, 41, 44] . There are few papers which applied ANN models and fewer which have applied 

DL models for forecasting internal electric loads within buildings. Despite this, the forecasting for 

the electric demand of the HVAC system remains an area of high interest for the application of 

demand response based research and programs. Thus, additional research efforts are required [21, 

188, 212]. 

5.3 Methods 

Section 5.3 outlines the methods and techniques within the development of the forecasting models 

applied in the synthetic data case study. The headings of section 5.3 follow the methodology for 

developing forecasting models presented in section 3.1, however, a more in-depth overview of the 

specific techniques applied are described in each sub-section.   

5.3.1 Information Gathering   

This work is based off data obtained from an eQuest model for the building previously published 

in [187]. For this work, it is assumed that the eQuest model is sufficiently calibrated. The original 

eQuest file completed was calibrated for 2011. As such, minor modifications were required, 

however, it was desired to keep the number of modifications to a minimal amount. The first 

modification applied was the substitution of weather data for 2014. For this, a weather file was 

obtained from Environment Canada for the Montréal-Pierre Elliott Trudeau International Airport 

located in Dorval over the year 2014. This airport was selected as it was the closest to the university 

campus and building and substituted into the simulation. The second modification completed was 

the alteration of the hourly output report. New variables were required as output measurements 

from the building and HVAC system based loads. The output variables selected from the eQuest 

simulation were chosen as they were similar to those of the measured values of the existing 
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building. Upon completion of the modifications, the eQuest simulation was run, and data was 

collected for the system.  

5.3.2 Preprocessing of data   

5.3.2.1 Outlier detection, missing and replacement of data approach  

As previously stated, this case study is based on data from an eQuest simulation model of a 

building. Therefore, the overall dataset is whole and without missing data points. Furthermore, all 

points are calculated and based on physics based equations. As a result, it is assumed that the data 

obtained from the eQuest file is noise and outlier free. Thus, the data obtained from this case study 

does not require preprocessing steps which normally would be applied to data obtained from sensor 

measurements.  

5.3.3 Preliminary analysis  

5.3.3.1 Exploratory analysis of the target variables 

An exploratory analysis is applied to the target variables in order to provide a summary of their 

main characteristics. The methods applied within the exploratory analysis include: (i) carpet plots 

of the target variable over the full dataset, (ii) day plots applying a single week of data over a 24 

hour axis, (iii) a probability distribution graph for the target variable isolating weekdays and 

weekends, and (iv) summary statistics for each target variable over the full dataset, weekdays, and 

weekends. 

5.3.3.2 Feature selection  

For the synthetic case study, feature selection was primarily based on available eQuest data from 

the hourly reports. It is desired to be able and compare the system based models on both case 

studies while keeping similar as much as possible (applied dates, forecasting approach, 

features/regressors, hyperparameter tuning approach, horizon, etc.). Therefore, the dataset 

generated for this work was accomplished by comparing, identifying and then selecting similar 

variables between the eQuest software and the BAS system. However, there were a few minor 

differences for certain variables. Firstly, the electric demand of the chiller is a single point in 

eQuest, however, there are multiple loads in the BAS software. Nevertheless, such loads in the 

measurement case study will be summed into a single overall point. Secondly, there was a 

difference in the electric demand for the pumps. In eQuest, the electrical demand for the pumps is 
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provided as an hourly output value [kW]. In contrast, in the BAS data, the recorded value for the 

pumps is based on their state of operation [ON/OFF]. However, such pumps are operated at a 

constant speed and can easily be converted to a numerical value. A final difference are the 

regressors which are readily available within the eQuest software, however, within the BAS 

measurement data they require a physics based equation. For example, the electric demand of the 

cooling tower is provided as a numerical output in the eQuest simulation [kW]. In contrast, the 

BAS output provides the measured fan modulation [%] which requires a physics based equation 

in order to calculate the electric demand.  

Based on available outputs and a synchronization of variables with BAS software, regressors were 

then selected for each target variable based on reference [188]. The feature selection analysis 

conducted in reference [188], selected the regressors for the same building and was based on a 

cross correlation analysis and physics based equations.   

5.3.4 Forecasting model construction  

5.3.4.1 Feature scaling  

The first step in the development of the forecasting models is the normalization of the data. For 

this work, the min-max method was applied in order to normalize both the input and target data. 

The governing equation for the min-max method is provided in equation 4-5 in section 4.2.3.3. 

5.3.4.2 Hyperparameter tuning 

The DL model selected for the system level approach consists of a large number of 

hyperparameters required for tuning. Such hyperparameters include: the number of hidden layers, 

the number of hidden layer neurons in each layer, the number of epochs, and the amount of training 

days. Such hyperparameters are needed for both AE and LSTM models. Additionally, there is no 

standard procedure for the selection of hyperparameters and as such, model development has 

typically been achieved through heuristic means in previous research. It was desired to explore all 

possible architectures, however, such a search is computationally expensive and requires a long 

period of time. Therefore, for the work herein a standard procedure was followed based on a 

combined grid search technique. The following provides the steps completed in the tuning of the 

hyperparameters for the EN-LSTM models:  
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Step 1: Select the number of inputs and consecutively adjust the time lags for all regressors 

        1.1 Separate full dataset into training, validation, and testing.   

        1.2 Select the number of lags for each model. The search range conducted for the monolithic 

              model is 5,6,7,8,9,10,11,12,18, and 24 lags. While the search range for the sequential models 

              is 5,6,7,8,9,10,11,12,18,24,30, and 36 lags.  

        1.3 An additional step is required for the sequential models to couple the forecasted values,  

             t+1..t+24, to the lagged values (t,…t-n) as an overall input structure for each sequential model.  

Step 2: Finding the encoder architecture  

2.1 Select the training data and separate it into two sections: training (85%) and validation (15%). 

2.2 Select the number of hidden layer neurons in hidden layers one and five based on the number 

      of inputs and lags. 

2.3 Select the number of neurons in hidden layers two and four. Boundaries of the search range 

      of these layers are from 0.5*H1 to 0.95*H1 with step sizes of five neurons. The boundary  

      conditions are such that hidden layers two are less than hidden layer one (H1>H2) to ensure 

      data compression. 

2.4 Select the number of neurons in the third hidden layer. Boundaries of the search are set to 

      0.5*H2 to 0.95*H2 with step sizes of five neurons.  

2.5 Training the AE with the ninety percent data and validate the model with the ten percent. 

      Average the performance of the AE model and record the result. 

       2.6 Adjust the architecture of the AE through points 2.1 to 2.5 over the boundary conditions. 

       2.7 Based on the search results for the AE architectures, select the architecture which obtained the 

             lowest error and extract the encoder architecture for each given number given lags.  

Step 3: Finding the EN-LSTM architectures 

3.1 Select the training data and validation datasets. 

3.2 Select the number of input regressors and the EN architecture found for each.  

3.3 Select the number of LSTM units. The search range conducted was 75, 100, 125, 150, 175,  

     and 200 units in the LSTM layer and the output layer of the LSTM consisted of a fully 

     connected layer equal to the number of output forecasts.  

3.4 Couple the EN to the LSTM, train the model and apply to the validation dataset. Average the 

      forecasting performance of the EN-LSTM single point model and repeat.  

3.5 Record the average performance of each architecture.  

3.6 Select the EN-LSTM architecture with the lowest error. Adjust the length of the training 

dataset over the steps of 59, 50, 40, 30, and 20 days. Train the EN-LSTM with each varied 
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length of training data, apply the train models to the validation set (remains unchanged) and 

record the average forecasting performance of each model with a varied length of training data.  

Step 4: Selecting EN-LSTM ensemble hyperparameters 

       4.1  Average the performance ranges of EN-LSTM hyperparameters   

       4.2  Select the range of EN-LSTM models which achieves the lowest forecasting error 

 

5.3.4.3 Ensemble forecasting approach  

For this work, an ensemble forecasting model is applied to the testing dataset. The ensemble model 

consists of a homogenous ensemble of the EN-LSTM forecasting model. An encoder compresses 

the input data which is then applied as inputs to four LSTM models. The output forecasts of each 

LSTM model are then combined in an equal weights approach.   

5.3.4.4 Performance metrices  

For this case study, the performance metrics selected include the root mean squared error (RMSE) 

and the coefficient of variation of the root mean square error CV(RMSE). Such performance 

metrics are calculated at each time step for the case study over the forecast horizon. The equations 

for both are presented in equations 4-12 and 4-13 and were selected as they are recommended by 

ASHRAE Guideline 14 [139].  

5.4 Synthetic data case study 

5.4.1 Case study description  

The data source for this study is obtained from an eQuest simulation of the Genomics building 

located at Concordia University, Loyola campus in Montreal Canada. The eQuest model for this 

work was previously completed and is published in reference [187]. Synthetic hourly data is 

extracted from the simulation for both regressors and target variables, and then used in order to 

tune and apply the proposed system based forecasting models. The proposed models are applied 

over the cooling season and the range of dates extracted are from June 1st to August 31st 2014. All 

data preprocessing, model tuning and model application for the synthetic case study were 

completed on an Intel Core 2.8 GHz CPU operating Windows 10 on a 64 bit operating system and 

with 8 GB RAM. Furthermore, all forecasting models were simulated in Python using Keras.  
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5.4.2 Governing equations  

The system level models are applied to forecast the electric demand of the HVAC cooling system 

during the summer operation. The following details the governing equations for the case study 

with respect to the data obtained from the eQuest model for the building. The forecast for the 

electric demand of the cooling system over the forecast horizon is shown in equation 5-2.   

ĖGE,HVAC,ED
t+i  = Ėsecondary,sys

t+i +  Ėprimary,sys
t+i   5-2 

Where t refers to time and i refers to the specific time step. For example, the forecast generated at 

six hours ahead would be (t+6). The first term in equation 5-2 (Ėsecondary,sys
t+i ) refers to the electric 

demand of the secondary system. The secondary system is defined by ASHRAE as the elements 

of the HVAC between the central heating/cooling system and those of the terminal or zone units 

[9]. For this case study, this refers to the electric demand of the AHU supply fans. The second term 

of equation 5-2 refers to the electric demand of the primary system (Ėprimary,sys
t+i ). The primary 

system is defined by ASHRAE as the part of the HVAC system which consumes energy and 

delivers the heating/cooling to a building(s) through the secondary system [9]. Equipment of the 

primary system may include: chillers, boilers, cooling towers, pumps, and other co-

generation/thermal storage equipment [9]. For this case study, the secondary and primary system 

equations are provided in equation 5-3 and 5-4 respectively.  

Ėsecondary,sys
t+i  = Ėfan,supply

t+i   5-3 

Ėprimary,sys
t+i  = Ėpump,CHWS

t+i +  ĖChiller
t+i +  Ėpump,CDS

t+i + ĖCooling,Tower
t+i   5-4 

Within the eQuest file, the hourly report was adjusted to output all the variables within equations 

5-3 and 5-4. The variables were then combined prior to the preliminary analysis in order to 

generate the data for this case study.  

In addition to the primary and secondary system electric demands, the system level sequential 

approach outputs forecasts for two thermal energy loads within the HVAC system: the air-side 

cooling load and the water-side cooling load. The equation for such models is provided in equation 

5-5 for the air side cooling load and in equation 5-6 for the water-side cooling load. It should be 

noted, that while eQuest does provide hourly data for each variable in equation 5-5 and 5-6, it 

additionally provides the cooling load as outputs. Therefore, such datasets were obtained, and the 

equations were only applied to verify.  
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Q̇GE,air side
t+i  = V̇supply,air

t+i ∗ ρair ∗ 10−3 ∗ (hmixing,air − hcold,deck)  5-5 

Q̇GE,water side
t+i = V̇CHW 

t+i ∗ ρwater ∗ 10−3 ∗ cp,water(TCHW,sup − TCHW,ret)  5-6 

Where V̇ refers to the volumetric flow rate (L/s); ρ refers to the density (kg/m3), h refers to the 

enthalpy of the mixing air and cold deck (kJ/kg), cp refers to the specific heat capacity of water 

(kJ/kg. oC), and TCHW,sup refers to the chilled water supply temperature (oC) and TCHW,ret refers to 

the chilled water return temperature (oC).  

5.4.3 Preliminary analysis of the target variables  

This section presents the preliminary analysis for each target variable for the system based 

forecasting approaches. The preliminary analysis conducted on each target variable includes (i) an 

exploratory analysis graphing the variables and identifying trends, and (ii) summary statistics of 

each variable for weekday, weekend, and full datasets. 

5.4.3.1 Preliminary analysis secondary system electric demand 

The daily operation of the supply fans for the HVAC system is outputted from the eQuest 

simulation with hourly time steps. The data is extracted for a full year, however, for this case study 

the dates from June 1st to August 31st, 2014 are applied. The restriction of dates is for comparison 

purposes between case studies. The daily operation over the full dataset is presented in Figure 28 

were the horizontal axis refers to the hour of the day and the vertical axis refers to the day of the 

year. The color of each cell corresponds to the supply fans electric power demand, with higher 

demand shown in red and lower demand shown in blue. Within Figure 28, we can see a ramp up 

of operation (low to high) typically occurring at approximately 08:00 with a ramp down beginning 

at approximately 17:00.  
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Figure 28: Secondary system electric demand carpet plot for the synthetic case study 

Figure 29 presents a day plot for the secondary system electric demand from 21/07/2014 to 

27/07/2014 (one week prior to the testing data). Weekdays can be noticed to have larger electric 

demand loads commencing at approximately 06:00 to 07:00 with peaks occurring at approximately 

14:00 to 17:00 followed by a ramp down of operation.  

 
Figure 29: Secondary system electric demand day plot for the synthetic case study 

The probability distribution of the electric demand for the secondary system is presented in Figure 

30. Within Figure 30 the weekday periods are depicted in black, while the weekend periods are 

depicted in white. From the figure, it shows that the frequency of occurrences for the electric 

demand follows an asymmetrical distribution skewed to the right (mean is to the right of the 

median). 
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Figure 30: Secondary system electric demand probability distribution for the synthetic case study 

Table 14 presents summary statistics for the full, weekday, and weekend datasets. For the weekday 

and weekend datasets, the data for each day type was found, isolated and extracted from the full 

dataset and placed into a separate column for analysis. The maximum electric demand for the 

system during weekday operation is 6.69 kW with a minimum value of 1.83 kW. The weekend 

shows a maximum of 3.58 kW and a minimum of 1.83 kW. 

Table 14: Secondary system electric demand summary statistics for the synthetic case study 

Summary Statistics 
Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean 2.38 2.08 2.51 

Quartile 1 1.89 1.87 1.90 

Median 2.04 1.95 2.12 

Quartile 3 2.59 2.19 2.89 

Maximum values 6.69 3.58 6.69 

Minimum values 1.83 1.83 1.83 

Range 4.86 1.76 4.86 

Standard Deviation 0.75 0.30 0.84 

 

5.4.3.2 Preliminary analysis air-side cooling load 

The thermal load on the air-side of the HVAC system can be calculated through equation 5-5. The 

air-side cooling load over the full dataset is presented in Figure 31 through a carpet plot.   
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Figure 31: Air-side cooling load carpet plot for the synthetic case study 

The blue color squares of Figure 31 correspond to periods when the demand for cooling is low (10 

to 100 kW) while the red colors correspond to periods of high demand (400 to 525 kW). The daily 

operation shows a ramp up occurring from 06:00 to 07:00. The ramp ups begins similarly as the 

electric demand of the secondary system also begins to increase its demand. Ramp-downs for the 

air-side cooling load begin decreasing approximately at 16:00 to 17:00.  

 
Figure 32: Air-side cooling load day plot for the synthetic case study 

The day plot for the air side cooling load is presented in Figure 32 using one week of data prior to 

the testing dataset (21/07/2014 to 27/07/2014). The figure shows the diverse patterns occurring 
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with Monday through Wednesday containing the largest thermal demands, followed by Thursday 

with the lowest.  

 
Figure 33: Air-side cooling load probability distribution for the synthetic case study 

Figure 33 provides a probability distribution graph for the air-side cooling load. The weekday 

values are depicted in black, while the weekend values are depicted in white. Bins for the frequency 

distribution are separated every 20 kW. From Figure 33 the most frequent occurrences are 120 kW 

for weekdays and 100 kW for weekends. Furthermore, summary statistics for the air-side cooling 

load are presented in Table 15. The peak demand for weekdays was found to be 512.88 kW and 

298.60 kW for weekends.  

Table 15: Air-side cooling load summary statistics for the synthetic case study 

Summary Statistics 
Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  136.21 127.22 139.94 

Quartile 1 85.52 86.03 85.12 

Median 124.78 124.13 125.15 

Quartile 3 174.58 167.48 176.56 

Maximum values 512.88 298.60 512.88 

Minimum values 6.30 6.30 18.06 

Range 506.58 292.30 494.82 

Standard Deviation 71.44 55.46 76.80 

 

5.4.3.3 Preliminary analysis water-side cooling load 

The water-side cooling load can be calculated based on equation 5-6. The cooling load is outputted 

from eQuest over the full year and the data is extracted for the summer operation from June 1st 



77 

 

 

 

until August 31st, 2014. Figure 34 presents the carpet plot for the water-side cooling system. Low 

demand periods (10 to 100 kW) can be seen in blue, while the high demand periods (400 to 550 

kW) can be seen in red. The carpet plot of the water-side cooling load shows an increase beginning 

from 06:00 to 07:00, as previously shown with the air-side cooling load.  

 
Figure 34: Water-side cooling load carpet plot for the synthetic case study 

Figure 35 presents the day plot for the water-side cooling load from 21/07/2014 to 27/07/2014. 

The daily patterns can be seen to follow closely with that of the air-side cooling load. However, a 

main difference is that the water-side cooling load is larger than that of the air-side load. 

 
Figure 35: Water-side cooling load day plot for the synthetic case study 

The probability distribution for the waters-side cooling load is illustrated in Figure 36 over the full 

dataset. Days are separated into weekends and weekdays and plotted based on the frequency of 
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occurrences over step sizes of 20 kW. The black bars of Figure 36 present the distribution of 

weekdays, while the white bars present the distribution during weekends. The figure shows a right 

skewed distribution with most occurrences of operation at 120 kW for weekdays and 100 kW for 

weekends.  

 
Figure 36: Water-side cooling load probability distribution for the synthetic case study 

Table 16 provides the summary statistics for the water-side cooling load over the full, weekday, 

and weekend data. The maximum demand shows 521.51 kW for weekdays and 307.41 for 

weekends. Furthermore, weekdays show a minimum demand of 27.40 kW while weekends show 

a minimum demand of 15.86 kW.   

Table 16: Water-side cooling load summary statistics for the synthetic case study 

Summary Statistics 
Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  145.37 136.37 149.11 

Quartile 1 94.63 95.17 94.31 

Median 133.84 133.21 134.39 

Quartile 3 183.77 176.50 186.21 

Maximum values 521.51 307.41 521.51 

Minimum values 15.86 15.86 27.40 

Range 505.65 291.54 494.11 

Standard Deviation 71.40 55.42 76.76 

 

5.4.3.4 Preliminary analysis primary system electric demand 

The electric demand for the primary system is shown in equation 5-4. The hourly output electric 

demand for the chilled water supply pump, chiller, condenser pump, and cooling tower fans are 
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extracted from the eQuest hourly report. These values are then summed (equation 5-4) together in 

order to create the dataset for the primary systems electric demand over the full year. From this 

point the data is extracted from June 1st until August 31st, 2014 in order to isolate the data for this 

case study. Figure 37 provides the carpet plot for the primary systems electric demand over the 

full dataset to be applied in this study. From the figure, a rise in demand can be seen occurring at 

approximately 05:00 to 07:00. Furthermore, reductions in demand can be seen occurring at 

approximately 17:00 depending on the day. The red colored cells of Figure 37 shows the high 

demand periods with values of (140 to170 kW) and low demand periods with a range of (50 to 80 

kW) as shown by the blue colored cells.  

 
Figure 37: Primary system electric demand carpet plot for the synthetic case study 

In order to help visualize the diverse daily patterns, a day plot for the primary systems electric 

demand is provided in Figure 38 for 21/07/2014 to 27/07/2014. The data for the figure is one week 

prior to that of the validation and testing data sets. The figure shows a relatively more rounded 

profile with fewer large variations as that of the previous loads. 
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Figure 38: Primary system electric demand day plot for the synthetic case study 

The probability distribution for the primary systems electric demand is shown in Figure 39. The 

full dataset is broken into weekdays, shown in black, and weekends which are depicted in white. 

The values for the distributions are separated based on bins of 5 kW starting from 60 kW and 

ending with 170 kW. From the figure, it can be seen that 95 kW have the most occurrences for 

weekdays, in comparison to weekends with 90 kW.  

 

Figure 39: Primary system electric demand probability distribution for the synthetic case study 

Table 17 provides the summary statistics for the electric demand of the primary system from June 

1st to August 31st, 2014. The maximum peaked value for the weekday is 162.39 kW and 135.47 

kW for the weekend. The minimum values for both the weekday and weekend are similar with 

63.76 kW and 60.45 kW respectively.  
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Table 17: Primary system electric demand summary statistics for the synthetic case study 

Summary Statistics 
Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  99.62 98.33 100.15 

Quartile 1 84.51 84.92 84.46 

Median 97.57 97.40 97.65 

Quartile 3 114.49 112.31 114.88 

Maximum values 162.39 135.47 162.39 

Minimum values 60.45 60.45 63.76 

Range 101.93 75.02 98.62 

Standard Deviation 19.01 17.45 19.59 

 

5.4.4 Forecasting model construction: Monolithic approach  

5.4.4.1 Selection of regressors: Monolithic model  

The selection of the regressors for the monolithic model was selected based on the work completed 

in reference [188] which selected the regressors based on available data, cross correlation and 

physics based equations. The work herein diverges from the previous work in that while similar 

regressors (features) are applied, the time steps for the regressors are different. For example, in the 

previous work, the target variable of the electric demand of the secondary system was forecasted 

using the air supply flow rate which varied lags from (t, t-1,…, t-90) at 15 minute time steps. For 

this work, the selection of time steps for the regressors (air flow) was based on the hyperparameter 

search conducted. However, the monolithic model consists of one large model exploring the effects 

of many regressors from the HVAC system applied in a single DL model. For this reason, the 

regressors applied for the monolithic model consists of all the regressors used in the previous work 

(selected for each regressor) and incorporated into a single model. The list of regressors applied as 

inputs for the monolithic model can be seen in Table 18, in addition to the target variables.  

Table 18: Selected regressors of the monolithic model for the synthetic case study 

Target variable(s) Regressor (s) 

 Secondary system 

 electric demand 

 Primary system  

 electric demand 

 Occupation 

 Hour 

 Outdoor dry bulb temperature and enthalpy 

 Ratio of outside air to total air flow rate 

 Mixing box dry bulb temperature and specific enthalpy 

 Cold deck temperature, specific enthalpy, and total air supply flow rate  

 AHU air-side cooling load 

 Chilled water supply temperature, return temperature, flow rate and cooling load 

 Secondary system electric demand 

 Primary system electric demand 
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5.4.4.2 Hyperparameter tuning results: Monolithic model  

In order to find the optimal hyperparameters, the method described in section 5.3.4.2 was applied. 

First, a grid search of different AE architectures was accomplished. This grid search varied the 

number of inputs and set boundary conditions based on the number of inputs. The architectures 

were trained on a sub-set of the training data (85%) and then tested on the remaining training sub-

set (15%). The average performances over the remaining (15%) were recorded. The architecture 

was then re-randomized with new weights, and the process was repeated multiple times for each 

given architecture. The architectures which produced the lowest averaged error were selected and 

are presented in Table 19.  

Table 19: Autoencoder results for the monolithic model for the synthetic case study 

Number  

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

5 95 95 40 95 95 5.28 

6 114 95 30 95 114 5.49 

7 133 95 45 95 133 6.84 

8 152 95 40 95 152 6.85 

9 171 95 45 95 171 7.53 

10 190 95 45 95 190 8.39 

11 209 95 45 95 209 8.42 

12 228 90 45 90 228 9.01 

18 342 95 45 95 342 10.32 

24 456 95 45 95 456 11.19 

 

Next, after identifying the AE architectures which produced the lowest errors for each given 

number of lags, the encoder architectures (H1 to H3) were extracted. LSTM models were then 

coupled to the encoder architectures and a grid search for the EN-LSTM model was then 

conducted. The LSTM model hidden layer units were varied from 75 to 200 in the first hidden 

layer, while the last most layer of the LSTM contained a fully connected layer. Each given EN-

LSTM architecture was trained and applied to the validation data recording the average 

performance. The average value for each architecture was recorded and is presented in Table 20.  
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Table 20: EN-LSTM monolithic hyperparameter results for the synthetic case study 
N

u
m

b
er

  

o
f 

la
g

s 
Average CV(RMSE) of EN-LSTM single point architectures  

applied to validation dataset 

(%) 

75 LSTM 

Units 

100 LSTM 

Units 

125 LSTM 

Units 

150 LSTM 

Units 

175 LSTM 

Units 

200 LSTM 

Units 

SEC PRI SEC PRI SEC PRI SEC PRI SEC PRI SEC PRI 

5 13.08 10.72 10.44 8.79 12.39 11.22 10.81 10.72 13.51 11.69 10.66 9.67 

6 13.63 9.55 9.75 7.90 10.64 9.82 8.98 7.25 10.83 8.60 9.00 8.54 

7 7.89 7.60 7.50 6.79 6.86 6.39 8.73 8.19 7.23 8.03 7.55 7.82 

8 6.02 5.85 6.24 6.72 6.99 7.79 5.37 7.58 6.04 9.03 5.95 8.56 

9 4.75 5.62 3.83 5.25 3.46 6.22 2.85 5.98 3.23 5.52 3.25 5.83 

10 4.88 5.61 4.88 5.61 3.50 3.84 3.35 4.14 3.49 5.26 5.01 6.40 

11 4.38 7.42 4.08 8.45 3.25 4.62 3.51 4.74 3.02 5.07 2.86 4.13 

12 3.58 6.44 3.55 5.40 3.28 4.53 3.41 4.79 4.91 5.17 3.33 5.14 

18 15.12 12.26 8.37 6.83 4.56 6.29 12.57 11.80 13.62 13.13 10.55 11.58 

24 5.50 6.02 4.36 4.90 4.54 13.17 5.82 10.76 3.16 10.54 5.67 9.84 

 

Next, averages were computed to identify the best performing range of architectures. The range of 

performances is presented in Table 21. The top performing architectures were identified with 11 

input lags (current values and the past ten hours) with an encoder architecture of 209-95-45 applied 

to LSTM models in a range of 125 to 200 units. 

Table 21: EN-LSTM ensemble hyperparameter results for the monolithic model for the synthetic 

case study 

Number  

of lags 

Average CV(RMSE) for monolithic ensemble 

(%) 

75 to 200 LSTM units 100 to 200 LSTM units 125 to 200 LSTM units 

Sec Sys Prim Sys Sec Sys Prim Sys Sec Sys Prim Sys 

5 11.82 10.47 11.56 10.42 11.84 10.83 

6 10.47 8.61 9.84 8.42 9.86 8.55 

7 7.63 7.47 7.58 7.44 7.59 7.61 

8 6.10 7.59 6.12 7.93 6.09 8.24 

9 3.56 5.74 3.32 5.76 3.20 5.89 

10 4.18 5.14 4.04 5.05 3.84 4.91 

11 3.52 5.74 3.35 5.40 3.16 4.64 

12 3.68 5.24 3.69 5.01 3.73 4.91 

18 10.80 10.32 9.93 9.93 10.33 10.70 

24 4.84 9.21 4.71 9.84 4.79 11.08 

 

In order to find the optimal number of training days for the EN-LSTM models, the top performing 

architecture was selected from Table 20 and consists of the: 11 lagged, EN 209-95-45, and a 200-

12 LSTM. This EN-LSTM architecture was then trained with varied lengths of data from: 20, 30, 
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40, 50 and 59 days. With each variation of training data length, the models were trained and then 

applied to the validation dataset and the forecasting performance was recorded. Figure 40 presents 

the results from the varied lengths of training data and shows that the model obtains the lowest 

error with the maximum amount of training data.  

 

Figure 40: Adjustment of training days for monolithic model for the synthetic case study 

5.4.5 Forecasting results: Monolithic model  

This section presents the results for the monolithic model forecasting for each target variable 

applying data at 08:00 July 30th 2014 to forecast 09:00 to 14:00 July 30th, 2014. Thus, this section 

presents the F+1 forecasts for the monolithic model for both target variables. The architecture of 

the monolithic model applied was based on the hyperparameter tuning method results and 

consisted of: (i) the features described in Table 18 (ii) 11 inputs for each feature (t to t-10 hrs.) (iii) 

an encoder architecture of 209-95-45 hidden neurons (iv) four LSTMs with 125 to 200 hidden 

layer units, and (v) trained with 59 days of data.  

Figure 41 presents the F+1 forecasts (first set of forecasts) and the synthetic data values. The 

synthetic data is shown by the red lines in both graphs, while the forecasted values are shown by 

the black lines. The top graph presents the F+1 for the secondary system electric demand while 

the bottom graph presents the F+1 for the primary system electric demand. The results for the F+1 

for the target variable of the secondary system electric demand was 0.28 kW RMSE and 8.83% 

CV(RMSE) over the forecast horizon. Furthermore, the F+1 performance for the target variable of 

the primary system electric demand was 7.62 kW RMSE and 7.59% CV(RMSE). Based on the 

forecasted values of the primary and secondary system, the total HVAC systems electric demand 



85 

 

 

 

is forecasted by the summation of both systems which yielded an forecasting error of 7.86 kW 

RMSE and 7.59% CV(RMSE). 

 

Figure 41: F+1 forecasts for the monolithic model applied to the synthetic case study  

5.4.6 Forecasting model construction: Sequential approach  

5.4.6.1 Selection of regressors for the target variables of the sequential approach 

Similar to the monolithic model, the selection of regressors for the sequential approach is based 

on the work completed in reference [188]. The sequential model differs from previous work in that 

forecasts were applied as inputs within this model. Furthermore, forecasting models completed in 

reference [188] targeted the electric demand of the chillers and an additional model for the electric 

demand of the cooling towers. For the work herein, such demands are summed along with the 

electric demand of the pumps into the primary system electric demand. 

Table 22 provides an overview for the regressors applied for each forecasting model of the 

sequential approach. It should be noted, that all the regressors applied current and historical values 

as inputs into the forecasting models. However, those variables listed in Table 22 marked with an 

asterisk (*) apply future estimates as inputs in addition to the current and historical values. 
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Table 22: Selected regressors for the sequential of the synthetic case study 

Target variable(s) Regressor (s) 

 Secondary system electric demand 

 

 Occupation 

 Total air supply flow rate  

 Secondary system electric demand  

 Air-side cooling load 

 

 Outdoor dry bulb temperature and enthalpy 

 Mixing box dry bulb temperature  

 AHU air-side cooling load 

 Total air supply flow rate  

 Secondary system electric demand * 

 Water-side cooling load   Outdoor dry bulb temperature and enthalpy 

 Ratio of outside air to total air flow rate 

 Mixing box dry bulb temperature 

 Water-side cooling load 

 Air-side cooling load * 

 Primary system electric demand  Outdoor dry bulb temperature and enthalpy 

 Chilled water return temperature and flow rate  

 Chiller and cooling tower electric demand 

 Primary system electric demand  

 Water-side cooling load * 

 

5.4.6.2 Secondary system electric demand: Hyperparameter tuning results 

The grid search was conducted based on the features, inputs, and boundary conditions for the 

encoder architectures. The top performing architectures for the AE models of the secondary system 

were recorded and are presented in Table 23. It should also be noted that for the sequential model, 

the number of lags was extended up to 36 compared to the monolithic model which stop its search 

at 24. This was done to explore the EN-LSTM models ability for handling longer sequences of 

input data.  

Table 23: Secondary system electric demand AE model of the synthetic case study 

Number of lags H1 H2 H3 H4 H5 Average CV(RMSE) (%) 
5 15 15 5 15 15 155.00 

6 18 15 5 15 18 135.36 

7 21 20 5 20 21 100.37 

8 24 15 5 15 24 91.37 

9 27 25 10 25 27 57.57 

10 30 30 10 30 30 50.66 

11 33 30 10 30 33 49.74 

12 36 35 15 35 36 36.41 

18 54 50 20 50 54 28.27 

24 72 70 30 70 72 24.36 

30 90 90 40 90 90 24.68 

36 108 95 45 95 108 27.07 
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Given the results of the AE search, the top performing encoder architectures (H1 to H3) were 

coupled to LSTM models and a grid search was conducted. Each single point architecture was 

trained and applied to the validation dataset and the average performance of the model was 

recorded. The results for the grid search are presented in the left hand side of Table 24. 

Additionally, the top performing range of ensemble of EN-LSTM architectures was calculated and 

is shown in the right hand side of Table 24. Based on the grid search approach applied, the EN-

LSTM ensemble which obtained the lowest error is identified as nine inputs, with a 27-25-10 

encoder architecture and 125 to 200 neurons.  

Table 24: EN-LSTM hyperparameter results for the secondary system electric demand model of 

the synthetic case study 

N
u

m
b

er
  

o
f 

la
g
s 

Average CV(RMSE) of single point  

EN-LSTM architectures  

(%) 

Average CV(RMSE) of ensemble of  

EN-LSTM architectures   

(%) 

75 

LSTM 

Units 

100 

LSTM 

Units 

125 

LSTM 

Units 

150 

LSTM 

Units 

175 

LSTM 

Units 

200 

LSTM 

Units 

75 to 200 

LSTM 

units  

100 to 200 

LSTM 

units 

125 to 200 

LSTM 

units 

5 8.16 9.24 10.66 10.06 9.65 10.06 9.64 9.93 10.11 

6 7.58 7.64 7.76 7.38 7.49 7.63 7.58 7.58 7.57 

7 7.86 6.06 5.99 5.39 5.20 5.73 6.04 5.67 5.58 

8 3.88 3.78 5.44 3.80 4.12 3.98 4.17 4.22 4.33 

9 2.95 2.59 2.27 2.42 2.06 1.76 2.34 2.22 2.13 

10 3.46 2.79 2.03 2.68 2.12 2.31 2.56 2.38 2.28 

11 3.11 2.58 2.39 2.68 2.45 2.41 2.60 2.50 2.48 

12 3.83 3.42 3.04 2.31 3.27 2.93 3.13 2.99 2.89 

18 2.85 2.92 3.00 2.15 2.45 1.86 2.54 2.48 2.37 

24 2.82 2.79 3.22 3.20 2.91 2.49 2.91 2.92 2.96 

30 2.70 2.62 5.22 3.71 2.77 3.32 3.39 3.53 3.76 

36 4.69 3.55 3.28 3.63 2.69 4.84 3.78 3.60 3.61 

 

In order to tune the number of training days, a single point EN-LSTM was selected and applied to 

the validation dataset with varied lengths of training time. The architecture selected consisted of a 

9 lagged, 27-25-10 EN, and 200-6 LSTM. The performance of such tuning is presented in Figure 

42. Based on the results of Figure 42, the models obtain the lowest error over the validation dataset 

with the maximum number of training days. Therefore, the architecture to be applied to the testing 

data set consists of nine lagged, 27-25-10 EN, 125 to 200 hidden unit LSTM, and trained with 59 

days of data. 
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Figure 42: Adjustment of training days for secondary system electric demand model (synthetic 

case study) 

5.4.6.3 Air-side cooling load: Hyperparameter tuning results 

The results for the AE grid search for the air-side cooling load forecasting model is presented in 

Table 25. The regressors used are listed in Table 22 and consists of 6 variables plus six additional 

time lags (t+1 to t+6) for the secondary system electric demand regressor.  

Table 25: Autoencoder results for the air-side cooling load model applied to the synthetic case 

study 

Number 

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

5 36 35 15 35 36 7.10 

6 42 40 15 40 42 7.20 

7 48 45 20 45 48 6.96 

8 54 50 20 50 54 7.61 

9 60 55 25 55 60 7.36 

10 66 55 25 55 66 7.39 

11 72 70 30 70 72 7.35 

12 78 70 30 70 78 7.48 

18 114 90 35 90 114 8.31 

24 150 95 45 95 150 8.70 

30 186 95 35 95 186 9.56 

36 222 95 45 95 222 9.73 

 

Based on the AE grid search, the top performing encoder architectures were selected for each lag 

(H1 to H3) and coupled with LSTM models. A grid search was accomplished for the EN-LSTM 

models as they were applied to the validation dataset. The results of the grid search for the single 
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point models is presented in the left side of Table 26 and the calculated averages for the ensemble 

models is presented in the right side of Table 26. The range which obtained the lowest error is 

observed to be a five lagged, 36-35-15 EN, and with 100 to 175 LSTM units.  

Table 26: EN-LSTM hyperparameter results for the air-side cooling load model for the synthetic 

case study 

N
u

m
b

er
  

o
f 

la
g

s 

Average CV(RMSE) of single point  

EN-LSTM architectures  

(%) 

Average CV(RMSE) of ensemble of  

EN-LSTM architectures   

(%) 

75 

LSTM 

Units 

100 

LSTM 

Units 

125 

LSTM 

Units 

150 

LSTM 

Units 

175 

LSTM 

Units 

200 

LSTM 

Units 

75 to 200 

neurons  

100 to 175 

neurons  

100 to 200 

neurons 

5 14.68 15.45 14.44 16.48 14.45 19.37 15.81 15.20 16.04 

6 19.92 22.67 18.14 18.65 17.00 19.71 19.35 19.11 19.23 

7 19.36 14.97 18.66 16.13 20.89 20.86 18.48 17.66 18.30 

8 21.98 20.83 18.91 21.48 20.28 19.66 20.53 20.38 20.23 

9 21.92 17.75 19.83 21.74 21.86 26.98 21.68 20.29 21.63 

10 22.73 23.56 22.76 24.12 19.29 23.48 22.66 22.43 22.64 

11 18.46 20.11 22.60 17.63 19.43 20.97 19.87 19.94 20.15 

12 17.68 19.81 16.59 18.27 17.73 16.10 17.70 18.10 17.70 

18 22.58 21.40 20.70 19.66 21.19 19.68 20.87 20.74 20.52 

24 19.23 22.08 30.44 25.57 22.17 24.80 24.05 25.06 25.01 

30 26.16 29.95 31.39 33.54 30.22 32.81 30.68 31.27 31.58 

36 30.33 34.77 29.72 28.78 36.95 37.53 33.01 32.56 33.55 

 

The architecture of a five lagged, 36-35-15 EN, and 125-6 LSTM was selected in order to explore 

the number of training days required for the model. Figure 43 presents the results for the amount 

of training data and the performance of the selected model when applied to the validation dataset. 

It can be observed that the model obtains the lowest error with the maximum number of training 

data. Based on the search conducted for the air-side cooling load, the forecasting model to be 

applied consists of an EN-LSTM ensemble with five inputs, 36-35-15 encoder architecture, 100 to 

175 hidden layer units in the LSTM models, and 59 days of training data.  



90 

 

 

 

 

Figure 43: Adjustment of training days for the air-side forecasting model (Synthetic case study) 

5.4.6.4 Water-side cooling load: Hyperparameter tuning results 

This section presents the results of the hyperparameter tuning of the water-side cooling load model 

in the sequential forecasting approach. Table 27 provides the results obtained from the grid search 

of the autoencoder.  

Table 27: Autoencoder results for the water-side cooling load model of the synthetic case study 

Number  

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

5 36 35 15 35 36 3.65 

6 42 40 15 40 42 3.61 

7 48 45 20 45 48 3.67 

8 54 50 15 50 54 3.98 

9 60 60 20 60 60 3.87 

10 66 65 30 65 66 3.97 

11 72 70 30 70 72 3.95 

12 78 75 35 75 78 4.03 

18 114 90 30 90 114 4.73 

24 150 95 45 95 150 5.15 

30 186 95 45 95 186 5.57 

36 222 95 45 95 222 6.04 

 

After the grid search for the autoencoder, a grid search of the EN-LSTM single point forecasting 

models targeting the water-side cooling load was then accomplished. The results of the combined 

models is presented in Table 28. The single point architecture found to have the lowest error based 

on the grid search conducted consists of a five lagged, 36-35-15 encoder architecture, and with 

200-6 LSTM (8.11% AVG CV(RMSE)). The ensemble which obtained the lowest error based on 
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the grid search conducted was found to be five lags, 36-35-15 encoder, and 100 to 200 units in the 

LSTM models (9.84% CV(RMSE)).  

Table 28: EN-LSTM hyperparameter results of the water-side cooling load model for the 

synthetic case study 

N
u

m
b

er
  

o
f 

la
g

s 

Average CV(RMSE) of single point  

EN-LSTM architectures  

(%) 

Average CV(RMSE) of ensemble of  

EN-LSTM architectures   

(%) 

75 

LSTM 

Units 

100 

LSTM 

Units 

125 

LSTM 

Units 

150 

LSTM 

Units 

175 

LSTM 

Units 

200 

LSTM 

Units 

75 to 200 

neurons  

100 to 175 

neurons  

100 to 200 

neurons 

5 12.07 10.66 10.24 8.79 11.41 8.11 10.21 10.28 9.84 

6 9.85 12.65 11.08 14.70 10.48 13.62 12.07 12.23 12.51 

7 14.03 11.28 10.61 13.91 9.45 9.49 11.46 11.31 10.95 

8 10.40 12.69 11.04 10.92 10.43 9.06 10.76 11.27 10.83 

9 17.32 15.68 12.45 13.17 12.19 12.26 13.84 13.37 13.15 

10 13.12 13.88 12.35 14.73 11.24 13.74 13.18 13.05 13.19 

11 14.01 13.56 10.44 11.19 11.32 11.39 11.99 11.63 11.58 

12 11.50 13.21 13.16 11.90 14.30 11.24 12.55 13.14 12.76 

18 19.72 15.47 19.12 17.55 13.11 13.99 16.49 16.31 15.85 

24 17.20 16.38 15.17 11.86 17.03 16.75 15.73 15.11 15.44 

30 20.99 14.99 17.78 13.93 21.85 12.65 17.03 17.14 16.24 

36 17.72 16.97 16.65 14.94 17.07 15.30 16.44 16.41 16.19 

 

The single point forecasting model with the lowest error (five inputs, 35-15 encoder, and 200 

LSTM units) was selected to explore the effects of adjusting the amount of training days. The 

results of adjusting the lengths of training data are presented in Figure 44 and show the lowest 

error with the largest length of training data.  

 

Figure 44: Adjustment of training days for the water-side cooling load forecasting model 

(synthetic case study) 
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Based on the search conducted, the architecture of five inputs, 36-35-15 EN, 100 to 200 LSTM 

units, and 59 days of training data is selected as the water-side forecasting model hyperparameters 

which will be applied to the testing dataset.  

5.4.6.5 Primary system: Hyperparameter tuning results  

The primary system electric demand contains the load profiles for the chiller, cooling tower and 

water pumps of the HVAC system. This section presents the results found from the hyperparameter 

optimization stage of the primary system model within the sequential forecasting approach. Firstly, 

a grid search was conducted for the AE model based on regressors presented in Table 22. The 

results of the grid search are presented in Table 29 which provide the top performing AE 

architecture for each number of lags.  

Table 29: AE results for the primary system electric demand model of the synthetic case study 

Number  

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

5 46 45 20 45 46 5.46 

6 54 50 15 50 54 5.91 

7 62 60 20 60 62 5.63 

8 70 70 30 70 70 5.36 

9 78 75 35 75 78 5.61 

10 86 80 35 80 86 5.48 

11 94 90 35 90 94 5.72 

12 102 95 45 95 102 5.58 

18 150 95 35 95 150 7.37 

24 198 95 40 95 198 7.94 

30 246 95 35 95 246 8.76 

36 294 90 35 90 294 8.92 

 

The results of the autoencoder search were then applied to a grid search for the EN-LSTM models. 

Table 30 provides the performance results for the single point EN-LSTM models (left hand side) 

and ensemble based models (right hand side). The EN-LSTM single point forecasting model which 

obtained the lowest error (2.13% CV(RMSE)) consists of the five input, 46-45-14 encoder and 

200-6 LSTM model. Furthermore, the EN-LSTM model which obtained the lowest calculated 

error is the five lagged, 46-45-20 encoder, and with 100 to 200 LSTM units (2.40% CV(RMSE)).  
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Table 30: EN-LSTM hyperparameter results for the primary system electric demand model of 

the synthetic case study 
N

u
m

b
er

  

o
f 

la
g

s 

Average CV(RMSE) of single point  

EN-LSTM architectures  

(%) 

Average CV(RMSE) of ensemble of  

EN-LSTM architectures   

(%) 

75 

LSTM 

Units 

100 

LSTM 

Units 

125 

LSTM 

Units 

150 

LSTM 

Units 

175 

LSTM 

Units 

200 

LSTM 

Units 

75 to 200 

neurons  

100 to 175 

neurons  

100 to 200 

neurons 

5 2.55 2.48 2.35 2.49 2.54 2.13 2.42 2.46 2.40 

6 3.77 4.83 4.06 3.58 3.71 3.91 3.98 4.04 4.02 

7 2.94 3.12 4.06 2.98 3.31 3.06 3.24 3.37 3.31 

8 3.20 3.32 3.22 3.08 3.38 3.23 3.24 3.25 3.25 

9 4.18 4.07 5.13 4.04 3.63 3.48 4.09 4.22 4.07 

10 4.03 3.34 3.73 3.63 3.34 3.78 3.64 3.51 3.56 

11 4.86 4.18 4.16 4.10 4.18 3.73 4.20 4.15 4.07 

12 6.20 6.35 4.22 6.31 5.11 5.20 5.57 5.50 5.44 

18 5.39 4.77 5.50 4.67 4.90 4.86 5.01 4.96 4.94 

24 6.74 5.07 5.56 4.56 5.31 6.72 5.66 5.13 5.44 

30 4.79 5.25 4.96 4.71 5.48 5.74 5.15 5.10 5.23 

36 5.51 4.92 4.24 5.36 6.80 6.17 5.50 5.33 5.50 

 

Selecting the five lagged, 46-45-14 encoder and 200-6 LSTM model, the performance of the model 

was explored with varied lengths of training data and then applied to the validation dataset. The 

average performance of the model was recorded and the results are presented in Figure 45. The 

results demonstrate that the model performs with the lowest error (2.13% CV(RMSE)) with the 

longest length of training data. Based on these results, the hyperparameters which will be applied 

to the testing data set consists of a five lagged, a 46-45-20 encoder, 100 to 200 LSTM units in the 

hidden layer and with a length of 59 days of training data.  

 

Figure 45: Tuning of the training days for the primary system electric demand model for the 

synthetic study 
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5.4.7 Forecasting results: Sequential model 

This section presents the results for each target variable of the sequential model as it is applied to 

generate the first forecasting set (F+1). Inputs were applied from 08:00 July 30th 2014 in order to 

generate forecasts for 09:00 to 14:00 July 30th 2014. The target variables are forecasted 

sequentially, one after each other passing the forecasted values to be used as inputs to the 

subsequent model. The F+1 forecasts for each target variable are shown in Figure 46. With the 

figure, the synthetic values are shown with the red lines of each graph and the forecasted values 

are shown with the black lines.  

The top most graph of Figure 46 presents the F+1 for the target variable of the secondary systems 

electric demand. From the figure, it can be seen that the forecasts for the secondary system electric 

demand follow closely with the profile and show acceptable performance with an error of 0.22 kW 

RMSE and 6.83% CV(RMSE).  

The second target variable forecasted is the air-side cooling load. Based on current and historical 

data for the regressors and the forecasts of the secondary system, the forecast generated for the air-

side cooling load is presented in the second graph (from the top) of Figure 46. The error of this 

model over the forecast horizon is 23.73 kW and 17.49% CV(RMSE).  

Based on the forecasts for the previous model, the third model targets forecasting the water-side 

cooling load. The output F+1 forecast for the water-side cooling load is shown in Figure 46 (second 

from the bottom). The error obtained for this forecasting model over the horizon was 27.13 kW 

RMSE and 18.76% CV(RMSE).  

The last DL model forecast within the sequential approach targets forecasting the primary system 

cooling load. Based on the regressors and the forecasts from the third model, the forecasts for the 

primary systems electric demand are generated. The first forecasting set (F+1) for the primary 

system electric demand is shown in the bottom most graph of Figure 46. The error for this model 

is 14.19 kW RMSE and 14.14% CV(RMSE).  
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Figure 46: F+1 forecasts for the sequential model of the synthetic case study 

The final forecast of the sequential forecasting model is for the total HVAC systems electric 

demand. This is achieved by the addition of the forecasts for the primary and secondary systems. 

Based on the F+1 forecasts for both HVAC systems, the forecasts generated by the sequential 

approach obtained an error of 14.39 kW RMSE and 13.90% CV(RMSE) for the F+1 forecast of 

the total HVAC systems electric demand. 

5.4.8 Comparison of forecasting results approaches  

This section compares the results for both system approaches applied to forecast the target 

variables. For this work, the testing data set consists of one day of consecutive forecasts starting 

at 08:00 7/30/2014 and continuing until 08:00 7/31/2014. The target variables for both system 

based forecasting models are calculated each hour over the forecast horizon. For the monolithic 

approach, the DL model forecasts based on current and past values of the regressors. For the 

sequential approach, the DL models forecasts based on historical usage, current values, and 

forecasts generated by the upstream model. The hyperparameters applied are based on search 

results conducted and are shown in Table 31. 
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Table 31: Summary of hyperparameters for the synthetic data case study 

System 

approach 

Target  

variables 

Lags 

[h] 

AE  

Architecture 

LSTM  

units 

Monolithic 
Electric demand of the secondary system 

Electric demand of the primary system 
11 209-95-45 125 to 200 

Sequential 

Electric demand of the secondary system 9 27-25-10 125 to 200  

Air-side cooling load 5 36-35-15 100 to 175 

Water-side cooling load 5 36-35-15 100 to 200 

Electric demand of the primary system 5 46-45-20 100 to 200 

 

At each hour, the system based forecasting models generate their forecasts for the target variables. 

The forecasting error is then calculated between the forecasted values and the synthetic data from 

the case study over the forecast horizon. The performance of both system based models is then 

recorded hour by hour as the models progress through the testing dataset. Upon completion, the 

error metrics at each hour are averaged. The error results for each system based model and their 

target variables over the dataset are presented in Table 32.  

Table 32: Forecasting results for the synthetic data case study over the testing data set 

Target Variable 

Monolithic approach Sequential approach 

RMSE  

(kW) 

CV(RMSE) 

(%) 

RMSE  

(kW) 

CV(RMSE)  

(%) 

Electric demand of the secondary system 0.13 4.94 0.13 5.07 

Air-side cooling load N/A N/A 15.57 13.79 

Water-side cooling load N/A N/A 15.34 12.54 

Electric demand of the primary system 5.11 5.41 7.26 7.24 

Electric demand of the total HVAC system  5.25 5.43 6.09 6.21 

 

The results demonstrate that both system based approaches have minor differences in forecasting 

the electric demand of the HVAC system. The thermal cooling loads present a larger forecasting 

error compared to that of the electric loads. It is difficult to gauge the performance of the models 

as there is no set standard benchmark. Therefore for the work herein, we apply a benchmark 

provided by ASHRAE of 30% CV(RMSE). However, it should be noted that the ASHRAE 

benchmark is meant for hourly prediction of whole building energy use [139]. Comparing the 

models applied in this work to the ASHRAE benchmark, it can be observed that the system based 

models have adequate performance with an error of less than 7.3% CV(RMSE) for the electric 

demand and 13.8% CV(RMSE) for the thermal cooling loads.  
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5.5 Conclusion of the synthetic case study 

This work contributes to the accomplishment of the second objective for this thesis. Two system 

based approaches were successfully applied to forecast the target variables of the electric demand 

of the HVAC system. The monolithic approach applied a single large DL model to forecast the 

electric demand of the secondary and primary systems. In contrast, the sequential approach applied 

multiple DL based models to forecast the secondary system electric demand, air-side cooling load, 

water-side cooling load, and the electric demand of the primary cooling system. The multi-step 

forecasting models applied in this work aid in the estimation of the future electric demand for the 

HVAC system. The short term forecasting models applied in this case study forecast over a horizon 

of six-hours in advance for an institutional building. The synthetic data was obtained from an 

eQuest model and over the summer cooling period of 2014 at hourly time steps. The results of the 

proposed system based approaches showed good forecasting performance; however, both such 

approaches have their relative merits. For example, the monolithic approach is quicker to tune the 

hyperparameters for; however, it does not forecast the thermal cooling loads. In contrast, the 

sequential approach requires a longer time for hyperparameter tuning; however, allows for 

additional target variables to be forecasted.  
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Chapter 6: System-level forecasting method using measurement data 

6.1 Objectives  

This chapter contributes to the main objective of this thesis in presenting a high performance 

forecasting model targeting the overall electric demand of a HVAC system. This chapter applies 

the system based deep learning models to a case study using measurement data obtained for a 

buildings BAS system.  

6.2 Methods  

6.2.1 Information Gathering    

For this case study, data is obtained from the BAS of an existing building. A database is created 

from the control system, using 15 minute measurements of various equipment. The database for 

this work contains approximately 170 variables starting in 2006 until the present day. From the 

original database, measured variables were selected based on domain knowledge and combined 

with derived variables in order to create an overall database of 49 variables. The database created 

contains variables to describe the environmental conditions on site, variables measured in the 

AHUs, chilled water flow rates, and central plant information. Table 33 provides a list of both 

measured and derived variables.  

6.2.2 Preprocessing of data   

Measured values from sensors typically contain missing, faulty, and outlier based values. There 

are a variety of reasons why such effects may occur including: uncalibrated sensors, unexpected 

events in the system operation, and faulty/loose connections between the sensors and/or the data 

acquisition system. Due to such reasons, cleaning the data is an important step in the development 

of accurate forecasting based models as the models are calibrated with such data. Missing values 

were identified, and if the time period was less than two hours, the data from before and after the 

data samples were interpolated to fill in the missing data. If however, the missing values of data 

were longer than two hours, such data was ignored and removed (across all variables). 

Inconsistencies were observed in the outdoor air temperature and humidity sensors. Values here 

were then compared with those of Le Cam [188]; whom observed such inconsistencies and 

corrected them with on-site measurements.  
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Table 33: Measured and derived variables for the measurement case study 

Variables Point Description 
Measured/derived 

indicator (M/D) 
Units 

Target 

GE_SSE_load Electric demand of the secondary system in GE D kW 

AHU1&2 CC_Load Cooling coil load on air side of both AHUs in GE D kW 

GE_CC_Load Building cooling load for GE D kW 

GE_PSE_load GE Electric demand contribution to CP  D kW 

Outdoor 

and 

temporal 

OUT_T Outdoor temperature M oC 

OUT_H Outdoor relative humidity M % 

OUT_E Outdoor enthalpy D kJ 

Hour Hour of the day D 0…24 

Occupation Occupied or unoccupied period D 0,1 

AHU1 

AHU1_Ret_Flow Return air flow rate M L/s 

AHU1_Ret_Temp Return air temperature M oC 

AHU1_Ret_RH Return air relative humidity M % 

AHU1_Ret_En Enthalpy of the return air  D kJ/kg 

AHU1_Mod_CG_V Cooling coil valve modulation M % 

AHU1_Mix_damp Mixed air damper modulation M % 

AHU1_T_mix Mixed air temperature  M oC 

AHU1_Sup_Flow Supply air flow rate M L/s 

AHU1_Sup_Tem Supply air temperature M oC 

AHU1_Sup_RH Supply air relative humidity M % 

AHU1_Sup_En Supply air enthalpy  D kJ/kg 

AHU2 

AHU2_Ret_Flow Return air flow rate M L/s 

AHU2_Ret_Temp Return air temperature M oC 

AHU2_Ret_RH Return air relative humidity M % 

AHU2_Ret_En Enthalpy of the return air  D kJ/kg 

AHU2_Mod_CG_V Cooling coil valve modulation M % 

AHU2_Mix_damp Mixed air damper modulation M % 

AHU2_T_mix Mixed air temperature  M oC 

AHU2_Sup_Flow Supply air flow rate M L/s 

AHU2_Sup_Tem Supply air temperature M oC 

AHU2_Sup_RH Supply air relative humidity M % 

AHU2_Sup_En Supply air enthalpy  D kJ/kg 

AHU totals 
AHU1&2_Sup_Flow Supply air flow rate for both AHUs D L/s 

AHU1&2_Sup_Tem Average air supply temperature for both AHUs D oC 

GE  

water-side 

cooling load  

GE_CW_flow Chilled water flow rate entering GE M L/s 

GE_CW_temp_sup Chilled water temperature entering GE M oC 

GE_CW_tem_ret Chilled water temperature leaving GE M oC 

Central 

plant 

 

CH1_CHW pump Chiller 1 chilled water supply pump operation M ON/OFF 

CH1_E Chiller 1 electric demand M kW 

CH1_CW_pump Chiller 1 condenser water pump operation M ON/OFF 

CT-1 Cooling tower electric demand M kW 

CH2_CHW pump Chiller 2 chilled water supply pump operation M ON/OFF 

CH2_E Chiller 2 electric demand M kW 

CH2_CW_pump Chiller 2 condenser water pump operation M ON/OFF 

CT-2 Cooling tower electric demand M kW 

CP_PSE_load Electric demand of the primary system in CP D kW 

CP_CHW_flow Central plant chilled water supply flow rate M L/s 

CP_CHW_sup_tem Central plant chilled water supply temperature M oC 

CP_CHW_ret_temp Central plant chilled water return temperature M oC 

CP_CC_load  Central plant cooling load D kW 
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6.2.3 Preliminary analysis  

6.2.3.1 Exploratory analysis of the control variables 

An exploratory analysis is applied to target variables and a few key controllable variables. The 

methods applied in the exploratory analysis for the target variables will include: (i) carpet plots 

over the full dataset, (ii) a probability distribution graph, and (iii) summary statistics for the dataset. 

Due to the larger dataset and variables, day plots are not provided in this analysis.  

6.2.3.2 Feature selection  

For the measurement dataset, feature selection was primary based on what are the recorded 

variables from the BAS system. It is desired not to place additional sensors and leverage the 

available BAS system data in order to generate the developed models. Based on available 

measured and derived variables, regressors were then selected for each target variable based on 

reference [188] which selected regressors based on cross correlation and physics based equations. 

Feature extraction is accomplished for this work through the use of an auto encoder.  

6.2.4 Forecasting model construction  

6.2.4.1 Feature scaling  

After the preprocessing of data and feature selection, the first step in the development of the 

forecasting models is the normalization of data. For the measurement case study, the min-max 

method was applied to normalize the regressor and target data. This approach is the same as that 

applied in the component model and the synthetic data case study. The governing equation for the 

min-max method is previously presented in equation 4-5.  

6.2.4.2 Hyperparameter optimization 

The hyperparameter search followed the same procedure as outlined in section 5.3.4.2. However, 

modifications to the boundary conditions of the search were needed due to the larger number of 

variables and increased amount of data. The modification for the boundary search of the input 

regressors were modified to 4, 6, 8, 10, and 12. LSTM boundary conditions were modified to 50, 

100, 200, and 300 units. This was a result of a larger number of possible AE architectures and the 

increased training times for larger models.  
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6.2.4.3 Ensemble forecasting approach  

The ensemble models applied in this work were similar to those describe in section 5.3.4.3 and 

consisted of a homogenous ensemble of EN-LSTMs. The encoder compresses the data, which is 

applied to the inputs of four LSTM models. Output forecasts are generated by each model in the 

ensemble and the overall output forecast is computed by combining the single point forecasts 

through an equal weights approach.  

6.3 Measurement data case study  

6.3.1 Case study description  

The case study for this work is applied to the Genomics (GE) building located in Loyola campus 

of Concordia University. This is the same case study applied to the component based model and 

consequently, a description of the building and HVAC system can be found in section 4.3.1. For 

this case study, measurement data is extracted from the BAS over the time range of June 1st 2014 

to September 1st 2014 at 15 minute time interval steps.   

6.3.2 Governing equation  

The overall governing equation for the following case study is presented in section 5.4.2 with 

equation 5.5. The secondary system for this case study consists of the four air supply fans. 

However, for this case study the primary system is part of a larger system which supplies chilled 

water to multiple buildings and is located at the central plant (CP) of the campus. In order to 

forecast the future electric demand of the GE building in relation to the requirements of the central 

plant primary system, the following equation derived by Le Cam is applied [188]:  

  
ĖGE,prim,sys

t+15  = 0.12 ∗ ĖCP.prim,sys
t+15   6-1 

Where ĖGE,prim,sys
t+15  is the future electric demand requirement for the GE building [kW], and  

ĖCP.prim,sys
t+15  is the future electric demand requirements for the central plants [kW]. The equation 

was derived based on measurements for the summer operation during 2014.   

6.3.3 Preliminary analysis of the target variables  

6.3.3.1 Preliminary analysis of the secondary system electric demand  

The electric demand for the secondary cooling system is calculated based on equations 4-9 to 4-

11 and presented in section 4.2.5 of the component model. However, this work differs from the 
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component model in the type of forecasting model applied. The component based model applied 

a grey-box approach. In contrast, the approach for the system based models apply a black-box 

based approach. Therefore, the electric demand of the secondary system was calculated as a 

derived variable and used in training, validation and testing. For preliminary analysis purposes; 

the power input ratio (PIR) is applied for the secondary system electric demand. The governing 

equation for the PIR is calculated through equation 6-2 as shown by ASHRAE Fundamentals [9] 

and as a percentage.  

 

Power input ratio (PIR) =
Ppart load

Pdesign
∗ 100 6-2 

Where Ppart load is the fans power at part load (kW) and Pdesign is motor at full load/design (kW).  

 
Figure 47: Secondary System Power Input Ratio for the measurement case study 

The daily operation of the secondary systems electric demand (four supply fans in two AHUs) is 

displayed over the acquired dataset in a carpet plot presented in Figure 47. The demand varies 

from 0% in dark blue to approximately 30% of the design capacity in dark red. The daily operation 

can be observed and show an approximate 10% PIR during unoccupied times. Occupied times 

appear starting from 08:00 until 18:00 and show a PIR that operates between approximately 12 to 

30%. 
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Figure 48: Probability distribution of the secondary system PIR for the measurement case study 

The probability distribution for the secondary systems PIR is shown in Figure 48. White bars 

depicted the distributions of PIR during the weekends, while the black bars shows the 

distribution during weekdays. The median value for weekday PIR was observed to be 10.23% 

while for weekend it was observed to be 9.38%. The summary statistics for the PIR of the 

secondary system are presented in Table 34. Maximum values show a PIR of 13.91% for 

weekends and 28.87% for weekdays.  

Table 34: Summary statistics secondary system PIR for the measurement case study 

Summary  

Statistics 

Full dataset 

[%] 

Weekends 

[%] 

Weekdays 

[%] 

Mean  10.28 8.49 11.05 

Minimum values 0.00 1.51 0.00 

Maximum values 28.87 13.91 28.87 

Range 28.87 12.40 28.87 

Quartile 1 8.46 8.01 8.99 

Median 9.38 8.42 10.23 

Quartile 3 11.69 8.99 12.99 

Standard Deviation 2.87 0.93 3.07 

 

6.3.3.2 Preliminary analysis of the air-side cooling load 

The cooling load on the air side of the AHU is calculated using equation 5.8 in section 5.2.4. It is 

assumed that the air density is constant at 1.2 [kg/m3] at 101 [kPa] and 20 [oC]. For this case study, 

the cold deck temperature is calculated by taking the measurements of the air supply available 

from the BAS and subtracting the temperature rise of the supply fans. From reference [188], it was 
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observed that the fans exhibited a temperature increase of approximately 1.8 [oC] from 

measurements of the supply air and mixed air when cooling coil values are closed. Furthermore, 

it was assumed that the absolute humidity remained constant across the fans.  

Mixed air enthalpy is calculated from temperature measurements from the BAS system and 

derived relative humidity. The governing equations applied in order to derive the relative humidity 

are shown in equations 6-3 to 6-5.  

 RMMA =  α ∗ RHOA + (1 − α) ∗ RHRA 6-3 

 
α =

V̇sup,a −  V̇ret,a

V̇sup,a

 
6-4 

 

α =
Tmix,a − Tret,a

Tout,a − Tmix,a
 

6-5 

Where RMMA is the mixed air relative humidity, RHOA is the outdoor air relative humidity, RHRA 

is the relative humidity of the return air, V̇sup,a is the supply air volumetric flow rate [L/s], V̇ret,a is 

the volumetric flow rate of the return air [L/s], Tmix,a is the temperature of the mixing box, Tret,a 

is the temperature of the return air, Tout,a is the outdoor air temperature, and α is the outdoor air 

flow ratio. When the mixing dampers are completely closed α is equal to 1. However, when the 

mixing dampers are completely open, α is derived from equation 6-4. When the dampers are 

partially open, α is derived using equation 6-5. It was observed that over the dataset, there are only 

few days in which the dampers are opened (less than three). Figure 49 presents the outdoor air 

ratio calculated over the dataset and as a percentage. Blue values indicate 100% while red values 

correspond to 60%.   
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Figure 49: Carpet plot for the outdoor air ratio for the measurement case study 

Based on the governing equations, the air-side cooling load is calculated over the dataset. Figure 

50 presents a carpet plot for the air-side cooling load. The blue to dark blue values correspond to 

values of 0 to 900 kW. Furthermore, yellow to red colors indicate periods of “free cooling mode” 

in which the cooling coil, heating coil, and humidifier are not operated. Such times are omitted 

from the training and application of the system based models. From Figure 50, it can be observed 

that the cooling load begins to increase in demand at approximately 08:00 following closely with 

the PIR which also begins to ramp up at this hour. 

 

Figure 50: Carpet plot of the air-side cooling load for the measurement case study 
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The probability distribution for the air-side cooling load of GE is presented in Figure 51 for 

weekdays and weekends. The black values correspond to weekday occurrences and the white 

values correspond to weekends. Higher loads are seen occurring for weekdays in comparison to 

weekends in which building occupancy is low.  

 

Figure 51: Probability distribution of the air-side cooling load for the measurement case study 

Summary statistics for the air-side cooling loads are provided in Table 35 for the full, week day 

and weekend values. Maximum demand values were observed for weekdays to be 888 kW and 

716 kW for weekends. Median values were observed to be 267 kW for weekdays and 277 kW for 

weekends.   

Table 35: Summary Statistics air-side cooling load for the measurement case study 

Summary  

Statistics 

Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  283.71 292.30 279.97 

Minimum values -191.40 -107.72 -191.40 

Maximum values 887.68 716.12 887.68 

Range 1079.08 823.84 1079.08 

Quartile 1 155.99 173.51 145.20 

Median 271.06 276.82 267.20 

Quartile 3 404.69 421.02 396.35 

Standard Deviation 183.92 166.88 190.74 
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6.3.3.3 Preliminary analysis of the water-side cooling load 

The GE water-side cooling load is calculated through equation 5-9 in section 5.4.2. This case study 

assumes that the heat capacity of the water remains constant at 4.2 [kJ/kgoC]; moreover, the density 

of the water is also assumed constant at 1,000 [kg/m3].  

 

Figure 52: Carpet plot for the GE chilled water flow rate for the measurement case study 

An exploratory analysis is conducted on the chilled water flow rate to the GE building over the 

applied dataset and shown in Figure 52. The figure demonstrates a higher flow rate (40 L/s) during 

periods of 00:00 to 08:00 and approximately 18:00 to 23:00. This is shown in the yellow and 

orange colors within Figure 52. Furthermore, lower demand (25 L/s) periods are observed during 

08:00 to 18:00 as shown in the light blue colors in Figure 52. 
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Figure 53: Carpet plot for GE water-side cooling load for the measurement case study 

The exploratory analysis of the GE water-side cooling load begins with a carpet plot and is 

presented in Figure 53. The figure demonstrates similarities with the air-side cooling load and the 

PIR showing an increasing cooling demand beginning at approximately 08:00. Higher demand 

periods show cooling loads with values greater than 600 kW while low demand periods show loads 

at approximately 200 kW. It should be noted, that certain days can be observed which have no 

cooling load. For instance, 8/17/214, such instances are when the outdoor temperature is low.  

 

Figure 54: Probability distribution of the water-side cooling load for the measurement case study 
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A probability distribution graph is presented in Figure 54 for the GE water-side cooling load with 

datasets separated in to weekdays (black) and weekends(white). Weekdays demonstrate a larger 

number of high demand loads compared to that of weekends. Summary statistics are provided for 

the GE water-side cooling load and are presented in Table 36. The median values were observed 

to be 379 kW for the full dataset, 372 kW for weekdays, and 395.43 for weekends. Furthermore, 

the mean values were observed to be 376 kW for weekdays, 370 kW for weekends, and 374 kW 

for the overall dataset.  

Table 36: Summary statistics for the water-side cooling load for the measurement case study 

Summary  

Statistics 

Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  374.25 370.33 375.88 

Minimum values -607.49 -607.49 -164.54 

Maximum values 1306.25 1306.25 989.75 

Range 1913.74 1913.74 1154.29 

Quartile 1 290.23 297.38 287.45 

Median 379.22 395.34 372.41 

Quartile 3 464.08 464.45 463.87 

Standard Deviation 162.43 148.17 167.97 

 

6.3.3.4 Preliminary analysis of the primary system electric demand  

The primary systems electric demand is not a directly recorded value by the BAS and requires 

computation in order to be extracted. Among the components which contribute to the overall 

electric demand of the central plant primary system, some are directly monitored values while 

others required modifications. Beginning with the direct measurements, the electric demand of 

both 900 ton chillers is monitored and recorded by the BAS. Therefore, no modifications are 

required in order to capture the electric demand of the chiller components. 

However, the system pumps require modification in order to be able to compute the primary system 

electric demand. The central plant system contains two constant speed pumps assigned to the 

chilled water loop with a design capacity of 74.6 kW for each pump. Furthermore, there are two 

constant speed pumps for the condenser water loop with a design capacity of 55.9 kW for each 

pump. Within the BAS, all four pumps are monitored and recorded as [ON/OFF]. As a 

consequence, modifications are required to apply the monitored values. The approach applied in 

this work consisted of assigning the manufacturers rated capacity for times when pumps were ‘ON’ 
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and zero for when pumps were ‘OFF’. It was assumed that the pumps are still operating at their 

rated specifications and no degradation has occurred. 

Focusing on the cooling tower fans, the BAS system measures the fan modulation for each fan. In 

order to derive the electric demand; the manufactures equation (6-6) is applied.  

ĖCT = PCT (
modt

100
)3 6-6 

Where PCT is the designed power demand for each fan (29.8 kW) and modt is the fan modulation 

at time t.   

Based on the system and the available BAS measurements, equation 6-7 was applied in order to 

calculate the electric demand of the central plant primary cooling system.  

Ėp,s =  ĖCHW,p1 + ĖCH1 + ĖCW,p1 + ĖCT1 +  ĖCHW,p2 + ĖCH2 + ĖCW,p2 + ĖCT2 6-7 

Where Ėp,s is the electric demand for the central plant primary system, ĖCHW,p is the electric 

demand for the chilled water pumps 1 and 2, ĖCH is the electric demand for chillers 1 and 2, ĖCW,p 

is the electric demand condenser water pumps 1 and 2, and ĖCT is the electric demand for the 

cooling tower fans 1 and 2.  

After the modifications were applied for the components within the overall HVAC system, a 

dataset of the central plant’s primary system was completed. Figure 55 provides a carpet plot for 

the primary system electric demand. Values in red depict times with no electrical consumption and 

such values are omitted from the training and testing of the models. Higher demand periods (800 

to 1,200 kW) can be seen in cyan to blue colors. Lower demand periods (200 to 500 kW) can be 

seen in orange and yellow colors.  
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Figure 55: Carpet plot for the central plant primary cooling system for the measurement case 

study 

A probability distribution graph for the primary systems electric demand is shown in Figure 56. 

The weekday values are shown in black, while the weekend values are shown in white. Higher 

demand periods appear in weekdays, along with a larger number of such periods. The times of 

zero demand are shown in the left most side of the figure. Such zero times are omitted from the 

application of this study along with the values of other regressors at the same time steps.   

 

Figure 56: Probability distribution of central plant primary cooling system for the measurement 

case study 
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Table 37 provides the summary statistics for the central plant primary system electric demand. The 

maximum electric demands were observed to be 1,281 kW for weekdays and 1,063 kW for 

weekends. Mean values were observed as 552 kW for weekdays, 454 kW for weekends, and 523 

kW for the full dataset.  

Table 37: Summary statistics for the central plant primary cooling system for the measurement 

case study 

Summary  

Statistics 

Full dataset 

(kW) 

Weekends 

(kW) 

Weekdays 

(kW) 

Mean  523.03 454.22 551.61 

Minimum values 0.00 0.00 0.00 

Maximum values 1281.43 1062.80 1281.43 

Range 1281.43 1062.80 1281.43 

Quartile 1 376.93 373.57 379.38 

Median 490.77 458.56 515.92 

Quartile 3 661.41 549.35 736.04 

Standard Deviation 256.78 186.48 275.85 

 

6.3.4 Forecasting model construction: Monolithic approach  

6.3.4.1 Selection of regressors  

The monolithic approach applies all the regressors into one overall model. The selection of 

regressors for the monolithic model is based on BAS data (measured and derived), reference [188] 

and physics based equations. In reference [188], regressors were selected for each target variable 

applied to the same system. The target variables in reference [188] differed as models were applied 

to forecast the electric demand of the chillers and cooling towers; in contrast, this work directly 

forecasts the electric demand of the primary system. However, the regressors found for the chillers 

and cooling tower fans are applied as regressors for the work herein. Table 38 provides the list of 

regressors to be applied within the monolithic forecasting model.  
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Table 38: Selected regressors and the target variables of the monolithic approach of the 

measurement case study 

Target variable(s) Regressor(s) 

 Secondary system 

 electric demand 

 Primary system  

 electric demand 

 Hour  

 Occupation  

 Outdoor air temperature  

 Outdoor enthalpy 

 AHU 1&2 cooling coil valve modulation 

 AHU 1&2 mixed air temperature 

 AHU average supply air temperature  

 AHU total air supply  

 Chilled water flow rate entering GE 

  Secondary System electric demand  

 GE air-side cooling load 

 GE water-side cooling load 

 Chiller operation 

 Chiller 1 and 2 electric load 

 Cooling tower 1 and 2 electric load 

 Chilled water flow rate central plant  

 Chilled water return temperature  

 Central plant cooling load 

 Primary system electric load 

 

 

6.3.4.2 Hyperparameter tuning  

Due to the large amount of regressors, the computational time and resources were significant for 

models which contained a larger number of lagged values (greater than 12 lags). Such values were 

observed to have a large computational time, non-convergence issues, and did not result in a 

significant improvement in performance. As the increased computational time went against the 

objective of this thesis of creating a fast and accurate forecasting model; the boundary conditions 

for the monolithic model was reduced to the lags of 4, 6, 8, 10, and 12. Table 39 presents the 

average results for the autoencoder hyperparameter search applied over the training dataset. H1 to 

H5 present the best architectures observed for each given lag. The architectures represent the full 

undercomplete autoencoder. 

Table 39: Autoencoder hyperparameter search results of the monolithic model applied to the 

measurement case study 

Number 

of lag 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

4 84 75 40 75 84 6.10 

6 126 115 70 115 126 6.04 

8 168 160 85 160 168 5.96 

10 210 190 110 190 210 5.95 

12 252 240 140 240 252 6.21 

 

Selecting the top performing encoder architectures presented in Table 39 (H1 to H3), LSTM 

models were coupled to each and the forecasting performance was explored over a combined 

dataset of the training and validation data. The forecasting performance of the combined EN-
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LSTM single point forecasting models was recorded and averaged; the results of the different 

architectures are presented in Table 40. The results demonstrate an increasing error for a greater 

number of lagged values. The term N/A refers to situations of non-convergence occurring during 

training.  

Table 40: EN-LSTM hyperparameter search results for the measurement case study 

Number 

of lags 

Average CV(RMSE) 

Secondary system electric demand 

(%) 

Average CV(RMSE) 

Primary system electric demand 

(%) 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

4 11.84 13.48 12.83 14.16 6.34 5.88 6.30 8.01 

6 13.58 10.53 12.45 12.82 14.54 8.99 6.65 7.54 

8 14.92 11.68 12.60 14.66 25.55 12.73 14.70 9.93 

10 8.38 10.87 12.43 12.71 38.86 21.02 8.59 11.79 

12 12.95 13.97 16.24 N/A 23.60 11.11 10.57 N/A 

 

Based on the forecasting results for the single point forecasting models presented in Table 40, 

ensemble models are estimated in order to find the boundary conditions for the monolithic 

forecasting model which will be applied to the testing dataset. The results demonstrate that a lag 

of 4 variables with an 84-75-40 encoder and 50 to 200 LSTM units contained the lowest forecasting 

error over the validation dataset.  

Table 41: EN-LSTM ensemble hyperparameter research results for the measurement case study 

Number 

of 

lags 

Average CV(RMSE) for monolithic ensemble 

(%) 

50 to 200 

LSTM Units 

50 to 300 

LSTM Units 

100 to 200 

LSTM Units 

100 to 300 

LSTM Units 

Sec 

Sys 

Prim 

Sys 

Sec 

Sys 

Prim 

Sys 

Sec 

Sys 

Prim 

Sys 

Sec 

Sys 

Prim 

Sys 

4 12.71 6.17 13.08 6.63 13.15 6.09 13.49 6.73 

6 12.19 10.06 12.35 9.43 11.49 7.82 11.93 7.72 

8 13.07 17.66 13.47 15.73 12.14 13.72 12.98 12.45 

10 10.56 22.83 11.10 20.07 11.65 14.81 12.00 13.80 

12 14.39 15.09 N/A N/A 15.11 10.84 N/A N/A 

 

In order to tune the number of training days for the model, the single point forecasting model which 

produced the lowest error was selected. This was the 4 lagged, 84-75-40 EN, and 50 unit LSTM 

model. The length of training days were varied at 59, 50, 40, 30, and 20 days in length. For each 
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number of training days, the single point forecasting model was re-trained and then applied to the 

validation dataset. The forecasting performance over the validation data was recorded and the 

performance was then averaged. Figure 57 presents the results for the adjustment of the length of 

training data with the EN-LSTM model. The results demonstrate that as the length of training days 

(horizontal axis) increases, the forecasting error (vertical axis) begins to decrease. Based on the 

result of the hyperparameter optimization phase, the forecasting model to be applied will consist 

of a 4 lagged, 84-75-40 encoder, 50 to 200 LSTM units, and 59 days of training data.  

 

Figure 57: Adjustment of training days for a single point forecasting monolithic model applied to 

the measurement case study 

6.3.5 Forecasting model results: Monolithic approach  

This section presents the results for the monolithic model forecasting the target variables at 08:45 

July 30th, 2014 over the horizon of 09:00 to 14:45. The applied forecasting model consisted of four 

EN-LSTM models, using 84-75-40 encoder architecture, and 50 to 200 LSTM units, and trained 

with 59 days of data.  
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Figure 58: F+1 forecasts for the monolithic model applied to the measurement case study 

Figure 58 presents the F+1 for the measurement case study. The top graph presents the output 

forecasts for the GE secondary system electric demand while the bottom graph presents the output 

forecasts for the CP primary system electric demand. The red lines in both graphs indicate the 

measured values for the target variables and the black lines indicate the forecasted values. The 

monolithic model performance results of the F+1 forecasts are presented in Table 42. 

Table 42: F+1 forecasts results for the monolithic model applied to the measurement case study 

Target variables 
Performance indices 

CV(RSME) (%) RMSE (kW) 

Electric demand of the GE secondary system 5.45 2.96 

Electric demand of the CP primary system 5.55 27.43 

Electric demand of the GE HVAC System 4.75 5.40 

 

6.3.6 Forecasting model construction: Sequential approach  

6.3.6.1 Selection of regressors for the target variables of the sequential model  

The selection of regressors for the sequential model is based on reference [188] with some small 

variations. Firstly, this work applied forecasts from the upstream DL models as inputs to the 

subsequent model. Secondly, the work in reference [188] targeted forecasting the electric demand 

of the chillers and cooling towers as two separate models each with its own set of regressors. In 

contrast, the approach in this work forecasts the overall electric load of the primary system, and 

combines both sets of regressors into a single set. The historical data of the primary system is 
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additionally incorporated as well. An overview for each forecasting model in the sequential 

approach is listed in Table 43. The table provides a list of the target variables and the regressors 

applied as inputs to each forecasting model. All values apply current and historical measurement 

data as inputs, however, those variables marked with an asterisks (*) additionally provide future 

estimates as inputs.  

Table 43: Sequential model regressors applied to the measurement data case study 

Target variable (s) Regressor (s) 

 Secondary system 

 electric demand 

 Hour                                     

 Occupation 

 GE AHU total air supply  

 Secondary System electric demand 

 GE Air-side  

cooling load 

 

 Hour                                     

 Outdoor air temperature  

 Outdoor enthalpy 

 GE AHU total air supply  

 AHU 1&2 mixed air temperature 

 GE air-side cooling load 

 Secondary System electric demand* 

 GE Water-side  

cooling load  

 Hour                                     

 Outdoor air temperature  

 Outdoor enthalpy 

 AHU 1&2 mixed air temperature 

 Chilled water flow rate entering GE 

 AHU 1&2 cooling coil valve 

modulation 

 AHU average supply air temperature  

 GE water-side cooling load 

 GE air-side cooling load* 

 Primary system  

electric demand 

 Hour                                     

 Outdoor air temperature  

 Outdoor enthalpy 

 Chiller operation 

 Chiller 1 and 2 electric load 

 Cooling tower 1 and 2 electric load 

 Chilled water flow rate central plant  

 CP chilled water return temperature  

 Central plant cooling load 

 Primary system electric load 

 GE water-side cooling load* 

 

6.3.6.2 Hyperparameter tuning results: Secondary system electric demand  

This section presents the results found from the hyperparameter search for the secondary system 

electric demand model within the sequential approach. First a grid search was conducted to find 

the AE architectures which could best reconstruct the inputs given a certain number of lagged 

values and regressors. Based on the regressors listed in Table 43 the results of the grid search 

conducted are presented in Table 44. Within Table 44 H refers to the hidden layer.  

Table 44: Autoencoder hyperparameter search results for the secondary system model applied to 

the measurement data case study 

Number 

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

4 16 10 5 10 16 7.47 

6 24 20 15 20 24 6.27 

8 32 20 15 20 32 7.29 

10 40 35 25 35 40 6.24 

12 48 45 40 45 48 5.87 
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The second step in the model development, involves a grid search for coupled EN-LSTM models. 

The encoder values of Table 44 are combined with LSTM forecasting models, trained and then 

applied to the validation dataset. The performance of each architecture is recorded over the 

validation data set and then averaged. The results demonstrate that a four lagged, 16-10-5 EN with 

100 to 200 LSTM units obtained the lowest forecasting error. Therefore, this model is to be 

selected and applied to the testing dataset.  

Table 45: EN-LSTM single point and ensemble hyperparameter research of the secondary 

system model applied to the measurement case study 

N
u

m
b

er
 

o
f 

la
g
 

Average CV(RMSE) of single point  

EN-LSTM architectures  

(%) 

Average CV(RMSE) of ensemble of  

EN-LSTM architectures   

(%) 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

50 to 200 

LSTM 

Units 

50 to 300 

LSTM 

Units 

100 to 200 

LSTM 

Units 

100 to 

300 

LSTM 

Units 

4 12.28 11.80 10.90 12.19 11.66 11.79 11.35 11.63 

6 13.09 10.63 12.59 13.06 12.10 12.34 11.61 12.09 

8 14.02 12.83 12.47 11.84 13.11 12.79 12.65 12.38 

10 14.42 12.17 12.67 12.38 13.09 12.91 12.42 12.41 

12 13.89 14.13 13.96 13.02 13.99 13.75 14.04 13.70 

 

Selecting the top performing architecture (4 lagged, 16-10-5 EN, 200 unit LSTM) the length of 

training days is varied and the model is tested. The training data length is varied over 59, 50, 40, 

30, and 20 days. For each given length of training data, the selected architecture is trained, applied 

to the validation data, and the performance is averaged. Figure 59 presents the results from the 

adjustment of days for the architecture applied. The results demonstrate that the model performs 

with the lowest CV(RMSE) when the training length is at a maximum. 
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Figure 59: Adjustment of training days for a single point secondary system forecasting model 

applied to the measurement case study 

6.3.6.3  Hyperparameter tuning results: Air-side cooling demand  

This section outlines the hyperparameter search results of the GE air-side cooling load for the 

sequential forecasting model. Table 46 presents the results of the AE hyperparameter search.   

Table 46: Autoencoder hyperparameter search results for the air-side cooling model for the 

measurement case study 

Number 

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

4 56 50 45 50 56 3.38 

6 72 55 40 55 72 3.87 

8 88 85 45 85 88 3.97 

10 104 100 80 100 104 4.45 

12 120 115 70 115 120 4.52 

 

Selecting the encoder architectures (H1 to H3) from Table 46, LSTM models are coupled to each 

encoder in order to explore the forecasting performance of each EN-LSTM model. The models are 

trained, applied to the validation dataset, and the average forecasting performance is recorded. The 

results for the single point forecasting models of the air-side cooling load are presented in Table 

47. Furthermore, the ensemble boundaries were calculated and are similarly presented. It was 

observed that the 4 lagged 56-50-45 encoder, and 100 to 200 LSTM model obtained the lowest 

average forecasting performance over the validation dataset; therefore, such a model will be 

applied to the testing data.  

Table 47: EN-LSTM single point and ensemble hyperparameter research of the air-side cooling 

model applied to the measurement case study 

N
u

m
b

er
 

o
f 

la
g
 

Average CV(RMSE) of EN-LSTM 

architecture applied to validation 

dataset 

(%) 

Average CV(RMSE) of ensemble of EN-LSTM 

architectures applied to validation dataset  

(%) 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

50 to 200 

LSTM 

Units 

50 to 300 

LSTM 

Units 

100 to 200 

LSTM 

Units 

100 to 300 

LSTM 

Units 

4 40.39 30.72 28.78 33.51 33.30 33.35 29.75 31.00 

6 50.84 49.56 45.46 40.84 48.62 46.68 47.51 45.29 

8 45.01 52.12 37.66 34.51 44.93 42.32 44.89 41.43 

10 44.64 34.73 46.41 39.32 41.93 41.28 40.57 40.15 

12 46.03 43.74 35.18 45.62 41.65 42.64 39.46 41.52 
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The 4 lagged, 56-50-45 EN, and 200 unit LSTM model is selected in order to explore the effects 

of tuning the training days for a single point forecasting model. Figure 60 presents the results from 

the adjustment of training days for the air-side cooling load forecasting model when applied to the 

validation dataset. It is observed that the model performs with the lowest average error with the 

maximum number of training days.  

 

Figure 60: Adjustment of training days for a single point air-side cooling forecasting model 

applied to the measurement case study 

6.3.6.4 Hyperparameter tuning results: Water-side cooling demand  

This section outlines the hyperparameter search results for the GE water-side cooling load of the 

sequential forecasting model. Table 48 presents the architecture search results for the AE. It can 

be observed that the four lag model obtained the lowest average reconstruction error.  

Table 48: Autoencoder hyperparameter search results for the water-side cooling model applied to 

the measurement case study 

Number 

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

4 68 65 50 65 68 4.67 

6 90 85 40 85 90 5.21 

8 112 105 95 105 112 5.30 

10 134 130 105 130 134 5.33 

12 156 150 100 150 156 5.47 

 

The encoder architectures of Table 48 were coupled to various LSTM models and a grid search 

was conducted to explore the various architectures of combined EN-LSTM models. Table 49 

presents the average forecasting results for the single point EN-LSTM models applied to forecast 

the GE water-side cooling load over the validation dataset; furthermore, the average results of the 
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ensemble models are calculated. It was observed that the eight lagged, 112-105-95 EN and 100 to 

200 LSTM unit model obtained the lowest CV(RMSE) of 8.47%. Therefore, this architecture will 

be applied to the testing dataset.  

Table 49: EN-LSTM single point and ensemble hyperparameter research of the water-side model 

applied to the measurement case study 

N
u

m
b

er
 

o
f 

la
g
 

Average CV(RMSE) of EN-LSTM 

architecture applied to validation 

dataset 

(%) 

Average CV(RMSE) of ensemble of EN-LSTM 

architectures applied to validation dataset  

(%) 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

50 to 200 

LSTM 

Units 

50 to 300 

LSTM 

Units 

100 to 200 

LSTM 

Units 

100 to 300 

LSTM 

Units 

4 10.22 11.34 11.22 12.41 10.93 11.30 11.28 11.66 

6 12.04 10.92 8.42 8.47 10.46 9.96 9.67 9.27 

8 12.71 8.47 8.47 11.62 9.88 10.31 8.47 9.52 

10 10.75 9.19 9.82 14.70 9.92 11.11 9.51 11.24 

12 12.21 8.83 18.87 13.98 13.31 13.47 13.85 13.90 

 

The single point forecasting model which obtained the lowest average CV(RMSE) was selected in 

order to tune the number of training days. This consisted of a six lagged, 90-85-40 EN with 200 

LSTM units. Figure 61 provides the results observed which demonstrate that the forecasting 

models obtain the lowest error with the maximum number of training days. Therefore, such a 

length will be used for the application of the forecasting models to the testing dataset.  

 

Figure 61: Adjustment of training days for a single point water-side cooling forecasting model 

applied to the measurement case study 
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6.3.6.5 Hyperparameter tuning results: Primary system electric demand  

This section describes the results from the hyperparameter search for the primary system electric 

demand model. Table 50 presents the result from the AE architecture search; a different of less 

than 2% CV(RMSE) was observed from the architectures with four to twelve lags.  

Table 50: Autoencoder hyperparameter search results of the primary system model applied to the 

measurement case study 

Number 

of lags 
H1 H2 H3 H4 H5 

Average CV(RMSE) 

(%) 

4 68 65 50 65 68 4.05 

6 90 80 65 80 90 4.58 

8 112 105 80 105 112 5.09 

10 134 120 105 120 134 5.32 

12 156 140 110 140 156 5.43 

 

The EN architectures of Table 50 were then coupled to LSTM models. The EN-LSTM single point 

forecasting models were trained and then applied to the validation dataset recording the average 

performance. The results are presented in Table 51 on the left hand side for the single point 

forecasting models and on the right hand side for the ensemble models. The architecture of four 

lags, 68-65-50 EN, and 100 to 300 LSTM units is observed to obtain the lowest forecasting error 

and will be applied to the testing dataset. 

Table 51: EN-LSTM single point and ensemble hyperparameter research of the primary system 

model applied to the measurement case study 

N
u

m
b

er
 

o
f 

la
g
 

Average CV(RMSE) of EN-LSTM 

architecture applied to validation 

dataset 

(%) 

Average CV(RMSE) of ensemble of EN-LSTM 

architectures applied to validation dataset  

(%) 

50 

LSTM 

Units 

100 

LSTM 

Units 

200 

LSTM 

Units 

300 

LSTM 

Units 

50 to 200 

LSTM 

Units 

50 to 300 

LSTM 

Units 

100 to 200 

LSTM 

Units 

100 to 300 

LSTM 

Units 

4 6.39 6.91 6.62 5.25 6.64 6.29 6.77 6.26 

6 7.68 7.02 7.18 8.98 7.29 7.71 7.10 7.73 

8 8.03 10.27 13.10 7.70 10.47 9.78 11.69 10.36 

10 19.08 10.48 11.50 9.29 13.69 12.59 10.99 10.42 

12 27.59 7.89 11.61 31.01 15.70 19.52 9.75 16.84 

 

An architecture was selected in order to tune the number of training days required; this consisted 

of a 4 lagged, 68-65-50 EN, and a 300 LSTM unit model. The lengths varied similar to the other 

experiments. The average CV(RMSE) results were recorded for each length of training data and 
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the results are presented in Figure 62. It can be observed from the figure that the minimal 

performance error occurs with the maximum amount of training days for this case study.  

 

Figure 62: Adjustment of training days for a single point primary system forecasting model 

applied to the measurement case study 

6.3.7 Forecasting model results: Sequential approach  

The results of the F+1 forecasts for the sequential approach are presented in this section. The 

sequential approach forecasts the target variables at 08:45 over a six hour horizon of 09:00 to 14:45 

on July 30th, 2014. The output forecasts are presented in Figure 63 which show the output forecasts 

in black lines and measurement data in red.   

The model begins by forecasting the GE secondary system electric demand shown in the top most 

graph of Figure 63, which then passes the output forecasts to the sub-sequent model forecasting 

the air-side cooling load (seen in the graph second from the top of Figure 63). The output forecasts 

are then passed to the next model which forecasts the GE water-side cooling load (second from 

the bottom) and then the electric demand of the primary system (bottom most graph of Figure 63). 

Next, the total electric demand of the GE HVAC system is forecasted by the summation of the 

forecasts for the primary and secondary system.  
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Figure 63: F+1 forecasts for the sequential model applied to the measurement case study 

The results of the F+1 forecasts for the sequential approach are presented in Table 52. The forecasts 

fit well with measurements showing a 5.42% CV(RMSE) for the electric demand of the secondary 

system and 6.53% CV(RMSE) for the electric demand of the CP primary system. The electric 

demand of the GE HVAC system shows an error of 3.71% CV(RMSE).  

Table 52: F+1 forecasting results for the sequential model applied to the measurement case study  

Target variables 
Performance indices 

CV(RSME) (%) RMSE (kW) 
Electric demand of the GE secondary system 5.42 2.94 

GE Air-side cooling load 10.23 38.45 

GE Water-side cooling load 11.37 40.85 

Electric demand of the CP primary system 6.53 32.29 

Electric demand of the GE HVAC System 3.71 4.21 

 

6.4 Comparison of forecasting model results  

Both system based forecasting approaches (monolithic and sequential) were applied to a testing 

data set of one day of consecutive forecasts starting from 08:45 7/30/2014 and continuing until 

08:45 7/31/2014. The hyperparameters used for both approaches remain consistent with those 

found during the search and are summarized in Table 53.   
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Table 53: Summary of the hyperparameters for the measurement data case study 

System 

approach 

Target  

variables 

Lags 

[15 min] 

AE 

Architecture 

LSTM 

units 

Monolithic 
Electric demand of the secondary system 

Electric demand of the primary system 
4 84-75-40 50 to 200 

Sequential 

Electric demand of the secondary system 4 16-10-5 100 to 200 

Air-side cooling load 4 56-50-45 100 to 200 

Water-side cooling load 6 90-85-40 100 to 200 

Electric demand of the primary system 4 68-65-50 100 to 300 

 

At each time step, 15 minutes, forecasts are generated over the forecast horizon and the 

performance is calculated comparing estimated values with the measurement values. Retraining in 

both forecasting approaches occurs every six-hours of the testing set. Upon completion of the 

models over the testing dataset, the performance is then averaged for both approaches. The results 

of the system based approaches are presented in Table 54. 

The results of this case study demonstrate that the monolithic approach obtains a slightly smaller 

(less than 1% CV(RMSE)) forecasting error than the sequential approach. The results of this study 

are consistent with those found in the synthetic data case study which additionally observed a 

higher error in the sequential approach, though at a larger difference. Overall, both approaches 

show good performances in forecasting the future electric demands with a performance range of 

5.59% to 8.33% CV(RMSE). The performance range observed for the thermal cooling loads was 

10.65% to 33.41% CV(RMSE).  

Table 54: Forecasting results for the measurement data case study over the testing data set 

Target Variable 

Monolithic approach Sequential approach 

RMSE  

(kW) 

CV(RMSE) 

(%) 

RMSE  

(kW) 

CV(RMSE)  

(%) 

Electric demand of the GE secondary system 2.71 6.24 2.80 6.52 

GE Air-side cooling load N/A N/A 70.46 33.41 

GE Water-side cooling load N/A N/A 35.03 10.65 

Electric demand of the CP primary system 34.98 7.78 36.22 8.33 

Electric demand of the GE HVAC System 5.51 5.59 5.58 5.78 

 

Furthermore, if we use ASHRAE’s error of 30% for building energy prediction models as a 

benchmark for performance; then the models developed in this work demonstrate adequate 

forecasting performance. This is particularly valid as the model development within this case 

study, over a forecast horizon, should expect a larger margin of forecasting error. This is due to 



126 

 

 

 

the fact that more calculations may be required compared to that of a prediction model and the 

uncertainty of the future becomes greater the further ahead of time a forecast is generated.  

6.5 Conclusions of the measurement case study   

The work completed in this chapter contributes to the completion of the second objective of this 

thesis. In this chapter, two system based approaches were applied to target various energy demands 

of the HVAC system. The overarching goal of both approaches is to target the overall electric 

demand for the HVAC system. The monolithic approach applied one large forecasting model. The 

inputs for this model used current and past values for the regressors. Furthermore, multiple target 

variables are outputted by the model. In contrast, the sequential approach applied multiple 

comparatively smaller forecasting models coupled together. Each model within the overall 

approach targeted a specific energy load within the HVAC system. Inputs for the model consisted 

of current, past, and forecasted values from the upstream model. Both approaches were applied to 

a case study of an institutional building over the summer cooling period and utilized measurement 

data obtained from the buildings BAS. The forecast horizon for all models in this work was six-

hours ahead at a granularity of 15-minute time steps. The results of both system based approaches 

demonstrate adequate performance. Furthermore, it was observed that both models obtained 

similar performances in forecasting the electric demand of the HVAC system and larger errors 

were observed in forecasting the results of the thermal cooling loads. The results are consistent 

with those of the synthetic case study.  
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Chapter 7: Forecasting with off-site weather data  

This section explores the application of using off-site weather data applied to a forecasting model 

calibrated with on-site data. For this work, the off-site weather data was obtained from publically 

available data provided by Environment Canada and is from the closest available source, Pierre-

Trudeau airport, approximately 8 km away from Loyola Campus. The off-site weather data is 

applied to the monolithic approach developed with on-site measurement data in order to explore 

the performance effects. 

7.1 Objectives 

The objectives of this section are to explore the effects of: (i) when weather data from the closest 

airport is applied as an input in the event of a failure of the on-site weather station, and (ii) when 

publically available forecasted airport weather data is applied as an input. 

7.2 Methods 

7.2.1 Forecasting model 

This work will applied the monolithic forecasting model tuned in Chapter 6 to forecast the future 

demand of the HVAC system. The tuned hyperparameters of the model developed in Chapter 6 

included: a 4 lagged, 84-75-40 encoder, and 50 to 200 LSTM units. This work will apply the same 

architecture without a new hyperparameter search. Therefore, even with the application of future 

forecasted weather information, the architecture will be kept constant.  

7.2.2 Data conversion method of hourly to sub-hourly data 

The airport data obtained consists of hourly time step data. In contrast, the on-site measurement 

data of the Genome building is recorded at 15-minute time steps. Therefore, in order to substitute 

and apply the airport data to the monolithic model, a conversion is required. In order to convert 

the hourly data into 15-minute time steps; linear interpolation is applied. This is a result of time 

constraints; however, future work may applied different approaches such as a ML based model.  

7.2.3 Correlation between airport weather data to on-site measurement data 

Two approaches for applying airport weather data to the GE forecasting model are explored in this 

research. In the first approach, airport weather data is converted to 15 minute time step data and 

then applied to the forecasting model. In the second approach, airport weather data is converted to 
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15 minute time step data, then used to estimate the local GE weather, and then applied to the 

forecasting model.  

In order to estimate local GE weather data based on airport weather data, the conversions 

developed by Le Cam et al. over the summer period of June to August 2015 [213] are applied. 

These conversions were derived to convert weather data from Pierre-Trudeau airport to Loyola 

campus and specifically focus on: the outdoor air temperature, relative humidity and enthalpy. The 

equations are presented in 7-1 to 7-3 [213]: 

 TGE =  0.95 ∗ Tairport + 2.0 7-1 

RHGE =  1.09 ∗ RHairport − 18.5 7-2 

hGE =  0.73 ∗ hairport + 9.8 7-3 

 

Within their work, the models developed by Le Cam et al. demonstrated a performance of: (i) 0.91 

R2 and a RMSE of 1.3oC for the air temperature conversion, (ii) 0.89 R2 and a RMSE of 5.7% for 

the relative humidity, and (iii) 0.82 R2 and a RMSE of 3.5 kJ/kg for the outdoor air enthalpy [213]. 

This work assumes that the models developed by Le Cam et al. fit well for 2014 and therefore, no 

modifications to the equations are required.   

7.2.4 Forecasting future weather approach  

This work explores the application of weather forecasts as an input regressor. However, the case 

study for this work is 2014. To the best of this author’s knowledge; there are no databases which 

contain historical records sets of weather forecasts. Rather, only databases for historical weather. 

As a consequence, this work assumes that the future forecasted weather fits well with the future 

measurement data; therefore, this work will apply future weather measurement values as a proxy 

to weather forecasts.  

7.2.5 Summary of scenarios for the inclusion of off-site weather data 

Based on the objectives and the approaches for applying the off-site weather data, multiple studies 

(scenarios) are generated. The list below provides a summary of the various scenarios applied in 

this chapter: Furthermore, it was desired to explore the performance of each scenario against a 

benchmark model. In order to achieve this, the benchmark performances of the monolithic model 

shown in chapter 6 is selected and is termed benchmark within the list.  
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Benchmark:  Monolithic forecasting model developed in chapter 6 

Scenario 1:  Use of airport weather data as inputs in place of historical local GE weather 

data 

Scenario 2:  Use of estimated local GE weather data, which is obtained via the airport 

weather data with equations (7.1 to 7.3) 

Scenario 3:  Use of historical lags of GE measurement data, with the addition of outdoor 

air temperature forecasts from the on-site GE weather data, as an input 

Scenario 4:  Use of historical lags of GE measurement data, with the addition of outdoor 

air temperature forecasts from the airport weather data, as an input  

Scenario 5:  Use of historical lags of GE measurement data, with the addition of GE 

weather forecasts obtained via the airport weather data forecasts and 

equations (7.1 to 7.3) 

Scenarios 1 and 2 explore the performance effects from the substitution of off-site weather data 

applied as an input to the forecasting model calibrated with on-site weather data. Scenarios 3, 4, 

and 5 explore the effects from the application of forecasted weather data applied as an input to the 

calibrated forecasting model. For such scenarios, the length of the forecasted weather data applied 

as an input to the monolithic model is of equal length to the forecast horizon (six hours in advance). 

It should be noted that both scenarios 3 and 5 are similar; however, they differ in an important 

aspect. Scenario 3 bases the weather forecasts from the GE weather station, whereas scenario 5 

obtains weather forecasts from the airport and is then used to estimate the forecasted weather data 

for GE using equations (7.1 to 7.3).  

7.3 Results  

This section presents the results from the application of airport and future forecasted weather data 

to the monolithic forecasting model. First, a comparison between weather datasets is presented. 

Figure 64 compares outdoor air temperature from GE, Trudeau airport, and Trudeau airport 

converted to GE over the week of July 21 to July 27th, 2014.   
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Figure 64: Outdoor air temperature measurements  

Comparing airport weather data to GE on-site measurement data from June 1 to August 31st 

demonstrates an error of 1.88oC RMSE for the outdoor air temperature and 7.53 kJ/kg RMSE for 

the outdoor enthalpy. Next, comparing GE on-site weather data with airport weather data 

converted to GE from June 1st to August 31st demonstrates an RMSE of 1.66oC for outdoor air 

temperature and 8.12 kJ/kg RMSE from outdoor air enthalpy. The conversion of relative humidity 

(equation 7.2) was not applied as it is not an input regressor to the forecasting model.  

7.3.1 Substitution of historical weather airport data as inputs to the monolithic model 

This section explores the performance effects from the substitution of off-site weather data in the 

event of a failure of on-site weather sensors. Scenarios 1 and 2 are trained based on GE on-site 

measurement data from 00:00 June 1st to 8:45 July 30th, 2014 and then applied to forecast 09:00 to 

14:45 July 30th, 2014. It was assumed that the weather sensors obtained a failure after 08:30, 

therefore, the substitution of off-site data is applied at the 08:45 data sample (t). Figure 65 presents 

the forecasts for both target variables at 09:00 July 30th (F+1). The top graph presents the forecasts 

for the GE secondary system electric demand, while the bottom graph presents the forecasts for 

the CP primary system electric demand. The red lines in both graphs indicate BAS measured values 

while the black lines represent the scenario 0 (baseline forecasting model developed in section 

6.3.5). The blue lines show the results from the implementation of scenario 1 (airport data). 

Furthermore, the green lines presents the forecast with the application of GE data estimated based 

off of airport weather data (scenario 2).   



131 

 

 

 

 
Figure 65: F+1 with substituted weather data   

The performances of the F+1 forecasts depicted in Figure 65 are presented in Table 55. The 

observations demonstrate that the benchmark model obtained the smallest CV(RMSE) with an 

error of 5.45% for the secondary system and 5.55% for the primary system. Scenario 1, which 

applied converted airport weather data obtained the largest forecasting errors with 10.73% and 

9.81% CV(RMSE) for the electric demand of the secondary and primary systems respectively. 

Furthermore, scenario 2 which estimated GE weather data based on airport weather data obtained 

the error of 7.96% and 7.77% CV(RMSE) for the electric demand of the secondary and primary 

systems.  

Table 55: F+1 performance results for scenarios 1 and 2 from 09:00 to 14:45 

Scenario 

Forecasting Error 

CV(RMSE) (%) 

GE Secondary System  

electric demand 

CP Primary System 

electric demand 

Electric demand of the 

GE HVAC System 

Benchmark 5.45 5.55 4.75 

1 10.73 9.81 5.72 

2 7.96 7.77 7.09 

 

7.3.2 Inclusion of forecasted weather data as inputs for the monolithic model  

This section explores the application of the forecasted air temperature data applied as an input to 

the monolithic model. For this work, it is assumed that the future weather forecasts follow closely 
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with the future measured values. Therefore, this work applies the future weather data as a proxy 

to forecasted weather data. At each time step, the monolithic forecasting model continues to apply 

current and historical values based on GE measurement data (t, t-1,…t-3); however, additional 

forecasted outdoor air temperatures are applied as inputs. The overall hyperparameters of the 

monolithic forecasting model remain unchanged in this work. Scenarios 3, 4 and 5 are trained 

based on GE on-site measurement data from 00:00 June 1st to 8:45 July 30th, 2014 and then applied 

to forecast 09:00 to 14:45 July 30th, 2014.   

 
Figure 66: F+1 forecasts with forecasted weather data included as inputs  

Figure 66 presents the forecast generated for July 30th at 09:00 to 14:45. The top most graph 

presents the BAS measured values along with forecasts generated by each scenario for the GE 

secondary system electric demand. The bottom graph of Figure 66 presents the BAS measured 

data for the primary system electric demand and the forecasts generated by each scenario. Within 

both graphs the red lines indicated BAS measured values, the black lines indicate the benchmark 

forecasts, the blue lines indicate scenario 3 forecasts, the green lines indicate scenario 4 forecasts, 

and the magenta lines indicate scenario 5 forecasts. The performance results for the F+1 forecasts 

depicted in Figure 66 are presented in Table 56. The results demonstrate adequate forecasting 

performance.  
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Table 56: F+1 performance results for scenarios 3, 4, and 5 from July 30th at 09:00 to 14:45 

Scenario 

Forecasting Error  

CV(RMSE) (%) 

GE Secondary System  

electric demand 

CP Primary System  

electric demand 

Electric demand of the 

GE HVAC System 

Benchmark 5.45 5.55 4.75 

3 5.99 3.49 3.80 

4 6.77 3.66 4.45 

5 4.91 6.22 3.88 

 

7.3.3 Comparison of scenarios 

All scenarios were applied to a testing data set consisting of one day of consecutive forecasts. The 

data set ranged from 08:45 7/30/2014 and continuing until 08:45 7/31/2014. At each 15-minute 

time step, forecasts are generated over the forecast horizon and the performance is calculated in 

comparison to measurement data; the results are presented in Table 57. 

Table 57: Forecasting results for each scenario over the testing data set 

Scenario 

Secondary System 

electric demand 

Primary System 

electric demand 

Electric demand of the 

GE HVAC System 

RMSE  

(kW) 

CV(RMSE) 

(%) 

RMSE  

(kW) 

CV(RMSE)  

(%) 

RMSE  

(kW) 

CV(RMSE) 

(%) 

Benchmark 2.71 6.24 34.98 7.78 5.51 5.59 

1 3.58 8.22 39.76 9.06 7.02 7.32 

2 3.40 7.91 40.78 9.32 6.68 7.01 

3 3.43 7.88 35.10 7.76 6.36 6.46 

4 3.10 7.02 32.30 7.24 5.31 5.35 

5 3.24 7.54 33.92 7.56 5.99 6.21 

 

Two main points may be noticed from the results. Firstly, in the event of an on-site weather sensor 

failure; the airport weather data can be substituted into the forecasting model with a minor (less 

than 2%) decrease in model accuracy. This can be observed in comparing the results of model 

accuracy for scenarios 1 and 2 to the benchmark accuracy. Secondly, the inclusion of forecasted 

weather as an input shows a slight reduction in the forecasting of the electric demand. However, 

this may be attributed to the need to re-tune the hyperparameters of the monolithic model. Despite 

this, the results from the inclusion of off-site weather data demonstrate adequate forecasting 

performance over the testing data set.  
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Chapter 8: Main contributions and future work  

8.1 Thesis Contributions  

This thesis contributes to the field of demand response research by investigating issues related to 

short term forecasting. Two different methods were proposed within this thesis for forecasting the 

electric demand of a heating, ventilation and air conditioning system over a forecast horizon of 

six-hours: the system model and the component model.  

The system based model is a global model which targets forecasting the overall electric demand 

of an HVAC system. In addition, one system based model provided further forecasts for the 

thermal energy loads for the HVAC in addition to the electric demand. The system based models 

provide a tool for the building operators to estimate the various sub-systems within the HVAC 

which influence the overall electric demand.   

The component based model focuses on the future estimation for a component within the overall 

HVAC system and is based on a grey-box approach. An ANN is applied to forecast a 

controlled/measured variable within the HVAC system (e.g. supply air flow rate), which is then 

coupled with a physical model that forecasts the future electric demand of the supply fans.  

Based on the objectives of this thesis, the main contributions of this thesis include:  

1. A literature review focusing on how ANNs have been applied to forecasting building 

energy use, and a second literature review focusing on how DL models have been applied 

for forecasting building energy use. 

2. Multi-step ahead forecasting for the electric demand of an HVAC system operating in the 

cooling/summer period with a forecast horizon of up to six-hours in advance. The data-

driven models applied are trained on measurement and synthetic data for a building and 

consist of state of the art based ML models. The work herein shows the adaptability and 

performance of such models leveraging existing data from the BAS. The models applied 

in this work contribute to the overall research field of demand response by the investigation 

of different approaches for forecasting the future electric demand of large systems within 

CI buildings.  

I. The system based model forecasts various loads within the HVAC system 

providing insight for the future electric demand of the sub-systems. Thus, the 
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system based models facilitate the testing of different demand response based 

strategies for the overall HVAC system.  

II. The component based model estimates the future electric demands for a component 

within the HVAC system and thus facilitates the testing of different demand 

response based strategies for a component.  

3. Validation of the proposed forecasting models on a case study for an existing building. The 

systems based model was applied on a case study with two different data sources. Synthetic 

data for the building obtained from an eQuest simulation for the building and measurement 

data obtained from the buildings BAS system. The building for this case study consists of 

the Genomic research center located on Loyola campus at the Concordia University. The 

component based model has been validated on a component (air handling unit) for the same 

building with measurement data.  

4. A comparison was accomplished exploring the performance effects of applying off-site 

weather data with a system based forecasting model. Firstly, weather data from Trudeau 

airport was applied exploring the performance effects of substituting off-site weather data 

into a calibrated forecasting model. Secondly, this work explored the performance effects 

of incorporating future weather forecasts as an input.   

8.2 Thesis Limitations 

The limitations and difficulties of this work is discussed in the following paragraphs. Firstly, the 

performance of data-driven models is impacted by the quantity and quality of the data obtained. 

Clearly incorrect sensor measurement values were omitted from the development of the 

forecasting models within. In addition, sensor values were double checked for accuracy whenever 

possible (e.g. outdoor air temperature from a local sensor was compared with historical weather 

data or two sensor measurements at similar locations were compared to each other). However, 

after such screening and preprocessing steps were applied, it was assumed measurements were 

correct and that the sensors were reasonably calibrated. Therefore, a limitation of this work was to 

the amount and quality of the data available.  

Furthermore, an additional limitation of this work is with the extraction of data from the synthetic 

case study. For this work, it was assumed that the eQuest model developed in reference [187], was 

accurate and did not require significant modifications. Therefore, a limitation of this work included 
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only minor modifications to the eQuest model for the GE building. An example of one such 

modifications would be the substitution of weather data from 2011 to 2014.  

The performance of ML models are significantly impacted by the hyperparameter optimization of 

the architectures. Hyperparameter selection of the models is crucial to the successful application 

of the selected models over the task applied. It was desired to explore all such combinations of all 

different hyperparameters available, and repeat each architecture multiple times to ensure 

satisfactory observation of its performance. However, in order to accomplish such a task, it would 

significantly increase the computational load and development time of the forecasting models. As 

such, time and computational constraints would not allow for such a search. Therefore, heuristics 

were applied in order to help reduce the search range of the hyperparameters. However, the 

exploration of hyperparameters beyond the boundary limitations imposed in this work may lead to 

interesting results and could be worth exploring in future work.  

Another limitation to be discussed is with regards to the data conversion methods applied. There 

are numerous such methods or approaches in order to convert hourly data to sub-hourly data. The 

exploration of all such methods, their effectiveness of conversion and there effects on performance 

while important, are beyond the scope of this work. Future work may wish to explore such different 

techniques and there overall performance effects.  

8.3 Future work  

Firstly, it should be noted that the forecasting energy models applied within this work may extend 

beyond the scope of demand response to other energy saving based approaches. For example, other 

approaches such as: demand side management, fault detection and diagnosis, model predictive 

control, smart grids, etc. may benefit from the implementation of such models. Nevertheless, the 

scope of this work was limited to the application of the forecasting models. As such, future work 

may focus on the implementation of the developed forecasting models outside the field of demand 

response.  

Secondly, the scope of this thesis was limited to the development of the forecasting models. While, 

the uncertainty of measurement values, sensitivity of the developed forecasting models, and 

uncertainty of the future estimations is valuable, it was beyond the scope of this work due to time 

constraints. Future work may benefit from the exploration of such aspects.  
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Finally, the literature reviews conducted in this work identified many research gaps for the 

applications of ANN and DL based models and provided lists of such gaps as summaries at the 

end of sections 2.2 and 2.3. A few of the most prominent research gaps include: lack of grey box 

models, sub-system and lighting applications, sub-hourly forecast horizons, residential case 

studies, and long term forecasting. Therefore, future work may wish to explore the effectiveness 

of ANNs, both shallow and deep models, on the identified research gaps. 
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Appendix A  

Table 58: District level deep learning papers 

District Level Year Application 
DNN type 

applied  

Target 

Variable 

Reference 

Number 

Sector 

2018 Industrial sector DFFNN/OA 
Electricity 

consumption 
[120] 

2019 
Residential and Industrial 

sector  

LSTM/DFFNN 

OA 

Natural gas 

consumption 
[142] 

2019 
Mackey-Glass 

Sector  
LSTM 

Natural gas 

consumption 
[143] 

City 

2018 
Rottne district system 

Karlshamn district  
DFNN/OA Heating load [144] 

2019 District system DFFNN/OA Heating load [145] 

2018 Non-residential district DNARX/OA 
Heating load 

Cooling load 
[131] 

2019 District system 
DFNN/LSTM 

RNN//OA 
Heating load [146] 

2019 District system LSTM/OA Heating load [147] 

2020 District system LSTM/OA Heating load [148] 

2019 

London, Karditsa,  

Hong Kong, Melbourne 

systems 

LSTM/OA Natural gas [149] 

2019 Ljubljana  DRNN/OA Natural gas [134] 

Complex 

2018 University  AE-RF Electric  [150] 

2019 Industrial complex CNN/RNN/OA Electric [151] 

2020 University LSTM-FFNN 

Electric 

Heating 

Cooling 

[152] 

2019 University  DFFNN Electric  [153] 

2020 Hospital complex GMDH Electric [154] 

2019 District mixed buildings DFFNN Heating [133] 

Commercial-

Residential 

2016 

District heating system for 

residential and commercial 

buildings 

DFNN/OA Heating [155] 

2018 

District heating system for 

residential and commercial 

buildings 

DFNNN/OA Heating [123] 

2017 District residential DFFNN Electric [119] 

2019 
District residential (agg.) 

Residential  
LSTM/OA Electric [156] 

2019 
District Residential (agg) 

Residential 
LSTM/OA Electric [157] 
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Appendix B 

Table 59: Building level deep learning based papers 

 
 

Building 

Level 
Year Application DNN type applied  

Target 

Variable 

Reference 

Number 

Institutional 

2017 Education AE-DNN/OA Cooling [126] 

2019 Education CNN/AE-DNN/OA Cooling [136] 

2019 Education RNN/GRU/LSTM Cooling [158] 

2020 University LSTM/DFFNN/OA Cooling [159] 

2018 University DRNN/OA Heating [132] 

2019 University GRU 
Electric  

Cooling 
[160] 

2020 University LSTM/OA Electric [161] 

2018 Education LSTM Electric  [162] 

Commercial 

2016 Office DFFNN/OA Cooling [121] 

2018 Office DBN Cooling [127] 

2017 Office DFNN 
Hearing 

Cooling 
[122] 

2020 Complex DFFNN/OA Heating [163] 

2020 N/s Public 

LSTM/CIFG/GRU/LSTM-

ANN/CIFG-ANN/GRU-

ANN/OA 

Cooling [164] 

2017 Retail Extreme-SAE/OA Overall [130] 

2018 Hotel LSTM Electric [165] 

2019 Commercial-N/s GRU/LSTM/RNN/DFFNN Electric [166] 

2020 Commercial AE-RF/DFFNN/OA Electric  [167] 

2020 Office RNN-seq2seq/OA Electric [168] 

2020 Office 
LSTM/CNN/LSTM-

AE/LSTM-dense 
Electric [169] 

2018 
N/s Public 1  

N/s Public 2 
DBN/DBEN/OA Energy [170] 

2020 Office DFFNN Energy [171] 

Residential 

2019 Residential CNN/RNN/RNN-CNN Electric [172] 

2020 Residential CNN/OA Electric [173] 

2016 Residential customer LSTM Electric [174] 

2020 Residential LSTM/OA Electric [175] 

2017 Residential customer CNN/LSTM/FRBM Electric [125] 

2018 Residential LSTM/GRU/RNN/OA Electric [176] 

Multiple  

Case studies 

  

2019 
Residential/City 

Hall/Factory/Hospital 
LSTM/MIDAS-LSTM Electric [177] 

2016 

Public Administration/ 

Retail/R&D/Business/ 

Healthcare/ 

Car part/Electronic/ 

other manufactures  

RBM/OA Electric [178] 

2018 
Industrial 

Commercial 
LSTM/OA Electric  [179] 

2018 

Public health 

Residential 

Aggregated residential 

LSTMAE-ML/OA Electric  [129] 

2018 Public-N/s DBM/DEBM/OA Energy [170] 

2018 
Retail 

Office 
DBM/OA Overall [180] 

2019 
Hotel  

Office 
LSTM/GRU/OA Electric [181] 

2019 
Education 

Commercial 
CNN/GRU/OA Electric  [135] 
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Appendix C 

Table 60: Sub-meter and component level deep learning papers 

Year Application DNN type applied  Target Variable 
Reference 

Number 

2019 GSHP- Office AE-DDPG/OA Electric [182] 

2014 
GSHP 

HVAC 
DFFNN/OA Electric [124] 

2016 
Whole building 

Sub-meters 
CRBM/FCRBM/OA Electric [128] 

2019 
Whole building 

Appliances 
LSTM/OA Electric [183] 

2020 HVAC total DDPG/OA HVAC Electric [184] 

2020 Refrigeration system LSTM/OA 
Compressor 

Electric 
[185] 
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Appendix D  

% Component Model in Matlab for F+1 with 3 hour validation  

%% Step 1: Call in training data 
     train_data = xlsread('Direct_search_results.xlsx',1, 'B3074:B4802');     
     train_data = train_data';       
     train_data = num2cell(train_data);  
%% Step 2: Calling in Validation data (previous time step) 
     data_preload_1 = xlsread('Direct_search_results.xlsx',1, 'B3086:B4814');    
     data_preload_1 =  data_preload_1';       
     data_preload_1 = num2cell(data_preload_1);  
     val_data = xlsread('Direct_search_results.xlsx',1, 'B4815:B4826'); 
     val_data = val_data';      
     val_data = (val_data.*(27661.44-14838.67))+14838.67; 
%% Step 3: Training NARNET until error reached on RMSE validation  

RMSE_val = 1000; 
while RMSE_val > 600  

% Step 3a: Training NARNET 
      net = narnet(1:33,4);            
      [X,Xi,Ai,T] = preparets(net,{},{}, train_data);      
      net = adapt(net,X,T,Xi,Ai);      
      nntraintool('close');    
      clear X T Xi Ai t 

% Step 3b: Forcasting over validation period 
    [X,Xi,Ai,T] = preparets(net,{},{},data_preload_1);      
     [Y1,Xfo,Afo] = net(X,Xi,Ai);        
     [netc,Xic,Aic] = closeloop(net,Xfo,Afo);       
      [Y2,Xfc,Afc] = netc(cell(0,12),Xic,Aic); 
        % Measuring Error  
      Forecast_val=cell2mat(Y2);       
      Forecast_val =  (Forecast_val.*(27661.44-14838.67))+14838.67;       
     RMSE_val  = (immse( val_data, Forecast_val))^0.5;      
      CV_val = (RMSE_val/ mean(val_data))*100; 
      clear Afc Afo Ai Aic T X Xic Xfc Xfo Xi Y1 Y2   
    clc       
   end  
  %% Step 4: Calling in testing data for F+1 forecast 
     test_data = xlsread('Direct_search_results.xlsx',1, 'B4827:B4850'); 
     test_data = test_data';    
     test_data = (test_data.*(27661.44-14838.67))+14838.67; 
    data_preload_2 = xlsread('Direct_search_results.xlsx',1, 'B3098:B4826');     
     data_preload_2 =  data_preload_2';    
      data_preload_2 = num2cell(data_preload_2); 
    %%  Step 5: Forecasting F+1 and calculating error 
    % Creating forecast 
     [X,Xi,Ai,T] = preparets(net,{},{},data_preload_2); 
     [Y1,Xfo,Afo] = net(X,Xi,Ai); 
     [netc,Xic,Aic] = closeloop(net,Xfo,Afo); 
     [Y2,Xfc,Afc] = netc(cell(0,24),Xic,Aic); 
   % Calculating Error  
   Forecast_testing_1 =cell2mat(Y2);       
     Forecast_testing_1 =  (Forecast_testing_1.*(27661.44-14838.67))+14838.67;       
     RMSE_testing_1  = (immse( test_data, Forecast_testing_1))^0.5;      
     CV_testing_1 = (RMSE_testing_1/ mean(test_data))*100;      
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Appendix E 

#################### PART 1: Import libraries 

import numpy as np  

import pandas as pd 

import keras 

from sklearn import preprocessing 

from numpy import array 

scaler = preprocessing.MinMaxScaler() 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from random import randint 

## split a multivariate sequence into samples previous 

def split_behind (series, n_steps): 

 X  = list() 

 for i in range(len(series)): 

  # finding the end  

  end_rr = i + n_steps 

  # seeing if beyond  

  if end_rr > len(series): 

   break 

  # combining  

  seq_b = series [i:end_rr, :] 

  X.append(seq_b) 

 return array(X) 

## split a multivariate sequence into a head samples (horizon) 

def split_ahead(series, n_steps): 

 X  = list() 

 for i in range(len(series)): 

  # finding the end 

  end_rr = i + n_steps 

  end_hor = end_rr+24 

  # seeing if beyond 

  if end_hor > len(series): 

   break 

  # combining 

  seq_a = series [end_rr:end_hor, :] 

  X.append(seq_a) 

 return array(X) 

 

#################### PART 2: Calling in data (ALL DATA) 

## Select the number of time lags for the regressors and hidden layer neurons 

n_steps = 4 

h1 = 75 

h2 = 40 

 

## TRAINING DATA IMPORT AND PREPARATION  

## Import regressors training 

xls = pd.ExcelFile(r'C:\Users\NAME\Desktop\1d. Monolithic Forecasting results.xlsx') 

data_reg_full = pd.read_excel(xls, 'R-1') 

del data_reg_full['Date and time'] 

n_var = data_reg_full.shape[(1)] 

data_back_pass = data_reg_full.values 

##Creating data set with lags for each regressors with current and historical data 
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X = list() 

for t in range (n_var): 

    var = data_back_pass[:,t] 

    var = var.reshape( len(var),1) 

    seq = split_behind(var, n_steps) 

    del (var) 

    seq = seq.reshape(len(seq), n_steps) 

    X.append(seq) 

 

data_training_reg = array(X) 

data_training_reg = np.hstack(data_training_reg) 

del(X,seq,t, data_back_pass) 

 

## Import targets training  

xls = pd.ExcelFile(r'C:\Users\NAME\Desktop\1d. Monolithic Forecasting results.xlsx'') 

data_tar_full = pd.read_excel(xls, 'T-1') 

del data_tar_full['Date and time'] 

n_var_tar = data_tar_full.shape[(1)] 

data_for_pass = data_tar_full.values 

 

X = list() 

for t in range (n_var_tar):  

    var = data_for_pass[:,t] 

    var = var.reshape( len(var),1) 

    seq = split_ahead(var, n_steps) 

    del (var) 

    seq = seq.reshape(len(seq), 24) 

    X.append(seq) 

 

data_training_tar = array(X) 

data_training_tar = np.hstack(data_training_tar) 

del(X,seq,t, data_for_pass) 

 

## Align length of data backwards and forewards data. Then reshape arrays to prepare for joining 

data_training_reg = data_training_reg[:len(data_training_tar)] 

## Normalize data 

scaler = preprocessing.MinMaxScaler() 

data_nreg = scaler.fit_transform(data_training_reg) 

data_ntar =  scaler.fit_transform(data_training_tar) 

## Deleting excess data 

del ( n_var_tar, data_reg_full, data_tar_full) 

#del (data_training_reg, data_training_tar) 

 

## TESTING DATA IMPORT AND PREPARATION  

## Import regressors Validation 

xls = pd.ExcelFile(r'C:\Users\NAME\Desktop\1d. Monolithic Forecasting results.xlsx') 

data_reg_full = pd.read_excel(xls, 'R-1F') 

del data_reg_full['Date and time'] 

n_var = data_reg_full.shape[(1)] 

data_back_pass = data_reg_full.values 

## Creating data set with lags for each regressors with current and historical data 

X = list() 

for t in range (n_var): 

    var = data_back_pass[:,t] 

    var = var.reshape( len(var),1) 

    seq = split_behind(var, n_steps) 
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    del (var) 

    seq = seq.reshape(len(seq), n_steps) 

    X.append(seq) 

 

data_test_reg = array(X) 

data_test_reg = np.hstack(data_test_reg) 

del(X,seq,t, data_back_pass) 

## Normalize data 

scaler = preprocessing.MinMaxScaler() 

data_nreg_test = scaler.fit_transform(data_test_reg) 

#del (data_test_reg, data_test_tar) 

 

#################### PART 3: Training AE, extracting encoder, compressing data 

## Encoder 1 

### Training the encoder 

model_AE = Sequential() 

model_AE.add(Dense(n_steps*n_var,activation='tanh',input_dim=n_steps*n_var)) 

model_AE.add(Dense(h1,activation='tanh')) 

model_AE.add(Dense(h2,activation='tanh')) 

model_AE.add(Dense(h1,activation='tanh')) 

model_AE.add(Dense(n_steps*n_var,activation='tanh')) 

model_AE.compile(loss=keras.losses.mean_squared_error,optimizer=keras.optimizers.RMSprop(lr=0.0001

, rho=0.9, epsilon=None, decay=0.0), metrics = ['accuracy']) 

model_AE.fit(data_nreg, data_nreg, epochs=500, verbose=0) 

### Extracting the encoder 

model_EN = Sequential() 

model_EN.add(Dense(n_steps*n_var,input_dim=n_steps*n_var,activation='tanh', 

weights=model_AE.layers[0].get_weights())) 

model_EN.add(Dense(h1,activation='tanh', weights=model_AE.layers[1].get_weights())) 

model_EN.add(Dense(h2,activation='tanh',weights=model_AE.layers[2].get_weights())) 

### Compressing data  

Encoder_compressed_train_data = model_EN.predict(data_nreg, verbose=0) 

Encoder_compressed_train_data=Encoder_compressed_train_data.reshape(len(Encoder_compressed_train

_data),h2, 1) 

print ("Trained the AE") 

 

#################### PART 4: Training 4 LSTM models for the EN 

n_features = 1 

## LSTM Group 1 using encoder 1 

#### Model 1 

value = randint(50, 200) 

model_LSTM_1 = Sequential() 

model_LSTM_1.add(LSTM(value, activation='relu', input_shape=(h2, n_features))) 

model_LSTM_1.add(Dense(48)) 

model_LSTM_1.compile(optimizer='adam', loss='mse') 

# fit model 

model_LSTM_1.fit(Encoder_compressed_train_data, data_ntar, epochs=300, verbose=0) 

print ("Trained LSTM 1 ") 

#### Model 2 

value = randint(50, 200) 

model_LSTM_2 = Sequential() 

model_LSTM_2.add(LSTM(value, activation='relu', input_shape=(h2, n_features))) 

model_LSTM_2.add(Dense(48)) 

model_LSTM_2.compile(optimizer='adam', loss='mse') 

# fit model 

model_LSTM_2.fit(Encoder_compressed_train_data, data_ntar, epochs=300, verbose=0) 
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print ("Trained LSTM 2 ") 

### Model 3 

value = randint(50, 200) 

model_LSTM_3 = Sequential() 

model_LSTM_3.add(LSTM(value, activation='relu', input_shape=(h2, n_features))) 

model_LSTM_3.add(Dense(48)) 

model_LSTM_3.compile(optimizer='adam', loss='mse') 

# fit model 

model_LSTM_3.fit(Encoder_compressed_train_data, data_ntar, epochs=300, verbose=0) 

print ("Trained LSTM 3 ") 

### Model 4 

value = randint(50, 200) 

model_LSTM_4 = Sequential() 

model_LSTM_4.add(LSTM(value, activation='relu', input_shape=(h2, n_features))) 

model_LSTM_4.add(Dense(48)) 

model_LSTM_4.compile(optimizer='adam', loss='mse') 

# fit model 

model_LSTM_4.fit(Encoder_compressed_train_data, data_ntar, epochs=300, verbose=0) 

print ("Trained LSTM 4 ") 

 

del (Encoder_compressed_train_data) 

 

####################  PART 5: Applying encoder-LSTM models to testing data 

### Compressing data  

Encoder_compressed_test_data = model_EN.predict(data_nreg_test, verbose=0) 

Encoder_compressed_test_data=Encoder_compressed_test_data.reshape( 

len(Encoder_compressed_test_data),h2, 1) 

### Forecasts   

### AE-LSTM Group 1 

forecast_LSTM_1= model_LSTM_1.predict(Encoder_compressed_test_data, verbose=0) 

forecast_LSTM_2= model_LSTM_2.predict(Encoder_compressed_test_data, verbose=0) 

forecast_LSTM_3= model_LSTM_3.predict(Encoder_compressed_test_data, verbose=0) 

forecast_LSTM_4= model_LSTM_4.predict(Encoder_compressed_test_data, verbose=0) 

LSTM_ensemble_forecasts= np.mean([forecast_LSTM_1, forecast_LSTM_2, forecast_LSTM_3, 

forecast_LSTM_4], axis=0) 
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