
Hardware Implementation of Spiking Neural Networks

Anatoly Syutkin

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Electrical Engineering)

Concordia University

Montreal, Quebec, Canada

April 2021

© 2021 Anatoly Syutkin

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Anatoly Syutkin

Entitled: Hardware Implementation of Spiking Neural Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Sebastien Le Beux

Examiner
Dr. Sebastien Le Beux

Examiner
Dr. Charalambos Poullis

Supervisor
Dr. Glenn Cowan

Approved by
Dr. Y. R. Shayan, Chair
Department of Electrical and Computer Engineering

April 13, 2021

Mourad Debbabi, Ph.D., P.Eng., Dean
Faculty of Engineering and Computer Science

Abstract

Hardware Implementation of Spiking Neural Networks

Anatoly Syutkin

The fields of Machine Learning and Artificial Intelligence have made great strides in the last

decade due to the increasing computational power of Graphics Processing Units (GPUs).

Neural networks make up for a very large portion of this research area, and come in great

variety (e.g. feedforward, convolutional, etc.). Although they are inspired by the human

brain, they have no biological plausibility aside from the high interconnectivity of nodes.

Spiking Neural Networks (SNNs) are a step in the direction of greater biological plausibility

with the use of inherently dynamic neurons.

As implied by the name, SNNs are composed of neurons that generate Boolean spikes when

their accumulated input exceeds a threshold value. Thus, information is encoded in the

timing of spiking events. Although they are computationally expensive to simulate with

general-purpose computers, their dynamic behavior lends itself well to direct hardware im-

plementations with very high parallelism and low power consumption.

This thesis proposes a scalable architecture for a hardware system that can be used to study

the behavior of SNNs, as well as the trade-offs that result from the various design parameters.

Using classic benchmark problems (i.e. MNIST classification and cart-pole stabilization),

it was observed that SNNs are very robust against variations in neural parameters, but

degrade quickly with mismatch in synaptic weights. An MNIST classification accuracy of

96.28% drops by < 2% for severe neural variations, but > 5% for small synaptic mismatches.

Additionally, the performance is re-evaluated for several weight quantizations. Finally, the

effects of router delays are observed.

iii

Acknowledgements

I wish to express my gratitude:

To Concordia, FRQNT and NSERC for the research opportunities and financial support;

To my family and friends, who helped and encouraged me;

To Michael Segev, Michael Wright, and Jerrin Pathrose, for their collaboration;

And, of course, to my supervisor Dr. Glenn Cowan, for all of his guidance and advice.

iv

Contents

List of Figures viii

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 SNN IC Architecture . 2

1.2 Thesis Organization . 3

1.3 Contributions . 4

2 Neural Network Background and Literature Review 6

2.1 Artificial Neural Networks . 6

2.2 Spiking Neural Networks . 11

2.2.1 Neural Modeling . 11

2.2.2 Synaptic Modeling . 15

2.2.3 Network Simulation . 16

2.2.4 Spike-Timing Dependent Plasticity 19

2.2.5 SNN Behaviors . 19

2.3 Literature Review . 24

2.3.1 DYNAPs . 24

v

2.3.2 SpiNNaker . 25

2.3.3 TrueNorth . 26

2.3.4 Loihi . 26

2.3.5 BrainScaleS . 27

3 Proposed Architecture 28

3.1 Core Operation . 29

3.2 Scaling . 31

3.3 Local Router Bridge . 32

3.4 Overview and Memory Programming . 33

4 Design of an SNN Core 35

4.1 Memory . 35

4.1.1 Random-Access Memory . 35

4.1.2 Content-Addressable Memory . 39

4.2 Neurons & Synapses . 45

4.2.1 Neuron . 45

4.2.2 Synapse . 46

4.2.3 SN Column . 48

4.3 Arbitration . 48

4.3.1 Arbitration Latch . 49

4.3.2 Arbitration Node . 51

4.3.3 Arbitration Column . 53

4.3.4 Arbitration Tree . 53

4.3.5 Arbiter . 55

4.4 Routing . 56

4.4.1 Router Communication . 57

vi

4.4.2 Event Buffer . 58

4.4.3 Transmitting Router (TX) . 60

4.4.4 Receiving Router (RX) . 62

4.4.5 Local Router . 66

4.4.6 Combined Router . 68

4.4.7 Local Router Bridge . 69

5 Interface 70

5.1 Input Encoding . 70

5.2 Output Decoding . 72

6 Benchmarks 73

6.1 MNIST Handwritten Digit Classification . 73

6.1.1 Impact of Parametric Variation . 78

6.1.2 Modeling DAC Variation . 78

6.2 Cart-Pole Balancing . 82

7 Conclusion 86

7.1 Future Work . 87

Bibliography 94

Appendices 95

A Python Source Code 96

A.0.1 Spiking Neural Network . 96

List of Figures

2.1 Neural Network . 6

2.2 Artificial neuron . 7

2.3 Sigmoid activation function . 8

2.4 ReLU activation function . 8

2.5 ANN layer . 9

2.6 ANN parametric sweeping [13] . 9

2.7 Spiking neural network . 11

2.8 LIF neuron model . 12

2.9 Neuron spiking activity . 13

2.10 Spike frequency tuning curve . 13

2.11 Izhikevich neuron model [16] . 14

2.12 Synaptic current . 15

2.13 Structure of SNN simulator . 16

2.14 Simple SNN . 17

2.15 Simple SNN operation . 18

2.16 Spike raster plot . 18

2.17 STDP rule . 19

2.18 Neuron driven by a filtered impulse train . 20

2.19 Spike rate as a function of synaptic strength 20

viii

2.20 Spiking rate of neuron n1 as a function of synaptic strength gSY N 21

2.21 Spike bursts . 22

2.22 SNN with simulated synapse delay . 22

2.23 Effect of de-synchronized spikes . 23

2.24 DYNAPs architecture [24] . 24

2.25 SpiNNaker node [27] . 25

2.26 TrueNorth architecture (top-right corner) [28] 26

3.1 Architecture block-diagram . 28

3.2 Torus topology [26] . 31

3.3 Torus core arrangement . 31

3.4 Architecture with local router bridge . 32

3.5 Detailed architecture diagram . 34

4.1 D flip-flop interface . 35

4.2 Register interface . 36

4.3 Stack interface . 37

4.4 Stack operation . 37

4.5 Memory grid schematic . 38

4.6 Memory grid operation (programming) . 39

4.7 Memory grid operation (accessing) . 39

4.8 Match cell schematic . 40

4.9 Match cell operation . 40

4.10 Match array schematic . 41

4.11 Match array operation (programming) . 42

4.12 Match array operation (accessing) . 42

4.13 CAM stack schematic . 43

ix

4.14 CAM stack operation . 43

4.15 CAM grid schematic . 44

4.16 CAM grid operation (programming) . 44

4.17 CAM grid operation (accessing) . 45

4.18 Neuron structure . 45

4.19 Synapse structure . 47

4.20 Synaptic circuit operation . 47

4.21 Synapse-Neuron Column . 48

4.22 Arbitration tree . 49

4.23 Arbitration latch interface . 50

4.24 Latch operation . 50

4.25 Finite-state machine . 51

4.26 Arbitration node schematic . 51

4.27 Node operation . 52

4.28 Arbitration column schematic . 53

4.29 Arbitration tree schematic . 54

4.30 Tree operation with N = 16 . 54

4.31 Complete arbiter . 55

4.32 Arbiter operation . 56

4.33 Router architecture . 56

4.34 Communication port . 57

4.35 Communication pattern . 58

4.36 Circular buffer . 58

4.37 Event buffer schematic . 59

4.38 Event buffer operation (ALEN = 4, WIDTH = 8) 59

4.39 Transmitting router (TX) schematic . 60

x

4.40 Finite-state machine . 61

4.41 Transmitting router operation . 62

4.42 Receiving router (RX) schematic . 63

4.43 Broadcasting device symbol . 63

4.44 FSM for HEAD pointer . 65

4.45 FSM for TAIL pointer . 65

4.46 Receiving router operation . 65

4.47 Local router schematic . 66

4.48 Local router operation . 67

4.49 Full router schematic . 68

4.50 Schematic for jumper over local router . 69

5.1 Encoding of a signal into a spike train . 71

5.2 Spike generator . 71

5.3 SNN IC with input encoded by one spike generator 71

5.4 Spike decoder for four output neurons . 72

6.1 Unique synaptic values with 8-bit resolution 76

6.2 Histograms for synaptic values with resolutions of 8 bits, 5 bits and 4 bits . . 76

6.3 Sample MNIST test case (Python) . 77

6.4 Sample MNIST test case (VHDL) . 77

6.5 Programmable current source . 79

6.6 Standard deviations for mismatch of each bit 80

6.7 Sample DAC transfer characteristics (4-bit) 81

6.8 Cart-pole system [40], [42] . 82

6.9 Simulation setup [42] . 83

6.10 SNN for cart-pole control [42] . 84

xi

6.11 Cart-pole balancing simulation (Python) [42] 84

6.12 Cart-pole balancing with local router bridge (VHDL) 85

6.13 Cart-pole balancing without local router bridge (VHDL) 85

xii

List of Tables

3.1 Address ranges for module memories . 33

4.1 Example dictionary . 43

4.2 Possible arbitration latch outputs . 50

4.3 Outputs of the finite-state machine . 61

4.4 Broadcasting device truth table . 63

4.5 Outputs of FSM HEAD . 64

4.6 Outputs of FSM TAIL . 64

4.7 Sample routing table . 65

6.1 Memory Estimate . 74

6.2 Classification Accuracy [%] . 75

6.3 Accuracy with neural parametric variation 78

6.4 Accuracy with mismatch in DAC current sources 81

xiii

List of Abbreviations

ANN Artificial Neural Network. 6, 7

CAM Content-Addressable Memory. 3

DAC Digital-to-Analog Converter. 78

FSM Finite-State Machine. 32

IC Integrated Circuit. 2

IF Integrate-and-Fire. 20

LIF Leaky Integrate-and-Fire. 12

RX Receiver. 31

SNN Spiking Neural Network. 11

TX Transmitter. 31

xiv

Chapter 1

Introduction

Neural Networks make up for a very large portion of Machine Learning (ML), and have

a great variety of applications that include control systems, speech recognition, and image

classification [1], [2], [3], [4]. As the name indicates, a neural network is a graph that consists

of nodes (neurons) and edges (weights). These networks can differ greatly based on the type

of application, and vary according to the number and type of neurons, and their connectivity

(e.g. the number of layers). In simplest terms, neural networks can be thought of as function

approximators [5], which are fitted by adjusting the values of the edges that interconnect

the neurons.

Although neural networks are inspired from biology, their behavior and training have no

biological plausibility. For example, typical neural networks are static, and only produce

a constant output for a constant input. This, of course, has implications for the type of

interconnections among the neurons (i.e. non-recurrent connections). The more advanced

type of networks are the Spiking Neural Networks [6], which distinguish themselves with

dynamic neurons and synapses (connections). As such, they behave with a certain biological

plausibility, and combine the fields of computer science, neuroscience, and electronics. As

implied by their name, spiking neurons indicate their activity by emitting voltage spike trains

(events). Small currents at the input produce slow spike rates, and large currents - fast spike

rates. In this work, the static and dynamic networks are referred to as Artificial and Spiking

Neural Networks, respectively.

The specific architecture and type of neural network affect the choice of the training method,

which is often based on the Backpropagation algorithm [7]. In the context of supervised learn-

ing, the output of an ANN is compared with the desired result, and the errors are propagated

backwards through the layers of the network in order to adjust the weights (connections)

1

and biases of the neurons. Given the dynamic nature of SNNs, the backpropagation method

cannot be applied in a straightforward fashion.

In practice, neural networks are trained and executed on graphics processing units (GPUs).

However, in terms of power consumption, these may not always be the optimal solution due

to the use of general-purpose computing architectures. This is especially true for SNNs that

require the simulation of a set of differential equations.

This work proposes a scalable architecture for an integrated circuit (IC) that can be used

to compute the behavior of an SNN. This architecture is evaluated with two benchmarks:

the MNIST handwritten digit classification and the balancing of a cart-pole system. In

this design, the basic computational units are the neuron and the synapse. The effects of

parametric variation and the delays of the routing schemes are also observed.

1.1 SNN IC Architecture

The complete system presented in this work can be broken down into three fundamental

components: a set of voltage signal encoders, an SNN integrated circuit, and a spike-train

converter. Note that a single integrated circuit may have multiple cores, and it is the design

of a single core that is presented in this thesis.

As mentioned above, a core consists of a set of neurons and synapses, and the strengths of

the synapses (weights) are stored in memory modules. Although the neurons and synapses

can be implemented in either digital or analog hardware, a scalable architecture requires the

use of routers, which are digital. When a spike is produced by a neuron, it is encoded as

the address of the neuron. This is known as Address Event Representation [8]. Hence, if a

neuron produces multiple spikes, the address of that neuron is captured several times by a

local router, and the activity of the neuron is encoded by the timing of those spikes. For this

reason, it is crucial to minimize router delays, or at least keep them constant for all neurons.

Event collisions occur when multiple neurons emit spikes simultaneously. These collisions

may be dealt with differently, but in this work, an arbiter is used.

By their nature, SNNs are scalable and can be made arbitrarily large. For this reason,

the architecture is designed in such a way that allows the tiling of multiple cores in a torus

arrangement. Therefore, the router is responsible for broadcasting the events of local neurons

to neighboring cores, and also to act as a transmission unit for non-adjacent ones. When

the router captures external events, they may be delivered to the local neurons through the

2

use of content-addressable memory (CAM).

Given that the SNN core (or a multi-core IC) can only accept or produce address events,

an encoder is required to convert a set of analog input signals into a set of spike trains.

Constant inputs result in constant spike rates, and time-varying inputs result in spike trains

with variable spike densities.

The neurons that are designated as network outputs emit spike trains that are converted to

analog or digital signals. This is achieved by decoding the addresses that are transmitted

from a core back into spike trains, and processing them with low-pass filters.

It should also be stated that a particular design has not been selected for the neural and

synaptic circuits, and all the simulations make use of mathematical models with digital

control signals. However, this leaves room for the exploration and comparison of various

circuit designs for neurons and synapses.

1.2 Thesis Organization

Chapter 2 introduces the theory for both artificial and spiking neural networks, and highlights

certain behaviors that can only be observed in the latter. Existing hardware architectures

are also presented in this chapter.

Chapter 3 describes the architecture that is implemented in this work, and shows how mul-

tiple cores can be tiled to scale the size of an SNN.

Chapter 4 presents in detail the design of every module composing the SNN core.

Chapter 5 explains how an SNN IC may interface other circuits and systems.

Chapter 6 summarizes the performance of trained SNNs on two benchmark problems: the

MNIST classification and stabilization of a cart-pole (inverted-pendulum) system. The re-

sults of system-level and hardware-level simulations are presented.

Finally, Chapter 7 concludes the work and presents further objectives, as well as potential

improvements.

3

1.3 Contributions

Overall, the main contribution of this work is the setting-up of a framework that allows for

the study of various circuit designs and parameter trade-offs. This is done using system-level

simulations in Python and hardware-level simulations in VHDL.

The system-level simulations, which employ mathematical models and do not take routing

delays into consideration, have been used to analyze the effect of synaptic strength quantiza-

tion in order to find the minimal number of bits that are required to represent one synaptic

connection while preserving the accuracy of the SNN regarding MNIST classification of

handwritten digits.

Process variation during physical manufacturing of an IC always leads to parametric vari-

ations of circuits. Hence, another set of system-level simulations was used to observe the

effect of increasing parametric variations in neural model parameters (i.e. membrane resis-

tance and capacitance) on the SNN performance. It was concluded that, in regard to the

studied benchmark problems, the SNN is fairly robust against such variations.

Next, a similar set of simulations was used to study the importance of synaptic circuit vari-

ations, and it was noted that, due to the scaling complexity of the synapses, their matching

was far more important to preserve the accuracy of a trained SNN. More precisely, the most

important portion of the synaptic circuit is the Digital-to-Analog Converter (DAC), and the

relative matching of its bits requires careful design considerations.

At the hardware-level simulations with VHDL, it was determined that the greatest difference

in operation between mathematical and hardware models is caused by the routers that are

responsible for delivering spikes to and from local and external neurons. These differences

may be mitigated by increasing the clock rate that drives the SNN cores, but this is done

at the expense of a greater power consumption. Also, one of the proposed solutions consists

of a module that allows the bypassing of the routing scheme for neurons located on a single

core. Although this modification reduces the number of clock cycles to deliver a spiking

event, this solution is only applicable to SNNs whose output layers can fit within a single

core.

In addition, the designed architecture delivers spikes (and synaptic currents) in a serialized

manner. Thus, there is a loss of synchronization of neural spikes receiving equal and constant

inputs, and spiking events that are meant to be distributed simultaneously slightly diverge

in time. But, it was observed that, in the case of the MNIST benchmark, the classification

accuracy of the SNN is not very sensitive to this phenomenon.

4

In the future, the proposed SNN framework is to be used to study the various methods

for mitigating the issues that are described above. Potential solutions include mixed-signal

implementations of neural and synaptic circuits, as well as the use of dynamic element

matching for improving the performances of the DACs. Alternative routing architecture are

to be investigated as well.

5

Chapter 2

Neural Network Background and

Literature Review

The focus of this chapter is the theoretical operation of Spiking Neural Networks (SNNs),

as well as a comparison with the Artificial Neural Networks (ANNs) currently employed in

Machine Learning methodologies.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a nonlinear mathematical tool inspired by its bi-

ological counterpart: the brain [9]. As indicated by the name, an ANN is a network of

interconnected nodes, or neurons, which in turn can essentially be described as functions.

Figure 2.1: Neural Network

6

As shown in Figure 2.1, an ANN consists of three layers of neurons: an input layer, a hidden

layer, and an output layer. In deep learning, the number of hidden layers is increased [10].

In the case of Artificial Neural Networks, the outputs of the input layer neurons are equal

to the network inputs. Hence, the input layer is a misleading term as it is not composed

of neurons. Neural networks are used in a large variety of tasks with image classification

and control systems being the most common examples [2], [4]. Hence, the input vector can

consist of an array of pixel intensities of an image, or the state vector of a system being

controlled or stabilized.

w
0

w
1

w
n-1

x
0

x
1

x
n-1

a

b

1

f

Figure 2.2: Artificial neuron

The basic functionality of a neuron is demonstrated in Figure 2.2. A set of values x0, x1, ...

xn−1 is applied to the synapses at the input of the neuron. Each synapse, or weight, scales

the input components, and the resulting products are summed-up. Thus, the weighted input

is the dot-product of the input vector x and the weight vector w, as well as an additional

biasing term. The resulting neuron output is the activation function applied to the weighted

input:

a = f(www · xxx+ b) (2.1)

The behaviour of biological neurons can be described with differential equations, and these

neurons interact among each other by emitting voltage spikes [11]. The information that is

being communicated is encoded in the relative timing of these outputs spikes [11]. Therefore,

neurons that are very active output many spikes in a short period of time compared to those

that are less active in a specified time frame.

Artificial neurons, on the other hand, are described with nonlinear activation functions [9],

where a large static output symbolizes a neuron with a high spiking rate.

The simplest artificial neuron was proposed by McCulloch and Pitts, and makes use of a

7

The output of a neural network with multiple input and multiple output neurons can be

evaluated with feed-forward propagation:

1. Apply an input vector a1a1a1 = xxx as input;

2. Compute weighted input of hidden layer: z1z1z1 =W1W1W1a1a1a1 + b1b1b1;

3. Compute activation values of hidden layer: a2a2a2 = f(z1z1z1);

4. Compute weighted input of output layer: z2z2z2 =W2W2W2a2a2a2 + b2b2b2;

5. Compute activation values of output layer: a3a3a3 = f(z3z3z3);

If the network has more than one hidden layer, the last two steps are repeated as necessary.

10

2.2 Spiking Neural Networks

Artificial neural networks are only loosely inspired by biology. Spiking neural networks

(SNNs), on the other hand, make use of neurons and interconnecting synapses that are

modelled with biologically plausible dynamic equations. Thus, SNNs are the third generation

of neural networks [6]. Research in spiking neural networks is driven by the idea that

biological plausibility may lead to greater computational power, efficiency and scalability

[6], [14]. Although it is hard to define computational power, one may say that a specific

network is more computationally powerful than another if it can compute the same function

with a smaller number of neurons or parameters [6].

The network in Figure 2.7 below is a modification of Figure 2.1 where the SNN is shown to

have recurrent neurons, synapses interconnecting neurons of the same layer, and synapses

going into previous layers [15].

Figure 2.7: Spiking neural network

2.2.1 Neural Modeling

As mentioned previously, spiking neurons are governed by dynamic equations: differential

equations that dictate the behaviour of a neuron until a spiking event, and the resetting of

the neuron following an output spike. Just as there exists a variety of activation functions

for ANNs, there also exist numerous neuron models. Among these models, there is always

a trade-off between biological plausibility and computational cost during simulations [16],

[17].

11

2.2.1.1 Leaky Integrate-and-Fire Model

Vth
+

-

i
R C td/2

vm

vO

VDD

Figure 2.8: LIF neuron model

The simplest spiking neuron model is the leaky integrate-and-fire (LIF) neuron [18]:

dvm
dt

=
i(t)

C
−

vm(t)

RC
(2.4)

If vm ≥ Vth → vo = VDD, vm = 0 V (2.5)

As seen in Figure 2.8, the LIF neuron has two parameters: membrane resistance R and

membrane capacitance C. The input to the neuron is applied as a current signal, which is

accumulated in the membrane capacitance. When the membrane voltage vm become greater

than the threshold voltage Vth, the operational amplifier outputs a high voltage VDD. After

a certain delay td/2, the ideal reset switch is enabled and the membrane capacitance is

discharged to ground, leading the amplifier to output vO = 0V . After another delay of td/2,

the switch is turned OFF and the neuron can resume the integration of the input current.

Therefore, the duration of the neuron spike lasts a total of td.

An ideal diode is added to the schematic to indicate that the membrane voltage cannot be

brought to a negative voltage in case of a negative input current.

The functionality of the LIF neuron model is demonstrated in the following Figure 2.9, where

the input current is plotted in orange and the membrane voltage is plotted in blue. The

first segment of the simulation is a ramp input current. As this input is steadily increasing,

the membrane voltage is rising in response until the first spiking event occurs around t = 2s

before the neuron is reset. With the current continuing to increase, the time duration between

consecutive neuron spikes becomes shorter. Note that the duration of each spike is equal to

the time-step of the simulation.

At time t = 5s, a negative input current is applied that quickly discharges the membrane

capacitance to ground. In the third segment of the simulation, a constant current is applied.

12

2.2.3 Network Simulation

The structure of the spiking neural network simulator is represented in Figure 2.13. The

column labeled as NEURONS represents the state variables of each neuron of the SNN. The

synapse matrix stores the value of each synaptic strength, as well as the state of each synapse

(i.e. the current flowing through). In this matrix, the synapse labeled as Sij is excited by the

neuron ni and the supplies current to neuron nj. With this topology, the synapses on the

main diagonal S00, S11, . . . have strengths of zero, unless recurrent connections are desired.

At every simulation step, the currents of each column are summed up to form a row vector,

and its transpose is added to the column of source vectors. The latter are used as a substitute

for the biases of the ANN layers.

NEURONS SYNAPSES

nN-1

ni

n0

n1

sij

SOURCES

Figure 2.13: Structure of SNN simulator

The implemented simulator is configured by specifying the number of neurons N , the time-

step of the simulation ts, the simulated time tf , and the type of neural model (LIF or

Izhikevich). The neurons in the column are configured with the corresponding model pa-

rameters, as well as their biasing currents. Similarly, the matrix of synapses is configured

with a global time-constant for decay, and a synaptic strength for each synapse. The synapse

is said to be excitatory if it emits a positive current, and is called inhibitory if it emits a

negative current [20].

The pseudo-code below summarizes the operation of the simulator. The complete program

16

can be found in Appendix A.

configure simulator parameters; initialize neurons and synapses;

for each time step do
collect indices of spiked neurons; reset those neurons;

update neurons’ states based on model;

apply spikes to synapses; update synapses’ states based on exponential decay;

update raster plot;

end
Algorithm 1: High-level simulator operation

The SNN shown in Figure 2.14 is composed of four neurons. The neurons n0 and n1 are

supplied with constant current sources (or biases). The current source of n1 is smaller in

order to make n1 spike at a lower rate. As indicated by the synaptic current labels, an

excitatory synapse is used to connect n0 to n2 and n3, and an inhibitory synapse for the

connection of n1 and n3. The two excitatory synapses are equal, and the inhibitory synapse

is slightly weaker in magnitude than the excitatory ones.

i
EXC

i
INH

n
0

n
1

n
2

n
3

Figure 2.14: Simple SNN

The operation of this network is plotted in Figure 2.15. The excitatory synapse drives

the neuron n2 with sufficient strength to make it spike at the same rate as neuron n0. In

comparison, neuron n3 is inhibited by the activity of neuron n1, and has a smaller spiking

frequency. Below, the first two graphs show the excitatory and inhibitory currents. And the

two graphs at the bottom show the membrane voltages of the neurons n2 and n3, respectively.

(Note that both excitatory currents are equal).

The spiking activity of large SNNs can be displayed with spike raster plots, such as in Figure

2.16. The simulated network is composed of a thousand neurons, and is fully-connected with

random synapses. Each dot on this graph indicates a spike: the values of the x and y

coordinates correspond to the time at which a spike occurred and the index of the source

neuron, respectively.

17

2.2.4 Spike-Timing Dependent Plasticity

Spike-Timing Dependent Plasticity (STDP) is a type of learning behavior that is observed

in biology [21], and is often used as a training algorithm for SNNs [22]. This is a form of

unsupervised learning, and the basic premise is to strengthen the connection between two

neurons with a positive spike-train correlation, or to weaken it when the spiking correlation

is negative [22]. If a post-synaptic neuron outputs a spike shortly after receiving a spike

from a pre-synaptic neuron, their connection is increased. And, if a post-synaptic neuron

spikes before an incoming pre-synaptic spike, their connection is decreased. When the time

delay between pre- and post-synaptic spikes is sufficiently large, no changes are made to

the synapse. A possible interpretation is that, if a neuron receives inputs from multiple

pre-synaptic neurons, STDP prioritizes the connection with the neuron that is the last to

spike prior to the post-synaptic event. Also, in contrast with the episodic training of ANNs

with backpropagation, STDP-based learning happens continuously.

Figure 2.17 shows one of the possible ways for implementing the STDP rule, where the

vertical axis gives the increment or decrement in synaptic strength for a specified time delay

between pre- and post- synaptic events.

t

g

Figure 2.17: STDP rule

2.2.5 SNN Behaviors

This subsection provides examples of behaviors that can only occur with SNNs due to their

dependence on time.

19

2.2.5.1 Nonlinear Amplification of Spike Rates

In Artificial Neural Networks, the activation value of a pre-synaptic neuron is multiplied

by a weight. As such, each synapse of an ANNs can be thought of as a linear amplifier.

And, if a neuron only has one input, scaling the activation rate of a pre-synaptic neuron

by a factor α causes the weighted input of the post-synaptic neuron to also change by the

same factor. Therefore, when the weighted input is positive, and a ReLU activation function

is used (Figure 2.4), the activation of a post-synaptic neuron can be increased in a linear

fashion by the weight.

In Spiking Neural Networks, the average spike rate cannot have this kind of effect. Figure

2.18 shows neuron n0 with a constant spike rate driving neuron n1 through a low-pass filtering

synapse with a positive transconductance gSY N .

n0 n1
gSYN

Figure 2.18: Neuron driven by a filtered impulse train

For the sake of simplicity, assume that the Integrate-and-Fire (IF) neuron model is used

without a leaky parameter. Every spike from n0 delivers an amount of charge q0 into the

membrane capacitance of n1. Thus, if the transconductance of the synapse is strong enough

to trigger a spike with one impulse (q0 = QTH = CmVTH), then the spike rate r1 of neuron

n1 will be equal to the rate r0 of neuron n0. If however, 0.5QTH ≤ q0 < QTH , then two spikes

from n0 are required to trigger n1. This behavior is summarized in Figure 2.19. Contrast

this with Figure 2.10.

q0/QTH

11
2

1
3

1
4

1
5

1
n

r1/r0
1

1/2
1/3

1/n

Figure 2.19: Spike rate as a function of synaptic strength

20

2.3 Literature Review

The objective of this section is to give a brief overview of some existing SNN processors.

2.3.1 DYNAPs

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

R2-2

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

R2-2

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

R2-2

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

CLUSTER

R1

CLUSTER

R1

R2-1R
1

C
L
U
S
T
E
R

C
L
U
S
T
E
R

R
1

R2-2

R2-3

R3

Figure 2.24: DYNAPs architecture [24]

Shown in Figure 2.24 is the architecture of the Dynamic Neuromorphic Asynchronous Pro-

cessors (DYNAPs) IC that is composed of 64 neuron clusters divided over 4 cores [24]. All

clusters are interconnected through a routing tree with bi-directional connections among the

nodes of upper and lower levels. Each cluster interfaces the tree through R1 routers. The

next router R2 is made up of three levels, with each level connecting a set of four nodes (e.g.

router R2-3 connects to four routers R2-2, and so on). Finally, at the root of the tree, the

router R3 is used to interconnect multiple ICs.

24

The DYNAPs comprise 1k mixed-signal neurons and 64k synapses. And, as indicated by

the name, all circuits are asynchronous. In [25], DYNAPs is used to implement an ultra-low

power (< 722 µW) ECG anomaly monitoring system, which turns-on a micro-processor when

one is detected. Although the quantization of the synapses is not described, a recurrent SNN

architecture is chosen for the reservoir-computing paradigm. In other words, the prediction

error of the SNN is minimized by adjusting the gains of the low-pass filters that monitor the

output neurons.

2.3.2 SpiNNaker

The SpiNNaker is a very-large and highly-parallel computing system for the simulation of

SNNs [26]. The complete assembly is made-up of 1200 Printed Circuit Boards (PCBs) with

each having 48 nodes. Every node consists of a custom IC and a separate SDRAM. As can

be seen in Figure 2.25, each node comprises 18 cores, where each core is an ARM9 processor.

Thus, there are over a million cores in the entire computer [26], which are all connected in

a torus arrangement. This is done through the ports shown at the top of Figure 2.25 using

Address Event Representation.

ROUTER

System NOC

C0 C1 C17

SDRAM Periph.

Eth GPIO

S SW W N NE E

Figure 2.25: SpiNNaker node [27]

There are approximately 1000 neurons in a single core [26]. However, given that they are

simulated on ARM9 processors, these neurons need to be multiplexed. With clock rates

of fCLK ≈ 200 MHz, the average spiking rate of the neurons is fSP ≈ 10 Hz, which is

similar to the spiking rates observed in the biological brain [26]. Moreover, each neuron has

a fan-in/out of about 1000 synapses, but the resolution of these is not specified. Due to its

sheer size, the power consumption of SpiNNaker is at most 90 kW .

25

2.3.3 TrueNorth

TrueNorth is an integrated circuit developed by IBM with 1 million digital neurons and 256

million synapses that are divided over 4096 cores [28]. In Figure 2.26, only 4 cores are shown.

The input buffers shown on the left of every core receive inputs from the routers. A global

clock of fCLK = 1 kHz triggers the distribution of these inputs through the grid of synapses,

and the neurons at the bottom of each core integrate the currents. If spikes are generated,

they are sent to the remainder of the network [28].

ROUTER

ROUTER

ROUTER

ROUTER

Figure 2.26: TrueNorth architecture (top-right corner) [28]

2.3.4 Loihi

Designed by Intel, Loihi is an IC composed of 128 neuromorphic cores, with 1024 digital

neurons per core, and three x86 processors [29]. The entire system uses an asynchronous

network to communicate, and could be scaled up to 16384 ICs with 4096 cores on each chip

[29]. The synapses on Loihi may have resolutions of up to 9 bits, and can be updated using

programmable online learning rules, such as STDP. A LASSO benchmark problem is used

to compare the performance of Loihi with that of well-known solvers running on an Atom

CPU. It is observed that Loihi scales far better for larger problems, with significantly smaller

delay and energy consumption [29].

26

2.3.5 BrainScaleS

The BrainScaleS system is composed of 20 wafers, each comprising 384 analog neural network

ICs [30]. Every IC has 512 analog neurons, which can connect to at most 220 synapses. The

biologically plausible spiking rates of ∼ 40Hz are scaled-up by a factor of 104 due to the

fast time constants of the SNN circuits [30]. A small network of 135 neurons is used to

evaluate the classification accuracy of a subset of the MNIST dataset, where only 5 digits

are categorized. An initially trained network is first converted to 4-bit synaptic weights.

Finally, the spiking rates measured in hardware are used to update the synaptic weights in

order to compensate for process variations. An initial ANN classifier with a 97% accuracy

is mapped to an SNN whose accuracy falls to 72% due to process variations. Through the

iterative hardware training loop, this performance is brought back up to 95% [30].

27

Chapter 3

Proposed Architecture

The objective of this chapter is to present the general architecture for the hardware imple-

mentation of spiking neural networks. Also shown is the scalability of these networks through

the tiling of multiple cores in a toroidal arrangement, which is inspired by SpiNNaker [26].

i

t

SYNAPSES NEURONS

b0

i

t

b1

i

t

bN-1

ARBITER

ROUTER

LOC_MEM

TXU
TXR
TXD
TXL

RXU
RXR
RXD
RXL

EXT_MEM

n0

n1

nN-1

TAIL HEAD

K
E
Y
S

V
A
L
U
E
S

Figure 3.1: Architecture block-diagram

As a whole, the architecture proposed in this work serves as a platform for making design

decisions. Among the numerous design variables, some of these decisions include the type

of neural and synaptic models, the number of neurons per core, the resolution (number of

bits) allocated for synaptic strengths and biasing neural currents, etc. Due to their nature,

spiking neural networks can become very large and an all-to-all connectivity among neurons

28

is impractical. In fact, due to the finite memory available for network parameters and

routing entries, the number of destinations that a neuron can have is also finite. Therefore,

another very important design variable is the maximum number of synapses that a neuron

can interface.

The entire system is developed in VHDL, and in order to allow for experimentation, every

module is implemented with generic parameters. (In VHDL, generic parameters allow the

user to easily reconfigure entities. For example, 4-bit and 8-bit memory registers can be

instantiated from the same source code if a generic width parameter is used in its definition.)

In other words, the developed framework allows the user to easily reconfigure the values of

the design variables mentioned above depending on the requirements of a given test bench.

As an example, if a small SNN is being tested, an IC core with only a few neurons can be

instantiated. This is useful for keeping the required computing resources at a minimum.

Moreover, this greatly simplifies the exploration of the design space at both high and low

levels of implementation.

One of the most important set of phenomena that can be studied with the use of this

platform are the parametric variations across all the components used in this core, with an

emphasis on the analog circuits. If analog neurons and synapses are used, it is expected

for parametric variation to have a negative impact on the performance of trained SNNs.

In addition, due to the need to convert synaptic values from digital memory into analog

currents, the Digital-to-Analog converters will also suffer a certain degradation in accuracy.

Another important issue that needs to be studied are the routing delays, which are a function

of the clock rates. It is desirable to optimize the routing scheme in order to keep the clock

rate at a minimum and reduce overall power consumption.

3.1 Core Operation

In contrast with the multiplexed simulation of neurons on the SpiNNaker system, the design

proposed in this work consists of N separate hardware neurons that operate in parallel

[26]. As stated in the introduction, a fully-connected spiking network has two synaptic

connections between every pair of neurons (for a bi-directional transmission of currents).

Hence, the number of synapses scales with a square complexity O(N2) where N is the

number of neurons. This implies that the area of a hardware network implementation would

increase geometrically, and that most of the IC area is allocated for the storage of synaptic

strengths. One possible solution for mitigating this problem is to assign only one synaptic

29

circuit per neuron.

As shown in Figure 3.1, every SNN core is composed of a column of N synapses and N

neurons. The latter are directly connected to an arbitration module, which in turn, interfaces

a router that is used for handling local as well as external events. A memory array is used

to store a column of biasing currents labelled as b0, b1, · · · , bN−1 that are seen to the left of

each neuron. A local memory grid stores the values of the synapses that interconnect the

local neurons. And, an external memory provides a similar function by storing the synaptic

strengths whose source (pre-synaptic) neurons are located on external cores.

Each SNN core operates in the following fashion. When a neuron’s accumulated charge

triggers a spike, it sends a positive-edge to one of the arbiter’s inputs. The arbiter’s main

function is to encode the index of the firing neuron into a source address. This address is

then captured by the router and stored inside an event buffer, which behaves as a queue.

Next, the router retrieves the event address from the other end of this queue, and uses it

to access a column of synaptic values from the local memory grid, as highlighted in red in

Figure 3.1. After waiting for one clock cycle that allows the retrieval of the memory contents,

the router sends a positive-edge that causes current pulses to be injected into each synaptic

circuit. The amplitudes of these pulses correspond to synaptic strengths. The neurons

continue accumulating the currents, and the procedure repeats. The type of communication

where an event is encoded by the address of a spiking neuron is also known as Address Event

Representation [8].

As can be seen, the synapses can only be injected with one pre-synaptic spike at a time.

In the case of simultaneous neuron events, each spike is delivered one at a time. And, the

greater the speed of the clock driving each core, the more the delivery of synaptic pulses

appears to be simultaneous. However, it is important to mention that the total current of

a given synapses can consist of overlapping pulses, and one pulse does not need to decay

before another one can be applied.

The operation of this system differs greatly from the operation of the TrueNorth computer,

whose every core has a square interconnection grid and multiple events are delivered to-

gether [28]. Furthermore, the clock of the TrueNorth is used to synchronize ”frames” of

asynchronous operation, whereas the proposed design requires a fully synchronous approach.

Although the number of synaptic circuits has been reduced from N2 to N , the issue of

O(N2) scaling complexity cannot be fully solved due to the fact that there’s still a need for

the storage of all synaptic strengths in memory. But, the overall reduction in area can still

be significant considering that a synaptic circuit is much larger than a register of an SRAM.

30

Given that the scalability of SNNs is a critical requirement, the proposed architecture is

designed such that multiple cores can be tiled together. The proposed router design is

capable of communicating with external cores through four receiving (RX) ports and four

transmitting (TX) ports. Therefore, each core can have four neighbors.

When an event is received from an external core, one of four RX routing tables is used to

determine whether the event is to be delivered to the local neurons, to be transmitted to

other neighboring cores, or both. If the set of destinations does include the local neurons,

the address of the event is used as a key for content-addressable memory (CAM), which

provides a set of synaptic values (highlighted in blue in Figure 3.1) that are then applied to

the column of synaptic circuits. In the case of SpiNNaker, two additional ports are used for

diagonal North-East and South-West directions [26].

3.2 Scaling

Suppose that a given SNN is made up of M ×N neurons, where M is the number of cores

and N is the number of neurons per core. (For the sake of simplicity, assume that n = log
2
N

is an integer, and m = log
2
M can be expressed as a product of two integers.) Thus, the

number of entries that every router must be able to receive is (M − 1) × N . The simplest

solution is to tile all of the M cores in a matrix arrangement. The cores located in the

middle of the grid would have RX routing tables with an equal number of entries. However,

the tiles on the right side of this matrix would have a large table on its left RX port and an

empty table on its right port. The same applies for every other core. In order to maintain

an even distribution of routing entries, a toroidal arrangement is used to interconnect every

circuit. Figure 3.2 presents the overall topology of the system, and Figure 3.3 demonstrates

that a torus can be build by connecting the ports at the top with those at the bottom, and

the ports on the left with those on the right.

Figure 3.2: Torus topology [26] Figure 3.3: Torus core arrangement

31

3.3 Local Router Bridge

An improvement to the proposed architecture is presented in Figure 3.4. It consists of adding

a module that allows for the address events of local neurons to be redistributed without the

use of the router. This bridge disconnects the arbiter module from the local router, and

instead re-routes it directly to the local memory grid that stores the local synaptic values. A

finite-state machine (FSM) is used to generate the spike acknowledge signals for the neurons,

as well as the pulses that trigger the synapses. No spikes are dropped in the case of collisions.

However, due to the faster handling of these spikes, the number of collisions decreases.

The main disadvantage of this method is the inability to broadcast local address events

to external cores. Thus, the neurons that comprise the output layer are to be monitored

through external pins of the integrated circuit. For this reason, the router bridge can only be

enabled on SNN cores whose local neurons do not have any external destinations. Therefore,

if a network spans multiple cores, the local router can only be bypassed on the core that

contains the output layer, and the remaining cores need to have a fully operational router.

Events arriving from external cores are still handled by the RX routers.

i

t

SYNAPSES NEURONS

b0

i

t

b1

i

t

bN-1

ARBITER

ROUTER

LOC_MEM

TXU
TXR
TXD
TXL

RXU
RXR
RXD
RXL

n0

n1

nN-1

TAIL HEAD

FSM

EXT_MEM

K
E
Y
S

V
A
L
U
E
S

Figure 3.4: Architecture with local router bridge

32

3.4 Overview and Memory Programming

Figure 3.5 presents the complete detailed architecture of the integrated circuit. The left

portion of the diagram shows the combined memory interface consisting of the signals

IC PROG WR, IC PROG ADDR and IC PROG REG. The total length of the address bus IC PROG ADDR

is expressed in terms of generic parameters as

ALEN ICS + 2ALEN NRNS + 3 (3.1)

where ALEN ICS is the address length for the cores. As an example, if ALEN ICS = 4, the

memory for external synapses and the routing tables are scaled for a full torus of 16 cores.

Similarly, the number of neurons in each core is specified by the address length ALEN NRNS.

In Table 3.1, the column labelled as XYZ is a concatenation of specific address bits from the

bus IC PROG ADDR. The bits X and Y correspond to the 2 most significant bits of the address.

The bit Z is taken at index 2ALEN NRNS.

Table 3.1: Address ranges for module memories

Branches XYZ Address Range

1 000 ALEN NRNS - 1 : 0

2 001 2ALEN NRNS - 1 : ALEN NRNS

3 010 ALEN ICS + ALEN NRNS : 0

4 011 ALEN ICS + 2ALEN NRNS : ALEN ICS + ALEN NRNS + 1

- 1XX ALEN ICS + ALEN NRNS : 0

In order to program the values of the constant current sources that bias the neurons, the

first branch is accessed with XYZ = 000, and the programmer iterates through the address

range of all neurons. When writing the values of the local synapses, the next branch is

accessed with XYZ = 001, and due to having N2 synapses, the right-most 2ALEN NRNS bits of

the address bus are used to write the synaptic values. The least significant ALEN NRNS bits

are used to iterate through the X coordinates of the memory grid, and the most significant

ALEN NRNS bits are used for the Y coordinates. The procedures are similar for the content-

addressable memories that store the external synaptic values, as well as the tables found in

the router.

Prior to the manufacturing of the IC, the memory modules are to be synthesized with SRAM

technology. Given that SRAM is volatile, the IC can be used for various applications.

33

r_clk
r_rst

ic_en

ic_clk
ic_rst

sn_out[num]

sn_clk
sn_rst

sn_en

sn_trig_mem

sn_ack[num]

sn_curr_dc [num*res]

sn_curr_mem[num*res]

mem_clk
mem_rst

mem_wr

mem_in [width]

mem_csa

mem_addr_y[alen_y]
mem_addr_x[alen_x]

mem_grid

sn_arr

0 1

sn_curr_cam[num*res]

sn_trig_cam

cam_clk
cam_rst

cam_key [width_keys]

cam_reg [width_max]

cam_addr_x[alen_x]
cam_addr_y[alen_y]

cam_out[2
alen_y

*width_vals]

cam_wr

cam

r_cam_reg [eb_res]

r_cam_wr
r_cam_addr[alen]

r_loc

r_rxu
r_rxr
r_rxd
r_rxl

r_mem_syn_trig
r_mem_event

r_cam_event
r_cam_syn_trig

router

r_txu
r_txr
r_txd
r_txl

ic_rxu
ic_rxr
ic_rxd
ic_rxl

ic_txu
ic_txr
ic_txd
ic_txl

mem_clk
mem_rst

mem_csa

mem_in [width]

mem_wr

mem_addr_y[alen_y]
mem_addr_x[alen_x]

mem_grid

1

d
e
c
_
o
n
e

00

01

10

11

[1+alen_ics+2alen_nrns]
[2alen_nrns]&

[alen_nrns-1 : 0]
[2alen_nrns-1 : alen_nrns]

[alen_ics+2alen_nrns : 1+alen_ics+alen_nrns]
[alen_ics+ alen_nrns : 0]

arb_rst

arb_ack

arb_in [2
alen

]
arb_unh

arb_event[alen]
arb_rel[2

alen
]

arbiter

1
2
3
4

234 1

d
e
c
_
o
n
e

ic_prog_addr[alen] [alen_ics+alen_nrns : 0]

ic_prog_wr

0

1

ic_prog_reg [res]

[MSB]

mem_out[2
alen_y

*width]

mem_out[2
alen_y

*width]

ic_jrout

bridge

j_en
j_clk

EXTERNAL

LOCAL

SYNAPSES

SYNAPSES

BIASING

CURRENTS

SYNAPSES

NEURONS
&

SPIKE
SINK

F
igu

re
3.5:

D
etailed

arch
itectu

re
d
iagram

34

Chapter 4

Design of an SNN Core

4.1 Memory

As described in the previous section, the architecture of the integrated circuit contains several

memory modules. They are used to store the values of the biasing currents for the neurons,

the synaptic strengths that interconnect local neurons, the synaptic strengths corresponding

to external pre-synaptic neurons, as well as entries for routing tables. This section elaborates

the implementation of the memory circuits.

4.1.1 Random-Access Memory

4.1.1.1 D Flip-Flop

The simplest memory circuit employed across the IC sub-systems is the positive-edge trig-

gered D flip-flop with an asynchronous reset. It is implemented in VHDL using a behavioural

architecture, with the PROCESS statement shown in the left column below. The declara-

tion of the ENTITY has been omitted for the sake of clarity.

q

r

d

Figure 4.1: D flip-flop interface

35

18 ...

19 architecture dff_arch of dff is

20 begin

21 process(dff_rst, dff_clk)

22 begin

23 if dff_rst = '0'

24 then

25 dff_q <= '0';

26 elsif rising_edge(dff_clk)

27 then

28 dff_q <= dff_d;

29 end if;

30 end process;

31 end dff_arch;

4.1.1.2 Register

The memory register is implemented similarly to the D flip-flop with the exception of storing

a vector of bits that is specified by the generic parameter WIDTH. Moreover, the register has

control signals MEM W and MEM R for enabling the write and read operations, respectively.

mem_d[width] mem_q[width]
mem_w
mem_r

mem_rst
mem_clk

Figure 4.2: Register interface

4.1.1.3 Stack

The next level of complexity corresponds to a memory stack, or an array of registers, with

random access. This stack is designed with a dual port that allows the write and read

operations on different addresses simultaneously. Although the memory stack corresponds

to the next level of complexity among memory circuits, it is not implemented by combining

the previously defined memory registers. Instead, the VHDL keyword ARRAY is used. First,

this is done in order to have optimal simulation run-times. Second, this approach simplifies

the physical layout of the integrated circuit by providing the option to use SRAM modules

that have higher density than D flip-flops.

36

mem_clk
mem_rst

mem_cs

mem_we

mem_in [width] mem_out[width]

mem_re

mem_addr_w[alen]
mem_addr_r[alen]

Figure 4.3: Stack interface

The simulation waveforms in Figure 4.4 demonstrate the usage of this memory array. After

raising the reset MEM RST and chip-select signals MEM CS at a logical ’1’, the memory array

is first enabled for a write operation. A list of values ranging from 0x8 to 0xF is written

into it by incrementing the write address MEM ADDR W. Finally, with the writing disabled and

reading enabled, the contents of this array are iterated with the read array MEM ADDR R, and

are displayed in the output of the memory stack vector MEM OUT.

Figure 4.4: Stack operation

4.1.1.4 Grid

The memory grid is essentially an array of memory stacks, and as the name indicates, stores

words of a specified width in a matrix arrangement. This memory circuit has two addresses:

MEM ADDR Y for accessing a specific stack, and MEM ADDR X for accessing a specific word inside

that stack. The lengths of each address are specified by the generic parameters ALEN Y and

ALEN X. These indicate the number of stacks used in the grid, as well as the number of entries

in each stack. The grid is programmed when MEM WR = 0, and read when MEM WR = 1.

The input to the grid consists of a single bus MEM IN with a fixed parameter WIDTH. The

output bus comprises multiple busses concatenated together, and has the length of

37

(2ALEN Y) WIDTH. For example, if ALEN Y = 2 and WIDTH = 8, then the number of stacks

in the grid is 4, and the width of the output bus is 4 × 8 = 32. As a consequence, during

the read operation, only the horizontal address bus MEM ADDR X is of importance, and the

vertical address MEM ADDR Y can be ignored.

The concatenation is only done for the read operation. In order to use a common program-

ming bus IC PROG REG for all memories, the write operation is performed on the basis of

individual registers.

mem_clk
mem_rst

mem_cs

mem_we

mem_in [width] mem_out[width]

mem_re

mem_addr_w[alen]
mem_addr_r[alen]

mem_clk
mem_rst

mem_wr

mem_in [width]

mem_csa

mem_addr_y[alen_y]
mem_addr_x[alen_x]

d
e
c
_
o
n
e

mem_clk
mem_rst

mem_cs

mem_we

mem_in [width] mem_out[width]

mem_re

mem_addr_w[alen]
mem_addr_r[alen]

mem_stack

mem_stack

mem_clk
mem_rst

mem_cs

mem_we

mem_in [width] mem_out[width]

mem_re

mem_addr_w[alen]
mem_addr_r[alen]

mem_stack

mem_out[2
alen_y

*width]

Figure 4.5: Memory grid schematic

The Figures 4.6 and 4.7 below demonstrate the usage of this memory circuit. In the top

waveforms, the signals chip-select-all and write-read (S CSA and S WR) are set to logical ’0’

in order to write values. As indicated by the address signals S ADDR Y and S ADDR X, the

programmer uses two nested FOR-loops to iterate through every entry of the memory grid.

The bottom waveforms demonstrate the accessing of the memory contents. After setting

the signals MEM CSA = 1 and MEM WR = 1, the test-bench iterates through all the rows of all

stacks simultaneously. As mentioned earlier, the outputs of each stack are concatenated into

one large bus.

38

72 ...

73 for k in (2**C_ALEN_Y - 1) downto 0 loop -- iterate memory stacks

74 for l in (2**C_ALEN_X - 1) downto 0 loop -- iterate individual rows

75 s_in <= v_strs(k * 2**C_ALEN_X + l);

76 wait for 1 ns;

77

78 s_addr_x <= std_logic_vector(unsigned(s_addr_x) + 1);

79 end loop;

80

81 s_addr_y <= std_logic_vector(unsigned(s_addr_y) + 1);

82 end loop;

83 ...

Figure 4.6: Memory grid operation (programming)

Figure 4.7: Memory grid operation (accessing)

4.1.2 Content-Addressable Memory

Content-Addressable Memory (CAM) is a hardware implementation of the dictionary data-

structure [31]. Its function is to accept a keyword as an input and output an associated

value. Such circuits are mainly used in networking routers [31]. Given that the delivery

of spiking events is essentially a packet delivery problem, routing tables are implemented

with CAMs. As mentioned earlier, the memory stacks are to be mapped to SRAM circuits.

39

Similarly, the CAMs are to employ custom cells and SRAM for keyword matching and data

retrieval.

4.1.2.1 Match Cell

The smallest circuit in the implementation of CAM is a matching cell. Shown in Figure 4.8,

it consists of a single memory register and a small combinatorial circuit. The latter consists

of an array of XNOR gates, the number of which equals the width of the register. Each

memory bit is applied to a bit applied to the input bus MC KEY. Hence, when both words

have equal bits at the same index, the corresponding XNOR gate outputs a logical ’1’. A

complete match requires for all bits to be equal; thus, all the XNOR outputs are applied to

an AND gate.

In Figure 4.9, the cell is first programmed with a specified key (0xD5 in this test-case). Next,

after enabling the read operation of the register, multiple values are applied to the key input

MC KEY. When the key is equal to the one that was initially programmed, the cell indicates

a match by raising the pin MC MATCH.

mem_w
mem_r
mem_clk
mem_rst

mem_d[width] mem_q[width]

mem_reg

mc_clk
mc_rst

mc_wr
mc_reg[width]

mc_key[width]

mc_match

'1'
[width]

Figure 4.8: Match cell schematic

Figure 4.9: Match cell operation

40

4.1.2.2 Match Array

As the name indicates, the matching array circuit is simply an expansion of the matching

cell, the number of which is specified by 2ALEN , where ALEN is a generic parameter. The

symbol labeled as DEC ONE decodes an address into a one-hot representation, and is used

for programming each memory register. The output vector is a concatenation of the match

lines from every cell. Provided that every stored key is unique, the output vector CAM MATCH

can have at most one logical ’1’, the index of which corresponds to a matching address. As

illustrated in Figure 4.10, the input key CAM KEY is connected in parallel to the key inputs

of every cell. In large CAM implementations, these parallel connections may be a source of

very significant power consumption and/or delay.

If a given key is stored in multiple addresses of the same CAM, then a match would result in

several logical ’1’s being output from the match array. Depending on how the value retrieval

is performed, several values may be accessed at once causing corrupted readings.

mc_clk
mc_rst

mc_wr
mc_reg[width]
mc_key[width] mc_match

cam_clk
cam_rst

cam_wr
cam_addr[alen]
cam_reg [width]
cam_key [width]

cam_match[2
alen

]

cam_match_cell

d
e
c
_
o
n
e

mc_clk
mc_rst

mc_wr
mc_reg[width]
mc_key[width] mc_match

cam_match_cell

mc_clk
mc_rst

mc_wr
mc_reg[width]
mc_key[width] mc_match

cam_match_cell

Figure 4.10: Match array schematic

Figure 4.11 shows the programming phase of the matching array, and Figure 4.12 demon-

strates the matching of the stored keys.

41

Figure 4.11: Match array operation (programming)

Figure 4.12: Match array operation (accessing)

4.1.2.3 CAM Stack

The CAM stack combines the matching array with the memory stack previously described.

The output of the matching array is encoded from a one-hot representation into a binary

address using the module ENC ONE depicted in Figure 4.13; the latter is then used to access

the memory circuit and the value associated to the input key is retrieved. The routing tables

are implemented with this circuit.

42

cam_out[width_vals]

mem_clk
mem_rst

mem_cs
mem_re

mem_in [width] mem_out[width]

mem_stack

mem_addr_r[alen]
mem_addr_w[alen]

mem_we

cam_clk
cam_rst

cam_wr
cam_addr[alen]
cam_reg [width]
cam_key [width] cam_match[2

alen
]

cam_match_arr

cam_clk
cam_rst

cam_key [width_keys]
cam_reg [width]
cam_addr[alen]

[width=max(w_vals,w_keys)]
1

cam_wr

[MSB]

d
e
c
_
o
n
e

1

e
n
c
_
o
n
e

0

1

Figure 4.13: CAM stack schematic

The waveforms below demonstrate the operation of this module. In this particular test case,

four key-value pairs are used. Both of these are programmed one after another: first the

keys, then the corresponding values. Once the writing mode is disabled, each key (0xA, 0xB,

0xC, 0xD) is used to retrieve all the stored values.

Table 4.1: Example dictionary

Keys [HEX] 11 22 33 44
Values [HEX] A B C D

Figure 4.14: CAM stack operation

4.1.2.4 CAM Grid

Similar to the previous circuit, the CAM grid is a combination of a matching array with the

memory grid, a two-dimensional memory arrangement. The main advantage of the memory

43

grid circuit is that the output busses of all the memory stacks are concatenated. In other

words, when the chip-select-all signal MEM CSA is set, all the stacks inside the grid are accessed

at the same time.

mem_wr
mem_csa

mem_addr_y[alen_y]
mem_addr_x[alen_x]

cam_clk
cam_rst

cam_wr
cam_addr[alen]
cam_reg [width]
cam_key [width] cam_match[2

alen
]

cam_match_arr
cam_key [w_keys]

cam_addr_x[alen_x]
cam_addr_y[alen_y]

cam_out[2
alen_y

*w_vals]

mem_clk
mem_rst

mem_in [width] mem_out[2
alen_y

*width]

mem_grid

[MSB]

cam_clk
cam_rst

cam_wr

d
e
c
_
o
n
e

cam_reg [width]

[width=max(w_vals,w_keys)]

enc_one

0

1

10

Figure 4.15: CAM grid schematic

Figures 4.16 and 4.17 demonstrate the operation of the circuit. It is similar to the CAM

stack with the exception of having more values to be programmed into the grid. In the

CAM stack, each key is associated with only one value. In the CAM grid, on the other hand,

every key is linked to a set of values. The number of keys is specified by 2ALEN X−1 and the

number of values per key is specified by 2ALEN Y , where ALEN X and ALEN Y are both generic

parameters.

The waveforms below are presented for a test-case with ALEN X = 3 and ALEN Y = 2. Hence,

there are 4 keys and each key retrieves a list of 4 values. The widths of keys and values are

both specified by the parameters W KEYS and W VALUES, respectively.

Figure 4.16: CAM grid operation (programming)

44

Figure 4.17: CAM grid operation (accessing)

4.2 Neurons & Synapses

The objective of this chapter is to elaborate on the VHDL implementation of neural and

synaptic modules of the integrated circuit.

4.2.1 Neuron

In the first design iteration of the IC core, the chosen model for the spiking neuron is the

Leaky Integrate-and-Fire [18]. This model is selected over the Izhikevich model due to having

fewer configuration parameters and relative ease of implementation [16]. Also, as a stepping

stone to the final design, the neural dynamics are written with floating-point representation.

Although such a design is not fully-synthesizable, it allows one to observe the effects of spike

delivery delays introduced by the core routers. In addition, this serves as a reference point

for the comparison of various methods of implementation.

n_curr_syn

n_curr_dc[res]

n_clk

n_rst
n_en

n_ack
n_outi

LIF
MODEL

q

r

d

VDD

Figure 4.18: Neuron structure

The neuron module is controlled with the RESET, ENABLE and CLOCK pins. The function

45

of the enable signal is similar to the reset in that it pauses the operation of the neuron,

but without resetting its state. Every positive-edge of the CLOCK signal triggers a PROCESS

statement that updates the neural state variable using Euler’s method, and compares the

membrane voltage with the spike threshold.

There are also two inputs for currents. The current sourced by the pre-neuron synapse is

analog and uses floating-point representation. The biasing current CURR DC on the other

hand is provided by a memory module, and uses a binary encoding scheme. As such, it

requires a scaling parameter prior to being added with the synaptic current before being

supplied to the neuron. In other words, using 2’s complement representation, the largest

code CURR DC = 01...11 is mapped to a value measured in milliamperes.

When the neuron is enabled, the value of the membrane voltage is updated with every

positive-edge of the clock based on the model parameters for membrane resistance Rm and

capacitance Cm. When a spike is emitted, a logical ’1’ is written into a D flip-flop to

indicate an event. When this occurs, the operation of the neuron is halted, preventing it

from integrating input currents. When an acknowledge signal ACK is sent by an arbitration

device, the D flip-flop and the membrane voltage are both reset, and the neuron can resume

its operation.

4.2.2 Synapse

The operation of the synapse is similar to that of the neuron. It has the same control pins

for the reset, enable and clock signals. Given that both the synapse and the neuron are

modelled with differential equations, both are clocked at the same rate. Each positive edge

of the clock triggers an update in the states of the synapses and the neurons using the Euler

method.

The synapse also has two inputs to indicate the transconductance values of each synapse.

Assuming that the neural spikes all have the same voltage, synaptic strengths can be simply

expressed in terms of currents.

Note that in this design, the synapse reads-in current values from the local memory grid

and the content-addressable memory, which correspond to both local and external neuron

events, respectively. Due to being retrieved from memory modules, both currents are stored

in binary representation. Hence, before being fed to the synaptic equation, they are scaled

in the same way as the biasing currents of the neurons. The output of the synaptic circuit

is a single floating-point number that is connected directly to the neuron.

46

syn_in_mem[res]

syn_en

syn_out
syn_pulse_mem

syn_in_cam[res]
syn_pulse_cam

i

LPF

1
st

Order

syn_rst

syn_clk

Figure 4.19: Synapse structure

The current inputs of the synapses are always connected to the memory modules’ outputs.

To restrict the inputs to impulses rather than constant values, two additional control signals

are used: PULSE MEM and PULSE CAM, both of which are driven by the local router. To

elaborate, when PULSE MEM = 1 at the instant of a positive clock edge, a short current pulse

is injected from the memory grid into the synaptic circuit. This is demonstrated in Figure

4.20.

Figure 4.20: Synaptic circuit operation

47

4.2.3 SN Column

sn_out[num]

sn_trig_mem

sn_ack[num]

sn_curr_dc [num*res]

sn_curr_mem[num*res]

syn_in_mem[res] syn_out

synapse

syn_pulse_mem
syn_in_cam[res]

syn_pulse_cam

n_curr_syn
n_curr_dc[res] n_ack

n_out

neuron

n_curr_syn
n_curr_dc[res] n_ack

n_out

neuron

n_curr_syn
n_curr_dc[res] n_ack

n_out

neuron

syn_in_mem[res]

synapse

syn_pulse_mem
syn_in_cam[res]

syn_pulse_cam

synapse

syn_in_mem[res]

syn_pulse_mem
syn_in_cam[res]

syn_pulse_cam
sn_curr_cam[num*res]

sn_trig_cam

syn_out

syn_out

Figure 4.21: Synapse-Neuron Column

For ease of implementation, all the synaptic and neural pairings are placed in a column

arrangement. In Figure 4.21, the control signals RST, EN and CLK are omitted for simplicity,

but are connected to every synapse and neuron.

The pairs in the SN column receive inputs sourced by the external events, the local events,

and finally the biasing currents for the neurons. The input vectors SN CURR MEM, SN CURR CAM

and SN CURR DC all have the size of NUM × RES, where NUM represents the number of

synapse-neuron pairings, and RES stands for the resolution, or the number of bits, per

current input. Hence, slices of each input are applied to the pairings.

The input signals labelled as SN TRIG MEM and SN TRIG CAM are connected to each synapse

to simultaneously inject currents when events are delivered.

At the output of this module, the neuron outputs are bundled into a single bus SN OUT with

the size NUM . The input vector SN ACK of the same size is used to transmit the acknowledge

bits.

4.3 Arbitration

This section describes the arbitration module of the integrated circuit. In short, the objective

of the arbiter is to serialize the events of the spiking neurons, encode their addresses and

deliver them to the local router [32]. In addition, the arbiter sends release signals to the

neurons that have spiked, allowing them to be reset. Ideally, the order in which the release

48

signals are sent is the same as the order in which the neurons have spiked.

As shown in Figure 4.22, the fundamental structure of the arbiter is that of a tree, where

every node is responsible for giving priority to one of two inputs in case of colliding events

[33]. All inputs and outputs have a bi-directional polarity: a neuron that has emitted a spike

needs to be acknowledged by the arbiter after its address has been recorded. The arbitration

node at the root of the tree has a short-circuited output in order to generate the acknowledge

signals that get delivered to the corresponding neuron.

Figure 4.22: Arbitration tree

4.3.1 Arbitration Latch

The basic building block of the arbiter is the arbitration latch, whose purpose is to con-

tinuously monitor two neurons. As shown in Fig. 4.23, this latch has two inputs and two

outputs. It also has three possible output combinations. When only one neuron outputs a

spike, the latch simply transmits the logical ’1’ to the corresponding output. The output

that has been set to ’1’ remains in this state until the spiked neuron is acknowledged (or

released).

If both input neurons output two events with a small time difference, the arbitration latch

can only keep one output active, and is only free to transmit the slower output once the first

neuron has been acknowledged. This is depicted in Table 4.2 and Figure 4.24.

49

Table 4.2: Possible arbitration latch outputs

STATE y2 y1

s0 0 0
s1 1 0
s2 0 1
s3 0 0

al_in1 al_out1
al_out2al_in2

arb_latch

x1
x2

y1
y2

Figure 4.23: Arbitration latch interface

Simultaneous spikes need to be handled by the latch with a certain randomness. As a

consequence, such a latch must be as symmetrical as possible in its physical implementation.

The simplest method of implementation is done with behavioral modeling using an HDL.

The corresponding finite-state machine is shown in Figure 4.25, where the arrows indicate

the circuit inputs and the circles indicate its states. Although, only three states are required

to encode the possible output combinations, four states are used for the purpose of balancing

the outputs. The first time that both inputs spike together, priority is given to output the

y1; during the following simultaneous event occurrence, priority is given to the output y2.

This is done in order to ensure that, in the case of fast-spiking inputs, the arbiter allocates

time for each neuron.

Figure 4.24: Latch operation

50

00

11

10

10

01

10

11

01

01

11

00

11

00

00

10

01

s
0

s
1

s
3

s
2

Figure 4.25: Finite-state machine

4.3.2 Arbitration Node

The arbitration node extends the functionality of the arbitration latch by funneling both

latch output signals into one output, which allows the formation of the arbitration tree.

In addition, this module transmits the acknowledge signals to the neuron whose address is

being encoded and recorded by the router.

Other than the OR-ed outputs of the latch, the arbitration node also produces the release

signals AN REL1 and AN REL2 that are used to acknowledge the latched-in neurons. The input

AN ACK shown to the right of Figure 4.26 sets one of the release signals with two AND gates

driven by the arbitration latch. Finally, these signals are also used to indicate the address

bit AN ADDR of the spiked neuron: AN ADDR = 0 for the first neuron, and AN ADDR = 1 for

the second.

al_in1 al_out1
al_out2al_in2

arb_latch

Z

an_in1
an_in2

an_out

an_ack
an_rel1

an_rel2

an_addr

tD

tD

Figure 4.26: Arbitration node schematic

51

Prior to being combined with an OR gate at the output AN OUT, the outputs of the arbitration

latch are first sent through AND gates with single ends being delayed by buffers. This is

done in order to introduce a glitch in the output of the arbitration node when the outputs

of the latch directly transition between the states s1 and s2 of Figure 4.25.

Suppose that both neurons are spiking at high rates such that the outputs of the latch

alternate without both of them going through an idle state. With an OR gate directly

connected the outputs of the latch, the output of the arbitration module will always be a

logical ’1’. As a result, the arbitration tree will get locked on two specific branches, and will

continue to ignore other potential spiking neurons. In other words, the acknowledge bits of

the arbiter will be sent to only two neurons regardless of the states of the remaining network.

The AND gates with one buffered input cause the transition of the arbitration latch to go

through a dead-time of duration tD, regardless of the spiking frequency of the neurons. The

duration tD only needs to be only long enough to cause the output of the corresponding

AND gate to glitch to a logical ’0’.

Figure 4.27: Node operation

52

4.3.3 Arbitration Column

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

ac_in [2num]
ac_rel[2num]
ac_addr

ac_out[num]
ac_ack[num]

arb_node

arb_node

Figure 4.28: Arbitration column schematic

For the sake of simplicity in implementing the arbitration tree that is described in the fol-

lowing section, the individual nodes are first combined in columns. As shown in Figure 4.26,

the address bit provided by each node is fed through a tri-state buffer. Hence, the outputs

AN ADDR of each node belonging to the same column can be simply connected together. Each

column is responsible for encoding only one bit of the address event.

4.3.4 Arbitration Tree

The complete arbitration tree is built by cascading columns of arbitration nodes. The number

of nodes in the first column is half the number of neurons. Each following layer has half as

many nodes as the previous layer. The Figure 4.29 shows that the tree is expressed with a

generic parameter ALEN indicating the length of the address event. Hence, the number of

neurons on each integrated circuit is 2ALEN .

As previously stated, each column of the tree encodes one bit of the spiking neuron address.

The column at the input of the tree encodes the least significant bit (LSB), and the final

53

column provides the most significant bit (MSB).

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

an_in1

an_in2

an_out
an_ackan_rel1

an_rel2

an_addr

arb_node

at_in [2
alen

]
at_rel[2

alen
]

at_addr[alen]

at_out
at_ack

Figure 4.29: Arbitration tree schematic

In Figure 4.30, the input vector of the arbitration tree is first tested with random thermal

codes (a string of ’0’s with a single ’1’). The output goes HIGH in the case of an event.

A delayed acknowledge signal is supplied to the root of the tree, which results in a release

vector AT REL that matches the input. The address of the HIGH bit is also encoded.

Moreover, multiple bits being set to logical ’1’s are also shown to be decoded one-by-one,

with a dead-time glitch being present in the output signal AT OUT around the time values

t = 18 ns and t = 26 ns.

Figure 4.30: Tree operation with N = 16

54

4.3.5 Arbiter

The arbitration tree is implemented as an asynchronous circuit in order to allow the future

use of analog neurons that can have arbitrary spiking times. However, for the arbiter to

interface the local router of the IC, D flip-flops are used to buffer the release signals. The

number of flip-flops is equal to the number of neurons in the circuit. This is shown in Figure

4.31.

at_in [2
alen

]
at_rel[2

alen
]
at_addr[alen]

at_out
at_ack

arb_tree

arb_rst
arb_ack

arb_in [2
alen

]

q

r

d

arb_unh

arb_event[alen]
arb_rel[2

alen
]

[2
alen

]

Figure 4.31: Complete arbiter

Assume that at time t = 0ns, one neuron outputs a spike and gets latched into a state

awaiting an acknowledge signal. At this point, the input of the arbiter consists of a column

of ’0’s with a single ’1’ at the index of the latched neuron. This event propagates through

the arbitration nodes to the root of the tree, and backwards to the column of neurons

through the input AT ACK. By doing so, this signal encodes the address of the event. The

outputs ARB EVENT and ARB UNH are supplied to the local router. Before the spiked neuron

is released from its awaiting state, the acknowledge signal is buffered. Once the local router

has registered the event, it sends a positive edge to the D flip-flops through the pin ARB ACK,

thus allowing the release signal to be finally delivered to the latched neuron. An AND gate

is used so that the releasing signal can go to logical ’0’ without having to actively reset each

flip-flop. The arbiter is now on stand-by for the next spiking event.

The interfacing of this device is shown in the simulation below. The signal highlighted in

yellow demonstrates that the acknowledge signal provided by the local router results in a

vector of bits AT REL, consisting entirely of ’0’s with a single possible ’1’ at the index of the

neuron to be released.

55

Figure 4.32: Arbiter operation

4.4 Routing

Neural networks are scalable by nature, and can have large numbers of neurons, which

imposes the requirement of scalability on any hardware implementation of SNNs. This is

achieved by interconnecting the desired number of cores through the use of routing circuitry.

Following the example of the architectures presented in section 2.3, there may be multiple

cores on every IC. However, the number of cores and their interconnection is yet to be

decided.

RX_U

RX_R

RX_D

RX_L

TX_U

TX_R

TX_D

TX_L

RLOC CORE

Figure 4.33: Router architecture

Given that all neural spikes have the same voltage magnitude, information is encoded in

their timing. Hence, to minimize the distortion of information, the delays of the routers

must be as short as possible relative to the time constants of the synapses and the neurons.

56

The chosen router architecture for a single core is shown in Figure 4.33. It consists of one local

router, four receiving (RX) routers, as well as four transmitting (TX) routers. The equally

colored traces are outputs of the RX routers, and the interior black traces are outputs of the

local router. In addition, the module RLOC serves as an interface for the core and the whole

router.

The local router is connected to all the receiving and transmitting routers. It captures all

the local events, and routes them back to the local neurons. In addition, local events can

also be sent to the transmitting routers depending on the contents of the local routing table.

The receiving routers accept external events. These can either be sent to local neurons, or

re-directed to other transmitting routers, or both as decided by the routing tables. One thing

worthy of note is that, if a spike is received on one side of the IC (e.g. left RX router), it

cannot also be transmitted from the left TX router since that would indicate a sub-optimal

routing structure.

The transmitting routers send spikes, which are encoded as source addresses, from the local

router and three receiving routers.

4.4.1 Router Communication

The arbiter, local and external routers, etc. all employ the same communication method

composed of the following signals:

EVENT : signal bus transmitting the event address;

UNH : signal indicating that the event is unhandled (not recorded);

ACK : signal from receiving end indicating that the event is acknowledged.

The signals EVENT and UNH are both either inputs or outputs, and the signal ACK has the

opposite polarity of the first two. In a transmitting port, EVENT and UNH signals are outputs,

and ACK is an input. In a receiving port, the polarities are reversed. Figures 4.34 and 4.35

demonstrate the basic operation of this communication.

event
unh
ack

event
unh
ack

TX RX

[in]

[out] [in]
[out]

[out]
[in]

Figure 4.34: Communication port

57

event

unh

ack[in]

[out]

[out]

Figure 4.35: Communication pattern

When an event is being transmitted (by a TX router or arbiter), the spike address is written

on the EVENT and the flag UNH is raised. When ready, a receiving port raises the signal ACK

to indicate that it has stored the event in its own buffer, and the flag UNH is asynchronously

reset.

4.4.2 Event Buffer

The event buffer is the core component in every type of router used in the present imple-

mentation. All neuron spikes are applied in parallel to the input of the arbiter. In order

to reconcile collisions and to interconnect multiple ICs, all address events are serialized and

stored in circular event buffers. The conceptual model is shown in Figure 4.36. This buffer

essentially consists of a memory array and two pointers, HEAD and TAIL. A new event that is

being recorded in the memory array is written to the address pointed to by the HEAD pointer,

and an event that is being delivered is accessed by the TAIL pointer. Once the limit of the

memory array is reached, the HEAD pointer simply restarts the writing procedure at the first

entry.

TAIL

HEAD

Figure 4.36: Circular buffer

The Figure 4.37 below described the implementation of this buffer. The memory array

is implemented with the memory stack that has a dual port for writing and reading. The

number of entries is equal to 2ALEN , where ALEN is a generic parameter indicating the address

length of the memory. The size of each entry is specified by the parameter WIDTH, which

indicates the length of each address event.

58

The two components labelled as INCR correspond to counters. The widths of these counters

are equal to the number of address bits of the memory stack. At start-up, both of these

counters store a value of 0. Each positive edge at the input up increments the saved value

by 1.

rst
up

incr

eb_rst
eb_trig

eb_inc_head
eb_inc_tail

eb_in[width]

eb_out[width]

eb_flag_unh
eb_flag_full

1
rst
up out[alen]

incr

out[alen]
ptr_logic

1
1

mem_clk
mem_rst

mem_cs

mem_we

mem_in [width] mem_out[width]

mem_re

mem_addr_w[alen]
mem_addr_r[alen]

mem_stack

TAIL /= HEAD
TAIL == HEAD+1

Figure 4.37: Event buffer schematic

Before any event has been recorded, the HEAD and TAIL pointers are both accessing the

memory array at index 0. When both pointers store the same address, the pointer logic

circuit keeps the flags EB FLAG UNH and EB FLAG FULL deasserted. When a new event appears

at the input of the buffer EB IN, a positive edge is applied to EB TRIG in order to save it in the

memory array. Next, the value of the HEAD pointer is incremented, and the flag EB FLAG UNH

is raised, thus indicating that there is now an undelivered event stored in the buffer. This is

demonstrated in Figure 4.38.

Figure 4.38: Event buffer operation (ALEN = 4, WIDTH = 8)

In Figure 4.38, the buffer is first loaded with 15 entries, at which point the HEAD pointer is

right behind the TAIL pointer, and the flag EB FLAG FULL is raised to indicate that the buffer

is full.

A module that is reading the contents of the event buffer is given control of the TAIL pointer.

59

In the simple example above, the buffer iterates through all its contents by receiving positive

edges that increment the TAIL pointer. Once the value of TAIL catches up with the value of

HEAD, the flag EB FLAG UNH indicating unhandled entries is reset.

Due to the finite register width of the counters, the addresses stored in the pointers wrap-

around after reaching the last index of the memory array.

4.4.3 Transmitting Router (TX)

The transmitting router is the simplest of the three due to its lack of routing tables. Every

TX router has four input ports and one output port. In Figure 4.39, the four input ports

are shown in red with each port consisting of the signals EVENT, UNH and ACK. The output

port is indicated in blue.

As explained at the beginning of this chapter in Figure 4.33, each TX router is connected to

the local router as well as the three opposing RX routers. For this reason, the input ports of

a TX router are labelled as LOCAL, LEFT, FW, and RIGHT, all of which are relative directions.

For example, in the case of a TX router sending events at the right edge of the IC, the RX

routers’ events are received from the UP, LEFT, and DOWN sides of the IC.

eb_rst
eb_trig

eb_inc_head
eb_inc_tail

eb_in[width] eb_out[width]

eb_flag_unh
eb_flag_full

event_buff

FSM_HEAD

mux

rst
up

incr

out[alen]

rtx_event_local[res_ext]
rtx_event_left [res_ext]
rtx_event_fw [res_ext]
rtx_event_right[res_ext]

mux

rtx_clk
rtx_rst

rtx_unh_local
rtx_unh_left
rtx_unh_fw
rtx_unh_right

demux

rtx_ack_local
rtx_ack_left
rtx_ack_fw
rtx_ack_right

rtx_unh_out
rtx_event_out[res_ext]

rtx_ack_out

Figure 4.39: Transmitting router (TX) schematic

The counter incr shown in the figure above has 4 states and is used to iterate through all

four input ports using two multiplexers for the EVENT busses and UNH flags, as well as a

demultiplexer for the ACK signals. This iteration is managed by the finite state machine in

Figure 4.40.

60

1x

s
0

s
1

s
3

s
2

xxxx

01

11

10

00

01

00

Figure 4.40: Finite-state machine

At each positive-edge of the clock, the FSM reads the values of the event buffer flags:

EB FLAG FULL and EB FLAG UNH, which are indicted on the transitions of the FSM. Based

on the present state, the FSM writes the values for three control signals up-signal for the

counter increment, EB TRIG to latch-in the buffer input, and EB INC HEAD to increment the

HEAD pointer of that buffer. The outputs of the FSM are summarized in the Table 4.2.

Table 4.3: Outputs of the finite-state machine

STATE INC UP EB INC HEAD EB TRIG

s0 0 0 0
s1 0 0 1
s2 0 1 0
s3 1 0 0

The objective of this FSM is to save incoming events into the buffer.

1. At the start of the operation, if there is an event coming from the LOCAL router,

the FSM transitions from state s0 to state s1, and a positive-edge is sent to the input

EB TRIG saving the local event into the buffer.

2. At the next clock edge, the FSM goes to state s2 regardless of the inputs, and incre-

ments the HEAD pointer of the event buffer.

3. Again, regardless of the inputs, the FSM transitions to state s3 and increments the

counter, thus changing the port being fed-through by the MUXes and the DEMUX.

61

4. Now processing the LEFT port, the FSM repeats the steps 1-3 if the flag UNH of that

port is asserted, or else, it returns to state s0.

5. If for a given port the flag UNH is deasserted, the FSM simply jumps to state s3 in

order to increment the address of the MUXes and the DEMUX and continue iterating

through the ports without registering any events.

6. Finally, if the event buffer becomes full and its flag EB FLAG FULL is asserted, the FSM

remains at state s0 until memory becomes available once again.

In Figure 4.41 below, multiple events are presented to all the input ports. Note that the

events without an asserted UNH flag are ignored by the FSM and not registered into the event

buffer. The signals highlighted in yellow show the reading of all the events from the output

port. Thus, each recorded event is successfully serialized and transmitted.

Figure 4.41: Transmitting router operation

4.4.4 Receiving Router (RX)

The receiving router functions similarly. It has one input port and four output ports that

correspond to the local router and three TX routers. The main addition is the routing table

implemented with content-addressable memory (CAM).

62

rrx_clk
rrx_rst

rrx_event[width]

FSM_HEAD

eb_rst
eb_trig

eb_inc_head
eb_inc_tail

eb_in[width] eb_out[width]

eb_flag_unh
eb_flag_full

event_buff

rrx_ack
rrx_unh

cam_clk
cam_rst

cam_key [width_keys]

cam_addr[alen]
cam_wr

cam_out[width_vals]

cam_stack

FSM_TAIL

rrx_cam_reg [width]
rrx_cam_addr[alen]
rrx_cam_wr

bcast

rrx_event_local[width]
rrx_event_left [width]
rrx_event_fw [width]
rrx_event_right[width]

rrx_ack_local
rrx_ack_left
rrx_ack_fw
rrx_ack_right

rrx_unh_local
rrx_unh_left
rrx_unh_fw
rrx_unh_right

cam_reg [width_keys]

q

r

d

[cam_res]

Figure 4.42: Receiving router (RX) schematic

As seen in Figure 4.42, the output of the event buffer is used as a key at the input of the

CAM stack described in Chapter 3. Moreover, the multiplexers and the demultiplexer of the

TX router are replaced with a single broadcasting module. This device, labelled as BCAST,

has one input bus, four output busses and four select lines. In a demultiplexer, two select

lines would be used to choose the output bus that would be made equal to the input bus.

In the broadcasting device, each select bit can enable one output bus. The Table 4.4 below

summarizes its operation. Most ’0’s have been omitted from the table.

Table 4.4: Broadcasting device truth table

s3 s2 s1 s0 y3y3y3 y2y2y2 y1y1y1 y0y0y0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 xxx

1 xxx
1 1 xxx xxx

1 xxx
1 1 xxx xxx

1 xxx

1 1 1 1 xxx xxx xxx xxx

bcast

s
3
-s

0

y3
y2
y1
y0

x

Figure 4.43: Broadcasting
device symbol

The routing table is sized with three generic parameters:

• ALEN sets the number of key-value pairs to 2ALEN−1;

• WIDTH KEYS sets the number of bits for each key, which is made equal to the address

63

length of an external spiking neuron;

• WIDTH VALS sets the number of bits for each value.

In the chosen architecture design, the last parameter is always set to WIDTH VALS = 4 due

to the broadcasting to four ports. When an event at the output of the event buffer is being

delivered, it is first used to retrieve its directions from the routing table. Next, the value

obtained from the latter is latched into an array of D flip-flops, whose outputs are applied to

the select lines of the broadcasting device. The four bits at the output of the routing table

indicate the directions LOCAL, LEFT, FORWARD, and RIGHT from the most significant

bit to the least significant bit.

As an example, suppose that an RX router on the LEFT edge of the IC receives the event

EVENT = 0x74 with a routing table entry associated with the value 1010. These bits are

first entered into four D flip-flops, which enable the local (RRX EVENT LOCAL) and forward

(RRX EVENT FW) output busses of the broadcast unit. The latter corresponds to the TX router

on the RIGHT edge of the IC. The same select lines are used as asserted UNH flags for the rele-

vant ports. When an acknowledge signal is received for the local port, the positive-edge on the

input RRX ACK LOCAL resets its D flip-flop, thus disabling the output bus RRX EVENT LOCAL

and its flag RRX UNH LOCAL. In the meantime, the forward output port RRX EVENT FW is han-

dled in the same fashion by the TX router on the opposite side of the IC. Once all the D

flip-flops have been reset (and their OR-ed signal is ’0’), the RX router proceeds with the

next event in its buffer.

As seen in Figure 4.42, the RX router has two FSMs. The finite-state machine FSM HEAD

is responsible for recording incoming events while ensuring that the event buffer is not full

(EB FLAG FULL = 0). The finite-state machine FSM TAIL monitors for any unhandled events

in the buffer. As described above, it is responsible for writing the outputs of the routing

table into an array of four D flip-flops, and to increment the TAIL pointer.

Table 4.5: Outputs of FSM HEAD

STATE EB INC HEAD EB TRIG

s0 0 0
s1 0 1
s2 1 0

Table 4.6: Outputs of FSM TAIL

STATE EB INC TAIL S LATCH DFF

s0 0 0
s1 0 1
s2 1 0

64

00

1x

s
0

s
1

s
2

xx

1x

00

01

01

Figure 4.44: FSM for HEAD pointer

00

s
0

s
1

s
2

0x

00 01

01

1x

Figure 4.45: FSM for TAIL pointer

The operation of the TX router is shown in Figure 4.46, where the yellow traces show the

input port. On the output traces, all ports are shown to handled simultaneously per event.

The routing is shown in Table 4.7, where the keys are the four most significant bits of the

event bus. Note: The width of each key in the routing table could be smaller than the

width of the events. This can be used to optimize the sizes of the routing tables.

Table 4.7: Sample routing table

KEYS A B C D E F 8 9

VALUES 8 6 F B 4 5 3 4

Figure 4.46: Receiving router operation

65

4.4.5 Local Router

As shown in Figure 4.33, the local router is at the core of the full router. It receives events

from all four RX routers, and transmits to all TX routers. In addition, it also routes the

events to and from the local neurons. Its design is essentially a combination of one TX router

(upper portion of the figure), and one RX router (lower portion of the figure). One main

difference is the presence of two event buffers: one is used to deliver spiking events back to

the local neurons, and the second is responsible for broadcasting all local events outwards.

RX ports are shown in red, TX ports - in blue, and local ports - in purple. The signal bus

R CAM EVENT delivers external events, and therefore, accesses the CAM grid for the synaptic

values. The signal bus R MEM EVENT delivers local events, and retrieves synaptic values from

the MEM grid. The associated signals R CAM SYN TRIG and R MEM SYN TRIG send positive

edges to activate the synaptic circuits.

cam_clk
cam_rst

cam_key [width_keys]

cam_addr[alen]
cam_wr

cam_out[width_vals]

cam_stack

cam_reg [width_keys]

FSM_HEAD_EXT

FSM_TAIL_EXT

r_cam_reg [res_loc]
r_cam_addr[alen]
r_cam_wr

r_clk
r_rst

eb_trig

eb_inc_head
eb_inc_tail

eb_in[width] eb_out[width]

eb_flag_unh
eb_flag_full

event_buff

eb_rst

FSM_HEAD_LOC

FSM_TAIL_LOC

eb_trig

eb_inc_head
eb_inc_tail

eb_in[width] eb_out[width]

eb_flag_unh
eb_flag_full

event_buff

eb_rst

r_event_local[res_loc]
r_unh_local r_mem_syn_trig

r_tx_ack_up

r_tx_ack_down
r_tx_ack_left

r_tx_ack_right

q

r

d

bcast

r_tx_ev_up [res_loc]

r_tx_ev_down [res_loc]
r_tx_ev_left [res_loc]

r_tx_ev_right[res_loc]

r_tx_unh_up

r_tx_unh_down
r_tx_unh_left

r_tx_unh_right

r_mem_event[res_loc]

r_ack_local

mux

rst
up

incr

out[alen]

r_rx_ev_up [res_ext]

r_rx_ev_left [res_ext]
r_rx_ev_down [res_ext]
r_rx_ev_right[res_ext]

mux

r_rx_unh_up

r_rx_unh_left
r_rx_unh_down
r_rx_unh_right

demux

r_rx_ack_up

r_rx_ack_left
r_rx_ack_down
r_rx_ack_right

r_cam_event[res_ext]
r_cam_syn_trig

Figure 4.47: Local router schematic

66

In the simulation shown in Figure 4.48, the routing table is first programmed. Next, local

events are sent to the input. The yellow traces show spiking events being delivered to local

synapses and neurons.

Figure 4.48: Local router operation

67

4.4.6 Combined Router

The full router is presented in Figure 4.49 and is the detailed implementation of the router

architecture shown in Figure 4.33 at the beginning of the current chapter. Note that a

register is added to the first select line of the address decoder. This register is used to store

the address of the IC. Prior to an event being transmitted from the TX router, the address

of each IC is appended to the address of the firing neuron to indicate the full origin of each

event.

rtx_event_local

rtx_event_left

rtx_event_fw

rtx_event_right

rtx_clk
rtx_rst

rtx_unh_local

rtx_unh_left

rtx_unh_fw

rtx_unh_right

rtx_inc_local

rtx_inc_left

rtx_inc_fw

rtx_inc_right

rtx_flag_unh
rtx_event_out

rtx_inc_tail

router_tx

rrx_clk
rrx_rst

rrx_event_in

rrx_ack
rrx_flag_unh

rrx_cam_reg [width]
rrx_cam_addr[alen2]
rrx_cam_wr

rrx_event_local

rrx_event_left

rrx_event_fw

rrx_event_right

rrx_ack_local

rrx_ack_left

rrx_ack_fw

rrx_ack_right

rrx_unh_local

rrx_unh_left

rrx_unh_fw

rrx_unh_right

router_rx

rtx_event_local

rtx_event_left

rtx_event_fw

rtx_event_right

rtx_clk
rtx_rst

rtx_unh_local

rtx_unh_left

rtx_unh_fw

rtx_unh_right

rtx_inc_local

rtx_inc_left

rtx_inc_fw

rtx_inc_right

rtx_flag_unh
rtx_event_out

rtx_inc_tail

router_tx

rrx_clk
rrx_rst

rrx_event_in

rrx_ack
rrx_flag_unh

rrx_cam_reg [width]
rrx_cam_addr[alen2]
rrx_cam_wr

rrx_event_local

rrx_event_left

rrx_event_fw

rrx_event_right

rrx_ack_local

rrx_ack_left

rrx_ack_fw

rrx_ack_right

rrx_unh_local

rrx_unh_left

rrx_unh_fw

rrx_unh_right

router_rx

rtx_event_local

rtx_event_left

rtx_event_fw

rtx_event_right

rtx_clk
rtx_rst

rtx_unh_local

rtx_unh_left

rtx_unh_fw

rtx_unh_right

rtx_inc_local

rtx_inc_left

rtx_inc_fw

rtx_inc_right

rtx_flag_unh
rtx_event_out

rtx_inc_tail

router_tx

rrx_clk
rrx_rst

rrx_event_in

rrx_ack
rrx_flag_unh

rrx_cam_reg [width]
rrx_cam_addr[alen2]
rrx_cam_wr

rrx_event_local

rrx_event_left

rrx_event_fw

rrx_event_right

rrx_ack_local

rrx_ack_left

rrx_ack_fw

rrx_ack_right

rrx_unh_local

rrx_unh_left

rrx_unh_fw

rrx_unh_right

router_rx

rtx_event_local

rtx_event_left

rtx_event_fw

rtx_event_right

rtx_clk
rtx_rst

rtx_unh_local

rtx_unh_left

rtx_unh_fw

rtx_unh_right

rtx_inc_local

rtx_inc_left

rtx_inc_fw

rtx_inc_right

rtx_flag_unh
rtx_event_out

rtx_inc_tail

router_tx

rrx_clk
rrx_rst

rrx_event_in

rrx_ack
rrx_flag_unh

rrx_cam_reg [width]
rrx_cam_addr[alen2]
rrx_cam_wr

rrx_event_local

rrx_event_left

rrx_event_fw

rrx_event_right

rrx_ack_local

rrx_ack_left

rrx_ack_fw

rrx_ack_right

rrx_unh_local

rrx_unh_left

rrx_unh_fw

rrx_unh_right

router_rx

UP

DOWN

LEFT

RIGHT

UP

DOWN

LEFT

RIGHT

r_cam_reg [width]
r_cam_addr[alen1]
r_cam_wr

r_clk
r_rst

r_event_local
r_unh_local

r_mem_syn_trig

r_tx_ack_up

r_tx_ack_down

r_tx_ack_left

r_tx_ack_right

r_tx_ev_up

r_tx_ev_down

r_tx_ev_left

r_tx_ev_right

r_tx_unh_up

r_tx_unh_down

r_tx_unh_left

r_tx_unh_right

r_mem_eventr_ack_trans

r_rx_ev_up

r_rx_ev_left

r_rx_ev_down

r_rx_ev_right

r_rx_unh_up

r_rx_unh_left

r_rx_unh_down

r_rx_unh_right

r_rx_ack_up

r_rx_ack_left

r_rx_ack_down

r_rx_ack_right

r_cam_event
r_cam_syn_trig

router

d
e
c
_
o
n
e

r_clk
r_rst

r_cam_reg [eb_res]

r_cam_wr
r_cam_addr[alen2+3]

[3MSBs]

r_loc

r_rxu

r_rxr

r_rxd

r_rxl

r_txu

r_txr

r_txd

r_txl

r_mem_syn_trig
r_mem_event

r_cam_event
r_cam_syn_trig

mreg_sel_w
mreg_sel_r
mreg_clk
mreg_rst

mreg_d[width] mreg_q[width]

mem_reg

1

ic_addr

ic_addr

Figure 4.49: Full router schematic

68

4.4.7 Local Router Bridge

In Section 3.3, a method for optimizing the routing delays was presented, which is applicable

to SNNs with clusters of neurons that can be isolated. As an example, the neurons in the

output layer of a network do not have any destination neurons. Shown in Figure 4.50 is

the schematic for the jumper module. The pin J EN is connected to the select pin of every

multiplexer and demultiplexer.

When this circuit is disabled, the arbiter’s output port is connected to the input port of the

router, where each port is composed of the signals EVENT, UNH and ACK. The router directly

accesses the memory grid with the bus MEM ADDR to retrieve synaptic strengths. It also has

a direct connection to the synaptic trigger signal SN TRIG that is used to inject the synaptic

circuits with current values present at their inputs. As such, there needs to be a short delay

between accessing the synaptic values, and activating the synaptic circuits.

j_en

j_arb_ev

j_rout_mem

j_arb_unh
j_arb_ack

j_rout_syn
j_sn_trig
j_mem_addr

muxdemux

spike_sink

demux

0

1

0

1

j_clk ss_clk
ss_unh ss_ack

j_rout_ev
j_rout_unh
j_rout_ack

0

1

mux

0

1

mux

0

1 mux

0

1

0

0

mux

0

1

[DE/MUX]

Figure 4.50: Schematic for jumper over local router

The device SPIKE SINK seen at the bottom of the diagram receives an interrupt on the UNH

pin and sends a positive-edge to the ACK pin to acknowledge the event with a delay of one

clock cycle. Hence, when the jumper module is enabled, the EVENT bus of the arbiter is used

to access the synapses in the local memory grid, and the SPIKE SINK device uses its ACK

signal to trigger these synapses as well as to release the spiked neuron from its latched state.

69

Chapter 5

Interface

It was stated in Chapter 2 that a neural network has an input layer, one or more hidden

layers, and an output layer. The present chapter describes how a neural network fits within

the context of a benchmark problem, such as MNIST classification or the control of a plant.

5.1 Input Encoding

As explained in Chapter 2, in the case of Artificial Neural Networks, the input layer does not

have any neurons and is instead composed of a column of inputs. Technically speaking, ANNs

only have hidden and output layers. The case is different with Spiking Neural Networks since

the trans-conductive synapses convert voltage spikes into decaying pulses of current. In other

words, an SNN must have an input layer in order to convert a set of network inputs into

voltage spike trains. This operation is demonstrated in Figure 5.1 where a sinusoidal input

current with a positive offset is transformed into an impulse train with a varying density of

spikes.

Note: It is possible to apply a vector of inputs directly into the hidden layer of an SNN. But,

this would require a matrix multiplication with the first set of weights, which is incompatible

with the general architecture of Spiking Neural Networks.

70

5.2 Output Decoding

The methods employed for decoding the spike patterns of output neurons depends on the

context of the problem.

Regarding image classification tasks, the input to the neural network is typically a column

of constant values that represent pixel colors and intensities. In such cases, the simplest

method for interpretation is an accumulator. This method consists of applying an input to

the SNN and allowing it to operate for a certain time frame to allow the neurons to settle at

constant spike rates. Then, one may simply pick the neuron that has emitted the greatest

number of spikes within that time frame [34]. The index of the selected neuron would be

the classification result.

Another possible option is to employ the first-to-spike decoding. Rather than allowing the

SNN to operate for a pre-determined time interval, a classification is terminated when a

single spike is produced at the output layer [34]. Similarly, the index of the neuron would

correspond to the result. However, this kind of methodology would either require large

membrane capacitances in the neurons in order to mitigate the transient effects.

IC

TXR spike_sink

ss_clk
ss_unh ss_ack

demux

00
01

11
10

s
3

s
2

s
1

s
0

Figure 5.4: Spike decoder for four output neurons

The diagram in Figure 5.4 depicts a spike decoder that would be connected to a transmitting

TX port of the IC. The EVENT bus is applied to the select lines of a demultiplexer, and the

flag UNH is transmitted to the pin of the corresponding output neuron. After a delay of one

clock cycle, an ACK bit is sent to the TX port, allowing the UNH status to be reset.

For problems that require time-dependent solutions, such as the generation of control signals,

the resulting spike trains can be processed with low-pass filters.

72

Chapter 6

Benchmarks

This chapter focuses on the benchmarks used to evaluate the performance of Spiking Neu-

ral Networks in system-level simulations (Python), as well as in hardware-level simulations

(VHDL). One of the main objectives is to observe the effects of synaptic strength quantiza-

tion and the delays introduced by the routing architecture.

In the Python simulations, simultaneous neuron spikes are detected and delivered to the

synapses at the same time. In other words, the SNNs are implemented in such a way that

does not require the use of an arbiter or a router. In VHDL, however, simultaneous spikes

are encoded by an arbiter and routed to their destinations one at a time, resulting in a

distortion of the time-encoded information. This distortion can be mitigated by increasing

the clock rate relative to the time constants of the neurons and synapses.

6.1 MNIST Handwritten Digit Classification

The classification of handwritten digits is a standard benchmark used in the field of Machine

Learning [35], and is performed on the MNIST dataset, which consists of 60,000 images

for training and 10,000 images for testing [36]. Each handwritten digit is centered in an

image of 28x28 pixels with an 8-bit grayscale encoding [36]. Since each MNIST case consists

of constant inputs to the network, this benchmark is useful in testing the performance of

rate-based coding.

In this work, a simple neural network architecture is used to compare the performances of

artificial and spiking networks. Both ANN and SNN have [784, 30, 10] neurons in the input,

hidden and output layers, respectively. Backpropagation and stochastic gradient descent are

73

used to train the ANN with the ReLU activation function, and the resulting weight matrices

are scaled-up to obtain the set of synaptic strengths for the SNN. The scaling is done in order

to compensate for the fast decaying membrane voltages of the neurons. The quantization of

the weights is done with the following procedure:

1. All the synaptic values are scaled such that the largest magnitude is made equal to

2res−1 (e.g. WMAX = 128 if a resolution of res = 8b is used).

2. Next, all the synapses are rounded to the nearest integer.

3. Finally, they are scaled once again in order to make the largest synapse strong enough

to trigger a spike in a post-synaptic neuron.

Regarding the hardware-level implementation, let M and N be the number of cores and

neurons, respectively. Then, the widths of their addresses are obtained as follows:

m = ⌈log
2
M⌉ (6.1)

n = ⌈log
2
N⌉ (6.2)

where ⌈⌉ is the ceiling function. Table 6.1 provides an estimate for the required memory size.

The variable res represents the number of bits used in the quantization of each synapse.

Table 6.1: Memory Estimate

Module Complexity MNIST

Routing table (LOC) 5N 320
Routing table (RX) MN(m+ n+ 4)/4 3584 (14336)
External synapses MN(m+ n+Nres) 534528
Local synapses N2res 32768

Total 581952
72744 bytes

The performance of these networks is summarized in Table 6.2. A classification accuracy of

96.42% is relatively poor compared to the results reported in [35]. In part, this is due to

the chosen architecture with only 30 hidden neurons, whereas the best performing results in

[35] were obtained with Convolutional Neural Networks. In addition, the backpropagation

was only performed to train the weight matrices without adjusting the biasing vectors. As

mentioned in subsection 2.2.5, this was done in order to avoid the issues related to the

combination of constant currents and synaptic pulses.

74

Note: The results of the last column were obtained for 1000 MNIST cases due to the long

simulation time.

Table 6.2: Classification Accuracy [%]

Resolution ANN SNN (Python) SNN (VHDL)

FP 96.42 96.22 –
FP F – 96.19 –
FP B – 96.12 –

8-bits 96.33 96.28 95.70
6-bits 96.14 95.93 94.50
5-bits 95.29 95.46 94.00
4-bits 84.31 83.35 73.80

In Table 6.2, the row with the resolution FP indicates the network performances with

floating-point representation for the synapses. The rows with the labels FP F and FP B

are used to evaluate the effects of spike de-synchronization that was described in subsection

2.2.5. Typically, each digit classification is done with an SNN that begins from a state of

rest. Hence, the input neurons that read the values of pixels with equal grayscale inten-

sities output synchronized spike trains. In the test labelled FP F, the entire MNIST test

iterates from case 0 to case 9999 without resetting the neural and synaptic states between

each classification. Hence, the membrane voltages and synaptic currents at the end of one

classification are preserved for the start of the classification that follows. In other words,

the SNN starts with non-zero initial conditions, which introduce delays into the spike trains

of input neurons. The test labelled FP B is performed in the same manner, but with an

iteration from case 9999 back to case 0.

One may see from these results that the SNN is fairly robust against spike de-synchronization.

However, it needs to be mentioned that the simulated time of each test-case is extended from

tF = 50ms to tF = 80ms. This is done to allow the low-pass filtering of the synapses to

mitigate these effects.

Table 6.2 shows that there is a drastic drop in classification accuracy as the synaptic reso-

lution is lowered from 5 bits to 4 bits. Figures 6.1 and 6.2 show the unique synaptic values

that are spread over an almost linear range, as well as the binning of these values for the

resolutions of 8 bits, 5 bits and 4 bits. One of the reasons for the drastic drop in performance

is the large number of synaptic strengths that get rounded down to zero. In the first and

second subplots, there are approximately 2000 and 3000 repeated synapses in the smallest

non-zero bins. However, in the third subplot, this number drops by more than half. This

75

6.1.1 Impact of Parametric Variation

A fabricated integrated circuit is expected to have parametric variations, and the membrane

resistances and capacitances of the neurons will vary from one another. The effects of these

variations on the accuracy of the MNIST classification are observed and summarized in

Table 6.3. Each entry corresponds to a complete MNIST evaluation with an 8-bit synaptic

quantization. The value at the top-left is obtained from Table 6.2 and serves as a point of

reference.

As an example, each neuron would have a membrane resistance of Rm = 10 Ω. The per-

centages in the left column (and top row) represent one standard deviation away from the

desired value. At the start of a classification, each resistance is set to Ri = 10 + ∆R where

∆R is a random value obtained by sampling from a Gaussian distribution with a mean µ = 0

and a standard deviation of σ = 0.5 = 0.05 × 10. Note that the parameters are randomly

selected for each handwritten digit.

These simulations show that, even with variances in both membrane resistance and capaci-

tance, the classification accuracy does not degrade by more than 2%.

Table 6.3: Accuracy with neural parametric variation

P
P

P
P
P

P
P
P
P

Res
Cap

0 % 5 % 10 % 15 %

0 % 96.28 96.08 95.79 94.80
5 % 96.23 96.02 − −
10 % 96.19 − 95.53 −
15 % 96.18 − − 94.97

6.1.2 Modeling DAC Variation

The retrieval of a synaptic value from memory needs to be followed by a Digital-to-Analog

Conversion (DAC) into a current value. One possible implementation is the binary weighted

current source [37]. The final design of the integrated circuit requires the use of bipolar

current sources that employ both NMOS and PMOS devices. However, for the sake of

simplicity, the issues related to parametric variation and mismatch are illustrated with a

unipolar DAC.

78

V
DD

b
0

b
1

b
2

b
N-1

W
0

L
0

2

I
REF

I
OUT

W
0

L
0

W
0

L
0

4
W
0

L
0

2
N-1

W
0

L
0

Figure 6.5: Programmable current source

As shown in Figure 6.5, this current source is composed of a series of binary weighted

transistors. The right-most transistor corresponds to the least-significant bit, and has the

same geometry as the diode-connected transistor. Thus, when b0 = 1, these devices conduct

the same current IREF . Going from right to left, the aspect ratio of each NMOS device

doubles. The transistors shown at the top are used as digital switches. Ideally, the threshold

voltages of all the devices are equal, and an N -bit binary code produces the following current

output:

IOUT = IREF

N−1
∑

k=0

2kbk (6.3)

The CMOS process variations lead to a variance in the threshold voltage, which is inversely

proportional to the area of the device [38]. As a consequence, the NMOS devices no longer

conduct currents that are powers of 2.

If the length is kept constant across all devices in the DAC, the variances of the threshold

voltage and aspect ratio are proportional to the inverse of their widths [38], [39]:

σ2(Vt0) ∝
1

W
(6.4)

σ2(K ′)

(K ′)2
∝

1

W
(6.5)

where K ′ = µnCOX(W/L). As such, the non-ideal transfer characteristic of a DAC can be

expressed with the relation:

IOUT = IREF

N−1
∑

k=0

(2k + νk)bk (6.6)

79

6.2 Cart-Pole Balancing

The balancing of the cart-pole (inverted pendulum) is a standard benchmark problem used

to evaluate and compare methods of Control Theory and Reinforcement Learning [40], [41].

As shown in Figure 6.8, this system is composed of a cart with mass m1, and a rod of mass

m2 and length 2l. The state-vector consists of four variables: the position and velocity of

the cart, and the angle and angular velocity of the pole.

m
1

m
2

2l

x

O

F

Figure 6.8: Cart-pole system [40], [42]

Assuming a frictionless system, the dynamics of the cart-pole are governed by the following

equations, where θ is the angle of the pole with respect to the equilibrium, and x is the

position of the cart [43]:

θ̈ =

g sin θ + cos θ

(

− F −m2lθ̇
2 sin θ

m1 +m2

)

l

(

4

3
−

m2 cos
2 θ

m1 +m2

)
(6.7)

ẍ =
F +m2l(θ̇

2 sin θ − θ̈ cos θ)

m1 +m2

(6.8)

The cart-pole is in an unstable (upward) equilibrium when θ = 0◦, θ̇ = 0◦/s, ẋ = 0 m/s.

While in a state of equilibrium, the cart can be at any position x. Thus, this is categorized

as a line equilibrium.

In this benchmark, the cart-pole starts with an initial angle of θ = 10◦, and the objective of

a controller is to bring the system back to the origin while ensuring that the position of the

cart does not exceed a pre-determined range. The only input to the system is the horizontal

force F applied to the cart.

82

Figure 6.9 presents the setup for the simulation experiment. The SNN has an input layer

that reads the state-vector of the cart-pole system, and an output layer consisting of two

neurons that produce spike trains with time-varying frequencies. These two spike trains are

fed through low-pass filters (4th-order Butterworth) and applied to a comparator. The latter

produces a bang-bang voltage signal ±VDD, which is then linearly converted to a mechanical

force of an actuator that drives the cart.

+

-
SNN

CART

POLE
x

LPF

LPF

VDD

-VDD

Ka
[N/V]

Figure 6.9: Simulation setup [42]

The SNN shown in Figure 6.10 has been manually designed in a way that ensures symmetric

operation of the controller. Before being applied to the network, the state-vector x is scaled

by a constant coefficient A0. The product A0x is applied to the top four neurons of the input

layer n0−3, and the product −A0x is applied to the bottom portion of the input layer n4−7.

As an example, the neurons n2 and n6 both read the pole angle, and have inputs of equal

magnitudes but opposite polarities. Thus, when θ > 0◦, the neuron n2 is active and n4 is

quiet. The opposite is true when θ < 0◦.

The four synapses that interconnect the neurons n0−3 to n8 are the same as the synapses that

interconnect the neurons n4−7 to n9, and can be expressed with a vector K. Additionally,

two inhibitive synapses have been added in the output layer in order to implement the

Winner-Takes-All approach [44].

Using an ideal mathematical model of the SNN, the performance of the controller is demon-

strated below in Figure 6.11. It takes approximately five seconds for the pole to reach

equilibrium, and ten seconds for the cart to be pushed back to origin. The nature of the

bang-bang force generation with the use of a comparator introduces much noise into the

system.

83

Figures 6.12 and 6.13 demonstrate the operation of the SNN simulated at the hardware

level. From top to bottom, the graphs show the position and velocity of the cart, and the

angular position and velocity of the pole. Given the small number of neurons employed in this

network, the integrated circuit is clocked with a slow frequency of fCLK1 = 4 kHz. The cart-

pole and the spike generator with input layer neurons are both clocked with fCLK2 = 1 kHz.

This simulation is repeated twice: with and without the local router bridge introduced in

section 3.3. In the first simulation, a local event is received and re-distributed in only one

clock cycle, and the controller brings the cart back to origin at time t < 10 s. In the second

simulation, however, three clock cycles are needed, and the performance of the controller is

much worse due to the delays of the local router. Thus, the use of the bridge makes for a

significant improvement for problems that require a relatively fast response.

Figure 6.12: Cart-pole balancing with local router bridge (VHDL)

Figure 6.13: Cart-pole balancing without local router bridge (VHDL)

85

Chapter 7

Conclusion

Spiking Neural Networks (SNNs) are a new generation of neural networks with greater bi-

ological plausibility. When translated to hardware implementations, this fact may lead to

significant reductions in power consumption and improve scalability due to the high paral-

lelism of such network topologies. The focus of this work was to present an architecture for

a hardware platform that can be used to simulate the behavior of SNNs, to study the impact

of various design variables on the performance of SNNs, and to demonstrate the robustness

of such networks at accomplishing benchmark tasks.

Chapter 2 compared the basic functionality of artificial and spiking neural networks, and

showed some key differences in their behaviors. And, section 2.3 made a brief summary of

existing ICs.

Chapter 3 provided a high-level overview of the proposed SNN core architecture. Moreover,

this chapter explained the functionality of a circuit that allows spiking events to bypass the

local router with the goal of reducing the number of clock cycles required to handle an event.

Chapter 4 described in detail the design and functionality of each module composing the

SNN core.

Chapter 5 gave an overview of spike generators (or input encoders) and spike train converters

that establish an interface between the SNN and the systems/circuits that are external to

the IC.

Finally, Chapter 6 demonstrated the performance of the system-level and hardware-level

spiking neural networks. The system-level simulations, based on mathematical models of the

neurons and synapses, were first used to study the effect of synaptic strength quantization.

The MNIST classification accuracy was tested with strength resolutions of 8 bits, 6 bits, 5

86

bits and 4 bits. The performance degraded slowly from 8 bits to 5 bits, and had an abrupt

drop in accuracy at 4 bits.

The effect of spike de-synchronization was also observed on the accuracy, and it was noted

that, for MNIST, the accuracy of the SNN barely decreased. This implies that a rate-based

spike-train decoding scheme is sufficient for this application.

Next, the impact of variation in neural and synaptic parameters was evaluated. From a set

of multiple MNIST tests, it was concluded that the SNNs are very robust against variations

in the neural parameters (membrane resistance and capacitance). But, the variations of the

synaptic strengths had a much greater effect, and lead to a fast degradation of classification

accuracy.

Finally, at the hardware-level, the cart-pole (inverted pendulum) stabilization problem was

used to compare the performance of the SNN with and without a router bypassing circuit.

Given that the SNN used in this benchmark has a small number of neurons that fit on a

single core, the delivery of neural spikes did not require the use of a router. Thus, each

spike required fewer clock cycles to be propagated. This led to a better stabilization of the

cart-pole system.

7.1 Future Work

The mathematical model simulations as well as the hardware-level design serves as a founda-

tion and a platform for conducting further research in the area of Spiking Neural Networks.

In order to fabricate a working IC, the following course of action needs to be taken:

1. In the current design, when a neuron awaits an acknowledge signal, it stops the accu-

mulation of input currents. One possible design extension could allow the neurons to

resume their operation without requiring the arbiter’s permission.

2. Modify the design of the local router bypass such that some address events can be

propagated through the bridge, and others could be broadcast through TX routers.

3. Add a clock divider that allows neurons and synapses to be clocked at a different rate

than the routers.

4. Compare existing circuits for neurons and synapses, propose potential improvements,

and incorporate them within the complete architecture of the core.

5. Implement calibration circuitry to improve the robustness against process variations.

87

6. Complete the physical layout of the integrated circuit.

In addition, significant research contributions may be accomplished by investigating the

topics presented below:

1. Implement spike-timing dependent plasticity (STDP), and study its ability to optimize

an existing SNN.

2. Explore learning algorithms for SNNs.

3. Study neural models with greater biological plausibility, such as the Izhikevich model

[16], and compare them to the LIF model.

4. Investigate alternative routing schemes and circuit topologies (e.g. asynchronous, syn-

chronous, tree topology, etc.). Review architectures that transmit multiple spikes in a

single packet.

5. Investigate dynamic element matching for digital-to-analog conversion of the synaptic

circuits to improve the robustness of SNNs.

The first three objectives may be key to utilizing SNNs to their full potential.

88

Bibliography

[1] J. Heaton, Applications of deep neural networks, 2021. arXiv: 2009.05673 [cs.LG].

[2] K. Hunt, D. Sbarbaro, R. Żbikowski, and P. Gawthrop, “Neural networks for control

systems - a survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992, issn: 0005-1098.

doi: https://doi.org/10.1016/0005- 1098(92)90053- I. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/000510989290053I.

[3] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition using

deep neural networks: A systematic review,” IEEE Access, vol. 7, pp. 19 143–19 165,

2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2896880.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Advances in Neural Information Processing Systems 25,

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran Associates,

Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[5] D. A. Vaccari and E. Wojciechowski, “Neural networks as function approximators:

Teaching a neural network to multiply,” in Proceedings of 1994 IEEE International

Conference on Neural Networks (ICNN’94), vol. 4, 1994, 2217–2222 vol.4. doi: 10.

1109/ICNN.1994.374561.

[6] W. Maass, “Networks of spiking neurons: The third generation of neural network

models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997, issn: 0893-6080. doi:

https://doi.org/10.1016/S0893-6080(97)00011-7. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0893608097000117.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” in Neurocomputing: Foundations of Research. Cambridge,

MA, USA: MIT Press, 1988, pp. 696–699, isbn: 0262010976.

89

[8] J. Lazzaro and J. Wawrzynek, “A multi-sender asynchronous extension to the aer

protocol,” in Proceedings Sixteenth Conference on Advanced Research in VLSI, 1995,

pp. 158–169. doi: 10.1109/ARVLSI.1995.515618.

[9] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation functions: Com-

parison of trends in practice and research for deep learning, 2018. arXiv: 1811.03378

[cs.LG].

[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, Efficient processing of deep neural net-

works: A tutorial and survey, 2017. arXiv: 1703.09039 [cs.CV].

[11] W. Gerstner, “What is different with spiking neurons?” In Plausible Neural Networks

for Biological Modelling, H. A. K. Mastebroek and J. E. Vos, Eds. Dordrecht: Springer

Netherlands, 2001, pp. 23–48, isbn: 978-94-010-0674-3. doi: 10.1007/978-94-010-

0674-3_2. [Online]. Available: https://doi.org/10.1007/978-94-010-0674-3_2.

[12] J. Posṕıchal and V. Kvasnička, “70th anniversary of publication: Warren mcculloch &

walter pitts - a logical calculus of the ideas immanent in nervous activity,” in Emergent

Trends in Robotics and Intelligent Systems, P. Sinčák, P. Hartono, M. Virč́ıková, J.

Vaščák, and R. Jakša, Eds., Cham: Springer International Publishing, 2015, pp. 1–10,

isbn: 978-3-319-10783-7.

[13] M. T. Hagan and H. B. Demuth, “Neural networks for control,” in Proceedings of the

1999 American Control Conference (Cat. No. 99CH36251), vol. 3, 1999, 1642–1656

vol.3. doi: 10.1109/ACC.1999.786109.

[14] Xin Jin, S. B. Furber, and J. V. Woods, “Efficient modelling of spiking neural net-

works on a scalable chip multiprocessor,” in 2008 IEEE International Joint Confer-

ence on Neural Networks (IEEE World Congress on Computational Intelligence), 2008,

pp. 2812–2819. doi: 10.1109/IJCNN.2008.4634194.

[15] A. Gilra and W. Gerstner, Non-linear motor control by local learning in spiking neural

networks, 2017. arXiv: 1712.10158 [q-bio.NC].

[16] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural

Networks, vol. 14, no. 6, pp. 1569–1572, 2003. doi: 10.1109/TNN.2003.820440.

[17] Dhanya E, N. Pradhan, Sunitha R, and A. Sreedevi, “Analysis of the dynamic be-

haviour of a single hodgkin-huxley neuron model,” in 2015 International Conference

on Emerging Research in Electronics, Computer Science and Technology (ICERECT),

2015, pp. 441–446. doi: 10.1109/ERECT.2015.7499056.

90

[18] L. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),”

Brain Research Bulletin, vol. 50, no. 5, pp. 303–304, 1999, issn: 0361-9230. doi: https:

//doi.org/10.1016/S0361-9230(99)00161-6. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0361923099001616.

[19] W. Wang, S. Zhou, J. Li, X. Li, J. Yuan, and Z. Jin, Temporal pulses driven spiking

neural network for fast object recognition in autonomous driving, 2020. arXiv: 2001.

09220 [cs.CV].

[20] N. Rotem, E. Sestieri, J. Hounsgaard, and Y. Yarom, “Excitatory and inhibitory synap-

tic mechanisms at the first stage of integration in the electroreception system of the

shark,” Frontiers in Cellular Neuroscience, vol. 8, p. 72, 2014, issn: 1662-5102. doi:

10.3389/fncel.2014.00072. [Online]. Available: https://www.frontiersin.org/

article/10.3389/fncel.2014.00072.

[21] H. Markram, W. Gerstner, and P. J. Sjöström, “Spike-timing-dependent plasticity: A

comprehensive overview,” Frontiers in Synaptic Neuroscience, vol. 4, p. 2, 2012, issn:

1663-3563. doi: 10.3389/fnsyn.2012.00002. [Online]. Available: https://www.

frontiersin.org/article/10.3389/fnsyn.2012.00002.

[22] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep

learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47–63, Mar. 2019,

issn: 0893-6080. doi: 10.1016/j.neunet.2018.12.002. [Online]. Available: http:

//dx.doi.org/10.1016/j.neunet.2018.12.002.

[23] S. A. Aamir, Y. Stradmann, P. Muller, C. Pehle, A. Hartel, A. Grubl, J. Schemmel,

and K. Meier, “An accelerated lif neuronal network array for a large-scale mixed-signal

neuromorphic architecture,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 65, no. 12, pp. 4299–4312, Dec. 2018, issn: 1558-0806. doi: 10.1109/

tcsi.2018.2840718. [Online]. Available: http://dx.doi.org/10.1109/TCSI.2018.

2840718.

[24] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture

with heterogeneous memory structures for dynamic neuromorphic asynchronous pro-

cessors (dynaps),” IEEE Transactions on Biomedical Circuits and Systems, vol. 12,

no. 1, pp. 106–122, 2018. doi: 10.1109/TBCAS.2017.2759700.

[25] F. C. Bauer, D. R. Muir, and G. Indiveri, “Real-time ultra-low power ecg anomaly de-

tection using an event-driven neuromorphic processor,” IEEE Transactions on Biomed-

ical Circuits and Systems, vol. 13, no. 6, pp. 1575–1582, 2019. doi: 10.1109/TBCAS.

2019.2953001.

91

[26] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and

A. D. Brown, “Overview of the spinnaker system architecture,” IEEE Transactions on

Computers, vol. 62, no. 12, pp. 2454–2467, 2013. doi: 10.1109/TC.2012.142.

[27] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”

Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014, issn: 1558-2256.

doi: 10.1109/JPROC.2014.2304638.

[28] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,

Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R.

Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth: Design and tool flow

of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–

1557, 2015. doi: 10.1109/TCAD.2015.2474396.

[29] M. Davies, N. Srinivasa, T. .-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,

P. Joshi, N. Imam, S. Jain, Y. Liao, C. .-K. Lin, A. Lines, R. Liu, D. Mathaikutty,

S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. .-H. Weng, A. Wild, Y. Yang, and

H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE

Micro, vol. 38, no. 1, pp. 82–99, 2018. doi: 10.1109/MM.2018.112130359.

[30] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Güttler, A. Hartel, S. Hartmann, D.

Husmann, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke, A. Kononov,

C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici, S. Schiefer, S. Scholze,

V. Thanasoulis, B. Vogginger, R. Legenstein, W. Maass, C. Mayr, R. Schüffny, J.

Schemmel, and K. Meier, “Neuromorphic hardware in the loop: Training a deep spiking

network on the brainscales wafer-scale system,” in 2017 International Joint Conference

on Neural Networks (IJCNN), 2017, pp. 2227–2234. doi: 10.1109/IJCNN.2017.

7966125.

[31] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits

and architectures: A tutorial and survey,” IEEE Journal of Solid-State Circuits, vol. 41,

no. 3, pp. 712–727, Mar. 2006.

[32] J. Wei, J. Zhang, X. Zhang, Z. Wu, C. Dou, T. Shi, H. Chen, and Q. Liu, “An asyn-

chronous aer circuits with rotation priority tree arbiter for neuromorphic hardware

with analog neuron,” in 2019 IEEE 13th International Conference on ASIC (ASI-

CON), 2019, pp. 1–4. doi: 10.1109/ASICON47005.2019.8983508.

92

[33] “Communication,” in Event-Based Neuromorphic Systems. John Wiley & Sons, Ltd,

2015, ch. 2, pp. 7–36, isbn: 9781118927601. doi: https : / / doi . org / 10 . 1002 /

9781118927601.ch2. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9781118927601.ch2. [Online]. Available: https://onlinelibrary.wiley.

com/doi/abs/10.1002/9781118927601.ch2.

[34] A. Grüning and S. Bohté, “Spiking neural networks: Principles and challenges,” in

ESANN, 2014.

[35] A. Baldominos, Y. Saez, and P. Isasi, “A survey of handwritten character recognition

with mnist and emnist,” Applied Sciences, vol. 9, no. 15, 2019, issn: 2076-3417. doi:

10.3390/app9153169. [Online]. Available: https://www.mdpi.com/2076-3417/9/

15/3169.

[36] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST database of handwritten

digits,” 2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/.

[37] S. Hanfoug, N.-E. Bouguechal, and B. Samir, “Behavioral non-ideal model of 8-bit

current-mode successive approximation registers adc by using simulink,” International

Journal of u- and e- Service, Science and Technology, vol. 7, pp. 85–102, Apr. 2014.

doi: 10.14257/ijunesst.2014.7.3.09.

[38] K. W. M. T. C. Carusone D. A. Johns, Analog Integrated Circuit Design, 2nd ed.

Hoboken, NJ, USA: Wiley, 2011, p. 100.

[39] P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE

Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, 2005. doi: 10.1109/

JSSC.2005.848021.

[40] O. Boubaker, “The inverted pendulum: A fundamental benchmark in control theory

and robotics,” International Conference on Education and e-Learning Innovations, Jul.

2012. doi: 10.1109/iceeli.2012.6360606. [Online]. Available: http://dx.doi.org/

10.1109/ICEELI.2012.6360606.

[41] S. Nagendra, N. Podila, R. Ugarakhod, and K. George, “Comparison of reinforcement

learning algorithms applied to the cart-pole problem,” 2017 International Conference

on Advances in Computing, Communications and Informatics (ICACCI), Sep. 2017.

doi: 10.1109/icacci.2017.8125811. [Online]. Available: http://dx.doi.org/10.

1109/ICACCI.2017.8125811.

[42] A. Syutkin, ”Balancing of an Inverted Pendulum with a Spiking Neural Network - Case

Study and Report”. Montreal, QC, Canada: Concordia University, Dec. 2020.

[43] R. Florian, “Correct equations for the dynamics of the cart-pole system,” Aug. 2005.

93

[44] N. Lynch, C. Musco, and M. Parter, Winner-take-all computation in spiking neural

networks, 2019. arXiv: 1904.12591 [cs.DC].

94

Appendices

95

Appendix A

Python Source Code

A.0.1 Spiking Neural Network

snn.py

1 #!/bin/python

2

3 import matplotlib.pyplot as plt

4 import numpy as np

5

6 from neurons import Neurons

7 from synapses import Synapses

8 # from ma_filter import MA_Filter

9

10 # network of spiking neurons

11 class SNN:

12 def __init__(self, num, tf, ts=1, model='izhikevich'):

13 self.ts = ts # time step [ms]

14 self.tf = tf # duration of simulation [ms]

15 self.t = np.arange(0, tf, ts) # time array

16 self.tn = len(self.t) # number of time samples

17

18 self.num = num # number of neurons

19 self.nrns = Neurons(num, ts, model) # array of neurons

20 self.syns = Synapses(num, ts) # grid of synapses

21 self.raster = np.zeros((num, self.tn), dtype = np.int8) # allocated grid for raster

plot→֒

22

23

96

24 # advance simulation by one time-step

25 def step_forward(self, t_idx, curr):

26 self.raster[:, [t_idx]] = self.nrns.step_forward(curr + \

27 np.sum(self.syns.i,

axis=0).reshape((self.num, 1)))→֒

28 self.syns.step_forward(self.raster[:, t_idx])

29 return self.nrns.spikes

30

31

32 # reset state of network

33 def reset(self):

34 self.nrns.reset()

35 self.syns.reset()

36 self.raster.fill(0)

37

38

39 # compute spike rates

40 def rates(self):

41 self.spike_rates = np.zeros((self.num, 1))

42 for k in range(self.num):

43 spike_idxs = np.where(self.raster[k])[0]

44 if (spike_idxs.size == 0) or (spike_idxs.size == 1):

45 self.spike_rates[k] = 0

46 continue

47

48 deltas = np.diff(self.t[spike_idxs])

49 self.spike_rates[k] = (np.average(deltas) / 1000)**(-1)

50 return self.spike_rates

51

52

53 # process raster matrix before plotting

54 def prep_raster(self):

55 self.raster = self.raster.astype(float)

56 for t_idx in range(self.tn):

57 fired_idx = np.where(self.raster[:, [t_idx]] == 1)[0]

58 self.raster[fired_idx, [t_idx]] = fired_idx + 1

59 self.raster[self.raster == 0] = np.nan

60

61

62 # plot raster diagram

63 def plot_raster(self):

64 self.rates()

65 self.prep_raster()

97

66

67 plt.subplot(121)

68 plt.plot(self.t, self.raster.transpose(), marker='.', markersize=2)

69 plt.title('raster')

70 plt.xlabel('time [ms]')

71 plt.ylabel('neuron index')

72

73 plt.subplot(122)

74 plt.plot(self.spike_rates)

75 plt.title('spiking rates')

76 plt.xlabel('neuron indices')

77 plt.ylabel('rates')

78

79 plt.tight_layout()

80 plt.show()

81

82

83 # save raster

84 def save_raster(self, filename):

85 file_raster = open(filename, 'w')

86

87 time = self.t.transpose()

88 for k in range(len(time)):

89 file_raster.write(str(time[k]) + ',')

90 file_raster.write('\n')

91

92 size = self.raster.shape

93 for k in range(size[0]):

94 for l in range(size[1]):

95 if (l == size[1] - 1):

96 file_raster.write(str(self.raster[k, l]))

97 else:

98 file_raster.write(str(self.raster[k, l]) + ',')

99 file_raster.write('\n')

100 file_raster.close()

98

neurons.py

1 #!/bin/python

2

3 import matplotlib.pyplot as plt

4 import numpy as np

5 import sys

6

7 # class for network neurons

8 class Neurons:

9

##→֒

10 # initialize Izhikevich neurons

11 def init_neurons_izhikevich(self, num):

12 # regular spiking model

13 self.a = 0.02 * np.ones((num, 1))

14 self.b = 0.20 * np.ones((num, 1))

15 self.c = -65.0 * np.ones((num, 1))

16 self.d = 8.0 * np.ones((num, 1))

17

18 # initialize state variables

19 self.v = self.c * np.ones((num, 1)) # membrane voltage; USE COPY FUNCTION

20 self.u = self.b * self.v # recovery variable

21

22

23 # update states

24 def step_forward_izhikevich(self, curr):

25 self.fired_idx = np.where(self.v >= 30)[0] # identify indices of neurons

that have spiked→֒

26 self.v[self.fired_idx] = self.c[self.fired_idx] # reset membrane voltages

27 self.u[self.fired_idx] += self.d[self.fired_idx] # update recovery variable

28

29 # update neurons' states using Euler method

30 # membrane voltage is updated twice with a half-step (as done in simple_model paper

by Izh.)→֒

31 self.v += 0.5*self.ts * (0.04 * (self.v)**2 + 5 * self.v + 140 - self.u +

self.biases + curr)→֒

32 self.v += 0.5*self.ts * (0.04 * (self.v)**2 + 5 * self.v + 140 - self.u +

self.biases + curr)→֒

33 self.u += self.ts * (self.a * (self.b * self.v - self.u))

34

35 self.spikes.fill(0) # array of 0s for spiking neurons

99

36 self.spikes[self.fired_idx] = 1 # set to 1 elements that correspond to fired

indices→֒

37 return self.spikes # indices of spiked neurons

38

39

40 # reset states

41 def reset_izhikevich(self):

42 self.v = self.c * np.ones(self.num).reshape((self.num, 1)) # membrane voltage; USE

COPY FUNCTION→֒

43 self.u = self.b * self.v # recovery variable

44 self.fired_idx = [] # empty list for fired

indices→֒

45 self.spikes.fill(0) # array of 0s for

spiking neurons→֒

46

##→֒

47

48

49

##→֒

50 # initialize LIF neurons

51 def init_neurons_lif(self, num):

52 self.tau = 150.0 # time constant

53 self.r = 10.0 # resistance for current

54 self.v = np.zeros((num, 1)) # membrane voltage

55

56

57 # update states using Euler's method

58 def step_forward_lif(self, curr):

59 self.fired_idx = np.where(self.v >= 30)[0] # identify indices of spiking neurons

60 self.v[self.fired_idx] = 0 # reset membrane voltages

61 self.v += self.ts * (-self.v + self.r * (self.biases + curr)) / self.tau

62 self.v[self.v < 0] = 0 # clip negative voltage membranes to

zero→֒

63

64 self.spikes.fill(0) # array of 0s for spiking neurons

65 self.spikes[self.fired_idx] = 1 # set to 1 elements that correspond to fired

indices→֒

66 return self.spikes # indices of spiked neurons

67

68

69 # reset states

70 def reset_lif(self):

100

71 self.v.fill(0) # reset all neurons to 0mV

72 self.fired_idx = [] # empty list for fired indices

73 self.spikes.fill(0) # array of 0s for spiking neurons

74

##→֒

75

76

77 # initialize parameters

78 def __init__(self, num, ts=1, model='izhikevich'):

79 self.model = model # neuron model (Izhikevich or LIF)

80 self.ts = ts # time-step [ms]

81 self.num = num # specify number of neurons

82

83 # assign function pointers for corresponding model

84 if (model == 'izhikevich'):

85 self.init_neurons_izhikevich(num) # initialization

86 self.step_forward = self.step_forward_izhikevich # simulation

87 self.reset = self.reset_izhikevich # resetting

88 elif (model == 'lif'):

89 self.init_neurons_lif(num) # initialization

90 self.step_forward = self.step_forward_lif # simulation

91 self.reset = self.reset_lif # resetting

92 else:

93 print('ERROR: specified model is invalid.')

94 sys.exit()

95

96 self.biases = np.zeros((num, 1)) # biasing currents for neurons

97 self.fired_idx = [] # empty list for fired indices

98 self.spikes = np.zeros((num, 1), dtype=np.int8) # array of 0s for spiking neurons

99

100

101 def err_handler(type, flag):

102 print("Floating point error (%s), with flag %s" % (type, flag))

103 saved_handler = np.seterrcall(err_handler)

104 save_err = np.seterr(over='warn')

101

synapses.py

1 #!/bin/python

2

3 import matplotlib.pyplot as plt

4 import numpy as np

5

6 # grid of synapses that interconnect neurons

7 # element syn_{ij} is a synapse from neuron i to neuron j

8 class Synapses:

9 def __init__(self, num, ts=1):

10 self.ts = ts # time-step [ms]

11 self.num = num # number of neurons

12 self.tau = 2.0 # decaying time constant [ms]

13 self.g = np.zeros((num, num)) # [pA] synaptic transconductance in units of current

14 self.i = np.zeros((num, num)) # [pA] current - state of synapses

15

16

17 # reset currents of synapses

18 def reset(self):

19 self.i.fill(0)

20

21

22 # update value of current in synapses

23 # input: grid of 1s and 0s indicating spiking neurons

24 def step_forward(self, spikes):

25 temp = np.copy(self.g)

26 for k in range(len(spikes)):

27 temp[k] = spikes[k] * self.g[k]

28 self.i += self.ts * (-self.i / self.tau) + temp # first order diff equation

29 return np.transpose(np.sum(self.i, axis=0)) # currents going into same neuron

are combined→֒

102

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	SNN IC Architecture
	Thesis Organization
	Contributions

	Neural Network Background and Literature Review
	Artificial Neural Networks
	Spiking Neural Networks
	Neural Modeling
	Synaptic Modeling
	Network Simulation
	Spike-Timing Dependent Plasticity
	SNN Behaviors

	Literature Review
	DYNAPs
	SpiNNaker
	TrueNorth
	Loihi
	BrainScaleS

	Proposed Architecture
	Core Operation
	Scaling
	Local Router Bridge
	Overview and Memory Programming

	Design of an SNN Core
	Memory
	Random-Access Memory
	Content-Addressable Memory

	Neurons & Synapses
	Neuron
	Synapse
	SN Column

	Arbitration
	Arbitration Latch
	Arbitration Node
	Arbitration Column
	Arbitration Tree
	Arbiter

	Routing
	Router Communication
	Event Buffer
	Transmitting Router (TX)
	Receiving Router (RX)
	Local Router
	Combined Router
	Local Router Bridge

	Interface
	Input Encoding
	Output Decoding

	Benchmarks
	MNIST Handwritten Digit Classification
	Impact of Parametric Variation
	Modeling DAC Variation

	Cart-Pole Balancing

	Conclusion
	Future Work

	Bibliography
	Appendices
	Python Source Code
	Spiking Neural Network

