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Abstract

Design of Time-Sensitive Networks For Safety-Critical Cyber-Physical
Systems

Ayman Atallah, Ph.D.

Concordia University, 2021

A new era of Cyber-Physical Systems (CPSs) is emerging due to the vast growth

in computation and communication technologies. A fault-tolerant and timely commu-

nication is the backbone of any CPS to interconnect the distributed controllers to the

physical processes. Such reliability and timing requirements become more stringent

in safety-critical applications, such as avionics and automotive. Future networks have

to meet increasing bandwidth and coverage demands without compromising their re-

liability and timing. Ethernet technology is efficient in providing a low-cost scalable

networking solution. However, the non-deterministic queuing delay and the packet

collisions deny low latency communication in Ethernet. In this context, IEEE 802.1

Time Sensitive Network (TSN) standard has been introduced as an extension of the

Ethernet technology to realize switched network architecture with real-time capabili-

ties. TSN offers Time-Triggered (TT) traffic deterministic communication. Bounded

Worst Case end-to-end Delay (WCD) delivery is yielded by Audio Video Bridging

(AVB) traffic. In this thesis, we are interested in the TSN design and verification.

TSN design and verification are challenging tasks, especially for realistic safety-

critical applications. The increasing complexity of CPSs widens the gap between
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the underlying networks’ scale and the design techniques’ capabilities. The exist-

ing TSN’s scheduling techniques, which are limited to small and medium networks,

are good examples of such a gap. On the other hand, the TSN has to handle dy-

namic traffic in some applications, e.g., Fog computing applications. Other challenges

are related to satisfying the fault-tolerance constraints of mixed-criticality traffic in

resource-efficient manners. Furthermore, in space and avionics applications, the harsh

radiation environment implies verifying the TSN’s availability under Single Event Up-

set (SEU)-induced failures. In other words, TSN design has to manage a large variety

of constraints regarding the cost, redundancy, and delivery latency where no single

design approach fits all applications. Therefore, TSN’s efficient employment demands

a flexible design framework that offers several design approaches to meet the broad

range of timing, reliability, and cost constraints.

This thesis aims to develop a TSN design framework that enables TSN deploy-

ment in a broad spectrum of CPSs. The framework introduces a set of methods

to address the reliability, timing, and scalability aspects. Topology synthesis, traffic

planning, and early-stage modeling and analysis are considered in this framework.

The proposed methods work together to meet a large variety of constraints in CPSs.

This thesis proposes a scalable heuristic-based method for topology synthesis and ILP

formulations for reliability-aware AVB traffic routing to address the fault-tolerance

transmission. A novel method for scalable scheduling of TT traffic to attain real-time

transmission. To optimize the TSN for dynamic traffic, we propose a new priority

assignment technique based on reinforcement learning. Regarding the TSN verifi-

cation in harsh radiation environments, we introduce formal models to investigate

the impact of the SEU-induced switches failures on the TSN availability. The pro-

posed analysis adopts the model checking and statistical model checking techniques

to discover and characterize the vulnerable design candidates.
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Chapter 1

Introduction

Recent years have seen a massive increase in the computation and communication

capabilities offered by modern technologies. Such technologies emerge the transition

toward CPS, which integrates digital computations control and monitors physical pro-

cesses in a distributed architecture (Poovendran, 2010). CPSs include safety-critical

applications in which system failures can lead to interruption of services, financial

losses, and even loss of life. CPSs are increasingly deployed in many safety-critical

areas such as automotive and avionics to replace mechanical systems (Lee, 2008).

The scope of CPS for safety-critical applications covers critical infrastructures such

as power grid and highway transportation system, energy, and industrial automation

system. Moreover, healthcare and bio-medical system are also examples on safety-

critical CPSs (Poovendran, 2010). In contrast to digital systems, CPSs not only

depend on the correctness of computed variables, but also on the physical time when

their values are delivered (Kopetz, 2011). For example, the correctness of transferring

a file by email is not affected by a 1-second delay, while the correctness of a control

message belongs to braking systems can be affected by 10 ms of an unexpected de-

lay. Therefore, time-sensitive communication must guarantee deterministic message
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delivery or very low latency for CPSs in safety-critical applications.

1.1 Time-Sensitive Networking

Bus-based and switched networks can deliver low latency communication. Each

solution has different pros and cons. The bus-based networks need a more straight-

forward design than switched networks, but on a limited scale. For example, the

available bus standards, such as CAN and FlexRay bus offer a bandwidth < 20 Mbps

(Etschberger, 2001; Makowitz & Temple, 2006). Yet, such bandwidth meets the CPSs

demands in many applications. Nevertheless, future applications would require higher

bandwidth and broader coverage areas, which would not be achievable by bus-based

networks. On the other hand, the switched architecture, such as Ethernet, provide

large bandwidth in the range of 1 Gbps. Hence, switched networks become essential

to match the increasing complexity of future CPSs (Tămaş-Selicean, Pop, & Steiner,

2015). However, adapting switched architecture for time-critical communication is

challenging. For instance, the non-deterministic queuing delay over multiple hops

and the packet collisions deny low latency communication in conventional Ethernet.

TSN standard has been introduced to get rid of the timing limitations of switched

networks which meets the requirements of CPSs (IEEE, 2014). Adapts the Ethernet

technology allows TSN to provide high bandwidth with low cost. TSN supports

two types of transmission for critical traffic, namely, TT or AVB transmission. TT

transmission provides deterministic delivery with very low latency, (e.g., < 100µs).

Whereas, AVB transmission guarantees bounded low WCD delivery, (e.g., < 2ms).

TT messages, which are also known as scheduled messages, are transmitted according

to a fixed schedule that guarantees exclusive access to the transmission queue at

particular time slots. Each egress port in the network deploys a Time Aware Shaper

2



(TAS) as shown in 1.1 to block the non-scheduled traffic to reach switches output

ports during those time slots. On the other hand, AVB messages are transmitted

according to a Credit-Based Shaper (CBS) that shapes the transmission rate and

prevents bursts and starvation of the lower priority AVB and Best Effort (BE) traffic.

AVB type is an asynchronous traffic which implies less complexity than TT traffic.

The messages of non-critical applications are generally classified as BE traffic which

has the lowest priority and does not guarantee timing characteristic.
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SPTS
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TT: Time-triggered
GCL:	Gate	control	list	
BE:	Best	effort
CBS: Credit	based	
shaper																	
SPTS:	Strict	priority	
transmission	
selection.

CBS

CBS

Figure 1.1: Egress port with IEEE 802.1Qbv enhancements.

The safety-critical applications require an instantaneous fault-tolerance communi-

cation to ensure proper operations (Kehrer, Kleineberg, & Heffernan, 2014). Thus, the

conventional on-demand fault-tolerance techniques, such as packets, re-transmission,

and network reconfiguration, cannot be employed. Instead, TSN attains the trans-

mission reliability by a seamless redundancy approach, i.e., sending multiple replicas

of the critical messages simultaneously. The seamless redundancy can be achieved

by deploying complete redundant networks, i.e., Network Level Redundancy (NLR).

The NLR approach is simple but inefficient in terms of power, weight, and cost.
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1.2 Problem Statement

This section explains the challenges of TSN design that impede TSN’s deployment

in realistic safety-critical CPSs. Such systems impose a large variety of constraints,

i.e., no single design approach fits all applications. For example, some applications

need strict reliability constraints for safe operations. These constraints require a

multipath routing where redundant packets are continuously transmitted over disjoint

paths. However, it is not practical to adopt such a cost-intensive approach for less

critical applications. Therefore, TSN’s efficient and practical employment demands

a flexible design framework that offers several design approaches to meet the broad

range of timing, reliability, and cost constraints of CPSs.

The first challenge is related to the design space exploration. The capacity gap

between the existing design techniques and the size of new systems is widening. The

upcoming CPSs tend to accommodate a vast number of ESs that exchange hundreds

or even thousands of time-critical messages. Consequently, the underlying networks’

size would be substantial in terms of switches, connections, and bandwidth. However,

scalability is a common limitation in all existing techniques. The scheduling of TT

messages is the bottleneck in terms of the scalability since it is NP-hard problems

(B. Wang & Hou, 2000). In particular, the runtime hikes by increasing the network

size, even for small test cases, e.g., 50 messages over a 4-switches network. For in-

stance, the networks reportedly tackled by the existing TSN design techniques consist

of less than 20 ESs and 100 messages (see Section 2). On the other hand, some ad-

vanced vehicles nowadays deploy more than 50 ESs, exchanging hundreds of critical

messages (Chakraborty et al., 2012).

The second challenge is to guarantee the reliability of TSN networks. Addressing

the reliability aspect at the early stage of the design allows us to satisfy it in a
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resource-efficient manner. For example, late handling of the reliability may lead to

critical situations where the remaining network bandwidth is not enough for reliability

mechanisms or timing requirements are too tight to add those mechanisms. Therefore,

it is vital to develop a systematic approach to address reliability at early design stages

and with all other design constraints. Otherwise, resource-intensive approaches, such

as NLR, would be necessary. The step from non-redundant routing to Multipath

Transmission (MT) routing comes with an enormous design space growth. All existing

work either assume the reliability is attained by NLR approach or they neglect TT

traffic and only adapt MT for AVB traffic.

The third challenge is how to employ the TSN for dynamic traffic? As we men-

tioned before, TSN is originally introduced for fixed traffic with static network config-

urations. Static networks meet the requirements of a wide range of applications, such

as automotive applications. On the other hand, an emerging number of real-time ap-

plications imply dynamic traffic, such as fog computing and storage (Pop, Raagaard,

Gutierrez, & Steiner, 2018). Such applications require a dynamic TSN reconfiguration

in which networks accommodate and remove packet streams on the runtime (Haur &

Chin, 2019). An efficient implementation of fog computing requires efficient utiliza-

tion of the network assets. In other words, accommodating more flows allows a more

significant portion of tasks to be executed by fog nodes. Thus, dynamic traffic needs

reconfiguration algorithms that meet the hard deadlines of the time-critical traffic

while maximizing the network’s long-term throughput. Nonetheless, such algorithms

have been left out of the TSN standard.

The fourth challenge is related to the uncontrolled environments in which CPSs

are deployed in the field. These environments restrain abnormal conditions and post

challenges to verify the running safety-critical CPSs. One example of such conditions
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is the harsh radiation environment, which affects CPSs in space and avionics applica-

tions. The high energetic particles result in SEU-induced failures. Failure due to bit

flips in memory is well knows phenomena that have affected projects such as NASA’s

Cassini Spacecraft (Morgan, 2016) and SpaceX’s Falcon 9 (Leppinen, Kestilä, Tikka,

& Praks, 2016). Also, systems closer to earth are vulnerable to bitflips (Normand,

1996). Such failures result in unexpected timing behavior in the network, which can

jeopardize the running CPSs (Kauer, Soudbakhsh, Goswami, Chakraborty, & An-

naswamy, 2014). Neither the TSN reliability nor the control stability under faulty

switches has been addressed in the literature.

1.3 Thesis Contributions

This thesis aims to push forward the on-going research efforts on enabling TSN

deployment in a broad spectrum of CPSs. We achieve this goal by developing a

TSN design framework that addresses the reliability, timing, and scalability aspects.

Topology synthesis, traffic planning, as well as early-stage modeling and analysis are

considered in this framework. The proposed methods work together to meet a large

variety of constraints in CPSs. However, each method does its role independently

and can be integrated with other related works. The main contributions of this work

are listed as follows:

• Development of a scalable heuristic-based method for fault-tolerance topology

synthesis. The proposed method ensures several disjoint paths between sources

and destinations while considering the timing requirements of TT traffic. The

redundancy level can be adjusted based on the criticality of the traffic. The

method is explained in Chapter 3 and has been published in [Cf4].
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• Introducing ILP formulations for reliability-aware AVB traffic routing. The

proposed methods adapt either spatial or temporal redundancy to meet the

reliability constraints for different CPSs. The formulation and the experimental

results are explained in Chapter 3 and have been published in [Cf1] and [Cf5].

• Development of a novel method for a scalable scheduling of TT traffic. The

proposed method can handle large networks to meet the requirements of the

upcoming realistic CPSs. An iterated ILP-based scheduling is adopted for scal-

ability while the degree of conflict between iteration is minimized using a graph-

based technique. This work is explained in Chapter 4, and has been published

in [Jr1].

• Employing a machine learning technique, namely reinforcement learning to op-

timize the TSN design. The proposed method enhances the capability of TSN

to accommodate dynamic traffic which can be generated in Fog computing and

storage application. This method is explained in Chapter 5 [Jr2].

• Introduce formal models to investigate the impact of the SEU-induced faults on

the TSN. The proposed methods analyze the network reliability and availability

under a harsh radiation environment. Such an analysis allows dismissing vul-

nerable designs at early stages. The proposed analysis methods are explained

in Chapter 6 and have been published in [Cf2] and [Cf3].

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 - Background and Prior Work: This chapter is twofold, con-

taining a brief background on the TSN, and the required prior work relevant to
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the design challenges addressed in this thesis.

• Chapter 3 - Reliability-Aware TSN Design: This chapter explains the

fault-tolerant approaches proposed in this thesis to meet a range of various

CPSs requirements.

• Chapter 4 - Article I - Routing and Scheduling of Time-Triggered

Traffic in Time Sensitive Networks: This chapter demonstrates the schedul-

ing challenge and introduces the proposed no-wait scheduling technique for TT

traffic in TSN.

• Chapter 5 - Article II - Dynamic TSNs Priority Assignment for Fog

Computing Using Reinforcement Learning This chapter explains two

TSN optimization techniques based on Reinforcement Learning (RL) approach

to enhances the TSN design scalability, and optimize the TSN performance for

Fog applications.

• Chapter 6 - TSN Verification Under Single Event Upsets: This chapter

investigates the impact of harsh radiation environment on TSN. Formal mod-

eling of TSN is introduced to enable reliability and availability analysis under

several SEU-induced failure scenarios.

• Chapter 7 - Conclusion: This chapter concludes the thesis and discusses

future research directions.
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Chapter 2

Background and Prior Work

This chapter introduces the fundamentals that are required for understanding the

thesis contributions. Moreover, we introduce the related work in real-time commu-

nication, dynamic configuration, and network verification to demonstrate our work

context.

2.1 Real-Time Communication

Cyber-physical systems for safety-critical applications increasingly rely on a dis-

tributed architecture for scalability. Closed-loop control systems need real-time data

streamed from distributed sensors to monitor the physical environment. The col-

lected measures are exchanged between distributed computing nodes to computing

the proper response. Then, the computed control signals are delivered periodically to

the actuators to maintain system stability. The control cycle period can be very short,

i.e., in the range of milliseconds in safety-critical applications, such as automotive,

avionics, and industrial automation. The proper operation of such systems is suscep-

tible to the reliability and timing of the underlying communication network. Thus,
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the network must provide a deterministic message delivery or at least a predictable

timing with a bounded end-to-end delay. Bus and switched architectures are viable

solutions to yield such real-time communication with different features. The former

option implies simpler design processes, while the latter one offers higher scalabil-

ity. The bus architecture is introduced in several standards, e.g., CAN and FlexRay.

(Etschberger, 2001; Makowitz & Temple, 2006). Yet, bus networks meet the commu-

nication demands of some CPS in terms of bandwidth and coverage. An increasing

number of complex systems require large bandwidth and broader coverage beyond

the bus networks’ capabilities. Hence, switched networks become essential to support

the rising demand for modern CPSs (Tămaş-Selicean et al., 2015). Ethernet is an

attractive option to implement switched networks due to large bandwidth, high scal-

ability, and efficient cost (Tămaş-Selicean et al., 2015). However, standard Ethernet

does not provide the timing guarantees required by real-time applications (Decotig-

nie, 2005). The IEEE Time-Sensitive Networking Task Group has introduced IEEE

802.1 standard to remove such limitations Ethernet networks (IEEE, 2014). TSN

allows mixed-critical traffic by supporting two classes of time-critical traffic, namely,

TT or AVB, in addition to the non-time-critical class. This feature allows resource

sharing, which results in a cost-efficient networking solution.

2.1.1 Time-Triggered Traffic

TSN employs a communication schedule to attain deterministic message delivery.

The communication schedule specifies the time at which messages are to be sent and

forwarded along its route. Such transmission scheme requires a precise global clock.

The messages that require such synchronization between nodes are known as time-

triggered messages. IEEE 802.1 standard defines new mechanisms and hardware to
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enable TT communication over Ethernet networks. The TSN is interconnected by

full-duplex physical links, which allow simultaneous transmission in both directions

and eliminates collisions. The messages are exchanged between ESs in TSN under the

concepts of streams and frames. The frame represents any message instance, while

the stream represents a flow of frames transmitted from a particular source to one

or more destinations with a specific path, frequency, size, and priority. Every frame

header has a VLAN Identifier (VID) of 12 bits indicate the stream to which it belongs,

in addition to 3 bits that indicate the corresponding stream’s priority, namely Priority

Code Point (PCP). TSN follows a strict-priority preemptive forwarding scheme.

The deterministic delivery of TT traffic is guaranteed by two means; global

overlap-free schedule and precise clock synchronization as defined in IEEE 802.1AS

or IEEE 1588. These standards allow sub-microsecond synchronization of clocks in

measurement and control systems. Several frames of each message can be transmitted

during the hyper-period, which is the least common multiple of all messages’ periods.

The schedule defines the time offset at which each frame is transmitted at the hyper-

period. Furthermore, the schedule defines the instant time at which the TT frame

is forwarded through switches along its path. The schedule is realized by the TASs,

which are deployed on each output port. A simplified schematic of TAS is shown

in Fig. 1.1. The TAS adopts a simple First-In First-Out (FIFO) queuing paradigm

and isolates the traffic classes in several separate buffers according to the PCP value

in the frames’ headers. Each buffer ends by a timed gate. The opening and closing

sequences of each gate are stored in the Gate Control List (GCL). The TAS closes

the AVB and BE gates before the arrival of the scheduled TT frames to eliminate the

queuing delay.
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2.1.2 Audio-Video Bridging Traffic

TSN introduces the asynchronous AVB traffic class which guarantees bounded

WCD and zero congestion loss. Such reliability and timing guarantees are achieved

using the CBS, which regulates the traffic flow to a predefined burstiness and rate.

The AVB class meets the requirements for various time-sensitive applications coex-

isting with non-time-critical best-effort traffic. Instead of configuring the CBS for

individual streams, a particular priority level is assigned to each stream using the

frames’ VID tags. The CBS regulate the frame forwarding according to their prior-

ity. The asynchronous paradigm implies more straightforward implementation, i.e.,

frames have neither periodic patterns nor specific offsets. Such a paradigm eliminates

the complexity of precise timing synchronization based on a global clock. However,

a flow must adhere to predefined transmission rate and burstiness. The source ad-

heres to a contract that regulates the frame emission rate of each stream. The CBS

reduces AVB traffic latency by blocking the sources that exceed the reserved band-

width assigned by the contract. Such that, the cumulative data wi(d) of flow fi with

a burstiness b̂i over time interval d is limited to:

wi(d) ≤ b̂i + (r̂i × d) (1)

where r̂i is the designated leaky bucket rate for flow fi. The CBS apply a packet-by-

packet leaky bucket algorithm (Goyal & Vin, 1997; Zhang & Ferrari, 1993) to regulate

the flows’ transmission rate over the hops along their paths as shown in Fig. 2.1. Fig.

2.1 shows two different patterns (A & B) of flows that share the same parameter, i.e.,

burstiness and rate. Each flow fi is assigned to a certain priority pi ∈ [0, K) which

applies on all servers over its route where P = {pi|fi ∈ F} denotes the flow Priority

Assignment (PA) in the whole network.
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Figure 2.1: An example of two traffic patterns that satisfy the same leaky bucket
constraint.

2.2 Scheduling Problem

CPSs typically have a static architecture that results in regular traffic through the

TSN. Thus, unlike the other communication networks, the topology synthesis and the

traffic routing and scheduling of TSN networks can be planned at design time. The

scheduling problem for TT traffic is tackled in (Craciunas, Oliver, Chmeĺık, & Steiner,

2016), which presents an SMT approach to support the IEEE 802.1Q amendment for

scheduled traffic. The authors formally define the required constraints for valid deter-

ministic schedules that provide jitters-free transmission and deterministic end-to-end

latency guarantees for strictly-periodic scheduled frames. The technique above han-

dles the routing and the scheduling tasks separately despite the interrelation between

these two tasks, which disregards possible schedules and limits the optimization ca-

pabilities. Several works have addressed the joint routing and scheduling synthesis.

Authors in (Smirnov, Glaß, Reimann, & Teich, 2017b) introduce a pseudo boolean

constraints formulation for the joint generation of both valid routing and schedule

in a single step. The authors demonstrate the proposed formulation’s capabilities by

performing multi-objective routing and scheduling optimization based on a genetic

algorithm. In the same context, (Schweissguth, Danielis, Timmermann, Parzyjegla,
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& Mühl, 2017) introduces an ILP formulation that solves the routing and scheduling

problem for TT traffic jointly. In addition to generating a valid (overlap-free) sched-

ule, This formulation satisfies the messages’ deadlines and minimizes the overall sum

of messages’ latency. Several assumptions are used to simplify this problem, such

as assuming that the links are identical, i.e., each message has the same transmis-

sion time and link delay on all links. The authors show that the proposed approach

outperforms the 2-steps approach in terms of providing lower latency.

In order to enhance scalability, several heuristic solutions are investigated. Au-

thors in (Pop, Raagaard, Craciunas, & Steiner, 2016) introduce a design optimization

framework for both TT and AVB traffic in the TSN network, such that an overlap-

free schedule is synthesized and the WCD of AVB traffic is minimized. The rout-

ing is generated by a greedy randomized adaptive search procedure-based heuristic.

Then, the TT messages schedule is determined using an ILP-based algorithm, limiting

this approach’s scalability. An SMT-based heuristic approach for joint routing and

scheduling for TT traffic in TSN networks is introduced in (Mahfuzi et al., 2018a).

The proposed approach generates stability-aware solutions such that all TT messages

match the maximum latency that guarantees their control applications to be stable.

The authors adopt two heuristics to solve the scalability problem of SMT formula-

tion. First, k-shortest paths for each message are considered for the routing instead of

handling the whole set of the possible paths, which may be huge in densely connected

large-scale networks. Second, the global solution is built incrementally by dividing

the set of TT messages into several sub-sets, i.e., the SMT solver handles one sub-set

at a time. All of the techniques mentioned above suffer from scalability limitations.
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2.3 Routing and Topology Synthesis

The multipath transmission approach has been studied in (Smirnov, Reimann,

Teich, Han, & Glaß, 2018) which introduces two techniques for multipath routing

optimization. An SAT-based formulation for the routing problem is introduced. For

the sake of further simplification, authors assume that the network topology is given

in advance. Authors in (Kehrer et al., 2014) provide an excellent overview of the

fault-resilience approaches for TSN. In (Jeon, Lee, & Park, 2015), authors propose a

dual-path method to enhance the timing performance of critical traffic in TSN. The

method exploits the redundant paths to send different portions of the original stream

instead of sending identical copies of the whole stream. The authors present several

scenarios where the proposed technique enhanced the performance. A mathematical

analysis of the gain in the transmission reliability due to temporal redundancy is intro-

duced in (Smirnov, Glaß, Reimann, & Teich, 2016). The techniques mentioned above

do not guarantee multiple disjoint paths between nodes exchange critical messages.

Therefore, the introduced approach is limited to statistically optimize transmission

reliability in terms of Mean-Time-To-Failure (MTTF). To address load-balancing and

congestion in TSN, (Ojewale & Yomsi, 2020) propose two routing heuristics that aim

to find a feasible route for each flow, i.e., the traffic on each link is minimized.

To guarantee the redundancy requirements of critical traffic, authors in (Gavrilut,

Zarrin, Pop, & Samii, 2017) propose a fault-tolerant topology synthesis approach.

Heuristic and constrained programming-based techniques for topology planning and

traffic routing are introduced. Both techniques support a particular class of AVB

traffic, namely, Urgent-Based Scheduler (UBS) traffic, which does not provide deter-

ministic delivery because it is not transmitted according to overlap-free scheduling

tables. Most of the literature neglects the MT approach for TT traffic. Neglecting
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the TT traffic can be due to the vast complexity implied by the scheduling task.

Nonetheless, TT traffic has the best timing behavior in TSN network which is desired

in the safety-critical CPSs. Hence, a new technique support the MT fault-tolerance

approach for TT traffic is essential.

2.4 Networks Verification

A simulation-based verification framework is introduced in (Heise, Geyer, & Ober-

maisser, 2016) based on OMNeT++ software. The framework evaluates the main

features presented in TSN, including multipath transmission. Other features, such

as frame preemption as well as per-stream policing, are presented as well. The in-

terrelation between reliability and timing constraints is investigated. The impact of

multipath transmission and the frame preemption on the timing behavior of both

TT and AVB traffic is studied. The simulation-based analysis can tackle detailed

models while providing a good impression of the average case within a relatively

short runtime. However, it is incapable of performing exhaustive exploration for the

whole search space. In other words, simulation-based approaches are not adequate to

guarantee the desired reliability and timing properties of safety-critical systems.

In the context of Ethernet-based switched networks, authors in (Kanabar & Sidhu,

2009) investigate the reliability of several network topologies such as ring and star-

ring. An analytic approach is used to compute the network reliability based on the

Reliability Block Diagram (RBD) model. Failures in switches, as well as the time syn-

chronization clock, are considered. The failure scenarios in the switches and global

clock are abstracted as MTTF of the component. The conducted level of abstrac-

tion simplifies the analysis and allows the handling of large networks in a short time.

However, this approach is incapable of representing the impact of a particular failure
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in a specific switch on the transmission reliability of other paths in the network. The

reliability analysis considering the specification of avionics applications is addressed

in (C. Wang, Li, & Hu, 2011). The system is modeled as a fault tree under different

failure scenarios in switches, end-systems, and links. The fault tree model is analyzed

according to the failure distribution information of each essential event. A mathe-

matical analysis of the transmission reliability under temporal redundancy in TSN

network is introduced in (Smirnov et al., 2016). This work illustrates the trade-off

between the temporal redundancy and network congestion in terms of MTTF of AVB

messages. Nevertheless, none of the literature addresses the transmission reliability

of TSN networks under MT fault-tolerance approach.

2.5 Dynamic Reconfiguration

Pieces of literature have been studied the dynamic configuration topic, i.e., en-

hancing the reliability or meeting the dynamic traffic requirements. A dynamic config-

uration agent for Fog applications optimization is introduced in (Gutiérrez, Ademaj,

Steiner, Dobrin, & Punnekkat, 2017; Gutiérrez, Steiner, Dobrin, & Punnekkat, 2015).

The proposed agent allocates new TT flows generated by Fog computing systems on

runtime. Such agents observe the transmission patterns of new flows to estimate

their period, length, and latency, enabling them to find an optimized schedule. The

runtime scheduling of TT traffic in TSN is addressed in (Raagaard, Pop, Gutiérrez,

& Steiner, 2017) by a greedy heuristic technique for fast execution. This technique

determines the GCL, which decides the transmission of TT frames on each egress

port of a network switch. The authors in (Mai, Navet, & Migge, 2019; Navet, Mai,

& Migge, 2019) investigate the speed up of the design space exploration in TSN us-

ing machine learning in replacement of the conventional schedulability analysis, e.g.,
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network calculus. Supervised and unsupervised machine learning techniques are em-

ployed to test the schedule feasibility for a particular offline configuration. The RL

is employed in (Y. Wang, Wang, Huang, Miyazaki, & Guo, 2018) for dynamic traffic

and computation co-Offloading in Fog computing implemented for mobile services in

vehicular networks. The trade-off between energy consumption and service delay is

investigated by dynamic RL-based and deep RL-based scheduling techniques.

Regarding the fault-tolerant aspect, (Desai & Punnekkat, 2020) aim to enhance

the bandwidth utilization by avoiding the message replications under good link condi-

tions. Instead, they investigate the frame’s duplication only when a link has a higher

propensity for failure. Since the TSN standard does not define fault detection mecha-

nisms, the authors propose a machine learning-based intelligent configuration synthe-

sis mechanism to estimate the links’ propensity for failures. In (Pahlevan, Schmeck,

& Obermaisser, 2019), the authors propose a fully centralized model for the dynamic

configuration of safety-critical systems. A central agent monitors the network and

detects topology changes. If a faulty link or node is detected, the agent remotely

re-configures the TSN switches via the spanning tree protocol messages. Such dy-

namic reconfiguration offers a lightweight fault-tolerance for critical messages under

specific failure scenarios. However, the introduced method uses best-effort messages

to monitor and control the network, which cannot attain a real-time recovery. Such

a limitation denies this method to be deployed in many safety-critical applications.
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Chapter 3

Reliability-Aware TSN Design

In this chapter, we propose three techniques for topology and routing synthesis.

The proposed techniques aim to meet the redundancy requirements of critical mes-

sages in TSN efficiently. First technique performs topology synthesis considering the

spatial redundancy constraints in TSN (Section 3.1). Second technique, generates

multipath routing for AVB messages that require such a redundancy (Section 3.2).

Third technique investigates the temporal redundancy approach for increasing overall

TSN reliability (Section 3.3).

3.1 Fault-Tolerant TSN Topology

To meet the required spatial redundancy of critical messages, we introduced the

Redundancy Aware Topology Synthesis (RATS) technique. The inputs of RATS are

the ESs set and the traffic between them. The traffic specifications include the re-

quired redundancy for each message. The technique synthesizes an optimized topol-

ogy that offers multiple disjoint paths between ESs. The number of the disjoint

paths between nodes depends on the required messages’ redundancy. In addition to
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the redundancy constraints, RATS decides the required bandwidth of each link in the

synthesized network. The appropriate network components will be selected to satisfy

the constraints mentioned above and optimize the total cost. The cost is defined

by a library that contains the available components, i.e., switches, and links. The

component library defines the number of ports, the bandwidth, and the cost of each

switch and link. Such a cost can be monetary cost, power consumption, or any other

criteria. Example libraries are shown in Table 3.1 and Table 3.2, for switches and

links, respectively.

3.1.1 Proposed Topology Synthesis Algorithm

The synthesis problem is formulated as a labeling problem based on the graph

model. Given the set B = {b1, b2, b3, ..., bK} and the set L = {l1, l2, l3, ..., lN} that

represent the bridges in the network topology and the links which connect these

bridges, respectively. K is an upper bound for the number of bridges specified by

the user and N is the number of links in a fully-connected network which equal to

K(K − 1)/2. Hence, the set D ∈ B ∪ L represents the decision elements that can

be parts of the network topology. Then, let the vector T = {td1 , td2 , td3 , ...td(K+N)
}

be a labeling vector whose element tdi represents the assignment of a label to the

element di ∈ D. Each element tdi ∈ T specifies the type of di from the library A,

whereas tdi = ∅ means that tdi is discarded element. Hence, the vector T describes

the synthesized network topology.

The main steps of RATS are illustrated in Algorithm 1. In each iteration, the

algorithm can modify the topology by adding new components if needed to route

the new message. The first step in the algorithm is to determine an ordered list of

messages Mψ using the function orderMessages in line 3. Two criteria are followed
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Module ID Number of Ports Cost
b1 2 3
b2 3 6
b3 4 8

Table 3.1: Example Library for
Bridges Modules

Link ID Bandwidth (Mbps) Cost
l1 100 2
l2 1000 5

Table 3.2: Example Library for
Physical Links

to order M: i) frame frequency where the messages with more frequent frames are

assigned first since the messages with lower frequency are easier to schedule; and ii)

frame size where the frames of the same frequency, larger frames are assigned first

since the smaller ones are easier to schedule.

Algorithm 1: Redundancy Aware Topology Synthesis

Input : {E ,M,A, NB}
Output: {T ,R,S}

1 W ←Winit

2 R ← ∅, S ← ∅
3 Mψ ← oderMessages (M)
4 whileMψ 6= ∅ do
5 Wm ← removeJointPaths(W , Rm)
6 flag ← 0, k ← 0
7 while flag == 0 do
8 k ← k + 1

9 rkm ← findNextPath
(
G(V ,Wm),m, k

)
10 [S, f lag]← assignMessage(S,m, rkm)

11 end
12 Rm ← Rm ∪ rm
13 Lmtolerance ← Lmtolerance + 1
14 if Lmtolerance == m.tl then
15 remove m from Mψ

16 end
17 {W , T } ← updateWeights(W , T , rm)

18 end

For every message in Mψ, one path would be added, i.e., it is disjoint with the

paths added in previous iterations. Given that Rm is the set of the selected paths
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for message m, the function removeJointPaths generates a message-specific arcs set

Wm. In this set, the links belong to Rm are disabled by having infinite weights.

This ensures that the new generated path is disjoint with all links in Rm. Then, the

function findNextPath, which based on Yen’s algorithm (Yen, 1970), finds rkm which is

the kth shortest path for message m through G(V ,Wm). The function assignMessage

assigns the message to the route if there is available bandwidth. In case m is assigned,

the path rkm is added to the routing set Rm for message m. Then, Mψ is updated,

i.e., if m reached the required redundancy, it is removed from Mψ.

3.1.2 Adaptive Weighting and Labeling

When the topology changes by adding a new route rm to the routing set R, the

arcs weightsW are updated to represent the next ∆i+1C. The function updateWeights

is responsible for W updating as shown in line 17 in Algorithm 1.

Algorithm 2: The function updateWeights()

Input : {W , T , rm}
Output: {W∗, T ∗}

1 T̄ ← activateElements(T , rm)
2 T ∗ ← upgradeBridges(T̄ , rm)
3 L̄ ← findOpenLinks(T ∗, rm)
4 ∀l ∈ L̄ : w∗l ←∞
5 W∗ ← updateSelectionCost(W , T ∗,A)

The main steps in the implementation of the updateWeights function are shown

in Algorithm 2. The function activateElements finds and activates the bridges and

links that are used for the first time. Then the function upgradeBridges finds and

changes the type of the already active bridges that get an additional port in the

current iteration. After that, the function findOpenLinks is responsible of finding

the discarded arcs L̄ that cannot carry massages due to the limited number of ports
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Figure 3.1: Example on weights updating.

supported by the bridges inA. The weight of those arcs w∗l are assigned to be∞ which

prevents using them in the next iteration. Finally, the function updateSelectionCost

computes ∆i+1Cw for each arc w ∈ W .

In order to illustrate the mechanism of the function updateWeights, consider the

graph example depicted in Fig. 3.1. In particular, Fig. 3.1(a) shows the network

status before updating the weights given that the added path in this iteration is

rm = 〈a, b〉 and the bridge type available in A supports only two ports. The function

activateElements, in line 1, finds that constructing the path rm implies activating

bridge b and link l1. Then, the function findOpenLinks adds the link l6 to L̄ since

bridge a cannot upgrade to support more than two ports according to A. Hence,

the arc that connects between node a and d is removed in line 3 i.e., w∗6 = ∞. The

function updateSelectionCost changes the cost of selecting links {l1, l2, l5} to become as

the following: w(l1) = α since it is already part of the network. w(l2) = bcost+lcost+α,

where bcost and lcost are the monetary cost of the link and the bridge since selecting

l2 in the next iteration implies activating the bridge d as well as the link l2. Finally,

w(l5) = lcost +α since both bridges b and c are already activated. Hence, selecting l5

in the next iteration implies activating a single link.
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3.2 Redundancy Using Multipath Routing

Adding new applications or modifying existing ones in the CPS implies updating

the traffic planning for the underlying TSN, which has a fixed topology. In such cases,

we introduce two reliability-aware routing techniques for AVB traffic using ILP-based

formulation. The proposed techniques meet the transmission reliability of AVB traffic

using spatial and temporal redundancy.

Most of the literature that addresses the routing problem considers non-redundant

routing, i.e., the fault-tolerance requirements for the critical traffic are not consid-

ered (Mahfuzi et al., 2018a; Nayak, Duerr, & Rothermel, 2018; Schweissguth et al.,

2017). Existing techniques assume that the network is physically replicated for fault-

tolerance. On the other hand, we are interested in multipath routing to meet the re-

quired redundancy, which offers higher efficiency in terms of power, cost, and weight.

In the latter approach, multiple replicas of the message are transmitted through dis-

joint paths, i.e., if one replica is corrupted, delayed, or dropped, the message is still

received on time.

3.2.1 ILP Formulation

In the following, we introduce the redundancy and capacity constraints formula-

tion of the proposed ILP-based Multiple-Path Routing (ILPMPR) technique. The

ILPMPR jointly considers AVB and TT traffic to improve the design space explo-

ration and allows further optimized solutions. The proposed ILP formulation can

handle different redundancy constraints for each application. The formulated objec-

tive is minimizing the interference imposed on AVB messages from higher priority

classes. The ILP problem is defined by the following constants:

• MTT : The set of TT messages.
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• MAV B: The set of AVB messages.

• M = MTT ∪MAV B: The set of time-sensitive messages to be handle.

• m ∈M : Index of messages.

• Om: Number of redundant paths required for message m.

• Pm: Period of message m.

• Nm: The set of possible paths for message m.

• n ∈ Nm: Index of a possible path for message m.

• L(m,n): The set of links that compose path n for message m.

• Q(m,n): The number of links (hops) that compose path n for message m.

• Γl: Available bandwidth on link l.

• γm: Total bandwidth occupied by message m during one hyper-period.

• T(m,l): Transmission time for message m on link l.

The ILP uses the following variables:

• X(m,n): Binary variable indicates whether message m ∈ M is transmitted

through path n.

• Xc(m,n): Auxiliary binary variable complements X(m,n).

• G(m,n,l): Binary variable indicates whether message m ∈M passes through link

l.

• D: Integer variable represents an upper bound for the WCD of MAV B in µ sec.

The following constraints (16) - (6) define the valid routing. Each message should

be assigned to a particular number Om of disjoint paths. This requirement is guar-

anteed by constraint (2).

∀m ∈M :
∑
n∈Nm

X(m,n) = Om (2)
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This constraint is applied to each message to enforce the ILP solver to select a specific

number of redundant paths from the set Nm, representing possible paths between the

source and destination nodes of the message m. The set Nm is obtained in advance

using Yen’s algorithm (Yen, 1970). Nm can include the whole possible paths for small

instances. Generating all possible paths is a viable option for small-scale networks.

However, it is not practical to consider all paths for large-scale networks such as

Orion Crew Exploration Vehicle (CEV), which has 31 bridges (Paulitsch, Schmidt,

Gstöttenbauer, Scherrer, & Kantz, 2011). We address this limitation using a heuristic

approach by limiting Nm to the K-shortest paths.

We add constraints (3), (4), and (5) to define the variable X(m,n) as an indication

that a certain path n is selected for message m. First, constraint (3) defines when

X(m,n) is enforced to be ‘1’.

∀m ∈M,∀n ∈ Nm : X(m,n) +

(
Q(m,n) −

∑
l∈L(m,n)

G(m,n,l)

)
≥ 1 (3)

This constraint states that when message m is assigned to all links of a path n,

the value of X(m,n) is enforced to be ‘1’ since the terms inside the brackets is equal to

‘0’. On the other hand, constraints (4) and (5) are introduced to specify when X(m,n)

is enforced to be ‘0’.

∀m ∈M, ∀n ∈ Nm : −B ·Xc(m,n) +

(
Q(m,n) −

∑
l∈L(m,n)

G(m,n,l)

)
≤ 0 (4)

B is a big number that dominates other terms and deactivates the inequality when

the message m is not routed through the path n. This constraint states that the value

of Xc(m,n) is enforced to be ‘1’ unless all links along path n are allocated for message

m. in which X(m,n) = 1 due to (5).
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∀m ∈M,∀n ∈ Nm : X(m,n) +Xc(m,n) = 1 (5)

In order to ensure that the selected paths for each message are disjoint, we intro-

duce the following constraint.

∀m ∈M,∀l ∈ L :
∑
n∈Nm

G(m,n,l) ≤ 1 (6)

This constraint states that the redundant paths of message m are not allowed to use

any common link.

Typical link capacity is in the range of 100 Mbps to 1 Gbps, where a portion

of this capacity is dedicated to the high priority traffic (TT and AVB class-A) to

prevent network starvation and serve the lower priority traffic. TSN standard allows

maximum utilization of 75% of link capacity for high priority traffic (Yoo, Jo, Ju, &

Park, 2017). Constraint (7) is added for each link in the network to ensure that the

total size of the high priority traffic adheres to this specification.

∀l ∈ L :
∑
m∈M

∑
n′∈N l

m

(
G(m,n′,l) · γm

)
≤ Γl (7)

where N l
m ⊂ Nm is the set of possible paths for message m that use link l. The

summations in this constraint represent the total size of TT and AVB traffic that

passes through link l.

As mentioned earlier, we are interested in investigating the optimal routing for

TT and AVB messages that minimizes WCD for AVB traffic. Given that variables

X determine the routing of AVB and TT messages, and Dm refers to the maximum

interference imposed on message m. Then, the objective is to minimize the maximum
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Dm for m ∈MAV B as depicted in (8).

{X∗} = arg min
X

{
max

m∈MAV B

Dm

}
(8)

In order to define an upper bound for the maximum Dm for m ∈ MAV B, we

introduce the following constraint:

∀m ∈MAV B,∀n ∈ Nm : −B ·Xcmn +
∑

l∈L(m,n)

∑
m′∈M
m′ 6=m

(
G(m′,n,l) · T(m,l)

)
≤ Dm (9)

The second term represents the total delay due to messages routed through all links

along path n. Finally, minimizing the objective variableDm generates the best routing

solution.

3.3 Enhance Reliability By Temporal Redundancy

Safety standards such as ISO26262 standard state that safety-critical applica-

tions should receive -at least- one correct message every application-specific interval,

namely, Diagnostic Test Interval (DTI), to be considered as correctly functioning

(ISO 26262, 2011). The reliability of critical traffic is affected by the corruption of

the message due to transient errors. Thus, error mitigation techniques should be used

to enhance transmission reliability. The temporal redundancy can be employed by

sending multiple copies of each frame through a single path at different times. Such

technique enhance the soft reliability constraints, i.e., MTTF as shown in (Smirnov

et al., 2016). The temporal redundancy approach imposes less resource-intensive

constraints compared to the spatial redundancy. Such a low-cost approach satisfies
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the reliability requirements for a broad spectrum of critical applications. Applying

temporal redundancy as a separate step after the routing step is studied in (Smirnov

et al., 2016). In this scenario, the redundancy is assigned for streams that already

have fixed routing. We will call this strategy of performing two separate steps as

Detached Temporal Redundant Routing (DTRR) approach. The DTRR neglects the

interrelation between the messages routing and the redundancy assignment, limiting

the design space exploration. For instance, the gain in the transmission reliability

depends on the available bandwidth along the selected path. Routing a message

through a larger bandwidth path allows more redundancy, which implies higher reli-

ability. Furthermore, transmission reliability depends on the route itself, i.e., longer

paths imply higher transient error rates. Moreover, DTRR approach may result in

an infeasible redundancy assignment due to the bandwidth limitation, which implies

utilizing more resources.

To ensure better design space exploration, we introduce a new technique to simul-

taneously investigate the messages routing and redundancy assignment in single-step

using ILP solver. The proposed ILP-based Temporal Redundant Routing (ILPTRR)

addresses the reliability requirements of moderate criticality traffic, especially for

strict resource budget designs, which may restrict all messages’ spatial redundancy.

ILPTRR selects the route of each AVB message based on the available bandwidth

taking into account the temporal redundancy overheads. To ensure scalability, we

limit the search space to consider only the k-shortest paths. The proper value of k is

specified according to the problem size.
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3.3.1 Transmission Reliability Under Temporal Redundant

Routing

Given that every message m has a specific DTI namely, (Tdm) and minimum Mean

Time To Detect Error (MTTDE), (ψm). The value of Tdm as well as ψm is assumed

to be predefined by the design engineers based on the criticality of the application.

Whereas, rm refers to the number of replicas of message m that are sent during Tdm.

The value of rm is determined such that ψm is satisfied for each message and the

MTTDE for the whole network, MTTDEN , is maximized. Nm represents the set

of all possible paths for the message m. Transmitted messages are vulnerable to

transient errors during every transmission through the network’s links with a specific

Bit Error Rate (BER). Given that the transmission reliability of each AVB stream is

measured by its MTTDE, the probability PCm that a message mi ∈ M is delivered

to its destination can be computed as Eq. (10).

PCm = (1−BER)Nrm·Sm (10)

where Nrm and Sm refer to the path length and the size of message m. Given that

temporal redundancy is applied, a transmission failure for message m occurs if the

network fails to deliver -at least- one correct replica of this message during Tdm.

Hence, the probability of the transmission failure PFm is obtained as shown in Eq.

(11).

PFm = (1− PCm)γm (11)

where γm is the minimum number of replicas which reach the destination within a

interval of Tdm according to the maximum jitter which affects the message Jmax. γm
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is computed as follows:

γm = rm −
Jmax
Tdm

(12)

Then, MTTDE for transmission of m can be computed by Eq. (13) which is intro-

duced in (Smirnov et al., 2016).

MTTDEm =

∫ ∞
0

(1− PFm)
t

Tdm dt = − Tdm
ln(1− PFm)

(13)

Then, the failure rate of transmission for message m is computed by Eq. (14).

λm =
1

MTTDEm
= − ln(1− PFm)

Tdm
(14)

Finally, MTTDEN , which is the objective function of the proposed routing algorithm,

is computed by Eq. (15).

MTTDEN =
1∑

m∈M λm
(15)

3.3.2 ILP Formulation

In the following, the formulation for the valid routing constraints, capacity con-

straints, and reliability constraint. The ILP is defined by the following constraints:

• MAV B: The set of AVB messages.

• Nm: The set of possible paths for message m.

• L(m,n): The set of links that compose path n for message m.

• Cl: Available capacity of link l ∈ L.

• S(m,l): Transmission time for message m on link l.

• R(m,n):Repetitions rm that satisfy the required MTTDE for message m if it is

routed through path n.
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• Q(m,n): Length (number of hops) of the path n for message m.

The ILP uses the following decision variables:

• Y(m,n,r): Binary variable indicates whether message m is routed to path nm with

repetition r.

• H(m,l,r): Binary variable indicates whether message m passes through link l with

repetition r.

• Y c(m,n,r): Auxiliary binary variable represents the complement of Y(m,n,r).

The routing is considered valid iff there is a particular path pm ∈ P is assigned

for each message m ∈ MAV B with particular repetition rm ∈ Rm. To enforce the

algorithm to generate a valid routing, we introduce constraint (16) for every message:

∀m ∈MAV B :
∑
n∈Nm

∑
r∈Rmn

Y(m,n,r) = 1 (16)

This constraint ensures valid routing by enforcing one path to be assigned for every

message m ∈ MAV B. The value of variable Y(m,n,r) is defined by the following con-

straints (17) to (19). We introduce constraint (17) to enforce Y(m,n,r) to be ‘1’ if the

path n is assigned to message m with repetition r.

∀m ∈MAV B, ∀n ∈ Nm,∀r ∈ R(m,n) : Y(m,n,r) +

(
Q(m,n) −

∑
l∈L(m,n)

H(m,l,r)

)
≥ 1 (17)

This constraint states that if a message m is assigned to all links that compose path

n with repetition r, then the sum term over links l ∈ L(m,n) will be equal to the path

length Q(m,n). Thus, Y(m,n,r) is enforced to be ‘1’. Whereas, constraints (18) and (19)

are introduced to ensure that Y(m,n,c) cannot be activated unless all links along path

n, L(m,n), are allocated for message m.

∀m ∈MAV B,∀n ∈ Nm,∀r ∈ Rm : −N · Y c(m,n,r) +

(
Q(m,n) −

∑
l∈L(m,n)

H(m,l,r)

)
≤ 0

(18)
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This constraint states that a message m is not assigned to path n with repetition r

unless all links l ∈ L(m,n) are assigned for message m with repetition r. Y c(m,n,r) is

the complement of Y(m,n,r) as defined in constraint (19).

∀m ∈MAV B, ∀n ∈ Nm,∀r ∈ Rm : Y(m,n,r) + Y c(m,n,r) = 1 (19)

Constraint (20) is introduced to represent the available capacity of physical links.

∀l ∈ L :
∑

m∈MAV B

∑
r∈Rm

H(m,l,r) · S(m,l) · r ≤ Cl (20)

This constraint states that a link cannot be loaded by a traffic which exceeds its avail-

able capacity. To ensure that every message m ∈ MAV B has a particular repetition,

constraint (21) is introduced.

∀m ∈MAV B,∀n ∈ Nm,∀l ∈ L(m,n) :
∑

r∈R(m,n)

H(m,l,r) ≤ 1 (21)

This constraint states that message m cannot has different repetitions at any link

l ∈ L(m,n).

3.4 Evaluation

3.4.1 Topology Synthesis

We evaluate the scalability of the RATS algorithm in terms of runtime with dif-

ferent numbers of ESs and messages. Furthermore, we show the efficiency of JTRSS

for the topology cost and the scheduling feasibility comparing to two different ap-

proaches. In this analysis, 380 synthetic test cases are generated to perform the

evaluation. MATLAB 2014a is employed to implement the algorithm. The reported

results have been carried out on a workstation with an Intel Core i7 6820HQ processor
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Table 3.3: Example Library for Bridges Modules

Module ID Number of Ports Cost

b1 2 3
b2 3 6
b3 4 8

running at 3.0 GHz and 16 GB RAM.

Efficiency Evaluation

First, we evaluate the efficiency of the proposed algorithm by comparing it with

two different approaches. The first approach is based on the NLR strategy, as de-

scribed in (Annighoefer, Reif, & Thieleck, 2014). This approach realizes the multipath

transmission by using multiple copies of the network topology. The second approach

is based on the Separate-Synthesis (SS) strategy described in Section 4. This ap-

proach is influenced by the work introduced in (Gavrilut et al., 2017). To compare

these approaches, we generate 80 synthetic test cases with various numbers of mes-

sages (30, 60, 90, and 120) randomly distributed among six ESs. All messages have a

payload of 1,500 Bytes, a period of (1, 2, 3, and 10ms) and a required TL = 2. The

link speed is 100 Mbps for all experiments, and the bridges library A in Table 3.3 is

used.

The average cost and the percentage of feasible scheduling are depicted in Fig. 3.2.

It can be noticed that the main drawback of the NLR approach is the higher cost.

Nevertheless, some cases did not provide a feasible schedule since the routing and

scheduling are not solved jointly. SS approach provides the minimum topology cost

since it does not consider the feasibility of message scheduling. However, it suffers

from a high percentage of the cases that lead to an infeasible schedule. In this case,
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rerouting the traffic or even re-synthesize the topology by adding some new bridges

and links may be required. On the other hand, the proposed JTRSS provides less

cost than NLR approach while ensuring feasible scheduling.

Figure 3.2: Average cost and the percentage of feasible scheduling for 80 synthetic
test cases with different number of messages randomly distributed among 6 ESs.

Scalability Evaluation

To evaluate the proposed approach’s scalability, we used 300 synthetic test cases

to cover the following settings. The problems are composed of 8, 16, and 24 ESs that

exchange numbers of messages varied from 5 to 25 messages per ES. All messages have

a payload of 1,500 Bytes, which is the Ethernet Maximum Transmission Unit (MTU),

and a period of 1, 2, 3, and 10ms. At the same time, the required tolerance level is

chosen to be 2 or 3. The source and destination of the messages are assigned randomly.

The average runtime is depicted in Fig. 3.3. The results show the high scalability
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of the proposed JTRSS algorithm such that it can handle large-scale problems, e.g.,

24 ESs with 600 messages within a very short runtime about 8 seconds on average.

Furthermore, the linear increase of runtime with respect to the number of ESs and the

number of messages points to the potential of handling large-scale synthesis problems.

(a)

(b)

Figure 3.3: Average runtime for 300 synthetic test cases with varied numbers of ESs
and messages.
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3.4.2 Multipath Routing

Performance Evaluation

To evaluate the performance of the ILPMPR technique, we investigate the resul-

tant WCD reduction comparing to the typical Shortest Path Routing (SPR) tech-

nique. Both techniques are implemented in the same framework. All test cases have

been solved, and the resulting maximum WCD is shown in Fig. 3.4 with respect to

their sizes. It can be observed from these results that the proposed technique has a

significant impact, i.e., 40%, on the WCD comparing to the SPR technique. This im-

pact increases with the number of messages. For instance, in the case of 60 messages,

a reduction of 60% is achieved compared to the SPR technique.

M
ax

 W
CD

 (m
s)

SPR

Figure 3.4: Worst case delay resulting using the proposed technique and the shortest
path routing for different loaded networks

Case Study: Orion Crew Exploration Vehicle

Orion project is intended to be the next-generation Crew Exploration Vehicle

(CEV) instead of the ended Space Shuttle Program (McCabe, Baggerman, & Verma,
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Figure 3.5: Network topology in the Orion CEV.

2009). Orion has strict reliability requirements, e.g., it has to meet an overall reli-

ability allocation of 0.9999 for up to 5000 hours of continuous operation at a time

under strict weight, and power constraints (Paulitsch et al., 2011). Concerning the

communication requirements, Orion adapts an Ethernet-based switched communi-

cation network (Tămaş-Selicean et al., 2015). In this section, multipath routing is

determined for two setups of 50 and 100 messages with the network topology and the

specifications adopted in (Tămaş-Selicean et al., 2015) with RL = 2. The relative

reduction in WCD of both setups using the proposed technique compared with the

SPR technique is shown in Fig. 3.6.

Fig. 3.6 shows the reduction in WCD by considering different shortest path values.

In particular, these results show that handling AVB and TT messages simultaneously

by the proposed technique achieves a 30% reduction in 50 messages. Moreover, it

shows a further reduction of up to 65% for the higher utilized case of 100 messages.

On the other hand, results demonstrate that the proposed technique reduces WCD

by increasing the number of considered paths, e.g., by considering the five shortest

paths. This observation can be explained by the fact that larger K allows better
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design space exploration, which improves the optimization results.

Figure 3.6: The relative value of WCD divided on the reference WCD value resulting
by shortest path routing approach for different number of messages and different
values of K.

To investigate the impact of the joint routing of AVB and TT traffic, the reduction

in WCD when applying the proposed technique is compared with the 2-step routing

technique. In 2-steps routing, the TT traffic is routed in advance. Afterward, the

routing of AVB traffic is determined, such that WCD is minimized. The relative

value of WCD divided on the reference WCD value resulting from a 2-step routing

approach for a different number of messages, and different values of K are shown in

Fig. 3.7. The proposed technique outperforms the 2-steps routing in both 50- and

100-messages cases for all K values. Moreover, it is observed that the advantage and

the efficiency of the proposed technique become more evident when the high-loaded

networks increase the impact of the proposed technique in reducing the AVB traffic

delay. For instance, the proposed joint routing reduces the maximum WCD up to

42% for the case of 100 messages with K=5. These results highlight the importance

of considering the timing requirements of non-scheduled traffic, e.g., AVB during TT

traffic routing, to ensure optimal traffic planning.
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Figure 3.7: The relative value of WCD divided on the reference WCD value resulting
by 2-steps routing approach for different number of messages and different values of
K.

3.4.3 Temporal Redundancy

Performance Evaluation

The first analysis investigates the efficiency of the proposed ILP formulation in

terms of the runtime. We present the runtime of 24 synthetic test cases of different

sizes and loads. In particular, networks composed of 3, 4, and 5 switches, i.e., have

paths length up to 2, 3, and 4 communication hops, respectively, are considered. A

different number of messages are considered ranges from 20 to 90 messages are routed

through each network. The messages’ sources and destinations are randomly assigned

from a set of 20 ES in each network. Messages have a payload of 1,500 Bytes, a period

of 0.01 seconds, a required MTTDE of 106 second for BER of 10−9, and a repetition

of up to 3 replicas. Messages are transmitted over 100 Mbit Ethernet links. The

maximum link utilization is chosen to be 50%. The runtime results for test cases are

shown in Fig. 3.8.

We can see the super-linear growth of the solving time with the number of messages
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Figure 3.8: Runtime for 24 synthetic test cases for different number of hops and
messages by the proposed reliability-aware routing.

and the size of the network. However, these values are still reasonable for off-line

processing at the design stage.

Co-optimization Case Study

This section considers a network that consists of 13 ESs exchanging 70 messages

over four switches. Messages are routed through paths of length up to 3 commu-

nication hops. Messages have payloads of 1, 2, and 3 KB, a period of 1, 2, 5, 10,

and 20 ms, required MTTDE of 106 second for BER of 10−9, and a repetition up to

3 replicas. Messages are transmitted over 100 Mbit Ethernet links. We solved the

optimization problem for six different utilization constraints ranges from 25% to 75%

of the bandwidth of the links to explore the trade-off between transmission reliability

and network utilization. Fig. 3.9 depicts the optimal transmission reliability for dif-

ferent possible values of the maximum link utilization. This co-optimization yields 6

Pareto-optimal solutions. Increasing the available bandwidth implies that messages

can be routed through shorter paths, and more replicas can be sent for each message.

These factors explain the increase of the transmission reliability depicted in Fig. 3.9.

The distribution of the 70 messages in terms of the number of assigned replicas for
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different utilization constraints is shown in Fig. 3.10. It can be noticed that, by allo-

cating more bandwidth, the number of messages with two repetitions is decreasing,

while the number of messages that get the maximum repetitions (3 replicas in this

case) is increasing.

Figure 3.9: MTTDEN for Different Utilization Constraints.

Figure 3.10: Messages Distribution With Respect to The Repetitions.

To demonstrate the advantage of the proposed approach over the 2-steps ap-

proaches, we tried to solve the same routing problem using routing-first and reliability-

first approaches for different link utilization constraints varies from 25% to 75%. Table

3.4 shows the routing results regarding whether a feasible solution is found. We can

notice that the proposed approach can find a solution with the utilization of 25%

only. Whereas, routing-first and reliability-first approaches needed up to 65% and

45% of the link capacities, respectively, to find a solution.
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Table 3.4: Feasibility using the proposed approach, routing-first, and reliability-first.

Umax 15% 25% 35% 45% 55% 65% 75%

Proposed ILPMPR 7 X X X X X X
Routing-first 7 7 7 X X X X

Reliability-first 7 7 7 7 7 X X
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Chapter 4

Article I: Routing and Scheduling

of Time-Triggered Traffic in Time

Sensitive Networks

Authors: Ayman Atallah, Ghaith Bany Hamad, Otmane Ait Mohamed

Abstract: This paper addresses the following research question: how to compute

no-wait schedules and multipath routings for large-scale Time Sensitive Networks

(TSNs)? TSN must guarantee low latency and fault tolerance. The former require-

ment is achieved by sending the messages according to a no-wait schedule, while the

latter is achieved by routing each message through multiple streams of disjoint paths.

Computing such schedule and routing is an NP-hard problem. In this work, the above

question is addressed by a three-fold solution: (i) An Iterated ILP-based Scheduling

(IIS) technique for scalability; (ii) The Degree of Conflict (DoC) between the IIS

iterations is minimized by the DoC-Aware Streams Partitioning (DASP) technique

which improves the success rate of the IIS; (iii) The fault-tolerance is guaranteed by
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a DoC-Aware Multipath Routing (DAMR) technique which integrates the DASP for

further improvement in the success rate. Two hundred synthetic test cases are used

for performance evaluation. The proposed method scales well, i.e., it handled net-

works of 21 bridges and 480 messages under 40 minutes timeout. The success rate of

the highly utilized instances raised from 47% by Random Streams Partitioning (RSP)

to 90% by the proposed method.

4.1 Introduction

The deployment of CPSs as a replacement for the typical mechanical compo-

nents is increasing in the industrial automation systems (Da Xu, He, & Li, 2014).

This transition requires an efficient integration between the computing units and the

controlled physical processes. Such integration demands reliable and real-time com-

munication to deliver control and feedback messages (Poovendran, 2010). The com-

plexity escalation due to the industrial revolution, i.e., Industry 4.0, hikes the design

constraints for communication networks in terms of bandwidth, coverage, and cost

(Finn, 2018). Ethernet is an attractive networking solution in terms of scalability and

cost. Nonetheless, affording deterministic low latency communication over Ethernet

architecture is hard due to several inherent limitations, such as the non-deterministic

queuing delay and packets collisions (Decotignie, 2005).

IEEE 802.1 standard is introduced to address these limitations by a new Ethernet-

based solution called TSN (Messenger, 2018). TSN supports real-time applications

with zero packet loss due to buffer congestion and bounded end-to-end latency (Finn,

2018). Moreover, TSN allows the coexistence of time-critical and best effort traffic on

the same network which delivers cost savings and reserves the backward compatibility.

A message is exchanged in TSN as a stream of frames transmitted from one source
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to one or more destinations with specific path, size, and priority. TSN also allows a

mixed-criticality communication of TT class which adhere to static schedules, AVB

class, and BE streams (Laursen, Pop, & Steiner, 2016). The TT stream is periodic

and has a deterministic delivery of low latency, e.g., tens of microseconds (Steiner,

Craciunas, & Oliver, 2018). The delivery of AVB streams has a bounded WCD,

e.g., less than 2 ms for AVB class-A. On the other hand, BE class has no timing

guarantees.

To enable the time-aware scheduling defined in 802.1Q, TSN employs precise time

synchronization protocols like 802.1AS (Nayak, Dürr, & Rothermel, 2018). Such

protocols allow all bridges and ESs in the network to synchronize their local clocks

by less than 1 microsecond precision (Finn, 2018). In particular, each TT frame is

transmitted according to a static schedule which allows deterministic communication

with bounded jitter and end-to-end latency (Steiner et al., 2018). The static sched-

ule also prevents the interference from lower priority classes by preempting them

in advance of the TT frames arrival. For some critical systems with stringent re-

quirements, the static schedule can provide jitter-free transmission and deterministic

end-to-end latency guarantees by isolating TT frames in every egress port as intro-

duced in (Craciunas et al., 2016). On top of the timing requirements, the delivery of

TT messages must tolerate frames corruption and links failure instantaneously. This

makes the on-demand packet retransmission and network reconfiguration techniques

inapplicable for TSN. Hence, the Frame Replication and Elimination for Reliability

(FRER) defined in 802.1CB is introduced for fault-tolerance. The FRER uses mul-

tiple disjoint paths to deliver the message to tolerate any failure of a single link in

the network (Finn, 2018). The number of disjoint paths, namely, Redundancy Level

(RL) can be specified according to certification standards, such as IEC 61508 for the

industrial applications.
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Unlike the hardware and transmission functionalities, the routing and scheduling

techniques have been left out of IEEE 802.1 standard (Steiner et al., 2018). Re-

garding the TSN scheduling, several formulations have been introduced to meet the

timing requirements using Integer Linear Programming (ILP) (Lukasiewycz, Schnei-

der, Goswami, & Chakraborty, 2012; Schweissguth et al., 2017) and Satisfiability

Modulo Theories (SMT) (Craciunas et al., 2016). Nonetheless, such a scheduling

task is an NP-hard problem (Tindell, Burns, & Wellings, 1992), and thus, the above

techniques can only tackle small instances (Falk, Dürr, & Rothermel, 2018). The iter-

ated scheduling, for scalability, is addressed by (Mahfuzi et al., 2018b) using the RSP.

However, the performance of iterated scheduling is sensitive to the Degree of Conflict

(DoC) across the stream groups (Pozo, Rodriguez-Navas, Hansson, & Steiner, 2017).

Thus, the RSP, which neglects this conflict, results in a low success rate. Regarding

the TSN routing, meeting the RL over multipath routing is typically ignored in the

literature (Lukasiewycz et al., 2012; Mahfuzi et al., 2018b; Nayak, Duerr, & Rother-

mel, 2018; Schweissguth et al., 2017). Instead, many techniques assume a replication

of the entire network for fault-tolerance (Tămaş-Selicean et al., 2015). This approach

is inefficient in terms of cost, power, and area (Gavrilut et al., 2017), which is chal-

lenging in the resources-critical industrial applications.

In this paper, we address the following research question: how to compute no-

wait schedules and multipath routing for large-scale TSNs? The proposed DA/IRS

addresses this question by the following three techniques: (i) The Iterated ILP-based

Scheduling (IIS) in order to attain high scheduling scalability by dividing the set

of TT streams into multiple groups each of which is incrementally added to the

schedule; (ii) A new graph based DASP in order to improve the success rate of

the IIS; (iii) The DoC-Aware Multipath Routing (DAMR) in order to achieve fault-

tolerance. The DAMR implement a multi-start iterated greedy heuristics to integrate
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the DASP with the routing synthesis. A set of 200 synthetic test cases are used for

the performance evaluation. The DA/IRS shows a good scalability and success rate,

i.e., it handled networks of 21 bridges under a 40-minute time limit. Regarding the

number of messages, it handled 480 messages under the same time limit. Furthermore,

the proposed method has increased the success rate by 70% compared to the RSP.

The remainder of the paper is outlined as follows: Section II discusses the related

work. The system model under consideration is described in Section III. Section

4.4 explains the DASP technique. Section 4.5 describes the DAMR technique, while

the IIS technique is described in Section 4.6. Section 4.7 discusses the experimental

results of the proposed method compared to state-of-the-art techniques using several

test cases. The conclusion is presented in Section 4.8.

4.2 Related Work

The formal-based scheduling methods of TSN IEEE 802.1Qbv specifications are

addressed in (Craciunas, Oliver, & AG, 2017; Craciunas et al., 2016) using an SMT

formulation. Several ILP formulations for the joint routing and scheduling problem

are introduced in (Falk et al., 2018; Schweissguth et al., 2017; Smirnov et al., 2017b)

to address the strong interconnection between both tasks. An SMT-based iterative

approach for joint routing and scheduling is introduced in (Mahfuzi et al., 2018b).

Each iteration schedules a subset of frames which are determined based on a temporal

slicing without ensuring a zero jitter between frames of the same stream. The iter-

ated scheduling using RSP has been addressed by SMT formulation (Pozo, Steiner,

Rodriguez-Navas, & Hansson, 2015). Whereas, an ILP formulation for the dynamic

routing and scheduling problem is introduced in (Nayak, Dürr, & Rothermel, 2018)

for the Time-Sensitive Software-Defined Networks (TSSDN). The no-wait scheduling
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problem is addressed in (Dürr & Nayak, 2016) which avoids the frames jitter by assum-

ing that all streams have the same period cycle, and thus the problem is restricted to

one frame per stream. Nonetheless, a wide spectrum of CPSs exchange the messages

in different frequencies. The FRER for fault-tolerance is typically neglected in the

literature (Lukasiewycz et al., 2012; Mahfuzi et al., 2018b; Nayak, Duerr, & Rother-

mel, 2018; Schweissguth et al., 2017). On the other hand, the temporal redundancy

has been investigated for bus-based network, i.e., FlexRay (Tanasa, Bordoloi, Eles, &

Peng, 2010), and for Rate Constrained (RC) traffic in TSN (Atallah, Bany Hamad,

& Ait Mohamed, 2018; Smirnov et al., 2016) to improve the MTTF of the overall

network. The spatial redundancy is addressed in (Atallah et al., 2018; Gavrilut et

al., 2017) in the context of topology synthesis. Whereas, the multipath routing for

selected streams is addressed in (Smirnov et al., 2018) to improve the overall network

reliability based on a best effort strategy.

4.3 System Model

4.3.1 Architecture Model

We consider an architecture model that represents a set of ESs denoted by ES

connected via a set of bridges denoted by B. All physical links are Ethernet-based

full-duplex links, and may have various speed, e.g., 100 Mbps, or 1 Gbps. ES and

B are assumed precisely synchronized, i.e., they are capable of adhering with the

computed schedules reasonably. Each egress port deploys a Time Aware Shaper

(TAS) which adopts a First-In First-Out (FIFO) queuing paradigm while isolating

the different traffic classes or priorities in one or more separate queues. Hence, the

transmission order of frames of same priority depends on the arrival order, i.e., cannot
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Figure 4.1: Egress port with IEEE 802.1Qbv enhancements.

be switched like TTEthernet network (Steiner et al., 2018). A simplified schematic of

the TAS is shown in Fig. 1. The buffered frames are distributed on queues based on

three Priority Code Point (PCP) bits in their headers. Each queue ends by a timed

gate controlled by a Gate Control List (GCL). Every row in the GCL indicates the

open and close gates for a certain time window starting from a relative time-stamp

(Nayak, Duerr, & Rothermel, 2018). The GCL is periodically repeated every pre-

defined cycle. Consequently, the TT schedule in TSN is synthesized on the queue

level which affect all streams share the same queue (Craciunas et al., 2016). In other

words, the static schedule of the TT streams is translated to the level of traffic classes

as periodic transmission window (Craciunas et al., 2017). Among the open queues,

the transmission selection is based on a strict priority scheme.

The network topology is modeled as a directed graph G ≡ (V,L) where V =

ES ∪ B is the set of all communicating nodes, and the set L ⊆ V × V includes all

directional links that connect any two nodes. An example of a network topology of

ES = {es0, es1, es2, es3}, and B = {b0, b1, b2, b3, b4, b5} is shown in Fig. 4.2. Each full-

duplex link between nodes (vi, vj) ∈ V is considered as two separate directional links
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Figure 4.2: An illustrative example of four ESs (es0, es1, es2, es3) which ex-
change six streams (s0, s1, s2, s3, s4, s5) via TSN network composed of six bridges
(b0, b1, b2, b3, b4, b5).

denoted by ordered pairs [vi, vj] and [vj, vi] where the first and the second elements

refer to the sender and receiver nodes, respectively. A path P is an ordered sequence

of physically connected nodes starting at the source vs and ending at destination vd

where vs ∈ ES and vd ∈ ES. For example, one of the paths between es0 and es1 is

P i(es0,es1) = {[es0, b0, b1, b2, es1]}.

4.3.2 Application Model

We consider a set of time critical applications communicating over a TSN. Each

application is represented by a periodic TT message m. The set of TT messages

is defined by the tuple M ≡ (Sr,D, P, Si,Dl, Rl) where Sr ≡ {srm ∈ ES} and

D ≡ {dm ∈ ES} are the senders and the receivers of messages m ∈ M. The frame

size and period of the messages are defined by Si ≡ {sim ∈ Z+} and P ≡ {pm ∈ Z+},

respectively. The maximum frame size, namely, Maximum Transmission Unit (MTU)

is 1500 bytes which is the limit for Ethernet frame. Several frames of message m can

be transmitted during the hyper-period which is the least common multiple of all

messages’ periods. The message deadline is defined by Dl ≡ {dlm ∈ R+}. Finally,

Rl ≡ {rlm ∈ Z+} is the given redundancy level of the messages M. Each frame
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is replicated at the first bridge after the source, while the replicas are eliminated

at the last bridge before the destination. A stream srm ≡ (srm, dm, pm, sim,Prm)

where 0 ≤ r ≤ rlm distinguishes the frames that belong to message m ∈ M and

flow through a specific path Prm. In TSN, a TT stream can comprises multiple frames

unlike TTEthernet which limits the streams to one frame with maximum size of MTU

(Craciunas et al., 2016). The considered TT streams must be transmitted based on

a no-wait schedule which is defined as follows:

Definition 1. Let ts(i,j) and te(i,j) are the points of time at which the TT frame

i starts and ends being transmitted over the hop j, and Otj is the total forwarding

overhead time on hop j including processing and switching time, but excluding the

queuing delay. Then, the no-wait schedule shall satisfy the following constraint:

ts(i,j+1) ≤ te(i,j) +Otj+1 + σ (22)

where j + 1 and σ are the next hop in the path of frame i, and the macro tick of the

network, respectively.

Since the solution validity is restricted by the no-wait constraint, the latency

L(sm) of stream sm routed over identical hops can be approximated as (23).

L(sm) ≈ |Pm| × (sim +Ot) (23)

This constraint ensures a very low latency, e.g., in 1 Gbps network, the latency of

the MTU over four hops is around 50 microseconds. In this work, we assume that

dlm < L(sm), and consequently, any valid solution meets the streams’ deadlines.

Without loss of generality, in this paper, the streams are considered to be unicast.

However, multicast streams can be denoted as a set of unicast streams. In this paper,
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we assume densely connected typologies, such that the possible paths between nodes

(vi, vj) ∈ ES outnumbers the required RL for messages exchanged between these

nodes. The set of all streams in the TSN is S ≡ {srm|m ∈M, 0 ≤ r ≤ rlm}.

4.4 Graph-based Stream partitioning

To demonstrate the impact of the RSP on the iterated scheduling, let us consider

the illustrative example shown in Fig. 4.2. Although TSN bandwidth is 100 Mbps

or higher, in this example we assume 1 Mbps speed for all full-duplex links in the

network. This assumption stretches the frames and allows to-scale visualization of

the traffic in the hyper-period as shown in Fig. 4.3. The network carries a set of

streams S = {s1, s2, s3, s4, s5, s6} which corresponds a set of six messages M with

Sr = {es2, es0, es0, es3, es3, es0}, D = {es1, es1, es1, es2, es2, es2}, P = {2, 2, 2, 1, 2, 3}

ms, Si = {20, 40, 40, 20, 40, 80} Bytes, and Rl = {1, 1, 1, 1, 1, 1}. The paths of S are

visualized in Fig. 4.2. A no-wait schedule for S is required over two iterations. Let S

is divided into two groups A, and B, i.e., A∪B = S and A∩B = ∅. Let the notation

A/B refers to the order of handled groups starting from the left. Now, let us consider

a random partitioning, i.e., A1 = {s3, s5, s6}, and B1 = {s1, s2, s4}. The Gantt chart

shown in Fig. 4.3(a) visualizes the resulting schedule for A1/B1 over a timeline from

0 to 4 ms for the links of interest. Fig. 4.3(a) shows that the no-wait schedule is

infeasible. Please note the irresolvable overlap between the third frame of s4 and

the first frame of s6. This happened because streams s5 and s6 have been scheduled

before s4 which shares the link [b5, b4] with them. To reduce the potential conflict

between groups, we define the following dependency measure between streams.

Definition 2. A Degree of Conflict (DoC) is a measure for the mutual dependency

between streams. Such that, given two streams (si, sj), the DoC between these streams
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Figure 4.3: The iterated no-wait scheduling of the illustrative example based on: (a)
the RSP leading to an infeasible solution by handling A1 = {s3, s5, s6}, then B1 =
{s1, s2, s4}; (b) the DASP leading to a feasible solution by handling A3 = {s4, s5, s6},
then B3 = {s1, s2, s3}.

D(i,j) is computed by (24).

D(i, j) = |Pi ∩ Pj| ×
sii × sij
pi × pj

(24)

The DoC encounters three conflict indications between the streams, namely the

number of shared links, the frame size and frame period. For example, larger and

more frequent frames are harder to be allocated later. Instead of RSP which ne-

glects the DoC between streams, we propose a new streams partitioning technique,
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namely DASP, to reduce DoC and improve the design space exploration of the iter-

ated scheduling. The DASP technique generates stream groups based on the streams’

paths, sizes, and periods, i.e., the streams with higher DoC tend to be grouped to-

gether. Such partition allows the ILP solver to better explore the feasible schedules

for such streams.

The DASP technique (Algorithm 1) represents the TT streams as undirected graph

G(S,W). Every stream si ∈ S is represented as a node while the set W ⊆ S × S

represents the arc weight w(i, j) = D(i, j) between any two streams si, sj. To explain

the mapping of streams into a graph, let us revisit the illustrative example. The

graph representation of the stream set G(S,W ) is shown in Fig. 4.4 in which every

node pair (si, sj) that share some links are connected by an arc with a certain weight.

A missing arc stands for a zero-weight arc between streams with no common links.

The total potential conflict between groups is defined as follows.

Algorithm 3: DoC Aware Stream Partitioning

Input : Stream Set S,
Number of groups NG

Output: Stream groups Sn, n = 1, ..., NG,
Normalized cross-group conflict nCGC

1 Create the graph G based in S
2 Compute w(i,j),∀(i, j) ∈ S based on (24)
3 (Sn, ncgc)← ComputeNCut(W,NG)

Definition 3. A CGC is a measure for the potential conflict between stream groups.

Such that, given the graph G(S,W), and n disjoint sets g1, g2, ..., gNG
where

⋃n
i=1 gi =

S, and
⋂n
i=1 gi = ∅, the CGC is the total weight of the arcs that connect nodes of

different sets as computed in (25).

cgc(g1, g2, ..., gNG
) =

∑
u∈gi,v∈gj

i 6=j

w(u, v) (25)
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Figure 4.4: A graph partition for the six streams (nodes) in the illustrative example
at K = 2 by minimizing (a) the CGC which results in unbalanced groups; (b) the
nCGC which results in balanced groups.

The partition of G which minimizes the CGC can be obtained by the min-cut

algorithm introduced in (Wu & Leahy, 1993). However, minimizing CGC tends to

generate one large set beside other small sets of isolated nodes (Wu & Leahy, 1993).

For instance, the minimum CGC in our example results in unbalanced groups A2 =

{s2, s3, s4, s5, s6} and B2 = {s1} as shown in Fig. 4.4(a). The size of the largest

group A2 is close to the size of the original set S which shall limit the scalability of

the iterated scheduling approach.

To generate groups of converged sizes, we adapt the Normalized Cut (NCut)

framework (Shi & Malik, 2000) which is a well-known framework in the context of

image processing. The NCut is used to generate a homogeneous and balanced pixels

groups of the processed image (Shi & Malik, 2000). In our case, the NCut framework

minimizes what we call the normalized CGC (nCGC) which is computed based on

the NCut criteria as follows.

ncgc(g1, g2, ..., gNG
) =

n∑
i=1

cgc(g1, g2, ..., gNG
)

assoc(gi,S)
(26)
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where

assoc(gi,S) =
∑

u∈gi,t∈S

w(u, t) (27)

Using the nCGC, the small sets of isolated nodes are no longer deliver the op-

timal partition since they will decrease the assoc. This prevents the biasing toward

generating smaller sets (Shi & Malik, 2000). The optimal partition of the mini-

mum nCGC is obtained by the NCut implementation in (Cour, Yu, & Shi, Copyright

2004). Revisiting our example in Fig. 4.2, the DASP results in two equal-sized groups

A3 = {s4, s5, s5} and B3 = {s1, s2, s3} as depicted in Fig. 4.4(b). Whereas, a feasible

no-wait schedule resulting by A3/B3 is shown in Fig. 4.3(b).

4.5 DoC-Aware Multipath routing

Given the TSN topology G, and the TT messages M, the DAMR technique

generates an optimized stream set S that satisfies the RL of M, while yielding a

low nCGC. The DAMR comprises of three steps, namely the preprocessing, initial

solutions construction, and local search for solutions refinement. The preprocessing

step preserves the RL of each message m ∈ M by generating multiple sets of paths

between the source and destination of m, namely Disjoint Routing Sets (DRSs).

Definition 4. A Disjoint Routing Set of a message m denoted as γm is a number

equal to rlm of disjoint paths Prm that start form srm and end at dm, such that γm ={
P0
m, ...,Prlm−1

m | P im ∩ Pjm = {srm, bfirst, blast, dm}
}

where bfirst and blast are the first

and last bridges, respectively.

For example, let us consider the network topology shown in Fig. 4.2 and a mes-

sage m with srm = es0, dm = es3, and rlm = 2. There are three possible paths

for m which are P0
m = {[se0, b0, b5, es3]}, P1

m = {[es0, b5, b1, b4, b5, es3]}, and P2
m =
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{[es0, b0, b1, b2, b3, b4, b5, es3]}. Then, m has two DRSs which are γ0
m = {P0

m,P1
m} and

γ1
m = {P0

m,P2
m}. In large-scale densely connected networks, the complete set of DRSs

can be very large. Therefore, the preprocessing step generates a truncated set of

DRSs defined as follows:

Definition 5. A Truncated Multipath Routing Space (TMRS) Γ ≡ {γjm|m ∈M, 0 ≤

j < jmax} is a set of DRSs that includes one up to jmax DRSs for each message

m ∈M.

Given a random vector J ≡ {J(m) ∈ [0, jmax)|m ∈ M, the definition of TMRS

implies that J determines a complete set of streams for M, namely SJ ≡

{
γ
J(m)
m |m ∈

M

}
. The objective of DAMR is to find the optimal streams set S∗J , such that:

S∗ = arg min
J

cost(SJ , NG) (28)

where cost(SJ) is the nCGC computed by the DASP described in Section 4.4.

DAMR Procedures – The procedures of the multi-start iterated greedy heuris-

tic for the DAMR are presented in Algorithm 4 as follows. In step I (line 2), the

TMRS is generated. In step II (line 4), an initial solution SJ is defined by the func-

tion MakeInitSol which designates a random γm ∈ Γ, ∀m ∈ M. In step III (line

5), a local search for Sopt is conducted to enhance the initial solution SJ . The local

search adapts an iterated greedy heuristics as described in Algorithm 5. Step II and

III are repeated for MaxIterations times, while the best solution is stored as S∗ (line

6). The multi-start avoids the trapping in local optima during step II.

The local search step conduct an iterated greedy heuristics as explained in Al-

gorithm 5. Given an initial streams set Sinit, the optimal nCGC is computed using
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Algorithm 4: Multi-Start Iterated Greedy for DAMR

Input : G, M
Output: S∗

1 S∗ ← ∅
2 Generate the TMRS: Γ
3 for k = 1,2,..., MaxIterations do
4 SJ ←MakeInitSol(Γ)
5 Sopt ← LocalSearch(SJ)
6 S∗ ← UpdateSolution(S∗,Sopt)

7 end

the DASP technique in line 1. Once, the partition in graph G is obtained, the con-

tribution of each message αm, m ∈ M to the total CGC is determined according to

(29).

α

(
m, J(m)

)
=

∑
i∈γJ(m)

m ,j∈S/{γJ(m)
m }

w(i, j) (29)

The message of the most substantial contribution m∗ is determined by:

m∗ ← arg max
m∈M
{α
(
m, J(m)

)
} (30)

The DRS of m∗ is replaced by the best DRS in Γm∗ as in line 8. The message

m∗ is removed from List to ensure handling other messages. The optimization is

terminated either when the optimized stream set is settled, i.e., Sopt = Stemp after

handling all messages, or when the maximum number of iterations itrN is reached.

4.6 Iterated ILP-based Scheduling

Given the streams set S∗, the IIS shall divide it into disjoint groups S1, S2, ..., SNG

and then search for a sub-schedule of one group Sn, n = 1, 2, ..., NG at a time. Every
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Algorithm 5: Local Search

Input : Sinit, M, NG

Output: Sopt
1 (Sn, ncgc)← GenerateDASP (Sinit, NG)
2 Stemp ← Sinit
3 for itrN do
4 List←M
5 while List 6= ∅ do
6 Compute the message cost α(m, J(m)) ∀m ∈ List according to (29)
7 Find the message with largest contribution in the cost according to

(30)
8 J(m∗)← argminj∈[0,jmax){α(m∗, j)}
9 Remove m∗ from List

10 (Sn, ncgc∗)← GenerateDASP (Sinit)

11 end

12 Sopt ←
⋃
m∈M γ

J(m)
m

13 if Sopt = Stemp then
14 break
15 else
16 Stemp ← Sopt
17 end

18 end

iteration takes the previous sub-schedules as additional constraints to prevent over-

lapped schedule. The sub-schedule for Sn is obtained by solving the ILP problem

formulated as follows.

ILP Attributes – The proposed ILP formulation is defined by the following

attributes:

• Sn: The streams group of interest.

• P ≡ {pi| i ∈ Sn}: The periods of all streams in Sn.

• Li ⊆ E: Set of links that compose the path of stream i ∈ Sn.

• T ≡ {t(i,l)| i ∈ Sn, l ∈ Li}: The transmission time of each frame in stream

i ∈ Sn over link l ∈ Li.
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• C ≡ {c| 0 ≤ c < cmax}: The set of time slots. The hyper-period is descritized

into C time slots. The number of time slots m is a common multiple of the

number of frames per hyper-period of each stream. The duration of a time slot

is denoted by Tc.

• B: An auxiliary big integer larger than cmax.

ILP Variables – The ILP formulation uses the following variables:

Transmission offset, X ≡ {x(i,c) ∈ Z2| i ∈ Sn, c ∈ C}. x(i,c) is a binary variable

indicates that the transmission of the first frame belong to stream i starts at the time

slot c ∈ C when x(i,c) = 1. Otherwise, x(i,c) = 0. The sender can transmit frames

only at the beginning of the time slots. On the other hand, bridges do not adhere this

rule, i.e., frames are forwarded once they are received and processed with no-wait.

Slots reservation, H ≡ {h(i,l,c) ∈ Z2| i ∈ Sn, l ∈ Li, c ∈ C}. h(i,l,c) is a binary

variable indicates whether time slot c at link l is reserved for stream i when h(i,l,c) = 1.

Otherwise, h(i,l,c) = 0. Each time slot can be designated for only one stream even if

t(i,l) < Tc. When t(i,l) > Tc, multiple slots shall be reserved at l. In fact, smaller Tc

allows denser schedule at the expense of problem complexity. It is important to note

that the time slot reservation concerns the ILP solver and are not used to configure

the egress ports in TSN bridges. Instead, the connected set of reserved slots on each

link will be translated to a transmission window during which the TT gate is open.

Prior slot occupancy, O ≡ {o(l,c) ∈ Z2| l ∈ E, c ∈ C}. o(l,c) is a binary variable

indicates whether time slot c at link l is occupied by any stream in prior iterations

when o(l,c) = 1. Otherwise, o(l,c) = 0.

ILP Constraints – The ILP constraints of IIS are as follows:

Transmission constraints: The first frame of each stream i ∈ Sn has to be

assigned to a time slot from the set Ci ⊆ C where Ci ≡ {c| 0 ≤ c < b pi
Tc
c}. This is
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guaranteed by constraint (31).

∀i ∈ Sn :
∑
c∈Ci

x(i,c) = 1 (31)

This implies that stream i shall be assigned to an exact one time slot among the

available ones c ∈ Ci. Limiting the search to Ci is to avoid the overlap between the

frames in one hyper-period. The upper bound of the number of constraints in the

shape of formula (31) is equal to |Sn|.

Time slots reservation constraint: The transmission of every frame in i

implies reserving a set of time slots over the path links Li. The set of Reserved Time-

Slots (RTS) depends on the transmission offset and the required transmission time

over each link l ∈ Li. The RTS for stream i with transmission offset starts at time

slot c is denoted by δ(i, c) ≡ {(l, c′)| l ∈ Li, Fs(i, l, c) ≤ c′ ≤ Fe(i, l, c)}, where (l, c′)

refers to reserving the link l at the time slot c′. Fs(i, l, c) and Fe(i, l, c) are computed

by (32) and (33), respectively, and denote the time slots on which the link l starts

and finishes the forwarding the first frame of stream i given x(i,c) = 1.

Fs(i, l, c) = c+

 1

Tc
·
∑

l′∈L∗
(i,l)

t(i,l′)

− 1 (32)

Fe(i, l, c) = c+


1

Tc
·

t(i,l) +
∑

l′∈L∗
(i,l)

t(i,l′)


− 1 (33)

where L∗(i,l) ⊆ Li is the set of passed links before l. For example, let the stream i has

the path Pi = [v0, v5, v10, v4] in the network shown in Fig. 4.2. Then, the correspond-

ing RTS for i given c = 0 is δ(i, 0) = {(0, 0), (0, 1), (1, 1), (1, 2), (1, 3), (2, 3), (2, 4)}

which is shown in Fig. 4.5. The size of δ(i, c) is constant for all c ∈ C and denoted by

62



The	frame

Reserved	
time	slot

Legend:

𝑙"	 = [𝑣"	, 𝑣(]

(0,0)

1 2 3 40

𝑙.	 = [𝑣(	, 𝑣."]

𝑙/	 = [𝑣."	, 𝑣0]

(0,1)

(1,1) (1,2) (1,3)

(2,3) (2,4)

Figure 4.5: The set of reserved time slots for a frame routed over the path [l0, l1, l2]
given an offset c = 0.

Ai which is seven in this example. In order to ensure that all time slots in δ(i, c) are

reserved for stream i when x(i,c) = 1, the constraint (34) is defined for every stream

i ∈ Sn and for every time slot c ∈ C.

∀i ∈ Sn,∀c ∈ Ci : B · x(i,c) +

Ai − ∑
c′∈δ(i,c)

h(i,l,c′)

 ≤ B (34)

The summation term checks the reservation of all needed time slots stream i to be

able to transmit at the time slot c. This constraint enforces x(i,c) to be zero unless

the value inside the brackets is zero. Ai is equal to the number of the variables

{h(i,l,c′), c
′ ∈ δ(i, c)} by definition, and thus the only way to have zero inside the

brackets is by reserving the complete set δ(l, c). The upper bound of the number of

constraints in the shape of formula (34) is equal to |Sn| · |C|.

Frames isolation constraints: The schedule should maintain a temporal iso-

lation between frames belong to different streams at every node in the network, i.e.,

the preceding frame leaves the queue before the succeeding one arrives. Such isolation

eliminates the randomness of the queuing delay. Thus, we introduce the constraint

(35).
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∀l ∈ E, c ∈ C : o(l,c) +
∑
i∈Sn

∑
c′=c mod pi

h(i,l,c′) ≤ 1 (35)

This constraint states that each link l shall not be allocated to more than one stream

at any point of time. First term o(l,c) prevents reserving the time slots which have

been occupied in prior iterations. The summation term covers the streams in the

current iteration Sn. Since each stream has a particular period pi, the corresponding

time slot of stream i is c′ = c mod pi. The number of constraints in the shape of

(35) is |Sn| · |C|.

IIS Procedures – The procedures of IIS are presented in Algorithm 6. The

inputs of IIS are the optimized streams set S∗ and the number of groups NG. When

a valid schedule is found, the output X∗ indicates the transmission offsets of each TT

frame. Such offsets imply the open and close events for the gate of TT queue on each

egress port. X∗ can be translated into gate events by open the TT gate in agrees port

i for the time slots c on which x(i,c) = 1 and the gate shall be closed otherwise. In

the initialization step (lines 1 to 3), the stream groups S0, S1, ..., SNG are generated

by the DASP technique, while O and X∗ are set to zero. δ(i, c), ∀i ∈ S∗, ∀c ∈ Ci are

defined according to (32) and (33). The schedule is built over NG iterations. Each

iteration handles a stream group Sn, n = 1, 2, ..., NG as described in lines 4 to 13. The

corresponding ILP constraints of shapes (31), (34), and (35) are generated for Sn.

The function solvingILP () search for a feasible solution satisfies these constraints.

The Boolean variable done is True when a feasible solution is found. When a feasible

solution is found for iteration n, O is updated in line 8 to preserve the occupied time

slots for the next iterations, and X is added to X∗ to save the sub-schedule as in line

9. The algorithm is terminated with unsolved schedule in two cases: (i) Timeout; (ii)

The ILP solver found that solution of certain iteration is infeasible, i.e., done = False
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as in line 11.

Algorithm 6: Iterated ILP-based Scheduling

Input : S∗, NG

Output: X∗

1 Sn|n=0,1,...,NG
← GenerateDASP (S∗)

2 Initialize X∗ and O
3 Obtain δ(i, c), ∀i ∈ S∗, ∀c ∈ Ci
4 for n ∈ NG do
5 Generate the ILP constraints given Sn & O.
6 {X,H, done} ← solveILP ()
7 if done then
8 Update O s.t o(l,c) =

∑
i∈Sn h(i,l,c) ∀l ∈ E, c ∈ C

9 X∗ ← X∗ +X

10 else
11 break
12 end

13 end

4.7 Results and Discussion

An extensive analysis of wide range test cases is used to evaluate the DA/IRS.

The evaluation is conducted in terms of the scalability and performance comparing to

two recent techniques. Moreover, the impact of parameters selection on the efficiency,

i.e., success rate is investigated. The reported results in this section have been carried

out on a workstation with an Intel Core i7 6820HQ processor running at 3.0 GHz and

16 GB RAM. The three techniques are implemented on MATLAB R2017a.

4.7.1 The Gain of DoC-Aware Streams Partitioning

DASP vs RSP: To demonstrate the advantage of applying the proposed DASP

technique in the iterated scheduling, 60 test cases are analyzed. The test cases are

based on a topology composed of eight ESs and eight bridges. The load is either 120
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or 240 messages with RL equals 2, i.e., we have 240 or 480 streams, respectively. the

source and destination of each stream are picked randomly from ES. The frames

payloads vary between 50 and 1,500 Bytes, where streams periods vary between 5 ms

and 100 ms. The streams are transmitted over 100 Mbps Ethernet links. Please note

that the above streams setups and links bandwidth are applied for all experiments

throughout this section. Each test case is iteratively scheduled using the IIS based

on stream groups generated by both DASP and RSP. The required groups size is

denoted by κ where NG = d|S|/κe. We chose κ = {10, 20, 30}. The results shown in

Fig. 4.6 which differentiates between the timeout unsolved instances and the infeasible

ones. Please note that the time limit is 40 minutes, and the DAMR parameters are

Maxiterations = 3, jmax = 2, itrN = 10, for all experiments.

The solid green portion of each bar in Fig. 4.6 represents success rate. It can

be observed that DASP outperforms the RSP in all setups. The results show that

timeout events start appearing in relatively large groups (κ = 30). Despite the higher

overall success rate for the DASP, the RSP has less timeout instances. This can be

explained by the fact that DASP increases the in-group conflict increases per-iteration

runtime. On the other hand, RSP generates easier groups with lower in-group conflict.

However, this is result in high CGC which prevents finding feasible solutions the latter

iterations. All in all, the success rate of the highly utilized instances (480 streams,

κ = 20) raised from 47% by the RSP to 90% by DA/IRS.

Impact of κ: The results in Fig. 4.6 show the trade-off between timeout and

the solution feasibility. On the one hand, large groups help to handle all overlapped

flows together which increases the chance to find feasible solutions, but this increases

the likelihood of timeout termination as well. On the other hand, smaller groups

do not suffer form the timeout termination, but in the expense of a limited schedule

feasibility. The results in Fig. 4.6 suggest an optimal group size κ = 20 regardless the
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Figure 4.6: The percentage of solved, timeout, and infeasible schedules of 60 synthetic
test cases using DASP and RSP with different κ for (a) 240 streams; (b) 480 streams.

number of streams, and thus we will adopt this value in the next experiments. Please

note that the optimum κ is based on the available resources in this experiments, and

can vary for different memory and computational resources.
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4.7.2 Performance Evaluation

The performance of the DA/IRS is evaluated in comparison with: (i) The ILP/JRS

technique (Schweissguth et al., 2017); (ii) The PB/JRS teqhnique (Smirnov et al.,

2017b). These techniques are adapted to support no-wait scheduling. The compar-

ison is conducted in terms of runtime and the success rate. In the following, two

experiments consisting of 140 synthetic test cases are presented.

Runtime vs traffic load: In this experiment we compare the runtime of the

three techniques for different traffic load by varying the number of the stream, while

fixing the network size. The number of streams ranges from 20 to 60 streams sent by

10 ECUs exchanging the streams over four bridges. Since ILP/JRS and PB/JRS do

not support multipath routing, this experiment evaluates the time needed to generate

a valid routing and scheduling for RL = 1. The runtime for 70 test cases averaged over

the number of streams is shown in Fig. 4.7. The y-axis shows the average runtime of

the successfully solved cases, i.e., the terminated cases due to the time limit do not

contribute to the computed average. The graph demonstrates a 20x speed up by the

DA/IRS comparing to PB/JRS and ILP/JRS. For example, PB/JRS technique takes

around 1,600 sec on average to schedule 30 streams which is the maximum tackled

size. Likewise, the ILP/JRS hardly tackles problems of 40 streams with an average

runtime around 2,250 seconds. On the other hand, the proposed technique can solve

problems of 60 streams within 100 seconds. Moreover, it can be noticed that the

speed up gain is increasing with larger problems.

A comparison of the success rate for four traffic setups, 20, 30, 40, and 60 streams,

is shown in Fig. 4.8. This figure shows that the DA/IRS has solved all 20-streams

problems. On the other hand, PB/JRS technique has terminated without feasible

solutions in almost 50% of those instances. For the highly utilized instances (60
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Figure 4.7: Average runtime in the log scale for the DA/IRS, ILP/JRS, and PB/JRS
for 70 synthetic test with different number of streams.

streams), the DA/IRS was able to solve 90% of the test cases while other techniques

have not finished. It can be noticed that the majority of unsolved cases by ILP/JRS

and PB/JRS have been terminated due to the timeout constraint. This suggest that

the prompt exploration for a limited search space achieves better success rate than

the slow exploration of an extensive search space.

Runtime vs network size: In this experiment we compare the runtime of the

three techniques for different network sizes. 70 synthetic test cases are handled with

a number of bridges ranges from 3 to 21. The runtime results in shown in Fig. 4.9.

Whereas, a comparison of the success rate of the three techniques for four network

sizes of 3, 9, 15, and 21 bridges is shown in Fig. 4.10. It can be noticed from Fig. 4.9

that the runtime of PB/JRS and ILP/JRS shows a rapid increase with larger net-

works. For example, PB/JRS takes about 30 minutes to handle 6-bridges networks

while it fails to determine a valid solution for any larger networks. Regarding the

ILP/JRS, it shows slightly better scalability than PB/JRS. However, it still inca-

pable of handling networks which have more than 9 bridges within the time limit as

shown in Fig. 4.10. These results demonstrate the restrictions on the network size
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Figure 4.8: The percentage distribution of solved, timeout, and infeasible instances
of the DA/IRS, ILP/JRS, and PB/JRS for different number of streams.

which can be practically handled by the existing techniques. Contrarily, the results

demonstrate the well-scalability of the DA/IRS which shows an almost linear increase

of runtime versus the network. On average the DA/IRS is up to 20-fold faster than

other techniques. For example, it is capable of tackling 21-bridges networks in about

3 minutes. Moreover, the results in Fig. 4.10 show the superior success rate of the

proposed technique over PB/JRS and ILP/JRS. Finally, we believe that the indus-

trial requirements outpace the techniques capabilities and will likely continue to do

so. The proposed DA/IRS takes a step towards closing such a gap by addressing

the DoC problem to enable efficient incremental scheduling. However, standardized

constraints formulation would enable interoperability tests, and allow better evalua-

tion of different scheduling approaches, e.g., formal and heuristics. Moreover, open

accessibility to the details of real world problems, which is still limited, is necessary

to validate the theoretical solutions proposed in the literature and boost the future
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Figure 4.9: Average runtime in the log scale for the DA/IRS, ILP/JRS, and PB/JRS
for 70 synthetic test cases of different number of bridges.
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Figure 4.10: The percentage distribution of solved, timeout, and infeasible instances
of the DA/IRS, ILP/JRS, and PB/JRS for different network sizes.
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4.8 Conclusion

In this paper, a novel traffic planning method for TSN is introduced. The proposed

DA/IRS method covers the multipath routing and the no-wait scheduling of TT traffic

by the DAMR and IIS techniques, respectively. The DoC problem is formalized

and addressed by the proposed DASP technique to improve the performance of the

incremental scheduling. In particular, the DoC technique is proposed and integrated

with the above techniques reduce the DoC and allow feasible schedules under high

utilization conditions. Three experiments are conducted using 200 synthetic test cases

to evaluate the scalability of the DA/IRS and its performance compared to two recent

methods, namely, the ILP/JRS and PB/JRS. The results show the out-performance

of the proposed method in handling large-scale as well as highly utilized networks.

The DA/IRS is up to 20-fold faster than previous methods.
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Chapter 5

Article II: Dynamic TSNs Priority

Assignment for Fog Computing

Using Reinforcement Learning

Authors: Ayman Atallah, Ghaith Bany Hamad, Otmane Ait Mohamed

Abstract: Fog computing refers to the intermediate nodes’ shared computation ca-

pabilities, i.e., between Cloud and edge node to run time-critical applications. Such

a paradigm requires reliable and very low-latency communication to ensure safe and

stable operation. Time-Sensitive Networks (TSNs) are capable of delivering such

strict requirements. TSN typically accommodates static traffic, and thus it defines

a static traffic configuration, such as the flows’ priority. The priority assignment is

decided in the design phase to meet the flows’ deadlines and usually optimizes the

network in terms of performance and utilization. Such offline optimization is un-

suitable for Fog computing, which generates dynamic traffic based on the executed

tasks. Therefore, a dynamic priority assignment is essential to optimize the TSN
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for Fog applications. This paper proposes a novel machine learning approach for

dynamic flow priority assignments in TSN. In this approach, the priority of a new

flow is assigned automatically by a Reinforcement Learning (RL) based agent. The

agent is trained to optimize the flow timing behavior while maximizing the overall

network throughput. For this goal, we formulate a cost minimization problem as

a Markov Decision Process (MDP). The RL problem is solved by the Double Deep

Q-Network (DDQN) technique to find the optimal priority assignment policy. We

conduct extensive simulations adopting several synthetic test cases to evaluate the

performance of the proposed approach. The results show higher admission rates and

network utilization than a greedy heuristics technique.

5.1 Introduction

Industry 4.0 refers to the ongoing industrial revolution, which transforms every

area in the industry thanks to the emerging computation and communication tech-

nologies. This revolution promises to boost productivity and flexibility, which reduce

time-to-market and improve product quality. Realizing the concepts of Industry 4.0

entails a convergence of CPSs with state-of-the-art technologies (Pop et al., 2018).

CPSs refer to networked computing elements connected to sensors and actuators to

monitor and control physical processes. CPSs are typically deployed for safety-critical

applications, such as healthcare, manufacturing, and transportation. Such applica-

tions require real-time control with a high level of reliability assurance beyond the

Cloud computing paradigm (Garćıa-Valls, Cucinotta, & Lu, 2014). In this context,

Fog computing paradigm is introduced to yield better CPSs integration for Indus-

try 4.0 (Bonomi, Milito, Natarajan, & Zhu, 2014). Fog computing introduces a new

system-level architecture that enables computing, storage, and control resources over
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Fog nodes. These nodes operate as intermediate storage and computing elements de-

ployed between the Cloud and the edge devices, e.g., industrial machines (Consortium

et al., 2017).

Fog computing demands real-time communication due to the safety-critical nature

of industrial applications. Furthermore, the complex architecture of the future indus-

trial automation systems hikes the communication requirements in bandwidth and

coverage (Finn, 2018). Conventional Ethernet technology offers scalable and cost-

efficient connectivity. However, it is incapable of delivering real-time connectivity

due to the non-deterministic queuing delay and packet collisions (Decotignie, 2005).

IEEE 802.1 task group introduces new standards to realize low latency connectiv-

ity over scalable Ethernet architecture, namely TSN. TSN allows the coexistence of

time-critical and best-effort traffic on the same network. This feature reduces the cost,

reserves backward compatibility, and offers high flexibility to meet a broad spectrum

of applications. The efficient implementation of Fog computing requires the efficient

utilization of network resources. Meeting the deadlines of more flows implies a more

significant portion of tasks executed by Fog nodes.

Fog computing generates dynamic traffic, which requires dynamic traffic plan-

ning and network reconfiguration to maintain high-performance (Haur & Chin, 2019).

Such TSNs dynamic behavior is enabled in the extension IEEE 802.1Qcc where a Con-

figuration Agent (CA) can accommodate and remove flows on the runtime (Gutiérrez

et al., 2017). Nonetheless, optimized algorithms to compute such a dynamic behavior

have been left out of the standard (Steiner et al., 2018). Several works attempt to

address the problem over the last years, such as (Gutiérrez et al., 2017, 2015) which

address the runtime scheduling, and (Pahlevan et al., 2019) which addresses the run-

time routing. These works address the traffic routing and scheduling tasks. However,

the dynamic PA has not been addressed yet. Static PA is incapable of capturing
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the traffic patterns of each Fog node. Exploiting such patterns allows optimized PA

decisions to increase the TSN’s chance to admit more future flows. This paper is the

first work that addresses the TSN’s dynamic PA for Fog computing to the best of our

knowledge.

This paper addresses the following research question: how to perform a dynamic

traffic reconfiguration that optimizes the TSN for Fog computing applications? Effi-

cient Fog computing implies the dynamic priority assignment of the new flow. TSN

configuration should consider the transmission patterns generated by Fog nodes. Fur-

thermore, the appropriate priority must meet the hard deadlines of the time-critical

traffic while maximizing the network’s long-term throughput. Solving such problems

for static TSN is done at the design stage using exact methods, e.g., ILP, or meta-

heuristic methods, e.g., Genetic Algorithms (GA). However, such methods are not

suitable for dynamic traffic. In particular, the required processing time of such meth-

ods is too long, i.e., a couple of minutes, for Fog applications time scale. To address

the above question, we explore the use of machine learning to obtain the optimal

PA policy. Dynamic PA problem is formulated as a cost minimization problem using

Markov Decision Process (MDP). To achieve the optimal flow priority assignment, we

propose a Reinforcement Learning (RL) approach based on Deep Q-Network (DQN)

(Volodymyr, Koray, David, Andrei, & Joel, 2015). The goal is to predict the best

action (priority level) that maximizes the long-term reward. These rewards represent

the number of accommodated flows while meeting their deadlines. An extensive sim-

ulation is conducted to evaluate the proposed approach’s performance for different

network setups. Our results show that our proposed approach delivers a higher admis-

sion rate than a typical greedy heuristics technique, i.e., RL/DPA gain the admission

rate and network utilization up to 90% and 70%, respectively.

The remainder of the paper is organized as follows. Section 5.2 presents the related
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works. The considered system model is described in Section 5.3. The proposed RL-

based approach is introduced in Section 5.4. Section 5.5 reports the experimental

results. Finally, Section 5.6 concludes the main findings of this work.

5.2 Related Work

The synthesis and analysis of static traffic in TSN is addressed in several works

(Hamza, Scharbarg, & Fraboul, 2014; Maxim & Song, 2017; Smirnov, Glaß, Reimann,

& Teich, 2017a). Authors in (Smirnov et al., 2017a) present a timing analysis of RC

traffic considering the impact of the higher priority TT traffic. The impact of both

TT traffic and the traffic shaping on AVB traffic timing is studied in (Maxim &

Song, 2017). Whereas, Solving the PA problem for RC time-critical flows in switched

networks is addressed in (Hamza et al., 2014). The adopted technique minimizes

the worst-case end-to-end delay under two priority levels. Furthermore, the static

priority synthesis for UBS architecture (Specht & Samii, 2016) is addressed in (Specht

& Samii, 2017). An SMT based heuristics is adapted to solve the flow to queue and

queue to the PA problem. Several approaches are investigated in (Imtiaz, Jasperneite,

& Weber, 2012) to reduce the latency in the AVB traffic for industrial applications,

such as interrupting or shortening the non-time-critical frames that can interfere with

AVB frames.

Several works attempt to address the problem regarding TSN-based Fog Com-

puting platforms and have pushed the performance boundaries over the last years.

Dynamic configuration agents are introduced in (Gutiérrez et al., 2017, 2015) to al-

locate new TT flows on runtime. Such agents observe the transmission patterns of

new flows to estimate their period, length, and latency, enabling them to generate

schedules in the runtime. Moreover, the runtime scheduling of TT traffic in TSN is
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addressed in (Raagaard et al., 2017) by a greedy heuristic technique for fast execution.

This technique determines the GCL, which decides the transmission of TT frames on

each egress port of a network switch. However, the literature mentioned above does

not address the dynamic PA. Instead, the flows’ priority is assumed to be fixed on

the highest level. Such assumption does not apply on RC traffic which has a range

of priorities.

The Machine Learning (ML) is applied in many aspects related to TSN. The

authors in (Mai et al., 2019; Navet et al., 2019) investigate the speed up of the

design space exploration in TSN using machine learning to replace the conventional

schedulability analysis, e.g., network calculus. Supervised and unsupervised machine

learning techniques are employed to test the schedule feasibility for a particular offline

configuration. The RL is employed in (Y. Wang et al., 2018) for dynamic traffic

and computation co-offloading in Fog computing implemented for mobile services in

vehicular networks. The tradeoff between energy consumption and service delay is

investigated by dynamic RL-based and deep RL-based scheduling techniques.

5.3 System Model

5.3.1 Architecture Model

Fog computing architecture is illustrated in Fig. 5.1. The network connecting Fog

node to edge nodes is denoted as a Southbound connection. The links between Fog

nodes and Cloud are denoted as northbound connections.

In this paper, we consider a TSN-based southbound connection in Fog computing

platform, as shown in Fig. 5.1. The TSN comprises a set of Switchs (SWs) and

a set of Edge Nodes (ENs) which includes multiple edge nodes and one Fog node.
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Figure 5.1: Fog Computing platform where Fog nodes located between the edge nodes
and the Cloud.

Edge nodes can offload the computing workload to Fog node, equipped with more

extensive storage and computing capabilities. Fog node is presumed to operate as

a Central Network Configurator (CNC) to perform runtime network reconfiguration

for the corresponding southbound connection. All network nodes V = EN ∪ SW

are interconnected via full-duplex Ethernet physical links. The output port of each

directional link is equipped with a TSN server. S denotes the set of servers in the

network. A schematic of the considered TSN server is depicted in Fig. 5.2. The server

s ∈ S contains a set of FIFO queues Q(s) where |Q(s)| = K + 1. The first K queues

store Time-Critical (TC) flows. Whereas, the last queue stores not Time Critical

(nTC) flows. Every queue q ∈ Q(s) has a distinct priority level 0, 1, ..., K − 1. TSN

server selects the transmitted frame among the non-empty open queues according to

a non-preemptive strict priority scheme. Selected frames are transmitted according

to a constant transmission speed r(s) of the connected physical link, e.g., 100MB/s

or 1GB/s.
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Figure 5.2: Egress port in TSN-compliant switch.

5.3.2 Application Model

A message is exchanged in TSN as a stream of frames transmitted from a speci-

fied source to one or more destinations with a specific path, size, and priority. TSN-

compliant switches, namely bridges, store the forwarded messages in multiple FIFO

buffers according to their priority. Three traffic classes are supported by TSNs namely,

TT, RC, and BE classes. TT class provides deterministic connectivity, while the RC

class guarantees bounded latency with way more scalability and flexibility. RC con-

nectivity neither requires scheduled transmission nor clock synchronization. Instead,

RC traffic follows a strict priority scheme integrated with credit-aware shapers to

regulate the flow rate, which offers various delay bound for different flows.

The data is exchanged in TSN networks by the concept of flows. A flow fi is a

stream of frames transmitted from a particular source to one destination (unicast)

or more (multicast) through specific routing. F denotes the set of all flows in the

network. Whereas, F(s) denotes the set of flows pass over server s. Asynchronous

communication is considered, i.e., frames have neither periodic patterns nor specific

offsets. However, a flow must adhere to predefined transmission rate and burstiness.

As shown in (36), the cumulative data wi(d) of flow fi with a burstiness b̂i over time

interval d is limited to the upper bound wi(d).
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Figure 5.3: An example of two traffic patterns that satisfy the same leaky bucket
constraint.

wi(d) ≤ b̂i + (r̂i × d) (36)

where r̂i is the designated leaky bucket rate for flow fi. The first K queues which

store the TC traffic are headed by a CBS. The CBS is responsible for spreading the

frames over time and regulate the traffic according to b̂i, and r̂i is not exceeded. The

CBS apply a frame-by-frame leaky bucket algorithm (Goyal & Vin, 1997; Zhang &

Ferrari, 1993) to regulate the flows’ transmission rate over the hops along their paths

as shown in Fig. 5.3. This figure illustrates two different patterns (A & B) of flows

that share the same parameter, i.e., burstiness and rate. Each flow fi is assigned

to a certain priority pi ∈ [0, K) which applies on all servers over its route where

P = {pi|fi ∈ F} denotes the flow PA in the whole network.

Each edge node e ∈ E runs a set of Fog applications. The application is run

locally or offloaded by Fog node. The edge node generates offloading requests to the

nearest Fog node. The offloading decision only depends on the network’s capability

to admit the corresponding flow while meeting all flow deadlines. The computing

capacity of Fog node is assumed to be sufficient for all offloaded tasks. In this work,

the offloaded task is represented as a flow fi, which is defined with burstiness bi,

rate r̂i, deadline d̄i, and expiry time te after which the flow is terminated due to
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task completion. The new flow is either admitted or rejected by the CNC. Fog nodes

offer way more computation resources than edge nodes. Therefore, a low admission

rate wastes such resources and results in a lower performance of the system. In other

words, the TSN ability to admit the time-critical flow is essential to utilize the Fog

nodes efficiently. The CNC searches for a priority for fi such that all flows’ deadlines

are satisfied, including d̄i. If a valid PA is found, the flow fi is admitted. On the

other hand, if no valid solution is found, the flow is rejected, and the corresponding

computing task is disposed locally on the edge node. The generate offloading request

at each edge node follows a Poisson distribution with an arrival rate of λe. The

transmitted flows from edge nodes to Fog nodes and vise versa are denoted as uplink

and downlink connections. In this work, we consider Fog computing platform where

the uplink is presumed the bottleneck of the offloading decision. In particular, the

offloaded workload is assumed to require a large volume of input data over the uplink

(Y. Wang et al., 2018). On the other hand, the downlink delivers a small volume of

output results correspond to the offloaded workload. Thus, we consider the PA of

unicast AVB flows, which are transmitted over the uplink to improve the computation

offloading throughput.

5.3.3 Worst-Case Delay of RC Traffic

Every flow f ∈ F has a deadline d̄(f) specifies the acceptable time duration

a frame can spend in the network before reach the sink y ∈ Y (f). The application

requirements define deadlines. On the other hand, the WCD of an RC flow fi depends

on the PA of fi at each server s ∈ R(fi). In particular, the delay model is composed of

d̂(fi, srk, srk+1) where fi ∈ F , srk ∈ R(f) which describes the local worst case delay

of fi at each server srk ∈ R(fi) before reaching the next server srk+1 (Specht & Samii,
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2017). Consequently, the end-to-end delay bound d̂(f, y) to each sink y ∈ Y (f) can

be determined as (37).

d̂(f, y) =
n−1∑
k=1

d̂(f, srk, srk+1) + d̂(f, srn) (37)

where d̂(f, srn) is the delay bound from the last server srn to the destination. d̂(f, srk, srk+1)

is computed as the follows. Let FHP (f, s), FSP (f, s) and FLP (f, s) are the flows as-

signed to server s with a higher, same, and a lower priority level than q(f, s), respec-

tively. The delay bound d̂(f, s) is computed as Eq. (38).

d̂(f, s,P) =
l̂(f)

r(s)
+
l̂LP (f, s) +

∑
g∈FHP (f,s)∪FSP (f,s)−{f} l̂(g)

r(s)−
∑

g∈FHP (f,s) r̂(g)
(38)

Then

d̂(f, s, s+) = max
g∈F (q(f,s+))

(
d̂(g, s)

)
(39)

d̂(q, s) = max
g∈F (q)

(
d̂(g, s)

)
(40)

Given the timing constraints and the delay model of F , the slack computed by

(41) depends on P .

slack(F ,P) =
∑
f∈F

max

{
0, d̂(f, y,P)− d̄(f, y)

}
(41)
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Figure 5.4: The architecture of the reinforcement learning model in our system.

5.4 Proposed Reinforcement Learning-Based Pri-

ority Assignment

5.4.1 RL/DPA procedures

The architecture of the RL/DPA is illustrated in Fig. 5.4. On each time step, the

current state is passed to the estimator network to estimate each possible action’s

Q value. One action is selected based on the ε − greedy policy and passed to the

environment. The experience tuple of the current state, action, reward, and next state

〈s, a, r, s′〉 is pushed into the replay memory until it is populated with a predefined

size of samples. For every iteration i, a mini-batch is chosen based on a prioritized

criteria to train the estimator network to enforce Q(s, a, θ∗) ' Q∗(s, a). The current

estimator network’s parameters θi are updated to minimize the MSE represented by

Li(θi). The Q value Q(s, a, θi) and the target value Y DDQN
i are calculated by two

separate networks to increase stability and reduce the over-estimation. Once the

estimator network is well-trained, i.e., Q(s, a, θ∗) ' Q∗(s, a), the optimal policy π∗

can be applied by selecting the action with the max Q value.
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The procedure of the proposed RL/DPA is shown in Algorithm 7. The goal is to

equip the CNC with an RL agent that applies the optimal policy for the dynamic PA

of new AVB flows. The policy’s objective is to maximize the total number of accom-

modated flows while satisfying their hard deadlines. The RL agent first constructs

an estimator and target networks with random parameters θ and θ−, respectively.

Then, the agent runs some trajectories to populate the experience replay memory. A

mini-batch is randomly sampled from the replay memory to update theta. On every

training iteration, memory elements get new priorities, which defines their sampling

probabilities. The agent chooses actions based on the ε − greedy policy. The agent

eventually learns the optimal PA policy.

5.4.2 Reinforcement Learning Formulation

Our goal is to find the optimal policy for CNC to maximize the total number

of accommodated flows while satisfying their hard deadlines. Such a problem is

formulated as a MDP comprises state space, action space, and reward.

State space

At each time t, a new flow arises ft, the agent observes the traffic in the network

and the parameters of ft. These inputs are denoted as the current state s ∈ S, where

S is the complete state space. The state s expresses the traffic volume at each queue

represented by the maximum delay at the queue D ≡ {d(s, q)| g ∈ G, q ∈ Q(g)}

based on the flows assigned to the queue as computed in (40). Additionally, state s

describes the routing Rt, burstiness, rate, and deadline of the new flow ft. The state

space is represented as follows.
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Algorithm 7: DQN-based dynamic priority assignment

Input : Discount factor γ, exploration rate ε, initial replay memory minit,
number of steps Nstep

Output: Function approximator Q(s, a, θ∗)
1 Initialize an empty experience replay memory Ω
2 Initialize the reward approximator Q with random weights θ0 & target

network Q̂ with θ̂0 ← θ0

3 repeat
4 Reset the environment with a randomly initial state s0

5 while s′ 6= sterminate do
6 Select a random action at
7 Pass at to the environment, and observe reward rt and next state s′

8 Push the sample (st, at, rt, st+1) to Ω

9 end

10 until Populate Ω with minit samples ;
11 i← 0
12 repeat
13 Reset the environment with a randomly initial state s0

14 while s′ 6= sterminate do
15 Generate a random number ζ between 0 and 1
16 if ζ ≤ ε then
17 Select a random action at ∈ A
18 else
19 at ← arg maxā∈AQ(st, ā, θi)
20 end
21 ε← ε−∆ε
22 Pass at to the environment, and observe reward rt and next state s′

23 Push the sample (st, at, rt, st+1) to Ω
24 Pop a mini-batch Omegamini of K samples from Ω based on the

prioritized criteria in (55)
25 Define the function Yi and Li(θi) based on (51) and (50)
26 θi+1 ← Train Q to minimize the loss function Li(θi)
27 i← i+ 1

28 end
29 if i mod Nupdate then

30 Update the target network Q̂: θ̂ ← θi
31 end

32 until i = Nstep;
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s =



Rt b̂t r̂t d̄t

d(sr1, q1) . . . . . . d(sr1, qK)

...
. . .

d(srM , q1) . . . . . . d(srM , qK)


(42)

Action space

Based on the current state s and the PA policy, the CNC decides an action, i.e.,

assigns a priority level for ft or decide to dismiss it. Hence, the action space in our

Markov Decision Process (MDP) is denoted as follows.

a =

[
ad, a1, a2, . . . , aK

]
(43)

where ak ∈ {0, 1}|k ∈ [1, K] means that fn designates the priority k if ak = 1.

Selecting the action ad = 1 means that the network shall not accommodate the flow

ft, and the corresponding workload shall be computed locally on the edge node. Note

that ft shall has a distinct priority level, thus
∑

k∈A a
k = 1.

Reward

We aim to maximize the number of accommodated flows before violating a dead-

line, i.e., slack(F ,P) = 0. Therefore, the agent is rewarded for every time step t on

which a new flow is successfully added as follows.

rt =


1 , slack(F ,P) = 0

0 , Otherwise

(44)
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Figure 5.5: Reinforcement learning model.

5.4.3 Deep Double Q-Learning

The RL framework which is shown in Fig. 5.5. An agent repeatedly interacts

with an environment for some steps t = 0, 1, ..., T forming one trajectory. The agent

observes the current state of the environment st ∈ S, where S is the complete state

space. Then the agent selects an action at ∈ A where A is the complete action space

based on certain policy π which is a mapping form every state s ∈ S to a specific

action a ∈ A, i.e., π : S → A. Afterward, the agent receives the new state s′ (st+1)

and the reward rt which indicates the quality of selecting action at under state st. By

training over many trajectories, the agent learns the optimal policy π∗ to maximize

the cumulative reward, which is defined as follows.

Definition 6. For a trajectory i, the cumulative reward Ri is a weighted sum of the

rewards resulted from all steps comprises trajectory i as computed by (45):

Ri =
T∑
t=0

γtrt (45)

where the discount factor, 0 < γ ≤ 1 controls the valuation of earlier rewards over

those received later.

Our case aims to maximize the number of accommodated flows assuming a direct
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effect on offloading ratio. However, the proposed method opens the door to opti-

mizing other Fog computing performance measures, such as network utilization and

throughput.

We can define a policy that decides action to be taken in each state. Given

the randomness in the added and removed flows, the optimal policy shall yield the

maximum expectation of the accumulative reward as follows.

π∗ = arg max
π

E

∑
t≥0

γtrt|π

 (46)

where E[x] is the expectation of x. For a policy π, the Q-value function for state s

and action a provides the expected cumulative reward from taking action a in the

state s as follows:

Qπ(s, a) = E

∑
t≥0

γtrt| s0 = s, a0 = a, π

 (47)

Then the optimal Q-value function Q∗(s, a) is the maximum cumulative reward

that can be attained starting from the state s taking action a as follows:

Q∗(s, a) = max
π

E

∑
t≥0

γtrt| s0 = s, a0 = a, π

 (48)

Then, Q∗(s, a) satisfies the Bellman equation (49):

Q∗(si, ai) = E

ri + γ max
ai+1∈A

Q∗(si+1, ai+1)|si, ai

 (49)
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To estimate the optimal Q-value for each (state, action) pair, we use a function

estimator Q(s, a, θ) based on a deep neural network with parameters θ. This estima-

tor is known as Deep Q-Network (DQN) (Volodymyr et al., 2015), which is trained to

enforce the Bellman equation, such that Q(s, a, θ∗) ' Q∗(s, a) where θ∗ are the opti-

mal parameters. The parameters theta are updated by back-propagation to minimize

the Mean Square Error (MSE) of the following loss function (50).

Li(θi) = E

[(
Yi −Q(s, a, θi)

)2
]

(50)

Where Yi is the target value.

Yi = r + γmax
a′∈A

Q(s′, a′; θi) (51)

Employing two networks, namely Double DQN (DDQN), is introduced in (Van Has-

selt, Guez, & Silver, 2016) to reduce the over-estimation and improve the learning

stability. The second network, namely target network Qtarget(s, a, θ
−) can be em-

ployed to compute the DDQN target value Y DDQN
i . In particular, Y DDQN

i refers

to the estimator network to decide the best action but uses the target network to

compute its Q value as in (52).

Y DDQN
i = r + γQtarget(s

′, arg max
a′

(Q(s′, a′; θ)), θ−) (52)

The target network architecture is identical to the estimator network, while its pa-

rameters θ− are updated every certain number of iterations based on θ by (53).

θ− = αθ + (1− α)θ− (53)

where α ∈ [0, 1] indicates the update rate with α = 1 is the highest rate in which the
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estimator network is copied to the target network.

5.4.4 Prioritized Experience Replay and ε− greedy policy

At every step during trajectories, the observed tuple of state, action, reward, and

next state 〈s, a, r, s′〉 is stored in the experience replay memory. Every iteration, a

mini-batch of samples is chosen from the replay memory to update the estimator

network. A prioritized sampling for the mini-batch is adapted to attain faster and

better learning (Schaul, Quan, Antonoglou, & Silver, 2015). Such an approach tends

to choose the samples that cause higher temporal difference error δi computed by

(54).

δi = |Q(s, a; θ)i −Qtarget(s, a)i| (54)

Every sample i in the replay memory is ranked based on δ, i.e., the sample’s rank

with the highest temporal error equals 1. Afterward, the priority pi of a sample i is

inversely proportional to its rank. The probability Pi of choosing i is defined by (55).

Pi =
pτi∑
k p

τ
k

(55)

where τ ∈ [0, 1] controls the prioritization, i.e., τ = 0 cuts out the prioritization.

To ensure different search space parts are sufficiently explored, we adopt the

ε− greedy policy in choosing actions. With probability ε, the agent selects a random

action (exploration). Otherwise, select greedy action based on the current estima-

tor network (exploitation). The ε starts from a substantial value and then linearly

decreases gradually as the iterations number increases.
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5.4.5 Tentative Actions

After obtaining the Q value for every priority level for the new flow at a particular

step, invalid actions that violate one or more deadlines at the network must be masked.

The masking is done by adding large negative values to their corresponding Q values.

The combination of the Q values and tentative action penalties are considered to

decide the selected action.

5.5 Performance Evaluation

5.5.1 Experiment Settings and Metrics

The proposed RL/DPA performance is evaluated by the following two metrics:

the admission and average network utilization. The admission rate is computed by

dividing the number of admitted flows by the total number of offloading requests

during one episode of one-hour duration. The average utilization is computed by

(56).

U =
1

BW × Tepisode
×
∑
i∈I

r̂i × Ti (56)

where I is the total number of admitted flows, and Ti is the active time of flow i ∈ I.

5.5.2 Quantitative Results

The performance of the RL/DPA is evaluated in comparison with the greedy PA

technique, based on the Optimal PA (OPA) (Hamza et al., 2014). The OPA technique

adopts an offline greedy search. The adapted on-line search version used in this work

for comparison is illustrated in Fig. 5.7. In the following, two experiments consisting
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Figure 5.6: TSN topology connects four edge nodes to Fog node.

Figure 5.7: Flowchart of the greedy priority assignment technique.

of 23 synthetic test cases are presented. This work’s reported results have been carried

out on a workstation with an Intel Core i5-8500 processor running at 3.0 GHz and

16 GB RAM. The development environment is built using Python on the top of the

Tensorflow framework. The parameters of the DQN are shown in Table 5.1

admission rate: In the first experiment, we use 20 test cases with either 100 or

200 applications. The network topology is shown in Fig. 5.6 is used for all test cases

throughout this section. The physical link bandwidth ranges from 100 Mbps to 1

Gbps interconnect 10 ECUs exchanging the three bridges’ flows. The admission rate
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Table 5.1: Please write your table caption here

Parameter Value

Initial replay memory size 5000
Maximum replay memory size 50000
Minibatch size 128
Target network update rate 2000
Discount factor 0.99
Learning rate 0.00001

attained by the RL/DPA, and the Greedy Priority Assignment (GPA) techniques for

200 applications is shown in Fig. 5.8 under different link bandwidth ranges from 100

Mbps to 1 Gbps. The graph demonstrates a considerable improvement of the TSN

ability to serve Fog applications using the proposed RL/DPA. In particular, RL/DPA

allows the TSN to admit up to 90% more flows comparing to GPA. Such gains allow

the TSN to meet specific performance requirements using lower bandwidth links. For

example, the RL/DPA allowed the TSN to admit 60% of the offloading requests using

400 Mbps links. On the other hand, the TSN needs a 1 Gbps link to attain the same

admission rate by the GPA technique under the same traffic conditions.

The admission gain attained by RL/DPA compared to GPA for both 100 and

200 application test cases is shown in Fig. 5.9. It can be noticed that the gain of

the admitted requests increases by increasing the traffic load (e.g., 200-application

cases). The graph shows again drop after a specific bandwidth. This drop is due to

the saturation of the RL/DPA admission rate is approaching 100%.

Network utilization: In the second experiment, we show the average network

utilization of five test cases with a different number of applications, as shown in Fig.

5.10. The number of Fog applications ranges from 50 to 250 applications, while the

links’ bandwidth is 100 Mbps. The results show a better utilizing of the network

proportional to the traffic load. For instance, the two approaches closely utilize the
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Figure 5.8: The admission rate achieved by the RL/DPA, and the greedy techniques
for 200 applications under different link bandwidth.

Figure 5.9: The admission gain achieved by the RL/DPA, over the greedy technique
for 100 and 200 applications.
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Figure 5.10: The average network utilization attained by the RL/DPA, and the GPA
techniques for different number of applications.

network in the case 50 application, where the RL/DPA doubles the network utilization

for the 250-application cases.

5.6 Conclusion

In this work, we solve the PA problem for dynamic traffic in TSN using a deep

reinforcement learning model, namely RL/DPA. The dynamic traffic is centrally con-

trolled by CNC that decides to admit a new flow with an assigned priority or reject it.

To handle the dynamic traffic model for Fog applications, we propose a double deep

Q network (DDQN) with prioritized experience replay. The model is trained to learn

an optimal policy to maximize the admission rate as w ell as the network utilization.

Results demonstrate that the proposed RL/DPA allows the optimized TSN to serve

more Fog applications with lower link capacity. The RL/DPA outperforms the greedy

PA in both admission rate and network utilization up to 90% and 70%, respectively.
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Chapter 6

TSN Verification Under Single

Event Upsets

6.1 Network Reliability Analysis Under Faulty Switch

TSN must maintain a synchronized TT transmission after one link is down. In

other words, the failure in one link is isolated from the rest of the network. This

assumption cannot hold in case of failures where the messages are still sent but at the

wrong time. However, this assumption is not always valid. For instance, corruption in

the configuration memory in one switch can affect the TT transmission in the whole

network. This section describes the considered fault model and the proposed analysis

of the impact of the faults on communication reliability.

6.1.1 Fault model under consideration

Each egress queue is connected to a gate that operates according to the transmis-

sion schedule stored in the GCL. Every row in the GCL, namely, Gate Control Entry

(GCE), controls the status of the gates for a specific time window of width Ti. We
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assume that each gate’s state at each GCE is physically represented by one bit where

the values of ‘1’ and ‘0’ refer to open and close state, respectively. After reaching

the last entry GCEN in the list, the TAS repeats the GCL for the next cycle. The

column in the red box corresponds to the GCE of the critical traffic. Thus, we call

this vector the critical gate control vector (CGCV). In the early design stage, the

exact mapping between memory locations that store the GCL and the behavior of

the timed gates is not available. Therefore, we propose a high-level abstraction for

the bit-flip faults in GCL. In particular, a fault in GCL is abstracted and represented

as a random change in the corresponding timed gate’s behavior for a certain GCE in

terms of status (opened or closed) and the duration.

6.1.2 TSN Reliability Analysis Using Model Checking

The TSN network and the fault behavior are modeled as Priced Timed Automata

(PTA) based on the multi-agent architecture. According to the network model, the

ES agent comprises three units, as illustrated in Fig. 6.1: the application unit au-

tomaton, the transmitter unit automaton, and the receiver unit automaton. Each

switch is separated into several agents to represent the egress ports. A single egress

port agent is composed of three units, as shown in Fig. 6.1: the TAS unit automa-

ton, the Transmission Selection (TS) unit automaton, and the buffer unit automaton.

The communication direction of frames between units is shown as solid arrows. The

direction of control and observation between units is depicted in dashed arrows. The

transmitter unit of the source ES sends a frame every period while the receiver unit

of the destination ES notifies the application unit of delivered frames. The TAS is

responsible for applying the GCL while the TS unit transmits the buffered frames
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Figure 6.1: Proposed architecture of the networked PTA model of TT TSN.

according to their next-hop while the gate is open. The buffer pops the frame ac-

cording to the FIFO scheme. On every deadline, the application unit checks if one

replica has been received, at least. Otherwise, a communication failure is detected.

This modeling is implemented on UPPAAL SMC. UPPAAl is ”a toolbox for mod-

eling, simulating, and verifying real-time systems based on constraint-solving and

on-the-fly techniques” (Papadopoulos, 2004). It represents the systems as a timed au-

tomata network, extended with integer variables, structured data types, and channel

synchronization (Margaria & Steffen, 2010). UPPAAL is widely adapted for real-time

controllers and communication protocols in which the representation of time is essen-

tial. UPPAAL can explore the state-space of the design, and preform reachability

analysis to check invariant and reachability properties. One of the powerful features

of this toolbox is ”the application of on-the-fly searching techniques combined with

the symbolic technique that reduces verification problems to that of manipulating

and solving simple constraints” (Larsen, Pettersson, & Yi, 1997). In the case of un-

verified properties, a counterexample can be generated to explain how the property

is violated. Furthermore, the generated counterexamples are graphically visualized
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using the toolbox (Larsen et al., 1997).

The proposed PTA model is utilized to present the specific implementation of each

traffic setup. Consequently, the fault-tolerance properties are verified for each setup.

For each traffic setup, the GCL for each egress port in the network is generated.

After that, extensive fault injection is performed on each GCE to verify the network

reliability. In each fault injection scenario, the application models in all ESs are

checked to identify whether the failure state is reachable. Moreover, the application

units count the number of consecutive failures ψ and the number of consecutive

deliveries τ . Hence, we characterize the worst-case failure pattern by examining all

possible fault scenarios in GCLs. In particular, we specify the minimal control reliable

interval τmin and the maximal failure interval ψmax, which refers to τ and ψ in the

worst-case fault scenario.

6.2 Availability of SRAM-FPGA For TSN Switches

The flexibility and short design cycle of Field-Programmable Gate Arrayss (FP-

GAs) make them suitable to implement TSN-compliant switches, known as bridges

(Li et al., 2018). Moreover, adapting FPGA-based components in high-energy ra-

diation environments has attracted increasing attention due to their low cost and

reconfigurability (Caffrey et al., 2002). In particular, Static Random-Access Mem-

ory (SRAM)–based FPGAs are widely employed for satellite data processing systems

(Norton, Werne, Pingree, & Geier, 2009; Siegle, Vladimirova, Ilstad, & Emam, 2016).

SRAM FPGAs have already been deployed in the Orion CEV interplanetary space-

craft (TTTech, 2014). However, the configurations that define the programmable

logic units’ functionality are susceptible to corruption when exposed to high-energy
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radiation, namely Single Event Upsets (SEUs). Consequently, the transmission re-

liability of the TSN may be affected. Different vendors provide radiation-hardened

FPGAs to withstand harsh radiation environments (Swift et al., 2011). Those FPGAs

are expensive and lagging their non-radiation hardened FPGA counterparts. There-

fore, mitigation techniques, such as periodic repair, are introduced to allow using

commercial SRAM FPGA in the harsh space radiation environment (Siegle et al.,

2016). Nonetheless, SRAM FPGA-based networks may suffer from downtime in the

presence of SEUs and during the repair process. In short, space applications must

investigate the availability of non-radiation hardened SRAM-based FPGA.

6.2.1 Timed Automata Model of TSN

In this section, we introduce a Timed Automata (TA) model representing the

network topology, the routing and scheduling of critical messages, and the failure

rate. Then, the network’s availability is investigated under various repair times and

rates using Statistical Model Checking (SMC) approach. The proposed analysis al-

lows the designer to search for the proper repair mechanism required to meet network

availability requirements. Furthermore, the tolerated failure rates of the individual

switches can be estimated for given availability requirements. This analysis is espe-

cially crucial for TSN to reduce the classical redundancy overheads in such critical

systems.

The proposed model tracks the TSN’s availability concerning a particular higher-

level application that involves a set of data streams from different sources. The

TSN application is represented as a stream of messages transmitted from a source

end-system and received by a specific destination end-system. The application id is

modeled by one TA as shown in Fig. 6.2(a). In every cycle, the application sends
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a message at certain offset Offset[id] to the first switch in the routing, stored in

Src[id]. Hence, the automaton moves from state Send to state TSN. Then, the TA

transits from state TSN according to the synchronization channel send[id]?, either

to state Routing or Receive. If the current switch (Pid) is not the last node before

the destination which is stored in Dest[id], the automaton moves to state Routing.

In that case, the next node in the routing is R[id][hops], where hops indicates

the number of nodes that have been crossed. If the waiting time in TSN exceeded

the deadline of the message, the automaton moves to state Error and notifies the

observer TA of the missed message via the synchronization channel miss[id]!. The

application sends a new message after the time interval Period, which is equal to the

cycle duration.

The TA model of the availability observer is shown in Fig. 6.2(e). At any time

instant, the automaton can either be in state Available or state Unavailable. The

transitions between these two states are enabled by the synchronization channels

miss[id]? and hit[id]?. These channels are triggered by the application TA when

a message instance misses or reaches the destination, respectively. The TA of the

output port Pid in the TSN switch is shown in Fig. 6.2(b). The automaton moves

from state Available to state Receive by the synchronization channel arrival[Pid]

which is triggered by the stream TA. The message waits for a time interval t<=Qmax,

where Qmax refers to the WCD at the switch. The TA of the fault injection module is

shown in Fig. 6.2(c). The proposed model assumes that the switch goes out of service

in two cases: i) SEU in the FPGA configuration bits, which lasts until the next repair;

ii) periodic repair mechanism, i.e., scrubbing that lasts for repair time (shown in

Fig. 6.2(d)). In the fault-injection TA, the automaton leaves state Normal according

to the exponential rate lambda which represents the failure rate in the configuration

memory, i.e., the unit of λ is failure/sec (f/s), i.e., λ = RSEU × NCB. where rSEU
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(a) (b)

(c) (d)

(e)

Figure 6.2: Proposed TA model of (a) a critical stream, (b) each output port, (c) the
fault injection module, (d) the repair controller, (e) the availability observer.

is the SEU rate which depends on the SRAM technology and the radiation levels.

NCB is the number of critical bits in the configuration memory. NCB is typically

determined by a fault-injection campaign, which is out the scope of our research

project. Thus, our model takes λ as an input parameter, and the automaton returns

to state Normal according to the synchronization channel recovery[Pid]? which

indicates that the repair process is accomplished. This TA initiates the repair process,

as shown in Fig. 6.2(d). At the beginning, the automaton transit at random time ≤
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repair period to state Repair. These transition model the lake of synchronization

between the scrubbing of different switches. The flag is updated to 1, which blocks

the lower transition until the end of the simulation. Then, for every repair period,

the automaton transits to state Repair and triggers channel flush[Pid]! to get the

switch Pid out of service during the repair time. Afterward, the automaton stays for

time interval repair time before triggering channel recovery[Pid]! and moving to

state Wait.

6.3 Evaluation

6.3.1 TSN Reliability Analysis Using Model Checking

In this section, we validate the proposed framework. Hence, we consider one syn-

thetic test case and a realistic case study from the space area based on the Ethernet-

based network in the ORION CEV (McCabe & Baggerman, 2009).

The synthetic test cases comprise 25 and 50 TT messages, respectively, routed

through a network topology that comprises 12 ports deployed in 5 bridges, as shown

in Fig. 6.3. The network model is implemented using the UPPAAL model checker

(Larsen et al., 1997). Each message’s source and destination are randomly assigned

from the list of ES. The transmission time of the messages is between 2 and 10 µs.

All messages have the same deadlines and a period of 50 µs and 200 µs, respectively.

Three schedules for each test case are synthesized using the greedy heuristic algorithm

introduced in (Atallah et al., 2018).
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Figure 6.3: Example topology of five-bridges TSN network.

TSN Vulnerability to SEUs For Single-Path Routing

The vulnerability analysis is conducted for single-path routing, i.e., each message

is sent through one path selected according to the shortest path criteria. In this

analysis, different SEUs are injected to induce accidental Gate Blocking (GB) in

CGCV. Results demonstrate that such SEU causes a drop of some messages. This

observation can be explained as the following. Since CGCE opens the gate for a

time interval equal to the transmission time of the respective TT message, blocking

the gate for one CGCE makes the total opening timeless than the required time for

transmitting all the messages. Hence, the port is rendered incapable to re-transmit

all arrive messages. This situation eventually overflows the buffer and causes some

messages to be dropped. The second effect of this type of SEUs is message lagging.

The blocked message has to wait in the buffer until the next open time slot to be

transmitted. Every message that arrives after GB will be delayed and take the place

of the subsequent message. Hence, all messages which are affected by message lagging

may miss their deadlines.

The Sensitive Entry (SE) is the entry at which a flip affects the messages delivery

in the network. The percentage of SEs, as well as the percentage of Vulnerable

Messages (VMs) for three valid schedules for each test case, are shown in Table 6.1.
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Table 6.1: SEU Vulnerability For single-path Routing For Different Schedules.

Test case I (25 messages)

Index Number of CGCEs Number of SE (%) Number of VM (%)

S1 43 40 93% 25 100%
S2 41 41 100% 23 92%
S3 52 45 86% 20 80%

Test case II (50 messages)

Index Number of CGCEs Number of SE (%) Number of VM (%)

S1 84 76 91% 48 96%
S2 92 79 86% 45 90%
S3 77 71 92% 50 100%

The results show a high SEU vulnerability in both test cases. These unreliable single-

path routing results are expected because this method yields all physical links as a

single point of failure. Thus, unplanned gate closing affects the timing of all messages

that pass through it.

TSN Vulnerability to SEUs For Multiple-Path Routing

As mentioned before, the TSN standard adapts a path redundancy approach to

attain high transmission reliability. Such redundancy is supposed to guarantee an

interruption-free fault-resilience in the presence of link failure. To examine this as-

sumption, we applied double redundancy criteria in which every message is trans-

mitted through two disjoint paths, i.e., a failure in a single link should not render a

communication failure.

In this analysis, different SEUs were injected, and their impact is investigated.

Our results demonstrate that reliability is not fully guaranteed. Surprisingly, we

observe that the fault injection in some entries leads to communication failures.

Table 6.2 shows the results of the analysis of three different schedules for each
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Table 6.2: SEU Vulnerability For MP Routing for Different Schedules.

Test case I (25 messages)

Index number of CGCEs number of SE (%) number of VM (%)

S∗1 74 0 0% 0 0%
S∗2 82 2 2.5% 2 8%
S∗3 79 0 0% 0 0%

Test case II (50 messages)

Index number of CGCEs number of SE (%) number of VM (%)

S∗1 155 5 3.2% 6 12%
S∗2 146 8 5.4% 10 20%
S∗3 152 0 0% 0 0%

test case considering double-path routing. It can be observed that even with the

multipath redundancy, some of the designs are still vulnerable to SEUs for both test

cases. This observation highlights the need for verifying the design after adapting

such redundancy to select the robust schedule. However, we can notice that in the

test case with the lower utilization (25) messages, two schedules achieve complete

tolerance against SEUs in TAS configuration. On the other hand, test case II with

higher utilization shows higher vulnerability, i.e., two of three schedules have sensitive

entries, which causes many critical TT messages to be vulnerable to SEUs.

6.3.2 Availability Analysis of FPGA-Based TSN

The TA model is implemented with the UPPAAL toolbox (David, Larsen, Legay,

Mikučionis, & Poulsen, 2015). The availability analysis results for single path trans-

mission are depicted in Fig. 6.4. These results show the impact of network utilization

and the repair period on network availability. We can notice an optimal repair period

for each radiation level (λ). In particular, Fig. 6.4 shows an optimal repair period

at 1 and 10 seconds for λ = 10−4, and λ = 10−5, respectively. On the other hand,
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Figure 6.4: Network availability for different failure rates λ and repair periods for
single path transmission.

the results show that increasing network utilization declines network availability. For

example, The network availability drops from three nines to two nines when Qmax

raised from 1 ms to 5 ms at repair period = 100 seconds, λ = 10−5 f/s. This

variation is due to the long time spent through the network. The higher utilization

increases the probability of SEU strikes during message transmission.

Safety-critical systems, such as aerospace applications, typically require higher

availability levels, e.g., 0.9999 or 0.99999. Such availability levels can still be attained

using network-level fault mitigation techniques, such as double path redundancy.

Table 6.3 shows the gain of adapting double path redundancy on network availability.

The entries of Table 6.3 are obtained according to (57).

AdoublePath = 1− (1−AsinglePath)2 (57)
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Table 6.3: Network Availability Under Double Path Redundancy.

Repair period λ = 10−4 λ = 10−5

(ms) Qmax = 1 Qmax = 5 Qmax = 1 Qmax = 5

1000000 0.98 0.97 0.999996 0.9996
100000 0.9996 0.9994 0.9999997 0.999998
10000 0.999997 0.99996 0.999995 0.999995
1000 0.999981 0.9998 0.999991 0.99993
100 0.9984 0.992 0.998 0.992

Table 6.3 depicts the estimated network availability, which passes the five nines thresh-

old in bold, which implies 5 minutes of downtime per year. Under the harsh radiation

conditions (λ = 10−4f/s) the network is able to attain an availability > 0.99999 only

at repair period = 1 second and at Qmax = 1 ms, while the five nines availability

is infeasible for Qmax = 5 ms. This result suggests increasing the network band-

width to avoid this highly utilized condition. These results demonstrate the tradeoff

between the network utilization, the repair period, and the network’s availability.

Moreover, the results highlight the importance of adapting multipath redundancy in

safety-critical applications.
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Chapter 7

Conclusion and Future Work

The emerging deployment of CPSs in safety-critical applications imposes chal-

lenges to the communication technologies. Stringent reliability and timing constraints

must be satisfied under tight cost, weight, and power budgets. Facing such challenges

is an opportunity for real-time communication engineers to develop novel methods

to design networks with high performance, utilization, and flexibility. One promising

solution for such applications is the IEEE 802.1 TSN standard. This thesis aims to

pave the way for employing TSN on large-scale systems. This goal is achieved by

introducing a new framework for the design and verification of TSN for safety-critical

CPS. Several methods are proposed to address the design challenges and meet the

requirements of a broad spectrum of CPS. Our framework provides automated design

space exploration to support system engineers in making design decisions.

To meet a broad spectrum of reliability constraints in different CPSs, we intro-

duce two methods that employ spatial and temporal redundancy approaches. First,

we propose a scalable heuristic-based method for fault-tolerant topology synthesis.

This method ensures many disjoint paths between sources and destinations while

considering the timing requirements of TT traffic. The redundancy level can be
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adjusted based on the criticality of the traffic. The second method is based on ILP

formulations for reliability-aware AVB traffic routing. The formulations support both

spatial or temporal redundancy to meet the reliability constraints for different CPSs.

In particular, the spacial redundancy meets high critical application requirements by

providing seamless fault tolerance against physical failures, e.g., downlinks, and soft

error, e.g., corrupted packets. The temporal redundancy suits relaxed applications in

which the system tolerates short faults waiting for some recovery mechanisms.

To attain real-time communication, we introduce a novel method for scalable

scheduling of TT traffic. The proposed method can handle large networks to meet

the requirements of the upcoming realistic CPSs. Our method generates no-wait

schedules in which the critical TT messages are immediately forwarded over switches

without suffering any queuing delay. An iterated ILP-based scheduling is adopted for

scalability while the degree of conflict between iteration is minimized using a graph-

based technique. To optimize the TSN design for Fog application, we proposed two

reinforcement learning-based techniques which enable dynamic priority assignment

and speed up the design space exploration.

To verify the TSN reliability under a harsh environment, we introduce a formal

model to investigate the impact of the SEU-induced faults. The proposed methods

employ a statistical model checking approach to analyze the network behavior under

a harsh radiation environment. Two models are introduced to address both TT and

RC traffic classes. Our work investigates several design aspects such as the impact

of faulty TAS, and the optimum repair frequencies for SRAM-based FPGA TSN

switches. The analysis reveals the worst-case failure pattern, which allows further

worst-case stability and performance analysis. Such an analysis allows dismissing

vulnerable designs at early stages. Extensive experimental results are introduced to

evaluate each element of the proposed framework.
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Several future directions can be considered based on this thesis which addresses the

timing and reliability challenges of TSN at a high level of abstraction. An interesting

direction is to investigate and compare different optimization techniques for TSN

design space exploration. A better understanding of each technique’s pros and cons

will diversify the design options and address a broader spectrum of objectives. Nature-

inspired optimization techniques, such as ant colony, bees algorithm, and swarm

intelligence, can be studied to boost TSN design in terms of scalability and solution

quality. Another research direction is investigating the security aspects in TSN design.

The security concerns regarding CPSs are increasing due to their role in countries’

national security via safety-critical systems like smart grids and autonomous vehicles,

which are already deploying TSN. These concerns are addressed by new security

measures that generate extra overheads and limit the flexibility of TSN. Therefore,

it is critical to investigate the impact of such security-related overheads on the TSN

performance.
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ILP-based joint routing and scheduling for time-triggered networks. In Proceed-

ings of international conference on real-time networks and systems (pp. 8–17).

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans-

actions on pattern analysis and machine intelligence, 22 (8), 888–905.

Siegle, F., Vladimirova, T., Ilstad, J., & Emam, O. (2016). Availability analysis for

satellite data processing systems based on SRAM FPGAs. IEEE Transactions

on Aerospace and Electronic Systems , 52 (3), 977–989.

Smirnov, F., Glaß, M., Reimann, F., & Teich, J. (2016). Formal reliability analysis

of switched ethernet automotive networks under transient transmission errors.

In Acm/edac/ieee design automation conference (dac) (pp. 1–6).

Smirnov, F., Glaß, M., Reimann, F., & Teich, J. (2017a). Formal timing analysis

of non-scheduled traffic in automotive scheduled tsn networks. In 2017 design,

automation & test in europe conference & exhibition (date) (pp. 1643–1646).

Smirnov, F., Glaß, M., Reimann, F., & Teich, J. (2017b). Optimizing message

routing and scheduling in automotive mixed-criticality time-triggered networks.

In Design automation conference (dac) (pp. 1–6).

122



Smirnov, F., Reimann, F., Teich, J., Han, Z., & Glaß, M. (2018). Automatic optimiza-

tion of redundant message routings in automotive networks. In Proceedings of

the 21st international workshop on software and compilers for embedded systems

(pp. 90–99).

Specht, J., & Samii, S. (2016). Urgency-based scheduler for time-sensitive switched

ethernet networks. In 2016 28th euromicro conference on real-time systems

(ecrts) (pp. 75–85).

Specht, J., & Samii, S. (2017). Synthesis of queue and priority assignment for

asynchronous traffic shaping in switched ethernet. In 2017 ieee real-time systems

symposium (rtss) (pp. 178–187).

Steiner, W., Craciunas, S. S., & Oliver, R. S. (2018). Traffic planning for time-

sensitive communication. IEEE Communications Standards Magazine, 2 (2),

42–47.

Swift, G., Carmichael, C., Allen, G., Madias, G., Miller, E., Monreal, R., et al. (2011).

Compendium of xrtc radiation results on all single-event effects observed in the

virtex-5qv. Proceedings of NASA military and aerospace programmable logic

devices (MAPLD), 1–33.
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