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Abstract

Image-based Tip Force Estimation on Steerable Intracardiac

Catheters Using Learning-based Methods

Hamid Reza Nourani Nezhad

Minimally invasive surgery has turned into the most commonly used approach to

treat cardiovascular diseases during the surgical procedure; it is hypothesized that the

absence of haptic (tactile) feedback and force presented to surgeons is a restricting fac-

tor. The use of ablation catheters with the integrated sensor at the tip results in high

cost and noise complications. In this thesis, two sensor-less methods are proposed to

estimate the force at the intracardiac catheter’s tip. Force estimation at the catheter

tip is of great importance because insufficient force in ablation treatment may result

in incomplete treatment and excessive force leads to damaging the heart chamber. Be-

sides, adding the sensor to intracardiac catheters adds complexity to their structures.

This thesis is categorized into two sensor-less approaches: 1- Learning-Based Force

Estimation for Intracardiac Ablation Catheters, 2- A Deep-Learning Force Estimator

System for Intracardiac Catheters. The first proposed method estimates catheter-

tissue contact force by learning the deflected shape of the catheter tip section image.

A regression model is developed based on predictor variables of tip curvature coeffi-

cients and knob actuation. The learning-based approach achieved force predictions

in close agreement with experimental contact force measurements. The second ap-

proach proposes a deep learning method to estimate the contact forces directly from

the catheter’s image tip. A convolutional neural network extracts the catheter’s de-

flection through input images and translates them into the corresponding forces. The
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ResNet graph was implemented as the architecture of the proposed model to perform

a regression. The model can estimate catheter-tissue contact force based on the in-

put images without utilizing any feature extraction or pre-processing. Thus, it can

estimate the force value regardless of the tip displacement and deflection shape. The

evaluation results show that the proposed method can elicit a robust model from the

specified data set and approximate the force with appropriate accuracy.
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Chapter 1

Introduction and Review: Cardiac

Arrhythmia and Learning-based

Methods

1.1 Minimally Invasive Surgery (MIS)

Surgery has accomplished high-value advances in materials and micro-mechanical

technology since the 1990s [1]. These achievements paved the way for producing re-

liable surgical instruments and robotic systems by a few minor incisions that enable

a surgeon to conduct highly challenging procedures[2]. Such procedures are known

as minimally invasive surgery (MIS) and laparoscopic surgery. These procedures

are characterized by using a small camera and thin instruments accessing the body

through small cuts or ports to perform a procedure that would typically involve more

invasive direct access through a single, much larger incision (Fig. 1). Compared to

open surgery, this type of surgical procedure can involve significant cost-savings be-

cause of shorter hospitalization time, reduction in blood loss, pain, and faster recovery

time for the patients[3]. Minimally invasive surgery (MIS) procedures have evolved

because of this wide variety of benefits. Because of the wide range of advantages
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Figure 1: Minimally invasive surgery versus traditional surgery (All rights reserved
by Neoalta Specialty Clinic).

in MIS, all surgical sectors, including endocrine, urological, abdominal, gynecologi-

cal, general, orthopedics, and especially in cardio-thoracic, have benefited from the

remarkable impact of MIS [1].

1.1.1 Cardiovascular Intervention Procedures

As mentioned, surgery treatment goes into two categories, which are known as open

surgery and Minimally Invasive Surgery Therapy (MIST). Open heart surgery to

treat cardiac arrhythmia began in 1968 with the initial successful division for the

Wolff-Parkinson-White syndrome. Wolff-Parkinson-White is a condition causing ex-

tra electrical pathways in the heart that results in a high heartbeat rate. Following

surgical procedures carried approaches such as the right and left atrial isolation proce-

dure for atrial tachycardia, the corridor procedure, and the discrete cryosurgery of the

AV node for AV nodal reentrant tachycardia. Because of great steps in treating most

refractory arrhythmia by endocardial catheter techniques during the past decades,

the only remaining viable surgical procedures for cardiac arrhythmia are the maze

procedure for atrial fibrillation, and the Dor procedure for ischemic ventricular tachy-

cardia [4]. Minimally invasive cardiac surgery requires making minor cuts in the right

side of the chest to enter the heart under the ribs instead of going into the breastbone,

as is performed in a surgical procedure. The minimal invasive cardiac procedure can

2



be done to treat several cardiovascular problems such as atrial fibrillation, coronary

artery bypass surgery, and mitral valve repair. Minimally invasive surgical (MIS)

approaches have been widely accepted and immensely influenced today’s surgeries in

terms of fast discharging patients, reducing costs, and patient recovery time. Long

instruments are most likely used in minimally invasive surgical to navigate human

small ports and vessels to reach the specific organs, and it deprives surgeons of depth

perception of the surgery such as haptic, tactile, and maneuverability that they are

accustomed to in conventional surgeries following that in open procedures there is a

coordination between their visual and tactile abilities which could help them recog-

nize the abnormal and normal body tissue [5].

The intra-cardiac procedure is typically conducted manually. Surgeons use the steer-

ing knob at the catheter’s handle to perform hand motions such as axial, rotational,

and translational on the catheter’s distal shaft. Fig. 1 illustrates the manipulations

produced by surgeons and catheter motions. The tendon-driven ablation catheters

are used to translate knob rotation at the handle to the distal shaft’s bending. By

turning the knob, the catheter’s tendons linked to the catheter’s tip are pulled and

induce changes in the distal shaft.

During minimally invasive surgeries, surgeons need to visualize the surgical pro-

cedures using X-ray fluoroscopy. The frequent use of X-ray fluoroscopy might carry

permanent damages to surgeons’ health in the long term [7]. Nevertheless, it neces-

sitates the use of robotic-assisted surgery and newly emerged robotic technologies to

help and release surgeons from risks of radiation exposure and high radiation-shielded

garments, and the accuracy of the surgery can be guaranteed and improved (Fig. 3).
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(a)

(b)

Figure 2: (a) View of a steerable catheter, (b) cross section of the distal[6].

1.2 Cardiac Arrhythmia

Where the origin of the heart motion comes from? Significant progress in under-

standing the origin of the heartbeat happened in 1907 when Arthur Keith and Mar-

tin Flack announced their classic marks on the sinus node. They wrote, ”Our search

for a well-differentiated system of fibers in the sinus, which might serve as a source

for the initiation of the cardiac rhythm, has resulted in attach significance to this

peculiar musculature surrounding the artery at the sino-auricular junction. It was

concluded that it was within this specific cardiac muscle ”that the dominating rhythm

of the heart normally begins[9]. Cardiac electrical disruption leads to arrhythmias,

including altered heart rates (bradyarrhythmias and tachyarrhythmias correspond-

ing to low and high heart rates, respectively), unanticipated beats, atrial flutter,
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Figure 3: X-ray exposure to an interventionist and staff in (a) regular catheterization
procedure, and (b) robot-assisted cathterization procedure[8].

and fibrillations, (e.g., atrial fibrillation) or ventricular[10]. Cardiovascular Condi-

tions/Diseases (CVDs) such as Stroke, Atrial Fibrillation, Sudden Cardiac Arrest,

Subclinical Atherosclerosis, Coronary Heart Disease, Heart Failure, Valvular, Ve-

nous, Aortic Diseases, and Peripheral Artery Disease are the primary reasons for

death across the world, with a current estimate of 17.3 million deaths throughout

the year and an anticipated rise to 23.6 million deaths by the year 2030, representing

31 percent of all global deaths[11]. Importantly, CVD risk factors promote cardiac

structural differences that are frequently associated with electrical disruption and the
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(a) (b)

Figure 4: (a) Normal heart rhythm, (b) atrial fibrillation[14].

onset of arrhythmias[12], which account for roughly 50 percent of mortality correlated

with continuous heart failure [13]. Besides, the fact that CVD may also include the

impairment of the cardiac conduction system itself. Unhealthy habits like smoking,

physical inactivity, nutrition, and obesity following that health factors including fam-

ily history, genetics, and high blood cholesterol are the most common causes that can

lead people to be afflicted with cardiovascular diseases [11].

1.3 Medication and Radio Frequency Ablation

There exists different types of treatment for arrhythmia, divided into two categories

Anti-arrhythmic Drugs and RFA. Two systematic reviews have been conducted on

RFA and AAD to estimate and evaluate the clinical efficiency and safety of both

therapies in the treatment of atrial fibrillation (AF), Fig. 4 illustrates normal and

abnormal electrical pathways that cause atrial fibrillation (AF). Therapy with an-

tiarrhythmic drugs and anticoagulation has been considered a primary treatment in

patients with symptomatic AF [15]. However, anticoagulation is suboptimal in many

cases, and antiarrhythmic drugs are usually ineffective and have serious potential ad-

verse effects[16]. Although ablative therapy is generally considered only after drugs
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have failed due to the fact that catheter ablation is an invasive procedure with at-

tendant potential hazards, including procedural stroke and pulmonary vein stenosis

[17]. It is worth-noting that RFA can be useful, but its use may be limited because

of complications.

The main question can arise that how safe RF catheter ablation is in the treatment of

patients with arrhythmias. Certain risks are associated with RF ablation. They carry

the prevailing risks of any cardiac catheterization, like thromboembolic complications,

infection, bleeding, heart wall perforation, valvular damage, and radiation damage.

Besides, particular risks are associated with the ablation procedure itself [18]. Re-

cently presented data from research involving patients who had earlier not responded

to antiarrhythmic drug therapy suggests that patients who underwent catheter-based

AF ablation had remarkably less AF during follow-up than those who received more

antiarrhythmic drug therapy [19].

Radiofrequency catheter ablation (RFA) has revoulutnlized in the treatment of atrial

fibrillation (AF) and is globally accepted and more effective than antiarrhythmic drug

(AAD) therapy [20]. It is worth noting that both AAD therapy and RFA procedure

can bring along complications and adverse outcomes concerning their safety and it

is on the increase [21]. According to the statistics released by seventy-two centers

located in 10 European countries on 1391 patients underwent an arterial fibrillation

ablation procedure between October 2010 and May 2011, 21% referred to the cen-

ter due to the post-ablation arrhythmia, and 40% successfully were treated without

AAD, 18% of the patients needed a second ablation procedure, following that 2.5 %

of the patients faced adverse complications [22].

Considering the current debates on RFA procedure, it is still counted as the first-

picked treatment for the patients suffering from atrial fibrillation[23]. Fig. 5 demon-

strates the schematic of the radio-frequency ablation (RFA) catheter in the treatment

of atrial fibrillation (AF).
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Figure 5: Radio-frequency ablation catheter in contact with the heart tissue that
causes abnormal electrical pathways in atrial fibrillation (AF) [24].

1.4 Artificial Intelligence

The primary purpose of this thesis is to tackle the limitations of the sensor-based

and model-based approaches in MIS to estimate the contact force at the catheter tip.

Artificial Intelligence (AI) was applied in this study and contributed to contact force

estimation with high accuracy.

Machine learning (ML) algorithm is a branch of artificial intelligence (Fig. 7). ML is

one of the ways we expect to achieve AI. ML constitutes a series of methods in which

they can correctly interpret external data and learn the data and use this learning to

accomplish particular objectives[25]. In other words, ML relies on dealing with small

to large datasets by analyzing and correlating the data to detect general patterns. It

was first introduced by Gregory Powell and Mike Donavan and is traced back to the

1940s. Artificial intelligence is broadly categorized into machine learning and deep

learning (Fig. 6).
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1.4.1 Machine Learning Technologies and Techniques

Machine learning is a multipurpose approach of artificial intelligence that can learn

relationships from the data without needing to identify them [26]. Machine learning is

described by three types of parameters based on the learning rules such as supervised,

unsupervised, and reinforcement [27]. Machine learning performs classification tasks

clearly and efficiently because of its architectural design and learning methods. There

is no unique algorithm since learning algorithms differ in their learning capabilities.

Figure 7: Definition of artificial intelligence

The main appeal will be the capability to derive predictive models without a

necessity for strong assumptions about the primary mechanisms that are generally

unfamiliar or insufficiently stated[28].

In supervised learning, the system is supplied with large amounts of data through

its training state, which directs the system to output what should be achieved from

each particular input amount. The trained model is then evaluated with test data to

validate the result of the training and measure the accuracy. In general, supervised

learning is based on modeling the relationships and dependencies between the target

prediction output and the input features. We can predict the output amounts for new

data based on those associations, which it has learned from earlier datasets supplied.
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Supervised learning methods perform great at regression and classification prob-

lems; supervised learning aims to make a connection between the input data to par-

ticular measurements. In contrast, unsupervised learning algorithms have no output

classes or labels on the data (the model is trained with unlabeled data). Algorithms

can operate freely to learn more about the data and present blind output values.

Unsupervised learning is prevalent in clustering applications and data representation

(the act of predicting rules that describe the data). In other words, the unsupervised

learning model recognizes the pattern of the input data. Reinforcement learning learns

by trial and error communications with an environment based on the reward/penalty

assignment. Reinforcement learning focuses on intelligent agents to deal with an en-

vironment, and the feedback received from its actions [27].

Fig. 6 demonstrates various ML methods and techniques, including Decision Trees

(DTs)[29], Artificial Neural Networks (ANNs)[30], Support Vector Machines (SVMs)[31],

K-nearest Neighbors (KNN)[32], and K-means [33].

1.4.2 Medical Applications

The learning-based techniques have been broadly utilized in medical applications.

Abdar et al. proposed a computer-aided diagnostic method using a supervised model

to predict liver disease in its early stages with an accuracy of 93.75% [34]. Besides,

Abdar et al. introduced a machine learning algorithm, including a Support Vector

Machine (SVM), to diagnose Parkinson’s disease with an average accuracy of 99.18%

[35]. Also, to diagnose Wart, which is known as a skin disease, ML techniques such

as linear support vector machine (SVM) and random forest algorithms were applied

with an accuracy of (91.11±6.67%) [36].

In another study, a classification of cardiac disorders was proposed using electro-

cardiography (ECG) signal analysis using support vector machine (SVM) classifier.
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This research was done based on ECG signals’ fragments from the MIT-BIH arrhyth-

mia database from 29 patients. The model accuracy obtained from this study was

98.99% [37]. E.Bron et al. also introduced a computer-aided SVM (Support Vector

Machine) classification model with an accuracy of 90% for Frontotemporal Dementia

(FTD), including Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and

Alzheimer’s Disease (AD), which underlying dementia using neuroimages taken by

MRI[38].

Deep learning differs from regular machine learning in just how representations are

learned from the raw data. In reality, deep learning enables computational models

consisting of many neural network-based processing layers to learn complex and ab-

stract features [39]. The number of hidden layers, their interactions, and the capacity

to learn meaningful features of the inputs are the main differences between deep learn-

ing and conventional artificial neural networks (ANNs).

Indeed, typical ANNs are normally restricted to three layers and equipped to attain

supervised interpretations, which are only tailored for the particular work, and typi-

cally can not be generalized [40]. The deep learning technique has contributed to the

diagnosis of diseases in the medical industry. This method utilizes the multi-layer

non-linear data processing to recognize feature quantities of texts, images, etc. The

key benefit of deep learning is that a highly precise model can be learned from massive

data without understanding the comprehensive internal structure[41].

Most of the profound architectures applicable to the health care sector are focused on

Convolutional Neural Networks (CNNs)[42], Restricted Boltzmann Machines (RBMs)

[43], Autoencoders (AEs)[44], and Recurrent Neural Networks (RNNs)[45].

These approaches fall into different medical usages such as classification of Tumors

or lesions, Nodules, Fetuses, Neonates, and Cardiac (Fig. 8).

In deep learning, a Convolutional Neural Network (CNN) is a specific type of Deep

Neural Network predominantly deployed to analyze visual imagery. A convolution
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layer followed by a pooling layer through an activation function constitutes the fun-

damental components of a basic CNN. Different architectures such as VGG[46],

LeNet[47], AlexNet and ResNet[48] have been proposed for CNNs to resolve the

emerging issues or improve the performance. The ResNet architecture was employed

in the present thesis. The ResNet is one of the most popular architectures for CNNs

in which it provides a solution for the vanishing gradient problem. This problem

arises in deeper networks with more stacked layers in their architecture. On the one

hand, having more layers or deeper networks leads to extract more complex features

resulting in a better performance. On the other hand, the vanishing gradient is a

barrier to this purpose. Thus, the ResNet stands first among the other architectures

to get over this barrier.

Figure 8: Convolutional Neural Network (CNN) for prognosis dementia classification.
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1.5 Research Objectives

The introduction and review section illustrated the use of machine learning and deep

learning underlying artificial intelligence are promising approaches in many medical

areas. Utilizing AI could help surgeons to predict catheter-tissue contact force in

catheterization in minimally invasive surgery (MIS). This thesis has aimed to esti-

mate the contact force at the catheter tip using machine learning and deep learning

approaches. The first chapter has proposed a machine learning catheter-tissue contact

force method. A regression model can predict the contact force based on the deflected

shapes of the catheter tip section image that yield specific curvature coefficients and

corresponding contact force. The second chapter introduces a convolutional neural

network (CNN) that extracts the catheter’s deflections through images and renders

them to the corresponding force. The proposed deep learning model can make the

prediction relying on the input images without needing feature extraction and pre-

processing.

1.6 Contribution of the Author

The primary outcomes of the present thesis are one journal paper and an IEEE

conference paper. The first paper has been submitted to the Journal of American

Society of Mechanical Engineers (ASME). The second paper has been submitted

to the IEEE International Symposium on Medical Measurements and Applications

2021. The heading and primary technical contributions of these papers are as follows.

1. American Society of Mechanical Engineers (ASME), Journal of Medical Device

Learning-Based Force Estimation for Intracardiac Ablation Catheters

The main contribution of the work is to develop a learning model to estimate
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the catheter-tissue contact force without prior information of mechanical prop-

erties of ablation catheters.

2. IEEE International Symposium on Medical Measurements and Applications

A Deep Learning Force Estimator System for Intracardiac Catheters

The primary contribution of this study is to develop a deep learning model to es-

timate the catheter-tissue contact force. The model can make predictions based

on the input images without utilizing any feature extraction or pre-processing.

1.7 Organization of the Thesis

This thesis is presented in a manuscript-based format. It involves one journal paper

in the third chapter and an IEEE conference paper in the fourth chapter. All chap-

ters, excluding the first two and last chapters, have been replicated from the papers

mentioned above that are under review. The first chapter addresses the introduction

and problem definition and maneuvers over arrhythmia and the second chapter intro-

duces the different approaches to estimate the catheter-tissue contact force. The last

chapter presents the conclusive remarks about the contributions and future works.
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Chapter 2

Literature Review

2.1 Trends in the Adoption of Robotic Surgery

Robotic-assisted intervention facilitates an accurate range of device positioning and

radiation protection for both physicians and patients. This system is used to navi-

gate the catheter through the vessels for vascular applications. This device includes

friction wheels to grip and rotate the catheter (Fig. 9). The Corpath robotic-assisted

surgery system was developed by Corindus Vascular Robotics�[61]. This robotic plat-

form was designed for surgeons to improve their precision in maneuverability during

the catheterization and intervention. Within intervention, the physicians sit behind

a workstation and hold a set of joystick controls that translate the physician’s actions

into device control.

The Sensei and Magellanrobot systems�was designed by Hansen Medical[62]. This

system contains a robotic arm at the patient table and a remote physician console,

which is away from the radiation source. This system benefits from catheters equipped

with a sheath. It also carries advantages such as intravascular shaping, solid stabil-

ity, center-line driving, and remote navigation, following that precision at distal tip

control is significantly accurate (Fig. 10).

17



Figure 9: The Corpath remote robotic control console positioned within the inter-
ventional cockpit, table side-mounted robotic drive, and single-use cassette (inset)
(Courtesy of Siemens Healthineer-Corindus Inc.)

Amigo robot system �[63] was designed in Catheter robotics Inc. This robotic-

assisted surgery is a remote catheter system was equipped with three degrees of

freedom (DOF) manipulation arm that a steerable catheter is implemented on the

slave side, and wireless control is provided to the interventionist navigation. Amigo

is a platform that accommodates all types of commercially steerable catheters in the

market (Fig. 11).

The Niobe robot system �, designed and developed by Stereotaxis Inc [64] a

leader in the robotic industry to treat cardiac arrhythmias, has introduced this system

provides a reliable and accurate magnetic navigation motion in catheter during the

intervention. This system uses the two controlled magnetic arms on the patient’s

sides to control navigating a catheter linked to the magnet (Fig. 12).
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Figure 10: (a) Remote physician console, (b) Sensei and Magellanrobot systems, and
(c) catheters equipped with sheath and low profile, for navigation in smaller vessels
(Courtesy of Hansen Medical Inc.)

Figure 12: Stereotaxis robotic magnetic navigation system and imaging system (Cour-
tesy of Stereotaxis Inc).

Furthermore, da Vinci Surgical System�is a minimally invasive surgical robot

made by the company Intuitive Surgical. This system provides the surgeon with a

set of instruments to conduct robotic-assisted minimally invasive surgery. Da Vinci

acts as the surgeon’s hand motions such as rotating and bending in real-time. the

Da Vinci system also renders the high 3D resolution views of the surgical area and
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Figure 11: a: Amigo remote controller, b: amigo catheter system along with a catheter
implemented into the robotic arm (Courtesy of Catheter Precision Inc.)

incisions (Fig. 13)

Figure 13: (a) Controlling the instruments while monitoring surgical areas and in-
cisions, (b) patient card positioned beside the patient and includes the instruments
and the camera controlled by the surgeon, and (c) 3D vision cart (Courtesy of Da
Vinci Intuitive Inc.)
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2.2 Necessity of Estimation the Contact Force

Haptic generally represents touch feedback, including kinesthetic (force) and cuta-

neous (tactile) feedback. Minimally invasive surgery (MIS) and robot-assisted proce-

dures are committed to improving agility while reducing the patients’ trauma. Nev-

ertheless, extensive clinical progress with robot-assisted minimally invasive surgery

(RMIS) has been marginalized. It is assumed that the contact force feedback has

turned into a limiting factor; it is worth noting that all the newly emerged robot-

assisted surgical systems while presenting outstanding visual feedback, are ineffective

in rendering force feedback. In conventional surgical procedures, surgeons use their

tactile and visual capabilities to do open surgery. Still, in robot-assisted minimally

invasive surgeries, long instruments are used. They deprive surgeons of the sense of

touch, dexterity in insertion, depth perception, tactile cues, and mask force cues [5].

Some studies have been conducted and shown that there is a link between an intra-

operative injury and lack of haptic feedback [65]. In robot-assisted minimally invasive

surgery (RMIS), all-natural haptic feedback is killed since the surgeon is unable to

manipulate the long instruments directly. Lack of force might result in irreparable

damages in patients suffering from arrhythmia, and an excessive force can lead to

perforating heart tissue, and subsequently insufficient force at catheter tip will cause

incomplete treatment [66].

The current force feedback devices for RMIS usually estimate and measure the force

applied to patients’ tissue by the surgical tools and render the transparent force to the

hand through the force feedback mechanism. Commercially available force sensors

are efficient in measuring the forces in various telerobotic systems. However, some

requirements such as size, geometry, cost, bio-compatibility, and sterilizability must

be met because of the restrictions in the surgical environment. The other method is

to design the surgical instruments simulating and transferring the force feedback to

surgeons’ hands. The design of the force sensor can be implemented in the surgical
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instruments (Fig. 14) [67] . The conventional force display can be used as force es-

Figure 14: A robotic surgery device for two-hand manipulation with integrated force
feedback and 3D vision, designed and developed by researchers at DLR, Germany[67].

timation for surgeons. The master manipulator’s actuators are set and programmed

to simulate the forces when the robotic arms contact the patients’ tissue. Skilled sur-

gical components are typically made as a seven degree-of-freedom (DOF) of motion,

such as translational, rotational, and gripping. Nevertheless, the master unit cannot

actuate all the degrees of freedom; thus, the system can not render the force feedback

in specific directions. The results may be negligible or disturbing, depending on the

directions of force feedback missed [68]. The other factor that can affect the accuracy

of the force display is the dynamics of the master manipulator; however, a more sig-

nificant limitation is the trade-off between transparency and stability of the system

for force feedback. A perfectly transparent telemanipulator is not possible since it

would require perfect models of the dynamics of the patient-side robot and master,

zero time delays from computer processing and information transmission.

It is important that small delays and errors in the master manipulator and slave

unit can result in uncontrollable misgivings in a ”closed-loop” teleoperator. This

instability would carry irreparable damages and is not accepted in surgery. An al-

ternative method to measure the contact force is to use sensory substitution. In the

most recent years, researchers across the world have developed force-sensing methods

and sensor-less force contact estimation methods to test the effectiveness of force and

haptic feedback.
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2.3 Catheter-tissue Contact Force Estimation Ap-

proaches

Cardiovascular diseases (CVDs) stand first among the other conditions to jeopardize

people’s lives worldwide and the main cause to bring about more mortality. Catheter-

ization procedure, along with accurate haptic feedback, is a primary treatment for

CVDs. Traditionally, interventionists would rely on X-ray imaging to measure the

contact force indirectly [69]. Haptic feedback in model-based approaches is rooted in

the catheter’s mechanical model and changes in patients’ tissue. Many studies have

been carried out to estimate the contact force based on catheters’ mechanical char-

acteristics and guidewires. These components are manufactured of coils. They are

made of biocompatible materials like Tungsten Nickel-Titanium alloys, Gold, or Plat-

inum [70]. Catheters and guidewires are considered single-dimension materials. It is

hypothesized that diverse approaches have been gone through to model the catheters:

multibody dynamics, particle-based models, and Continuum mechanics models.

2.3.1 Instrumented Cardiac Catheters (sensor-based)

In recent years, many tactile sensors have been developed to facilitate force measure-

ment in MIS/RMIS procedures. The application and use of the sensors necessitate

physical and technical requirements. Consequently, the application and implementa-

tion factors must be weighed when selecting a sensing concept. Initially, researchers

must define and give priority to the use-case of the sensor before developing the sen-

sor. The structure of MIS and RMIS tactile sensors are electrical-based[8]. These

tactile sensors are divided into four categories, such as piezoresistive, piezoelectric,

capacitive, and optical sensors (see Table 2).

As mentioned, MIS carries many advantages and is of great importance that has

motivated researchers across the world to carry out studies to increase the dexterity in
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MIS procedures and priority is given to MIS over conventional surgeries because of less

discharging time of the patients and minimal lesion, minimizing trauma particularly

for those suffering from anemia. Lack of haptic (force and tactile) feedback provided

to surgeons is considered a major limiting factor in MIS. Many other sensor-less and

model-based force estimation methods have been done. Sensor-less methods bring

along mathematical complications in simulating the catheters and guide-wires and

requiring the extraction of catheters’ mechanical properties, vessels, solution schema,

and motion of the vasculature discretization length. Besides, the use of sensors to

estimate the force at the tip of the catheter tip requires miniaturization of the sensor

over the cardiovascular catheter. This may carry barriers to building the sensors,

such as sizing, MRI (Magnetic Resonance Imaging) compatibility, and the catheter’s

structural flexibility. In contrast with model-based approaches, sensor-based methods

are less dependent on unknown mechanical parameters such as the catheter’s stiffness

or structure. They can provide fast feedback to surgeons. It is worth noting that the

availability of sensor-embedded catheters and high cost are considered the limitations

of the sensor-based system.

2.3.2 Model-based Force Estimation Methods (sensor-less)

2.3.2.1 Multi-body Dynamics Models

Shapes of the guidewire inside the human body can be simulated by parameterization-

based algorithms, which are efficient and precise [71]. This algorithm is rooted in

elementary physics and yields a reasonable accuracy. This model is acceptable and

utilized in modeling the deflection and motion of slender structures such as catheters

and guidewires [71]. To derive the kinematic equations of the deformable body, the

structure is assumed to be a set of rigid bodies connected by spherical joints, including

springs and/or dampers. This approach is known as the Multi-body model method
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[72]. This approach simulates the minimally invasive vascular interventions and mod-

els a discrete design of a guidewire and catheters with different physical features [73].

Another study to estimate the contact force that is computationally considered an

efficient algorithm for training purposes is modeling the blood vessels and catheters

that enable interventionists to have a haptic sense while manipulating the catheter

in the virtual procedures. In this method, the Finite Element Methods (FEM) were

used to model the tissue-deformable behavior [74].

2.3.2.2 Particle-Based Dynamics Models

Mass-spring models or particle-based models are applicable for modeling objects with

complicated material features like non-linearity and viscoelasticity. They have been

chiefly utilized to acquire the deformation of vascular tissue [75]. Many studies have

been carried out to model the catheter and guide-wire using this method [76]. A

catheter can be modeled using the mass-spring method, the method decomposes the

image of the guide-wire and catheter into the model that is defined as a set of beam

elements and animation component, and physical interaction between guide-wire and

catheter is performed using gap technique, on the other hand, the vessels are assumed

as a rigid object, in other words, a novel model to interactively simulate a catheter and

a guide-wire. This model presents realistic performances for the two simulated objects

and improves the model with a particular visualization method [77]. Notwithstanding

the acceptable performance in computational, mass-spring models are not physically

reliable.

2.3.2.3 Continuum Mechanics Models

Camarillo et al. [78] revealed a continuum model of a tendon-driven catheter in early

developments. A promising achievement in predicting the catheter’s deflection shape

under quasi-static manipulation was shown. Baily and Amirat showed a continuous
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representation of statistic deflection in the intracardiac catheter intervention (MAL-

ICA) in 2005. Nevertheless, the models mentioned above were not presented in the

real-time platform and considered quasi-static conditions; furthermore, the models

needed precise structural data, e.g., non-linear material compliance and measure-

ment of the force catheter tip [79]. The quasi-static condition is far away from the

cardiac vessels’ physiologic conditions. It presents the above models as ineffectual for

robotic PCI (Percutaneous Coronary Intervention) purposes.

Khoshnam et al. [80] introduced the continuum deflection model in 2012, and the

large deflection of steerable ablation catheter was modeled using the Bernoulli-Euler

beam theory (e.g., see [81] for details).

The shear stress of the cross-section was neglected in the study. This hypothesis

appears logical because of the catheters’ high slenderness; however, the model was

based on a quasi-static theory.

Furthermore, khoshnalm et al.[82] has claimed successful implementation of the large

deflection study method proposed in [80] to predict contact forces at the tip of an

ablation catheter with the steady-state error of less than 5%. Although their out-

comes were encouraging concerning the precision, their model was not satisfactory

considering the various point loads and wall contact conditions through robotic PCI.

Besides, their model is assumed to be two-dimensional with the planar cantilever

beam. In three-dimensional problems, finding a closed-form solution to a large defor-

mation problem requires accurate examination and simplifies hypotheses; hence, the

models using closed-form solutions are generally ineffectual.

A linear finite element model and Bernoulli Euler were proposed to estimate the con-

tact force between an intracardiac catheter and a vascular phantom, including vessels

by Gao et al. [83]. The outcomes presented that the model miscalculated the contact

force in comparison with other different studies. This is due to the neglect of the non-

linearity generated by the large deformation in the beam[84]. It is worth noting that

FEA (Finite Element Analysis) can provide high accuracy in modeling the catheters
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and guide-wires. Still, it is highly considered an expensive and vulnerable method

towards inaccurate results if insufficient constraints of large deformation and contact

analysis are applied to it [8].

2.3.2.4 Imaging, Segmentation, and Shape-Sensing

Recognizing the pixels of an image that exposes the catheter’s shape is described as

catheter segmentation. The purpose of segmentation is to obtain the catheter’s shape

and estimate its deformation by caparison to its undeformed original shape. Various

approaches have been proposed for catheter segmentation and tracking in X-ray im-

ages [85] and cinematographic (video) imaging [86].

To analyze the efficiency of various segmentation methods, Dalvand et al. [87] in-

troduced a set of features, i.e., refresh rate (fps), precision (±1 mm); in the process,

there will be no need for more than two cameras, fiducial markers, auto-calibration,

and approximation by circular arcs automatic exposure of the catheter’s tip, and 3D

remodeling capability. In this method, no need for knowledge of the anatomy and

parameterizing of the features is suggested.

2.3.2.5 Curve Parameterization and Estimation of Deformation

In this approach, the catheter shape is parametrized analytically in the formulation

[88]. Mainly, curve parametrization is known as the interpolation in three dimensions

(x,y,z) that are set of catheter points. In this method catheter is described as a

normalized real positive and parameter s in which s = 0 represents the tail and s = 1

represents the tip of curve[89].

2.3.2.6 Force Estimation Based on X-Ray Image Feed and Shape-Sensing

These techniques are suggested to estimate the catheter’s undiscovered acting forces

depend on its deformation state (inverse problem). To resolve the problem defining,

assembling, and setting the adequate constraints of dynamic equations concerning
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the motion and catheter’s deformation. Researchers have utilized different meth-

ods for expressing the mechanics of the catheter deformation. All of the techniques

require the fundamental mechanics’ principles such as conservation of momentum

(dynamic/static force), conservation of mass, conservation of energy (kinetic, poten-

tial, strain, total energy, and external work of the unknown forces. All the factors

mentioned are considered as a function of its local deformations. Three principal sets

of equations outlined above are needed to tackle this inverse problem; nevertheless,

these might result in an irrelevant configuration without appropriate constraints [89].
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Chapter 3

Learning-Based Force Estimation

for Intracardiac Ablation Catheters

3.1 Introduction

Cardiovascular interventions are treatments that require the diagnosis and rehabilita-

tion of abnormal vessels or heart. Rhythm control with anti-arrhythmic drugs (AAD)

is a premier way to treat patients with pre-existing heart failure and atrial fibrillation.

Catheter ablation is a well-tested therapy for symptomatic atrial fibrillation that is

resistant to drug treatment in patients dealing with abnormal cardiac arrhythmia

[90]. Radio-frequency catheter ablation (RFA) is a relatively considered more effec-

tive and well-tolerated procedure to cure atrial fibrillation than anti-arrhythmic drug

(AAD) therapy. Studies of RFA to cure the patients suffering from atrial fibrillation

treatment illustrate higher efficacy rates than studies of AAD therapy and a lower

rate of complications [91]. Minimally Invasive Surgery has revolutionized the treat-

ment of cardiovascular disease (CVD). The injury’s size is considered minor than in

conventional surgery since the slash size is minimal, driving to less discomfort and

fast discharge of the patients. Minimally invasive catheter ablation procedure carries

several advantages, i.e., minimal incisions, quicker recovery time, reduced bleeding,
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and are also considered cost-effective [92]. Physicians need to visualize the patient’s

anatomy during the catheterization and monitor the catheterization procedures using

X-ray fluoroscopy. The use of X-ray fluoroscopic imaging is a radiation source that

exposes the interventionists and staff to the scattered radiation. It may jeopardize

staff’s health in the long run [7]. Thus, it motivates the clinicians to use the MRI

imaging systems and researchers to find MRI-compatible tools[93]. The advantages

of MRI imaging also expedites developing image-guided therapies and image-based

solutions.

3.1.1 Necessity of force estimation

Tool-tissue interaction force is of great importance for cauterization, particularly in

Radio-Frequency Ablation (RFA). RFA is known as the premier treatment for atrial

fibrillation and arrhythmia. Electrical disruption is the main cause of arrhythmia and

changes in heart rhythms[94]. Using imaging and other indicators to assess the causes

of arrhythmia is known as electrophysiology (EP) study. An EP study is customarily

carried out prior to cardiac ablation to determine the most productive method to

treat arrhythmia. The catheters are equipped with electrodes at the pointers that

can send electrical impulses to the heart and document the heart’s electrical activ-

ity. Once a particular heart tissue causing the arrhythmia is identified, the physician

will place the ablation catheter tip at an abnormal heart tissue location to create a

scar/damage in the tissue that possibly triggers arrhythmia (Fig. 15). In some cases,

ablation blocks electrical signals traveling via the heart to terminate the arrhythmia

and allows signals to move in a common pathway instead. In ablation therapy, sur-

geons have no control of knowing how much force is applied to the tissue without

force feedback data, which could hinder the surgical task. An excessive force might

damage the heart wall, and insufficient force might result in incomplete ablation
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treatment[66]. The safe limit of force at the tip of ablation catheters is 0.3N , and

over-loading may result in puncture of the heart chamber and damages to the vessels.

Besides, catheter tip contact force must retain about 0.1N to gain effective treatment

for RFA therapy [95].

Robot-assisted cardiovascular devices have also been developed and utilized to in-

crease the dexterity in tip motion and provide excellent visual feedback [96]. How-

ever, they are inadequate in presenting force data or feedback. Robot-assisted cardio-

vascular devices are categorized for three main procedures: Percutaneous Coronary

Intervention (PCI), Percutaneous Peripheral Intervention (PPI), Electrophysiologic

Intervention (EPI). Different remote-control robotic devices such as CorPath200 �,

CorPathGRX�, Niobe�, and Sensei� robotics catheter system were introduced and

used in the medical industry to eliminate the potential risks during conventional car-

diovascular procedures. The applicability of these devices for radio-frequency and

electrophysiological mapping ablation was studied in 2003 by Ernst et al.[97]. Some

researchers carried out studies concerning the force measurement using direct and

indirect approaches such as embedded force sensing elements and model-based meth-

ods.

To collect force information during an RFA procedure, sensing elements have been

embedded at the tip of ablation catheters, such as piezo-resistive [98], optical[99],

capacitive [100] and piezo-electric[101] sensor systems. Optical sensors are MRI com-

patible and fall into three categories Fabry-Perot Interferometry (FPI), Fiber Bragg

Grating (FBG), and Light Intensity Modulation (LIM). FPI and FBG-based sensors

are sensitive to temperature and the DAQ (Data Acquisition) device to collect the

data is costly. LIM-based sensors provide accurate data, but they are less sensitive

[102]. The sensors containing the piezo-resistive, piezo-electric, and capacitive are not

MRI compatible because of the metal materials used in these types of sensors[102].

Nearby ferrous materials, e.g., braiding of the sheath and nearby circular mapping
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catheters, may affect the force measurement accuracy of sensorized catheters. How-

ever, MRI affects ferromagnetic components’ functionality and specifically catheters

equipped with a force sensor[103]. TactiCath� and Imricor � [104] are the MRI

compatible steerable diagnostic/ablation catheters equipped with a optical force sen-

sor. Utilizing these types of catheters in the RFA procedure has shown that real-time

contact force technology boosts the ablation effectiveness and treatment of supraven-

tricular tachycardia and atrial fibrillation by allowing better control of lesion size [105].

However, force sensors add more complexity to the structure of the ablation catheters

and can reduce the instrument’s reliability and deliverability [105]. Moreover, the size

limit and sterilizability of sensors mounted in RFA catheters are considered critical

problems[106].

Sensor-less methods have been introduced and are categorized into continuum me-

chanics, differential geometry, and particle-based dynamics.

One of the force estimation approaches is based on shape estimation of the ablation

Figure 15: Intracardiac intervention procedure [107].
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catheters using two electromagnetic sensors and designing a kinematic redundancy

manipulator of the catheter model that could estimate the force at points or multiple

points [108]. Predictive modeling for microwave ablation procedure has been devel-

oped to estimate the contact force as well [109].

Another study proposed obtaining the catheter model’s known parameters based on

pose measurement of the distal tip to estimate contact force [107]. A nonlinear mate-

rial model of heart tissue has been proposed in which, based on the tip displacement

and tendon lengths, the force at catheter’s tip on the heart tissue can be measured

[110].

Other studies suggest that the information on the contact force can be collected from

the changes in the catheter’s shape/position and orientation of the distal shaft, where

the contact force can be controlled by altering the flexion of the distal shaft [111].

Multi-point contact force estimation at the tip and side of the catheter has been pro-

posed using image-based numerical methods [112], where a finite-element model of

a catheter is fed by image data to simulate the navigation procedure and estimate

the forces. Also, a kinematic multi-section model of the tendon-driven for catheter

deflection in 3D was developed to estimate the contact force by the shape estimation

with tracking of the catheter tip position and tension feedback [113].

Table 2 compares studies cornering instrumented and model-less force-sensing meth-

ods, their application, advantages, and limitations. The sensor-based approaches

have fewer ambiguous model parameters but necessitate changes in prevailing tendon-

driven catheters’ configuration and layout. On the other hand, the sensor-less ap-

proaches are less tedious to incorporate, but they need a precise simulation of the

catheter dynamics and typically include model parameters with uncertainty.

This work proposes a novel sensor-less force estimation technique based on the ma-

chine learning algorithm, which uses the image of the catheter distal tip section.

Learning methods have also been used in needle insertion to estimate the force at the

needle tip [114] and other robotic-assisted tools [115].
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The proposed approach utilizes learning the shape of the distal catheter section by

extracting the deflected shape features and estimating the force that corresponds to

those features. Employed shape features were determined as the polynomial coeffi-

cient of a curve fitted to catheter distal shape as being deflected in contact with heart

tissue. The surgeon controls the force during the ablation procedure based on the

estimated force obtained from the learning model.

The paper begins with developing a methodology to generate an estimation model

for tip contact force based on imaging data. The learning model employs a non-linear

support vector regression algorithm, which uses catheter knob and shape features

data as inputs and forces data as the target. An experimental setup is designed

to simulate a catheter tip in contact with artificial heart tissue. The setup has a

two-degree-of-freedom heart motion simulator to mimic heartbeat movements, which

simulate changes in contact force based on inducing deflection to the catheter distal

tip section. Artificial heart tissue mounted on a six-axis force/torque sensor to record

tip-tissue contact forces.

The prepared model was trained using a set of collected data. For validation purposes,

the trained model estimated contact forces based on shape features and catheter knob

in an unseen testing data set. Then estimations are compared to their observed force

values. The model generated in this study is for a specific ablation catheter and ar-

tificial tissue for proof-of-concept. To carry out, the following steps are needed: data

collection (force, images of distal section and catheter knob angle), image processing

and feature extraction, developing and training the model, and model evaluation in

estimation.

This method can be an alternative force-sensing solution since the difficulties associ-

ated with sensor integration is avoided. The proposed technique is computationally

efficient and convergent for real-time applications without complexity and dependency

to the catheter mechanic models. To the best of our knowledge, this is the first study

that uses the learning method to estimate the contact force at the ablation catheter’s
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tip.

Table 2: Comparison of the sensor-based and model-based force estimation methods.
Approach Method Author Application Advantages Limitations

Sensor-based C
Kim[100]
Golpayegani[116]

RMIS
Accuracy = 98.1 %
Sensitivity = 0.83 kHz/N

PE
Qasaimeh[117]
Ju[118]

Catheterization
Catheterization

Force Range = 0.01- 4N
Error < 3.5%

Not MRI Compatible
Electrical passive

PR
Hwang[119]
Kalantari[120]

RMIS
Catheteirzaion

Linearity > 99.6%
RMSE = 0.611 N

OPT
Polygerinos[121]

(LIM)
Cardiac ablation

Accuracy = 94%
Linearity = 96%
Hysteresis = 6%

Low sensitivity

Yokoyama [122]
(FBG)

Cardiac ablation
Resolution = 0.01 N
Accuracy = 98%

Temperature sensitive
Costly DAQ

Tohyama [123]
(FPI)

Balloon catheters Force Range = 0 - 0.2 N

Model-based CM
Khoshnam[80] Cardiac ablation Real-time Imaging

No haptic device
Low workspace accessibility

Khoshnam[82]
Weak energy formulation
No haptic device

DG Back[124]
Exact energy formulation
Real-time Imaging No haptic device

Cai[125] Contact treatment: Augmented Lagrange
Weak energy formulation
No haptic device

P Lenoir[77] Contact treatment : Lagrange multipliers
Weak energy formulation,
Low workspace accessibility

MD
Guo[126]
Wang[127]

Exact energy formulation, haptic device
Exact energy formulation, haptic device

Low workspace accessibility

C: Capacitive, PE: Piezo-electric, PR: Piezo-resistive, OPT: Optical, FBG: Fiber Bragg Grating, LIM: Light Intensity Modulation
FPI:Fabry-Perot nterferometry
CM: Continuum Model, P: Particle-based, MD: Multi-body Dynamics, DG: Differential Geometry
PCI: Percutaneous Coronary Intervention

3.2 Methods

3.2.1 Learning-based force estimation

In ablation therapy, cardiologists predict and control catheter-heart tissue contact

forces visually by tracking tip deflection under 2D or 3D imaging. It is a learning

process based on experiments and training. Here, we are utilizing the same concept

to build an image-based learning approach for force estimation. Fig. 16 presents pro-

posed methodology. The overall concept is to train a machine learning model using a

set of deflected catheter tip images and their associated contact forces. Any individ-

ual measurable property of the catheter-deflected shape varies depending on the tip
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contact force, a useful feature. We fit a polynomial curve to the deflected-catheter

shape and utilize the polynomial coefficients as quantitative features. Initially, a se-

ries of pictures are taken from the catheter tip, i.e., the section which is more likely

to be deflected when contacting the heart tissue. A real-time image segmentation

extracts deflected catheter shape, followed by curve fitting, which computes the poly-

nomial coefficients of the fitted curve. These coefficients, along with catheter knob

actuation angle, are considered as the features for machine learning. The training

step is to generate a learning model from the data set of features and the forces. The

estimation step is where the model estimates unseen forces from the catheter image

and the known knob actuation.

Figure 16: Image-based force estimation through a learning model created by de-
flected catheter tip shape and knob actuation data.

3.2.2 Image-based shape extraction

The interventionalist provides the initial and final destination in a graphical user

interface (GUI) and maintains supervisory control over the insertion, navigation, and

tip contact force based on the images obtained. Our method proposes using the
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same imaging available in a catheter for force estimation. It is required to extract

the pose of the catheter in real-time. To do so, an image processing algorithm has

been proposed to segment the catheter’s distal end body and track its shape as being

deflected by heart tissue. Algorithm 1 explains the proposed image-processing steps.

As the global coordinate of catheter image may change case by case in clinical imaging,

we are looking at the catheter deflections from the catheter base prospective, isolating

it from dependency to the imaging coordinate.

Therefore, a local coordinate is located to the base of the catheter bending section,

and pixels are transferred accordingly. An RGB camera collects the image of the

catheter in our test setup. The RGB image is converted into a grayscale image (Fig.

17(a)). Thresholding is applied to the grayscale image to create a binary image of

the catheter (Fig. 17 (b)). It assigns a black pixel value to each pixel where the

density is less than the threshold constant, Thr = c. Thresholding helps in effective

localizing catheter pixels in the search step (Fig. 17(c)). To form the local catheter

coordinate, it is required to find catheter base points. A search step looks for catheter

pixels through the initial columns of the frame and fits a line to those pixels. The

fitted line to base points creates the X-axis of the local coordinate of the catheter,

i.e., the tangent line, and the Y-axis is constructed perpendicular to the existing X-

axis. Subsequently, the translation followed by the rotation creates the transformation

matrix from frame coordinates to the local catheter coordinates (Fig. 18), which is

applied to each point.


x′

y′

1

 =

R2×2 T2×1

0 1



x

y

1

 (1)

where, (x′, y′) is the local catheter coordinate system, R2×2 is rotation matrix, T2×1 is

the translation matrix and (x, y) is the global frame coordinate system. The density

of the black pixels of the images has been reduced to optimize the image processing
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(a) (b)

(c) (d)

Figure 17: (a) Real catheter image, (b) Binary catheter image, (c) Location of pixels
and, (d) Curve fitted to catheter’s pixels.

speed, such that the catheter has been mapped to a single-pixel line. Fig. 17 de-

picts steps of image processing as (a) depicting original catheter image, (b) binary

image of the catheter after threshold, (c) catheter single-pixel line, and (d) catheter

transformed to the local coordinate.

3.2.3 Curve fitting

The following step is curve fitting, referring to the process of constructing a curve, or

a mathematical function, which is best suited to a series of data points. Curve fitting

may involve either interpolation where an accurate fitting to the data is required or

38



Figure 18: Converting global frame coordinate to local catheter coordinate.

smoothing where a ”smooth” function is constructed to fit the data approximately.

A fourth-degree polynomial was fitted to extract catheter body pixels to mimic its

deflected shape in a mathematical format (Fig. 17(c)). Polynomial gives five unique

coefficients corresponding to each catheter shape (C(x)) as Eq. (2). The polynomial

coefficient is going to be used as the feature of the catheter image in ML algorithm.

C(x) = A1x
4 + A2x

3 + A3x
2 + A4x+ A5 (2)

Fig. 17 (d) shows an example of fitted curve to a deflected catheter.

3.2.4 Learning algorithm using SVRMs

The bent shape of steerable catheters is a function of knob actuation and tip contact

force. In this study, we are proposing to estimate tip contact force by tracking the

image of catheter distal shape and values of knob actuation. Initially, a learning
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Algorithm 1 Image-processing and curve fitting algorithm

Function Segmentation and Curve Fitting :
Input : Image of ablation catheter in contact with heart tissue
Output : Coefficients of curve fitted to catheter distal section
Initialization:

1: Thr = c
2: BS = N
3: while Frame← video.read do . Image stream LOOP
4: Frame← RGB2GRAY (Frame) . Color conversion: RGB to grayscale
5: Catheter ← threshold(Frame, Thr = c) . Extracting catheter body pixels

through thresholding
6: for columns 0 to N in catheter binary image scan pixels do . Find catheter

base point
7: if pixel ([Px, Py]) is black (value=0) then
8: Array of BS append [Px, Py]

9: fit line L to BS . Fit a line to catheter base point
10: compute the center of points in BS as catheter base reference O . Reference

for local coordinate of catheter
11: form local coordinate of catheter using O and L
12: create [R, T ] the transformation matrix to local coordinate of catheter from

original Frame coordinate
13: map Catheter binary image to single-pixel line . This is to optimize the

computation cost
14: Transfer Catheter pixel matrix to local coordinate of catheter (x′, y′) using

[R, T ]
15: fit a fourth-degree polynomial to Catheter pixel matrix
16: return polynomial coefficient of [c1, c2, c3, c4, c5]

model is prepared to utilize a database of image features (polynomial coefficients) and

knob actuation related to corresponding tip contact forces. The SVM algorithm, first

introduced by Vladimir Vapnik [128]. Radial Basis function (RBF) kernel function

with SVM was chosen in this study considering that the collected data was roughly

non-linear. The primary function of SVM is to construct the optimal hyperplane

(OH) in the training phase using the proper estimation [129] of a weight vector w

and the scalar bias factor b. All of the training models are assumed to be linearly
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separable if there exist ω and b such that the following inequalities observed:

(ω · xi) + b ≥ 1; if yi = 1 (3)

(ω · xi) + b ≤ −1; if yi = −1 (4)

where w is weight vector, b is a bias and {xi = x1, x2, x3, ..., xn} are vectors repre-

senting the data points, and yi are the classes attributes. Feeding this input to the

model would enable estimation of force values as system outputs; this stage is called

estimation. The estimation model in SVM can be shown as follows:

f̂(x) = sign(ω · ϕ(x) + b) = sign(
N∑
i=1

αiyi.ϕ(xi).ϕ(xj) + b) (5)

where, α is the optimization parameter, and product of φ(xi).φ(xj) is scalar quantity.

In machine learning literature, this product is called Kernel Function. SVM can

also be used as a regression method, having all the main features that characterize

the algorithm (maximal margin). The Support Vector Regression (SVR) applies the

same origins as the SVM for classification, with only a few minor variations. The

main difference rests with the value of the variable y. For classification problems, the

variable y has only two values -1 and 1, that is, y ∈ {+1,−1}. However, for regression

questions, the variable y can be any real value, that is y ∈ R.

The primary origin of the regression of SVM is to mapping data x to high dimension

feature space F by non-linearly mapped ϕ and have the data linearly regressed in high

feature space. Nevertheless, the primary purpose is always the same: to minimize

error and individualize the hyperplane, which maximizes the margin; in this method,

part of the error is tolerated. Having a generated model, the trained model can

be used for estimation purposes. In this paper, the model estimates the force at

the tip of the catheter, where input is image specifications and knob actuation angle.
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We employed the five polynomial coefficients, the image features, besides the catheter

knob actuation as the model inputs. In SVR, {.xi, yi}Ni=1 is training data set, in which

xi ∈ Rp represents p-dimensional input vector following that yi ∈ R is a scalar force

measured as output. The goal is to develop a function y = f(x) that demonstrates

the output force yi according to the input xi. The data x is mapped to a higher

dimensional feature space F by ϕ(x). The form of this function is:

y = w
T

ϕ(x) + b, ϕ(x).Rn → F, ω ∈ F (6)

The Support Vector Regression method has been widely depicted in literature [130].

Consequently, only a primary comprehensive summary of the theory underlying SVR

modeling will be presented here. The optimization problem and the equality con-

straints are obtained by the following equations:

Remp = C
N∑
i=1

e(f(xi)− yi) (7)

subject to :

e(x, y, f) = |y − f(x)|ε =


0 |f(x)− y| ≤ ε

|f(x)− y| − ε |f(x)− y| > ε

(8)

where e(x, y, f) denotes ε-Insensitive Loss Function, Remp is Empirical Risk that needs

to be minimized, and constant C illustrates the parameter in optimizing the trad-

off between the flatness of the training errors and the model’s degree of complexity.

The goal is to look for the optimal parameters such as w and b that minimize the

estimation error of the regression model. The optimal model will be chosen by having

the minimal loss function. The formulation related to the regression in features space

might be multi-dimensional, or even infinitive and the problem might not have an

easy solution, thus to resolve the issue a capacity control term can be added to the
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Empirical Risk Function and yields a Regularized Risk Function as follows :

Rreg = Remp +
1

2
‖ω‖2 =

N∑
i

e(f(xi)− yi) +
1

2
‖ω‖2 (9)

To optimize parameters (w, b), in R(ω) is Risk Empirical function, the partial differ-

entiation is applied to Eq. (9) with respect to w, b and equate the equations to the

zero following that the dual problem can be solved under constrains as follows:

N∑
i

(αi − α∗i ) = 0, 0 ≤ αi, α∗i ≤ C (10)

where i = 1, 2, ..., N and αi, α
∗
i are the Lagrangian multipliers, in this stage we at-

tempt to minimize the Eq. (9) for the parameters of αi and α∗i under constrains (10)

and applying the Lagrangian optimization gives us:

min(Qαi,α∗
i
) =

1

2

N∑
i,j=1

(α∗i − αi)(α∗j − αj)K(xi, xj)

+ε
N∑
i=1

(α∗i + αi)−
N∑
i=1

yi(α
∗
i − αi)

(11)

and we obtain the optimized values for:

α = (α1, α∗1, ..., αN , α
∗
N)

T
(12)

and finally the regression model is generated as fallows:

f(x) =
N∑
i=1

(α∗i − αi)K(xi, x) + b (13)
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following that b is computed in accordance with applying the so called Karush–Kuhn–Tucker

(KKT).

b = yi −
N∑
i=1

(α∗i − αi)K(xi.xk) + ε (14)

where K(x, xi) is a kernel function , as it was mentioned before we used RBF in this

paper. The RBF kernel is defined as follows:

K(x, xi) = exp(− 1

σ2
‖x− xi‖2) (15)

where σ is the kernel parameter of RBF kernel.

3.2.5 Experimental setup

Test setup in this study simulates the ablation arrhythmia therapy where the catheter

is inserted in vein, in the groin, and navigated to the heart chamber. A heart simula-

tor was designed to replicate heartbeats, and the operator controls the distal section

of the tip aimed to reach artificial tissue, e.i., the damaged region of the patient’s

heart. Experimental setup for data collection and performance evaluation is shown

in (Fig. 19). The setup contains a heart motion simulator, catheter contact force

measurement platform, camera, Boston Scientific Blazer II XP Temperature ablation

catheter, holders/fixtures, and artificial heart tissue. Artificial heart tissue is made of

a mixture of silicon rubber that is poured into the designed mold. We aimed to min-

imize trapped air by degassing the mixture inside the mold using a vacuum chamber.

Finally, the mixture was cured at room temperature for 24 hours. The catheter is

equipped with the electrodes at the tip to ablate heart tissue and cure arrhythmia. As

presented in Fig. 20, the heart motion simulator has two linear actuators equipped

with stepper motors (17HS4401-S 40mm Nema) driven by HANPOSE TB660. These

two linear actuators are assembled perpendicularly to simulate the 2-DOF motion
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Figure 19: Experimental test setup simulates catheter tip in contact with heart tissue
during ablation therapy.

of the heart. Heart motion is briefed as PQRST. P wave indicates atrial depolar-

ization that the atria contract (atrial systole ). The QRS complex represents the

mixture of S waves, R, and the Q, and also shows ventricular depolarization as well

as a contraction (ventricular systole). The PQRST represents a sinusoidal motion

of the heart, the designed heart simulator simulates a sinusoidal motion in two di-

rections X and Y (see Fig. 20(b)). A six-axis force/torque sensor (ATI mini 40-E

transducer) has been mounted on the heart simulator to record the force while the

catheter contacts an artificial tissue. The artificial heart tissue is placed on the F/T

sensor to mimic soft catheter-tissue interaction. Catheter path from femoral access,

where the interventionalists start inserting, to the heart through the vein is depicted
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in Fig. 21. Initially, when ablation catheter enters the left femoral vein and guided

to the right atrium (RA) through the inferior vena cava (IVC), it reaches the left

atrium via fossa ovalis (FO) and then ablates near the pulmonary veins (PV) (see

Fig. 21(b)). The heart simulator represents a 2-DOF motion. Besides, to obtain

different deflections at catheter tip in contact with the artificial heart tissue, a similar

motion to the half-wave of the PQRST was replicated for the experiments. A similar

path is constructed by a sheath and adjustable holders in our setup, which catheter

goes through it (see Fig. 19), end of the bending section is fixed as the catheter

navigates and goes through the heart wall and this positioning was simulated in the

experiments (see Fig. 21(b)). The catheter knob is set at the degree of 10 to induce

a pre-deflection in the distal section. It simulates a similar condition to a clinical

case where the tip is being deflected to reach in contact with tissue. Then, the heart

simulator is run in a sinusoidal forward-lateral motion while the catheter tip stays in

contact with artificial tissue. Deflection of catheter changes, and simultaneously, the

camera captures the images of the deflected tip section, and the F/T senor records

the associated CF. Captured images will be processed to extract the coefficient of the

curve fitting as the deflection features. Data of coefficients, knob actuation, and the

measured force are prepared for training the model, estimations, and performance

evaluation.

3.3 Results

3.3.1 System performance and study protocol

Fig. 22 presents the study protocol from data collection to model evaluation. The

collected data from experiments are representing more than hundreds state of de-

flected catheter which includes five polynomial coefficients, catheter knob angle and
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(a)

(b)

Figure 20: (a) 2 DOF heart simulator equipped with F/T transducer and artificial
tissue, (b) PQRST waveform of a heart in two directions.

associated force. The polynomial coefficients and knob angle are considered as fea-

tures and the forces represent the target. Data set is separated into training sets and

testing sets. From two hundred and twenty data acquired, seventy-five percent of

the data are randomly allocated to the training set. Estimations are carried out with

twenty-five percent of data left as the testing set. The data is normalized with respect

max value for each feature, i.e., coefficients and actuation knob angle. Measured force

values are also normalized to the max value. Supervised learning was applied as the
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(a) (b)

Figure 21: (a) Sample of cardiac ablation catheter insertion path from femoral access,
(b) detailed pathway for ablation [24].

task of learning a function that maps the polynomial coefficients into the measured

forces. It brings a common scale, without distorting differences in the ranges of values

and it helps to have the same range of values for each of the inputs/outputs of the

model. This also guarantees stable convergence of weight and biases. A non-linear

SVR model is generated by performing training stage. The regression model is vali-

dated then using the testing data set and accuracy of force estimations are evaluated

compared to true values. The performance metrics to evaluate our model are includ-

ing mean-square-error and absolute error of regression loss in estimation step with

unseen data.

3.3.2 Experimental learning-based force estimation evalua-

tion

Table 3 shows five samples of normalized data: the coefficients of catheter curve,

knob angle and contact force. Carrying out the training stage using the normalized

features and labels, the mathematical SVR model is generated.
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Figure 22: Machine learning flow chart.

Fig. 24 shows fitted SVR model to experimental observed states and force values in

training data set. Comparing observed forces to the model suggests that non-linear

regression effectively fits the experimental data and mimics catheter tip behavior in

contact with heart tissue. Therefore, the model can relate contact force values to the

state of the catheter tip section, i.e., coefficient of deflected curve and knob actuation

angle. The test data set inputs, i.e., coefficient and knob angle, are fed to the model

to predict the contact force of unseen states in order to validate the model. The

Table 3: Samples of normalized data set including five coefficients of fitted curve to
the catheter’s tip section, knob actuation angle and associated tip contact force.

A0 A1 A2 A3 A4 Knob angle Force
0.075 0.831 0.2578 0.5184 0.9136 10 1
0.074 0.8320 0.2630 0.4980 0.9371 10 0.9867
0.075 0.828 0.2697 0.4835 0.9543 10 0.9726
0.080 0.8189 0.2901 0.4415 0.4415 10 0.9725
0.073 0.8329 0.2634 0.4958 0.9346 10 0.9379
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estimated contact forces are compared to the real values in Fig. 23(b) for unseen

testing data set. In this figure, the red dash line (y = x) is the real force in which

the estimated values near the line are more accurate and the residual of regression

is smaller. Regression loss of absolute error is between 0.0016 N to 0.059 N where tip

contact force values are from 0.16 N to 0.275 N, as tabulated in table 4. Achieved

error confirms the effectiveness of the learning model. Fig. 23(a) demonstrates the

estimation error of the model as a percentage to the true values. Positive error is an

over-estimated value, and negative is an underestimated value. Estimation error of

less than 4% is achieved, which validates model in force estimation for unseen catheter

tip section shape. The computed mean-absolute-error (MAE) of the estimated force

in reference to real force was 0.042 N.

The estimated forces do not follow a consistent underestimation or over-estimation

trend, which suggests that the proposed methodology sources no systematic error.

Estimation accuracy is likely dependent on how well the learning regression model

fitted to the data. Additionally, the noise error is due to the force/torque sensor

(ATI Mini 40-E transducer), image processing, camera, or other variations in data

collection. Another source of the error might be because of an inappropriate curve-

fitting over the catheter. As it can be seen in Fig. 24, the model can not observe

catheter’s shapes because of the states at 15, 40, 100, and 170.

Table 4: Tip contact force range and regression error.
Contact Force (N) Metrics

Min Max Avg Min Error Max Error MAE
0.160 0.275 0.218 0.0016 0.059 0.042
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(a)

(b)

Figure 23: (a) Estimation error for unseen testing data set, (b) estimated catheter tip
contact forces for unseen testing data set are compared to the real force measurements.
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Figure 24: SVR model fitted to the observed training data set.
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Chapter 4

A Deep-Learning Force Estimator

System for Intracardiac Catheters

4.1 Introduction

Cardiovascular diseases (CVDs) have become a leading problem of mortality across

the world with a current number of 17.3 million deaths throughout a year, and it

is expected to increase by up to 23.6 million deaths by the year 2030, depicting 31

percent of all global mortalities [131]. Most significantly, cardiovascular diseases risk

factors could contribute to cardiac structural changes that are closely associated with

electrical disruption and cause of arrhythmia [12]. Cardiac electrical disruption usu-

ally causes arrhythmia involving changes in heart rates, irregular beats, and atrial

fibrillation. Arrhythmia leads to uncoordinated contractions and relaxations in vari-

ous regions of the myocardium, that can be supraventricular (e.g., atrial fibrillation)

or ventricular [10]. Treatment of arrhythmia goes into two categories; Pharmaco-

logical and Non-pharmacological therapeutic options, anti-arrhythmic drugs (AAD)

are the primary treatment for rate control in the most extensive patients with Atrial

Fibrillation (AF). In contrast, ablation of the AV conduction system is an alternative

that often results in extraordinary symptomatic remedy[132].
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Throughout the ablation procedure, the catheter is directed into the vascula-

ture and placed inside the heart to deliver heating energy to ablate some portions

of cardiac tissue. Ablation procedure has revolutionized the treatment of cardio-

vascular diseases, and it is considered standard practice in such treatments. Unlike

conventional open-heart surgery, the minimally invasive catheter ablation consider-

ably carries less injury due to the small slash size of catheter insertion. It entails

less discomfort and rapid discharge of the patients. According to the studies and

Meta-analysis done between years 1989 and 1998 that over a total of 1181 patients

underwent Radio-frequency ablation (RFA); it was achieved that AV nodal ablation

remarkably recovered cardiac symptoms, quality of life, and healthcare utilization for

patients with symptomatic AF refractory to AAD [133]. Radio-frequency ablation

corrects the electrical signals heart pathway and terminates the arrhythmia.

Minimally invasive catheter ablation procedures comprise various advantages, i.e.,

minimal incisions, fast recovery time, less bleeding, and is considered as a cost-effective

treatment Though, minimally invasive surgery therapy (MIST) has provided many

benefits to medical societies but conventional ablation procedures are lacking the force

and tactile feedback that may create complications in the treatment. The effective

range of tissue-contact force at the tip of ablation catheters is 0.1N to 0.3N [95]. In

the sense that applying excessive force in steering the catheters by the surgeon might

damage the heart tissue and subsequently inadequate force might cause a deficient

ablation treatment [66].

With the aim of reducing radiation from X-Ray fluoroscope to surgeons and pati-

nas during catheterization and dexterity in the interventions, Robot-assisted mini-

mally invasive surgery (RMIS) was developed and emerged to hold this promise for

developing the efficiency and skill of surgeons while minimizing injury to the patients.

Besides, the interventionists and staff benefit from its excellent visual feedback such

as Sensei� robotics catheter system and Niobe� magnetic catheter navigation sys-

tem. Robot-assisted minimally invasive surgery (RMIS) are categorized in three main
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divisions: electrophysiologic intervention (EPI), percutaneous coronary intervention

(PCI), percutaneous peripheral intervention (PPI). Radio-frequency ablation is placed

under umbrella of EPI procedure. The electrophysiology (EP) study uses the imagery

to evaluate the origin of the arrhythmia.

The catheters equipped with electrodes at the pointers can convey electrical pulses

to the heart and record the heart’s electrical activities. When EP recognizes a specific

heart tissue causing the arrhythmia, the surgeon will locate the ablation catheter tip

at the area of the irregular heart tissue to create a scar/damage in the tissue that

probably brings about arrhythmia. Radio-frequency ablation corrects the electrical

signals heart pathway and terminates the arrhythmia.

Widespread clinical achievement with RMIS has been negligible. However, still this

system suffers the shortage of haptic (force and tactile) feedback given to the surgeon

is a limiting factor and reduces the efficiency [134]. In minimally invasive surgery

(MIS), surgeons indirectly sense the instrument’s interaction with the heart tissue

through a long shaft, which kills tactile and forces signals. Based on the studies done,

the loss of force feedback in MIS has led to intra-operative injury [135]. In teleoper-

ated robot-assisted minimally invasive surgery (RMIS), all-natural haptic feedback is

excluded. The surgeon has no longer control over the manipulation of the instrument

directly.

The researches on force analysis approaches at the catheter tip fall into two cate-

gories: sensor-less methods (Estimation) and embedded force sensing elements (Mea-

surement). One of the sensor-based approaches to measure the tissue-contact force

in MIS is the implementation of a standard sensor to a modified trocar outside the

patient that provides a smooth measurement of manipulation of force [136]. Following

that, the alternative approaches are proposed such as audio feedback [137], graphical

feedback [138], vibrotactile display that is the other form of hepatic feedback [139] and

also some other examples of tactile sensors include piezoelectric arrays [140], capac-

itive sensors [141], force-sensitive resistors [139] and Fiber Bragg Grating FBG [142]
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which are mainly embedded in ablation catheters tip to estimate the force directly.

Shape estimation of the ablation catheter using two electromagnetic sensors and de-

signing a kinematic redundancy manipulator of the catheter model could estimate the

force at points or multiple points[108]. Although, the structures of catheters equipped

with force sensors are complicated by far and reduce the reliability and deliverability

[105]. Furthermore, catheters size limit and sterilizability of sensors implemented at

tip of ablation catheters can be taken as a critical matter [106]. In addition, during

catheterization, visualizing the patient’s anatomy plays a significant role and most

likely X-ray fluoroscopy and MRI are used. MRI is a compatible solution but it af-

fects the functionality of embedded-sensor catheter ablations [103]. X-ray fluoroscopy

imaging is source of radiation and interventionists and staff may be exposed to the

scattered radiation which extremely affects their health in the long term [7][93]. Thus,

model-based force estimation is considered as an alternative approach to accomplish

the task. Sensor-less approaches suggest that the force estimation at catheter tip can

be gained by changes in catheter’s shape/position and orientation of the distal shaft

[111]. Another approach is catheter model-based force estimation; this method can

estimate the force according to the pose analysis of the catheter tip and the identified

parameters of the elastic model of ablation catheters [143]. Predictive modeling for

microwave ablation procedure has been developed to estimate the catheter contact

force. In this work, we devised a solution based on a deep learning method to address

the problem of contact force estimation at catheter tip (Fig. 25).

As a sensor-less solution, the system is directly fed by the data emitted from a

camera. The camera plays the role of X-Ray imaging in the authentic operation

room. It provides the model with the successive images of the catheter. The model

estimates applied forces to the catheter using the corresponding deflection of the

shape. This system can overcome the difficulties that embedded-sensor catheters

may be involved; besides the accuracy and robustness of this technique are of great

importance in real-time applications. This technique relies on learning the images
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Figure 25: This diagram shows the general architecture of the proposed method.

of the distal section of catheters and estimation of the force corresponding to those

images. During the catheterization, the surgeon is able to control the force using the

estimated force acquired from the generated model. In contrast to the methods that

employ a feature extraction phase before the learning phase, the proposed solution

elicits essential features and trains the model simultaneously. In other words, the

system aims to solve a regression problem in such a way that maps the input images

to the 2D dimensional space of forces. It trains the model through an end-to-end

network. Having the catheter images during the surgery, the system can approximate

forces in two directions.

To collect data, a test setup is designed to simulate ablation procedure and

catheter deflection from insertion vein femoral (Fig. 21) in interaction with artifi-

cial heart tissue. The setup includes a 2-DOF heart simulator to resemble the heart

motion and drives the deflection while the catheter tip contacts the tissue. We record
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the contact forces using a 6-DOF force/torque sensor mounted at the artificial tissue

and capturing images of the shape of the distal catheter section with a camera. Hav-

ing generated the mathematical model, it will be used to predict the contact forces

based on the catheter images and catheter knob angles to evaluate the model validity.

The main contributions of the proposed solution are listed as follows: it is not

required to perform a series of specific complicated preprocessing operations for com-

piling the input data. Besides, the system is capable of making decisions on every

image without exerting either mathematical or machine vision-based algorithms for

feature extraction. For example, some literature methods calculate the mathemati-

cal characteristics of the catheter’s inflection to approach a correct definition of the

shape. However, these kinds of methods are chiefly incapable of modeling the curves,

which are not defined in a mathematical function format. The trained model is also

invariant to translation, scaling, and rotation so that the force can be attained re-

gardless of the curvature’s degree. For the sake of simplicity, we call the proposed

method Deep Catheter Force Estimator (DCFE).

Figure 26: Sample of cardiac ablation catheter insertion path from femoral access.
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4.2 Experimental setup and procedure

4.2.1 Experimental setup

The experimental setup was designed to simulate the insertion area, path and deflec-

tion in catheter during ablation therapy in heart chamber to collect force data at the

catheter tip. To reproduce the heart motion, a heart simulator was sat up.

The setup is presented in Fig. 27 and consists of catheter contact force measurement

platform, motion simulator, camera, Boston Scientific Blazer II XP Temperature Ab-

lation catheter, guide sheath and adjustable holders/fixtures. As shown in Fig. 28,

the heart motion simulator has two linear actuators that are equipped with stepper

motors (17HS4401-S 40 mm Nema) powered by HANPOSE TB660. Those two linear

actuators are perpendicularly assembled to simulate the heart’s two-DOF-motion. A

six-axis force-torque sensor (ATI mini 40-E transducer) was mounted on the heart

simulator to measure force when the catheter is in contact with an artificial tissue.

The artificial heart tissue is fixed on the F/T sensor to produce the interaction be-

tween soft catheter and tissue. Fig .26 depicts the catheter path from femoral access.

A sheath and adjustable holders in our setup create a similar path, which catheter

goes through it (Fig. 27).

4.2.2 Data preparation

Initially, to collect the force data corresponding to catheter deflection, the catheter

knob was fixed at the degree of 10. The heart simulator starts moving in a sinu-

soidal forward-lateral motion. Simultaneously, the catheter tip remains in contact

with artificial tissue mounted on the heart simulator. The camera was implemented

perpendicularly on the contact location of the catheter and moving artificial heart

tissue, and tracking tip deflection under 2D. The camera captures the deflected tip

section’s images with a sampling rate of 24 HZ, following that a six-degree-of-freedom
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Figure 27: Experimental test setup simulates catheter tip in contact with heart tissue
during ablation therapy.

force-torque sensor (ATI mini40-E transducer) begins recording the force of contact-

ing the catheter tip with artificial heart tissue simultaneously. In this experiment, we

implemented our module on Python using tensor flow 2.0.
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Figure 28: 2 DOF heart simulator equipped with F/T transducer and artificial tissue.
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The following step is generating the convolutional neural network (CNN) by train-

ing the DCFE, including the images of the catheter, corresponding forces as features,

and labels. Our data set is categorized into 154 testing samples and 461 training sam-

ples to evaluate the validity of the convolutional neural network (CNN) and estimate

the force in a real-time platform (Fig. 25)

4.3 Methodology

As mentioned in the previous section, the proposed method attempts to translate

the images of catheters into the force space and provide surgeons with a tangible

estimation of applied forces. Hence, an experimental setup has been utilized with

the intention of simulating the actual therapy with common equipment for a specific

catheter ablation task. In a real case, the surgery is accomplished under the X-ray

fluoroscopy imaging and a surgeon corrects the trajectory by referring to the real-time

imaging mechanism. Similarly, the setup encompasses a camera to capture the im-

ages from catheter’s motions, while an actuator is driving the tip within an artificial

plastic vein and squeezing it on a force sensor. The collected data is then used to

train a deep learning model.

A Convolutional Neural Network (CNN) is considered as a feature extractor and also

a regression analyzer for acquiring a robust model on the given data set. Since the

temporal behavior of the data is not supposed to be investigated, a feed-forward deep

learning model based on the ResNet architecture is employed [48]. The graph of the

neural network is modified in such a way that it receives 2D images with RGB chan-

nels in the input and generates a 2D vector corresponding to every input image as

the estimated force x and y (Fig. 29).

Deep convolutional neural networks are mainly used to process the image data.

stacked layers constitute the graph of an end-to-end sub-network. It widely per-

forms not only as a feature extractor in a deep object detector, but also as a classifier
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in object recognition problems [144, 145]. On the one hand, it derives the low to high

level features from the input image. On the other hand, combining with one or more

dense layers, it can discriminate samples’ class label or predict target values in the

supervised manner.

Moreover, Convolutional neural networks can be enhanced in terms of the perfor-

mance by revising their graph and number of stacked layers. As a result, increase in

the number of layers or making the network deeper leads to achieve a better gener-

alization and outcome in the model. However, it also ends up to some further issues

in the design as well. With this in mind, eclectic number of architectures have been

proposed to be assessed on challenging datasets such as ImageNet [146]. For instant,

the mostly referred and popular CNNs such as LeNet, VGG-16, AlexNet and ResNet

have been introduced with a particular design [47, 46, 147, 48]. Every intended archi-

tecture follows a specific mechanism to improve the performance of the final model,

thereby extracting highly robust features.

As mentioned earlier, ResNet is the preferred architecture for the proposed method.

To this end, we more concentrates on the internal structure of this network, in spite

of inordinate precious sources in the literature [48]. Basically, the DNN is supposed

to receive the input image τ ∈ Rn×n and projects it to the output γ ∈ R2, where n is

the dimension of the input image and γ is the forces in a 2D space x and y.

γli = F (τ li ) (16)

where i is the number of input sample and l denotes the layer’s number. Normally,

a 2D convolution layer followed by a pooling layer and a specific activation function

constitutes a full layer in CNNs. Stacking several layers of this kind make a deeper net-

works. The parameters of the network should be regulated using Stochastic Gradient

Decent (SGD) and back propagation method. Although the deep network increases

the accuracy of models, vanishing gradient causes the degradation problem in the
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optimization. As a solution, ResNet has been introduced with the aim of enabling

DNNs to have a deeper graph without encountering with vanishing gradient problem.

ResNet utilizes the residual mapping for approximating the input in such a way that

the process is done through the residual function H(τ li ) rather than the function (1):

H(τ li ) = σ(F (τ li ) + τ li ) (17)
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where F (τ li ) points to a residual block including convolution and batch normaliza-

tion layers and also, σ denotes the corresponding activation function. Our proposed

solution uses ResNet-18 as the desired architecture for CNN (see Fig. 5). In order

to estimate forces in the 2D directions, a dense layer is added to the last layer of the

graph as follows:

γl = WF (τ li ) + b (18)

where l here is the output layer and W and b are weights and biases respectively.

Also, the loss function below is utilized so as to train the model as well as evaluate

the performance:

loss(r, p) =

√∑d
i=1(ri − pi)2

d
(19)

Obviously, r denotes the real forces and p is the predicted values in d = 2 dimensions.

The graph is optimized using the above function in a supervised manner. Using the

aforesaid architecture, it is conceivable to extract the relationship between every in-

put image and its corresponding force vector.

4.4 Evaluation and Discussion

As mentioned before, DCFE’s graph has been designed based on the ResNet architec-

ture. Fig. 29 shows the designed diagram of the CNN. An input image goes through

a 2D convolution layer with 64 filters of size 7 × 7, followed by a batch normalization

layer and Relu activation function. A 3 × 3 max-pooling operator is applied to the

output of the Relu. Afterward, the output traverses four successive residual blocks

with 64, 128, 265, and 512 filters. Every residual block itself comprises convolution

and batch normalization layers. A fully connected layer with two neurons is then fed

by the output of the last residual layer. This layer plays the role of regression in order

to map the feature maps of the CNN to desired forces in the x and y direction.
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The DCFE was fed by the catheter’s images captured from the setup for both training

and evaluating purposes. Each image was resized to a 224×224×3 tensor. Afterward,

every pixel was normalized to have a value between 0 and 1. Fig. 30 demonstrates

some samples of images used for the test phase of the model. A data set was gener-

ated using the forces in the x and y direction associated with preprocessed images.

In contrast to the image data, the forces’ values were not normalized so that the

Table 5: Performance of the model. Min, Max and RMSE estimation errors are
tabulated.

Force Direction Min Error Max Error RMSE

x 0.0001 0.066 0.028

y 0.0003 0.068 0.023

DCFE would provide predictions on the actual forces. The dataset was divided into

461 training and 154 testing samples. The DCFE was trained in 10000 epochs on

the training set to translate every input image into the corresponding forces in the

x and y directions. In fact, the DCFE deploys a regression to estimate the forces’

actual values using images of the catheters. Furthermore, the DCFE was evaluated

on unseen images of the test set, as shown in Table 1. This table reports the RMSE

and the minimum and maximum errors of the model’s prediction on the x and y. To

be more precise, the trained model was loaded to the inference engine to predict the

forces using input images. It is worth saying that designing and training the model

and building the inference engine were implemented in Python using TensorFlow 2.0

[148].
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Figure 31: The diagram illustrates the distribution of both actual and predicted force
in the x and y direction. rx and ry are the real force data while px and py are the
predicted values. the plot provides the minimum, maximum, median, quartiles and
outliers of the data.
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Fig. 31 displays the variation of both actual force data and the predicted result.

The left subplot shows the minimum, maximum, median, quartiles, and outliers of

the data, as mentioned earlier, for forces in the x-direction (rx and px). The right

subplot provides that information for the forces in the y-direction (ry and py).

As mentioned earlier, either of real and estimated forces has not been normalized, so

the distribution in the Fig. 31 is scattered based on the actual values. Although the

results of x and y have been investigated separately, the DCFE makes predictions on

both directions simultaneously. In other words, the last fully-connected layer in the

graph contains two neurons for mapping to the output size.

Fig. 32 depicts the performance of the DCFE in estimating the forces. The top

subplot provides the estimated and actual force values in the x-direction in orange

and blue respectively. The bottom subplot gives the results of the model compared

with the real target of forces in the y-direction. As shown in the plots, the model was

successfully trained on the given dataset and provided reasonable predictions with an

acceptable accuracy on the test images. Using the capability of deep learning, the

model was able to process the input images without further preprocessing and feature

extraction. The model addresses the problem of force estimation for catheters with

a robust sensor-less solution, in which it only utilizes the data captured by a camera.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The use of the ablation catheters with the sensor at tip carries complications, such

as high cost, error in the force measurement accuracy from nearby ferrous materials,

less deliverability, and steerability. The objective of this work was to develop and

experimentally validate a learning-based predictive method for catheter tip contact

force using imaging data. The predictive force model is generated using the support

vector regression algorithm. The polynomial coefficient of a curve fitted to deflected

catheter tip shape and knob actuation angle features and contact force are considered

targets. The proposed learning solution is originated from the fact that expert clini-

cians control tip contact force through visual learning of the tip shape. The observed

shape and the force of a catheter tip in contact with an artificial tissue were collected

in our test setup with a 2D heart motion simulator and an ablation catheter in a path

from femoral access to the heart chamber. The predictive model yielded catheter tip

force estimation in close agreement with actual values for unseen data. An absolute

error of less than 0.059 N (within range of 4%) was achieved. A further step is vital

to implement the method in clinical ablation treatment. The learning-based force

estimation is an advancement toward automated robotic ablation therapies. Force
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prediction solutions can be developed for other cardiovascular procedures and instru-

ments based on the proposed approach.

Furthermore, the deep learning-based method was presented for estimating the gener-

ated force directly from the catheter images. It aims to deliver insight into catheter-

heart tissue interaction forces. It improves surgeons’ performance as well as the

reliability of ablation treatments of cardiovascular diseases. The proposed solution

is considered a sensor-free method in such a way that it only utilizes the data that

emerged from the common equipment in operation rooms. In other words, the model

maps input images to their corresponding forces in the x and y-direction. Regardless

of how complicated is Catheter deflected shape, the model can predict the force with

reasonable precision. Moreover, the proposed method is fed by raw images with-

out performing feature extraction operations. A mechanical setup was designed and

made to physically simulate ablation therapy and collect force-image data. Finally,

the method was assessed by the unseen data, and the result showed that the trained

model could effectively estimate the force.

5.1.1 Future Work

As future works, the proposed method can be developed in methodology and practice.

Experimentally, a significant problem in both robotics-assisted invasive surgery and

invasive manual surgery is controlling the catheter-tissue contact force. Robots and

surgeons are subjected to catheter-tissue contact forces whenever they perform tasks,

including motion constrained by the heart tissue. To control the catheter-tissue con-

tact force, a control system can be added to the deep neural network (DNN) model

for enhancing the performance of robotic minimally invasive surgery (RMIS). In other

words, force control plays a vital role in minimally invasive surgeries; thus, the pro-

posed method can be considered a feedback element in the force control system (Fig.

33). The suggested method can also be implemented on other types of interventional
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devices and cardiovascular procedures to develop image-based sensing solutions in a

real-time platform. Estimating the three dimensions of the contact force using the

DNN model can also be considered potential future research. Validating the method

in a clinical condition under fluoroscopy imaging is an intuitive step. Besides, enrich-

ing the proposed system to map images to the force space to become more precise is

taken into the future step.

Figure 33: Closed-Loop force control using machine learning model as feedback ele-
ment.
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[42] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[43] Paul Smolensky. Information processing in dynamical systems: Foundations of

harmony theory (no. cu-cs-321-86). Colorado Univ at Boulder Dept of Computer

Science, 1986.

[44] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality

of data with neural networks. science, 313(5786):504–507, 2006.

[45] Ronald J Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural computation, 1(2):270–280,

1989.

[46] Karen. Simonyan and Andrew . Zisserman. Very deep convolutional networks

for large-scale image recognition, 2014.

[47] Yann. Lecun, Leon . Bottou, Yoshua . Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[48] Kaiming. He, Xiangyu. Zhang, . Ren, and J. Sun. Deep residual learning for

image recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

[49] Adhish Prasoon, Kersten Petersen, Christian Igel, François Lauze, Erik Dam,

and Mads Nielsen. Deep feature learning for knee cartilage segmentation using a

triplanar convolutional neural network. In International conference on medical

image computing and computer-assisted intervention, pages 246–253. Springer,

2013.

81



[50] Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng.

Early diagnosis of alzheimer’s disease with deep learning. In 2014 IEEE 11th

international symposium on biomedical imaging (ISBI), pages 1015–1018. IEEE,

2014.

[51] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, and

Arunachalam Narayanaswamy. Development and validation of a deep learning

algorithm for detection of diabetic retinopathy in retinal fundus photographs.

Jama, 316(22):2402–2410, 2016.

[52] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter,

Helen M Blau, and Sebastian Thrun. Dermatologist-level classification of skin

cancer with deep neural networks. nature, 542(7639):115–118, 2017.

[53] Shekoofeh Azizi, Sharareh Bayat, Pingkun Yan, and Amir Tahmasebi. Detec-

tion and grading of prostate cancer using temporal enhanced ultrasound: com-

bining deep neural networks and tissue mimicking simulations. International

journal of computer assisted radiology and surgery, 12(8):1293–1305, 2017.

[54] Jun Shi, Shichong Zhou, Xiao Liu, Qi Zhang, Minhua Lu, and Tianfu Wang.

Stacked deep polynomial network based representation learning for tumor clas-

sification with small ultrasound image dataset. Neurocomputing, 194:87–94,

2016.

[55] Qi Zhang, Yang Xiao, Wei Dai, Jingfeng Suo, Congzhi Wang, Jun Shi, and

Hairong Zheng. Deep learning based classification of breast tumors with shear-

wave elastography. Ultrasonics, 72:150–157, 2016.

[56] U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong

Tan, and Muhammad Adam. Application of deep convolutional neural network

for automated detection of myocardial infarction using ecg signals. Information

Sciences, 415:190–198, 2017.

82



[57] Jonathan Rubin, Rui Abreu, Anurag Ganguli, Saigopal Nelaturi, Ion Matei,

and Kumar Sricharan. Recognizing abnormal heart sounds using deep learning.

arXiv preprint arXiv:1707.04642, 2017.

[58] Majd Zreik, Nikolas Lessmann, Robbert W van Hamersvelt, Jelmer M

Wolterink, Michiel Voskuil, Max A Viergever, Tim Leiner, and Ivana Išgum.
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