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Abstract

Hybrid Beamforming Design for Millimeter Wave Massive MIMO Communications

Guilherme Martignago Zilli, Ph.D.

Concordia University, 2021

Wireless connectivity is a key driver for the digital transformation that is changing how peo-

ple communicate, do business, consume entertainment and search for information. As the world

advances into the fifth generation (5G) and beyond-5G (B5G) of wireless mobile technology, new

services and use cases are emerging every day, bringing the demand to expand the broadband ca-

pability of mobile networks and to provide ubiquitous access and specific capabilities for any device

or application. To fulfill these demands, 5G and B5G systems will rely on innovative technologies,

such as the ultradensification, the mmWave, and the massive MIMO. To bring together these tech-

nologies, 5G and B5G systems will employ hybrid analog-digital beamforming, which separates the

signal processing into the baseband (digital) and the radio-frequency (analog) domains. Unlike con-

ventional beamforming, where every antenna is connected to an RF chain, and the signal is entirely

processed in the digital domain, hybrid beamforming uses fewer RF chains than the total number of

antennas, resulting in a less expensive and less energy-consuming design. The analog beamforming

is usually implemented using switching networks or phase-shifting networks, which impose severe

hardware constraints making the hybrid beamforming design very challenging. This thesis addresses

the hybrid analog-digital beamforming design and is organized into three parts.

In the first part, two adaptive algorithms for solving the switching-network-based hybrid beam-

forming design problem, also known as the joint antenna selection and beamforming (JASB) problem,

are proposed. The adaptive algorithms are based on the minimum mean square error (MMSE) and

minimum-variance distortionless response (MVDR) criteria and employ an alternating optimization

strategy, in which the beamforming and the antenna selection are designed iteratively. The proposed

algorithms can attain high levels of SINR while strictly complying with the hardware limitations.

Moreover, the proposed algorithms have very low computational complexity and can track chan-

nel variations, making them suitable for non-stationary environments. Numerical simulations have

validated the effectiveness of the algorithms in different operation scenarios.

The second part addresses the phase-shifting-network-based hybrid beamforming design for nar-

rowband mmWave massive MIMO systems. A novel joint hybrid precoder and combiner design is

proposed. The analog precoder and combiner design is formulated as constrained low-rank channel

decomposition, which can simultaneously harvest the array gain provided by the massive MIMO
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system and suppress intra-user and inter-user interferences. The constrained low-rank channel de-

composition is solved as a series of successive rank-1 channel decomposition, using the projected

block coordinate descent method. The digital precoder and combiner are obtained from the optimal

SVD-based solution for the single-user case and the regularized channel diagonalization method for

the multi-user case. Simulation results have demonstrated that the proposed design can consistently

attain near-optimal performance and provided important insights into the method’s convergence

and its performance under practical phase-shifter quantization constraints.

Finally, the phase-shifting-network-based hybrid beamforming design for frequency-selective

mmWave massive MIMO-OFDM systems is considered in the third part. The hybrid beamforming

design for MIMO-OFDM systems is significantly more challenging than for narrowband MIMO sys-

tems since, in these systems, the analog precoder and combiner are shared among all subcarriers and

must be jointly optimized. Thus, by leveraging the OFDM systems’ multidimensional structure, the

analog precoder and combiner design is formulated as constrained low-rank Tucker2 tensor decom-

position and solved by a successive rank-(1,1) tensor decomposition using the projected alternate

least square (ALS) method. The digital precoder and combiner are obtained on a per-subcarrier

basis using the techniques presented in the second part. Numerical simulations have confirmed

the design effectiveness, demonstrating its ability to consistently attain near-optimal performance

and outperform other existing design in nearly all scenarios. They also provided insights into the

convergence of the proposed method and its performance under practical phase-shifter quantization

constraints and highlighted the differences between this design and that for the narrowband massive

MIMO systems.
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Chapter 1

Introduction

1.1 Looking Forward to 5G and Beyond

Over the past decade, the world has witnessed an accelerated digital transformation that has im-

pacted how people communicate, do business, consume entertainment and search for information.

A crucial component of this digital transformation is wireless connectivity. As societies advance

into the fifth generation of wireless mobile technology (5G) and beyond-5G (B5G), industry and

researchers need to evolve the concept of wireless connectivity to expand the broadband capabil-

ity of mobile networks and to provide ubiquitous access and specific capabilities for any device or

application, not only for consumers but also for various industries and societies as a whole [1], [2].

The potential use cases for 5G and B5G systems spread across different industries. By compiling

the prospects from recent reports from Ericsson, Nokia, McKinsey, and STL Partners [1]–[7], some

examples of use cases, classified according to industry sectors, include:

� Agriculture: low-power sensor networks and IoT devices will enable smart crop monitoring to

integrate irrigation and nutrient-distribution for real-time optimized crop growth and resource

usage, and smart-livestock monitoring to provide individualized feeding-and-care plans aimed

at detecting illnesses and providing optimal feed and medicine mix to maximize each animal’s

growth; low-latency and reliable connectivity will enable autonomous-farming machinery to

perform interventions that optimize the resource usage and reduce the labour requirements.

� Consumer: fixed wireless networks (FWA) will provide a faster and more reliable alternative
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to wired broadband in households; virtual and augmented reality (VR/AR) will enable immer-

sive experiences for education and gaming; enhanced video streaming will allow interruption-

free video calls and media streaming anytime and anywhere, with the ability to stream from

drones, bikes and other non-wired locations; smart venues will ensure connectivity and reliabil-

ity in crowded events, such as sports tournaments, concerts, festivals, and allowing high-quality

video uploading and a blend of physical and virtual experiences.

� Healthcare: remote patient monitoring will enable 24/7 patient monitoring and support

through e-health and wearable devices; virtual consultations and remote surgeries will in-

crease the access of patients to healthcare; connected ambulances will stream patient data

and information from sensors and high-definition cameras between paramedics and in-hospital

emergency departments.

� Industry: fast and reliable communication between sensors and machinery will allow manu-

facturing industries to monitor the status of machines in real-time and to perform predictive

and preventative maintenance; wireless connectivity will reduce the requirement for wired sys-

tems, allowing a more reconfigurable and flexible production lines; VR/AR will speed up the

worker’s training and guide worker or remote expert when carrying out maintenance.

� Mobility: high-speed, low-latency, and reliable connectivity will enable autonomous vehicle

control to increase safety and allow drivers to use their commuting time profitably for leisure

or business activities; intelligent transportation systems will facilitate traffic management and

dynamic traffic rerouting; vehicle-to-vehicle and vehicle-to-infrastructure communications will

increase driving efficiency and safety; other in-vehicle features will enable precise navigation,

entertainment streaming, and alike.

Nevertheless, there will be other use cases in mining, energy, smart cities, public safety and

surveillance sectors. Despite the plethora of use cases, at this stage, it is impossible to provide an ex-

haustive list of applications since many others will likely emerge. Furthermore, 5G and B5G use cases

have utterly different requirements regarding availability, connection density, energy efficiency, la-

tency, reliability, and throughput. The use cases are, thus, classified according to these requirements

in three essential types of communication [8]: enhanced mobile broadband (eMBB), ultra-reliable

low-latency communications (URLLC), and massive machine type communication (mMTC).

The eMBB provides extremely high data-rates and low latency with high coverage and addresses

human-centric use cases, such as multimedia content delivery and mobile telephony [1]. It will

also address use cases that require a large coverage area and hotspots. Large coverage area cases

2



require seamless coverage and high mobility, while hotspots (i.e., areas with high user density) need

very high traffic capacity and low-mobility [8]. Some of the requirements for eMBB communication

include peak data-rates of 20 Gbit/s and 10 Gbit/s for downlink (DL) and uplink (UL), respectively;

peak spectral efficiency of 30 bit/s/Hz (DL) and 15 bit/s/Hz (UL); user experienced data rate of

100 Mbit/s (DL) and 50 Mbit/s (UL) in a dense urban environment; area traffic capacity of 10

Mbit/s/m2 in indoor hotspots; latency of 4ms; and mobility support to vehicular (up to 30 km/h)

and high speed vehicular (above 120 km/h) in dense urban and rural environments, respectively [9].

The URLLC and mMTC, on the other hand, address machine-centric use cases. The URLLC

focuses on use cases with stringent requirements on throughput, latency and reliability, such as au-

tonomous vehicles, remote surgery, and real-time control of industrial manufacturing and processes.

Its requirements include a 0.5 ms latency (for both UL and DL) and reliability of 1 − 10−5 for a

32-bytes packet transmission with a latency of 1 ms [10]. The mMTC provides connectivity to a

massive number of low-complexity narrowband devices with infrequent and small data transmission,

such as low-cost sensors, meters, trackers, and wearables [2]. The main requirements for mMTC are

to support 1 million connected devices per square kilometre and devices with battery life beyond

ten years [9], [10].

These requirements focus on four dimensions, which will drive innovations in 5G and B5G sys-

tem [11]: (i) Spectrum allocation: to make more spectrum available, 5G and B5G systems will adopt

frequencies above 3 GHz – one can expect 2× more spectrum at below-6 GHz and more than 200× at

above-6 GHz when compared with the current 4G systems [12]; (ii) Spectral efficiency: an increase

in spectral efficiency will be achieved by using large-scale antenna arrays, resulting in improved

link budget through beamforming, and by developing new waveforms and protocols; (iii) Spatial

efficiency: improvements in the order of 5 to 10 times are expected for spatial efficiency, which

will be achieved by supporting reuse over smaller cells/geographic areas through denser networks;

(iv) System efficiency: additional efficiency will be achieved by leveraging software defined network

(SDN) and network function virtualization (NFV), which enable the network to reconfigure itself dy-

namically to meet instantaneous requirements; To carry out advances in these dimensions, three big

technologies will take part in the 5G and B5G deployment [13], [14]: ultra-densification, millimeter

wave (mmWave), and massive MIMO.

In the concept of cellular communication, as initially conceived in the early 80s, the cells were

intended to provide coverage for a large area, on the order of hundreds of square kilometres [13].

The idea of densifying the wireless network consists of deploying a diverse set of base-stations (BS),

including low power, low cost, and smaller (e.g., picocells and femtocells) BSs in the same area
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covered by the traditional macrocell or in locations where the macrocell cannot provide enough

signal strength [11], [15]. This concept, known as heterogeneous network (HetNet) [15], has already

been applied and has provided gains over a thousandfold in the spectral efficiency [11], [16]. The

ultra-densification comes from deploying highly dense HetNet, with tens or hundreds of small cells

under one macrocell’s coverage area, providing spectral reuse across smaller geographical areas and

reducing the number of users sharing the same resources [13]. In dense networks, however, the small

cells are closely located, which comes at the cost of increasing the inter-cell interference [16], [17].

In this context, the ultra-densification becomes attractive when utilizing higher frequencies such as

mmWave, as the significant atmospheric attenuation, characteristic in those frequencies, imposes a

natural cell radius on the order of tens to hundreds of meters [11].

The use of mmWave is also motivated by the spectral scarcity at below-3 GHz bands. As 5G and

B5G systems will require more bandwidth, a natural tendency is to move to the 3-300 GHz1 [12],

[13], [18]. One of the most significant advantages of using mmWaves is the availability of large

continuous unused or underused bandwidths [19]. While the total bandwidth allocated for today’s

mobile communication system does not exceed 780 MHz [20], the mmWave has up to 252 GHz of

potentially available bandwidth [12], which will allow much higher data rates. On the other hand,

one of the main characteristics of the mmWave frequencies is its adverse propagation character-

istics, which is severely affected by path loss, penetration loss, atmospheric and rain attenuation,

among other issues [12], [20]. Nevertheless, the high-frequency waves of the mmWave do not pen-

etrate well in certain materials, especially in building materials such as concrete and bricks [21].

Although these effects may significantly degrade the mmWave propagation and make mmWave mo-

bile communication infeasible for large areas, they are much less present in the short-range mobile

communications, such as in the picocell and femtocell scenarios envisaged for the dense HetNets. In

reality, for small-cells, these propagation effects can be beneficial as they will help promote larger

densification by reducing the frequency reuse distance and limiting the inter-cell interference [14],

[22], [23]. Furthermore, these propagation effects can be mitigated by using MIMO techniques. In

particular, the shorter wavelength of mmWaves enables reducing the size of the antenna elements

and thus, packing a much large number of antennas into small form factors [24], and even embed

antenna arrays into portable devices [25], which favours the massive MIMO.

MIMO systems have long been known for providing diversity, power, and multiplexing gains [26].

The concept of massive MIMO was introduced by the breakthrough works of Marzetta [27], [28],

which have shown that, in the single-cell scenarios, increasing the number of antennas is always

1Despite technically only the 30-300 GHz band corresponds to the mmWave band, as the 3-30 GHz band share
similar propagation characteristics, it is common to refer to the entire 3-300 GHz band as mmWaves [12].
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beneficial and, the effects of noise and small-scale fading tend to vanish as the number of anten-

nas grows to infinity [27]. Furthermore, in massive MIMO, simple linear processing techniques,

such as maximum ratio transmission (MRT) and maximum ratio combining (MRC), or zero-forcing

(ZF) and minimum mean square error (MMSE) detector, can asymptotically achieve near-optimal

capacity [27]–[30]. The above conclusions typically rely on the assumption of an ideal rich scatter-

ing propagation scenario, which is usually not the case for point-to-point and mmWave systems,

where line-of-sight or poor scattering conditions cannot leverage the multiplexing gain of massive

MIMO [24], [31]. However, mmWave systems can still benefit from the high directivity and high

array gain provided by the large-scale arrays, which are expected to provide massive MIMO with

a 10× increase in capacity and 100× improvement in the radiated energy efficiency [31]–[33]. Nev-

ertheless, in terms of energy, massive MIMO systems are expected to use low power, less bulky

components and benefit from additional robustness against malfunctioning or failure of few antenna

elements [29], [33].

These three technologies are complementary in the sense that one will depend on or benefit

from the others. For instance, the short wavelengths of mmWave will lead to smaller antennas,

thus allowing massive MIMO arrays; massive arrays will help reduce the effects of poor propagation

in mmWave; finally, this poor propagation will enable larger densification. However, putting these

technologies together is very challenging. The next section discusses these challenges and a promising

solution to overcome them.

1.2 Hybrid Beamforming: putting mmWave and Massive

MIMO together

Conventional (fully-digital) MIMO arrays at sub-6 GHz frequencies usually handle less than ten

antennas and have all the signal processing performed in the digital domain. Such architecture, de-

picted in Fig. 1, is known as the fully-digital MIMO. The fully-digital MIMO architecture requires

each antenna to be connected to its own radio frequency (RF) chain devices [e.g. power ampli-

fier (PA), low-noise amplifier (LNA), analog-to-digital converter (ADC), digital-to-analog converter

(DAC), and frequency converters] [14], [24]. For massive MIMO, however, the RF chain’s cost and

power consumption, especially in high frequencies, and the space occupied by all these devices, de-

spite the small size of the antennas, will likely prevent the systems from using a complete RF chain

per antenna [34].

A promising solution to overcome these issues is using hybrid analog-digital beamforming, which
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splits the signal processing between analog and digital domains. The hybrid beamforming uses much

fewer RF chains than the number of antennas in the array. Here, the term hybrid beamforming is

adopted to refer to both the hybrid precoding and the hybrid combining used, respectively, at

the transmitter and receiver. At the hybrid precoding, the low-dimensional transmitted symbols

are digitally precoded in the baseband domain, upconverted, and processed in the analog domain to

produce the high-dimensional transmitted waveform. At the hybrid combining, the high-dimensional

received waveform is processed in the analog domain and downconverted into a low-dimensional

signal, which is further digitally combined.

Hybrid beamforming combines the high array gain, provided by the use of many antenna ele-

ments, with the multiplexing gain, provided by the use of multiple RF chains. It also yields a very

appealing trade-off between performance and complexity by supporting the high array and multi-

plexing gains of massive MIMO systems while preserving the reduced hardware complexity due to

the lower number of RF chains. Besides, digital processing allows reducing intra- and inter-user

interference [34], to support multi-stream and multi-user transmissions, and more robust operation

in broadband channels [35].

The digital precoder and combiner are implemented in software (e.g., using digital signal pro-

cessors). In contrast, the analog precoder and combiner stages are implemented in hardware, using

either switches or phase-shifters (PS). These two different analog components establish two classes of

hybrid beamforming [34]: switching-network and phase-shifting-network-based hybrid beamforming.

In the switching-network-based hybrid beamforming, the antennas are connected to the RF

chains through switches as illustrated in Fig. 1.2. In this architecture, the analog beamforming

design alone corresponds to the classical antenna selection (AS) problem [36]–[47], while the hybrid

analog-digital beamforming design is often referred to as the joint antenna selection and beamforming

(JASB) problem [48]–[55]. Although the joint antenna selection and beamforming problem has been

widely studied for conventional MIMO [36]–[55], it has been brought to mmWave massive MIMO
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Figure 1.1: Conventional (fully-digital) MIMO system.
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Figure 1.2: Switching-network-based hybrid combiner.

systems by [56], [57]. Switching-network-based hybrid beamforming uses very simple, low-power,

low-cost switches, resulting in increased energy efficiency [56]. However, this architecture suffers

from two critical drawbacks. First, an optimal solution for the antenna selection problem requires an

exhaustive search over all possible antenna selection combinations. Since the number of combinations

grows very rapidly with the increase in the number of antennas, finding the optimal solution becomes

impractical even for small arrays [38]. Secondly, this architecture can not achieve large array gains

as only a tiny fraction of the antennas are used [58].

In the phase-shifting-network-based hybrid beamforming, the RF chains are connected to all

antennas or a subset of antennas (respectively, in the fully- and partially-connected architectures)

through a phase-shifter network. At the precoder, the RF chain output signal is fed into all phase-

shifters connected to that RF chain and the phase-shifted signals from different RF chains are

combined before being transmitted by the antenna element. Conversely, at the combiner, the signal

received by each antenna is fed into the phase-shifters connected to different RF chains, and the

phase-shifted signals from different antennas are then combined before being processed by the RF

chain. A phase-shifting-network-based hybrid beamforming scheme is presented in Fig. 1.3. Phase-

shifter-based hybrid beamforming had been initially explored for conventional MIMO in [59] and

others but has gained attention after Ayach’s work [24], which broke the ground in leveraging the

mmWave channel characteristics for designing hybrid beamforming.

Compared to switching-network-based hybrid beamforming, the hybrid beamforming based on

phase-shifting-network has access to all antennas, translating into a significant performance im-

provement in array gain and diversity gain [59]. Furthermore, with proper design, phase-shifting-

network-based hybrid beamforming can provide near-optimal performance compared to the fully-

digital beamforming, with a much lower number of RF chains, and consequently, lower complexity

and power consumption. Despite these advantages, the phase-shifting-network-based hybrid beam-

forming design is also challenging: the PS imposes a constant-modulus and phase quantization
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Figure 1.3: Phase-shifter-network-based hybrid precoder (left) and combiner (right).

constraints, leading to non-convex, combinatorial, NP-hard design problems [60]; and the coupling

between analog and digital beamformers adds non-linearity to the problem and makes the channel

estimation more difficult [35].

For conciseness, the following sections and chapters will refer to the switching-network-based

hybrid beamforming as joint antenna selection and beamforming and will use hybrid beamforming

to refer to the phase-shifting-network-based hybrid beamforming.

1.3 Objectives and Contributions

The objective of this thesis is to develop novel switching-network-based and phase-shifting-network-

based hybrid beamforming designs for massive MIMO wireless communication systems. The con-

tributions are presented in three chapters: the first chapter addresses the joint antenna selection

and beamforming for multi-cell massive MIMO systems, and the second and third chapters address

the hybrid beamforming design, respectively, for narrowband and OFDM mmWave massive MIMO

systems. The objectives and contributions of each chapter are described below.

Chapter 2 aims to fill an important gap in JASB problems: the lack of adaptive algorithms

capable of dealing with fixed limits on the number of RF chains. The chapter mainly focuses on

developing two new adaptive algorithms to solve the receive JASB problem in cellular systems.

These algorithms are based on an alternating optimization strategy that searches for the optimal

solution by performing two steps at every algorithm iteration: first, the beamforming vector is

obtained by considering an a priori antenna selection, then the antenna selection is updated using

the a posteriori beamforming vector. The proposed algorithms can attain high levels of SINR while

strictly complying with limitations on the number of RF chains. Moreover, the proposed algorithms
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can track channel changes, making them suitable for operation in non-stationary environments,

requiring only information about the desired signal (i.e., the corresponding direction of arrival or a

reference signal). The main contributions of Chapter 2 are:

� First, a novel adaptive JASB (AJASB) algorithm based on the minimum MSE (MMSE) cri-

terion is proposed. The idea behind such an algorithm is to compute the beamforming vector

and perform the antenna selection aiming to reduce the MSE. In this context, the beamforming

problem is formulated as an unconstrained MSE minimization problem, and the beamforming

vector is updated using the normalized least mean square (NLMS) algorithm. Additionally,

the antenna selection problem is formulated as a constrained MSE minimization problem (tak-

ing into account the hardware limitations), and the antenna selection is updated by using a

constrained NLMS (CNLMS)-based algorithm. Simulation results are provided to assess the

performance of the proposed algorithm under different scenarios.

� A second AJASB algorithm based on the minimum-variance distortionless response (MVDR)

approach is also proposed. In this algorithm, the beamforming vector is obtained from the

MVDR problem, i.e., by minimizing the variance at the beamformer’s output while maintain-

ing a constant gain toward the desired user. Similarly, the MVDR approach is used along

with an additional constraint on the number of available RF chains to formulate the antenna

selection problem. Both the beamforming vector and the antenna selection are updated by

using CNLMS-based algorithms. The performance of the proposed algorithm under different

scenarios are assessed through numerical simulation.

Chapter 3 aims to jointly design hybrid precoders and combiners for single-user and multi-user

narrowband mmWave massive MIMO systems. The proposed designs are based on an iterative op-

timization framework that performs a constrained channel matrix decomposition. Additionally, the

proposed design does not require a priori computation of the optimal unconstrained beamforming.

The main contributions of Chapter 3 are summarized as follows:

� A two-stage approach for designing hybrid beamforming for narrowband mmWave massive

MIMO systems is proposed. At the first stage, the analog precoder and combiner are designed

to harvest the array gain provided by the massive MIMO system while simultaneously reducing

the intra-user interference and multi-user interference (MUI). Such a design is formulated

as a constrained low-rank channel decomposition problem to account for the PS’s constant

modulus constraint, resulting in an intractable problem. To make the problem tractable, a

successive rank-1 channel decomposition approach is proposed. The rank-1 decomposition
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problem computes one analog precoder and combiner vector pair and is solved by using the

projected block coordinate descent method. This approach is very general and supports both

single-user and multi-user systems. At the second stage, the digital precoder and combiner

are computed. For single-user systems, the digital precoder and combiner is obtained from the

optimal singular value decomposition (SVD)-based solution, considering the effective baseband

channel. For multi-user systems, the digital precoder and combiner are computed using the

regularized channel diagonalization approach [61], aiming to minimize the MUI plus noise.

� Extensive numerical simulation results are provided to confirm the effectiveness of the pro-

posed design. The examples consider a wide range of scenarios for both Rayleigh and mmWave

channel models and under practical constraints, such as quantized PS. The simulation results

show that the proposed method consistently attains near-optimal performance and outper-

forms other hybrid beamforming designs in the literature in nearly all scenarios. In addition,

a proof of optimality for the projected block coordinate descent solutions in the analog beam-

forming design is provided. This proof allows establishing important insights on the proposed

algorithm’s guaranteed convergence, further supported by numerical simulation results.

In Chapter 4, hybrid beamforming designs for single-user and multi-user frequency-selective

mmWave massive MIMO systems are proposed. The systems are assumed to use orthogonal

frequency-division multiplexing (OFDM) and the designs are formulated by leveraging the OFDM

channels’ multidimensional structure. The main contributions of Chapter 4 are:

� A two-stage hybrid beamforming design method for OFDM mmWave massive MIMO commu-

nication systems is proposed. The analog precoder and combiner are design in the first stage.

Using a tensor representation of the OFDM channel (i.e., by stacking together the channel

matrices of all subcarriers into a tensor), the analog beamforming design problem is formu-

lated as a constrained Tucker2 channel tensor decomposition, which allows maximizing the

sum of the effective baseband gains over every subcarrier while suppressing the interference

among data streams within the same subcarrier. The problem is solved through successive

rank-(1,1) tensor decomposition by using the projected alternate least square (ALS) method.

The proposed analog beamforming design supports both single-user and multi-user systems.

The digital precoder and combiner are designed in the second stage. The designs are obtained

on a per-subcarrier basis, considering the effective baseband channel at each subcarrier. The

optimal SVD-based beamforming and the regularized channel diagonalization are considered,

respectively, for single-user and multi-user systems.
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� The performance of the proposed design is assessed through extensive simulation. The re-

sults show that the proposed design achieves near-optimal sum-rates and outperforms other

hybrid beamforming designs in nearly all scenarios. Examples also assess the convergence of

the proposed algorithm and the impact of the power method approximation (adopted to re-

duce the computational complexity of the proposed design). Finally, an additional example

illustrates the differences between this chapter’s design and that in Chapter 3, in particular,

demonstrating that the design in Chapter 3 is not simply an special case of this chapter’s

design.

1.4 Related Publications

Throughout the research work that has originated this thesis, the following peer-reviewed conference

and journal papers have been published/submitted:

� G. M. Zilli, C. A. Pitz, E. L. O. Batista, R. Seara, and W.-P. Zhu, “An adaptive approach for

the joint antenna selection and beamforming optimization,” IEEE Access, vol. 7, pp. 99 017–

99 030, 2019

� G. M. Zilli and W.-P. Zhu, “Constrained-SVD based hybrid beamforming design for millimeter-

wave communications,” in Proc. IEEE 92nd Vehicular Technology Conference: VTC2020-Fall,

Victoria, BC: IEEE, Nov. 2020, pp. 1–5

� G. M. Zilli and W.-P. Zhu, “Constrained channel decomposition-based hybrid beamforming

for mmWave massive MIMO systems,” IEEE Open Journal of the Communications Society,

vol. 1, pp. 1707–1720, 2020

� G. M. Zilli and W.-P. Zhu, “TUCKER2-based hybrid beamforming design for mmWave OFDM

massive MIMO communications,” in Proc. IEEE 93rd Vehicular Technology Conference:

VTC2021-Spring, Helsinki, Finland: IEEE, Apr. 2021, pp. 1–5

� G. M. Zilli and W.-P. Zhu, “Constrained Tensor Decomposition-Based Hybrid Beamforming

for mmWave Massive MIMO-OFDM Communication Systems”, under the second round of

review.

11



1.5 Organization

This thesis is organized as follows. Chapter 2 presents an overview of the literature on JASB, along

with the system model and problem formulation, the derivation of the two adaptive algorithms

for solving the adaptive JASB problem proposed herein, and numerical simulation results. Chap-

ter 3 presents a literature review on current hybrid beamforming design approaches for narrowband

mmWave massive MIMO systems; the system model, the narrowband channel model, and the prob-

lem formulation; the proposed narrowband hybrid beamforming design based on the constrained

channel matrix decomposition; and the numerical simulation results. Chapter 4 presents a literature

review on existing hybrid beamforming designs for wideband OFDM mmWave massive MIMO sys-

tems and an overview of tensor operations; the system model, the OFDM channel model, and the

problem formulation; the proposed single-user and multi-user hybrid beamforming design for OFDM

systems based on the constrained channel tensor decomposition; and the numerical simulation re-

sults. Finally, Chapter 5 summarizes this thesis’s contributions and points out future extensions for

the research problems discussed herein.

Throughout this thesis, the following notations are adopted: non-bold, boldfaced lower-case,

and boldfaced upper-case letters are used, respectively, for scalars, vectors, and matrices; operators

(·)∗, (·)T
, and (·)H

denote, respectively, the complex conjugate, the transpose, and the Hermitian

(conjugate transpose); |·|, (·)−1, and (·)† denote, respectively, matrix determinant, inverse, and

Moore-Penrose pseudo-inverse; | · | and ‖·‖ denote, respectively, the absolute value of an scalar and

the norm of a vector, while ‖·‖F denote the Frobenius norm of a matrix; ‖·‖0 denotes the zero-norm

(i.e., the number of non-zero elements) of a vector; IM denotes an M×M identity matrix and 0M×N

denotes an M ×N zero matrix, while 0 and 1 represent, respectively, vectors of zeros and ones; [v]m

represents the m-th element of a vector v and [A]m,n denotes the element in the mth row and the

nth column of matrix A, while A(n, :) and A(:, n) represent, respectively, the nth row and the nth

column of matrix A; The matrix trace, the expectation, and the real-part operator are denoted by

Tr (·), E (·), and Re (·), respectively; C denotes the set of complex numbers and CN (a,A) represents

the complex Gaussian distribution with mean a and covariance matrix A; ∠ {·} denotes the phase

of a complex number.
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Chapter 2

Adaptive Joint Antenna Selection

and Beamforming

2.1 Introduction

Antenna arrays have been considered a promising solution to several problems of cellular communica-

tion systems, such as limited spectrum availability, reduced battery life of mobile devices, interference

due to frequency reuse, and time and frequency selective fading [66], [67]. The performance gain ob-

tained by using antenna arrays gets larger as the number of array elements increases [66], which has

motivated the use of large-scale arrays, the so-called massive MIMO [28]. However, implementation

costs often limit the expansion of the number of antennas in massive MIMO arrays. This problem is

especially relevant in mmWave communication systems, in which the very high carrier frequencies

and signal bandwidths result in severe hardware constraints [34]. Although the cost of additional an-

tenna elements and the associated signal processing hardware is relatively small, the high cost of RF

chains restricts the implementation of mmWave communication systems with a higher number of an-

tennas [38], [68], [69]. Furthermore, it is well known that, in a real-world propagation environment,

the elements of an antenna array do not contribute equally to the overall system performance [70].

In this context, several strategies have been devised to efficiently allocate the available RF chains,

such as hybrid beamforming [24], [34] and antenna selection techniques [38], [68]–[70]. In particu-

lar, antenna selection has gained considerable attention in mmWave massive MIMO, as it allows

reducing both hardware complexity and power consumption [57], [71]–[73].
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Antenna selection techniques account for finding the optimal subset of antennas within the

available set. Solving this problem is not a trivial task since, in general, it involves an extensive

search within all possible combinations of antennas, making the problem computationally prohibitive

even for arrays with a few dozens of elements [38], [69]. As a result, several suboptimal strategies

have been proposed in the literature aiming to solve antenna-selection problems. For instance,

in [41], a decremental antenna-selection scheme is introduced by using a capacity-maximization

criterion for iteratively removing antenna elements until a desired number of antennas is reached.

By exploiting a similar concept, an incremental antenna-selection technique is proposed in [42],

where the antenna elements are iteratively included. Despite their conceptual simplicity, these

techniques assume time-invariant channel state information and require evaluating capacity loss/gain

for every removed/included antenna. The resulting computational costs limit the application of these

techniques, especially in large-scale arrays and non-stationary environments. In [43], receive antenna

selection is cast as a capacity-maximization-based convex problem that can be solved in polynomial

time. However, the obtained solution is channel-dependent, which restrains the application of this

method to stationary environments. Convex optimization has also been applied to antenna selection,

aiming to minimize the mean-square error (MSE) [44] and to maximize the channel capacity in

massively distributed antenna systems [45]. The main drawback of these approaches is their reliance

on computationally costly optimization solvers, usually with a computational complexity of order

O(M3) (where M is the number of antennas) [74], making a real-time implementation very hard.

In [46] and [47], adaptive antenna selection algorithms based on stochastic optimization are

proposed to maximize both the channel capacity and the signal-to-noise ratio (SNR) and minimize

the bit error rate. These algorithms focused on the real-time operation and can track a suboptimal

antenna subset in time-varying channels. However, they require a dictionary containing all possible

combinations of antenna selection and their corresponding probabilities and require the computation

of the cost function twice in each iteration [46], [47], thus incurring a large amount of memory and

have high computational complexity.

The approaches proposed in [41]–[47] consider the antenna selection problem apart from the

beamforming design. In contrast, the joint antenna selection and beamforming problem has been

studied in several other research works [48]–[55]. Transmit JASB problems can be formulated un-

der different criteria, such as total power minimization under quality-of-service (QoS) constraints,

energy-efficiency maximization, and decremental selection based on power minimization. These

problems involve, in general, solving one or multiple semidefinite programming (SDP) problems,

and therefore, also rely on computationally costly optimization solvers.
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On the other hand, several low-complexity adaptive techniques have been proposed for solv-

ing receive JASB problems. For instance, the adaptive algorithms proposed in [52]–[55] indirectly

promote antenna selection by inserting sparsity-inducing `1-norm or `0-norm constraints into the

derivation of constrained least-mean-square (CLMS) algorithms [75], [76]. In doing so, antenna

selection can be performed by thinning the array, i.e., by switching off the antenna elements for

which the beamforming coefficients are very small [54]. This an approach is useful when the aim

is to reduce power consumption and heat dissipation. However, one common assumption for the

development of the algorithms in [52]–[55] is that the signal received by each antenna element is

available at every iteration of the adaptive process, which does not comply with physical limitations

on the number of RF chains.

This chapter proposes two new adaptive approaches for solving the JASB problem. These algo-

rithms are based on the MMSE and MVDR criteria and are designed to attain the hardware-imposed

constraint on the number of RF chains at every iteration. This chapter is organized as follow: Sec-

tion 2.2 describes the system model and presents the problem formulation; Sections 2.3 proposes the

new adaptive algorithm for solving the MMSE-based JASB problem and presents simulation results

to asses its effectiveness; Section 2.4 proposes the new adaptive algorithm for the MVDR-based

JASB problem and also presents simulation results to asses its effectiveness; and finally, Section 2.5

presents the concluding remarks.

2.2 System Model and Problem Statement

In this section, the communication scenario considered in this chapter is firstly depicted, followed

by the description of the adopted performance metric, and the optimization problem that lays the

groundwork for developing the proposed algorithms.

2.2.1 Scenario Definition

The scenario considered in this work involves a multi-cell cellular system in which each BS serves

multiple single-antenna users. For a particular BS, it is assumed that intra-cell users are allocated

to different channel resources and do not interfere with each other. On the other hand, K − 1

inter-cell users located at nearby cells share the same channel resources with a given intra-cell user,

as illustrated in Fig. 2.1. Moreover, it is also assumed that the considered BS is equipped with a

massive antenna array. The array is partitioned into subarrays formed by M -element antenna and

L(≤ M) RF chains, as shown in Fig. 1.2, where the subarrays are individually assigned to each
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MS BS

Figure 2.1: Multi-cell system configuration with the signal of interest (blue line) and the interfering signals
(red lines) arriving at the considered BS [62].

intra-cell user [57], [72], [73].

The equivalent baseband representation of uplink signals arriving at the subarray allocated to a

given intra-cell user are arranged in the input vector x(n) ∈ CM×1, such that

x(n) =

K−1∑
i=0

a(θi)βi(n) + z(n) (2.1)

where a(θi) ∈ CM×1 represents the steering vector related to the angle of arrival θi of the ith

user; the complex scalar βi(n) denotes the zero-mean baseband symbol with power pi = E[|βi(n)|2]

corresponding to the ith user; and z(n) ∈ CM×1 models the complex additive white Gaussian noise

(AWGN) with power σ2
z at each antenna element. The signals transmitted by the remaining intra-

cell users are not considered in (2.1), since they are allocated to different channel resources. The

input vector after the antenna selection is written as

xs(n) = Sx(n) (2.2)

which contains the signals processed by the RF chains, with S representing an M ×M diagonal

antenna-selection matrix whose mth diagonal element is given by

[S]m,m =


1, if the mth antenna is selected

0, if the mth antenna is not selected.

Note that, in practice, only xs(n) is available for the system. Considering the number of selected
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antennas equal to the number of available RF chains, Tr (S) = L. In particular, when all antennas

are selected (i.e., L = M), S becomes the M ×M identity matrix IM , resulting in xs(n) = x(n).

Denoting w ∈ CM×1 as the beamforming vector, the beamforming output is given by

y(n) = wHxs(n). (2.3)

Furthermore, defining the first inter-cell user (i = 0) as the signal of interest (SOI), the reference

signal becomes d(n) = β0(n), and the error signal between the reference signal and the beamformer

output can be defined as

e(n) = d(n)− y(n) = β0(n)−wHxs(n). (2.4)

Next, using (2.2), (2.3), and (2.4), the MSE is given as

E
[
|e(n)|2

]
= E [(β0(n)− y(n)) (β∗0(n)− y∗(n))]

= E
[
wHSx(n)xH(n)Sw − 2Re{wHSx(n)β∗0(n)}+ |β0(n)|2

]
= wHSRxSw − 2Re{wHSp}+ p2

0

(2.5)

where Rx = E
[
x(n)xH(n)

]
denotes the autocorrelation matrix of the input vector, and p =

E [x(n)β∗0(n)] is the cross-correlation vector between the input vector and the desired signal.

To obtain an expression for the signal-to-interference-plus-noise ratio (SINR) at the beamformer

output, the mean power (variance) of y(n) is derived from (2.3) as follows:

E
[
|y(n)|2

]
= wHSRxSw. (2.6)

If it is further assumed that the baseband symbols are independent, i.e., E[βi(n)β∗j (n)] = 0 for i 6= j,

Rx can be expressed as

Rx =

K−1∑
i=0

pia(θi)a
H(θi) + σ2

zIM . (2.7)

Then, rearranging (2.7) into

Rx = Rsoi + Rin (2.8)

with

Rsoi = p0a(θ0)aH(θ0) (2.9)
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representing the autocorrelation matrix of the SOI and

Rin =

K−1∑
i=1

pia(θi)a
H(θi) + σ2

zIM (2.10)

representing the autocorrelation matrix of the interference plus noise, (2.6) can be rewritten as

E
[
|y(n)|2

]
= wHSRsoiSw + wHSRinSw. (2.11)

Thus, the SINR at the beamformer output is given by

γ =
wHSRsoiSw

wHSRinSw
. (2.12)

2.2.2 Joint Antenna Selection and Beamforming Problem

To address the joint antenna selection and beamforming problem with a limited number of RF

chains, a performance metric Φ(w,S) is optimized with respect to the beamforming vector and the

antenna selection matrix, subject to a constraint on the number of selected antennas. As a result,

the following constrained optimization problem is formulated:

minimize
w,S

Φ(w,S)

subject to [S]m,m ∈ {0, 1}

Tr (S) = L.

(2.13)

Here, the performance metric Φ(w,S) focuses on two criteria: MMSE and MVDR. It is noteworthy

that regardless of the choice of Φ(w,S), the problem in (2.13) is NP-hard due to the binary con-

straints involved [43], [69]. Therefore, finding an optimal solution to (2.13) is very computationally

expensive, especially for large scale arrays [69].

It is important to notice that a single SOI is considered in (2.13) due to the assumption that an

individual subarray is allocated for each intra-cell user. In cases where the intra-cell users share the

same channel and RF hardware resources, the objective function of (2.13) must be reformulated to

include all intra-cell users.
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2.3 MMSE-based Adaptive Joint Antenna Selection and

Beamforming

This section is focused on the development of a new MMSE-based adaptive algorithm for solving

(2.13). Assuming Φ(w,S) = E
[
|e(n)|2

]
, (2.13) is partitioned such that w and S can be obtained

by using an alternating optimization approach. Therefore, the proposed algorithm consists of al-

ternately optimizing the beamforming vector for a fixed antenna selection matrix and the antenna

selection matrix for a fixed beamforming vector. The following subsections describe the detailed

procedure and present simulation results to validate the proposed approach.

2.3.1 MMSE Beamforming

The beamforming procedure considered in this section is based on the minimization of E
[
|e(n)|2

]
as

defined in (2.5). Thus, the beamforming vector is obtained from the following optimization problem:

minimize
w

wHSRxSw − 2Re{wHSp}+ p2
0. (2.14)

The optimum solution for (2.14) is the well-known Wiener-Hopf solution [77], i.e.,

wo = (SRxS)†Sp, (2.15)

where wo represents the optimum beamforming vector and (·)† denotes the Moore-Penrose inverse,

which is required since SRxS results in a rank-deficient matrix [i.e., rank(SRxS) ≤ L ≤ M ]. One

can notice that the evaluation of the Wiener-Hopf solution requires not only a priori knowledge of

Rx and p, but also the computation of (SRxS)†, which results in a high computational burden,

especially in cases involving real-time processing, massive arrays and/or non-stationary scenarios.

Therefore, to overcome these difficulties, the steepest descent method [77] is used for iteratively

obtaining the beamforming vector, which leads to the following update rule:

w(n+ 1) = w(n)− µw∇w∗E
[
|e(n)|2

]
= w(n)− µw [SRxSw(n)− Sp] .

(2.16)

with ∇w∗E
[
|e(n)|2

]
= [SRxSw(n)− Sp] representing the gradient of E

[
|e(n)|2

]
with respect to the

complex conjugate of w. Then, considering (2.2)-(2.4) and replacing Rx and p by their corresponding
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instantaneous estimates given, respectively, by x(n)xH(n) and x(n)β∗0(n), one obtain an LMS-type

update expression, given as

w(n+ 1) = w(n)− µw

[
xs(n)xH

s (n)w(n)− xs(n)β∗0(n)
]

= w(n) + µwxs(n)e∗(n)
(2.17)

where µw is the step-size parameter.

It is important to highlight that only the input signals present at the selected antennas are

used in (2.17), and therefore, only the coefficients corresponding to these antennas are updated at

a given iteration. Therefore, the algorithm can be targeted to practical applications, where only a

limited number of RF chains is available. Moreover, it is assumed that the error signal e(n) required

by (2.17) is obtained during a training period, wherein the intra-cell users transmit a predefined

training sequence (reference signal) known to the BS. The design of this training sequence, including

its length and repetition rate, directly impact the ability of the system to track channel variations,

thereby influencing the performance of the AJASB algorithm. However, such a design is out of the

scope of this work, being a recurrent research topic available in the open literature (see [78]–[81]).

Finally, to achieve a faster convergence and easier parameter adjustment, a normalized version of

(2.17) is also formulated here following the same idea used for developing the NLMS algorithm [77].

Thus, the following NLMS update rule is obtained:

w(n+ 1) = w(n) + µw
xs(n)e∗(n)

xH
s (n)xs(n) + ε

(2.18)

where ε is a regularization term, included to prevent divisions by very small values [77].

2.3.2 MMSE Antenna Selection

The MMSE antenna selection problem considered here consists of finding the antenna subset that

minimizes (2.5). This problem can be mathematically described as

minimize
S

wHSRxSw − 2Re{wHSp}+ p2
0

subject to [S]m,m ∈ {0, 1}

Tr (S) = L.

(2.19)

In spite of being easier to solve it in comparison to (2.13) (since only S needs to be optimized), (2.19)

is still an NP-hard problem due to the binary constraints involved. To circumvent this drawback,
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the binary constraints are relaxed, allowing [S]m,m to be a real number. Then, defining the auxiliary

vector s as the diagonal vector of S, defining also W as a diagonal matrix whose entries are given

by w [i.e., W = diag(w)], and considering that p2
0 does not depend on the optimization variable,

the relaxed version of (2.19) becomes

minimize
s∈RM

sTWHRxWs− 2Re{sTWHp}

subject to 1Ts = L.

(2.20)

Note that WHRxW is a positive semidefinite matrix and, therefore, (2.20) is a convex problem [82].

To find the optimal solution for (2.20), one can user the Lagrangian form

L(s, λ) = sTWHRxWs− 2sTRe{WHp}+ λ(1Ts− L) (2.21)

where λ is the Lagrange multiplier. Next, by taking the gradient of (2.21) with respect to s, one

obtain

∇sL(s, λ) = 2Rrws− 2rp + λ1 (2.22)

with

Rrw = Re{WHRxW} (2.23)

rp = Re{WHp}. (2.24)

The optimum selection vector so is obtained by solving ∇sL(s, λ) = 0, which leads to

so =
1

2
R−1

rw (2rp − λ1) . (2.25)

Regarding λ, its value is obtained by reinforcing the constraint 1Tso = L. Then, pre-multiplying

both sides of (2.25) by 1T and manipulating the resulting expression yields

λ = 2

[
1TR−1

rw rp − L
1TR−1

rw 1

]
. (2.26)

Next, by substituting (2.26) into (2.25), the optimal solution to the relaxed problem in (2.20) is

given as

so = R−1
rw rp −

R−1
rw (1TR−1

rw rp)1

1TR−1
rw 1

+ L
R−1

rw 1

1TR−1
rw 1

. (2.27)

Note that so is a vector of real numbers and, thus, the diagonal elements of the antenna-selection
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matrix S cannot be obtained directly from such a vector. To circumvent this problem, a binary

vector sb is obtained considering the minimum disturbance with respect to so (i.e., sb is obtained

minimizing its Euclidean distance to so). This strategy can be mathematically expressed as follows:

minimize
sb

‖sb − so‖2

subject to [sb]m ∈ {0, 1}

1Tsb = L,

(2.28)

By rewriting the cost function in (2.28) as ‖so‖2 +‖sb‖2−2sT
b so and having the constraints imposing

‖sb‖2 = L, one can verify that the minimum is attained when the inner product sT
b so is maximized.

The a maximization, in turn, can be reached by setting to one the L components of the binary

vector sb corresponding to the L largest components of so. The antenna selection matrix is then

determined by making the diagonal of S equal to sb [i.e., S = diag(sb)], which is a feasible solution

to the original problem (2.19). It is important to note that the matrix S obtained from sb will not

usually be an optimal solution for (2.20). Despite this fact, the use of the minimum disturbance

as criterion for obtaining sb ensures that such a vector will generally be a solution close to the

optimal one.

The closed-form solution given in (2.27) requires a priori knowledge of Rx and p, as well as the

inversion of Rrw, which incurs high computational costs. Thus, one can use the steepest descent

method to iteratively obtain s as follows:

s(n+ 1) = s(n)− µs∇sL(s, λ)

= s(n)− 2µsRrws + 2µrp − µλ1.
(2.29)

where µs is the step-size parameter and the gradient ∇sL(s, λ) is defined in (2.22). The Lagrangian

multiplier λ can be found in (2.29) by reinforcing the a posteriori constraint 1Ts(n+ 1) = L, which,

along with 1T1 = M , leads to

λ =
1Ts(n)− 2µ1TRrws(n) + 2µ1Trp − L

µM
. (2.30)

Then, substituting (2.30) into (2.29) yields

s(n+ 1) = Ps [(I− 2µRrw) s(n) + 2µrp] + fs (2.31)

22



with

Ps =

[
IM −

11T

M

]
(2.32)

and

fs =
L

M
1. (2.33)

Finally, using the instantaneous estimates of rp and Rrw given by Re{WH(n)xs(n)β∗0(n)} and

Re{WH(n)xs(n)xH
s (n)W(n)}, respectively, leads to

s(n+ 1) = Ps

[(
IM − 2µRe{WH(n)xs(n)xH

s (n)W(n)}
)
s(n) + 2µRe{WH(n)xs(n)d∗(n)}

]
+ fs.

(2.34)

2.3.3 MMSE-based AJASB Algorithm

The proposed MMSE-based AJASB (MMSE-AJASB) algorithm, summarized in Algorithm 2.1, is

based on an iterative scheme that concurrently uses the MMSE-based beamforming strategy from

Section 2.3.1 and the MMSE-based antenna-selection strategy from Section 2.3.2.

From Algorithm 2.1, one can notice that, in the first steps, the received signal xs(n) is used for

computing the beamforming output y(n) and the error signal e(n). Next, the beamforming vector

w(n) is updated employing the NLMS algorithm presented in Section 2.3.1. Once the a posteriori

beamforming vector w(n + 1) is calculated, it is further used to compute s(n + 1) considering the

algorithm proposed in Section 2.3.2. Finally, the antenna-selection matrix is evaluated by selecting

the antennas corresponding to the L largest components of s(n + 1). This operation is denoted by

select [s(n+ 1)], which results in a diagonal matrix with ones at the diagonal elements corresponding

to the L largest components of s(n+ 1) and zeros otherwise.

In terms of real operations per iteration, the MMSE-based AJASB algorithm requires 17L+M

sums, 18L + 5 multiplications, and one division for the beamforming and antenna-selection-vector

updates, whereas the remaining select [·] operation requires at most (M − L)L real comparisons. In

contrast, the standard MMSE-based NLMS beamforming requires 10M sums, 10M + 2 multiplica-

tions, and one division. Since, in general, M � L, the proposed MMSE-based AJASB algorithm

usually has lower computational costs than its NLMS counterpart. The proposed algorithm’s com-

putational cost is also much smaller than those of the algorithms based on convex optimization

solvers, for which the complexity is on the O(M3) order.

An accurate convergence analysis of the proposed algorithm can only be achieved from the cor-

responding stochastic modeling. However, this type of modeling is complicated for the proposed
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Algorithm 2.1: Summary of the MMSE-AJASB Algorithm

1 Initialize:

2 µw, µs, ε

3 Ps =
[
IM − 11T

M

]
4 w(0) = [1 0 · · · 0]T

5 s(0) = L
M 1

6 S(0) =

[
IL 0L×(M−L)

0(M−L)×L 0(M−L)×(M−L)

]
7 for n = 0, 1, 2, · · · do

8 y(n) = wH(n)xs(n)

9 e(n) = d(n)− y(n)

10 w(n) = w(n) + µw
e∗(n)xs(n)

xs(n)Hxs(n)+ε

11 W(n) = diag [w(n+ 1)]

12

s(n+ 1) = Ps

[
IM − 2µsRe{WH(n)xs(n)xH

s (n)W(n)}
]
s(n)

+ 2µPsRe{WHxs(n)d∗(n)}+
L

M
1

13 S(n+ 1) = select [s(n+ 1)]

14 end

algorithm due to the coupling between the antenna selection matrix and beamforming coefficients.

Despite this, both the MMSE-based beamforming problem given in (2.14) and the relaxed antenna

selection problem in (2.20) are convex, and their individual adaptive solutions have guaranteed

convergence for small values of the step-size parameters [77], even in non-stationary scenarios. Con-

sequently, the convergence of the concurrent update involved in the proposed method is secured for

small step size values.

2.3.4 Simulation Results

In this subsection, the performance of the proposed MMSE-AJASB algorithm is assessed through

numerical simulations and compared with other MMSE-based adaptive beamforming algorithms

from the literature. Two versions of the MMSE-based NLMS beamforming algorithms are considered

in the simulations: the first using all M antennas of the subarray (denoted NLMS-M) and the second

using only the first L antennas (termed NLMS-L). It is important to highlight that, as mentioned at

this chapter’s Introduction (Section 2.1), other AJASB algorithms from the literature do not abide

by the limited number of RF chains, and thus, they cannot be fairly compared with the proposed

algorithms.
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Four examples are presented. In all examples, a uniform linear array (ULA) with half-wavelength

spacing between consecutive elements is considered, resulting in a steering vector given by

a(θi) = [1 e−jπ sin θi e−j2π sin θi · · · e−j(M−1)π sin θi ]T. (2.35)

This type of array is chosen without loss of generality since the proposed algorithms can also be

effectively applied to other array geometries, such as planar, circular, or non-uniform. For all ex-

amples, the algorithms have their beamforming vectors initialized with w(0) = [1 0 · · · 0]T, which

corresponds to an omnidirectional radiation pattern over the azimuth plane. The auxiliary antenna-

selection vector is initialized as s(0) = (L/M)1 and the antenna-selection matrix S is initialized in

such a way that the L leftmost antenna elements are selected. The symbols are generated from

a zero-mean unit-variance Gaussian distribution, and the normalized power (relative to the noise

variance) of the transmitted signals is 30 dB. Since the interfering signals come from co-channel

cells, they are attenuated by 20 dB due to free-space path loss.

The algorithms’ performance is assessed in terms of transient and steady-state SINR, which are

obtained through Monte Carlo simulations with 200 independent runs. The steady-state values used

to obtain the empirical probability density function (EPDF) curves are those from the last iteration

of each Monte Carlo run.

Example 1

The first example considers a stationary scenario where the subarray allocated to a given intra-cell

user (SOI) is equipped with M = 64 antennas and initially with L = 4 RF chains. It is further

assumed K = 6 inter-cell users, with the SOI positioned at 0◦, and five interferers located at

−35◦, −10◦, 12◦, 25◦, and 40◦. The step-size parameters were adjusted to provide similar initial

convergence rates, resulting in the following values: µ = 1 for both the NLMS-M and NLMS-L;

µw = 1 and µs = 0.01 for the MMSE-AJASB.

The transient SINR curves are shown in Fig. 2.2. Since the NLMS-M algorithm has a very

slow convergence component due to the high number of beamforming coefficients, two figures are

show: Fig. 2.2a shows the results for the first 1000 iterations and Fig. 2.2b shows the results for 105

iterations. From this figure, one can notice that the proposed algorithm outperforms the NLMS-L

by more than 4 dB in terms of average SINR performance The NLMS-M algorithm obtained the

best performance, which is an expected result since the number of RF chains used by this algorithm

is 16 times larger than that of the others (64 RF chains versus 4 for both the NLMS-L and proposed
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(a) (b)

Figure 2.2: Example 1. SINR curves of the MMSE-based algorithms for M = 64 and L = 4.

Figure 2.3: Example 1. EPDF curves for the MMSE-based algorithms with M = 64 and L = 4.

one). Fig. 2.3 shows the EPDF of the steady-state SINR after 105 iterations. Note that the proposed

algorithm achieves higher steady-state SINR values in most of the runs as compared to the NLMS-L.

In fact, the best run of the proposed algorithm provided an SINR that is more than 10 dB higher

than that of the best run of the NLMS-L.

A second scenario, where the number of RF chains is changed from L = 4 to L = 8, is also

considered. This case is of particular interest since it consists of a reasonably favorable scenario in

which the SOI is positioned afar from the interfering signals and the number of RF chains is larger

than the number of users. The SINR curves obtained for the MMSE-based algorithms, depicted in

Fig. 2.4a, which shows the transient SINR for the first 1000 iterations, and Fig. 2.4b, which shows

the transient SINR for 105 iterations. From these figures, note that the proposed algorithm and the

NLMS-L have nearly the same performance. This result is expected since the additional RF chains

allow higher levels of interference suppression and the same fading is assumed across all antennas.
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(a) (b)

Figure 2.4: Example 1. SINR curves of the MMSE-based algorithms for M = 64 and L = 8.

Example 2

In this example, the proposed algorithms’ performance is assessed in a scenario where the SOI is

positioned nearly in the same direction as one interferer. The system is assumed to operate with

L = 8 RF chains, and the SOI is located at 11◦ degrees, while the interferer positions and all other

parameters are the same as in Example 1. Here, the transient SINR and the radiation pattern

obtained at the last iteration of a Monte Carlo run are assessed.

The SINR curves obtained for the MMSE-based algorithms are shown in Fig. 2.5a and Fig. 2.5b.

Compared with the results from Example 1 with L = 8 RF chains (shown in Fig. 2.4), note that

the SINR obtained here for both the NLMS-M and the proposed algorithm remain nearly the same,

whereas a reduction of nearly 14.5 dB is observed for the NLMS-L. These results demonstrate the

robustness of the proposed algorithm to adverse scenarios compared to the beamforming algorithm

without the use of antenna selection with the same number of RF chains.

The gains at the SOI’s and the interferers’ directions, obtained from the radiation patterns at

the last iteration of a given Monte Carlo run of each algorithm, are summarized in Table 2.1. These

results show that both the NLMS-M and the proposed MMSE-AJASB algorithms are capable of

significantly attenuating the interferer at 12◦ (the one close to the SOI), achieving attenuations of

10.02 dB and 17.64 dB, respectively. In contrast, the NLMS-L achieves an attenuation level of only

1.42 dB.
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(a) (b)

Figure 2.5: Example 2. SINR curves of the MMSE-based algorithms for M = 64 and L = 8.

Table 2.1
Example 2. Gain (in dBi) at the direction of the SOI and the interferers for the MMSE-based algorithms.

θ NLMS-M NLMS-L MMSE-AJASB

11◦ -0.01 0.10 0.01

-35◦ -37.80 -6.89 -12.87

-10◦ -20.02 -6.74 -13.96

12◦ -17.64 -1.42 -10.02

25◦ -20.86 -5.41 -12.79

40◦ -19.27 -6.53 -6.70

Example 3

In the third example, the impact of the number of RF chains on the proposed algorithms’ steady-

state performance is assessed. It is assumed that the BS is equipped with M = 64 antenna elements

and L = 4, 8, 16, 32, and 64 RF chains. The steady-state SINR is obtained by averaging the SINR

values achieved after 2× 106 iterations of each Monte Carlo run. Note that such a high number of

iterations is required since the NLMS-M has a very slow-rate convergence component. It is further

assumed K = 6 users, with the SOI positioned at 5◦, and five interferers located at −42◦, −18◦, 25◦,

44◦, and 6◦ (the last one is very close to the SOI). The step sizes for the considered algorithms are:

µ = 0.5 for both the NLMS-M and NLMS-L; and µw = 0.5 and µs = 0.01 for the MMSE-AJASB.

The results are depicted in Fig. 2.6. These results show that the array gain provided by the

proposed algorithms increases much more quickly as the number of RF chains increases compared

to the beamforming algorithms without the use of antenna selection (i.e. the NLMS-L). Moreover,

it is important to highlight that, except for the cases in which L < K, the SINR levels obtained by

the proposed algorithms are closer to those obtained by using the complete array (i.e., NLMS-M)

than to those obtained by the arrays with a reduced number of RF chains (NLMS-L).

28



Figure 2.6: Example 3. Steady-state SINR curves for different numbers of RF chains using the MMSE-
based algorithms.

Figure 2.7: Example 4. SINR curves for the MMSE-based algorithms in the non-stationary scenario.

Example 4

In this last example, a non-stationary scenario is investigated. In such a scenario, the SOI, initially

positioned at 15◦, moves to 0◦ between iterations 50,000 and 70,000, at a constant angular speed.

The interferers are positioned at −45◦, −10◦, 5◦, 25◦, and 40◦, and the corresponding subarray has

M = 32 antennas and L = 4 RF chains. The step sizes used are the same as in Exp. 1.

The SINR curves are shown in Fig. 2.7. This figure shows a clear advantage of the proposed

algorithm over its counterpart that uses the same number of RF chains. Moreover, by comparing

the steady-state SINR before iteration 50,000 with that at the end of the process, it is noted that: i)

the SINR obtained for the NLMS-M has no significant difference; ii) the SINR falls by 8.8% for the

NLMS-L; and iii) the SINR falls by nearly 4.1% for the proposed MMSE-AJASB algorithm. These

results confirm the proposed algorithm’s ability to track the SOI and attenuate the interfering signals

in non-stationary scenarios.
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2.4 MVDR-based Adaptive Joint Antenna Selection and

Beamforming

In this section, a second alternating-optimization-based adaptive algorithm for solving the JASB

problem described in (2.13) is proposed. The algorithm is formulated considering the MVDR cri-

terion [75], which consists of minimizing Φ(w,S) = E
[
|y(n)|2

]
along with an additional constraint

to ensure unit gain towards the SOI direction. Similar to the MMSE-based AJASB algorithm, an

alternate optimization approach is employed. Thus, the solution to the beamforming vector and the

antenna selection matrix are alternately obtained while considering the other fixed. The following

subsections present the development of the optimization algorithm and simulation results to verify

the proposed algorithm’s performance.

2.4.1 MVDR Beamforming

The linearly constrained minimum variance (LCMV) criterion has been widely used in beamforming

optimization due to its convexity property [82]. This criterion is focused on minimizing the variance

of the beamforming output y(n), subject to a set of linear constraints. Particularly, using a single

linear constraint that ensures unit gain towards the SOI direction, the criterion is known as the

MVDR problem, which leads to the SINR maximization [66].

For the scenario considered here, the MVDR beamforming problem is formulated as follows:

minimize
w

wHSRxSw

subject to wHSa(θ0) = 1.

(2.36)

Note that, if all antennas are selected (i.e., S = IM ), (2.36) becomes the original MVDR problem.

The closed-form solution for (2.36), given by [75]

wo =
(SRxS)†Sa(θ0)

a(θ0)HS(SRxS)†Sa(θ0)
(2.37)

requires knowledge of Rx, which is usually unavailable, and the computation of (SRxS)†, which is

computationally costly. To circumvent these problems, the same reasoning used for developing the

CLMS algorithm [75] is adopted here. Thus, the following beamforming update equation is obtained:

w(n+ 1) = Pa(n) [w(n)− µw y
∗(n)xs(n)] + fa(n) (2.38)
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where µw is the step size,

Pa(n) =

[
IM −

S(n)a(θ0)aH(θ0)S(n)

aH(θ0)S(n)a(θ0)

]
(2.39)

and

fa(n) =
S(n)a(θ0)

aH(θ0)S(n)a(θ0)
. (2.40)

The normalized version of the CLMS [55], termed constrained CNLMS algorithm, provides faster

convergence and lower misadjustment as compared with the original CLMS. Thus, taking into ac-

count this normalization idea, the CNLMS algorithm is obtained by dividing µw by xH
s (n)Pa(n)xs(n)

in (2.38). Thereby,

w(n+ 1) = Pa(n)

[
w(n)− µw y

∗(n)xs(n)

xH
s (n)Pa(n)xs(n)

]
+ fa(n). (2.41)

2.4.2 MVDR Antenna Selection

The proposed MVDR antenna selection method is based on finding the antenna subset that mini-

mizes the variance of the beamforming output signal, without suppressing the gain towards the SOI

direction. To this end, the following optimization problem:

minimize
S

wHSRxSw

subject to [S]m,m ∈ {0, 1}

Tr (S) = L

Re{wHSa(θ0)} = 1.

(2.42)

Note that only the real part of wHSa(θ0) is constrained in (2.42), resulting in a loosen constraint as

compared with the corresponding one in (2.36). This procedure can be done since such a constraint

is sufficient to prevent S from suppressing the SOI and the unit gain in the SOI direction is enforced

by the beamforming update.

Similarly to (2.19), the MVDR antenna selection problem in (2.42) is also an NP-hard problem

due to the binary constraints. Therefore, these constraints are relaxed by allowing [S]m,m to be a real

number. Then, considering the auxiliary vector s (diagonal vector of S) and matrix W = diag(w),
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the resulting optimization problem becomes

minimize
s∈RM

sTWHRxWs

subject to 1Ts = L

Re{sTWHSa(θ0)} = 1.

(2.43)

The second constraint in (2.43) is derived from the last constraint in (2.42) by considering the

idempotent property of S. In fact, matrix S is not treated as an optimization variable in (2.43) and

is used for ensuring unit gain for the SOI considering the a priori antenna selection.

To find the optimal solution to (2.43), the Lagrangian function is written as

L(s, λ, α) = sTRrws + λ(1Ts− L) + α
(
sTra − 1

)
(2.44)

where λ and α are Lagrange multipliers,

Rrw = Re{WHRxW} (2.45)

and

ra = Re{WHSa(θ0)}. (2.46)

Next, taking the gradient of (2.44) with respect to s, i.e.,

∇sL(s, λ, α) = 2Rrws + λ1 + αra (2.47)

and setting it equal to zero yields

so = −1

2
R−1

rw (λ1 + αra) . (2.48)

Finally, applying the constraints of (2.43) to (2.48) to obtain λ and α, and substituting them back

into (2.48) yields the optimal solution to (2.43), given as

so =

[
R−1

rw

1TR−1
rw 1rT

a R−1
rw ra − 1TR−1

rw rarT
a R−1

rw 1

]
×
[
(L · rT

a R−1
rw ra − 1TR−1

rw ra)1 + (1TR−1
rw 1− L · rT

a R−1
rw 1)ra

]
.

(2.49)

Similarly to the discussion in Section 2.3.2, the optimal solution given in (2.49) cannot be directly
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used for obtaining the a posteriori selection matrix. In this case, considering the minimum distur-

bance criterion as in (2.28), the antenna selection is performed by setting the diagonal elements of S

corresponding to the L highest values of so to one, while the remaining M −L diagonal elements are

set to zero. Moreover, the evaluation of the closed-form solution in (2.49) requires knowledge of Rx

and demands the computation of Rrw and its inverse. Therefore, an adaptive procedure based on

the CLMS algorithm [55] for obtaining so is proposed here. This procedure is derived by applying

the steepest-descent method to (2.43), resulting in

s(n+ 1) = s(n)− µs∇sL(s, λ, α)

= [IM − 2µsRrw] s(n)− µsλ1− µsαra.
(2.50)

where µs is the step size.

The Lagrange multipliers λ and α are found by reinforcing the constraints of (2.43) with s(n+1),

i.e., by solving the following linear system:
1Ts(n+ 1) = L

sT(n+ 1)ra = 1.

(2.51)

The solution of (2.51) leads to

λ =

[
sT(n)− 2µss

T(n)Rrw

] (
‖ra‖21− ra

)
− L‖ra‖2 + 1

µs (‖ra‖2M − 1)
(2.52)

and

α =

[
sT(n)− 2µss

T(n)Rrw

]
(Mra − 1) + L−M

µs (‖ra‖2M − 1)
(2.53)

which are then plugged into (2.50) to obtain

s(n+ 1) = Pg [IM − 2µsRrw] s(n) + fg (2.54)

with

Pg = IM −
‖ra‖211T − 1rT

a − ra1
T +Mrar

T
a

‖ra‖2M − 1
(2.55)

and

fg =

(
L‖ra‖2 − 1

)
1 + (M − L) ra

‖ra‖2M − 1
. (2.56)

Finally, one can further evaluate (2.54) using the instantaneous estimates of Rrw and ra, which

are given by Re{WH(n)xs(n)xH
s (n)W(n)} and Re{WH(n)S(n)a(θ0)}, respectively.
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Algorithm 2.2: Summary of the MVDR-AJASB Algorithm

1 Initialize: µw, µs, ε

2 Ps =
[
IM − 11T

M

]
3 w(0) = [1 0 · · · 0]T

4 s(0) = L
M 1

5 S(0) =

[
IL 0L×(M−L)

0(M−L)×L 0(M−L)×(M−L)

]
6 for n = 0, 1, 2, · · · do

7 y(n) = wH(n)xs(n)

8 Pa(n) =
[
IM − S(n)a(θ0)aH(θ0)S(n)

aH(θ0)S(n)a(θ0)

]
9 fa(n) = S(n)a(θ0)

aH(θ0)S(n)a(θ0)

10 w(n+ 1) = Pa(n)
[
w(n)− µw y

∗(n)xs(n)
xH
s (n)Pa(n)xs(n)+ε

]
+ fa(n)

11 W(n) = diag [w(n+ 1)]

12 Rrw = Re{WH(n)xs(n)xH
s (n)W(n)}

13 ra = Re{WH(n)S(n)a(θ0)}
14 Pg = IM − ‖ra‖

211T−1rTa −ra1T+MrarTa
‖ra‖2M−1

15 fg =
(L‖ra‖2−1)1M+(M−L)ra

‖ra‖2M−1

16 s(n+ 1) = Pg [IM − 2µsRrw] s(n) + fg

17 S(n+ 1) = select [s(n+ 1)]

18 end

2.4.3 MVDR-based AJASB Algorithm

The proposed MVDR-based AJASB (MVDR-AJASB) algorithm consists of an iterative process that

concurrently uses the beamforming strategy described in Section 2.4.1 and the antenna selection

strategy from Section 2.4.2. Such an algorithm is summarized in Algorithm 2.2.

From Algorithm 2.2, one can notice that, in the first step, the received signal xs(n) is used for

computing the beamforming output y(n). Next, the beamforming vector w(n) is updated through

the CNLMS-based algorithm presented in Section 2.4.1. Once the a posteriori beamforming vector

w(n + 1) is calculated, it is further used to compute s(n + 1) considering the algorithm proposed

in Section 2.4.2. Finally, the antenna-selection matrix is evaluated by selecting the antennas corre-

sponding to the L largest components of s(n+ 1), denoted in Algorithm 2.2 by the select [s(n+ 1)]

operation, as defined in Sec. 2.3.3. A regularization parameter ε has also been included in the update

equations of w(n) to prevent divisions by very small values.

Regarding the computational burden, the MVDR-based AJASB requires 3M + 36L − 4 sums,

M + 39L+ 18 multiplications, and three divisions, plus at most (M −L)L real comparisons for the

34



select [·] operation. In contrast, the MVDR-based CNLMS beamforming requires 24M − 4 sums,

24M + 8 multiplications, and two divisions. Since M � L, the proposed MVDR-based AJASB also

has lower computational complexity than its CNLMS counterpart.

Similar to the MMSE-AJASB algorithm in Section 2.3.3, the stochastic modeling required for

an accurate convergence analysis is hard to carry out due to the coupling between the antenna

selection matrix and beamforming vector. However, both CLMS and CNLMS algorithms considered

in the proposed approach have guaranteed convergence when the step-size parameters are small [77].

Thereby, the convergence of the MVDR-AJASB algorithm is also ensured for small values of step

size.

2.4.4 Simulation Results

In this subsection, the performance of the proposed MVDR-AJASB algorithm is assessed and com-

pared with that of the MVDR-based CNLMS beamforming algorithm without antenna selection.

Two versions of the CNLMS beamforming algorithm are considered: one using all M antennas

(CNLMS-M) and the other using only the first L antennas (CNLMS-L). As for the MMSE-based

algorithm, it is important to highlight that other AJASB algorithms available in the open literature

are not considered in the comparisons since they not abide by the limited number of RF chains, and

thus, cannot be fairly compared with the proposed algorithm.

The same four examples presented in Section 2.3.4 are considered here. It is assumed a ULA with

half-wavelength spacing between consecutive elements. The algorithms have their beamforming vec-

tors initialized with w(0) = [1 0 · · · 0]T, which corresponds to an omnidirectional radiation pattern

over the azimuth plane. The auxiliary antenna-selection vector is initialized as s(0) = (L/M)1 and

the antenna-selection matrix S is initialized so that the L leftmost antenna elements are selected.

The symbols are generated from a zero-mean unit-variance Gaussian distribution, and the normal-

ized power (relative to the noise variance) of the transmitted signals is 30 dB. Since the interfering

signals come from co-channel cells, they are attenuated by 20 dB due to free-space path loss. As for

the MMSE-based algorithms, the algorithms’ performance is assessed in terms of the transient and

steady-state SINR obtained from Monte Carlo simulations with 200 independent runs.

Example 1

This example considers a stationary environment where the subarray allocated to a given intra-cell

user (SOI) is equipped with M = 64 antennas and L = 4 RF chains. It is assumed K = 6 inter-cell

users, with the SOI positioned at 0◦, and five interferers located at −35◦, −10◦, 12◦, 25◦, and 40◦.
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Figure 2.8: Example 1. SINR curves of the MVDR-based algorithms for M = 64 and L = 4.

Figure 2.9: Example 1. EPDF curves for the MVDR-based algorithms with M = 64 and L = 4.

The step-size parameters were adjusted to provide similar initial convergence rates, resulting in the

following values: µ = 0.002 for both the CNLMS-M and CNLMS-L; and µw = 0.002 and µs = 0.001

for the MVDR-AJASB.

Fig. 2.8 shows the resulting SINR curves. For comparison, the results obtained with the MMSE-

based algorithms are also plotted. From Fig. 2.8, it is observed that the proposed algorithm outper-

forms the CNLMS-L by nearly 4 dB in terms of average SINR. As expected, the CNLMS-M presents

better performance than the other algorithms (due to the much larger number of RF chains used).

Also, note that the MMSE-based algorithms have a much faster convergence rate. The EPDF of

the steady-state SINR is shown in Fig. 2.9, from which one can observe that the proposed algorithm

outperforms the CNLMS-L in most cases.

A second scenario, with the number of RF chains L = 8, is also considered. This case represents

a fairly favorable scenario in which the SOI is positioned afar from the interfering signals and the
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Figure 2.10: Example 1. SINR curves of the MVDR-based algorithms for M = 64 and L = 8.

number of RF chains is larger than the number of users. The SINR curves are shown in Fig. 2.10.

Note that the proposed algorithm can attain performance similar to that of the CNLMS-M while

operating with 1/8 of RF chains.

Example 2

This example assesses the proposed algorithms’ performance in a scenario where the SOI is positioned

close to one interferer. The system is assumed to operate with L = 8 RF chains, the SOI is located

at 11◦, and the interferers’ positions and all other parameters are the same as in Example 1. Here,

the transient SINR and the radiation pattern obtained at the last iteration of a Monte Carlo run

are assessed.

The SINR results are shown in Fig. 2.11. Note that the proposed algorithm is much more

robust to unfavourable scenarios (such as when the SOI and interferer are closely positioned) than

the CNLMS-L. When compared to the results from Example 1 with L = 8 RF chains, shown in

Fig. 2.10, one can observe that the proposed algorithm and the CNLMS-M can sustain nearly the

same performance, while here, the CNLMS-L attains SINR more than 8 dB lower as compared to

the favourable scenario in the Example 1.

The gains at all users’ directions, obtained from the radiation patterns at the last iteration of a

given Monte Carlo run of each algorithm, are summarized in Table 2.2. These results show that the

attenuation at 12◦ (i.e., the direction of the interferer close to the SOI) is 8.78 dB for the CNLMS-M,

6.36 dB for the proposed MVDR-AJASB, and only 1.01 dB for the CNLMS-L. Additionally, note

that all MVDR-based algorithms attain unit gain (0 dBi) in the SOI direction, as required by the

MVDR criterium.
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Figure 2.11: Example 2. SINR curves of the MVDR-based algorithms for M = 64 and L = 8.

Table 2.2
Example 2. Gain (in dBi) at the direction of the SOI and the interferers for the MVDR-based algorithms.

θ CNLMS-M CNLMS-L MVDR-AJASB

11◦ 0.00 0.00 0.00

-35◦ -7.31 -6.06 -7.40

-10◦ -11.01 -8.57 -11.71

12◦ -8.78 -1.01 -6.36

25◦ -11.96 -6.53 -9.11

40◦ -3.88 -4.22 -4.49

Example 3

This example assesses the impact of the number of RF chains on the proposed algorithm’s steady-

state performance. A BS equipped with M = 64 antenna elements is assumed, and the steady-state

SINR is assessed when considering L = 4, 8, 16, 32, and 64 RF chains. The steady-state SINR

is obtained by averaging the SINR values achieved after 2 × 106 iterations of each Monte Carlo

run. It is further assumed K = 6 users, with the SOI positioned at 5◦, and five interferers located

at −42◦, −18◦, 25◦, 44◦, and 6◦ (the last one is positioned close to the SOI). The step sizes are

chosen as µ = 0.002 for both the CNLMS-M and CNLMS-L, and µw = 0.002 and µs = 0.001 for

the MVDR-AJASB. The results, depicted in Fig. 2.12, show that the MVDR-AJASB has nearly

the same performance as the CNLMS-M when L ≥ 16 RF chains, meaning that almost the same

performance can be obtained by using a number as low as one-fourth of RF chains.

Example 4

The last example investigates the performance of the proposed algorithm under a non-stationary

scenario. In such a scenario, the SOI is initially positioned at 15◦ and moves to 0◦ between iterations
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Figure 2.12: Example 3. Steady-state SINR curves for different numbers of RF chains using the MVDR-
based algorithms.

Figure 2.13: Example 4. SINR curves for the MVDR-based algorithms in the non-stationary scenario.

50,000 and 70,000 with constant angular speed. The interferers are positioned at −45◦, −10◦, 5◦,

25◦, and 40◦, and the corresponding subarray has M = 32 antennas and L = 4 RF chains, while the

step sizes are the same as in Exp. 1.

Fig. 2.13 shows the obtained SINR curves. Similar to the MMSE-AJASB, the MVDR-AJASB

algorithm has a clear advantage over its counterpart using the same number of RF chains (i.e., the

CNLMS-L). Comparing the steady-state SINR before iteration 50,000 with that at the end of the

process, one can note that the SINR falls by 8% for the CNLMS-L and less nearly 5.7% for the

proposed MVDR-AJASB algorithm. Such results confirm the ability of the proposed algorithm to

track the SOI and attenuate the interfering signals in non-stationary scenarios.
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2.5 Concluding Remarks

In this chapter, two new adaptive algorithms to solve the JASB problem for uplink reception in

mobile communication systems have been proposed. The first algorithm is based on an iterative

alternating optimization procedure, in which the beamforming vector and the antenna selection ma-

trix are computed by using the MMSE criterion. Next, a similar alternating optimization procedure

based on the MVDR criterion is used to derive the second algorithm. Numerical simulation results

showed that the proposed algorithms led to high SINR values in adverse scenarios, such as those with

fewer RF chains than users, with interfering signals located at the SOI’s vicinity, and non-stationary

environments. Thereby, based on the obtained results, the proposed algorithms’ effectiveness has

been demonstrated.

It is worth noticing that the proposed MMSE- and MVDR-based AJASB algorithms require the

transmission of a training sequence and the DOA estimation, respectively. Although the effects of

these problems have been overlooked in this work, they have an important influence on practical

deployments. Therefore, further investigation on this matter is recommended.
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Chapter 3

Hybrid Beamforming for

Narrowband mmWave Massive

MIMO Systems

3.1 Introduction

The design of hybrid beamforming can be traced back to the work of Zhang et al. [59], where the

authors proposed a phase-shifter-based hybrid beamforming for conventional MIMO. The design was

intended as an alternative to antenna selection schemes, such as those studied in Chapter 2, since

those schemes suffer from a performance loss caused by the low array gain when only a small number

of antennas are selected. However, only after the seminal work of Ayach et al. [24], where authors

broke the ground in leveraging the mmWave channel characteristics, hybrid beamforming started

gaining significant attention in the mmWave massive MIMO community. Initially, the research works

on hybrid beamforming design for mmWave massive MIMO considered only narrowband single-user

(SU-MIMO) systems [24], [83]–[87]. Solving the hybrid precoder and combiner design problem is very

challenging as it requires a joint optimization over multiple matrix variables under the non-linear

and non-convex constant modulus constraint imposed by the phase-shifters on analog precoders and

combiners. To solve the design problem, authors resort to sub-optimal techniques, which temporarily

decouple either the precoder and combiner design, or the analog and digital beamforming design,

and solve these problems separately.
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In [24], Ayach et al. exploited the mmWave channels’ sparse-scattering structure to formulate

the hybrid beamforming design as a sparsity constrained matrix reconstruction problem. The au-

thors sought to design the hybrid beamforming to maximize its spectral efficiency. By decoupling

the precoder and combiner design, they showed that this problem could be cast as an approximation

problem that minimizes the Frobenius norm of the difference between the optimal unconstrained

beamforming (i.e. that finding the best projection of the optimal unconstrained beamforming onto

the set of feasible hybrid beamforming) [24]. This problem consists of a matrix-factorization problem

and is solved using the compressive-sensing-based orthogonal matching pursuit (OMP) algorithm.

The solution requires an exhaustive search over an analog beamforming codebook (e.g. steering

vectors), which may lead to high complexity when the codebook size increases or limit the perfor-

mance when it decreases. Inspired by the same matrix-factorization problem, the authors in [83]

also presented two alternating-minimization (AltMin) approaches for hybrid beamforming designs

based on manifold optimization (MO) and phase-extraction (PE). The MO-based design can attain

near-optimal performance, but its computational complexity limits its practical implementation. In

contrast, the PE-based design trades off a slight performance loss for a lower computational com-

plexity. Despite this performance loss, the PE-AltMin algorithm performs better than most of the

currently existing algorithms.

In [84], [85], the authors proposed simple yet efficient PE-based hybrid beamforming designs,

in which the analog beamforming is simply obtained by extracting the phases of the optimal un-

constrained precoder. Specifically, in [84], the baseband beamforming is a constant block diagonal

matrix (e.g., identity matrix), while in [85], the baseband precoder is obtained by the least-squares

solution, aiming to approximate the optimal unconstrained precoder. Overall, the hybrid beam-

forming designs in [24], [83]–[85] are based on approximating the hybrid beamforming to its optimal

unconstrained counterpart and require a priori computation of the optimal unconstrained beam-

forming.

Unlike the approximation-based methods above, [86] and [87] design the hybrid beamforming by

directly tackling the rate maximization problem. In [86], authors propose a joint hybrid precoder

and combiner design for the sum-rate maximization. Their method ensures orthogonality of the

effective spatial multiplexing channel, leading to higher sum-rate performance. However, as in [24],

this method also requires exhaustive search over analog precoder/combiner codebooks. In [87], the

hybrid beamforming is formulated by extracting the contribution of each element of the analog

beamforming to the system’s rate and solved by using an iterative coordinate descent algorithm to

update each of these elements successively.
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The promising results obtained for SU-MIMO hybrid beamforming encouraged researchers to in-

vestigate its use in multiuser (MU-MIMO) systems [61], [88]–[97]. Early works on MU-MIMO hybrid

beamforming design have considered the single data stream transmission for single-antenna [88], [89]

and multi-antenna [90]–[93] mobile users. In these works, the analog beamforming is often designed

to harvest the array gain by either using the equal gain transmission (EGT) [88], performing an

exhaustive search over an analog beamforming codebook [90], [91], or extracting the phases of the

channel’s principal singular vector pair [93], without accounting for the multiuser interference (MUI).

A different approach has been taken in [89] and [92], where authors proposed analog beamforming

designs to simultaneously maximize each user’s equivalent channel gain and mitigate the MUI using

Gram-Schmidt-based approaches. On the other hand, the digital precoder is often designed by the

zero-forcing (ZF) method. The ZF precoder allows a complete diagonalization of the effective chan-

nel, suppressing all inter-user interference. However, when multi-antenna receivers are considered,

the complete channel diagonalization at the transmitter using the ZF precoder is sub-optimal since

the receiver can also employ coordinate processing to help reduce the interference [98]. The alterna-

tive is a generalization of the ZF processing for multi-antenna users, known as block-diagonalization

(BD) [98].

The MU-MIMO hybrid beamforming design for multiple data stream transmission has been

considered in [61], [94]–[97]. In [94], the authors introduced the hybrid BD (Hy-BD) scheme, in

which the analog combiner and precoder are designed by using exhaustive search over a discrete

Fourier transform (DFT) codebook and EGT, respectively, in order to harvest the array gain. The

digital precoder and combiner are designed by the BD method over the low-dimensional effective

baseband channel. In [95], the authors presented a subspace projection aided BD scheme for fully-

digital beamforming design using the angle of departure information and used an iterative matrix

decomposition to obtain the hybrid precoder and combiner from the fully-digital solution. Authors

in [96] devised a two-stage method, in which first, the analog precoder and combiner are designed to

maximize the capacity of the effective baseband channel, and then, the digital precoder and combiner

are obtained from the traditional BD. In [97], the authors have designed the analog beamforming

using an approach similar to [87] and obtained digital beamforming from the traditional BD. Finally,

the author in [61] introduced the hybrid regularized channel diagonalization (HRCD) that uses

exhaustive search over the array response vector codebook for designing the analog combiner, EGT

for the analog precoder, and regularized channel diagonalization (RCD) for the digital precoder and

combiner.

Note that the analog beamforming designs in [61], [88], [90], [91], [93]–[95], and [97] seek to
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provide higher effective baseband channel gain, thus increasing the desired signal’s power at the

receiver, but do not attempt to reduce inter-user and intra-user interferences. The interference

mitigation is performed only at the digital beamforming stage. Moreover, although the methods

in [89] and [92] can reduce MUI at the analog beamforming stage, they are designed for single data

stream transmission and, therefore, do not account for intra-user interference. Furthermore, the

methods in [95] and [61] rely on the perfect knowledge of the steering vectors of all propagation

paths.

This chapter presents a novel joint hybrid precoder and combiner design method for mmWave

massive MIMO systems. The proposed method consists of a two-stage approach, in which the

analog and digital beamformers are designed separately. In the first stage, the analog beamforming

is designed using a constrained channel decomposition approach, which provides higher effective

baseband channel gain while also attempting to reduce inter-user and intra-user interference. Two

distinct digital beamforming designs are considered in the second stage. For SU-MIMO systems, the

digital precoder and combiner are obtained from the optimal SVD solution; and for MU-MIMO, the

digital precoder and combiner are obtained from the RCD method. Simulation results show that

the proposed design is able to attain near-optimal spectral efficiency and sum-rate, outperforming

most of the hybrid beamforming designs in the literature.

This chapter is organized as follows: Section 3.2 describes the system and channel models, and

the problem formulation; Section 3.3 introduces the novel hybrid beamforming design for narrow-

band mmWave massive MIMO systems based on the proposed constrained channel decomposition

approach; Section 3.4 demonstrates the numerical simulation results for different system’s setups and

compares the proposed approaches with other designs in the literature; finally, Section 3.5 presents

the concluding remarks of this chapter.

3.2 System Model and Problem Formulation

This section presents the system model, the channel model, and the problem formulation.

3.2.1 System Model

Here, the downlink of an MU-MIMO narrowband massive MIMO system with a hybrid beamforming

structure, as depicted in Fig. 3.1, is considered. It is assumed that a base station having Nt antenna

elements and NRF
t RF chains simultaneously communicates with K users. Each user is equipped

with Nr antenna elements and NRF
r RF chains and supports Ns data streams. To ensure effective
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Figure 3.1: System diagram for the downlink of a multiuser massive MIMO system with hybrid beam-
forming.

multi-stream communication, the system must satisfy Ns ≤ NRF
r ≤ Nr and KNs ≤ NRF

t ≤ Nt [87].

At the base station, the hybrid precoder consists of an analog precoder matrix FRF ∈ CNt×NRF
t and a

digital precoder matrix FBB = [FBB,1 · · ·FBB,k · · ·FBB,K ] ∈ CNRF
t × KNs , where FBB,k ∈ CNRF

t × Ns

is the digital precoder matrix for the k-th user. The analog precoder is implemented using phase

shifters and is subjected to a constant modulus constraint (i.e. |FRF(m,n)| = 1/
√
Nt ∀m,n). The

symbol vector s = [sT
1 , s

T
2 , · · · , sT

K ]T ∈ CKNs×1, where sk ∈ CNs×1 refers to the k-th user’s symbols,

is assumed independent with unity-variance components, i.e. E[ssH] = IKNs
, and is precoded in the

digital and analog domains before being transmitted, yielding the following transmitted signal

x = FRFFBBs (3.1)

where x ∈ CNt×1 and ‖FRFFBB‖2F = PT is the total transmitted power.

Assuming that the signal is transmitted over a narrowband flat-fading channel Hk ∈ CNr×Nt ,

where Hk represents the fast-fading channel matrix for the k-th user, the signal received at the k-th

user’s antenna array, yk ∈ CNr×1, is given by

yk =
√
ρkHkFRFFBBs + nk (3.2)

where ρk represent the large scale fading and nk ∈ CNr×1 is the noise vector, such that nk is i.i.d.

CN (0, σ2
nINr). At the k-th user, the received signal yk is first processed by the analog combiner

matrix WRF,k ∈ CNr×NRF
r , and then processed by the digital combiner matrix WBB,k ∈ CNRF

r ×Ns .

The analog combiner is also implemented using phase shifters and is constrained to have a constant
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modulus, such that |WRF,k(m,n)| = 1/
√
Nr ∀m,n. The received symbol is expressed by

ŝk =
√
ρkW

H
BB,kW

H
RF,kHkFRFFBBs + WH

BB,kW
H
RF,knk. (3.3)

By defining the aggregated multiuser channel as H = [HT
1 HT

2 · · · HT
K ]T, the aggregated analog

combining matrix as WRF = blkdiag{WRF,1, · · · ,WRF,K}, and the effective baseband channel of

the k-th user as H̄k = WH
RF,kHkFRF ∈ CNRF

r ×N
RF
t , one can represent the entire multiuser effective

baseband channel Heff as

Heff = WH
RFHFRF

= [H̄T
1 H̄T

2 · · · H̄T
K ]T

=



WH
RF,1 0 · · · 0

0 WH
RF,2 · · · 0

...
...

. . .
...

0 0 · · · WH
RF,K





H1

H2

...

HK


FRF.

(3.4)

The estimated symbol for the i-th data stream in the k-th user, ŝki , can be expressed as [96]

ŝki =
√
ρkW

H
BB,k(i, :)H̄kFBB(:, ki)ski +

Ns∑
j=1,j 6=i

√
ρkW

H
BB,k(i, :)H̄kFBB(:, kj)skj

+

K∑
m=1,m 6=k

Ns∑
l=1

√
ρkW

H
BB,k(i, :)H̄kFBB(:,ml)sml + WH

BB,k(i, :)WH
RF,knk

(3.5)

where ki = (k − 1)Ns + i and ski is the i-th element of sk.

Considering that Gaussian symbols are transmitted, the achieved spectral efficiency is given

by [99]

R =

K∑
k=1

log2

(∣∣∣∣INs
+
ρk
σ2

n

R−1
n WH

k HkFkF
H
k HH

k Wk

∣∣∣∣) (3.6)

where Fk , FRFFBB,k, W , WRF,kWBB,k, and

Rn =
ρk
σ2

n

K∑
j 6=k

WH
k HkFjF

H
j HH

k Wk + WH
k Wk

is the interference plus noise covariance matrix. However, note that the spectral efficiency of a

MIMO system represents a performance upper bound, and when linear precoders and combiners are

used for spatial multiplexing, the sum-rate is more reasonable performance metric [86], [100]. The
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sum-rate is given by

Rsum =

K∑
k=1

Ns∑
i=1

log2 (1 + SINRki) (3.7)

where SINRki represents the signal-to-interference-plus-noise ratio of the i-th data stream of the

k-th user, given by

SINRki =
S

I + N
(3.8)

with S, I, and N being, respectively, the signal, interference, and noise power, given by

S = ρk|Wk(:, i)HHkFk(:, i)|2

I =

Ns∑
j=1,j 6=i

ρk|Wk(:, i)HHkFk(:, j)|2

+

K∑
l=1,l 6=k

Ns∑
j=1

ρk|Wk(:, i)HHkFl(:, j)|2

N = σ2
nWk(:, i)HWk(:, i).

3.2.2 Channel Model

Two distinct fast fading channel models are assumed: the Rayleigh model, which represents a

rich scattering environment, and the Saleh-Valenzuela model, representing the sparse scattering

environment of mmWave channels. In the Rayleigh model, each entry of the fast fading channel

matrix Hk follows an i.i.d. zero-mean complex Gaussian distribution, i.e. Hk(m,n) ∼ CN (0, 1).

On the other hand, the Saleh-Valenzuela channel model corresponds to the sum of the con-

tributions of Ncl scattering clusters, each formed by Nray propagation paths. The discrete-time

narrowband flat-fading channel matrix of the k-th user is given by [24]

Hk =

√
NrNt

NclNray

Ncl−1∑
i=0

Nray−1∑
l=0

αilar(φ
r
il, θ

r
il)a

H
t (φt

il, θ
t
il), (3.9)

where αil corresponds to the complex gain of the l-th multipath ray in the i-th cluster, the vectors

ar(φ
r
il, θ

r
il) and at(φ

t
il, θ

t
il) are the array response vectors of the receiver and transmitter, respec-

tively, whereas φt
il and θt

il are the azimuth and elevation angles of departure (AoD), and φr
il and

θr
il are the azimuth and elevation angles of arrival (AoA). The complex gain αil is assumed to be

i.i.d. CN (0, σ2
α,i), where σ2

α,i is the average power of the i-th cluster. The average cluster powers

are such that
∑Ncl

i=1 σ
2
α,i =

√
NrNt/NclNray [24]. The azimuth and elevation angles of departure

φt
il, θ

t
il and arrival φr

il, θ
r
il for the Nray paths in the i-th cluster are modeled as Laplacian distributed
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random variable, with mean φt
i, θ

t
i , φ

r
i, θ

r
i uniformly-distributed over [−π, π), and angular spread of

σt
φ, σ

t
θ, σ

r
φ, σ

r
θ, respectively. A

√
N ×

√
N uniform square planar array (USPA), with N = Nt and

N = Nr, respectively, for the transmitter and receiver, is assumed. The array response vector for

the USPA is defined as [83]

a(φ, θ) =
1√
N

[
1, ..., ej

2πd
λ [h sin(φ) sin(θ)+v cos(θ)], ..., ej

2πd
λ [(
√
N−1) sin(φ) sin(θ)+(

√
N−1) cos(θ)]

]T
(3.10)

where d and λ are the spacing between elements and the signal wavelength, respectively, and

0≤h<
√
N − 1 and 0≤v<

√
N − 1 are the indexes of the antenna element in the 2D plane.

3.2.3 Problem Formulation

Here, the design of hybrid precoders and combiners aims to maximize the sum-rate of MIMO system.

This design problem is formulated as

max

FRF,FBB,WRF,k,WBB,k

Rsum

s.t. FRF ∈ FRF

WRF,k ∈ WRF

‖FRFFBB‖2F = PT

(3.11)

where FRF and WRF are, respectively, the set of all feasible analog precoder and combiner matrices

(i.e., all Nt ×NRF
t and Nr ×NRF

r matrices with constant modulus entries), and ‖FRFFBB‖2F = PT

ensures the total transmitted power constraint. For simplicity, it is assumed that NRF
t = KNRF

r =

KNs. Nonetheless, following [83]–[97], it is further assumed that perfect channel state information

(CSI) is available. Although perfect channel estimation with hybrid beamforming architecture is

very challenging, efficient methods based on compressive sensing [101] and Bayesian learning [102]

have been proposed.

In SU-MIMO systems, the maximal sum-rate is attained when the data streams are transmitted

by multiple non-interfering parallel sub-channels, which is achieved by designing precoders and

combiners that diagonalize the effective channel. In a fully-digital scheme, this can be obtained by

choosing the precoder and combiner, respectively, as the right and left singular vectors of the channel

matrix and using water-filling to allocate the power of each data stream [103]. For MU-MIMO

systems, although the optimal solution is not necessarily obtained by diagonalizing the effective
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channel, it generally results in a near-diagonal channel [98]. Thus, the precoder and combiner

design can be seen as an attempt to perform such diagonalization.

When a hybrid structure is employed, solving the sum-rate maximization problem, as in (3.11),

is very challenging. The problem is non-linear, due to the coupling between the analog and digital

beamforming, and non-convex, due to the constant modulus constraint imposed by the phase-shifters

in the analog beamforming. In fact, even for a single-user system, designing hybrid beamforming

to attain the globally optimal sum-rate is found to be intractable [24]. Therefore, practical designs

often resort to sub-optimal solutions, such as the two-stage approaches in which the analog and

digital beamforming are designed separately. However, in many of these approaches, such as in [61],

[91], [94], the analog precoder and combiner are designed to increase the desired signal’s power at

the receiver (i.e., increase the squared elements in the effective baseband channel’s diagonal) with-

out attempting to reduce intra-user and inter-user interference (i.e., reduce the effective baseband

channel’s off-diagonal elements). The interference mitigation is left for the digital beamforming

alone.

3.3 Constrained Channel Decomposition-based Hybrid

Beamforming Design for MIMO Systems

This section proposes a novel hybrid precoder and combiner design for narrowband mmWave massive

MIMO. The proposed design consists of two stages. In the first stage, the analog precoder and com-

biner are jointly designed using the proposed constrained channel decomposition approach, which

explores the extra degree-of-freedom provided by the analog beamforming to harvest the array gain

and to provide intra-user and inter-user interference suppression. This approach is very general and

applies to both single-user and multi-user systems. In the second stage, the digital beamforming is

designed considering two distinct approaches. First, for single-user systems, the digital beamforming

is obtained from the optimal SVD-based solution considering the effective baseband channel. Next,

for multi-user systems, the digital beamforming is obtained using the regularized channel diagonal-

ization approach (RCD) [61]. The proposed design and its computational complexity analysis are

presented in the following subsections.
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3.3.1 Analog Precoder and Combiner Design

The analog precoder and combiner’s design aims to diagonalize the effective baseband channel Heff ,

such that the effective gain of each data stream is maximized while the interference among different

data streams is suppressed. This problem is equivalent to finding the best rank-KNs channel ap-

proximation H ≈WRFΣFH
RF, so that Heff = WH

RFHFRF ≈ Σ, where Σ is a KNs ×KNs diagonal

matrix while both WRF and FH
RF are orthonormal. After taking the constant modulus constraints

associated with the analog precoder and combiner into account, the design problem is formulated as

min

FRF,WRF,Σ

∥∥H−WRFΣFH
RF

∥∥2

F

s.t. WH
RFWRF = IKNs

FH
RFFRF = IKNs

WRF = blkdiag{WRF,1, · · · ,WRF,K}

WRF,k ∈ WRF

FRF ∈ FRF

(3.12)

where the third constraint is imposed by the system model, while the two last constraints correspond

to the constant-modulus constraint imposed by the phase-shifters (without these three constraints,

the problem corresponds to the classical low-rank matrix approximation problem). With proper

algebraic manipulation, as demonstrated in Appendix A, the problem in (3.12) can be equivalently

cast as

max

FRF,WRF

∥∥WH
RFHFRF

∥∥2

F

s.t. WH
RFWRF = IKNs

FH
RFFRF = IKNs

WRF = blkdiag{WRF,1, · · · ,WRF,K}

WRF,k ∈ WRF

FRF ∈ FRF.

(3.13)

The problem in (3.13) is intractable due to the non-convex constraints. A heuristic algorithm

for solving (3.13) through a series of KNs successive rank-1 approximations is proposed to overcome

such a hurdle. Each rank-1 approximation corresponds to the design of one analog precoder and
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combiner vector pair. The rank-1 approximation problem is formulated as

max
fj ,wj

∣∣wH
j Hfj

∣∣
s.t. fH

j fj = 1, fH
j fl = 0 ∀j 6= l

wH
j wj = 1, wH

j wl = 0 ∀j 6= l

WRF = blkdiag{WRF,1, · · · ,WRF,K}

|[fj ]m| = 1/
√
Nt, ∀m ∈ {1, · · · , Nt}

|[wj ]n| = 1/
√
Nr, ∀n ∈ {1, · · · , Nr}

(3.14)

where FRF = [f1 · · · fKNs ], WRF = [w1 · · ·wKNs ], and {j, l} ∈ {1, 2, · · · ,KNs}. The problem

in (3.14) is still non-convex and difficult to solve.

Problem (3.14) can be further simplified according to the following observations: i) the objective

function and constraints in (3.14) are invariant to rotations in wi and fi, thereby replacing the

objective function with Re(wH
i H

(i)
resfi) will also lead to an optimal solution of (3.14); ii) given the

block-diagonal structure of the aggregated analog combiner matrix, each analog combiner vector

interacts only with the channel matrix of the same user and, in addition, only the orthogonality

among analog combiner vectors within the same user needs to be ensured; lastly, iii) the orthog-

onality constraint, which guarantees the interference suppression, can be slightly relaxed since it

can be further ensured by the digital precoder and combiner. Bearing these observations in mind,

problem (3.14) is relaxed as

max
wk,i,fk,i

Re
(
wH
k,iH

(i)
res,kfk,i

)
s.t. wH

k,iwk,i = 1

fH
k,ifk,i = 1

|[fk,i]m| = 1/
√
Nt, ∀m ∈ {1, · · · , Nt}

|[wk,i]n| = 1/
√
Nr, ∀n ∈ {1, · · · , Nr}.

(3.15)

where fk,i is the [(k − 1)Ns + i]-th column of FRF, wk,i is the i-th column of WRF,k, with i ∈

{1, · · · , Ns} and k ∈ {1, · · · ,K}, such that fk,i and wk,i are, respectively, the analog precoder and

analog combiner corresponding to the i-th data stream in the k-th user. Note that, to preserve

some level of orthogonality, the channel matrix in (3.14) has been replaced with the residual channel

matrix H
(i)
res, i.e., the channel matrix subtracted the contributions of the previously computed analog
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precoder and combiner vectors. In particular, H
(i)
res,k represents the residual channel matrix from

the k-th user.

The solution to problem (3.15) is obtained through the projected block coordinate descent method

[104], [105] by cyclically seeking the block coordinate descent solution with respect to each block vari-

able (e.g., wk,i or fk,i) while keeping the other block variable fixed. Thereby, each block coordinate

problem is solved by relaxing the non-convex constant modulus constraint and then projecting the

relaxed solution onto the non-convex set of constant modulus vectors. The relaxed block coordinate

descent problems are, respectively,

max
wk,i

Re
(
wH
k,iH

(i)
res,kfk,i

)
s.t. wH

k,iwk,i = 1

and
max
fk,i

Re
(
wH
k,iH

(i)
res,kfk,i

)
s.t. fH

k,ifk,i = 1.

(3.16)

The solution to the problems in (3.16) is obtained using the Lagrange multiplier method. For

instance, for the problem on the left-hand side, the Lagrangian function is defined as

L(wk,i, λ) = Re
(
wH
k,iH

(i)
res,kfk,i

)
− λ

(
wH
k,iwk,i − 1

)
. (3.17)

The optimal wk,i is then obtained by setting the gradient of L(wk,i, λ) w.r.t. w∗k,i to zero, i.e.,

∇w∗
k,i
L(wk,i, λ) = H

(i)
res,kfk,i − λwk,i = 0. (3.18)

Eq. (3.18) yields ŵk,i = H
(i)
res,kfk,i/λ, where λ is obtained to ensure ŵH

k,iŵk,i = 1. The solution to

the problem on the right-hand side in (3.16) is obtained through the same procedure. The solutions

to the relaxed block coordinate descent problems are, respectively, given as

ŵk,i =
H

(i)
res,kfk,i∥∥∥H(i)
res,kfk,i

∥∥∥ and f̂k,i =
H

(i)H

res,kwk,i∥∥∥H(i)H

res,kwk,i

∥∥∥ (3.19)

and the projection of the relaxed solutions onto the constant modulus vector space are obtained by

extracting the phases of the relaxed solutions, i.e., by making

wk,i =
1√
Nr

ej∠H
(i)
res,kfk,i and fk,i =

1√
Nt

ej∠H
(i)H

res,kwk,i . (3.20)

Note that the normalization factors in (3.19) do not need to be taken into account since they do

not change the phases of the solution vector. Moreover, despite the non-convexity of the block
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coordinate problems, Appendix B proves that the solutions in (3.20) are, in fact, optimal. Finally,

the solution to (3.15) is obtained by iterating the equations in (3.20) until convergence.

After obtaining the pair of analog precoder and combiner vectors, the residual channel matrix

for the k-th user is updated by simultaneously projecting the columns of H
(i)
res,k onto the subspace

orthogonal to the analog combiner wk,i and their rows onto the subspace orthogonal to the analog

precoder fk,i by making

H
(γ+1)
res,k = (INr

−wk,iw
H
k,i)H

(γ)
res,k(INt

− fk,if
H
k,i) (3.21)

while the residual channel matrix for the remaining users are updated by projecting their rows onto

the subspace orthogonal to the analog precoder fk,i by

H
(γ+1)
res,j = H

(γ)
res,j(INt

− fk,if
H
k,i), ∀j ∈ {1, · · · ,K|j 6= k}. (3.22)

The update in (3.21) allows finding the analog precoder and combiner vectors for the (i+ 1)-th data

stream in the k-th user nearly-orthogonal to, respectively, the analog precoder and combiner vectors

for the i-th data stream of the same user. The update in (3.22), on the other hand, allows seeking

analog precoders for the remaining users that are nearly-orthogonal to the analog precoder computed

for the i-th data stream in the k-th user. Note that finding orthogonal analog precoders and com-

biners is very difficult when the constant modulus constraints are taken into account. Nonetheless,

while the updates in (3.21) and (3.22) cannot assure orthogonality among the analog beamform-

ing vectors, the near-orthogonality is good enough to provide intra-user and inter-user interference

reduction since the interference suppression is reinforced at the digital beamforming stage. The

procedure for solving (3.15) described herein is repeated until the analog beamforming for all users

and data streams are designed. The proposed algorithm is summarized in Algorithm 3.1.

Note that different user scheduling schemes can be adopted when solving the successive rank-

one approximation problem in (3.15). For instance, Alg. 3.1 seeks fairness among the users, and,

therefore, the analog precoder and combiner vector pairs are designed for one data stream in each

user at a time. An additional possibility is to follow a certain user priority scheme, thereby designing

all the analog precoder and combiner vector pairs for the highest priority users to the lowest ones.
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Algorithm 3.1: Joint Analog Precoder & Combiner Design for Narrowband MIMO

1 Initialize γ = 0 and FRF = [ ]

2 Initialize WRF,k = [ ] and H
(0)
res,k = Hk,∀k = 1, · · · ,K

3 for i = 1 : Ns do
4 for k = 1 : K do
5 Initialize wk,i and fk,i randomly

6 Initialize η = 0; δ(0) = 1; δ(1) = 0

7 while |δ(η+1) − δ(η)| ≥ ε do
8 η = η + 1

9 ŵk,i = H
(γ)
res,kfk,i

10 wk,i = (1/
√
Nr)e

j∠ŵk,i

11 f̂k,i = H
(γ)H

res,kwk,i

12 fk,i = (1/
√
Nt)e

j∠f̂k,i

13 δ(η+1) = wH
k,iH

(γ)
res,kfk,i

14 end

15 H
(γ+1)
res,k = (INr

−wk,iw
H
k,i)H

(γ)
res,k(INt

− fk,if
H
k,i)

16 for j = 1 : K, j 6= k do

17 H
(γ+1)
res,j = H

(γ)
res,j(INt

− fk,if
H
k,i)

18 end
19 WRF,k(:, i) = wk,i

20 FRF(:, (k − 1)Ns + i) = fk,i
21 γ = γ + 1

22 end

23 end
24 return FRF,WRF

3.3.2 Digital Precoder and Combiner Design for Single-User Systems

First, consider a single-user system (i.e., K = 1), where only intra-user interference is present. In this

case, for a given analog precoder and combiner matrix, the optimal digital precoder and combiner

matrices are obtained from the effective baseband channel’s SVD, followed by the water-filling power

allocation [103].

The effective baseband channel, i.e., Heff = WH
RFHFRF, takes into account the effects of the

analog precoder and combiner and has SVD as

Heff = UΣVH

= [U0 U1]

 Σ0 0

0 Σ1

 [V0 V1]
H

(3.23)
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where Σ is a diagonal matrix with entries given by the singular values of Heff arranged in descending

order, and the columns of U and V are, respectively, the left and right singular vectors associated

with these singular values. Let Σ0 be the diagonal matrix with the Ns largest singular values, and

U0 and V0 the Ns right and left singular vector associated with these singular values, the optimal

digital precoder and combiner are, respectively,

FBB = V0P (3.24)

and

WBB = U0 (3.25)

where P is the diagonal power allocation matrix.

For equal power allocation (i.e., all data streams are transmitted with the same power), the

power allocation matrix is set to P =
√
PTINs

/ ‖FRFV0‖F to ensure the total transmitted power

‖FRFFBB‖2F = PT is attained. Therefore, the digital precoder is given by

FBB =
√
PT

V0

‖FRFV0‖F
. (3.26)

For optimal power allocation, the power allocation matrix is computed by solving the water-filling

problem [106],

max
P

Ns∑
i=1

log
(

1 + [P]i,i [Λ]i,i

)
s.t.

Ns∑
i=1

[P]i,i ≤ PT

[P]i,i ≥ 0, 1 ≤ i ≤ Ns

(3.27)

whose solution is given by

[P]i,i = (µ− [Λ]−1
i,i )+, 1 ≤ i ≤ Ns (3.28)

where [P]i,i is the power allocated to the i-th data stream, [Λ]i,i is the i-th diagonal of the effective

channel Λ = UH
0 HeffV0, (λ)+ , max(0, λ), and µ is the water level chosen to satisfy the total

transmitted power constraint.

3.3.3 Digital Precoder and Combiner Design for Multi-User Systems

Unlike single-user systems, where the precoders and combiners are designed to increase the effective

gain and reduce intra-user interference, multi-user systems also need to address MUI (i.e. inter-user
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interference). Besides, in single-user systems, the optimal spectral efficiency can be attained using

linear processing. This is not the case in multi-user systems, where optimal spectral efficiency can,

in general, only be achieved using non-linear techniques (e.g. dirty-paper coding [107]), incurring

increased complexity. Different sub-optimal linear processing techniques have been proposed to

overcome such a drawback, such as the BD [98] and the RCD [61]. In contrast to the BD, which

only addresses the MUI, the RCD approach can trade-off MUI suppression for noise suppression

and transmit diversity, thus attaining a better performance in low-SNR scenarios. Here, the RCD

approach is adopted to design the digital precoder and combiner.

The RCD’s goal is to reduce the MUI plus noise and to optimize the system performance. Thus,

the RCD design is obtained in two steps: the first step addresses the MUI plus noise suppression,

and the second step performs the intra-user interference suppression and performance optimization.

The digital precoder is written as

FBB = βFaFb (3.29)

with Fa = [Fa1
Fa2

· · · FaK ] ∈ CKNs×KNs and

Fb =


Fb1

· · · 0

...
. . .

...

0 · · · FbK

 ∈ CKNs×KNs

where Fak ∈ CKNs×Ns is the primary digital precoder for MUI plus noise suppression, Fbk ∈ CNs×Ns

is the secondary digital precoder used for performance optimization, and β is chosen to fulfill the

total transmit power constraint in (3.11).

Thus, by defining H̃k = [H̄T
1 · · · H̄T

k−1 H̄T
k+1 · · · H̄T

K ]T ∈ C(K−1)Ns×KNs , which aggregates

the effective baseband channel of all users, except the k-th user, the primary precoder design is

formulated as the MUI plus noise minimization problem [61]

min
Fa

E

{
K∑
k=1

‖H̃kFak‖2F +
‖z‖2

β2

}
(3.30)

where ‖H̃kFak‖F relates to the level of interference caused by the k-th user’ signals to the remaining

users, z is the noise vectors at the input of the digital combiners, such that z = WH
RFn with

n = [nT
1 · · ·nT

K ]T being i.i.d. with zero-mean and variance σ2
n equal for all users, and β ensures the
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total transmitted power, i.e.,

β2
K∑
k=1

‖FRFFakFbk‖2F = PT. (3.31)

Assuming that FH
RFFRF = IKNs and WH

RFWRF = IKNs , which holds with high probability for

large-scale arrays [87], and that under the equal power allocation assumption, the secondary digital

precoder Fbk is a unitary matrix (which indeed holds, as will be shortly demonstrated), one obtains

β2 =
PT∑K

k=1 ‖FRFFakFbk‖2F

=
PT∑K

k=1 Tr
[
FRFFakFbkF

H
bk

FH
ak

FH
RF

]
=

PT∑K
k=1 Tr

[
FH

ak
Fak

]
(3.32)

and

E
{
‖z‖2

}
= E

{
Tr
[
zzH

]}
= E

{
Tr
[
WH

RFnnHWRF

]}
= σ2

nTr
[
WH

RFWRF

]
= σ2

nKNs.

(3.33)

By plugging in the results from (3.32) and (3.33), problem (3.30) is rewritten as [108, Appendix I]

min
Fa

K∑
k=1

Tr

[
FH

ak

(
H̃H
k H̃k +

KNsσ
2
n

PT
IKNs

)
Fak

]
(3.34)

whose solution is given by [109]

Fak =

(
H̃H
k H̃k +

KNsσ
2
n

PT
IKNs

)−1

. (3.35)

Next, assuming that the primary digital precoder minimizes all MUI, so that HeffFa is block

diagonal, the secondary digital precoder and the digital combiner design can be viewed as optimizing

K parallel SU-MIMO. Let the effective SU-MIMO channel for the k-th user H̄kFak and its SVD

H̄kFak = UsΣsV
H
s , the optimal secondary digital precoder and digital combiner for the sum-rate

maximization under total transmitted power constraint are, respectively,

Fbk = Vs (3.36)

and
WBB,k = Us. (3.37)

Note that, since Fbk is a right singular vector matrix, the assumption that Fbk is unitary holds for

equal power allocation. Finally, by plugging (3.31) into the expression in (3.29), the digital precoder
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is given by

FBB =

√
PT

‖FRFFaFb‖2F
FaFb. (3.38)

Alternatively, for optimal power allocation, the water-filling algorithm can be used to distribute the

power along the columns of the digital precoding matrix.

In contrast to the classical BD approach, in which the primary precoder forces the k-th user

to transmit in the null-space of H̃k, providing a better MUI suppression [94], [98], in the RCD

design, the primary digital precoder allows the k-th user transmits in the subspace spanned by all

other users with power inversely proportional to H̃k’s singular values [108]. As a result, the RCD

design trades-off MUI suppression for noise suppression and transmit diversity, leading to a better

performance in low-SNR scenarios. For high SNR, the transmission tends to concentrate in the

null-space of H̃k, and thus, the RCD precoder approaches the BD design.

3.3.4 Computational complexity

The iterative process used to design the analog precoder and combiner matrices has computational

complexity order of O{KNsNtNr(Nite +K)}, where Nite is the number of iterations required to

compute an analog precoder and combiner vector pair. The digital precoder and combiner’s design re-

quires the computation of the effective baseband channel, with complexityO{KNs(NtNr +KNtNs)}.

In SU-MIMO systems (i.e., K = 1), the complexity of the analog precoder and combiner’s de-

sign and the effective baseband channel’s computation reduces to, respectively, O {NsNtNrNite}

and O
{
N2

s Nt +NsNtNr

}
. The digital precoder and combiner are obtained from the effective base-

band channel’s SVD, with complexity O(N3
s ), followed by the digital precoder normalization with

complexity O(N2
s Nt). Therefore, under the assumption that Ns ≤ Nr and Ns ≤ Nt (which always

holds for the proposed system), the overall complexity order of the proposed design for SU-MIMO

is approximately O{NsNtNrNite}. For comparison, Table 3.1 shows the complexity of the proposed

method along with other SU-MIMO hybrid beamforming designs in the literature. |F| and |W| are,

respectively, the sizes of the analog precoder and combiner codebooks.

In MU-MIMO systems, the digital precoder and combiner design is obtained from the RCD

method, with complexity O
{
K4N3

s

}
, followed by the digital precoder normalization with complexity

O
{
K2N2

s Nt

}
. Thus, under the assumption that Ns ≤ Nr and Ns ≤ Nt, the overall complexity of

the proposed design for MU-MIMO systems is approximately O
{
KNs[K

3N2
s +NtNr(K +Nite)]

}
.

For comparison, the complexity of the proposed method and other existing MU-MIMO hybrid

beamforming designs are shown in Table 3.2.
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Table 3.1
Computational Complexity of SU-MIMO Hybrid Beamforming Design Methods

Method Computational complexity

Prop. Method O{NtNrNsNite}
OMP [24] O

{
NtN

2
r + (Nt +Nr)N

3
s + (Nt|F|+Nr|W|)Ns

}
PE-AltMin [83] O

{
N2

s (Nt +Nr)Nite +NsNtNr

}
HBF-LSAA [87] O

{
N2

s N
2
t N

2
r Nite

}
SVD-PE [84] O

{
NtN

2
r

}
SVD-PE-HBF [85] O

{
NtN

2
r +NrN

2
s

}
SSRM-HBF [86] O

{
N3

s (Nt +Nr) +NsNtNr|F||W|
}

Table 3.2
Computational Complexity of MU-MIMO Hybrid Beamforming Design Methods

Method Computational complexity

Prop. Method O
{
KNs[K

3N2
s +NtNr(K +Nite)]

}
Hy-BD [94] O

{
K[K3N3

s +KN2
s Nt +NtN

2
r ]
}

Hy-SBD [96] O
{
K[K3N3

s +KN2
s Nt +NtN

2
r ]
}

EBF-HBF [97] O
{
KN2

s [K3Ns +KN2
s Nt +Nite(N2

t +N2
r )]
}

HRCD [61] O
{
K[K3N3

s +KN2
s Nt +NtN

2
r +NsNclNray]

}

3.4 Simulation Results

This section presents extensive simulation results to evaluate the proposed method, compare it with

alternative designs available in the literature, and validate its effectiveness. The section is organized

as follows: Sections 3.4.1 and 3.4.2 presents the simulation results, respectively, for SU and MU

systems, considering both Rayleigh and mmWave channel models; Section 3.4.3 investigates the

convergence of the proposed method; and finally, Section 3.4.4 presents further discussions on the

results.

In all examples, optimal water-filling power allocation is considered for all methods. Moreover,

the examples evaluate both the spectral efficiency and the sum-rate performances of the different

hybrid beamforming designs. As previously discussed, the spectral efficiency represents an upper-

bound on the achievable sum-rate, while the sum-rate itself provides a more reasonable metric when

linear processing techniques are employed [86], [100]. The SNR is defined as SNR = PTρk/σn,

where the total transmitted power is set to PT = KNs and ρk is assumed equal for all users.

The simulation results are obtained by averaging the spectral efficiency and the sum-rate over 103
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channel realizations. The stopping criteria in Alg. 3.1 is set to ε = 0.001, and the maximum number

of iteration is set to Nite = 100. For the mmWave channel model, it is assumed Ncl = 5 and

Nray = 10, with average cluster power σ2
α,i = 1, angular spread σt

φ = σt
θ = σr

φ = σr
θ = 10◦, and a

USPA with antenna spacing d = λ/2.

3.4.1 Single-User Systems

This section studies the performance of the proposed design in SU-MIMO systems. Two sets of

examples are presented, considering Rayleigh and mmWave channels, respectively. The proposed

design is compared to the optimal fully-digital solution, OMP [24], PE-AltMin [83], HBF-LSAA [87],

SVD-PE [84], SVD-PE-HBF [85], and SSRM-HBF [86]. A beam-steering codebook containing the

array response vectors of all propagation paths is considered for the OMP and the SSRM-HBF.

Since these two designs are specifically tailored for the mmWave channel, they are not considered

in the Rayleigh channel examples.

Rayleigh Channel

The first set of examples investigates the proposed hybrid beamforming design performance for

SU-MIMO systems under Rayleigh channels.

The first example evaluates the spectral efficiency and the sum-rate for different SNR values,

ranging from –15 dB to 15 dB, for a 64 × 64 MIMO system (i.e., Nt = 64 transmit and Nr = 64

receive antennas), communicating through Ns = 4 data streams. The results are shown, respectively,

in Fig. 3.2a and Fig. 3.2b. Note that for SNR below 0 dB, the proposed design achieves the highest

spectral efficiency among all hybrid beamforming designs. For higher SNR, the HBF-LSAA design

slightly outperforms (with up to 0.13 bits/s/Hz higher spectral efficiency). On the other hand,

note that the HBF-LSAA design has the worst performance in low SNR, with spectral efficiency

around 2 bits/s/Hz lower than the proposed method at SNR = –10 dB. The remaining designs

achieve spectral efficiency lower than the proposed method at all SNR range. A similar result is

obtained in terms of the sum-rate. However, note that although the PE-AltMin, SVD-PE, and

SVD-PE-HBF can attain near-optimal spectral efficiencies, this does not reflect a high sum-rate. As

shown in Fig. 3.2b, these methods have their sum-rates degraded with the increase in the SNR.

The second example investigates the impact of the number of data streams in the spectral

efficiency and the sum-rate under different SNR. A 64×64 MIMO system is considered. The results

are depicted in Fig. 3.3, where the graphs in the left (i.e., (a), (c), and (e)) correspond to the spectral

efficiency and those in the right (i.e., (b), (d), and (f)), to the sum-rate. Likewise, the graphs at
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(a) (b)

Figure 3.2: Example 1. SU-MIMO system and Rayleigh channel: Spectral efficiency (a) and sum-rate (b)
vs. SNR for a system with Nt = Nr = 64 antennas and Ns = 4 data streams.

the top, center, and bottom correspond to SNR of 5 dB, 0 dB, and –5 dB, respectively. From

these results, one can observe that the proposed method, the PE-AltMin, and the HBF-LSAA have

very similar spectral efficiency performance, particularly at SNR equals 0 dB and 5 dB, with the

HBF-LSAA slightly outperforming the proposed method and with the PE-AltMin having the lowest

performance among the three designs, especially at small numbers of data streams. However, observe

that the performance of the HBF-LSAA is severely degraded at low SNR, achieving spectral efficiency

nearly 3.6 bits/s/Hz lower than the proposed method at SNR = –5 dB when transmitting eight data

streams. Moreover, the SVD-PE and the SVD-PE-HBF perform much worse than the other designs.

Similarly, when evaluating the sum-rate, note that the HBF-LSAA slightly outperforms the proposed

method at high SNR, but it is highly degraded as the number of data streams increases at a low

SNR. On the other hand, the PE-AltMin has its performance degraded at high SNR, achieving a

sum-rate up to 6.6 bits/s/Hz lower than the proposed design at SNR = 5 dB when transmitting

eight data streams. Overall, the proposed method has a consistent near-optimal performance for all

numbers of data streams and SNR.

The third example investigates the impact of the number of antennas, assuming Nt = Nr. It

is assumed that transmitter and receiver communicate through Ns = 4 data streams. The results

are depicted in Fig. 3.4, where, similarly to previous examples, the graphs in the left and right

correspond to the spectral efficiency and sum-rate, respectively; and at the top, center, and bottom,

they correspond to SNR of 5 dB, 0 dB, and –5 dB, respectively. Similar to the previous results,

note that the HBF-LSAA slightly outperforms the proposed method at SNR equal 0 dB and 5 dB,

particularly when few antennas are used and, as the number of antennas grows, the proposed method
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Example 2. SU-MIMO system and Rayleigh channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of data streams Ns for a system with Nt = Nr = 64 antennas at SNR = 5 dB (top),
0 dB (center), and –5 dB (bottom).

approaches the HBF-LSAA’s performance, even surpassing it when Nt = Nr = 144. For SNR=–

5 dB, the proposed design outperforms the HBF-LSAA irrespective of the number of antennas. The

PE-AltMin, on the other hand, has its performance increasingly lower than the proposed method as

the number of antennas increases. Moreover, the SVD-PE and the SVD-PE-HBF have significantly

lower performances. These behaviours are observed for both the spectral efficiency and the sum-rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Example 3. SU-MIMO system and Rayleigh channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of transmit and receive antennas Nt = Nr for a system communicating through
Ns = 4 data streams at SNR of 5 dB (top), 0 dB (center), and –5 dB (bottom).

Finally, the effects of PS quantization are studied. The previous simulations have considered

only unquantized (i.e., infinite resolution) phase shifters. However, quantized PS is preferred in

practice, thanks to its lower energy consumption and hardware complexity [110]–[112]. Quantized

PS has a finite number of feasible phase shifts, given by 2Nb , where the number of quantization

bits Nb is usually between 4 and 6 bits [113]. To adjust the proposed algorithm for the quantized

PS case, the closest quantized phases are chosen during the phase-extraction, performed in lines 10
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(a) (b)

(c) (d)

Figure 3.5: Example 4. SU-MIMO system and Rayleigh channel: Spectral efficiency (a) and sum-rate (b)
vs. the SNR for different numbers of phase-shifter quantization bits Nb, and the ratio between the quantized
and unquantized PS performances in terms of spectral efficiency (c) and sum-rate (d).

and 12 of Alg. 3.1. In this last example, the same scenario as the first example is considered. The

results are presented in Fig. 3.5, which shows the spectral efficiency (left) and the sum-rate (right)

at the top, and the performance ratio between the quantized and unquantized analog beamforming,

respectively, in terms of the spectral efficiency (left) and the sum-rate (right) at the bottom, for

different numbers of quantization bits Nb. The results show that the proposed method attains more

than 90% of its unquantized performance when using PS with as low as three quantization bits and

more than 99.6% when using five or more quantization bits.

mmWave Channel

The second set of examples investigates the proposed hybrid beamforming design performance for

SU-MIMO systems under mmWave channels.

The first example considers a 64 × 64 MIMO system, communicating through Ns = 4 data

streams. The spectral efficiency and the achieved sum-rate are evaluated for different SNR values,

ranging from –15 dB to 15 dB, and the results are shown, respectively, in Fig. 3.6a and Fig. 3.6b.

64



(a) (b)

Figure 3.6: Example 1. SU-MIMO system and mmWave channel: Spectral efficiency (a) and sum-rate (b)
vs. SNR for a system with Nt = Nr = 64 antennas and Ns = 4 data streams.

These results show that the proposed method consistently attains near-optimal performance in

terms of both the spectral efficiency and the sum-rate. On the other hand, one can observe that

the HBF-LSAA has poor performance at low SNR (as also observed for Rayleigh channels) and

that, although the PE-AltMin can attain a spectral efficiency slightly higher than the proposed

method, its sum-rate performance in severely affected as the SNR increases, achieving sum-rate

nearly 20 bits/s/Hz lower than the proposed method at SNR = 15 dB. Moreover, one can note that

both the OMP and the SSRM-HBF have lower spectral efficiency than the remaining designs, which

could be explained by the fact that these methods have a reduced solution space for the analog

precoder and combiner design problems (e.g., limited by the codebook).

The second example evaluates the performance of a 64×64 MIMO system when different numbers

of data streams are considered. The results are presented in Fig. 3.7, which shows the spectral

efficiency (left) and the sum-rate (right) for SNR of 5 dB, 0 dB, and –5 dB, respectively, at the top,

center and bottom graphs. From these results, one observes that although the HBF-LSAA design

can marginally outperform other designs at high SNR, it is negatively impacted by the increase in the

number of transmitted data streams, particularly at low SNR, even more so that than in Rayleigh

channels. Additionally, note that the PE-AltMin design can achieve the highest spectral efficiency

in nearly all scenarios but fails to provide a high sum-rate. On the other hand, the proposed design

can support a near-optimal performance in all scenarios, even outperforming the other methods in

more critical scenarios, such as in low SNR or when a high number of data streams is transmitted.

The third example studies the impact of the number of antennas, assuming Nt = Nr, on the

spectral efficiency and sum-rate of different hybrid beamforming designs when Ns = 4 data streams

are transmitted. Fig. 3.8 shows the spectral efficiency (left) and the sum-rate (right) for SNR of
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Figure 3.7: Example 2. SU-MIMO system and mmWave channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of data streams Ns for a system with Nt = Nr = 64 antennas at SNR = 5 dB (top),
0 dB (center), and –5 dB (bottom).

5 dB, 0 dB, and –5 dB, respectively, at the top, center and bottom graphs. The results show that

the PE-AltMin and the HBF-LSAA designs marginally outperform the proposed method in some

scenarios, achieving up to 0.45 bits/s/Hz higher spectral efficiency. However, the PE-AltMin design

shows a much lower sum-rate than the proposed method, particularly at high SNR. For instance,

using 144 transmit and receive antennas, the sum-rate attained by the PE-AltMin is 3.9 bits/s/Hz
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Figure 3.8: Example 3. SU-MIMO system and mmWave channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of transmit and receive antennas Nt = Nr for a system communicating through
Ns = 4 data streams at SNR of 5 dB (top), 0 dB (center), and –5 dB (bottom).

and 13.1 bits/s/Hz lower than that attained by the proposed method at SNR of –5 dB and 5 dB,

respectively. It is worth noting that, although the HBF-LSAA can attain sum-rates slightly above

those of the proposed method, particularly at high SNR, its performance is highly affected by

the number of antennas, under-performing several other designs at low SNR and a low number of

antennas. On the contrary, the proposed design attains near-optimal performance in all scenarios,

particularly at the more critical ones, such as at low SNR and a low number of antennas.
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Figure 3.9: Example 4. SU-MIMO system and mmWave channel: Spectral efficiency (a) and sum-rate (b)
vs. the SNR for different numbers of phase-shifter quantization bits Nb and the ratio between the quantized
and unquantized PS performances in terms of spectral efficiency (c) and sum-rate (d).

Lastly, the fourth example investigates the impact of the PS quantization on the proposed

method’s performance. The system parameters are the same as in the first example. The re-

sults are depicted in Fig. 3.9, which shows the spectral efficiency (left) and the sum-rate (right) at

the top and the performance ratio between the quantized and unquantized analog beamforming,

respectively, for each metric, at the bottom. These results show that the proposed method attains

more than 94.4%, 98.7%, and 99.7% of its spectral efficiency and sum-rate for unquantized hybrid

beamforming when using PS with, respectively, Ns = 3, 4, and 5 quantization bits; and attain the

full unquantized hybrid beamforming performance using Ns = 6 quantization bits.

3.4.2 Multi-User Systems

This section evaluates the performance of the proposed method in MU-MIMO systems. Similar

to the previous section, two sets of examples are presented, considering, respectively, Rayleigh and

mmWave channels. The proposed design is compared with the SVD-based fully-digital (FD-SVD)
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Figure 3.10: Example 1. MU-MIMO system and Rayleigh channel: Spectral efficiency (a) and sum-rate
(b) vs. SNR for a system with Nt = 144 transmit antennas and K = 8 users, each having Nr = 16 receive
antennas and communicating through Ns = 4 data streams.

design in [96], hybrid BD (Hy-BD) [94], subspace-projection-aided BD (Hy-SBD) [96], equivalent

baseband channel hybrid beamforming (EBF-HBF) [97], and hybrid regularized channel diagonal-

ization (HRCD) [61]. The SVD-based fully-digital (FD-SVD) design in [96] is used as a fully-digital

benchmark, as it provides better performance than the traditional fully-digital BD [98]. However,

note that the FD-SVD is not capacity-achieving, and hybrid beamforming designs may outperform

the fully-digital design in some situations. Moreover, the HRCD design requires the knowledge of

the array response vectors for all propagation paths and can only be deployed for the mmWave

channel model.

Rayleigh Channel

The first set of example assesses the proposed hybrid beamforming design’s performance for MU-

MIMO systems under Rayleigh channels.

The first example evaluates the spectral efficiency and the sum-rate under different SNR. An

MU-MIMO system with Nt = 144 transmit antennas and K = 8 users having Nr = 16 receive

antennas and communicating through Ns = 4 data streams is considered. The results are depicted

in Fig. 3.10, which shows the spectral efficiency (left) and the sum-rate (right) for SNR ranging

from –15 dB to 15 dB. These results show that the proposed method outperforms all other hybrid

beamforming designs, attaining spectral efficiency and sum-rate, respectively, up to 3.1 bits/s/Hz

and 3.3 bits/s/Hz higher than the second-best performing design, the Hy-SBD. Compared with the

Hy-BD and the EBF-HBF, the spectral efficiency improvement provided by the proposed method

can go up to nearly 17 bits/s/Hz and 35 bits/s/Hz, respectively. The same is observed for the

sum-rate.
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Figure 3.11: Example 2. MU-MIMO system and Rayleigh channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of data streams Ns for a system with Nt = 144 transmit antennas and K = 4 users
having Nr = 16 receive antennas at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

The second example investigates the impact of the number of transmitted data streams on the

spectral efficiency and sum-rate performances. An MU-MIMO system with Nt = 144 transmit

antennas and K = 4 users having Nr = 16 receive antennas is considered. The results, presented in

Fig. 3.11, show the spectral efficiency (left) and sum-rate (right) for different values of Ns at SNR of

5 dB (top), 0 dB (center), and –5 dB (bottom). From Fig. 3.11, one can observe that the proposed

approach outperforms all the other hybrid beamforming designs in all Ns range and all SNR; and
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even the fully-digital design in more critical scenarios such as when transmitting a high number

of data streams at low SNR. Additionally, one can note that the Hy-SBD, which has the second-

best performance among the hybrid beamforming designs, has its performance deteriorated with the

increase in the number of transmitted data streams, particularly at low SNR. At SNR = 5 dB, the

proposed approach outperforms the Hy-SBD’ spectral efficiency and sum-rate by up to, respectively,

1.9 bits/s/Hz and 5.8 bits/s/Hz; while at SNR = –5 dB, the proposed approach’ spectral efficiency

and sum-rate are up to 8.4 bits/s/Hz and 10.2 bits/s/Hz, respectively, higher than those of the

Hy-SBD design.

The third example studies the impact of the number of transmit antennas on the spectral effi-

ciency and sum-rate performances. An MU-MIMO system with K = 4 users, each having Nr = 16

receive antennas and communicating through Ns = 4 data streams, is considered. The results are

shown in Fig. 3.12, following the same organization as in previous figures. From these results,

one observes that, once again, the proposed method outperforms all other hybrid beamforming de-

signs; the proposed method even outperforms the fully-digital solution at small arrays (e.g. when

Nt = 25). One also observes that the Hy-SBD, which again has the second-best performance among

the hybrid beamforming designs, seems to approach the proposed method’s performance, achieving

spectral efficiency and sum-rate less than 1 bits/s/Hz lower than the proposed approach for large

scale arrays (e.g. Nt ≥ 196). On the other hand, for small arrays, the proposed method outperforms

the Hy-SBD’ spectral efficiency and sum-rate by up to nearly 4 bits/s/Hz at SNR = –5 dB, and

7 bits/s/Hz at SNR = 5 dB.

In the fourth example, the impact of the number of users on the spectral efficiency and sum-rate

is investigated. An MU-MIMO system with Nt = 144 transmit antennas and with users having

Nr = 16 receive antennas and communicating through Ns = 4 data streams is considered. The

results are shown in Fig. 3.13, which again follows the same organization as in previous figures.

These results show that the proposed method outperforms other hybrid beamforming designs in

all scenarios, especially the more critical ones, such as in low SNR or when communicating with

many users. For instance, at SNR = 5 dB, the proposed approach attains spectral efficiency and

sum-rate up to 2.3 bits/s/Hz and 2.6 bits/s/Hz, respectively, higher than the Hy-SBD, which has

the second-best performance; at SNR = –5 dB, these performance gaps reach up to 3.1 bits/s/Hz

and 3.3 bits/s/Hz, respectively.

Finally, the fifth example investigates the impact of PS quantization when considering the same

scenario as in the first example. The results, depicted in Fig. 3.14, show that the proposed method

can still attain nearly the same performance of the unquantized hybrid beamforming when practical
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Figure 3.12: Example 3. MU-MIMO system and Rayleigh channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of transmit antennas Nt for a system with K = 4 users having Nr = 16 receive
antennas and communicating through Ns = 4 data streams at SNR = 5 dB (top), 0 dB (center), and –5 dB
(bottom).

PS quantization is taken into account. For instance, one observes that the proposed method achieves

more than 93.0%, 97.4%, and 99.1% of its unquantized spectral efficiency and sum-rate, respectively,

for Nb = 4, 5, and 6 quantization bits.
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Figure 3.13: Example 4. MU-MIMO system and Rayleigh channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of users K for a system with Nt = 144 transmit antennas and users having Nr = 16
and communicating through Ns = 4 data streams at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

MmWave Channel

The following set of examples evaluates the proposed hybrid beamforming design’s performance and

other designs in the literature for MU-MIMO systems under mmWave channels.

The first example assesses the spectral efficiency and the sum-rate of the designs under different

SNR for an MU-MIMO system with Nt = 144 transmit antennas and K = 8 users having Nr = 16
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Figure 3.14: Example 5. MU-MIMO system and Rayleigh channel: Spectral efficiency (a) and sum-rate (b)
vs. the SNR for different numbers of phase-shifter quantization bits Nb and the ratio between the quantized
and unquantized PS performances in terms of spectral efficiency (c) and sum-rate (d).

(a) (b)

Figure 3.15: Example 1. MU-MIMO system and mmWave channel: Spectral efficiency (a) and sum-rate
(b) vs. SNR for a system with Nt = 144 transmit antennas and K = 8 users, each having Nr = 16 receive
antennas and communicating through Ns = 4 data streams.

receive antennas and communicating through Ns = 4 data streams. Fig. 3.15 shows the spectral

efficiency (left) and the sum-rate (right) attained by the different designs. The results in Fig. 3.15
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show that the proposed method outperforms the other hybrid beamforming methods in all scenarios

in terms of the sum-rate. Note that the HRCD can slightly outperform the proposed method’

spectral efficiency at low SNR, achieving up to 1 bits/s/Hz higher spectral efficiency at SNR = –

15 dB; however, the performances of the HRCD, for both the spectral efficiency and the sum-rate,

are negatively impacted by the increasing SNR, achieving up to nearly 37 bits/s/Hz lower spectral

efficiency and sum-rate as compared to the proposed method at SNR = 15 dB. The Hy-SBD, which

overall has the second-best performance among the hybrid beamforming designs, shows a similar

behaviour as that shown for the Rayleigh channel, approaching the performance of the proposed

method for high SNR; at low SNR, however, the proposed method can reach up to 6.1 bits/s/Hz

and 6.4 bits/s/Hz higher spectral efficiency and sum-rate, respectively (which is nearly double the

performance gap seen for Rayleigh channels).

The second example investigates the impact of the number of data streams on the spectral effi-

ciency and the sum-rate. An MU-MIMO system with Nt = 144 transmit antennas and K = 4 users

having Nr = 16 receive antennas and communicating through Ns = 4 data streams is considered.

The results, depicted in Fig. 3.16, present the spectral efficiency (left) and sum-rate (right) for dif-

ferent values of Ns at SNR of 5 dB (top), 0 dB (center), and –5 dB (bottom). From these results,

one observes that the proposed method’s spectral efficiency and sum-rate outperform the Hy-BD,

the Hy-SBD, and the EBF-HBF in all the range of Ns, at all SNR considered in the example. On

the other hand, the HRCD shows a better spectral efficiency than the proposed method at a high

number of data streams; this, however, does not hold for the sum-rate, for which the proposed

method outperforms the HRCD in nearly all scenarios. In fact, the HRCD performs worse than

the other methods (except the EBF-HBF) Additionally, note that except for the HRCD, which also

adopts the RCD precoding, all the other designs, which employ traditional BD digital precoding,

have their performance severely degraded as the number of data streams grows. The traditional BD

transmits each user’s signal through the other users’ null-space, and thus, by increasing the number

of data streams, the dimension of the subspace each user can explore for transmission is reduced. In

addition, note that this effect is much less present under the Rayleigh channel in Fig. 3.11 thanks

to its rich scattering environment.

The third example evaluates the impact of the number of antennas on the spectral efficiency

and the sum-rate for an MU-MIMO system with K = 4 users having Nr = 16 receive antennas and

communicating through Ns = 4 data streams. The results are presented in Fig. 3.17, organized as

in the previous examples. The results show that the proposed design outperforms all other hybrid

beamforming designs in nearly all scenarios. As observed for Rayleigh channels, for large scale
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Figure 3.16: Example 2. MU-MIMO system and mmWave channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of data streams Ns for a system with Nt = 144 transmit antennas and K = 4 users
having Nr = 16 receive antennas at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

arrays, the Hy-SBD’s performance approaches that from the proposed design (with, respectively,

1 bits/s/Hz and 1.2 bits/s/Hz lower spectral efficiency and sum-rate at SNR = 5 dB and Nt = 256).

In contrast, for small scale arrays, the Hy-SBD design shows a spectral efficiency and sum-rate is

much lower than the proposed design (e.g., more than 6.5 bits/s/Hz lower spectral efficiency and

sum-rate at SNR = 5 dB and Nt = 25). It is also interesting to note that the HRCD has a notably

good performance at critical scenarios, such as in low SNR and a low number of antennas. However,
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Figure 3.17: Example 3. MU-MIMO system and mmWave channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of transmit antennas Nt for a system with K = 4 users having Nr = 16 receive
antennas and communicating through Ns = 4 data streams at SNR = 5 dB (top), 0 dB (center), and –5 dB
(bottom).

its performance decreases as the number of antennas or the SNR grows, reaching nearly 20 bits/s/Hz

lower spectral efficiency and sum-rate than the proposed design at SNR = 5 dB and Nt = 256.

The fourth example investigates the effects of the number of users on the spectral efficiency

and the sum-rate. An MU-MIMO system with Nt = 144 transmit antennas and with users having

Nr = 16 receive antennas and communicating through Ns = 4 data streams is considered. The
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Figure 3.18: Example 4. MU-MIMO system and mmWave channel: Spectral efficiency (left) and sum-rate
(right) vs. the number of users K for a system with Nt = 144 transmit antennas and users having Nr = 16
and communicating through Ns = 4 data streams at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

results, depicted in Fig. 3.18, show that the proposed design’s spectral efficiency and sum-rate

exceed those from other hybrid beamforming designs in all scenarios. Interestingly, note that the

performances of the Hy-BD, Hy-SBD, and EBF-HBF begin to plateau as the number of users

increases at a low SNR, while for the HRCD and the proposed method, they continue increasing.

Similarly to the discussion in the second experiment, this is related to the fact that the Hy-BD,

the Hy-SBD, and the EBF-HBF adopt the traditional BD precoding, which transmits the signals
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Figure 3.19: Example 5. MU-MIMO system and mmWave channel: Spectral efficiency (a) and sum-rate
(b) vs. the SNR for different numbers of phase-shifter quantization bits Nb and the ratio between the
quantized and unquantized PS performances in terms of spectral efficiency (c) and sum-rate (d).

exclusively through null-space of the other users, and thereby increasing the number of users reduces

the dimension of the subspace each user can explore for transmission. In contrast, the HRCD and the

proposed method adopt the RCD approach, which can compromise the MUI interference suppression

(e.g. by transmitting outside the other users’ null-space) to support more transmit diversity. Again,

note that this effect is also much less present under the Rayleigh channels, likely due to its rich

scattering environment.

Lastly, the fifth example evaluates the PS quantization impact on the spectral efficiency and

sum-rate attained by the proposed method. The scenario of the first example is considered. The

results are presented in Fig. 3.19. From these results, one observes that using quantized PS with

as low as Nb = 4 quantization bits allows the proposed design to attain more than 97.8% of its

unquantized performance, for both spectral efficiency and sum-rate. Similarly, it achieves more than

99.5% and 99.9% when Nb is 5 and 6, respectively.
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Figure 3.20: Convergence analysis for SU-MIMO systems. Empirical probability mass function (PMF)
and empirical cumulative density function (CDF) of the number of iterations required for convergence of
the proposed method considering a 64 × 64 MIMO systems with Ns = 8 in Rayleigh (a) and mmWave (b)
channels.

3.4.3 Convergence Analysis

This section presents insights into the convergence of Algorithm 3.1. Recalling the proof of optimality

for the block coordinate problems related to (3.15), presented in Appendix B, the solutions in (3.20)

are optimal, and iterating between these solutions will lead to an increasingly better value for the

objective function in (3.15). Therefore, the convergence is determined once the objective function

ceases to increase. However, due to the non-convexity of (3.15), one cannot guarantee that this

iterative process will converge to a global optimum solution, only to local ones. On the other hand,

numerical simulation results can provide important insights into the convergence of the proposed

algorithm.

Here, the number of iterations required for the algorithm to converge is evaluated. First, a

64 × 64 SU-MIMO system transmitting Ns = 8 data streams is considered. Fig. 3.20 shows the

empirical probability mass function (PMF) and the empirical cumulative density function (CDF) of

the number of iterations the inner-loop of Alg. 3.1 (i.e., lines 7-14) requires for convergence. The

results in Fig. 3.20a and Fig. 3.20b correspond, respectively, to Rayleigh and mmWave channels.

For Rayleigh channels, the proposed algorithm requires 18.4 iterations for convergence on average

and converges within 26 and 38 iterations, respectively, in 90% and 99% of the trials. In contrast,

for mmWave channels require, on average, 8 iterations and converges within 12 and 21 iterations,

respectively, in 90% and 99% of the trials.

Next, an MU-MIMO system with Nt = 144 transmit antennas and K = 8 users, with each user

having Nr = 16 receive antennas and communicating through Ns = 8 data streams, is considered.

The empirical PMF and CDF are shown in Fig. 3.21a and Fig. 3.21b, respectively, for the Rayleigh
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Figure 3.21: Convergence analysis for MU-MIMO systems. Empirical probability mass function (PMF)
and empirical cumulative density function (CDF) of the number of iterations required for convergence of
the proposed method considering a system with Nt = 144 transmit antennas and K = 8 users, each having
Nr = 16 receive antennas and communicating through Ns = 8 data streams in Rayleigh (a) and mmWave
(b) channels.

and mmWave channels. In this case, the results obtained for Rayleigh channel show that the

proposed algorithm requires on average 33.4 iterations for convergence, and converges within 54 and

84 iterations, respectively, in 90% and 99% of the trials. Finally, for mmWave channels, the average

number of iterations required by the proposed algorithm is 9.6, and the convergence is reached within

15 and 31, respectively, in 90% and 99% of the trials.

Nonetheless, extensive simulations have shown that these results in Fig. 3.20 and 3.21 remain

fairly steady when varying system parameters, such as the number of antennas, users, or data

streams; and have nearly the same shape when evaluated individually for each user or data stream.

On the other hand, these results are highly dependent on the value of ε, the stopping criterion in

Alg. 3.1, allowing the designer to trade off performance for computational complexity.

The results also show that the proposed algorithm converges much faster in mmWave channels

than in Rayleigh channels. Despite the lack of an analytical convergence proof (mainly due to the

difficulty of handling the non-convexity of (3.15)), it is possible to infer that this phenomenon is

associated with the fast decay of the channel’ singular values’ energy, in contrast with the slowly

decaying energy of the singular values in the Rayleigh channel, analogously to what happens for the

unconstrained rank-1 approximation using the power iteration method [114]. Moreover, note that

for mmWave channels, the algorithm is more likely to converge to the same (possibly the global

optimal) solution, regardless of the initialization; while for Rayleigh channels, it may converge to

different local optima, depending on the initialization.
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3.4.4 Further Discussions

The results presented in Sec. 3.4.1 and Sec. 3.4.2 have demonstrated that the proposed hybrid beam-

forming design consistently attains near-optimal performance, outperforming other design methods

for both the rich scattering (Rayleigh fading) and limited scattering (mmWave) environments in a

wide range of scenario parameters.

The results obtained for SU-MIMO systems have shown that the proposed method and the

HBF-LSAA have, in general, often similar spectral efficiency and sum-rate performances, with the

HBF-LSAA marginally outperforming the proposed design in more favourable scenarios, such as

in high SNR, but being negatively impacted in low SNR. Moreover, these negative impacts are

even more prominent in mmWave channels. On the other hand, the PE-AltMin has attained high

spectral efficiency performance in mmWave channels, outperforming both the HBF-LSAA and the

proposed method in some scenarios. However, this does not translate in a high sum-rate as well, and

in most cases, the sum-rate attained by the PE-AltMin is much lower than that attained by other

methods, such as the SVD-PE-HBF, the SSRM-HBF, the HBF-LSAA, and the proposed one. It is

important to note that, despite the high performance of the HBF-LSAA design, this method has the

highest computational complexity. Considering a 64 × 64 SU-MIMO system transmitting Ns = 4

data streams and assuming Nite = 20 and |F| = |W| = 64 , the computational complexity of the

HBF-LSAA design is in the order of 1010, while all other designs have complexity in the order of 105.

Overall, the proposed design attain near-optimal spectral efficiency and sum-rate in all scenarios,

standing out in more critical scenarios, such as in low SNR, a large number of data streams or a

small number of antennas. Moreover, it does so with reasonable computational complexity.

For the MU-MIMO case, the proposed design has outperformed other methods in nearly all

scenarios. In particular, the proposed design, and the HRCD (in mmWave channels), have shown

noticeably better performances than the other designs in critical scenarios. These two designs adopt

the RCD precoding, which trade off interference suppression for noise suppression and transmit

diversity, whereas the other designs adopt the traditional BD precoder, which focuses exclusively

on interference suppression. Nonetheless, despite attaining significantly higher spectral efficiency

at large Ns values, the sum-rate performance of the HRCD design is generally below that attained

by the proposed method. Moreover, considering an MU-MIMO system with Nt = 144 transmit

antennas and K = 4 users with Nr = 16 receive antennas and communicating through Ns = 4 data

streams, the computational complexity of all designs are in the order of 105, except the EBF-HBF,

which has complexity in the order of 107.
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It is essential to highlight that the simulations have shown that the proposed method can still

perform very well when practical PS quantization constraints are taken into account. The results

indicated that the proposed scheme could be implemented using practical quantized PS with virtually

no performance loss.

Finally, it should be mentioned that the proposed design suggests the computation of the hybrid

precoder and combiner be performed either on the transmitter or receiver, which however requires

feedback to the other end and thus incurs extra overhead of communication resource. As such, it is

worth further investigating techniques that can reduce the computational complexity and overhead

of the proposed hybrid beamforming design.

3.5 Concluding Remarks

In this chapter, a novel hybrid beamforming design for mmWave massive MIMO has been proposed.

The proposed method consists of a two-stage approach, in which the analog and digital beamforming

design is performed separately. In the first stage, the analog precoder and combiner are designed

using the proposed constrained channel decomposition approach, which aims to harvest the array

gain provided by the massive MIMO system while simultaneously reducing the intra-user and inter-

user interferences. At the second stage, two digital precoder and combiner designs are considered.

For SU-MIMO systems, the digital precoder and combiner are obtained from the effective baseband

channel’s SVD. For MU-MIMO systems, the digital precoder and combiner are obtained using the

regularized channel diagonalization method, which trades off MUI suppression for noise suppression

and more transmit diversity, thus attaining a better performance in low-SNR scenarios or when the

number of users or data streams grows. To confirm the effectiveness of the proposed design, numerical

simulation results have been provided for a wide range of scenarios. Moreover, the performance of

the proposed method under practical PS quantization is also considered.
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Chapter 4

Hybrid Beamforming for OFDM

mmWave Massive MIMO Systems

4.1 Introduction

The promising results obtained in initial works on narrowband mmWave massive MIMO hybrid

beamforming design [24], [63], [64], [83], [87] encouraged researchers to explore beamforming tech-

niques for frequency-selective broadband channels. In particular, a great deal of attention has

been focused on orthogonal frequency-division multiplexing (OFDM) systems, where the frequency-

selective channel is decomposed into a set of non-interfering parallel frequency-flat narrowband

sub-channels, allowing precoders and combiners to be designed for each narrowband channel, i.e.,

each subcarrier [115]. Nonetheless, OFDM hybrid beamforming design is very challenging since the

analog beamforming is shared among all subcarriers [83], [116]–[119].

The design of hybrid beamforming for SU-MIMO-OFDM systems has been investigated in [83],

[116]–[119]. In [83], the authors extend the PE-AltMin method to present an alternating optimization

approach to approximate the optimal digital solution by minimizing the sum of the distances be-

tween the hybrid beamforming and optimal unconstrained beamforming in all subcarriers. However,

this approach requires a priori computation of the optimal unconstrained beamforming. In [116],

the authors focus on the codebook design for analog and digital precoders to maximize the achiev-

able mutual information in limited-feedback systems; their work focuses solely on the precoder,

which is designed through exhaustive search over the codebooks. Under the assumption that the
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channel covariance matrices at different subcarriers are asymptotically equal and share the same set

of eigenvectors, the authors in [117] used the average channel covariance matrix over all subcarri-

ers along with the narrowband analog beamforming design algorithm in [87] to design the analog

beamforming for OFDM systems. The digital precoder was then designed on a per-subcarrier basis

to maximize the overall spectral efficiency. In [118], the authors designed the analog precoder and

combiner by extracting the phases of the eigenvectors of the averaged channel covariance matrix and

the averaged conjugate-transposed-channel covariance matrix, respectively. Finally, in [119], the au-

thors presented a beam selection approach, where the analog beamforming vectors are selected from

orthogonal codebooks.

Hybrid beamforming designs for multi-user (MU) MIMO-OFDM systems have been proposed

in [117], [120]–[123]. In [117], the authors first design the analog precoder by using the average

channel covariance matrix and the algorithm presented for SU-MIMO system. The analog precoder

is computed to improve the channel gain of all users without considering the inter-user interfer-

ence. Next, authors design the digital precoder using the weighted MMSE (WMMSE) to manage

the inter-user interference. In [120], the authors introduced two hybrid precoder design approaches.

In the first approach, the authors adopted alternating optimization to iterate between the analog

and digital precoder designs. The analog precoder was obtained through a manifold optimization

framework, while two digital precoder designs for MMSE minimization were considered: one requir-

ing a second-order cone programming solution, and the other, using an iterative WMMSE design.

Given the high computational complexity of the first approach, the authors then introduced a low-

complexity closed-form hybrid precoder, in which the analog precoder is obtained by extracting

the phases of the covariance matrix’s eigenvectors and the digital precoder is calculated from the

MMSE criteria. In [121], the authors also designed the analog precoder by extracting the phases

of the covariance matrix’s eigenvectors, but the digital precoder was designed using the ZF and

the regularized-ZF (RZF) approaches. However, the designs in [117], [120], [121] are limited to

single-stream transmission.

Multi-stream MU-MIMO-OFDM has been considered in a few recent works, such as [122], [123].

In [122], the authors split the hybrid precoder and hybrid combiner design and propose two methods

to solve them separately. The first method designs the hybrid precoder/combiner by approximating

it to the optimal unconstrained solution using a matrix factorization approach, similar to [83].

The second method uses alternate optimization to iterate between the analog and digital solutions,

aiming to minimize the mean-squared error (MSE). Finally, in [123], the authors introduce a tensor-

unfolding-based hybrid beamforming design to maximize the spectral efficiency. In this method,
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the analog precoder and combiner are designed by extracting the phases from the channel tensor-

unfolding’ SVD in an attempt to maximize the gains between the base station and the mobile

users. On the other hand, the digital precoders and combiners are obtained by maximizing the

signal-to-leakage-plus-noise ratio (SLNR) via generalized eigendecomposition.

Given the multidimensional structure of OFDM channels, tensor decomposition emerged as a

promising tool to handle OFDM system design. In [124], tensor decomposition was employed to

design fully-digital precoders. In [125]–[127], tensor decomposition-based channel estimation tech-

niques were proposed for OFDM-MIMO systems with hybrid beamforming architectures. Tensor

decomposition has also been considered in hybrid beamforming design for narrowband multi-user

systems [128]. However, it is yet to be explored in the OFDM hybrid beamforming design.

This chapter proposes a novel two-stage joint hybrid beamforming design method for mmWave

massive MIMO-OFDM communication systems. At the first stage, a tensor representation of the

OFDM channel is used to formulate the analog beamforming design as a constrained Tucker2 ten-

sor decomposition problem. This formulation allows maximizing the sum of the effective baseband

gains over every subcarrier while suppressing both intra-user interference and multi-user interfer-

ence (MUI) within the same subcarrier. The proposed constrained Tucker2 decomposition is obtained

by a block coordinate descent algorithm based on the projected alternate least-square (ALS) method.

The digital precoder and combiner for SU systems are obtained from the optimal SVD-based solu-

tion, considering the effective baseband channel (which takes into account the effects of the analog

beamforming). For MU systems, the digital beamforming is obtained using the regularized channel

diagonalization (RCD) method [61]. This approach provides a balance between transmit diversity

and noise and MUI suppression, in contrast to other MU-MIMO precoder and combiner designs,

such as the traditional block diagonalization, which only addresses the MUI suppression; and there-

fore, it can perform more efficiently in low-SNR scenarios or the scenarios with many users or data

streams. Extensive simulation results are presented to evaluate and compare the proposed design

with other existing methods. These results show the proposed approach can outperform other meth-

ods in most scenarios and that such a high performance can also be achieved when more realistic

hardware constraints, such as the quantization of PSs, are considered.

This chapter is organized as follows: Section 4.2 introduces the system and channel models and

the problem formulation; Section 4.3 proposed the novel hybrid beamforming design for mmWave

massive MIMO-OFDM systems based on the proposed constrained tensor decomposition approach;

Section 4.4 presents the simulation results for different system’s setups and compares the proposed

design with other methods in the literature; finally, Section 4.5 presents the concluding remarks.
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Figure 4.1: Downlink of an MU-MIMO-OFDM system with hybrid beamforming architecture.

4.2 System Model and Problem Formulation

This section introduces the system and channel models, and the problem statement.

4.2.1 System Model

Here, the downlink of an MU-MIMO-OFDM system with a hybrid beamforming structure, as shown

in Fig. 4.1, is considered. In this system, a base station equipped with Nt antennas and NRF
t RF

chains is transmitting to K mobile users through M subcarriers. The mobile users are equipped with

Nr antennas and NRF
r RF chains, supporting Ns data-streams per subcarrier. The system satisfies

Ns ≤ NRF
r ≤ Nr and KNs ≤ NRF

t ≤ Nt to ensure effective multi-stream communication.

At the base station, the transmitted symbol vector is precoded on a per-subcarrier basis, using

the digital precoder FBB[m] = [FBB,1[m], · · · ,FBB,K [m]] ∈ CNRF
t ×KNs , where FBB,k[m] is the digital

precoder associated with the k-th user at the m-th subcarrier. The symbols then go through the

OFDM modulation, where the cyclic prefix addition (CPA) and the inverse fast Fourier transform

(IFFT) operations take place, assuming that the cyclic prefix’s length is big enough to prevent

inter-carrier interference (ICI) [115], [129]. The modulated symbols are then precoded on the analog

domain, using the analog precoder FRF ∈ CNt×NRF
t , common to all subcarriers. The phase shifters

in the analog precoder imposes a constant modulus constraint, i.e., |FRF(i, j)| = 1/
√
Nt ∀i, j.

Moreover, ‖FRFFBB[m]‖2F = PT represents the per-subcarrier total transmitted power at the m-th

subcarrier.

At the k-th user, the received signal is combined in the analog domain using the analog combiner

matrix WRF,k ∈ CNr×NRF
r , which is also constant modulus-constrained, such that |WRF,k(i, j)| =

1/
√
Nr ∀i, j, and common to all subcarriers. The signal then goes through the OFDM demodulation,
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which applies the fast Fourier transform (FFT) and the cyclic prefix removal (CPR) operations.

The demodulated signal is finally combined in the digital domain through the combining matrix

WBB,k[m] ∈ CNRF
r ×Ns on a per-subcarrier basis. Therefore, the received symbol is

ŝk[m] =
√
ρkW

H
BB,k[m]WH

RF,kHk[m]FRFFBB[m]s[m] + WH
BB,k[m]WH

RF,knk[m]. (4.1)

where the transmitted symbol vector in the m-th subcarrier s[m] = [sT
1 [m], sT

2 [m], · · · , sT
K [m]]T ∈

CKNs×1 is assumed i.i.d. with zero-mean and E[s[m]sH[m]] = IKNs
, with sk[m] ∈ CNs×1 being

the k-th user’ symbols, and nk[m] ∈ CNr×1 is the noise vector, such that nk is i.i.d. CN (0, σ2
nINr

).

Since OFDM modulation is considered, the channel for each subcarrier is represented by a flat-fading

narrowband channel Hk[m] ∈ CNr×Nt , where Hk[m] represents the k-th user’s frequency-domain

channel matrix at the m-th subcarrier.

By defining the aggregated analog combining matrix WRF = blkdiag{WRF,1, · · · ,WRF,K},

the aggregated channel matrix for the m-th subcarrier H[m] = [HT
1 [m],HT

2 [m], · · · ,HT
K [m]]T, and

the k-th user’s effective baseband channel at the m-th subcarrier H̄k[m] = WH
RF,kHk[m]FRF ∈

CNRF
r ×N

RF
t , the aggregated multiuser effective baseband channel at the m-th subcarrier can then

represented as

Heff [m] = WH
RFH[m]FRF

= [H̄T
1 [m] H̄T

2 [m] · · · H̄T
K [m]]T

=


WH

RF,1 · · · 0

...
. . .

...

0 · · · WH
RF,K




H1[m]

...

HK [m]

FRF.

(4.2)

Next, defining the hybrid precoder and combiner for k-th user at them-th subcarrier, respectively,

as Fk,m = FRFFBB,k[m] and Wk,m = WRF,kWBB,k[m], and considering that Gaussian symbols are

transmitted, the spectral efficiency for the m-th subcarrier is [94]

Rm =

K∑
k=1

log

∣∣∣∣INs
+
ρk
σ2

n

R−1
k WH

k,mHk[m]Fk,mFH
k,mHH

k [m]Wk,m

∣∣∣∣ (4.3)

where

Rk =
ρk
σ2

n

K∑
j=1,j 6=k

WH
k,mHk[m]Fj,mFH

j,mHH
k [m]Wk,m + WH

k,mWk,m

is the interference-plus-noise covariance matrix.
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Following the discussion in 3.2.1, linear detection techniques are preferred in practical deploy-

ments due to the high computational complexity of nonlinear techniques. In this case, the Ns data

streams are treated independently at the receiver and thus, the sum-rate of all data streams is a

reasonable performance metric. The achievable sum-rate of the mth subcarrier is

Rsum,m =

K∑
k=1

Ns∑
i=1

log2 (1 + SINRk,i,m) (4.4)

where SINRk,i,m is the SINR of the i-th data stream of the k-th user in the m-th subcarrier, defined

as

SINRk,i,m =
S

I + N
(4.5)

with S, I, and N being, respectively, the signal, interference, and noise power, given by

S = ρk|Wk,m(:, i)HHk[m]Fk,m(:, i)|2

I =

Ns∑
j=1,j 6=i

ρk|Wk,m(:, i)HHk[m]Fk,m(:, j)|2

+

K∑
l=1,l 6=k

Ns∑
j=1

ρk|Wk,m(:, i)HHk[m]Fl,m(:, j)|2

N = σ2
nWk,m(:, i)HWk,m(:, i).

4.2.2 OFDM Channel Model

In this chapter, only the mmWave channel model is considered. The mmWave channel is modeled

with the extended Saleh-Valenzuela channel model, which combines the contributions of Ncl scat-

tering clusters, each having Nray propagation paths. For OFDM systems, the frequency-selective

channel is separated into M narrowband frequency-flat sub-channels with non-interfering subcarri-

ers. The frequency-domain channel matrix for the k-th user in the m-th subcarrier is given by [130]

Hk[m] =

√
NrNt

NclNray

Ncl−1∑
i=0

Nray−1∑
l=0

αilar(φ
r
il, θ

r
il)a

H
t (φt

il, θ
t
il)e

−j2πi(m−1)
M (4.6)

where, as in Chapter 3, αil ∼ CN (0, σ2
α,i) corresponds to the complex gain of the lth scattering ray in

the ith cluster and σ2
α,i is the average power of the ith cluster, such that

∑Ncl

i=1 σ
2
α,i =

√
NrNt/NclNray

to ensures E[‖Hk[m]‖2F] = NrNt; ar(φ
r
il, θ

r
il) and at(φ

t
il, θ

t
il) are, respectively, the receiver and

transmitter array response vectors; φt
il and θt

il are the azimuth and elevation angles of departure
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(AoD), and φr
il and θr

il are the azimuth and elevation angles of arrival (AoA), all following a Lapla-

cian distribution, with mean φt
i, θ

t
i , φ

r
i, θ

r
i uniformly-distributed over [−π, π), and angular spread of

σt
φ, σ

t
θ, σ

r
φ, σ

r
θ [24], [87]. Furthermore, a

√
N ×

√
N uniform square planar array (USPA) with array

response vector given in (3.10) is considered.

4.2.3 Problem Formulation

The objective of this chapter is to design hybrid beamforming for MIMO-OFDM systems to maximize

its average sum-rate across all subcarrier, which is mathematically expressed as

max

FRF,FBB[m],

WRF,k,WBB,k[m]

1

M

M∑
m=1

Rsum,m

s.t. FRF ∈ FRF

WRF,k ∈ WRF

‖FRFFBB[m]‖2F = PT

(4.7)

where FRF and WRF represent the feasible analog precoder and combiner solutions, i.e., matrices

with constant modulus entries. For convenience, it is assumed NRF
t = KNRF

r = KNs. Furthermore,

perfect channel state information (CSI) knowledge is also assumed. Although estimating the OFDM

channel when using a hybrid beamforming structure is quite challenging, efficient OFDM channel

estimation methods are presented in [122], [131]–[134] and references therein.

Following the discussion presented in Chapter 3, the maximal sum-rate is, in general, attained

when the data streams are transmitted by multiple non-interfering parallel sub-channels, i.e., by

designing precoders and combiners that diagonalize the effective channel. However, attaining such

a diagonalization, which is already a difficult task in narrowband hybrid beamforming, is even more

challenging in OFDM systems. In OFDM systems, the analog precoders and combiners must be

designed to diagonalize the effective baseband channel at all subcarriers simultaneously.

Inspired by the constrained channel matrix decomposition approach for narrowband hybrid beam-

forming systems proposed in the previous chapter, the present chapter proposes a constrained tensor

decomposition-based hybrid beamforming design for MIMO-OFDM systems. The proposed design

can increase the effective baseband gain while also addressing the intra-user and inter-user interfer-

ence at the analog beamforming level. Likewise, the digital beamforming is also designed to further

mitigate the interference and improve the system’s spectral efficiency.
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4.3 Constrained Channel Tensor Decomposition-based

Hybrid Beamforming Design for MIMO-OFDM

Systems

A novel joint hybrid precoder and combiner design for mmWave massive MIMO-OFDM systems is

proposed in this section. Like the narrowband design proposed in Chapter 3, this is a two-stage

approach, where analog and digital beamforming are designed separately. Here, the analog precoder

and combiner are designed by the proposed low-rank constrained Tucker2 decomposition, which aims

to maximize the sum of the effective baseband channel gains at all subcarriers while suppressing

interference among data streams within the same subcarrier by seeking orthogonality among the

analog precoders/combiners of different data streams. Due to the phase-shifters’ constant-modulus

constraint, the orthogonality among the analog precoders/combiners, which ensures the effective

channel’s diagonalization, cannot be entirely attained by the analog beamforming alone. Therefore,

at the second stage, the digital precoder and combiner are designed to further attain the complete

diagonalization. Since the digital precoder and combiner are computed on a per-subcarrier basis,

they are obtained using the narrowband designs presented in Sections 3.3.2 and 3.3.3, respectively,

for single-user and multi-user systems.

4.3.1 Analog Precoder and Combiner Design

To design the analog precoder and combiner, a novel constrained Tucker2 tensor decomposition is

proposed, in which an additional constant modulus constraint is imposed to the traditional Tucker

decomposition (presented in Appendix C.2). For details on tensor notations and operations and the

Tucker decomposition, the reader should refer to Appendix C.

First, let the channel tensor H ∈ CKNr×Nt×M be defined such that each subcarrier’s aggregated

channel matrix corresponds to a frontal slice of H, i.e., the mode-1 matricization of H is given as

H(1) = [H[1] H[2] · · · H[M ]] . (4.8)

Likewise, let the effective channel tensor Heff ∈ CKNs×KNs×M be defined as

Heff = H×1 WH
RF ×2 FRF

T ×3 IM (4.9)
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such that the m-th frontal slice of Heff is the effective baseband at the m-th subcarrier and the

mode-1 matricization of Heff is given as

Heff(1) =
[
WH

RFH[1]FRF WH
RFH[2]FRF · · · WH

RFH[M ]FRF

]
. (4.10)

Similar to the design in Chapter 3, the proposed analog precoder and combiner design seeks the

constant modulus constrained orthogonal factor matrices WRF and FRF that best approximate the

channel tensor, i.e., H ≈ S ×1 WRF ×2 FRF
∗ ×3 IM , so that Heff ≈ S, with S(1) = [Σ[1] · · ·Σ[M ]],

where Σ[m] is a KNs ×KNs diagonal matrix. This problem is written as the following constrained

Tucker2 decomposition (or approximation) problem:

min
WRF,FRF,S

‖H − S ×1 WRF ×2 FRF
∗ ×3 IM‖2

s.t. S ∈ CKNs×KNs×M

WH
RF,kWRF,k = INs

FH
RFFRF = INs

WRF = blkdiag{WRF,1, · · · ,WRF,K}

WRF,k ∈ WRF

FRF ∈ FRF.

(4.11)

As shown in Appendix C.2, problem (4.11) can be equivalently solved by

max
WRF,FRF

∥∥H×1 WH
RF ×2 FT

RF ×3 IM
∥∥2

s.t. WH
RF,kWRF,k = INs

FH
RFFRF = INs

WRF = blkdiag{WRF,1, · · · ,WRF,K}

WRF,k ∈ WRF

FRF ∈ FRF.

(4.12)

However, due to the orthogonality and constant modulus constraints, finding the analog precoder

and combiner matrices that solves (4.12) is an intractable problem.

To handle this issue, problem (4.12) is broken down into KNs successive rank-(1, 1) constrained

Tucker2 approximation subproblems, where each subproblem corresponds to the analog precoder and
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combiner vector pair of one user’s data stream. The rank-(1, 1) constrained Tucker2 approximation

subproblem is expressed by

max
wj ,fj

∥∥H×1 wH
j ×2 fT

j ×3 IM
∥∥2

s.t. |[wj ]n| = 1/
√
Nr, ∀n ∈ 1, · · · , Nr

wH
j wj = 1

wH
j wl = 0, ∀j 6= l

WRF = blkdiag{WRF,1, · · · ,WRF,K}

|[fj ]n| = 1/
√
Nt, ∀n ∈ 1, · · · , Nt

fH
j fj = 1

fH
j fl = 0, ∀j 6= l

(4.13)

where FRF = [f1 · · · fKNs ] and WRF = [w1 · · ·wKNs ] and j, l ∈ {1, · · · ,KNs}. However, the

rank-(1, 1) approximation problem in (4.13) is still intractable.

To further simplify problem (4.13), one can note that the aggregated analog combiner matrix

has a block-diagonal structure, such that the analog combiners vectors of different users are already

orthogonal, and thus, only the orthogonality among analog combiners of the same user must be

guaranteed. Besides, these combiners only interact with the same user’s channel matrices. Further-

more, the orthogonality constraint can be slightly relaxed since the digital combiner and precoder

can further ensure the MUI interference suppression. Therefore, problem (4.13) can be recast as

max
wk,i,fk,i

∥∥∥H(γ)
res,k ×1 wH

k,i ×2 fT
k,i ×3 IM

∥∥∥2

s.t. |[wk,i]n| = 1/
√
Nr, ∀n ∈ 1, · · · , Nr

wH
k,iwk,i = 1

|[fk,i]n| = 1/
√
Nt, ∀n ∈ 1, · · · , Nt

fH
k,ifk,i = 1

(4.14)

where the aggregated channel tensor H is replaced by the residual channel tensor H(γ)
res in order

to reinforce the relaxed orthogonality constraints, H(γ)
res,k is a sub-tensor, having only the residual

channel tensor corresponding to the kth user, and wk,i and fk,i are the analog precoder and combiner

for the i-th data stream of the k-th user, such that wk,i is the i-th column of WRF,k and fk,i is the

[(k − 1)Ns + i]-th column of FRF, where k ∈ {1, · · · ,K} and i ∈ {1, · · · , Ns}.
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The solution to problem (4.14) is then obtained with the block coordinate descent-type alternate

least square (ALS) method by alternately solving1

max
wk,i

∥∥∥wH
k,iH

(γ)
res,k(1)

(IM ⊗ fk,i)
∥∥∥2

F

s.t. |[wk,i]n| = 1/
√
Nr, ∀n ∈ 1, · · · , Nr

wH
k,iwk,i = 1

(4.15)

and

max
fk,i

∥∥∥fH
k,iH

(γ)
res,k

∗

(2)
(IM ⊗wk,i)

∥∥∥2

F

s.t. |[fk,i]n| = 1/
√
Nt, ∀n ∈ 1, · · · , Nt

fH
k,ifk,i = 1

(4.16)

until convergence.

Problems (4.15) and (4.16) are still non-convex problems due to the constant modulus constraints.

Therefore, feasible solutions can be obtained by relaxing the non-convex constraint, solving the

relaxed convex problem, and finally projecting the solution onto the non-convex solution space.

Thus, by dropping the constant modulus constraint, the relaxed alternate least square problems are,

respectively,

max
wk,i

∥∥∥wH
k,iH

(γ)
res,k(1)

(IM ⊗ fk,i)
∥∥∥2

F

s.t. wH
k,iwk,i = 1

(4.17)

and

max
fk,i

∥∥∥fH
k,iH

(γ)
res,k

∗

(2)
(IM ⊗wk,i)

∥∥∥2

F

s.t. fH
k,ifk,i = 1.

(4.18)

The solution to the problems in (4.17) and (4.18) are obtained using the Lagrange multiplier

1Note that the objective function in (4.14), (4.15), and (4.16) are equivalent. This comes from the following two
identities:

Y = H(γ)
res,k ×1 wH

k,i ×2 fT
k,i ×3 IM ⇔ Y(1) = wH

k,iH
(γ)
res,k(1)

(
IM ⊗ fT

k,i

)T
= wH

k,iH
(γ)
res,k(1)

(
IM ⊗ fk,i

)
⇔ Y(2) = fT

k,iH
(γ)
res,k(2)

(
IM ⊗wH

k,i

)T
= fT

k,iH
(γ)
res,k(2)

(
IM ⊗w∗k,i

)
and ∥∥∥H(γ)

res,k ×1 wH
k,i ×2 fT

k,i ×3 IM

∥∥∥2
=

∥∥∥∥wH
k,iH

(γ)
res,k(1)

(
IM ⊗ fk,i

)∥∥∥∥2

F

=

∥∥∥∥fT
k,iH

(γ)
res,k(2)

(
IM ⊗w∗k,i

)∥∥∥∥2

F

=

∥∥∥∥fH
k,iH

(γ)
res,k

∗

(2)

(
IM ⊗wk,i

)∥∥∥∥2

F
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method. For instance, for problem (4.17), the Lagrangian function is defined as

L(wk,i, λ) = wH
k,iH

(γ)
res,k(1)

(IM ⊗ fk,ifk,i
H)H

(γ)
res,k

H

(1)
wk,i − λ

(
wH
k,iwk,i − 1

)
. (4.19)

The optimal wk,i is then obtained by setting the gradient of L(wk,i, λ) w.r.t. w∗k,i to zero, i.e.,

∇w∗
k,i
L(wk,i, λ) = H

(γ)
res,k(1)

(IM ⊗ fk,ifk,i
H)H

(γ)
res,k

H

(1)
wk,i − λwk,i = 0 (4.20)

which leads to the following eigen-problem:

H
(γ)
res,k(1)

(IM ⊗ fk,ifk,i
H)H

(γ)
res,k

H

(1)
wk,i = λwk,i. (4.21)

Analogously, the solution to (4.18) will also lead to an eigenproblem. Therefore, since the goal is to

maximize the objective function, the optimal solution to problems (4.17) and (4.18) are, respectively,

given by the principal eigenvectors (i.e., the eigenvector associated with the largest eigenvalue) of

H
(γ)
res,k(1)

(IM ⊗ fk,ifk,i
H)H

(γ)
res,k

H

(1)

and

H
(γ)
res,k

∗

(2)
(IM ⊗wk,iwk,i

H)H
(γ)
res,k

T

(2)
.

Solving these eigenproblems for each ALS iteration is computationally expensive, therefore, the

solution can be approximated by a single iteration of the power-iteration method [114], which yields

ŵk,i = H
(γ)
res,k(1)

(
IM ⊗ fk,ifk,i

H
)

H
(γ)
res,k

H

(1)
wk,i (4.22)

and

f̂k,i = H
(γ)
res,k

∗

(2)

(
IM ⊗wk,iwk,i

H
)
H

(γ)
res,k

T

(2)
fk,i. (4.23)

The relaxed solutions in (4.22) and (4.23) are finally projected onto the set of constant modulus

vectors, by extracting their phases through, respectively,

wk,i =
1√
Nr

ej∠ŵk,i and fk,i =
1√
Nt

ej∠f̂k,i . (4.24)

After computing the analog precoder and combiner vector pair, the residual channel tensor is
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Algorithm 4.1: Joint Analog Precoder & Combiner Design for MIMO-OFDM

1 Initialize H(0)
res = H and WRF,k = [ ],∀k = 1, · · · ,K

2 Initialize FRF = [ ] and γ = 0

3 for i = 1 : Ns do

4 for k = 1 : K do

5 Initialize δ(0) = 1, δ(1) = 0 and η = 0

6 Randomly Initialize wk,i and fk,i

7 while |δ(η+1) − δ(η)| ≥ ε do

8 ŵk,i = H
(γ)
res,k(1)

(
IM ⊗ fk,ifk,i

H
)
H

(γ)
res,k

H

(1)
wk,i

9 wk,i = 1√
Nr
ej∠ŵk,i

10 f̂k,i = H
(γ)
res,k

∗

(2)

(
IM ⊗wk,iwk,i

H
)
H

(γ)
res,k

T

(2)
fk,i

11 fk,i = 1√
Nt
ej∠f̂k,i

12 η = η + 1

13 δ(η+1) = 1
M

∥∥∥H(γ)
res,k ×1 wH

k,i ×2 fT
k,i ×3 IM

∥∥∥2

14 end

15 Update Hres according to (4.25) and (4.26)

16 γ = γ + 1

17 WRF,k = [WRF,k wk,i]

18 FRF = [FRF fk,i]

19 end

20 end

21 return FRF,WRF

updated to remove the contribution of such a pair by setting

H
(γ+1)
res,k (1)

= Pwk,iH
(γ)
res,k(1)

Pfk,i (4.25)

and

H
(γ+1)
res,j (1) = H

(γ)
res,j(1)

Pfk,i ,∀j 6= k (4.26)

where Pwk,i = [INr − wk,iw
H
k,i] and Pfk,i = [INt − fk,if

H
k,i]. The expression in (4.25) projects

the column space of H
(γ)
res,k(1)

onto the subspace orthogonal to wk,i, and its row space onto the

subspace orthogonal to fk,i. As a result, (4.25) removes the components of the kth user’s residual

channel sub-tensor in the direction of wk,i and fk,i. On the other hand, in (4.26), the rows space

of H
(γ)
res,j(1)

(∀j 6= k) is projected onto fk,i’s orthogonal subspace, which, as a result, removes the

components of the aggregated residual channel tensor of the remaining users in the direction of fk,i.

The updated residual channel tensor is utilized to design the following analog precoder and combiner

pair. This procedure is repeated until all the KNs analog precoder and combiner vector pairs have

been designed. The proposed analog beamforming design is summarized in Algorithm 4.1.
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Note that using the single-power-iteration approximations in (4.22) and (4.23) instead of the

eigenproblem solutions has no significant impact on the system performance; although, the proposed

algorithm may require few more ALS iterations (see Sec. 4.4.4). Besides, the successive rank-(1,1)

approximation subproblems in (4.13) can be solved according to distinct user scheduling schemes.

In Alg. 4.1, the analog precoder and combiner are designed for one data stream of each user at a

time, aiming to provide fairness among users. Alternatively, the analog precoder and combiner can

be designed following a user priority schedule, by computing all the analog precoder and combiner

pairs for each user at a time. Finally, note that the proposed constrained tensor decomposition

is a general approach and can be used for both single-user and multi-user MIMO-OFDM systems.

Different approaches for designing the digital beamforming for each of these systems are presented

in the following sections.

4.3.2 Digital Precoder and Combiner Design for Single-User Systems

Having computed the analog precoder and combiner matrix (common to all subcarriers), the optimal

digital precoder and combiner matrices for single-user systems are obtained from the effective base-

band channel’s SVD on a per-subcarrier basis. The effective baseband channel of the mth subcarrier,

Heff [m] = WH
RFH[m]FRF, has SVD Heff [m] = UmΣmVH

m. The digital precoder and combiner are

designed by taking the Ns column vectors of Vm and Um associated with the Ns largest singular

values of Heff [m].

Next, the digital precoder matrix is normalized, to ensure that ‖FRFFBB[m]‖2F = PT, by letting

FBB[m] =
√
PT

FBB[m]

‖FRFFBB[m]‖F
(4.27)

and allocating the power according to the water-filling method, as described in Sec. 3.3.2.

4.3.3 Digital Precoder and Combiner Design for Multi-User Systems

The digital precoder and combiner design for multi-user systems is performed with the RCD method

presented in Sec. 3.3.3, which can suppress intra-user and inter-user interference while also supporting

noise suppression. The RCD precoder for the m-th subcarrier is given as

FBB[m] = βFa[m]Fb[m] (4.28)
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with Fa[m] = [Fa1 [m] Fa2 [m] · · · FaK [m]] ∈ CKNs×KNs and

Fb[m] =


Fb1

[m] · · · 0

...
. . .

...

0 · · · FbK [m]

 ∈ CKNs×KNs

where β is selected to ensure the total transmit power constraint, i.e., β2‖FRFFa[m]Fb[m]‖2F ≤ PT.

The primary precoder Fak [m] ∈ CKNs×Ns , designed for MUI and noise suppression, is given

by [109]

Fak [m] =

(
H̃H
k [m]H̃k[m] +

KNsσ
2
n

PT
IKNs

)−1

(4.29)

where H̃k[m] = [H̄T
1 [m] · · · H̄T

k−1[m] H̄T
k+1[m] · · · H̄T

K [m]]T; and the secondary precoder Fbk [m] ∈

CNs×Ns and the digital combiner, designed to suppress intra-user interference and further optimize

the system’s performance, are given by

Fbk [m] = Vs (4.30)

and

WBB,k[m] = Us (4.31)

where Us and Vs are, respectively, the right and left singular values of the SVD H̄k[m]Fak [m] =

UsΣsV
H
s .

Finally, to satisfy the per-subcarrier total transmitted power constraint ‖FRFFBB[m]‖2F = PT,

the digital precoder is normalized by letting

FBB[m] =

√
PT

‖FRFFa[m]Fb[m]‖2F
Fa[m]Fb[m] (4.32)

and allocating the power through the water-filling algorithm.

4.3.4 Computational complexity

The complexity order of the analog precoder and combiner design using the proposed constrained

Tucker2 tensor decomposition, in Alg. 4.1, is approximately O{K[MNtNrNs(K+Nite)+N2
t NsNite]},

where Nite is the maximum number of iterations needed for designing an analog combiner and

precoder vector pair. Note that the complexity is mostly associated with the computations in lines

8, 10 and 13 of Alg. 4.1. Nevertheless, the structure of those operations can be explored to implement

them in a parallel fashion, thereby reducing the computation time significantly.
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Table 4.1
Computational Complexity Comparison for Single-User OFDM Hybrid Beamforming Design Methods

Method Computational complexity order

Prop. Method MNtNrNsNite +N2
t NsNite

PE-AltMin [83] M [NiteN
2
s (Nt +Nr) +NtNrNs]

HBF-LSAA [117] N2
s N

2
t N

2
r Nite +M(N2

t Nr +N2
r Ns)

SS-SVD [118] MNt(N
2
r +N2

s ) +Ns(N
2
t +N2

r )

ICSI-HBF [119] MN2
s (Nt +Nr) + C2Ns

Table 4.2
Computational Complexity Comparison for Multi-User OFDM Hybrid Beamforming Design Methods

Method Computational complexity order

Prop. Method K[MNtNrNs(Nite +K2Ns) +N2
t NsNite]

HD-PG-MMSE [122] MKNite[N3
t +N3

r +NtN
2
r ]

TU-HBF [123] MK[K3N3
s +N2

t Ns +NtN
2
r K]

For single-user systems (i.e., K = 1), the complexity of Alg. 4.1 reduces to O{MNtNrNsNite +

N2
t NsNite}. The digital beamforming, designed by computing the effective baseband channel, its

SVD, and the digital precoder normalization, requires O
{
M(N3

s +NsNtNr)
}

. Therefore, consid-

ering that Ns ≤ Nr, Nt, the proposed design’s overall complexity reduces to O{MNtNrNsNite +

N2
t NsNite}, approximately. For comparison, Table 4.1 shows the order of complexity of the pro-

posed method and that in [83], [117]–[119], with C representing the codebook’s cardinality in [119].

For multi-user systems, the digital beamforming requires computing the effective baseband

channel, the RCD solution, and the digital precoder normalization. Such computations require

O{MKNsNt[(KNs)
2 + Nr]}. Assuming Ns ≤ Nr and KNs ≤ Nt, the proposed design’s overall

complexity, including the analog beamforming, is approximately O{K[MNtNrNs(Nite + K2Ns) +

N2
t NsNite]}. Table 4.2 shows the complexity order of the proposed algorithm and those in [122]

and [123]. It is worth noting that the number of iterations in the proposed algorithm is usually in

the order of few tens, while for the HD-PG-MMSE, it is in the order of a few hundreds [122].

4.4 Simulation Results

This section provides numerical simulation results to assess the proposed method with comparison

to other existing designs. This section is organized as follows: Sections 4.4.1 and 4.4.2 present the

simulation results for SU and MU systems, respectively; Section 4.4.3 studies the convergence of the

proposed method; Section 4.4.4 evaluates the effects of the single-iteration power method that led

99



(a) (b)

Figure 4.2: Example 1. SU-MIMO-OFDM system: Spectral efficiency (a) and sum-rate (b) vs. SNR for a
system with Nt = Nr = 64 antennas, Ns = 4 data streams, and M = 512 subcarriers.

to (4.22) and (4.23); Section 4.4.5 compares the narrowband design proposed in Chapter 3 with that

proposed in this chapter when M = 1; and lastly, Section 4.4.6 presents further discussions on the

results.

The examples evaluate both the spectral efficiency and the sum-rate performances of the different

hybrid beamforming designs obtained by averaging the results over 500 channel realizations. Optimal

water-filling power allocation is considered for all methods. The SNR is defined as SNR = PTρk/σn,

where the per-subcarrier total transmitted power is set to PT = KNs, with ρk assumed equal for

all users. Only the mmWave scenarios are considered here. The mmWave channels are modeled

by the extended Saleh-Valenzuela channel model with Ncl = 5 scattering clusters and Nray = 10

propagation paths per cluster, angular spread σt
φ = σt

θ = σr
φ = σr

θ = 10◦, and a USPA with antenna

spacing d = λ/2 [24], [83]. The stopping criterion in Alg. 4.1 is set to ε = 0.001 and the maximum

number of iterations Nite = 20.

4.4.1 Single-User Systems

For single-user systems, the proposed design is compared with the fully-digital SVD-based beam-

forming (FD-SVD) and the hybrid beamforming designs from the PE-AltMin [83], HBF-LSAA [117],

SS-SVD [118], and ICSI-HBF [119] (considering an orthogonal codebook with C = 64). All examples

consider an OFDM system with M = 512 subcarriers.

The first example evaluates the spectral efficiency and the sum-rate for different SNR values for

a 64× 64 SU-MIMO-OFDM system communicating through Ns = 4 data streams. The results are

shown in Fig. 4.2a and Fig. 4.2b, respectively. From these results, one observes that the proposed

design outperforms all the other hybrid beamforming designs and has a consistent near-optimal
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performance. Note that the PE-AltMin, which has the second-best spectral efficiency performance,

has its sum-rate severely degraded at high SNR. For instance, the spectral efficiency achieved by

the PE-AltMin design is between 0.17 bits/s/Hz and 0.34 bits/s/Hz lower than the proposed design,

whereas its sum-rate reaches up to 26 bits/s/Hz lower. The HBF-LSAA design achieves near-optimal

performance at high SNR, with spectral efficiency and sum-rate, respectively, around 0.4 bits/s/Hz

and 0.8 bits/s/Hz lower than the proposed design; on the other hand, it has poor performance at low

SNR with up to, respectively 4.1 bits/s/Hz and 5.1 bits/s/Hz lower spectral efficiency and sum-rate

as compared to the proposed design. Unlike the PE-AltMin and the HBF-LSAA, which have their

performances affected at either high or low SNR, the SS-SVD attains a consistent performance, but

with spectral efficiency and sum-rate up to 1.6 bits/s/Hz lower than the proposed design. Finally,

note that the ICSI-HBF has one of the worst performances (only outperforming the PE-AltMin’

sum-rate at high SNR), likely due to the use of limited codebooks.

The second example evaluates the impact of the number of data streams on the spectral efficiency

and sum-rate of a 64 × 64 SU-MIMO-OFDM system. The results, depicted in Fig. 4.3, show the

spectral efficiency (left) and the sum-rate (right) at SNR = 5 dB (top), 0 dB (center), and –5 dB

(bottom). Except at Ns = 1, where the PE-AltMin and HBF-LSAA designs slightly outperform the

proposed design (with up to 0.2 bits/s/Hz higher spectral efficiency and sum-rate), the proposed

method has outperformed other designs in all the other scenarios. Note that the PE-AltMin and

the ICSI-HBF achieve sum-rates much lower than their respective spectral efficiencies. In partic-

ular, the PE-AltMin has the second-best spectral efficiency performance (between 0.2 bits/s/Hz

and 0.4 bits/s/Hz lower than the proposed method); but achieve sum-rates up to 17 bits/s/Hz,

9 bits/s/Hz and 4 bits/s/Hz lower than the proposed design, respectively, at SNR = 5 dB, 0 dB,

and –5 dB. Moreover, observe that the HBF-LSAA has its performance degraded as the number of

data streams increases, particularly at lower SNR, achieving spectral efficiency and sum-rate up to

7.0 bits/s/Hz and 8.9 bits/s/Hz, respectively, lower than the proposed design at SNR = –5 dB. The

SS-SVD, as in the previous example, attains a consistent performance in all scenarios; however, it

achieves spectral efficiency and sum-rate up to, respectively, 2.1 bits/s/Hz and 2.2 bits/s/Hz lower

than the proposed design.

The third example assesses the spectral efficiency and the sum-rate for different numbers of

antennas, assuming Nt = Nr, for a system communicating through Ns = 4 data streams in each

subcarrier. The results are shown in Fig. 4.4, which depicts the spectral efficiency (left) and the sum-

rate (right) at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom). In this example, the proposed

design outperforms the other hybrid beamforming designs in all scenarios. In general, this example
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Figure 4.3: Example 2. SU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs.
the number of data streams Ns for a system with Nt = Nr = 64 antennas and M = 512 subcarriers at
SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

confirms the previous results by showing that the PE-AltMin achieves high spectral efficiency but

has its sum-rate significantly compromised, especially at high SNR; the HBF-LSAA achieves both

near-optimal spectral efficiency and sum-rate at high SNR but has its performance degraded at low

SNR, particularly when employing a small number of antennas; and that the SS-SVD attains a

consistent near-optimal performance in all scenarios, although still lower than the proposed method.
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Figure 4.4: Example 3. SU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs. the
number of transmit and receive antennas Nt = Nr for a system communicating through Ns = 4 data streams
and M = 512 subcarriers at SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom).

Lastly, the impact of the PS quantization on the proposed design is evaluated. As discussed

in Chapter 3, practical deployments require using quantized PS to reduce the cost, energy con-

sumption, and hardware complexity [110]–[112], commonly adopting PS with 4 to 6 quantization

bits [113]. The phase-quantization operation are performed in lines 8 and 10 of Alg. 4.1 by selecting

the nearest quantized phase. This example considers the same scenario as the first example. The
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Figure 4.5: Example 4. SU-MIMO-OFDM system: Spectral efficiency (a) and sum-rate (b) vs. the SNR for
different numbers of phase-shifter quantization bits Nb and the ratio between the quantized and unquantized
PS performances in terms of spectral efficiency (c) and sum-rate (d).

results in Fig. 4.5 show the spectral efficiency (left) and the sum-rate (right) at the top, and the per-

formance ratio between the quantized and unquantized analog beamforming, respectively, in terms

of the spectral efficiency and the sum-rate at the bottom, for different numbers of quantization bits

Nb. Note that the proposed design can attain more than 94.5% and 98.8% of its unquantized-PS

performance when employing PS with 3 and 4 quantization bits, respectively. For PS with more than

5 quantization bits, the proposed design attains at least 99.7% of its unquantized-PS performance.

4.4.2 Multi-User Systems

For multi-user systems, the proposed hybrid beamforming design is compared to the fully-digital

block diagonalization (FD-BD) [98] and the hybrid beamforming designs from HD-PG-MMSE [122]

and TU-HBF [123]. However, note that the FD-BD is also sub-optimal and therefore, in certain

situations, the hybrid beamforming designs may exceed its performance. Moreover, all examples

consider an OFDM system with M = 32 subcarriers. Although practical OFDM deployments often
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(a) (b)

Figure 4.6: Example 1. MU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs.
SNR for a system Nt = 144 transmit antennas and K = 4 users, each having Nr = 16 receive antennas,
communicating through Ns = 4 data streams and M = 32 subcarriers.

use much higher numbers of subcarriers (e.g., 512 or more), the analysis here is limited M = 32

due to the computational time of the TU-HBF, which requires the SVD computation of very large

matrices. The proposed design, however, readily extends to those cases.

The first example evaluates the spectral efficiency versus the SNR for an MU-MIMO-OFDM

system with Nt = 144 transmit antennas and K = 4 users with Nr = 16 receive antennas, each

communicating through Ns = 4 data streams. The results are depicted in Fig. 4.6, which shows

the spectral efficiency (a) and sum-rate (b) attained by all designs at SNR ranging from –15 dB to

15 dB. From Fig. 4.6, one can observe that the proposed design attains very high performance in high

SNR scenarios, reaching up to 10.7 bits/s/Hz higher spectral efficiency and 10.8 bits/s/Hz higher

sum-rate than the second-best performing design, the TU-HBF, and up to 53.3 bits/s/Hz higher

spectral efficiency and 82.1 bits/s/Hz higher sum-rate than the HD-PG-MMSE at SNR = 15 dB.

However, at low SNR (e.g. SNR ≤ –5 dB), the proposed design is slightly outperformed by the

HD-PG-MMSE, which achieves spectral efficiency and sum-rate up to, respectively, 3.6 bits/s/Hz and

3.2 bits/s/Hz higher than the proposed design. Nevertheless, despite the slightly better performance

of the HD-PG-MMSE design in low-SNR scenarios, its performance is severely degraded in high SNR.

The second example assesses the spectral efficiency and the sum-rate versus the number of data

streams Ns for an MU-MIMO-OFDM system with Nt = 144, Nr = 16, and K = 4. Fig. 4.7

presents the spectral efficiency (left) and the sum-rate (right) attained by the different design at

SNR = 5 dB (top), 0 dB (center), and –5 dB (bottom). These results show that the proposed design

outperforms the TU-HBF design whenever Ns ≥ 2. When Ns = 1, both the spectral efficiency and

the sum-rate attained by the TU-HBF are 0.5 bits/s/Hz (0.61 bits/s/Hz) higher than those attained
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by the proposed design at SNR = 5 dB (SNR = –5 dB). On the other hand, when Ns = 8, the

proposed design attain spectral efficiency and sum-rate, respectively, 9 bits/s/Hz and 10 bits/s/Hz

higher at SNR = –5 dB, and respectively, 20 bits/s/Hz and 24 bits/s/Hz higher at SNR = 5 dB.

Moreover, note that the TU-HBF seems more affected by the increase in Ns, having its performance

degraded once Ns grows past certain values. Compared to the HD-PG-MMSE design, the proposed

method has a better performance at higher SNR or lower number of data streams. For instance, at

SNR = 5 dB, the proposed method achieves 21.5 bits/s/Hz higher spectral efficiency when Ns = 3

and 36 bits/s/Hz higher sum-rate when Ns = 6. On the other hand, at low SNR (e.g. SNR = –5 dB),

the HD-PG-MMSE reaches up to 11.7 bits/s/Hz and 7.7 bits/s/Hz higher spectral efficiency and

sum-rate, respectively. It is essential to highlight that the sum-rate attained by the HD-PG-MMSE

design is, in general, much lower than the spectral efficiency. This indicates that linear detection

schemes would not be able to explore the full potential of the HD-PG-MMSE design. Moreover,

as further discussed in Sec. 4.4.6, the HD-PG-MMSE design has computational complexity much

higher than the other methods.

The third example evaluates the spectral efficiency and sum-rate for different numbers of trans-

mit antennas Nt. An MU-MIMO-OFDM system with K = 4 users, each having Nr = 9 receive

antennas and communicating through Ns = 4 data streams is considered. The results are pre-

sented in Fig. 4.8, following the same organization as in the previous example. The proposed design

outperforms the TU-HBF in all scenarios, attaining from 2.8 bits/s/Hz to 9.9 bits/s/Hz higher

spectral efficiency and sum-rate. It also attains spectral efficiency and sum-rate up to, respectively,

20.7 bits/s/Hz and 35.3 bits/s/Hz higher than the HD-PG-MMSE at SNR = 5 dB. At lower SNR,

the HD-PG-MMSE can achieve up to 4.6 bits/s/Hz and 3.6 bits/s/Hz higher spectral efficiency and

sum-rate, respectively, as compared to the proposed design. However, note that the proposed design

tends to outperform the HD-PG-MMSE as the number of transmit antennas grows.

Next, the fourth example investigates the spectral efficiency and the sum-rate performances un-

der different numbers of users K. An MU-MIMO-OFDM system with Nt = 144 transmit antennas,

users having Nr = 16 receive antennas, and communicating through Ns = 4 data streams is con-

sidered. The results, depicted in Fig. 4.9, show the spectral efficiency and the sum-rate, following

the organization as in previous examples. Once again, these results show that the proposed design

greatly outperforms the other hybrid beamforming designs at high SNR. For instance, the proposed

design attains a sum-rate up to 49.2 bits/s/Hz and 22.5 bits/s/Hz higher than the HD-PG-MMSE

and the TU-HBF, respectively, at SNR = 5 dB. At SNR = –5 dB, the proposed design continues
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Figure 4.7: Example 2. MU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs. the
number of data streams Ns for a system with Nt = 144 transmit antennas and K = 4 users, each having
Nr = 16 receive antennas, communicating through M = 32 subcarriers at SNR of 5 dB (top), 0 dB (center),
and –5 dB (bottom).

to outperform the TU-HBF, attaining, respectively, 9.1 bits/s/Hz and 10.3 bits/s/Hz higher spec-

tral efficiency and sum-rate when K = 8; on the other hand, the HD-PG-MMSE achieves spectral

efficiency up to 5.3 bits/s/Hz higher than the proposed design, but fails to provide higher sum-rate.
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Figure 4.8: Example 3. MU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs.
the number of transmit antennas Nt for a system with K = 4 users having Nr = 9 receive antennas and
communicating through Ns = 4 data streams and M = 32 subcarriers at SNR of 5 dB (top), 0 dB (center),
and –5 dB (bottom).

Lastly, the fifth example investigates the proposed method’s performance under different phase-

shifter quantization resolutions by considering the scenario of the first example. Fig 4.10 presents

the spectral efficiency (left) and the sum-rate (right) at the top, and the performance ratio between

the quantized and unquantized analog beamforming, respectively, in terms of the spectral efficiency
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Figure 4.9: Example 4. MU-MIMO-OFDM system: Spectral efficiency (left) and sum-rate (right) vs.
the number of users K for a systems with Nt = 144 transmit antennas and users having Nr = 16 receive
antennas, communicating through Ns = 4 data streams and M = 32 subcarriers at SNR of 5 dB (top), 0 dB
(center), and –5 dB (bottom).

and the sum-rate at the bottom, for different numbers of quantization bits Nb. These results show

that the proposed design can attain more than 99.4% and 99.7% of its unquantized-PS performance

when employing PS with 5 and 6 quantization bits, respectively. In particular, when Nb = 6, the

proposed design can even attain its full unquantized-PS performance at SNR ≥ 10 dB.
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Figure 4.10: Example 5. MU-MIMO-OFDM system: Spectral efficiency (a) and sum-rate (b) vs. the
SNR for different numbers of phase-shifter quantization bits Nb and the ratio between the quantized and
unquantized PS performances in terms of spectral efficiency (c) and sum-rate (d).

4.4.3 Convergence Analysis

This section presents additional simulation results that provide important insights into the conver-

gence of Algorithm 4.1. First, it is important to highlight that, as briefly discussed in Appendix C.2.2,

the ALS-based solution to the general Tucker decomposition problem is not unique nor guaranteed

to converge to a global optimum [135]. This also holds for the proposed constrained Tucker2 decom-

position in Alg. 4.1. In fact, for the proposed algorithm, the non-uniqueness of the solution is quite

evident from the fact that any rotation in the analog precoder or the analog combiner vectors will

not affect the objective function in (4.14). On the other hand, an analytical proof for the conver-

gence is very difficult - if not impossible - due to the non-convex constant modulus constraint and

the nonexistence of a derivative for the function that maps the solutions in (4.22) and (4.23) onto

the constant modulus solution space. Nevertheless, the iterative solution of the equations in (4.24)

leads to an increasingly better value for the objective function in (4.14), allowing the convergence

of Alg. 4.1 to be determined once the objective function ceases to increase. The following examples
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Figure 4.11: Empirical PMF and empirical CDF of the number of iterations needed for computing each
analog beamforming vector pair, considering a SU-MIMO-OFDM system with Nt = Nr = 64, Ns = 8, and
M = 512.

show that Alg. 4.1 does converge within a reasonable number of iterations.

The first example considers a 64×64 SU-MIMO-OFDM system communicating through M = 512

subcarriers and Ns = 8 data streams per subcarrier. Fig. 4.11 shows the empirical PMF and the

empirical CDF of the number of iterations the inner-loop of Alg. 4.1 (i.e., lines 7-14) requires for

convergence. These results show that the proposed algorithm requires, on average, 9.5 iterations for

convergence, and converges within 15 and 35 iterations, respectively, in 90% and 99% of the trials.

The second example considers an MU-MIMO-OFDM system with Nt = 144 transmit antennas

and K = 8 users, with each user having Nr = 16 receive antennas and communicating through

M = 32 subcarriers and Ns = 4 data streams per subcarrier. The empirical PMF and CDF of

the number of iterations required for convergence are shown in Fig. 4.12. The proposed algorithm

requires 8.7 iterations for convergence on average and converges within 15 and 38 iterations, respec-

tively, in 90% and 99% of the trials.

Additional simulation results have shown the results in Fig. 4.11 and Fig. 4.12 are not significantly

affected by the system’s parameters (e.g., Nt, Nr, Ns, and K). Moreover, the stopping criteria ε and

Nite, in Alg. 4.1, allows the designer to trade off computational complexity and convergence speed

for better performance.

4.4.4 Effects of Power Method Approximation

Recall that the solution to the relaxed ALS problems in (4.17) and (4.18) result in two eigenproblems,

and to avoid such a complex computation, these solutions were approximated by a single iteration

of the power method, leading to the expressions in (4.22) and (4.23). This example investigates the
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Figure 4.12: Empirical PMF and empirical CDF of the number of iterations needed for computing each
analog beamforming vector pair, considering an MU-MIMO-OFDM system with Nt = 144, Nr = 16, K = 8,
and Ns = 4, and M = 32.

effects of such approximation on the proposed algorithm’s performance and convergence.

The example considers an MU-MIMO-OFDM system with Nt = 144 transmit antennas and

K = 4 users, each having Nr = 16 receive antennas, communicating through Ns = 4 data streams

in M = 32 subcarriers. The results are shown in Fig. 4.13 and Fig. 4.14. Fig. 4.13 presents the

spectral efficiency (left) and the sum-rate (right) attained by the proposed design when the principal

eigenvector and the power method approximation are used. These results show that the proposed

design can attain up to 0.4 bits/s/Hz higher spectral efficiency and sum-rate when the eigenproblem

solution is used. Moreover, Fig. 4.14 shows the empirical CDF of the number of iteration required

for convergence for both methods. The proposed design requires 6 iterations for convergence, on

average, and converges within 8 iterations in more than 90% of the time when using the eigenproblem

solution. On the other hand, when using the power method approximation, it requires, on average,

8 iterations, and converges within 13 iterations in 90% of the time.

Despite better performance and faster convergence when using the eigenproblem solution, note

that the proposed single-iteration power method approximation can significantly reduce computa-

tional complexity. The single-iteration power method requires a matrix-vector multiplication, with

complexity order O{N2}. In contrast, the complexity of the eigenproblem solution is bounded

by O{N3} [136]. Alternatively, if the power-iteration method is used for computing the principal

eigenvector (instead of solving the complete eigenproblem), this would still require multiple power

iterations2.

2The power-iteration method requires approximately O{ 1
∆

log 1
δ
} iterations for convergence, where ∆ = λ1−λ2 is

the gap between the largest and the second-largest eigenvalues, and δ is the accuracy of the approximation measured
by the squared sine or the angle between the true eigenvector and its approximation [137].
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(a) (b)

Figure 4.13: Effects of the power method approximation. Spectral efficiency (a) and sum-rate (b) vs. the
SNR for an MU-MIMO-OFDM system with Nt = 144 transmit antennas and K = 4 users, each having
Nr = 16 receive antennas, communicating through Ns = 4 data streams in M = 32 subcarriers.

Figure 4.14: Effects of the power method approximation. Empirical CDF of the number of iterations
required for computing each analog beamforming vector pair, considering an MU-MIMO system with Nt =
144, Nr = 16, K = 4, and Ns = 4.

4.4.5 Comparison with the Narrowband Design in Chapter 3

This subsection compares the hybrid beamforming design for narrowband systems presented in

Chapter 3 with the design proposed in this chapter when considering a narrowband system (i.e.,

when M = 1). Despite the similarities between both designs, it is important to highlight that

narrowband design in Chapter 3 is not a particular case of the design in this chapter. For instance,

note that the objective function in (4.14) (from which originates Alg. 4.1) reduces to ‖wH
k,iH

(i)
res,kfk,i‖2

when M = 1, while the objective function that originates the narrowband design in Chapter 3

is given by Re(wH
k,iH

(i)
res,kfk,i). Therefore, observe that any analog beamforming solution in the

narrowband design is also a solution to the OFDM design (in fact, any rotation of such a solution,

either in the analog precoder vector or the analog combiner vector, is also a solution to the OFDM
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(a) (b)

Figure 4.15: Comparison with the narrowband design in Chapter 3. Spectral efficiency (a) and sum-rate
(b) vs. the SNR for an MU-MIMO system with Nt = 144 transmit antennas and K = 4 users, with each
user having Nr = 16 receive antennas and communicating through Ns = 4 data streams.

Figure 4.16: Comparison with the narrowband design in Chapter 3. Empirical CDF of the number of
iterations required for computing each analog beamforming vector pair, considering an MU-MIMO system
with Nt = 144, Nr = 16, K = 4, and Ns = 4.

design), but the reciprocal does not hold. Moreover, note that the OFDM design’s computational

complexity reduces to O{K[NtNrNs(Nite +K2Ns) +N2
t NsNite]} when M = 1. On the other hand,

the narrowband design has complexity O{K[NtNrNs(Nite +K)+K3N3
s ]}. Thus, since K2Ns >> K

and N2
t NsNite >> K3N3

s , one can quickly note that the narrowband design in Chapter 3 has lower

computational complexity (from one to two orders of magnitude lower when considering typical

system parameters, such as those considered in the examples of this section).

An additional example is provided to obtain further insights on the differences between the

narrowband and the OFDM designs. This example considers a narrowband MU-MIMO system with

Nt = 144 transmit antennas and K = 4 users, with each user having Nr = 16 receive antennas and

communicating through Ns = 4 data streams. Fig. 4.15 shows the spectral efficiency (left) and the

sum-rate (right) attained for the narrowband design in Chapter 3 and this chapter’s OFDM design
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with M = 1. In general, the OFDM design attains a marginally better performance (with differences

only in the second decimal place). Furthermore, Fig. 4.16 shows the empirical CDF of the number

of iterations required by each algorithm. The narrowband design requires 10 iterations, on average,

to reach the convergence, while the OFDM design requires, on average, 14 iterations. Besides, the

narrowband and the OFDM design converge within, respectively, 16 and 23 iterations in 90% of the

trials, and 35 and 57 iterations in 99% of the trials.

4.4.6 Further Discussions

The results in Sec. 4.4.1 and Sec. 4.4.2 have demonstrated the proposed design’s performance,

respectively, for single-user and multi-user systems, under different scenarios.

The results obtained for single-user systems have shown that the proposed method consistently

attained near-optimal spectral efficiency and sum-rate and outperformed the other hybrid beam-

forming designs in nearly all scenarios. In contrast, the HBF-LSAA has attained near-optimal

performance only in favorable scenarios (such as in high SNR, with a large number of antennas,

and a small number of data streams), failing to perform well under more critical scenarios; the

PE-AltMin has attained near-optimal spectral efficiency in most scenarios, but has had its sum-rate

negatively impacted, especially at high SNR; the SS-SVD has also attained a consistently good per-

formance, although always below the proposed design’s performance; and finally, the ICSI-HBF has

significantly under-performed the other designs, likely due to the limitations imposed by the reduced

codebook. It is also worth noting that the proposed design’s computational complexity is similar to

other existing methods. For the parameters of the first example in Sec. 4.4.1, the proposed method

has complexity in the order of 108. The ICSI-HBF, PE-AltMin, SS-SVD and the HBF-LSAA have

complexity in the order of 106, 107, 108, and 109, respectively. Despite the lower complexity of the

ICSI-HBF, it has significantly lower performance than the other methods.

For the multi-user case, the results in Sec. 4.4.2 have shown that the proposed design can also

consistently attain high spectral efficiency and sum-rate. The proposed design has outperformed the

TU-HBF in nearly all scenarios, performing particularly better at more critical conditions, such as

when using a small number of antennas or transmitting many data streams. The HD-PG-MMSE

has outperformed the proposed design in those critical scenarios, notably at low SNR; however, the

HD-PG-MMSE has a much inferior performance at high SNR. Furthermore, the HD-PG-MMSE has

a much higher computational complexity. For instance, considering an MU-MIMO-OFDM system

with the same parameters as in the first example in Sec. 4.4.2, the proposed method has complexity

in the order of 108, while the TU-HBF and the HD-PG-MMSE have complexities in the order
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of 107 and 1010, respectively. Moreover, the results have demonstrated that the proposed design

can also perform well even when practical PS quantization is considered. For PS with 4 and 6

quantization bits, the performance loss remained under 1.4% and 0.25%, respectively, compared to

the unquantized design.

Additional examples have provided further insights into the proposed design. In Sec. 4.4.3,

examples have investigated the convergence of Alg. 4.1. The results showed that despite the non-

guaranteed convergence to a globally optimal solution, the algorithm achieves a local optimal within

a reasonably low number of iterations. Sec. 4.4.4 has shown that the proposed single-iteration power

method simplification adopted to avoid solving the eigenproblem has, in fact, almost no effect on

the design performance. While the simplification can demand a few more iterations, it significantly

reduces the algorithm complexity. Finally, Sec. 4.4.5 has pointed out the differences between the

narrowband design proposed in Chapter 3 and the design in this chapter when assuming a single

subcarrier. Despite achieving nearly the same performance, the discussions in Sec. 4.4.5 revealed that

the analog beamforming of both designs have different solution spaces (with the narrowband design’

solution space being only a subset of the design in this chapter). Furthermore, it is shown that the

narrowband design has lower computational complexity and converges within fewer iterations.

4.5 Concluding Remarks

This chapter proposed a novel hybrid beamforming design for selective-frequency mmWave massive

MIMO-OFDM systems. The proposed method performs the analog and digital beamforming design

in two separate stages. In the first stage, the analog precoder and combiner design are formulated

as a constrained Tucker2 tensor decomposition problem, which can increase the effective baseband

channel gain while also suppressing the MUI simultaneously over every subcarrier. In the second

stage, the digital beamformers are computed on a per subcarrier basis, using different methods

for single- and multi-user systems. For SU-MIMO systems, the digital precoder and combiner are

obtained from the effective baseband channel’s SVD, while for MU-MIMO systems, the digital pre-

coder and combiner are obtained using the regularized channel diagonalization method. Numerical

simulation results have confirmed the effectiveness of the proposed design, which outperforms other

existing designs in nearly all scenarios. Results have also shown the proposed method can perform

very well even when practical PS quantization is considered.
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Chapter 5

Conclusions

This chapter summarizes the contributions of this thesis and points out future research directions.

5.1 Summary of the Contributions

In this thesis, different switching-network-based and phase-shifting-network-based hybrid beam-

forming are proposed for mmWave massive MIMO wireless communication systems. The main

contributions of the thesis are summarized as follows.

In Chapter 2, two new adaptive algorithms for solving the joint antenna selection and beam-

forming problem for uplink reception in mobile communication systems have been proposed. Both

algorithms are developed based on an alternating optimization procedure, in which the beamforming

vector and the antenna selection matrix are computed iteratively through LMS-like update equa-

tions. The first algorithm is designed based on the MMSE criterion, aiming at reducing the error

between the received signal and a reference signal (pilot sequence). On the other hand, the second

algorithm is based on the MVDR criterion with an objective to reduce the beamformer’s output

power while ensuring unity gain towards the user of interest. The effectiveness of the proposed

algorithms has been confirmed through numerical simulations. Simulation results have shown that

the proposed algorithm provides extra degrees of freedom leading to higher SINR levels in adverse

scenarios, such as those with fewer RF chains than users and with interfering signals located at the

vicinity of the user of interest.

In Chapter 3, a novel phase-shifting-network-based hybrid precoder and combiner design based

on the constrained channel decomposition has been proposed for narrowband mmWave massive

MIMO wireless communication systems. The proposed design consisted of a two-stage approach
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that splits the analog and digital beamforming designs. The analog beamforming is designed using

the proposed constrained channel decomposition method, which provides the analog beamforming

with the capability to harvest the array gain and suppress intra-user and inter-user interference.

The proposed analog beamforming design is suitable for both single-user and multi-user systems.

The digital beamforming, designed at the second stage, considers two different approaches: for

single-user systems, the digital beamforming is obtained from the optimal SVD-based solution fol-

lowed by optimal water-filling power allocation, and for multi-user systems, it is obtained from the

regularized channel diagonalization approach. The regularized channel diagonalization provides a

better compromise between multi-user interference suppression and noise suppression, resulting in a

better performance in critical scenarios, such as in low SNR, a small number of antennas, or a large

number of transmitted data streams. Numerical simulation results have confirmed the proposed

design’s effectiveness, which has attained near-optimal performance in a wide range of scenarios,

outperforming most of the other existing designs. Simulation results have also demonstrated the

proposed design’s ability to perform well even under practical phase-shifter quantization constraints.

Moreover, important insights on the convergence of the proposed constrained channel decomposition

have been derived and confirmed through numerical examples.

Finally, in Chapter 4, a joint phase-shifting-network-based hybrid precoder and combiner design

for frequency selective mmWave massive MIMO wireless communication systems is proposed. To

address the frequency-selectivity, multi-carrier OFDM is considered. Similar to Chapter 3, the pro-

posed design also splits the analog and digital beamforming designs into two stages. In the first

stage, the analog precoder and combiners are designed using the proposed constrained Tucker2 ten-

sor decomposition approach by leveraging the OFDM channel’s multidimensional structure. The

proposed tensor decomposition allows the analog beamforming to harvest the array gain and to sup-

press intra-user and inter-user interference simultaneously in every subcarrier. The digital precoder

and combiner are obtained on a per-subcarrier basis, considering the optimal SVD-based solution

for single-user systems and the regularized channel diagonalization approach for multi-user systems.

Simulation results have shown that the proposed design outperforms other existing methods in nearly

all scenarios, thus confirming its effectiveness. The results also demonstrated the proposed design’s

ability to perform well under practical phase-shifter quantization constraints. Additional simula-

tion results have provided insights into the convergence of proposed constrained Tucker2 tensor

decomposition, the effect of the power method approximation (adopted to avoid the computational

complexity of eigenproblem’s solutions), and the differences between the designs in this chapter and

that in Chapter 3.
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5.2 Future Work

The adaptive joint antenna selection and beamforming algorithms in Chapter 2 have filled a gap in

the literature by presenting algorithms that consider the limited number of RF chains throughout

the entire adaptive process. To further improve the performance of the proposed algorithms and to

broaden their practical applicability, the following extensions are suggested:

� Include spatial multiplexing capabilities to accommodate multiple users sharing the same chan-

nel and/or RF hardware resources.

� Develop robust adaptive joint antenna selection and beamforming. Adaptive beamforming

algorithms, in particular MVDR-based ones, are very sensitive to mismatches in the direction-

of-arrival estimation and the array element positions. To avoid performance degradation, the

optimization problems used to derive the proposed algorithms should be modified to incorpo-

rate constraints that provide robustness against these mismatches.

� Develop stochastic models for the MMSE-AJASB and the MVDR-AJASB algorithms. Such

models can be used to derive expressions for evaluating the convergence rate, the steady-state

SINR, and for establishing ranges of step-size that ensure proper operation of these algorithms.

The hybrid beamforming design methods proposed in Chapter 3 and 4 have attained promising

results. The constrained matrix and tensor decompositions proposed in each of these chapters are

derived from very general formulations that can be extended to more practical systems. Therefore,

the following extensions are suggested:

� Include more practical hybrid beamforming architectures, such as partially connected analog

beamforming architectures. Such architectures are known for their reduced power consumption

compared with the architecture discussed in this thesis and would allow more energy-efficient

designs.

� Develop robust approaches that can lower the reliance on perfect channel state information.

The designs in these chapters have considered the availability of perfect channel estimates,

which is often impractical despite being a common assumption in the hybrid beamforming

literature. Therefore, incorporating the channel uncertainties into the design formulations

would broaden their practical applicability.
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Appendix A

Obtaining (3.13) from (3.12)

Given the original problem in (3.12), one can obtain the optimal solution w.r.t. Σ for a given FRF

and WRF by solving

min
Σ

∥∥H−WRFΣFH
RF

∥∥2

F

s.t. WH
RFWRF = IKNs

FH
RFFRF = IKNs

WRF = blkdiag{WRF,1, · · · ,WRF,K}

WRF,k ∈ WRF

FRF ∈ FRF.

(A.1)

The cost function in (A.1) can be rewritten as

∥∥H−WRFΣFH
RF

∥∥2

F
= Tr

{
(H−WRFΣFH

RF)H(H−WRFΣFH
RF)
}

= Tr
{
HHH−HHWRFΣFH

RF − FRFΣHWH
RFH + FRFΣHWH

RFWRFΣFH
RF

}
= Tr

{
HHH

}
− Tr

{
FH

RFHHWRFΣ
}
− Tr

{
WH

RFHFRFΣH
}

+ Tr
{
ΣHWH

RFWRFΣFH
RFFRF

}
.

(A.2)

Assuming that the constraints in (A.1) are satisfied, the cost function in (A.2) reduces to

∥∥H−WRFΣFH
RF

∥∥2

F
= Tr

{
HHH

}
− Tr

{
FH

RFHHWRFΣ
}
− Tr

{
WH

RFHFRFΣH
}

+ Tr
{
ΣHΣ

}
.

(A.3)
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Therefore, the optimal Σ is obtained by setting the derivative of (A.3) w.r.t. Σ∗ to zero, i.e.,

∂

∂Σ∗

(∥∥H−WRFΣFH
RF

∥∥2

F

)
= −WH

RFHFRF + Σ = 0 (A.4)

which yields

Σopt = WH
RFHFRF. (A.5)

Next, by taking Σopt back into (A.3), one obtains

∥∥H−WRFΣoptF
H
RF

∥∥2

F
= Tr

{
HHH

}
− Tr

{
FH

RFHHWRFWH
RFHFRF

}
− Tr

{
WH

RFHFRFFH
RFHHWRF

}
+ Tr

{
FH

RFHHWRFWH
RFHFRF

}
= ‖H‖2F −

∥∥WH
RFHFRF

∥∥2

F
−
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RFHFRF

∥∥2

F
+
∥∥WH

RFHFRF

∥∥2

F

= ‖H‖2F −
∥∥WH

RFHFRF

∥∥2

F
.

(A.6)

Finally, since ‖H‖2F does not depend on the optimization variables of the original problem (3.12),

replacing (A.6) into (3.12) leads to problem (3.13).
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Appendix B

Proof of the optimality of (3.20)

By adopting a different formulation to problem (3.15) and using the first and second order optimality

conditions, it can be demonstrated that the projected block coordinate solutions in (3.20) are, in fact,

local optimal solutions to the non-convex block coordinate problems of (3.15). This result enables

the derivation of important insights on the proposed algorithm’s convergence. For conciseness, the

indices in the vectors and matrices are omitted and only the solution to the block coordinate problem

associated with the analog combiner vector is presented. Such a problem is obtained from (3.15) as

max
w

Re
(
wHHresf

)
s.t. ‖w‖ = 1

|[w]n| = 1/
√
Nr, ∀n ∈ {1, · · · , Nr}

(B.1)

Note that: i) the second constraint in (B.1) guarantees that the first constraint be attained; and

ii) from the second constraint, the analog precoder vector can be expressed as

w =
1√
Nr

[ejθ1 , ejθ2 , · · · , ejθNr ]T =
1√
Nr

ejθ,

with θ = [θ1, θ2, · · · , θNr ]
T. Thus, by defining h = [h1, h2, · · · , hNr ]

T = Hresf , with hi = |hi|ejφi ,
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the cost function in (B.1) can be reformulated as

J = Re{wHHf} =
1

2

(
wHHf + fHHHw

)
=

1

2
√
Nr

(
Nr∑
i=1

e−jθihi +

N∑
i=1

ejθih∗i

)

=
1

2
√
Nr

Nr∑
i=1

|hi|
(
e−j(θi−φi) + ej(θi−φi)

)
=

1√
Nr

Nr∑
i=1

|hi|Re{e−j(θi−φi)}

(B.2)

Therefore, the optimization problem in (B.1) is equivalent to the following unconstrained opti-

mization problem

arg max
θ∈RNr

Nr∑
i=1

|hi|Re{e−j(θi−φi)}. (B.3)

The solution to problem (B.3) is obtained using the first- and second-order optimality condi-

tions [138], i.e.,

∇θJ =
1√
Nr



|h1|Re{e−j(θ1−φ1+π/2)}

|h2|Re{e−j(θ2−φ2+π/2)}
...

|hNr |Re{e−j(θNr−φNr+π/2)}


= 0 (B.4)

and

∇2
θJ =

1√
Nr

diag





|h1|Re{e−j(θ1−φ1+π)}

|h2|Re{e−j(θ2−φ2+π)}
...

|hNr |Re{e−j(θNr−φNr+π)}




≺ 0 (B.5)

where diag(v) is a diagonal matrix with diagonal entries given by v and A ≺ 0 when A is negative-

definite. Together, these conditions yield multiple local optimal solutions, given as

θi = φi ± 2πk, for k = 0, 1, 2, · · · (B.6)

Thus, by choosing the trivial solution (k = 0), one obtains θi = φi, so that an optimal solution to

problem (B.3) is given by

θ = φ = ∠{Hf} (B.7)
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or equivalently, an optimal solution to problem (B.1) is given by

w =
1√
Nr

ejφ =
1√
Nr

ej∠Hresf . (B.8)
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Appendix C

Tensors Preliminaries

This appendix reviews the tensor notations and main operations adopted in this thesis and a brief

description of the Tucker decomposition. For complete thorough overview of the tensor notation,

operation, and other decompositions, readers are referred to [135].

C.1 Tensor Notations and Operations

Tensors are multidimensional arrays and an N -order tensor is formally described as the tensor

product of N vector spaces, each having its own coordinate system [135]. Tensors can be thought

of as a generalization of matrices: a vector is a first-order tensor; a matrix is a second-order tensor;

and tensor of order three or higher are called higher-order tensors. Without loss of generality, this

section focuses on the third-order tensors, since this is the case in the problems that this thesis aims

to solve.

Thus, in the remaining of this section, consider a third-order tensor X , for which the (i1, i2, i3)

element is denoted as xi1i2i3 , with i1 = 1, · · · , I1; i2 = 1, · · · , I2; and i3 = 1, · · · , I3. The following

subsections describe the fibers and slices, which are sub-arrays obtained from tensors; the tensor

norm, matricization, and multiplication operations; and some other useful operations.

C.1.1 Fibers

Fibers are defined by fixing all index of a tensor but one. They are the analogous to rows and

columns in a matrix. The fibers of a third-order tensor are named column, row, and tube, and are

defined by x:i2i3 , xi1:i3 , and xi1i2:, respectively, as shown in Fig. C.1.
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(a) Mode-1 fiber (column): x:i2i3 (b) Mode-2 fiber (row): xi1:i3 (c) Mode-3 fiber (tube): xi1i2:

Figure C.1: Fibers of a 3rd-order tensor [135]. Reproduced with permission from SIAM (Society for
Industrial and Applied Mathematics).

(a) Horizontal slices: Xi1:: (b) Lateral slices: X:i2: (c) Frontal slices: X::i3

Figure C.2: Slices of a 3rd-order tensor [135]. Reproduced with permission from SIAM.

C.1.2 Slices

Slices are defined by fixing all index of a tensor but two. In a third-order tensors there can be

horizontal, lateral, and frontal slices, as shown in Fig C.2. The horizontal, lateral, and frontal slices

are, respectively, defined as by Xi1::, X:i2:, and X::i3 . For a more compact notation, the k-th frontal

slice X::k can be denoted as Xk.

C.1.3 Inner Product and Norm

The inner product of two tensors X ∈ CI1×I2×I3 and Y ∈ CI1×I2×I3 is the sum of the products of

their entries, defined as

〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

xi1i2i3y
∗
i1i2i3 .
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The norm of a third-order tensor X ∈ CI1×I2×I3 is the square root of the sum of the squared

magnitude of all its elements, i.e.,

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

|xi1i2i3 |2.

C.1.4 Matricization

Matricization is the process of rearranging the elements of a tensor into a matrix. This process is also

known as unfolding or flattening. The mode-n matricization of a third-order tensor X ∈ CI1×I2×I3

is denoted by X(n) and arranges the mode-n fibers as the columns of the resulting matrix.

The following example illustrate the matricization process. Consider a tensor X ∈ C4×3×2 with

frontal slices

X1 =


1 2 3

4 5 6

7 8 9

10 11 12

 and X2 =


13 14 15

16 17 18

19 20 21

22 23 24

 .

The mode-1, mode-2, and mode-3 matrices are, respectively

X(1) =


1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

 ,

X(2) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 ,

X(3) =

 1 4 7 10 2 5 8 11 3 6 9 12

13 16 19 22 14 17 20 23 15 18 21 24

 .
Note that different column orderings can be adopted. In general, these orderings are not impor-

tant, as long as it is consistent across all calculations [135].
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C.1.5 Tensor Multiplication

Here, only the n-mode product is considered, although different tensor products have been defined

in the literature; see [135] and references therein.

The n-mode product refers to the product between a tensor and a matrix (or a vector) in mode n.

Let a tensor X ∈ CI1×I2×···×IN and a matrix A ∈ CJ×In . The n-mode product, denoted by X ×nA,

has entry-wise elements

[X ×n A]i1···in−1 j in+1···iN =

In∑
in=1

xi1i2···iNajin

and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . The n-mode product can also be denoted in

terms of metricized tensors as

Y = X ×n A⇔ Y(n) = AX(n).

C.1.6 Other Useful Operations

Other operations are also useful when operating with tensor. These operations are defined bellow.

Outer Product

The outer product of two vectors b ∈ CI and b ∈ CJ , denoted by a ◦ b, is defined as

a ◦ b =



a1b1 a1b2 · · · a1bJ

a2b1 a2b2 · · · a2bJ
...

...
. . .

...

aIb1 aIb2 · · · aIbJ


where a ◦ b is an I × J matrix. The outer product can be extended (or concatenated) such that

a ◦ b ◦ c, assuming c ∈ CK , will result in a third-order tensor X = a ◦ b ◦ c ∈ CI×J×K .
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Kronecker Product

The Kronecker product of matrices A ∈ CI×J and B ∈ CK×L, denoted by A⊗B, is defined as

A⊗B =



a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


where A⊗B is an (IK)× (JL) matrix.

A few important properties of the Kronecker product are also useful when operating with tensors:

� (A⊗B)(C⊗D) = AC⊗BD;

� (A⊗B)T = AT ⊗BT;

� (A⊗B)H = AH ⊗BH;

� Let X ∈ RI1×I2×···×IN and A(n) ∈ RJn×In for all n ∈ 1, · · · , N . Then, for any n ∈ 1, · · · , N ,

the following holds [139]:

Y = X ×1 A(1) ×2 A(2) · · · ×N A(N) ⇔

Y(n) = A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T

.

C.2 The Tucker Decomposition

The Tucker decomposition1 decomposes a tensor as a product of a core tensor and a factor matrices

along each mode. The Tucker decomposition of a N -order tensor X ∈ CI1×I2×···×IN is defined

as [135]

X = G ×1 A(1) ×2 A(2) · · · ×N A(N) =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1r2···rNa(1)
r1 ◦ a(2)

r2 ◦ · · · ◦ a(N)
rN (C.1)

where A(n) ∈ CIn×Rn for n ∈ 1, · · · , N are the factor matrices (which are usually orthogonal) and

G ∈ CR1×R2×···RN is the core tensor. Such a decomposition can be also expressed in its matricized

version as

X(n) = A(n)G(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · ·A(1))T. (C.2)

1The Tucker decomposition is also known by other names, such as N -mode PCA, higher-order SVD (HOSVD), and
N -mode SVD; or the three mode factor analysis and three mode PCA, which are specific to third-order tensors [135].

141



Figure C.3: Tucker decomposition of a 3rd-order tensor [135]. Reproduced with permission from SIAM.

For a third-order tensor X ∈ CI×J×K , the Tucker decomposition is depicted in Fig. C.3. In this

case, the 3-way Tucker decomposition is mathematically expressed as

X = G ×1 A×2 B×3 C =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr (C.3)

where G ∈ CP×Q×R and A ∈ CI×P , B ∈ CJ×Q, and C ∈ CK×R.

An important variation of the Tucker decomposition is the Tucker2 decomposition of a third-

order tensor, obtained by setting one of the factor matrix (e.g. C) to identity matrix. Thus, the

Tucker2 decomposition can be expressed as

X = G ×1 A×2 B×3 IK (C.4)

such that G ∈ CP×Q×R with R = K and IK is a K ×K identity matrix.

C.2.1 The n-Rank and the Truncated Tucker Decomposition

Given a N -order tensor X ∈ CI1×I2×···×IN , the n-rank of X , denoted as rankn(X ), is defined as the

column rank of the mode-n matricization X(n). Thus, a tensor X is said a rank-(R1, R2, · · · , RN )

tensor if Rn = rankn(X ) for all n = 1, 2, · · · , N . It easily follows that Rn ≤ In for all n = 1, 2, · · · , N .

For a given tensor X , one can find an exact rank-(R1, R2, · · · , RN ) Tucker decomposition,

where Rn = rankn(X ). On the other hand, if a rank-(R1, R2, · · · , RN ) Tucker decomposition has

Rn < rankn(X ) for one or more n, the Tucker decomposition will necessarily be inexact and, its

computation, more cumbersome [135]. In such cases, the decomposition can be referred to as the
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Figure C.4: Truncated Tucker decomposition of a 3rd-order tensor [135]. Reproduced with permission
from SIAM.

truncated Tucker decomposition. The truncated Tucker decomposition of a third-order tensor is

illustrated in Fig. C.4.

C.2.2 Tucker Decomposition Computation

The rank-(R1, R2, · · · , RN ) Tucker decomposition of a N -order tensor X ∈ CI1×I2×···×IN is defined

as [135]

X ≈ G ×1 A(1) ×2 A(2) · · · ×N A(N) (C.5)

where A(n) ∈ CIn×Rn and Rn < rankn(X ) for all n = 1, 2, · · · , N , and G ∈ CR1×R2×···×RN . For

the sake of tractability, most methods aim to find factor matrices that are orthonormal, i.e., A(n)

such that A(n)H
A(n) = IRn for all n = 1, 2, · · · , N . Thus, the decomposition in (C.5) is obtained

by solving the following problem:

min
G,A(1),··· ,A(N)

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

s.t. G ∈ CR1×R2×···×RN

A(n)H
A(n) = IRn , ∀n ∈ 1, 2, · · · , N.

(C.6)

By extending the results in Appendix A to tensors, one can show that the solution to problem (C.6)

can be equivalently obtained by solving

max
A(1),··· ,A(N)

∥∥∥X ×1 A(1)H
×2 A(2)H

· · · ×N A(N)H
∥∥∥2

s.t. A(n)H
A(n) = IRn , ∀n ∈ 1, 2, · · · , N.

(C.7)
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Proof can be found in [135], [140], [141].

The solution of (C.7) can then be obtained by the alternating least squares (ALS) method, in

which the problem is alternately solved for one factor matrix at a time, while fixing the others.

Thereby, the solution for the factor matrix A(n) is obtained by solving [135], [140], [141]

max
A(n)

∥∥∥X ×1 A(1)H
×2 A(2)H

· · · ×N A(N)H
∥∥∥2

s.t. A(n)H
A(n) = IRn .

(C.8)

Finally, by using the identity

∥∥∥X ×1A(1)H
×2A(2)H

· · ·×NA(N)H
∥∥∥2

=
∥∥∥A(n)H

X(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · ·A(1))∗

∥∥∥2

F

problem (C.8) can be rewritten as

max
A(n)

∥∥∥A(n)H
X(n)(A

(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · ·A(1))∗
∥∥∥2

F

s.t. A(n)H
A(n) = IRn .

(C.9)

It is worth noticing that Tucker decompositions are not unique and that the ALS solution is not

guaranteed to converge to the global optimum of (C.6), but only to points where the objective func-

tion cease to decrease [135]. Moreover, different algorithmic solutions to(C.6) have been proposed.

The most well known are, perhaps, the higher-order SVD (HOSVD) [140] and the higher-order

orthogonal iteration (HOOI) [141].
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