
Robust State-Based Supervisory Control of Hierarchical Discrete-Event
Systems

Nazanin Hashemi Attar

A Thesis
In the Department

of
Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at
Concordia University

Montréal, Québec, Canada

April 2021

© Nazanin Hashemi Attar, 2021

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Nazanin Hashemi Attar

 Entitled: Robust State-based Supervisory Control of Hierarchical Discrete-
Event Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

 Chair
 Dr. Liangzhu Wang

 External Examiner
 Dr. Feng Lin

 External to Program
 Dr. Wen-Fang Xie

 Examiner
 Dr. Kash Khorasani

 Examiner
 Dr. Mustafa Mehmet Ali

 Thesis Supervisor
 Dr. Shahin Hashtrudi Zad

Approved by

 Dr. Wei-Ping Zhu, Graduate Program Director

April 8, 2021
 Dr. Mourad Debbabi, Dean
 Gina Cody School of Engineering and Computer Science

Abstract

Robust State-Based Supervisory Control of Hierarchical Discrete-Event Systems

Nazanin Hashemi Attar, Ph.D.

Concordia University, 2021

Model uncertainty due to unknown dynamics or changes (such as faults) must be addressed in supervisory

control design. Robust supervisory control, one of the approaches to handle model uncertainty, provides

a solution (i.e., supervisor) that simultaneously satisfies the design objectives of all possible known plant

models. Complexity has always been a challenging issue in the supervisory control of discrete-event sys-

tems, and different methods have been proposed to mitigate it. The proposed methods aim to handle

complexity either through a structured solution (e.g. decentralized supervision) or by taking advantage

of computationally efficient structured models for plants (e.g., hierarchical models). One of the proposed

hierarchical plant model formalisms is State-Tree-Structure (STS), which has been successfully used in su-

pervisor design for systems containing up to 1020 states.

In this thesis, a robust supervisory control framework is developed for systems modeled by STS. First,

a robust nonblocking supervisory control problem is formulated in which the plant model belongs to a

finite set of automata models and design specifications are expressed in terms of state sets. A state-based

approach to supervisor design is more convenient for implementation using symbolic calculation tools such

as Binary Decision Diagrams (BDDs). In order to ensure that the set of solutions for robust control problem

can be obtained from State Feedback Control (SFBC) laws and hence suitable for symbolic calculations, it

is assumed, without loss of generality, that the plant models satisfy a mutual refinement assumption. In

this thesis, a set of necessary and sufficient conditions is derived for the solvability of the robust control

problem, and a procedure for finding the maximally permissive solution is obtained.

Next, the robust state-based supervisory framework is extended to systems modeled by STS. A sufficient

condition is provided under which the mutual refinement property can be verified without converting the

hierarchical model of STS to a flat automaton model. As an illustrative example, the developed approach

was successfully used to design a robust supervisor for a Flexible Manufacturing System (FMS) with a state

set of order 108.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my research supervisor Dr. Shahin Hashtrudi-

Zad for giving me the opportunity to learn and providing me with invaluable guidance throughout this

research. Without his priceless advice and constant support, this dissertation would not have been possible.

I would like to thank my thesis committee members Dr. Feng Lin, Dr. Wen-Fang Xie, Dr. Khashayar

Khorasani, and Dr. Mustafa K. Mehmet Ali. I appreciate their time and their valuable comments.

I am very thankful to my friends for their support and friendship. In particular, Amir, Irina, Bahareh,

Navid, Mahsa, Hossein, Golsa, Mahmoud, Adriana, Mitra, and Fahimeh for their continuous love and

support.

I would like to express my eternal appreciation and love to my siblings Alireza, Amirhossein and Asana. I

profoundly thank my parents for their love and support.

iv

Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

1.1 Supervisory Control Using Discrete-Event Models . 2

1.2 Literature Review . 3

1.2.1 Supervisory Control . 3

1.2.1.1 State-Based Supervisory Control . 3

1.2.1.2 Robust Supervisory Control . 4

1.2.1.3 Hierarchical Discrete Event Systems . 5

1.2.1.4 Symbolic Supervisory Control . 6

1.3 Research Objectives and Methodology . 7

1.3.1 Objectives . 7

1.3.2 Methodology . 8

1.4 Contributions . 9

1.5 Organization . 9

v

2 Background 10

2.1 Automata, Languages, and Predicates . 10

2.2 Robust Supervisory Control . 13

2.3 State-Based Supervisory Control . 15

2.4 State-Tree-Structure . 17

2.5 Nonblocking Supervisory Control of State-Tree-Structure . 25

2.6 Binary Decision Diagram . 26

2.7 Summary . 27

3 Robust Nonblocking State-based Supervisory Control 28

3.1 Problem Formulation . 28

3.2 Implications of Mutually Refinement Property . 31

3.3 Solution: Necessary and Sufficient Conditions . 36

3.4 Solution: Computational Procedure . 43

3.5 Example . 44

3.6 Summary . 49

Appendix 3.A Procedure to Obtain Mutually Refined Automata 50

4 Robust Supervisory Control of Systems with State-Tree-Structure Model 51

4.1 Problem Formulation . 52

4.2 Implications of Mutually Refinement Property in State-Tree-Structure 59

4.3 Solution: Necessary and Sufficient Conditions . 66

4.4 Solution: Computational Procedure . 73

4.5 Example . 75

4.6 Summary . 84

vi

5 Conclusion 87

5.1 Summary . 87

5.2 Future Work . 88

References 88

vii

List of Tables

3.1 All the events in Figure 3.6 and their controllability status. 45

4.1 The list of events of Figure 4.7 and 4.8. 78

4.2 The list of events that should be disabled at some states of FMS1 (Figure 4.11) to satisfy SP.2. 82

4.3 The list of events that should be disabled at some states of FMS2 (Figure 4.12) to satisfy SP.2. 82

4.4 The list of events that should be disabled at some states in FMS1 to satisfy SP.3. 83

4.5 The list of events that should be disabled at some states in FMS2 to satisfy SP.3. 83

4.6 The Binary Decision Diagram (BDD) size of all control functions in FMS. 84

viii

List of Figures

1.1 The block diagram of a supervisory control system. 3

2.1 An Example of State-Tree (ST) of a plant called G. 18

2.2 The State-Tree-Structure (STS) model of Figure 2.1. 23

2.3 The BDD graph of f = (x1 ∨ x2). 27

3.1 Example 3.1: The automata G1 and G2. 31

3.2 The result of applying Procedure 3.1 to automata G1 and G2 in Example 3.1. 31

3.3 Example 3.2: The two possible models of a plant and the union model G. 32

3.4 The automata models in Figure 3.3 under the supervision of a State Feedback Control (SFBC)

f : Q→ Γ. 35

3.5 A propulsion system of a monopropellant rocket. 45

3.6 The model of system’s components. 46

3.7 The automaton V ′ . 47

3.8 The normal model of system (G1). 48

3.9 The normal+faulty model of system (G2). 49

4.1 Example 4.1: the two STS models of a manufacturing plant. 53

4.2 Example 4.2: the two STS models of a plant. 56

4.3 Example 4.2: the corresponding flat automata of Figure 4.2. 57

ix

4.4 Example 4.3: two STS models and their equivalent flat models. 58

4.5 Example 4.2: G, the union STS model, the ST, and the equivalent flat model. 61

4.6 The layout of Flexible Manufacturing System (FMS) components. 76

4.7 The STS model of FMS1. 76

4.8 The STS model of FMS2. 77

4.9 The production processes of FMS1. 77

4.10 The production processes of FMS2. 77

4.11 The STS model of FMS1 with buffers. 79

4.12 The STS model of FMS2 with buffers. 80

4.13 The STS model of FMS with buffers. 81

4.14 The control function of controllable events (a) R2 U O1 and (b) R2 U M2 P 1. 85

4.15 The control function of controllable event R2 D M3. 86

x

Acronyms

AI Artificial Intelligence

AIP Atelier Interetablissement de Productique

BDD Binary Decision Diagram

DES Discrete-Event Systems

FMS Flexible Manufacturing System

HFSM Hierarchical Finite-State Machine

HISC Hierarchical Interface-Based Supervisory Control

MR Mutually Refined

MRI Magnetic Resonance Imaging

NCA Nearest Common Ancestor

OBDD Ordered Binary Decision Diagrams

PID Proportional–Integral–Derivative

RNSCP-STS Robust Nonblocking Supervisory Control Problem for State-Tree-Structure

RNSSCP Robust Nonblocking State-based Supervisory Control Problem

SCT Supervisory Control Theory

SFBC State Feedback Control

xi

ST State-Tree

STS State-Tree-Structure

STSM State-Tree-Structure with conditional-preemption matrices

xii

Chapter 1

Introduction

Control systems are typically hierarchical. At the lowest level, control loops are designed based on the

continuous-variable models of the plant (such as differential equations). Examples of these controllers

include Proportional–Integral–Derivative (PID) and lead/lag controllers. At the middle layer, supervisory

control monitors the plant and issues sequencing commands. For example, it enables or disables lower-

level control loops and controls the system’s startup and shutdown sequences. These control sequences

can be analyzed and designed using Discrete-Event Systems (DES) models. Finally, at the highest level,

scheduling and planning are done for the system over longer time horizons.

In this thesis, our focus is on the supervisory control of DES (from now on for brevity, supervisory control).

Given a DES plant with a set of design specifications, the supervisory control problem is to design a control

law to alter the plant’s behavior such that the plant under supervision meets the given specifications. These

specifications usually address safety properties and the generation of desirable sequences. Furthermore, in

most cases, meeting the aforementioned specifications is not enough, and the system under supervision is

expected to be nonblocking (i.e. be free of deadlocks and livelocks).

Faults are inevitable during the operation of a system. One approach to handle faults is to use robust

supervisory control methods and design the system to be fault-tolerant.

One of the biggest problems in supervisory control of real-world complex systems is the so-called state

explosion. Different methods have been proposed to tackle this problem, and we will review some of them

later in this chapter. Besides state explosion, other challenges in designing supervisory control include

measurement uncertainty (i.e. uncertainty in determining the moment an event in a plant occurs) and

model uncertainty (either due to limitations in the designer’s knowledge of plant’s behavior or unexpected

1

changes due to, say, faults). In this thesis, we will specifically focus on model uncertainty. Researchers have

extensively studied robust supervisory control for handling this type of uncertainty. A robust supervisory

control method that can handle both model uncertainty and the complexity of real-world systems would

be advantageous.

In this chapter, first, we briefly review supervisory control using DES models. Then, we discuss some of

the related works in robust and state-based supervisory control, followed by hierarchical discrete-event

systems and symbolic supervisory control. Finally, we provide an overview of the research contributions

discussed in this thesis.

1.1 Supervisory Control Using Discrete-Event Models

Different methods are used to model, analyze and control systems. Depending on the information needed

to achieve the control objectives, one can choose to model a plant as a continuous-time, discrete-time or

discrete-event system. A detailed model is not necessary to design supervisory control sequences, and DES

models usually suffice. Ramadge and Wonham first introduced a formal systematic approach to supervi-

sory control using DES models in [53]. In the so-called RW supervisory control theory, it is assumed that

design safety requirements are specified as a set of safe event sequences and that the supervisor can dis-

able and prevent the occurrence of a subset of plant events called the controllable events. The role of the

supervisor (Figure 1.1) is to monitor the events generated in the plant and, based on the given require-

ments, disable some of the controllable events [74]. The supervisor should also ensure that the system

under supervision is nonblocking (i.e., it is free of deadlocks and livelocks) [74]. In Figure 1.1, the system

information that the supervisor receives is the sequence of events that the plant generates.

The original formulation of supervisory control problem in [53] and [72] was language-based in the sense

that the safety requirements were expressed as a design specification language, i.e., a set of event sequences.

An alternative way is to express the safety requirements in terms of subsets of safe states (rather than lan-

guages). This led to a state-based framework for supervisory control developed in [73], [2], [24] and [35]

using predicate calculus. Extensions of state-based approach include State-Tree-Structure STS [68] and

Hierarchical Finite-State Machine (HFSM) [5]. The linguistic and state-based approaches are equivalent:

every problem in one setup can be transformed and solved using the other approach. The choice of ap-

proach is a matter of convenience. For symbolic calculations, a state-based approach is more convenient.

2

Figure 1.1: The block diagram of a supervisory control system.

1.2 Literature Review

The focus of this thesis will be robust supervisory control, especially in plants modeled by hierarchical

STS models. This section will review some papers on the topics of robust supervisory control, state-based

supervisory control, supervisory control of hierarchical discrete-event systems, and symbolic supervisory

control.

1.2.1 Supervisory Control

Supervisory control for DES systems was first proposed in [53]. A supervisor’s goal is to make sure that the

plant achieves its desired behavior and does not get blocked. However, the supervisor can only prevent the

controllable events from happening, and it does not have any control over the uncontrollable ones. The ap-

plication of Supervisory Control Theory (SCT) to real-world complex DES plants poses serious challenges.

As a result, different supervisory control methods have been proposed to deal with different situations. In

this section, we briefly review the related works that have been done in the following areas: state-based

supervisory control, hierarchical discrete-event systems and symbolic supervisory control.

1.2.1.1 State-Based Supervisory Control

State-based formulation of the supervisory control problem was introduced in [52] for automaton plants

and further developed in [35]. Other state-based approaches based on Petri Nets and Vector DES have been

proposed (See, e.g, [27] and [36]). The introduction of hierarchical structures in supervisory control [5],

[68] has led to more recent research activities in state-based supervisory control. In Section 1.2.1.3, we

will review the use of hierarchical structures in DES control. [51] has introduced a state-based supervisory

control for timed DES. Meanwhile, [69] examined the state-based control of DES under partial observation.

3

Recently, [17] solved the state-based supervisory control for systems that have restrictions on the controller

implementation.

1.2.1.2 Robust Supervisory Control

Similar to continuous-time systems, modeling uncertainties also exist in DES models and the related su-

pervisory control problems. The prominent cases of uncertainty considered in this research are those in

which the plant dynamics are known (at the design stage) to belong to a finite set of models. This set of

uncertainty cases is encountered, for example, in fault accommodation and recovery problems. There are

two main approaches to tackle this type of problem: 1. adaptive supervisory control; 2. robust supervisory

control. In adaptive supervisory control (see, e.g., [37]), the supervisor tries to overcome the effects of plant

model uncertainties by updating itself accordingly. In robust supervisory control, however, the supervisor

is synthesized only once at the beginning in such a way that it meets the design specifications for each of

the possible finite set of models (i.e. a standard solution for multiple supervisory control problems). Dif-

ferent methods have been proposed to solve various robust supervisory control problems. The majority of

them have adopted the linguistics approach based on the closed/marked specification languages. In the

following, we will briefly review some of the highlighted works in the robust supervisory control.

In [37], it is assumed that the DES model of the plant is not unique and belongs to a finite set of models.

Moreover, the union and the intersection of marked (resp. closed) languages of all the possible models

form an upper and a lower bound for the plant’s marked (resp. closed) behavior and the common desired

behavior (design specification) is a subset of the lower bound of marked behavior. A solution for the ro-

bust supervisory control problem that marks the desired behavior exists if and only if the given desired

behavior is controllable and observable with respect to the upper bound of the closed behavior. The results

of [37] are extended in [4] where it is assumed that each possible model in the finite set of models has

its own specification. Full event observation is, however, assumed in [4]. Nonconflicting property of the

marked behaviors of plant models is presented [4] which as shown in [57] serves as a necessary condition

for the solution. Meanwhile, [57] continues the direction of [4] and extends its results for systems with

partial observable events. Furthermore, it replaces the nonconflicting condition with a stronger condition

called Gi-nonblocking to obtain a set of necessary and sufficient conditions for robust control under partial

observation. In recent years, studies of robust control applications have been undertaken. For example,

[76] uses the results of [4] and [57] to synthesize a robust supervisor for the fault recovery of a spacecraft

propulsion system.

The results of [37], [4], [57] and [76] fall into the category of indirect approaches to robust supervisory

control problem. In the indirect approach, the solution is characterized by a sub-language of the union of

4

all marked behaviors (from which each plant model’s behaviour under supervision can be derived). On

the other hand, in the direct approach proposed by [12], the controlled behavior of each plant model is

considered individually. Along the same line, [60] considers partially observed timed-DESs and designs

a supervisor such that all the possible models have legal behavior under its supervision. Meanwhile, [49]

solved the robust nonblocking supervisory control problem for nondeterministic DESs. This work was ex-

tended to decentralized supervisory control problem in [50]. All the robust supervisory control approaches

that we have discussed until now are computed off-line; however, there are some approaches such as [3]

and [11] that have proposed algorithms to compute the supervisor on-line (by extending the lookahead

policy results of [13] and [25].

Another approach to robust control is proposed in [14] in which a robust nonblocking supervisor for plant

models describing infinite behavior is studied. Here, instead of using a finite set of models, [14] uses a

nominal plant model and assumes that the desired specification has a lower and an upper bound. Then

a supervisor for the nominal plant is found that maximizes the set of closed-loop models that satisfy the

lower and the upper bound specifications. This work on maximally permissive supervisors was extended

by [61] by removing the restrictions on upper bound specifications in the case of closed languages, and

later in [62] to systems with partially observed events.

Besides the problems that concern model uncertainty, some other problems can also be solved as robust

supervisory control problems. For example, the supervisory control problem with multiple tasks (multiple

sets of marked states) introduced by [15] was solved as a robust supervisory control problem by [12]. [76]

also used robust supervisory control to solve a fault recovery problem. The robustness issue has also been

studied in the fault diagnosis [63][7][65][77] and fault prognosis [64][75] problems. For example, [64]

assumes that the current automaton model of the system belongs to a set of possible automaton models

and designs a robust prognosis scheme for such system.

1.2.1.3 Hierarchical Discrete Event Systems

For a system with structure, a structured model is more understandable than a flat (unstructured) model

with individual states connected through events. Moreover, the structure in a model may be used to re-

duce the computational complexity associated with control and observation problems. For these reasons,

Statecharts are proposed in [26] as a modeling formalism for systems with a hierarchical structure. How-

ever, [26] mainly focuses on the system’s visual representation and fails to give a mathematical definition.

Based on the definition given in [26], [68] develops a modeling structure named State-Tree-Structure (STS)

to model the state space and dynamics of systems. STS have vertical and horizontal modularity; vertical

modularity comes from placing states of the system in ordered layers, and horizontal modularity is the ef-

5

fect of using modules called holons [68]. Another version of statechart is Hierarchical Finite-State Machine

(HFSM) used in [5]. In [5], shared events are not allowed among horizontal modules. To overcome this

problem, [40] introduced a new definition of STS that is discussed in details in Chapter 2. Hierarchical

Interface-Based Supervisory Control (HISC) is another hierarchical method that is proposed in [33] and

[38]; HISC is a language-based approach in which the system has only two levels of hierarchy and n ≥ 1

modules. Therefore, we can only expand the models in one direction rather than two. From this point of

view, HISC is similar to modular discrete-event systems [29].

Predicates can be used to represent states in both flat models and STS. However, predicates of a system

modeled with STS are noticeably simpler than those in the equivalent flat model. Therefore, synthesizing a

supervisory controller for STS requires less time and space. [40] and [39] propose an algorithm to synthe-

size the optimal (maximally permissive1) supervisory controller for systems modeled by STS. In addition

to benefiting from the advantages of a structured model of the plant, [40] and [39] use Binary Decision

Diagrams (BDDs) for the calculation of the supervisor. The proposed method is tested on two benchmark

problems, one with 108 and the other with 1024 states. For both systems, the supervisor was calculated

within a short period of time. Later, [9] expands the results of [39] to modular supervisory control. Re-

cently, [71] studied the problem of real-time scheduling for systems with STS models.

The problem of fault diagnosis has also been explored in hierarchical DES. [47] studies the diagnosis of

Hierarchical Finite-State Machine (HFSM) and proposes a semi-modular approach. There the concept of

holons from [68] is replaced with D-holons. D-holons’ definition is the same as holons except that their

boundary events should be observable. Later, [46] develops a recursive multi-level algorithm to design

a diagnosis system for hierarchical DES. [48] takes a different approach to diagnosis and introduces the

concept of L1-diagnosability. If a system is L1-diagnosable, then a fault event can be detected from the first

(top) level of the hierarchy. For those systems that are not L1-diagnosable, [48] develops an algorithm that

transfers the fault information from lower levels until a fault event can be detected with certainty. [55] uses

the results of [47] and expands it to STS; however, no diagnosability verification algorithm is considered.

1.2.1.4 Symbolic Supervisory Control

BDD was first introduced by [34] and [1] to symbolically represent boolean functions. Later, [6] expanded

their results to Ordered Binary Decision Diagrams (OBDD) and simplified the computational procedure

of BDD. In supervisory control problem, BDDs have been used to synthesize the supervisor symbolically

[2] and in most cases they are associated with hierarchical structures and state-based supervisory control

1A maximally permissive supervisor keeps the set of disabled events minimal, resulting in the largest reachable state set for the
system under supervision.

6

[40][56][42][43][9][8][41][40][67]. As it has been previously mentioned in Section 1.2.1.1 and 1.2.1.3, pred-

icates have been used to represent state space of a system and BDDs are the best tools that can simplify

the calculations of predicates. Usually, the supervisory control problems that use BDDs in their synthesis

are called symbolic supervisory control. The computational complexity of symbolic supervisory control

is polynomial in the number of BDD nodes. In the worst case scenario, this computational complexity is

polynomial in the number of states (exponential in the number of components). The following paragraph

reviews some of the related works.

BDDs have been applied in the diagnosis of DES; [59] and [58] used BDDs to reduce the memory space

required for performing the computations and storing the diagnoser. BDDs have also been used in super-

visory control of extended finite automata [45][67][18][19] and timed extended finite automata[43]. [44]

used a simple Artificial Intelligence (AI) search method in the synthesize of a symbolic supervisory control

problem for deterministic finite automata. BDDs have also been used for some of the hierarchical struc-

tures that were mentioned in Section 1.2.1.3. For example, [32] proposed the symbolic version of HISC.

Moreover, symbolic computation of STS (Section 1.2.1.3) was proposed by [40][41][8][21][28][67]. [21] has

specifically synthesized a symbolic supervisor for a sub-system of a Magnetic Resonance Imaging (MRI)

scanner. [16] also synthesized a symbolic supervisor for an autonomous aerial refueling system modeled

by STS.

The synthesis of supervisory control for STS under partial observation is introduced in [23] and [22]. The

symbolic calculation of STS is used in [54] for synthesizing a fault-tolerant supervisory control. [30] has

specifically synthesized a supervisor for advanced driver assistance systems. Recently, [70] studied the

concept of priority (e.g., the priority of events occurrences) in systems with STS models. They developed

a new framework called State-Tree-Structure with conditional-preemption matrices (STSM), and utilized

BDD to synthesize a nonblocking supervisory control for STSM.

1.3 Research Objectives and Methodology

In this section, we explain our objectives and the methodologies that we have used to reach those objectives.

1.3.1 Objectives

State-explosion is one of the main barriers to using supervisory control theory for large-scale industrial

systems. As the size of state space grows, the computational complexity and the required memory to

perform supervisory control calculations also grow rapidly. In fact, the complexity is exponential in the

7

number of the system’s components. Over the years, different methods have been proposed to deal with

this issue. All the proposed methods fall into two major categories: 1. solutions in the form of structured

supervisor and 2. solutions based on a structured plant model.

Addressing model uncertainty and varying dynamics has also been an issue in supervisory control of DES.

This problem becomes even more challenging in complex industrial systems. To our knowledge, no robust

supervisory control method has been proposed to deal with model uncertainty in industrial-size examples

so far.

In this thesis, our objective is to develop a robust supervisory control method that can deal with large-scale

DES.

1.3.2 Methodology

We formulate a robust supervisory control method for plants modeled with STS to deal with model un-

certainty in large-scale industrial systems. In order to do so, first, we define a novel robust state-based

supervisory control for automata and then expand our method to STS. This method synthesizes the super-

visor offline and can use BDD to accelerate the calculations. Moreover, it makes sure that the systems under

supervision stay nonblocking.

Model uncertainty in DES can be dealt with by robust or adaptive supervisory control methods. Fuzzy DES

are also used to represent model uncertainty; however, the supervisory control of fuzzy DES does not rep-

resent any computational advantages over the existing robust or adaptive supervisory control approaches.

The stochastic approaches in DES used to deal with model uncertainty are beyond this thesis’s scope.

Using BDD in supervisory control calculations has shown promising results in combating the state-explosion

problem in DES. The method in [66] is shown to handle a transfer line model with up to 10210 states and

100 cells. [43] tested their method on some industrial benchmarks with up to 1017 states. [39] also simu-

lated a model of Atelier Interetablissement de Productique (AIP) that has 1024 states; the calculations took

less than 20 seconds for a personal computer with 1GHz Athlon CPU and 256-MB RAM.

For industrial systems, STS is a more suitable modeling formalism as adding or removing the components

can be quickly done by adding or removing new branches to the existing STS model. Moreover, the model

is more comprehensible to the users.

8

1.4 Contributions

The thesis formulates a novel robust state-based nonblocking supervisory control problem for DES mod-

eled by automata. To our knowledge, no robust state-based supervisory control method has been defined

previously. Next, the necessary and sufficient conditions are obtained for the existence of a solution for the

problem. An algorithm is also introduced to calculate the maximally permissive solution within a finite

number of iterations.

We extend the robust state-based supervisory control problem and examine the robust nonblocking super-

visory control problem for systems modeled by STS. A set of necessary and sufficient conditions for the

existence of solution are derived, and an algorithm is also explained that calculates the maximally permis-

sive solution within a finite number of iterations. This STS-based robust supervisory control method is

suitable for large scale and industrial-size systems.

The solutions of a conventional supervisory control problem2(in which the plant model is known) can

always be represented via SFBC. In the robust supervisory control problem, to make sure that we can

characterize the solutions via SFBC laws, we assume that the automata satisfy the Mutually Refined (MR)

condition. The MR property in automata does not impose any restrictions on the formulation of the robust

supervisory control problem. We derive conditions to verify the MR property in STS without building the

flat (unstructured) model.

To illustrate our results, we formulate the robust nonblocking supervisory control problem for a Flexible

Manufacturing System (FMS) with a state set of order 108. We synthesized the solution (supervisor) using

our algorithm and a BDD-based program. The solution was synthesized in less than 0.5 seconds on a

personal computer.

1.5 Organization

The rest of the thesis is organized as follows. In Chapter 2, we review some preliminaries. In Chapter 3, the

robust nonblocking state-based supervisory control method is formulated and solved. Chapter 4 extends

the results of Chapter 3 to robust supervisory control of systems with STS models. Chapter 5 summarizes

the thesis and discusses directions for future research.

2In this thesis, the original supervisory control problem introduced by [53], in which the exact plant model is known, is referred
to as the conventional supervisory control problem.

9

Chapter 2

Background

In this chapter, we briefly review some of the required preliminaries. First, in Section 2.1, automata, lan-

guages, and predicates are introduced. Then, in Section 2.2, the robust supervisory control problem, intro-

duced in [4] and [57], is discussed. In Section 2.3, state-based supervisory control is reviewed. In Sections

2.4 and 2.5, State-Tree-Structure (STS) models and supervisory control of STS are discussed. Finally, in

Section 2.6, some relevant results on the Binary Decision Diagram (BDD) are presented.

2.1 Automata, Languages, and Predicates

Let us assume Σ is a finite nonempty set of symbols each representing an event in a DES. Σ is called an

alphabet. The events that belong to Σ can be used to form a sequence of events called a string. The set of all

finite strings over an alphabet Σ is shown by Σ+,

Σ+ = {σ1 . . .σk | k ≥ 1, σi ∈ Σ}. (2.1)

An empty string is shown by ε. The set of all finite strings over an alphabet Σ is shown by Σ∗,

Σ∗ = Σ+ ∪ {ε}. (2.2)

Any subset of Σ∗ is called a language. Let L be a language over Σ. For s ∈ L, L/s = {t ∈ Σ∗ | st ∈ L} is called the

post-language of L after s. Language L is live if

∀s ∈ L, ∃t ∈ Σ∗, and t , ε such that st ∈ L. (2.3)

10

For s ∈ σ∗, t ∈ Σ∗ is the prefix of s if s = tu for some u ∈ Σ∗. The prefix-closure of a language L ⊆ Σ∗ is denoted

as L,

L = {s ∈ Σ∗ | ∃t ∈ Σ∗ such that st ∈ L}. (2.4)

The language L is called prefix-closed (or closed) if L = L.

The dynamics of continuous-variable systems are time-driven, while those of DES are event-driven. In

a time-driven system, state changes are represented against the passage of time. However, in an event-

driven system, occurrences of events cause the system to go from one state to another. There are different

approaches for representing DES. Here, we only discuss DES that are modeled by finite-state deterministic

automata. A deterministic automaton is a five-tuple

G = (Q,Σ,δ,q0,Qm), (2.5)

where Q is the state set, Σ is the finite set of events, δ : Q ×Σ→Q is the partial transition function, q0 is the

initial state and Qm ⊆Q is the set of marked states.

At a state q ∈Q, δ(q,σ)! means a transition σ is possible. The set of strings generated by the automaton G

is called the closed language: L(G) = {s ∈ Σ∗ | δ(q0, s)!}. The marked language is the set of strings generated by

G that end in a marked state: Lm(G) = {s ∈ L(G) | δ(q0, s)! & δ(q0, s) ∈Qm}.

Consider G1 = (Q1,Σ1,δ1,q01,Qm1) and G2 = (Q2,Σ2,δ2,q02,Qm2). G1 is a sub-automaton of G2 (G1 ⊆G2) if

• Q1 ⊆Q2,

• Qm1 ⊆Qm2,

• q01 = q02, and

• ∀s ∈ L(G1)
(
δ1(q01, s) = δ2(q02, s)

)
.

For the rest of this section, consider a DES G = (Q,Σ,δ,q0,Qm). The reachable sub-automaton of G is denoted

by reach(G) = (Qr ,Σr ,δr ,q0r ,Qmr).

A system can have multiple components (sub-systems) modeled by automata. To model the interconnec-

tions of these components, the product and the synchronous product (parallel composition) operations are

defined over automata.

Definition 2.1. ([74]) Consider two automata G1 = (Q1,Σ1,δ1,q01,Qm1) and G2 = (Q2,Σ2,δ2,q02,Qm2). The

11

product of G1 and G2 is defined as follows:

reach(G1 ×G2) =
(
Q1 ×Q2,Σ1 ∪Σ2,δ, (q01,q02),Qm1 ×Qm2

)
(2.6)

where for q1 ∈Q1 and q2 ∈Q2,

δ
(
(q1,q2),σ

)
=

 (δ1(q1,σ),δ2(q2,σ)), if δ1(q1,σ)! and δ2(q2,σ)!

undefined, otherwise
. (2.7)

Definition 2.2. ([74]) Consider two automata G1 = (Q1,Σ1,δ1,q01,Qm1) and G2 = (Q2,Σ2,δ2,q02,Qm2). The

synchronous product of G1 and G2 is defined as follows:

reach(G1||G2) =
(
Q1 ×Q2,Σ1 ∪Σ2,δ, (q01,q02),Qm1 ×Qm2

)
(2.8)

where for q1 ∈Q1 and q2 ∈Q2,

δ
(
(q1,q2),σ

)
=

(δ1(q1,σ),δ2(q2,σ)), if δ1(q1,σ)! and δ2(q2,σ)!

(δ1(q1,σ),q2), if σ ∈ Σ1 −Σ2 and δ1(q1,σ)!

(q1,δ2(q2,σ)), if σ ∈ Σ2 −Σ1 and δ2(q2,σ)!

undefined, otherwise

. (2.9)

The synchronous product of automata can also be constructed using the product operation. To do so, first

G′1 (by adding self-loops of Σ2 −Σ1 to G1) and G′2 (by adding self-loops of Σ1 −Σ2 to G2) are constructed.

The synchronous product of G1 and G2 is calculated as follows:

G1||G2 = G′1 ×G′2 (2.10)

A predicate P is a function P : Q→ {0,1} that maps each of the states in Q to 0 or 1. Here, 0 and 1 represent

false and true respectively. We say a state q satisfies a predicate P if and only if P (q) = 1 (or true) and

write q |= P . Predicates are always identified with a state subset; for example, we say P1 is identified

with Q1 = {q ∈ Q | P1(q) = 1}. The set of all predicates that can be defined over Q is shown by Pred(Q).

We can also form the conjunction and disjunction of two predicates denoted by ∧ and ∨ corresponding to

the intersection and union set operations. Moreover, the partial order “ ≤ ” is defined over Pred(Q) as

P1 ≤ P2 if and only if P1 ∧ P2 = P1. For predicate P , ¬P denotes the negation of P .

The reachability predicate R(G, P) is defined as follows [74]:

12

• If q0 6|= P , then R(G, P) = false, otherwise if q0 |= P , then q0 |= R(G, P).

• q |= R(G, P), σ ∈ Σ, δ(q,σ)! & δ(q,σ) |= P ⇒ δ(q,σ) |= R(G, P).

• No other state satisfies R(G, P).

R(G, P) holds for all states in G that can be reached from q0 via some states that satisfy P . R(., .) is a

monotonically increasing function.

Lemma 2.1. ([74]) (Monotonically increasing) Suppose P1 and P2 are two predicates such that P1 ≤ P2. Then

R(G, P1) ≤ R(G, P2).

The coreachability predicate CR(G, P) [39][40] is defined below.

• If @q ∈Q such that q ∈Qm and q |= P , then CR(G, P) = false, otherwise (∀q ∈Q) q ∈Qm & q |= P ⇒ q |=

CR(G, P).

• q |= CR(G, P), σ ∈ Σ, δ(q′ ,σ)!, δ(q′ ,σ) = q & q′ |= P ⇒ q′ |= CR(G, P).

• No other state q satisfies CR(G, P).

CR(G, P) holds for all states in G that can reach at least one of the marked states in Qm via states that satisfy

P . Similar to R(., .), CR(., .) is a monotonically increasing function.

2.2 Robust Supervisory Control

As it has been previously mentioned in Section 1.2.1.2, there are various formulations for language-based

robust supervisory control problem. We have chosen the one proposed in [4] and [57].

Assume that a plant’s model is not known with certainty. However, it can be one of the N models in G =

{G1, . . . ,GN }. Here, all Gi for i ∈ I = {1, . . . ,N } are finite state automata with Gi = (Qi ,Σi ,δi ,q0,Qmi). Let Σci

and Σuci denote the controllable and uncontrollable event sets of Gi (i ∈ I). We assume the controllability

state of an event does not change from one model to another:

if σ ∈ Σi ∩Σj (i, j ∈ I), then either σ ∈ Σci ∩Σcj or σ ∈ Σuci ∩Σucj . (2.11)

13

Suppose language Ki is the design specification for Gi . The legal marked behavior is Ei = Ki ∩ Lm(Gi). The

set of robust nonblocking supervisory controls for this plant is defined below.

V = {v : Σ∗→ ΓΣ | Lm(v/Gi) ⊆ Ei & Lm(v/Gi) = L(v/Gi)} (2.12)

where ΓΣ = {γ ∈ P (Σ) | Σu ⊆ γ} is the set of all control patterns on Σ =
⋂

i∈I Σi . Moreover, L(v/Gi) and

Lm(v/Gi) are the closed and marked languages of Gi under supervision. Here, v/Gi denotes system under

supervision.

The language-based robust nonblocking supervisory control problem is defined below.

Problem 2.1. Consider the set of automata G = {G1, . . . ,GN } and the legal languages Ei ∈ Lm(Gi) (i ∈ I). Find a

supervisor v : Σ∗→ ΓΣ, with Σ =
⋂

i∈I Σi such that

1. Lm(v/Gi) ⊆ Ei ,

2. Lm(v/Gi) = L(v/Gi).

The theorem below gives the necessary and sufficient conditions for the existence of a solution for Problem

2.1.

Theorem 2.1. ([57]) Suppose G is an automaton with L(G) =
⋃

i∈I L(Gi), Lm(G) =
⋃

i∈I Lm(Gi), Σ =
⋃

i∈I Σi and

Σu =
⋃

i∈I Σiu . We define E as,

E =
⋂
i∈I

(Ei ∪ (Σ∗ −Lm(Gi))∩Lm(G). (2.13)

For any nonempty sublanguage K ⊆ E that satisfies the following conditions:

1. Controllable with respect to G
(
i.e., KΣuc ∩L(G) ⊆ K

)
,

2. Gi-nonblocking
(
i.e., K ∩Lm(Gi) = K ∩L(Gi)

)
, and

3. Lm(G)-closed
(

i.e., K = K ∩Lm(G)
)
,

there exists a solution v ∈ V to the robust nonblocking control problem such that Lm(v/G) = K and L(v/G) =

K . And conversely, if v solves the robust nonblocking supervisory control problem, then K = Lm(v/G) meets

conditions (1) to (3).

14

2.3 State-Based Supervisory Control

A state-based formulation of supervisory control is introduced in [52] for automaton plants and further

developed in [35].

It is assumed that the set of events Σ can be divided into the set of controllable events Σc and the set of

uncontrollable events Σuc. In the state-based supervisory control approach, the safety requirements are

expressed in terms of a set of safe states. Let a predicate P represent the set of safe states of automaton G.

Feedback can be used to limit the behavior of G to safe states.

A State Feedback Control (SFBC) f is a function f : Q→ Γ where Γ = {Σ′ ⊆ Σ | Σuc ⊆ Σ′}. For q ∈ Q, f (q)

is the set of events that are allowed by f to be enabled at state q. Furthermore, for σ ∈ Σ, the function

fσ : Q→ {0,1} is defined as fσ (q) = 1 if and only if σ ∈ f (q). If fσ (q) = 1, fσ asserts that at a state q ∈ Q, the

event σ should be enabled and it should be disabled if fσ (q) = 0. The automaton G under the supervision

of SFBC f is shown by Gf = (Qf ,Σf ,δf ,q0,Q
f
m). It is clear that Gf ⊆G.

An SFBC f : Q→ {0,1} is balanced if

(∀q,q′ ∈Q) (∀σ ∈ Σ) q,q′ |= R(Gf , true) such that δ(q,σ)! & δ(q,σ) = q′⇒ fσ (q) = 1. (2.14)

A predicate P is called controllable if and only if

P ≤ R(G, P) & (∀σ ∈ Σuc) P ≤Mσ (P), (2.15)

where Mσ : Pred(Q)→ Pred(Q) is defined as below.

Mσ (P)(q) =

1 if either δ(q,σ)! & δ(q,σ) |= P , or ¬(δ(q,σ)!),

0 otherwise (i.e., δ(q,σ)! and δ(q,σ) 6|= P)
. (2.16)

The theorem below gives the necessary and sufficient conditions for the existence of a SFBC under the

specifications defined by a predicate P .

Theorem 2.2. ([74]) Assume P ∈ Pred(Q), P , false, and q0 |= P . Then there exists a SFBC f for G such that

R(Gf , true) = P if and only if P is controllable.

Denote the set of all controllable sub-predicates of P by

CP(P) = {K ∈ Pred(Q) | K ≤ P & K is controllable with respect to G}. (2.17)

15

CP(P) is nonempty and has a supremal element [74].

For a predicate P , the sub-predicate 〈P 〉 ≤ P is defined as follows:

For a state q, q |= 〈P 〉 whenever ∀w ∈ Σ∗uc, δ(q,w)! ⇒ δ(q,w) |= P . (2.18)

〈P 〉 ≤ P holds for those states in QP from which uncontrollable event sequences never leave P .

Lemma 2.2. ([74]) The supremal element of CP(P) is supCP(P) = R(G,〈P 〉).

A predicate P defined over the state set of G is called coreachable if P ≤ CR(G, P) and reachable if P ≤ R(G, P).

Definition 2.3. ([39]) A predicate P ∈ Pred(Q) is called nonblocking with respect to G if and only if R(G, P) ≤

CR(G, P).

The above definition states that starting from q0, any path consisting of states that satisfy P can be extended

inside P to some marked state. In the following definition, the nonblocking SFBC is defined.

Definition 2.4. ([74]) An SFBC f is called a nonblocking SFBC for G if R(Gf , true) ≤ CR(Gf , true). In other

words, for a nonblocking SFBC, R(Gf , true) is coreachable.

The theorem below gives the necessary and sufficient conditions for the existence of a nonblocking SFBC.

Theorem 2.3. ([74]) Assume P ∈ Pred(Q), P , false and q0 |= P . Then there exists a nonblocking SFBC f for G

such that R(Gf , true) = P if and only if P is controllable and nonblocking.

Note that with P and f as in Theorem 2.3, we have

P = R(Gf , true) = R(G, P) ≤ CR(G, P) ≤ P = R(Gf , true). (2.19)

Thus,

R(G, P) = CR(G, P) = P = R(Gf , true) (2.20)

and

R(Gf , true) ≤ CR(Gf , true). (2.21)

Suppose P ∈ Pred(Q) is not controllable and/or nonblocking with respect to G. Let CNbP(P) denote the set

of all controllable and nonblocking sub-predicates of P :

CNbP(P) = {K ∈ Pred(Q) | K ≤ P & K controllable and nonblocking with respect to G}. (2.22)

16

CNbP(P) is nonempty and closed under arbitrary disjunctions and has a supremal element supCNbP(P)

[74]. A nonblocking SFBC f that is balanced and results in R(Gf , true) = P is the maximally permissive

solution of supervisory control problem.

2.4 State-Tree-Structure

[68] introduces the State-Tree Structure (STS) based on the definition of statecharts in [26]. STS has both the

vertical and the horizontal modularity. In the STS, the State-Tree (ST) and the holons form the horizontal

(the hierarchical structure of state space) and the vertical modularity respectively. The weakness of STS

proposed by [68] appears when the model has an AND root state. For these cases, the AND root state is

converted to some OR super-state by using the synchronous product operation which can transform the

model from structured to flat. Furthermore, in [68], the STS dynamics are not defined formally and fully.

[20] introduces Hierarchical Finite State Machine (HFSM) based on the definition of statecharts. The root

state for HFSM has to be an OR state. Moreover, HFSM does not allow shared events between the AND

components which adds more restrictions to the modeling of plant. Based on the results of [26] and [68],

[40] proposes a new STS modeling formalism that has solved the problems mentioned above. In this for-

malism, it is not an obligation to have an alternating layers of AND and OR super-states. We use the method

proposed in [40] in this research.

This section is a brief mathematical description of STS defined in [40]. This review is mainly to introduce

the notations. For details and examples, the reader is referred to [40]. In order to define STS, first the

definition of State-Tree(ST) has to be introduced.

Definition 2.5. State-Tree (ST) is a 4-tuple (X,x0,T , ε), where

1. X is an structured state set.

2. x0 ∈ X is the root state.

3. T : X→ {AND,OR,simple} is the type function.

4. ε : X→ 2X is the expansion function.

where the expansion function is defined below:

(x ∈ X) ε(x) =

 Y , (for some ∅ ⊆ Y ⊆ X such that x < Y) if T (x) ∈ {AND,OR}

∅, if T (x) = simple
. (2.23)

17

G

A

c11

B

b C xa

×

YU U U

c12 c13

y11 y12 y21

Y1 Y2× U U

U

Figure 2.1: An Example of ST of a plant called G.

The reflexive and transitive closure of ε(x) is shown by ε∗(x) : X → 2X . This definition can be extended to

subsets of x:

ε∗(Y) =
⋃
x∈Y

ε∗(x), ∀Y ⊆ X. (2.24)

Based on (2.24), X = ε∗(x0). Furthermore, ε+(x) = ε∗(x)− {x} includes all the descendants of x ∈ X. A state x

is called a super-state if ε+(x) , ∅.

Example 2.1. Consider the ST illustrated in Figure 2.1. In this example, G is the root state as well as an AND

superstate G = A×B (ε(G) = {A,B} and T (G) = AND) where A = a∪̇b∪̇C and B = x∪̇Y are OR superstates. The

expansion function for A is ε(A) = {a,b,C}, and ε∗(A) = {A,a,b,c11, c12, c13}.

The restriction of T to X ′ ⊆ X is shown by TX′ : X ′→ {OR, AND, simple} and is defined below:

∀x ∈ X ′ , TX′ (x) = T (x). (2.25)

Any 4-tuple ST = (X,x0,T , ε) is a ST if it satisfies the following conditions.

1. (terminal case) X = {x0} or

2. (recursive tree) (∀y ∈ ε(x0)) ST y = (ε∗(y), y,Tε∗(y), εε∗(y)) is a ST where (∀y, y′ ∈ ε(x0)) (y , y′ ⇒ ε∗(y)∩

ε∗(y′) = ∅) and
⋃̇

y∈ε(x0)ε
∗(y) = ε+(x0).

18

A ST is called well-formed if no AND component is a simple state or in other words

(∀x,y ∈ X) if T (x) = AND & y ∈ ε(x) ⇒ T (y) ∈ {OR, AND}. (2.26)

For the rest of this thesis, we assume that all the STs are well-formed. If y ∈ ε∗(x), we write x ≤ y and it

indicates that either x is an ancestor of y (x < y) or x = y. For a ST ST = (X,x0,T ,ε), (≤) is a partial order on

state space X and X is a poset.

The definitions of Nearest Common Ancestor (NCA) in ST is given below.

Definition 2.6. Assume that ST = (X,x0,T ,ε) is a ST and x,y,z ∈ X. z is the Nearest Common Ancestor

(NCA) of x and y if

• z < x and z < y;

• (∀a ∈ ε+(z)) a ≮ x or a ≮ y.

In a ST, any two different states a,b ∈ X are related through the following three options.

1. a is an ancestor of b (a < b) or vice versa (b < a).

2. a and b are parallel (a | b) : the system can be at both states a and b at the same time (NCA of a and b

is an AND state).

3. a and b are exclusive (a ⊕ b) : the system cannot be at both states a and b at the same time (NCA of a

and b is an OR state).

The notion of sub-ST is defined below.

Definition 2.7. Let ST = (X,x0,T , ε) and Y ⊆ X. Suppose ST’ = (Y ,x0,T ′ , ε′) is well-formed, ST’ is a sub-ST of

ST with T ′ : Y → {AND,OR,simple} and ε′ : Y → 2Y if for any y ∈ Y ,

T ′(y) = T (y) (2.27)

ε′(y) =

ε(y), if T ′(y) = AND

Z,
(
for some ∅ ⊂ Z ⊆ ε(y)

)
if T ′(y) = OR

∅, if T ′(y) = simple

. (2.28)

The set of all sub-STs of ST is ST(ST) = {ST’ | ST’ is a sub-ST of ST}.

19

Definition 2.8. Let ST = (X,x0,T , ε) and ST1,ST2 ∈ ST(ST). Then

ST1 ≤ ST2 if and only if ST1 ∈ ST(ST2). (2.29)

For a ST, (≤) is a partial order on ST(ST). Theorem 2.4 and 2.5 define the conjunction and disjunction of

sub-STs.

Theorem 2.4. Let ST = (X,x0,T , ε) and ST1,ST2 ∈ ST(ST). In the poset (ST(ST),≤), the conjunction of two

sub-STs ST1 ∧ ST2 is defined below.

1. If either ST1 or ST2 is empty, ST1 ∧ ST2 = ∅,

2. If ST1 and ST2 are not empty, then let ST1 = (X1,x0,T1, ε1), ST2 = (X2,x0,T2, ε2), and ST3 = ST1 ∧ ST2.

Here ST3 = (X3,x0,T3, ε3) is defined by recursion. We only need to define ε3 and T3 since X3 = ε∗3(x0) and

T3 = TX3
is the restriction of T to X3. For ε3, all the possible cases are

(a) (terminal case): T (x0) = simple. Then ε3(x0) = ∅.

(b) (recursive case 1): T (x0) = OR. Then y ∈ ε3(x0) if and only if

i. y ∈ ε1(x0)∪ ε2(x0) and

ii. ε3(y) = ∅ ⇒ T3(y) = simple.

ST3 = ∅ if and only if ε3(x0) = ∅.

(c) (recursive case 2): T (x0) = AND. Then

ε3(x0) =

 ε1(x0)∪ ε2(x0) = ε(x0), if (∀y ∈ ε(x0))ε3(y) , ∅

∅, otherwise
.

ST3 = ∅ if and only if ε3(x0) = ∅.

Theorem 2.5. Let ST = (X,x0,T , ε) and ST1,ST2 ∈ ST(ST). In poset (ST(ST),≤), the disjunction of two sub-STs

ST1 ∨ ST2 always exists and is defined below.

1. If ST1 is empty, ST1 ∨ ST2 = ST2.

2. If ST2 is empty, ST1 ∨ ST2 = ST1.

3. Assume that ST1 and ST2 are nonempty. Let ST1 = (X1,x0,T1, ε1), ST2 = (X2,x0,T2, ε2), and ST3 = ST1 ∨

ST2. Then ST3 = (X3,x0,T3, ε3) is defined below.

20

(a) ∀x ∈ X1 ∪X2,

ε3(x) =

ε1(x), if x ∈ X1 −X2

ε2(x), if x ∈ X2 −X1

ε1(x)∪ ε2(x), if x ∈ X1 ∪X2

.

(b) X3 = ε∗3(x0).

(c) T3 = TX3
, the restriction of T to X3.

Definition 2.9. Let ST = (X,x0,T ,ε). The size of ST1 ∈ ST(ST) is defined below.

count(ST1) =

∏
∀y∈ε(x0) count(STy), if T (x0) = AND∑
∀y∈ε(x0) count(STy), if T (x0) = OR

1, if T (x0) = simple

. (2.30)

The notion of basic-sub-ST is defined below.

Definition 2.10. Assume ST = (X,x0,T , ε) be a ST. b ∈ ST(ST) is a basic-sub-ST of ST if count(b) = 1. The set

of basic-sub-STs’ of ST is B(ST) = {b | count(b) = 1}.

A basic-sub-ST corresponds to the state of the flat automaton obtained from the hierarchical model de-

scribed by STS. For the rest of this thesis, the term basic-ST is used in place of basic-sub-ST.

The notion of holon is used to describe the local (component) behavior of the plant.

Definition 2.11. Holon is a 5-tuple (X,Σ,δ,X0,Xm) where

1. X = XE∪̇XI , XI is the internal state set and XE is the external one. Note that XE ∩XI = ∅.

2. Σ = ΣB∪̇ΣI , ΣI is the internal event set and ΣB is the external one. Note that ΣE ∩ΣI = ∅. We can also

partition Σ into controllable and uncontrollable events, Σ = Σc∪̇Σuc.

3. δ : X ×Σ→ X is a partial function that defines transition structure. A transition from state x with event σ

is defined as:

δ(x,σ) =

δI (x,σ), if x ∈ XI & σ ∈ ΣI

δBI (x,σ), if x ∈ XE & σ ∈ ΣB

δBO(x,σ), if x ∈ XI & σ ∈ ΣB

(2.31)

where δI (x,σ) : XI×ΣI → XI , δBI (x,σ) : XE×ΣB→ XI , and δBO(x,σ) : XI×ΣB→ XE are internal, incoming

boundary, and outgoing boundary transition structures respectively.

4. X0 ⊆ XI is the initial state set.

21

5. Xm ⊆ XI is the set of marked (terminal) states.

STs and holons define the state space and local behavior of the plant respectively. STS deploys these two

concepts to form a DES model that has modular and top-down structure.

Definition 2.12. STS is a 6-tuple, (ST,H,Σ,δ,ST0,STm), where

1. ST = (X,x0,T , ε) is a ST.

2. H = {Ha | T (a) = OR & Ha = (Xa,Σa,δa,Xa
0,X

a
m)} defines the set of holons that are matched to each OR

super-state in ST.

3. Σ =
⋃
∀Ha∈H Σa

I is the set of all events that appears in H .

4. ∆ : ST(ST)×Σ→ ST(ST) is the transition function.

5. ST0 ∈ ST(ST) is the initial ST.

6. STm ⊆ ST(ST) is the marked ST.

Consider the Example 2.1. The STS model of Figure 2.1 is illustrated in Figure 2.2. In Figure 2.2, the plant

G has two AND super-states (components) A and B. The AND super-states are separated by dashed lines

and the OR super-states (holons) are framed within a solid line. The states C, Y , and c12 are the examples

of OR states in Figure 2.2.

An STS is called deterministic, if all of its holons are deterministic.

Definition 2.13. Consider Hx = (Xx,Σx,δx,Xx
0 ,X

x
m) matched to state x. The function δ̄xI : B(STx)×Σx

I → B(STx)

denotes the transition function defined in terms of (child) sub-STs.

The largest eligible ST of G is formulated in the following definition.

Definition 2.14. Let G = (ST,H,Σ,δ,ST0,STm), ST = (X,x0,T , ε), and σ ∈ Σ. The largest eligible ST of G,

EligG(σ) : Σ→ ST(ST), is the largest sub-ST where σ is allowed to happen. Define Dσ = {x | σ ∈ Σx
I } to be the set of

all OR super-states that have a holon assigned to them and σ belongs to their internal event set. Then a ∈ EligG(σ)

if and only if

1. (∀x ∈Dσ) a|x, or,

2. (∀x ∈Dσ) a ≤ x, or,

3. (∃x ∈Dσ , T ∈ B(STx)) a ∈ T & δ̄xI (T ,σ)!.

22

G

A B

a b

c11 c13

c12

C

α

α

β

α

β

γ

γ

x

y11

y12

y21

Y

Y1 Y2

α

γ β

Figure 2.2: The STS model of Figure 2.1.

Definition 2.15. Consider G = (ST,H,Σ,δ,ST0,STm), ST = (X,x0,T , ε), and σ ∈ Σ. Define Dσ = {x | σ ∈ Σx
I }.

The function replace sourceG,σ : ST(EligG(σ))→ ST(ST) maps a sub-ST of EligG(σ) to another sub-ST of ST. Let

ST2 denote replace sourceG,σ (ST1).

1. (∀x ∈Dσ) a ∈ ST1 & a|x, or

2. (∀x ∈Dσ) a ∈ ST1 & a ≤ x, or

3. (∃x ∈Dσ , b ∈ B(STx
1), b′ ∈ STx) a ∈ b′ & b′ = δ̄xI (b,σ)

The transition function ∆(ST) is formulated in the following definition.

Definition 2.16. Let G = (ST,H,Σ,δ,ST0,STm) and ST = (X,x0,T , ε). Assume that ST1 ∈ ST(ST) and σ ∈ Σ.

For ST1 and σ , the transition function ∆ : ST(ST)×Σ→ ST(ST) is defined below.

∆(ST1,σ) = replace sourceG,σ (ST1 ∧EligG(σ)) (2.32)

Definition 2.17. If the transition function ∆(., .) is in correspondence with the state transitions of the flat au-

tomaton, then ∆(., .) is said to be sound.

Lemma 2.3. For ∆(., .) to be sound, replace sourceG,σ (.) and EligG(.) (for all σ ∈ Σ) have to be sound.

Lemma 2.4. For replace sourceG,σ (.) and EligG(.) to be sound, a set of sufficient conditions are:

• (soundness of replace sourceG,σ (.)) every incoming boundary transition of the holon matched to an AND

component must have a unique event label.

23

• (soundness of EligG(.)) every outgoing boundary transition of the holon matched to an AND component

must have a unique event label.

If the two conditions above do not met in a STS, then one can simply re-label the events to make the

transition function ∆(., .) be sound.

For example, in the STS G shown in figure 2.2, holon Y is matched to the AND components Y1 and Y2.

Holon Y has just one incoming boundary transition with the event label α and one outgoing boundary

transitions with the event label γ . Therefore, in G, replace sourceG,σ (.) and EligG(.) are sound. Thus, ∆(., .)

is not also sound. For the rest of this thesis, we assume that we are dealing with STSs that have a sound

transition function ∆(., .).

In the STS defined by [40], unlike the other hierarchical methods, holons can have shared events. However,

they have to be assigned to the OR states that have the same AND super-state as their nearest common

ancestor. The structure of STS has been briefly discussed in this section. More details can be found in [40]

and [68].

In the STS framework, a predicate P : B(ST)→ {0,1} is a function that maps basic-STs to 0 (false) or 1 (true).

A basic-ST b is said to satisfy a predicate P if P (b) = 1 and it is shown by b |= P . The set of all predicates

defined on ST is Pred(ST). Here, BP = {b ∈ B(ST)|P (b) = 1} is the set of basic-STs that satisfy P .

If one can find a ST1 ∈ ST(ST) such that BP = B(ST1), then it is said that ST1 identifies P .

In that sense, ST0 and STm identify P0 and Pm respectively, where BP0
= B(ST0) and BPm = B(STm). Let P0

and Pm denote the predicates corresponding to ST0 and STm. For the rest of this section, we assume that

P ∈ Pred(ST) and G = (ST,H,Σ,δ,P0, Pm).

The reachability predicate R(G, P)
(
R(G, .) : Pred(ST)→ Pred(ST)

)
represents the set of basic-ST that can be

reached from ST0 via some basic-ST satisfying P ; R(G, P) is defined below.

• If P ∧ P0 = false, then R(G, P) = false, otherwise ∀b |= P ∧ P0, b |= R(G, P).

• b |= R(G, P), σ ∈ Σ, ∆(b,σ) , ∅ & ∆(b,σ) |= P ⇒ ∆(b,σ) |= R(G, P).

• No other basic-ST satisfies R(G, P).

The coreachability predicate CR(G, P)
(
CR(G, .) : Pred(ST)→ Pred(ST)

)
represents the set of basic-ST that can

reach at least one of the marked basic-ST in STm via some basic-ST satisfying P ; CR(G, P) is defined below.

• If P ∧ Pm = false, then CR(G, P) = false, otherwise (∀b ∈ B(ST)) b |= P ∧ Pm ⇒ b |= CR(G, P).

24

• b |= CR(G, P), σ ∈ Σ, ∆(b′ ,σ)!, ∆(b′ ,σ) = b & b′ |= P ⇒ b′ |= CR(G, P)

• No other basic-ST satisfies CR(G, P).

2.5 Nonblocking Supervisory Control of State-Tree-Structure

In this thesis, we examine the robust state-based supervisory control of systems modeled by STS. In this

section, we review some of the definitions, theorems, and lemmas related to the nonblocking supervisory

control of STS by using the SFBC. Here we present some of previously discussed definitions in terms of ST.

Suppose that P represents a sub-ST of ST. Let b ∈ ST(ST) and σ ∈ Σ. The weakest liberal preconditions

Mσ : Pred(ST)→ Pred(ST) is defined below.

b |= Mσ (P) if and only if ∆(b,σ) |= P . (2.33)

For b ∈ B(ST), Mσ (P)(b) is defined below.

Mσ (P)(b) =

 1, if either ∆(b,σ) , ∅ & ∆(b,σ) |= P , or ∆(b,σ) = ∅,

0, otherwise
. (2.34)

Definition 2.18. P is called controllable with respect to G if

P ≤ R(G, P) & (∀σ ∈ Σuc) P ≤Mσ (P). (2.35)

For automata, [74] defines a predicate transformer 〈.〉. We expand the definition to STS. For a predicate P ,

〈P 〉 ≤ P is defined such that b |= 〈P 〉 if

∀w ∈ Σ∗uc, ∆(b,w) , ∅⇒ ∆(b,w) |= P . (2.36)

Definition 2.19. For a STS G, f : B(ST)→ Π represents a SFBC, where Π = {Σ′ ⊆ Σ | Σuc ⊆ Σ′}. If σ ∈ f (b),

then σ is enabled at b in G.

For an event σ ∈ Σ, fσ : B(ST)→ {0,1} is defined below.

fσ (b) = 1 if and only if σ ∈ f (b). (2.37)

25

If f is nonblocking, then the inequality below should be true.

R(Gf , true) ≤ CR(Gf , true). (2.38)

A predicate P is called nonblocking for G if

R(G, P) ≤ CR(G, P). (2.39)

2.6 Binary Decision Diagram

Binary Decision Diagrams (BDDs) were proposed in [1] to represent Boolean functions. Later, [6] suggested

using an ordering for the functions’ input variables to accelerate the calculations further. Finding an ef-

ficient ordering of variables is one of the challenges of Ordered Binary Decision Diagram (OBDD). In the

context of supervisory control, the structured state set of STS may offer suitable orderings. The results

of some papers such as [40] and [45] strongly suggest that using BDD can hugely affect the calculations,

especially in large and complex systems.

[1] and [6] developed a graphical presentation of Boolean functions using the Shannon’s expansion. Assume

that we have a set of variables X = {x1, . . . ,xi , . . . ,xn} and a Boolean function f : 2X → {0,1}. Shannon’s

expansion can be written as:

f (x1, . . . ,xn) = (xi ∧ f |xi=1)∨ (¬xi ∧ f |xi=0), ∀xi ∈ X, (2.40)

where ¬xi is the negation of xi , f |xi=1 = f (x1, . . . ,xn)|xi=1 and f |xi=0 = f (x1, . . . ,xn)|xi=0.

In BDD, there are two types of nodes: 1. decision nodes and 2. terminal nodes. Terminal nodes can be

either 0 or 1.

Example 2.2. Let us have X = {x1,x2} and f (x1,x2) = x1 ∨ x2. The expansion is:

f (x1,x2) =
(
x1 ∧ f (1,x2)

)
∨
(
¬x1 ∧ f (0,x2)

)
= (x1 ∧ 1)∨ (¬x1 ∧ x2). (2.41)

Figure 2.3 shows the BDD graph of (2.41), where circles and squares represent decision and terminal nodes. The

dashed line (solid line) shows that the variable’s logical value is 0 (1).

26

x1

x2

0 1

Figure 2.3: The BDD graph of f = (x1 ∨ x2).

2.7 Summary

In this chapter, we have reviewed some of the preliminaries used throughout this thesis. A brief review of

DES, STS, and the supervisory control have been covered.

27

Chapter 3

Robust Nonblocking State-based

Supervisory Control

In this chapter, the robust nonblocking supervisory control problem of DES is studied. In this framework,

the plant model is unknown, but it is assumed to belong to a finite set of models. The safety requirements

are expressed in terms of a set of safe states for each model. A set of necessary and sufficient conditions is

obtained for the existence of a solution, and an algorithm is developed to calculate the supremal solution

within a finite number of iterations. The resulting supervisor will be maximally permissive.

The rest of this chapter is organized as follows. In Section 3.1, the problem is formulated, and the MR

property of automata is explained. Section 3.2 discusses some implications of MR property in automata

and Section 3.3 defines the solution to the problem presented in Section 3.1. A simple illustrative example

is provided in Section 3.5 and finally, the summary is given in Section 3.6.

3.1 Problem Formulation

In this section, we define our problem. Let us consider a DES plant and assume that due to some existing

model uncertainty, the actual model of the plant belongs to a finite set of models G = {G1, . . . ,GN }, where

Gi = (Qi ,Σi ,δi ,q0,Qmi) for i ∈ I = {1, ...,N }. For each model, the design specification (safe states) is defined

by a predicate Pi .

We assume that Gi ’s are reachable (i ∈ I). Moreover, we assume that for any pair of Gi ,Gj ∈ G, Gi and Gj

are Mutually Refined (MR) (i, j ∈ I).

28

Definition 3.1. ([11]) Let G1 = (Q1,Σ1,δ1,q01,Qm1) and G2 = (Q2,Σ2,δ2,q02,Qm2) be two automata. G1 and

G2 are Mutually Refined (MR) if

1. ∀s ∈ L(G1)∩L(G2), δ1(q01, s) = δ2(q02, s).

2. ∀s ∈ L(G1)−L(G2) & t ∈ L(G2), δ1(q01, s) , δ2(q02, t).

3. ∀s ∈ L(G2)−L(G1) & t ∈ L(G1), δ1(q01, t) , δ2(q02, s).

The first condition states that in two models G1 and G2, the corresponding states have the same label.

Conditions (2) and (3) ensure that the solutions of robust control can be characterized by state feedback

control [11]. We will elaborate on this issue and its importance in robust state-based supervisory control

after the robust control problem is formally presented as Problem 3.1.

Note that in the non-trivial cases where L(G1) , ∅ and L(G2) , ∅, it follows from (1) in Definition 3.1 with

s = ε that q01 = q02.

The MR property defined in Definition 3.1 can easily be extended for more than two automata.

Definition 3.2. Consider a finite set of automata G = {G1, . . . ,GN }. We call these N models MR if they are MR

pairwise (i.e., for any Gi and Gj (i, j ∈ I), Gi and Gj are MR).

As we will see in Section 3.5, in fault recovery problems, Gi ’s are MR. If Gi ’s are not MR, there exists a

procedure explained in Appendix 3.A that can be used to convert Gi ’s to MR automata.

In our problem, each Gi has its own event set Σi and the controllability (or uncontrollability) of events

does not change from one automaton to another. We want to find a SFBC f for G such that Gi under the

supervision of f , shown as Gf
i , satisfies the specifications Pi (i ∈ I). Furthermore, we want to make sure

that for any i ∈ I , Gf
i is nonblocking.

In the problem studied in this thesis, it is useful to consider predicates whose domain is a superset of the

state set of an automaton. Consider an automaton G1 = (Q1,Σ1,δ1,q01,Qm1) and a state set Q ⊇Q1. Suppose

P is a predicate P : Q→ {0,1}. We define the reachability and the coreachability predicates, namely R(G1, P)

and CR(G1, P) exactly as it was done in Section 2.1 and for brevity, we do not repeat them here. We observe

that R(G1, P) still corresponds to states that can be reached from q01 using transitions in G1 via states that

satisfy P (of course, if q01 6|= P , then R(G1, P) = false). Thus, R(G1, P) ≤ PQ1
, where PQ1

is the predicate

identified by Q1.

Furthermore, CR(G1, P) is satisfied, exactly on those states that can reach a state in Qm1 using transitions

in G1 via states satisfying P . Thus, CR(G1, P) ≤ PQ1
.

29

R(., .) and CR(., .) are still monotonically increasing functions. The following is an extension of Definition

2.3.

Definition 3.3. Consider an automaton G with state set Q1 and marked states Qm1. Let Q1 ⊆Q and P ∈ Pred(Q).

Predicate P is nonblocking with respect to G1 or G1-nonblocking if

R(G1, P) ≤ CR(G1, P). (3.1)

Finally, for predicate P ∈ Pred(Q), denote the restriction of P to Q1 ⊆ Q as P |Q1
and define it as P |Q1

: Q1→

{0,1},

∀ q ∈Q1 q |= P |Q1
⇔ q |= P . (3.2)

Problem 3.1. (Robust Nonblocking State-based Supervisory Control Problem (RNSSCP)): Consider N Mutually

Refined (MR) models named Gi = (Qi ,Σi ,δi ,q0,Qmi) (i ∈ I = {1, . . . ,N }). There is a consistency in controllabil-

ity/uncontrollability of events in automata. For each model Gi , a safety predicate Pi ∈ Pred(∪j∈IQj) is assumed

with q0 |= Pi . Find a State Feedback Control (SFBC) f :
⋃

i∈I Qi → Γ such that

1. R(Gf
i , true) ≤ Pi (safety property)

2. R(Gf
i , true) ≤ CR(Gf

i , true) (nonblocking property)

In a conventional (in which the plant model is known) state-based supervisory control problem, the set of

solutions can be characterized by sub-predicates of safety predicate. Each solution can be realized using a

state feedback law. Therefore, in solving the control problem, one may only consider SFBC laws.

In a robust state-based control problem with N models G1, . . . ,GN , each solution can be characterized by

a set of N suitable sub-predicates, one for each model. In this case, a solution can not always be realized

with a state feedback law in general.

Example 3.1. Let G1 and G2 in Figure 3.1 be the automata in a robust control problem. In G1 and G2, state 1

reaches to state 2 via two different events. Based on Definition 3.1, G1 and G2 are not MR. Suppose all events are

controllable and safe in G1, but state 4 is unsafe for G2. Therefore, if state 2 is reached using string aa (in G1), a

can remain enabled, and if state 2 is reached via string ab (in G2), then a should be disabled. Thus, one solution

of robust control results in the removal of state 4 from reachable states. We observe that the control decision at

state 2 depends not just on the current state but on the sequence of events that led to the current state. Therefore,

a SFBC cannot remove state 4 without removing state 3 from reachable states.

In this thesis, we want to set up the robust control problem in such a way that all solutions can be realized

using state feedback. The mutual refinement condition ensures that there is enough information about the

30

10 2G1

0 2G2

3

Figure 3.1: Example 3.1: The automata G1 and G2.

10 2G 1

2G 2

3

0 1

Figure 3.2: The result of applying Procedure 3.1 to automata G1 and G2 in Example 3.1.

dynamics of the model Gi in the state labels so that control decisions can be made based on the current

state only. A procedure from [11] is provided in Appendix 3.A that refines the transition structures of Gi ’s

to satisfy the MR property. We apply the Procedure 3.1 to G1 and G2 in Example 3.1. The MR automata

G”1 and G”2 are shown in Figure 3.2. Now the previous state 2 is related to (2,D) and (D,2). In this case, a

state feedback law to remove only state 4 (at (D,2)) can be used that keeps state (3,D) reachable.

3.2 Implications of Mutually Refinement Property

This section discusses some implications of MR property in automata and introduces new definitions. The

results of this section are used in Section 3.3 to explain the solution of RNSSCP. First, we merge all N

models defined in Section 3.1 to form a “union” automaton called G.

Definition 3.4. Consider a finite set of MR models G = {G1, . . . ,GN }, where Gi = (Qi ,Σi ,δi ,q0,Qmi) (i ∈ I). Let G

be an automaton such that G = (Q,Σ,δ,q0,Qm), where Q =
⋃

i∈I Qi , Σ =
⋃

i∈I Σi , Qm =
⋃

i∈I Qmi and δ : Q→Q

is defined below.

• For q,q′ ∈Q and σ ∈ Σ, if for some i ∈ I , δi(q,σ) = q′ , then δ(q,σ)! and δ(q,σ) = q′ .

Remark 3.1. Note that it follows from the MR property that if for i, j ∈ I , δi(q,σ) = q′ and δj (q,σ)!, then δi(q,σ) =

δj (q,σ) = q′ . Thus, in G, transition δ(q,σ) has a unique target state and G is deterministic.

It can easily be observed that Gi ⊆G (i ∈ I).

Example 3.2. Assume that a plant has two possible MR models G1 and G2 shown in Figure 3.3a and 3.3b. In this

example, the set of controllable events is Σc = {a1, a2,b1} and the set of uncontrollable events is Σuc = {f,u1,d1}.

The union automaton is shown in Figure 3.3c.

31

1 3

20

a2

a1b1 b1 a1

a2 u1

a1

a2

u1

(a) G1

1 3

20

a1b1

a2

b1 a1

a2 u1 a2 f

d1

a1b1 a2
b1

a1

(b) G2

1 3

20

a1b1

a2 u1

b1 a1

a2 u1

a1

a2 f

d1

a1

a1b1 a2
b1

(c) G

Figure 3.3: Example 3.2: The two possible models of a plant and the union model G.

Lemma 3.1. Consider the set of MR models G and the automaton G in Definition 3.4. For any q, q′ ∈ Q and

s ∈ Σ∗ such that δ(q,s) = q′ , there exists i ∈ I such that s ∈ Σ∗i and δi(q,s) = δ(q,s) = q′ .

Proof.

For s ∈ ε the lemma is trivially true. Suppose s , ε and for some n ≥ 1, s = σ0 . . .σn−1. Also there exists

q1, . . . , qn ∈ Q with δ(ql ,σl) = ql+1 (1 ≤ l ≤ n− 1), δ(q,σ0) = q1, and qn = q′ . Based on Definition 3.4, for each

l, there exists il ∈ I such that in Gil , δil (ql ,σl)! and δil (ql ,σl) = δ(ql ,σl) = ql+1. We prove that δin−1
(q,s)! and

δin−1
(q,s) = δ(q,s) = q′ .

Consider transitions δi0(q,σ0) = δ(q,σ0) = q1 and δi1(q1,σ1) = δ(q1,σ1) = q2. We claim that δi1(q,σ0)! and

δi1(q,σ0) = δ(q,σ0) = q1. Assume that δi1(q,σ0) is not defined. Since Gi0 and Gi1 are reachable, there exists

s′0 ∈ Σ
∗
i0

and s′1 ∈ Σ
∗
i1

such that δi0(q0, s
′
0σ0) = q1 and δi1(q0, s

′
1) = q1 and s′0σ0 , s′1. But by assumption, Gi0

and Gi1 are MR, and it follows from condition (2) in Definition 3.1 δi0(q0, s
′
0σ0) , δi1(q0, s

′
1), which is a

contradiction. Therefore, δi1(q,σ0)!. Now assume that δi1(q,σ0)! and δi1(q,σ0) , δ(q,σ0) = q1. Therefore,

δi1(q,σ0) , δi0(q,σ0). By assumption, Gi0 and Gi1 are MR, and it follows from condition (1) in Definition

32

3.1 that δi1(q,σ0) = δi0(q,σ0), which is a contradiction. Therefore, δi1(q,σ0) = δ(q,σ0) = q1. So far, we have

proved that δi1(q,σ0σ1) = δ(q,σ0σ1).

Now assume that δil (q,σ0 . . .σl) = δ(q,σ0 . . .σl) = ql+1. We have to prove that δil+1
(q,σ0 . . .σl+1) = δ(q,σ0 . . .σl+1)

= ql+2. We know that δil+1
(ql+1,σl+1) = ql+2; therefore, we need to prove that δil+1

(q,σ0 . . .σ1)! and δil+1
(q,σ0 . . .

σl) = δ(q,σ0 . . .σl) = ql+1. Suppose that δil+1
(q,σ0 . . .σl) is not defined. Since Gil and Gil+1

are reachable,

there exists s′il and s′il+1
such that δil (q0, s

′
il
σ0 . . .σl) = δil+1

(q0, s
′
il+1

) = ql+1 and s′ilσ0 . . .σl , s
′
il+1

. But this would

contradict the assumption that Gil and Gil+1
are MR. Now suppose that δil+1

(q,σ0 . . .σl)!, but δil+1
(q,σ0 . . .σl) ,

δ(q,σ0 . . .σl) = ql+1. We know that δil (q,σ0 . . .σl) = δ(q,σ0 . . .σl) = ql+1. Therefore, δil+1
(q,σ0 . . .σl) , δil (q,σ0 . . .

σl). But this would also contradicts the assumption that Gil and Gil+1
are MR.

Finally by induction, we can conclude that δin−1
(q,s)! and δin−1

(q,s) = δ(q,s).

Lemma 3.1 states that any sequence of events in the union model G belongs to at least one of the automaton

in G. In other words, by merging MR models, new sequences of events will not be generated. In Example

3.2, the sequence of a1a2a1u1, in G, exists in both G1 and G2, and the sequence of a1a2a1u1a1 only belongs

to G1.

In the following lemma, we use Lemma 3.1 to prove that G and Gi are MR.

Lemma 3.2. Consider the set of MR models G and automaton G defined in Definition 3.4. For any i ∈ I , G and

Gi are MR.

Proof.

We prove that G and Gi meet the three conditions mentioned in Definition 3.1.

1. Suppose s ∈ L(G)∩L(Gi). Thus, δi(q0, s)! and δ(q0, s)!. It follows from Lemma 3.1 that δj (q0, s) = δ(q0, s)

for some j ∈ I . Since Gi and Gj are MR, δi(q0, s) = δj (q0, s) = δ(q0, s).

2. Assume that s ∈ L(G)−L(Gi) and s = σ0σ1 . . .σn−1 (n ≥ 1), where δ(ql ,σl) = ql+1 for l ∈ {0, . . . ,n−1}. Also

let t ∈ L(Gi) ⊆ L(G). Based on Lemma 3.1, ∃j ∈ I such that δj (q0, s) = δ(q0, s) and i , j since s < L(Gi).

Since Gi and Gj are MR, then δi(q0, t) , δj (q0, s) and δi(q0, t) , δ(q0, s).

3. Condition (3) is trivially true since L(Gi)−L(G) = ∅.

In Lemmas 3.3 and 3.4, we prove that the MR property is preserved under the supervision of a SFBC

f : Q→ Γ.

33

Lemma 3.3. Consider the set of MR models G and automaton G defined in Definition 3.4. Let f : Q→ Γ be an

SFBC defined for G. For any i, j ∈ I , if s ∈ L(Gi)∩L(Gj) and s < L(Gf
i), then s < L(Gf

j).

Proof. Since Gi and Gj are MR, the sequence of states traversed in Gi and Gj using sequence s are identical.

Therefore, if the SFBC removes s from L(Gf
i), it will do the same in L(Gf

j).

Lemma 3.4. Consider the set of MR models G and automaton G defined in Definition 3.4. Let f : Q→ Γ be an

SFBC defined for G. For any i, j ∈ I , Gf
i and Gf

j are MR.

Proof.

We need to prove that for Gf
i and Gf

j , the three conditions in Definition 3.1 are met.

1. Suppose s ∈ L(Gf
i)∩ L(Gf

j) and δ
f
i (qi0, s) , δ

f
j (qj0, s). Therefore, there exists q ∈ Qi and q′ ∈ Qj with

q , q′ such that δfi (qi0, s) = q and δ
f
j (qj0, s) = q′ . Since Gf

i ⊆ Gi and Gf
j ⊆ Gj , we can conclude that

δi(qi0, s) = q and δj (qj0, s) = q′ . We have assumed that Gi and Gj are MR. Therefore, we must have

δi(qi0, s) = δj (qj0, s), which is not possible. Thus, our assumption (δfi (qi0, s) , δ
f
j (qj0, s)) is not true and

we can conclude that ∀s ∈ L(Gf
i)∩L(Gf

j), δfi (qi0, s) = δ
f
j (qj0, s).

2. Suppose for some s ∈ L(Gf
i) − L(Gf

j) and t ∈ L(Gf
j), we have δ

f
i (qi0, s) = δ

f
j (qj0, t). Since Gf

i ⊆ Gi and

Gf
j ⊆Gj , we have δi(qi0, s)!, δj (qj0, t)!, and δi(qi0, s) = δj (qj0, t).

Observe that s ∈ L(Gf
i) and s < L(Gf

j). Since s ∈ L(Gf
i), s ∈ L(Gi). Based on 3.3, we should have

s < L(Gj), otherwise s ∈ L(Gi) ∩ L(Gj) and s < L(Gf
j); therefore, we would have s < L(Gf

i), which

contradicts the assumption.

Thus, for s ∈ L(Gf
i) − L(Gf

j) and t ∈ L(Gj), we have δi(qi0, s) = δj (qj0, t). But this is not possible, since

Gi and Gj are MR. Therefore, condition (2) must be true.

3. Proof of condition (3) in Definition 3.1 is similar to the proof of condition (2).

In Example 3.2, assume a SFBC f defined for G (Figure 3.3c) such that for the reachable states under

the supervision of f , we have f (0) = {ε,a2}, f (2) = {ε,u1}, f (4) = {ε,a2}, f (6) = {ε, f}, f (8) = {ε,a1}, and

f (10) = {ε}. Figure 3.4 illustrates the three automata of Figure 3.3 under the supervision of f . As it can be

seen, Gf , Gf
1 and Gf

2 are MR.

Now we define the relationship between the reachability and the coreachability predicates of G and Gis.

34

20 a2 u1 a2

(a) G
f
1

20 a2 u1 a2 f a1

(b) G
f
2

20 a2 u1 a2 f a1

(c) Gf

Figure 3.4: The automata models in Figure 3.3 under the supervision of a SFBC f : Q→ Γ.

Lemma 3.5. Let G be the automaton defined in Definition 3.4. Then we have

R(G, true) =
∨
i∈I

R(Gi , true), (3.3)

CR(G, true) =
∨
i∈I

CR(Gi , true). (3.4)

Proof.

1. We prove that, (i)
∨

i∈I R(Gi , true) ≤ R(G, true) and (ii) R(G, true) ≤
∨

i∈I R(Gi , true).

i. Assume q |=
∨

i∈I R(Gi , true), then ∃j ∈ I such that q |= R(Gj , true). State q is reachable in Gj ; thus,

∃s ∈ Σ∗j such that δj (q0, s) = q. Based on Definition 3.4, s ∈ Σ∗ and δ(q0, s) = q. Therefore, q is also

reachable in G and q |= R(G, true). We have proven that
∨

i∈I R(Gi , true) ≤ R(G, true).

ii. Assume q |= R(G, true). Therefore, ∃t ∈ Σ∗ such that in G, δ(q0, t) = q. Based on Lemma 3.1, ∃j ∈ I

such that δj (q0, t) = δ(q0, t) = q. Thus, q |= R(Gj , true) and q |=
∨

i∈I R(Gi , true).

Thus, we proved that R(G, true) ≤
∨

i∈I R(Gi , true).

2. We prove that (i)
∨

i∈I CR(Gi , true) ≤ CR(G, true) and (ii) CR(G, true) ≤
∨

i∈I CR(Gi , true).

i. The proof will be similar to section (i) in part 1 above.

ii. Assume q |= CR(G, true), then ∃qm ∈ Qm and t = σ0 . . .σn−1 ∈ Σ∗ (n ≥ 1) such that δ(q, t) = qm.

Similar to the proof of section (ii) in part 1, it can be shown that ∃j ∈ I such that δj (q, t) = qm.

Therefore, q |= CR(Gj , true) and q |=
∨

i∈I CR(Gi , true).

35

Thus, we proved that CR(G, true) ≤
∨

i∈I CR(Gi , true).

Remark 3.2. Using Lemma 3.4, we can easily show that the results of Lemmas 3.1 and 3.5 also hold for the

automata under the supervision of a SFBC f : Q→ Γ. In particular,

R(Gf , true) =
∨
i∈I

R(Gf
i , true), (3.5)

CR(Gf , true) =
∨
i∈I

CR(Gf
i , true). (3.6)

3.3 Solution: Necessary and Sufficient Conditions

In this section, we obtain the set of solutions of Robust Nonblocking State-based Supervisory Control Prob-

lem (RNSSCP). Theorem 3.1 is our main result. It presents a set of necessary and sufficient conditions for

having a solution for RNSSCP.

Theorem 3.1. Let G be the finite state automaton introduced in Definition 3.4. Define the predicate P as

P =
[∧
j∈I

(
Pj ∨

[
R(G, true)∧¬R(Gj , true)

])]
∧R(G, true). (3.7)

1. If there exists a predicate K ≤ P with K , false such that

i. K is controllable with respect to G,

ii. K is Gi-nonblocking for all i ∈ I ,

then Robust Nonblocking State-based Supervisory Control Problem (RNSSCP) has a solution f and R(Gf , true) =

K .

2. Conversely, if f is a solution of RNSSCP, then K defined as K = R(Gf , true) is controllable with respect to

G, Gi-nonblocking for all i ∈ I and K ≤ P .

To prove Theorem 3.1, we need the results in Lemmas 3.6 to 3.9. In Lemmas 3.6, 3.7, and 3.8, we have

an automaton G1, which is a sub-automaton of another automaton G2. All predicates are defined over

Q1 ∪Q2 = Q2.

Lemma 3.6. Consider two automata G1 and G2. Assume G1 is a sub-automaton of G2. Then R(G1, true) ≤

R(G2, true) and CR(G1, true) ≤ CR(G2, true).

36

Proof.

1. Let q |= R(G1, true). If q = q0 (initial state), then obviously q |= R(G2, true). Suppose q , q0. There-

fore, q ∈ Q1, ∃q1, . . . , qn−1 ∈ Q1, and σ0 . . .σn−1 ∈ Σ∗1 (n ≥ 1) such that δ1(ql ,σl) = ql+1 (0 ≤ l ≤ n − 2),

δ1(qn−1,σn−1) = q, and ql |= R(G1, true) for l ∈ {0, . . . ,n−1}. Based on the definition of sub-automaton in

Section 2.1, since G1 ⊆ G2, then q0, . . . , qn−1,q ∈ Q2, σ0 . . .σn−1 ∈ Σ∗2, δ2(ql ,σl) = ql+1 (0 ≤ l ≤ n− 2), and

δ2(qn−1,σn−1) = q. Therefore, ql |= R(G2, true) (0 ≤ l ≤ n− 1) and q |= R(G2, true). We can conclude that

R(G1, true) ≤ R(G2, true).

2. Let q |= CR(G1, true). If q ∈ Qm1 ⊆ Qm2, then q |= CR(G2, true). Suppose q < Qm1. Therefore, ∃q1, . . . ,

qm−1 ∈Q1, qm ∈Qm1, and σ0 . . .σm−1 ∈ Σ∗1 such that δ1(q,σ0) = q1, δ1(ql ,σl) = ql+1 (l ∈ {1, . . . ,m−1}), and

q,ql |= CR(G1, true) for l ∈ {1, . . . ,m}. Since G1 ⊆G2, then Qm1 ⊆Qm2, q,q1, . . . , qm ∈Q2, σ0 . . .σm−1 ∈ Σ∗2,

δ2(q,σ0) = q1, and δ2(ql ,σl) = ql+1 (l ∈ {1, . . . ,m− 1}). Therefore, q |= CR(G2, true) and we conclude that

CR(G1, true) ≤ CR(G2, true).

We prove that under the conditions defined below, the relation between the reachability functions of two

automata is not affected under the supervision of SFBC.

Lemma 3.7. Consider G1 = (Q1,Σ1,δ1,q0,Qm1) and G2 = (Q2,Σ2,δ2,q0,Qm2). Suppose they are MR and G1 is a

sub-automaton of G2. Assume P ∈ Pred(Q) (Q = Q1∪Q2 = Q2), P , false and q0 |= P . Moreover, P is controllable

with respect to G2 and f : Q2→ Γ a SFBC such that R(Gf
2 , true) = P . Then

R(Gf
1 , true) ≤ R(Gf

2 , true), (3.8)

R(Gf
1 , true) = R(Gf

2 , true)∧R(G1, true), (3.9)

R(Gf
1 , true) = R(G1, P). (3.10)

Proof.

1. Since G1 is a sub-automaton of G2, Gf
1 is a sub-automaton of Gf

2 . Hence, (3.8) follows.

2. We prove that (i) R(Gf
1 , true) ≤ R(Gf

2 , true)∧R(G1, true) and (ii) R(Gf
2 , true)∧R(G1, true) ≤ R(Gf

1 , true).

i. We know that R(Gf
1 , true) ≤ R(G1, true) and we proved that R(Gf

1 , true) ≤ R(Gf
2 , true); therefore,

we have R(Gf
1 , true) ≤ R(Gf

2 , true)∧R(G1, true).

37

ii. Assume q |= R(Gf
2 , true)∧R(G1, true). Therefore, we have q |= R(Gf

2 , true) and q |= R(G1, true). We

claim that ∃s ∈ Σ∗1, such that q = δ1(q0, s) in G1 and q = δ
f
2 (q0, s) in Gf

2 , where δ
f
2 (., .) represents

transitions in G2 under the supervision of f . If that is not the case, for every s1 ∈ L(G1) and s2 ∈

L(Gf
2) such that q = δ1(q0, s1), q = δ

f
2 (q0, s2), s1 < L(Gf

2), and s2 < L(G1). Since L(Gf
2) ⊆ L(G2), in

G2, q = δ2(q0, s2). But G1 and G2 are MR and this is not possible. So let q0, . . . , qn−1,q (n ≥ 1) be the

sequence of states in Q1 when s is executed. Since the sequence is enabled under the supervision

of f (in Gf
2), it remains enabled in Gf

1 . Therefore, we can conclude that q |= R(Gf
1 , true).

Thus, we have proved that R(Gf
1 , true) = R(Gf

2 , true)∧R(G1, true).

3. We know that R(Gf
2 , true) = P ; therefore,

R(Gf
1 , true) = P ∧R(G1, true) (by (3.9))

We prove that (i) P ∧R(G1, true) ≤ R(G1, P) and (ii) R(G1, P) ≤ P ∧R(G1, true).

i. We use strong induction. Base case: since q0 |= P and q0 |= R(G1, true), then q0 |= R(G1, P).

Strong inductive step: now we assume that P ∧R(G1, true) ≤ R(G1, P) holds for all states that are

located within a distance of n transitions from q0. The distance of a state q from q0 is defined as

the shortest path to that state. We need to prove that P ∧R(G1, true) ≤ R(G1, P) also holds for all

states that are located within n+1 transitions from q0 (n ≥ 0). Suppose qn+1 |= P ∧R(G1, true) and

is at a distance of n+1 from q0. Since P is controllable and R(Gf
2 , true) = P ; therefore, ∃t ∈ Σ∗2 such

that qn+1 = δ
f
2 (q0, t) and the trajectory on the t sequence satisfies P . We have qn+1 |= R(G1, true);

moreover, G1 and G2 are MR. Therefore, t ∈ L(G1) and the trajectory is in R(G1, true). qn+1 is

reachable from q0 and all the states leading to qn+1 satisfy P ; therefore, qn+1 |= R(G1, P). qn+1 is

located within n + 1 transitions from q0 and satisfies P ∧ R(G1, true) ≤ R(G1, P). By the strong

induction, we can say that P ∧R(G1, true) ≤ R(G1, P) is true.

ii. It is clear that R(G1, P) ≤ P and R(G1, P) ≤ R(G1, true). Therefore, we have R(G1, P) ≤ P ∧

R(G1, true).

Remark 3.3 considers G1 and G2 in Lemma 3.7.

Remark 3.3. By (3.9),

R(Gf
1 , true) = R(Gf

2 , true)∧R(G1, true) = P ∧ PQ1
(Recall that G1 and G2 are reachable by assumption.)

38

Thus, R(Gf
1 , true) is satisfied on all states in Q1 that satisfy P . Thus, if we define P1 = P ∧ PQ1

, then P1 as a

predicate on Q1 is controllable. More precisely, if f1 is the restriction of f to Q1 and P1|Q1
is the restriction of P1

to Q1, then

R(Gf1
1 , true) = P1|Q1

= (P ∧ PQ1
)|Q1

= P |Q1
.

In other words, if P is controllable with respect to G2, P |Q1
is controllable with respect to G1.

Results similar to those of Lemma 3.7 hold for coreachability predicate.

Lemma 3.8. Consider G1 = (Q1,Σ1,δ1,q0,Qm1) and G2 = (Q2,Σ2,δ2,q0,Qm2). Suppose they are MR and G1 is a

sub-automaton of G2. Assume P ∈ Pred(Q) (Q = Q1∪Q2 = Q2), P , false and q0 |= P . Moreover, P is controllable

and nonblocking with respect to G1. Let f be SFBC f : Q2→ Γ such that R(Gf
2 , true) = P . Then

CR(Gf
1 , true) ≤ CR(Gf

2 , true), (3.11)

CR(Gf
1 , true) ≤ CR(Gf

2 , true)∧CR(G1, true), (3.12)

CR(G1, P) ≤ CR(Gf
1 , true). (3.13)

Proof.

1. (3.11) follows from the fact that Gf
1 is a sub-automaton of G2.

2. (3.12) follows from (3.11) and that Gf
1 is a sub-automaton of G1.

3. P is controllable; therefore, P |Q1
is controllable (Remark 3.3). P is G1-nonblocking

R(G1, P) ≤ CR(G1, P).

Intuitively, R(G1, P)|Q1
= R(G1, P |Q1

) and CR(G1, P)|Q1
= CR(G1, P |Q1

). Thus,

R(G1, P |Q1
) ≤ CR(G1, P |Q1

).

With f1 = f |Q1
and using Theorem 2.3,

CR(G1, P |Q1
) ≤ CR(Gf1

1 , true),

and thus,

CR(G1, P) ≤ CR(Gf
1 , true).

39

Lemma 3.9. Consider the set of MR models G and automaton G that are defined in Definition 3.4. Suppose

K ∈ P red(Q), K ≤ R(G, true) and let Ki =
(
K ∧R(Gi , true)

)
|Qi

. If K is controllable with respect to G, then Ki is

controllable with respect to Gi (i ∈ I).

Proof. Suppose K is controllable with respect to G. We have to prove that Ki is controllable with respect to

Gi (i ∈ I). From controllability of K , we can conclude that there exists a SFBC f such that R(Gf , true) = K .

By Lemma 3.2, G and Gi are MR. Thus, applying Lemma 3.7 and Remark 3.3 to Gi and G, we can conclude

that Ki = (K ∧R(Gi , true))|Qi
is controllable with respect to Gi .

Now we can prove Theorem 3.1.

Proof of Theorem 3.1.

1. Since K is controllable with respect to G by assumption, by Theorem 2.2, there exists a SFBC f such

that

R(Gf , true) = K (3.14)

From assumption (ii), R(Gi ,K) ≤ CR(Gi ,K) (i ∈ I).

∨
i∈I

R(Gi ,K) ≤
∨
i∈I

CR(Gi ,K)

∨
i∈I

R(Gf
i , true) ≤

∨
i∈I

CR(Gf
i , true) (by Lemmas 3.7 and 3.8)

R(Gf , true) ≤ CR(Gf , true) (by Remark 3.2)

Thus, K is nonblocking with respect to G. Now we show that f is a solution to RNSSCP, i.e., conditions

40

(1) and (2) in Problem 3.1 are true.

R(Gf
i , true) = R(Gf , true)∧R(Gi , true) (by Lemma 3.7)

= K ∧R(Gi , true) (by (3.14))

≤ P ∧R(Gi , true)

≤
(
Pi ∨

[
R(G, true)∧¬R(Gi , true)

])
∧R(Gi , true)

=
(
Pi ∧R(Gi , true)

)
∨
(
R(G, true)∧¬R(Gi , true)∧R(Gi , true)

)
= Pi ∧R(Gi , true)

≤ Pi

Now we just need to prove that R(Gf
i , true) ≤ CR(Gf

i , true).

R(Gf
i , true) = R(Gi ,K) (by Lemma 3.7)

≤ CR(Gi ,K) (K is Gi-nonblocking)

≤ CR(Gf
i , true) (by Lemma 3.8)

2. Since K = R(Gf , true) and by Theorem 2.2, K is controllable with respect to G. Since f solves the

RNSSCP, R(Gf
i , true) ≤ CR(Gf

i , true). By Lemma 3.7, R(Gf
i , true) = K ∧ R(Gi , true). Define Ki = K ∧

R(Gi , true)|Qi
and fi = f |Qi

. Thus, R(Gfi
i , true) = Ki and by Theorem 2.2,

R(Gfi
i , true) = R(Gi ,Ki) = CR(Gi ,Ki). (3.15)

Note that the domain of the above predicates are Qi . From (3.15), we conclude that

R(Gi ,K ∧R(Gi , true)) = CR(Gi ,K ∧R(Gi , true)).

Since states that are satisfying K , but they are not in Qi do not satisfy the above reachability and

coreachability predicates, we can conclude

R(Gi ,K) = CR(Gi ,K).

41

Next we will prove that K ≤ P . Observe that

Pi ∨
[
R(G, true)∧¬R(Gi , true)

]
=
[
Pi ∨R(G, true)

]
∧
[
Pi ∨¬R(Gi , true)

]
≥
[
R(Gf

i , true)∨R(G, true)
]
∧
[
R(Gf

i , true)∨¬R(G, true)
]

≥
[(
R(Gi , true)∧R(Gf , true)

)
∨R(G, true)

]
∧[(

R(Gi , true)∧R(Gf , true)
)
∨¬R(Gi , true)

]
(Lemma 3.7)

= R(G, true)∧
[
R(Gf , true)∨¬R(Gi , true)

]
= R(Gf , true)∨

(
¬R(Gi , true)∧R(G, true)

)
≥ R(Gf , true)

= K.

Using the above result, we can conclude that

P=
[∧
j∈I

(
Pj ∨

[
R(G, true)∧¬R(Gj , true)

])]
∧R(G, true)

≥ K ∧R(G, true)

= K. (Since R(G, true) ≥ R(Gf , true) = K)

We define the set of all controllable and Gi-nonblocking predicates of P as CNbGP(P),

CNbGP(P) = {K ∈ Pred(Q) | K ≤ P & K controllable with respect to G and Gi-nonblocking ∀ i ∈ I}. (3.16)

Lemma 3.10. CNbGP(P) is nonempty, closed under disjunction operation and has a supremal element.

Proof.

Claim 1. CNbGP(P) is nonempty since false ∈ CNbGP(P).

Claim 2. Suppose Λ is the index set of CNbGP(P) and Kλ ∈ CNbGP(P) for all λ ∈ Λ. We have to prove

that K =
∨

λ∈ΛKλ ∈ CNbGP(P), i.e., K ≤ P , K is controllable with respect to G and Gi-nonblocking. It

is obvious that K ≤ P and [74] proved that K is controllable with respect to G. Therefore, we only need

to prove that K is Gi-nonblocking. In other words, we want to prove that R(Gi ,K) ≤ CR(Gi ,K) for all

i ∈ I . Assume q |= R(Gi ,K); therefore, Kλ is controllable with respect to G. It follows from Lemma 3.9

that
(
Kλ ∧ R(Gi , true)

)
|Qi

is controllable with respect to Gi . Thus q is reachable in Gi using a trajectory

42

that lies in
(
Kλ ∧ R(Gi , true)

)
|Qi

. Therefore, q |= K and q |= R(Gi , true). We know that K =
∨

λ∈ΛKλ; thus,

∃λ ∈ Λ such that q |= Kλ. We have q |= R(Gi , true) and q |= Kλ; therefore, q |= R(Gi ,Kλ). Since Kλ is Gi-

nonblocking (R(Gi ,Kλ) ≤ CR(Gi ,Kλ)), q |= CR(Gi ,Kλ). CR(., .) is a monotonically increasing function and;

therefore, CR(Gi ,Kλ) ≤ CR(Gi ,K). Thus, we can conclude that q |= CR(Gi ,K) and R(Gi ,K) ≤ CR(Gi ,K).

Let K↑ denotes supCNbGP(P). K↑ characterizes the largest (maximally permissive) solution of the robust

supervisory control problem. In the next section, we present a computational procedure for K↑.

3.4 Solution: Computational Procedure

The following theorem presents an algorithm to calculate the supremal solution of Theorem 3.1, K↑.

Theorem 3.2. Assume that G is the finite state automaton introduced in Definition 3.4 and P is the predicate in

(3.7). Then K↑ = supCNbGP(P) can be calculated using the following iterative procedure which terminates in a

finite number of steps less than or equal to the number of states satisfying P .

1. Set r = 1 and Sr = P .

2. Li = CR(Gi ,Sr) for all i ∈ I .

3. S ′r =
[∧

i∈I Li

]
∨
[∨

i∈I
(
Li ∧¬(

∨
j∈I & j,i PQj

)
)]
.

4. Sr+1 = R(G,〈S ′r〉).

5. If Sr+1 , Sr , set r = r + 1 and go to step 2.

6. End (Sr = K↑).

Here 〈.〉 is calculated with respect to G and PQj
is a predicate that represents the states of Gj (j ∈ I).

Proof.

First we prove that the algorithm converges in a finite number of iterations. In this chapter, the plant

models Gi are finite-state automata; therefore, the set of predicates Pred(Q) is a finite set. Furthermore, for

each iteration, Li ≤ Sr (i ∈ I); therefore,
∧

i∈I Li ≤ Sr and
∨

i∈I Li ≤ Sr . It can easily be seen that
∨

i∈I
(
Li ∧

¬(
∨

j∈I & j,i PQj
)
)
≤
∨

i∈I Li . Therefore, we can conclude that S ′r ≤ Sr . Based on step 4, we also have Sr+1 ≤

S ′r ≤ Sr . Therefore, this algorithm is nonincreasing and will converge to either K↑ = false or K↑ , false in a

finite number of iterations less than or equal to the number of states satisfying S1 = P .

43

Now suppose that the algorithm converges to Sm for some m ≥ 1 : Sm = S ′m = Sm+1. We prove that (i) Sm ≤ P ,

(ii) Sm is controllable with respect to G and (iii) Sm is Gi-nonblocking for all i ∈ I .

i. We have proved that our algorithm produces a nonincreasing sequence of predicates; therefore, after

m iteration, we have Sm ≤ Sm−1 ≤ · · · ≤ S1 = P .

ii. Based on Lemma 2.2, Sm+1 is the supremal controllable sub-predicate of S ′m. Therefore, Sm+1 is con-

trollable with respect to G. Since Sm+1 = Sm, we can conclude that Sm is controllable with respect to

G.

iii. We have to prove that R(Gk ,Sm) ≤ CR(Gk ,Sm) for all k ∈ I . Let us fix k. Assume q |= R(Gk ,Sm), then

q |= Sm ∧ R(Gk , true). Therefore, ∃t = σ0 . . .σn−1 ∈ Σ∗k such that starting from q0, we pass through

q0, . . . , qn−1 ∈ Qk and reach q, where δk(ql ,σl) = ql+1 (l ∈ L = {0, . . . ,n − 2}) and δk(qn−1,σn−1) = q.

Moreover, ql , ,qn−1,q |= Sm and ql ,qn−1 |= R(Gk , true) for all l ∈ L. Since Sm = S ′m, we can conclude

that q0, . . . , qn−1,q |= S ′m. Based on the step 3 of algorithm, q0, . . . , qn−1,q |=
∧

k∈I Lk or q0, . . . , qn−1,q |=∨
k∈I

(
Lk ∧ (

∧
j∈I & j,k¬PQj

)
)
. Either way, q0, . . . , qn−1,q |= (Lk = CR(Gk ,Sm)). Therefore, R(Gk ,Sm) ≤

CR(Gk ,Sm).

Now let the iterative steps (2) to (4) in Theorem 3.2 be represented by an operative Ψ(.). In steps (ii) and

(iii) above, we showed that every fix-point of Ψ(P1) is controllable and Gi-nonblocking. If Sm , K↑, then

Sm ≤ K↑ ≤ P . Thus, Ψ(Sm) ≤ Ψ(K↑) ≤ Ψ(P) and Sm ≤ K↑ ≤ Ψ(P). Apply Ψ(.) m − 1 times; Sm ≤ K↑ ≤

Ψ(m−1)(P) = Sm (Ψ(m)(.) denotes that Ψ(.) is applied m times). Thus Sm = K↑.

3.5 Example

Some of the fault-tolerant control problems can be formulated as robust supervisory control problems. For

instance, suppose we have a plant G and assume it starts in normal (N) mode. Later, the plant may face a

failure (for the sake of simplicity, assume one failure), and it enters the failure mode (F). The overall model

of the plant (in normal and faulty modes) is GNF . For each mode, the plant has different sets of marked

states (for the sake of simplicity, assume one for each, QmN and QmNF) and different specifications. In the

fault-tolerant control problem, we want to find a supervisor (here a state feedback law f) such that

1. The nonblocking property of the normal and the faulty modes are guaranteed.

R(Gf
N , true) ≤ CR(Gf

N , true),

44

Figure 3.5: A propulsion system of a monopropellant rocket.

Table 3.1: All the events in Figure 3.6 and their controllability status.

Label Event Controllable

ai Open valve i Yes

b3 Close valve 3 Yes

f Valve 1 stuck-closed No

ui Engine i thrust up No

di Engine i thrust down No

R(Gf
NF , true) ≤ CR(Gf

NF , true).

2. The specifications are satisfied.

R(Gf
N , true) ≤ PN ,

R(Gf
NF , true) ≤ PNF ,

where PN and PNF are predicates that represent the safe states in GN (normal mode) and GNF (normal

and faulty mode).

This problem can be solved as a robust supervisory control problem for G = {GN ,GNF }. In the following,

we examine an example of the above fault-tolerance problem.

Consider the monopropellant propulsion system illustrated in Figure 3.5. This model has two engines,

one fuel tank, three valves, fuel pumps and two combustion chambers. In this model, V1 and V2 are

pyrovalves. These two pyrovalves are normally closed to help fuel storage and prevent leakage; however,

once we open them, they will remain that way. The valves may experience failure and become stuck-closed.

For simplicity, assume that only V1 may fail. The model of each component is shown in Figure 3.6. For

every model, consider 0 to be the initial state. All the model events are listed in Table 3.1.

45

0

1 3

2

V1
0 1 2

V2
0 1

V3
0 1

E

a1

a2

u2

d2

u1 d1 u1 d1

u2

d2

a3
b3

f

Figure 3.6: The model of system’s components.

The automaton V ′ in Figure 3.7 represents the system’s components’ interactions under synchronization.

V ′ is calculated by adding the necessary self-loops to the synchronous product of the three valves V =

sync(V1,V2,V3). In Figure 3.7 (V ′), the self-loops shows that the engine E1 can be fired if and only if V1 and

V3 are open, and the engine E2 can be fired if and only if V2 and V3 are open. The labels of states are of the

form m1m2m3, where m1, m2, and m3 are the states of V1, V2, and V3.

The entire model of the system is calculated by the synchronous product of E and V ′ , sync(E,V ′). The

normal and normal+faulty models of the system are shown in Figure 3.8 and 3.9. These two models are MR.

The normal model G1 has 18 reachable states (10 marked); the normal+faulty model G2 has 30 reachable

states (18 marked). The labels of states are of the form n1n2n3n4, where n1 is the state of E, and n2, n3, and

n4 are the states of V1, V2, and V3.

In this example, the specifications of both normal and normal+faulty models are the same; We do not want

engine 1 and 2 to fire at the same time. In the DES model of the engine, Figure 3.6, only at state 3 both

engines are fired. Therefore, every state in Figure 3.8 and 3.9 that has a label 3xxx is unsafe. The set of un-

safe (illegal) states (i.e., states that do not satisfy the safety predicate) is Qill = {3110,3111,3210,3211}.

Since all reachable states of G1 and G2 are coreachable as well, R(G1, true) = CR(G1, true) = PQ1
and

R(G2, true) = CR(G2, true) = PQ2
. Moreover, we have P1 = PQ1

∧¬PQill
and P2 = PQ2

∧¬PQill
. Since Q1 ⊆ Q2,

R(G, true) = R(G2, true) and Q = Q2. For this example, (3.7) can be simplified to P = P2∧ (P1∨ (PQ∧¬PQ1
)) =

46

000 001

101100

010 011

111110

a1 a1 a1

a2 a2

a3 a3

a3 a3

b3
b3

b3b3

a1

a2 a2

201200
a3

b3

211210
a3

b3

f
f

f f
a2 a2

d1d1

d1d2

d1d2

d1d2

d1d2

d1d2

d1d2

d1d2

d1d2

u1d2
u1u2

d1u2

d1u2

Figure 3.7: The automaton V ′ .

P2. The state set represented by P2 is QP2
= Q2 − {3110,3111,3210,3211}. Applying the algorithm in Propo-

sition 3.2, we converge to the solution K↑ after 3 iterations.

In the first iteration, S1 = P = P2. At the second step, L1 = CR(G1,S1) and L2 = CR(G2,S1). The state sets

that represents L1 and L2 are QL1
= Q1 − {3110,3111,3210,3211} and QL2

= Q2 − {3110,3111,3210,3211}.

At the third step, S ′1 =
[
L1 ∧L2

]
∨
[
(L1 ∧ ¬PQ2

)
∨

(L2 − PQ1
)
]

and the state set that represents it is QS ′1
=

Q2 − {3110,3111,3210,3211}. At the fourth step, S2 = R(G,〈S ′1〉) and QS2
= Q2 − {0111,1111,2111,1211,

3110,3111,3210,3211}. Since S2 , S1, the algorithm will be repeated for the second iteration.

In the second iteration, the algorithm starts from the second step, where L1 = CR(G1,S2), L2 = CR(G2,S2),

QL1
= Q1 − {0110,0111,1111,2111,1211,3110,3111,3210,3211} and QL2

= Q2 − {0111,1111,2111,1211,

3110,3111,3210,3211}. At the third step, S ′2 =
[
L1 ∧L2

]
∨
[
(L1−PQ2

)
∨

(L2−PQ1
)
]

and the state set that repre-

sent it is QS ′2
= Q2 − {0110,0111,1111,2111,1211,3110,3111,3210,321}. At the fourth step, S3 = R(G,〈S ′2〉)

and QS3
= Q2 − {1110,2110,0110,0111,1111,2111,1211,3110,3111,3210,3211}. Since S3 , S2, the algo-

rithm will be repeated for the third iteration.

In the third iteration, the algorithm starts from the second step, where L1 = CR(G1,S3), L2 = CR(G2,S3),

QL1
= Q1−{1110,2110,0110,0111,1111,2111,1211,3110,3111,3210,3211} and QL2

= Q2−{1110,2110,0110,

0111,1111,2111,1211,3110,3111,3210,3211}. At the third step, S ′3 =
[
L1 ∧L2

]
∨
[
(L1−PQ2

)
∨

(L2−PQ1
)
]

and

the state set that represent it is QS ′3
= Q2 − {1110,2110,0110,0111,1111,2111,1211,3110,3111,3210,321}.

At the fourth step, S4 = R(G,〈S ′3〉) and QS4
= Q2−{1110,2110,0110,0111,1111,2111,1211,3110,3111,3210,

3211}. Since S4 = S3, the algorithm stops. Therefore, K↑ = S4 and there exists a SFBC f such that

47

0000 0001

01010100

2010 2011

2111

1100 1101

0010 0011

01110110 1110 1111

3110 31112110

a1 a1 a1

a2 a2

a3 a3

a3 a3
a3 a3

a3a3

a3

b3 b3

b3b3

b3 b3

b3b3

b3
u2

u1

u1u1

d1

a1

a2 a2 a2a2
d1

d1

d2

d2 u2

d2 u2

a1 a1

Figure 3.8: The normal model of system (G1).

R(Gf , true) = K↑.

The allowed states under the supervision of f are Qf = Q2−{1110,2110,0110,0111,1111,2111,1211,3110,

3111,3210,3211}. Since we have Qf , for each σ ∈ Σ, fσ : Q→ {0,1} can easily be calculated. The set of states

that we should avoid are {1110,2110,0110,0111,1111,2111,1211,3110,3111,3210,3211}; to avoid them,

as one can see in Figures 3.8 and 3.9, only controllable events will be disabled. For example, in Figure 3.8,

at 0110 (no engine has fired, and V1, V2, and V3 are open, open, and closed), we will disable the controllable

event a3 (opening V3) to avoid reaching 0111 (no engine has fired, and V1, V2, and V3 are open). 0111 can

go to 1111 (Engine 1 has fired, and V1, V2, and V3 are open) via the uncontrollable event u1 (Engine 1 fires)

and 1111 can go to 3111 (both engines has fired) via the uncontrollable event u2 (Engine 2 fires); therefore,

we need to avoid reaching to 0111.

Since no uncontrollable event has been disabled and all states are marked, K is controllable and nonblock-

ing with respect to G1 and G2. Here, 1110, 2110, 0110, 0111, 1111,2111, and 1211 are the additional

states that need to be avoided besides Qill .

48

0000 0001

01010100

2010 2011

2111

1100 1101

0010 0011

01110110 1110 1111

3110 31112110

a1 a1 a1

a2 a2

a3 a3

a3 a3
a3 a3

a3a3

a3

b3
b3

b3b3

b3 b3

b3b3

b3

u1

u1u1

d1

a1

a2 a2 a2a2
d1

d1

d2

d2
u2

02010200
a3
b3

02110210
a3
b3

1200 1201
a3
b3

1210 1211
a3
b3

22112210
a3

b3

32113210
a3

b3

f f
f f f f f

f

fff f

u2

d1 d1

a1 a1

d2 u2

a2 a2

u2d2

a2 a2

d1 d1

d1 d1

Figure 3.9: The normal+faulty model of system (G2).

3.6 Summary

In this chapter, we solved a problem of Robust Nonblocking Supervisory Control (RNSSCP) of DES in a

state-based framework and characterized the corresponding solution set. Moreover, we developed an algo-

rithm to calculate the maximally permissive solution within a finite number of iterations. This state-based

framework could serve as a basis for developing design algorithms that use symbolic calculations. Such

algorithms would be crucial in applying the results to industrial-size problems and are the next chapter’s

subject.

49

3.A Procedure to Obtain Mutually Refined Automata

In Section 3.1, we discussed the MR condition. As we mentioned before, if any automata pairs are not MR,

there is a procedure that converts these automata into MR ones.

One of the operations defined over automata is multiple biased synchronous product. It can be regarded as

an extension of the biased synchronous product of two automata [31].

Definition 3.5. ([11]) Consider a set of automata G = {G1, . . . ,GN } with Gi = (Qi ,Σi ,δi ,q0i ,Qmi) (i ∈ I =

{1, . . . ,N }). The multiple biased synchronous product of Gk for k ∈ I is denoted by Gk ||mr (G−{Gk}) and defined

as follows:

reach(Gk ||mr (G − {Gk})) =
(
Q1 × · · · ×QN ,Σk ,δ,

(
q01, . . . , q0N

)
,Qm1 × · · · ×QmN

)
, (3.17)

where for qi ∈Qi (i ∈ I),

δ
(
(q1, . . . , qN),σ

)
=

 (q′1, . . . , q
′
N), if σ ∈ Σk and δk(qk ,σ)!

undefined, otherwise

with

(∀j ∈ I) q′j =

 δj (qj ,σ), if σ ∈ Σj and δj (qj ,σ)!

qj , otherwise
.

Procedure 3.1. ([11])

1. Let G = {G1, . . . ,GN } and Gi = (Qi ,Σi ,δi ,qi0,Qmi) for all i ∈ I = {1, . . . ,N }. Add a dump state to each Gi

(i ∈ I) and add the self-loop of Σ =
⋃

i∈I Σi to each of dump states. Denote the updated set of automata as

G′ = {G′1, . . . ,G
′
N }.

2. Calculate G′′i = Gi ||mr (G′ − {G′i}) (i ∈ I).

3. Denote the resulting set of automata as G′′ = {G′′1 , . . . ,G
′′
N }.

[11] proves that for the resulting set of automata G′′ derived from Procedure 3.1, G′′i and G′′j are MR (i, j ∈

I).

50

Chapter 4

Robust Supervisory Control of Systems

with State-Tree-Structure Model

In this chapter, a novel state-based approach is proposed for the robust nonblocking supervisory control

problem of systems with STS models. Due to the model uncertainty, the plant model is assumed to belong

to a finite set of STSs. A novel state-based supervisory control problem is formulated. A set of necessary

and sufficient conditions are obtained for problem solvability. Furthermore, an algorithm is developed to

calculate the supremal solution (maximally permissive) within a finite number of iterations. Finally, an

illustrative example is presented in which BDDs are used to symbolically synthesize the supervisor and

enhance calculation efficiency.

The rest of this chapter is organized as follows. In Section 4.1, the robust state-based supervisory control

problem is defined for a system with a set of STS models and the MR property is studied for holons and

STS. In Section 4.2, some implications of MR property in STS are explained. The necessary and sufficient

conditions for the existence of a solution for the supervisory control of STS are given in Section 4.3. An

algorithm is proposed to calculate the maximally permissive solution within a finite number of iterations

in Section 4.4. In Section 4.5, the robust state-based supervisory control problem is formulated for the STS

model of a Flexible Manufacturing System (FMS) with a state set of order 108 and the maximally permissive

solution is calculated using the proposed algorithm in Section 4.4. Finally, the summary is given in Section

4.6.

51

4.1 Problem Formulation

In this section, we define our supervisory control problem. Let us consider a DES plant and assume that due

to some model uncertainty, the actual model of plant belongs to a finite set of N models G = {G1, . . . ,GN }

where each Gi (i ∈ I = {1, ...,N }) is a STS given below.

• Gi = (STi ,Hi ,Σi ,∆i ,ST0,STmi),

• STi = (Xi ,x0,Ti , εi) and

• Hi =
{
Ha

i | a ∈ Xi , Ti(a) = OR & Ha
i = (Xa

i ,Σ
a
i ,δ

a
i ,X

a
0i ,X

a
mi)

}
.

For each model, the design specification (safe sub-ST) is defined by a predicate Pi . For ∆i(., .) to be sound,

we assume that all the holons in Gi satisfy the conditions of Lemma 2.17.

Example 4.1. As an example, consider a manufacturing plant with three machines (M1, M2, and M ′2) and one

automated guided vehicle (AGV). The responsibility of AGV is to transfer the work-pieces between M1 and M2

(M ′2). One of the machines M2 may experience a fault. The normal (normal+faulty) model of plant GN (GNF),

where M2 does not experience any fault (may experience a fault), is shown in Figure 4.1. Assume that all the

events are observable; an assumption that will be carried out for the rest of this chapter. The controllable events

are Σc = {a1, a2, a
′
2}. The marked states are shown by double circles. In this example, G = {GN ,GNF }.

We assume that all the holons are deterministic, i.e., by any internal transition in holon, one simple state

(or super-state) goes to another simple state (or super-state). Consider the STS examples in Figures 2.2 and

4.1 where all the holons are deterministic. In Figure 2.2, for example, in holon HB assigned to the super-

state B, the transition α is from the simple state x to the super-state Y only and the transition γ is from the

super-state Y to the simple state x only.

Before defining the MR property for STS, in Theorem 4.1, we present an alternative set of conditions for

MR property in automata and prove that they are equivalent to those in Definition 3.1. In Theorem 4.1, we

change the scope of Definition 3.1 from sequences to single transitions.

Theorem 4.1. Consider two automata G1 = (Q1,Σ1,δ1,q0,Qm1) and G2 = (Q2,Σ2,δ2,q0,Qm2). Let Q1r and Q2r

be the reachable states of G1 and G2. Automata G1 and G2 are MR if and only if

1. ∀q ∈Q1r ∩Q2r , ∀σ ∈ Σ1 ∩Σ2(
δ1(q,σ)! and δ2(q,σ)!

)
⇒ δ1(q,σ) = δ2(q,σ),

2.

52

0

1

GN

1

2

0

0

1

0

1

a1b1

b1

b2,b'2

a2,a'2

a2b2
a'2b'2

M1 AGV M2 M’2

a1

GN

M1 AGV M2 M’2

1 0 1 2 0 1 0 10

× × ×

U U U U U

0

1

GNF

1

2

0

0

1

0

2

1a1b1

b1

b2,b'2

a2,a'2

a2b2

f

a'2b'2

M1 AGV M2 M’2

a1

GNF

M1 AGV M2 M’2

1 0 1 2 0 1 2 00

× × ×

1U U U U U U

Figure 4.1: Example 4.1: the two STS models of a manufacturing plant.

2.a. ∀q ∈Q1r ∩Q2r , ∀σ ∈ Σ1(
δ1(q,σ)! and not δ2(q,σ)!

)
⇒ δ1(q,σ) ∈Q1r −Q2r ,

2.b. ∀q ∈Q1r ∩Q2r , ∀σ ∈ Σ2(
not δ1(q,σ)! and δ2(q,σ)!

)
⇒ δ2(q,σ) ∈Q2r −Q1r ,

3.

3.a. ∀q ∈Q1r −Q2r , ∀σ ∈ Σ1(
δ1(q,σ)!

)
⇒ δ1(q,σ) ∈Q1r −Q2r ,

3.b. ∀q ∈Q2r −Q1r , ∀σ ∈ Σ2(
δ2(q,σ)!

)
⇒ δ2(q,σ) ∈Q2r −Q1r .

Proof.

(If) In the trivial case of L(G1) = ∅ or L(G2) = ∅, MR conditions are true. Suppose L(G1) , ∅ and L(G2) , ∅. If

q01 , q02, then it follows from condition (3.a.) and (3.b.) that Q1r ∩Q2r = ∅. Therefore, all three conditions

of MR property (Definition 3.1) hold.

Suppose q01 = q02. Therefore, the condition (1) in Definition 3.1 is true for s = ε. Condition (1) of theorem

implies condition (1) in Definition 3.1 for all strings of length |s| = 1. We can also use condition (1) to show

that if condition (1) in Definition 3.1 holds for strings of length |s| = k (k ≥ 1), then it holds for strings of

length |s| = k + 1. Thus, by induction, condition (1) in Definition 3.1 is true.

53

Next we prove that condition (2) of Definition 3.1 is true. Suppose q = δ1(q01, s) for some s ∈ L(G1)− L(G2)

and qt = δ2(q02, t) for some t ∈ L(G2). In that case, q ∈Q1r and qt ∈Q2r . We claim q <Q2r . This statement is

true for any s with |s| = 1 because of condition (2.a.). Now suppose |s| ≥ 2. Since s ∈ L(G1)−L(G2), L(G2) , ∅,

and ε ∈ L(G2), there exist s1, s2 ∈ Σ∗1 with s = s1s2 and s1 ∈ L(G2). Let s′1 ∈ Σ∗1 be the largest string such

that ∃s′2 ∈ Σ∗1, s′1s
′
2 = s, s′1 ∈ L(G2) and let δ2(q02, s

′
1) = q′ . It follows from condition (1) in Definition 3.1

that δ1(q01, s
′
1) = q′ . s′2 , ε, otherwise s′1 = s and s ∈ L(G2) which violates the assumption s ∈ L(G1)− L(G2).

Suppose s′2 = σ1 . . .σn for n ≥ 1. Therefore, after the string s′1, σ1 . . .σn can only occur in G1. It follows from

condition (2.a.) that δ1(q01, s
′
1σ1) ∈ Q1r −Q2r and from condition (3.a.) that δ1(q01, s

′
1σ1 . . .σj) ∈ Q1r −Q2r

(2 ≤ j ≤ n). Therefore, q = δ1(q01, s
′
1s
′
2) ∈Q1r −Q2r and q , qt .

Condition (3) of Definition 3.1 is shown similarly using conditions (2.b.) and (3.b.).

(Only if) If L(G1) = ∅, then Q1r = ∅ and the conditions of the theorem hold. Similarly, if L(G2) = ∅, all the

conditions are true.

Now suppose L(G1) , ∅ and L(G2) , ∅. Thus, ε ∈ L(G1)∩ L(G2) and from condition (1) of Definition 3.1,

q01 = q02. Therefore, Q1r ∩Q2r , ∅. Now we prove condition (1). Suppose q ∈ Q1r ∩Q2r . We claim there

exists s ∈ L(G1) ∩ L(G2) such that δ1(q01, s) = q and δ2(q02, s) = q. If not, there exist s1 ∈ L(G1) − L(G2),

s2 ∈ L(G2) − L(G1), δ1(q01, s1) = q, and δ2(q02, s2) = q which violates condition (2) in Definition 3.1. Thus,

such s exists. Now if some σ transition is defined in G1 and G2 from state q, then by condition (1) in

Definition 3.1, δ1(q01, sσ) = δ2(q02, sσ) or in other words δ1(q,σ) = δ2(q,σ). This proves condition (1).

Next we prove condition (2.a.). Suppose q ∈ Q1r ∩Q2r , δ1(q,s)! and not δ2(q,s)!. As shown above, there

exists s ∈ L(G1)∩ L(G2) with q = δ1(q01, s) = δ2(q02, s). Thus, sσ ∈ L(G1) − L(G2) and from condition (2) in

Definition 3.1, we have δ1(q,σ) = δ1(q01, sσ) <Q2r .

Condition (2.b.) can be shown similarly.

Next consider condition (3.a.) and suppose q ∈ Q1r − Q2r and δ1(q,σ)!. We conclude that there exists

s ∈ L(G1)−L(G2) with q = δ1(q01, s); thus, sσ ∈ L(G1)−L(G2). Now it follows from condition (2) in Definition

3.1 that δ1(q,σ) = δ1(q01, sσ) is not reachable in G2; thus, δ1(q,σ) <Q2r .

Condition (3.b.) can be shown similarly.

We consider two assumptions over the set of STS models in G. The state set of each Gi is represented using

a hierarchy. The following assumptions mean that the state sets of all models are represented and labeled

consistently using a common hierarchy.

Assumption 4.1. Considers a set of STS models G = {G1, . . . ,GN } with Gi = (STi ,Hi ,Σi ,∆i ,ST0,STmi) and

STi = (Xi ,x0,Ti , εi). We assume:

54

1. The state-trees STi are sub-STs of a state-tree ST such that ST =
∨

i∈I STi .

2. The holons are defined consistently in the following sense:

For i, j ∈ I, if x ∈ Xi∩Xj and x is an internal state of Ha
i in Gi and an internal state of Ha′

j in Gj , then a = a′ .

(4.1)

As mentioned in Chapter 3, mutual refinement guarantees that every solution of robust state-based super-

visory control can be achieved using a state feedback law.

Definition 4.1. Consider the set of models in Assumption 4.1. Two STS models Gi and Gj are called MR if the

corresponding flat models are MR.

Remark 4.1. Definition 4.1 states that STS Gi and Gj are MR if the transitions among basic-STs in Gi and Gj

satisfy the three conditions of definition of MR property in automata (Definition 3.1) or equivalently the conditions

in Theorem 4.1.

We can use Definition 4.1 to check the MR property in STS models. For industrial-size systems calculating

the flat automata and checking the MR property are computationally expensive procedures that we want to

avoid. However, we observe that mutual refinement of a set of STS models can be verified from the mutual

refinement of the corresponding holons in the sense defined in the following.

Definition 4.2. Consider the set of STS models in Assumption 4.1. Suppose holon Ha
i and Ha

j belong to STSs Gi

and Gj , and matched to the same state a ∈ Xi ∩Xj . We say Ha
i and Ha

j are MR if

1. ∀x ∈ Xa
i ∩X

a
j , ∀σ ∈ Σa

i ∩Σ
a
j(

δi(x,σ)! and δj (x,σ)!
)
⇒ δi(x,σ) = δj (x,σ),

2.

2.a. ∀x ∈ Xa
i ∩X

a
j , ∀σ ∈ Σa

i(
δi(x,σ)! and not δj (x,σ)!

)
⇒ δi(x,σ) ∈ Xa

i −X
a
j ,

2.b. ∀x ∈ Xa
i ∩X

a
j , ∀σ ∈ Σa

j(
not δi(x,σ)! and δj (x,σ)!

)
⇒ δj (x,σ) ∈ Xa

j −X
a
i ,

3.

3.a. ∀x ∈ Xa
i −X

a
j , σ ∈ Σa

i

(δi(x,σ)!)⇒ δi(x,σ) ∈ Xa
i −X

a
j ,

55

G1
a

b11

b12

b21

B

B1 B2

α

β

c1

c2

C

α

β

α

c

µ

µ

G1

a B C

B1 B2 c2 c3×

b11 b12 b21

U U

U

U

c1 U

G2
a

b11

b12

b21

B

B1 B2

α

β

c1

c2

C

α

β

α

d

γ

γ

G2

a B C

B1 B2 c1 c2×

b11 b12 b21

U U

U

U

dU

Figure 4.2: Example 4.2: the two STS models of a plant.

3.b. ∀x ∈ Xa
j −X

a
i , σ ∈ Σa

j

(δj (x,σ)!)⇒ δj (x,σ) ∈ Xa
j −X

a
i .

Example 4.2. Consider the set of STS models G = {G1,G2} shown in Figure 4.2. Here, the set of conditions in

Assumption 4.1 are satisfied. In this example, the holons are all MR. The difference between these two models are

the additional transitions µ and γ that from C2 to C3, and a to d in G1 and G2. Since C3 (d) and µ (γ) do not

belong to G2 (G1); thus, the conditions of MR in Definition 4.2 are satisfied.

The corresponding flat automata of G1 and G2 are shown in Figure 4.3. The two automata satisfy the conditions

of Theorem 4.1 (Definition 3.1). Thus, based on Definition 4.1, one can also conclude that the STS models of G1

and G2 are MR.

Theorem 4.2. Consider the set of models in Assumption 4.1. Assume for any two STS models Gi and Gj , all the

corresponding holons are MR. Then the STS models are MR.

56

c3

G1 a

b11, b21 c1

c2

α

β

b12, b21 α

α

β

µ

µ

d

G2 a

b11, b21 c1

c2

α

β

b12, b21 α

α

β

γ

γ

Figure 4.3: Example 4.2: the corresponding flat automata of Figure 4.2.

Proof.

In order to prove the theorem, we show that the transitions among basic-STs of Gi and Gj satisfy condi-

tions in Theorem 4.1. Consider a reachable basic-ST of Gi and let q denote the corresponding state of flat

automaton of Gi . The state q is either (i) a simple state of a holon, say Hx
i with x ∈ Xi (when all ancestors of

q are OR states), or (ii) in of the form of an n-tuple q = (q1, . . . , qn), where qk is a simple state in some holon

H
xk
i (when q has at least one AND ancestor), xk ∈ Xi , and 1 ≤ k ≤ n.

Case (i). Suppose q is a simple state. Assume σ is enabled at q. Thus, in holon Hx
i of Gi , the target of σ

transition is either another (a) simple state, (b) an AND, or (c) an OR super-state.

(i.a). If the target of transition is a simple state q′ , then in holon Hx
i in Gi , q transitions to q′ by event σ . If

q is reachable in Gj and σ is defined at q in Gj , then by condition (1) in Definition 4.2 in holon Hx
j of

Gj , q transitions to q′ by event σ . Thus, condition (1) of Theorem 4.1 holds. Similarly, condition (2)

of Definition 4.2 implies condition (2.a.) of Theorem 4.1. Note that condition (2.a.) of Definition 4.2

implies that following a σ transition in Gi that is not defined in Gj , all subsequent states in the holon

Hx
i in Gi are not a state of holon Hx

j in Gj . Based on this and condition (3.a.) of Definition 4.2, we

conclude that condition (3.a.) of Theorem 4.1 holds. Conditions (2.b.) and (3.b.) of Theorem 4.1 hold

similarly.

(i.b). Suppose the target of σ transition in Hx
i from q is an OR super-state x′ (the case of AND super-state is

similar). This transition is represented in STS Gi as a transition from state q to super-state x′ (q→ x′)

via event σ in Hx
i and a transition from state q to state q′ is holon Hx′

i . If σ transition out of q is enabled

in Gj , then from condition (1) in Definition 4.2 (applied to holon Hx
j), the target of σ transition has

to be holon Hx′
j and from condition (1) in Definition 4.2 (applied to holon Hx′

j), from q, the target

of σ transition must be q′ . This shows condition (1) of Theorem 4.1 holds. The other conditions in

Theorem 4.1 similarly follow from the corresponding conditions in Definition 4.2.

57

0

1

G1

0

1

a1b1 a1b1

M1 M’1

0,0 1,1

a1

b1

(a) G1

0

1

G2

0

1

a1b1 a1b1

M1 M’1

0,0 1,1

a1

b1

2

a1

b1

(b) G2

Figure 4.4: Example 4.3: two STS models and their equivalent flat models.

Case (ii). Suppose q = (q1,q2), where q1 and q2 are simple states of holons Hx1
i and Hx2

i in Gi (extension

to (q1, . . . , qn) is straightforward). If a σ transition is enabled at (q1,q2), then in holons Hx1
i and Hx2

i , σ

transitions are enabled at q1 and q2. If σ transition is enabled from q in Gj , then it follows from condition

(1) in Definition 4.2 that the targets of the σ transition in Gi and Gj has to be the same (whether the targets

are simple states or super-states). Thus, condition (1) of Theorem 4.1 holds. If the σ transition at state

q is not enabled in Gj , then it is not enabled either in Hx1
j or Hx2

j . In this case, from condition (2.a.) of

Definition 4.2, the target of σ transition does not belong to either Hx1
j or Hx2

j ; hence, condition (2.a.) of

Theorem 4.1 holds. Other conditions of Theorem 4.1 can be shown similarly to hold.

The converse of Theorem 4.2 is not always true. Example 4.3 shows an example where STSs are MR, while

the corresponding holons are not MR.

Example 4.3. Consider the set of STS models G = {G1,G2} shown in Figure 4.4. In Figure 4.4, the flat models

of G1 and G2 satisfy the conditions in Definition 3.1. Thus, the automata models of G1 and G2 are MR. Based

on Definition 4.1, the STS models of G1 and G2 are also MR. In G1 and G2, the holons assigned to M ′1 does not

satisfy the condition (1) in Definition 4.2; therefore, these holons are not MR.

For the rest of this chapter, we assume that for any Gi and Gj (i, j ∈ I), their corresponding holons Ha
i ∈ Hi

and Ha
j ∈Hj (for some a ∈ Xi ∩Xj) are MR. Thus, based on Theorem 4.2, all the STS models that belongs to

G are MR with respect to one another.

Each of the STS in G has its own set of events Σi (i ∈ I). The controllability (uncontrollability) of shared

events between different STS is consistent. Our goal is to design a SFBC f such that each of these models

58

satisfies the given specifications Pi and stays nonblocking under its supervision. Our robust nonblocking

supervisory control problem for STS is defined below.

Problem 4.1. Robust Nonblocking Supervisory Control Problem for State-Tree-Structure (RNSCP-STS):

Consider N MR STS models Gi = (STi ,Hi ,Σi ,∆i ,ST0,STmi), where STi = (Xi ,x0,Ti , εi) and Hi =
{
Ha

i | a ∈

Xi , Ti(a) = OR and Ha
i = (Xa

i ,Σ
a
i ,δ

a
i ,X

a
0i ,X

a
mi)

}
for i ∈ I = {1, . . . ,N }. There is a consistency in controllabil-

ity/uncontrollability of events in STS models. Assume the STS models satisfy the Assumption 4.1. For each

model, a set of safe sub-STs Si ∈ ST(STi) is defined (ST0 ∈ Si). Consider Pi to be the predicate that defines the

characteristic function of
⋃

S∈Si B(S). Find a SFBC f :
⋃

i∈I B(STi)→ Π such that

1. R(Gi
f , true) ≤ Pi (safety property)

2. R(Gi
f , true) ≤ CR(Gi

f , true) (nonblocking property)

4.2 Implications of Mutually Refinement Property in

State-Tree-Structure

Before presenting our results in Section 4.3, we discuss the implications of MR property in STS. We form a

“union” STS called G by merging all the N models mentioned in Definition 4.1. To make sure that our STS

models in G are MR, we assume that all the corresponding holons in STS models are MR.

Assumption 4.2. Considers a set of STS models G = {G1, . . . ,GN } with Gi = (STi ,Hi ,Σi ,∆i ,ST0,STmi) and

STi = (Xi ,x0,Ti , εi). We assume that all the corresponding holons in STS models are MR.

Definition 4.3. Consider a finite set of MR STS models defined as G = {G1, . . . ,GN }, where Gi = (STi ,Hi ,Σi ,∆i ,ST0,

STmi) with STi = (Xi ,x0,Ti , εi) and Hi =
{
Ha

i | a ∈ Xi , Ti(a) = OR and Ha
i = (Xa

i ,Σ
a
i ,δ

a
i ,X

a
0i ,X

a
mi)

}
(i ∈ I). We

assume that all the corresponding holons in STS models are MR. G = (ST,H,Σ,∆,ST0,STm) is defined below.

1. ST = (X,x0,T , ε) =
∨

i∈I (STi).

2. H =
{
Ha | a ∈

⋃
i∈I Xi , T (a) = OR and Ha = (

⋃
i∈I X

a
i ,
⋃

i∈I Σ
a
i ,δ

a,
⋃

i∈I X
a
0i ,

⋃
i∈I X

a
mi)

}
, where δa is defined

below.

(a) For any x ∈
⋃

i∈I X
a
i and σ ∈

⋃
i∈I Σ

a
i , if ∃j ∈ I such that δaj (x,σ)!, then δa(x,σ)!, δa(x,σ) = δaj (x,σ).

(b) δ has no transition other than those described in 2a.

3. STm =
∨

i∈I STmi .

59

It can easily be observed that STi ∈ ST(ST) (i ∈ I).

Example 4.3 (continued). The union model of Example 4.2 is shown in Figure 4.5. Note that the corresponding

holons of G1 and G2 are MR.

The following lemma enables us to show that in the union model G, ∆(., .) is sound.

Lemma 4.1. Consider the set of MR STS models G and the union model G in Definition 4.3. Then in G,

1. Every incoming boundary transition of any holon matched to an AND component has a unique event label.

2. Every outgoing boundary transition of any holon matched to an AND component has a unique event label.

Proof. If G does not have any holon matched to an AND component, then the lemma is trivially true.

Suppose that G has at least one holon matched to an AND component.

1. Suppose that G has a holon Hx (x ∈ ε(x0)) matched to the AND components Y1, . . . ,Yc ∈ ε(x). Without

loss of generality, suppose that Hx has two holons Y1 and Y2 and Hx also has two incoming boundary

transitions labeled σ ∈ Σ that enter Y1 and Y2. The σ transitions are from external states x1,x2 ∈ ε(x0)

to (y11, y21) and (y12, y22), where y11, y12 ∈ ε(Y1) and y21, y22 ∈ ε(Y2). These transitions cannot happen

in one Gi (i ∈ I), since for all i ∈ I , ∆i(., .) is sound. Without loss of generality, assume that these

transitions happen in G1 and G2 (G1,G2 ∈ G). All the possible cases are:

(i) States x1 and x2 belong to both G1 and G2 or in other words, x1,x2 ∈ ε1(x0)∩ ε2(x0).

(i.a) The destination state of x1 and x2 are the same or in other words, (y11, y21) = (y12, y22).

(i.b) The destination state of x1 and x2 are two distinct states or in other words, (y11, y21) ,

(y12, y22).

(i.b.1) The destination state of x1 and x2 belong to both G1and G2.

(i.b.2) The destination state of x1 and x2 do not belong to both G1 and G2.

(ii) State x1 only belongs to G1, or in other words x1 ∈ ε1(x0) − ε2(x0) and x2 ∈ ε1(x0)∩ ε2(x0). The

other cases (e.g., x2 only belongs to G1) are similar.

(ii.a) The destination state of x1 and x2 are the same or in other words, (y11, y21) = (y12, y22).

(ii.b) The destination state of x1 and x2 are two distinct states or in other words, (y11, y21) ,

(y12, y22).

(ii.b.1) The destination state of x1 and x2 belong to both G1and G2.

(ii.b.2) The destination state of x1 and x2 do not belong to both G1 and G2.

60

G
a

b11

b12

b21

B

B1 B2

α

β

c1

c2

C

α

β

α

d

γ

c3

µ

µ

γ

G

a B C

B1 B2 c2 c3×

b11 b12 b21

U U

U

U

c1 U

dU

d

G a

b11, b21 c1

c2

α

β

b12, b21 α

α

β

γ

γ
c3

µ

µ

Figure 4.5: Example 4.2: G, the union STS model, the ST, and the equivalent flat model.

61

(iii) State x1 and x2 do not belong to G1 or G2, or in other words x1,x2 < ε1(x0)∪ ε2(x0). This case

cannot happen, since we assumed that the σ transitions from external states x1,x2 ∈ ε(x0) to

(y11, y21) and (y12, y22) happen in G1 and G2.

Case (i.a). Suppose the states x1 and x2 exist in both G1 and G2. The transition x1 to x happens in

G1 and the transition x2 to x happens in G2. The destination states in Y1 and Y2 are the same in both

G1 and G2. But, the corresponding holons in G1 and G2 are MR and that would violate the condition

(2.a.) in Definition 4.2.

Cases (i.b.1) and (i.b.2) can be shown similar to Case (i.a). Note that in holons, the σ transitions are

from x1 and x2 to Y .

Case (ii.a). Suppose the states x1 belongs to G1 and x2 to G2. The transition x1 to x happens in G1 and

the transition x2 to x happens in G2. The destination states in Y1 and Y2 are the same in both G1 and

G2. But, the corresponding holons in G1 and G2 are MR and that would violate the condition (3.a.)

in Definition 4.2.

Cases (ii.b.1) and (ii.b.2) can be shown similar to Case (ii.a).

2. It can be shown similarly.

Remark 4.2. The transition function ∆(., .) is sound in the union model G. Thus, by Lemma 2.3 in Section 2.4,

∆(., .) is in correspondence with the state transitions of the equivalent flat automaton of G.

The MR condition of holons helps us to form a deterministic union STS in Definition 4.3.

Remark 4.3. The transitions of any holon in G is the union of the transitions of the corresponding holons in Gi ’s.

It follows from the MR property of holons and Definition 4.3 that all the holons of G are deterministic (This result

is similar to the determinism of union model G discussed in Section 3.2). The determinism of holons results in the

determinism of the STS.

The following lemma states that no new sequence of events can be found in the union model. This is the

STS version of Lemma 3.1. Here we only considered sequences starting from initial State-Tree (ST) ST0, but

the lemma can easily be generalized.

Lemma 4.2. Consider the set of MR STS models G and the union model G = (ST,H,Σ,∆,ST0,STm) in Definition

4.3 with ST = (X,x0,T , ε) and H =
{
Ha | a ∈ X, T (a) = OR and Ha = (Xa,Σa,δa,Xa

0,X
a
m)
}
. For any s ∈ Σ∗ and

T ∈ ST(ST) such that ∆(ST0, s) = T , there exists i ∈ I such that s ∈ Σi
∗, T ∈ ST(STi) and ∆i(ST0, s) = ∆(ST0, s) =

T .

62

Proof.

For s ∈ ε the lemma is trivially true. Suppose s , ε and for some n ≥ 1, s = σ0 . . .σn−1 (with σl ∈ Σ, 0 ≤ l ≤

n − 1). We have ST0 ∈ B(ST). Thus ST0 ∈ B(ST). Also there exists b1, . . . , bn ∈ ST(ST) with ∆(bl ,σl) = bl+1

(1 ≤ l ≤ n − 1), ∆(ST0,σ0) = b1, and bn = T . We claim that bl ∈ B(ST) (1 ≤ l ≤ n). We prove our claim by

induction. First, we show that b1 ∈ B(ST). If b1 < B(ST), then count(b1) , 1 (1 < count(b1)) and based on

Remark 4.2, b1 represents at least two distinct states in the flat automaton model of G. Thus, in the flat

automaton of G, the initial state goes to at least two distinct destination states via event σ1, but this violates

G being deterministic. Thus, b1 ∈ B(ST). Suppose bk ∈ B(ST) (1 ≤ k ≤ n). We now prove that bk+1 ∈ B(ST).

Based on assumption ∆(bk ,σk) = bk+1. If bk+1 < B(ST), then count(bk+1) , 1 (1 < count(bk+1)) and based on

Remark 4.2, bk+1 represents at least two distinct states in the flat automaton model of G. Thus, in the flat

automaton of G, there exists a state that goes to at least two distinct destination states via event σk , but this

violates G being deterministic. Thus, bk+1 ∈ B(ST). Therefore, we have proved that bl ∈ B(ST) (1 ≤ l ≤ n).

Consider the ST0,b1, . . . , bn ∈ B(ST) and let q0,q1, . . . , qn denote the corresponding state of flat automaton of

G. The state qk (1 ≤ k ≤ n) is either a simple state of a holon, say for some xk ∈ X, Hxk (where all ancestors

of qt are OR states), or in of the form of an mk-tuple qk = (qk,1, . . . , qk,mk
), where qk,t is a simple state in some

holon H
xk,t
i (when qk has at least one AND ancestor), xk,t ∈ X, and 1 ≤ t ≤ mk . Consider ∆(bk ,σk) = bk+1

(0 ≤ k ≤ n− 1 and b0 = ST0). All the possible cases are:

(i) bk and bk+1 are both simple states.

(ii) bk is a simple state and bk+1 is a tuple.

(iii) bk is a tuple and bk+1 is a simple state.

(iv) bk and bk+1 are both tuple.

First we show our claim for a special case where for all 1 ≤ k ≤ n, qk is a simple state of a holon Hxk . Based

on Definition 4.3, ST0 belongs to all Gi (i ∈ I). Thus, q0 also belongs to the equivalent flat automaton of

Gi (i ∈ I). We claim that ∃j ∈ I such that s = σ0 . . .σn−1 (with σl ∈ Σj , 0 ≤ l ≤ n − 1), b1, . . . , bn ∈ B(STj) with

∆j (bl ,σl) = bl+1 (1 ≤ l ≤ n− 1), ∆j (ST0,σ0) = b1, and bn = T . We prove our claim using induction.

Consider ∆(ST0,σ0) = b1, where q0 and q1 are simple states of holons Hx0 and Hx1 respectively (x0,x1 ∈ X).

Thus, we have δx1(q0,σ0) = q1, where q0 is the boundary state of holon Hx1 . Based on Definition 4.3, there

exists i1 ∈ I such that δx1
i1

(q0,σ0) = q1. In G, q0 and q1 are simple states. Based on Definition 4.3, q0 and q1

are also simple states in Gi1 and state q0 goes to q1 via σ0 in the equivalent flat model of Gi1 (since ∆i1(., .) is

sound). Now consider ∆(b1,σ1) = b2, where q1 and q2 are simple states of holons Hx1 and Hx2 respectively

(x1,x2 ∈ X). Thus, we have δx2(q1,σ1) = q2, where q1 is the boundary state of Holon Hx2 . Based on Definition

63

4.3, there exists i2 ∈ I such that δx2
i2

(q1,σ1) = q2. In G, q1 and q2 are simple states. Based on Definition 4.3,

q1 and q2 are also simple states in Gi2 and state q1 goes to q2 via σ1 in the equivalent flat model of Gi2 (since

∆i2(., .) is sound). We claim that in the flat model of Gi2 , q0 goes to q1 via event σ0. If that is not the case,

then it would violate the assumption that Gi1 and Gi2 are MR. Thus, in flat model of Gi2 , σ0 is enabled at

q0 and we have ∆i2(ST0,σ0σ1) = b2.

Now assume that ∆(ST0,σ0 . . .σr) = ∆ir (ST0,σ0 . . .σr−1) = br (2 ≤ r ≤ n and ir ∈ I). Starting from the sim-

ple state q0, we pass through q1, . . . ,qr−1 and reach to qr via events σ0 . . .σr−1 (2 ≤ r ≤ n). We show that

∆(ST0,σ0 . . .σr−1σr) = ∆ir+1
(ST0,σ0 . . .σr−1σr) = br+1 (2 ≤ r ≤ n and ir+1 ∈ I). The equivalent flat state of br and

br+1 are qr and qr+1. qr and qr+1 are simple states of holons Hxr and Hxr+1 respectively (xr ,xr+1 ∈ X). Thus,

we have δxr+1(qr ,σr) = qr+1, where qr is the boundary state of holon Hxr+1 . Based on Definition 4.3, there

exists ir+1 ∈ I such that δxr+1
ir+1

(qr ,σr) = qr+1. In G, qr and qr+1 are simple states. Based on Definition 4.3, qr

and qr+1 are also simple states in Gir+1
and state qr goes to qr+1 via σr in the equivalent flat model of Gir+1

(since ∆ir+1
(., .) is sound). We claim that in the flat model of Gir+1

, starting from the simple state q0, we pass

through q1, . . . ,qr−1 and reach to qr via events σ0 . . .σr−1. If that is not the case, then it would violate the

assumption that Gir and Gir+1
are MR. Thus, in the flat model of Gir+1

, we have ∆ir+1
(ST0,σ0 . . .σr) = br+1.

Now we prove our claim for the general case where for 1 ≤ k ≤ n, qk is either a simple state of a holon

Hxk or in the form of an mk-tuple qk = (qk,1, . . . , qk,mk
), where qk,t is a simple state in some holon Hxk,t

(when qk has at least one AND ancestor), xk,t ∈ X, and 1 ≤ t ≤ mk . Based on Definition 4.3, ST0 belongs

to all Gi (i ∈ I). Thus, q0 also belongs to the equivalent flat automaton of Gi (i ∈ I). We claim that ∃j ∈ I

such that s = σ0 . . .σn−1 (with σl ∈ Σj , 0 ≤ l ≤ n − 1), b1, . . . , bn ∈ B(STj) with ∆j (bl ,σl) = bl+1 (1 ≤ l ≤ n − 1),

∆j (ST0,σ0) = b1, and bn = T . We prove our claim using induction.

Without loss of generality, consider ∆(ST0,σ0) = b1, where q0 is a simple state of a holon Hx0 and q1 is an m1-

tuple q1 = (q1,1, . . . , q1,m1
). Thus, for holon Hx0 , we have an outgoing boundary transition that maps q0 to q1

via event σ0. Based on Definition 4.3, there exists i0 ∈ I such that δx0
i0

(q0,σ0) = q1. Now consider ∆(b1,σ1) =

b2, where q2 is m2-tuple q2 = (q2,1, . . . , q2,m2
). Thus, there are boundary transitions between holons that

maps q1 to q2. All these transitions should belong to a Gi1 (i1 ∈ I); otherwise, since the starting(ending)

state and the event are the same, it would violate the MR property of holons. Thus, ∆i1(b1,σ1) = b2.

Now assume that ∆(ST0,σ0 . . .σr) = ∆ir (ST0,σ0 . . .σr−1) = br (2 ≤ r ≤ n and ir ∈ I). Starting from q0, we pass

through q1, . . . , qr−1 and reach to qr via events σ0 . . .σr−1 (2 ≤ r ≤ n). We show that ∆(ST0,σ0 . . .σr−1σr) =

∆ir+1
(ST0,σ0 . . .σr−1σr) = br+1 (2 ≤ r ≤ n and ir+1 ∈ I). The equivalent flat state of br and br+1 are qr and qr+1.

Without loss of generality, assume that qr is mr-tuple qr = (qr,1, . . . , qr,mr
) and qr+1 is a simple state of holon

Hxr+1 (xr+1 ∈ X). Thus, we have δxr+1(qr ,σr) = qr+1, where qr is the boundary state of holon Hxr+1 . Based on

Definition 4.3, there exists ir+1 ∈ I such that δxr+1
ir+1

(qr ,σr) = qr+1. In G, qr and qr+1 are simple states. qr goes

64

to qr+1 via σr in the equivalent flat model of Gir+1
(since ∆ir+1

(., .) is sound). We claim that in the flat model

of Gir+1
, starting from q0, we pass through q1, . . . , qr−1 and reach to qr via events σ0 . . .σr−1. If that is not the

case, then it would violate the assumption that Gir and Gir+1
are MR. Thus, in the flat model of Gir+1

, we

have ∆ir+1
(ST0,σ0 . . .σr) = br+1.

For the rest of the combinations of states (e.g., q0 is a tuple, q1 is a simple state), the lemma can be shown

to be true similarly.

Remark 4.4. We have shown that the union model G is deterministic and ∆(., .) is sound. Moreover, we proved

that no new sequence of events are generated in G. Therefore, L(G) =
⋃

i∈I L(Gi) and the union model formed in

Definition 3.4 is the equivalent flat automaton of STS model G in Definition 4.3.

For the rest of this chapter, the proofs of lemmas and theorem are similar to the proofs given in Chapter 3.

We prove that all the corresponding holons in G and Gi (i ∈ I) are MR.

Lemma 4.3. Consider the set of MR models G and the STS G defined in Definition 4.3. For any i ∈ I , a ∈ Xi ∩X

and Ti(a) = T (a) = OR, Ha
i = (Xa

i ,Σ
a
i ,δ

a
i ,X

a
0i ,X

a
mi) and Ha = (Xa,Σa,δa,Xa

0,X
a
m) are MR.

Proof. Assume a ∈ X∩Xi such that T (a) = Ti(a) = OR. Ha = (Xa,Σa,δa,Xa
0,X

a
m) and Ha

i = (Xa
i ,Σ

a
i ,δ

a
i ,X

a
0i ,X

a
mi)

are the two holons assigned to state a in G and Gi respectively. It follows from the Definition 4.3 and the

assumption that all the corresponding holons in G are MR that Ha and Ha
i (i ∈ I) are also MR.

Corollary 4.1. Consider the set of MR models G and the STS G defined in Definition 4.3. G and Gi are MR

(i ∈ I).

Lemma 4.4. Consider the set of MR models G and the STS G defined in Definition 4.3. Let f : B(ST)→Π be an

SFBC defined over G. For any i, j ∈ I , Gi
f and Gj

f are MR.

Proof.

Similar to Lemma 3.4 we can prove that Gi
f and Gj

f are MR. Here, the SFBC domain instead of state set is

the set of basic-ST.

The reachability and coreachability of union model can be calculated using those of the Gi ’s (i ∈ I).

Lemma 4.5. Let G be the STS defined in Definition 4.3. Then we have

R(G, true) =
∨
i∈I

R(Gi , true), (4.2)

65

CR(G, true) =
∨
i∈I

CR(Gi , true). (4.3)

Proof.

1. We prove that, (i)
∨

i∈I R(Gi , true) ≤ R(G, true) and (ii) R(G, true) ≤
∨

i∈I R(Gi , true).

i. Assume b |=
∨

i∈I R(Gi , true), then ∃j ∈ I such that b |= R(Gj , true). State-tree b is reachable in Gj ;

thus, ∃s ∈ Σ∗j such that ∆j (ST0, s) = b. Based on Definition 4.3, s ∈ Σ∗ and ∆(ST0, s) = b. Therefore,

b is also reachable in G and b |= R(G, true). We have proven that
∨

i∈I R(Gi , true) ≤ R(G, true).

ii. Assume b |= R(G, true). Therefore, ∃t ∈ Σ∗ such that in G, ∆(ST0, t) = b. Based on Lemma 4.2,

∃j ∈ I such that ∆j (ST0, t) = ∆(ST0, t) = b. Thus, b |= R(Gj , true) and b |=
∨

i∈I R(Gi , true).

We proved that R(G, true) ≤
∨

i∈I R(Gi , true).

2. We prove that (i)
∨

i∈I CR(Gi , true) ≤ CR(G, true) and (ii) CR(G, true) ≤
∨

i∈I CR(Gi , true).

i. The proof will be similar to section (i) in part 1 above.

ii. Assume b |= CR(G, true), then ∃bm ∈ B(STm) and t = σ0, . . . ,σn−1 ∈ Σ∗ (n ≥ 1) such that ∆(b, t) = bm.

Similar to the proof of section (ii) in part 1, it can be shown that ∃j ∈ I such that ∆j (b, t) = bm.

Therefore, b |= CR(Gj , true) and b |=
∨

i∈I CR(Gi , true).

We proved that CR(G, true) ≤
∨

i∈I CR(Gi , true).

Remark 4.5. Using Lemma 4.4, we can easily show that the results of Lemmas 4.2 and 4.5 also hold for the STS

under the supervision of a SFBC f : B(ST)→Π . In particular,

R(Gf , true) =
∨
i∈I

R(Gf
i , true) (4.4)

CR(Gf , true) =
∨
i∈I

CR(Gf
i , true). (4.5)

4.3 Solution: Necessary and Sufficient Conditions

Theorem 4.3 is our main result. It presents a set of necessary and sufficient conditions for having a solution

for RNSCP-STS (Problem 4.1).

66

Theorem 4.3. Consider RNSCP-STS in Problem 4.1 and G = (ST,H,Σ,∆,ST0,STm) in Definition 4.3. Suppose

Assumption 4.2 holds. Define the predicate P as

P =
[∧
j∈I

(
Pj ∨

[
R(G, true)∧¬R(Gj , true)

])]
∧R(G, true). (4.6)

1. If there exists a predicate K ≤ P with K , false such that

(a) K is controllable with respect to G,

(b) K is Gi-nonblocking for all i ∈ I ,

then RNSCP-STS has a solution f with R(Gf , true) = K .

2. Conversely, if f is a solution of problem, then K = R(Gf , true) is controllable with respect to G, Gi-

nonblocking for all i ∈ I and K ≤ P .

Before proving Theorem 4.3, we define the notion of sub-STS below.

Definition 4.4. Consider G1 = (ST1,H1,Σ1,∆1,ST01,STm1) and G2 = (ST2,H2,Σ2,∆2,ST02,STm2), where ST1 =

(X1,x0,T1, ε1), H1 =
{
Ha

1 | a ∈ X1, T1(a) = OR & Ha
1 = (Xa

1,Σ
a
1,δ

a
1,X

a
01,X

a
m1)

}
, ST2 = (X2,x0,T2,ε2) and H2 ={

Ha
2 | a ∈ X2, T2(a) = OR & Ha

2 = (Xa
2,Σ

a
2,δ

a
2,X

a
02,X

a
m2)

}
. We say G1 is a sub-STS of G2 and write G1 ⊆ G2 if the

following conditions are true.

1. ST01 = ST02 and STm1 ≤ STm2.

2. ST1 is a sub-ST of ST2: ST1 ∈ ST(ST2).

3. For all a ∈ X1 ∩X2 such that T1(a) = T2(a), the following propositions are true.

(a) Xa
01 ⊆ Xa

02, Xa
m1 ⊆ Xa

m2 and Xa
1 ⊆ Xa

2.

(b) ∀x ∈ (Xa
i ∩Xa

j) and x ∈ Xa
Ii , then x ∈ Xa

Ij and vice versa. The same condition should also be true for

boundary states.

(c) Σa
1 ⊆ Σa

2 and for all s ∈ Σa
1, δa1(xa01, s) = δa2(xa02, s).

4. Σ1 ⊆ Σ2 and for all s ∈ Σ1, ∆1(ST01, s) = ∆2(ST02, s).

To prove Theorem 4.3, we need the results in Lemmas 4.6 to 4.9.

Lemma 4.6. Consider two STS G1 = (ST1,H1,Σ1,∆1,ST01,STm1) and G2 = (ST2,H2,Σ2,∆2,ST02,STm2). As-

sume G1 is a sub-STS of G2. Then R(G1, true) ≤ R(G2, true) and CR(G1, true) ≤ CR(G2, true).

67

Proof.

1. Let b |= R(G1, true). If b = ST01 (initial ST), then obviously b |= R(G2, true) (ST01 = ST02). Suppose b ,

ST01. Therefore, b ∈ B(ST1), ∃b1, . . . , bn−1 ∈ B(ST1), and σ0 . . .σn−1 ∈ Σ∗1 (n ≥ 1) such that ∆1(bl ,σl) = bl+1

(0 ≤ l ≤ n − 2), ∆1(ST01,σ0) = b1, ∆1(bn−1,σn−1) = b, and bl |= R(G1, true) for l ∈ {1, . . . ,n − 1}. Based on

the definition of sub-STS in Definition 4.4, since G1 ⊆G2, then b1, . . . , bn−1,b ∈ B(ST2), σ0 . . .σn−1 ∈ Σ∗2,

∆2(ST01,σ0) = b1 (ST01 = ST02), ∆2(bl ,σl) = bl+1 (1 ≤ l ≤ n − 2), and ∆2(bn−1,σn−1) = b. Therefore,

bl |= R(G2, true) (1 ≤ l ≤ n− 1) and b |= R(G2, true). We can conclude that R(G1, true) ≤ R(G2, true).

2. Let b |= CR(G1, true). If b ∈ B(STm1) ⊆ B(STm2), then b |= CR(G2, true). Suppose b < B(STm1). Therefore,

∃b1, . . . , bm−1 ∈ B(ST1), bm ∈ B(STm1), and σ0 . . .σm−1 ∈ Σ∗1 such that ∆1(b,σ0) = b1, ∆1(bl ,σl) = bl+1

(l ∈ {1, . . . ,m − 1}), and b,bl |= CR(G1, true) for l ∈ {1, . . . ,m}. Since G1 ⊆ G2, then STm1 ⊆ STm2,

b,b1, . . . , bm ∈ B(ST2), σ0 . . .σm−1 ∈ Σ∗2, ∆2(b,σ0) = b1, and ∆2(bl ,σl) = bl+1 (l ∈ {1, . . . ,m − 1}). There-

fore, b |= CR(G2, true) and we conclude that CR(G1, true) ≤ CR(G2, true).

We prove that under the conditions defined below, the relation between the reachability functions of two

STS is not affected under the supervision of SFBC.

Lemma 4.7. Consider G1 = (ST1,H1,Σ1,∆1,ST0,STm1) and G2 = (ST2,H2,Σ2,∆2,ST0,STm2). Suppose they are

MR and G1 is a sub-STS of G2. Assume P ∈ Pred(ST) (ST = ST1 ∨ ST2), P , false, and ST0 |= P . Moreover, P is

controllable with respect to G2 and f : B(ST)→Π a SFBC such that R(G2
f , true) = P . Then

R(G1
f , true) ≤ R(G2

f , true), (4.7)

R(G1
f , true) = R(G2

f , true)∧R(G1, true), (4.8)

R(Gf
1 , true) = R(G1, P). (4.9)

Proof.

1. Since G1 is a sub-automaton of G2, G1
f is a sub-automaton of G2

f . Hence, (4.7) follows.

2. We prove that (i) R(G1
f , true) ≤ R(G2

f , true)∧R(G1, true) and (ii) R(G2
f , true)∧R(G1, true) ≤ R(G1

f , true).

i. We know that R(G1
f , true) ≤ R(G1, true) and we proved that R(G1

f , true) ≤ R(G2
f , true); therefore,

we have R(G1
f , true) ≤ R(G2

f , true)∧R(G1, true).

68

ii. Assume b |= R(G2
f , true)∧ R(G1, true). Therefore, we have b |= R(G2

f , true) and b |= R(G1, true).

We claim that ∃s ∈ Σ∗1, such that b = ∆1(ST0, s) in G1 and b = ∆
f
2 (ST0, s) in G2

f , where ∆
f
2 (., .)

represents transitions in G2 under the supervision of f . If that is not the case, for every s1 ∈ Σ∗1
such that b = ∆1(ST0, s1), ∆f

2 (ST0, s1) does not exists and s2 ∈ Σ∗2 such that b = ∆
f
2 (ST0, s2) and

∆1(ST0, s2) does not exists. Since every transition in Gf
2 also exists in G2, b = ∆2(ST0, s2). But G1

and G2 are MR and this is not possible. So let b0,b1 . . . ,bn−1,b (n ≥ 1, ST0 = b0) be the sequence of

ST in G1 when s is executed. Since the sequence is enabled under the supervision of f (in G2
f),

it remains enabled in G1
f . Therefore, we can conclude that b |= R(G1

f , true).

Thus, we have proved that R(G1
f , true) = R(G2

f , true)∧R(G1, true).

3. We know that R(Gf
2 , true) = P ; therefore,

R(Gf
1 , true) = P ∧R(G1, true) (by (4.8))

We prove that (i) P ∧R(G1, true) ≤ R(G1, P) and (ii) R(G1, P) ≤ P ∧R(G1, true).

i. We use strong induction. Base case: since ST0 |= P and ST0 |= R(G1, true), then ST0 |= R(G1, P).

Strong inductive step: now we assume that P ∧R(G1, true) ≤ R(G1, P) holds for all states that are

located within a distance of n transitions from ST0. The distance of a state b from ST0 is defined

as the shortest path to that state. We need to prove that P ∧R(G1, true) ≤ R(G1, P) also holds for

all states that are located within n+1 transitions from ST0 (n ≥ 0). Suppose bn+1 |= P ∧R(G1, true)

and is at a distance of n + 1 from ST0. Since P is controllable and R(Gf
2 , true) = P ; therefore,

∃t ∈ Σ∗2 such that bn+1 = ∆
f
2 (ST0, t) and the trajectory on the t sequence satisfies P . We have

bn+1 |= R(G1, true); moreover, G1 and G2 are MR. Therefore, t ∈ L(G1) and the trajectory is in

R(G1, true).

bn+1 is reachable from ST0 and all the states leading to bn+1 satisfy P ; therefore, bn+1 |= R(G1, P).

bn+1 is located within n + 1 transitions from ST0 and satisfies P ∧R(G1, true) ≤ R(G1, P). By the

strong induction, we can say that P ∧R(G1, true) ≤ R(G1, P) is true.

ii. It is clear that R(G1, P) ≤ P and R(G1, P) ≤ R(G1, true). Therefore, we have R(G1, P) ≤ P ∧

R(G1, true).

Remark 4.6 considers G1 and G2 in Lemma 4.7.

Remark 4.6. Similar to Remark 3.3, we can interpret the result of Lemma 4.7 as follows.

69

P is controllable with respect to G2. Then P |B(ST1) (the restriction of P to B(ST1)) is controllable with respect to

G1.

Results similar to those of Lemma 4.7 hold for coreachability predicate.

Lemma 4.8. Consider G1 = (ST1,H1,Σ1,∆1,ST0,STm1) and G2 = (ST2,H2,Σ2,∆2,ST0,STm2). Suppose they are

MR and G1 is a sub-STS of G2. Assume P ∈ Pred(ST) (ST = ST1 ∨ ST2), P , false, and ST0 |= P . Moreover, P

is controllable and nonblocking with respect to G1. Let f : B(ST)→ Π to be a SFBC such that R(G2
f , true) = P .

Then

CR(G1
f , true) ≤ CR(G2

f , true), (4.10)

CR(G1
f , true) ≤ CR(G2

f , true)∧CR(G1, true), (4.11)

CR(G1, P) ≤ CR(G1
f , true). (4.12)

Proof.

1. (4.10) follows from the fact that Gf
1 is a sub-automaton of G2.

2. (4.11) follows from (4.10) and that Gf
1 is a sub-automaton of G1.

3. P is controllable; therefore, P |B(ST1) is controllable (Remark 4.6). P is G1-nonblocking

R(G1, P) ≤ CR(G1, P).

Intuitively, R(G1, P)|B(ST1) = R(G1, P |B(ST1)) and CR(G1, P)|B(ST1) = CR(G1, P |B(ST1)). Thus,

R(G1, P |B(ST1)) ≤ CR(G1, P |B(ST1)).

With f1 = f |B(ST1) and using Theorem 2.3,

CR(G1, P |B(ST1)) ≤ CR(Gf1
1 , true),

and thus,

CR(G1, P) ≤ CR(Gf
1 , true).

70

Lemma 4.9. Consider the set of MR models G and the STS G = (ST ,H,Σ,∆,ST0,STm) defined in Definition 4.3.

Suppose K ∈ Pred(ST), K ≤ R(G, true) and let Ki =
(
K ∧R(Gi , true)

)
|B(STi). If K is controllable with respect to G,

then Ki is controllable with respect to Gi (i ∈ I).

Proof. Suppose K is controllable with respect to G. We have to prove that Ki is controllable with respect to

Gi (i ∈ I). From controllability of K , we can conclude that there exists a SFBC f such that R(Gf , true) = K .

By Remark 4.1, G and Gi are MR. Thus, applying Lemma 4.7 and Remark 4.6 to Gi and G, we can conclude

that Ki = (K ∧R(Gi , true))|B(STi) is controllable with respect to Gi .

Now we can prove Theorem 4.3.

Proof of Theorem 4.3.

1. Since K is controllable with respect to G by assumption, by Theorem 2.2, there exists a SFBC f such

that

R(Gf , true) = K (4.13)

From assumption (ii), R(Gi ,K) ≤ CR(Gi ,K) (i ∈ I).

∨
i∈I

R(Gi ,K) ≤
∨
i∈I

CR(Gi ,K)

∨
i∈I

R(Gf
i , true) ≤

∨
i∈I

CR(Gf
i , true) (by Lemmas 4.7 and 4.8)

R(Gf , true) ≤ CR(Gf , true) (by Remark 4.5)

Thus, K is nonblocking with respect to G. Now we show that f is a solution to RNSSCP, i.e., conditions

(1) and (2) in Problem 4.3 are true.

R(Gf
i , true) = R(Gf , true)∧R(Gi , true) (by Lemma 4.7)

= K ∧R(Gi , true) (by (4.13))

≤ P ∧R(Gi , true)

≤
(
Pi ∨

[
R(G, true)∧¬R(Gi , true)

])
∧R(Gi , true)

=
(
Pi ∧R(Gi , true)

)
∨
(
R(G, true)∧¬R(Gi , true)∧R(Gi , true)

)
= Pi ∧R(Gi , true)

≤ Pi

71

Now we just need to prove that R(Gf
i , true) ≤ CR(Gf

i , true).

R(Gf
i , true) = R(Gi ,K) (by Lemma 4.7)

≤ CR(Gi ,K) (K is Gi-nonblocking)

≤ CR(Gf
i , true) (by Lemma 4.8)

2. Since K = R(Gf , true) and by Theorem 2.2, K is controllable with respect to G. Since f solves the

RNSSCP, R(Gf
i , true) ≤ CR(Gf

i , true). By Lemma 4.7, R(Gf
i , true) = K ∧ R(Gi , true). Define Ki = K ∧

R(Gi , true)|B(STi) and fi = f |B(STi). Thus, R(Gfi
i , true) = Ki and by Theorem 2.2,

R(Gfi
i , true) = R(Gi ,Ki) = CR(Gi ,Ki). (4.14)

Note that the domain of the above predicates are Qi . From (4.14), we conclude that

R(Gi ,K ∧R(Gi , true)) = CR(Gi ,K ∧R(Gi , true)).

Since states that are satisfying K , but they are not in Qi do not satisfy the above reachability and

coreachability predicates, we can conclude

R(Gi ,K) = CR(Gi ,K).

Next we will prove that K ≤ P .

Pi ∨
[
R(G, true)∧¬R(Gi , true)

]
=
[
Pi ∨R(G, true)

]
∧
[
Pi ∨¬R(Gi , true)

]
≥
[(
R(Gi , true)∧R(Gf , true)

)
∨R(G, true)

]
∧[(

R(Gi , true)∧R(Gf , true)
)
∨¬R(Gi , true)

]
(Lemma 4.7)

= R(G, true)∧
[
R(Gf , true)∨¬R(Gi , true)

]
= R(Gf , true)∨

(
¬R(Gi , true)∧R(G, true)

)
≥ R(Gf , true)

= K.

72

Using the above result, we can conclude that

P=
[∧
j∈I

(
Pj ∨

[
R(G, true)∧¬R(Gj , true)

])]
∧R(G, true)

≥ K ∧R(G, true)

= K. (Since R(G, true) ≥ R(Gf , true) = K)

We define the set of all controllable and Gi-nonblocking predicates of P as CNbGP(P) = {K ∈ Pred(Q) | K ≤

P & K controllable with respect to G and Gi-nonblocking ∀ i ∈ I}.

Lemma 4.10. CNbGP(P) is nonempty, closed under disjunction operation and has a supremal element.

Proof.

Claim 1. CNbGP(P) is nonempty since false ∈ CNbGP(P).

Claim 2. Suppose Λ is the index set of CNbGP(P) and Kλ ∈ CNbGP(P) for all λ ∈ Λ. We have to prove

that K =
∨

λ∈ΛKλ ∈ CNbGP(P), i.e., K ≤ P , K is controllable with respect to G and Gi-nonblocking. It

is obvious that K ≤ P and [74] proved that K is controllable with respect to G. Therefore, we only need

to prove that K is Gi-nonblocking. In other words, we want to prove that R(Gi ,K) ≤ CR(Gi ,K) for all

i ∈ I . Assume q |= R(Gi ,K); therefore, Kλ is controllable with respect to G. It follows from Lemma 4.9

that
(
Kλ ∧ R(Gi , true)

)
|Qi

is controllable with respect to Gi . Thus q is reachable in Gi using a trajectory

that lies in
(
Kλ ∧ R(Gi , true)

)
|Qi

. Therefore, q |= K and q |= R(Gi , true). We know that K =
∨

λ∈ΛKλ; thus,

∃λ ∈ Λ such that q |= Kλ. We have q |= R(Gi , true) and q |= Kλ; therefore, q |= R(Gi ,Kλ). Since Kλ is Gi-

nonblocking (R(Gi ,Kλ) ≤ CR(Gi ,Kλ)), q |= CR(Gi ,Kλ). CR(., .) is a monotonically increasing function and;

therefore, CR(Gi ,Kλ) ≤ CR(Gi ,K). Thus, we can conclude that q |= CR(Gi ,K) and R(Gi ,K) ≤ CR(Gi ,K).

Let K↑ denotes supCNbGP(P). K↑ characterizes the largest (maximally permissive) solution of the robust

supervisory control problem. In the next section, we present a computational procedure for K↑.

4.4 Solution: Computational Procedure

The following theorem defines an algorithm to calculate the supremal solution of Theorem 4.3, K↑.

73

Theorem 4.4. Assume that G is the STS introduced in Definition 4.3 and P is the predicate in (4.6). Then

K↑ = supCNbGP(P) can be calculated using the following iterative procedure which terminates in a finite number

of steps less than or equal to the number of states satisfying P .

1. Set r = 1 and Sr = P .

2. Li = CR(Gi ,Sr) for all i ∈ I .

3. S ′r =
[∧

i∈I Li

]
∨
[∨

i∈I
(
Li ∧¬(

∨
j∈I & j,i PQj

)
)]
.

4. Sr+1 = R(G,〈S ′r〉).

5. If Sr+1 , Sr , set r = r + 1 and go to step 2.

6. End (Sr = K↑).

where 〈.〉 is calculated with respect to G and PQj
is a predicate that represents the states of Gj (i, j ∈ I).

Proof.

First we prove that the algorithm converges in a finite number of iterations. In this chapter, the plant

models Gi are finite-state; therefore, the set of predicates Pred(Q) is a finite set. Furthermore, for each

iteration, Li ≤ Sr (i ∈ I); therefore,
∧

i∈I Li ≤ Sr and
∨

i∈I Li ≤ Sr . It can easily be seen that
∨

i∈I
(
Li ∧

¬(
∨

j∈I & j,i PQj
)
)
≤
∨

i∈I Li . Therefore, we can conclude that S ′r ≤ Sr . Based on step 4, we also have Sr+1 ≤

S ′r ≤ Sr . Therefore, this algorithm is nonincreasing and will converge to either K↑ = false or K↑ , false in a

finite number of iterations less than or equal to the number of states satisfying S1 = P .

Now suppose Assume that the algorithm converges to Sm for some m ≥ 1 : Sm = S ′m = Sm+1. We prove that

(i) Sm ≤ P , (ii) Sm is controllable with respect to G and (iii) Sm is Gi-nonblocking for all i ∈ I .

i. We have proved that our algorithm produces a nonincreasing sequence of predicates; therefore, after

m iteration, we have Sm ≤ Sm−1 ≤ · · · ≤ S1 = P .

ii. Based on Lemma 2.2, Sm+1 is the supremal sub-predicate of S ′m. Therefore, Sm+1 is controllable with

respect to G. Since Sm+1 = Sm, we can conclude that Sm is controllable with respect to G.

iii. We have to prove that R(Gk ,Sm) ≤ CR(Gk ,Sm) for all k ∈ I . Let us fix k. Assume b |= R(Gk ,Sm), then

b |= Sm ∧ R(Gk , true). Therefore, ∃t = σ0, . . . ,σn−1 ∈ Σ∗k such that starting from ST0, we pass through

ST0, . . . , bn−1 ∈ B(ST) and reach b, where δk(bl ,σl) = bl+1 (l ∈ L = {0, . . . ,n − 2}) and δk(bn−1,σn−1) = b.

Moreover, ST0, . . . , bn−1,b |= Sm and bl |= R(Gk , true) for all l ∈ L. Since Sm = S ′m, we can conclude that

74

ST0, . . . , bn−1,b |= S ′m. Based on the step 3 of algorithm, ST0, . . . ,bn−1,b |=
∧

k∈I Lk or ST0, . . . , bn−1,b |=∨
k∈I

(
Lk ∧ (

∧
j∈I & j,k¬PQj

)
)
. Either way, ST0, . . . , bn−1,b |= (Lk = CR(Gk ,Sm)).

Therefore, R(Gk ,Sm) ≤ CR(Gk ,Sm).

Now let the iterative steps (2) to (4) in Theorem 4.4 be represented by an operative Ψ(.). In steps (ii) and

(iii) above, we showed that every fix-point of Ψ(P1) is controllable and Gi-nonblocking. If Sm , K↑, then

Sm ≤ K↑ ≤ P . Thus, Ψ(Sm) ≤ Ψ(K↑) ≤ Ψ(P) and Sm ≤ K↑ ≤ Ψ(P). Apply Ψ(.) m − 1 times; Sm ≤ K↑ ≤

Ψ(m−1)(P) = Sm (Ψ(m)(.) denotes that Ψ(.) is applied m times). Thus Sm = K↑.

4.5 Example

A Flexible Manufacturing System (FMS) is an automated system that receives raw materials as input, and

after performing multiple processes on the received items, delivers the processed materials in the output.

A limited number of machines perform the processes on the input workpieces. Therefore, there is a compe-

tition on allocating resources (machines) between workpieces. A deadlock can happen in this system if the

robots want to upload a machine with more than its capacity. To avoid deadlocks in the system, different

approaches have been proposed to design a supervisory control for FMS. In this thesis, we model the FMS

by STS, define the RNSCP-STS for that, and calculate the solution (supervisor). We adopt the model of FMS

from [10].

As shown in Figure 4.6, we assume that the FMS has 4 machines (M1, M2, M3, and M4), 4 input/output

pairs (I1/O1, I2/O2, I3/O3, and I4/O4), and 3 robots (R1, R2, and R3) that helps to move the workpieces. The

STS model of FMS is shown in Figure 4.7. Initially, only M1, M2, and M3 are active during the production

process. If the workload of M1 increases, M4 is activated. Figure 4.7 and Figure 4.8 show the two models

of FMS.

The FMS1 (Figure 4.7) has 3 production processes that are shown in Figure 4.9. In the first process, the raw

material is received through I1, R2 delivers the material to M2, and after the M1 process, R2 transfers it to

O1. In the second process, the material is received through I2, R3 delivers it to M1, then R2 hands it over to

M3, and finally, R1 transfers it to O2. In the third process, the material is received through I3, R1 delivers it

to M1, then R2 hands it over to M2, and finally R3 transfers it to O3.

As shown in Figure 4.10, FMS2 (Figure 4.8) has the same first 2 production processes described for FMS1

except for the third process. In FMS2, the third process is done in a different way. The material is received

through I4, R1 delivers it to M3, then R2 hands it over to M4, and finally R3 transfers it to O4.

75

Robot 1

Robot 2

Robot 3

Machine 2

Machine 4

Machine 1

Machine 3

Input 2

Input 3

Input 1

Input 4

Output 2

Output 3

Output 1

Output 4

Figure 4.6: The layout of FMS components.

FMS1

R1.2

R1.0 R1.1

R2.5

R3.1

R2.2

R2.0

R3.2

R3.0

R2.3

R2.1

M2.5

M2.0

M2.2

M2.1

M2.4

M2.3

M3.5

M3.0

M3.2

R1 R2 R3

M1
M2 M3

R1_D_I3
R1_U_M1

R1_D_M3

R1_U_O2

R2_D_M2
R2_U_O1

R2_D_I1

R2_U_M2_P1

R2_D_M1_P3

R2_U_M2_P3

R2_U_M3

R2_D_M1_P2

R3_D_M2 R3_U_O3

R3_D_I2

R3_U_M1

R2_D_M2

R2_U_M2_P1 R2_U_M2_P1

R2_U_M2_P1

R2_D_M2

R2_D_M2

R3_D_M2

R2_U_M2_P3

R3_D_M2

R2_U_M2_P3

R2_U_M2_P3
R3_D_M2

R1_D_M3

R1_D_M3

R2_U_M3

R2_U_M3

M1.5

M1.0

M1.2

M1.1 M1.3

R1_U_M1 R1_U_M1

R2_D_M1_P3 R2_D_M1_P3

R3_U_M1

R3_U_M1

R2_D_M1_P2

R2_D_M1_P2

Figure 4.7: The STS model of FMS1.

76

FMS2

R1.3

R1.0 R1.1

R2.5

R3.1

R2.2

R2.0

R3.3

R3.0

R2.4

R2.1

M2.5

M2.0

M2.2

M2.1

M2.4

M2.3

M3.5

M3.0

M3.2

M3.1 M3.3

M4.0 M4.1 M4.3

R1 R2 R3
M1

M2 M3 M4

R1_D_I4R1_U_M3

R1_D_M3

R1_U_O2

R2_D_M2
R2_U_O1

R2_D_M3

R2_U_M4

R2_D_I1

R2_U_M2_P1

R3_D_I2

R3_U_M1

R3_U_O4 R3_D_M1

R2_D_M2

R2_U_M2_P1 R2_U_M2_P1

R2_U_M2_P1

R2_D_M2

R2_D_M2

R3_D_M2

R2_U_M2_P3

R3_D_M2

R2_U_M2_P3

R2_U_M2_P3
R3_D_M2

R2_D_M3 R2_D_M3

R1_U_M3 R1_U_M3

R1_D_M3

R1_D_M3

R2_U_M3

R2_U_M3

R2_U_M4 R2_U_M4

R3_D_M4 R3_D_M4

R2_D_M1_P2R2_U_M3

M1.5

M1.0

M1.2

R3_U_M1

R3_U_M1

R2_D_M1_P2

R2_D_M1_P2

Figure 4.8: The STS model of FMS2.

I1 O1

I2 O2

I3 O3

R2 M2 R2

R3 M1 R2 M3 R1

R1 M1 R2 M2 R3

Process 1:

Process 2:

Process 3:

Figure 4.9: The production processes of FMS1.

I1 O1

I2 O2

I O

R2 M2 R2

R3 M1 R2 M3 R1

R1 M3 R2 M4 R3

Process 1:

Process 2:

Process 3:

Figure 4.10: The production processes of FMS2.

77

Table 4.1: The list of events of Figure 4.7 and 4.8.

Label Event

R1 D I3 R1 downloads from I3

R1 D I4 R1 downloads from I4

R1 U Mi R1 uploads to Mi (i = 1 and 3)

R1 D M3 R1 downloads from M3

R1 U O2 R1 uploads to O2

R2 D M1 P i R2 downloads from M1 (i = 2 and 3)

R2 D Mi R2 downloads from Mi (i = 2 and 3)

R2 D I1 R2 downloads from I1

R2 U O1 R2 uploads to O1

R2 U M2 P i R2 uploads P i-type workpiece to M2 for i = 1 and 3

R2 U Mi R2 uploads to Mi (i = 3, and 4)

R3 D I2 R3 downloads from I2

R3 U M1 R3 uploads to M1

R3 U O3 R3 uploads to O3

R3 U O4 R3 uploads to O4

R3 D Mi R3 downloads from Mi (i = 2 and 4)

The list and description of all the events in both models are shown in Table 4.1. All the events are assumed

to be controllable. Besides avoiding deadlocks, FMS1/FMS2 has to satisfy the following five specifications.

SP.1 Each input/output pair has a fixed buffer size. The buffer sizes of I1/O1, I2/O2, I3/O3, and I4/O4 are

3, 7, 11, and 11 respectively.

SP.2 The buffers should neither overflow nor underflow.

SP.3 Each machine can only handle a maximum of two workpieces simultaneously.

SP.4 If the machines M1 and M3 are processing a specific product type, they cannot be uploaded by another

product type. In other words, M1 and M3 cannot be active in more than one production process.

SP.5 FMS1 and FMS2 should follow the production processes shown in Figure 4.9 and 4.10 respectively.

The STS models of FMS1 and FMS2 satisfy SP.5. To satisfy SP.1, we alter the STS models and add four

buffers B1, B2, B3 and B4. The updated models of FMS1 and FMS2 are shown in Figure 4.11 and 4.12.

The union model FMS is illustrated in Figure 4.13. The union flat automaton has a state set with a size of

order1108.
1The order of the size of the plant state set is calculated by multiplying the sizes of state sets of all the components.

78

FMS1

R1.2

R1.0 R1.1

R2.5

R3.1

R2.2

R2.0

R3.2

R3.0

R2.3

R2.1

M2.5

M2.0

M2.2

M2.1

M2.4

M2.3

M3.5

M3.0

M3.2

R1 R2 R3

M1
M2 M3

R1_D_I3
R1_U_M1

R1_D_M3

R1_U_O2

R2_D_M2
R2_U_O1

R2_D_I1

R2_U_M2_P1

R2_D_M1_P3

R2_U_M2_P3

R2_U_M3

R2_D_M1_P2

R3_D_M2 R3_U_O3

R3_D_I2

R3_U_M1

R2_D_M2

R2_U_M2_P1 R2_U_M2_P1

R2_U_M2_P1

R2_D_M2

R2_D_M2

R3_D_M2

R2_U_M2_P3

R3_D_M2

R2_U_M2_P3

R2_U_M2_P3
R3_D_M2

R1_D_M3

R1_D_M3

R2_U_M3

R2_U_M3

M1.5

M1.0

M1.2

M1.1 M1.3

R1_U_M1 R1_U_M1

R2_D_M1_P3 R2_D_M1_P3

R3_U_M1

R3_U_M1

R2_D_M1_P2

R2_D_M1_P2

B1.0 B1.2B1.1

B2.0 B2.2B2.1 B2.3 B2.5B2.4 B2.7B2.6

B3.0 B3.2B3.1 B3.3 B3.5B3.4 B3.7B3.6 B3.9B3.8 B3.11B3.10

B1.3

B1

B2

B3

R2_D_I1 R2_D_I1 R2_D_I1

R2_U_O1 R2_U_O1 R2_U_O1

R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2

R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2

R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3

R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3

FMS1

M1 M3M2R1 R2 R3 B1 B2 B3

R1.0 R1.1 R1.2 B3.0 B3.11

×

×

×

×

×

×

×

×

...

……….……….

M1.0 M1.5 U U U U U U ...

Figure 4.11: The STS model of FMS1 with buffers.

79

FMS2

R1.3

R1.0 R1.1

R2.5

R3.1

R2.2

R2.0

R3.3

R3.0

R2.4

R2.1

M2.5

M2.0

M2.2

M2.1

M2.4

M2.3

M3.5

M3.0

M3.2

M3.1 M3.3

M4.0 M4.1 M4.3

R1 R2 R3
M1

M2 M3 M4

R1_D_I4R1_U_M3

R1_D_M3

R1_U_O2

R2_D_M2
R2_U_O1

R2_D_M3

R2_U_M4

R2_D_I1

R2_U_M2_P1

R3_D_I2

R3_U_M1

R3_U_O4 R3_D_M1

R2_D_M2

R2_U_M2_P1 R2_U_M2_P1

R2_U_M2_P1

R2_D_M2

R2_D_M2

R3_D_M2

R2_U_M2_P3

R3_D_M2

R2_U_M2_P3

R2_U_M2_P3
R3_D_M2

R2_D_M3 R2_D_M3

R1_U_M3 R1_U_M3

R1_D_M3

R1_D_M3

R2_U_M3

R2_U_M3

R2_U_M4 R2_U_M4

R3_D_M4 R3_D_M4

R2_D_M1_P2R2_U_M3

M1.5

M1.0

M1.2

R3_U_M1

R3_U_M1

R2_D_M1_P2

R2_D_M1_P2

B1.0 B1.2B1.1

B2.0 B2.2B2.1 B2.3 B2.5B2.4 B2.7B2.6

B1.3

B1

B2

R2_D_I1 R2_D_I1 R2_D_I1

R2_U_O1 R2_U_O1 R2_U_O1

R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2

R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2

B4.0 B4.2B4.1 B4.3 B4.5B4.4 B4.7B4.6 B4.9B4.8 B4.11B4.10

B4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4

R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4

FMS2

M1 M3M2 M4R1 R2 R3 B1 B2 B4

R1.0 R1.1 R1.2 B3.0 B3.11

×

×

×

×

×

×

×

×

×

...

……….……….

M1.0 M1.2 M1.5 U U U U U U

Figure 4.12: The STS model of FMS2 with buffers.

80

FMS

R1.0 R1.1

R2.5

R3.1

R2.2

R2.0

R3.3

R3.0

R2.4

R2.1

M2.5

M2.0

M2.2

M2.1

M2.4

M2.3

M3.5

M3.0

M3.2

M3.1 M3.3

M4.0 M4.1 M4.3

R1 R2 R3
M1

M2 M3 M4

R1_D_M3

R1_U_O2

R2_D_M2
R2_U_O1

R2_D_M3

R2_U_M4

R2_D_I1

R2_U_M2_P1

R3_D_I2

R3_U_M1

R3_U_O4 R3_D_M1

R2_D_M2

R2_U_M2_P1 R2_U_M2_P1

R2_U_M2_P1

R2_D_M2

R2_D_M2

R3_D_M2

R2_U_M2_P3

R3_D_M2

R2_U_M2_P3

R2_U_M2_P3
R3_D_M2

R2_D_M3 R2_D_M3

R1_U_M3 R1_U_M3

R1_D_M3

R1_D_M3

R2_U_M3

R2_U_M3

R2_U_M4 R2_U_M4

R3_D_M4 R3_D_M4

R2_D_M1_P2
R2_U_M3

M1.5

M1.0

M1.2

M1.1 M1.3

R1_U_M1 R1_U_M1

R2_D_M1_P3 R2_D_M1_P3

R3_U_M1

R3_U_M1

R2_D_M1_P2

R2_D_M1_P2

R1.2

R1_D_I3 R1_U_M1

R2.3

R2_D_M1_P3

R2_U_M2_P3

R3.2

R3_D_M2 R3_U_O3

B1.0 B1.2B1.1

B2.0 B2.2B2.1 B2.3 B2.5B2.4 B2.7B2.6

B3.0 B3.2B3.1 B3.3 B3.5B3.4 B3.7B3.6 B3.9B3.8 B3.11B3.10

B1.3

B1

B2

B3

R2_D_I1 R2_D_I1 R2_D_I1

R2_U_O1 R2_U_O1 R2_U_O1

R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2 R3_D_I2

R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2 R1_U_O2

R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3 R1_D_I3

R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3 R3_U_O3

R1.3

R1_D_I4R1_U_M3

B4.0 B4.2B4.1 B4.3 B4.5B4.4 B4.7B4.6 B4.9B4.8 B4.11B4.10

B4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4 R1_D_I4

R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4 R3_U_O4

FMS

M1 M3M2 M4R1 R2 R3 B1 B3 B4

R1.0 R1.3 B4.0 B4.11

×

×

×

×

×

×

×

×

×

...

……….……….

M1.0 M1.5 U U U U U U

B2 ×

Figure 4.13: The STS model of FMS with buffers.

81

Table 4.2: The list of events that should be disabled at some states of FMS1 (Figure 4.11) to satisfy SP.2.

State Event Reason

B1.0 R2 U O1 B1 Underflows

B1.3 R2 D I1 B1 Overflows

B2.0 R1 U O2 B2 Underflows

B2.7 R3 D I2 B2 Overflows

B3.0 R3 U O3 B3 Underflows

B3.11 R1 D I3 B3 Overflows

Table 4.3: The list of events that should be disabled at some states of FMS2 (Figure 4.12) to satisfy SP.2.

State Event Reason

B1.0 R2 U O1 B1 Underflows

B1.3 R2 D I1 B1 Overflows

B2.0 R1 U O2 B2 Underflows

B2.7 R3 D I2 B2 Overflows

B3.0 R3 U O3 B3 Underflows

B3.11 R1 D I3 B3 Overflows

B4.0 R3 U O4 B4 Underflows

B4.11 R1 D I4 B4 Overflows

To satisfy SP.2, Tables 4.2 (for FMS1) and 4.3 (for FMS2), and to satisfy SP.3, and SP.4, Tables 4.4 (for FMS1)

and 4.5 (for FMS2) list all the states and the related events that should be disabled at those states.

The set of unsafe sub-STs for FMS1 and FMS2 are denoted by S1 and S2. The S1 and S2 identify the predi-

cates ¬P1 and ¬P2. The predicates corresponding to the safe sub-ST in FMS1 and FMS2 are P1 and P2.

Using (4.6), we calculate predicate P in Theorem 4.3 as follows.

P =
[(
P1 ∨

[
R(FMS, true)∧¬R(FMS1, true)

])
∧
(
P2 ∨

[
R(FMS, true)∧¬R(FMS2, true)

])]
∧R(FMS, true) (4.15)

Algorithm 4.4 converges to the maximally permissive solution K↑ after 5 iterations. Using a a personal

computer with 8 GB RAM and Intel(R) Core(TM) i5-3470, 3.20GHz CPU, it takes 0.473609 seconds to

synthesize K↑. We used BuDDY and STSLib libraries in C++ to run the simulation. The BDD size of K↑ is

5942. The BDD size of all control functions are 2105. The maximum and minimum BDD sizes of control

functions are 375 and 2. Recall that the number of states of the plant is of order 108.

The BDD sizes of all control functions are listed in Table 4.6. In Figures 4.14 and 4.15, three examples of

generated control functions are illustrated. The first buffer B1 has 4 states; therefore, the BDD size of B1 is

82

Table 4.4: The list of events that should be disabled at some states in FMS1 to satisfy SP.3.

State Event Reason

M1.0,M1.1,M1.3 R2 D M1 P 2 M1 Underflows

M1.0,M1.2,M1.5 R2 D M1 P 3 M1 Underflows

M1.2,M1.3,M1.5 R1 U M1 M1 Overflows

M1.1,M1.3,M1.5 R3 U M1 M1 Overflows

M2.0,M2.2,M2.5 R2 D M2 M2 Underflows

M2.0,M2.1,M2.3 R3 D M2 M2 Underflows

M2.3,M2.4,M2.5 R2 U M2 P 1,R2 U M2 P 3 M2 Overflows

M3.0 R1 D M3 M3 Underflows

M3.5 R2 U M3 M3 Overflows

Table 4.5: The list of events that should be disabled at some states in FMS2 to satisfy SP.3.

State Event Reason

M1.0 R2 D M1 P 2 M1 Underflows

M1.2 R3 U M1 M1 Overflows

M2.0,M2.2,M2.5 R2 D M2 M2 Underflows

M2.0,M2.1,M2.3 R3 D M2 M2 Underflows

M2.3,M2.4,M2.5 R2 U M2 P 1,R2 U M2 P 3 M2 Overflows

M3.0,M3.1,M3.3 R1 D M3 M3 Underflows

M3.0,M3.2,M3.5 R2 D M3 M3 Underflows

M3.3,M3.4,M3.5 R1 U M3,R2 U M3 M3 Overflows

M4.0 R3 D M4 M4 Underflows

M4.2 R2 U M4 M4 Underflows

83

Table 4.6: The BDD size of all control functions in FMS.

Controllable Event BDD size of control function

R1 D I3 203

R1 D I4 375

R1 U M1 175

R1 U M3 185

R1 D M3 3

R1 U O2 3

R2 D M1 P 2 334

R2 D M1 P 3 91

R2 D M2 4

R2 D M3 62

R2 D I1 189

R2 U O1 2

R2 U M2 P 1 5

R2 U M2 P 3 5

R2 U M3 118

R2 U M4 2

R3 D I2 270

R3 U M1 66

R3 U O3 4

R3 U O4 4

R3 D M2 3

R3 D M4 2

of size 2 (has 2 bits). The two bits of B1 are named B1 0 and B1 1 where B1 0 and B1 1 identify the first

and the second bits respectively. Figure 4.14a indicates that in B1, R2 U O1 is only disabled when B1 0 = 0

and B1 1 = 0. Therefore, to avoid underflowing B1, R2 U O1 is disabled at state 0 in B1 (B1 0 = 0 and

B1 1 = 0). The machine M2 has 6 states; therefore, it is modeled by a BDD of size 3. The labels of 3 bits are

M2 0, M2 1, and M2 2 respectively. In M2 (Figure 4.14b), R2 U M2 P 1 is only enabled at states 0, 1, and

2. The same logic can be applied for the analysis of Figure 4.15.

4.6 Summary

In this chapter, we formulated a novel robust supervisory control problem for systems modeled by State-

Tree-Structure (STS). We found a sufficient condition in STSs that guarantees the mutual refinement prop-

84

01

B1_0

B1_1

(a)

0 1

M2_0

M2_1M2_1

M2_2M2_2

(b)

Figure 4.14: The control function of controllable events (a) R2 U O1 and (b) R2 U M2 P 1.

erty. This sufficient condition can be verified by examining the holons of STSs. A set of necessary and

sufficient conditions for the existence of a solution are also presented. An algorithm was designed to cal-

culate the maximally permissive solution. We proved that this algorithm converges to the solution within

a finite number of iterations. We applied our robust supervisory control problem to a Flexible Manufactur-

ing System (FMS) with a state set with a size of order 108. Using a a personal computer, it took less that 0.5

seconds to converge to the solution.

85

0 1

B1_0

B1_1

B2_0

B2_0

B2_0

M3_0

B2_1

B2_1

B2_1

M3_1

B3_0

M3_2

B3_1

B3_2 B3_2

B4_0

B4_0

B4_0

B4_0

B4_2B4_1

B4_1

M1_0

B4_2

M1_0

M1_1

M2_1

M3_0

M3_1

M4_0

M3_2

B4_1

B4_2 B4_2

M1_0M1_0

M1_1

M2_0

B3_0

B3_2B3_2

B4_0B4_0B4_0

B4_1

B4_2

M1_0

M1_1

B4_2

B3_0

B3_1 B3_2

B3_2

B4_0 B4_0

B4_2

M1_0

M1_1

M2_0

B4_2

M1_0

M1_1

Figure 4.15: The control function of controllable event R2 D M3.

86

Chapter 5

Conclusion

5.1 Summary

In this thesis, we studied two issues of robustness and symbolic calculations in the problem of supervi-

sory control. We assumed that our models satisfy the mutually refined condition to ensure that we can

characterize the robust supervisory control solutions via state feedback control laws. The mutually refined

property of automata does not cause any restrictions on the problem formulation. We formulated a novel

robust state-based nonblocking supervisory control problem and developed an algorithm to calculate the

maximally permissive solution within a finite number of iterations.

Describing state sets by predicates enables us to store their information more efficiently. For a structured

model, sets’ predicate representation can be significantly simpler than a roster representation. Moreover,

structured models are visually more comprehensible and synthesizing a supervisor for them is less time-

consuming. State-Tree-Structure (STS) with both modular and hierarchical structures are suitable for han-

dling state explosion. We considered systems that are modeled by STS. A large range of manufacturing,

process control, and aerospace systems lend themselves to the hierarchical models of STS.

We extended the mutually refined property definition from automata to STSs. Moreover, we found a suffi-

cient condition to verify the mutually refined property of STS models without constructing their flat mod-

els. We formulated a robust supervisory control problem for systems modeled with STS and developed an

algorithm to calculate the maximally permissive solution in a finite number of iterations. We illustrated

our results on a flexible manufacturing system model with a state set of order 108. For this case-study, we

synthesized the supervisor using our algorithm and a BDD-based program in C++.

87

As technology evolves, the complexity of systems also increases. The systems can have multiple operational

procedures. Moreover, the systems may need to be functional in the presence of minor faults to avoid

disruption and economic loss. While our work is not the ultimate solution for such systems, we provide a

stepping-stone towards it. In our work, we have assumed that all the events are observable. An assumption

that is not necessarily true in all systems. Furthermore, we have assumed that the corresponding holons

are mutually refined in the STSs. An assumption that may not be true as well.

5.2 Future Work

We found a condition to verify the mutually refined property in STS. However, we did not present any

solutions for STS models that are not mutually refined. Similar to automata, a procedure can be developed

to convert the non-mutually refined STSs to mutually refined ones. Since holons being mutually refined is

a sufficient condition for STSs being mutually refined, one can simply develop a procedure for conversion

of holons from non-mutually refined to mutually refined.

In this thesis, we assumed that all the events are observable. The results of [69] and [23] can be used to

extend our work for automata and STS models to the case of partial observation.

In this thesis, we developed a robust nonblocking state-based supervisory control to handle model un-

certainty. Besides robust supervisory control, adaptive supervisory control is also used to handle model

uncertainty in DES. The concept of predicates can be extended to adaptive supervisory control as well. So

far, no state-based adaptive supervisory control has been proposed for systems modeled by STS.

88

References

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol. c-27, no. 6, pp. 509–516, June 1978.

[2] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin, “Supervisory control of a rapid

thermal multiprocessor,” IEEE Trans. Automat. Control, vol. 38, no. 7, pp. 1040–1059, July 1993.

[3] F. Boroomand and S. Hashtrudi-Zad, “A limited lookahead policy in robust nonblocking supervisory

control of discrete event systems,” Proc. American Control Conference (ACC), Washington, DC, USA, pp.

935–939, June 2013.

[4] S. E. Bourdon, M. Lawford, and W. M.Wonham, “Robust nonblocking supervisory control of discrete-

event systems,” IEEE Trans. Automat. Control, vol. 50, no. 12, pp. 2015–2021, December 2005.

[5] Y. Brave and M. Heymann, “Control of discrete-event systems modeled as hierarchical state machine,”

IEEE Trans. Automat. Control, vol. 38, no. 12, pp. 1803–1819, December 1993.

[6] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans. Comput.,

vol. 35, no. 8, pp. 677–691, August 1986.

[7] L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagnosis of discrete event systems against

intermittent loss of observations,” Automatica, vol. 48, no. 9, pp. 2068–2078, 2012.

[8] W. Chao, Y. Gan, Z. Wang, and W. Wonham, “Representation of supervisory controls using state tree

structures, binary decision diagrams, automata, and supervisor reduction,” Proc. of 24th Chinese Con-

trol and Decision Conference (CCDC), Taiyuan, China, pp. 45–50, May 2012.

[9] ——, “Modular supervisory control and coordination of state tree structures,” International Journal of

Control, vol. 86, no. 1, pp. 9–21, 2013.

[10] W. Chao, Y. Gan, W. M. Wonham, and Z. Wang, Nonblocking supervisory control of flexible manufacturing

systems based on state tree structures, ser. A volume in the Advances in Civil and Industrial Engineering

(ACIE) Book Series. Engineering Science Reference, 2013, ch. 1, pp. 1–19.

89

[11] X. Y. Chen, Online robust nonblocking supervisory control of discrete-event systems. M.A.Sc. Thesis,

Dept. Electrical and Computer Eng., Concordia Univ., 2007.

[12] X. Y. Chen and S. Hashtrudi-Zad, “A direct approach to robust supervisory control of discrete-event

systems,” 2008 Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Ont., Canada,

pp. 957–962, May 2008.

[13] S.-L. Chung and S. Lafortune, “Limited lookahead policies in supervisory control of discrete event

systems,” IEEE Trans. Automat. Control, vol. 37, no. 12, pp. 1921–1935, December 1992.

[14] J. E. R. Curry and B. H. Krogh, “Robustness of supervisors for discrete-event systems,” IEEE Trans.

Automat. Control, vol. 44, no. 2, pp. 376–379, February 1999.

[15] M. H. De Queiroz, J. E. R. Cury, and W. M. Wonham, “Multitasking supervisory control of discrete-

event systems,” Discrete Event Dynamic Systems, vol. 15, no. 4, pp. 375–395, 2005.

[16] K. Dong, Q. Quan, and W. M. Wonham, “Failsafe mechanism ddesign for autonomous aerial refueling

using state tree structures,” Unmanned Systems, vol. 7, no. 4, pp. 261–279, June 2019.

[17] P. A. eite, F. L. Baldissera, and J. E. Cury, “State-based supervisory control with restrictions on the

supervisor realization,” Discrete Event Dyn Syst, vol. 30, no. 4, pp. 671–693, 2020.

[18] Z. Fei, S. Miremadi, K. Akesson, and B. Lennartson, “Efficient symbolic supervisor synthesis for ex-

tended finite automata,” IEEE Trans. Control Syst. Technol., vol. 22, no. 6, pp. 2368–2375, November

2014.

[19] Z. Fei, S. Reveliotis, S. Miremadi, and K. Akesson, “A BDD-based approach for designing maximally

permissive deadlock avoidance policies for complex resource allocation systems,” IEEE Trans. Autom.

Sci. Eng., vol. 12, no. 3, pp. 990–1006, July 2015.

[20] B. Gaudin and H. Marchand, “Supervisory control of product and hierarchical discrete event systems,”

European Journal of Control, vol. 10, no. 2, pp. 131–145, December 2004.

[21] J. Geurts, Supervisory control of MRI subsystems. M.A.Sc. Thesis, Dept. Mechanical Eng., System Eng.

Group, Eindhoven Univ. Technol., 2012.

[22] C. Gu, X. Wang, and Z. Li, “Synthesis of supervisory control with partial observation on normal state-

tree structures,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, pp. 984–997, April 2019.

[23] C. Gu, X. Wang, Z. Li, and N. Wu, “Supervisory control of state-tree structures with partial observa-

tion,” Information Sciences, vol. 465, pp. 523–544, 2018.

90

[24] J. Gunnarsson, Symbolic methods and tools for discrete event dynamic systems. PhD. Thesis, Division of

Automatic Control Department of Electrical Engineering, Linkoping Studies in Science and Technol-

ogy, Sweden, 1997.

[25] N. B. Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead supervisory control with state in-

formation,” IEEE Trans. Automat. Control, vol. 39, no. 12, pp. 2398–2410, December 1994.

[26] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Computer Programing,

vol. 8, pp. 231–274, June 1987.

[27] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of petri net methods for controlled discrete event

systems,” Discrete Event Dynamic Systems, vol. 7, no. 2, pp. 151–190, Apr 1997.

[28] R. Kamphuis, Design and real-time implementation of a supervisory controller for baggage handling at

Veghel Airport. M.A.Sc. Thesis, Dept. Mechanical Eng., System Eng. Group, Eindhoven Univ. Technol.,

2013.

[29] J. Komenda, J. van Schuppen, B. Gaudin, and H. Marchand, “Supervisory control of modular systems

with global specification languages,” Automatica, vol. 44, pp. 1127–1134, 2008.

[30] T. Korssen, V. Dolk, J. Van De Mortel-Fronczak, M. Reniers, and M. Heemels, “Systematic model-based

design and implementation of supervisors for advanced driver assistance systems,” IEEE Trans. Intell.

Transp. Syst., vol. 19, no. 2, pp. 533–544, February 2018.

[31] S. Lafortune and E. Chen, “The infimal closed controllable superlanguage and its application in su-

pervisory control,” IEEE Trans. Automat. Control, vol. 35, no. 4, pp. 398–405, April 1990.

[32] R. J. Leduc, P. Dai, and R. Song, “Synthesis method for hierarchical interface-based supervisory con-

trol,” IEEE Trans. Automat. Control, vol. 54, no. 7, pp. 1548–1560, July 2009.

[33] R. J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-based supervisory control—part

ii: Parallel case,” IEEE Trans. Autom. Control, vol. 50, no. 9, September 2005.

[34] C. Y. Lee, “Representation of switching circuits by binary decision programs,” Bell System Technical

Journal, vol. 38, no. 4, pp. 985–999, July 1959.

[35] Y. Li and W. M. Wonham, “Controllability and observability in the state-feedback control of discrete-

event systems,” Proc. of the 27th Conference on Decision and Control (CDC), Austin, Texas, USA, pp.

203–208, December 1988.

[36] ——, “Control of vector discrete-event systems I-the base mode,” IEEE Trans. Automat. Control, vol. 38,

no. 8, pp. 1214–1227, August 1993.

91

[37] F. Lin, “Robust and adaptive supervisory control of discrete event systems,” IEEE Trans. Automat.

Control, vol. 38, no. 12, pp. 1848–1852, December 1993.

[38] H. Liu, R. J. Leduc, and S. L. Ricker, “Hierarchical interface-based decentralized supervisory control,”

Proc. of 54th Conference on Decision and Control (CDC), Osaka, Japan, pp. 1693–1700, December 2015.

[39] C. Ma and W. Wonham, “Nonblocking supervisory control of state-tree structures,” IEEE Trans. Au-

tomat. Control, vol. 51, no. 5, pp. 782–793, May 2006.

[40] C. Ma and W. M. Wonham, Nonblocking supervisory control of state tree structures, ser. Lecture Notes in

Control and Information Science. Springer Berlin Heidelberg, 2005, vol. 317.

[41] ——, “STSLib and its application to two benchmarks,” Proc. of the 9th International Workshop on Dis-

crete Event Systems (WODES’08), Goteborg, Sweden, pp. 119–124, May 2008.

[42] S. Miremadi, K. A. Z. Fei, and B. Lennartson, “Symbolic computation of reduced guards in supervisory

control,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 4, pp. 754–765, October 2011.

[43] ——, “Symbolic representation and computation of timed discrete-event systems,” IEEE Trans. Autom.

Sci. Eng., vol. 11, no. 1, pp. 6–19, January 2014.

[44] S. Miremadi and B. Lennartson, “Symbolic on-the-fly synthesis in supervisory control theory,” IEEE

Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1705–1716, September 2016.

[45] S. Miremadi, B. Lennartson, and K. Akesson, “A BDD-based approach for modeling plant and super-

visor by extended finite automata,” IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1421–1435,

November 2012.

[46] R. Mohammadi and S. Hashtrudi-Zad, “A recursive algorithm for diagnosis in hierarchical finite-

state machines,” 2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal, Que.,

Canada, pp. 1345–1350, Oct 2007.

[47] A. Mohammadi-Idghamishi and S. Hashtrudi-Zad, “Hierarchical fault diagnosis: Application to an

ozone plant,” IEEE Trans. Syst., Man, Cybern., Syst.: Part C, vol. 37, no. 5, pp. 1040–1047, September

2007.

[48] A. Paoli and S. Lafortune, “Diagnosability analysis of a class of hierarchical state machines,”

Discrete Event Dynamic Systems, vol. 18, no. 3, pp. 385–413, Sep. 2008. [Online]. Available:

http://dx.doi.org/10.1007/s10626-008-0044-5

[49] S.-J. Park and J.-T. Lim, “Robust and nonblocking supervisory control of nondeterministic discrete

event systems using trajectory models,” IEEE Trans. Automat. Control, vol. 47, no. 4, pp. 655–658,

April 2002.

92

http://dx.doi.org/10.1007/s10626-008-0044-5

[50] S.-J. Park and K.-H. Cho, “Decentralized supervisory control of nondeterministic discrete event sys-

tems: The existence condition of a robust and nonblocking supervisor,” Automatica, vol. 43, pp. 377–

383, 2007.

[51] S. Rahnamoon and W. M. Wonham, “State-based control of timed discrete-event systems,” in Proc. of

54th Conference on Decision and Control (CDC), Miami Beach, FL, USA. IEEE, December 2018, pp.

4833–4838.

[52] P. J. Ramadge and W. M. Wonham, “Modular feedback logic for discrete event systems,” SIAM J.

Control Optim., vol. 25, no. 5, pp. 1202–1218, September 1987.

[53] ——, “Supervisory control of a class of discrete event processes,” SIAM J. Control Optim, vol. 25, no. 1,

pp. 206–230, January 1987.

[54] F. F. Reijnen, M. A. Reniers, J. M. van de Mortel-Fronczak, and J. E. Rooda, “structured synthe-

sis of fault-tolerant supervisory controllers,” in 10th IFAC Symposium on Fault Detection, Supervi-

sion and Safety for Technical Processes SAFEPROCESS 2018: Warsaw, Poland, vol. 51, no. 24. IFAC-

PapersOnLine, August 2018, pp. 894–901.

[55] A. Saadatpoor, Timed state-tree-structures: supervisory control and fault diagnosis. PhD. Thesis, Dept.

Electrical Eng., Univ. of Toronto, 2009.

[56] A. Saadatpoor and W. Wonham, “State based control of timed discrete event systems using binary

decision diagrams,” Systems & Control Letters, vol. 56, no. 1, pp. 62–74, January 2007.

[57] A. Saboori and S. Hashtrudi-Zad, “Robust nonblocking supervisory control of discrete-event systems

under partial observation,” Systems & Control Letters, vol. 55, pp. 839–848, 2006.

[58] A. Schumann, Y. Pencole, and S. Thiebaux, “Diagnosis of discrete-event systems using BDDs.” 15th

International Workshop on Principles of Diagnosis (DX-04), pp. 197–202, 2004.

[59] J. Sztipanovits and A. Misra, “Diagnosis of discrete-event systems using ordered binary decision dia-

grams,” 7th Intl. Workshop on Principles of Diagnosis (DX-96), Val Morin, Canada, 1996.

[60] S. Takai, “Robust supervisory control of a class of timed discrete event systems under partial observa-

tion,” Systems & Control Letters, vol. 39, pp. 267–273, April 2000.

[61] ——, “Synthesis of maximally permissive and robust supervisors for prefix-closed language specifica-

tions,” IEEE Trans. Automat. Control, vol. 47, no. 1, pp. 132–136, January 2002.

[62] ——, “Maximizing robustness of supervisors for partially observed discrete event systems,” Automat-

ica, vol. 40, pp. 531–535, March 2004.

93

[63] ——, “Robust failure diagnosis of partially observed discrete event systems,” 10th IFAC Workshop on

Discrete Event Systems (WODES’10), Berlin, Germany, vol. 43, pp. 205–510, August 2010.

[64] ——, “Robust prognosability for a set of partially observed discrete event systems,” Automatica,

vol. 51, pp. 123–130, 2015.

[65] J. H. A. Tomola, F. G. Cabral, L. K. Carvalho, and M. V. Moreira, “Robust disjunctive-codiagnosability

of discrete-event systems against permanent loss of observations,” IEEE Trans. Automat. Control,

vol. 62, no. 11, pp. 5808–5815, December 2017.

[66] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory synthesis of large systems,” Systems &

Control Letters, vol. 14, pp. 1157–1167, April 2006.

[67] J. M. van de Mortel-Fronczak, M. H. van der Heijden, R. G. Huisman, and M. A. Reniers, “Supervisor

synthesis in model-based automotive systems engineering,” Proc. 2014 ACM/IEEE Conference on Cyber-

Physical Systems, ICCPS, Berlin, Germany, pp. 187–198, April 2014.

[68] B. Wang, Top-down design for RW supervisory control theory. M.A.Sc. Thesis, Dept. Electrical and

Computer Eng., Univ. of Toronto, 1995.

[69] D. Wang, L. Lin, Z. Li, and W. M. Wonham, “State-based control of discrete-event systems under

partial observation,” IEEE Access, vol. 6, pp. 42 084–42 093, 2018.

[70] D. Wang, X. Wang, and Z. Li, “Nonblocking supervisory control of state-tree structures with

conditional-preemption matrices,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3744–3756, June 2020.

[71] X. Wang, Z. Li, and W. M. Wonham, “Real-time scheduling based on nonblocking supervisory control

of state-tree structures,” IEEE Trans. Automat. Control, doi:10.1109/TAC.2020.3031023.

[72] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sublanguage of a given language,”

SIAM J. Control Optim., vol. 25, no. 3, p. 637–659, May 1987.

[73] ——, “Modular supervisory control of discrete-event systems,” Math. Control Signals Systems, vol. 1,

no. 1, pp. 13–30, 1988.

[74] W. M. Wonham and K. Cai, Supervisory control of discrete-event systems, ser. Monograph Series Com-

munications and Control Engineering. Springer Berlin Heidelberg, 2018.

[75] C. Xiao and F. Liu, “Robust fault prognosis of discrete-event systems against loss of observations,”

IEEE Transactions on Automation Science and Engineering, pp. 1–12, 2021.

94

[76] F. Yari, S. Hashtrudi-Zad, and S. Tafazoli, “Robust supervisory control of a spacecraft propulsion

system,” 20th IFAC Symposium on Automatic Control in AerospaceACA 2016, Sherbrooke, Que., Canada,

vol. 49, no. 17, pp. 200–205, August 2016.

[77] X. Yin, J. Chen, Z. Li, and S. Li, “Robust fault diagnosis of stochastic discrete event systems,” IEEE

Trans. Automat. Control, vol. 64, no. 10, pp. 4237–4244, October 2019.

95

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Supervisory Control Using Discrete-Event Models
	Literature Review
	Supervisory Control
	State-Based Supervisory Control
	Robust Supervisory Control
	Hierarchical Discrete Event Systems
	Symbolic Supervisory Control

	Research Objectives and Methodology
	Objectives
	Methodology

	Contributions
	Organization

	Background
	Automata, Languages, and Predicates
	Robust Supervisory Control
	State-Based Supervisory Control
	State-Tree-Structure
	Nonblocking Supervisory Control of State-Tree-Structure
	Binary Decision Diagram
	Summary

	Robust Nonblocking State-based Supervisory Control
	Problem Formulation
	Implications of Mutually Refinement Property
	Solution: Necessary and Sufficient Conditions
	Solution: Computational Procedure
	Example
	Summary
	Appendix Procedure to Obtain Mutually Refined Automata

	Robust Supervisory Control of Systems with State-Tree-Structure Model
	Problem Formulation
	Implications of Mutually Refinement Property in State-Tree-Structure
	Solution: Necessary and Sufficient Conditions
	Solution: Computational Procedure
	Example
	Summary

	Conclusion
	Summary
	Future Work

	References

