
MODELING THE LINUX PAGE CACHE FOR ACCURATE

SIMULATION OF DATA-INTENSIVE APPLICATIONS

Hoang-Dung Do

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2021

© Hoang-Dung Do, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair of Department or Graduate Program Director

______________________________________ Chair

 ______________________________________ Examiner

 ______________________________________ Examiner

______________________________________ 7KHVLV Supervisor�V�

_______________________________________ Thesis Supervisor(s)

Approved by __

'eDQ

Abstract

Modeling the Linux page cache for accurate simulation of

data-intensive applications

Hoang-Dung Do

The emergence of Big Data in recent years has led to a growing need in data

processing and an increasing number of data-intensive applications. Processing and

storage of massive amounts of data require large-scale solutions and thus must data-

intensive applications be executed on infrastructures such as cloud or High Per-

formance Computing (HPC) clusters. Although there are advancements of hard-

ware/software stack that enable larger computing platforms, some relevant challenges

remain in resource management, performance, scheduling, scalability, etc. As a re-

sult, there is an increasing demand for optimizing and quantifying performance when

executing data-intensive applications on those platforms. While infrastructures with

su�cient computing power and storage capacity are available, the I/O performance

on disks remains a bottleneck. To tackle this problem, apart from hardware im-

provements, the Linux page cache is an e�cient architectural approach to reduce

I/O overheads, but few experimental studies of its interactions with Big Data ap-

plications exist, partly due to limitations of real-world experiments. Simulation is a

popular approach to address these issues, however, existing simulation frameworks

do not simulate page caching fully, or even at all. As a result, simulation-based

performance studies of data-intensive applications lead to inaccurate results.

This thesis proposes an I/O simulation model that captures the key features of the

Linux page cache. We have implemented this model as part of the WRENCH work-

flow simulation framework, which itself builds on the popular SimGrid distributed

systems simulation framework. Our model and its implementation enable the simu-

lation of both single-threaded and multithreaded applications, and of both writeback

and writethrough caches for local or network-based filesystems. We evaluate the

accuracy of our model in di↵erent conditions, including sequential and concurrent

iii

applications, as well as local and remote I/Os. The results show that our page cache

model reduces the simulation error by up to an order of magnitude when compared

to state-of-the-art, cacheless simulations.

iv

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Prof.

Tristan Glatard, from the Department of Computer Science and Software Engineering

at Concordia University, for the patient guidance, useful comments, valuable feedback

and advice he has provided during my master program. I am glad and consider myself

lucky to have a chance to work with a knowledgeable, motivated professor who really

cared about his students’ research.

I also would like to extend my gratitude to Valérie Hayot-Sasson, a very kind and

helpful colleague, for her support throughout this research. This thesis could have

not been done without her knowledge and contributions.

I would like to thank to all the co-authors of the paper, Dr. Casanova from

University of Hawaii at Mānoa, Dr. Ferreira da Silva from University of Southern

California, Dr. Christopher Steele from Concordia University, for their conscientious

help to complete the paper.

It is also my great pleasure to work with all the members in Big Data Infrastructure

for Neuroinformatics Laboratory at Concordia University, who are nice and helpful

colleagues, who helped me to quickly adapt to the environment in the laboratory as

well as the university.

I also thank to Concordia University and, again, Prof. Tristan Glatard for giv-

ing me the opportunity to do my master and have a valuable studying time in the

university.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Data-intensive applications and HPC 1

1.2 Performance quantification . 2

1.3 Page cache and simulation . 3

1.4 Contributions . 4

1.5 Thesis organization . 5

2 Related work 7

2.1 Page cache . 7

2.1.1 Page cache reduces I/O cost 7

2.1.2 Cache eviction . 9

2.1.3 Flushing and periodical flushing 12

2.2 Approaches in performance quantification 13

2.3 Simulation . 15

2.3.1 Simulation frameworks . 15

2.3.2 Simulation models . 16

2.3.3 Existing data caching simulation 17

2.3.4 SimGrid and WRENCH . 18

3 Page cache simulation model 22

3.1 Memory Manager . 24

3.1.1 Page cache LRU lists . 24

vi

3.1.2 Reads and writes . 25

3.1.3 Flushing and eviction . 25

3.2 I/O Controller . 27

3.3 Implementation . 29

4 Experiments and Results 31

4.1 Experiments . 31

4.2 Results . 34

4.2.1 Single-threaded execution (Exp 1) 34

4.2.2 Concurrent applications (Exp 2) 38

4.2.3 Remote storage (Exp 3) . 39

4.2.4 Real application (Exp 4) . 40

4.2.5 Simulation time . 41

5 Conclusion 43

vii

List of Figures

1 Overview and main components in SimGrid framework 18

2 The four layers in the WRENCH architecture from bottom to top:

simulation core, simulated core services, simulated WMS implementa-

tions, and simulators. 20

3 Overview of the page cache simulator. Applications send file read or

write requests to the I/O Controller that orchestrates flushing, evic-

tion, cache and disk accesses with the Memory Manager. Concurrent

accesses to storage devices (memory and disk) are simulated using ex-

isting models. 23

4 Model of page cache LRU lists with data blocks. 25

5 File data read order. Data is read from left to right: uncached data is

read first, followed by data from the inactive list, and finally data from

the active list. 26

6 Absolute relative simulation errors of single-threaded application with

di↵erent file sizes . 35

7 Single-threaded application memory profiles with di↵erent file sizes . 37

8 Cache contents after single-threaded application I/O operations . . . 38

9 Results of concurrent applications on local storage with 3 GB files (Exp

2) . 39

10 Results of concurrent applications on NFS with 3 GB files (Exp 3) . . 40

11 Real application results (Exp 4) . 41

12 Simulation time comparison. WRENCH-cache scales linearly with the

number of concurrent applications, albeit with a higher overhead than

WRENCH. 42

viii

List of Tables

1 Synthetic application parameters . 32

2 Nighres application parameters . 34

3 Bandwidth benchmarks (MBps) and simulator configurations. The

bandwidths used in the simulations were the average of the measured

read and write bandwidths. Network accesses were not simulated in

the Python prototype. 34

ix

Chapter 1

Introduction

1.1 Data-intensive applications and HPC

In the last decades, information technology has been significantly changing the

world we are living in. Thanks to both software and hardware advancements, ap-

plication development and operational costs have become more reasonable. As a

result, data-intensive applications have been widely used in various fields by com-

panies, organizations, and individuals. Simultaneously, those applications have been

collecting massive amounts of data generated at an increasing speed. In addition, the

last decade witnessed the rise of Big Data and the Internet of Things (IoT) with the

rapid development in mobile devices, wearable devices, smart appliances, and con-

nectivity technologies. Data has increasingly been collected from these sources and

transferred through network everyday. The ever-increasing number and the scale of

open-data and data sharing initiatives have resulted in the evolution in Big Data and

data-intensive applications, which have been increasingly playing an important role

in many fields such as science, medical, military, finance, commerce, etc.

Big Data is usually defined with “three Vs” corresponding to volume, velocity

and variety [14]. Regarding volume, the vast amounts of data require scalable and

distributed approaches for storage solutions as well as querying information and in-

sights. Velocity emphasizes on the speed at which data is generated from large data

streams. Real-time analytics of streaming data requires immediate responses from

the data ingested by systems. Variety refers to the diversity of data types including

both structured and unstructured data such as text, audio, images, and videos from

1

various data sources. This data diversity requires not only elastic storage, transfer,

processing but also compute power to obtain deeper and valuable insights. Due to the

above challenges in handling the sheer size of the data, data-intensive applications

must be executed on large-scale infrastructures such as High Performance Computing

(HPC) clusters or the cloud, which provides a large-scale solution and parallelism at

micro as well as macro level to boost data processing [33].

Data-intensive applications consist of complex long tasks and workflows with a

significant amount of data. Performance improvements can reduce the execution time

by hours or even days. It is thus crucial to quantify and optimize the performance of

these applications on HPC platforms. However, HPC systems have heterogeneous and

complex architectures since they are built by and for di↵erent organizations, used for

specific purposes, thus must be optimized in di↵erent ways. The goals of optimization

of these platforms include determining which type of hardware/software stacks are

best suited to di↵erent application classes, as well as understanding the limitations of

current algorithms, designs and technologies. There have been di↵erent approaches

to measure the performance of platforms through metrics such as execution time,

resources consumption, power consumption, etc.

1.2 Performance quantification

Quantifying the performance of HPC platforms requires running experiments on

those platforms. There are two common approaches to conduct experiments on HPC

platforms: running real experiments on real platforms, and using simulation tools.

In the first approach, real-world tasks, applications, workflows, or pipelines are exe-

cuted directly on a real platform and the information about the performance of the

system is recorded for later analysis. This method can guarantee that the results are

realistic since it uses measurements obtained from real systems. Unfortunately, per-

formance studies relying on real-world experiments on compute platforms face many

di�culties. The first challenge is that platforms are normally shared among users,

and therefore subject to dynamic, uncontrolled workloads which hinder the repro-

ducibility of experiment results. The next di�culty is related to the labor-intensive

experimental setups and time-consuming applications, since experiments must be re-

executed multiple times with multiple settings. Moreover, because real platforms

2

are not built for experimental purposes, users may not have the freedom to choose

platform architectures, software, and system configurations since some settings may

not be permitted and the operational costs of the platforms are usually high. These

shortcomings preclude the exploration of hypothetical scenarios.

Simulations address these concerns by providing simulation models and abstrac-

tions for the performance of computer hardware, such as CPU, network, and stor-

age. Simulation models describe the interactions between simulated applications and

simulated platforms by evolving application activities (such as computation, data

transfer) which consume simulated resources (CPU, network, storage) throughout

simulated application run time [10]. As a result, simulations provide a cost-e↵ective,

fast, easy, and reproducible way to evaluate application performance on arbitrary

platform configurations. It thus comes as no surprise that a large number of sim-

ulation frameworks have been developed and used for research and development

[3, 6, 32, 7, 30, 31, 27, 24, 29, 35, 10, 8, 9].

1.3 Page cache and simulation

Due to hardware limitations, the performance of platforms can be hampered by

bottlenecks including data transfer through network links, accessing data on disks,

etc. When it comes to disk I/O, bottlenecks originate in limited disk read and write

bandwidths, seek time involved in disk accesses, and shared bandwidth between pro-

cesses. In data-intensive applications, a significant proportion of execution time is

spent on data read and write. Thus, the detrimental e↵ects of the I/O bottleneck

can be more severe on this type of tasks. Failing to e↵ectively access data can hin-

der the performance of the whole application, and can lead to wasteful idle time of

other resources. Although e↵orts to increase the bandwidth of storage devices with

advancements in technology, such as solid-state drive (SSD), the I/O bottleneck still

exists.

Caching is a ubiquitous technique to minimize data transfers from low-speed stor-

age by using a high-speed storage layer to store data temporarily. By reusing pre-

viously accessed data for future requests, caching helps reduce data transfer times.

Following the idea of caching, page cache is an architectural approach implemented in

Linux that leverages main memory to improve the e↵ectiveness in accessing data on

3

disks and therefore reduce filesystem data transfer times. As main memory is known

to have significantly faster read and write bandwidths compared to those of disks, the

idea behind page cache is to make I/O operations occur in memory instead of disks.

With the page cache, previously read data can be kept in cache and then re-read

directly from memory with memory read bandwidth. Likewise, data can be written

to memory with memory write bandwidth before being asynchronously flushed to

disk, resulting in better I/O performance than on slower storage devices. In case the

amount of cache available is not su�cient for caching new data, data previously read

or written to page cache can be flushed to disk or evicted from cache with data flush-

ing and cache eviction mechanisms. These mechanisms are implemented in the Linux

kernel and triggered based on specific conditions of the total amount of memory, the

amount of data being written (i.e., dirty data), the amount of memory available for

written data, configurations and parameters defined in the kernel, etc. These pa-

rameters combined with the above-mentioned flushing and eviction mechanisms are

the key features of the page cache. Hence, these factors should be taken into ac-

count when determining the impact of I/O on application performance, particularly

in data-intensive applications.

Aside from hardware resources, the existence of the page cache in systems has con-

siderable impacts on the performance of platforms as it mitigates the I/O bottleneck.

As such, it is necessary to have a simulation model of the page cache when simulating

data-intensive applications in order to achieve higher accuracy in simulation results.

While existing simulation frameworks of parallel and distributed computing systems

capture many relevant features of hardware as well as software stacks, they lack the

ability to simulate page cache with enough details to capture key features such as

dirty data, data flushing mechanisms, and cache eviction policies [30, 31]. Some

simulators, such as the one in [43], do capture such features, but are domain-specific.

1.4 Contributions

This thesis presents a page cache simulation model that includes features not

fully captured in other simulation frameworks: (1) a model of cached data, (2) a data

flushing mechanism, and (3) a cache eviction policy. The thesis also presents file read

and file write simulation algorithms, which simulate file I/O in a chunk-by-chunk

4

manner. These functions play the role of the read and write functions in the kernel:

they simulate file read and file write by interacting with the simulated page cache.

We also provide the implementation of the page cache model and file I/O algorithms

in WRENCH [9], a workflow simulation framework based on the popular SimGrid

distributed simulation toolkit [10]. In order to validate and evaluate the accuracy

and scalability of the page cache simulation model, we implement a simulator in pure

Python as well as in C with WRENCH framework and compare it to a simulator with

the original WRENCH version, which is not integrated the page cache model. The

simulator is evaluated in di↵erent experiments, which include common scenarios in

data-intensive applications on HPC. The experiments include single-threaded appli-

cations, multi-threaded applications, remote storage application using synthetic data,

as well as a real neuroimaging pipeline with real data. The experimental results show

that our page cache model significantly improves the simulation accuracy by reduc-

ing the relative simulation errors by up to 9 times. Besides, our simulator not only

achieves more accurate simulation results, it also correctly simulates the behavior of

the page cache, which proves the correctness of the model and enables opportunities

for further enhancements.

1.5 Thesis organization

This thesis consists of five main parts divided into chapters. Chapter 2 provides

the background knowledge of the Linux page cache with key features and mechanisms.

It also summarizes the simulation approach of studies in HPC performance with ex-

isting simulation frameworks and models. The reasons for the choice of simulation

tools in this thesis are explained in this chapter as well. Chapter 3 presents the page

cache simulation model with the key features in three main sections. The first section

describes the simulation of the page cache components including data, page cache

LRU lists and, flushing and eviction mechanisms. The second section interprets the

file read and write simulation algorithms, which are built in a chunk-by-chunk style.

The last section in this chapter briefly presents the implementation plan to integrate

the page cache model into the WRENCH framework. Chapter 4 proposes four ex-

periment scenarios to validate the model including a single-threaded application, a

5

concurrent applications scenario, an experiment with remote storage, and a real neu-

roimaging application. The experiment results and evaluation are also presented in

this chapter. Finally, Chapter 5 concludes this thesis and discusses future work.

6

Chapter 2

Related work

This chapter provides background knowledge regarding the Linux page cache,

which is the center of this thesis. It also discusses the current approaches to measure

performance in computing platforms: real platform experiments, emulation, and sim-

ulation. Next, the chapter summarizes the context of existing simulation tools, their

advantages as well as challenges, and the existing simulation of page cache in the

existing simulators. Finally, this chapter introduces the simulation tools namely Sim-

Grid and WRENCH, their benefits and the reasons why we chose them to implement

out model.

2.1 Page cache

This section discusses the concept of the page cache and how page cache helps

reducing I/O costs. It also introduces the mechanisms of the page cache as imple-

mented in the Linux kernel, including cache eviction policies, dirty data, and flushing

mechanisms that flush dirty data from the page cache to disk.

2.1.1 Page cache reduces I/O cost

The Linux page cache

To o↵set the cost of I/O, the Linux kernel implements a cache, called page cache,

by storing in memory data that requires disk accesses. There are two reasons that

make the page cache important to operating systems. First, disk accesses are several

7

orders of magnitude slower than memory accesses. Second, there is a likelihood that

data accessed before will be accessed again in near future [28]. By accessing data with

memory bandwidth, which is much faster than disk bandwidth, the I/O performance

can be remarkably improved. The Linux page cache is a part of RAM, which includes

physical pages referring to pages on disk. The size of the page cache is dynamic as it

can grow when there is available free memory, and can be shrunk to release memory

if needed. Data cached in the page cache consists of pages, which means files do not

need to be cached entirely, the page cache can keep the whole file, or only part of the

file.

When the kernel starts a read operation, it checks if the required data is in memory.

If yes, called a cache hit, data is then read directly from memory, with memory

bandwidth, instead of from disk. If not, called a cache miss, data is read from disk

and the kernel places a new entry representing this data in the page cache for later

reads [28]. In write operations, the behavior of the page cache is more sophisticated.

Writeback and writethrough page cache

When the page cache is enabled for a given filesystem, all written pages are written

first to page cache, prior to being written to disk. Accessing these written pages may

result in cache hits. Generally speaking, the page cache can implement one in three

di↵erent write strategies.

In the first strategy, which is no-write, the page cache simply is not involved in

write operations. In no-write, data is written directly to disk, the cache is invalidated

and data is read from disk for any subsequent requests. This strategy is rarely im-

plemented since it not only fails to cache data, but also costly invalidates the page

cache [28].

The second strategy is writethrough, in which the kernel updates both disk and

memory cache during write operations. The name writethrough itself suggests that

data is written through the page cache to disk with disk write bandwidth [28]. This

is a simple solution that can keep data in cache synchronized between page cache

and disk, but it does not make the write operations benefit from fast memory write

bandwidth.

The third strategy implemented in Linux kernel is called writeback. With write-

back cache, the kernel performs write operations by writing data directly into the

8

page cache. However, unlike writethrough, the storage is not immediately updated.

Instead, the pages that have been written to page cache are marked as dirty data.

These dirty pages are periodically written back to disk by a flusher process in pre-

defined intervals. In addition, if the kernel needs to reclaim some free memory, it

can immediately trigger data flushing to write back dirty data to disk. After being

written back to storage, these pages are no longer dirty and can be removed from page

cache when the free memory is insu�cient. The writeback strategy is considered to

outperform writethrough as well as direct I/O (page cache bypassed for I/O) as it

delays disk writes to perform a bulk write at a later time [28]. However, this strategy

requires more complex implementations as well as more computational overhead.

Caching on network file systems

Data caching requires keeping data close to where it is requested. In network

filesystems (NFS), data caching means not sending data access requests to server

over the network. In addition, some cache schemes are restricted to ensure data

integrity and consistency depending on the structure of the filesystem. Thus, data is

cached in client cache instead of a remote disk [16].

In read operations, if data is cached on the client side, data is read from the client

cache as with local filesystem. If the required data is not cached on the client, it will

be read from the server. On the server side, the kernel also checks for the availability

of data in server cache to decide whether data is read from cache or disk.

However, the server cache is not involved in writing since the data written to NFS

server should not be cached on the server side. Instead, data must be written directly

to disk to ensure data integrity. If server cache is enabled for writing, a server crash

during a cache write will result in a problem that the client could not be aware of

whether data has been written successfully. On the other hand, given a scenario where

multiple write operations queue up on the client side, a client failure before data is

written could leave the NFS server with an old version of the file being written. Thus,

only writethrough strategy should be implemented for writing on network filesystems.

2.1.2 Cache eviction

The cache eviction mechanism is one of the key features of the page cache. It is

responsible for deciding which pages are removed from the page cache to make memory

9

space available for new entries as well as free memory for other uses. Whenever free

memory becomes insu�cient, either as a result of application allocated memory or

page cache use, data in the page cache may be evicted. Only clean data, which is

not marked as dirty and persisted to storage, can be flagged for eviction and removed

from memory. If clean pages are insu�cient, dirty data must first be copied (flushed)

to storage and marked as clean to make more pages available for eviction [28, 4]. The

crucial part of the cache eviction mechanism is to decide which pages to evict. As in

the concept of the page cache, data that is more likely to be accessed in the future

should be kept in the page cache, and the data that is least likely to be used should

be evicted.

Di↵erent cache eviction algorithms have been proposed in order to maximize the

e↵ect of the cache as well as to ease the implementation overhead [13]. In the next

section, we will provide a brief summary of some of the popular cache eviction algo-

rithms.

Page cache replacement policies

The idea of the page cache is to keep data that is likely to be accessed again

in the future, but an algorithm that knows the future in advance, often referred

as clairvoyant algorithm, is impossible to implement. Many algorithms have been

designed and proposed to approximate the clairvoyant algorithm.

One of the most commonly used strategies is Least Recently Used (LRU). This

page replacement policy is based on the principle of locality which assumes that data

references of a process tend to cluster in time. Thus, it selects pages that have not

been referred for the longest time to remove [13]. However, one of the drawbacks of

LRU is not considering data access frequency.

The CLOCK algorithm improves this shortcoming of LRU by structuring the page

cache as a circular list with a hand pointing to the tail of the list. Each page has a

reference bit that is turned on if the page is referenced. Only the oldest pages with

the reference bit set to zero can be removed [13]. This algorithm is improved by

Dueling CLOCK, which uses interchangeably and adaptively two variants of CLOCK

for better performance than LRU and CLOCK [13].

Another variant of LRU is LRU-K, which takes page frequency information into

account while replacing pages. It looks backward in the LRU list for the k
th most

10

recent reference of a candidate page and replaces the page with the oldest kth reference.

Experimental results indicate that LRU-2 can increase performance compared to LRU

[13].

Low Inter-reference Recency Set (LIRS) is another algorithm which takes Inter-

Reference-Recency into account instead of the recency of a single page as in LRU-K.

In LIRS, Inter-Reference-Recency (IRR) of a page refers to the number of pages

accessed between two consecutive references to that page. The idea of the algorithm

is to keep only a small number of pages with high IRR since they are not accessed

frequently (normally around 1%) [13].

CLOCK-Pro is another variant of CLOCK that attempts to approximate LIRS by

using page reuse distance, which is similar to IRR in LIRS. A page with small reuse

distance is categorized as hot page, and a page with large reuse distance is a cold page.

This strategy also keeps historical metadata of previously accessed pages. Simulation

studies showed that the performance of CLOCK-Pro can approximate LIRS [13].

Adaptive Replacement Cache (ARC) is an algorithm that keeps track of both

frequently used and recently used pages by maintaining two lists: L1 for pages that

are accessed only once recently, and L2 for the pages that are accessed more than

once recently. Each list is then split into the top cache entries (real pages) and

bottom ghost entries (metadata of evicted pages). The pages and metadata entries

are continually moved between, added to or removed from these lists to adaptively

adjust the size of frequently and recently used lists based on particular workloads

[13].

CLOCK with Adaptive Replacement (CAR) was proposed to inherit the adaptivity

of ARC and the implementation e�ciency of CLOCK. It implements two circular lists

of cache and ghost entries as in ARC [13].

Page cache LRU lists

Among page replacement policies, LRU is considered one of the most commonly

used algorithms that is successful for the general purpose page cache. It approximates

well the future use of pages but fails when putting on the top of the list a file that is

accessed only once. Therefore, the Linux kernel implements a two-list strategy, which

is based on LRU, due to its e�ciency in both implementation and performance.

The two-list strategy in Linux kernel maintains two LRU lists: active list and

11

inactive list [28, 4]. The lists work as queues, in which pages are added to the head

and removed from the tail. When a page is referenced, if it is not in the page cache, it

will be added to the inactive list. Should pages located in the inactive list be accessed,

they will be moved from the inactive to the active list. The lists are also kept balanced

by moving pages from the active list to the inactive list when the active list grows

significantly larger than the inactive list. As a result, the active list only contains

pages that are accessed more than once, while the inactive list basically contains

pages that are accessed once only, or pages that have been accessed more than once

but moved from the active list. Since the pages in the active list are more frequently

accessed, they are considered “hot” and not available for eviction. In contrast, the

pages in the inactive list, which are less frequently accessed, are considered “cold”

and available for eviction. Both lists operate using LRU eviction policies, meaning

that data that has not be accessed recently will be moved first.

This two-list strategy, known as LRU/2, not only solves the problem of frequently

accessed data in LRU, but also allows better performance with a simple implemen-

tation. For example, in a scenario in which a user is working in a workspace editing

multiple small files, when the files are loaded, they are read from disk for the first

time and added to the page cache. When the files are edited and then saved, new

versions of the files are written to the page cache. However, if the total size of the

files surpasses the size of the page cache, less frequently accessed files kept in the

inactive list will be evicted from cache to store more frequently accessed files. If files

are opened again, there is a likelihood that these files are accessed before. If this is

true, these files can still be read directly from the page cache instead of disk, which

makes reading time way faster.

2.1.3 Flushing and periodical flushing

Unix systems allow write operations of dirty pages to be deferred and perform a

bigger physical write to disk to improve performance. The write of dirty data from

the page cache to disk is called flushing mechanism. Besides cache eviction, flushing

strategies are integral to proper page cache functioning. Basically, dirty data flushing

can be triggered under following conditions:

• When the amount of free memory is below a specific threshold, the kernel writes

dirty data to disk to shrink cache and free up more memory.

12

• When the number of dirty pages has reached its limit, because only clean (non-

dirty) pages are available for cache eviction.

• A page has remained as dirty in the page cache for too long to ensure dirty data

will not remain dirty indefinitely.

In the first two cases, a synchronous flusher thread is called to flush dirty pages

to disk when the amount of available memory is low (available memory includes

free memory and claimable memory). Besides, the Linux kernel has the variable

/proc/sys/vm/dirty ratio, which defines a percentage of total available memory

that is used to trigger the flusher thread. When the amount of dirty data surpasses

this level, flusher thread is awaken to writeback dirty data to disk. In addition, there is

another important variable, which is /proc/sys/vm/dirty background ratio, also

defining a percentage of total available memory. If the amount of free memory drops

below this level, a flusher thread is triggered by the kernel to start flushing dirty data

[28].

In the third case, a kernel thread (pdflush) is called to periodically scan for pages

that remains as dirty in page cache for an amount of time longer than a predefined

expired time, and then to explicitly write the content of these pages to disk. This

mechanism, called periodical flushing, ensures that no page can remain in page cache

infinitely, and keeps data synchronized between memory and storage. The Linux

kernel awakes a flusher thread to writeback expired dirty page in intervals defined

by /proc/sys/vm/dirty writeback interval variable, in milliseconds, with the de-

fault value usually set to 5000 milliseconds (5 seconds). The expiration time can

be set with the /proc/sys/vm/dirty expire interval variable, the default value is

30000 milliseconds (30 seconds) [28].

2.2 Approaches in performance quantification

In Chapter 1, we have previously mentioned the rise of data-intensive applications

in the era of Big Data and IoT. We have also discussed the reasons for the needs

of High Performance Computing (HPC) clusters or clouds to execute data-intensive

applications. Therefore, it is crucial to quantify the performance of these applications

on HPC platforms. As a result, there have been di↵erent approaches in order to study,

quantify and understand the performance of platforms.

13

Apparently, the most obvious approach to measure the performance of any plat-

form is to conduct real experiments by executing actual applications on real-world

platforms. The experimental results of real platforms are undoubtedly reliable since

they are obtained from real-world production environments. However, there still ex-

ists some undeniable shortcomings in this method. First and foremost, real-world

platforms are not built for experimental purposes. There is likelihood that the ex-

ecution of experiments can interrupt or detrimentally a↵ect the production usage.

Moreover, HPC platforms are often shared between multiple users or processes with

dynamic allocated resources (e.g. unstable network throughput, varying disk band-

width, idle CPU time). This may cause the problem of irreproducible results since

dynamic system statuses can lead to unstable, varying experimental results. In addi-

tion, even if platforms are stable and isolated, experiments may need to be executed

multiple times. This exposes another drawback when applications take a significant

time to finish. Since multiple repetitions can take a day to weeks to complete, this

can result in wasteful waiting time and high operational costs. Last but not least,

users and researchers can be restricted to platform configurations due to the fact that

the resources are limited and not every configuration is permitted. This can more

or less inhibit the insights from being obtained. Given these challenges, researchers

tend to look at alternatives for this approach.

The second approach is to use emulation (e.g virtual machine, network emulation).

Emulation solutions make applications run in particular environments that system

calls are intercepted and emulated [11]. Nevertheless, applications are slowed down

in order to mimic execution of the emulated platforms. Thus, the problem of time-

consuming experiments, which are very common in data-intensive applications, still

remains.

For the di�culties mentioned above with read-world platforms and emulators, the

third approach, which is to use simulation, has been largely used in some areas of

computer science [11]. Simulation frameworks usually share the same design with

three main components: (i) simulation models; (ii) platform specification; and (iii)

application specification. Simulation models simulates interactions between computer

resources (e.g. CPU, network, disks) and application activities throughout application

execution time. These models estimate the completion time of application activities

14

that consume resources and evolve the simulated execution time accordingly. Plat-

form specification describes the structure (e.g number of hosts, network connections

between hosts) of platforms with hardware properties (e.g. CPU speed, disk capacity,

network bandwidth). Application specification describes sets of activities, their order

and relation in simulated applications.

Using simulation tools can tackle the inherent disadvantages of using real-world

platforms. One of the goals when designing the simulation frameworks is to provide a

solution with fast simulation. Thus, users can re-execute experiments in a short time

at low costs. Furthermore, as the platform simulation resource simulation models are

decoupled from each other and from applications, users have the freedom to choose

their experimental platforms, which provides insights that remain out of reach in

real-world platforms. Specifically, simulation results are consistent and reproducible

since platforms are created with detailed specifications. As a result, this approach has

been widely adopted in scientific studies in computer science. Nonetheless, there are

still two main concerns for simulation, which are accuracy and scalability. The former

refers to the simulations results with little or no bias compared to the results from

real platforms, while the latter refers to the ability to run the simulation of applica-

tions on large-scale systems. Some simulators can achieve high simulation accuracy

with very detailed simulation models at the expense of simulation performance, while

some others use analytical models to improve simulation speed but their results are

less accurate. Also, as many simulations tools are developed by and for a specific

community, they can hardly be widely adapted and used.

2.3 Simulation

2.3.1 Simulation frameworks

Over the years, many simulation frameworks have been developed to enable the

simulation of parallel and distributed applications [3, 6, 32, 7, 30, 31, 27, 24, 29,

35, 10, 8, 9]. There are two main approaches in these frameworks: o↵-line and on-

line simulation [10]. In o↵-line simulation, system events logged with timestamps

are retrieved when real applications are executed on real platforms. The simulator

replays these logs as if they were being executed on another platform. However, the

issue with this method is that the logs obtained are specific to a particular platform,

15

which means simulation of di↵erent platforms requires di↵erent logs. The alternative

for o↵-line simulation to address this issue is on-line simulation. In this approach,

application execution is simulated as if it were running on the target platform by

simulating the amount of resources needed to run the application in reality.

2.3.2 Simulation models

In the Section 2.2, we have mentioned that simulation models are a component

in most simulation frameworks. The simulation models and abstractions are imple-

mented in simulators in order to study the functional and performance behaviors of

application workloads executed on various hardware/software infrastructures. Models

for resources such as compute, network, disk have been proposed, ranging from simple

mathematical equations to complex processes. For example, to simulate a file read

from disk, a simple mathematical model can estimate read time as file size divided

by disk bandwidth, while a more complex, discrete-event model simulates detailed

events such as disk seeks or bu↵er reads to fulfill the read request.

The two main concerns for simulation are accuracy, the ability to faithfully re-

produce real-world executions, and scalability, the ability to simulate large/long real-

world executions quickly and with low RAM footprint. Simulation frameworks often

achieve di↵erent compromises between the two. At one extreme are discrete-event

models that capture “microscopic” behaviors of hardware/software systems (e.g.,

packet-level network simulation, block-level disk simulation, cycle-accurate CPU sim-

ulation), which favor accuracy over speed. For examples, CloudSim [7] and iCan-

Cloud [31] are simulators that provide packet-level network model and DiskSim [5]

simulates storage devices at block-level. At the other extreme are analytical mod-

els that capture “macroscopic” behaviors via mathematical models. GridSim [6],

CloudSim [7], and SimGrid [10] provide a simple data access time model based on a

(fixed or randomly generated) seek time and fixed bandwidths. While these models

lead to fast simulation, they must be developed carefully if high levels of accuracy

are to be achieved [40].

16

2.3.3 Existing data caching simulation

Although the Linux page cache has a large impact on I/O performance, and thus

on the execution of data-intensive applications, its simulation is rarely considered in

the above frameworks. Most simulation frameworks merely simulate I/O operations

based on storage bandwidths and capacities such as GridSim [6], CloudSim [7], and

SimGrid [10]. Some other simulators like DiskSim provide I/O simulation with a

discrete-event storage model, which provides high accuracy but low scalability. How-

ever, these simulators only model the behaviors in storage devices without taking the

I/O mechanisms in operating systems into account.

The SIMCAN framework does models page caching by storing data accessed on

disk in a block cache [30]. They proposed a volume manager model, which is respon-

sible for operating read and write requests of data blocks. In the volume manager

model, there is a data block cache component, which is in charge of storing cached

data blocks in a cache memory. When the blocks stored in the cache memory are

requested, they can be read from this cache instead of requesting a disk read, which

results in faster reads than from file systems. However, there is no specific limit to

the size of cache memory. Also, dirty data, which obviously plays an important role

in the page, is not modeled. Besides, data flushing and cache eviction mechanisms

were not mentioned in this study.

iCanCloud is another simulator that attempted to model the page cache through

a component that manages memory accesses and cached data [31]. In iCanCloud,

memory is split into two parts: memory used by applications and memory used

for disk cache, which was ignored in SIMCAN. Nevertheless, key features of the

page cache including dirty data, data flushing, and cache eviction mechanisms are

still missing in this simulator. Moreover, as iCanCloud uses microscopic models to

simulate memory with memory accesses, its scalability is limited.

Although there is a study in [43] that applied cache replacement policies to simu-

late in-memory caching, this simulator is specific to energy consumption of multi-tier

heterogeneous networks. In general, a proper simulation model of page cache is still

missing in most simulation frameworks.

17

2.3.4 SimGrid and WRENCH

SimGrid framework

Throughout the years, simulators developed and used by researchers in paral-

lel and distributed computing are often domain-specific [10]. As discussed in Sec-

tion 2.3.2, there is always a trade-o↵ between simulation accuracy and scalability

in the simulation frameworks due to the models used in those tools. SimGrid is a

versatile simulation framework for HPC cluster, cloud and grid computing that can

achieve high simulation speed and accuracy.

Started in 1999, SimGrid has three main versions released until the moment this

thesis is written. The SimGrid framework is developed in C with the main components

shown in Figure 1, which is extracted from [10].

Figure 1: Overview and main components in SimGrid framework

At the top are three APIs provided by SimGrid. The MSG API enables users

to describe simulated applications as sets of concurrent processes. The SMPI API is

also used to simulate applications as sets of concurrent processes, but these processes

are automatically created from existing applications written in C or Fortran that uses

18

the MPI standard. The simulation mechanisms for the concurrent processes for MSG

and SMPI APIs are implemented as part of the SIMIX layer. It acts like a kernel

that provides process control and synchronization abstractions by maintaining a set of

condition variables. The third API, SimDAG, does not use concurrent processes but

instead allows users to specify abstract task graphs of communicating computational

tasks with non-cyclic dependencies. The simulation core that simulates the execution

of activities on resources, is called SURF and is shown at the bottom of the figure.

Each application activity is described by the amount of remaining workload and

the total amount of workload on resources. An activity finishes when it reaches

zero amount of remaining workload and signals SIMIX with corresponding condition

variables.

Throughout its history, SimGrid has been developed with the goal to improve

both accuracy and scalability. The framework uses a unified model for the simulation

of the execution of activities on simulated resources. This model is purely analytical

so as to a↵ord scalability by avoiding cycle-, block-, and packet-level simulation of

compute, storage, and network resource usage [10]. In the past years, SimGrid has

also been the object of many invalidation and validation studies [2, 42, 41, 26], and

its simulation models have been shown to provide compelling advantages over other

simulation frameworks in terms of both accuracy and scalability.

WRENCH framework

Several studies acknowledge that the popular SimGrid framework o↵ers compelling

capabilities in terms of scalability and simulation accuracy. Nevertheless, due to

the low-level API, using SimGrid to implement a simulator of a complex system

is extremely labor-intensive [25]. For that reason, WRENCH [9], a framework for

simulation of Workflow Management Systems (WMSs), has been developed to provide

convenient, reusable, high-level abstractions that build on SimGrid to benefit from its

scalable and accurate simulation models. WRENCH was not developed as a simulator

but as a simulation framework distributed as a C++ library.

Figure 2 extracted from [12] shows the software architecture of WRENCH. At

the bottom level is SimGrid, the simulation core, which is responsible for simulating

low-level software and hardware stacks. The next layer implements CI services (ab-

stractions for simulated cyberinfrastructure), that are commonly found in distributed

19

Figure 2: The four layers in the WRENCH architecture from bottom to top: simula-

tion core, simulated core services, simulated WMS implementations, and simulators.

platforms. Currently, WRENCH provides services in 4 categories: compute services

that provide access to compute resources to execute applications; storage services that

provide access to storage resources for storing data data; network monitoring services

that can be queried to determine network distances; and data registry services that

can be used to track the data location. The above layer in the software architecture

includes simulated WMSs, which interact with the CI services in the lower layer using

the WRENCH Developer API. Finally, the top layer consists of simulators that con-

figure and instantiate CI services and WMSs on a given simulated hardware platform,

that launch simulation, and that analyze the simulation output.

20

Why SimGrid and WRENCH?

In this work, we use the SimGrid and WRENCH simulation frameworks to im-

plement a page cache simulation model. The high accuracy of SimGrid achieved

with a set of state-of-the-art macroscopic simulation models was demonstrated by

(in)validation studies and comparisons to competing frameworks [1, 40, 39, 18, 26,

34, 15, 36, 21, 38]. But one significant drawback of SimGrid is that its simulation ab-

stractions are low-level, meaning that implementing a simulator of complex systems

can be labor-intensive. To remedy this problem, we targeted WRENCH because it

is a recent, actively developed framework that provides convenient higher-level sim-

ulation abstractions so that simulators of complex applications and systems can be

implemented with a few hundred lines because it is extensible, and because it reuses

SimGrid’s scalable and accurate models.

21

Chapter 3

Page cache simulation model

This chapter describes our page cache simulation model and its implementation

in the WRENCH framework. We separate our simulation model in two components,

the I/O Controller and the Memory Manager, which together simulate file reads and

writes (Figure 3). To read or write a file chunk, a simulated application sends a re-

quest to the I/O Controller. The I/O Controller interacts as needed with the Memory

Manager to free memory through flushing or eviction, and to read or write cached

data. The Memory Manager implements these operations, simulates periodical flush-

ing and eviction, and reads or writes to disk when necessary. In case the writethrough

strategy is used, the I/O Controller directly writes to disk, cache is flushed if needed

and written data is added to page cache.

22

I/O Controller

MemoryManager

Disks

Application

Page cache LRU lists

User

Kernel

Storage
devices

Memory

Background thread

Main thread

Periodical flushing

+ fileRead
+ fileWrite

+ readFromCache
+ readToCache
+ writeToCache

+ flush
+ evict

+ read
+ write

+ read
+ write

(write-through)

Figure 3: Overview of the page cache simulator. Applications send file read or write

requests to the I/O Controller that orchestrates flushing, eviction, cache and disk

accesses with the Memory Manager. Concurrent accesses to storage devices (memory

and disk) are simulated using existing models.

23

3.1 Memory Manager

The Memory Manager simulates two parallel threads: the main one implements

flushing, eviction, and cached I/Os synchronously, whereas the second one, which op-

erates in the background, periodically searches for expired dirty data in LRU lists and

flushes this data to disk. We use existing storage simulation models [26] to simulate

disk and memory, characterized by their storage capacity, read and write bandwidths,

and latency. These models account for bandwidth sharing between concurrent mem-

ory or disk accesses.

3.1.1 Page cache LRU lists

In the Linux kernel, page cache LRU lists contain file pages. However, due to

the large number of file pages, simulating lists of pages induces substantial overhead.

Therefore, we introduce the concept of a data block as a unit to represent data

cached in memory. A data block is a subset of file pages stored in page cache that

were accessed in the same I/O operation. A data block stores the file name, block

size, last access time, a dirty flag that represents whether the data is clean (0) or

dirty (1), and an entry (creation) time. Blocks can have di↵erent sizes and a given

file can have multiple data blocks in page cache. In addition, a data block can be

split into an arbitrary number of smaller blocks.

We model page cache LRU lists as two lists of data blocks, an active list and an

inactive list, both ordered by last access time (earliest first, Figure 4). As in the

kernel, our simulator limits the size of the active list to twice the size of the inactive

list, by moving least recently used data blocks from the active list to the inactive

list [19, 28].

At any given time, a file can be partially cached, completely cached, or not cached

at all. A cached data block can only reside in one of two LRU lists. The first time they

are accessed, blocks are added to the inactive list. On subsequent accesses, blocks of

the inactive list are moved to the top of the active list. Blocks written to cache are

marked dirty until flushed.

24

file: f1
size: 100MB
entry time: 81
last access: 210
dirty: 0

file: f2
size: 300MB
entry time: 95
last access: 180
dirty: 0

file: f5
size: 100MB
entry time: 50
last access:150
dirty: 0

file: f6
size: 80MB
entry time: 110
last access:110
dirty: 1

file: f5
size: 100MB
entry time: 50
last access: 50
dirty: 0

file: f3
size: 250MB
entry time: 90
last access: 270
dirty: 0

file: f1
size: 200MB
entry time: 110
last access: 210
dirty: 1

file: f4
size: 120MB

 entry time: 70
last access: 200
dirty: 0

file: f2
size: 90MB
entry time: 96
last access: 180
dirty: 1

file: f5
size: 200MB
entry time: 50
last access: 150
dirty: 0

Inactive list

Active list

Figure 4: Model of page cache LRU lists with data blocks.

3.1.2 Reads and writes

Our simulation model supports chunk-by-chunk file accesses with a user-defined

chunk size. However, for simplicity, we assume that file pages are accessed in a round-

robin fashion rather than fully randomly. Therefore, when a file is read, cached data

is read only after all uncached data was read, and data from the inactive list is read

before data from the active list (data reads occur from left to right in Figure 5). When

a chunk of uncached data is read, a new clean block is created and appended to the

inactive list. When a chunk of cached data is read, one or more existing data blocks in

the LRU lists are accessed. If these blocks are clean, we merge them together, update

the access time and size of the resulting block, and append it to the active list. If

the blocks are dirty, we move them independently to the active list, to preserve their

entry time. Because the chunk and block sizes may be di↵erent, there are situations

where a block is not entirely read. In this case, the block is split in two smaller blocks

and one of them is re-accessed.

For file writes, we assume that all data to be written is uncached. Thus, each time

a chunk is written, we create a block of dirty data and append it to the inactive list.

3.1.3 Flushing and eviction

The main simulated thread in the Memory Manager can flush or evict data from

the memory cache. The data flushing simulation function takes the amount of data

to flush as parameter. While this amount is not reached and dirty blocks remain in

25

uncached inactive list active list

cached dataread data

File data

Figure 5: File data read order. Data is read from left to right: uncached data is read

first, followed by data from the inactive list, and finally data from the active list.

cache, this function traverses the sorted inactive list, then the sorted active list, and

writes the least recently used dirty block to disk, having set its dirty flag to 0. In case

the amount of data to flush requires that a block be partially flushed, the block is

split in two blocks, one that is flushed and one that remains dirty. The time needed

to flush data to disk is simulated by the storage model.

The cache eviction simulation also runs in the main thread. It frees up the page

cache by traversing and deleting least recently used clean data blocks in the inactive

list. The amount of data to evict is passed as a parameter and data blocks are deleted

from the inactive list until the evicted data reaches the required amount, or until there

is no clean block left in the list. If the last evicted block does not have to be entirely

evicted, the block is split in two blocks, and only one of them is evicted. The overhead

of the cache eviction algorithm is not part of the simulated time since cache eviction

time is negligible in real systems.

26

Algorithm 1 Periodical flush simulation in Memory Manager

1: Input

2: in page cache inactive list

3: ac page cache active list

4: t predefined flushing time interval

5: exp predefined expiration time

6: sm storage simulation model

7: while host is on do

8: blocks = expired blocks(exp, in) + expired blocks(exp, ac)

9: flushing time = 0

10: for blk in blocks do

11: blk.dirty = 0

12: flushing time = flushing time + sm.write(blocks)

13: end for

14: if flushing time < t then

15: sleep(t - flushing time)

16: end if

17: end while

Periodical flushing is simulated in the Memory Manager background thread. As

in the Linux kernel, a dirty block in our model is considered expired if the duration

since its entry time is longer than a predefined expiration time. Periodical flushing is

simulated as an infinite loop in which the Memory Manager searches for dirty blocks

and flushes them to disk (Algorithm 1). Because periodical flushing is simulated as a

background thread, it can happen concurrently with disk I/O initiated by the main

thread. This is taken into account by the storage model and reflected in simulated

I/O time.

3.2 I/O Controller

As mentioned previously, our model reads and writes file chunks in a round-robin

fashion. To read a file chunk, simulated applications send chunk read requests to

the I/O Controller which processes them using Algorithm 2. First, we calculate the

amount of uncached data that needs to be read from disk, and the remaining amount

is read from cache (line 7-8). The amount of memory required to read the chunk is

27

calculated, corresponding to a copy of the chunk in anonymous memory and a copy

of the chunk in cache (line 9). If there is not enough available memory, the Memory

Manager is called to flush dirty data (line 10). If necessary, flushing is complemented

by eviction (line 11). Note that, when called with negative arguments, functions

flush and evict simply return and do not do anything. Then,if the block requires

uncached data, the memory manager is called to read data from disk and to add this

data to cache (line 14). If cached data needs to be read, the Memory Manager is called

to simulate a cache read and update the corresponding data blocks accordingly (line

17). Finally, the memory manager is called to deallocate the amount of anonymous

memory used by the application (line 19).

Algorithm 2 File chunk read simulation in I/O Controller

1: Input

2: cs chunk size

3: fn file name

4: fs file size (assumed to fit in memory)

5: mm MemoryManager object

6: sm storage simulation model

7: disk read = min(cs, fs - mm.cached(fn)) . To be read from disk

8: cache read = cs - disk read . To be read from cache

9: required mem = cs + disk read

10: mm.flush(required mem - mm.free mem - mm.evictable)

11: mm.evict(required mem - mm.free mem)

12: if disk read > 0 then . Read uncached data

13: sm.read(disk read)

14: mm.add to cache(disk read, fn)

15: end if

16: if cache read > 0 then . Read cached

17: mm.cache read(cache read)

18: end if

19: mm.use anonymous mem(cs)

Algorithm 3 describes our simulation of chunk writes in the I/O Controller. Our

algorithm initially checks the amount of dirty data that can be written given the dirty

ratio (line 5). If this amount is greater than 0, the Memory Manager is requested to

28

evict data from cache if necessary (line 7). After eviction, the amount of data that

can be written to page cache is calculated (line 8), and a cache write is simulated (line

9). If the dirty threshold is reached and there is still data to write, the remaining

data is written to cache in a loop where we repeatedly flush and evict from the cache

(line 12-18).

Algorithm 3 File chunk write simulation in I/O Controller

1: Input

2: cs chunk size

3: fn file name

4: mm MemoryManager object

5: remain dirty = dirty ratio * mm.avail mem - mm.dirty

6: if remain dirty > 0 then . Write to memory

7: mm.evict(min(cs, remain dirty) - mm.free mem)

8: mem amt = min(cs, mm.free mem)

9: mm.write to cache(mem amt, fn)

10: end if

11: remaining = cs - mem amt

12: while remaining > 0 do . Flush to disk, then write to cache

13: mm.flush(cs - mem amt)

14: mm.evict(cs - mem amt - mm.free mem)

15: to cache = min(remaining, mm.free mem)

16: mm.write to cache(to cache, fn)

17: remaining = remaining - to cache

18: end while

The above model describes page cache in writeback mode. Our model also includes

a write function in writethrough mode, which simply simulates a disk write with the

amount of data passed in, then evicts cache if needed and adds the written data to

the cache.

3.3 Implementation

We first created a standalone prototype simulator to evaluate the accuracy and

correctness of our model in a simple scenario before integrating it in the more complex

29

WRENCH framework. The prototype uses the following basic storage model for both

memory and disk:

tr = D/br

tw = D/bw

where:

• tr is the data read time

• tw is the data write time

• D is the amount of data to read or write

• br is the read bandwidth of the device

• bw is the write bandwidth of the device

This prototype does not simulate bandwidth sharing and thus does not sup-

port concurrency: it is limited to single-threaded applications running on systems

with a single-core CPU. We used this prototype for a first validation of our simu-

lation model against a real sequential application running on a real system. The

Python 3.7 source code is available at https://github.com/big-data-lab-team/

paper-io-simulation/tree/master/exp/pysim.

We also implemented our model as part of WRENCH, enhancing its internal im-

plementation and APIs with a page cache abstraction, and allowing users to activate

the feature via a command-line argument. We used SimGrid’s locking mechanism

to handle concurrent accesses to page cache LRU lists by the two Memory Man-

ager threads. For the experiments, we used WRENCH 1.6 at commit 6718537433,

which uses SimGrid 3.25, available at https://framagit.org/simgrid/simgrid.

Our implementation is now part of WRENCH’s master branch and will be available

to users with the upcoming 1.8 release. WRENCH provides a full SimGrid-based

simulation environment that supports, among other features, concurrent accesses to

storage devices, applications distributed on multiple hosts, network transfers, and

multi-threading.

30

https://github.com/big-data-lab-team/paper-io-simulation/tree/master/exp/pysim
https://github.com/big-data-lab-team/paper-io-simulation/tree/master/exp/pysim
https://github.com/wrench-project/wrench/tree/67185374330d2c4bf274fce222c937e838df5b03
https://framagit.org/simgrid/simgrid

Chapter 4

Experiments and Results

This chapter describes experiment scenarios to evaluate the simulation model of

the page cache. The scenarios include both singlethreaded and multithreaded ap-

plications, and both writeback and writethrough caches for local or network-based

filesystems. It also summarizes the experiment results showing that the model sub-

stantially reduced the relative simulation errors compared to the simulators that are

implemented without our model.

4.1 Experiments

Our experiments compared real executions with our Python prototype, with the

original WRENCH simulator, and with our WRENCH-cache extension. Executions

included single-threaded and multi-threaded applications, accessing data on local and

network file systems. We used two applications: a synthetic one, created to evaluate

the simulation model, and a real one, representative of neuroimaging data processing.

Experiments were run on a dedicated cluster at Concordia University, with one

login node, 9 compute nodes, and 4 storage nodes connected with a 25 Gbps network.

Eachcompute node had 2 ⇥ 16-core Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz,

250 GiB of RAM, 6 ⇥ SSDs of 450 GiB each with the XFS file system, 378 GiB of

tmpfs, 126 GiB of devtmpfs file system, CentOS 8.1 and NFS version 4. We used the

atop and collectl tools to monitor and collect memory status and disk through-

put. We cleared the page cache before each application run to ensure comparable

conditions.

31

The synthetic application, implemented in C, consisted of three single-core, se-

quential tasks where each task read the file produced by the previous task, incre-

mented every byte of this file to emulate real processing, and wrote the resulting data

to disk. Files were numbered by ascending access times (File 1 and File 2 were the files

read and written respectively by Task 1, etc). The anonymous memory used by the

application was released after each task, an this memory release is also simulated in

the Python prototype and in WRENCH-cache. As our focus was on I/O rather than

compute, we measured CPU times of application tasks on a cluster node (Table 1),

and used these durations in our simulations. For the Python prototype, as we put

a sleep time simulated tasks to simulate CPU time, we simply injected CPU times

directly in the simulation. In WRENCH, it simulates CPU time with the number of

flops of tasks and the CPU speed of hosts. Thus, for WRENCH and WRENCH-cache,

we determined the corresponding number of flops on a 1 Gflops CPU and used these

values in the simulation. The simulated the platform and application are available at

commit ec6b43561b.

Input size (GB) CPU time (s)

3 4.4

20 28

50 75

75 110

100 155

Table 1: Synthetic application parameters

We used the synthetic application in three experiments. In the first one (Exp 1),

we ran a single instance of the application on a single cluster node, with di↵erent

input file sizes (20 GB, 50 GB, 75 GB, 100 GB), and with all I/Os directed to the

same local disk. The information about free memory, amount of dirty data, amount

of cache used and free memory is collected using atop tool during the execution time

of the tasks. We also used fincore to after each I/O operation to inspect the cache

content with the amount of cached data of each file.

In the second experiment (Exp 2), we ran concurrent instances of the application

on a single node, all application instances operating on di↵erent files stored in the

32

https://github.com/wrench-project/wrench/tree/ec6b43561b95977002258c0fe37a4ecad8f1d33f/examples/basic-examples/io-pagecache

same local disk. Due to the limited capacity of the disk used, we used the file size of

3 GB. We varied the number of concurrent application instances from 1 to 32 since

cluster nodes had 32 CPU cores. The read time, CPU time and write time of each

instance were logged into log files.

In the third experiment (Exp 3), we used the same configuration as the previous

one, albeit reading and writing on a 50-GiB NFS-mounted partition of a 450-GiB

remote disk of another compute node. As is commonly configured in HPC environ-

ments to avoid data loss, there was no client write cache and the server cache was

configured as writethrough instead of writeback. NFS client and server read caches

were enabled. Therefore, all the writes happened at disk bandwidth, but reads could

benefit from cache hits.

The real application was a workflow of the Nighres toolbox [22], implement-

ing cortical reconstruction from brain images in four steps: skull stripping, tissue

classification, region extraction, and cortical reconstruction. Each step read files

produced by the previous step, and wrote files that were or were not read by the

subsequent step. More information on this application is available in the Nighres

documentation at https://nighres.readthedocs.io/en/latest/auto_examples/

example_02_cortical_depth_estimation.html. The application is implemented

as a Python script that calls Java image-processing routines. We used Python 3.6,

Java 8, and Nighres 1.3.0. In Nighres, data is read lazily and written in compressed

format. Thus, we patched the application to remove lazy data loading and data com-

pression, which made CPU time di�cult to separate from I/O time, and to capture

task CPU times to inject them in the simulation. The patched code is available at

https://github.com/dohoangdzung/nighres.

We used the real application in the fourth experiment (Exp 4), run on a single

cluster node using a single local disk. We processed data from participant 0027430

in the dataset of the Max Planck Institute for Human Cognitive and Brain Sciences

available at http://dx.doi.org/10.15387/fcp_indi.corr.mpg1, leading to the pa-

rameters in Table 2.

To parameterize the simulators, we benchmarked the memory, local disk, remote

disk (NFS), and network bandwidths (Table 3). Since SimGrid, and thus WRENCH,

currently only supports symmetrical bandwidths, we use the mean of the read and

write bandwidth values in our experiments.

33

https://nighres.readthedocs.io/en/latest/auto_examples/example_02_cortical_depth_estimation.html
https://nighres.readthedocs.io/en/latest/auto_examples/example_02_cortical_depth_estimation.html
https://github.com/dohoangdzung/nighres
http://dx.doi.org/10.15387/fcp_indi.corr.mpg1

Workflow step Input size Output size CPU time

(MB) (MB) (s)

Skull stripping 295 393 137

Tissue classification 197 1376 614

Region extraction 1376 885 76

Cortical reconstruction 393 786 272

Table 2: Nighres application parameters

Bandwidths Cluster (real) Python prototype WRENCH

simulator

Memory
read 6860 4812 4812

write 2764 4812 4812

Local disk
read 510 465 465

write 420 465 465

Remote disk
read 515 - 445

write 375 - 445

Network 3000 - 3000

Table 3: Bandwidth benchmarks (MBps) and simulator configurations. The band-

widths used in the simulations were the average of the measured read and write

bandwidths. Network accesses were not simulated in the Python prototype.

4.2 Results

4.2.1 Single-threaded execution (Exp 1)

The page cache simulation model drastically reduced I/O simulation errors in each

application task (Figure 6). The first read was not impacted as it only involved un-

cached data. Errors were reduced from an average of 345% in the original WRENCH

to 46% in the Python prototype and 39% in WRENCH-cache. Unsurprisingly, the

original WRENCH simulator significantly overestimated read and write times, due to

the lack of page cache simulation.

As is shown in Figure 6, WRENCH simulation errors substantially decreased as

34

Figure 6: Absolute relative simulation errors of single-threaded application with dif-

ferent file sizes

the input file size increased. This is due to the fact that as the input file size grew

larger than a specific threshold in the experiment, all files can not fit in the page

cache at the same time, and part of files need to be written to disk. The larger the

input file size is, the more data is written to the disk, and the smaller proportion

of total I/O time that the page cache reduced. Conversely, simulation errors of the

Python prototype and WRENCH-cache were almost equal with 20 GB, 50 GB and

75 GB. However, the errors of those simulators with 100 GB are considerably higher

35

due to idiosyncrasies in the kernel flushing and eviction strategies that could not be

easily modeled.

Simulated memory profiles with di↵erent file sizes were highly consistent with the

real ones (Figure 7). With 20 GB, 50 GB and 75 GB files, memory profiles almost

exactly matched the real ones, although dirty data seemed to be flushing faster in

real life than in simulation. With 50 GB files, this slower dirty data flushing led to a

larger amount of dirty data after Read 3 in simulation than in reality, which caused

longer write time of Write 3 when less data was written to cache. The simulated

memory profiles of 75 GB files were also matched with the real ones, except that

there were plateaus in file writes, which also induced longer write time as in Read 3

with 50 GB files. With 100 GB files, used memory reached total memory during

the first write, triggering dirty data flushing, and dropped back to cached memory

when application tasks released anonymous memory. Simulated cached memory was

highly consistent with real values, except toward the end of Read 3 where it slightly

increased in simulation but not in reality. This occurred due to the fact that after

Write 2, File 3 was only partially cached in simulation whereas it was entirely cached

in the real system. Thus, Read 3 happened in memory in the real system, but part

of File 3 was read from disk in simulation, leading longer simulated read time. In all

cases, dirty data remained under the dirty ratio as expected. The Python prototype

and WRENCH-cache exhibited nearly identical memory profiles, which reinforces the

confidence in our implementations.

The content of the simulated memory cache was also highly consistent with reality

(Figure 8). With 20 GB and 50 GB files, the simulated cache content exactly matched

reality, since all files fitted in page cache. With 75 GB files, the amount of File 1

cached after Write 2 and Read 3 in reality were slightly less than the simulated

amount, but the cached data amount of files in simulation matched reality in overall.

With 100 GB files, a slight discrepancy was observed after Write 2, which explains

the simulation error previously mentioned in Read 3. In the real execution indeed,

File 3 was entirely cached after Write 2, whereas in the simulated execution, only a

part of it was cached. This was due to the fact that the Linux kernel tends to not

evict pages that belong to files being currently written (File 3 in this case), which we

could not easily reproduce in our model.

36

Figure 7: Single-threaded application memory profiles with di↵erent file sizes

37

Figure 8: Cache contents after single-threaded application I/O operations

4.2.2 Concurrent applications (Exp 2)

Figure 9 presents the average read and write time of each pipeline in the con-

current applications experiment. As is shown in the figure, the page cache model

notably reduced WRENCH’s simulation error for concurrent applications executed

with local I/Os. For reads, WRENCH-cache slightly overestimated runtime, due to

the discrepancy between simulated and real read bandwidths mentioned before, in

which simulated read bandwidth is slower than the real one. For writes, WRENCH-

cache retrieved a plateau similar to the one observed in the real execution. This was

marked with the limit at which all data of pipelines could still fit into the page cache.

Beyond this limit, the page cache was saturated with dirty data and needed flushing.

38

Figure 9: Results of concurrent applications on local storage with 3 GB files (Exp 2)

4.2.3 Remote storage (Exp 3)

Similar to the the previous experiment, the average read and write time with con-

current applications on remote storage are illustrated in Figure 10. The figure shows

that page cache simulation importantly reduced simulation error on NFS storage as

well. This manifested only for reads, as the NFS server used writethrough rather than

writeback cache, which means all write operations happened at disk write bandwidth.

Both WRENCH and WRENCH-cache underestimated write times due to the discrep-

ancy between simulated and real bandwidths mentioned previously. For reads, this

discrepancy only impacted the results beyond 22 concurrent applications. Before this

threshold, most reads resulted in cache hits, while after this threshold, WRENCH-

cache did not accurately simulate data flushing and cache eviction, similar to what

we observed in the single-threaded experiment with 100 GB files and leading to less

cache hits and more data read from disk in simulation than in reality.

39

Figure 10: Results of concurrent applications on NFS with 3 GB files (Exp 3)

4.2.4 Real application (Exp 4)

Similar to the synthetic application, simulation errors of the real application were

substantially reduced by the WRENCH-cache simulator compared to WRENCH (Fig-

ure 11). On average, errors were reduced from 337 % in WRENCH to 47 % in

WRENCH-cache. The first read happened entirely from disk and was therefore very

accurately simulated by both WRENCH and WRENCH-cache.

40

Figure 11: Real application results (Exp 4)

4.2.5 Simulation time

As is the case for WRENCH, simulation time with WRENCH-cache scales linearly

with the number of concurrent applications (Figure 12, p <10�24). However, the page

cache model substantially increases simulation time by application, as can be seen

by comparing regression slopes in Figure 12. Interestingly, WRENCH-cache is faster

with NFS I/Os than with local I/Os, most likely due to the use of writethrough cache

in NFS, which bypasses flushing operations.

41

Figure 12: Simulation time comparison. WRENCH-cache scales linearly with the

number of concurrent applications, albeit with a higher overhead than WRENCH.

42

Chapter 5

Conclusion

We designed a model of the Linux page cache and implemented it in the SimGrid-

based WRENCH simulation framework to simulate the execution of distributed ap-

plications. Evaluation results show that our model improves simulation accuracy

substantially, reducing absolute relative simulation errors by up to 9⇥ (see results of

the single-threaded experiment). The availability of asymmetrical disk bandwidths in

the forthcoming SimGrid release will further improve these results. Our page cache

model is publicly available in the WRENCH GitHub repository.

Page cache simulation can be instrumental in a number of studies. For instance, it

is now common for HPC clusters to run applications in Linux control groups (cgroups),

where resource consumption is limited, including memory and therefore page cache

usage. Using our simulator, it would be possible to study the interaction between

memory allocation and I/O performance, for instance to improve scheduling algo-

rithms or avoid page cache starvation [44]. Our simulator could also be leveraged to

evaluate solutions that reduce the impact of network file transfers on distributed ap-

plications, such as burst bu↵ers [17], hierarchical file systems [23], active storage [37],

or specific hardware architectures [20].

Not all I/O behaviors are captured by currently available simulation models, in-

cluding the one developed in this work, which could substantially limit the accuracy

of simulations. Deeper investigation in cache eviction and data flushing mechanisms

could help improve the accuracy of the model. Relevant extensions to this work in-

clude more accurate descriptions of anonymous memory usage in applications, which

strongly a↵ects I/O times through writeback cache. File access patterns might also

43

be worth including in the simulation models, as they directly a↵ect page cache con-

tent. Apart from local and network filesystems considered in this work, simulating

page cache with Lustre filesystem would also be a possible extension of the model.

Another interesting challenge should be simulating big data applications on big data

frameworks such as Spark or Hadoop.

All the results of this work have been collected and made available at the Github

repository https://github.com/big-data-lab-team/paper-io-simulation with

scripts and Jupyter notebooks to generate and view figures. Chapter 3 and Chapter 4

of this thesis have been published as an arXiv pre-print:

Hoang-Dung Do, Valerie Hayot-Sasson, Rafael Ferreira da Silva, Christo-

pher Steele, Henri Casanova, Tristan Glatard, “Modeling the Linux page

cache for accurate simulation of data-intensive applications”, arXiv:2101.01335.

44

https://github.com/big-data-lab-team/paper-io-simulation
https://arxiv.org/abs/2101.01335

Bibliography

[1] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis, M. Quin-

son, M. Stillwell, F. Suter, and B. Videau. Toward Better Simulation of MPI

Applications on Ethernet/TCP Networks. In Proc. of the 4th Intl. Workshop

on Performance Modeling, Benchmarking and Simulation of High Performance

Computer Systems, 2013.

[2] Paul Bédaride, Augustin Degomme, Stéphane Genaud, Arnaud Legrand,

George S Markomanolis, Martin Quinson, Mark Stillwell, Frédéric Suter, and

Brice Videau. Toward better simulation of mpi applications on ethernet/tcp net-

works. In International Workshop on Performance Modeling, Benchmarking and

Simulation of High Performance Computer Systems, pages 158–181. Springer,

2013.

[3] William H. Bell, David G. Cameron, A. Paul Millar, Luigi Capozza, Kurt

Stockinger, and Floriano Zini. OptorSim - A Grid Simulator for Studying Dy-

namic Data Replication Strategies. IJHPCA, 17(4):403–416, 2003.

[4] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. O’Reilly &

Associates Inc, 3rd edition, 2005.

[5] John S Bucy, Gregory R Ganger, et al. The DiskSim simulation environment

version 3.0 reference manual. School of Computer Science, Carnegie Mellon

University, 2003.

[6] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling

and Simulation of Distributed Resource Management and Scheduling for Grid

Computing. Concurrency and Computation: Practice and Experience, 14(13-

15):1175–1220, December 2002.

45

[7] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and

Rajkumar Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource Provisioning Algorithms.

Software: Practice and Experience, 41(1):23–50, January 2011.

[8] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A High-Performance, Low

Memory, Modular Time Warp System. In Proc. of the 14th ACM/IEEE/SCS

Workshop of Parallel on Distributed Simulation, pages 53–60, 2000.

[9] Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj Pandey, Gautam

Jethwani, William Koch, Spencer Albrecht, James Oeth, and Frédéric Suter.

Developing accurate and scalable simulators of production workflow management

systems with WRENCH. Future Generation Computer Systems, 112:162–175,

2020.

[10] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and

Frédéric Suter. Versatile, Scalable, and Accurate Simulation of Distributed

Applications and Platforms. Journal of Parallel and Distributed Computing,

74(10):2899–2917, June 2014.

[11] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid:

a Generic Framework for Large-Scale Distributed Experiments. In

10th IEEE International Conference on Computer Modeling and Simulation - EUROSIM / UKSIM 2008,

Cambrige, United Kingdom, April 2008. IEEE.

[12] Henri Casanova, Suraj Pandey, James Oeth, Ryan Tanaka,

Frédéric Suter, and Rafael Ferreira Da Silva. WRENCH: A

Framework for Simulating Workflow Management Systems. In

WORKS 2018 - 13th Workshop on Workflows in Support of Large-Scale Science,

pages 1–12, Dallas, United States, November 2018.

[13] Amit S Chavan, Kartik R Nayak, Keval D Vora, Manish D Purohit, and

Pramila M Chawan. A comparison of page replacement algorithms. International

Journal of Engineering and Technology, 3(2):171, 2011.

[14] Andrea De Mauro, Marco Greco, and Michele Grimaldi. A formal definition of

big data based on its essential features. Library Review, 2016.

46

[15] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell, and

F. Suter. Simulating MPI applications: the SMPI approach. IEEE Transactions

on Parallel and Distributed Systems, 28:2387–2400, 2017.

[16] M. Eisler, R. Labiaga, and H. Stern. Managing NFS and NIS: Help for Unix

System Administrators. O’Reilly Media, 2nd edition, 2001.

[17] Rafael Ferreira da Silva, Scott Callaghan, Tu Mai Anh Do, George Papadim-

itriou, and Ewa Deelman. Measuring the impact of burst bu↵ers on data-intensive

scientific workflows. Future Generation Computer Systems, 101:208–220, 2019.

[18] K. Fujiwara and H. Casanova. Speed and Accuracy of Network Simulation in the

SimGrid Framework. In Proc. of the 1st Intl. Workshop on Network Simulation

Tools, 2007.

[19] Mel Gorman. Understanding the Linux virtual memory manager. Prentice Hall

Upper Saddle River, 2004.

[20] Valérie Hayot-Sasson, Shawn T Brown, and Tristan Glatard. Performance ben-

efits of Intel® Optane™ DC persistent memory for the parallel processing of

large neuroimaging data. In 2020 20th IEEE/ACM International Symposium on

Cluster, Cloud and Internet Computing (CCGRID), pages 509–518. IEEE, 2020.

[21] F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-Amarie,

S. Hunold, A. Orgerie, and M. Quinson. Predicting the energy-consumption of

MPI applications at scale using only a single node. In 2017 IEEE International

Conference on Cluster Computing (CLUSTER), pages 92–102, 2017.

[22] Julia M Huntenburg, Christopher J Steele, and Pierre-Louis Bazin. Nighres: pro-

cessing tools for high-resolution neuroimaging. GigaScience, 7(7):giy082, 2018.

[23] Nusrat Sharmin Islam, Xiaoyi Lu, Md Wasi-ur Rahman, Dipti Shankar, and

Dhabaleswar K Panda. Triple-H: A hybrid approach to accelerate HDFS on

HPC clusters with heterogeneous storage architecture. In 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 101–

110. IEEE, 2015.

47

[24] G. Kecskemeti. DISSECT-CF: A simulator to foster energy-aware scheduling in

infrastructure clouds. Simulation Modelling Practice and Theory, 58(2), 2015.

[25] G. Kecskemeti, S. Ostermann, and R. Prodan. Fostering Energy-Awareness in

Simulations Behind Scientific Workflow Management Systems. In Proc. of the

7th IEEE/ACM Intl. Conf. on Utility and Cloud Computing, pages 29–38, 2014.

[26] Adrien Lebre, Arnaud Legrand, Frédéric Suter, and Pierre Veyre. Adding stor-

age simulation capacities to the SimGrid toolkit: Concepts, models, and API.

In Proceedings of the 15th IEEE/ACM Symposium on Cluster, Cloud and

Grid Computing (CCGrid 2015), pages 251–260, Shenzhen, China, May 2015.

IEEE/ACM.

[27] S.H. Lim, B. Sharma, G. Nam, E.K. Kim, and C.R. Das. MDCSim: A multi-tier

data center simulation platform. In Intl. Conference on Cluster Computing and

Workshops (CLUSTER), 2009.

[28] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd

edition, 2010.

[29] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan,

and R. Buyya. CloudNetSim++: A toolkit for data center simulations in

OMNET++. In 2014 11th Annual High Capacity Optical Networks and

Emerging/Enabling Technologies (Photonics for Energy), pages 104–108, 2014.

[30] Alberto Núñez, Javier Fernández, Rosa Filgueira, Félix Garćıa, and Jesús Car-

retero. SIMCAN: A flexible, scalable and expandable simulation platform for

modelling and simulating distributed architectures and applications. Simulation

Modelling Practice and Theory, 20(1):12–32, 2012.

[31] Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G Castañé,

Jesus Carretero, and Ignacio M Llorente. iCanCloud: A flexible and scalable

cloud infrastructure simulator. Journal of Grid Computing, 10(1):185–209, 2012.

[32] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Dynamic Cloud Pro-

visioning for Scientific Grid Workflows. In Proc. of the 11th ACM/IEEE Intl.

Conf. on Grid Computing (Grid), pages 97–104, 2010.

48

[33] C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, chal-

lenges, techniques and technologies: A survey on big data. Information Sciences,

275:314–347, 2014.

[34] Laurent Pouilloux, Takahiro Hirofuchi, and Adrien Lebre. SimGrid VM: Vir-

tual Machine Support for a Simulation Framework of Distributed Systems.

IEEE transactions on cloud computing, September 2015.

[35] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U. Khan.

FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog En-

vironment. IEEE Access, 6:63570–63583, 2018.

[36] A. S. M. Rizvi, T. R. Toha, M. M. R. Lunar, M. A. Adnan, and A. B. M. A. A.

Islam. Cooling energy integration in SimGrid. In 2017 International Conference

on Networking, Systems and Security (NSysS), pages 132–137, 2017.

[37] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, P. Ku-

mar, W. Liao, and A. Choudhary. Enabling active storage on parallel I/O soft-

ware stacks. In 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), pages 1–12, 2010.

[38] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche, A. Legrand, F. Lopez, and

B. Videau. Fast and accurate simulation of multithreaded sparse linear algebra

solvers. In 2015 IEEE 21st International Conference on Parallel and Distributed

Systems (ICPADS), pages 481–490, 2015.

[39] P. Velho and A. Legrand. Accuracy Study and Improvement of Network Simu-

lation in the SimGrid Framework. In Proc. of the 2nd Intl. Conf. on Simulation

Tools and Techniques, 2009.

[40] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand. On the Validity

of Flow-level TCP Network Models for Grid and Cloud Simulations. ACM

Transactions on Modeling and Computer Simulation, 23(4), 2013.

[41] Pedro Velho and Arnaud Legrand. Accuracy study and improvement of net-

work simulation in the simgrid framework. In SIMUTools’ 09, 2nd International

Conference on Simulation Tools and Techniques, 2009.

49

[42] Pedro Velho, Lucas Mello Schnorr, Henri Casanova, and Arnaud Legrand. On the

validity of flow-level tcp network models for grid and cloud simulations. ACM

Transactions on Modeling and Computer Simulation (TOMACS), 23(4):1–26,

2013.

[43] Jianwen Xu, Kaoru Ota, and Mianxiong Dong. Saving energy on the edge: In-

memory caching for multi-tier heterogeneous networks. IEEE Communications

Magazine, 56(5):102–107, 2018.

[44] Zhenyun Zhuang, Cuong Tran, Jerry Weng, Haricharan Ramachandra, and Badri

Sridharan. Taming memory related performance pitfalls in Linux cgroups. In

2017 International Conference on Computing, Networking and Communications

(ICNC), pages 531–535. IEEE, 2017.

50

	List of Figures
	List of Tables
	Introduction
	Data-intensive applications and HPC
	Performance quantification
	Page cache and simulation
	Contributions
	Thesis organization

	Related work
	Page cache
	Page cache reduces I/O cost
	Cache eviction
	Flushing and periodical flushing

	Approaches in performance quantification
	Simulation
	Simulation frameworks
	Simulation models
	Existing data caching simulation
	SimGrid and WRENCH

	Page cache simulation model
	Memory Manager
	Page cache LRU lists
	Reads and writes
	Flushing and eviction

	I/O Controller
	Implementation

	Experiments and Results
	Experiments
	Results
	Single-threaded execution (Exp 1)
	Concurrent applications (Exp 2)
	Remote storage (Exp 3)
	Real application (Exp 4)
	Simulation time

	Conclusion

