
Understanding the Challenges and Providing Logging
Support to Monitor Data Processing in Big Data

Application

Zehao Wang

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2021

© Zehao Wang, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Zehao Wang

Entitled: Understanding the Challenges and Providing Logging Support to Mon-

itor Data Processing in Big Data Application

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Yann-Gaël Guéhéneuc

Examiner
Dr. Yann-Gaël Guéhéneuc

Examiner
Dr. Weiyi Shang

Supervisor
Dr. Tse-Hsun (Peter) Chen

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

30 April 2021
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Understanding the Challenges and Providing Logging Support to Monitor Data
Processing in Big Data Application

Zehao Wang

To analyze large-scale data efficiently, developers have created various big data processing

frameworks (e.g., Apache Spark). These big data processing frameworks provide abstractions to

developers so that they can focus on implementing the logic for data analysis. In traditional soft-

ware systems, developers leverage logging to monitor applications and record intermediate states

to assist workload understanding and issue diagnosis. However, due to the abstraction and the pe-

culiarity of big data frameworks, there is currently no effective monitoring approach for big data

applications. In this thesis, we first manually study 1,000 randomly sampled Spark-related questions

on Stack Overflow to study their root causes and the type of information, if recorded, that can assist

developers with motioning and diagnosis. Then, we design an approach, DPLOG, which assists

developers with monitoring Spark applications. DPLOG leverages statistical sampling to minimize

performance overhead and provides intermediate information and hint/warning messages for each

data processing step of a chained method pipeline. We evaluate DPLOG on six benchmarking pro-

grams and find that DPLOG has a relatively small overhead (i.e., less than 10% increase in response

time when processing 5GB data) compared to without using DPLOG, and reduce the overhead by

over 500% compared to the baseline. Our user study with 20 developers shows that DPLOG can

reduce the needed time to debug big data applications by 63% and the participants give DPLOG

4.85/5 for its usefulness on average. Moreover, the idea of DPLOG may be applied to other big

data processing frameworks, and our study sheds light on future research opportunities in assisting

developers with monitoring big data applications.

iii

Statement of Originality

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners. I understand that my thesis may be made

electronically available to the public.

iv

Acknowledgements

Foremost, I would like to express my greatest gratitude to my supervisors Dr. Tse-Hsun Chen

for your patient guidance and encouragement on my research and life. Without your supervision

and invaluable support, nothing of this would have been possible.

I am very lucky to have lively communications and fruitful discussions with all the members of

SPEAR and SENSE. I learned so much from all of you, it is my honor and pleasure to work with

you all.

Last but not least, I would like to express my special thanks to my parents. Words can hardly

express my gratitude and feelings towards you. Your unconditional support sustains me thus far and

keeps me going.

v

Contribution

In all chapters and related publications of the thesis, my contributions are: drafting the ini-

tial research idea; researching background knowledge and related work; implementing the tools;

conducting experiments; and writing and polishing the writing. My co-authors supported me in

refining the initial ideas, pointing me to missing related work, providing feedback on earlier drafts,

and polishing the writing.

Earlier versions of the work in the thesis and related work were published or under review as

listed below:

Zehao Wang, "Understanding the Challenges and Assisting Developers with Developing Spark Ap-

plications", in Proceedings of the 41st International Conference on Software Engineering: Compan-

ion Proceedings, ICSE-SRC 2021, Madrid, Spain, May 23-29, 2021, pp. .

Zehao Wang, Haoxiang Zhang, Tse-Hsun(Peter) Chen, Shaowei Wang, "Would You Like a Quick

Peek? Providing Logging Support to Monitor Data Processing in Big Data Application", The ACM

Joint European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2021, under review

Zehao Wang, Haoxiang Zhang, Tse-Hsun(Peter) Chen, Shaowei Wang, "An Empirical Study on the

Challenges that Developers Encounter When Using Apache Spark", Empirical Software Engineer-

ing(EMSE), will be submitted

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Background and Related Work 5

2.1 Background of Apache Spark. 5

2.2 Existing Logging and Monitoring Supports for Spark. 6

2.3 Understanding the Challenges of Developing Big Data Applications. 7

2.4 Debugging Big Data Applications. 8

2.5 Research on StackOverFlow. 9

3 Challenges in Developing Spark Applications 10

4 The Design of DPLOG 15

4.1 REQ1: Step-Wise Application Execution Information 16

4.1.1 Recording intermediate information: . 16

4.2 REQ2: Providing Hints on the Executed Data Processing Methods 16

4.2.1 Hints on anomalous data processing results: 17

4.2.2 Hints on method parameters: . 18

4.3 REQ3: Minimizing Performance Overhead . 18

4.4 Implementation of DPLOG . 19

vii

5 Evaluation of DPLOG 22

5.1 RQ1: What is the performance overhead of DPLOG? 22

5.2 RQ2: How effective is DPLOG in assisting developers with issue diagnosis? 24

6 Discussion 28

6.1 Implications of Our Study. 28

6.2 Limitations and Future Work. 29

7 Threats to Validity 31

7.1 External validity. 31

7.2 Internal Validity. 31

8 Conclusion 32

Bibliography 33

viii

List of Figures

Figure 4.1 A working example of DPLOG. 21

ix

List of Tables

Table 3.1 Our manual classification of the questions that developers ask on Stack Over-

flow. 12

Table 4.1 The intermediate information and hints of the data processing methods recorded

by DPLOG. 17

Table 5.1 The description of the test programs that are used for performance bench-

marking. 23

Table 5.2 The response time of the studied programs (measured in seconds). The data

size is increased by tenfold for each size. We show the average response time and

standard deviation computed from the 20 repeated runs. w/o DPLOG shows the

response time without DPLOG, w/ DPLOG shows the response with DPLOG (con-

sidering only the runtime overhead), w/ sampling overhead shows the total response

time including both the runtime and initialization (i.e., sampling) overhead, and

baseline shows the response time of the baseline (without sampling). 25

Table 5.3 The average time for the participants to finish the given task with and without

DPLOG. 27

x

Chapter 1

Introduction

Due to advances in data science and technologies, the amount of data that is being created and

collected is tremendous. Studies (Brandtzæg, 2012; Gantz & Reinsel, 2012) estimate that more than

90% of the data in the world has been generated in the past few years. The vast amount of data, once

analyzed, provides opportunities for governments and companies to make data-driven decisions that

help improve efficiency and generate revenues.

To analyze such large-scale data, developers have created various big data processing frame-

works such as Apache Spark (A. Spark, 2020), Hadoop (Hadoop, 2020), and Google’s MapRe-

duce (Dean & Ghemawat, 2004). These big data processing frameworks provide abstractions to

developers so that they can focus on implementing the logic for data analysis. Using these frame-

works, developers can scale the computation tasks horizontally across clusters of machines with

little to no code changes and speed up computation. In particular, Spark has become one of the

largest and most popular big data processing frameworks due to its intuitive API design and perfor-

mance (Gulzar et al., 2016).

In traditional software applications, developers may use logging frameworks such as Log4J to

insert logging statements in application source code. Then, developers use the generated logs to

assist in monitoring (Fu et al., 2014; Xu, Huang, Fox, Patterson, & Jordan, 2009), testing (B. Chen,

Song, Xu, Hu, & Jiang, 2018; J. Chen, Shang, Hassan, Wang, & Lin, 2019), and debugging (A. R. Chen,

Chen, & Wang, 2021; Yuan et al., 2010; Yuan, Zheng, Park, Zhou, & Savage, 2011). However, due

to the abstraction provided by Spark, there may be peculiar challenges if developers want to add

1

logging statements to monitor big data applications. First, developers often leverage method chain-

ing (e.g., filter().dropna().distinct()) to create a data processing pipeline in Spark.

Method chaining is one of the core concepts in Spark’s API design to promote data immutability,

which helps reduce concurrency issues related to data sharing. Method chaining may introduce

challenges if developers need to monitor or understand how the data is transformed in each step, as

developers can only see the final output. Second, Spark implements lazy evaluation to optimize the

data processing pipeline. Breaking the data processing pipeline to record intermediate information

in each step may significantly affect application performance.

The default logging provided by Spark only records information related to the Spark internals

such as cluster resource allocation. However, knowing the states of Spark’s internals may be not

sufficient for developers, and there is limited support on recording the execution information on

the application side. Due to the importance and complexity of data processing applications, there

is a need for logging solutions to better monitor data transformation and provide useful system

execution information to assist problem diagnosis.

To address the above-mentioned challenges and assist developers in various tasks related to

Spark applications (e.g., monitoring and issue diagnosis), in this thesis, we follow a three-phase

sequential exploratory strategy (Banken, Meijer, & Gousios, 2018; Creswell & Creswell, 2017;

Hanson, Creswell, Clark, Petska, & Creswell, 2005). Similar to prior research in software engineer-

ing (Banken et al., 2018; Li, Chen, Yang, & Shang, 2019; Liu, Xu, & Cheung, 2014), our goal is

to first identify the challenges that developers encounter and propose an approach to assist them.

First, we identify the challenges that developers encounter through a qualitative study. Specifically,

we study the type of information that may be useful to developers when understanding system ex-

ecution and diagnosing issues. We conduct a manual study on 1,000 Spark-related questions from

Stack Overflow, which reaches a 95% confidence level and a 3% confidence interval. We found

that questions related to data processing and Spark API usage are the most common challenges

that developers encounter (63%). In particular, most issues are related to not knowing what are

the intermediate states of the processed data, and improper usage of API that leads to unexpected

results. Second, we design a logging approach, called DPLOG, to provide developers the capability

to monitor and understand data processing execution. DPLOG leverages statistically sampling to

2

minimize performance overhead, and provides intermediate processing information and hint mes-

sages in real-time for each data processing step of a chained method pipeline. Finally, we evaluate

DPLOG by first measuring its performance overhead on six benchmarking programs. Through a

user study, we also show that the logging information provided by DPLOG may also assist devel-

opers in diagnosing issues in data processing applications.

The contributions of this thesis are as follows:

• Our empirical study on Spark-related questions on Stack Overflow uncovers common chal-

lenges that developers encounter. Most of the issues that developers have are related to data

transformation and API usage. In particular, developers often have challenges knowing the

intermediate data states that lead to unexpected results.

• We propose an approach, DPLOG, which assists developers with monitoring and understand-

ing data processing in Spark.

• Through an evaluation of six benchmarking programs, we find that DPLOG has a relatively

small overhead. Compared to without using DPLOG, the response time when processing

5GB data increases by less than 10%. DPLOG reduces the overhead by over 500% compared

to the baseline.

• We demonstrate the usefulness of DPLOG through a user study. Our user study with 10

professional developers and 10 graduate students shows that DPLOG can reduce the needed

time to diagnose issues in big data applications by an average of 63%. On average, the

participants give DPLOG 4.85/5 for its usefulness.

• We discuss the implications of our findings and future research opportunities in assisting

developers with developing and debugging big data applications.

In summary, we proposed a data-driven solution (i.e., DPLOG) based on real-world Spark chal-

lenges. DPLOG provides support to Spark developers to address/alleviate such challenges, and our

evaluation of DPLOG demonstrates its small performance overhead and its usefulness in helping

monitor and diagnose big data applications. We select Spark as it is one of the most popular big

data frameworks. According to a recent survey from Unravel Data (Agarwal, 2019), Spark is the

3

number one big data technology that IT decision makers plan to deploy. Although DPLOG was

implemented for Spark applications, the idea of DPLOG can be migrated to other big data frame-

works, for which method chains are employed and the intermediate information of data is difficult

to access. For instance, Hadoop also employs method chains on reducers and mappers for data

processing jobs, so the idea of DPLOG may also be applied to future research and development of

tools for other big data processing frameworks such as Apache Hadoop.

Thesis Organization. Chapter 2 discusses the background of Spark and related work. Chapter 3

presents challenges in developing Spark applications that we uncover from Stack Overflow ques-

tions. Chapter 4 presents the design of DPLOG. Chapter 5 evaluates DPLOG. Chapter 6 discusses

implications and future work. Chapter 7 discusses threats to validity. Chapter 8 concludes the

thesis.

4

Chapter 2

Background and Related Work

2.1 Background of Apache Spark.

Apache Spark is a distributed cluster-computing framework that can execute the computation

in parallel in a cluster. To assist developers with big data processing, Spark abstracts the underly-

ing parallel computation and cluster management from developers. Spark provides APIs for four

programming languages: Scala, Java, Python, and R. To process data, Spark provides three abstrac-

tions for distributed data: RDD (resilient distributed dataset), DataSet, and DataFrame. RDD is an

immutable distributed collection of data elements that can be operated in parallel. After Spark 2.0,

the Spark official guideline suggests replacing RDD with Dataset and DataFrame, which provide

richer APIs and better performance optimization. DataSet and DataFrame both abstract the repre-

sentations of distributed data, whereas the difference is that the data in DataSet is strongly-typed.

In this thesis, we implement our logging solution for Spark’s Python API (PySpark). However, the

concepts are applicable to other programming languages and our prototype solution can be easily

extended. Note that PySpark only supports DataFrame since objects in Python are untyped. Below,

we focus our discussion on DataFrame.

Spark APIs leverage two important concepts in its design: method chaining and lazy evalua-

tion. Method chaining is used to ensure data immutability (i.e., DataFrame objects are immutable

to avoid concurrency issues) and allows developers to create a data processing pipeline by chaining

multiple data processing methods. For example, developers can call dataFrame.filter(x >

5

3).dropDuplicates().sort() as a chain. By chaining the three data processing methods

(i.e., filter, dropDuplicates, and sort), each method would return a new DataFrame ob-

ject that is used as the input for the next method. The final returned DataFrame object will have

values larger than three being filtered, duplicates removed and sorted. Method chaining also pro-

vides an intuitive way for developers to combine multiple data processing methods.

To optimize the performance of the chained methods, Spark employs lazy evaluation for op-

timization. There are two types of methods: transformation and action. For example, filter

is a transformation method and count is an action method (i.e., return the number of rows in

the data). All the transformation methods are lazily evaluated until an action method is called.

When an action method is called, similar to compiler optimization, some intermediate data pro-

cessing steps in Spark may be optimized, combined, or even eliminated to improve performance.

If no action method is called, Spark would not execute any transformation method. For example,

dataFrame.filter(x > 3) will not filter the data, unless an action method is called, like

count. Then, Spark will start to filter data and calculate the number of rows of the filtered data.

2.2 Existing Logging and Monitoring Supports for Spark.

Logging in Spark: In traditional software applications, developers add logging statements in source

code to record the program state and application runtime information. These logs provide valu-

able information for developers to monitor application status and diagnose issues (A. R. Chen et al.,

2021; Fu et al., 2014; Xu et al., 2009; Yuan et al., 2010, 2011). Spark is no exception and uses Log4J

for logging. All activities that occur inside Spark can get logged to the shell console and/or the con-

figured underlying storage (e.g., to files on the disk or in databases). By default, logging in Spark

only records the information about Spark’s internals and does not record application execution in-

formation (i.e., does not show how the data is processed or transformed). However, developers may

need to record the intermediate application and data states, in a case when there is an issue during

program execution or with the final result, developers may be left in the dark. Nevertheless, adding

logging statements to retrieve and record the intermediate information of each data processing step

can invalidate lazy evaluation, and cause significant performance overhead (e.g., the data needs to

6

be collected from all the worker nodes for each step).

Cluster Resource Monitoring: Spark provides a web user interface (UI) that allows developers to

monitor the status and resource consumption of a Spark cluster. In the web UI, developers can

monitor information such as job status and directed acyclic graphs that show how Spark schedules

and optimizes the data processing methods. However, the web UI only shows the internal execution

information of the Spark framework. When there is an unexpected data processing output or error

on the application side, the web UI cannot provide much useful information.

To assist developers with logging and monitoring big data applications, in this thesis, we first

conduct an empirical study on the development challenges that developers encounter. We manually

analyze Spark-related questions on Stack Overflow, with a focus on understanding the real-world

challenges that developers encounter when running Spark application code, and what kind of infor-

mation, if recorded, is useful for developers to understand the intermediate outcome for supporting

the effective development of Spark applications. Based on our findings, we design a logging so-

lution, called DPLOG, which can better monitor data transformation and provide useful system

execution information to developers, especially supporting the commonly occurred issues that are

encountered based on our empirical study.

Below, we discuss related work on the challenges and supports in developing big data applica-

tions.

2.3 Understanding the Challenges of Developing Big Data Applica-

tions.

Kim et al. (Kim, Zimmermann, DeLine, & Begel, 2018) surveyed 793 Microsoft data scientists

on the common challenges that they encounter. They find that the most common challenges are

related to data quality and the scale of the data. Fisher et al. (Fisher, DeLine, Czerwinski, & Drucker,

2012) also interviewed 16 data analysts at Microsoft and they found that debugging in a distributed

cloud environment is extremely challenging. Zhou et al. (Zhou et al., 2015) analyzed 210 issue

reports from one of Microsoft’s big data platforms. They find that more than 30% of the issues

are related to application design and code logic. In this thesis, we focus our qualitative study on

7

Stack Overflow questions related to Spark development. Through our qualitative study, we observe

that questions related to data processing and Spark API usage are the most common challenges

that developers encounter. In particular, most questions are related to understanding how the data

is processed and its intermediate state in a data processing pipeline. We then design an approach

aiming to assist developers in mitigating such challenges.

2.4 Debugging Big Data Applications.

Dave et al. (Dave, Zaharia, Shenker, & Stoica, 2013) proposed Arthur, which is a debugger

for Hadoop and Spark. Arthur enables a user to selectively replay a part of the original computa-

tion with low overhead. However, Arthur has many limitations, for example it cannot replay bugs

where a user’s code (e.g., a map function) is nondeterministic and it cannot work on bugs that are

not caused by a particular task as some bugs are caused by the interaction between multiple tasks.

Gulzar et al. (Gulzar et al., 2017, 2016; Gulzar, Mardani, Musuvathi, & Kim, 2019a; Gulzar, Wang,

& Kim, 2018) developed a series of techniques to support debugging and testing for big data appli-

cations. Gulzar et al. proposed BIGDEBUG (Gulzar et al., 2016), which is a debugger for Spark

applications. After specifying the breakpoints manually, users can use BIGDEBUG to debug Spark

applications without needing to interrupt or re-run Spark applications during debugging. BIGDE-

BUG is not adapted to the new Spark API and it modifies the spark source code, which leads to

difficulties in configuration and installation in a production environment. In another work, Gulzar et

al. developed another debugging tool called BigSift (Gulzar et al., 2017, 2018). Given a known error

caused by the input data, users can specify a predicate that helps flag the problematic data entries.

Then, BigSift applies delta debugging to find the data entry, for which the corresponding output

violates the pre-defined predicate. BigSift focuses on the bug that is caused by the data rather than

the source code and it can detect which row of data causes a bug in Spark applications. Different

from prior debugging studies, in this thesis, we focus on providing logging supports to develop-

ers. We first conduct an empirical study to identify the challenges that developers encounter when

developing Spark applications and identify the types of information that may assist developers in

8

monitoring Spark applications. Unlike debuggers, logging provides insights on application execu-

tion and requires low performance overhead, since it is often used in production settings. Debugger,

on the other hand, is used to debug a known issue, often makes the application runs hundreds of

times slower, and is used only in development settings.

2.5 Research on StackOverFlow.

StackOverflow is a widely used platform to study software engineering practice from develop-

ers’ perspective. Bagherzadeh et al. (Bagherzadeh & Khatchadourian, 2019) applied topic modeling

(i.e., LDA) to study the topics of the questions that developers ask on Stack Overflow. They find

that developers ask questions about MapReduce, debugging, and basic concepts more frequently

than some questions such as performance. Their exploratory study provides a landscape of big-

data questions that developers ask and is a starting point for future research. However, since the

study is entirely quantitative, the study provides limited insights on what types of information could

be helpful for developing and debugging big data applications. For example, they did not discuss

the challenges of using API functions or the data processing problems that developers encounter.

Gulzar et al. (Gulzar, Mardani, Musuvathi, & Kim, 2019b) studied investigate 50 posts related to

Apache spark on Stack Overflow to find Apache Spark errors. They found that many errors are

re- lated to performance and configuration errors. Zhang et al. (Q. Zhang, Wang, Gulzar, Padhye,

& Kim, 2020) checked 787 Stack OverFlow posts to collect real-world DISC (data-intensive scal-

able computing) application errors. They found ten common error types in DISC applications. The

most common error in DISC application is type mismatch and incorrect column access. Meng et

al. (Meng, Nagy, Yao, Zhuang, & Arango-Argoty, 2018) studied 503 Stack Overflow(SO) post to

understand developers’ concerns on Java secure coding. Islam et al. (Islam, Pan, Nguyen, & Rajan,

2020) studied 415 repairs from Stack Overflow and 555 repairs from Github to find the bug repair

patterns and challenges in five deep learning libraries.

Compared to previous reserach, we conducted an in-depth study on the challenges that devel-

opers encounter. Then, we propose an approach to assist developers with the development and

monitoring of Spark applications.

9

Chapter 3

Challenges in Developing Spark

Applications

In this chapter, we analyze Spark-related questions that were asked on Stack Overflow. We

wish to understand the real-world challenges that developers encounter, and what kind of logging

supports may assist developers with monitoring and developing Spark applications.

Stack Overflow is being widely studied for understanding the challenges in various areas of

software engineering, such as security, mobile development, and AI-based systems (Meng, Nagy,

Yao, Zhuang, & Argoty, 2018; Rosen & Shihab, 2015; Yang, Lo, Xia, Wan, & Sun, 2016; T. Zhang,

Gao, Ma, Lyu, & Kim, 2019). Similarly, we analyze Spark-related questions on Stack Overflow

to understand the challenges in developing Spark applications. We download the Stack Overflow

data dump that was released in September 2019. The data dump contains detailed information on

every question and answer on Stack Overflow. Stack Overflow requires every question to have at

least one tag to illustrate its topic. We use the tag apache-spark to select all Spark-related posts

(i.e., questions and the associated answers). We follow prior studies (Ponzanelli, Mocci, Bacchelli,

& Lanza, 2014; Wang, Chen, & Hassan, 2018) to select only the questions that have a score that

is higher than one and has an accepted answer. Moreover, we filter out the questions that do not

have any code snippets, since we wish to study the code snippets to further understand the possible

causes of the challenge that the asker encountered. We collected 12,217 Spark-related questions

10

that were asked between 2014 to 2019 (Spark 1.0 was released in 2014).

We conduct a qualitative study on a statistically significant sample of questions and their as-

sociated answers. More specifically, we randomly sample 1,000 questions among these 12,217

questions, achieving a confidence level of 95% and a confidence interval of 3%. We performed a

lightweight open coding-like process that involves three phases. We describe the phases to conduct

this qualitative study as follows:

• Phase I: We collaboratively go through 200 questions and their associated answers to derive

an initial list of the challenges that developers encounter.

• Phase II: We independently go through the rest of the 1,000 posts, and assign the derived

categories to these posts. In this phase, we did not find any new categories.

• Phase III: We compare the assigned categories and any disagreement is discussed until a

consensus is reached. The inter-rater agreement has a Cohen’s Kappa of 0.825 before the

consensus is reached, which is a high-level agreement (McHugh, 2012). Our manual study

result is publicly available (StackoverFlow manual study result, 2020).

We find that the most common challenge that developers encounter is related to Data Process-

ing (43.2%). In general, there are two categories of issues that developers encounter during data

processing. The first issue type is that the application may return unexpected data processing re-

sults (e.g., a bug in the code), but developers may have trouble in identifying which data processing

method causes the issue. For example, a developer on Stack Overflow transformed the data by

method chaining several data processing methods (StackOverflow, 2020c). In this question, the de-

veloper wishes to understand and verify the result of each step for testing purposes. The suggested

answer is to break the chained methods and test them separately. The second issue type is that, due

to the vast number of supported frameworks and APIs in Spark, developers may be unfamiliar with

some API usage or data format. Without knowing how the data looks like and how it is processed,

developers may encounter unexpected challenges.

The second most common challenge is related to Spark API Usage (19.1%). Most of the prob-

lems in this category are caused by improper uses of APIs, which leads to unexpected data pro-

cessing results without any indication of errors (e.g., no exceptions). Since Spark integrates the

11

Table 3.1: Our manual classification of the questions that developers ask on Stack Overflow.

Type Definition # posts

Data Pro-
cessing

Spark provides various APIs and data ab-
straction formats to process data, such as
RDD, DataFrame, and Dataset. Develop-
ers may encounter issues when they need to
transform and process the data to get the de-
sired data/result.

432 (43.2%)

Spark API
Usage

Developers may encounter issues with us-
ing Spark’s APIs and concepts related to big
data developments.

194 (19.4%)

Configuration Developers may encounter issues related to
tuning the vast number of configurations in
Spark, and the required configurations when
integrating Spark with other frameworks.

151 (15.1%)

Data
Sources

Spark provides a series of APIs to access
a variety of data sources. Developers may
have issues when they read or write data
in various formats (e.g., JSON) or sources
(e.g., NoSQL database) when using Spark.

114 (11.4%)

Performance
and Logging

Developers may encounter performance and
logging issues related to Spark deployment.
The issues may be related to logging config-
uration, resource usage, and monitoring in
a cluster, e.g., CPU, network bandwidth, or
memory.

55 (5.5%)

Other Issues that do not belong to the above-
mentioned categories, such as unresolved
bugs in Spark or Scala syntax questions.

54 (5.4%)

12

functional programming paradigm in its API design to abstract big data processing, sometimes de-

velopers may not be familiar with the working mechanism of an API and can use the API incorrectly.

For example, a developer asked a question on Stack Overflow that the fillna method did not fill

the null value as expected (StackOverflow, 2020b). The developer planned to fill the integer 10 into

all the cells that currently have a null value. However, the data type of the column is String while the

developer planned to fill the data with integers. In Spark, if the data type of the filled value does not

match with the data type of a column, the replacement would simply have no effect. There will be

no warning messages, so it is difficult for developers to notice the issue. Some data processing meth-

ods also contain optional parameters that provide different ways to process data, but developers may

not always be aware of such options. As an example, a developer is confused about the difference

between dropDuplicates and distinct (StackOverflow, 2020a). Both methods can remove

duplicated data, and dropDuplicates has an additional parameter that is optional, from which

the developer can specify the duplicated columns to be removed. In this case, providing some hints

on anomalous data processing results and parameter usage may help developers understand how the

data is processed.

We also find that developers often encounter challenges in configuring Spark (15.1%) and its

interaction with other data sources (11.4%). Developers often encounter configuration problems

due to the variety and flexibility of configuration parameters. As Spark can integrate with a variety

of data sources, such as databases, developers may have problems during this process. We find

that 5.5% of the questions are related to performance and logging issues in Spark deployment.

Developers have difficulties in configuring Spark’s default logging, monitoring Spark execution in

the cluster, or improving the performance of data processing. Finally, there are some questions that

we categorize into Other category (5.4%), which includes known and unresolved bugs in Spark or

questions that are related to programming language syntax.

In short, we find that questions related to Data Processing and Spark API Usage are the most

common challenges that developers encounter – accounting for 63% of the studied questions. Our

manual analysis suggests that developers may need to know intermediate results after each data

processing method is executed step by step to gain an overview of how their data is processed in

the pipeline. Providing hints or warning messages on API parameter usage and anomalous data

13

processing results may also provide additional support to developers. Such execution information

can help developers understand and monitor their applications. Another observation is that, in most

studied questions, developers are more interested in knowing examples of how the data is processed.

Therefore, showing samples of data processing results may provide values for monitoring purposes.

Due to the popularity of these issues, we design a logging approach that may assist developers in

monitoring data processing.

Below, we summarize the Data Processing and Spark API Usage challenges that we manually

uncovered.

• Challenge 1: Data processing in Spark usually involves a series of steps to transform the

raw data into an understandable/usable format. However, due to Spark’s method chaining

and lazy-evaluation features, it is usually impossible for developers to know the intermediate

results (or state) of the processed data during monitoring.

• Challenge 2: Due to the vast number of APIs and their rich options, developers may pass

incorrect API options and result in unexpected results. Having a warning message on the

used API and related options for each intermediate state may provide hints to developers

on how the data is processed, especially when API methods are chained together to form a

complex task.

• Challenge 3: Most of the answers in the studied questions are related to re-running the data

processing methods separately. However, re-running the application when large input data

can be time consuming. There is a lack of tooling supports that allow developers to monitor

the data processing details with a reasonable runtime overhead.

To address the above-mentioned challenges, in the next chapter, we discuss the design of a

logging approach that has a small performance overhead and can be easily adapted to existing Spark

applications.

14

Chapter 4

The Design of DPLOG

We present the design of our approach, DPLOG, which assists developers with monitoring

and understanding the data processing execution. DPLOG is a logging approach that provides

the intermediate information (e.g., data changes and states, and anomalies in the data processing)

from each of the executed Spark methods. Table 4.1 shows the list of data processing methods that

are supported by DPLOG. These methods cover all the basic data processing methods provided

by PySpark’s DataFrame (Spark, 2020a). Based on our empirical study results, we follow the

requirements described below when designing DPLOG:

• REQ1: DPLOG should provide step-by-step data processing execution information. To

assist developers with Spark development and provide necessary information for monitoring

and diagnostic purposes, DPLOG needs to show how the data is transformed/processed after

calling each method.

• REQ2: DPLOG should provide hints to developers when a potential issue occurs during

data processing. To assist developers with using data processing methods in Spark and

identify potential issues with either the results or method usage, DPLOG needs to provide

some hints to developers to help locate or avoid misuses (i.e., similar to warn level logs in

traditional logging (Li, Li, Chen, & Shang, 2021)).

• REQ3: DPLOG should be scalable and have a low performance overhead. To assist

developers with getting the intermediate information during runtime, DPLOG needs to have

15

a relatively low performance overhead.

Below, we discuss the design of DPLOG that fulfills the three above-mentioned requirements.

4.1 REQ1: Step-Wise Application Execution Information

4.1.1 Recording intermediate information:

DPLOG records information of the data after each data processing method is executed during

runtime. Note that there are some technical challenges in obtaining the intermediate results before

a data processing pipeline is finished. As discussed in Section 2, Spark allows application devel-

opers to create a data processing pipeline by chaining methods and leverages lazy-evaluation to

optimize performance (Section 4.4 discusses the implementation details of DPLOG to address the

challenges). In particular, DPLOG records two types of information: data state and data process-

ing. For data state, DPLOG records the information of the data state before and after each method.

DPLOG records the data state differently for each method. For example, for filter, DPLOG

records the number of rows before and after applying filter. For withColumn (i.e., for cre-

ating a new column), DPLOG records the number of rows and the statistics of the newly added

column, such as max, min, mean, and standard deviation. Recording such data state information

helps gain a high-level overview of the data and how it changes. For data processing, DPLOG

records a small sample of the data (e.g., 10 rows for display purposes) before and after applying

each data processing method for the showcase. Therefore, developers can reference examples of

how the data is transformed and processed through each step of the data processing pipeline. If

there is a logical bug in the data transformation process, developers may be able to spot the bug and

identify where the bug happens in the pipeline with the information provided by DPLOG.

4.2 REQ2: Providing Hints on the Executed Data Processing Methods

To address REQ2 and provide hints to developers about the usage and potential issue for each

data processing method, we design DPLOG to record the anomalous result for each method call and

provide possible hint messages. DPLOG provides two types of hint messages: anomalies in the data

16

Table 4.1: The intermediate information and hints of the data processing methods recorded by
DPLOG.

REQ1 REQ2
Method Data state Data processing Anomalies hint Parameter hint

filter Filter condition, number of rows (be-
fore and after), percentage of data
changed

Display samples of the fil-
tered data

No data or over 70% are
filtered

N/A

dropDuplicates Number of rows (before and after), per-
centage of data changed

Display samples of the re-
moved data

No data or over 70% are
deleted

Use default value for op-
tional parameter

distinct Number of rows (before and after), per-
centage of data changed

Display samples of the re-
moved data

No data or over 70% are
deleted

N/A

dropna Number of rows (before and after),
number of nulls (before and after), per-
centage of data changed

The distribution of null
values

No data or over 70% are
deleted

Use default value for op-
tional parameter

drop Drop condition, Number of columns
(before and after), percentage of data
changed

Display samples of the
dropped data

Number of deleted
columns is

N/A not expected

fillna Number of nulls (before and after), per-
centage of data changed

The distribution of null
values

There are still null values Use default value for op-
tional parameter

join Join condition, Number of rows (before
and after), Percentage of data changed

N/A N/A Use default value for op-
tional parameter

withColumn Data type of the new column, number
of columns (before and after), statisti-
cal information about the new column
(max, min, mean, std dev)

Display samples of the
new data

N/A N/A

sort Sort condition, samples of the original
data

Display samples of the
sorted data

N/A N/A

processing result, and hints on the used values for the optional parameters in the data processing

methods.

4.2.1 Hints on anomalous data processing results:

Bugs that developers face do not always run into exceptions or failures, but may also be related

to incorrect calculation or data. For example, if a developer wishes to delete a column in the data but,

instead, the developer gives the name of another column by mistake. In this case, there will be no

exceptions, but the processed data will be incorrect. As shown in Table 4.1, DPLOG provides hints

on anomalous data processing results for various methods. For filter, dropDuplicates,

distinct, and dropna, DPLOG provides hints if the resulting data changes significantly or

does not change at all: either no data or over 70% of the data is removed. The assumption is that

developers often apply the methods to remove some data, but if no data or too much data is removed,

a hint message to warn the developers may be helpful. Note that developers can adjust the threshold

value if needed. For fillna, we provide a hint message if there still exist null values in the data

17

after executing fillna. Similarly, for drop, we provide a hint message if the specified column is

not dropped as expected.

4.2.2 Hints on method parameters:

As we found in Section 3, developers sometimes may not be familiar with the parameters used in

data processing methods. To assist developers, DPLOG checks the values of the parameters given

to the data processing method. If the parameter value is not given and the default value is used,

DPLOG will provide a hint message on the effect of the default parameter value. For example, if

the subset parameter of dropDuplicates is empty, by default, Spark will apply deduplication

to all the columns, and the behaviour of dropDuplicates becomes the same as distinct. In

this case, DPLOG will provide a hint message on the effect of not providing the subset parameter.

The rationale is that if the developer has provided a value for the optional parameter, the developer

likely knows the effect of that parameter value. In addition to dropDuplicates, dropna and

fillna also have the subset parameter. Similarly, DPLOG will provide a hint message if the value

for subset is not provided (i.e., the operation will be applied to columns). We also provide hints for

dropna and join. For example, there is an optional parameter how, which changes the behaviour

of the method. For dropna, when how is set to “any”, it drops a row if it contains any nulls; when

how is set to “all”, it drops a row if all of its values are null. Similarly, the how parameter in join

specifies how the data will be joined (e.g., inner join and left outer join). DPLOG will give a hint

message on these optional parameters if developers did not provide any value. For the remaining

methods that have no optional parameters, the hint messages are not provided.

4.3 REQ3: Minimizing Performance Overhead

To make DPLOG practical, DPLOG must be scalable so that it can handle large datasets and

DPLOG must have a reasonable low-performance overhead. Spark optimizes data processing pipelines

(i.e., method chaining of multiple calls to data processing methods) using lazy-evaluation and other

optimization techniques (e.g., removing redundant computation). Therefore, if we directly record

the intermediate information from every data processing method, we would make the optimization

18

techniques invalid and affect the performance. Fortunately, many of the big data processing issues

that we found during our manual analysis may also happen in a non-big data setting. Therefore, to

minimize the performance overhead of DPLOG, DPLOG first creates a statistically significant sam-

ple of the data and spawns a new Spark job that applies the data processing methods step-by-step.

Prior studies (Drosos, Barik, Guo, DeLine, & Gulwani, 2020) use sampled data to generate the data

transformation code. They found that using sampled data significantly reduces the performance

overhead and helps developers with data analysis. Note that DPLOG processes the original data

and the sampled data simultaneously. When applying the data processing methods on the sampled

data, DPLOG records the intermediate information and provides hint messages. DPLOG supports

random data sampling, and developers can choose the confidence level and confidence interval.

Sampling is an effective way to provide a statistically significant representation of the data which

is often precise and accurate (Boslaugh & Watters, 2008). By default, DPLOG applies random

sampling with a 99% confidence level and a 3% confidence interval.

4.4 Implementation of DPLOG

To minimize code changes and configurations when using DPLOG, we implement DPLOG as

an independent package. We implement DPLOG in Python and support PySpark, Spark’s official

Python APIs. Our implementation is based on Python 3.7.3 and is evaluated on Spark 2.4.4. DPLOG

extends the functionality of PySpark, but developers do not need to learn the working principle of

DPLOG and hardly need to modify any of the existing code. Developers can import DPLOG as a

package and enable DPLOG by simply adding “with DPLOG.enable() as df:” (as shown

in Figure 4.1). As shown in Table 4.1, DPLOG supports the following APIs in PySpark: filter,

drop, dropDuplicates, distinct, dropna, fillna, withColumn, sort, and join.

DPLOG covers all the basic data processing methods provided by PySpark’s DataFrame (Spark,

2020a). When users read the data into a DataFrame object, DPLOG creates a new DataFrame

object that stores the statistically significant sample of the original data. DPLOG processes the

original data and the sampled data simultaneously according to the developers’ source code. Note

that, if needed, developers can also run DPLOG on the original data, even though the overhead will

19

be significant (i.e., similar to the debug level in traditional logging frameworks).

DPLOG does not modify PySpark’s source code. Instead, it uses the Adapter design pattern to

extend PySpark’s data processing methods without affecting their original implementations. There-

fore, even if there is a new release of PySpark or the method implementation is modified, DPLOG

can still be applied. The output of DPLOG (i.e., intermediate information and hint messages) can

be saved to the location that the developer specified, or be recorded together with Spark’s default

logger. In addition to the messages, DPLOG will also save the sampled data to further assist mon-

itoring and diagnosis if needed (i.e., developers can load the sampled data and diagnose potential

issues).

Figure 4.1 shows a working example of DPLOG. First, DPLOG creates a sampled data based

on 99% confidence level and 3% confidence interval. Then, DPLOG processes the sampled data and

provides both the hint message and data state. Developers only need to add with DPLOG.enable()

to enable DPLOG. In this example, the dataset contains a larger number of null values in the column

Nationality. When the method dropna is called, DPLOG provides a hint message that over 70%

of the data is deleted, and shows the statistics and samples of the dropped data. Since DPLOG is

executed concurrently with the original dataset, the final result on the original data is not affected.

20

H
in

t M
es

sa
ge

D
at

a
st

at
e

an
d

pr
oc

es
si

ng

w
ith

 D
PL

O
G

.e
na

bl
e(

) a
s

df
:

 d

f.d
ro

pn
a(

)
O

rig
in

al
D

at
a

Sa
m

pl
in

g
(b

as
ed

 o
n

99
+/

-3
%

)

ex
ec

ut
e

dr
op

na
()

W
ar

ni
ng

: O
ve

r 7
0%

da
ta

 is
 d

el
et

ed
!

Sa
m

pl
ed

D
at

a

N
o.

 ro
w

 b
ef

or
e:

 1
,8

46

N

o.
 ro

w
 a

fte
r:

 3
N

o.
 n

ul
l b

ef
or

e:
 1

,8
43

N
o.

 N
ul

l a
fte

r:
 3

D

el
et

ed
 9

9.
9%

 d
at

a
N

ul
l v

al
ue

 d
is

tr
ib

ut
io

n
- N

at
io

na
lit

y:
 1

,8
43

Sa
m

pl
es

 o
f d

ro
pp

ed
 d

at
a:

18
46

, N
ul

l
...

O
rig

in
al

 D
at

a
af

te
r

pr
oc

es
si

ng

ID
N

at
io

na
lit

y

25
U

SA

73
U

SA

80
U

SA

...

1,
84

6
N

ul
l

Sa
m

pl
ed

 D
at

a
af

te
r p

ro
ce

ss
in

g
ID

N
at

io
na

lit
y

25
U

SA

73
U

SA

80
U

SA

ex
ec

ut
e

dr
op

na
()

on

or
ig

in
al

 d
at

a

ID
N

at
io

na
lit

y

1
U

SA

10
U

SA

58
U

SA

... 20
00

U
SA

ID
N

at
io

na
lit

y

1
U

SA

2
N

ul
l

3
N

ul
l

...

1,
00

0,
00

0
N

ul
l

Fi
gu

re
4.

1:
A

w
or

ki
ng

ex
am

pl
e

of
D

PL
O

G
.

21

Chapter 5

Evaluation of DPLOG

We evaluate DPLOG along two dimensions: performance overhead and its usefulness in assist-

ing developers with debugging.

5.1 RQ1: What is the performance overhead of DPLOG?

Motivation. As mentioned in Section 4, to make DPLOG practical and scalable, one of the require-

ments of DPLOG is to minimize the performance overhead. Therefore, in this RQ, we evaluate the

performance overhead and scalability of DPLOG.

Approach. Our goal is to measure both the performance overhead and scalability of DPLOG. In

particular, we implement six Spark benchmarking programs for our experiment. Table 5.1 provides

an overview of the programs. These programs showcase common approaches of how develop-

ers use Spark for data processing (Spark, 2020b), and are similar to the programs used in a prior

study (Gulzar et al., 2016). To minimize possible performance costs related to other non-Spark

code, we design the programs so that they only leverage Spark APIs (which is also how big data

processing applications are typically designed and implemented (Gulzar et al., 2016)). The imple-

mentation of our benchmarking programs is available online (Performance test programs, 2020).

We measure the original response time (without using DPLOG), the overhead of running DPLOG,

and the overhead of initializing DPLOG (i.e., sampling the data and creating a new DataFrame).

To evaluate the effectiveness of our sampling mechanism, we also measure the response time of

22

Table 5.1: The description of the test programs that are used for performance benchmarking.

Description Executed Spark Method

P1 Drop null value and Filter data and add a new column filter, dropna
based on condition. withColumn

P2 Drop column and remove duplicate data distinct, drop
P3 Drop column and null value and join two dataframe drop, dropna, join
P4 Fill null value and drop columns and filter data drop, fillna, filter
P5 Remove duplicate data and sort the data. dropDuplicates, sort
P6 Join two dataframes and filter the data join, filter

running DPLOG, while without sampling as a baseline.

To measure the scalability of DPLOG, we run each program using three different levels of data

size (i.e., small, medium, and large): 50MB, 500MB, and 5GB. The data size is increased tenfold

for each level to better illustrate the scalability. Georges et al. (Kalibera & Jones, 2013) found that

performance measurements suffer from instability, which may even lead to incorrect results. To

mitigate the issue, we follow prior studies (T.-H. Chen et al., 2014; Georges, Buytaert, & Eeckhout,

2007; Kalibera & Jones, 2013) and repeat each performance measurement 20 times. We run each

program 80 times (i.e., 20 times for each data size) and report the mean and standard deviation of

the response time (in seconds). We run our experiments on a server with a 2.6 GHz 6-Core Intel

Core i7 CPU, 16GB DDR4 memory, and 500GB SSD disk.

Results. Table 5.2 shows the response time without DPLOG and with DPLOG, the total response

time with DPLOG after including the data sampling step, and the baseline without sampling. Over-

all, we find that the overhead of DPLOG is consistent across programs. The runtime overhead (w/

DPLOG − w/o DPLOG) of DPLOG is around 1 to 3 seconds for the programs executed with three

different data sizes. The overhead remains approximately the same even when the data size is in-

creased by 100 folds (i.e., from small to large). Our finding shows that DPLOG has good scalability

since the overhead is consistently small even as the amount of data increases. The reason may

be that the sample sizes do not increase much especially when the data population is large, so the

overhead of applying the data processing methods is relatively consistent.

We also find that there is a larger overhead related to the initialization process when sampling

the data (w/ sampling overhead − w/ DPLOG). To sample the data, DPLOG needs to first decide

which data records should be sampled by generating a list of random indices. Then, as the data is not

23

indexed, DPLOG needs to scan the entire data to find the corresponding data records, which results

in a larger sampling overhead. However, DPLOG only needs to perform sampling once even if there

are multiple data processing methods in the pipeline. Furthermore, we observe that the overhead of

the baseline program is about 2 to 31 times higher than the overhead of DPLOG, and the overhead

grows with the data size. It can be estimated that if the data size increases, the overhead of the

baseline will increase significantly. In contrast, our sampling mechanism reduces the overhead by

at least 500% when the data size is large, and the reduction is higher when the data size increases.

Finally, we examine if the performance overhead of running DPLOG grows linearly as the data

size increases. We compute the response time ratio between running the programs with DPLOG

and without DPLOG. The ratio of the response time of with DPLOG over response of without

DPLOG against different data sizes. We observe that the ratios of the average overhead for small,

medium, and large data sizes are 137.47%, 64.74%, and 9.25%, respectively. Namely, the ratio of

the overhead decreases as the data size increases. One possible explanation is that, as we explained

above, the sample sizes do not vary much when the data population size is large (e.g., the sample

size eventually converges to 1,849 when the confidence level is 99% and the confidence interval is

3% no matter how big the data size is), so the overhead of applying DPLOG is relatively consistent

rather than growing linearly with the data size.

The overhead of DPLOG is significantly smaller than the baseline (reduced by an average of over

500%). DPLOG is also scalable as we find that the relative performance overhead decreases to

less than 10% as the data size increases.

5.2 RQ2: How effective is DPLOG in assisting developers with issue

diagnosis?

Motivation. The execution information provided by DPLOG may be used for various monitoring

tasks. We also found in Section 3 that developers may encounter challenges in diagnosing issues

in the data processing pipeline. As found by Beller, Spruit, Spinellis, and Zaidman (2018), most

developers rely on logs to examine intermediate application execution state for issue diagnosis.

Thus, in this RQ, we investigate the effectiveness of DPLOG in assisting developers in diagnosing

24

T a
bl

e
5.

2:
T

he
re

sp
on

se
tim

e
of

th
e

st
ud

ie
d

pr
og

ra
m

s
(m

ea
su

re
d

in
se

co
nd

s)
.

T
he

da
ta

si
ze

is
in

cr
ea

se
d

by
te

nf
ol

d
fo

r
ea

ch
si

ze
.

W
e

sh
ow

th
e

av
er

ag
e

re
sp

on
se

tim
e

an
d

st
an

da
rd

de
vi

at
io

n
co

m
pu

te
d

fr
om

th
e

20
re

pe
at

ed
ru

ns
.

w
/o

D
P

LO
G

sh
ow

s
th

e
re

sp
on

se
tim

e
w

ith
ou

tD
PL

O
G

,w
/

D
P

LO
G

sh
ow

st
he

re
sp

on
se

w
ith

D
PL

O
G

(c
on

si
de

ri
ng

on
ly

th
e

ru
nt

im
e

ov
er

he
ad

),
w

/s
am

pl
in

g
ov

er
he

ad
sh

ow
st

he
to

ta
lr

es
po

ns
e

tim
e

in
cl

ud
in

g
bo

th
th

e
ru

nt
im

e
an

d
in

iti
al

iz
at

io
n

(i
.e

.,
sa

m
pl

in
g)

ov
er

he
ad

,a
nd

ba
se

lin
e

sh
ow

s
th

e
re

sp
on

se
tim

e
of

th
e

ba
se

lin
e

(w
ith

ou
ts

am
pl

in
g)

.

Sm
al

lD
at

a
Si

ze
M

ed
iu

m
D

at
a

Si
ze

L
ar

ge
D

at
a

Si
ze

w
/o

D
PL

O
G

w
/D

PL
O

G
w

/s
am

pl
in

g
ba

se
lin

e
w

/o
D

PL
O

G
w

/D
PL

O
G

w
/s

am
pl

in
g

ba
se

lin
e

w
/o

D
PL

O
G

w
/D

PL
O

G
w

/s
am

pl
in

g
ba

se
lin

e
ov

er
he

ad
ov

er
he

ad
ov

er
he

ad

Pr
og

ra
m

1
0.

86
±

0.
16

2.
45
±

0.
40

3.
46
±

0.
53

6.
07
±

0.
95

1.
83
±

0.
13

3.
46
±

0.
39

4.
71
±

0.
57

21
.8

2±
2.

12
13

.6
1±

1.
24

14
.5

4±
1.

65
19

.9
7±

2.
12

21
4.

22
±

10
.6

4
Pr

og
ra

m
2

2.
17
±

0.
31

4.
18
±

0.
57

5.
32
±

0.
70

7.
08
±

0.
99

4.
13
±

0.
47

6.
39
±

0.
67

7.
89
±

0.
85

17
.9

1±
1.

63
29

.1
4±

2.
27

31
.9

3±
2.

70
37

.9
4±

3.
35

13
4.

18
±

13
.2

5
Pr

og
ra

m
3

0.
98
±

0.
19

2.
07
±

0.
30

3.
21
±

0.
45

3.
85
±

0.
49

2.
61
±

0.
29

3.
54
±

0.
46

4.
91
±

0.
71

16
.5

7±
1.

62
23

.1
1±

2.
05

23
.7

9±
2.

24
29

.4
6±

2.
90

17
9.

87
±

13
.3

1
Pr

og
ra

m
4

0.
84
±

0.
15

2.
81
±

0.
44

3.
87
±

0.
60

5.
40
±

0.
80

1.
84
±

0.
22

3.
80
±

0.
60

5.
12
±

0.
82

17
.0

5±
1.

34
12

.9
1±

1.
32

14
.7

5±
1.

50
20

.4
1±

2.
10

14
0.

95
±

9.
44

Pr
og

ra
m

5
3.

12
±

0.
41

5.
67
±

0.
99

6.
73
±

1.
16

9.
93
±

1.
51

4.
97
±

0.
58

7.
07
±

1.
14

8.
27
±

1.
30

26
.8

6±
2.

49
28

.2
7±

2.
10

30
.9

4±
3.

34
36

.2
2±

3.
86

20
8.

38
±

15
.3

8
Pr

og
ra

m
6

1.
01
±

0.
11

2.
00
±

0.
31

3.
06
±

0.
50

3.
75
±

0.
48

1.
92
±

0.
17

2.
96
±

0.
39

4.
30
±

0.
60

11
.7

3±
1.

02
13

.3
2±

1.
70

14
.5

6±
1.

49
20

.1
2±

1.
75

10
0.

08
±

6.
42

25

data processing-related tasks.

Approach. We design a user study involving 20 participants (10 professional developers and 10

graduate students). These participants have one to five years of experience in either Spark or big

data analysis. We design six issue diagnosis tasks based on the Stack Overflow questions that we

studied in Section 3. Each task involves some data processing code and an injected issue. We

abstract the irrelevant details from Stack Overflow posts and create a consistent format for the

tasks so that developers can focus more on diagnosing the task itself. The user study also facilitates

benchmarking the efficiency improvement by using our tool, since in real Stack Overflow questions,

developers may need to spend more time to read and comprehend the question. To ensure the

diversity of the selected tasks, each task has a different issue either in the data or in the used data

processing methods. The tasks cover all the data processing methods that DPLOG supports. The

tasks are related to filtering data based on some conditions, removing certain columns in the data,

filtering data, removing duplicates, and filling or dropping N/A values. The description of the tasks

is available online (User study cases, 2020).

Each participant is assigned all six tasks and is required to diagnose three tasks with the help

of DPLOG and diagnose another three tasks without using DPLOG. We randomize the order of the

tasks for each participant to reduce the bias from the learning curve. Note that all the necessary

working environments are set up for the participants, including the required packages and IDE.

We provide detailed instructions on how to use DPLOG to each participant before starting the user

study. During the experiment, each participant is provided with six source code files, where each

file corresponds to each debugging task. The participants are allowed to run the program and make

any necessary changes to identify the problem. When the participants believe that they have found

the root cause of the problem in the program, we stop the timer. We record the time it takes for

each participant to finish each task, and ask the participant to rank the usefulness of DPLOG on a

scale from one to five, where one is considered as strongly disagree (i.e., not useful), and five is

considered strongly agree (i.e., extremely useful).

Result. On average, DPLOG reduces the needed time for the participants to diagnose the given

tasks by 63%. Table 5.3 shows the average time it takes for the user to diagnose the programs.

26

Table 5.3: The average time for the participants to finish the given task with and without DPLOG.

Avg. time w/o DPLOG (min) Avg. time w/ DPLOG (min) Improvement

T1 12.22 4.39 64%
T2 10.73 3.29 69%
T3 13.62 5.18 62%
T4 10.72 3.86 64%
T5 8.96 3.43 62%
T6 13.03 5.66 57%

Total 69.28 25.81 63%

Without using DPLOG, on average, the participants spent around 9 – 13 minutes to point out the

potential causes of the issue. When using DPLOG, the average time reduced significantly to 3 – 5

minutes. For every task, using DPLOG helps reduce the debugging time by 57% to 69% (an average

of 63%). Our findings show that DPLOG is effective in assisting the participants in monitoring and

diagnosing data processing issues in Spark applications.

Participants all agree that DPLOG is effective in helping with debugging (i.e., the average

rating is 4.85/5). 100% of the participants either agree or strongly agree that DPLOG is effective

in assisting them with monitoring and diagnosing data processing in Spark. For example, one

participant mentioned “Developers could easily find which step caused wrong data. This saves

a lot of time.” Among the 20 participants, 17 of them strongly agree that DPLOG provides the

needed support, and 3 of them agree that DPLOG provides assistance in diagnosing issues. Some

participants mention that when the data processing pipeline is longer, any issue that occurs during

the pipeline becomes harder to diagnose, and “DPLOG is even more useful when there are more

data processing methods in the pipeline”.

Our user study finds that DPLOG can reduce the needed time to diagnose the given tasks by an

average of 63%. The participants gave an average rating of 4.85/5 to DPLOG. All of the partic-

ipants either agree or strongly agree that DPLOG helps them with monitoring and diagnosing

Spark applications.

27

Chapter 6

Discussion

6.1 Implications of Our Study.

Below, we discuss the insights that we observed in our analysis on Stack Overflow posts and user

study. Although the observations are related to data processing in Spark, our research framework

of the empirical analysis and the proposed logging support tool can be easily extended to other big

data applications in future research.

Knowing the intermediate information of data is important for monitoring and debugging

data processing applications. In our user study, for the tasks where the participants are not allowed

to use DPLOG, we observe that some participants tried to analyze Spark’s logs and use Spark’s

cloud resource monitoring tool to debug the programs. However, even if the participants knew that

there exist some issues in the program, they could not identify the root causes using the existing

approaches. In most cases, the participants found that manually printing the data state (e.g., call-

ing print) is the only useful approach for debugging. Some participants kept decomposing the

chained methods, printing the output of each individual method, and checking for potential issues.

Although we found that there were fewer manually-added print statements when the participants

use a Python debugger, they still need to continuously decompose the chained methods to manually

debug the result of each data processing method. More importantly, for the tasks in which DPLOG

is not used, even after the participants found the issue, they still need to conduct extra analysis to

find the root cause of the issue in the programs.

28

Different from existing debugging supports, DPLOG provides the intermediate information of

data processing methods, which helps avoid decomposing the chained methods and reduce debug-

ging effort. For instance, one participant mentioned that “The information provided by the tool is

very useful and precise. I can find the reason for the problem much quicker based on the given

information.” Another participant mentioned that “The tool is significantly better than printing in-

formation from the code. The information provided by the tool is quite rich and helpful for locating

the problem.” Another participant mentioned, “The tool is very easy to use and provides useful in-

formation without manual debugging.” We also observe that in 86.7% of the tasks in which DPLOG

is used, participants successfully identified the cause of the issue, which is significantly higher than

that of the tasks in which DPLOG is not used (70%). In other words, providing the intermediate

information does help participants identify an issue and its root cause.

Providing hints on anomalous data processing results helps identify issues more quickly. As

discussed in Section 4, DPLOG analyzes the execution of data processing methods and the value

of their optional input parameters. If there is an anomalous result, DPLOG would provide a hint

message. In our user study, we observe that such hints are useful for participants to notice the

existence of an issue in the program. For example, one participant mentioned, “the most promising

advantage of the tool is it can alarm users for anomalous behavior.” Another participant mentioned,

“Through these hints, it is easier for developers to quickly locate the abnormal behavior of the

method or abnormal data.”

6.2 Limitations and Future Work.

Our study provides an initial step towards understanding the data processing execution. Even

though our findings show that the overhead of DPLOG is small and it can assist developers with

issue diagnosis, there are still some limitations and future research opportunities in assisting the

development of big data applications.

Data Visualization and Information Presentation. One common suggestion from the partici-

pants is related to improving the UI design. Currently, DPLOG records the intermediate information

and hint messages in the form of text (e.g., similar to traditional logs recorded by Log4J) without

29

providing a rich user interface. A participant said, “It would be perfect if the tool can finally come

as an interactive form.” Another participant said “it is hard to find the warning message and useful

tips. I would suggest making the warning and tips easier to identify.” In addition to UI design, we

also observed that visualizing the results of the data processing methods may also help developers

quickly identify issues and understand the data state. For example, we find that in certain cases,

some participants wanted to visualize the data using histograms to understand how the data distri-

bution changes. Therefore, future studies may also consider leveraging data visualization to assist

developers with monitoring big data applications.

Customizable Information Recording. Currently, DPLOG records all the data processing in-

formation that is described in Table 4.1. However, sometimes developers may already have an idea

about possible issues that may occur, and they only want to record certain information. For ex-

ample, in our user study, a participant mentioned that “There is too much log information and it is

not easy to locate the log I need immediately.” The participant is a professional developer who has

years of experience in developing Spark applications. Even though the participant found DPLOG

to be useful (gave DPLOG 5/5 in terms of usefulness), he suggested a customizable configuration

for recording only the needed data processing information. Due to the vast amount of data and the

complexity of big data applications, future studies may also investigate approaches, such as provid-

ing a domain-specific language, that could allow developers to record more customized and focused

information to further assist monitoring and debugging.

More Advanced Debugging Assistance. We uncover common challenges that developers en-

counter by analyzing questions on Stack Overflow. We then design an approach, DPLOG, and

evaluate it by conducting a user study. Although our user study shows promising results, there is

still other information that can be added to assist developers. For example, future studies may inves-

tigate more advanced techniques for providing hint messages for anomalous data processing results

using machine learning or artificial intelligence. Moreover, to reduce the overhead of DPLOG, we

apply random sampling to select a statistically significant subset of data. Although sampling is

an effective technique to reduce the data size while providing good precision on the original, fu-

ture studies may investigate different sampling techniques and how they affect the effectiveness of

debugging big data applications.

30

Chapter 7

Threats to Validity

7.1 External validity.

Threats to external validity relate to the generalizability of our findings. In Section 3, we studied

the Spark-related questions on Stack Overflow. The number of questions is large and it is impos-

sible to study all of the questions qualitatively. To minimize the bias, we randomly sampled 1,000

statistically representative questions, giving a confidence level of 95% and a confidence interval

of 3%. We implement DPLOG to support only Spark’s Python version. However, our proposed

methodology could be applied to the other languages and frameworks. However, in this study, we

cover all the basic data processing APIs for PySpark’s DataFrame (Spark, 2020a) and our user study

demonstrates that DPLOG is effective in helping developers identify issues and their root causes.

Future research is encouraged to apply our approach to other data processing APIs.

7.2 Internal Validity.

Threats to internal validity are related to experimenter errors and bias. We conducted a qualita-

tive study in Section 3 which was performed by humans and bias may be introduced. To reduce the

bias, each question is examined by two of the authors individually and discrepancies are discussed

until a consensus is reached. We measured the level of the inter-rate agreement in our qualitative

study, and the agreement value is high (i.e., 0.825).

31

Chapter 8

Conclusion

Big data technologies have changed how companies and organizations make decisions. Spark,

as one of the most popular big data processing frameworks on the market, has been widely used in

developing big data applications. In this thesis, we analyze the challenges that Spark developers en-

counter and propose DPLOG to assist developers in monitoring their big data applications. In short,

this thesis makes the following contributions: 1) We conduct an empirical thesis of Spark-related

questions on Stack Overflow and identify the major challenges that Spark developers encounter:

unknown intermediate data processing result and no support of warnings on improper API usages.

2) We propose an approach, DPLOG, to help developers monitor and diagnose data processing in

Spark and implement it as a Python package. 3) DPLOG has a small runtime overhead. Through

a user thesis, we find that DPLOG effectively reduces the average debugging time by 63%, and the

participants highly praised the usefulness of DPLOG. 4) We discuss the implication of our findings

and future research direction that can further help developers develop and debug Spark applications.

32

References

Agarwal, K. (2019). New us survey from unravel and sapio research shows big data deployments

moving to cloud and spark adoption rising rapidly. https://www.unraveldata.com/

big-data-survey-2019/. (Last accessed Aug. 18 2020)

Bagherzadeh, M., & Khatchadourian, R. (2019). Going big: A large-scale study on what big data

developers ask. In Proceedings of the 2019 27th acm joint meeting on european software

engineering conference and symposium on the foundations of software engineering (pp. 432–

442). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

3338906.3338939 doi: 10.1145/3338906.3338939

Banken, H., Meijer, E., & Gousios, G. (2018). Debugging data flows in reactive programs. In

Proceedings of the 40th international conference on software engineering (p. 752–763).

Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the dichotomy of debugging

behavior among programmers. In (p. 572–583).

Boslaugh, S., & Watters, P. (2008). Statistics in a nutshell: A desktop quick reference. O’Reilly

Media.

Brandtzæg, P. B. (2012). Big data, for better or worse: 90% of world’s data generated

over last two years. https://www.sciencedaily.com/releases/2013/05/

130522085217.htm. (Last accessed Aug. 2020)

Chen, A. R., Chen, T. P., & Wang, S. (2021). Demystifying the challenges and benefits of analyzing

user-reported logs in bug reports. Empir. Softw. Eng., 26(1), 8.

Chen, B., Song, J., Xu, P., Hu, X., & Jiang, Z. M. J. (2018). An automated approach to esti-

mating code coverage measures via execution logs. In Proceedings of the 33rd ACM/IEEE

33

https://www.unraveldata.com/big-data-survey-2019/
https://www.unraveldata.com/big-data-survey-2019/
http://doi.acm.org/10.1145/3338906.3338939
http://doi.acm.org/10.1145/3338906.3338939
https://www.sciencedaily.com/releases/2013/05/130522085217.htm
https://www.sciencedaily.com/releases/2013/05/130522085217.htm

international conference on automated software engineering (pp. 305–316).

Chen, J., Shang, W., Hassan, A. E., Wang, Y., & Lin, J. (2019). An experience report of generating

load tests using log-recovered workloads at varying granularities of user behaviour. In 34th

IEEE/ACM international conference on automated software engineering, ASE 2019 (pp. 669–

681).

Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Detect-

ing performance anti-patterns for applications developed using object-relational mapping. In

Proceedings of the 36th international conference on software engineering (p. 1001–1012).

Creswell, J., & Creswell, J. (2017). Research design: Qualitative, quantitative, and mixed methods

approaches. SAGE Publications.

Dave, A., Zaharia, M., Shenker, S., & Stoica, I. (2013). Arthur : Rich post-facto debugging for

production analytics applications..

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters. In

Osdi’04: Sixth symposium on operating system design and implementation (pp. 137–150).

Drosos, I., Barik, T., Guo, P. J., DeLine, R., & Gulwani, S. (2020). Wrex: A unified programming-

by-example interaction for synthesizing readable code for data scientists. In Proceedings

of the 2020 chi conference on human factors in computing systems (p. 1–12). New York,

NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/3313831.3376442 doi: 10.1145/3313831.3376442

Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012, May). Interactions with big data

analytics. ACM Interactions.

Fu, Q., Zhu, J., Hu, W., Lou, J.-G., Ding, R., Lin, Q., . . . Xie, T. (2014). Where do developers log?

an empirical study on logging practices in industry. In Proceedings of the 36th international

conference on software engineering (pp. 24–33).

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and

biggest growth in the far east..

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java performance evalua-

tion. In Proceedings of the 22nd annual acm sigplan conference on object-oriented program-

ming systems, languages and applications (p. 57–76).

34

https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442

Gulzar, M. A., Interlandi, M., Han, X., Li, M., Condie, T., & Kim, M. (2017). Automated debug-

ging in data-intensive scalable computing. In Proceedings of the 2017 symposium on cloud

computing (pp. 520–534).

Gulzar, M. A., Interlandi, M., Yoo, S., Tetali, S. D., Condie, T., Millstein, T., & Kim, M. (2016).

Bigdebug: Debugging primitives for interactive big data processing in spark. In Proceedings

of the 38th international conference on software engineering (p. 784-795).

Gulzar, M. A., Mardani, S., Musuvathi, M., & Kim, M. (2019a). White-box testing of big data

analytics with complex user-defined functions. In Proceedings of the 2019 27th acm joint

meeting on european software engineering conference and symposium on the foundations

of software engineering (p. 290–301). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3338906.3338953 doi:

10.1145/3338906.3338953

Gulzar, M. A., Mardani, S., Musuvathi, M., & Kim, M. (2019b). White-box testing of big data

analytics with complex user-defined functions. In Proceedings of the 2019 27th acm joint

meeting on european software engineering conference and symposium on the foundations of

software engineering (pp. 290–301).

Gulzar, M. A., Wang, S., & Kim, M. (2018). Bigsift: Automated debugging of big data an-

alytics in data-intensive scalable computing. In Proceedings of the 2018 26th acm joint

meeting on european software engineering conference and symposium on the foundations

of software engineering (p. 863–866). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3236024.3264586 doi:

10.1145/3236024.3264586

Hadoop, A. (2020). Hadoop. https://hadoop.apache.org/. (Last accessed Aug. 18

2020)

Hanson, W. E., Creswell, J., Clark, V. P., Petska, K., & Creswell, J. D. (2005). Mixed methods

research designs in counseling psychology..

Islam, M. J., Pan, R., Nguyen, G., & Rajan, H. (2020). Repairing deep neural networks: Fix

patterns and challenges. In Proceedings of the acm/ieee 42nd international conference on

software engineering (p. 1135–1146). New York, NY, USA: Association for Computing

35

https://doi.org/10.1145/3338906.3338953
https://doi.org/10.1145/3236024.3264586
https://hadoop.apache.org/

Machinery. Retrieved from https://doi.org/10.1145/3377811.3380378 doi:

10.1145/3377811.3380378

Kalibera, T., & Jones, R. (2013). Rigorous benchmarking in reasonable time. In Proceedings of the

2013 international symposium on memory management (p. 63–74).

Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2018). Data scientists in software teams: State

of the art and challenges. IEEE Transactions on Software Engineering, 44(11), 1024-1038.

Li, Z., Chen, T.-H. P., Yang, J., & Shang, W. (2019). DLfinder: Characterizing and detecting du-

plicate logging code smells. In Proceedings of the 41st international conference on software

engineering (p. 152–163).

Li, Z., Li, H., Chen, T.-H. P., & Shang, W. (2021). Deeplv: Suggesting log levels using ordinal

based neural networks. In Proceedings of the 43rd international conference on software

engineering.

Liu, Y., Xu, C., & Cheung, S.-C. (2014). Characterizing and detecting performance bugs for

smartphone applications. In Proceedings of the 36th international conference on software

engineering (p. 1013–1024).

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica: Biochemia

medica, 22(3), 276–282.

Meng, N., Nagy, S., Yao, D., Zhuang, W., & Arango-Argoty, G. (2018, May). Secure coding prac-

tices in java: Challenges and vulnerabilities. In 2018 ieee/acm 40th international conference

on software engineering (icse) (p. 372-383). doi: 10.1145/3180155.3180201

Meng, N., Nagy, S., Yao, D. D., Zhuang, W., & Argoty, G. A. (2018). Secure coding practices in

java: Challenges and vulnerabilities. In Proceedings of the 40th international conference on

software engineering (p. 372–383).

Performance test programs. (2020). https://github.com/anonymous122434/

TestPrograms. (Last accessed Aug. 27 2020)

Ponzanelli, L., Mocci, A., Bacchelli, A., & Lanza, M. (2014). Understanding and classifying

the quality of technical forum questions. In 2014 14th international conference on quality

software (pp. 343–352).

Rosen, C., & Shihab, E. (2015, 01). What are mobile developers asking about? a large scale study

36

https://doi.org/10.1145/3377811.3380378
https://github.com/anonymous122434/TestPrograms
https://github.com/anonymous122434/TestPrograms

using stack overflow. Empirical Software Engineering, 1-32.

Spark. (2020a). PySpark 3.0.0 documentation. https://spark.apache.org/docs/

latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame. (Last

accessed Aug. 18 2020)

Spark. (2020b). PySpark dataframe basic usage. https://spark.apache.org/docs/

latest/sql-getting-started.html. (Last accessed Aug. 18 2020)

Spark, A. (2020). Spark. https://spark.apache.org. (Last accessed Aug. 18 2020)

StackOverflow. (2020a). The difference between dropduplicates and distinct. (Last accessed Aug.

18 2020)

StackOverflow. (2020b). Spark fillna not replacing the null value. https://stackoverflow

.com/questions/40395932/spark-fillna-not-replacing-the-null

-value. (Last accessed Aug. 18 2020)

StackOverflow. (2020c). Unit testing spark dataframes transformation chaining.

https://stackoverflow.com/questions/54403226/unit-testing

-spark-dataframes-transformation-chaining. (Last accessed Aug. 18

2020)

Stackoverflow manual study result. (2020). https://docs.google.com/spreadsheets/

d/1VLfQ3EpwNvjqT-uIHTmoQZYOtr0iGmxdN1ULdAoYj2o/edit?usp=

sharing. (Last accessed Aug. 27 2020)

User study cases. (2020). https://docs.google.com/document/d/

1vfAWXjCf0lzKhQ5N54FbTRfsx8FLXVHyCgycAFbfrd8/edit?usp=sharing.

(Last accessed Aug. 27 2020)

Wang, S., Chen, T.-H. P., & Hassan, A. E. (2018). How do users revise answers on technical q&a

websites? a case study on stack overflow. IEEE Transactions on Software Engineering.

Xu, W., Huang, L., Fox, A., Patterson, D., & Jordan, M. I. (2009). Detecting large-scale system

problems by mining console logs. In Proceedings of the acm sigops 22nd symposium on

operating systems principles (pp. 117–132).

Yang, X.-L., Lo, D., Xia, X., Wan, Z., & Sun, J.-L. (2016, 09). What security questions do

developers ask? a large-scale study of stack overflow posts. Journal of Computer Science

37

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/sql-getting-started.html
https://spark.apache.org/docs/latest/sql-getting-started.html
https://spark.apache.org
https://stackoverflow.com/questions/40395932/spark-fillna-not-replacing-the-null-value
https://stackoverflow.com/questions/40395932/spark-fillna-not-replacing-the-null-value
https://stackoverflow.com/questions/40395932/spark-fillna-not-replacing-the-null-value
https://stackoverflow.com/questions/54403226/unit-testing-spark-dataframes-transformation-chaining
https://stackoverflow.com/questions/54403226/unit-testing-spark-dataframes-transformation-chaining
https://docs.google.com/spreadsheets/d/1VLfQ3EpwNvjqT-uIHTmoQZYOtr0iGmxdN1ULdAoYj2o/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1VLfQ3EpwNvjqT-uIHTmoQZYOtr0iGmxdN1ULdAoYj2o/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1VLfQ3EpwNvjqT-uIHTmoQZYOtr0iGmxdN1ULdAoYj2o/edit?usp=sharing
https://docs.google.com/document/d/1vfAWXjCf0lzKhQ5N54FbTRfsx8FLXVHyCgycAFbfrd8/edit?usp=sharing
https://docs.google.com/document/d/1vfAWXjCf0lzKhQ5N54FbTRfsx8FLXVHyCgycAFbfrd8/edit?usp=sharing

and Technology, 31, 910-924. doi: 10.1007/s11390-016-1672-0

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., & Pasupathy, S. (2010). Sherlog: Error diagnosis

by connecting clues from run-time logs. In Proceedings of the 15th international conference

on architectural support for programming languages and operating systems (pp. 143–154).

Yuan, D., Zheng, J., Park, S., Zhou, Y., & Savage, S. (2011). Improving software diagnosability via

log enhancement. In Proceedings of the sixteenth international conference on architectural

support for programming languages and operating systems (pp. 3–14).

Zhang, Q., Wang, J., Gulzar, M. A., Padhye, R., & Kim, M. (2020). Bigfuzz: Efficient fuzz

testing for data analytics using framework abstraction. In 2020 35th ieee/acm international

conference on automated software engineering (ase) (p. 722-733).

Zhang, T., Gao, C., Ma, L., Lyu, M., & Kim, M. (2019). An empirical study of common challenges

in developing deep learning applications. In Proceedings of the 30th international symposium

on software reliability engineering (p. 104-115).

Zhou, H., Lou, J.-G., Zhang, H., Lin, H., Lin, H., & Qin, T. (2015). An empirical study on quality

issues of production big data platform. In Proceedings of the 37th international conference

on software engineering - volume 2 (p. 17–26).

38

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Background of Apache Spark.
	Existing Logging and Monitoring Supports for Spark.
	Understanding the Challenges of Developing Big Data Applications.
	Debugging Big Data Applications.
	Research on StackOverFlow.

	Challenges in Developing Spark Applications
	The Design of DPLOG
	REQ1: Step-Wise Application Execution Information
	Recording intermediate information:

	REQ2: Providing Hints on the Executed Data Processing Methods
	Hints on anomalous data processing results:
	Hints on method parameters:

	REQ3: Minimizing Performance Overhead
	Implementation of DPLOG

	Evaluation of DPLOG
	RQ1: What is the performance overhead of DPLOG?
	RQ2: How effective is DPLOG in assisting developers with issue diagnosis?

	Discussion
	Implications of Our Study.
	Limitations and Future Work.

	Threats to Validity
	External validity.
	Internal Validity.

	Conclusion
	Bibliography

