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ABSTRACT

An Exposition of Discrete Morse Theory and Applications

Lingfeng Lu

The classical Morse theory is a powerful tool to study topological properties of a smooth

manifold by examining critical points of some differentiable functions on that manifold.

Robin Forman developed a discrete variant of Morse theory by adapting it on abstract

simplicial complexes that resulted in a new theory with wide applications in other fields of

mathematics, computer science, data science, and others. In this thesis, we present Forman’s

construction of discrete Morse theory, as well as its main theorems such as the Collapse

theorem, discrete Morse inequalities, the theorem for cancelling critical simplices, and some

additional topics. We also discuss some applications of discrete Morse theory with a major

focus on the concept of persistence in topological data analysis. While many results exist in

the literature, we wrote our own proofs, added more details and explanations, and adapted

it to our own settings with a strong topological flavor whenever possible.

iii



Acknowledgments

First of all, I would like to express my most sincere gratitude towards my supervisor Dr.

Alina Stancu. Ever since the last year of my undergraduate study, Alina has provided me

nothing but educational guidance, valuable advice and heartening encouragement. She has

always believed that I am capable of being academically excellent, and that really means a

lot to me, who sometimes thinks very little of himself.

I want to thank my undergraduate advisor Dr. Cody Hyndman. Many may not agree

with me, but I think Cody is a very nice and caring person. I learned much from the

summer project with him being the supervisor, and that experience sparked my interest in

doing research. Although I decided not to study mathematical finance further, he remains

one of my favorite professors.

Of course, I want to thank the Department of Mathematics and Statistics at Concordia

for this wonderful experience, especially every professor I have had. Your brilliant minds

inspired me to never stop asking and learning.

I want to thank my high school math teacher Mr. Cory Hand, who made even calculus

fun to study. He was the reason why I became interested in teaching, hoping that one day I

may guide others in the same way he guided me. He also “tricked” me into studying math

in college by telling me that “math is the best major, you don’t need to write essays, you

just do math”.

I want to thank my parents, Chunlei and Xinyu, for everything they have ever given me,

especially their support for my decision of pursuing graduate study in pure mathematics. I

iv



can never repay them enough, so the best I can do is to make them proud.

I want to thank my beloved wife Jiarui, who has been the brightest light for me since we

met four years ago. When there is too much to say, it becomes hard to say anything at all.

I also want to thank my closest friends, Lingxin Zhao, Ruize Xu, Jialin Zhang, William

Zhang, Zean Tang, for their continuing support and companionship.

There are still too many people to acknowledge. Please know that every one of you have

left your mark on my path up until this point, and I thank you.

v



Contents

List of Figures ix

1 Introduction 1

2 Preliminaries 3

2.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Order and Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Cell Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Euler Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Simplicial Complexes 14

3.1 Basics of Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Simple Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Simplicial Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



4 Discrete Morse Theory 24

4.1 Classical Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Discrete Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Discrete Morse Function . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Forman Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Gradient Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.4 The Hasse Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.5 Level Subcomplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Main Theorems of Discrete Morse Theory . . . . . . . . . . . . . . . . . . . 40

4.3.1 The Collapse Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Discrete Morse Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Cancelling Critical Simplices . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Homotopy between Discrete Morse Functions . . . . . . . . . . . . . 50

5 More on Discrete Morse Theory 55

5.1 Morse Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Gradient Vector Revised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Morse Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Persistent Homology 75

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Connection with Discrete Morse Theory . . . . . . . . . . . . . . . . . . . . 81

7 Related Topics 85

7.1 Evasiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Chapter 1

Introduction

The classical Morse theory, named after Marston Morse ([8]), was developed to recover and

analyze the topology of a manifold by studying critical points of differentiable functions

on that manifold. Many fundamental results on smooth manifolds were later proven and

summarized by John Milnor ([28]). Our main focus of this thesis, the discrete Morse theory,

is a combinatorial equivalent of the classical Morse theory developed by Robin Forman

([15]) by adapting some core concepts of the classical Morse theory and applying them on

complexes. It has wide applications throughout different areas such as geometry, computer

science ([18]) and data analysis ([30]). When my supervisor Dr. Stancu first introduced me

to this topic, it immediately caught my attention. I have very strong interest in geometry

and topology, and combinatorics was my favorite field in discrete mathematics. I thought

this could be a great opportunity for me to explore a relatively new theory while pushing

forward my study to the next level.

This thesis serves as an exposition of the discrete Morse theory. We follow Forman’s

construction ([15]) and Scoville’s recently-published book ([34]) on the theory and present a

variety of results. In Chapter 2, we review mathematical concepts in different fields which

are needed for later chapters. In Chapter 3, we discuss the main object on which the theory

is built on, abstract simplicial complexes, following by a special type of homotopy and then
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basics of simplical homology. Chapter 4 and 5 are the main bodies of this thesis. In Chapter

4, we begin by discussing some fundamental results in classical Morse theory, of which we also

discuss their discrete counterparts. Then we present Forman’s construction of the discrete

Morse theory with topics such as discrete Morse functions and (discrete) gradient vector

fields. The chapter ends with a section dedicated to some main theorems in the discrete

Morse theory as well as their proofs. Chapter 5 discusses some additional constructions and

results that revolve around the discrete Morse theory. In Chapter 6, we take a detour and

present a relatively new concept called persistence, and draw connections between it and the

discrete Morse theory. We finish the thesis with Chapter 7, mentioning a few interesting

topics that are closely related to what we have discussed earlier.
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Chapter 2

Preliminaries

In this chapter, we review some mathematical concepts that will be appearing throughout

the thesis. We will not give definition to some terms that only come up occasionally, but

readers should be very familiar with most of them.

2.1 Algebra

2.1.1 Vector Spaces

A vector space over a field F is a set V together with two operations, addition and mul-

tiplication by scalars in F , that satisfies certain axioms. We assume familiarity with basic

definitions and notations.

Definition 2.1. Let V,W be vector spaces over some field F . A map f : V → W is said to

be a linear transformation or vector space homomorphism if for any u, v ∈ V , and

any c ∈ F , we have

f(u+ v) = f(u) + f(v)

f(cu) = cf(u).

3



If f is bijection, then it is called a (linear) isomorphism.

Definition 2.2. If f is a linear transformation, the kernel of f is defined as

Ker (f) = {v ∈ V : f(v) = 0},

and the image of f is defined as

Im (f) = {w ∈ W : w = f(v), v ∈ V }.

The dimension of Ker (f) is called the nullity of f , which is denoted null (f), and the

dimension of Im (f) is called the rank of f , which is denoted rank (f).

The following theorem is a fundamental and very useful result concerning the rank and

the nullity of a linear transformation.

Theorem 2.1.1 (Rank-nulity theorem). Let V,W be vector spaces over a field F , and let

f : V → W be a linear transformation. Then

rank (f) + null (f) = dim (V ) .

2.1.2 Groups

A group is a non-empty set of elements together with an associative binary operation under

which the set is closed, and such that there exists an identity element and every element has

an inverse. A semi-group will have the same properties except the existence of an inverse for

each element. Again, we assume familiarity with basic definitions and notations, for which

readers may refer to [19].

Definition 2.3. A group G is said to be abelian if ab = ba for all a, b ∈ G.

Remark. A vector space is an abelian group with respect to the first operation, the addition,

a semi-group with respect to the second operation, the multiplication, with certain natural
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distributive properties between the two operations as for example satisfied by R with the

usual operations.

Definition 2.4. A subset H of a group G is said to be a subgroup of G if it is a group

itself under the same operation of G.

The next well-known theorem suggests that subgroups can be formed by intersecting

existing subgroups. We will omit the proof as it’s very straightforward.

Theorem 2.1.2. Let G be a group. Then the intersection of any two subgroups of G is again

a subgroup of G.

Definition 2.5. Let G, Ḡ be groups. A map f : G → Ḡ is a (group) homomorphism if

for all a, b ∈ G,

f(ab) = f(a)f(b),

that is f preserves the group operation denoted here multiplicatively. A homomorphism

from a group to itself is called an automorphism. A bijective homomorphism is called a

(group) isomorphism.

The following is a fundamental property of homomorphisms:

Lemma 2.1.3. A homomorphism f : G→ Ḡ maps the identity of G to the identity of Ḡ.

Remark. The definitions for kernel and rank of a group homomorphism are almost identi-

cal to those of a linear transformation, so we will not repeat them here. Throughout the

paper, we will only use the term homomorphism in the context of groups, but we will use

homomorphism and linear transformation interchangeably in the context of vector spaces.

We often come across problems in which one needs to show that a certain homomorphism

is an isomorphism, that is to show that it is injective and surjective. A common method

to show that a homomorphism is injective is through studying its kernel. This method, of

course, can also be used for the same purpose for linear transformations.

5



Theorem 2.1.4. A homomorphism f : G→ Ḡ is injective if and only if its kernel is trivial,

that is Ker (f) = {e}, where e is the identity element of G.

Proof. The forward direction follows from the fact that a homomorphism maps the identity

to the identity. For the backward direction, let a, b ∈ Ḡ and suppose that f(a) = f(b).

Then, by Lemma 2.1.3,

ē = f(a)f(a)−1 = f(a)f(a−1) = f(a)f(b)−1 = f(a)f(b−1) = f(ab−1).

Thus ab−1 = e, i.e. a = b.

Definition 2.6. Let G be a group. A subgroup H of G is called a normal subgroup if

aH = Ha for all a ∈ G, where aH = {ah : h ∈ H} and Ha = {ha : h ∈ H}.

Corollary 2.1.5. Every subgroup of an abelian group is normal.

Proof. This immediately follows from the definition of an abelian group.

Definition 2.7. Let G be a group and H be a normal subgroup of G. The set G/H =

{aH : a ∈ G} is a group under the operation (aH)(bH) = (ab)H and is called the quotient

group of G by H.

One way to interpret G/H is that it is the group formed by (classes of) elements of G

with H becoming the identity: for any a ∈ G, (aH)H = (aH)(eH) = (ae)H = aH and

H(aH) = (eH)(aH) = (ea)H = aH. Two elements of G determine, or are in, the same class

if aH = bH as sets.

2.2 Topology

We will primarily use [21] and [31] as references to establish a couple of important topological

relations. Some familiarity with topological spaces is assumed.

6



Figure 2.1: Identifying opposite sides of a square to obtain a torus

2.2.1 Homeomorphism

Definition 2.8. Let X and Y be topological spaces. A homeomorphism between X and

Y is a continuous function f : X → Y whose inverse is also continuous. If such function

exists, we say that X is homeomorphic to Y .

In other words, homeomorphism is the topological variant of isomorphism, preserving all

the topological properties between spaces.

Definition 2.9. Let X be a topological space and let ∼ be an equivalence relation on X.

The quotient set X∗ = X/∼ is the collection of equivalence class [x] of x ∈ X. The

quotient space under ∼ is the quotient set X∗ equipped with the quotient topology,

which is a collection of subsets of X∗ whose pre-images are open under the surjective map

x→ [x].

Example 2.2.1. By identifying opposite sides of a square, we obtain a quotient space that

is homeomorphic to the torus. A visualization is given in Figure 2.1.

7



2.2.2 Homotopy

Another topological equivalence relation is homotopy equivalence. It is broader (thus weaker)

than homeomorphism, but still carries many important topological invariants.

Definition 2.10. Let f and f ′ be continuous maps from X to Y . We say that f is ho-

motopic to f ′, denoted f ' f ′, if there is a continuous map F : X × [0, 1] → Y such

that

F [x, 0] = f (x) and F [x, 1] = f ′ (x)

for each x ∈ X. The map F is called the homotopy between f and f ′.

Definition 2.11. A homotopy equivalence from X to Y is a continuous map f : X → Y

such that there is a continuous map g : Y → X and

g ◦ f ' 1X ,

f ◦ g ' 1Y .

If such f exists, we say that X and Y have the same homotopy type, also denoted as

X ' Y .

One of the methods for detecting homotopy equivalence is through a special case called

deformation retraction. One can think of deformation retraction as a shrinking or expanding

process during a unit time interval. Formally, we have the definition of deformation retraction

as follows.

Definition 2.12. A deformation retraction of a spaceX onto a subspaceA is a parametrized

family of maps ft : X → X, t ∈ [0, 1], such that f0 = 1X , f1 (X) = A and ft|A = 1A for all

t. We also say A is a deformation retract of X.

Theorem 2.2.2. If A is a deformation retract of X, then A has the same homotopy type as

X.

8



Figure 2.2: Both X and Y deformations retract to a point

Example 2.2.3. Consider placing letters X and Y on a plane, so that they can be viewed as

subspaces of R2. Then both X and Y can deformation retract to their center points as shown

in Figure 2.2, so they both have the homotopy type of a point. Since homotopy equivalence

is an equivalence relation, we can conclude that X and Y have the same homotopy type.

2.3 Order and Relation

In a later chapter, we will present a geometric view of relations between simplices of an

abstract simplicial complex (defined in the next chapter) that is based on a partial order

relation. For reference, we give here some relevant definitions. Some basic definitions such

as relation and equivalence relation are assumed.

Definition 2.13. Let R be a relation on a set A. We say R is reflexive if a ∼ a for all a ∈ A;

R is transitive if a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ A; R is antisymmetric if,

for all a, b ∈ A, a ∼ b and b ∼ a implies a = b.

Definition 2.14. A partially ordered set (or poset) is a set P associated with a relation

that is reflexive, antisymmetric and transitive.

Definition 2.15 (Covering relation). Let x, y be elements of a partially ordered set X. We

say that y covers x if x < y and there is no element z ∈ X such that x < z < y.

9



2.4 Differential Geometry

Before presenting some aspects of discrete Morse theory, we will discuss briefly the classical

smooth Morse theory. The latter is built to study the topology of a smooth manifold through

certain differentiable functions on the manifold, more in Section 4.1. Here, we will give some

relevant definitions even if they are not meant to be completely rigorous as some familiarity

with differentiable geometry is already assumed.

Definition 2.16. An n-dimensional manifold is a topological space M such that every

point in M has a neighborhood that is homeomorphic to the n-dimensional Euclidean space.

The manifold is said to be a differentiable manifold if M is additionally endowed with a

global differentiable structure.

Differentiable can mean different things to different authors. For simplicity, we assume

smoothness so each map from a neighborhood as above to the n-dimensional Euclidean space

is differentiable infinitely many times.

Example 2.4.1. A 2-dimensional manifold is often referred as a surface. A torus and a

Klein bottle are both examples of 2-dimensional manifolds, though quite different in that

one is orientable and the other is not.

Like other structures, manifolds have its own structural-preserving mapping. However,

the definition of such a map requires some basic knowledge of differentiable functions on

manifolds. We refer readers who are unfamiliar with these topics to [26], while stating the

definition here.

Definition 2.17. Let M,N be manifolds. A differentiable function f : M → N is a

diffeomorphism if it is a bijection and its inverse function is also differentiable. If such

function exists, we say that M is diffeomorphic to N .

We can say, again, that M is an n-dimensional differentiable manifold if every point in

M has a neighborhood that is diffeomorphic to an open set of the n-dimensional Euclidean

space.

10



2.5 Cell Complexes

Although commonly referred as CW-complexes, we do not discuss either closure-compact

(C) or “weak” topology (W) in this paper. We use the term cell complexes to emphasise the

role of cell in the construction.

Definition 2.18. A cell complex is a topological space built recursively from cells of

various dimension, which are homeomorphic to closed balls of the same dimension, by gluing

them together along their boundaries with some specific restrictions:

• A 0-complex X0 is just a collection of 0-cells (vertices);

• An n-complex Xn is obtained from an (n− 1)-complex Xn−1 by attaching n-cells Dn
i

to it following some attaching maps fni : ∂Dn
i → Xn−1, which are continuous.

This means that Xn is the quotient space of the disjoint union Xn−1 ti Dn
i under the

equivalence relation x ∼ fni (x) for x ∈ ∂Dn
i . This can be written as

{
Xn−1

⊔
i

Dn
i

}
/{x∼fni (x)}.

Example 2.5.1. The n-sphere Sn is a cell complex consists of a single 0-cell and a single

n-cell. For example, S2 can be obtained through the following steps:

(i) Let X0 = x0, a single 0-cell;

(ii) Let X1 = X0, that is with no 1-cell added;

(iii) Let X2 =
{
X1
⊔
iD

2
}
/{x∼f(x)}, where f(x) = x0 for all x ∈ ∂D2.

2.5.1 Euler Characteristic

Here we mention one topological invariant that is important to our work, the Euler charac-

teristic. It has some nice properties and can be used as a simple tool to identify a space.
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Figure 2.3: A 2-sphere as a cell complex

Definition 2.19. Let C be a cell complex. The Euler characteristic of C, denoted χ (C),

is defined by

χ (C) =
n∑
i=0

(−1)i ki,

where ki is the number of i-dimensional cells in C.

In the next chapter we will discuss homology, which is a homotpy invariant (Theorem

3.3.6). In a general setting, the Euler characteristic can be written in terms of ranks of

homology groups. We refer interested readers to [21] for these proofs. As such, the next

proposition follows nicely.

Proposition 2.5.2. Let X and Y be cell complexes. If X ' Y , then χ (X) = χ (Y ) .

2.5.2 Graphs

We often refer to a 1-complex as a graph, which consists of vertices (0-cells) and edges (1-

cells) that each connects a pair of vertices. Vertices of a graph can represent objects of some

kind, and an edge connecting two vertices represents that these objects are in some relation.

We will be discussing one particular directed graph, so here we give some relevant definitions

and present a well-known result of it that will come in handy later.

Definition 2.20. A directed graph or digraph is a graph whose edges are associated

with some directions. For vertices vi and vj of a directed graph, we write vi → vj if there is

12



an edge with a direction from vi to vj, that is an edge leaving vi and entering vj.

Definition 2.21. A path on a digraph is a sequence of vertices that follow directions of

those edges connecting them. A cycle is a path that begins and ends on the same vertex.

A directed graph is said to be acyclic if it contains no cycle.

Proposition 2.5.3. Every acyclic digraph has a vertex with no edge entering it.

Proof. Suppose there is no such vertex. Pick a vertex v, travel in the opposite direction of

the entering edge, and visit the next vertex. Since every vertex has an entering edge, we can

keep travelling in this way and always move to a vertex we have yet to visit. After travelling

through all vertices, since the last vertex has an entering edge, the next step will necessarily

take us to a vertex we have already visited, thus creating a cycle.

13



Chapter 3

Simplicial Complexes

In this chapter, we will discuss some fundamentals of the object of interest in the discrete

Morse theory.

3.1 Basics of Simplicial Complexes

Our building blocks here are objects called simplices, singular simplex which is essentially a

generalized triangle. A common definition for an n-dimensional simplex or n-simplex ∆(n)

is the following: it is a subset of Rn+1 such that

∆(n) =

{ n+1∑
i=1

tiei : 0 ≤ ti ≤ 1 and
∑

ti = 1

}
,

i.e. it is the convex hull of (linearly independent) n + 1 points that become its vertices.

Here ei are the unit vectors in the positive direction of the axes of coordinates. A simplicial

complex is a cell complex such that each closed n-cell is a copy of an n-simplex and the

non-empty intersection of two simplices is also a simplex.

However, under these definitions, we can only work on some rather restricted complexes.

For example, we cannot intersect edges without counting the intersection as a vertex. Thus,

we want to loose the restriction a bit and emphasize on the combinatorial aspect of the
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complex. Formally, we have:

Definition 3.1. Let [vn] = {v0, v1, . . . , vn} be a collection of n + 1 vertices. An abstract

simplicial complex K on [vn] is a collection of subsets of [vn], excluding ∅, such that

(a) if σ ∈ K and τ ⊆ σ, then τ ∈ K;

(b) {vi} ∈ K for every vi ∈ [vn].

The set [vn] is called the vertex set of K. A subset of the vertex set with cardinality of

i + 1 is called an i-dimensional simplex or i-simplex. A c-vector of K is the vector

~cK =
(
c1, c2, . . . , cdim(K)

)
, where ci is the number of i-simplices of K for 0 ≤ i ≤ dim (K).

Remark. From this point, whenever the term simplicial complex is used, it refers to the

definition above.

It is an easy task to find the Euler Characteristic of a simplicial complex under this

setting. For example, if K has a c-vector of (2, 1, 1), then χ (K) = 2− 1 + 1 = 2.

Definition 3.2. Let K be a simplicial complex. A subcomplex L of K is a subset of K

that is also a simplicial complex. If σ ∈ K is a simplex, we write σ̄ for the subcomplex

generated by σ, that is σ̄ = {τ ∈ K : τ ∈ σ}. If σ, τ ∈ K and τ ⊆ σ, then we say τ

is a face of σ, and σ is a coface of τ . If a simplex is not properly contained in any other

simplex, then it is called a facet.

To simplify notation and minimize the number of brackets we use, we shall describe a

simplex by concatenating its vertices (0-simplices). For example, a standard 3-simplex, i.e.

a tetrahedron whose vertices are v0, v1, v2, v3, is denoted as v0v1v2v3.

It it apparent from these definitions that the “shape” of a simplicial complex is not rele-

vant; it is the relation among simplices that is interesting to us. For example, both of simpli-

cial complexes in Figure 3.1 are visualizations of {v0, v1, v2, v3, v4, v0v1, v0v2, v1v2, v1v3, v2v3,

v0v1v2}.
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Figure 3.1: Different realizations of the same simplicial complex

Since any simplex is contained in some facet, one can also use a list of facets to describe a

simplicial complex. The information of any simplex can be retrieved from the facet in which

the simplex is contained.

Example 3.1.1. Both simplicial complexes (which are actually the same simplicial complex

we mentioned above) in Figure 3.1 can be written as the collection of their facets: {v1v3, v2v3,

v0v1v2}.

Definition 3.3. Let K and L be disconnected simplicial complexes. The join of K and L,

denoted K ∗ L, is the simplicial complex defined by

K ∗ L := {σ ∪ τ : σ ∈ K, τ ∈ L}.

The simplicial cone over K, denoted CK, is the join of K and a single vertex.

3.2 Simple Homotopy

Previously, we presented the definition of homotopy under a general topological setting.

For simplicial complexes specifically, we use a particular kind of homotopy called simple

homotopy, originated from [35], to determine if two simplicial complexes are the “same”.

Interested readers can refer to [11] for a comprehensive coverage on the subject, as well as

some closely related theories. Intuitively, the action of simple homotoping can be viewed
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as a form of deformation retraction, in the sense that it involves some “squashing” and

“stretching”.

Definition 3.4. Let K be a simplicial complex. Suppose there are simplices of K, σ(p−1)

and τ p, such that σ is a face of τ with no other cofaces. Then K − {σ, τ} is a simplicial

complex called an elementary collapse of K. The action of collapsing is denoted by

K ↘ K −{σ, τ}. On the other hand, suppose σ(p−1) and τ p are simplices not in K, where σ

is a face of τ and all other faces of τ are in K. Then K ∪{σ, τ} is a simplicial complex called

an elementary expansion of K. The action of expanding is denoted by K ↗ K∪{σ, τ}.

For either of these situations, the pair of simplices {σ, τ} is called a free pair.

Definition 3.5. Let K and L be simplicial complexes. We say K and L have the same

simple homotopy type, denoted K ∼ L, if there is a sequence of elementary collapses and

expansions through which we can obtain L from K.

It is clear that simple homotopy is an equivalence relation: K has the same simple

homotopy type as itself; if K ∼ L, then we can replace every elementary collapse with

elementary expansion, and vise versa, to obtain K from L; if K ∼ L and L ∼ J , then by

“concatenating” these sequences of actions, we will be able to obtain J from K.

Proposition 3.2.1. Given two simplicial complexes K and L, if K ∼ L, then K ' L.

This should not be surprising, as an elementary collapse or expansion can also be seen

as a deformation retraction. This is more clear with the alternative definition of elementary

collapse and expansion given in [11]. This proposition, together with Proposition 2.5.2, also

makes the next one trivial:

Proposition 3.2.2. If K ∼ L, then χ(K) = χ(L).

Definition 3.6. A simplicial complex K is collapsible if there is a sequence of elementary

collapses such that

K = K0 ↘ K1 ↘ . . . Kn−1 ↘ Kn = {v}
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Figure 3.2: The Dunce Hat

for some vertex v ∈ K.

Proposition 3.2.3 ([34]). The simplicial cone over any simplicial complex is collapsible.

Note that, a simplicial complex being collapsible implies that it has the simple homotopy

type of a point (usually called contractible), but having the simple homotopy type of a point

does not necessarily mean it is necessarily collapsible. This is due to the fact that being

collapsible only allows elementary collapses, while being the same simple homotopy type

allows elementary expansion as well.

Example 3.2.4. The Dunce Hat D is a classic example of a space that is contractible but

not collapsible. One way to represent D is by identifying sides of a triangle in the way shown

in Figure 3.2, usually written as aaa−1.

The contractibility of the D can be shown with the Steifert-Van Kampen Theorem.

Details of the theorem can be found in [31] and we will leave the proof to the reader. On

the other hand, Scoville ([34]) gives a simplicial view of D, and one can see that D is not

collapsible by observing that it does not have any free pair. Despite this, Zeeman proved

that D × I, where I is the unit interval, is collapsible. Furthermore, he showed that the

product of any contractible 2-dimensional complex with I is collapsible. We refer readers to

[36] for this beautiful work.
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3.3 Simplicial Homology

Definition 3.7. A chain complex C is a sequence of vector spaces Ci along with homo-

morphisms ∂i : Ci → Ci−1 between them:

· · · Ci+1 Ci Ci−1 · · · C1 C0 C−1 = 0,
∂i+2 ∂i+1 ∂i ∂i−1 ∂2 ∂1 ∂0

with the property that ∂n−1 ◦ ∂n = 0.

Although commonly constructed as groups, in this thesis we study simplicial homology

in the context of vector spaces over Z2. That is, let kn = 〈v0, v1, . . . , vn−1〉 denote the vector

space generated by n elements with its additive operation being addition modulo 2. Let K

be a simplicial complex, and Ki be the collection of i-simplices of K. Recall that ci is the

number of i-simplices of K, so elements of Ki generate a vector space kci . In addition, each

homomorphism is taken to be a boundary operator, which maps a simplex to the union of

its codimensional-1 faces. Formally:

Definition 3.8. Let σ = v1v2 . . . vn be a simplex of a simplicial complex. The boundary

operator ∂i : kci → kci−1 is defined as the following:

∂i (σ) =


0 if i = 0∑

0≤j≤i σ0σ1 · · · σ̂j · · · σi otherwise,

where σ̂j means excluding σj.

Example 3.3.1. The Möbius strip M is a surface homeomorphic to the complex obtained

from a square by identifying one pair of opposite sides with a twist (Figure 3.3).

The two red sides of the square that are not “glued” together become a single bounding

circle. To verify this, we directly compute the boundary ofM with a simplicial representation

shown in Figure 3.4.

Since M is a surface, we will compute its 2-dimensional boundary:
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Figure 3.3: The Möbius strip

Figure 3.4: The Möbius strip as a simplicial complex

∂2(M) = ∂(v0v1v3 + v1v3v4 + v1v2v4 + v2v4v5 + v2v3v5 + v3v5v0)

= v1v3 + v0v3 + v0v1 + v3v4 + v1v4 + v1v3 + v2v4 + v1v4 + v1v2

+ v4v5 + v2v5 + v2v4 + v3v5 + v2v5 + v2v3 + v5v0 + v3v0 + v3v5

= v0v1 + v1v2 + v2v3 + v3v4 + v4v5 + v5v0.

Terms other than the ones in the last equality appeared twice in the previous step, so

they sum up to 0. Note that the result gives a sequence of 1-simplices that forms a complex

that is homeomorphic to a circle, hence verifying the statement at the beginning.

We should also check that the boundary operator suits the definition of a chain complex.

Proposition 3.3.2. The boundary operator ∂i satisfies the property ∂i−1 ◦ ∂i = 0.

The detailed proof of this proposition will be omitted, one can check and see that each
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term will appear twice in the sum, so we get 0 in the end because of modulo 2 arithmetic.

Hence the resulting chain complex is of the form

· · · kci kci−1 · · · kc1 kc0 0.
∂i+1 ∂i ∂i−1 ∂2 ∂1 ∂0

Now we are ready to define simplicial homology.

Definition 3.9. Let K be a simplicial complex. Let C be the chain complex in which each

chain kci is a vector space generated by elements of Ki. For each i, we define the following:

• Zi = Zi (K) = Ker (∂i) ⊂ kci , the vector space of i-cycles;

• Bi = Bi (K) = Im (∂i+1) ⊂ kci , the vector space of i-boundaries.

The i-th simplicial homology vector space of K is definied as Hi = Hi(K) = Zi/Bi.

Its elements are in the form of equivalence classes [z] = {z + w : w ∈ Im (∂i+1)}, where

z ∈ Ker (∂i).

Example 3.3.3. Consider the simplicial complex in Figure 3.5 which can be written as the

collection of facets

K = {v0v1v2, v0v1v3, v0v2v3, v1v2v3, v1v3v5, v3v4v5, v4v5v6, v2v4v6, v0v2v6}.

Figure 3.5: A simplicial complex homeomorphic to a 2-sphere with a band attached
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Observe that the c-vector of K is (7, 15, 9). To calculate its homology vector spaces, we first

obtain from K the chain complex

0 k9 k15 k7 0.
∂3 ∂2 ∂1 ∂0

Starting with i = 2, since Im (∂3) = 0, we have

H2(K) = Z2/B2 = Ker (∂2) /Im (∂3) = Ker (∂2) ,

and Ker (∂2) = 〈v0v1v2 + v0v1v3 + v0v2v3 + v1v2v3〉. Hence, H2(K) ∼= k1.

For i = 1, observe that Ker (∂1) is generated by {ep + eq + er}, where ep, eq and er

are edges that form a boundary of a 2-simplex. On the other hand, Im (∂2) has the same

generators as Ker (∂1), excluding v2v3 + v2v4 + v3v4. Hence,

H1(K) = 〈v2v3 + v2v4 + v3v4〉 ∼= k1.

Finally, Ker (∂0) is the entire k7 in the chain complex, and Im (∂1) is generated by {vp +

vq}, where vp and vq are vertices of the same 1-simplex. Since any 2 vertices of K are

connected by some sequence of edges, the quotient implies that all vertices are equivalent.

Therefore,

H0(K) ∼= k1.

Alternatively, we can also define the i-th simplicial homology of K to be the vector space

Hi (K) := knull(∂i)−rank(∂i+1).

Definition 3.10. The integer null (∂i)− rank (∂i+1) is called the i-th Betti number of K,

denoted bi (K).

It it worth noting that Betti numbers could be different depending on the choice of field
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over which the vector field is. In this thesis, however, the field will always be Z2.

Example 3.3.4. The simplicial complex K in Figure 3.5 has Betti numbers b0(K) = 1,

b1(K) = 1 and b2(K) = 1. We can arrive at the same result by observing the geometric

structure of K (or that of the object to its right): it is connected, i.e. having only 1

component; it has a 1-dimensional circular hole created by v2v3, v2v4 and v3v4; it also has a

2-dimensional cavity created by v0v1v2, v0v1v3, v0v2v3 and v1v2v3.

Like Euler characteristics, Betti numbers are preserved by the action of elementary ex-

panding and collapsing.

Proposition 3.3.5 ([34]). Let K and K ′ be simplicial complexes with the same simple

homotopy type. Then bd (K) = bd (K ′) for all d = 0, 1, 2, . . . .

Proposition 3.3.5 is a result of the following fundamental theorem in homology theory,

which we have previously mentioned in Subsection 2.5.1. It shall be referenced later so we

state it here while referring readers to [21] for a proof.

Theorem 3.3.6 ([21]). If f : X → Y and g : Y → X are homotopy equivalences, then

Hi(X) ∼= Hi(Y )

for all i.
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Chapter 4

Discrete Morse Theory

This chapter serves to present certain definitions and fundamental results in discrete Morse

theory. We will start with Section 4.1, presenting some basics and results of the classical

Morse theory to motivate the discussion in the discrete case. In Section 4.2, we present the

construction of the discrete Morse theory while providing our own proofs for some results.

In Section 4.3, we selected some main theorems of the discrete Morse theory, providing our

own proofs and examples in combination with [15] and [34].

4.1 Classical Morse Theory

Morse theory is used to find topological invariants of manifolds by examining critical points

of some chosen functions. We begin by giving some relative definitions and an example.

Throughout the section, we use M to denote a smooth manifold unless specified otherwise.

Definition 4.1. Let f : M → R be a smooth function. A point x ∈ X is a critical point if

∂f

∂x1

(x) = · · · = ∂f

∂xn
(x) = 0.

A critical point x is non-degenerate if the Hessian of f at x is non-degenerate, i.e. has no

zero eigenvalues.
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Definition 4.2. Let f : M → R. For any a ∈ R, the sublevel set Ma is defined as

Ma = {x ∈M : f (x) ≤ a}.

Generally speaking, the behavior of the function around its degenerate critical points (i.e.

where the Hessian of f is singular) are difficult to observe. This gives the motivation for

choosing the following family of nice functions:

Definition 4.3. A map f : M → R is a Morse function if all of its critical points are

non-degenerate.

The idea of Morse function goes back to Marston Morse, ([29]), who studied the topology

of a manifold with the information of its critical points. A well-known result from this usage

of Morse function was Reeb’s Sphere Theorem.

Theorem 4.1.1 (Reeb’s Sphere Theorem). Let M be a compact manifold. Suppose there

exists a Morse function on M with exactly 2 critical points. Then M is homeomorphic to a

sphere.

One might-be-surprising result is that Morse functions are generic on differentiable mani-

folds. This is explained in depth by the next two propositions. Readers can find more details

and proofs in [3].

Proposition 4.1.2 ([3]). Let f : M → R be a smooth function and let k ∈ N. Then

on any compact subset of M , f and its derivatives of order less than or equal to k can be

approximated by a Morse function uniformly.

Proposition 4.1.3 ([3]). Let M be a compact manifold. Then, the set of Morse functions

on M is a dense open subset of C∞(M).

One of the main results of classical Morse theory was the following theorem:
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Figure 4.1: A torus with height function

Theorem 4.1.4 ([28]). Let f : M → R be a Morse function. Let a < b and suppose that

f−1 [a, b] is compact and contains no critical points of f . Then Ma is diffeomorphic to Mb.

Furthermore, Ma is a deformation retract of Mb, so that the inclusion map ι : Ma → Mb is

a homotopy equivalence.

Example 4.1.5. Consider a torus T in the 3-dimensional Euclidean space with a height

function h : T → R in Figure 4.1. The four critical points are marked in red, having height

0, 1, 3 and 4. Sublevel sets of T induced by h have the same homotopy type between two

adjacent critical points. Figure 4.2 shows the sublevel set Tb deformation retracts to Ta,

where 1 < a < b < 3, by “smooshing down those tubes”.

Figure 4.2: Deformation retraction of sublevel sets of a torus between critical points
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For more details on the classical Morse theory, we direct the reader to the previously

mentioned references.

4.2 Discrete Morse Theory

Now, let us turn our attention to the main topic of this thesis: discrete Morse theory. The

name suggests how the theory is related to classical Morse theory. However, it is not a

simple discretization of the smooth case. The objects of our interest are now simplicial

complexes, and instead of critical points, we study so-called critical simplices which will

be defined in a moment. With discrete Morse theory, we can learn topological information

about a complicated simplicial complex by studying an equivalent, that is of the same simple

homotopy type, but “simpler” simplicial complex. The idea is to collapse from one to the

other. Given a complicated simplicial complex, the process could be tedious if we draw out

which pair of simplices is being collapsed at each stage. We shall present a cleaner description

later, called gradient vector field. But first, we need to define a family of functions on

simplicial complexes that corresponds to the classical family of Morse function on a smooth

manifold. Then, we shall build the theory on that, relate it to some topological concepts,

and present the main theorems of discrete Morse theory. While we follow on existing results,

we present as much as possible our own proofs.

4.2.1 Discrete Morse Function

Definition 4.4. Let K be a simplicial complex. A map f : K → R is a discrete Morse

function if for every p-simplex σ ∈ K, we have

|{τ (p−1) < σ : f (τ) ≥ f (σ)}| ≤ 1

and

|{τ (p+1) > σ : f (τ) ≤ f (σ)}| ≤ 1.
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Figure 4.3: A discrete Morse function on a simplicial complex

The general rule of thumb is that, higher dimensional simplices get assigned higher values

and lower dimensional simplices get assigned lower values, with at most one “exception”

being allowed for each simplex.

Example 4.2.1. The function f that assigns values to simplices of the simplicial complex

shown in Figure 4.3 is a discrete Morse function. One should note that the 2-simplex has two

0-dimensional faces (vertices) whose values under f are greater than that of itself. This causes

no problem as the definition of discrete Morse function only has restrictions on codimension-1

faces and cofaces.

In classical Morse theory, we examine critical points of a Morse function. Here we do

the same, but instead of critical points, we study critical simplices. A simplex is critical if it

does not admit any “exception” in the sense we mentioned above in the definition of discrete

Morse function. Formally, we have:

Definition 4.5. A p-simplex σ ∈ K is said to be critical with respect to a discrete Morse

function f if

|{τ (p−1) < σ : f (τ) ≥ f (σ)}| = 0

and

|{τ (p+1) > σ : f (τ) ≤ f (σ)}| = 0.
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If σ is critical, then f (σ) ∈ R is its corresponding critical value. Any simplex that is not

critical is said to be regular, and its value under f is its regular value.

Lemma 4.2.2. For any simplicial complex K, there is a discrete Morse function such that

every simplex of K is critical.

Proof. For any simplex σp ∈ K, define f (σ) = p, so there is no “exception” at any simplex.

Then it follows that f is a discrete Morse function that makes every simplex of K critical.

The following lemma is a simple yet very important observation. It plays a key role in

many parts of the discrete Morse theory, and we shall use it quite often later.

Lemma 4.2.3 (Exclusion lemma, [15]). Let f : K → R be a discrete Morse function and

σ ∈ K be a regular simplex. Then, exactly one of the following two conditions holds:

(i) There exists τ (p+1) > σ such that f (τ) ≤ f (σ);

(ii) There exists ν(p−1) < σ such that f (ν) ≥ f (σ).

Proof. By the definition of the regular simplex, we know that at least one of these conditions

is true. Now suppose both are true, that is, there exist ν(p−1) = v0v1 . . . vp−1 and τ (p+1) =

v0v1 . . . vpvp+1 such that f (τ) ≤ f (σ) ≤ f (ν). Let σ̃ = v0v1 . . . vp−1vp+1, so that ν < σ̃ < τ .

Since f is a discrete Morse function, we can only have at most 1 exception at each simplex,

then we must have f (ν) < f (σ̃) and f (σ̃) < f (τ). Hence

f (τ) ≤ f (σ) ≤ f (ν) < f (σ̃) < f (τ) ,

and we have a contradiction.

Here is an example of how we utilize the exclusion lemma:
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Corollary 4.2.4. If f is a discrete Morse function, then f has at least one critical simplex.

Proof. Suppose f has no critical simplex. Then, there must exist at least one 1-simplex, say

vivj, since otherwise vi and vj will be critical. Since vi is regular, we have f (vi) ≥ f (vivj).

Then, by the exclusion lemma, f (vivj) > f (vj). Now, if vj is not a face of any other 1-

simplex, vj is critical; if vj is a face of some other 1-simplex, then we repeat the process and,

eventually, we will get a critical 0-simplex.

A specific kind of discrete Morse function called excellent is “nicer” in the sense that

every critical simplex gets assigned a distinct value. It is natural to expect that this kind of

discrete Morse function will bring ease on constructions and calculations. Fortunately, we

have a generous way to relate every ordinary discrete Morse function to an excellent one,

and we will show how in the next subsection. But first, we state its definition here:

Definition 4.6. A discrete Morse function is said to be excellent if it is 1−1 on its critical

simplices.

4.2.2 Forman Equivalence

Recall that regular homotopy, which was defined for functions, represents some kind of

“sameness” between them, and, similarly, for spaces. We have defined earlier the simple

homotopy for simplicial complexes, so we now need a notion of “sameness” for discrete

Morse functions.

Definition 4.7. Let f and g be discrete Morse functions on a simplicial complex K. We

say f and g are Forman equivalent if for every pair of simplices σ(p) < τ (p+1) of K,

f (σ) < f (τ) if and only if g (σ) < g (τ).

Given the “if and only if” condition in the definition above, it is straightforward to verify

that Forman equivalence is an equivalence relation.
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Now, as promised, we present a way to relate every ordinary discrete Morse function to

an excellent one, and we do so through Forman equivalence.

Lemma 4.2.5 ([34]). Let f : K → R be a discrete Morse function. Then there exists an

excellent discrete Morse function g : K → R that is Forman equivalent to f .

Proof. Let σ1, σ2 ∈ K be critical simplices of f such that f (σ1) = f (σ2). Note if no such

simplices exist, then f is excellent by itself, so we may assume that they exist. Now, define

g : K → R by setting g (σ) = f (σ) for all σ 6= σ2, and g (σ2) = f (σ2) + ε where ε > 0

and f (σ2) + ε is less than the smallest value of f that is greater than f (σ2). This way,

g (σ1) 6= g (σ2) and g is Forman equivalent to f since none of the inequalities induced by

f is changed by g (also it implies that σ1 and σ2 remain as critical simplices under g). If

no other two critical simplices have the same value under f , then we are done. Otherwise,

repeat the construction for any two of such simplices. Since there are only finitely many of

them, eventually we will be able to construct an excellent discrete Morse function that is

Forman equivalent to f .

With this lemma, we are now able to assume any given discrete Morse function to be an

excellent one.

4.2.3 Gradient Vector Field

Definition 4.8. Let f be a discrete Morse function on a simplicial complexK. The gradient

vector field induced by f , denoted Vf , is defined by

Vf := {
(
σp, τ (p+1)

)
: σ < τ, f (σ) ≥ f (τ)}.

If (σ, τ) ∈ Vf , then (σ, τ) is called a vector or an arrow. For a vector (σ, τ), σ is the tail,

while τ is the head.
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Figure 4.4: The gradient vector field induced by a discrete Morse function

Example 4.2.6. Figure 4.4 shows the gradient vector field induced by the discrete Morse

function from Example 4.2.1.

One quickly notices that a vector consists of a pair of regular simplices. Hence, Lemma

4.2.3 introduces certain rules on vectors of a gradient vector field.

Lemma 4.2.7. Let f : K → R, so it induces a gradient vector field (a set of vectors) on K.

Then for any simplex σ ∈ K, exactly one of the following holds:

(i) σ is the tail of exactly one vector;

(ii) σ is the head of exactly one vector;

(iii) σ is neither the head nor the tail of any vector.

Proof. If σ is critical, then by Definition 4.8, it does not belong to any vector, so we have

(iii). If σ is regular, by Lemma 4.2.3, we have exclusively either (i) or (ii).

Ayala, Fernández and Vilches ([5]) proved the following theorem, showing that Forman

equivalence preserves the induced gradient vector field.

Theorem 4.2.8 ([5], Theorem 3.1). Let f, g : K → R be discrete Morse functions. Then f

and g are Forman equivalent if and only if they induce the same gradient vector field.
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Now, suppose we have a simplicial complex on which we can add a set of vectors that

satisfies exactly one of the three conditions above. This, however, does not guarantee the

existence of a discrete Morse function which induces the given vector field. Some other

conditions must be satisfied as well. Regardless, such vector field is very important in

developing the theory, so we give its formal definition here:

Definition 4.9. Let K be a simplicial complex. A discrete vector field V on K is a set

of pairs of simplices (σ(p), τ (p+1)) in K such that σ < τ and neither simplex is in any other

pair.

It is straightforward to see that every gradient vector field is a discrete vector field – the

result follows from the definition of a discrete Morse function. And, as we have mentioned,

the converse fails to be always true. It turns out that such failure happens when the discrete

vector field contains a “closed path”.

Definition 4.10. Let V be a discrete vector field on a simplicial complex K. A gradient

path, or V -path when context is clear, is a sequence of simplices

(
τ

(p+1)
−1 ,

)
σ

(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , σ

(p)
2 , . . . , τ

(p+1)
k−1 , σ

(p)
k

of K such that:

• the sequence begins either at a simplex that is not in any pair of V (τ
(p+1)
−1 ), or a

simplex σ
(p)
0 such that (σ

(p)
0 , τ

(p+1)
0 ) ∈ V ;

• (σ
(p)
i , τ

(p+1)
i ) ∈ V for 0 ≤ i ≤ k − 1;

• for 0 ≤ i, j ≤ k − 1, τ
(p+1)
i−1 > σ

(p)
i and σ

(p)
i 6= σ

(p)
j .

Note that a gradient path can both begin and end on a simplex that is not in any pair of

V . If k 6= 0, we say the gradient path is non-trivial; a gradient path that is not properly

contained in any other gradient path is called maximal. Finally, a gradient path is closed

if it begins and ends on the same simplex.
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Figure 4.5: A discrete vector field that is not a gradient vector field

Theorem 4.2.9 ([34]). A discrete vector field is a gradient vector field induced by some

discrete Morse function if and only if it contains no non-trivial closed gradient path.

We shall provide a proof in the next section. For now, we use the following example to

help visualize this theorem.

Example 4.2.10. Consider the simplicial complex with a discrete vector field V in Figure

4.5. Clearly, V has a closed path. Then, by Theorem 4.2.9, it cannot be a gradient vector

field induced by some discrete Morse function f . Otherwise, we will have the following

inequality on the closed path:

f(v0) ≥ f(v0v1) > f(v2) ≥ f(v2v1) > f(v1) ≥ f(v1v0) > f(v0),

which is a contradiction.

4.2.4 The Hasse Diagram

The Hasse diagram is a graphical representation of a finite partially ordered set. Instead of

tracing through all elements in a set to determine how they are related, the structure of a

Hasse diagram provides a clear summary of those relations.

Definition 4.11. Let P be a finite partially ordered set. The Hasse diagram H of P is
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constructed in the following way:

• Each element of P corresponds to a vertex of H;

• An edge exists between 2 vertices if and only if they form a covering relation (see

Definition 2.15).

Now, there is a natural partial order on a simplicial complex K: we relate two simplices

if one is a codimension-1 face of the other. In fact, this is a covering relation as well. To

start building the Hasse diagram, we arrange all simplices of the same dimension on a same

row, and a row is placed higher if it corresponds to a higher dimension. To incorporate a

discrete vector field V on K in its Hasse diagram, we draw an upward arrow along the edge

from σ to τ if (σ, τ) is a pair in V . For a purpose that will be clear in a moment, also

draw a downward arrow on all other edges. The resulting graph is called a directed Hasse

diagram on K induced by V , denoted HV . A sequence of upward and downward arrows

that begins and ends on the same vertex is called a directed cycle.

Example 4.2.11. Let us consider a simple example of a 2-simplex

K = {v1, v2, v3, v1v2, v1v3, v2v3, v1v2v3},

and introduce the discrete vector field

V = {(v2, v1v2, ) , (v3, v1v3, ) , (v2v3, v1v2v3, )}

on K. Then the resulting directed Hasse diagram (Figure 4.6) will have upward arrows from

v2 to v1v2, v3 to v1v3 and v2v3 to v1v2v3.

We will now present a few results about Hasse diagram in order to proceed in proving

Theorem 4.2.9.
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Figure 4.6: Directed Hasse diagram on a 2-simplex

Lemma 4.2.12 ([34]). Let K be a simplicial complex and let V be a discrete vector field.

If the Hasse diagram HV contains a directed cycle, then the directed cycle is contained in

exactly two levels.

Proof. It is clear by definition that we cannot have any directed cycle in a single level, since

there cannot be any covering relation between two simplices of the same dimension.

Suppose there is a directed cycle that ranges in more than two levels. Then at some

point, we must have two consecutive upward arrows, i.e. there must be simplices σ(p−1), τ (p)

and ν(p+1) such that (σ, τ) ∈ V and (τ, ν) ∈ V . But this is not possible, by the definition of

V , since τ is in two different pairs. Therefore, we can only have directed cycles contained in

exactly two levels.

Theorem 4.2.13 ([34]). Let K be a simplicial complex, V be a discrete vector field on K,

and HV be the directed Hasse diagram on K induced by V . Then, there is no non-trivial

closed V -path if and only if there is no directed cycle in HV .

Proof. (=⇒) Suppose that there is a directed cycle in HV , then by Lemma 4.2.9, it must be

contained in exactly two levels. So, the directed cycle will look like

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
0 , σ

(p)
2 , . . . , τ

(p+1)
k , σ

(p)
k+1 = σ

(p)
0 ,
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i.e. an alternating sequence of upward and downward arrows, since there cannot be any

edge within the same level of HV . Within this cycle, every upward arrow, that is every pair

of simplices (σ
(p)
i , τ (p+1)), represents an element of V ; every downward arrow satisfies the

condition τ (p+1) > σ
(p)
i . Therefore, this directed cycle is also a closed V -path on K.

(⇐=) Like the forward direction, suppose that there is a closed V -path on K

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
0 , σ

(p)
2 , . . . , τ

(p+1)
k , σ

(p)
k+1 = σ

(p)
0 .

Starting at σ
(p)
0 ∈ HV . There is an upward arrow from σ

(p)
0 to τ (p+1) since (σ

(p)
0 , τ

(p+1)
0 ) ∈

V . An edge with a downward arrow exists from τ
(p+1)
0 to σ

(p)
1 , since τ

(p+1)
0 > σ

(p)
1 and

(σ
(p)
1 , τ

(p+1)
0 ) /∈ V , as τ

(p+1)
0 cannot be in two different pairs. Continuing in this way, we see

that the closed V -path gives a directed cycle in HV .

The general version of next lemma can be found in [7]. We will present the lemma and

its proof in a modified way that fits a directed Hasse diagram.

Lemma 4.2.14. Let [vn] be the vertex set of a Hasse diagram H. Then, there exists f :

[vn]→ R such that f (vi) > f (vj) whenever there is an arrow going from vi to vj if and only

if H does not have any directed cycle.

Proof. For the forward direction, suppose there exists a directed cycle

vi0 , vi1 , . . . , vik = vi0 .

Then we have f(vi0) > f(vi1) > · · · > f(vik) = f(vi0), a contradiction.

We show the backward direction constructively. Suppose that H does not have any

directed cycle. Let W = {w1, . . . , wi, . . . wn} be a sequence of n elements. To start, choose a

vertex vi that does not have any arrow entering it. The existence of such vertex is guaranteed

by Proposition 2.5.3. Let w1 = vi, and remove vi together with arrows that are leaving it.
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The remaining graph also does not have any directed cycle, then we repeat until there is no

vertex left. Suppose there is an arrow from wi to wj with i > j. But this means that wj

was chosen and removed before wi, so there cannot be any arrow entering wj when it was

chosen, and we have a contradiction. So i < j. Define f (vi) = n − k for wk = vi, and we

obtain a function with the desired properties.

Remark. Note that this f must be strictly decreasing along any directed path.

Now, we are ready to present the proof of Theorem 4.2.9.

Proof of Theorem 4.2.9. (=⇒) If a discrete vector field is a gradient vector field, then it

cannot contain any non-trivial closed gradient path by the argument in Example 4.2.10.

(=⇒) Suppose the discrete vector field V contains no non-trivial closed gradient path.

Then by Theorem 4.2.13, there is no directed cycle in HV . By Lemma 4.2.14, there exists

some function f : K → R such that f(σ) > f(τ) whenever there is an arrow going from σ to

τ (note that σ and τ are vertices of HV ). The function f is in fact a discrete Morse function.

This follows from the fact that for any (σ, τ) ∈ V , neither simplex can be in any other pair.

Let Vf is the gradient vector field induced by f . If (σ, τ) ∈ V , then σ < τ and f(σ) > f(τ),

so V ⊆ Vf ; If (σ, τ) ∈ Vf , then σ < τ , and each is not in any other pair by Lemma 4.2.7, so

Vf ⊆ V . Hence, V = Vf .

4.2.5 Level Subcomplex

Here, we state a few more definitions that give more ways to describe and interact with

simplicial complexes.

Definition 4.12. Let K be a simplicial complex. For any α, β ∈ K, the interval [α, β] is

the subset of K given by

[α, β] := {γ ∈ K : α ⊆ γ ⊆ β}.
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This allows us to bring together a set of simplices that are in face relations with others.

Note that under this definition, [α, β] 6= ∅ if and only if α ⊆ β, and in particular, [α, α] = {α}.

The next definition corresponds to sublevel sets in classical Morse theory:

Definition 4.13. Let f : K → R be a discrete Morse function. For any c ∈ R, the level

subcomplex K(c) is defined as

K(c) =
⋃
τ∈K
f(τ)≤c

⋃
σ≤τ

σ,

that is all simplices τ ∈ K such that f (τ) ≤ c, as well as all faces of τ .

Same as for sublevel sets, it is clear that K(a) ⊆ K(b) if and only if a < b. The equality

of these sets happens when there is no τ such that f(τ) ∈ (a, b].

Example 4.2.15. Consider the simplicial complex K in Figure 4.7 with values of a discrete

Morse function labeled on its simplices. The right hand side shows the level subcomplex

K(4). Note that K(4) contains the 0-simplex to which 9 is assigned. This is because that

0-simplex is a face of the 1-simplex to which 4 is assigned.

Figure 4.7: A level subcomplex of a simplicial complex under a discrete Morse function
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4.3 Main Theorems of Discrete Morse Theory

In this section, we present some main results in discrete Morse theory. In Subsection 4.3.1, we

present the collapse theorem, which is the discrete equivalent of Theorem 4.1.4, in Subsection

4.3.1 along with a couple of theorems that describe the homotopy equivalence between a

simplicial complex and certain cell complexes. In Subsection 4.3.2, we present two discrete

Morse inequalities that describe the relationship between the Betti numbers and the number

of critical values of a simplicial complex. After that, we present how to “optimize” a discrete

Morse function by reducing the number of critical simplices in Subsection 4.3.3. Finally, in

Subsection 4.3.4, we discuss the homotopy between discrete Morse functions and its effect

on their gradient vector spaces. The section is built on [15] with some of our own proofs.

4.3.1 The Collapse Theorem

As we mentioned, the collapse theorem is the discrete equivalent of Theorem 4.1.4. Intu-

itively, it says that the topological structure of the subcomplex stays the same unless new

critical simplices are introduced.

Theorem 4.3.1 (Collapse Theorem, [34]). Let f : K → R be a discrete Morse function. If

f has no critical values on the interval [a, b] ∈ R, then K(a)↘ K(b).

Here, we make an important observation: we may perturb f by a bit so that it is 1 − 1

without changing K (a) or K (b). This is done in a similar fashion as was done in the proof

of Lemma 4.2.5, by changing the value of f on some simplices by a small enough ε without

changing which simplices are critical and which are regular. The formal statement can be

found in [34] (Lemma 4.25). So, we may assume f is 1− 1. Now, we will present the proof

of the theorem based on works in [15] and [34] with details added by ourselves.

Proof. Let σ be a regular simplex in K. First of all, if f (σ) /∈ [a, b] for all σ ∈ K, then either

K (a) = K (b) = K (when f (σ) < a) or K (a) = K (b) = ∅ (when f (σ) > b), and we are
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done. So, suppose there is at least one σ such that f (σ) ∈ [a, b]. Then, we can partition the

interval [a, b] into smaller ones, and with some relabelling and abuse of notations, assume

that there is exactly one σ with f (σ) ∈ [a, b]. Note that, by definition, σ ∈ K (b). By the

exclusion lemma (Lemma 4.2.3), exactly one of the following holds:

(i) there exists τ (p+1) > σ such that f (τ) ≤ f (σ);

(ii) there exists ν(p−1) < σ such that f (ν) ≥ f (σ).

If (i) is true, then f (τ) < a, since σ is the only simplex with f (σ) ∈ [a, b]. So τ ∈ K (a).

But σ < τ , so σ ∈ K (a), which can only happen when K (a) = K (b), and there is nothing

to prove.

Suppose that (ii) is true. Again, by the exclusion lemma, (i) cannot be true. Then, for

all τ (p+1) > σ, we have f (τ) > f (σ). So f (τ) > b. Following this, we claim that given any

coface τ̃ (of any dimension) of σ, we have f (τ̃) > b. Let us look at the case when τ̃ is of

dimension p + 2, the rest will follow by induction. Suppose there is some τ̃ (p+2) > σ such

that f (τ̃) ≤ b. Then f (τ̃) < a. But f(τ (p+1)) > b > a > f (τ̃) for all τ > σ, and τ̃ has at

least two (p+ 1)-faces which have σ as a face, so τ̃ will have two “exceptions”, and that is

not allowed. It follows from the claim that σ /∈ K (a).

By our assumption, and the fact that σ is again the only simplex with f (σ) ∈ [a, b],

there exists ν(p−1) < σ with f (ν) > b > f (σ). Here, note that ν ∈ K (b), since ν < σ and

σ ∈ K (b). If ν̃(p−1) 6= ν is any other face of σ, then by the definition of discrete Morse

function with at most one “exception” allowed at each simplex, we must have f (ν̃) < f (σ),

and thus f (ν̃) < a. So ν̃ and all its faces are contained in K (a) by definition. If σ̃(p) 6= σ

is any other coface of ν, then, again by the definition of a discrete Morse function, we must

have f (σ̃) > f (ν) > b. By a similar argument as in the claim earlier in the proof, given any

σ̃ (of any dimension) such that σ̃ > ν, we have f (σ̃) > b. So, ν /∈ K (a) and ν does not have

any coface in K (a).
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All and all, we see that K(b) = K(a) t ν t σ where {ν, σ} is a free pair. Therefore,

K(b)↘ K(b)− {ν, σ} = K(a).

We state another important theorem in discrete Morse theory here. It will be used

together with the collapse theorem to prove the homotopy theorem we mentioned earlier.

Theorem 4.3.2 ([15]). Let f : K → R be a discrete Morse function. Suppose σ(p) is the

only critical simplex with f (σ) ∈ [a, b], then there is an attaching map F : ∂Bp → K (a)

such that K (b) is homotopy equivalent to

K(a) tBp/{x∼F (x):x∈∂Bp},

where Bp is the Euclidean unit ball of dimension p.

A discussion of the theorem can be found in [16]. The proof is very similar to the one

above, using the fact that the interior of a p-simplex is homeomorphic to a Euclidean p-ball,

and the homeomorphism implies homotopy equivalence. A complete proof can be found in

[15].

Theorem 4.3.3 ([34]). Let f : K → R be a discrete Morse function and let mp be the

number of critical p-simplices of K. Then K is homotopy equivalent to a cell complex with

exactly mp p-cells.

Proof. Again, we may assume f is 1 − 1. Let [a, b] be an interval such that f(σ
(p)
i ) ∈ [a, b]

for all critical p-simplices σi, 1 ≤ i ≤ mp. Then, partition [a, b] into mp subintervals so that

each subinterval [ai, bi] contains only σi. From here, Theorem 4.3.1 and Theorem 4.3.2 tell

us that each [ai, bi] gives a homotopy equivalence between K(bi) and K(ai) with a p-cell

attached. The theorem follows from taking the union of all these level subcomplexes.
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4.3.2 Discrete Morse Inequalities

There are two inequalities that we will be presenting: the weak discrete Morse inequality

and the strong discrete Morse inequality. We will first present our own proof for the second

statement in the weak inequality; the first statement will be discussed after we present the

strong inequality.

Theorem 4.3.4 (Weak discrete Morse inequalities, [34]). Let f be a discrete Morse function

with mi different critical values in dimension i, i = 1, 2, . . . , n = dim (K). Then

(i) bi ≤ mi for all i = 0, 1, . . . , n;

(ii)
∑n

i=0 (−1)imi = χ (K).

Proof. (ii) By the power of Lemma 4.2.5, we shall assume that f is excellent, so K has mi

critical i-simplices. Let di be the number of regular i-simplices that forms a gradient vector

with an (i+ 1)-simplex, and recall that ci is the total number of i-simplices in K. For any

dimension i, we have the following equality:

ci = mi + di,− + di,+,

where di,− is the number of regular i-simplices that each forms a gradient vector with a

regular (i− 1)-simplex, and di,+ is the number of regular i-simplices that each forms a

gradient vector with a regular (i+ 1)-simplex. For i = 0, since there is no lower dimension,

d0,− = 0; similarly for i = n, since there is no higher dimension, dn,+ = 0. Now, for

0 ≤ i ≤ n− 1, we have di,+ = di+1,− by the definition of the gradient vector, which is formed

43



by a pair of regular simplices. So it follows that

n∑
i=0

(−1)i ci =
n∑
i=0

(−1)imi +
n∑
i=0

(−1)i di,− +
n∑
i=0

(−1)i di,+

=
n∑
i=0

(−1)imi + d0,− + (d1,− − d0,+) + (d2,− − d1,+) + · · ·

+ (dn,− − dn−1,+) + dn,+

=
n∑
i=0

(−1)imi.

Therefore, we have
∑n

i=0 (−1)imi =
∑n

i=0 (−1)i ci = χ (K).

Before we move on to the strong inequality, there are a few corollaries that need to be

addressed. Together with Theorem 4.3.3, they will provide a straightforward proof for the

strong inequality.

Corollary 4.3.5 ([33], Corollary 4.24). If topological spaces X and Y have the same ho-

motopy type, then Hn (X) ∼= Hn (Y ), where the isomorphism is induced by any homotopy

equivalence.

Remark. An immediate result of this corollary is that the simplicial complex and the cell

complex in Theorem 4.3.3 will have the same Betti numbers.

Corollary 4.3.6. Let K be a simplicial complex. Then, for each p = 0, 1, 2, . . . , n, n+1, . . . ,

we have

bp − bp−1 + bp−2 − · · ·+ (−1)p b0 ≤ cp − cp−1 + cp−2 − · · ·+ (−1)p c0,

where bi is the i-th Betti number of K (in our case, with respect to Z2) and ci is the number

of i-simplices of K.
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The proof for this corollary is pure algebra: we have

p∑
i=0

(−1)p−i bi = null (∂p)− rank (∂p+1)− null (∂p−1) + rank (∂p)

+ null (∂p−2)− rank (∂p−1)− · · ·+ (−1)p (null (∂0)− rank (∂1))

=

p∑
i=0

(−1)p−i (null (∂i) + rank (∂i))− rank (∂p+1)

=

p∑
i=0

(−1)p−i ci − rank (∂p+1)

≤
p∑
i=0

(−1)p−i ci,

where the second equality follow from that null (∂0) = 0, while the last inequality follows

from that rank (∂p+1) ≥ 0.

Remark. With Theorem 4.3.3, Corollary 4.3.5 and Corollary 4.3.6, given a simplicial complex,

we may assume that ci = mi for all i, and this assumption does not affect the Betti numbers.

Now, we can state the strong inequality:

Theorem 4.3.7 (Strong Discrere Morse inequality, [34]). Let f : K → R be a discrete Morse

function. For each p = 0, 1, . . . , n, n+ 1, . . . , we have

bp − bp−1 + bp−2 − · · ·+ (−1)p b0 ≤ mp −mp−1 +mp−2 − · · ·+ (−1)pm0.

Proof. The inequality follows immediately from remarks of Corollary 4.3.5 and Corollary

4.3.6.

Now, we have a straightforward proof for the inequalities in Theorem 4.3.4.

Proof. Suppose we want to prove the inequality for certain i. By the strong discrete Morse
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inequality, we have

bi − bi−1 + · · ·+ (−1)i b0 ≤ mi −mi−1 + · · ·+ (−1)im0

bi −
(
bi−1 − · · ·+ (−1)i b0

)
≤ mi −

(
mi−1 − · · ·+ (−1)im0

)
bi ≤ mi −

(
mi−1 − · · ·+ (−1)im0

)
+
(
bi−1 − · · ·+ (−1)i b0

)
bi ≤ mi,

since

bi−1 − bi−2 + · · ·+ (−1)i b0 ≤ mi−1 −mi−2 + · · ·+ (−1)im0,

and the sum of terms after mi in the third inequality is non-positive.

4.3.3 Cancelling Critical Simplices

Whenever we have an inequality, we are interested in how to achieve its optimality. Theorem

4.3.4 (i) is no exception. It tells us that, theoretically, we could potentially reduce the number

of critical simplices in a simplicial complex with the lower bound of Betti number in respective

dimensions. To study this matter, we begin with the following definitions:

Definition 4.14. [34] Let K be an n-dimensional simplicial complex and f : K → R be a

discrete Morse function. The discrete Morse vector of f is defined as

~f :=
(
mf

0 ,m
f
1 , . . . ,m

f
n

)
,

where mf
i is the number of critical i-simplices of f . A discrete Morse vector ~f is said to be

optimal if
∑n

i=0m
f
i is minimal, i.e. for any other discrete Morse function g on K, we have∑n

i=0 m
f
i ≤

∑n
i=0m

g
i .

Definition 4.15. A discrete Morse vector is said to be perfect if ~f = (b0, b1, . . . , bn), where
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bi is the i-th Betti number.

In other words, a discrete Morse function f produces a perfect discrete Morse vector if

it gives equality in Theorem 4.3.4 (i). The concept of a perfect Morse function appeared

first in the classical Morse theory, where the inequality concerns the number of critical

points. In general, not every manifold can admit a perfect Morse function ([2]). Here in

the discrete case, it is also true that not every simplicial complex admits a perfect discrete

Morse function. For example, Ayala, Fernández, and Vilches ([6]) showed that a connected

simplicial complex that is homologically trivial and non-collapsible does not admit a perfect

discrete Morse function. The following proposition gives some complexes that do admit

perfect discrete Morse functions.

Proposition 4.3.8. There exists a perfect discrete Morse function on ∆n for all n =

0, 1, 2, . . . .

Proof. The proof simply follows from the fact that the simplicial cone of an n-simplex is an

(n+ 1)-simplex and Proposition 3.2.3. It is worth noting that the statement is also true for

the n-sphere since they are homeomorphic to the n-simplex.

Proposition 4.3.9. A perfect discrete Morse vector is unique and optimal.

Proof. The uniqueness follows from the fact that Betti numbers are unique for a given

simplicial complex. The optimality follows from the weak discrete Morse inequality: for any

given discrete Morse function f , we have bi ≤ mf
i for all 0 ≤ i ≤ n, so

∑n
i=0 bi ≤

∑n
i=0m

f
i .

These definitions tell us that a discrete Morse function is “better” if it induces less

critical simplices. It makes a lot of sense if we think about what we have discussed in

Section 3.2 and Subsection 4.3.1: the Collapse theorem tells us that if there is no critical

value in certain interval, we can simplify the simplicial complex without changing its simple
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Figure 4.8: Cancelling critical simplices through reversing gradient path

homotopy type; so, given a simplicial complex, if we can find a perfect discrete Morse function

on it, then we will be able to simplify its structure to the maximum degree without changing

its topological properties. Then, given a discrete Morse function, how can we make it better

in this sense? One of the methods available is called, as the title of this subsection suggests,

cancelling critical simplices. The idea originates in [15] (Chapter 11), and we will present it

in combination with [16] and [34]. Let us first demonstrate this method with the following

example:

Example 4.3.10. Consider the gradient vector field Vf on the left-side of Figure 4.8. Observe

there is a non-closed gradient path

v1v2v3, v1v2, v0v1v2, v0v2,

where v1v2v3 and v0v2 are critical simplices. Now, we “reverse” this path to get a new

gradient path, while keeping everything else the same:

v0v2, v0v1v2, v1v2, v1v2v3.

Note here, both v1v2v3 and v0v2 are parts of the new gradient vector field, thus no longer

critical.
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The method in the example is summarized in the next proposition, reversing paths to

construct a new gradient vector field with less critical simplicies.

Proposition 4.3.11 (Cancelling critical simplices, [16], [34]). Let V be the gradient vector

field (induced by a discrete Morse function f) on K. Suppose that σ(p) and τ (p+1) are critical

simplices, and there is exactly one V -path γ from a boundary (codimensional-1) simplex of

τ to σ. Then, there exists another gradient vector field V̄ (induced by a different discrete

Morse function g) on K such that V̄ −γ = V −γ, that has the same critical simplices except

that σ and τ are no longer critical.

Proof. The gradient path γ has the following form:

γ
(p)
0 , τ

(p+1)
0 , γ

(p)
1 , . . . , γ

(p)
n−1, τ

(p+1)
n−1 , γn = σ,

where γ < τ is a codimensional-1 face of τ (in the boundary of τ). Define V̄ in the following

way:

(a) V̄ − γ = V − γ;

(b) (γ0, τ) ∈ V̄ ;

(c) (γi+1, τi) ∈ V̄ for i = 0, 1, . . . , n− 1.

Note that σ and τ are no longer critical with V̄ . By (a), we see that V̄ and V agree on

everything except for the gradient path γ. So the critical simplices of V̄ −γ are exactly those

of V − γ. Moreover, V̄ − γ cannot contain any closed gradient path since V cannot contain

any, as V is induced by a discrete Morse function (Theorem 4.2.9). Suppose there is a closed

gradient path of V̄ on γ, that is, without loss of generality, there exists γ
(p)
j = γ

(p)
i for some

0 < i < j < n. However, this implies that

γ′ := γ0, τ0, . . . , γi = γj, τj, . . . , γn−1, τn−1, γn = σ
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is a gradient path of V from a boundary simplex of τ to σ, and γ′ 6= γ, which contradicts

the fact that γ is unique. Hence, V̄ is a gradient vector field.

Remark. As we mentioned, the method is essentially reversing the unique gradient path from

a boundary simplex of a critical simplex to another critical simplex. In fact, this reversed

gradient path is unique as well, which can be shown in a similar fashion as in the proof

above.

4.3.4 Homotopy between Discrete Morse Functions

To finish up this chapter, we present a result which shows that we can “move” from one

discrete Morse function to any other discrete Morse function through homotopy.

Definition 4.16. A discrete Morse function is said to be flat if we have f (σ) = f (τ)

whenever (σ, τ) is a regular pair induced by f .

The next proposition and its proof show a technique called flattening through which we

can transform a given discrete Morse function into a flat one that is Forman equivalent to

the original one.

Proposition 4.3.12 ([34]). Let f : K → R be a discrete Morse function and Vf be the

gradient vector field induced by f . Then there exists a flat discrete Morse function on K

that is Forman equivalent to f .

For the proof, we use the following lemma:

Lemma 4.3.13. Let f : K → R be a discrete Morse function. If there exists simplices

σ(p) < τ (p+2) such that f (σ) ≥ f (τ), then both σ and τ are not critical.

Proof. By the nature of a simplicial complex, if σ(p) < τ (p+2), then there exists η(p+1) such

that σ < η < τ . Suppose σ is critical. Then τ cannot be critical, otherwise we will have
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f (σ) < f (η) < f (τ), which is a contradiction. Similarly, if τ is critical, then σ cannot be

critical. So, σ and τ cannot both be critical.

On the other hand, suppose that σ is not critical. If τ is not critical either, then we

are done. So suppose that τ is critical. Then f (η) < f (τ) ≤ f (σ), so (σ, η) ∈ Vf , hence

a contradiction. Similarly, we can show that τ being regular implies that σ is regular.

Therefore, both σ and τ are not critical.

Now, we turn our attention to;

Proof of Proposition 4.3.12. The flattening of f is a function g defined on K as the follow-

ing:

g (σ) :=


f (τ) if (σ, τ) ∈ Vf for some τ ,

f (σ) otherwise.

First of all, we see that every regular pair f is also a regular pair of g by the definition

of g, so if we can show that every critical simplex of f is also critical for the function

g, then we are done. Also, for any σ ∈ K, we have g (σ) ≤ f (σ): when σ is regular,

f (σ) ≥ f (τ) = g (σ); when σ is critical, g (σ) = f (σ). Let τ (p) be a critical simplex of f .

Then for any σ(p−1) < τ < η(p+1), we have f (σ) < f (τ) < f (η). Since τ is critical, we have

g (τ) = f (τ) > f (σ) ≥ g (σ). We also need to show that g (η) > g (τ). If η is not a head of

a vector (see Definition 4.8) of Vf , then g (η) = f (η) > f (τ) = g (τ), and we are finished.

So suppose that it is, i.e. there exists some γ(p+2) > η such that f (η) ≥ f (γ). Then, by

definition, g (η) = f (γ). If indeed g (η) > g (τ), then f (γ) = g (η) > g (τ) = f (τ). We use

proof by contradiction and suppose that f (τ) ≥ f (γ). Then, Lemma 4.3.13 tells us that τ

is not critical, which is a contradiction. Therefore, g (η) > g (τ). Hence, Vf = Vg, and by

Theorem 4.2.8, f and g are Forman equivalent.

The following lemma is the main result of this subsection. It describes a specific version
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of what is known as the straight-line homotopy between functions. With the power of

Proposition 4.3.12, we may assume flat discrete Morse functions.

Lemma 4.3.14 ([34]). Let f, g : K → R be flat discrete Morse functions. Define

ht(σ) := (1− t)f(σ) + tg(σ)

for all σ ∈ K and t ∈ [0, 1]. Then ht is a discrete Morse function on K for all t ∈ [0, 1].

Furthermore, for any t ∈ (0, 1), we have Vht = Vf ∩ Vg.

Proof. For any σ(p) ∈ K, we have

|τ (p−1) < σ : f(τ) ≥ f(σ)| ≤ 1

and

|η(p−1) < σ : g(η) ≥ g(σ)| ≤ 1.

Since both f and g are flat, equalities are attained when there is exception (see Definition

4.4 for “exception”).

If such exception happens at the same (p− 1)-simplex for f and g, say τ0, then

ht(τ0) = (1− t)f(τ0) + tg(τ0)

= (1− t)f(σ) + tg(σ)

= ht(σ),

and no other exceptions in dimension p− 1 are possible.

If such exception happens at τ1 for f and at τ2 for g, τ1 6= τ2, then exceptions are only
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possible at τ1 and τ2 for ht. But

ht(τ1) = (1− t)f(τ1) + tg(τ1)

< (1− t)f(σ) + tg(σ)

= ht(σ)

since g(τ1) < g(σ), and similarly,

ht(τ2) = (1− t)f(τ2) + tg(τ2)

< (1− t)f(σ) + tg(σ)

= ht(σ)

since f(τ2) < f(σ). Hence, ht does not have any exceptions in this case. In addition, it does

not have any exceptions if neither f nor g has any.

In a similar fashion, we can prove the same for (p + 1)-simplices. Consequently, ht is a

discrete Morse function, and particularly, a flat one.

Now, we show that Vht = Vf ∩ Vg. Let (σ(p), τ (p+1)) ∈ Vht . Then ht(σ) = ht(τ), since ht

is flat. Since f and g are flat as well, we have f(σ) ≤ f(τ) and g(σ) ≤ g(τ). Suppose that

either f(σ) < f(τ) or g(σ) < g(τ) is true. Then, we must have ht(σ) = (1− t)f(σ)+ tg(σ) <

(1 − t)f(τ) + tg(τ) = ht(τ), which is a contradiction. So, f(σ) = f(τ) and g(σ) = g(τ),

hence (σ, τ) ∈ Vf and (σ, τ) ∈ Vg. On the other hand, let (σ(p), τ (p+1)) ∈ Vf ∩ Vg. Since

both f and g are flat, we have f(σ) = f(τ) and g(σ) = g(τ). So it is straight forward that

ht(σ) = (1− t)f(σ) + tg(σ) = (1− t)f(τ) + tg(τ) = ht(τ). Hence (σ, τ) ∈ Vht .

Remark. By Theorem 4.2.8, all ht’s are Forman equivalent on K.

Here is a simple example illustrating Lemma 4.3.14:

Example 4.3.15. Let K be the simplicial complex in Example 3.1.1. Let f, g : K → R
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be discrete Morse functions and let ht = (1 − t)f + tg, 0 < t < 1. We know from Lemma

4.3.14 that ht is a discrete Morse function on K for all t. Observe that f and g only differ

at two simplices: the bottom 1-simplex and the bottom-right 0-simplex. The resulting ht

will then have a value between 2 and 3 on the 1-simplex and a value between 1 and 2 on

the 0-simplex, making both simplices critical. As shown in Figure 4.9, ht indeed induces the

same gradient vector field as Vf ∩ Vg.

Figure 4.9: ht induces a gradient vector field of Vf ∩ Vg.
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Chapter 5

More on Discrete Morse Theory

In this chapter, we dive deeper into topics in discrete Morse theory. We will first look at

the set of all discrete Morse functions on a given simplicial complex in two different ways in

Section 5.1, then we will revisit the induced gradient vector field by viewing it as a function

in Section 5.2. Finally, in Section 5.3, we will present a way to simplify calculations of the

simplicial homology by reducing the size of chains.

5.1 Morse Complex

Morse Complex was first studied by Chari and Joswig in [10] under the name of complex of

discrete Morse functions (associated with the given simplicial complex). It served as a mean

to study the set of all possible discrete Morse functions on a given simplicial complex. This

section is closely connected to Subsection 2.5.2, 4.2.3 and 4.2.4. We begin with a term in

graph theory.

Definition 5.1. A matching on a directed graph is a set of arrows such that no two of

them enter or leave the same vertex.

Remark. By Lemma 4.2.3, we know that the collection of upward arrows of a directed Hasse

diagram of a gradient vector field forms a matching, since otherwise, the simplex represented
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by the shared vectex will have two exceptions, thus the function fails to be a discrete Morse

function.

Definition 5.2. A discrete Morse matching is an acyclic matching of a directed Hasse

diagram.

Remark. This definition makes sense because of Theorem 4.2.9.

Example 5.1.1. The highlighted arrows in Figure 5.1 form a discrete Morse matching on

the directed Hasse diagram in Example 4.2.11.

Figure 5.1: Discrete Morse matching on a directed Hasse diagram

We can clearly see that there can exist multiple discrete Morse matchings given some

directed Hasse diagram. In fact, the collection of all such discrete Morse matchings form a

simplicial complex.

56



Figure 5.2: A simplicial complex and its (undirected) Hasse diagram

Definition 5.3. Let K be a simplicial complex. Consider {HV }, the collection of directed

Hasse diagrams induced by discrete Morse functions on K. The Morse complex of K,

denoted M(K), is the simplicial complex constructed in the following way: each vertex (0-

simplex) of M(K) is given by an upward arrow of some HV ; an n-simplex σ = v0v1 . . . vn−1

exists if the collection of upward arrows corresponding to vertices of σ form a non-empty

discrete Morse matching.

We can readily check that this definition does indeed give a simplicial complex. Clearly,

every vertex is contained in M(K); if σ is a p-simplex, and τ ⊆ σ, then σ corresponds to

a non-empty discrete Morse matching, and any non-empty subset of a non-empty discrete

Morse matching is again a non-empty discrete Morse matching.

Example 5.1.2. Consider the simplicial complex K on the left-side of Figure 5.2. On the

right-side is its (undirected) Hasse diagram.

There are 4 possible upward arrows, each on an edge of the Hasse diagram. So, M(K)

has 4 vertices, {v0, v0v1}, {v1, v0v1}, {v1, v1v2}, and {v2, v1v2}. To determine any higher di-

mensional simplices, we check which upward arrows form some non-empty discrete Morse

matching. First, observe that there can be at most be two upward arrows at the same di-

rected Hasse diagram, any more upward arrows will contradict Lemma 4.2.7, so there is no

simplex in dimension 2 or higher. By the same lemma, there can be at most one upward ar-

row entering or leaving the same vertex, hence we obtain three 1-simplices ofM(K), shown

in Figure 5.3.

There is an alternative definition for a Morse complex, which builds the complex from
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Figure 5.3: The Morse complex of the simplicial complex in Example 5.1.2

possible discrete Morse functions directly. We will state it and show that it is equivalent to

the one above.

Definition 5.4. A discrete Morse function is said to be primitive if it has only one regular

pair, which is called a primitive pair.

Definition 5.5. Let f and g be discrete Morse functions. We write f ≤ g if every regular

pair of f is also a regular pair of g. Let hi and hj be discrete Morse functions. We say hi and

hj are compatible is there exists a discrete Morse function h such that hi ≤ h and hj ≤ h.

Definition 5.6 (Alternative definition for Morse complex). The Morse complex M(K)

is the simplicial complex whose n-simplices are given by n+ 1 compatible primitive discrete

Morse functions on K.

Example 5.1.3. Consider the same simplicial complex from Example 5.1.2. We want to

find all possible compatible primitive discrete Morse functions. Each primitive discrete Morse

function by itself is trivially compatible, so we have four 0-simplices. By Lemma 4.2.3, the

following primitive pairs are compatible: {v0, v0v1} and {v1, v1v2}, {v0, v0v1} and {v2, v1v2},

{v1, v0v1} and v2, v1v2, each giving a 1-simplex. Hence, we obtain the same Morse complex

as in Example 5.1.2.

This process of constructing the Morse complex can be seen as laying primitive discrete

Morse functions on top of one another, compatibly, to build new discrete Morse functions.
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Proposition 5.1.4. Definition 5.3 and Definition 5.6 are equivalent.

Proof. In Definition 5.3, a 0-simplex is created if and only if there is an upward arrow in

some directed Hasse diagram, if and only if there is a primitive discrete Morse function that

induces the directed Hasse diagram, which is exactly what Definition 5.6 describes. Again,

starting with Definition 5.3, an n-simplex corresponds to a collection of upward arrows that

form a non-empty acyclic matching of a directed Hasse diagram, which means no closed

path and no two upward arrows entering or leaving the same vertex. Then, Lemma 4.2.3

and Theorem 4.2.9 imply that upward arrows give compatible primitive pairs, as stated by

Definition 5.6.

Proposition 5.1.5. For n ≥ 1, there does not exist any simplicial complex K such that

M(K) = ∆(n).

Proof. Suppose thatM(K) = ∆n. Since ∆n has (n+1) 0-simplices and one n-simplex among

others, K has a total of n+1 primitive discrete Morse functions and they are all compatible.

But this is not possible. On any simplex of K with dimension ≥ 1, there are at least two

ways of forming a primitive pair, and they cannot be compatible, hence a contradiction.

At this point, readers should expect very high complexity of Morse complexes when the

dimension of the given simplicial complex is high. Chari and Joswig studied combinatorial

and topological properties of Morse complexes of various simplicial complexes such as graphs,

a circle, and simplices. We refer readers to [10] for their work.

Even with such complexity, a Morse complex and its underlying simplicial complex

share similar algebraic structures. Capitelli and Minian showed that a simplicial complex

is uniquely determined by its set of discrete Morse functions, i.e. its Morse complex, up to

simplicial isomorphism. We state their main theorem here, and refer the readers to [9] for

the proof.
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Theorem 5.1.6 (Capitelli and Minian). Let K and L be simplicial complexes. If M(K) is

isomorphic to M(L), then K is isomorphic to L.

In [27], Lin and Scoville classified automorphism groups of the Morse complex. They

proved the following theorem:

Theorem 5.1.7 (Lin and Scoville). Let K be a finite, connected (abstract) simplicial com-

plex. Then

Aut(M(K)) ∼=


Aut(K) if K 6= ∂∆(n), C(n)

Aut(C(2n)) if K = C(n)

Aut(K)× Z2 if K = ∂∆(n) ,

where ∂∆(n) is the boundary of an n-simplex and C(n) is the circle of length n.

Here is a special family of a Morse complex:

Definition 5.7. Let K be a simplicial complex. The pure Morse complex of discrete

Morse functions of K, denotedMpure(K), is the subcomplex ofM(K) generated by facets

of maximal dimension.

Generally, a simplicial complex is said to be pure if all of its facets have the same dimen-

sion. One thus might think that Definition 5.7 is not necessary since a Morse complex is a

simplicial complex by definition. However, we shall see in the next example that the Morse

complex of a pure simplicial complex is not necessarily pure as a simplicial complex.

Example 5.1.8. Let K be the simplicial complex in Figure 5.4. It is a pure simplicial

complex since all of its facets are 1-simplices. However, its Morse complex is not pure. The

gradient vector field on the bottom left corresponds to a 2-dimensional facet ofM(K). The

one on the bottom right corresponds to a 1-simplex of M(K), but it is not contained in

any 2-simplex since adding an arrow on the middle edge, regardless of its direction, will no

longer give a discrete Morse function.
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Figure 5.4: A pure simplicial complex whose Morse complex is not pure

Ayala, Fernández, and Vilches showed that the pure Morse complex of a tree is collapsible

(Definition 3.6). They also proved some nice properties of the pure Morse complex of an

arbitrary connected graph, we refer interested readers to [4] for details.

5.2 Gradient Vector Revised

In this section, we redefine the induced gradient vector field in the form of a function on

a simplicial complex. We will use the new definition and the definition from Section 4.2.3

interchangeably throughout this section. Recall notations from Section 3.1 and Section 3.3.

Definition 5.8 (Gradient vector field redefined). Let f : K → R be a discrete Morse

function. Define the function Vp : kcp → kcp+1 by

Vp(σ) :=


τ if there exists τ > σ such that f(τ) ≤ f(σ);

0 otherwise.

It then follows from the definition of kcp that Vp (
∑
σ) =

∑
Vp(σ). The collection of functions

V = {Vp}, p = 0, 1, . . . , dim(K) is called the gradient vector field induced by f .

Proposition 5.2.1 ([34]). Let V be a gradient vector (in the sense of Definition 5.8) on a

simplicial complex K and let σ(p) ∈ K. Then, we have

(i) Vi+1 ◦ Vi = 0 for all integers i ≥ 0;
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(ii) |{τ (p−1) : V (τ) = σ}| ≤ 1;

(iii) σ is critical if and ony if σ /∈ Im(V ) and V (σ) = 0.

Proof. If Vp(σ) = 0, then (i) holds trivially. If Vp(σ) 6= 0, then σ is the tail of an arrow of

Vf and there exists ν(p+1) ∈ K, which is the head of the same arrow, such that V (σ) = ν.

But Lemma 4.2.3 tells us that there cannot be any γ(p+2) > ν such that f(γ) ≤ f(ν), hence

Vp+1 ◦ Vp = 0. Lemma 4.2.3 also directly implies (ii). For (iii), if σ is critical, then by

definition, V (σ) = 0, and σ /∈ Im(V ) since for all τ (p−1) < σ, f(τ) < f(σ). Conversely,

σ /∈ Im(V ) implies that σ is not a tail of an arrow and V (σ) = 0 implies that σ is either a

tail of an arrow or a critical simplex. Hence, together we have that σ is critical.

This definition of gradient vector field can be viewed as a flow, sending a simplex from

the tail of an arrow to the head. To formally study it this way, Forman ([15]) defined what

is known as the discrete gradient flow :

Definition 5.9. Let V be a gradient vector field on a simplicial complex K. The (discrete)

gradient flow or simply flow induced by V is defined as Φp : kcp → kcp , Φp(σ) = σ +

∂p+1(Vp(σ)) + Vp−1(∂p(σ)).

The term is well defined, since by definition, both ∂p+1(Vp(σ)) and Vp−1(∂p)(σ)) give a

collection of p-simplices. Hence, we write Φ(σ) = σ + ∂(V (σ)) + V (∂(σ)) when p is clear

from the context. It is also clear from the definition that Φ is a linear transformation from

a vector space to itself.

Example 5.2.2. Consider the simplicial complex K with the gradient vector field V in

Figure 5.5.
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Figure 5.5: Gradient vector field in Example 5.2.2

Let us calculate gradient flows of some simplices:

Φ(v1v3) = v1v3 + ∂(v1v3v4) + V (v3 + v1)

= v1v3 + v3v4 + v1v4 + v1v3 + 0

= v3v4 + v1v4

Φ(v1v4) = v1v4 + ∂(v1v2v4) + V (v1 + v4)

= v1v4 + v2v4 + v1v4 + v1v2 + 0 + v4v5

= v2v4 + v1v2 + v4v5

Φ(v4v5) = v4v5 + ∂(0) + V (v5 + v4)

= v4v5 + 0 + 0 + v4v5

= 0.

Here is a useful technical result about the gradient flow and the boundary operator:

Lemma 5.2.3 ([15]). Let K be a simplicial complex, ∂ the boundary operator, and Φ a

gradient flow on K. Then Φ∂ = ∂Φ.
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Proof. Let σ ∈ K. Then

Φ(∂(σ)) = ∂(σ) + ∂(V (∂(σ))) + V (∂(∂(σ)))

and

∂(Φ(σ)) = ∂(σ + ∂(V (σ)) + V (∂(σ)))

= ∂(σ) + ∂(∂(V (σ))) + ∂(V (∂(σ))).

Recall that ∂∂ = 0 (Proposition 3.3.2, hence V (∂(∂(σ))) = 0 and ∂(∂(V (σ))) = 0. Therefore,

Φ(∂(σ)) = ∂(Φ(σ)).

Flows are well-studied objects in the field of dynamical systems. Whenever we have a

dynamical system, naturally, we are interested in its stable (and unstable) states.

Definition 5.10. Let f : X → X be a function. We say f stabilizes at x if there exists m

such that fm+1(x) = fm(x).

Of course, this implies that if f stabilizes at x, then fm
′
(x) = fm(x) for any m′ > m.

Since Φp : kcp → kcp , we can apply this idea to the gradient vector field, and we see in the

next proposition that a gradient flow behaves really well on a simplicial complex.

Proposition 5.2.4. Let Φ be the flow induced by a gradient vector field V on a simplicial

complex K. Then Φ stabilizes at every vertex of K.

Proof. Without loss of generality, suppose that there is a single vertex v at which Φ does not

stabilize, that is Φm(v) 6= Φm+1(v) for any m. Since Φ stabilizes at every other vertex v′i, take

M = max{mi}ni=1, where mi is the smallest number for which Φmi(v′i) = Φmi+1(v′i). Since in

particular, Φ0 : kc0 → kc0 , we may assume that for an arbitrary m, Φm(v) =
∑

i∈I v
′
i, where

64



I is an index subset of {1, 2, . . . , n}. Then

ΦM+m(v) = ΦM(Φm(v)) = ΦM

(∑
i∈I

v′i

)

=
∑
i∈I

ΦM(v′i)

=
∑
i∈I

ΦM+1(v′i)

= ΦM+1

(∑
i∈I

v′i

)

= ΦM+1(Φm(v))

= ΦM+m+1(v),

which contradicts that Φ does not stabilize at v. Therefore, Φ stabilizes at every vertex.

In fact, the general result is that the gradient flow stabilizes at every linear combination

of simplices of a simplicial complex.

Theorem 5.2.5 ([15]). Let σ ∈ kcp for p = 0, 1, . . . , dim(K). Then there exists N such that

Φi(σ) = Φj(σ) for all i, j ≥ N .

To prove this theorem, we need a few technical results.

Proposition 5.2.6 ([34]). Let σ1, . . . , σr be the p-dimensional simplices of a simplicial com-

plex K and write Φ(σi) =
∑

j aijσj where aij is either 0 or 1 (so it it written as a linear

combination over the field Z2). Then aii = 1 if and only if σi is critical. Furthermore, if

aij = 1, then f(σj) < f(σi).

Proof. By Proposition 5.2.1 (iii), for any σi, 1 ≤ i ≤ r, we know exactly one of the following

is satisfied: σi is critical, σi ∈ Im(V ), or V (σi) 6= 0.
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Suppose σi is critical, then V (σi) = 0 and f(τ) < f(σi) for any τ (p−1) < σi. In addition,

V (τ) = 0 or V (τ) = σ̃τ 6= σi with f(σ̃τ ) ≤ f(τ) < f(σi). Then

Φ(σi) = σi + 0 + V (∂(σi))

= σi + V
∑
τ

τ

= σi +
∑
τ

V (τ)

= σi +
∑
τ

σ̃τ ,

where σ̃τ appears in the sum if and only if f(σ̃τ ) < f(σi). Conversely, suppose σi is not

critical, so it is either the head or the tail of an arrow. If σi is a head, then ∂(V (σi)) =

∂(0) = 0 and V (∂(σi)) = σi contains σi, so

Φ(σi) = σi + ∂(V (σi)) + V (∂(σi))

= σi + σi + · · ·+ 0.

By Lemma 4.2.3, there cannot be another σi in the sum, hence aii = 0. If σi is a tail, then

∂(V (σi)) contains σi, and by Lemma 4.2.3, there cannot be another σi in either ∂(V (σi)) or

V (∂(σi)), so we have aii = 0. We have now proven the case when σi is critical.

Suppose that σi ∈ Im(V ). Then there exists ν(p−1) < σi such that V (ν) = σi. We know

that V ◦ V = 0 from Proposition 5.2.1 (i), then

Φ(σi) = σi + V (∂(σi)) + ∂(V (σi))

= σi + V (∂(σi)) + ∂(V (V (ν)))

= σi +
∑
τ

V (τ),

where τ (p−1) < σi. By Proposition 5.2.1 (ii) (or rather, Lemma 4.2.3), ν is the only
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codimension-1 face of σi such that V (ν) = σi. Hence,

Φ(σi) = σi + V (ν) +
∑
τ 6=ν

V (τ) = σi + σi +
∑
τ 6=ν

V (τ) =
∑
τ 6=ν

V (τ).

For any τ , we have either V (τ) = 0 or V (τ) = σ̃i, where σ̃
(p)
i > τ and f(σ̃i) ≤ f(τ) < f(σi).

Thus,

Φ(σi) =
∑

f(σ̃i)<f(σi)

σ̃i.

Finally, suppose that V (σi) = τ (p+1) 6= 0. For each ν(p−1) < σi, by Definition 5.8 and

Lemma 4.2.3, either V (ν) = 0 or V (ν) = σ̃j, where σ̃j > ν, σ̃j 6= σi and f(σ̃j) ≤ f(ν) < f(σi).

Then

V (∂(σi)) =
∑

V (ν) =
∑

σ̃j.

On the other hand, Lemma 4.2.3 implies that for any σ̃k < τ , σ̃k 6= σi, we must have

f(σ̃k) < f(τ) ≤ f(σi). Then

∂(V (σi)) = ∂(τ) = σi +
∑

σ̃k.

Together, we have

Φ(σi) = σi + V (∂(σi)) + ∂(V (σi)) = σi +
∑

σ̃j + σi +
∑

σ̃k =
∑

σ̃j +
∑

σ̃k.

Note that there might be overlap between {σ̃j} and {σ̃k}, and these terms will cancel out in

the calculation. Regardless, every term that appears in the final sum has its value under f

less than f(σi).

Lemma 5.2.7. Let σ ∈ K and write c = V (∂(σ)). If σ is critical, then Φm(σ) = σ + c +

Φ(c) + Φ2(c) + · · ·+ Φm−1(c).
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Proof. The proof is a straightforward induction. For the base case, since σ is critical,

Φ(σ) = σ + V (∂(σ)) + ∂(V (σ)) = σ + c+ 0 = σ + c.

For the induction step, suppose that Φm(σ) = σ + c + Φ(c) + Φ2(c) + · · · + Φm−1(c). Then

Φm+1(σ) = σ + c+ Φ(c) + Φ2(c) + · · ·+ Φm(c), and we are done.

Now we are ready to present the proof of Theorem 5.2.5:

Proof of Theorem 5.2.5. We show that Φ stabilizes at every simplex, and the theorem follows

from linearity of Φ. Let rσ = {σ̃(p) ∈ K : f(σ̃) < f(σ)}. We use induction on |rσ|.

For |rσ| = 0, f(σ̃) ≥ f(σ) for all σ̃. We claim that either Φ(σ) = σ or Φ(σ) = 0. To prove

this claim, we first observe that σ cannot be the tail of an arrow. If σ was the tail of an arrow,

then there exists τ (p+1) > σ such that f(τ) ≤ f(σ). But this means that f(σ̃) ≥ f(σ) ≥ f(τ)

for all σ̃, in particular, for any codimension-1 faces of τ . Hence, it contradicts Lemma 4.2.3.

That means σ is either a critical simplex or the head of an arrow. If σ is crtical, then

∂(V (σ)) = ∂(0) = 0; in addition, any codimension-1 face ν of σ cannot be the tail of an

arrow since f(σ̃) ≥ f(σ) > f(ν), so V (∂(σ)) = 0. Hence, Φ(σ) = σ. On the other hand, if σ

is the head of an arrow, then there exists ν(p−1) < σ such that f(ν) ≥ f(σ). By Definition

5.8, ∂(V (σ)) = ∂(0) = 0; also, Lemma 4.2.3 implies that f(σ̃) ≥ f(σ) > f(ν̃) for any

ν̃(p−1) < σ other than ν, so ν cannot be the tail of an arrow, hence V (∂(σ)) = V (ν) = σ.

Therefore, Φ(σ) = σ + σ = 0. This claim is now proved and it gives the base case.

For the induction step, suppose that Φ stabilizes at any σ′ for |rσ′ | = 0, 1, . . . , n− 1. Let

σ ∈ K such that |rσ| = n. Consider cases when σ is regular and when σ is critical. Here we

present the proof when σ is regular. The proof for the case of a critical σ is very technical,

we refer readers to [34]. There, Lemma 5.2.7 is used to state the sufficiency of proving the

existence of some N such that ΦN(c) = 0, where c = V (∂(σ)).

If σ is regular, then we can write Φ(σ) =
∑

f(σ̃k)<f(σ) σ̃k, 1 ≤ k ≤ n, by Proposition
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5.2.6. For any σ̃ ∈ rσ, we have |rσ̃| < |rσ| since σ̃ /∈ rσ̃. By the induction hypothesis,

for each σ̃, there exists Nσ̃ such that Φi(σ̃) = Φj(σ̃) for all i, j ≥ Nσ̃. Then, by linearity,

ΦN(σ) = ΦM(σ) for any N,M > maxσ̃Nσ̃.

5.3 Morse Homology

In Subsection 4.3.2 we related simplicial homology theory and discrete Morse theory in the

form of discrete Morse inequalities. In this section, we present a deeper connection between

the two, using discrete Morse theory to simplify the computation of simplicial homology.

Definition 5.11. Let C = {(Ci, di)} and C ′ = {(C ′i, d′i)} be chain complexes. A chain map

between C and C ′ is a collection of maps f = {fi : C → C ′} such that d′i ◦ fi = fi−1 ◦ di for

all i, i.e. the commutative diagram

· · · Ci+1 Ci Ci−1 · · ·

· · · C ′i+1 C ′i C ′i−1 · · ·

di+1

fi+1

di

fi fi−1

d′i+1 d′i

is satisfied.

Define f∗ : H•(C•) → H•(C
′
•), f∗([z]) = [f(z)]. Then it is a homomorphism (linear

transformation) between homology vector spaces induced by the chain map f : let [z], [z′] ∈

H•(C•), then f∗([z] + [z′]) = [f(z + z′)] = [f(z)] + [f(z′)] = f∗([z]) + f∗([z
′]). The following

is a technical lemma about the induced homomorphism.

Lemma 5.3.1. Let f : C → C ′ and g : C ′ → C ′′ be chain maps. Then for each i,

(i) (gi ◦ fi) = (gi)∗ ◦ (fi)∗;

(ii) if 1Ci is the identity map on Ci, then (1Ci)∗ = 1H•(Ci).
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Proof. For (i), we have

(gi ◦ fi)∗([z]) = [gi ◦ fi(z)] = [gi(fi(z))] = (gi)∗([fi(z)]) = (gi)∗((fi)∗([z])) = (gi)∗ ◦ (fi)∗([z]).

For (ii), we have

(1Ci)∗([z]) = [1Ci(z)] = [z] = 1H•(Ci)([z]).

One of the chain complexes we study here is (kci , ∂i), from which we developed the

simplicial homology. The other chain complex, which is derived from discrete Morse theory,

is a flow complex.

Definition 5.12. Let f : K → R be a discrete Morse function, where K is an n-dimensional

simplicial complex. Define kΦ
p (K) = {c ∈ kcp : Φ(c) = c}. Because of the linearity of Φ, we

can restrict the boundary operator ∂p : kcp → kcp−1 to ∂p : kΦ
p → kΦ

p−1. Then we obtain a

chain complex (kΦ
i , ∂i):

· · · kΦ
i+1 kΦ

i kΦ
i−1 · · · kΦ

0 0,
∂i+1 ∂i ∂i−1 ∂1 ∂0

which is called the flow complex of K (associated to f).

Now, we present the first main theorem of the section, which says that the homology

vector spaces obtained from the flow complex are the same as the simplicial homology vector

spaces.

Theorem 5.3.2 ([17]). For all i ≥ 0, Hi(k
Φ
• ) ∼= Hi(K).

Proof. By Theorem 5.2.5, we know that, for any p, every element in kcp eventually stabilizes

at some element in kΦ
p . Then, we obtain a map Φ∞ : kc• → kΦ

• . We show that the induced

map Φ∞∗ : Hi(k
Φ
• )→ Hi(K) is an isomorphism, particularly whose inverse is the chain map

induced by inclusion.
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By definition, kΦ
• ⊆ kc• , so we have a inclusion map ι : kc• → kΦ

• . Then Φ∞ ◦ ι = 1kΦ
•
,

by Lemma 5.3.1, we have that Φ∞∗ ◦ ι∗ = 1Hi(kΦ
• ). Now, let [z] ∈ Hi(K), then

ι∗ ◦ Φ∞∗ ([z]) = ι∗([Φ
∞(z)] = [ι(Φ∞(z))] = [Φ∞(z)].

We show that [Φ∞(z)] = [z], so that ι∗ ◦ Φ∞∗ = 1Hi(K). By Theorem 5.2.5, we know that

there exists N such that ΦN(z) = Φ∞(z). We will show that Φ(z) ∈ [z], so by applying

Φ repeatedly, we get ΦN(z) ∈ [z]. By definition, Φ(z) = z + ∂(V (z)) + V (∂(z)). Note

that ∂(V (z)) ∈ Im(∂) naturally, while V (∂(z)) = 0 since z ∈ Ker(∂). Then Φ(z) ∈ [z],

[Φ∞(z)] = [Φn(z)] = [z]. Hence, ι∗ ◦ Φ∞∗ = 1Hi(K).

Theorem 4.3.3 tells us that a simplicial complex K is homotopy equivalent to a cell

complex whose p-cells are in a bijection with critical p-simplices of K. This suggests that

the set of critical simplices may contain enough information for us to recover the topological

structure of K.

Definition 5.13. Let K be a simplicial complex with gradient vector field V . The p-critical

complex of K with respect to V , denotedMp, is the vector space generated by the critical

p-simplices of V .

Note thatMp is a subspace of kp, so Φ∞ can be naturally restricted toMp. The following

is the second main theorem of this section, which tells us that vector spaces generated by

the critical simplices are the same as those of the flow complex:

Theorem 5.3.3 ([17]). For each p, the map Φ∞ :Mp → kΦ
p is an isomorphism.

Proof. We show that Φ∞ is both surjective and injective. Let c ∈ kΦ
p , and write c =∑

σ∈Kp aσσ, where aσ ∈ Z2. Now, let c̃ =
∑

σ critical aσσ, so c̃ ∈ Mp is the sum of critical

simplices in the expansion of c. Consider the components of Φ(c̃). Since any σ that appears

in the expansion of c̃ is critical, ∂(V (σ)) = 0. At the same time, by Proposition 5.2.1 (iii),
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none of the components in the expansion of V (∂(σ)) is critical. We apply the same argument

to Φ∞ and conclude that

Φ∞(c̃) =
∑

σ critical

aσΦ∞(σ) =
∑

σ critical

aσ(σ + Vaσ) =
∑

σ critical

aσσ = c̃.

Since Φ(Φ∞(c̃) − c) = Φ(Φ∞(c̃)) − Φ(c) = Φ∞(c̃) − c, we have Φ∞(c̃) − c ∈ kΦ
p . Then

Proposition 5.2.6 implies that Φ∞(c̃)− c = 0, hence Φ∞ is surjective.

We use Theorem 2.1.4 to show that Φ∞ is injective. Let c ∈ Mp such that Φ∞(c) = 0.

Then

Φ∞(c) =
∑

σ critical

aσΦ∞(σ) = 0.

A similar argument as in the surjective case using Proposition 5.2.6 implies that c = 0.

Thus, the flow complex should be equivalent to the chain complex formed by Mp and

some proper boundary operator, giving isomorphic homology vector spaces. The desired

boundary operator is described by the next theorem. Ultimately, we have a simplified chain

complex, formed by critical simplices, from which we obtain the same homology vector spaces

as the simplicial homology vector spaces.

Theorem 5.3.4 ([34]). Let V be a gradient vector field on a simplicial complex K. For each

σ ∈Mp, define

∂p(σ) =
∑

β(p−1) critical

δσ,ββ,

where

δσ,β :=


0 if the number of V -paths from a maximal face of σ to β is even;

1 if it is odd

Then M = {(Mi, ∂i)} is a chain complex, which we call a chained critical complex, and

Hi(M) ∼= Hi(K).
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Figure 5.6: The simplicial complex with a gradient vector field in Example 5.3.5

For a proof of this theorem and an analogous case in the classical Morse theory, we refer

readers to [25].

Example 5.3.5. Consider the simplicial complex K in Figure 5.6. The c-vector of K is

(5, 7, 1), so if we want to calculate the simplicial homology of K, we would work on the chain

complex

k5 k7 k1 0.

However, with the additional gradient vector field V , we can simplify this calculation with

Theorem 5.3.4.

The critical simplices of V are v0, v1v3 and v1v4. Then we have

M2
1 M1

0 0,

and we can already see that it is a much “smaller” chain complex.

We count that there are 2 gradient paths from v1v3 to v0 and 2 gradient paths from

v1v4 to v0, so ∂1(v1v3) = 0 and ∂1(v1v4) = 0. Hence, Ker (∂1) = 〈v1v3, v1v4〉. In addition,

Im (∂2) = 0 trivially. As a result, H1(M) = Ker (∂1) /Im (∂2) ∼= k2, while H0(M) is clearly
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isomorphic to k1. Therefore, by Theorem 5.3.4, we have b1(K) = 2 and b0(K) = 1, which

correspond to the two 1-dimensional holes and the connectedness of K.
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Chapter 6

Persistent Homology

6.1 Motivation

As we saw earlier, the main objects of interest of discrete Morse theory are simplicial com-

plexes. In practice, simplicial complexes are commonly studied in a filtration built over some

given data space to capture the topological feature of the date space, which are often hidden

from naked eyes.

Definition 6.1. A filtration of a set is a nested sequence of its subsets, and each element

in the sequence is called a level.

Let K be a simplicial complex, then the nested sequence of level subcomplexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K

forms a filtration of K.

It is often not sufficient to only compute the homology and Betti numbers at certain level

of a filtration ([20]), as we cannot distinguish between topological features of the original

space and the noise that appears and disappears quickly ([37]). To see this, we use an

example of the homological sequence.
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Definition 6.2. Let f : K → R be a discrete Morse function with m critical values c∗1 <

c∗2 < · · · < c∗m. Definine Bf
k (i) = bk(K(c∗i )) for all 0 ≤ k ≤ n and 1 ≤ i ≤ m. Then

{Bf
k (i)}mi=1 is the k-th homological sequence of f .

For more on homological sequences, we refer the interested readers to [1], in which

the authors studied its properties on finite simplicial complexes, particularly collapsible

2-dimensional simplicial complexes, and its connection to lattice walk.

Definition 6.3. Let f, g : K → R be discrete Morse functions with m critical values. Then

f and g are said to be homologically equivalent if Bf
k (i) = Bg

k(i) for all 0 ≤ k ≤ n and

1 ≤ i ≤ m.

Example 6.1.1. Consider the two discrete Morse functions f and g on the same simplicial

complex shown in Figure 6.1.

Figure 6.1: Two discrete Morse functions that give the same homological sequence

Observe that all simplices are critical under either function. If we construct filtrations

by taking level subcomplexes at critical values, both f and g give the same homological

sequence on K:

i : 1 2 3 4 5 6 7 8 9

B0 : 1 2 3 4 3 2 1 1 1

B1 : 0 0 0 0 0 0 0 1 2
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thus they are homologically equivalent.

Despite this, with a closer examination of the two filtrations, we shall see that cycles

were formed very differently under each function. A 1-cycle was created by f at K8, but was

destroyed at K9 by the two newly-formed 1-cycles, resulting in Bf
1 (8) = 1 and Bf

1 (9) = 2.

On the other hand, under g, a 1-cycle was created at K8 and another 1-cycle was created at

K9 while nothing was destroyed, resulting in Bg
1(8) = 1 and Bg

1(9) = 2, same as that of f .

With this example, we clearly see that computing homology at an individual level does

not produce enough information about either the topological structure of the underlying

simplicial complex or the possible discrete Morse functions that can be applied.

6.2 Persistence

6.2.1 Persistent Homology

The concept of persistence was first introduced in [14] to provide a solution for the issue we

discussed in the previous section. It has since then become a powerful tool in the field of

topological data analysis. Recall some notions of simplicial homology from Section 3.3.

Definition 6.4. Let F be a filtration of a simplicial complex K. We write Zi
k = Zk (Ki)

and Bi
k = Bk (Ki), where Ki is the i-th level of F . If p = j − i, then the p-persistent

k-dimensional homology group of Ki is defined as

H i,j
k = Zi

k/
(
Bj
k ∩ Z

i
k

)
.

This group is well-defined, as both Bj
k and Zi

k are subgroups of Cj
k, the free abelian group

with basis of the set of k-simplices of Kj, so their intersection is again a normal subgroup.

With this definition, we are looking for non-bounding cycles (holes) that stay non-bounding

for certain length of time, or in our case, certain number of levels in a filtration, i.e. those

that persist.
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Alternatively, within the filtration, if ι : Ki−1 → Ki, f(α) = α is the inclusion map, then

it induces a homomorphism Hk(K
i−1) → Hk(K

i) ([13]). Write H i
k = Hk(K

i) and compose

these homomorphisms, we obtain maps ιi,jk : H i
k → Hj

k, where j − i = p.

Definition 6.5 (Alternative definition for persistent homology). Under the settings above,

the p-persistent k-dimensional persistent homology vector spaces are images of

homomorphisms induced by inclusion, that is H i,j
k = Im

(
ιi,jk
)
, j − i = p.

To simplify terms, when the context is clear, we will say k-th persistent homology group

or vector space without mentioning p-persistent. The same holds for the following term:

Definition 6.6. The k-dimensional persistent Betti numbers βi,jk are the ranks of H i,j
k .

As we saw in Example 6.1.1, non-bounding cycles (we will just say “cycles” for short) are

created and destroyed when moving through levels of a filtration. Elements of the persistent

homology group H i,j
k consist of k-th homology classes of Ki that are still alive at Kj, i.e.

k-cycles created at or before Ki that are still non-bounding when entering Kj. Persistent

Betti numbers count such distinct homology classes. One way to visualize persistent Betti

numbers is through plotting multiplicities, which is defined as

µi,jk =
(
βi,j−1
k − βi,jk

)
−
(
βi−1,j−1
k − βi−1,j

k

)
.

The difference in the first parenthesis counts cycles that were created at or before Ki and

were destroyed when entering Kj; the difference in the second parenthesis counts cycles that

were created at or before Ki−1 and were destroyed when entering Kj. Together, we have

number of cycles that were created precisely at Ki and were destroyed when entering Kj. If

we adapt the common filtration construction by adding one simplex at a time, at most one

cycle can be created at each level ([22]).

Definition 6.7. The k-dimensional persistence diagram of the filtration F is the set

of points (i, j) ∈ R2 such that µi,jk = 1.
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Since µi,jk is defined with i < j, all points of the persistence diagram lie above the diagonal.

Given some point (i, j), consider points that lie in its upper left quadrant with the horizontal

baseline removed, that is (m, l) such that k ≤ i and l > j. Then, each (m, l) represents a

cycle that was created before or at Ki and was destroyed when entering Kj or later, so the

total number of such points is in fact the number of non-bounding cycles present throughout

Ki to Kj. Hence, the k-th persistent Betti number can be written as

βi,jk =
∑

m≤i,l>j

µm,lk .

In addition, the lifetime, or the persistence, of each k-cycle can be read from the k-th

persistent diagram by observing the vertical distance between its multiplicity point and the

diagonal. These properties show that the persistent diagram encodes all the information

about the persistent homology.

We use a simple example to help illustrate the concept of persistent diagram. While the

computation of persistent Betti numbers of complicated simplicial complexes is not our focus

here, we refer readers to [38] for algorithms concerning this topic.

Example 6.2.1. Let K be the a standard 2-simplex constructed by adding one simplex

at a time. The sequence in which the simplices are added is labeled on each simplex of K

as shown in Figure 6.2, and this gives a filtration of K. Although less important in this

example, readers should notice that every simplex will be critical if we see the labelling as a

discrete Morse function.

Following this construction, we see that the 0-cycle created at K2 was destroyed with the

addition of the 1-simplex at K4, so we expect to have µ2,4
0 = 1. Indeed,

µ2,4
0 = (β2,3

0 − β
2,4
0 )− (β1,3

0 − β
1,4
0 ) = (2− 0)− (1− 0) = 1.
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Figure 6.2: A 2-simplex formed by adding 1 simplex at a time

Similarly, we see that the 0-cycle created at K3 was destroyed at K5, and

µ3,5
0 = (β3,4

0 − β
3,5
0 )− (β2,4

0 − β
2,5
0 ) = (2− 1)− (0− 0) = 1.

Moving on to 1-dimension, a 1-cycle was created at K6 and was destroyed (filled up) at K7.

Unsurprisingly,

µ6,7
1 = (β6,6

1 − β
6,7
1 )− (β5,6

1 − β
5,7
1 ) = (1− 0)− (0− 0) = 1.

Finally, the component created at K1 was not destroyed until the additional 0-space at the

end (K8). As we can calculate,

µ1,8
0 = (β1,7

0 − β
1,8
0 )− (β0,7

0 − β
0,8
0 ) = (1− 0)− (0− 0) = 1.

The 0-dimensional persistence diagram is presented in Figure 6.3.

We can calculate all persistent Betti numbers in each dimension directly from the dia-

gram. For example, in 0-dimension, there are 2 multiplicity points (m, l) such that m ≤ 3

and l > 4, so β3,4
0 = 2; Similarly, in 1-dimension, there is no point in the upper left quadrant

of (3, 5), hence β3,5
1 = 0.
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Figure 6.3: 0-dimensional persistent diagram of K in Example 6.2.1

6.3 Connection with Discrete Morse Theory

We now present the connection between discrete Morse theory and persistent homology.

Having seen Section 5.3, readers should expect some simplification of computation of the

persistent homology if we could construct some specific critical complex. However, for persis-

tent homology, the underlying geometric object is a filtration of simplicial complexes instead

of a single one. So to apply the theory, some adjustments need to be made. Mischaikow

and Nanda studied this issue in [30] through modifications to the discrete Morse matching

(Section 5.1). Let M be a discrete Morse matching. We can write M = (A, w : Q → K),

where A,Q and K partition the set of simplices of K: A denotes the set of critical simplices,

Q denotes the set of tails and K denotes the set of heads. The map w is a bijection that

describes how tails and heads are paired: for σ ∈ Q and τ ∈ K, if w(σ) = τ , then (σ, τ) is a

regular pair. Consider a filtration F of a simplicial complex K.

K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K.

Definition 6.8. A filtered discrete Morse matching on F is a collection of the discrete
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Morse matching M i = (Ai, wi : Qi → Ki) on each level Ki with the additional structures

• Ai ⊆ Ai+1,Qi ⊆ Qi+1,Ki ⊆ Ki+1

• wi = wi+1|Qi

for each i ∈ {0, . . . , n}. The final level of the filtered discrete Morse matching (An, wn :

Qn → Kn) is denoted by (A, w : Q → K).

If we construct F by increasing critical values, then {Ai} forms a filtration of the corre-

sponding chained critical complex. Ultimately, Mischaikow and Nanda proved the following

theorem, which can be used to greatly reduce the computation for persistent homology of a

given simplicial complex.

Theorem 6.3.1 ([30]). For all i, j, k, l, we have

H i,j
k (K l) ∼= H i,j

k (Al).

We highlight some key concepts used in the proof. In Section 5.3, we discussed that a

chain map induces homomorphisms between homology vector spaces. A similar result can be

shown for persistent homology, for which additional structures on a chain map are needed.

Definition 6.9. Let φ, ψ : C → C ′ be chain maps. A sequence of homomorphisms Θ = {Θk :

Ck → C ′k} is a chain homotopy between φ and ψ if

Θk−1 ◦ ∂k + ∂′k+1 ◦Θk = φk − ψk

on Ck.
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This terminology makes sense in the way that for [z] ∈ Zk/Bk,

(φk)∗([z])− (ψk)∗([z]) = ((φk)∗ − (ψk)∗)([z]) = (Θk−1 ◦ ∂k + ∂′k+1 ◦Θk)([z])

= [Θk−1 ◦ ∂k(z) + ∂′k+1 ◦Θk(z)]

= [Θk−1(∂k(z)) + ∂′k+1(Θk(z))]

= [0 + ∂′k+1(Θk(z))]

= [0].

That is φ and ψ induce the same map on homology.

Now, consider simplicial complexes K and K ′, and let F and F ′ be filtrations of K and

K ′ respectively. We have C(K l) and C(K ′l) as chain complexes induced by inclusions.

Definition 6.10. A filtered chain map Φ : F → F ′ is a sequence of chain maps {φl• :

C•(K
l)→ C•(K

′l)} such that the following diagram commutes:

C•(K
l) C•(K

l+1)

C•(K
′l) C•(K

′l+1)

φl• φl+1
•

Given any chain map Φ, there exists a collection of homomorphisms {φi,j,l• : H i,j
• (K l)→

H i,j
• (K ′l)} defined by

φi,j,l• (z) = φl+j−i• ◦ ιi,j,l• (z), z ∈ Z•(K l),

where ιi,j,l : C•(K
l) → C•(K

l+j−i) is the homomorphism induced by composition of nested

inclusion maps.

Definition 6.11. Let Φ,Ψ : F → F ′ be filtered chain maps. A filtered chain homotopy

between Φ and Ψ is a collection of chain homotopies between each φk• and ψk• . If such

collection exists, we say that Φ is filtered chain homotopic to Ψ.

Similar to the classic homotopy theory, two maps are said to be filtered chain homo-
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topy equivalences of each other if their compositions are filtered chain homotopic to the

identity map. Theorem 3.3.6 can also be extended to persistent homology:

Proposition 6.3.2 ([30]). If there exist filtered chain homotopy equivalences Φ : F → F ′

and Ψ : F ′ → F , then

H i,j
k (K l) ∼= H i,j

k (K ′l)

for all i, j, k, l.

The proof of this proposition follows from the fact that their induced homomorphisms

on persistent homology groups are inverses of each other. Hence the key step in proving

Theorem 6.3.1 is to construct maps Φ : F → {Ai} and Ψ : {Ai} → F that are filtered chain

homotopy equivalences. We refer readers to [30] for details.
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Chapter 7

Related Topics

In this chapter, we close the thesis by mentioning in a less rigorous manner some works in

topics closely related to discrete Morse theory and persistence.

7.1 Evasiveness

We have all taken surveys and questionnaires that require us to answer only “Yes” or “No”,

and each question depends on the answer to the previous question. In mathematics, this type

of sequence is formally regarded as a decision tree algorithm. In the context of simplicial

complex, let S be a standard n-simplex (∆n) and let σ be a face of S. These Boolean

questions often take the form of “Is vertex vi contained in σ?” in order to determine if σ is

contained in some subcomplex M of S. For any decision tree algorithm A, i.e. the sequence

of questions asked, the number of questions that must be asked to determine if σ is in M is

denoted by Q(σ,A,M). The complexity of M , c(M), is then defined by

c(M) = inf
A

sup
σ
Q(σ,A,M).

The subcomplex M is said to be evasive if c(M) = n+ 1, and nonevasive otherwise. On the

other hand, for a given decision tree algorithm A, any σ with Q(σ,A,M) = n + 1 is called
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an evader of A.

Some interesting results have been proven under this setting. In [24], Kahn, Saks, and

Sturtevant showed that if M is nonevasive, then M is both collapsible and contractible.

Forman quantified evasiveness and linked it with discrete Morse theory. We state one of his

main theorems here.

Theorem 7.1.1. For any decision tree algorithm A, let V denote the vector field consisting

of pairs of non-empty faces of S which cannot be distinguished by A until the last question.

Then, V is a gradient vector field on S.

The key observation in understanding this theorem is that evaders come in pairs: by the

time one gets to the (n + 1)-th question, there will be two possible simplices σ1, σ2 with

Q(σ1, A,M) = Q(σ2, A,M) = n+ 1 no matter what the answer to the (n+ 1)-th question is.

Without loss of generality, let us assume that “No” gives simplex σ1 and “Yes” gives simplex

σ2. Then σ1 < σ2 and (σ1, σ2) can be viewed as a vector of a gradient vector field.

In the field of computer science, evasiveness is often used to study connectivity and com-

plexity within networks. Discrete Morse theory can provide an alternative way of studying

these topics.

7.2 Dynamical Systems

Dynamical systems is a field in which one studies different states over time. Typical topics

studied include fixed points, periodic motions, and flows. As we have mentioned, some

topics in Section 5.2 such as gradient flow can be seen as components of a dynamical system.

However, such a dynamical system is often too restricted given the nature of a discrete

Morse function. In particular, there can be at most one “flow” going through any given

simplex. Jost and Yaptieu ([23]) developed a generalized version of the gradient flow, which

allows multiple inward or outward arrows (but not both at the same time) at a simplex,

thus supporting more complicated dynamical systems. They also constructed the proper

86



boundary operator, so that one may recover the homology of the underlying complex.

7.3 Čech and Rips Complexes

Given some data set in a Euclidean n-dimensional space En, which is usually referred as a

point cloud data, there are many methods to generate a simplicial complex. Two of the most

natural ones, Čech complex and Rips complex, are generated through distances among data

points. Let X ∈ En be a collection of data points.

Definition 7.1. The Čech complex, Cε, is the simplicial complex whose k-simplices are

determined by the (k+1)-element subcollection of X with ε/2-neighborhoods of all elements

having a non-empty intersection.

Definition 7.2. The Vietoris-Rips complex, or Rips complex for short, denoted Rε, is

the simplicial complex whose K-simplices are determined by the (k+1)-element subcollection

of X with elements being pairwise within distance ε.

In the field of topological data analysis, both Čech complex and Rips complex have been

studied to reveal topological information of data sets that cannot be seen. Particularly,

the Nerve Theorem ([32], Theorem 2) states that Cε has the same homotopy type as the

union of closed balls of radius ε/2 about points in {xα}. However, direct computations for

Čech complexes are difficult, especially when the data set is large, while Rips complexes are

computationally less intensive. This is because, by definition, Rips complexes are completely

determined by the combinatorics of their 1-skeleton. With this advantage, Silva and Ghrist

([12]) showed that pairs of appropriate Rips complexes can be used to approximate a given

Čech complex.

Theorem 7.3.1 ([12], Theorem 2.5). Let X be a data set in En. Then there is a chain of

inclusions

Rε Cε′ Rε′
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whenever

ε′

ε
≥
√

2n

n+ 1
.

The concept of persistence can be naturally applied to the inclusion induced map ι∗ :

H•(Rε) → H•(Rε′) with the increasing radius. Hence, Theorem 7.3.1 provides another

reason why persistence is advantageous for capturing more topological information.
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[22] D. Horak, S. Maletić, and M. Rajković, Persistent Homology of Complex Networks, J.

Stat. Mech. Theory Exp. 2009, no. 3, P03034, 24 pp.

[23] J. Jost and S. Yaptieu, A Generalized Discrete Morse-Floer Theory. Communications

in Mathematics and Statistics 7 (2019), pp. 225-252.

[24] J. Khan, M. Saks, and D. Sturtevant, A topological approach to evasiveness. Combina-

torica 4 (1984), pp. 297-306.

[25] K. P. Knudson, Morse Theory: Smooth and Discrete. World Scientific Publishing Com-

pany, 2015.

[26] J. Lee, Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218,

Springer-Verlag, New York, 2012.

[27] M. Lin and N. A. Scoville, On the automorphism group of the Morse complex, 2019,

arXiv: 1904.10907.

[28] J. Milnor, Morse Theory. Princeton University Press, Princeton, 1963.

[29] M. Morse, Relations between the critical points of a real function of n independent

variables. Transactions of the American Mathematical Society 27 (1925), pp. 345-396.

[30] K. Mischaikow and V. Nanda, Morse Theory for Filtrations and Efficient Computation

of Persistent Homology. Discrete Computational Geometry 50 (2013), pp. 330-353.

[31] J. Munkres, Topology, Second Edition. Princeton Hall, Upper Saddle River, 2000.

[32] J. F. Peters and H. Dutta, Equivalence of Planar Čech Nerves and Complexes. National
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