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ABSTRACT 

 

Fleet Management and Energy Management of Shared Autonomous Electric Vehicles 

 

Elena Golchin 

 

Nowadays, many cities are supplied with one or several fleets of shared vehicles as an alternative 

method for daily transportation. These fleets could be improved in many aspects if they employ 

autonomous or electric autonomous vehicles. Zero greenhouse gas (GHG) emission, fewer 

personnel requirements, automatic self-charge evaluation and process, and smooth driving are 

some of these improvements. This essay models a fleet comprised of shared electric autonomous 

vehicles (SEAV), giving one-way transportation service for short-distance travels. The case study 

of the area around Montreal Olympic Park is suggested to test the model's validity. In this regard, 

five stations are introduced on the streets surrounding the park. Different combinations of the fleet 

parameters are considered to generate 105 various scenarios. A multi-agent model is developed in 

the NetLog toolkit to simulate such a fleet under each scenario. The results show that a fleet of 20 

vehicles of a 50km range with 30 parking spots can meet the demand under all considered customer 

arrivals frequencies with 90% or above performance rates. Another finding from the results 

suggests that the impact of different ranges on the fleet's performance compared to the fleet size 

and demand probability is almost negligible. The last part investigates the number of parking spots 

on fleet performance. The results suggest that the fewer the number of parking spots, the fewer 

rejected customers but at the same time, the higher empty travels.  
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Chapter 1: 

 

1 Introduction 

 

1.1 Background 

The invention of internal combustion engine vehicles (ICEV) and their accessibility to individuals 

have made urban transportation faster and easier than it used to be in the past. A machine that used 

to help humans in their everyday lives is now making it impossible to live in big cities. Congestion, 

greenhouse gas (GHG) emissions, human driver errors, and the high price of owning a car despite 

being idle most of the time are significant shortfalls of current means of transportation. The 

emergence of novel technologies such as electric vehicles (EV), autonomous vehicles (AV), and 

autonomous electric vehicles (AEV), in addition to new methods of transportation such as fleets 

of shared cars, can lead to a more promising approach for urban transport.  In the following 

subsections, each of the technologies and methods mentioned above, as well as their benefits and 

shortfalls, are briefly described. 

 

1.1.1 Electric Vehicles 

One of the significant disadvantages of ICEVs is their tailpipe emissions, which have negatively 

affected major cities' air quality. Due to the zero tailpipe emission of EVs, they seem to be a better 

alternative. Although some argue that this statement is not entirely correct since providing the 

needed electricity for charging EV batteries requires fossil fuel burning, which is a source of 

carbon dioxide emission. In response, Taiebat and  Xu  (2019) claim that with locating electricity 
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generating plants outside cities, it is easier to manage the produced air pollutants, hence not directly 

affecting the cities' air quality. The other solution that they suggest is employing renewable energy 

sources for generating the required electricity, such as solar plates or turbines.  

Despite the advantages of EV implementation in the environment, some barriers still exist to be 

accepted by most people. These barriers include battery limitation, limitations in the number of 

charging infrastructure, charging time management, and range anxiety. Range anxiety refers to the 

anxious feeling of not fulfilling a trip with an EV and losing all battery energy before reaching the 

destination. These concerns are usually unnecessary because, with the improvement of battery 

technologies, many vehicles can efficiently function to complete trips inside a city. However, for 

traveling long distances between cities, EVs might not be a good option. Other transportation 

methods, such as fleets comprised of shared EVs (later introduced in section 1.1.3), will relieve 

the user from any charging-related concern. 

 

1.1.2 Autonomous Vehicle 

Another emerging technology that has promising aspects for improving urban transportation is 

AVs.  Since human errors play a significant role in road congestions, AVs' implementation could 

lead to error erasing. Increasing fuel efficiency, avoiding fatal crashes, and providing service for 

everyone are some of its other benefits (Fagnant & Kockelman, 2015).  

To understand the concept of a fully autonomous vehicle, according to the SAE Standard J3016, 

Nieuwenhuijsen et al. (2018) developed a table for different levels of vehicle automation. Six 

automation level for the dynamic driving task is mentioned which are as follows: 
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• Level 0 (No Automation). The human driver is in charge of all the dynamic driving tasks, 

even when the vehicle is equipped with a warning or intervention system. 

• Level 1 (Driver Assistance). The vehicle is equipped with a driving assistant system that 

can perform either steering or acceleration/de-acceleration. All the other elements of the 

dynamic driving task need to be done by the human driver. 

• Level 2 (Partial Automation). This level is very similar to level 1, with the variation that 

the driving assistant system performs both tasks of steering and acceleration/de-

acceleration.  

• Level 3 (Conditional Automation). The vehicle can perform all the elements of dynamic 

driving tasks at this level but expects the human driver to act accurately when the system 

indicates human intervention.  

• Level 4 (High Automation). This level is the same as level 3 except that the system can 

perform when the human driver is not acting in respond to an intervention request. 

• Level 5 (Full Automation). The vehicle can perform all the elements of dynamic driving 

tasks under any road or climate condition, which is also feasible for a human driver. 

Similar to EVs, there are some barriers to AV implementation as well. Liability in the case of an 

accident occurring, high price, legislation, interaction with other non-automated road actors, 

sufficiently developed AI are some of these obstacles (Mounce & Nelson, 2019).  

 

1.1.3 A Fleet of Shared Vehicles 

An alternative method introduced for urban transportation instead of personal vehicles is profiting 

from a shared vehicle fleet. Since most personal cars are only in use 5% of the time and are parked 



4 
 

for the rest of 95%, owning a vehicle while considering its cost, oil prices, and insurance fees 

seems to be an inefficient way of transportation. Unlike the developing countries in which cars are 

considered an asset, they are usually regarded as transportation costs in developed countries. Many 

people prefer to lease a car for a few years instead of buying one. When a good quality car-sharing 

service exists, people can experience a convenience level close to owning a vehicle with fewer 

costs. As a result, car sharing has gained popularity in many modern cities nowadays.  

There are some different approaches to providing a vehicle-sharing service. The first one is the 

two-way method in which people will borrow a vehicle from a station, and after they have finished 

their trip, they need to return that vehicle to the same station. The other method which is more 

convenient for the customers but might lead to more complexity in fleet management is the one-

way method. In this method, customers can borrow a vehicle from a station and return it to any 

other station, including the first one from which they have borrowed. The third method is called 

free-floating, in which there are no stations, and only with the help of an application, customers 

find idle vehicles near them. They can drive the vehicle and park it inside the borders of a 

predefined region in the city. One last method that is only applicable in using a fleet comprised of 

AVs is the taxi mode. The AVs will pick up the customer from their depot and leave them at their 

desired destination.  

 

1.2 Problem Statement 

The information provided in the previous section indicates that using a fleet consisting of shared 

vehicles that are electric and autonomous can overcome some existing implementation barriers. 

Using a fleet of shared autonomous electric vehicles (SAEV) is a convenient, safe, and 

environmentally friendly method for urban transportation, which will be feasible in near future. 
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Managing such a fleet in order not only to gain profit but also keep a high level of service quality 

is the main challenge. Many researchers have tried to find the best solution in this area, stated in-

depth in the second chapter. Some of the problems in this regard are such as following: 

• Redistribution. This problem only happens in one-way fleets/free-floating and is when 

some stations/regions run out of vehicles while some other stations/regions face an 

overload of vehicles and run out of parking spots. In this case, to keep customers satisfied, 

the service provider needs to find a solution for reacquiring the system’s equilibrium. 

Some proposed solutions are using trucks for transporting the cars or using a reward 

system for promoting the customers to park in a station facing car deficiency. 

• Energy management. Whether a fleet comprises EVs or ICEVs, some time for recharging 

or refueling must be considered in the vehicle's schedule. Nevertheless, this is more 

important for EVs since recharging is considerably more time-consuming than refueling. 

• Customer wait time. In order to gain more performance satisfaction, the customer wait 

time should be as minimized as possible.  

• Cost minimization. Like any other business to gain profits, the costs should be minimized 

while keeping the service quality at a predefined level or above. This matter is essential 

considering that ride fees cannot be very pricey so that the fleet could compete with other 

transportation methods. 

 

1.3 Research Objectives 

Not all the problems mentioned in the previous section can be tacked in this study. Here the 

objective is to develop an agent-based simulation model for a small fleet comprised of SAEVs. 
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Since these problems are case-dependent, in the case study providing services to reach different 

tourism attractions near Olympic Park in Montreal is considered. Modeling a one-way 

transportation service comprised of a few stations and developing different scenarios to find the 

optimal solution for the case study is our work's primary objective. 

 

1.4 Dissertation Outline 

The rest of this study is as ordered as follows: 

In the second chapter, a literature review on EVs, AVs, and shared fleets comprised of them is 

reviewed, and their method of problem-solving is discussed.  

In chapter three, the general method for optimizing a fleet comprised of SAEVs is considered. 

Chapter four presents the case study of Olympic Park. 

 Chapter 5 contains numerical results and discussions.  

Finally, in chapter six, the conclusion of this study and the future research prospective are stated.  

 

1.5 Summary 

In this chapter, a brief review of new technologies and methods that alter urban transportation 

towards being more sustainable and less costly is introduced. Then the limitations and problems 

towards employing them by the majority of people and governments are enumerated. Further, the 

main goal of this research and outline of the following chapters is stated. 
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Chapter 2: 

 

2 Literature Review 

 

2.1 Introduction 

Using a fleet of shared vehicles instead of private cars or public transportation for daily travels is 

a new alternative and is becoming popular in many cities. In this regard, many researchers devote 

their time and resources to investigate such shared fleets' improvement methods. To tackle some 

challenges of everyday transportation such as lack of parking space, availability of vehicles, and 

lack of driving abilities, the implementation of autonomous vehicles in a shared fleet is proposed. 

An autonomous car can pick up travelers at the start point and drop them off at their destination. 

Afterward, it can either go back to its designated parking station, refuel, or pick up another 

customer. Nowadays, cars are equipped with smart technologies that allow them to act 

autonomously in special situations such as adaptive cruise control, lane-keeping guidance, 

collision warning, blind-spot warning, and parking assistance. Even with these developments, the 

application of fully autonomous vehicles is not popular or even legalized broadly (Mounce & 

Nelson, 2019). The adoption of such new technology depends on different factors. People with a 

high educational level, people living in dense areas, younger generations, and households without 

a car are more willing to adopt autonomous vehicles (Liljamo, Liimatainen, & Pöllänen, 2018). 

Many contributions in the literature are devoted to examining the capability of adopting such 

technology in our daily life to improve the quality of daily transportation while moving towards 

sustainability.  
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One possible way to move towards a sustainable city is electric cars' implementation instead of 

combustion-based ones. When it comes to using EVs, there are always some obstacles that prevent 

people from adopting them. These obstacles include range anxiety (fear of running out of charge 

without reaching the destination), availability of charging structure, and charging time. A natural 

synergy happens when using EVs in a shared autonomous fleet since the barriers mentioned above 

can be tackled in such a system. (Chen & Kockelman, 2016).  

Regardless of whether a fleet is composed of electric cars or combustion-based ones, the primary 

objectives of most of the optimization problems are minimizing customer wait time and empty 

vehicle travel while maximizing the profit. With these objectives in mind, fleet management 

problems such as the number of required vehicles, routing policy, relocation strategy, and energy 

management problems such as critical charging level and charging policy can be answered.  

In the following sections, works conducted in the literature regarding the optimization of a fleet of 

shared AVs and AEVs are reviewed. Section 2 studies the works conducted on autonomous 

vehicles, and in section 3, shared fleets of them are discussed. In section 4, electric vehicles and 

later in section 5, shared fleets of them are mentioned. Finally, shared autonomous electric vehicles 

are discussed in section 6. A conclusion is given in section 7. 

 

2.2 Autonomous Vehicles (AV) 

Fagnant & Kockelman (2015) investigate the significant benefits of employing autonomous 

vehicles instead of manual ones. These benefits are such as:  

• Safety 

• Congestion reduction 
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• Accessibility by a wide range (people with or without driving ability) 

• Parking fee savings 

• The possibility of having more productive travel times for former drivers 

In addition to these benefits, they also study the barriers to AV implementation. These barriers are 

such as: 

• Vehicle cost 

• AV certification 

• Legislation and liability 

• Electronic security 

• Data privacy 

Nieuwenhuijsen et al. (2018) implement a system dynamics approach to find the market 

penetration of autonomous vehicles quantitatively in the long run. They consider the six levels of 

automation from level 0 (fully manual) to level 5 (fully automated), and each level has its fleet 

size, technology maturity, price, and customer utility. They assume that customers are constantly 

comparing the utility of the automation level that their vehicle brings to the utility of higher levels 

of automation. Gradually such behavior leads to the adoption of higher levels of autonomy. They 

tested various scenarios and policy adoptions in the case study of the Netherlands. The results 

show that market adoption is highly sensitive to alteration of policies and scenarios. 

Stern et al. (2019) studied the effect of a sparse number of autonomous vehicles on overall GHG 

emission of traffic flow. They suggest that the stop-and-go behavior of human drivers, which leads 

to constant acceleration and deceleration of vehicles, is a GHG emission and energy loss source. 

By designing an experiment using one AV and 22 human-driven cars, they show that 5% of AVs 
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designed to stabilize the traffic flow could lead to 15% (carbon dioxide) and 73% (nitrogen oxide) 

reduction in vehicular emission. Connected autonomous vehicles (CAV) are the kind of AVs 

connected to each other and the infrastructure. Such technology existing in the traffic flow will 

lead to safer and smoother driving patterns (Ye & Yamamoto, 2019). 

While many researchers consider a fleet of shared autonomous vehicles when they model the future 

of daily urban transportation, Correia & van Arem (2016) consider a scenario in which personal 

AVs and public transportation are the only options for motorized urban transportation. They 

consider a model in which each AV satisfies all the household members' trips in the morning, parks 

itself, and later in the afternoon returns members home. In this model, any other travel during the 

day, such as going to the gym, is also included. They study the case of the city of Delft in the 

Netherlands. Their results show that such a transportation method could lead to lower travel costs 

and higher travel quality but would lead to higher congestion.  

 

2.3 Shared Autonomous Vehicles (SAV) 

Autonomous vehicles have the potential to modify the shape of future transportation and 

consequently urban living. González-González, Nogués, & Stead (2019) use a backcasting 

approach to identify the positive and negative impacts of AV utilization on urban living from 

social, economic, and environmental aspects. Martínez-Díaz & Soriguera (2018) delve into AV 

technology, its effects on mobility, people’s acceptability, and required new legislation through a 

review of former works available in the literature. 

This section considers works conducted for modeling and studying different types of problems 

that one might face offering an SAV fleet service. For providing such services usually, there are 
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three methods. The first one is when there are several stations in the study region, and customers 

should pick up the cars from these stations and bring the car back to its first place (two-way trip 

model). The second method is when there are stations, but there is no necessity to bring back the 

car to its first location, and customers can pick up or drop off the vehicles from their nearest station 

(one-way trip model). The third method is picking up customers at their start location and dropping 

them off at their destination (taxi model). In the following, we categorize each work based on its 

service providing method.  

 

2.3.1 One-way SAV fleet 

This service-providing method is more convenient for the customers than the two-way method 

since many trips are one-way, and the traveler might not want to get back to the start node right 

away. The biggest problem with this method is that eventually, the system's equilibrium is lost. 

Some stations run out of vehicles while some run out of parking space, leading to customer 

dissatisfaction. To prevent such discomfort, service providers need to relocate the excess of cars 

from the overpopulated station to the ones with a shortage of cars. 

Correia & Antunes (2012) consider the doing relocation of cars at the end of each day. They 

develop a mixed-integer problem (MIP) to find the best location for depots of a one-way carsharing 

system while considering three different scenarios for meeting the demand to maximize the profit. 

The first scenario is when the system meets all the demand. The second one has the right to reject 

any demand if it was not profitable, even if there would be enough resources to meet the demand. 

The last one is a hybrid of the two such that it meets the demand when cars exist at the depot and 

rejects it otherwise. Their results indicate that the most profitable scenario is the last one when the 

system meets the demand if resources are available.  
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Pavone et al. (2012) address the rebalancing problem by assuming that vehicles can autonomously 

drive to the station where there is a shortage in demanded vehicles; thus, rebalancing is done 

automatically. With a fluid model, a linear problem is introduced to minimize the number of 

vehicles needed to meet customers' demands. The solution to this problem is a policy that is tested 

in a simulated situation via MATLAB and hardware experiments. The results indicate that the 

provided policy can rebalance the model so that there is always an excess of vehicles in caparison 

with the customers in each station.  

Fagnant & Kockelman (2014) investigate the environmental benefits and the vehicle miles traveled 

(VMT), and cold vehicles start utilizing SAV instead of personal cars. An agent-based model is 

introduced by the authors, who initially finds the required fleet size for having reasonable customer 

wait times. Other than enough vehicles, every 5 minutes, the unoccupied cars are relocated to be 

around more demanding areas to decrease waiting times. Twenty-five Different traveling scenarios 

are generated based on trip demands, trip patterns, traffic level, service area limits, vehicle 

relocation strategies, and the number of vehicles. Their simulation for 100 days demonstrates that 

the number of personal cars that a person needs is decreased by ten times by using SAV. On the 

other hand, because of relocation policies, the total distance traveled is 11% increased. These 

results indicate that for most cases, the emission of undesired gases to the environment is 

decreased. 

Spieser et al. (2014) are one of the first researchers to model a big size problem based on a city's 

real transportation data. They try to find the right number of autonomous vehicles in a fleet of 

Mobility-on-Demand to meet the request of all customers who were initially using personal cars 

for transportation and now have switched to using a shared fleet. The number of vehicles should 

be small enough such that providing the service would be financially feasible. They have also 
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considered different transportation systems using personal cars, autonomous shared cars, dual-

mode shared cars, autonomous personal cars, and taxi drivers and compared these systems from 

an economic point of view. The real taxi data from Singapore is used as the data for the case study. 

The results show that each vehicle of the fleet can substitute three personal cars. Finally, the 

problem was solved by using mathematical modeling.  

 

2.3.2 SAV Taxi 

The most convenient method for the customers is the taxi model in which autonomous vehicles 

drive to the passenger, and after finishing the service, they park themselves. Levin et al. (2017) 

compare several scenarios such as SAVs used as a taxi, ridesharing, and using personal AVs. They 

conclude that using an SAV fleet outperforms AVs in the ride-sharing scenario. They provide a 

general framework for the investigation of SAVs efficacy. This framework makes it possible to 

model a variety of problems while considering realistic traffic assumptions. Meaning that while 

SAV is an option for transportation, several other options exist, such as personal cars. They believe 

that the works done so far on the subject are not economically reliable since many of these works 

fail to model the traffic flow's real situation. An event-based framework is proposed to solve the 

model. The problem of optimizing ridesharing is NP-hard and not solvable in real-time frames. As 

a result, a heuristic approach is considered for its optimization.  

To study the effects of replacing all the daily travels carried out via personal vehicles with SAVs, 

Levin (2017) proposes a linear routing optimization problem to minimize travel time. Every 

demand must be met in his model, and demands are considered to be known in advance. Several 

scenarios are suggested to test the effect of such a transportation system on traffic congestion. For 

rush hour cases, when the demand is asymmetric, using SAVs instead of personal cars would result 
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in higher congestion. However, for times when the demand is symmetric, no adverse effect on 

congestion is reported. Besides, the model finds the optimal number of used AVs, which is less 

than the available ones to stay in optimality. 

Bsaybes, Quilliot, & Wagler (2017) consider transportation inside an industrial area via individual 

public autonomous vehicles (VIPA). They develop a mathematical model of the problem and come 

up with two algorithms. One for solving the offline problem and the other for implementing a 

replan strategy for the online problem. These two algorithms show that the replan strategy can 

effectively perform compared to the optimal solution acquired from the offline problem.  

Liu et al. (2017) study the possibility of using a fleet of SAVs to transport people in Texas's Austin 

region using a multi-agent transportation simulation (MATSim) toolkit. This region lacks efficient 

public transportation. As a result, it is considered the right candidate for the utilization of an SAV 

fleet. This work primarily generates travel demand per traveler, simulates travel, reports the results, 

and studies other impacts such as greenhouse emission and energy consumption. In this regard, 

four scenarios based on $0.50, $0.75, $1, and $1.25 fare rates are generated, and the simulation 

results show that 50.9, 12.9, 10.5, and 9.2% respectively switch to SAVs. The results show that 

when the fare rate is low, people with access to human-driven vehicles (HVs) have the tendency 

to switch to SAVs, but those without HVs have this intention only when the trip is short (less than 

10 miles).  

Hörl (2017) Investigates the ability of simulation in showing people's reaction towards new ways 

of transportation (AVs as one-passenger taxies or car-pooling ones). The one-passenger taxi 

provides faster service but has a more expensive fare rate than the car-pooling taxies. Other choices 

that have been considered in this study are using buses, walking, and using personal cars. The 
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author uses MATSim to gain the results from travelers' preference between different transportation 

methods while changing the fleet size. This study provides a useful framework for future research. 

Hyland & Mahmassani (2018) define six different strategies for AV to traveler assignment in a 

shared-use AV mobility service (SAMS) without ridesharing. The first two strategies are the 

simple FCFS, and the last four are more complex, requiring solving an optimization problem. 

These assignment strategies are conveyed to the fleet from a central operator. They used agent-

based simulation based on a Manhattan gird network with two artificial demand sets and one 

acquired from Chicago taxi data. Their results show that the optimization-based assignment 

strategies, in terms of relative empty vehicle miles traveled and customer average wait time, are 

far better than the simple FCFS ones when the fleet size is small relative to the demand. The last 

strategy, which considers assigned and unassigned travelers as well as the idle and en-route 

vehicles in the optimization problem, outperforms other strategies in most cases. Their work is 

very novel and practical. However, it does not consider road congestion, refueling AVs, and the 

historical data for demand.  

Alam & Hbib (2018) investigate the impacts of using a fleet of SAVs during rush hours in the 

morning on traffic congestion while considering human-driven vehicles (HV) on the road. They 

model the city of Halifax as their case study. Vehicles are kept in 32 stations in the city. When 

there is a demand in the system, a vehicle is assigned to pick up the customer only if the travel 

time from the vehicle destination to the customer is less than a waiting time threshold; otherwise, 

the person will have no eligible vehicle will use an HV. They tested four various fleet sizes with 

different percentages of SAV and HV utilizations via microsimulation. Results show that when 

the fleet size is equal to 900 and 20% of the trips are made via SAVs, the average speed is increased 
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in the first hour (7 am to 8 am), the average speed is increased, and vehicle kilometers traveled 

(VKT) is decreased.  

Winter et al. (2018) use simulation to show the effects of changes in the level of demand, the 

capacity of vehicles, dwell time of vehicles, and initial distribution of vehicles on the required fleet 

size and operation cost in an automated demand responsive transport service (ADRTS) system. 

The system allows travelers who have the same origin and destination to be combined with being 

served with one vehicle. The dwell time is the time that each vehicle is supposed to wait to gain 

more passengers before moving towards its destination. Comparing the system's operational cost 

with the bus service shows that they are both in the same range. A case study of the city Arnhem 

in the Netherlands is investigated. Results show that with the minimum fleet size to meet the 

demand, each passenger trip's operational costs are between 0.84 and 1.22 Euros. Also, for the 

same fleet size, the passenger idle time is between 2 to 6 minutes. 

Babicheva et al. (2018) compare different algorithms for reactive and proactive redistribution of 

AVs. Reactive distribution is the relocation of vehicles to pick up a customer, and proactive 

redistribution is carried out towards a demand that is not yet in the system. However, due to 

historical data, there is a good chance for its occurrence. Four reactive and two proactive 

redistributions and their combination are tested. The results show that the combination of the 

introduced proactive algorithm, Index-based Redistribution (IBR), with reactive Simple Nearest 

Neighbor (SNN) would lead to the least maximum and average waiting time and the queue length. 

Their work emphasizes the importance of predicting future demand and moving towards 

responding to it. 

Starting with a thorough literature review, Hörl et al. (2019) simulate the autonomous mobility on 

demand (AMoD) for the city of Zurich in Switzerland. They consider four different existing 
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policies in the literature with various fleet sizes while considering peak and off-peak travel patterns 

to shape the desired scenarios. Two of these policies find the optimal pattern for discharging 

vehicles to the customers, and the other two find the optimal vehicle redistribution. They used the 

MATSim surface to model the problem to compare the attractiveness of policies from the aspect 

of providing the least traveling fees and wait times. Their results show that cost and wait times are 

highly dependent on each policy's choice and the fleet size. Fleets of less than 7000 vehicles lead 

to long wait times, and fleets of more than 14000 vehicles dictate infeasible traveling fees to the 

system. They found that traveling fees are higher than subsidized public transportation and 

personal cars in the short term for this case study. Nevertheless, in the long term, this AMoD can 

compete with personal cars. Also, the traveling fee is far lower than the case of using taxis. 

 

2.4 Personal Electric Vehicles 

With the emergence of electric vehicles, some people have switched to using them in the past 

years. However, still many people have resistance against them even though these cars would 

benefit the environment. Kang, Feinberg, & Papalambros (2015) claim that the primary reason for 

the cold welcome towards EVs is the consumer range anxiety. Range anxiety as described earlier 

is the existing concern among users that an EV would run out of charge during a trip before 

reaching a charging point. Since the operating range depends on the vehicle and its battery 

attributes, the availability of charging station (CS), and charging time, to improve it, both EV 

manufacturers and CS operators should provide profitable products and services. The authors 

propose a cooperative business model in which EV manufacturers and CS operators act as one and 

share benefits and losses. Their optimization model is made of three subsystems: the demand 

model, the EV design model, and the CS location network model. They show that this model, 
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compared with the sequential one (in which each business has its own gains and losses), is 

performing far better. 

Pourazarm, Cassandras, & Wang (2016) seek to find the fastest route considering EVs' charging 

range. First, they model a mixed-integer non-linear problem (MINLP) for a single electric vehicle, 

which is hard to solve but can be decomposed into two subproblems: linear problems (LPs). One 

tries to find the fastest route for the vehicle, and the other tries to find the recharge amount. Further, 

they consider multi-vehicles in the system, and by clustering them into sub-flows, they once again 

model the same problem as they did for a single-vehicle. The decomposed subproblems are not a 

simple linear problem this time. As a result, another formulation is proposed. In this formulation, 

the sub-flows can be divided into several optimal routes to lessen the former model's complication 

with MINLP formulation. Then a transportation system with both EVs and non-electric vehicle 

are considered. Finally, the price of acting selfishly (optimality of single-vehicle) is compared with 

and the price of acting optimally as a group (sub-flow optimality). Robust mathematical modeling 

and reasoning can be considered as the main strength of their work.  Although, their work has 

some limitations that can be the target of future studies. For example, the vehicles' flow is 

considered deterministic, and the effect of uncertainty is not considered. 

Electric vehicles benefit the environment by their zero GHG emission characteristic. They can 

help the renewable energy resource generators by acting as a storage when electricity production 

is higher than the demand. This extra electricity can be used to run or give back to the grid for peak 

demand times. These are the characteristics of smart charging strategies that are studied in several 

works. Hu et al. (2016) review these works to find the positive and negative points of each strategy 

dictated by the fleet operator to the EV owners. These strategies are called centralized control, 
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transactive control, and price control. Their results show that the best of them so far is centralized 

control. 

Due to the environmental benefits of employing electric vehicles instead of combustion-based 

ones, Usman et al. (2017) propose a model to concur with the range anxiety of using EVs. They 

consider the charging possibility of EVs at home or in the workplace. When the state of charge 

(SoC) is not high enough to complete a trip, charging at a fast-charging station is proposed. 

Detouring to get to a charging station is considered a factor that decreases the overall utility. They 

used the travel data of Flanders, Belgium, to simulate such a transportation system.  

Yi & Shirk (2018) consider the problem of optimizing the charging act (minimizing cost and time 

of charging) of connected autonomous electric vehicles (CAEV) for personal usage. The vehicles 

are connected to an infrastructure which means they are aware of the price, location, and waiting 

time of charging stations. They are autonomous, which means they can drive and perform the 

process of charging without a driver. They developed a framework and then a real-time updating 

algorithm for the stochastic energy cost prediction. Later, they developed a multi-stage model and 

a dynamic algorithm to make optimal charging decisions such as where to charge or how much to 

charge. 

 

2.5 Shared Electric Vehicles 

To profit from the benefits of EVs and at the same time respond to customer concerns in adopting 

EVs such as range anxiety, using electric vehicles instead of combustion-based ones in a ride-

hailing service system is introduced. Using electric cars will add to the problem's complexity since 

charging considerations must be added to the model. However, it profits the customers since they 
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do not need to worry about running out of charge during a trip. Like the SAV problems, several 

service providing methods, such as the one-way trip model and two-way trip model, can be 

considered in these systems. The taxi model would not be applicable since the car cannot drive 

itself to the customer. Nevertheless, there is another format in which there are no stations, and 

customers can pick up or park a car in a predefined region. Such a service-providing system is 

called the free-floating model.  

 

2.5.1 One-way SEV fleet 

Hafez, Parent, & Proth (2001) were pioneers in considering managing an electric shared vehicle 

fleet. They conducted two problems for redistribution and recharge of the shared cars available in 

a suburb of Paris. A redistribution is carried out when the current arrangement is considered 

unfavorable, which means there are shortages or overflows in the number of cars in the stations. 

The number of cars to be redistributed for each station is modeled as an integer linear 

programming. Later this ILP is relaxed to be solved. By knowing the number of cars to be moved 

as a constraint, they modeled the problem to minimize redistribution duration. This problem is NP-

hard. As a result, heuristic procedures are proposed. The recharge problem is solved by considering 

that the distribution is optimized. A cost function is introduced consisting of customer 

dissatisfaction because of a lack of energy of the cars available in stations and cost incurred when 

a vehicle cannot complete its journey due to lack of energy for a predefined energy level threshold. 

This problem aims to find the energy level threshold which minimizes such cost function. 

Rigas, Ramchurn, & Bassiliades (2015) propose one of the first works which consider managing 

electric shared cars to maximize the total number of serviced customers in an MoD system 

comprised of EVs. Using Mixed-Integer Programming (MIP), they can find the optimal solution 
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for problems comprising of few hundreds of tasks. They also propose a greedy heuristic algorithm 

that can converge to optimality 90% of the time when using real data of Washington DC city for 

problems with the size of thousands of tasks and EVs. Then with the assumption that each station 

has charging facilities, they propose a battery swap optimization algorithm.   

Biondi, Boldrini, & Bruno (2016) try to find the right location for stations and the number of 

parking spots for each station in an MoD system made of EVs. To do so, they propose a stochastic 

optimization problem since car demand cannot be precisely predicted. Their result shows that only 

four or fewer parking spots would suffice in many cases, but there is also the need to have a few 

big stations with up to 15 parking spots. In the next step, they try to determine the fleet's energy 

demand while considering different assumptions. One of these assumptions is to suppose a system 

made of power-sharing EVs. In this system, EVs can transfer energy to each other, which is 

demonstrated to lead to a decrease in the cost of building charging stations without significantly 

affecting the state of charge (SoC) of the vehicles. Although, they tackle these two problems 

separately.  

Brendel et al. (2018) propose a model to optimize the utilization of battery electric vehicles (BEV) 

in a fleet made of BEVs and internal combustion engine vehicles (ICEV) from the energy 

management perspective. In their model, a framework is introduced to predict the required SoC 

for completing a trip. The other aspect of the model is the charging schedule of BEVs with a 

battery-life expanding approach. EVs will be sent to be charged as little frequently as possible, and 

they will be plugged into the charger until fully charged. Later in the model, a flowchart is 

introduced for vehicle selection with prioritizing BEVs. If there is an available BEV with enough 

charge to complete the trip, it is chosen by the customer; otherwise, the ICEV is chosen. Since this 

is a one-way carsharing problem, the relocation is also considered to balance each station's supply. 
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The rebalancing is composed of having employees undertake it or giving the customers incentives 

to park the cars in the model’s desired parking spot. Simulation results show better utilization of 

BEVs with no incident running out of charge during the trips. 

Mounce & Nelson (2019) elaborate on the potentials of using one-way electric car sharing. Their 

work is composed of reviewing the literature on the subject. They have gathered information on 

the advantages, barriers, and potentials of autonomous vehicles, car-sharing, and electric cars. 

They conclude that with the adoption of a SEV fleet in addition to good public transportation, 

many transportation problems such as road congestion, lack of parking space, and environmental 

problems such as greenhouse emissions would be encountered. 

 

2.5.2 Free-floating SEV  

Wang & Cheu (2013) continued the work of Lee et al. with the implication of electric vehicles 

instead of combustion-based ones. In this work, the objective is to minimize the number of taxies 

needed to meet the Singapore population's demand while considering vehicle charging 

requirements. In this model, taxies of the fleet are reserved by customers. A mathematical 

formulation is used to model the problem, and since it is an NP-hard problem, three heuristics with 

a two-phase approach are used to gain a solution on a real-time scale. These heuristics are as 

follows: nearest neighbor, sweep, and earliest time insertion. Numerical results show that the 

earliest time insertion solution is the best choice among all. Later, three different scenarios for 

battery capacity and recharging times were developed. Results show that a more significant 

capacity with a longer charging time scenario serves best in terms of taxi drivers' revenue and the 

number of visits needed to the charging station. Another experiment also highlights that adding 

the number of charging stations would not significantly impact performance metrics. This study is 
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based on a small transportation network but, with modification, can be used for other networks as 

well. 

Bischoff & Maciejewski (2014) modeled a fleet of electric taxis for transportation in a small city 

while simulating the traffic. Four different types of scenarios for traffic flow are designed. With 

the use of a Multi-Agent Transport Simulation (MATSim), they drew the following conclusions. 

During non-peak hours, using a fleet of electric vehicles as taxies have a performance as promising 

as a fleet of conventional taxies. However, during peak hours with the increased demand, a 

conventional taxi has better performance. 

Bauer et al. (2019) continued their former work to find economic justification for using a 

ridesharing fleet composed of electric vehicles. They used an agent-based model already 

developed in Bauer, Greenblatt, & Gerke (2018). They demonstrated that with the implementation 

of sufficient charging stations (three to four 50kW chargers per square mile), a SEV fleet with an 

average battery range could meet the demand of customers of a fleet composed of internal 

combustion engine vehicles (ICEV). They show that implementing the cost of charging 

infrastructure given that chargers are utilized at least 15% of the times (3.5 hours in each day) plus 

the electricity price will be less than gasoline cost for the equivalent fleet combined of ICEVs. 

With these findings, they conclude that regulations that mandate electrifying vehicles due to 

reducing GHG emissions are feasible with today's technology.  

 

2.6 Shared Autonomous Electric Vehicles (SAEV) 

As already mentioned in this chapter, range anxiety, ease of access to charging infrastructure, and 

the fact that the charging process is time-consuming, are the significant barriers to EV adoption. 
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Four emerging technologies entitled vehicle automation, wireless charging, shared mobility, and 

vehicle-to-grid (V2G) integration can make up for these barriers (Taiebat & Xu, 2019). 

 

2.6.1 One-way SAEV fleet 

Boyacı et al. (2015) try to find the optimal number of vehicles, relocation personnel, and stations 

as well as the optimal location of stations for a one-way car-sharing fleet. By seeing that relocation 

is a must in a one-way car-sharing, they propose a MILP model to solve the problem. The MILP 

is followed by a heuristic while considering a virtual hub for the cars and using branch and bound 

procedure to find a solution on a real-time scale. Solving the problem as a multi-objective model 

helps find the desired level in the existing trade-off between the user's benefit and the operating 

system's benefit since both are seen in the objective function with assigned weights. 

Iacobucci et al. (2018) are some of the first authors to consider SAEVs as both a transportation 

method and an electricity storage. They investigate the profitability of providing a SAEV fleet for 

the service provider. They also test the capability of the AEVs to act as a spinning and non-spinning 

reserve for the grid, which means that the vehicles can provide transportation services. However, 

they can also be considered an operating reserve for the grid to give electricity to the grid when 

the demand is high and absorb the over-generated electricity when the demand is low. To solve 

the transportation problem, they utilized a simulation model based on Tokyo's transportation data 

and proposed an algorithm to optimize the charging schedule based on electricity prices. Their 

work shows that each AEV in the fleet can replace 7 to 10 private cars.  

By considering EVs and AVs characteristics and the fact that they complete each other's 

inefficiencies, Chen, Kockelman, & Hanna (2016) suggest that employing a fleet of SAEV would 
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lead to a more practical method of car sharing. As a result, they investigate the capability of a fleet 

of shared electric vehicles, which are also autonomous and self-charged to answer the demand for 

everyday travel in an urban area. They use a discrete-time agent-based simulation that can be 

considered an extension of Fagnant and Kockelman's (2014) work. They consider different types 

of vehicles with various charge ranges and different types of charging stations and generate several 

scenarios and consider a gridded city based on Austin, Texas as the case study. The simulation 

shows that the most cost-efficient scenario is an 80-mile range vehicle and a level II charging 

station. Also, each 80-mile range vehicle with a level II charging station can replace 3.7, and each 

200-miles range vehicle with the same charging station type can replace 5.5 privately owned cars. 

Furthermore, each 80-mile range vehicle with a level III charging station can replace 5.4, and each 

200-miles range vehicle with the same charging station type can replace 6.8 privately owned cars. 

In the last case study, Austin's actual travel demand is considered, which leads to 5 to 9 privately 

owned car replacements. 

Chen & Kockelman (2016) try to find the market share of SAEVs while competing with private 

vehicles and transit. They establish values such as the value of travel time for each method of 

transportation. They then assigned different fare rates for the SAEV services. Their results show 

that transit is more sensitive to the share rate of the SAEVs. Also, for longer trips, SAEVs are more 

preferred than private vehicles. 

 Zhang, Rossi, & Pavone (2016) introduced a wholistic model predictive approach (MPC) for fleet 

optimization of autonomous mobility on demand (AMoD) with the capability of adding real-world 

constraints such as charging level. Model predictive is a controlling approach that works to solve 

an optimization problem sequentially, and optimization policies are established for each time step 

up until a fixed horizon. In this regard, they developed a Lyapunov stable MPC algorithm and 
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compared it with other existing algorithms in the literature. They then solved the model as a mixed-

integer linear program with binary variables to serve all the customers, conduct an efficient 

rebalancing, and finally maximize the vehicles' charge state at the end of the time horizon. Two 

algorithms were conducted with and without the charging constraint. Using real taxi data showed 

that the proposed algorithms are far better from the customer wait time aspect than the existing 

ones. 

Iacobucci, McLellan, & Tezuka (2019) propose an optimization model for relocation and vehicle 

charging based on Zhang et al. model by considering the charging level as not only a constraint 

but also a decision variable. With such innovation, they were able to add a V2G policy to their 

model. They conducted the optimization model as a MILP by proposing a two-time-scaled 

algorithm. The relocation problem is carried out to gain the optimized waiting time. Then the 

results are set as constraints of the second layer, which is the optimization of charging problems 

to minimize electricity costs. Rebalancing is optimized during a 15-30 minutes time scale, while 

the charging problem needs several hours to be optimized. Finally, the authors conducted a 

simulation with the data from Tokyo Trip Survey 2008. They concluded that since electricity prices 

are not wildly variant in Japan, the V2G policy does not have considerable benefits. However, 

when the electricity prices are more variant as they generated data based on gamma distribution, 

the model outperforms significantly. 

Kang, Feinberg, & Papalambros (2017) try to find the optimized fleet size and assignment 

schedule, number and location of charging stations, vehicle attributes, and service fee in one 

general model for the shared AEV fleet. They also compare AEV and AV shared vehicle fleet 

from an economic aspect. They proposed an optimization system model that takes four subsystems 

into account. AEV design, service demand, CS location, and fleet assignment are these 
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subsystems. The optimization is carried out so that the system-level fleet assignment connects all 

the other subsystems. The result of their simulation shows that both AEV and AV are marketable 

though the profit from AEV in their business scenario is slightly higher than AV. Also, the 

simulations show that even though membership fees and driving rates are higher in autonomous 

rather than regular car-sharing services, due to the benefits of autonomous pickup and return, it is 

still worthy for the customers and has its market share. 

Scheltes & Correia (2017) used a fleet of one-passenger AEVs for compensating the shortfalls of 

public transportation as a last/first-mile travel system. One of the inconveniences of using public 

transportation is the last/first mile of the travel when the only way of reaching stations is time-

consuming and difficult (walking or biking). They consider the Delft Zuid station near the 

University of Delft's campus to study the daily transportation from different faculties to the station. 

The vehicle used in their study can travel in the same line as bikes. As a result, the speed cannot 

be greater than the average cycling speed. Their results show that these vehicles can bring higher 

travel utility for pedestrians but not for cyclists unless there is possibility of manual driving to 

reach higher speeds. 

Battery capacity and the time-consuming process of charging are two main reasons that will result 

in less utilization for a shared fleet of vehicles when using electric cars than conventional ones. 

Zhang, Liu, & He (2019) try to find a solution that leads to a good utilization percentage for a one-

way fleet of shared electric vehicles. They propose a space-time-battery flow network model with 

two considerations. One is to optimize the vehicle allocation to the customers, and the second one 

is to add vehicle relay to the former optimization problem. Vehicle relay is defined as a situation 

when there is a demand for a long trip, but there is no vehicle with enough SoC to undertake it. In 

that case, the customer is suggested to use a vehicle to get to a transitional station and then switch 
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to another one to complete his/her journey. Since the mathematical model is hard to solve and 

unable to give instant answers, a diving heuristic algorithm is introduced. When data of Shanghai's 

case study is inserted in the model, the results show that the optimization allocation will bring an 

agreeable vehicle utilization percentage when demanded trips are short. Also, when the demand 

for long trips is high, the model with relay consideration performs better. In this model, the 

relocation of vehicles that focus on many former works in the literature may or may not be 

considered.  

 

2.6.2 SAEV Taxi 

Awasthi et al. (2011) model a fleet of a particular type of AEVs (Cybercar) with the use of a 

centralized fleet management system (CFMS) with the objectives of employing a minimum 

number of cars to meet the demand of customers while being satisfied. Customer satisfaction is 

acquired when the customer waiting time is minimized. Each demand is requested in advance, and 

then a cybercar is assigned to meet the demand. Ridesharing is suggested as a solution to minimize 

the number of required cars. The fleet operator controls the assignment of each car to several 

customers. He/She can also update the routing of the car in real-time manners with consideration 

of the road congestion. Recharging is met by defining a threshold for giving service. If a vehicle's 

charge status is less than that threshold, It is sent to the stations to recharge.  

Farhan & Chen (2018) consider the possibility of employing ridesharing in a fleet of SAEVs from 

the fleet operation perspective. Based on the work of Chen et al. (2016), they utilize a discrete-

time agent-based simulation to solve the problem. Also, they optimize the routing with the help of 

a Tabu Search algorithm. Their work shows that as much as the number of vehicle capacity to be 

shared is increased, the number of required fleets and the charging infrastructure is decreased. 
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However, on the other hand, the passenger wait times are also increased. The best results are 

acquired when the cars' capacity is equal to two since, by having the benefits of ridesharing, the 

wait times are still in a tolerable zone.   

Yi, Smart, & Shirk (2018) believe that an autonomous car is more agreeable when it is electric 

rather than a combustion engine since controlling an electric device is easier for a computer. Also, 

it is safer for an electric car to be recharged autonomously rather than being refueled. Upon such 

reasoning, they study the energy management of a fleet of SAEVs based on New York City's taxi 

date. First, they develop a grid for stochastic energy consumption based on the velocity of deriving 

and ambient temperature. Then they suggest eco-routing of vehicles to minimize energy 

consumption. Their results show that the ambient temperature has a significant on the energy 

consumption of AEVs.  

Bauer, Greenblatt, & Gerke (2018) use agent-based simulation to find the required fleet size, 

vehicle battery capacity, and number and location of charging infrastructure to meet the Manhattan 

city's taxi demand while minimizing the operational costs. Their model runs an algorithm to find 

the optimal place and number of charging stations using an eliminating procedure. Every passenger 

will wait a maximum of 10 minutes to be picked up. A car is assigned to a passenger if it can make 

it there by 10 minutes and has enough charge to complete the trip plus the trip to the charging 

station. If that was not possible, a new taxi is created to meet the demand. This way, the required 

fleet size to meet the demand will be determined while complying with the simulation's policy to 

create the minimum number of vehicles possible. Unlike former works in the literature, as soon as 

a taxi becomes idle, it goes to a charging station and stays there until fully charged or assigned to 

another trip, which means there is no need to fall below a predefined critical threshold making a 

charging trip. This attitude makes it possible to meet the demand with lower battery capacity. The 
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result of their simulation finds the optimal battery range (50-90 mi) and charging infrastructure 

(66 chargers per square mile, rated at 11 kW or 44 chargers per square mile, rated at 22 kW), which 

have considerably lower fees than a conventional taxi. Comparing such a fleet with an automated 

fleet of internal combustion engine vehicles (ICEV) or hybrid vehicles also depicts lower fees. 

Besides, the optimal fleet was compared with an automated fleet composed of ICEVs. The results 

indicate 73% GHG emission and 58% energy consumption reduction for the proposed model. 

Loeb et al. (2018) try to find a more realistic way for modeling a SAEV fleet for the same region 

studied by Chen et al. (2016). They aim to first provide a more realistic network for modeling the 

problem to investigate the reliability of the results provided by former authors. Besides, they 

develop the model by increasing the number of possible scenarios and introducing new charging 

strategies. To solve the problem, they utilized the model provided by Bösch et al. (2016) and added 

a charging process and infrastructure consideration to the problem. The conducted simulation 

enables them to find robust charging locations. With the resulting locations, they investigate the 

effect of fleet size, charging time, and battery range on the customers' average waiting time. The 

result of their simulation shows that the number of required charging stations depends on the AEV 

range. The most prominent factor in reducing the customer waiting time is increasing the number 

of vehicles. Decreasing the charging time (by using fast-charging equipment) can also reduce wait 

times, but it has less effect than the fleet size increase. Also, they observe that increasing the range 

of vehicles to more than 175Km has no significant impact on waiting times.  

Zhang et al. (2020) are one of the few researchers that have tackled fleet management and energy 

management of autonomous electric vehicles (AEV) as a holistic problem at the same time. They 

study a ride-hailing service with a unique agent-based simulation called BEAM. In this simulation, 

the driving, charging, and parking behavior of vehicles are considered. Via this simulation, they 
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can find the location and time of charging demand of each vehicle. With this information and with 

the use of a hybrid algorithm based on K-mean clustering, they can find the best locations for the 

charging stations. The economic and environmental benefits of employing such a fleet for an urban 

area (San Francisco Bay Area) are reported. Various scenarios while considering several different 

fleet sizes, battery capacities, and charger powers are studied. 

 

2.7 Problem Solving Methodology 

Throughout the literature, two principal problem-solving methodologies for solving fleet-related, 

energy-related, or combination of both have been used by different researchers. These two 

effective methods are mathematical modeling and simulation. For solving a problem with the aid 

of mathematical modeling and exact procedures, when the size of the problem gets bigger for 

saving time and computation effort, researchers move towards employing heuristic algorithms. 

Simulation is the other method that has gained popularity in this field, especially agent-based 

simulation. Development of simulation has gone to the point that a specific software for solving 

large-scale transportation problems, called Multi-agent Transport simulation (MATSim), is 

introduced to the literature.  

In the following tables, some of the works reviewed in this chapter with their problem-solving 

methodology are depicted. Since transportation problems can very case study dependent, the case 

study region is also included in the summary tables. Tables 2-1 show studies considering only the 

fleet management aspect, and table 2-2 shows problems only focusing on the fleet's energy 

management. Table 2-3 summarizes works considering fleet management and energy management 

of a shared transportation providing service. Even though a considerable number of researchers 

take into account both fleet and energy-related problems, many of them do not solve these two 
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types simultaneously, and they optimize each part separately. As a result, research focusing on 

both fleet and energy aspects of a shared mobility service is relatively sparse. This essay aims to 

study different scenarios for a small service provider while considering both energy and fleet at 

the same time.  

Another shortfall in literature is the travel pattern simplification. Most of the works conducted so 

far do not consider the actual path that a vehicle needs to take to perform a trip. In this study, 

however, with the help of the GIS map implemented in the software surface, the actual path that a 

vehicle would take in the real world to fulfill a trip is considered. 

 

 

Table 2-1. List of articles for fleet management problem 

Authors Year 

Type 

of 

Vehicle 

Region Solution 

Pavone et al. 2012 AV _ LP 

Correia & Antunes 2012 AV Lisbon - Portugal MIP 

Fagnant & Kockelman 2014 AV Based on Austin-Texas-USA ABS 

Spieser et al. 2014 AV Singapore Mathematical Modeling 

Boyaci et al. 2014 AEV Nice - France MILP 

Rigas et al. 2015 EV Washington DC, USA MIP - Heuristic 

Bsaybes et al. 2017 AV An industrial area Mathematical Modeling 

Levin 2017 AV _ Linear optimization model 

Levin et al. 2017 AV Austin (down town) Linear Routing Optimization 

Liu et al. 2017 AV Austin-Texas-USA MATSim 

Horl 2017 AV Based on Sioux Falls City MATSim 

Alam & Hbib 2018 AV Halifax, Canada Microsimulation 

Winter et al. 2018 AV Arnhem, Netherlands Simulation 

Babicheva et al. 2018 AV Saclay, France Mathematical Modeling 

Hyland & 

Mahmassani 
2018 AV Manhattan grid network ABS 

Hörl et al. 2019 AV Zurich, Switzerland MATSim 

 



33 
 

 

Table 2-2. List of articles for energy management problem 

Authors Year 

Type 

of 

Vehicle 

Region Solution 

Bischoff & 

Maciejewski 
2014 EV Mielec, Poland MATSim 

Brendel et al. 2018 EV _ Simulation 

Yi et al. 2018 AEV New York City, USA Simulation 

 

 

 

Table 2-3. List of articles for both fleet and energy management problem 

Authors Year 

Type 

of 

Vehicle 

Region Solution 

Hafez et al. 2001 EV Paris - France MILP - Heuristic 

Awasthi et al. 2011 AEV _ Simulation 

Wang & Cheu 2013 EV Singapore 
Mathematical Modeling - 

Heuristic 

Zhang et al. 2016 AEV _ MILP with Binary Variables 

Chen et al. 2016 AEV Based on Austin-Texas-USA Discrete-time ABS 

Biondi et al. 2016 EV Netherlands Stochastic Optimization 

Scheltes & Correia 2017 AEV Delft University, Netherlands ABS 

Kang et al. 2017 AEV Ann Arbor -Michigan - USA Simulation 

Bauer et al. 2018 AEV Manhattan, New York, USA ABS 

Farhan & Chen 2018 AEV Based on Austin-Texas-USA Discrete-time ABS 

Iacobucci et al. 2018 AEV Tokyo - Japan 
Simulation/Optimization 

algorithm 

Leob et al. 2018 AEV Austin, Texas 6-county region MATSim 

Zhang et al. 2019 AEV Shanghai, China 
Mathematical Modeling - 

heuristic 

Bauer et al. 2019 EV 
New York &  San Francisco, 

USA 
ABS 

Iacobucci et al. 2019 AEV Tokyo - Japan MILP 

Zhang et al. 2020 AEV San Francisco Bay Area, USA ABS (BEAM) 

 

 



34 
 

2.8 Summary 

In this chapter, a review of the literature on emerging shared mobility services using novel 

technologies of autonomous vehicles and electric vehicles is proposed. Due to these technologies' 

benefits, our urban transportation will be drastically changed in the near future. Several varieties 

of employing different types of vehicles in the fleet are addressed. Since the scenario of employing 

autonomous electric vehicles in a shared fleet seems to be the most beneficial and can make up for 

former shortfalls, in our future work, we tackle the fleet and energy management of SAEVs. 

  



35 
 

Chapter 3: 

 

3 Modeling Approach 

 

3.1 Introduction 

“Essentially, all models are wrong, but some are useful” (George Box, 1987) 

Following chapter 2, it is decided to model a fleet of SAEVs because of the resulting benefits that 

both autonomous and electric vehicles bring to the table. In this chapter, the general idea behind 

the proposed model is introduced, and with the help of Unified Modeling Language (UML), 

different aspects of the model are discussed. 

 

3.2 One-way SAEV Fleet Selection 

The service-providing fleet that is studied in this writing comprises electric and autonomous 

vehicles so that they can cover each other’s shortfalls and benefit from the advantages of both of 

these technologies. Providing a shared transportation service requires high utilization of fleet 

vehicles in order to be profitable. In this regard, according to Loeb et al. (2018), employing EVs 

for the fleet is more advantageous since EVs have lower energy and maintenance costs in 

comparison with conventional ICEVs therefore, their high utilization is less costly. Another reason 

for using EVs is their environmental advantage, such as zero GHG emission, less noise pollution, 

the possibility of employing renewable energy sources for providing the needed electricity. 

Employing AVs is also beneficial for fleet providers due to the omission of human driver salary. 
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3.3 Unified Modeling Language (UML)  

UML, as Rumbaugh, Jacobson, and Booch, its developers, describe it, is a general-purpose 

modeling language for capturing different aspects of a software system. The aim behind modeling 

a system from various aspects is: 

• So that people besides the developers can understand the model 

• To show the design of the system 

• To be able to browse into different sections of the system 

• To maintain the system towards arriving updates 

• To control the information 

UML addresses the system's static structure by considering different role-playing discrete objects 

in the system and their interactions. It also models the dynamic behavior of those objects through 

time. Since its developers intended to model the broad applications of software systems, it cannot 

be small. However, they also aimed to make it as simple as possible to be applicable by more 

people (Rumbaugh et al., 1999). 

Several ULM diagrams are introduced to catch the service-providing system's dynamic and 

dynamic aspects, each having its characteristics and benefits. Throughout the following 

subsections, some of the most useful UML diagrams are introduced, and the relevant diagrams for 

the case of a SAEV service-providing fleet are created.  
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3.3.1 Class Diagrams 

The general format of the diagram is such that a three-sectioned rectangle represents each class. 

The top section contains the class's name, the middle section contains the class’s attributes, and 

the bottom section contains its methods. Also, the type of relationship between all the classes 

apparent in the diagram is modeled. Four different types of relationships are depicted with the 

following considerations. 

Inheritance: An open arrow represents this type of relationship. When a child class is connected 

to a class by the inheritance relationships, it gets all the attributes and methods of its parent class. 

This type of relationship helps us not repeat the same attributes and methods for each subclass and 

instead just write it once in the parent class. 

Association: A simple line is drawn from one class to the other with the type of association written 

on top to show such a relationship.  

Aggregation: When a subclass is connected to a parent class with a line ending with an open 

diamond, this represents the aggregation relationship. An aggregation relationship is a type when 

the subclass can exist outside of a parent class. 

Composition: This is the opposite of the aggregation relationship, and the subclass cannot exist 

outside of the superclass. Meaning if the parent class is destroyed, the subclass is also going to be 

destroyed automatically. This type of relationship is depicted using a line ending with a closed 

diamond. 

One more demonstration by UML class diagrams is called multiplicity: the number of each class 

per the other class it is connected to, which includes an actual number or a possible range. Visibility 

is also another feature of UML diagrams that is shown by inserting different signs before each 
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attribute or method. The most used signs are plus and minus signs. The plus sign shows that an 

attribute or method is public; therefore, other classes can reach it. On the other hand, the minus 

sign shows that an attribute or method is private and can only be reached within the same class.  

 

 

Figure 3-1. Physical Class Diagram 

 

With class diagrams, the relationship between different parts of the proposed model in this thesis 

is depicted, and each class's attributes and methods are mentioned. In figure 3-1, all the physical 

classes involved in the model have been introduced: resources, trips, and the customers. Since 

resources are a broader subject, it is depicted separately as a class diagram with more details, but 

trip and customer class are explained in the following paragraphs. 
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In the simulation software, time is considered a discrete value containing integer numbers; thus, 

the trip duration can only be reported with integer numbers. The actual distance that a vehicle 

needs to move to fulfill a trip is considered as a whole number of kilometers. For each trip, there 

needs to be a depot station where customers will take the vehicle and a destination station to leave 

the vehicle.  

One of the model assumptions is that customers will take a vehicle if and only if one is already 

available in their depot station due to the relatively short-distance nature of the trips. If there were 

no available vehicles in that station, the customer would decide to walk or use other public 

transportation methods. Whether a customer is serviced or not is showed by a boolean variable. A 

customer acts by requesting a trip and selecting a destination.  
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Figure 3-2. Resources Class Diagram 

 

Figure 3-2 shows the class diagram of the resources. Two major types of resources are vehicles 

and stations. Each vehicle has a separate ID to be distinguished from other vehicles. SoC is the 

state of charge for the vehicle. When a vehicle makes a trip, its SoC will be reduced depending on 

the trip's duration and distance. The vehicle needs to update its SoC at the end of each trip so that 

if it goes below a threshold, it could plug itself into a vacant charger. Vehicles could be available 

or unavailable to give service to customers. A vehicle is unavailable when it is being charged, or 

it is completing a trip. 
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There is a composition relationship between the parking spot and payment machine and the station, 

meaning that there will not be a parking spot and payment machine if there were no stations. Each 

station has one payment machine that customers can use to pay for their trip. They can also use an 

app to make the payment similar to the system used by BIXI, the bicycle sharing service, in 

Montreal. Each parking spot can be equipped with a charger or not.  

 

 

Figure 3-3. Control Class Diagram 

 

The control class is composed of operations controlling different parts of the shared transportation 

system. The first one is the system coordinator, who is in charge of controlling all the operations. 

The charger controller which keeps track of each charger’s state is the second one. When a vehicle 

reaches a station with an SoC below the critical threshold, the charger controller verifies if there 

is any vacant charger in that station or not. In the case when there is no vacant charger, the vehicle 

is sent off to another station. The third one is the parking controller, who determines the number 

of vacant parking spots. After completing a trip, when a vehicle arrives at the station, it needs to 
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park itself at one of the available parking spots. If there were no parking spot available, the parking 

controller would send the vehicle to another station. The last part is the vehicle controller, which 

updates each vehicle's state in the system. When there is a demand for a vehicle in a particular 

station, this controller will verify vehicle availability to provide service to the customer.  

 

3.3.2 Activity Diagram 

The activity diagram simply shows the actions done to achieve an ultimate goal. Basic shapes used 

in an activity diagram are as follows: 

• A closed circle shows the beginning of the flow of activities.  

• Actions are inside the rounded-off rectangles.  

• Decide stages are shown by a diamond. 

• Arrows show the flow of the process. 

• A solid bar showing the possibility of all the outcomes. 
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Figure 3-4. Making a Trip Activity Process 
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Figure 3-4 shows the activity diagram for making a trip. As can be seen from the diagram, the 

system will be triggered when there is a customer's request for a trip. After that, the system will 

verify any available vehicle in the customer's depot station. If there was an available vehicle, the 

travel could start. Otherwise, the customer will leave the system. This consideration is intending 

to simplify the model. Since trips are short, it is supposed that the customer has no intention of 

waiting for an available vehicle and will choose other transportation methods. After completing 

the trip, the customer will leave the system. At this moment, the vehicle checks its SoC. If its SoC 

is below a critical threshold and there exists a vacant charger at the station, it would plug into the 

charger. Otherwise, it will be sent to other stations. When the SoC was above the critical threshold, 

and there was a parking spot available at the station, it will park itself. Otherwise, it will be sent to 

another station be parked. A vehicle will be charged until reaching full battery or reaching a 

predefined percentage of charge and will not interrupt its charging process to provide service to a 

customer. According to battery longevity policies, such a decision is made to avoid extra costs due 

to battery replacement and be more eco-friendly, not to produce dead battery waste. A vehicle 

stays in a parking spot until it is summoned by the system to fulfill a trip request.  

 

3.3.3 Use Case Diagrams 

In a use case diagram, the aim is to depict a system and its outside actors' possible interactions. It 

also shows what type of service the system is providing. A use case diagram comprises four 

different parts: system, actors, use case, and relationships. The first part, which is the system, is 

shown by a big rectangle in the middle of the diagram. Actors, as the second part of the diagram, 

are demonstrated by stick figures. Depending on the actors' type, they could be placed on the right 

or the left side of the system's rectangle. There are two types of actors: primary actors and 
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secondary actors. Primary actors are drawn on the system's left side, and they initiate interacting 

with the system. Secondary actors are depicted on the right side of the system, and they make a 

corresponding reaction to the initial action of the primary actors. The third part is the use cases 

shown with an oval shape, and they represent different actions carried out inside the system. The 

last part is the relationships which are differentiated by drawing several kinds of lines. Different 

types of relationships are as follows: 

Association: A simple solid line shows this type of relationship. 

Include: It is depicted by a dashed arrow starting from the base use case and ending in an included 

use case. On the dashed arrow, the word included is written in double chevrons. This type of 

relationship states that in order for a base use case to be executed, the included use case should be 

executed as well.  

Extend: This type is also shown by a dashed arrow from the extended use case towards the base 

use case with the word extend written in double chevrons on top of it. The extended relationship 

indicates that when a base use case is executed, and some specific conditions are met, the extended 

use case also becomes executed.  

Generalization: This type is similar to the inheritance relationship in a class diagram introduced 

earlier in this chapter. Like the inheritance, an open arrow shows this specific type of relationship 

between actors and between use cases. 
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Figure 3-5. Making a Trip Use Case Diagram 

 

 

Figure 3-5 shows the use case diagram for making a trip system. There are three actors involved 

in this process, the customer who will initiate interacting with the system by requesting a vehicle 



47 
 

and the vehicle and system coordinator who react to this request. After a request is submitted, the 

system coordinator will verify if there are any available vehicles in the depot station or not. If there 

was availability, a vehicle is assigned to pick up the customer. After entering the vehicle, the 

customer will choose any other station as their destination, and by reaching that station, he/she will 

leave the vehicle. In the case where there was no available vehicle, the customer is asked to leave 

the system. 
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Figure 3-6. Vehicle Entering Station Use Case Diagram 

 

Another use case diagram shown in this section is entering a station after fulfilling a trip for a 

vehicle which is depicted in figure 3-6. A vehicle needs to be parked when it has finished its travel. 

To do so, it will verify with that specific station if there are any available parking spots. If there 

were availability, it would be parked in that station. If not, it should leave this station and go to 



49 
 

another one. Also, at the end of each trip, the vehicle needs to check its SoC. If the SoC were 

below a critical threshold, it would need a charger. Like the parking process, it will check the 

charger’s availability. If no chargers were available in the destination station, it would leave for 

other stations. If not, it will stay in the same station and start the charging process. 

 

3.3.4 Sequence Diagram 

Sequence diagrams are made to show the interactions between different objects in the order of the 

timeline within a system. In other words, they simply show the sequence of events. Rectangles 

represent objects within the system, and a stick figure represents the actor who is outside the 

system but interacts with it. Vertical dashed lines represent the lifeline of the actor or objects. Each 

interaction between different parts is shown by a solid arrow labeled corresponding to the action 

or message. A returned message is depicted by a dashed arrow and responds to one object or actor 

to the other (a message from the receiving object back to the requesting). An alternative frame is 

used whenever there is a possibility of two sets for turns of events. An alternative frame is a 

rectangle divided in half to show two or more mutually exclusive options. Activation boxes are 

shown by a narrow rectangle how much and when an object is active. Figure 3-7 shows the 

sequence diagram related to the proposed SAEV transportation system. 
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Figure 3-7. Making a Trip Sequence Diagram 
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3.4 Summary 

In this chapter, with UML diagrams' help, different aspects of the proposed SAEV service 

providing system are introduced. Via the class diagram, different categories in the system and their 

attributes and methods in addition to their relationship towards each other are shown. The activity 

diagram depicted all the activities and their possible outcomes regarding such a transportation 

system. The use case diagram is utilized generally for introducing all the agents composing the 

system and their interactions with each other. A sequence diagram is used to show the possible 

actions concerning their relative time of occurrence in the system. 
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Chapter 4: 

 

4 Agent-Based Simulation of a Fleet of SAEVs: Case Study of 

Olympic Park 

 

4.1 Introduction 

To study and capture the specifications of the SAEV fleet described in chapter three, with the help 

of the NetLogo simulation software, the simulation model of the case study of Montreal’s Olympic 

Park is developed. In this chapter, the simulation model and the software used for creating it will 

be explained in more detail.  

 

4.2 Agent-Based Modeling (ABM) 

As some describe it, Agent-based modeling is “the third way of doing science,” which enables us 

to study complex systems that were formerly impossible to study without simplifying assumptions. 

Take economics as an example that could only be studied with the assumption of a perfect market, 

long-run equilibrium, and homogenous agents. Now with the help of ABM can be analyzed with 

more realistic assumptions. Economic is not the only field that employs ABM. Many natural trends 

such as the spread of diseases, market penetration, extinction of civilizations, and many more can 

also be analyzed through ABM tools Macal and North (2009).  

Although only recently being put into everyday use, ABM was not a new topic in science. As an 

example, the segregation model by Thomas Schelling, which was introduced in 1971, was one of 
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the earliest ABMs presented. The idea behind the segregation model is that individuals can only 

tolerate a specific number of people other than their nation as their neighbors. If this number 

exceeds a threshold, they tend to move to other neighborhoods.  Schelling used a checkerboard to 

represent such a model and solved the problem without the aid of a computer. Using a 

checkerboard for such a big problem was very time-consuming, but nowadays, this problem can 

be solved within seconds with computers' computation capacity. 

The basic idea behind agent-based modeling is to study a system based on its agents' behavior and 

interactions, which means that each entity's behavior will determine the system's future state. In 

contrast with other methods which try to model the system as a whole, in agent-based modeling, 

the concept is to model the system from the ground-up.  

Steps to develop an ABM to capture characteristics of a system can be summarized in three folds. 

First, it is essential to distinguish all the agents which form that system. Second, the specific 

attributes and variables relative to each of the agents must be defined. The final step is to imbed 

the interactions between the agents or between agents and their environment. To carry out the first 

step, it is crucial to know the major characteristics of an agent to distinguish them. According to 

Macal and North (2009), there is still unsettled debate on the exact definition of agents. However, 

based on their studies, they suggest the following definition capture significant characteristics of 

an agent: 

• An agent is a definable unit with its attributes, decisions, and rules and is distinguishable 

from the environment or other agents. 

• An agent can interact with other agents. 

• An agent is autonomous in its behavior, meaning that it interacts with its environment or 

other agents in a manner that is governed by the agent itself and is not decided by a leader. 
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Some other characteristics mentioned by Macal and North (2009) which may or may not be seen 

in an agent are as follows: 

• An agent may interact with its environment. 

• An agent may be goal-orientated and continuously change its behavior and policies to reach 

an optimal situation. 

• An agent may have memory and change its behavior based on past experience.  

 

4.3 Simulation Software 

Although an ABM can be developed simply using available programming languages such as 

Python or Java, using specifically designed ABM toolkits could considerably help the modeler. 

Since some relevant codes and commands are already embedded in these toolkits, they can save 

time and energy for model development. Several of such toolkits available are Repast, Swarm, 

MANSON, AnyLogic, and the one used in this study, NetLogo. While most of the toolkits 

mentioned above are usually used in massive projects, NetLogo is primarily used for educational 

purposes due to its simplicity; nevertheless, it can build problem-solving projects as well. It is a 

free toolkit designed to implement multi-agent-based modeling problems authored by Uri 

Wilensky in 1999. The Center for Connected Learning and Computer-Based Modeling at 

Northwestern University oversees NetLogo’s development. Being a multi-agent simulation toolkit 

makes it possible to define different agents' groups at the beginning of the code. The language used 

in this toolkit is called Logo, which was first introduced by Seymour Papert et al. in 1969. The 

logo is a single agent language designed to make the school students interested in computer 



55 
 

programing. A robot called a turtle acted as the agent to make the toolkit interesting for students. 

The term turtle is still used for calling the agents in NetLogo.  

Syntaxes used in NetLogo are similar to standard English, making it easy to write the commands 

even for people without much coding experience. Although, this simplicity does not make it 

unsuitable for complicated research projects. NetLogo has provided service to many research 

projects so far. The variety of sample problems available in NetLogo’s library in different fields 

such as biology and economics, and mathematics makes it suitable for researchers with different 

backgrounds. The library option of NetLogo, a pool of example models, can help the researcher 

explore the proper use of code commands and develop their desired code based on a code example.  

Another exciting feature about NetLogo is its extensions, enabling the modeler to bring different 

commands written in Java or other languages to their NetLogo model. As an example of these 

extensions with already available examples in the NetLogo, the library is the GIS extension. This 

extension makes it possible to bring GIS data to the model platform. As an example, figure 4-1 

shows the map of all roads for the area near Montreal Olympic Park, which is brought to the 

interface of NetLogo using GIS extension. 
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Figure 4-1. Map of roads around Montreal Olympic Park area brought in NetLogo interface 

 

In NetLogo, each problem space is comprised of three different tabs. The first tab is called 

interface, which is where the model can be visualized, and with the use of different bottoms such 

as sliders, the initial values can be altered. Also, plots can be drawn to show the changes of a value 

during a run. The second tab is called Info, which is mostly space for the model developer to clarify 

their model's fundamental aspects in plain English. The last tab is the Code which is the principal 

place for modeling the problem using computer commands.  

In the interface tab, a graphical environment exists which demonstrates the modeled system. This 

graphical environment is comprised of a black squares grid, named patches, and triangles 

representing agents. Aside from the turtles and patches, another character in the NetLogo models 

is called the observer, who runs and oversees the whole model. Shapes and colors can be changed 

according to the modeler’s desire. This visualization capacity makes the model more 

understandable and helps the developer in the task of model verification, which means that one 

way of finding possible mistakes in modeling is to run the model and follow its visual development 
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to see if it complies with expectations or not. Figure 4-2 shows the interface tab of the model 

created in this study. As it can be seen from this picture, parameters such as the number of vehicles, 

vehicle range, number of parking spots, critical threshold, maximum charging time, and demand 

probability can take different values using sliders. Also, reporters are added to this model to report 

the desired outputs for each time instant of the run. Turtles are asked to “put their pen down,” 

which means to leave a trace wherever they go. This will significantly help examine if turtles are 

following the correct route or is there any deviation.   

     

 

Figure 4-2. Interface tab of the developed model of this study 

 

4.4 Agent-Based Modeling of Montreal Olympic Park Using NetLogo 

As already mentioned in chapter three, this study tries to model a fleet of fully autonomous electric 

vehicles giving one-way transportation service for short distance travels. This full automation 
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means that not only can the vehicles drive without any interference of a human driver, but also, 

they can charge themselves by using a robotic arm. A customer will randomly arrive at one of the 

stations at a time step. If by that time there was a vehicle available at the station for giving service, 

he/she will complete his/her travel by moving to another station. However, suppose there was no 

available vehicle at that moment. In that case, it is considered that the customer will leave the 

system immediately, and this unsatisfied departure would be counted through the simulation as a 

metric for calculating the performance. 

Five stations on the streets surrounding the Montreal Olympic Park are considered to model such 

a fleet. Each of these stations is close to a tourist attraction or a metro station, and they are placed 

at a reasonable distance from each other to cover all of the park angles. The first station is on 

Pierre-de Coubertin Avenue near the Viau metro station. This consideration will help the travelers 

who take public transportation to access other parts of the park by using the shared fleet. The 

second station is on Viau street near the Golf Complex, and the third one is on Rosemont Boulevard 

near the entrance for Frédéric back Tree Pavilion. The fourth one is on route 125, close to the 

park’s main entrance. This station is also easily accessible through the Pie-IX metro station. With 

these four stations, we can cover all the four streets surrounding Olympic Park. One last station is 

also added to Sherbrooke street's cross-section and the road leading to Montreal Insectarium. By 

adding this last station, more central parts of the park are reachable. Figure 4-3 shows the 

placement of these five stations on a picture taken from google maps. 
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Figure 4-3. Candidate stations 

 

As earlier explained, in one-way ridesharing, one consideration that improves the system is 

rebalancing. Since demand in some stations could be more significant than others, eventually, 

some stations would have an overpopulation of vehicles while others would suffer from vehicle 

shortage. This case usually occurs when the travel of the customers follows a pattern. For example, 

the pattern is shaped from the travel from areas near cities towards downtown in the morning's 

rush hours and vice versa in the evening. In order to maintain the quality of service providing, 

vehicles from overpopulated stations should be brought to stations with vehicle deficiency; in this 

study, rebalancing is not considered in the model due to the following reasons. First, the demand 
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of the park visitors is entirely random and does not necessarily follow a pattern. Because, while 

someone is visiting one side of the park, another one could be vising the opposite side. As a result, 

the situation of becoming unbalanced is not as common as pattern-shaped travels. Secondly, 

considering the number of parking spots relatively small to the number of vehicles, automatically 

a station cannot be overpopulated since there is no parking place. Hence, they have to move to the 

next nearest station with available parking spots. The effect of the number of parking spots is later 

on studied in chapter 5. 

 

4.5 Model Assumptions 

It is evident that not a single model is able to capture all the aspects of a real-world system, and 

eventually, some simplifications must be made. In this regard, the simplification assumptions 

considered in the model are mentioned as follows: 

• The traffic flow is neglected; hence, vehicles choose the fastest path possible for going 

from one station to another. 

• It is considered that each parking spot is equipped with a charger. Meaning that if a vehicle 

was able to park in a station, it could defiantly charge as well. 

• Since there was no data for the customer arrivals available, three different customer arrival 

rates are considered to shape high, medium, and low demand scenarios. 

• Vehicles move at the constant speed  

• Only 80% of the battery capacity is modeled so that charging with a constant rate would 

be valid. To protect batteries from early degradation, manufacturing companies design the 

charging process so that batteries get charged with a constant speed for charge values below 
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80% of the range. Nevertheless, towards the end of the charging process, meaning from 

80% until 100% fully charged, the charging process will take more time with a shifting 

charging rate.  

• Data acquired for range and charging time is based on hybrid vehicles and not EVs. For 

such a short distance model, we are only interested in using low-range vehicles for the fleet, 

but available EVs in the market have higher ranges required for this study. 

• When a vehicle is making a trip to go to the nearest station with an available parking spot, 

there is no guarantee that the parking spot will still be available by the time it reaches that 

station. Because there is a chance that another vehicle has finished its travel and parked 

itself at the vacant parking spot, in such a situation, the system manager would again find 

another nearby station with a vacant parking spot. 

• The SoC of vehicles remains intact when they are making a trip and will not continuously 

decrease during the trip. After a vehicle reaches its destination, the distance it has traveled 

will be deducted from its SoC. 

• Customer arrival to each of the stations is sequential, and the case when two people arrive 

simultaneously at the same or different stations is neglected. 

 

4.6 Model Execution 

In this section, an explanation of the NetLogo model's steps is introduced to better clarify the 

model (the actual code written for the model can be found in the appendix section of this essay).  
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Before all, a simple definition for the objective function and constraints is stated. Considering that 

the service provider's objective is to minimize the number of its fleet size while maintaining good 

service quality, the optimization problem can be written as follows: 

Min
 

5𝑉                  (4.1) 

𝑠. 𝑡.         
𝑇𝐶 − 𝑅𝐶

𝑇𝐶
× 100 ≥ 90                (4.2) 

While 𝑉 is the number of vehicles at the beginning of the simulation at each station and 𝑇𝐶 and 

𝑅𝐶 are the number of total customers and number of rejected customers, respectively. The 

tolerance for the percentage of rejected customers is set to 10%, which means 90% of the 

customers will be serviced. Now, the general process of the simulation model can be gathered in 

few steps as follows: 

Step1: At the beginning of the code, the global and local variables, as well as different sets of 

agents, are defined. Since NetLogo allows having multi-agents in the simulation, different groups 

of agents can be defined at the beginning of the code.  

Step 2: In this step, all the commands that create the simulation environment are introduced. The 

observer would click on the “set up” bottom on the Interface tab, and all the following commands 

will be carried out in the subsequent order. 

 First, all the former runs so far, if any, will be deleted. Then, the GIS data of the desired case 

study, which is the surrounding streets of Montreal Olympic Park, is added to the code. Later, 

wherever there exists an angle on one of the studied roads, an agent is created at that specific 

location. These agents are called road vertices, and they are used to give direction to the vehicles 

and specify the location of stations.  



63 
 

Even though the GIS data is already implemented in the model, on the display section, nothing 

appears. Another piece of code is written to display the map of the roads. The last three lines of 

the “set up” command give direction for the station, vehicle and, parking spot implementation. 

Stations, vehicles, and parking spots are created as three different agent sets, and then they are 

moved to the predefined locations. The locations are found by assigning five specific road vertices 

as the desired spots for station implementation. In NetLogo, each agent has a unique identity 

number named the “who” number. The identity numbers of road vertices are used to find the 

correct locations. The number of vehicles and number of parking spots at each station can be 

altered in each run using a slider on the “Interface” tab of the model. The other parameter that can 

be changed regarding the vehicles by using another slider is their battery range. 

Step 3: In this step, the simulation will be started by clicking on the “go” bottom. In the last line 

of this section commands, the word “ticks” is written to add a timer to the model. In NetLogo 

models, time is counted in discrete steps named “ticks.” By considering the constant speed of 

30km/h for each vehicle, every minute is calculated to be approximately equal to 42 ticks.  

A trip is generated whenever there is a demand for it. Customers are randomly created to model 

the random arrival of customers in the real world by using the following condition. 

𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 (
42

𝑝
) =  0             (4.3) 

This condition will hold when the random whole number generated in the range [0,
42

𝑝
− 1] would 

be equal to zero. Each tick, a whole number in this range, is generated, and whenever that number 

is 0, one customer will be created. 42 ticks will be divided by 𝑝, the probability of customer arrival 

for each minute, to generate the expectancy of  having one arrival after each 
42

𝑝
  ticks. When a 
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customer is created, it will randomly move to one of the stations. Then, if there was any vehicle 

available, another station is chosen as the destination, and the vehicle would start its trip. On the 

other hand, if no vehicle were available to give service to the customer, he/she would leave the 

system, and this departure would be counted via formula 3. 

𝑅𝐶 = 𝑅𝐶 + 1         (4.4) 

A vehicle is available when it is not fulling a trip. Hence it is parked in a station and is not getting 

charged as well. To demonstrate the vehicle availability, they are presented by the color green. 

Two other colors of white and red are also possible choices for each vehicle, each referring to 

different situations. Suppose there were no parking spots available in that destination. In that case, 

the system controller checks to find the closest station with a parking spot available and sends the 

vehicle to that station. A vehicle that is making a trip to park itself and is not giving service to a 

customer will change its color to white, and this trip will be counted as an empty trip. After the 

vehicle is parked, it will change color to green again if it has enough charge. Each time a vehicle 

is parked, it checks its SoC. If the charging level was below a predefined threshold, it will change 

color to red and stay idle until reaching 80% of its charging capacity. Then it will change color to 

green and stays in the station until being assigned to give service to a customer.  

For the vehicle to move on the right path, it is crucial to know the depot and destination stations 

since each path from one station to another is separately defined. The vehicle will start its trip by 

facing the next road vertex in its path and moving towards that one step in each tick. When it is 

close enough to the road vertex meaning their distance is less than one patch, it will move to that 

road vertex location. When the vehicle reaches the road vertex, it will face the next road vertex 

and moves towards that. This process will continue until the vehicle reaches the last road vertex, 

which is the destination. Using this creative method of movement is one of the contributions of 
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this essay which lets not only to go on the right path but also to move meaningfully with regard to 

the time step.  

When a vehicle reaches the destination at the end of each trip, the kilometer it passed will be 

deducted from its SoC. Then the code would verify if the number of parking spots is bigger than 

the number of vehicles at the station. If this was true, the vehicle has a spot to park; hence it will 

end its trip. Otherwise, the code will determine which station has a parking spot available at the 

moment. The search for a parking spot will start by the nearest station to the current station to 

comply with the fuel efficiency policy. Then the vehicle would move towards the candidate station. 

By the time it reaches the station, it will go through the whole process of SoC adjustment and 

parking spot availability check. Because it takes some time to reach the station, during which the 

parking spot availability might have changed, this check needs to be done every time. 

When a vehicle is finally parked, it will go through the charging process if its SoC is lower than 

the critical threshold. The vehicle will change its color to red and stop giving service to customers 

until reaching 80% of its range which is the maximum SoC for the vehicles during the simulation. 

A variable named “charge-time” is assigned to the vehicle, and for every tick of the model, it will 

be increased by one unit. To calculate the right time for the vehicle to be detached from the charger 

and become available again to give service formula 4.5 is used. 

𝐶𝑇0−80 × 42 × (𝑆𝑜𝐶80 − 𝑆𝑜𝐶)

𝑆𝑜𝐶80
                (4.5) 

In this formula 𝐶𝑇0−80 is charging time for a vehicle to reach 80% of its range while starting at 0 

charge level. This parameter also should be changed based on the range capacity of the vehicle by 

using a slider. 𝑆𝑜𝐶80 is the state of charge of the vehicle when it is charged at 80% of its range, 

and 𝑆𝑜𝐶 is the state of charge at the moment when the vehicle was parked. With this model 
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specification, there is the possibility that if a vehicle wanders around a lot to find a parking spot or 

if the critical threshold for SoC is not high enough, the vehicle might run out of charge. The model 

counts the number of out-charged vehicles and reports that as the system error. If a system error is 

encountered in the simulation run, the critical threshold should be changed. 

 

4.7 Summary 

In this chapter, an introduction to the concept of ABM and its application is introduced. Later the 

methods and toolkits available for simulating an agent-based problem are enumerated, and an 

explanation of the toolkit utilized in this study is provided. Then the case study of Montreal 

Olympic Park is introduced. Finally, model assumptions and the method for writing the simulation 

code are provided.   
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Chapter 5: 

 

5 Numerical Results and Discussions 

 

5.1 Introduction 

In this chapter, numerical experiments are introduced to test the model's validity. Three different 

demand probabilities representing high, medium, and low frequency are implemented in the model 

to compare the results under different customer arrival circumstances. The best scenario possible 

for the fleet owner can be dragged from the information provided in this section 

 

5.2 Scenario Generation 

Various scenarios are generated by considering different values for the number of vehicles, vehicle 

range, and level of demand. Seven value is considered for the number of vehicles at each station 

at the beginning of the simulation. These values are such as 2, 3, …, 8. The number of parking 

spots at each station also varies with the number of vehicles in a manner that for each scenario, the 

number of parking spots at each station is equal to the number of vehicles at each station plus 2. 

In order to test the effect of the fleet performance's vehicle battery capacity, five different possible 

vehicle ranges are assumed from 30km until 70km augmenting in 10 increments. For each of these 

ranges, different charging times and critical thresholds are assigned. 

Charging times vary by many factors, one of which is the size of the battery. The charging times 

acquired for this study are estimates from different hybrid vehicle models available. In this manner, 

a vehicle with a 30km charge range needs 150 minutes to charge from 0 to 100. When the range 

is increased by ten increments, the charging time will as well increase with 30 minutes increments. 
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As already mentioned in chapter 4, one of the model assumptions is to consider vehicles at 80% 

of their charging rate at the beginning of the simulation. Also, vehicles will stop the charging 

process whenever they reach their 80% of range. According to Loeb et al. (2018), half of the 

charging time is spent to bring the battery from 0 to 80% of its range, and the other half will bring 

it from 80% until fully charged. Since ranges below 80% are modeled, only half of the charging 

time is seen in the simulation. Another factor that changes with the range of the vehicle is its 

critical threshold. To extend the battery’s life, the critical threshold is considered to be 20% of the 

battery range.  

By considering three demand levels with the probability of customer arrival in each minute equal 

to 0.5, 0.2, and 0.1, and all the aforementioned inputs for numbers of vehicles and battery range, a 

total of 105 different scenarios are generated. Table 5-1 shows all the possible values for these 

parameters. The model is run for 100 replications for each scenario, and values are averaged 

through the replications. The number of rejected customers, performance (percentage of the 

number of serviced customers divided by all the customers), number of empty travels, and the 

number needed charging service are reported as the outputs. System error is also added to the 

model as a controlling criterion that simply checks to see if a vehicle will run out of charge during 

a simulation or not. Since distances between stations are not considered high, low levels for critical 

threshold would result in almost no complete discharge of the battery, and the 20% of SoC 

threshold in almost all the cases would be big enough. The only time that this strategy seems to be 

unreliable is for 30km range vehicles; hence in that case threshold is considered to be 8 and not 6. 
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Table 5-1. Possible values for different parameters 

Demand Level 0.1 0.2 0.5     

Number of Vehicles at Each Station 2 3 4 5 6 7 8 

Number of Parking Spots at Each Station 4 5 6 7 8 9 10 

Total Number of Vehicles 10 15 20 25 30 35 40 

Total Number of Parking Spots 20 25 30 35 40 45 50 

Vehicle Range (km) 30 40 50 60 70   

80% of Range (km) 24 32 40 48 56   

Critical Threshold 8* 8 10 12 14   

Charging Time (min) 150 180 210 240 270   

Half Time (min) 75 90 105 120 135   

* The actual threshold is 6, but with that value, there is a chance of running out of charge 

 

Without seeing the actual results, it is logical that when the range is increased or the number of 

vehicles increases, the service quality will be improved. On the other hand, the provided service 

cost will also increase due to excess in equipment's number and cost. As a result, there is always a 

trade-off between service quality and system costs. Although the price of vehicles is not considered 

in this study, it is evident that the more the number, the higher the costs. Also, each vehicle's price 

depends on its battery capacity and qualifications, which means that a higher range battery could 

result in a higher vehicle price.  

 

5.3 Results 

The simulation is run for a weekend day, considering the demand would be highest compared to 

the rest of the week. The simulation's length is 10 hours for the hours that the park is operating; 

translating into ticks, it is equal to 25200. The results of the number of rejected customers, 

performance, and the number of discharged vehicles are discussed in the following subsections. 
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5.3.1 Rejected Customers 

In this section number of rejected customers under different scenarios is studied. Figures 5-1, 5-2, 

and 5-3 show the number of rejected customers relative to the number of vehicles in the fleet for 

demand probability of 0.5, 0.2, and 0.1, respectively. These graphs also contain the information of 

each range capacity such that each line represents one level of vehicle range. 

 

 

Figure 5-1. Number of rejected customers vs. number of vehicles for demand probability of 0.5 
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Figure 5-2. Number of rejected customers vs. number of vehicles for demand probability of 0.2 

 

 

 

Figure 5-3. Number of rejected customers vs. number of vehicles for demand probability of 0.1 
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significant impact since in all three graphs, the line representing different vehicle ranges lay very 

close to each other. The number of rejected customers seems to decrease in an exponential manner 

with the increase in the number of vehicles. As a result, having a fleet comprised of 20 to 25 

vehicles seems the right choice. Since range has no significant impact on the number of rejected 

customers, the case when the range is equal to 50km is chosen as the range for a base scenario. 

With this consideration, when the fleet has 25 vehicles, the number of rejected customers is equal 

to 18.52 when demand probability is 0.5. With 20 vehicles in a case when the demand probability 

is 0.2 and 0.1, the number of rejected customers is equal to 6.70 and 2.92, respectively. An 

acceptable limit for rejected customers is not a predefined number and depends on the service-

providing company's policies. 

 

5.3.2 Performance 

To make the results less sensitive to the demand probability, another indicator is introduced named 

the performance. Performance is defined as the percentage of serviced customers divided by all 

the customers. Performance is also not considerably affected by the range of vehicles, and mostly 

fleet size and demand probability have an impact on it 
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Figure 5-4. Performance vs. number of vehicles when demand probability is 0.5 

 

 

Figure 5-5. Performance vs. number of vehicles when demand probability is 0.2 
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Figure 5-6. Performance vs. number of vehicles when demand probability is 0.1 
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Figure 5-7. Number of discharged vehicles vs. number of vehicles when demand probability is 0.5 

 

 

Figure 5-8. Number of discharged vehicles vs. number of vehicles when demand probability is 0.2 
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Figure 5-9. Number of discharged vehicles vs. number of vehicles when demand probability is 0.1 
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stations with an available parking spot and rebalance the system. Just like rebalancing, this 

strategy's downfall is that it could lead to more congestion and expenses due to empty travels.  

This section studies the effect of different numbers for parking spots relative to the number of 

vehicles. Four different scenarios are introduced: the number of parking spots equals the number 

of vehicles, or each station has 1, 2, or 3 extra parking spots. Other factors concerning the problem 

are the number of vehicles and vehicle range set to 20 vehicles and 50km respectively. Hence, 

each experiment's number of parking spots is equal to 20, 25, 30, and 35. Figures 5-10, 5-11, and 

5-12 show the number of rejected customers, the number of empty travels, and the number of 

discharged vehicles, respectively.  

 

 

Figure 5-10. Number of rejected customers vs. number of parking spots when the fleet has 20 vehicles of 50km range 
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Figure 5-11.  Number of empty travels vs. number of parking spots when the fleet has 20 vehicles of 50km range 

 

 

Figure 5-12. Number of discharged vehicles vs. number of parking spots when the fleet has 20 vehicles of 50km range 
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requests for recharging would decrease. As much as the demand is high, the slope of these changes 

would be steeper. 

 

5.4 Summary 

This chapter introduces the numerical results to test the validity of the proposed model. First, 105 

different scenarios are generated to represent various fleet sizes and battery ranges under high, 

medium, and low demand probability. The model runs each scenario for 100 replications, and the 

results are averaged through the replications. One semi-rebalancing policy is also tested to show 

the effect of different parking spots’ capacity on the system’s performance. 
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Chapter 6: 

 

6 Conclusion and Future Work  

 

6.1 Conclusion 

This essay studies a fleet of shared autonomous electric vehicles from fleet and energy 

management aspects. NetLogo toolkit is used to develop the desired multi-agent simulation model. 

The area around Montreal Olympic Park is considered as the case study. The suggested model can 

either provide a transportation service to the customer or ask him/her to leave the system. It is also 

capable of capturing the parking and charging constraints of the SAEV fleet.  

Under high, medium, and low customer arrival frequency, 10, 15, 20, 25, 30, 35, 40 fleet size and 

30, 40, 50, 60, 70 vehicle range, 105 different scenarios are generated. Each scenario is run for 

100 replications. The Numerical results suggest that a fleet comprised of 20 vehicles with a 50km 

range can meet the demand under all customer arrival scenarios with a 90% or above performance 

rate. While The number of vehicles in the fleet can exponentially affect the number of rejected 

customers and system performance, the range does not significantly impact the transportation 

service's performance. Later, the effects of a semi-rebalancing policy are tested. This policy aims 

to obtain the number of parking spots meaningfully as small as possible to increase the system's 

performance rate. In this regard, results of 12 scenarios with a 20 vehicles fleet size with 50km 

range capacity under all three different demand probabilities, and 20, 25, 30, 35 parking spots are 

gathered. The findings show that as much as the number of parking spots increases, the 

performance and number of empty travels decrease.  
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This model could act as a framework that can be adjusted to model a fleet for any other part of the 

world with a different road network. It only needs to bring the GIS data of that specific road 

network to the model’s surface and define the station places. With path adjustments added to the 

code, another fleet in another part of the world can be studied. Also, by being one of few studies 

that consider the actual road network of the case study, this model could lead to more realistic 

results. 

 

6.2 Future work 

This section contains suggestions for future studies, which are as follows: 

• Each station could have its demand probability. This model can be expanded such the 

possibility of two customers arriving simultaneously at two different stations would be 

probable.  

• As mentioned earlier, the traffic flow is neglected in this study. For future work, the model 

can be developed in a way that considers traffic flow as well. 

• One other factor that can help the decision-maker choose better fleet size levels, vehicle 

range and parking spots is cost. By adding this element to the model, it can demonstrate 

more meaningful results. 

• This study's semi-rebalancing policy is to send the vehicles in need of a parking spot to the 

nearest station with an available parking spot at that moment. In future works, the fleet 

controller could suggest a station with the least number of vehicles to the vehicle searching 

for a parking spot. 
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• The results of the number of recharges needed during a 10-hour shift under all scenarios 

studied show that it does not exceed 35. As a result, implementing a charger for each 

parking spot is an unnecessary cost burden for the system. The future model could advance 

in this regard by only devoting a few chargers per station or considering a different location 

for charging purposes.  
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8 Appendix 
 

; every 42 ticks is equal to 1 min when the speed of the car is equal to 30km/h 

 

extensions [ gis ] 

 

globals [ 

  roads-dataset 

  landuse-dataset 

  waterways-dataset 

  natural-dataset 

  rejected 

  system-error num-discharged 

  total-travel service-travel empty-travel 

] 

 

breed [ road-vertices road-vertex ] 

breed [ vehicles vehicle ] 

breed [ stations station ] 

breed [ customers customer ] 

breed [ parking-spots parking-spot ] 

 

vehicles-own [ 

  depot destination 

  charge discharged charge-time 

  parking-search parked 

  vg vi vt vj 

  gv gi gt gj 

  ig iv it ij 

  tg tv ti tj 

  jg jv ji jt 

] 

 

to setup 

  clear-all 

  setup-map 

  highligth-road-vertices 

  display-roads 

  add-stations 

  add-parking-spots 

  add-vehicles 

  reset-ticks 

end 

 

to setup-map 

  set roads-dataset gis:load-dataset "data/roads.shp" 
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  set landuse-dataset gis:load-dataset "data/landuse.shp" 

  set waterways-dataset gis:load-dataset "data/waterways.shp" 

  set natural-dataset gis:load-dataset "data/natural.shp" 

  gis:set-world-envelope (gis:envelope-union-of (gis:envelope-of roads-dataset) 

                                                (gis:envelope-of landuse-dataset) 

                                                (gis:envelope-of waterways-dataset) 

                                                (gis:envelope-of natural-dataset)) 

end 

 

to highligth-road-vertices 

  set-default-shape road-vertices "circle" 

  ask road-vertices [ die ] 

  foreach gis:find-features roads-dataset "TYPE" "primary" [ vector-feature -> 

    foreach gis:vertex-lists-of vector-feature [ vertex -> 

      foreach vertex [ point -> 

        let node-location gis:location-of point 

        if not empty? node-location 

        [ create-road-vertices 1 

          [ set color white 

            set xcor item 0 node-location 

            set ycor item 1 node-location 

            set hidden? true] ] ] ] ] 

  foreach gis:find-features roads-dataset "TYPE" "secondary" [ vector-feature -> 

    foreach gis:vertex-lists-of vector-feature [ vertex -> 

      foreach vertex [ point -> 

        let node-location gis:location-of point 

        if not empty? node-location 

         [ create-road-vertices 1 

          [ set color white 

            set xcor item 0 node-location 

            set ycor item 1 node-location 

            set hidden? true] ] ] ] ] 

  foreach gis:find-features roads-dataset "NAME" "Avenue Pierre-De Coubertin" [ vector-feature 

-> 

    foreach gis:vertex-lists-of vector-feature [ vertex -> 

      foreach vertex [ point -> 

        let node-location gis:location-of point 

        if not empty? node-location 

         [ create-road-vertices 1 

          [ set color white 

            set xcor item 0 node-location 

            set ycor item 1 node-location 

            set hidden? true] ] ] ] ] 

end 

 

to display-roads 
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  gis:set-drawing-color blue 

  gis:draw roads-dataset 1 

end 

 

to add-stations 

  set-default-shape stations "house" 

  create-stations 5 [ 

    set color yellow 

    set size 3 

  ] 

  (foreach (list (station 687) (station 688) (station 689) (station 690) (station 691)) 

    (list (road-vertex 492) (road-vertex 678) (road-vertex 183) (road-vertex 571) (road-vertex 22)) 

    [ [the-station the-location] -> ask the-station [move-to the-location] ]) 

end 

 

to add-parking-spots 

  ask stations [ 

    hatch-parking-spots num-parking-spots 

    [ set hidden? true ] 

  ] 

end 

 

to vehicle-defaults 

  set color green 

  set size 5 

  set parked 1 

  set charge (vehicle-range) 

end 

 

to add-vehicles 

  ask station 687 [ hatch-vehicles num-vehicles [ 

    set depot 1 

    vehicle-defaults ] 

  ] 

    ask station 688 [ hatch-vehicles num-vehicles [ 

    set depot 2 

    vehicle-defaults ] 

  ] 

    ask station 689 [ hatch-vehicles num-vehicles [ 

    set depot 3 

    vehicle-defaults ] 

  ] 

    ask station 690 [ hatch-vehicles num-vehicles [ 

    set depot 4 

    vehicle-defaults ] 

  ] 
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    ask station 691 [ hatch-vehicles num-vehicles [ 

    set depot 5 

    vehicle-defaults ] 

  ] 

end 

 

to go 

  vehicle-charging 

  trigger-trip 

  trigger-parking-trip 

  fulfill-trip 

  tick 

end 

 

to trigger-trip 

  set-default-shape customers "person" 

  if random (42 / demand-probability) = 0 [ 

    create-customers 1 [ set size 4 ] 

    ask customers [ 

      move-to one-of stations 

      ifelse count vehicles-here with [ (discharged = 0) and (parking-search = 0) and (parked = 1) ] 

!= 0 

        [ ask one-of vehicles-here with [ (discharged = 0) and (parking-search = 0) and (parked = 1) 

] [ 

          if depot = 1 [ set destination one-of [ 2 3 4 5 ] ] 

          if depot = 2 [ set destination one-of [ 1 3 4 5 ] ] 

          if depot = 3 [ set destination one-of [ 1 2 4 5 ] ] 

          if depot = 4 [ set destination one-of [ 1 2 3 5 ] ] 

          if depot = 5 [ set destination one-of [ 1 2 3 4 ] ] 

          set parked 0 

          start ] 

        die ] 

        [ set rejected rejected + 1 

        die ] 

  ] ] 

end 

 

to start 

  (ifelse 

    depot = 1 and destination = 2 [ golf-viau ] 

    depot = 1 and destination = 3 [ golf-insectarium ] 

    depot = 1 and destination = 4 [ golf-tree ] 

    depot = 1 and destination = 5 [ golf-jardin ] 

    depot = 2 and destination = 1 [ viau-golf ] 

    depot = 2 and destination = 3 [ viau-insectarium ] 

    depot = 2 and destination = 4 [ viau-tree ] 
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    depot = 2 and destination = 5 [ viau-jardin ] 

    depot = 3 and destination = 1 [ insectarium-golf ] 

    depot = 3 and destination = 2 [ insectarium-viau ] 

    depot = 3 and destination = 4 [ insectarium-tree ] 

    depot = 3 and destination = 5 [ insectarium-jardin ] 

    depot = 4 and destination = 1 [ tree-golf ] 

    depot = 4 and destination = 2 [ tree-viau ] 

    depot = 4 and destination = 3 [ tree-insectarium ] 

    depot = 4 and destination = 5 [ tree-jardin ] 

    depot = 5 and destination = 1 [ jardin-golf ] 

    depot = 5 and destination = 2 [ jardin-viau ] 

    depot = 5 and destination = 3 [ jardin-insectarium ] 

    [ jardin-tree ] ) 

end 

 

 

to fulfill-trip 

  ask vehicles [ 

    if gv > 0 [ golf-viau ] 

    if gi > 0 [ golf-insectarium ] 

    if gt > 0 [ golf-tree ] 

    if gj > 0 [ golf-jardin ] 

    if vg > 0 [ viau-golf ] 

    if vi > 0 [ viau-insectarium ] 

    if vt > 0 [ viau-tree ] 

    if vj > 0 [ viau-jardin ] 

    if ig > 0 [ insectarium-golf ] 

    if iv > 0 [ insectarium-viau ] 

    if it > 0 [ insectarium-tree ] 

    if ij > 0 [ insectarium-jardin ] 

    if tg > 0 [ tree-golf ] 

    if tv > 0 [ tree-viau ] 

    if ti > 0 [ tree-insectarium ] 

    if tj > 0 [ tree-jardin ] 

    if jg > 0 [ jardin-golf ] 

    if jv > 0 [ jardin-viau ] 

    if ji > 0 [ jardin-insectarium ] 

    if jt > 0 [ jardin-tree ] ] 

end 

 

to vehicle-charging 

  ask vehicles with [ discharged = 1 ] [ 

    set color red 

    set charge-time charge-time + 1 

    if charge-time >= ((maximum-charge-time * 42) * (vehicle-range - charge) / vehicle-range) [ 

      set discharged 0 
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      set charge-time 0 

      set color green 

      set charge (vehicle-range) ] 

  ] 

end 

 

to trigger-parking-trip 

  ask vehicles with [ parking-search = 1 ] [ 

  set color white 

  set parking-search 0 

  if depot = 1 [ 

    (ifelse 

       count vehicles-on station 689 < count parking-spots-on station 689 [ 

         set destination 3 

         golf-insectarium ] 

       (count vehicles-on station 690 < count parking-spots-on station 690) and 

       (count vehicles-on station 689 >= count parking-spots-on station 689) [ 

         set destination 4 

         golf-tree ] 

       (count vehicles-on station 688 < count parking-spots-on station 688) and 

       (count vehicles-on station 690 >= count parking-spots-on station 690) and 

       (count vehicles-on station 689 >= count parking-spots-on station 689) [ 

         set destination 2 

         golf-viau ] 

        [ set destination 5 

          golf-jardin ] ) 

    ] 

  if depot = 2 [ 

    (ifelse 

       count vehicles-on station 691 < count parking-spots-on station 691 [ 

         set destination 5 

         viau-jardin ] 

       (count vehicles-on station 687 < count parking-spots-on station 687) and 

       (count vehicles-on station 691 >= count parking-spots-on station 691) [ 

         set destination 1 

         viau-golf ] 

       (count vehicles-on station 689 < count parking-spots-on station 689) and 

       (count vehicles-on station 687 >= count parking-spots-on station 687) and 

       (count vehicles-on station 691 >= count parking-spots-on station 691) [ 

         set destination 3 

         viau-insectarium ] 

        [ set destination 4 

          viau-tree ] ) 

    ] 

  if depot = 3 [ 

    (ifelse 
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       count vehicles-on station 691 < count parking-spots-on station 691 [ 

         set destination 5 

         insectarium-jardin ] 

       (count vehicles-on station 687 < count parking-spots-on station 687) and 

       (count vehicles-on station 691 >= count parking-spots-on station 691) [ 

         set destination 1 

         insectarium-golf ] 

       (count vehicles-on station 690 < count parking-spots-on station 690) and 

       (count vehicles-on station 687 >= count parking-spots-on station 687) and 

       (count vehicles-on station 691 >= count parking-spots-on station 691) [ 

         set destination 4 

         insectarium-tree ] 

        [ set destination 2 

          insectarium-viau ] ) 

    ] 

  if depot = 4 [ 

    (ifelse 

       count vehicles-on station 687 < count parking-spots-on station 687 [ 

         set destination 1 

         tree-golf ] 

       (count vehicles-on station 689 < count parking-spots-on station 689) and 

       (count vehicles-on station 687 >= count parking-spots-on station 687) [ 

         set destination 3 

         tree-insectarium ] 

       (count vehicles-on station 688 < count parking-spots-on station 688) and 

       (count vehicles-on station 689 >= count parking-spots-on station 689) and 

       (count vehicles-on station 687 >= count parking-spots-on station 687) [ 

         set destination 2 

         tree-viau ] 

        [ set destination 5 

          tree-jardin ] ) 

    ] 

  if depot = 5 [ 

    (ifelse 

       count vehicles-on station 690 < count parking-spots-on station 690 [ 

         set destination 4 

         jardin-tree ] 

       (count vehicles-on station 687 < count parking-spots-on station 687) and 

       (count vehicles-on station 690 >= count parking-spots-on station 690) [ 

         set destination 1 

         jardin-golf ] 

       (count vehicles-on station 689 < count parking-spots-on station 689) and 

       (count vehicles-on station 687 >= count parking-spots-on station 687) and 

       (count vehicles-on station 690 >= count parking-spots-on station 690) [ 

         set destination 3 

         jardin-insectarium ] 
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        [ set destination 2 

          jardin-viau ] ) 

    ] 

  ] 

end 

 

to end-process 

  set total-travel total-travel + 1 

  if color = white [ set empty-travel empty-travel + 1 ] 

  if color = green [ set service-travel service-travel + 1 ] 

  if charge <= 0 [ set system-error system-error + 1 ] 

  set color green 

  ifelse count vehicles-here > count parking-spots-here 

    [ set parking-search 1 ] 

    [ set parked 1 ] 

  if (charge < critical-threshold) and (parked = 1) [ 

    set discharged 1 

    set num-discharged num-discharged + 1 ] 

 

end 

 

to-report node-gv 

  (ifelse 

    gv < 37 [ report road-vertex 406 ] 

    gv < 38 [ report road-vertex 308 ] 

    gv < 161 [ report road-vertex 400 ] 

    [ report road-vertex 678 ] ) 

end 

 

to golf-viau 

    if distance road-vertex 678 = 0 

    [ set gv 0 

    set depot 2 

    set charge charge - 1.97 

    end-process 

    stop ] 

    pen-down 

    face node-gv 

    ifelse distance node-gv < 1 

    [ move-to node-gv 

    stop ] 

    [ fd 1 ] 

    set gv gv + 1 

end 

 

to-report node-gi 
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  (ifelse 

    gi < 37 [ report road-vertex 406 ] 

    gi < 38 [ report road-vertex 308 ] 

    gi < 93 [ report road-vertex 192 ] 

    gi < 94 [ report road-vertex 193 ] 

    gi < 96 [ report road-vertex 194 ] 

    gi < 98 [ report road-vertex 195 ] 

    gi < 100 [ report road-vertex 196 ] 

    gi < 121 [ report road-vertex 181 ] 

    [ report road-vertex 183 ] ) 

end 

 

to golf-insectarium 

    if distance road-vertex 183 = 0 

    [ set gi 0 

    set depot 3 

    set charge charge - 1.49 

    end-process 

    stop ] 

    pen-down 

    face node-gi 

    ifelse distance node-gi < 1 

    [ move-to node-gi 

    stop ] 

    [ fd 1 ] 

    set gi gi + 1 

end 

 

to-report node-gt 

  (ifelse 

    gt < 75 [ report road-vertex 284 ] 

    gt < 132 [ report road-vertex 494 ] 

    gt < 133 [ report road-vertex 461 ] 

    [ report road-vertex 571 ] ) 

end 

 

to golf-tree 

    if distance road-vertex 571 = 0 

    [ set gt 0 

    set depot 4 

    set charge charge - 1.86 

    end-process 

    stop ] 

    pen-down 

    face node-gt 

    ifelse distance node-gt < 1 
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    [ move-to node-gt 

    stop ] 

    [ fd 1 ] 

    set gt gt + 1 

end 

 

to-report node-gj 

  (ifelse 

    gj < 37 [ report road-vertex 406 ] 

    gj < 38 [ report road-vertex 308 ] 

    gj < 93 [ report road-vertex 192 ] 

    gj < 94 [ report road-vertex 193 ] 

    gj < 96 [ report road-vertex 194 ] 

    gj < 98 [ report road-vertex 195 ] 

    gj < 100 [ report road-vertex 196 ] 

    gj < 121 [ report road-vertex 181 ] 

    gj < 139 [ report road-vertex 3 ] 

    gj < 156 [ report road-vertex 5 ] 

    gj < 160 [ report road-vertex 6 ] 

    gj < 163 [ report road-vertex 9 ] 

    gj < 170 [ report road-vertex 10 ] 

    gj < 173 [ report road-vertex 12 ] 

    [ report road-vertex 22 ] ) 

end 

 

to golf-jardin 

    if distance road-vertex 22 = 0 

    [ set gj 0 

    set depot 5 

    set charge charge - 2.21 

    end-process 

    stop] 

    pen-down 

    face node-gj 

    ifelse distance node-gj < 1 

    [ move-to node-gj 

    stop ] 

    [ fd 1 ] 

    set gj gj + 1 

end 

 

to-report node-vg 

  (ifelse 

    vg < 8 [ report road-vertex 660 ] 

    vg < 9 [ report road-vertex 659 ] 

    vg < 33 [ report road-vertex 401 ] 
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    vg < 34 [ report road-vertex 315 ] 

    [ report road-vertex 492 ] ) 

end 

 

to viau-golf 

    if distance road-vertex 492 = 0 

    [ set vg 0 

    set depot 1 

    set charge charge - 1.44 

    end-process 

    stop ] 

    pen-down 

    face node-vg 

    ifelse distance node-vg < 1 

    [ move-to node-vg 

   stop ] 

    [ fd 1 ] 

    set vg vg + 1 

end 

 

to-report node-vi 

  (ifelse 

    vi < 8 [ report road-vertex 660 ] 

    vi < 9 [ report road-vertex 659 ] 

    vi < 33 [ report road-vertex 401 ] 

    vi < 34 [ report road-vertex 315 ] 

    vi < 102 [ report road-vertex 165 ] 

    vi < 103 [ report road-vertex 192 ] 

    vi < 104 [ report road-vertex 193 ] 

    vi < 106 [ report road-vertex 194 ] 

    vi < 108 [ report road-vertex 195 ] 

    vi < 110 [ report road-vertex 196 ] 

    vi < 131 [ report road-vertex 181 ] 

    [ report road-vertex 183 ] ) 

end 

to viau-insectarium 

    if distance road-vertex 183 = 0 

    [ set vi 0 

    set depot 3 

    set charge charge - 1.72 

    end-process 

    stop ] 

    pen-down 

    face node-vi 

    ifelse distance node-vi < 1 

    [ move-to node-vi 
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   stop ] 

    [ fd 1 ] 

    set vi vi + 1 

end 

 

to-report node-vt 

  (ifelse 

    vt < 62 [ report road-vertex 634 ] 

    vt < 63 [ report road-vertex 201 ] 

    vt < 64 [ report road-vertex 203 ] 

    vt < 231 [ report road-vertex 143 ] 

    vt < 234 [ report road-vertex 319 ] 

    vt < 235 [ report road-vertex 320 ] 

    [ report road-vertex 571 ] ) 

end 

 

to viau-tree 

    if distance road-vertex 571 = 0 

    [ set vt 0 

    set depot 4 

    set charge charge - 3.18 

    end-process 

    stop ] 

    pen-down 

    face node-vt 

    ifelse distance node-vt < 1 

    [ move-to node-vt 

    stop ] 

    [ fd 1 ] 

    set vt vt + 1 

end 

 

to-report node-vj 

  (ifelse 

    vj < 62 [ report road-vertex 634 ] 

    vj < 63 [ report road-vertex 201 ] 

    vj < 64 [ report road-vertex 203 ] 

    [ report road-vertex 22 ] ) 

end 

 

to viau-jardin 

    if distance road-vertex 22 = 0 

    [ set vj 0 

    set depot 5 

    set charge charge - 1.14 

    end-process 
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    stop ] 

    pen-down 

    face node-vj 

    ifelse distance node-vj < 1 

    [ move-to node-vj 

    stop ] 

    [ fd 1 ] 

    set vj vj + 1 

end 

 

to-report node-ig 

  (ifelse 

    ig < 14 [ report road-vertex 3 ] 

    ig < 31 [ report road-vertex 5 ] 

    ig < 35 [ report road-vertex 6 ] 

    ig < 36 [ report road-vertex 48 ] 

    ig < 40 [ report road-vertex 49 ] 

    ig < 46 [ report road-vertex 50 ] 

    ig < 56 [ report road-vertex 0 ] 

    ig < 68 [ report road-vertex 1 ] 

    ig < 95 [ report road-vertex 99 ] 

    ig < 98 [ report road-vertex 100 ] 

    ig < 99 [ report road-vertex 101 ] 

    ig < 100 [ report road-vertex 122 ] 

    ig < 102 [ report road-vertex 95 ] 

    ig < 103 [ report road-vertex 117 ] 

    ig < 104 [ report road-vertex 165 ] 

    [ report road-vertex 492 ] ) 

end 

 

to insectarium-golf 

    if distance road-vertex 492 = 0 

    [ set ig 0 

    set depot 1 

    set charge charge - 1.75 

    end-process 

    stop ] 

    pen-down 

    face node-ig 

    ifelse distance node-ig < 1 

    [ move-to node-ig 

    stop ] 

    [ fd 1 ] 

    set ig ig + 1 

end 

 



101 
 

to-report node-iv 

  (ifelse 

    iv < 14 [ report road-vertex 3 ] 

    iv < 31 [ report road-vertex 5 ] 

    iv < 35 [ report road-vertex 6 ] 

    iv < 36 [ report road-vertex 48 ] 

    iv < 40 [ report road-vertex 49 ] 

    iv < 46 [ report road-vertex 50 ] 

    iv < 56 [ report road-vertex 0 ] 

    iv < 68 [ report road-vertex 1 ] 

    iv < 95 [ report road-vertex 99 ] 

    iv < 98 [ report road-vertex 100 ] 

    iv < 99 [ report road-vertex 101 ] 

    iv < 100 [ report road-vertex 122 ] 

    iv < 101 [ report road-vertex 131 ] 

    iv < 104 [ report road-vertex 134 ] 

    iv < 106 [ report road-vertex 135 ] 

    iv < 126 [ report road-vertex 397 ] 

    iv < 166 [ report road-vertex 400 ] 

    [ report road-vertex 678 ] ) 

end 

 

to insectarium-viau 

    if distance road-vertex 678 = 0 

    [ set iv 0 

    set depot 2 

    set charge charge - 2.84 

    end-process 

    stop ] 

    pen-down 

    face node-iv 

    ifelse distance node-iv < 1 

    [ move-to node-iv 

    stop ] 

    [ fd 1 ] 

    set iv iv + 1 

end 

 

to-report node-it 

  (ifelse 

    it < 14 [ report road-vertex 3 ] 

    it < 31 [ report road-vertex 5 ] 

    it < 35 [ report road-vertex 6 ] 

    it < 38 [ report road-vertex 9 ] 

    it < 45 [ report road-vertex 10 ] 

    it < 48 [ report road-vertex 12 ] 
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    it < 50 [ report road-vertex 22 ] 

    it < 193 [ report road-vertex 143 ] 

    it < 197 [ report road-vertex 319 ] 

    it < 198 [ report road-vertex 320 ] 

    [ report road-vertex 571 ] ) 

end 

 

to insectarium-tree 

    if distance road-vertex 571 = 0 

    [ set it 0 

    set depot 4 

    set charge charge - 2.8 

    end-process 

    stop ] 

    pen-down 

    face node-it 

    ifelse distance node-it < 1 

    [ move-to node-it 

    stop ] 

    [ fd 1 ] 

    set it it + 1 

end 

 

to-report node-ij 

  (ifelse 

    ij < 14 [ report road-vertex 3 ] 

    ij < 31 [ report road-vertex 5 ] 

    ij < 35 [ report road-vertex 6 ] 

    ij < 38 [ report road-vertex 9 ] 

    ij < 45 [ report road-vertex 10 ] 

    ij < 48 [ report road-vertex 12 ] 

    [ report road-vertex 22 ] ) 

end 

 

to insectarium-jardin 

    if distance road-vertex 22 = 0 

    [ set ij 0 

    set depot 5 

    set charge charge - 0.78 

    end-process 

    stop ] 

    pen-down 

    face node-ij 

    ifelse distance node-ij < 1 

    [ move-to node-ij 

    stop ] 
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    [ fd 1 ] 

    set ij ij + 1 

end 

 

to-report node-tg 

  (ifelse 

    tg < 48 [ report road-vertex 296 ] 

    tg < 75 [ report road-vertex 305 ] 

    tg < 140 [ report road-vertex 192 ] 

    tg < 142 [ report road-vertex 95 ] 

    tg < 143 [ report road-vertex 96 ] 

    tg < 144 [ report road-vertex 165 ] 

    [ report road-vertex 492 ] ) 

end 

 

to tree-golf 

    if distance road-vertex 492 = 0 

    [ set tg 0 

    set depot 1 

    set charge charge - 1.85 

    end-process 

    stop ] 

    pen-down 

    face node-tg 

    ifelse distance node-tg < 1 

    [ move-to node-tg 

    stop ] 

    [ fd 1 ] 

    set tg tg + 1 

end 

 

to-report node-tv 

  (ifelse 

    tv < 48 [ report road-vertex 296 ] 

    tv < 75 [ report road-vertex 305 ] 

    tv < 140 [ report road-vertex 192 ] 

    tv < 208 [ report road-vertex 400 ] 

    [ report road-vertex 678 ] ) 

end 

 

to tree-viau 

    if distance road-vertex 678 = 0 

    [ set tv 0 

    set depot 2 

    set charge charge - 2.59 

    end-process 
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    stop ] 

    pen-down 

    face node-tv 

    ifelse distance node-tv < 1 

    [ move-to node-tv 

    stop ] 

    [ fd 1 ] 

    set tv tv + 1 

end 

 

to-report node-ti 

  (ifelse 

    ti < 48 [ report road-vertex 296 ] 

    ti < 75 [ report road-vertex 305 ] 

    ti < 140 [ report road-vertex 192 ] 

    ti < 141 [ report road-vertex 193 ] 

    ti < 143 [ report road-vertex 194 ] 

    ti < 145 [ report road-vertex 195 ] 

    ti < 147 [ report road-vertex 196 ] 

    ti < 168 [ report road-vertex 181 ] 

    [ report road-vertex 183 ] ) 

end 

 

to tree-insectarium 

    if distance road-vertex 183 = 0 

    [ set ti 0 

    set depot 3 

    set charge charge - 2.1 

    end-process 

    stop ] 

    pen-down 

    face node-ti 

    ifelse distance node-ti < 1 

    [ move-to node-ti 

    stop ] 

    [ fd 1 ] 

    set ti ti + 1 

end 

 

to-report node-tj 

  (ifelse 

    tj < 48 [ report road-vertex 296 ] 

    tj < 75 [ report road-vertex 305 ] 

    tj < 140 [ report road-vertex 192 ] 

    tj < 141 [ report road-vertex 193 ] 

    tj < 143 [ report road-vertex 194 ] 
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    tj < 145 [ report road-vertex 195 ] 

    tj < 147 [ report road-vertex 196 ] 

    tj < 172 [ report road-vertex 183 ] 

    tj < 186 [ report road-vertex 3 ] 

    tj < 203 [ report road-vertex 5 ] 

    tj < 207 [ report road-vertex 6 ] 

    tj < 220 [ report road-vertex 12 ] 

    [ report road-vertex 22 ] ) 

end 

 

to tree-jardin 

    if distance road-vertex 22 = 0 

    [ set tj 0 

    set depot 5 

    set charge charge - 2.88 

    end-process 

    stop ] 

    pen-down 

    face node-tj 

    ifelse distance node-tj < 1 

    [ move-to node-tj 

    stop ] 

    [ fd 1 ] 

    set tj tj + 1 

end 

 

to-report node-jg 

  (ifelse 

    jg < 143 [ report road-vertex 143 ] 

    jg < 146 [ report road-vertex 319 ] 

    jg < 147 [ report road-vertex 320 ] 

    jg < 151 [ report road-vertex 457 ] 

    jg < 185 [ report road-vertex 572 ] 

    jg < 230 [ report road-vertex 296 ] 

    jg < 322 [ report road-vertex 192 ] 

    jg < 324 [ report road-vertex 95 ] 

    jg < 325 [ report road-vertex 96 ] 

    jg < 326 [ report road-vertex 165 ] 

    [ report road-vertex 492 ] ) 

end 

 

to jardin-golf 

    if distance road-vertex 492 = 0 

    [ set jg 0 

    set depot 1 

    set charge charge - 3.87 
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    end-process 

    stop ] 

    pen-down 

    face node-jg 

    ifelse distance node-jg < 1 

    [ move-to node-jg 

    stop ] 

    [ fd 1 ] 

    set jg jg + 1 

end 

 

to-report node-jv 

  (ifelse 

    jv < 143 [ report road-vertex 143 ] 

    jv < 146 [ report road-vertex 319 ] 

    jv < 147 [ report road-vertex 320 ] 

    jv < 151 [ report road-vertex 457 ] 

    jv < 185 [ report road-vertex 572 ] 

    jv < 230 [ report road-vertex 296 ] 

    jv < 322 [ report road-vertex 192 ] 

    jv < 324 [ report road-vertex 95 ] 

    jv < 390 [ report road-vertex 400 ] 

    [ report road-vertex 678 ] ) 

end 

 

to jardin-viau 

    if distance road-vertex 678 = 0 

    [ set jv 0 

    set depot 2 

    set charge charge - 4.61 

    end-process 

    stop ] 

    pen-down 

    face node-jv 

    ifelse distance node-jv < 1 

    [ move-to node-jv 

    stop ] 

    [ fd 1 ] 

    set jv jv + 1 

end 

 

to-report node-ji 

  (ifelse 

    ji < 143 [ report road-vertex 143 ] 

    ji < 146 [ report road-vertex 319 ] 

    ji < 147 [ report road-vertex 320 ] 
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    ji < 151 [ report road-vertex 457 ] 

    ji < 185 [ report road-vertex 572 ] 

    ji < 230 [ report road-vertex 296 ] 

    ji < 322 [ report road-vertex 192 ] 

    ji < 323 [ report road-vertex 193 ] 

    ji < 325 [ report road-vertex 194 ] 

    ji < 327 [ report road-vertex 195 ] 

    ji < 329 [ report road-vertex 196 ] 

    ji < 350 [ report road-vertex 181 ] 

    [ report road-vertex 183 ] ) 

end 

 

to jardin-insectarium 

    if distance road-vertex 183 = 0 

    [ set ji 0 

    set depot 3 

    set charge charge - 4.13 

    set parking-search 0 

    end-process 

    stop ] 

    pen-down 

    face node-ji 

    ifelse distance node-ji < 1 

    [ move-to node-ji 

    stop ] 

    [ fd 1 ] 

    set ji ji + 1 

end 

 

to-report node-jt 

  (ifelse 

    jt < 143 [ report road-vertex 143 ] 

    jt < 146 [ report road-vertex 319 ] 

    jt < 147 [ report road-vertex 320 ] 

    jt < 151 [ report road-vertex 457 ] 

    [ report road-vertex 571 ] ) 

end 

 

to jardin-tree 

    if distance road-vertex 571 = 0 

    [ set jt 0 

    set depot 4 

    set charge charge - 2.01 

    end-process 

    stop ] 

    pen-down 
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    face node-jt 

    ifelse distance node-jt < 1 

    [ move-to node-jt 

    stop ] 

    [ fd 1 ] 

    set jt jt + 1 

end 


