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Abstract

Tire-Road Friction Coefficient Estimation and Control of Autonomous Vehicles

Juqi Hu, Ph.D.

Concordia University, 2021

This thesis aims to design and develop trajectory planning and tracking strategies integrating

with the estimated tire-road friction coefficient (TRFC) so as to enhance the safety and reliability

of the autonomous vehicles (AVs) under varying road friction conditions. A two-stage hierar-

chical framework is firstly developed for estimating TRFC in a computationally efficient manner

considering vehicle’s lateral dynamic responses to double (DLC) and single (SLC) lane-change

maneuvers.

An alternate two-stage TRFC estimation framework is developed further on the basis of the

longitudinal dynamics of the vehicle. A sequence of braking pressure pulses is designed in the

first stage to identify desired minimal pulse pressure needed for reliable estimation of TRFC with

minimal interference with the vehicle motion. In the second stage, a constrained unscented Kalman

filter (CUKF) algorithm is subsequently proposed to identify the precise TRFC for achieving rapid

convergence and enhanced estimation accuracy.

A trajectory planning scheme integrating the estimated TRFC is subsequently developed for

path-change maneuvers considering both the maneuver safety and the occupant’s comfort. For this

purpose, a 7th-order polynomial function is constructed to ensure continuity up to the derivative

of the acceleration (jerk). The friction-adaptive acceleration and speed-adaptive jerk limits are

further defined and integrated in the framework to enhance occupant’s comfort and acceptance.

Both numerical simulation and Quanser self-driving car (QCar) experimental results have revealed

iii



the effectiveness and practicability of the proposed lane change trajectory planning scheme.

An adaptive model predictive control (MPC) tracking scheme is proposed for tracking the

desired lane-change path considering wide variations in vehicle speed and TRFC. With integrated

consideration of output weights in the cost function together with constraints on the magnitude of

the outputs, the proposed MPC scheme required only lateral position for tracking the planned path.

An interesting way of integrating adaptive control gains with consideration of steering saturation

by using the backstepping technique is also designed for low-speed AVs to enhance trajectory

tracking, while respecting to the input boundaries. The effectiveness of the proposed tracking

control scheme is verified experimentally using the QCar test platform.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Autonomous vehicles (AVs) refer to vehicles whose operations and actuations are partially or

fully controlled by on-board processors [1]. AVs have attracted considerable research and devel-

opment efforts due to their multi-faceted advantages such as enhanced road safety, efficient traffic

flow, reduced fuel consumption and emission [2–4]. The significant advances in sensing, comput-

ing and artificial intelligence technologies, particularly during the last two decades, have further

inspired the society’s expectation and passion for the commercially viable AVs [4]. Automotive

industry is making notable advances for launching fully-autonomous vehicles within the current

decade [5–7].

The operation of an AV is generally categorized in three stages, commonly described by the

sense, plan and act (SPA) cycle. Three corresponding subsystems, guidance, navigation and

control (GNC), constitute the general architecture of the entire AV system (as shown in Figure

1.1), which are briefly described below [8–11]:

• Guidance subsystem, also referred to as the path planning, concerns with determination

of the AVs’ desired path from its current location to a designated target in accordance with

the traffic rules, safety, comfortability and vehicular dynamics. Path planning for on-road
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AVs is generally divided into two hierarchical classes as global planning and local planning.

Global planning or route planning defines an optimal route or trip (normally represented by

a sequence of waypoints) between two geographical locations based on the environment in-

formation (map) and some other criterion such as shortest distance, minimum travel time or

other pre-defined constraints. Local planning, on the other hand, determines vehicle’s behav-

ior more tactically and locally in response to environmental conditions and driving scenarios.

Path searching, maneuver planning and trajectory planning (often combined as one) make up

the local planning system. After the waypoints that the vehicle should follow are generated

from global planning, the local planning concentrates on finding the best trajectory for the

vehicle to follow while taking into account the constraints of the vehicle’s motion and the

traffic environment including both static and dynamic obstacles.

• Navigation subsystem is responsible for determination of the AVs’ current states including

location, velocity as well as heading direction. The operation of an AV requires the knowl-

edge of its instantaneous position and direction with respect to a global coordinate system,

in addition to a series of positions ahead in order to reach the destination. Global posi-

tioning system (GPS) or differential global positioning system (DGPS) together with inertia

navigation system (INS) have been widely used in vehicle localization. The fusing of the

data from the environment perception module together with the vehicle states is used to lo-

cate and track the static/dynamic obstacles and the lanes [12, 13]. Furthermore, an available

global map could contain lane geometric information, lane markings, stop signs, parking

lots, check points and provide global environment information. When the AVs travel in an

unknown environment, dual tasks of localizing the vehicle and modeling the environment

should be handled simultaneously, which is known as simultaneous localization and map-

ping (SLAM) [12, 14].

• Control subsystem is designed to generate the appropriate control commands necessary to

track the trajectory generated by the guidance subsystem, while ensuring vehicle stability.
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The smoothened command inputs are computed for the low-level actuators including throt-

tle, brake pedal and steering wheel. Vehicle motion control can be broadly divided into

longitudinal and lateral path control. The longitudinal control is related to distance-velocity

control between vehicles to ensure occupant’s safety and comfort, while the lateral control is

designed to minimize the lane deviations. It should be noted that the longitudinal and lateral

dynamics of a vehicle are coupled in a combined lateral and longitudinal control, where the

degree of coupling is a function of the tire and vehicle parameters in addition to the available

road friction.

Figure 1.1: The general architecture of guidance, navigation and control (GNC) system for
on-road autonomous vehicles (AVs).

It is worth mentioning that global perception system (localization in the navigation subsystem)

alone is not sufficient to enable AVs routing to its destination due to potential variations in the envi-

ronment related factors. Local environment perception via real-time sensing is thus also required.

This module is responsible for sensing the environment structures in a multi-sensor manner that

enables a model of surrounding environment for the AVs. The original data collected by various

sensors like vision, radar, light detection and ranging (LiDAR) sensor, are processed to obtain

information about the surrounding environment features (road/object’s color, shape, edges, etc.),
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traffic objects (both moving and static obstacles/vehicles, pedestrians, etc.), traffic situations (traf-

fic density, traffic signs, intersections, lane markings, etc.). The local dynamic driving environment

is constructed on the basis of these on-board sensors [12, p. 3-9].

Highly- or fully-autonomous vehicles are controlled agents integrating environment perception

and modeling, localization and map building, path planning and decision-making, and motion con-

trol. Despite the significant advances in sensing technologies, signal processing, control system

design and computational power, the operation of a fully-autonomous vehicle in both structured

and unstructured environment continues to be the long-term goal [14, p. 8]. The development of

such an autonomy in turn demands the syntheses of more effective and reliable GNC technolo-

gies. These include the reliable situation awareness and risk assessment methods, fast algorithms

for generating safe and comfortable paths/trajectories, effective methods for accurate state esti-

mations, and robust controllers designed for accurate path tracking. Furthermore, variations in

the road friction add to the complexities for the GNC system since the vehicle motion is directly

related to the tire-road adhesion limits. Since the motion of a road vehicle is directly related to

the available road friction, a knowledge of the friction is vital for effective path planning and con-

troller’s designs. The reported GNC architectures for AVs generally ignore the road friction, which

is likely due to complexities associated with its real-time estimation. Besides these issues, wide

applications of AVs generally encompass emerging issues with regard to implementations, such as

liability, legislation, infrastructure and security [1, 6, 15].

This thesis research is focused on development of trajectory planning and tracking strategies

for AVs integrating the available tire-road friction coefficient (TRFC) so as to enhance the vehi-

cle performance towards fully-autonomous driving of AVs under varying road friction conditions.

Computationally efficient TRFC estimation strategies are proposed so as to minimize disturbance

to the vehicle motion during the identification process. An adaptive trajectory planning scheme

under a typical lane change maneuver is subsequently developed to illustrate significance of the

TRFC in the trajectory planning algorithm. Using the model predictive control (MPC) and the
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estimated TRFC, a path planning and tracking framework is also developed for lane-change ma-

neuvers at different speeds. Considering input constraints, an adaptive trajectory tracking control

algorithm based on the backstepping technique is finally designed for low-speed AVs. The effec-

tiveness of the proposed control scheme is also assessed through experiments conducted by using

the latest Quanser self-driving car (QCar) test platform.

1.2 Review of Relevant Literature

Guidance, navigation and control (GNC) of autonomous vehicles encompass multiple technical

challenges involving trajectory planning, vehicle localization, vehicle state and parameter estima-

tion, and controllers’ synthesis for effective trajectory tracking. The real-time estimation of TRFC

constitutes an additional challenge though it can not only greatly simplify the path planning and

tracking control tasks but also enhance the vehicle performance towards full-autonomy of AVs.

The studies reporting TRFC estimation, path planning and trajectory tracking methods have been

thoroughly reviewed to build essential background on the reported methods and to formulate the

scope of the thesis research. The reported studies on each aspect are briefly discussed in the fol-

lowing subsections, while more thorough reviews of the relevant studies have been presented in

the published/submitted manuscripts presented in Chapters 2 to 6.

1.2.1 TRFC: Significance and Real-Time Estimation

As an integral component of the on-road AVs, tires represent the only contact with the ground

surface. The vehicle motion on a road is mostly governed by the forces generated by the tires at

the tire-ground interface, which in-turn are primarily determined by the TRFC defined as [16]:

µi = max


√
F 2
xi + F 2

yi

Fzi

 (1–1)
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where Fxi, Fyi and Fzi are the longitudinal, lateral and normal forces, respectively, developed by

tire i (i = 1, ..., n) of a vehicle, and µi is the tire-road friction coefficient reflecting the maximum

force the tire can provide. Although a prior knowledge of the TRFC can facilitate the designs of

effective vehicle control and safety systems [17], the role of TRFC has been mostly ignored in the

current GNC architectures. This is likely due to challenges associated with real-time estimation of

the TRFC and wide variations in the TRFC. Advanced control systems including adaptive cruise

control (ACC), anti-lock braking system (ABS), traction control system (TCS), and collision warn-

ing or collision avoidance system, could yield enhanced performances with the knowledge of the

available TRFC [17–20]. For instance, an ABS can be designed more effectively rather than con-

servatively to provide improved vehicle deceleration, handling performance and stability control

during braking through maximum utilization of the available TRFC [21]. Moreover, the variations

in TRFC directly relate to the vehicle dynamic limits (e.g., maximum longitudinal or lateral accel-

eration, safe forward speed) [11]. The knowledge of TRFC in the path planning stage is thus vital

for realizing more intelligent and safer driving performance through designing adaptive control

strategies that enable the utilization of the maximum available tire-road adhesion.

Considerable efforts have been made in the recent decades to obtain reliable on-line estimation

of available TRFC considering widely different operating conditions and longitudinal or lateral

dynamics of the vehicle (e.g., [16,22–24]). The direct measurement of TRFC involves considerable

complexities and high cost of sensors. Significant efforts have thus been devoted for estimating

TRFC via indirect methods based on the measurable states of the vehicle.

The reported TRFC estimation methods may be grouped as either qualitative or quantitative ap-

proaches. Although both methods have been developed with a common objective of estimating the

TRFC, the outcomes of the two approaches differ from each other. The qualitative methods gener-

ally provide an indication of the adhesion quality and classify the road surface by its condition in a

crude manner using sensors such as optical instruments, voice recorder and three-axis accelerom-

eters [25–27]. Apart from the lack of accurate quantitative information of TRFC, these methods

invariably neglect contributions due to many important design and operating factors including the
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tire type, tire inflation pressure and wear condition [17,28]. In addition, the friction prediction per-

formance of the measured sensors can be severely affected by the external disturbances like dust,

vibration and noise. A few studies have focused on identification of tire slip-slope, relating the tire

slip ratio and the longitudinal tire force for identifying peak tire-road adhesion [29–31]. The linear

force-slip relationship, however, is considered only valid in the low-slip region. Moreover, a road

adhesion indicator based on the slip-slope alone cannot be considered reliable when variations in

the road friction are encountered.

The quantitative methods generally estimate the TRFC based on tire response measures such

as slip ratio and side-slip angle. A few studies have used advanced sensors embedded in the tires

to identify the TRFC. These included wireless piezoelectric sensors [32], six-degrees-of-freedom

inertial sensors [33] and wheel load sensors [34]. Apart from the high costs and unproven reliabil-

ity, such methods may involve complex signal processing. Alternatively, a large number of studies

have focused on designing algorithms for indirect TRFC estimation from the measured or pre-

dicted vehicle states. Such quantitative methods can yield more accurate estimation of the TRFC,

although these methods may involve relatively higher levels of tire excitations. Compared to the

qualitative methods, most of the quantitative methods may thus lead to notable disturbances in the

driving condition. These methods generally obtain TRFC estimation in two stages. Unknown vehi-

cle states and tire forces/torques are estimated in the first stage on the basis of measurable or known

longitudinal and/or lateral vehicle dynamic responses. These estimated variables are subsequently

employed in a parameter identification problem to obtain an estimate of the TRFC [35, 36]. Hu et

al. [37] employed a hierarchical linear quadratic regulator (LQR) control methodology to obtain

tire forces. The same estimator was also used to estimate TRFC considering the longitudinal and

lateral forces. A data fusion method was further proposed to reduce TRFC estimation error. Wang

et al. [24] proposed a sequential tire cornering stiffness and TRFC estimation method with minimal

interference with the desired vehicle motion and trajectory. The study employed a robust observer

based on wheel rotational dynamics in a simplified form for obtaining tire longitudinal forces,
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which were subsequently used to estimate lateral tire forces. Ahn et al. [17] proposed an adap-

tive non-linear observer for simultaneous estimations of tire side-slip angle and TRFC based on

tire lateral force and aligning moment. Both the simulation and experimental results demonstrated

the effectiveness of the proposed method. Shao et al. [38] identified TRFC from the combined

estimation of front-axle lateral force and alignment torque, while ensuring both the stability and

robustness.

Considering that the road adhesion varies only slowly, the TRFC can be considered as a sys-

tem parameter or state that is hidden within the tire model [17, 39]. The powerful Kalman fil-

ter (KF) technique and its non-linear extensions, such as the extended Kalman filter (EKF) and

the unscented Kalman filter (UKF), have been widely used for effective estimations of vehicle

states [35, 40]. Although the forces developed by a tire are known to be strongly nonlinear func-

tions of the slip ratio, side-slip angle and normal load, the TRFC can also be estimated using linear

system parameter identification methods by linearizing the non-linear tire model. Zhao et al. [21]

proposed a robust TRFC estimation method via triggering of the ABS, where individual longitu-

dinal tire forces and axles’ lateral forces were observed via the KF, followed by TRFC estimation

using the recursive least squares (RLS) method. Choi et al. [41] observed the tire forces in a similar

manner and used the RLS technique with adaptive multiple forgetting factors to estimate TRFC

and the tire stiffness. Qi et al. [42] obtained estimates of maximum friction coefficient as well as

tire longitudinal and lateral slip slopes using two EKFs together with a novel tire model. Zong

et al. [39] employed the dual extended Kalman filter (DEKF) technique with a three-degrees-of-

freedom (DOF) vehicle model to estimate vehicle states (yaw rate, side-slip angle and roll rate) and

the TRFC. UKF, which is based on the unscented transform theory, has also been applied for esti-

mating TRFC. In [23], two UKF-based estimators communicated simultaneously to estimate both

the vehicle states and the TRFC. An integrated road friction estimator was further designed consid-

ering different excitation levels to enhance implementation of the approach. Considering the TRFC

as a state in the non-linear tire model, Chen et al. [43] employed UKF technique for estimating

TRFC from the longitudinal and lateral dynamics. The estimated information was subsequently
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fused using mean squared error (MSE) minimization technique to ensure a higher accuracy of the

TRFC estimation.

The vast majority of the aforementioned studies have shown that an accurate estimation of

TRFC necessitates relatively higher magnitude of the disturbance in terms of longitudinal slip ratio

or side-slip angle. The previous studies have thus employed maneuvers leading to high magnitudes

of braking/deceleration [22,44] or lateral acceleration [39,45]. A few studies have even considered

sinusoidal steering inputs or severe double-lane change (DLC) and slalom-type maneuvers for

realizing higher lateral acceleration of the vehicle [41, 46]. Such maneuvers cause considerable

interference with the vehicle motion and would be perceived annoying, unsafe and impractical in

real driving situations. It is thus desirable to obtain estimations of TRFC under more practical

driving circumstance or adequate excitations while minimizing the interference with the vehicle

motion.

1.2.2 Trajectory Planning of AVs

Trajectory planning, also referred to as trajectory generation, is an integral module and a key

enabler for autonomous driving [47]. This module is concerned with generating a trajectory that

satisfies the safety requirements and motion model or state constraints, while ensuring occupant’s

comfort at the same time. Motivated by the increasing interests in autonomous driving, consid-

erable developments in trajectory planning algorithms have been reported for the AVs. The re-

ported trajectory planning algorithms can be grouped in three broad categories on the basis of

the methodology used, namely, the search-based methods, the geometric methods and the optimal

control methods. Owing to the limited detection range of the on-board sensors and the processors’

memory, incremental approaches are generally employed in the reported search-based methods.

These approaches refer to the searching algorithms, where search configurations or states are not

fully specified in advance. Rapidly-exploring random trees (RRTs) and lattice planners (LPs) are

the two primary techniques used in the incremental approaches [10]. With quick exploration of the

tree space, RRTs [48] and their variants including closed-loop RRT [49] and RRT∗ [50] have been
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implemented for AVs during the last two decades. While the RRTs family is specifically designed

to handle vehicle nonholonomic constraints (including dynamics) and high degrees-of-freedom

(DOF), their main drawbacks lie in the jerky paths and computational complexity [10,48]. In con-

trast, the LP techniques require relatively lower computational power, and are generally considered

appropriate for dynamic environments. A few studies have shown that evasive type of maneuvers

cannot be performed efficiently using the LP techniques [10, 51–53]. Another issue related to the

incremental approaches is that the collision checking functions are needed for safety since the

planning horizon is claimed to be relatively large [10].

When considering the highly constrained driving scenarios, in particular the autonomous lane

change maneuvers on the highways, the complexity of the trajectory planning can be largely re-

duced. The search-based methods may not be advisable for use in highway environment since they

can become highly inefficient in time-critical situations [54].

The geometric methods generally solve the trajectory planning problem by selecting a geomet-

ric curve to ensure smoothened target path. The quintic polynomial was firstly introduced in [55] to

realize a continuous-curvature transition between the parallel lanes of travel. The proposed func-

tion required only the initial and the ending point of the maneuver to define the planned trajectory.

The proposed polynomial curve has also been employed to describe the desired lateral position of

the vehicle’s center of gravity (CG) under high-speed lane change maneuvers [56]. Vehicle trajec-

tory planning using polynomial curvature spirals, which exhibit intuitive parametric representation

of trajectories and computational efficiency, can be found in [52, 57]. With combined considera-

tion of maximum admissible curvature and velocity profile, Kahya and Schmidt [58] designed lane

change trajectories based on bi-elementary paths, which were composed of a sequence of clothoid

curves. Although the smooth transition between different segments of a roadway was guaranteed,

numerical calculation of Fresnel integration to determine the clothoids imposes considerable com-

putational demand. Alternatively, Cubic Bezier curves have been employed as the path generator to

achieve feasible paths for AVs in dynamic on-road directional maneuvers [59]. Similarly, the ref-

erence trajectory of a single-lane change (SLC) maneuver was proposed based on two symmetrical
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Bezier curves which were optionally supplemented with a straight-line segment [60]. It should be

noted that the performance of the Bezier curves largely depends on the position and the number

of the control points. Some studies have also derived the reference lane change trajectory from a

desired lateral acceleration profile. Guo et al. [61] employed a trapezoidal acceleration profile for

planning a lane change trajectory on a curved road. By assuming the reference acceleration as a

3rd-order polynomial function of time, Feng et al. [62] derived a lane change trajectory that could

satisfy the defined acceleration and the jerk constraints. In another study, an optimal lane change

trajectory consisting of two symmetrical circular arcs was proposed to achieve a trade-off between

the computational efficiency and the occupant’s comfort [63]. The cubic spline interpolation was

introduced to achieve improvements in computational efficiency while generating the optimal tra-

jectories for typical highway maneuvers such as merging, overtaking and lane changes [64].

The desired trajectory for lane change maneuver can also be generated using optimal control

methods that involve minimization of a performance index under a set of constraints (e.g., ve-

locity, acceleration and jerk limits, road friction, duration, change in kinetic energy). The optimal

control methods, invariably, utilize the geometric methods for trajectory planning. A safe and com-

fortable lane change trajectory was designed using the quadratic programming (QP) optimization

algorithm in [65]. The time-variant safety margins were further designed for trajectory correc-

tion in a dynamic traffic situation. Wei et al. [66] proposed a two-stage approach for planning a

lane-change trajectory. A series of candidate paths was initially generated using the quintic poly-

nomial function. The best trajectory with designated velocity profile was subsequently obtained

through a nonlinear programming optimization model considering the limiting constraints of the

acceleration, jerk and the lane change duration. Realizing the advantages of vehicle-to-vehicle

communication (V2VC) in achieving more accurate path and environmental information than that

from the on-board sensors alone, Bai et al. [67] used quintic polynomial curves to establish an

accelerated lane changing trajectory. The study employed a composite cost function considering

deceleration coordination, jerk and lane change duration. Luo et al. [68] proposed an automated
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lane change generator based on V2VC considering the potential collision situations. The con-

strained optimization problem was formulated and sloved considering different safety distances.

A number of studies have also employed MPC methods for trajectory planning in the presence

of constraints and system nonlinearities [10, 11]. Cesari et al. developed lane change trajectories

using the Scenario MPC considering the uncertainty in the environment, safety and occupant’s

comfort [69]. Considering a lane change maneuver as primarily a longitudinal planning problem,

Nilsson et al. [70] converted the lane change trajectory planning problem to loosely coupled lon-

gitudinal and lateral MPC problems, which could be efficiently solved in form of low-complexity

quadratic programs. The best collision-free path representing by cubic spirals was generated by a

unified MPC local trajectory planning and control framework for the autonomous ground vehicle

driving along a roughly predefined path in [71]. Although the optimal control methods can yield

effective path planning for AVs considering the constraints and system nonlinearities, the solu-

tions of the optimization problem generally impose high computational demand, especially in the

presence of nonlinear vehicle dynamics, time-varying states and input constraints.

Although the bounds of vehicle motion and safety are directly related to the available TRFC,

the reported path planning strategies either neglect the influence of the varying TRFC or assume

constant level of road friction condition. The path planning with the knowledge of available TRFC

can ensure greater robustness of the AVs under varying road conditions. Consideration of the road

adhesion limit in the trajectory planning can further ensure the physical feasibility of the generated

trajectory with reliable safety margin, in addition to the already achieved objectives relevant to

occupant’s comfort and continuous curvature in the reported studies. The knowledge of TRFC can

also simplify the design of trajectory tracking controllers, and help achieve the realization of more

human-like or even personalized driving style of the AVs.

1.2.3 Trajectory Tracking of AVs

The AVs’ driving tasks involve a tracking control system for tracking the reference or planned

trajectory. The main purpose of the trajectory tracking control module is to minimize the position
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and orientation errors between the vehicle’s actual path and the defined trajectory, and to smoothen

the motions while maintaining vehicle stability [72]. A wide range of tracking control algorithms

have evolved during the past two decades as a part of the driver assistance technologies. Amer

et al. [73] proposed two feedback proportional-integral-derivative (PID) controllers for the steer-

ing control of an armoured vehicle to follow a pre-defined trajectory using a 7-DOF directional

dynamic model of the vehicle. Optimal control algorithms based on LQR have been widely re-

ported for vehicle path tracking by regulating the yaw moment and corrective steering angle. The

parameters of the LQR controller were optimized using particle swarm optimization (PSO) for var-

ious dynamic conditions [74]. A robust H∞ static output-feedback controller was designed based

on the mixed genetic algorithm/linear matrix inequality approach for path following without the

lateral velocity measurements in [75]. The study considered the roles of uncertainties in vehicle

parameters and vehicle states in addition to the external disturbances.

Elbanhawi et al. [76] combined receding horizon strategy with pure pursuit control to improve

path tracking performance at high speeds. Further efforts, however, are desirable with regard to

the performances under steering angle saturation, control signal limitations, and cross track er-

rors. Based on both the kinematic and dynamic models, the backstepping control algorithm was

used to design a robust full-speed range path following system in the presence of the side-slip

angle [77]. Wilson and Robinett [78] developed a robust adaptive backstepping control system

for mobile robots to compensate for external disturbance caused by the change in ground fric-

tion. Both the kinematic and dynamic effects were considered, and the control input were bounded

within the maximum value. Setlur et al. [79] designed a Lyapunov-based controller considering the

steering system, vehicle chassis and tire-road interface dynamics that ensured globally uniformly

ultimately bounded tracking for ground vehicles. The controller design, however, was based on

unconstrained control inputs. Hiraoka et al. [80] applied the sliding mode control (SMC) theory

to design an automatic path tracking controller for a four-wheel steering vehicle, with the advan-

tage of decoupling the front-and-rear-wheel steering. Hajjaji et al. [81] proposed the design of

a stabilizing fuzzy controller for path following using a nonlinear dynamic model. Lyapunov’s
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method combined with a linear matrix inequality approach was used to analyze the stability of the

nonlinear system. Gu and Hu [82] proposed a neural predictive control approach to realize path

tracking of a robot car. The method incorporated neural network to model non-linear kinematics of

the robot car. Kapania et al. [83] applied a quadratically optimal iterative learning controller to an

autonomous race vehicle for multiple-lap path tracking of highly dynamic trajectories. Cheein et

al. [84] introduced an algebraic damped controller, whose performance was better than pure pursuit

and mixed controllers [85] in various simulations and field experiments. However, the controller

showed oscillations when the velocity was fixed for lateral control purposes.

Among the various path tracking control methods, the MPC technique is considered merito-

rious to address the AVs’ trajectory tracking control problem since it can adequately incorporate

various constraints in a systematic manner. The MPC approach involves minimization of a per-

formance index subject to various operational constraints with respect to a sequence of control

inputs to track a given trajectory by applying the first element of such optimal input sequence to

the vehicle system [11,86]. The reported studies have mostly focused on two common approaches.

Some studies recognized strong coupling between the path planning and tracking control of AVs,

and thus proposed the designs of integrated control module with the path planner. For instance,

Jalalmaab et al. [87] investigated a road-adaptive MPC strategy to track the centerline of the lane

while avoiding the obstacle. Although path planning and tracking were realized within one linear

MPC framework, the vehicle model was limited to only a kinematic point-mass to facilitate real-

time implementation. Gao et al. [86] developed a nonlinear MPC using a four-wheel vehicle model

together with the Magic formula (MF) tire model considering the tire force saturation and the ve-

hicle nonlinearities. The experimental results revealed rapid increase in the computation time with

increasing speed. The proposed controller design thus posed real-time implementation challenge

when the vehicle speed exceeded 40 km/h.

Owing to the high computational demand associated with complex optimization process of

the integrated path planning and tracking control, other studies have addressed the path plan-

ning and tracking problem separately in a hierarchical architecture. As part of the PRORETA
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3 project, Bauer et al. [88] utilized a potential field-based trajectory planner to calculate the opti-

mal vehicle trajectory, which was then fed into the control layer to achieve collision avoidance in

critical traffic situations. In [89], the collision-free path for AVs was generated based on a three-

dimensional potential field method considering road boundary conditions and vehicle’s kinematic

model. The steering angle command to track the generated path was subsequently obtained from

a multi-constrained MPC framework. Similarly, Schim et al. [90] designed a collision avoidance

system which determined a collision-free trajectory based on sixth-order polynomials. The front

steering and individual wheel torques were controlled by a MPC scheme to track the reference

path. Owing to the nonlinearities of the vehicle model, the studies reporting MPC have generally

employed computationally efficient linearization techniques (e.g., [91]). Apart from the high com-

putational demand, the performance of the MPC is known to be influenced by the structure of the

cost function and the weights imposed on the outputs and inputs, although such issues have been

reported in relatively fewer studies.

The studies reporting tracking control using a hierarchical architecture introduce TRFC to the

trajectory tracking module as an input and/or a state constraint (e.g. [86, 89, 91]). The controller

designs may not thus yield its best performance under widely different road adhesion limits. More-

over, the tracking control performance is strongly related to the quality or smoothness of the ref-

erence trajectory. Consideration of the TRFC during the planning process can greatly enhance

the quality of the reference trajectory and thereby the tracking control performance. The TRFC

based trajectory can also simplify the design of the low-level tracking controller with improved

computational efficiency, which is of critical concern for AVs.

1.3 Scope and Objectives of the Thesis Research

From the review of the reported studies, it is evident that the developments in the GNC modules

for AVs lack consideration of potential variations in the tire-road friction, which directly relates

to performance limits of the vehicle and the controller. The primary scope of this thesis research
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is thus to develop trajectory planning and tracking strategies with practical applications to AVs by

integrating with the estimated TRFC so as to enhance the performances of the AVs under vary-

ing road friction conditions. The term ‘practical’ in this context denotes the developments in the

planning and tracking methods incorporating the friction information from the TRFC estimation

strategies that impose minimal interference with the vehicle motion. Specific objectives of the

thesis research are summarized below:

(1) Develop a computationally efficient and robust hierarchical TRFC estimation framework

using the on-board sensors, and the EKF as well as the UKF techniques, while ensuring the

estimation accuracy.

(2) Design excitations for the TRFC estimation module in the form of short duration braking

pressure pulses so as to reduce the magnitude of disturbance to the vehicle motion.

(3) Develop a constrained unscented Kalman filter (CUKF) framework to achieve rapid conver-

gence and improved accuracy of the TRFC estimation.

(4) Design TRFC-adaptive acceleration and speed-adaptive jerk limits for high quality trajectory

planning with applications to the AVs, while ensuring occupant’s comfort.

(5) Develop a computationally efficient and flexible trajectory planning scheme considering

broad ranges of TRFC and vehicle speed.

(6) Develop a path planning and tracking framework using the model predictive control (MPC)

and the estimated TRFC, and evaluate its performance for path-change maneuvers at differ-

ent forward speeds.

(7) Develop an adaptive trajectory tracking control scheme for low-speed AVs based on the

backstepping technique, while considering the input constraints. Validate this tracking scheme

through experiments using a scaled model QCar platform.
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1.4 Thesis Layout

This thesis is prepared according to the manuscript-based format described in the “Thesis

Preparation, Examination and Regulations” guidelines of the School of Graduate Studies, Con-

cordia University. The thesis research is organized into 7 chapters, which address the research

objectives mentioned above, including the introduction and literature review chapter (Chapter 1).

Chapters 2 and 3 present TRFC estimation methods based on lateral and longitudinal dynam-

ics of the vehicle, respectively. Chapter 4 describes an efficient trajectory planning scheme for

lane change maneuvers considering wide range of speed and road friction in addition to vehicle

safety and occupant’s comfort. Chapter 5 demonstrates an MPC-based adaptive trajectory tracking

method for typical lane chagne maneuvers by making use of the TRFC and vehicle speed. Chap-

ter 6 presents an adaptive trajectory tracking control framework integrating adaptive control gains

with consideration of steering saturation by using the backstepping technique, together with lab-

oratory experiments performed with the QCar self-driving platform. The major contributions and

conclusions of the thesis research are summarized in Chapter 7 together with recommendations for

future studies.

Chapter 2 presents the following article:

• Juqi Hu, Subhash Rakheja and Youmin Zhang, “Real-time estimation of tire-road friction

coefficient based on lateral vehicle dynamics,” Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, vol. 234, no. 10-11, pp. 2444-2457,

2020. (DOI: 10.1177/0954407020929233)

This study proposed a two-stage framework for real-time estimation of TRFC of a vehicle on

the basis of lateral dynamics of the vehicle. The estimation framework employs a new cascade

structure consisting of an EKF and two UKFs to reduce the computational burden. In the first

stage, EKF is utilized to estimate lateral velocity of the vehicle and thereby both the front and rear

tires’ side-slip angles. In the second stage, a two–UKFs sub-framework is formulated in sequence

to observe both the front- and rear-axle tire forces, and to subsequently identify their respective
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TRFC, regarded as two unknown states. All the measured signals required in the study could be

realized from the conventional on-board sensors. Typical DLC and SLC maneuvers were designed

and the developed algorithm was verified considering high-, mid-, and low-friction road conditions.

The simulation results show that the proposed method can yield accurate and rapid estimations of

the TRFC for mid- and low-friction road conditions even under a SLC maneuver, although DLC

maneuver is needed to accurately estimate the TRFC for high friction road condition.

Chapter 3 presents the following article:

• Juqi Hu, Subhash Rakheja, and Youmin Zhang, “Tire-road friction coefficient estimation

under designed braking pressure pulse,” Proceedings of the Institution of Mechanical Engi-

neers, Part D: Journal of Automobile Engineering, vol. 235, no. 7, pp. 1876-1891, 2021.

(DOI: 10.1177/0954407020983580)

This study investigated the TRFC estimation on the basis of longitudinal vehicle dynamics. A

two-stage TRFC estimation scheme is proposed that limits the disturbances to the vehicle motion.

A sequence of braking pressure pulses is designed in the first stage to identify desired minimal

pulse pressure for reliable estimation of TRFC with minimal interference with the vehicle mo-

tion. This stage alone can also provide a qualitative estimation of TRFC. In the second stage, tire

normal force and slip ratio are directly calculated from the measured signals, a modified force ob-

server based on the wheel rotational dynamics is developed for estimating the tire braking force. A

CUKF algorithm is subsequently proposed to identify the TRFC for achieving rapid convergence

and enhanced estimation accuracy. The effectiveness of the proposed methodology is evaluated

considering vehicle motions on high-, medium-, and low-friction roads at different speeds. The

simulation results suggest that the proposed two-stage methodology can yield an accurate estima-

tion of the road friction with a relatively lower effect on the vehicle speed.

Chapter 4 presents the following submitted paper:

• Juqi Hu, Youmin Zhang, and Subhash Rakheja, “Adaptive lane change trajectory planning

scheme for autonomous vehicles with consideration of road friction and vehicle speed,”

IEEE Transactions on Intelligent Vehicles. (Under revision).
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This paper proposed a highway lane change trajectory planning scheme for autonomous driving

considering both the maneuver safety and the occupant’s perception of comfort. A 7th-order poly-

nomial function is constructed to ensure continuity of the planned trajectory up to the derivative of

the curvature (jerk). Constraints related to vehicle speed and road friction coefficient are defined by

friction-adaptive acceleration and speed-adaptive jerk limits for intelligent trajectory planning with

enhanced occupant’s comfort and acceptance. It is shown that the proposed planning algorithm re-

duces to identification of only the lane change duration given a constant forward speed. Illustrative

simulation examples have been conducted to verify the effectiveness of the proposed scheme for

driving scenarios involving broad variations in vehicle speed and road friction coefficient. The

acceptable traceability of the planned lane change trajectories is further demonstrated through path

tracking analysis of a full-vehicle model. Finally, experimental tests have been conducted based

on Quanser latest QCar to verify the practical effectiveness of the proposed trajectory planning

scheme. The results have shown that the proposed scheme can generate safe and comfortable lane

change trajectories, which can be well tracked by the AVs.

Chapter 5 presents the following article:

• Juqi Hu, Youmin Zhang and Subhash Rakheja, “Path planning and tracking for autonomous

vehicle collision avoidance with consideration of tire-road friction coefficient,” in the 21st

IFAC World Congress, Jul. 13-17, 2020, Berlin, Germany.

This study mainly discussed the development of a path planning and tracking framework based on

MPC with consideration of the estimated TRFC. The planned path in terms of lateral position is

generated based on the safety distance between the host and the obstacle vehicle, which is related to

TRFC and vehicle speed. A new structure of MPC is further designed so that only lateral position

is required to track the planned path. Moreover, the adaptive weights on the outputs to a wide range

of vehicle speeds have been identified. The effectiveness of the proposed planning and tracking

framework is validated through co-simulations on both high- and low-friction roads.

Chapter 6 presents the following article:
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• Juqi Hu, Youmin Zhang, and Subhash Rakheja, “Adaptive trajectory tracking for car-like ve-

hicles with input constraints,” IEEE Transactions on Industrial Electronics. (Early Access),

Date of Publication: Mar. 30, 2021. (DOI:10.1109/TIE.2021.3068672)

This study proposed an adaptive trajectory tracking control scheme for low-speed AVs with less

efforts in tuning of the control gains. An interesting way of integrating adaptive control gains

and steering saturation with the backstepping technique is designed to ensure the commanded

inputs within the input boundaries. Moreover, the design of such adaptive control gains is also

based on enhancing the convergence rate of tracking errors, especially for lateral deviation from

the reference trajectory. It is further theoretically proven that, even under the influence of steer-

ing saturation, the proposed controller can make the closed-loop system approximately globally

asymptotically stable at zero errors. Comparative simulations and experimental tests have been

conducted to verify the effectiveness of the proposed control scheme in accurate tracking without

violating the input constraints.

The contents of the above-stated manuscripts are interrelated to ensure the flow of the dis-

sertation according to the thesis regulations. A few repetitions in the vehicle and tire modeling

and results, however, are evident. The manuscripts presented in the dissertation have been refor-

matted, while the references have been grouped together and renumbered according to the thesis

regulations.
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Chapter 2

TRFC Estimation based on Lateral Vehicle

Dynamics

2.1 Introduction

Directional control and safety of a road vehicle are strongly related to the forces generated by

the tires at the tire-ground interface. Such forces are primarily governed by the TRFC for a given

normal load on the tire [16]. A prior knowledge of the TRFC can facilitate the designs of effective

vehicle control and safety systems [17, 92]. Considerable efforts have been made in the recent

decades to obtain reliable on-line estimation of available TRFC considering widely different oper-

ating conditions. These efforts have proposed diverse methods, which may be classified into three

broad categories: longitudinal dynamics-based, lateral dynamics-based and coupled dynamics-

based approaches. While the coupled dynamics model the real vehicle more accurately, they may

make the TRFC estimation algorithm become more complex. Choi et al. [41] employed linearized

RLS technique for real-time identification of TRFC together with the tire stiffness on the basis

of vehicle responses to combined braking and steering inputs. Qi et al. [42] proposed a modified

Dugoff tire model and used two EKFs to estimate the friction coefficient, as well as longitudinal

and cornering stiffness of the tire. When certain situations are considered (such as lane change
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maneuver under constant speed and driving on straight highway), the vehicle modeling is reason-

ably simplified by utilizing pure lateral or longitudinal dynamics. TRFC estimation from lateral

dynamic response of the vehicle may be relatively simpler since it does not require large longitu-

dinal motions and excitations [24]. Relatively fewer studies, however, have estimated TRFC from

lateral dynamic responses to a steering input. In the study by Yoon et al. [46], a cascade structure

consisting of a sensor fusion framework based on KF was utilized to simultaneously estimate the

vehicle side-slip angle and TRFC. The study employed relatively severe DLC and slalom steering

inputs. Chen et al. [45] proposed a novel online gradient descent algorithm for vehicle side-slip an-

gle and road friction estimation, though the effectiveness has not yet been verified by experiments

in real vehicle. Ahn et al. [17] proposed an adaptive state and parameter observer to estimate

friction coefficient and tire side-slip angle using the lateral acceleration and tire-aligning moment

responses to a 0.25 Hz sinusoidal steering input, assuming negligible longitudinal tire force. Us-

ing total aligning torque of front-axle during steering, a stability and robustness guaranteed TRFC

estimation method is designed by Shao et al. in [38]. Ren et al. [23] proposed a hybrid friction

estimator based on a 3-DOF vehicle model responses to a rapidly varying fish-hook steering ma-

neuver. The lateral tire force or self-alignment was chosen to estimate TRFC depending on the

excitation levels.

The above studies have shown that the TRFC can be accurately estimated considering lateral

dynamics of the vehicle, although effectiveness of the methods have been demonstrated under

relatively large tire side-slip angles. TRFC estimation under different steering inputs such as con-

tinuous sinusoidal, slalom and fish-hook maneuvers considered in the reported studies may not be

practical for real applications. Effective real-time TRFC estimation methods under reasonable lev-

els of tire side-slip angles encountered during typical steering maneuvers would thus be desirable

for practical implementations. Motivated by the practicality, in this chapter, we focus on a TRFC

estimation method considering lateral dynamic responses of the vehicle to more practical DLC and

SLC maneuvers compared to those considered in the reported studies.
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2.2 Estimation Framework

The proposed hierarchical two-stage estimation framework making full use of the EKF and

UKF techniques for TRFC identification is illustrated in Figure 2.1. In the first stage, EKF is used

to linearize transformations between the measured states such as longitudinal and lateral acceler-

ations (ax, ay) and the desired states, namely, the longitudinal and lateral velocities (vx, vy). The

estimated lateral velocity (v̂y) together with the measured yaw rate (ψ̇) and steer angle (δf ) yield

side-slip angles of the front- and rear-axle tires (αf , αr). A UKF-based estimator is subsequently

used to obtain estimations of lateral tire forces developed at the front and rear tire road interfaces

(F̂yf , F̂yr). The road friction coefficients at the front and rear tires (µf , µr), regarded as unknown

states of the system, for known normal loads on the tires (Fzf , Fzr), are then estimated using the

brush tire model.

Figure 2.1: Block diagram of the proposed TRFC estimation framework based on lateral vehicle
dynamics.

2.3 System Models and Estimation Algorithm

2.3.1 Vehicle Model

Vehicle is assumed driving on a straight flat road under constant forward speed, the wind speed,

pitch and roll motions are all assumed negligible. A simple 3-DOF yaw plane model of a two-axle
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vehicle, widely used in the reported studies [17, 46] as shown in Figure 2.2, is used to describe

longitudinal, lateral and yaw dynamic responses to a steering input. The equations of motion of

the simple model are obtained as:

m(v̇x − vyψ̇) = Fxf cos δf − Fyf sin δf + Fxr − FR

m(v̇y + vxψ̇) = Fyf cos δf + Fxf sin δf + Fyr

Izψ̈ = lf (Fxf sin δf + Fyf cos δf )− lrFyr

(2–1)

where FR = frmg+0.5ρairAfCdv
2
x represents the total resistance attributed to rolling resistance of

tires and the aerodynamic drag force. Furthermore, Fxr is neglected considering only front-wheel

drive vehicle. The steer angle δf is taken as the average of right- and left-tires’ steer angle.

Figure 2.2: Schematic diagram of the bicycle vehicle model.

As the study by Ahn et al. [17] shows, the side-slip angles of the front- and rear-tires (αf , αr)

can be obtained using small angle approximation by:

αf =
vy + lf ψ̇

vx
− δf

αr =
vy − lrψ̇
vx

(2–2)

The instantaneous normal forces acting on the front- and rear-axle tires (Fzf , Fzr) are computed
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considering vehicle acceleration or deceleration, ax, as:

Fzf =
mglr −maxhc

l

Fzr =
mglf +maxhc

l

(2–3)

From (2–2) and (2–3), it is evident that the instantaneous tire side-slip angles and normal forces can

be computed from known measurements ax, δf , ψ̇ and the vehicle longitudinal and lateral velocities

vx, vy.

2.3.2 Tire Model

It has been reported that nonlinear cornering properties of a tire including the force saturation

can be accurately described by a brush tire model, reported in the studies by Choi et al. [41] and

Singh and Taheri [18], which directly relates to road friction coefficient and requires considerably

fewer parameters compared to the MF tire formula [93]. The brush tire model, comprising a row

of elastic bristles representing the tread elements in contact with the road surface, is thus used in

this study. In the absence of longitudinal slip, the model describes cornering force as a nonlinear

function of normal load, road friction and tire side-slip angle, as:

Fyi = −Cyi tanαi
q

F

where
q =

√
C2
yi(tanαi)2

F =


q − q2

3µiFzi
+ q3

27µ2iF
2
zi
, if q 6 3µiFzi

µiFzi, if q > 3µiFzi

(2–4)

where front- and rear-tires are lumped as front-axle and rear-axle tires, respectively, i = f, r refers

to front- and rear-axle, respectively, and Cyi and µi are the respective axle cornering stiffness and

friction coefficient. For a typical passenger car tire, the cornering stiffness gradually increases
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with tire normal load when the normal load is small, reaches the maximum value at some normal

load, and decreases with a further increase in the normal load [94]. The variations in instantaneous

normal loads acting on the front- and rear-axle can be neglected since the vehicle is driving under a

constant forward speed. It is thus reasonable to assume axle cornering stiffness as constant values.

Although tires of the identical type are installed on the front and rear axle, the axle cornering

stiffness Cyf and Cyr may differ due to possible differences in instantaneous normal load. Figure

2.3 shows variations in tire cornering force characteristics, obtained from the brush model for

cornering stiffness of 80 kN/rad, with variations in the tire side-slip angle, normal load and TRFC.

These facts clearly illustrate strong dependence of cornering force on the TRFC and tire normal

load. The dependence on µ, however, is not clearly identifiable, when the tire side-slip angle is very

small. This suggests that the TRFC estimation in the vicinity of very small tire side-slip angles

may yield errors and is likely the reason for using relatively large or rapidly varying steer inputs in

the reported studies [24, 41].
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Figure 2.3: Cornering force-slip angle characteristics obtained from the brush tire model: (a)
influence of friction coefficient (Fz = 5 kN) and (b) influence of normal load (µ = 0.8).
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2.3.3 Steering Maneuver

The referenced trajectory is designed based on the path coordinates defined in ISO 3888-1 [95]

for a severe DLC maneuver, as shown in Figure 2.4(a). The standardized maneuver, however, is

slightly modified to achieve relatively smooth steering and relatively lower tire side-slip angles by

increasing the segment lengths, as summarized in Figure 2.4(c). The slightly modified segment

lengths are designed so as to generate least tire side-slip angle required by TRFC estimation on

high-µ road surface. Thus, sufficiently large tire side-slip angle can also be attained through track-

ing this referenced trajectory on both mid- and low-friction road conditions since identification of

lower frictions requires lower tire side-slip excitations. The coordinates for the SLC maneuver are

subsequently extracted from those of the DLC path, as shown in Figure 2.4(b). The steer inputs to

the vehicle model are determined by the inner controller accordingly.

2.3.4 Estimation of Vehicle Velocity

A two-stage TRFC estimation scheme is formulated, where the initial stage is concerned with

estimation of vehicle lateral velocity using the EKF technique. From (2–2), it is evident that the

tire side-slip angles are directly related to instantaneous longitudinal and lateral velocities of the

vehicle. Assuming small angles, the kinematic relationships between the accelerations and the

derivatives of the vehicle velocities can be expressed as:

ax = v̇x − vyψ̇

ay = v̇y + vxψ̇

(2–5)

The above relations are used to derive the following state-space system in the discrete-time as:

xEk = fE(xEk−1, u
E
k ) + wEk ,

zEk = hE(xEk ) + vEk

(2–6)

where k is the index for time step, wEk is the process noise with covariance QE and vEk is the
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(a)

(b)

(c)

Figure 2.4: Path coordinates in the fixed axis system (XOY) as function of the vehicle width T :
(a) DLC, (b) SLC, and (c) track specifications.

measurement noise with covariance RE . In the above equations, xEk and zEk are system state and

measurement vector, respectively, and uEk is input vector, which are defined as:

xEk = [vx,k, vy,k]
T ,

zEk = vmx,k,

uEk = [ax,k, ay,k, ψ̇k]
T

(2–7)
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where vmx,k refers to mean velocity of the rear wheels at the ground interface, which can be obtained

from angular speed of the wheels (ωrl, ωrr). Considering a front-wheel drive vehicle is selected,

it is possible to approximate the vehicle longitudinal velocity in this way. This is because the slip

ratios of rear tires are very close to zero when the vehicle is driving on a straight flat road under a

constant forward speed. The states’ evolution equations fE(·) and observation functions hE(·) in

(2–6) are expressed as:

fE =

fE1
fE2

 =

vx,k−1 + Tsψ̇kvy,k−1 + Tsax,k

vy,k−1 − Tsψ̇kvx,k−1 + Tsay,k

 (2–8)

hE = vx,k (2–9)

Following the standard EKF prediction and update scheme, as shown in [96, p. 409], the vehicle

lateral velocity can be estimated.

Remark 2.1 As longitudinal velocity is an element in both the system state (xEk ) and the measure-

ment vector (zEk ) in (2–7), the EKF serves as a filter for the measured wheel angular speed. By

doing so, the effect of the measurement noise on tire side-slip angle can be reduced.

2.3.5 Tire Force Estimation

Two UKFs, referred to as UKF1 and UKF2, are implemented in sequence for tire force estima-

tion and TRFC identification in the second stage (Figure 2.1). For estimating the tire forces, the

state and measurement vectors are defined with input uUk = δf,k as:

xUk = [vx,k, ψ̇k, vy,k, Fxf,k, Fyf,k, Fyr,k]
T (2–10)

zUk = [v̂x,k, ψ̇k, v̂y,k, ax,k, ay,k]
T (2–11)

The filtered wheel velocity (v̂x,k) and the estimated lateral velocity (v̂y,k) obtained from the

EKF estimator are regarded as known measurements for the force estimation. A random-walk
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model [97] is chosen to describe the rate of change of axle forces. Governing equations of motion

of the vehicle, (2–1) and (2–5), together with (2–10) and (2–11) are used to formulate the discrete-

time state-space system model by integrating the process and measurement noises, as:

xUk = fU(xUk−1, u
U
k ) + wUk ,

zUk = hU(xUk ) + vUk

(2–12)

where wUk is the process noise with covariance QU , and vUk is the measurement noise with covari-

ance RU . The evolution function vector, fU(·), is obtained as:



fU1

fU2

fU3

fU4,5,6


=



vx,k−1+Tsψ̇k−1vy,k−1 +
Ts
m

[Fxf,k−1 cos δf,k − Fyf,k−1 sin δf,k

−0.5ρairCdAfv
2
x,k−1],

ψ̇k−1+Ts
lf
Iz

[Fxf,k−1 sin δf,k + Fyf,k−1 cos δf,k]− Ts
lr
Iz
Fyr,k−1,

vy,k−1−Tsvx,k−1ψ̇k−1 +
Ts
m

[Fxf,k−1 sin δf,k + Fyf,k−1 cos δf,k + Fyr,k−1],

Fxf,k−1, Fyf,k−1, Fyr,k−1


(2–13)

In the above formulation, it is assumed that the motion resistance is dominated by the aero-

dynamic drag, while the rolling resistance is negligibly small compared to the aerodynamic drag.

The aerodynamic resistance is obtained considering a constant aerodynamic drag coefficient Cd,

frontal area Af and mass density of air ρair, assuming negligible wind velocity.

Similarly, the measurement function vector hU(·) in (2–12) is formulated as:



hU1

hU2

hU3

hU4

hU5


=



vx,k

ψ̇k

vy,k
1

m
[Fxf,k cos δf,k−Fyf,k sin δf,k − 0.5ρairCdAfv

2
x,k]

[Fxf,k sin δf,k+Fyf,k cos δf,k + Fyr,k]
1

m


(2–14)

The UKF algorithm parameters (αu, βu, κu) together with the dimension of the system state
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vector L (L = 6) determine the distribution of sigma points and the corresponding weights. A

matrix of 2L+ 1 sigma vectors Γik|k is computed as:

Γik−1|k−1 =


x̂Uk−1|k−1, i = 0

x̂Uk−1|k−1 + x̃Uk−1|k−1, i = 1, ..., 2L

(2–15)

where

x̃Uk−1|k−1 =


(
√

(L+ λ)PU
k−1|k−1)i, i = 1, ..., L

−(
√

(L+ λ)PU
k−1|k−1)i−L, i = L+ 1, ..., 2L

(2–16)

and λ = α2
u(L + κu) − L is a scaling parameter, subscript i (i = 1, ..., 2L) denotes the column

number of square root of (L + λ)PU
k−1|k−1. The constant αu determines the spread of the sigma

points around the mean of xUk , which is usually set to a small positive value ranging from 10−4

to 1, while κu is a secondary scaling parameter that is usually set to 0 [98, 99]. In this study, the

scaling parameters are selected as αu = 1 and κu = 0, which provided satisfactory estimations of

tire forces in the entire tire side-slip range. The weighting coefficients for 2L+ 1 sigma points are

calculated by:

W 0
s =

λ

L+ λ
= 0

W 0
c = 1− α2

u + βu

W i
s = W i

c =
1

2L
, i = 1, ..., 2L

(2–17)

where the constant βu permits the use of prior knowledge of the distribution of xUk , which is se-

lected as 2 for the Gaussian distribution, as suggested in the study by Wan and Van Der Merwe [99].

For more details about the UKF algorithm, see the reference book written by Simon [96, p. 448-

450].

Remark 2.2 The filtered wheel speed (v̂x,k) and the estimated lateral velocity (v̂y,k) from EKF

in the first stage are considered as measurements in the UKF1 algorithm. Tire forces (Fxf,k,
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Fyf,k, Fyr,k) remain the only unknown states to be estimated. As a result, the overall computa-

tional demand for tire force estimation is reduced, although the system state dimension (L) is 6.

Remark 2.3 Re-setting of the sigma points during each interval is not attempted since the tire

longitudinal and cornering forces are not expected to vary abruptly over the chosen sampling

duration, which also helps to improve computational efficiency.

2.3.6 TRFC Estimation

Estimated lateral tire forces of the two axles (F̂yf , F̂yr), together with tire side-slip angles of

front- and rear-axle (αf , αr), and normal forces of front- and rear-axle (Fzf , Fzr) are all known at

this stage. It is known that the cornering stiffness of a typical passenger car tire is largely affected

by the normal load. The variations in instantaneous normal loads acting on front- and rear-axle can

be neglected since the vehicle is driving under a constant forward speed. Thus, it is reasonable to

assume that Cyf and Cyr are two known constant parameters. The TRFC at the front and rear tires,

(µf , µr), remain the only two parameters to be identified according to the pure side-slip brush tire

model (2–4). Considering that the road adhesion condition varies very slowly, the TRFC can be

considered as a vehicle state embedded within the brush tire model [39].

Denote the two states by τk = [µf,k, µr,k]
T , and the two measurements by the estimated front-

and rear-axle lateral forces from UKF1, zBk = [F̂yf,k, F̂yr,k]
T , the pure side-slip brush tire model is

described as a two-state and two-measurement discrete-time nonlinear system as:

τk = τk−1 + wBk

zBk = hB(τk) + vBk

(2–18)

where wBk is the process noise with covariance QB, vBk is the measurement noise with covariance
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RB and the observation function hB(·) is expressed as:

hB =

hB1

hB2

 =

Fyf (αf,k, Fzf,k, µ̂f,k−1)
Fyr(αr,k, Fzr,k, µ̂r,k−1)

 (2–19)

where Fyi(·) is lateral force due to axle (i = f, r) obtained from the brush tire model function of

the instantaneous normal force Fzi,k and tire side-slip angle αi,k, together with the TRFC estimated

at the previous step, µ̂i,k−1. The TRFC of front- and rear-tires are subsequently identified using the

UKF algorithm identical to the UKF1 used for estimating the tire forces, as µ̂f,k and µ̂r,k. While

identical values of αu, βu and κu are used for the UKF2, the sigma points are updated during each

sampling interval for estimating the TRFC. Updating of the sigma points permits rapid convergence

of TRFC, although it imposes higher computational demand. Since there are only two parameters

to be identified, the overall computational demand is reasonable. The estimated TRFC, µ̂f,k and

µ̂r,k, are confined to 1 if they are larger than 1 to avoid fluctuations and unexpected estimation

errors when tire force and tire side-slip angle are extremely small.

2.4 Simulation Results

The proposed friction estimation algorithm was implemented in the MATLAB/Simulink and

CarSim software platform to evaluate its performance. The responses of the CarSim vehicle sim-

ulation model were considered as the reference or measured states for the purpose of assessing

prediction performance of the proposed algorithm. White Gaussian noise, however, was added to

the CarSim model outputs in order to study the effectiveness of the algorithm in the presence of

measurement noise. The parameters for the vehicle model used in simulation are listed in Table

2.1. The process and measurement covariance matrices for the EKF, UKF1 and UKF2 were chosen
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Table 2.1: Class-C hatchback parameters.

Symbol Parameter Value Unit

ms Sprung mass 1274 kg
mus Unsprung mass 142 kg
Re Tire radius 0.316 m
Cyf Front-axle cornering stiffness 94 kN/rad
Cyr Rear-axle cornering stiffness 76 kN/rad
lf Distance from CG to front-axle 1.016 m
lr Distance from CG to rear-axle 1.562 m
l Vehicle’s wheelbase 2.578 m
T Width of the vehicle 1.739 m
hc Height of the CG of the vehicle 0.54 m
Iz Yaw moment of inertia 1523 kgm2

Af Front area of the vehicle 1.6 m2

Cd Aerodynamic drag coefficient 0.35 –

as:
QE = diag([10−3 10−3]), RE = 10,

QU = diag([10−3 10−7 10−3 400 850 675]),

RU = diag([2× 10−2 9.4× 10−5 2× 10−2

8.6× 10−5 6.5× 10−4])

(2–20)

and
QB = 5× diag([10−6 10−6]),

RB = 6× diag([105 105])

(2–21)

where superscripts E, U and B refer to EKF, UKF1 and UKF2, respectively.

Simulations of constant forward speed DLC and SLC maneuvers were conducted on three

different road surfaces with coefficients of 0.8, 0.4 and 0.2, denoted as high-µ, mid-µ and low-µ,

respectively. The vehicle is permitted to operate on a 55 m long straight road segment prior to

entering the DLC or SLC paths (Figure 2.4). The constant forward speed, vx = 100 km/h, is

considered for maneuvers performed on high- and mid-µ road conditions, and the maneuver on
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Figure 2.5: DLC simulation results on high-µ road condition: (a) measured lateral acceleration,
(b) estimated lateral velocity, (c) and (d) estimated axle forces and their errors, and (e) and (f)

calculated tire slip angles and their errors.

low-µ road condition is conducted at a lower speed of 40 km/h.

2.4.1 TRFC Estimation during DLC Maneuvers

2.4.1.1 High-µ Surface

The measured lateral acceleration (ay), estimated lateral velocity (v̂y), side forces (F̂yf , F̂yr)

and calculated tire side-slip angles (αf , αr) for the high-µ road condition are presented in Figure

2.5. The figure also presents the prediction errors in side forces (Figure 2.5(d)) and tire side-slip

angles (Figure 2.5(f)) to show more clear estimation results. The estimated friction coefficients

as a function of the time is shown in Figure 2.6(a). The results show accurate estimations of tire

side-slip angles and side forces, while notable prediction errors in TRFC is evident for t 6 2 s,

likely due to very small tire side-slip angles as the vehicle traverses the straight-line segment. As
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Figure 2.6: TRFC estimation under DLC maneuver on three different road conditions: (a) high-µ
road, (b) mid-µ road, and (c) low-µ road.

seen in Figures 2.5(e) and 2.5(f), accurate lateral velocity estimation (Figure 2.5(b)) yields equally

accurate predictions of tire side-slip angles, although the slip angle error of rear tires is larger than

that of front tires. Notable errors are also evident in the predicted side forces, as seen in Figure

2.5(d). Peak errors are observed in the t = 2 − 6 s interval, which occur mostly in the vicinity of

low tire side-slip angle response. The estimated TRFC (µ̂f and µ̂r) values quickly approach 0.65

immediately after the vehicle enters the curved path and the tire side-slip angles approach peak

values prior to reversal of the steering input. The error in TRFC estimation in this region is likely

due to small tire side-slip angle. As the vehicle starts the second path change, the estimated TRFC

increases gradually and converges to about 0.78 near t = 4.8 s. The estimated TRFC values remain

steady thereafter, irrespective of the tire side-slip angle, as seen in Figure 2.6(a). It is further seen
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that µ̂f slightly leads µ̂r, which is consistent with the fact that the contact of the front tires leads

that of the rear tires. The error in the estimated TRFC values are partly attributable to the errors in

estimated side forces and signal noise, in addition to potential errors in cornering force estimations

from the brush tire model.
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Figure 2.7: DLC simulation results on mid-µ road condition: (a) measured lateral acceleration,
(b) estimated lateral velocity, (c) and (d) estimated axle forces and their errors, and (e) and (f)

calculated tire slip angles and their errors.

2.4.1.2 Mid-µ Surface

Figure 2.7 illustrates the estimated lateral velocity (v̂y), side forces (F̂yf , F̂yr) and the calculated

tire side-slip angles for the mid-µ road condition together with the side forces and side-slip angle

prediction errors. The measured lateral acceleration with the noise, obtained from CarSim, is

shown in Figure 2.7(a). Compared to the high-µ road condition (Figure 2.5), the lateral velocity,
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side forces and side-slip angles are estimated with the same degree of accuracy (Figures 2.7(b)-

2.7(f)). Although notable errors in estimated side forces are evident, the estimated TRFC values

rapidly approach the target value of 0.4 near t = 2 s, as the vehicle enters the initial curved

segment of the DLC path (Figure 2.6(b)). While the side-slip angle developed at the rear tires is

close to that obtained for high-µ road condition, the front tire side-slip angle is higher, as shown in

Figures 2.5(e) and 2.7(e). More effective prediction of TRFC in this case is partly due to the fact

that sufficiently large tire side-slip angles have been developed on mid-µ road surface compared

to the high-µ surface, as seen in Figure 2.7(e). Noting that the lower the µ is, the smaller tire

side-slip angle it is required to effectively identify this parameter. The UKF-based force observer

tracks the actual tire force per-axle reasonably well, which suggests effectiveness of the UKF

technique in dealing with system nonlinearities. Relatively large errors, however, are evident when

the magnitude of side forces is small, which also implies small tire side-slip angles. The estimated

TRFC values, µ̂f and µ̂r, vary within a small range, between 0.39 and 0.42, during rest of the

maneuver, as seen in Figure 2.6(b).

2.4.1.3 Low-µ Surface

The simulation results to a DLC maneuver on the low-µ road condition at a speed of 40 km/h

are shown in Figure 2.8. The results exhibit considerable oscillations when compared to those

obtained with high- and mid-µ road conditions. This is attributed to relatively poor adhesion of

the tires with the low friction road surface. High magnitude oscillations in the lateral acceleration

responses contribute to higher estimation errors in the lateral velocity and side forces, as seen in

Figures 2.8(a) to 2.8(d). The EKF velocity estimator, however, exhibits satisfactory performance

for reasonably accurate estimations of the tire side-slip angles based on Eq. (2–2). The estimated

tire side-slip angles are close to the reference values, as seen in Figures 2.8(e) and 2.8(f). The

observed front- and rear-axle tire forces (Figure 2.8(c)), however, show considerable deviations

when compared to the reference values. The results show large peak force errors in the vicinity of

zero tire side-slip angles (Figure 2.8(d)), which can be attributed to higher uncertainties in the tire
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Figure 2.8: DLC simulation results on low-µ road condition: (a) measured lateral acceleration, (b)
estimated lateral velocity, (c) and (d) estimated axle forces and their errors, and (e) and (f)

calculated tire slip angles and their errors.

forces during wheel slippage. The wheel slippage, however, imposes greater tire side-slip angles to

meet the side-force demand (Figure 2.8(e)) compared to those observed with high- and mid-µ road

conditions, which contributes to more effective predictions of the TRFC values. The estimated

TRFC values rapidly approach the reference value of 0.2, as the vehicle enters the curved segment

of the DLC track near t = 6 s, as seen in Figure 2.6(c). The estimated values vary between 0.18 and

0.2 during the entire maneuver thereafter. The generated high magnitude of tire side-slip angles

may partly explain the slight underestimation of the TRFC, as the modeling errors of brush tire

model increase at large tire side-slip angles.

Figure 2.9(a) compares the actual trajectories of the vehicle CG obtained during the DLC ma-

neuvers performed on three different road surfaces. The results show that the vehicle trajectories

remain within the defined bounds throughout the maneuver, irrespective of the TRFC, although the
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Figure 2.9: The CG trajectory of the vehicle on different road conditions: (a) DLC maneuver and
(b) SLC maneuver.

DLC maneuver on the low-µ road condition yields greater path oscillations. The results suggest

that the proposed algorithm can yield rapid and accurate estimations of TRFC values from the ve-

hicle responses during a DLC maneuver, especially for the mid- and low-µ road conditions. The

estimations on the high-µ road condition, however, revealed great error and time lapse, which is

attributed to relatively lower tire side-slip angles developed during the first lane change.

The peak lateral acceleration during the DLC maneuver varies considerably with the road fric-

tion, although the vehicle tracks the same path, shown in Figure 2.4(c). While the peak lateral

acceleration on high-µ road condition (µ = 0.8) is 0.57µg, the peak acceleration values on mid-µ

road condition (µ = 0.4) and low-µ road condition (µ = 0.2) are close to the limit value of µg

(0.90µg and 0.92µg, respectively). The designed path thus represents relatively severe maneuvers

on mid- and low-µ road conditions, which is neither safe nor practical in real application. However,
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the results presented in Figures 2.6(b) and 2.6(c) show that accurate estimations of TRFC can be

realized during the initial curved segment of the DLC track. This suggests that the TRFC values

could be effectively estimated from the lateral responses to a SLC maneuver, which is considered

to be a simpler as well as more practical maneuver for real-time TRFC estimations. It is worthy

to note that the peak lateral acceleration corresponding to the first lane change is much smaller

than that encountered during the second path change, especially for high- and mid-µ road condi-

tions. The effectiveness of the proposed algorithm is thus further verified considering the lateral

responses to a SLC maneuver, which has not been adequately investigated in the reported studies.

2.4.2 TRFC Estimation during SLC Maneuvers

As shown in Figure 2.6(a), the TRFC can not be accurately estimated until the second lane

change (t = 4.8 s) on high-µ road condition. The SLC results and discussions in this section

are limited only to estimations on mid- and low-µ road conditions, which are known to be more

critical in view of directional stability and thus safety dynamic performance of the vehicle. The

SLC simulation results on mid- and low-µ road conditions at the nominal forward speed of 100

km/h and 40 km/h, respectively, are presented in Figures 2.10 to 2.12.

Compared to the DLC maneuver (Figure 2.7(a)), the peak value of the lateral acceleration

under SLC maneuver on the mid-µ road condition is much smaller (Figure 2.10(a)). However, the

peak value under SLC maneuver on the low-µ road condition is comparable with that measured

under DLC maneuver (Figures 2.8(a) and 2.11(a)). This is due to wheel slippage during both

the DLC and SLC maneuver on the very low friction road surface. Figures 2.10 and 2.11 also

present the estimated lateral velocity, tire side forces and side-slip angles for the mid- and low-µ

road conditions, respectively, together with the tire side forces and side-slip prediction errors. For

the mid-µ road condition, the peak tire side-slip angles attained during the SLC maneuver are in

the order of 0.03 rad, as seen in Figure 2.10(e). These are quite comparable with those observed

during the initial curved segment of the DLC track (Figure 2.7(e)). The proposed algorithm yields

accurate estimations of lateral velocity, side forces and side-slip angles, as in the case of the DLC
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Figure 2.10: SLC simulation results on mid-µ road condition: (a) measured lateral acceleration,
(b) estimated lateral velocity, (c) and (d) estimated axle forces and their errors, and (e) and (f)

calculated tire slip angles and their errors.

maneuver. The estimated TRFC values, µ̂f and µ̂r, rapidly decrease from the confined value of

1.0 to nearly 0.4, as the vehicle enters the curved track (Figure 2.12(a)). After t = 4.2 s when the

generated tire side-slip angles decrease from a smaller peak value of only 0.025 rad to near zero,

small overestimations of the estimated TRFCs are observed for both the front- and rear-axle due

to lower tire side-slip angles during this period. µ̂f and µ̂r may finally converge to small different

values (less than 0.01) as a result of the Gaussian white noises added to the measured signals.

Nevertheless, the estimated TRFC values vary within a small band between 0.37 and 0.44 during

and after the SLC maneuver.

The proposed algorithm also yields accurate and rapid estimations of the TRFC values on the

basis of lateral dynamic responses to a SLC maneuver performed on the low-µ road condition,

as seen in Figure 2.12(b). Owing to considerably larger variations in the steer angle and thus the
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Figure 2.11: SLC simulation results on low-µ road condition: (a) measured lateral acceleration,
(b) estimated lateral velocity, (c) and (d) estimated axle forces and their errors, and (e) and (f)

calculated tire slip angles and their errors.

tire side-slip angles, the results show considerable deviations in the side force estimation. This

is evident near t = 6 s and t = 9 s in Figure 2.11(d), which is likely caused by uncertainties

in the tire cornering forces in the saturation region. The vehicle CG trajectories on mid- and

low-µ road conditions during the SLC maneuver are compared in Figure 2.9(b). The vehicle

trajectories remain within the defined bounds throughout the maneuver, irrespective of the TRFC

value, although the SLC maneuver on the low-µ road condition yields greater path oscillations.

2.4.3 Discussion and Analysis

From the above simulation results, it is evident that the proposed EKF-and-UKF framework

consisting of only standard EKF and UKF can ensure rapid TRFC estimation with acceptable
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Figure 2.12: TRFC estimation under SLC maneuver on two different road conditions: (a) mid-µ
road and (b) low-µ road.

accuracy on high-, mid- and low-µ road surfaces. Considering that the number of states to be esti-

mated has large influence on the computational burden, the filtered wheel velocity (approximation

of vehicle longitudinal velocity) and the estimated lateral velocity from EKF in the first stage are

considered as measurements in the UKF1. Tire forces are thus remaining the only three unknown

states to be estimated in (2–10). As a result, the overall computational demand for tire force es-

timation is reduced and much lower than the combined velocity and tire force estimation in the

study by Qi et al [42]. The estimated axle lateral forces from UKF1 are then fed to the UKF2

for TRFC identification, the TRFC at the front and rear tires remain the only two parameters to

be identified based on the brush tire model. The overall computational cost is still comparable to

methods as described in the studies by Wang and Wang [24] and Chen et al. [100] considering the

convergence rate of the estimated TRFC. However, the methods in these two studies are assuming

known vehicle velocities. It should also be noted that re-setting of the sigma points of UKF1 dur-

ing each interval is not attempted since the tire forces are not expected to vary abruptly under the

considered vehicle maneuvers and this helps to further improve computational efficiency.

While the desired DLC maneuver realized effective TRFC estimation on all the three road
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conditions (Figure 2.6), it can lead to large lateral acceleration close to the limit value (µg) on

both the mid- and low-µ road conditions (Figures 2.7(a) and 2.8(a)), which is neither safe nor

comfortable. Results in Figure 2.12 suggest that the TRFC can be accurately identified under the

simpler SLC maneuver on both the mid- and low-µ road conditions. Moreover, the SLC maneuver

generates smaller peak lateral acceleration with less oscillations than that observed under DLC

maneuver. Therefore, it is not necessary to conduct a DLC maneuver for estimating the friction

coefficient, especially for the mid- and low-friction road conditions. The TRFC estimation under

a SLC maneuver is more practical for implementation, when compared to the relatively severe

maneuvers employed in the reported studies [17, 41].

2.5 Summary

In this chapter, a new TRFC estimation framework based on the vehicle responses to more

practical lane change maneuvers (including both DLC and SLC maneuvers) has been investigated.

The framework is designed so as to utilize the measurements that are available directly from the

onboard sensors. The lateral velocity constitutes the only exception, which is estimated in the

initial stage of the framework. The overall computational burden is reasonably reduced due to the

cascade structure of the estimation framework. The proposed two-stage method can yield rapid and

accurate estimations of the TRFC values of various road conditions, although the estimations under

the SLC maneuver are a little worse than those under the DLC maneuver. However, the effective

TRFC identification even under the SLC maneuver makes the proposed method very promising to-

wards its practical application. The TRFC estimation under lateral vehicular excitations, however,

leads to undesired interference to vehicle motion, which would likely be perceived as annoying by

the vehicle occupants. An alternate framework based on longitudinal dynamics of the vehicle is

proposed in the following chapter in an attempt to minimize the interference to the vehicle motion

during the TRFC estimation.
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Chapter 3

TRFC Estimation based on Longitudinal

Vehicle Dynamics

3.1 Introduction

Since unmanned vehicles should be able to perform driving tasks on different road conditions,

the real-time knowledge of varying friction is vital for motion control and safe driving of the AVs.

The available road surface friction coefficient may vary considerably with various environmental

and operating conditions such as weather conditions, state of tires, road roughness, instantaneous

traction/braking demand and more. Different TRFC estimation strategies have been proposed on

the basis of longitudinal and/or lateral dynamic states of the vehicle, which tend to vary consid-

erably depending on excitations and road conditions. The reported studies have used different

tire models including Pacejka tire model [101], Dugoff tire model [43], brush tire model [41] and

LuGre tire model [102], which suggest that the reliability of TRFC estimation also relies on effec-

tiveness of the tire model used. Some of the most common dynamic vehicle models for friction

estimation are wheel rotation dynamic model [21], bicycle model [16], quarter-car model [103]

and four-wheel vehicle dynamic model [23]. Technical survey studies on vehicle and tire models

used for friction estimation are referred to [104, 105].

46



Chen et al. [45] proposed a novel online gradient descent algorithm for vehicle side-slip angle

and road friction estimation, though the effectiveness has not yet been verified by experiments in

real vehicle. Ahn et al. [17] proposed an adaptive state and parameter observer to estimate friction

coefficient and tire side-slip angle using the lateral acceleration and tire-aligning moment responses

to a 0.25 Hz sinusoidal steering input, assuming negligible longitudinal tire force. Using total

aligning torque of front-axle during steering, Shao et al. [38] designed a stability and robustness

guaranteed TRFC estimation method. A 3-DOF vehicle model was used by Ren et al., [23] which

proposed a hybrid friction estimator based on vehicle responses to a rapidly varying fish-hook

steering maneuver. The lateral tire force or self-alignment was chosen to estimate TRFC depending

on the excitation levels.

Choi et al. [41] employed linearized RLS technique for real-time identification of TRFC to-

gether with the tire stiffness on the basis of vehicle responses to combined braking and steering

inputs. The study employed the brush tire model as described in the book written by Pacejka [101].

Gustafsson [106] and Rajamani et al. [29] obtained individual wheel TRFCs on the basis of the

longitudinal slip slope which is estimated using RLS approach by assuming linear relationship be-

tween the longitudinal force and the slip. This linearity, however, can be considered valid only for

very small slip deformations of the tire. Castro et al. [103] proposed a constrained RLS approach

for real-time TRFC estimation using optimal linear parameterization of the non-linear Burckhardt

tire model. Enisz et al. [40] proposed an EKF framework with road friction as a random-walk

variable to facilitate TRFC estimation. The study employed a two-wheel longitudinal vehicle dy-

namic model together with the MF tire model. Another study employed a sliding-mode observer

in conjunction with the RLS technique for identifying TRFC for synthesis of a traction control

system [35]. The effectiveness of the method was illustrated for the vehicle accelerating on a high

friction road. Zhao et al. [21] proposed a robust TRFC estimation algorithm for anti-lock braking

system, where tire forces were observed by the discrete-time KF followed by TRFC estimation

using the RLS method.

The aforementioned studies have shown that an accurate estimation of TRFC can be obtained
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from lateral and/or longitudinal dynamic responses of the vehicle. The effective estimation of

TRFC generally involves a trade-off between sufficient excitations and small disturbances on ve-

hicle motion. Most of the traditional longitudinal dynamics-based methods, however, impose rel-

atively large magnitudes of braking/acceleration to achieve sufficient variations in dynamic re-

sponses for identifying the TRFC. These maneuvers may not be practical during normal driving

and may interfere with the desired vehicle motion in real driving situations. It is thus desirable to

develop TRFC estimation methods involving adequate excitations to warrant convergence of the

parameter estimation algorithm while ensuring minimal interference with the vehicle motion. It is

noted that a disturbance along the longitudinal axis would be more practical for implementation

as opposed to the lateral excitation in real driving conditions. Moreover, variations in longitudinal

motion of the vehicle are more commonly encountered during routine driving and are considered

acceptable to the occupants. This chapter presents the development of longitudinal dynamics-based

TRFC estimation method, which ensures relatively small changes in the vehicle speed.

3.2 Estimation Approach and Tire Model

3.2.1 An Overview of the Methodology

A two-stage braking pressure pulse input is designed for generating sufficient longitudinal

excitations while ensuring minimal interference with vehicle velocity. In the Stage I, a series of up

to five braking pressure pulses with varying magnitude (ppi, i = 1, ..., 5) is utilized to identify the

desired minimal magnitude of the braking pulse (ps) for TRFC estimation through a heuristic rule.

In the Stage II, a single braking pressure pulse with magnitude of ps is implemented for quantitative

TRFC estimation. Qualitative TRFC estimation can be obtained from Stage I alone making Stage II

unnecessary if such accuracy is acceptable. In order to make the whole estimation procedure more

practical, a controlled normalized throttle position (nth) is also formulated to restore the vehicle

speed after applying the braking pulse in both the stages. It should be noted that the tire forces as

well as the quantitative TRFC are estimated on the basis of longitudinal dynamic responses of the
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Figure 3.1: Block diagram of the estimation algorithm (braking pressure pulse).

vehicle subject to the braking pressure pulse in Stage II, when high accuracy of TRFC estimation

is required.

Figure 3.1 illustrates the block diagram of the proposed algorithm, which involves following

measured states related to the longitudinal responses of the vehicle:

• Longitudinal deceleration (ax) and wheel’s angular velocity (ωi) that may be acquired from

on-board sensors.

• Instantaneous forward velocity (vx), which may be obtained from on-board sensors or mea-

sured using the GPS.

• Braking torque (Tbi), which can be obtained from the brake pressure.

While the normal force (Fzi) and slip ratio (κi) are computed from the available measured signals,

a modified form of the tire force observer from [24] is formulated for estimating the braking force

(F̂xi). An estimate of the TRFC (µ̂i) is subsequently obtained from the estimated tire forces and the

calculated slip ratio using the brush tire model [21]. For this purpose, a new constrained unscented

Kalman filter (CUKF) algorithm is proposed to achieve rapid convergence and improved accuracy

of the estimation, where the TRFC is considered as a state in the tire model.
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Remark 3.1 The tire force and TRFC estimations are designed with a focus on the rear-axle

wheels as opposed to the front wheels. This is motivated by the fact that the contributions of

the drive-train dynamics to rotational dynamics of the rear wheels can be neglected when the

front-wheel drive vehicle is considered.

Figure 3.2: Wheel rotational dynamic model.

3.2.2 Wheel Rotational Dynamics

The governing equation of rotational dynamics of an individual vehicle’s wheel, as shown in

Figure 3.2, is obtained as:

Iωω̇i = Tdi − Tbi −ReFxi −ReFri (3–1)

where Iw is the moment of inertia of the wheel, ωi is the rotation angular speed of an individual

wheel, Re is the tire effective radius, and i = 1, 2, 3, 4 represent the front-left, front-right, rear-left

and rear-right wheels, respectively. Fxi denotes the individual longitudinal tire force and Fri =

Fzifr is the rolling resistance force with Fzi being the individual tire normal force. Tdi and Tbi

in the above equation denote the driving and braking torques, respectively. The braking torque is

directly related to the hydraulic fluid pressure (pi) and the brake force gain KBi of an individual

tire [31]:

Tbi = KBi · pi (3–2)
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3.2.3 Tire Model

It has been reported that the nonlinear relation between the tire slip ratio and the braking force

of a tire, including the force saturation, can be accurately described by the brush tire model [21,41].

The tire force predicted by the model directly relates to the road friction coefficient, such that:

Fxi =
Cxi · κi/(1 + κi)

f
F (3–3)

where
f =

√
C2
xi · (κi/(1 + κi))2

F =


f − f2

3µiFzi
+ f3

27µ2iF
2
zi
, if f 6 3µiFzi

µiFzi, else

in which Cxi is the longitudinal stiffness of the tire i, and µi is the TRFC.

Neglecting the lateral and roll motions of the vehicle, the instantaneous normal forces acting

on the individual tire can be computed considering vehicle longitudinal deceleration, ax, as:

Fzi =


mglr −maxhc

2 · l
, i = 1, 2

mglf +maxhc
2 · l

, i = 3, 4

(3–4)

where g is the acceleration due to gravity, hc is the CG of the vehicle, lf and lr are the distances

from the CG to the front- and rear-axle, respectively, and l is vehicle’s wheelbase.

The longitudinal wheel slip of tire i, κi is defined as:

κi =


1− Re · ωi

vx
, if vx > Re · ωi, vx 6= 0

1− vx
Re · ωi

, if vx < Re · ωi, ωi 6= 0

(3–5)

From (3–4) and (3–5), it is evident that the instantaneous normal force and tire slip ratio can be

computed from the measured states, ax, ωi and vx.
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Figure 3.3: Comparisons of longitudinal tire forces obtained from the brush tire model and the
Magic formula (MF) formula as a function of the slip ratio considering variations in the (a)

normal force (µ = 0.8); and (b) road friction coefficient (Fz = 3 kN).

The adequacy of the brush tire model under pure slip ratio is examined by comparing the lon-

gitudinal force-slip characteristics of the tire obtained from the above relation with those obtained

from the widely used MF tire model [107, 108], as seen in Figure 3.3. The comparisons are illus-

trated considering three different normal loads (2, 3 and 4 kN) in Figure 3.3(a), and three different

road friction coefficients (0.3, 0.6 and 0.9) in Figure 3.3(b). The comparison results suggest that

the brush tire model yields longitudinal force-slip properties comparable to those of the MF model

up to about 15% slip, which is considered as commonly encountered slip range [21, 44]. Consid-

ering the tire longitudinal stiffness is largely affected by the tire normal load [94], the longitudinal

stiffness is assumed to be constant when there are only small variations in the tire normal load.

3.3 Vehicle Maneuvers Design

The TRFC estimations generally involve relatively large excitation, which may constitute un-

desired disturbance on the vehicle motion [21, 41]. In the first method, the TRFC estimation

algorithm is formulated under controlled braking inputs, which are imposed in the form of short

duration pulses in the master cylinder brake pressure (pmc) in order to reduce interference with the
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vehicle motion.

3.3.1 Braking Pulse Design for TRFC Estimation

Braking pulse designed for TRFC estimation in the Stage II is firstly described in this section.

With the purpose of minimizing interference with the vehicle motion, a triangular braking pressure

pulse was firstly attempted, which revealed poor convergence of the estimation algorithm even

under relatively high peak pressure. This was attributed to rapid decrease in the slip ratio following

the braking pulse. Subsequently, a braking pressure in the form of a 2 s trapezoidal pulse was

utilized, where the braking pressure pmc was ramped from zero to a peak value of ps for 0.5 s at

the instant t0 = 1 s. The peak pressure was held for 1 s and released to zero over the next 0.5

s in a ramp-down manner. For a road surface with nearly uniform friction (uniform-µ) over the

observation period, the controlled braking pressure input is thus described as:

pmc =



0, t 6 t0, t > t0 + 2

2ps(t− t0), t0 < t 6 t0 + 0.5

ps, t0 + 0.5 < t 6 t0 + 1.5

ps − 2ps(t− (t0 + 1.5)), else

(3–6)

and shown in Figure 3.4(a). In order to reduce the interference with vehicle speed, it is essential

to select minimal peak pressure as well as peak hold duration while ensuring sufficient slip ratio

generation for the algorithm to converge to the actual friction value. Only uniform-µ road sur-

faces were considered in the first method and preliminary simulations revealed that the trapezoidal

deceleration inputs with 1 s peak hold duration can lead to estimation algorithm to converge to a

stable value. A low magnitude pressure peak may yield underestimation due to insufficient slip

ratio, while too high a value will likely trigger the ABS. The generated slip ratio, however, is re-

lated to the tire-road friction in addition to the braking pressure. A constant value of ps is thus

not considered feasible. The desired minimal magnitude of ps which is varying with road friction,

53



(a) (b)

Figure 3.4: The designed braking pressure pulses for (a) TRFC estimation; and (b) identification
of desired braking pulse magnitude.

should be priorly determined. For this purpose, a series of braking pressure pulses with increasing

magnitude was designed in the Stage I, as described in the following subsection.

3.3.2 Identification of Desired Braking Pulse Magnitude

The widely used control principle of ABS is the slip ratio threshold-based algorithm. The

ABS is triggered as the slip ratio exceeds a threshold value leading to oscillations in the wheel

speed and the slip ratio [21]. The desired minimal braking pressure that leads to minimal slip ratio

required for the TRFC algorithm to converge is identified so as to reduce the disturbance to the

vehicle speed. Preliminary simulations suggested that the minimal slip ratio leading to satisfactory

convergence of the estimation algorithm could range from 0.012 for the low friction road (µ = 0.2)

to 0.085 for the high friction road (µ = 0.9). Furthermore, simulations were performed using a

CarSim vehicle model (class-C) to determine the minimal braking pressure leading to triggering

of the ABS considering road friction in the 0.2 to 0.9 range and different initial forward speeds

(vx0). The default slip-ratio threshold for activating the ABS of the class-C vehicle model was set

as 0.12. The simulations were performed using short duration trapezoidal pulses (0.3 s peak hold)
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Table 3.1: Variations in the peak pressure threshold (p∗p) for different road surfaces.

Road surface friction (µ) p∗p (MPa) Initial speeds (km/h)

0.2 0.8 40 and 30

0.4 1.5 60, 40 and 30

0.6 2.1 80, 60 and 40

0.8 2.5 100, 80 and 60

0.9 2.7 100, 80 and 60

so as to reduce interference with the vehicle speed, such that (as shown in Figure 3.4(b)):

pmc =



0, t 6 t0, t > t0 + 0.5

10pp(t− t0), t0 < t 6 t0 + 0.1

pp, t0 + 0.1 < t 6 t0 + 0.4

pp − 10pp(t− (t0 + 0.4)), else

(3–7)

where t0 = 1 s and pp is peak magnitude of the pulse. The threshold pressures (p∗p) leading

to triggering of the ABS were identified for different µ values by gradually increasing pp. As

examples, Figure 3.5 illustrates time-histories of the slip ratio for two different roads with µ = 0.9

and µ = 0.4. The results are presented only for values of pp close to those leading to the ABS

triggering at different initial speeds. The results clearly show that the threshold pressures vary

substantially with µ and the threshold values were obtained as 2.7 MPa for µ = 0.9 and 1.5 MPa

for µ = 0.4. The results also suggest relatively lower dependence of the threshold pressures on

the forward speeds considered in the simulations. Similar trends were also observed for other road

surfaces. Table 3.1 summarizes the threshold values of p∗p leading to ABS activation on different

road surfaces together with the considered speed ranges.

Owing to the strong dependency of the braking pressure threshold on the road surface, a method

was designed to identify desired minimal pulse pressure (ps) for TRFC estimation. The method was
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Figure 3.5: Time-histories of the slip ratio developed at the rear-left tire under different speeds
and magnitudes of the braking pressure pulse considering two different TRFCs.

based on application of a series of up to five braking pulses with increasing peak magnitude. The

interval between two consecutive pulses was set as 0.5 s. The variation in the braking pressure for

each pulse was governed by (3–7). The magnitudes of the five consecutive pulses (ppi, i = 1, ..., 5)

were initially chosen to be 0.1 MPa below the threshold pressures triggering the ABS (p∗p) identified

for different forward speeds and road friction coefficients. The value of 0.1 MPa was selected such

that slip ratio is limited to about 0.1, which is slightly below the ABS slip threshold and sufficient

to achieve satisfactory convergence of the TRFC estimation algorithm even on a high friction road

surface (µ = 0.9), and thus considered as the cut-off slip ratio. This ensured the absence of the

repeated ABS activations during the estimation process. However, the generated slip ratio is very

sensitive to the magnitude of the braking pulse on low friction roads (µ 6 0.4). This is also evident

in Figure 3.5, which suggests that even a small variation in the magnitude of the braking pressure,
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in the order of 0.1 MPa, could lead to large variation in slip ratio. This constituted a challenge

in identifying an appropriate magnitude of the braking pressure pulse so as to limit to the cut-off

slip. The peak pressures of the first two pulses (pp1 and pp2) corresponding to road surfaces with

low friction coefficients (µ 6 0.4) were thus limited to the threshold values triggering the ABS.

The magnitudes of the subsequent pulses (ppi, i = 3, 4, 5) were ensured to be 0.1 MPa below their

respective threshold pressures as summarized in Table 3.1. The magnitudes of the consecutive

peaks were thus selected as pp1 = 0.8, pp2 = 1.5, pp3 = 2.0, pp4 = 2.4 and pp5 = 2.6 MPa.

The slip ratio of each wheel was monitored, and the input was terminated when the slip ratio

approached or exceeded 0.1 or the ABS was triggered. As examples, Figure 3.6 illustrates the slip

ratio responses of the vehicle model subject to series of braking pressure pulses for two different

friction coefficients. It is evident that the µ = 0.6 road and the µ = 0.9 road yield desired slip ratio

of 0.1 during applications of the third and fifth pulse, respectively.
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Figure 3.6: Magnitudes of the braking pressure pulses and the slip ratio developed at the rear-left
tire.

The desired magnitude of the pressure (ps) for the Stage II of the TRFC estimation algorithm

was subsequently selected using the following heuristic rule, which was established based on the

repeated simulations considering convergence of the proposed TRFC estimation algorithm for
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Table 3.2: Qualitative friction estimation results.

Pulse number (n) Friction range Adhesion quality

1 <0.2 Very low

2 0.2–0.4 Low

3 0.4–0.6 Medium

4 0.6–0.8 High

5 >0.8 Very high

broad ranges of road surfaces. Based on which pulse (n = 1, ..., 5) leading to ABS activation

or the cut-off slip ratio, the magnitude of ps in the Stage II is set as follows:

ps =


pss − 0.2, if κi > 0.1

pss, else
(3–8)

where,

pss =


ppn − 0.2, if n = 1, 2

ppn − 0.1, if n = 3, 4, 5

(3–9)

and κi is the generated slip ratio under the braking pressure pss.

3.3.3 Relationship between Stage I and Stage II

Depending on the pulse that leads to ABS activation or the cut-off slip ratio during Stage I, a

qualitative estimation of TRFC may be obtained. This helps identify the road adhesion quality into

five different conditions, namely, ’very low’, ’low’, ’medium’, ’high’ and ’very high’, as summa-

rized in Table 3.2. Based on the tire responses, such qualitative results are more reliable than the

traditional qualitative methods [25–27], which neglect the roles of the tire operating factors. The

two stages are not mandatory and the Stage II may become unnecessary if a qualitative estimate of

TRFC is acceptable in a given application. This may be true and reasonable considering the road
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friction coefficient is not always a fixed value. It is worth noting that the approximated friction

range for ’very low’ and ’very high’ friction roads (n = 1 and n = 5) has sufficient accuracy,

making the Stage II unnecessary in these two cases. For other road conditions, Stage II is desirable

for TRFC estimation with a higher accuracy.

3.4 Braking Force Estimation

The estimation algorithm is designed with a focus on the rear-axle wheels as opposed to the

front wheels. This is motivated by the fact in our situation that rear wheels exhibit relatively higher

slip ratio during braking despite the lower brake gain compared to the front wheels. Moreover, the

contributions of the drive-train dynamics to rotational dynamics of the rear wheels can be neglected

since the front-wheels drive vehicle is considered in the first method (Tdi = 0; i = 3, 4).

The observer in [24, 109] was modified for estimating rear tire longitudinal force from the

wheels’ rotational dynamics. The proposed observer incorporates the contribution due to rolling

resistance, and the estimated force F̂xi (i = 3, 4) can be expressed as:


F̂xi = − Iw

Re
χi − Iw

Re
ρiωi

χ̇i = −ρiχi − ρi(−Tbi−ReFri

Iw
+ ρiωi)

(3–10)

where ρi is a positive gain, χi is an intermediate variable generated by the second equation in

(3–10). From Eq. (3–1), the angular deceleration of the wheel can be expressed as:

ω̇i = −Re

Iw
Fxi +

−Tbi −ReFri
Iw

(3–11)

Equations (3–10) and (3–11) yield following relationship between time derivative of F̂xi and the
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force estimation error, F̂xi − Fxi:

˙̂
Fxi =− Iw

Re

χ̇i −
Iw
Re

ρiω̇i

=− Iw
Re

ρi[−χi −
−Tbi −ReFri

Iw
− ρiωi]

− Iw
Re

ρi[−
Re

Iw
Fxi +

−Tbi −ReFri
Iw

]

=− Iw
Re

ρi[−χi − ρiωi −
Re

Iw
Fxi]

=− ρi[−
Iw
Re

χi −
Iw
Re

ρiωi − Fxi]

=− ρi(F̂xi − Fxi)

(3–12)

Considering the Lyapunov function of the form [109]:

Vi =
1

2
(Fxi − F̂xi)2 (3–13)

The time derivative of Vi is obtained, as:

V̇i = (Fxi − F̂xi)(Ḟxi − ˙̂
Fxi)

= (Fxi − F̂xi)[Ḟxi + ρi(F̂xi − Fxi)]

= −ρi(Fxi − F̂xi)2 + Ḟxi(Fxi − F̂xi)

6 −ρi(Fxi − F̂xi)2 +
(Fxi − F̂xi)2

2
+

(Ḟxi)
2

2

(3–14)

Assuming that Ḟxi remains bounded, |Ḟxi| 6 C, the above can be re-written as:

V̇i 6 −(ρi −
1

2
)(Fxi − F̂xi)2 +

C2

2
(3–15)

As the right-hand side of (3–15) converges to zero, the estimation error |Fxi − F̂xi| becomes

bounded, as:

|Fxi − F̂xi| 6
C√
|2ρi − 1|

(3–16)
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Since ρi can be arbitrarily chosen to be large, the estimation error can be bounded by a small

constant.

3.5 TRFC Estimation Algorithm

3.5.1 CUKF Algorithm

The TRFC can be considered as a vehicle state embedded in the brush tire model, which yields

tire force as a nonlinear and segmented function of the slip ratio and the TRFC. The linearization of

the tire model around the operating point would require evaluations of the Jacobian matrices, which

may not be computationally efficient [110]. The UKF, based on the unscented transformations

instead of the linearization, is thus considered as a better alternative.

Defining the TRFC as a state τk = µi,k, and the measurement yk = Fxi,k, where Fxi,k are

the braking forces developed at rear tires, i = 3, 4. The subscript k is the index for the time step.

The brush tire model can be expressed as a one-state and one-measurement discrete-time nonlinear

system as:

τk = F (τk−1) + wk, wk ∼ (0,Mk)

yk = H(τk) + vk, vk ∼ (0, Nk)

(3–17)

where wk and vk are the process noise and measurement noise, respectively, and Mk and Nk are

the respective covariances of wk and vk. The state transition F and observation H functions are

expressed as:

F (τk−1) = τk−1 = µi,k−1 (3–18)

and

H(τk) = H(µi,k) = F c
xi,k

(3–19)

where F c
xi,k is the longitudinal tire force obtained from the brush tire model considering the in-

stantaneous normal force Fzi,k and the tire slip ratio κi,k, together with the estimated TRFC at the

preceding step µ̂i,k−1.
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The normal force at each sampling interval is obtained from Eq. (3–4), and the longitudinal

tire force is expressed in the normalized form, as:

ri,k =
F̂xi,k
Fzi,k

, i = 3, 4 (3–20)

where F̂xi,k is the estimated braking tire force from the estimator (3–10). The TRFC of a passenger

vehicle generally lies between 0 and 1 and it is physically greater than or equal to the normalized

tire force ri,k, such that: 
0 <µ 6 1

µ > ri,k

(3–21)

Based on (3–21), practical varying constraints on the system state can be designed and a new

CUKF framework is further formulated to enhance the rate of convergence. With L being the

dimension of the state vector, the 2L + 1 transformed sigma points Γiik|k−1 are updated according

to the following rules:

Γiik|k−1 =



1, if Γiik|k−1 > 1

ri,k, else if 0 < Γiik|k−1 6 ri,k

0, else if Γiik|k−1 < 0

Γiik|k−1, else

(3–22)

where ii = 0, ..., 2L. The pseudo-code of the CUKF algorithm is presented in Algorithm 1, where

Γiik|k−1 and γiik|k−1 are the ii-th columns of the matrices, Γk|k−1 and γk|k−1, respectively, N is the

total number of the time steps, λ = α2
u(L+σ)−L is a scaling parameter with σ being a secondary

scaling parameter which is usually set to 0 [99], and W ii
s and W ii

c are the weighting factors for
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2L+ 1 sigma points, given by:

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ (1− α2

u + βu)

W ii
s = W ii

c =
1

2(L+ λ)
, ii = 1, ..., 2L

(3–23)

where αu is a constant determining the spread of the sigma points around the mean of τk, the

constant βu permits the use of prior knowledge of the distribution of τk. For a Gaussian distribution,

βu = 2 has been suggested as the optimal [99]. As can be seen in Algorithm 1, both the a priori

state estimate τ̂−k and its error covariance P−k include the information of the constraints on the

state. Following the procedure, the information of the constraints on state is further introduced

to the predicted measurement ŷ−k and covariances Pykyk and Pτkyk . While the formulated CUKF

framework helps to enhance the rate of convergence, it is still easy to implement with a simple

structure similar to the UKF. In the first method, the CUKF parameters are selected as αu =

1, βu = 2 and σ = 0, which provided satisfactory estimations of TRFC. The UKF technique for

nonlinear estimations has been described in detail in [96, 99, 111].

3.5.2 Conditions for Terminating Updates

The TRFC estimation algorithm considers controlled braking pressure input, which is released

to zero at the end of the designed maneuver. The resulting low values of the slip ratio at the end of

the maneuver can lead to considerable TRFC estimation error. It is thus essential to terminate the

recursive updating and retain the TRFC being estimated prior to the slip ratio becoming too small.

For the braking pressure pulse inputs, described in (3–6), the brake pressure pmc decreases from

the peak value ps to zero within 0.5 s near the end of the maneuver. The slip ratio decreases rapidly

following the release of the braking pressure. Thus, the termination instant for the updating, tstop,

is set as the instant when the release of braking pressure is initiated. In order to further improve the

accuracy, the estimated TRFC after tstop is taken as the average of the estimations obtained during
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Algorithm 1 Pseudo-code of the CUKF.
Input: Tire force Fxi,k, Fzi,k, and slip ratio κi,k

Output: Estimated TRFC µ̂i,k

1: Initialization τ̂0 = E(τ0), P0 = E[(τ0 − τ̂0)(τ0 − τ̂0)T ]

2: for k ∈ {1, ..., N} do

3: Calculate sigma points

4: Γk−1 = [τ̂k−1 τ̂k−1 ±
√

(L+ λ)Pk−1]

5: Time update and constraints

6: Γk|k−1 = F (Γk−1)

7: if Γiik|k−1 > 1 then Γiik|k−1 = 1

8: end if

9: if 0 < Γiik|k−1 6 ri,k then Γiik|k−1 = ri,k

10: end if

11: if Γiik|k−1 < 0 then Γiik|k−1 = 0

12: end if

13: τ̂−k =
∑2L

ii=0W
ii
s Γiik|k−1

14: P−k =
∑2L

ii=0W
ii
c [Γiik|k−1 − τ̂

−
k ][Γiik|k−1 − τ̂

−
k ]T

15: Γk|k−1 = [τ̂−k τ̂−k ±
√

(L+ λ)P−k ]

16: γk|k−1 = H(Γk|k−1)

17: ŷ−k =
∑2L

ii=0W
ii
s γ

ii
k|k−1

18: Measurement update

19: Pykyk =
∑2L

ii=0W
ii
c [γiik|k−1 − ŷ

−
k ][γiik|k−1 − ŷ

−
k ]T

20: Pτkyk =
∑2L

ii=0W
ii
c [Γiik|k−1 − τ̂

−
k ][γiik|k−1 − ŷ

−
k ]T

21: Kk = PτkykP
−1
ykyk

22: τ̂k = τ̂−k +Kk(yk − ŷ−k )

23: Pk = P−k −KkPykykK
T
k

24: end for
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the period (t3, tstop) with t3 = tstop − 0.5 as follows:

µ̂i,stop =
1

k2 − k1 + 1

k2∑
k=k1

µ̂i,k (3–24)

where k1 = t3/Ts, k2 = tstop/Ts and Ts is the sampling interval. By doing so, the estimates of

the TRFC corresponding to higher slip ratios, which are generally more reliable, can be integrated

into the TRFC estimation results when the algorithm stops updating.

3.6 Simulation Results and Discussions

To evaluate the effectiveness of the proposed TRFC identification algorithm, the platforms of

MATLAB/Simulink and CarSim were employed. The responses of the CarSim simulation model

to braking pulse inputs were considered as the reference or measured states for assessing the per-

formance of the algorithm. White Gaussian noise, however, was added to the model responses for

assessing the estimation effectiveness in the presence of the measurement noise. Apart from the

TRFC, the associated motion interference of the proposed algorithm was also evaluated in terms

of change in the forward speed.

The simulations were performed under the braking inputs, defined in Section 3.3, considering

different road surfaces and initial forward speeds. The estimation results were also obtained using

UKF and RLS algorithms, as reported in [96] and [99], and compared with those obtained using

the CUKF algorithm. The initial settings for CUKF, UKF and RLS are presented in Table 3.3

showing the fairness of the comparison of these three algorithms. It should be noted that the

forgetting factor of RLS is tuned based on obtaining best estimation results. The main parameters

of the class-C vehicle model are listed as: lf = 1.016 m, lr = 1.562 m, m = 1416 kg, Iw = 0.9

kgm2, Re = 0.316 m, KB3 = 200 N-m/MPa and Cx3 = 48 kN/unit slip, and the sampling interval

Ts = 0.01 s. Considering negligible roll motion, the forces developed by the left and right tires are

identical. The TRFC estimation results obtained from rear-left tire alone are presented below.
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Table 3.3: Initial settings of different algorithms.

Algorithm τ̂0 P0 Mk Nk λk

CUKF 0 10 10−4 4× 104 —
UKF 0 10 10−4 4× 104 —
RLS 0 10 — — 0.92

τ̂0: initial state; P0: initial state error covariance;
Mk: process covariance; Nk: observation covari-
ance; λk: forgetting factor; —: not applied.

3.6.1 High-µ Surface

Simulations were performed for a relatively high friction surface (µ = 0.8) considering an ini-

tial forward speed of 100 km/h. Applications of series of braking pulses in the Stage I revealed that

the cut-off slip ratio of 0.1 occurred during the fourth pulse. The initial stage simulations were thus

terminated after the fourth pulse and a controlled throttle input pulse was subsequently applied to

restore the vehicle speed. The magnitude of the braking pulse in the Stage II was subsequently

determined as 2.3 MPa using the heuristic rule (3–8) and (3–9). The estimated longitudinal and

normal forces developed at the rear-left tire, and the generated slip ratio are compared with the ref-

erence values obtained from CarSim simulations in Figures 3.7(a)-3.7(c). The comparisons suggest

relatively small errors between the estimated and targeted values. The algorithm is updating during

1 s to 2.5 s interval. Peak errors in the longitudinal and normal tire forces were 3.3% and 2.5%,

respectively, with respect to the reference values, while the peak slip ratio is in the order of 0.08.

Figure 3.7(d) compares the TRFC estimated from the proposed algorithm based on CUKF with the

reference value and those obtained from the UKF and RLS algorithms, reported in [96, 99]. Both

the UKF- and RLS-based methods identified the TRFC with acceptable accuracy since the gener-

ated slip ratio was relatively high. The TRFC estimated from both the methods converged to 0.77

after t = 2.1 s (1.1 s following the application of the braking pulse), although the UKF approach

exhibits very slight advantage in terms of the leading time. The proposed CUKF-based approach,

however, resulted in more accurate TRFC and relatively faster convergence. The estimated value
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approached very close to the target value of 0.8 at about 1.7 s. From these comparisons, it can be

deduced that the CUKF did offer improved rate of convergence and estimation accuracy compared

to the RLS and UKF algorithms.
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Figure 3.7: Comparisons of the estimated and reference signals at the rear-left tire (µ = 0.8;
vx0 = 100 km/h).

3.6.2 Mid-µ Surface

The TRFC estimation effectiveness of the proposed algorithm was further evaluated for mid-µ

road surface (µ = 0.5) considering a cruising speed of 60 km/h. Results obtained for the Stage I

revealed that the desired slip ratio of 0.1 could be attained during the third pulse, which resulted in

a small vehicle speed reduction and the vehicle speed was then restored to the initial cruising speed.

According to the heuristic rule, the magnitude of ps for TRFC estimation in the Stage II was set

as 1.7 MPa. During the TRFC estimation process in the Stage II, both the longitudinal and normal

tire force, and the slip ratio could be effectively estimated, as shown in Figures 3.8(a)-3.8(c). Peak

errors in the estimated braking and the normal forces were about 8% and 5%, respectively, when
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Figure 3.8: Comparisons of the estimated and reference signals at the rear-left tire (µ = 0.5;
vx0 = 60 km/h).

compared to the reference values. These are slightly higher than those observed for the high-µ road

with initial speed of 100 km/h and suggest that the force estimator may be sensitive to the vehicle

speed and the measurement noises. The slip ratio, however, was estimated more accurately as in

case of the high-µ road, as seen in Figure 3.8(c). Under the magnitute of 1.7 MPa in the Stage II,

the proposed algorithm resulted in accurate estimation of the TRFC, which converged to the target

value of 0.5 near t = 1.7 s, as evidenced in Figure 3.8(d). As comparison, the TRFC estimated

using the UKF and RLS algorithms converged to a slightly lower value of 0.47 until near to t = 2

s. It is clear to see that the CUKF was superior to the UKF and RLS algorithms again in terms of

faster identification of the TRFC.

3.6.3 Low-µ Surface

Figure 3.9 illustrates the time histories of the estimated and reference tire forces together with

the slip ratio, and the TRFC, respectively, for the low-µ road (µ = 0.2) under a forward speed of
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Figure 3.9: Comparisons of the estimated and reference signals at the rear-left tire (µ = 0.2;
vx0 = 40 km/h).

40 km/h. In the Stage I, the triggering of the ABS occurred during the first braking pressure pulse

input, although the speed reduction was very small. The peak value of the braking pulse (ps) was

subsequently selected as 0.6 MPa in accordance with (3–8) and (3–9) for TRFC estimation in the

Stage II. This resulted in significantly lower slip ratio, in the order of 1.2%, as seen in Figure 3.9(c).

The deviation between the estimated and the targeted braking force was in the order of only 2.5%,

while a relatively greater error (3.3%) was observed in the estimated tire normal force. Similar

to the high- and mid-µ road conditions, all the three algorithms identified the friction coefficient

with good accuracy under the designed braking maneuver. However, the difference in estimation

accuracy between the CUKF and UKF is small. This was because the normalized tire force is

around 0.16 showing that the tire is working at a slip range close to the optimal slip at which

the maximum tire force is generated. Nevertheless, it was obviously noted that the CUKF did

distinguish itself with relatively faster convergence, as shown in Figure 3.9(d).
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Figure 3.10: Speed variations on high-, mid- and low-µ road surfaces. (a), (c) and (e) are Stage I;
(b), (d) and (f) are Stage II.

3.6.4 Discussions on Interference with Vehicle Motion

The speed variations caused by the braking pulse(s) in the Stage I and Stage II are presented

in Figure 3.10. The speed reductions in the Stage II are slightly higher than those in the Stage I

since the magnitude of the single braking pulse in the Stage II is much higher. In both the stages,

the speed reductions are increasing with the TRFC, which shows more challenges in identifying a

high friction coefficient. Moreover, the simulation results obtained from the proposed CUKF and

the reported RLS and UKF algorithm invariably revealed that the accuracy of the TRFC estimation

strongly depends on the slip ratio induced by the controlled braking pulse. TRFC estimations

for the high- and mid-µ road conditions involved relatively higher slip ratios of about 8.5% and

5.5%, which could lead to unavoidable reductions in the vehicle forward speed. Thanks to the

short duration of the braking pulse, the simulation results revealed the average speed reductions
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of the two stages are about 28, 20 and 8 km/h for the high-, mid- and low-µ road conditions,

respectively, as can be seen in Figure 3.10. These were attributed to the slip ratio required for

determining the appropriate magnitude of pressure and for accurately estimating the TRFC, both

of which constituted interference with the vehicle motion.

When focusing only on the absolute value of the average speed reductions on the three dif-

ferent roads, one may feel that the speed disturbances under TRFC estimation (Stage II) are not

that small, especially for high-µ road. A trade-off exists between the accuracy of the TRFC esti-

mation and the disturbance to the vehicle motion. However, those speed disturbances are indeed

much smaller compared to the reported studies where constant braking inputs are always employed

leading to considerable speed reductions or even a complete stop during the friction estimation

process [16, 21, 29]. Moreover, the implemented braking pressure pulse for friction coefficient es-

timation process lasts only for 2 s, and the vehicle speed could further be restored quickly. In view

of this, together with consideration of the three initial speeds (100, 60 and 40 km/h, respectively),

we would say the motion interference by the proposed estimation method is still acceptable. It is

also worth noting that the Stage II may become unnecessary when the approximated friction range

from the Stage I has sufficient accuracy. In this case, further less speed reduction and thus minimal

motion interference are expected.

3.7 Sensitivity Analysis

Simulations were finally performed to assess the sensitivity of the proposed tire-road friction

identification algorithm to braking pressure and initial vehicle speed. Road friction µ = 0.8, initial

speed vx0 = 100 km/h and three different braking pressures ps = 2.3, 2.2, 2.1 MPa were considered

as examples. Figure 3.11 presents the errors in estimated rear-left tire longitudinal force, vertical

force and slip ratio, and the estimated road friction coefficient. Moreover, the results are presented

in the 1 to 2.5 s interval when the CUKF was updating. The figure also presents the computed

slip ratio. The results show very small to negligible in errors of the estimated longitudinal and the
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Figure 3.11: Sensitivity of the estimations to variations in the braking pulse pressure magnitude
(ps): (a) longitudinal force error; (b) normal force error; (c) slip ratio error; (d) slip ratio; and (e)

friction estimation (µ = 0.8; vx0 = 100 km/h).

normal tire forces, irrespective of the braking pressures. The slip ratio error also exhibits very low

sensitivity to the braking pressure magnitude, as seen in Figure 3.11(c). Higher braking pressure,

however, yields notably higher slip ratio, as shown in Figure. 3.11(d). The friction estimation error

is thus also affected by the braking pulse pressure, as seen in Figure 3.11(e). The results suggest

steady-state normalized friction errors of about 5% and 10% for the 2.2 and 2.1 MPa magnitude

pressure pulses, respectively. This is due to insufficient slip ratio generated by the lower magnitude
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pulses. Negligible friction error is evident for ps = 2.3 MPa, and the algorithm converges to 0.8.

The results also justify the choice of ps = 2.3 MPa for ensuring high accuracy of the TRFC

estimation on high-µ road condition.
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Figure 3.12: Sensitivity of the estimations to variations in initial vehicle speed (vx0): (a)
longitudinal force error; (b) normal force error; (c) slip ratio error; (d) slip ratio; and (e) friction

estimation (µ = 0.8; ps = 2.3 MPa).

Figure 3.12 illustrates the sensitivity of the estimation errors to the initial vehicle speed con-

sidering road friction µ = 0.8, braking pressure ps = 2.3 MPa and forward speeds of vx0 =

60, 80, 100 km/h. The results suggest comparable errors in the tire longitudinal and normal forces
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for 60 and 80 km/h, which are considerably greater than those obtained for 100 km/h. The errors

in the slip ratio and TRFC, however, exhibit very low sensitivity to the vehicle speed, as evident

in Figures 3.12(c) and 3.12(e), respectively. This is due to the fact that the slip ratio and thus

the TRFC are mainly determined by the braking pressure magnitude instead of the initial vehicle

speed. The normalized estimation error in the TRFC in the steady-state is less than 2.5% for all the

three speeds considered. Similar trends were also observed for the other road surfaces. From the

results, it was concluded that the proposed algorithm can provide effective estimations of TRFC

under a wide range of initial vehicle speeds.

3.8 Summary

In this chapter, we present a more practical method for estimating TRFC of a road vehicle on

the basis of its longitudinal dynamic response induced by short duration of braking pulse. It is

shown that the accuracy of the TRFC estimation strongly relies on the magnitude of the slip ratio

caused by the braking input, which may cause unreasonable interference with the vehicle motion.

The initial stage of the proposed two-stage TRFC estimation algorithm ensures identification of the

minimal braking pulse pressure required for accurate TRFC estimation so as to reduce its effect

on the vehicle forward motion. A new CUKF algorithm is subsequently proposed in the second

stage to improve the accuracy and convergence rate of the TRFC estimation. One distinguished

feature is that either qualitative or quantitative estimation results can be obtained depending on the

required estimation accuracy. The two stages are not mandatory and the second stage can become

unnecessary when the qualitative results are acceptable in application. The effectiveness of the

proposed TRFC estimation algorithms have been demonstrated via simulations carried out with

a high-fidelity, full-vehicle model from CarSim considering different road surface conditions and

initial vehicle speeds. The estimated TRFC will be integrated with the trajectory planning in the

next chapter to show the significance of the TRFC in the AVs’ trajectory generation.
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Chapter 4

Adaptive Lane Change Trajectory Planning

for AVs

4.1 Introduction

Developments of autonomous vehicles (AVs) have attracted considerable efforts during the

past few decades due to their multi-faceted advantages such as enhanced road safety, effective

traffic flow management, reduced fuel consumption and emission [3]. Trajectory planning is an

integral module and a key enabler for the autonomous driving, which concerns trajectory gener-

ation that satisfies the safety requirements and motion model or state constraints while ensuring

the occupants’ comfort [47,112,113]. Among the various directional maneuvers, the lane changes

constitute the most frequent maneuvers encountered in daily driving. The lane change maneuvers

have thus been the primary focus of studies reporting trajectory planning of AVs [65,68,114,115].

The generation of an appropriate trajectory for safe and comfortable lane change maneuver, how-

ever, is known to be quite complex as it involves both the lateral and longitudinal motions, which

are constrained by the lane boundaries and traffic rules [10, 11]. The real-time variations in the

road condition and the traffic flow, including the velocity changes of preceding vehicle(s), further

contribute to the complexities [116].
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The directional control and path tracking of a road vehicle is strongly influenced by the forces

developed at the tire-road interface, which are primarily governed by the TRFC for a given normal

load [16, 117]. The TRFC is thus strongly related to the directional control and driving safety of

a road vehicle, which may vary considerably depending on the road and environment conditions.

This coefficient is especially important for AVs since the autonomous driving should be robust to

different road conditions [118]. Considering the limitation of the road friction earlier in the path

planner can guarantee the generated trajectory physically feasible with reliable safety margin, in

addition to the already achieved objectives including comfort driving and continuous curvature

in the reported studies. With the knowledge of the TRFC, the design of the trajectory tracking

controller can also be significantly simplified. The methods of integrating TRFC with the trajectory

planning module, however, have not been sufficiently studied. Although there are some studies that

do consider road friction saturation while generating the trajectories so far, like [56,58,65,89], the

limitations are obvious and summarized as:

(1) Most of the reported studies introduce the TRFC as a system constraint based on the fric-

tion ellipse. However, the obtained friction-based constraints (e.g., acceleration limits) are

excessively large in terms of the comfort requirement.

(2) The upper limits defined by the comfort requirement are always set as fixed values, which

may not be physically feasible when the TRFC changes, especially for the low friction roads.

(3) The variations in the TRFC in the existing approaches are within a small range and only one

or two different road friction conditions are considered. The effects of the variations in the

TRFC on the generating trajectories are not adequately studied.

How to realize more human-like or even personalized driving styles is another important factor

related to the penetration of AVs. Although initial efforts have been attempted in self-driving

shuttle bus [119] and passenger car [120, 121], how to effectively imitate the excellent drivers

continues to be an important technical challenge. Moreover, the sensitivity of the outcomes of the

trajectory planning schemes to variations in the forward speed have not been adequately studied.

76



Figure 4.1: The schematic diagram of a typical lane change scenario (lw is the lane width, S and
E are the start and end point of the lane change maneuver, and their respective time instant are ts

and te).

In particular, the limits on the dynamic states of the vehicle are generally not well-defined in

view of the occupant comfort and vehicle stability. Motivated by the aforementioned limitations,

this chapter proposes a computationally efficient trajectory planning algorithm for typical lane

change maneuvers over a wide range of forward speeds considering the available TRFC. A 7th-

order polynomial function is used to represent the lane change trajectory with continuity up to the

derivative of curvature (jerk). A wide range of road friction conditions and forward speeds are

considered for trajectory planning and the main features of the yielded trajectory can be easily

customized according to the passenger’s personalized preferences.

4.2 Problem Formulation

Figure 4.1 illustrates a typical lane change scenario for an autonomous vehicle with no vehicles

in the vicinity in the target lane. The forward velocities of the host vehicle (H) and the preceding

vehicle (P ) in the same lane are indicated by vH and vP , respectively, with vH being a constant

value and vH > vP . Both the vehicles are assumed to be positioned at the centerline of the current

lane prior to the lane change performed by H . As the relative longitudinal distance between H

and P is decreasing, H needs to gradually steer from the current lane to the target lane to avoid
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a potential collision. S and E represent the coordinates of H at the start and end of the lane

change maneuver, respectively, and ts and te are the corresponding time instants. Lx defines the

longitudinal distance traveled byH during the lane change, which is measured with reference to the

position of the center of gravity (CG). The relative position and speed information of H and P are

easily obtained from the onboard sensors. Focusing on the trajectory planning, it is also assumed

that the TRFC is estimated prior to the lane change maneuver (before position S) using the TRFC

estimation algorithms presented in authors’ recent works [122,123]. For safety reasons, the relative

distance between the CGs of the two vehicles at the start point S (ds) should be carefully identified

on the basis of the vehicle dimensions. Motion predictions of H and P , however, may be required

for optimal selection of ds. As more accurate motion predictions of the surrounding vehicles can

be provided, V2VC-based lane change trajectory planning has been studied in [67, 68]. However,

such methods will likely raise the issues related to communications which may make the simple

lane change trajectory planning process unnecessarily complex. Thus, this study focuses on lane

change trajectory planning using the AVs’ on-board sensors alone.

Considering that the human drivers, invariably, use a safety margin distance in a qualitative

sense without exactly knowing other vehicle’s states when starting the lane change maneuver, the

minimum threshold of ds, dth can be reasonably defined assuming the worse scenario the AVs

may encounter. This assumption coincides with the basic idea formulating safe distance presented

in [124]. In order to reduce the influence on the traffic, the host vehicle H starts lane change

maneuver at the position where ds = dth. As AVs will drive on various roads with different

friction conditions, the typical lane change problem is thus transferred to find a smooth trajectory

linking the point S to the point E, while satisfying the comfort and friction limitations. It is noted

that the assumption of constant forward speed of H is preferred by the human driver in view of

driving comfort during the lane change maneuver.
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4.3 Comfort Criteria for Autonomous Lane Change Maneu-

vers

For the purpose of trajectory planning for the comfortable autonomous driving, the selection of

a comfort criteria constitutes the first challenge, which may vary widely due to different approaches

used or varying objectives involved. The reported acceleration and jerk thresholds for driving

comfort are reviewed together with the human-drivers’ driving characteristics in an attempt to

establish more appropriate criteria for a comfortable lane change maneuver.

4.3.1 Acceleration and Jerk Criteria

The vehicle’s acceleration and its time rate of change, jerk, greatly affect the safety and com-

fort of passengers [120, 125]. As straight and flat road is considered in this chapter, longitudinal

and lateral accelerations and their associated jerks are regarded as the major factors affecting the

occupants’ ride comfort. The reported studies have employed widely different comfort thresholds

during the lane change maneuvers. Considering both seated and standing passengers in an au-

tonomous public shuttle bus, Bae et al. [119] set the acceleration and jerk thresholds for comfort

as 0.9 m/s2 and 0.6 m/s3, respectively, in both longitudinal and lateral directions. In the design of

virtual desired trajectory for lane change maneuvers, the lateral jerk and acceleration limits were

selected as 0.1 g/s and 0.05 g, respectively, considering passenger’s ride comfort and transition

time [126]. Guo et al. [61] designed maximum lateral jerk and acceleration as 0.1 g/s and 0.1 g,

respectively, for lane changing on a curved road.

The above-stated acceleration and jerk thresholds, however, may be too conservative for au-

tonomous lane change maneuvers. This is because the order of 1.0 m/s3 (about 0.1 g/s) in jerk

threshold is comparable to the range of lateral jerk (0.3-0.9 m/s3) which is suggested to deter-

mine the minimum horizontal road curve radius [127]. Moreover, the lateral acceleration of hu-

man controlled vehicle can easily go over 3-4 m/s2 within common range of driving speeds (0-20
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m/s) [128]. In daily transportation vehicles such as subways, express trams and buses, the magni-

tudes of initial longitudinal and lateral accelerations up to 2.0 m/s2 and 4.0 m/s2 have been reported,

while the initial jerks varied from 1.5 m/s3 in the longitudinal direction to 3.5 m/s3 in the trans-

verse direction [129]. Some studies have suggested thresholds of lateral acceleration of 1.8 m/s2

and 3.6 m/s2 for very comfortable and medium comfort lane changes, respectively. An acceleration

threshold of 5.0 m/s2 has been associated with uncomfortable lane change maneuver [130, 131].

Svensson and Eriksson [132] have illustrated that the lane changes with peak lateral acceleration

and jerk up to 2.0 m/s2 and 3.5 m/s3, respectively, are perceived comfortable by the passengers.

The maneuver is considered as very uncomfortable when the maximum acceleration and jerk ap-

proach 4.5 m/s2 and 10.9 m/s3. With combined considerations of constrains imposed by the road

conditions, engine power and passenger comfort, Lygeros and Godbole [133] suggested that the

acceleration and jerk should lie in the range of [-5, 3] m/s2 and [-5, 5] m/s3 in perspective of ve-

hicle automation. Shamir [134] recommended the maximum lateral jerk for passenger comfort

as 2.4 m/s3 and the threshold for passenger safety as 5 m/s3 for overtaking a slower-moving ve-

hicle. Another study considered the longitudinal acceleration in the range of 0.11 g to 0.15 g as

acceptable for the public transport occupants, while the associated jerk larger than 0.30 g/s was

not suggested [135]. Kahya and Schmidt [58] confined the longitudinal acceleration to 2 m/s2 for

comfortable driving during a lane change, which concurs with the reported limiting value of lon-

gitudinal acceleration controller by the human driver even on high-curvature roads [128]. Wu et

al. [65] set the absolute acceleration and jerk limits in both longitudinal and lateral directions as 2

m/s2 and 5 m/s3, respectively, for autonomous vehicle lane change.

On the basis of the acceleration and jerk limits suggested in the reported studies, it is deduced

that the comfort thresholds of longitudinal and lateral accelerations of 2 m/s2 and 3.6 m/s2, respec-

tively, would be adequate for lane change maneuvers considering the practical ranges of forward

speed and road conditions. Furthermore, the associated lateral jerk threshold should be limited to

5 m/s3, as suggested in [65, 133, 134]. The trajectory planning in this chapter is based on these

threshold limits, which are considered to permit sufficient maneuverability for a wide range of
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driving scenarios.

4.3.2 Human Drivers’ Lane Change Characteristics

The planned lane change trajectory based on the acceleration and jerk thresholds may differ

from those assumed by a human driver. Accounting for human driver’s characteristics in the pro-

cess of trajectory planning can provide more natural riding experience for the occupants, which

can also yield enhanced ride comfort [121]. This involves identifications of peak lateral velocity

and acceleration, and the range of duration encountered during the human’s lane change driving.

Based on the lane change data collected for highways with lane width of 3.7 m, Yang et al. [136]

conducted a comprehensive statistical analysis of these three parameters. The results suggested

that the maximum lateral velocity and acceleration and the total duration of a single-lane change

lie in the range of [0.8, 2.4] m/s, [0.5, 4] m/s2 and [2.3, 6.3] s, respectively, for more than 80% hu-

man drivers. By considering a wide range of traffic conditions on highway, Toledo and Zohar [137]

have revealed that the mean duration of a single lane change maneuver for passenger cars is 4.6 s.

In order to account for the observed wide ranges of human drivers’ characteristics in planning the

trajectory, these three key parameters are permitted to vary in the reported ranges, which will be

presented in details in Section 4.4.3.

4.4 Autonomous Lane Change Planning Scheme

4.4.1 7th-order Polynomial Trajectory

With the advantages of smooth curvature, closed-form expression and simple computation,

quintic polynomial has been widely used for lane change trajectory planning [54, 68, 134, 138]. A

quintic (5th-order) polynomial trajectory, however, ensures continuity only up to the curvature. The

derivative of the curvature (jerk) can experience a sudden change at the starting point, while it does

not converge to zero at the end point of the lane change maneuver. This may intrinsically cause
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certain discomfort and may not be acceptable for lane change trajectory planning. A trajectory

with zero jerk at the extremes of the maneuver would be desirable to achieve more comfortable

vehicle motion. Motivated by the succinct form of a quintic polynomial curve [55], a 7th-order

polynomial lane change trajectory is formulated as:

Y (x) = lw

4∑
i=1

ai(
x

Lx
)3+i, x ∈ [0, Lx] (4–1)

where lw is the lane width and x is the longitudinal position of H relative to S. Y (x) denotes

the lateral position of H and ai, i = 1, ..., 4 are four coefficients to be determined. The order of

seven is selected since it is the least order required to realize the continuity in jerk. Although the

derivatives of Y (x) are normal to the lane instead of exactly normal to the vehicle’s longitudinal

direction, it is still reasonable to use Ẏ (x), Ÿ (x) and
...
Y (x) to indicate lateral velocity, acceleration

and jerk, respectively, considering the normal case that Lx � lw. As can be seen from Eq. (4–

1), the vehicle states including lateral position, velocity, acceleration and jerk at the starting point

(x = 0) are naturally ensured as zero. The coefficients of ai in in Eq. (4–1) are determined to

satisfy the vehicle state constraints at the end of the lane change maneuver (x = Lx), by:

Y (Lx) = lw, Ẏ (Lx) = 0, Ÿ (Lx) = 0,
...
Y (Lx) = 0 (4–2)

Solution of Eq. (4–1) together with the above condition is expressed as a1 = 35, a2 = −84, a3 =

70, a4 = −20. The designed lane change trajectory is subsequently obtained upon substituting

coefficient values in Eq. (4–1). For the constant forward speed vH , Y (x) can also be expressed as

a function of time by letting x = vH(t− ts) in Eq. 4–1, such that:

Y (t) = lw

4∑
i=1

ai(
vH(t− ts)

Lx
)3+i, t ∈ [ts, ts + tslc] (4–3)

where t is the current time, ts is the time instant when the lane change maneuver starts, and tslc is

the lane change duration which can be approximately calculated as Lx/vH . The lateral position at
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mid-point where x = 0.5Lx or t = ts + 0.5tslc, and the maximum lateral velocity, acceleration and

jerk during the lane change maneuver are calculated as:

Ym = Y (x)|x=0.5Lx = Y (t)|t=ts+0.5tslc = 0.5lw,

vymax =
∣∣∣Ẏ (x)|x=0.5Lx

∣∣∣ = 2.1875lw
vH
Lx

=
2.1875lw
tslc

,

aymax =
∣∣∣Ÿ (x)|x=0.7236Lx, x=0.2764Lx

∣∣∣ = 7.513lw
v2H
L2
x

=
7.513lw
t2slc

,

jymax =
∣∣ ...Y (x)|x=0.5Lx

∣∣ = 52.5lw
v3H
L3
x

| = 52.5lw
t3slc

(4–4)

Figure 4.2 illustrates comparisons of the lateral position, velocity, acceleration and jerk re-

sponses obtained using the proposed 7th-order polynomial trajectory and the 5th-order polynomial

trajectory (lw = 3.5 m, Lx = 100 m, v∗H = 72 km/h and XS = 0 m). The results confirm that the

7th-order polynomial trajectory not only retains the advantages of the 5th-order polynomial curve

but also ensures a smooth variation in jerk from zero to zero. Under the same Lx, the 7th-order

trajectory has slightly higher maximum lateral velocity, acceleration and jerk, as shown in Figures

4.2(b)-4.2(d). These results also demonstrate that a longer Lx is required by the 7th-order trajec-

tory when the same maximum limits with the 5th-order polynomial are designated, which is the

sacrifice of a smoother motion.

4.4.2 Safety Constraints

The coordinates of the start point S are determined so as to maintain a safe distance with

respect to vehicle P to avoid a potential collision. A comprehensive study of how to design such

safe distance for lane change maneuvers is referred to [124]. Here, we present a simple way of

designing the safe distance by considering the worst scenario vehicle H may encounter: vehicle P

suddenly applies maximum braking effort and holds it until to the complete stop. The maximum

deceleration of P (amP ) in this case can be expressed as µg, with µ and g being the TRFC and

the acceleration due to gravity, respectively. The time lapse for the preceding vehicle to reach a

complete stop can be obtained as, tstop = vP/µg. In this scenario, the host vehicle is assumed
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Figure 4.2: Comparisons of the proposed 7th-order polynomial trajectory with the 5th-order
polynomial trajectory (lw = 3.5 m, Lx = 100 m, v∗H = 72 km/h, and XS = 0 m).

to maintain its forward speed as the preceding vehicle starts braking, which requires additional

distance margin to the initial relative distance ds. Considering the lateral position at the mid-point

(Ym) of 0.5lw, it would require 0.5tslc for H to cross the boundary between the current and the

target lanes. If ds is set as dth and P starts braking with its maximum deceleration from the lane

change starting time instant ts, the relative distance (dc) between H and P when H crosses the
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lane boundary is calculated as:

dc =


ds + vP · tstop − vH t̃slc

2
− amP

2
( tstop

2
)2, if tstop 6 t̃slc

2

ds + (vP − vH) t̃slc
2
− amP

2
( t̃slc

2
)2, else

(4–5)

where t̃slc is the duration used for predicting the positions of H and P vehicles during the lane

change maneuver. In order to avoid a collision, the longitudinal distance between the CGs of

H and P , dc, should be larger than the vehicle’s length (lv) assuming H and P have the same

dimensions. Thus, the initial distance starting the lane change maneuver ds should satisfy:

ds >


vH

t̃slc
2
− vP · tstop +

amP
2

( tstop
2

)2 + lv, if tstop 6 t̃slc
2

(vH − vP ) t̃slc
2

+
amP
2

( t̃slc
2

)2 + lv, else
(4–6)

The minimum safe distance corresponding to the start of the lane change maneuver (or called

threshold distance), dth, is then selected as:

dth =


vH

t̃slc
2
− vP · tstop +

amP
2

( tstop
2

)2 + lv, if tstop 6 tslc
2

(vH − vP ) t̃slc
2

+
amP
2

( t̃slc
2

)2 + lv, else
(4–7)

As summarized in Section 4.3.2, the lane change duration for more than 80% human drivers lies in

2.3 s to 6.3 s. t̃slc = 6.3 s is thus considered adequate for estimating dth.

4.4.3 Comfort Constraints

Since there are no vehicles in the vicinity in the target lane, the planned trajectory mainly

depends on the occupants’ comfort, which can be related to the acceleration and jerk within the

comfort limits [65, 68]. The studies reporting trajectory planning generally consider fixed comfort

limits, irrespective of the speed and available road friction. The variations in the vehicle forward

speed and road friction, however, may have the impact on the vehicle’s allowable acceleration and
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Table 4.1: Designed constraint parameters.

Symbol Value Unit Symbol Value Unit

alowxmax 0 g vupymax 2.3 m/s

aupxmax 0.204 g jlowymax 0.0749 g/s

alowymax 0.0675 g jupymax 0.510 g/s

aupymax 0.246 g tlowslc 3.3 s

vlowymax 1.2 m/s tupslc 6.3 s

jerk limits [11]. Consideration of comfort limits adaptive to forward speed and TRFC can lead to

more effective trajectory planning.

The comfort limits for longitudinal and lateral accelerations, and lateral jerk established in

Section 4.3.1 are axmax 6 2 m/s2, aymax 6 3.6 m/s2 and jymax 6 5 m/s3, respectively, and the

maximum lateral velocity (vymax) and lane change duration of more than 80% human drivers lie in

[0.8, 2.4] m/s and [2.3, 6.3] s ranges, respectively. It should be noted that the main characteristics

of the 7th-order lane change trajectory are correlated to each other as evidenced from Eq. (4–4).

For instance, the aymax, jymax and tslc can be computed according to the given vymax. Taking into

account all the comfort limits confined by each characteristic, the compromised comfort limits of

the main characteristics of the lane change maneuver are obtained as:

alowxmax 6 |axmax| 6 aupxmax, a
low
ymax 6 |aymax| 6 aupymax, v

low
ymax 6 |vymax| 6 vupymax

jlowymax 6 |jymax| 6 jupymax, t
low
slc 6 tslc 6 tupslc

(4–8)

where the values of all the constraint parameters are listed in Table 4.1.

4.4.3.1 TRFC-Adaptive Acceleration Limit

It is evident that the available maximum longitudinal and lateral accelerations positively change

with increase in the TRFC. For very low friction roads (e.g., µ = 0.2), the designed upper bounds

of longitudinal and lateral accelerations aupxmax and aupymax in Table 4.1 are not physically achievable,
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though both of them lie within the comfort limits. A straightforward method to solve this problem

is to design the adaptive acceleration limit which changes with the TRFC. Based on the friction

ellipse, the two minimum friction values to provide aupxmax and aupymax, alowxmax and alowymax, denoted as

µm and µo, respectively, are calculated as:

µm =

√
(aupxmax)2 + (aupymax)2

g
, µo =

√
(alowxmax)

2 + (alowymax)
2

g
(4–9)

and their values are shown in Table 4.1. The lane change maneuver is considered unsafe when

µ < µo. The TRFC of the most frequently encountered roads, however, is generally greater than

µo. Theoretically, it is possible to set aymax as the value of aupymax only if µ > µm. Letting

aymax(µo) = alowymax and aymax(µm) = aupymax, the aymax can be simply designed as a linear function

of TRFC, when µo 6 µ 6 µm. The slope of this linear function is expressed as:

K =
aymax(µm)− aymax(µo)

µm − µo
=
aupymax − alowymax
µm − µo

(4–10)

The linear TRFC-adaptive lateral acceleration limit (L-AccLim) is subsequently expressed as:

aLymax(µ) =


aupymax − alowymax
µm − µo

(µ− µo) + alowymax, µo 6 µ 6 µm

aupymax, µ > µm

(4–11)

However, this method would make the available longitudinal acceleration very limited for cer-

tain range of TRFC, especially for the low- and middle-friction roads. Circumventing this limita-

tion, an appropriate margin between the allowable aymax and the available acceleration µg may be

introduced to ensure vehicle’s operation considerably below the road’s adhesion limit. A quadratic

function is designed such that aymax is permitted to increase at a relatively slower rate with TRFC.

aymax increases to its upper limit aupymax at µ = µp (where µp is taken as 2µm to allow for leaving

acceleration margin). With smaller magnitude of aymax allowed on low- and middle-friction roads,

the newly designed quadratic acceleration limit would result in a safer and more comfortable lane
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change maneuver than L-AccLim. It is worth noting that the resulting redundant longitudinal ac-

celeration also shows implications with regard to our future research on trajectory planning for

varying-speed lane change maneuver, though only constant forward speed is considered in this

study. The quadratic TRFC-adaptive lateral acceleration limit (Q-AccLim, aQymax(µ)) is described

as:

aQymax(µ) =


b0 + b1µ+ b2µ

2, µo 6 µ 6 µp

aupymax, µ > µp

(4–12)

where b0, b1 and b2 are three coefficients to be determined. The above function is satisfied by the

following boundary conditions:

aQymax(µo) = alowymax, a
Q
ymax(µp) = aupymax (4–13)

The first derivative of aQymax is assumed continuous at µ = µp to ensure smoother changing in

aQymax, which is:

ȧQymax(µp) = 0 (4–14)

Substituting Eqs. (4–13) and (4–14) into Eq. (4–12) yields the coefficients b0, b1 and b2, which are

acquired as follows: 
b0

b1

b2

 =


1 µo µ2

o

1 µp µ2
p

0 1 2µp


−1 

alowymax

aupymax

0

 (4–15)

The Q-AccLim is subsequently obtained upon substituting for the coefficients in Eq. (4–12).

Figure 4.3(a) compares the variations in Q-AccLim and L-AccLim with TRFC, while the varia-

tions in the available longitudinal accelerations on low- and middle-friction roads (µ=0.1-0.5) are

presented in Figure 4.3(b).
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Figure 4.3: (a) Comparisons of Q-AccLim and L-AccLim. (b) Comparisons of the available
longitudinal acceleration under Q-AccLim and L-AccLim.

4.4.3.2 Speed-Adaptive Jerk Limit

Although the 7th-order polynomial trajectory exhibits continuity up to jerk, the maximum lat-

eral jerk jymax should be confined to ensure comfort and safety. It is evident from Eq. (4–4) that a

larger jymax will lead to a faster lane change with shorter duration and higher lateral acceleration

and velocity. Although the upper bound of the maximum lateral jerk is confined as 5 m/s3 (Table

4.1), it may still lead to uncomfortable or even unsafe driving when the forward speed is high.

Bearing this in mind, a speed-adaptive jerk limit is necessary to design for enhanced comfort and

safety.

In general, the allowable jymax can be designed to gradually decrease with the forward speed.

When the vehicle speed increases from zero to the speed limit (vlim), the designed jymax decreases

from jupymax to jlowymax. This is because higher jerk corresponding to faster maneuver is more accept-

able at lower speed, and low jerk should be ensured at high speed for safety. Considering that the

daytime speed limits on freeways (urban) and undivided (rural) are 70-100 km/h and 80-90 km/h

in Quebec province, the threshold speed (vth) is selected as 80 km/h. As the vehicle speed exceeds

vth, the designed jymax should be rapidly decreased to a smaller value to ensure safety and comfort.
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On the contrary, the designed jymax for low and middle speeds should be kept close to the con-

fined values so as to conduct prompt lane change maneuvers. In order to reduce the effects on the

traffic, shortest lane change duration is maintained by setting the designed jymax to the maximum

allowable value. Based on this, the speed-adaptive jerk limit is designed as a piecewise function:

jymax(v
∗
H) =


c1(v

∗
H/vlim)2 + c2, 0 6 vH 6 vth

c3c
(v∗H−vth)/(vlim−vth)
4 + c5, vth < vH 6 vlim

(4–16)

where v∗H , vlim and vth are the host vehicle’s forward speed, limiting speed and threshold speed in

km/h, respectively. vlim is chosen as 120 km/h, assuming that typical driving speeds may range

from 0 to 120 km/h, and c1 to c5 are constant coefficients. The above function satisfies the following

boundary conditions at zero speed and limiting speed:

jymax(0) = jupymax, jymax(vlim) = jlowymax (4–17)

As shown in [137], the mean lane change duration for passenger cars is 4.6 s on highways.

From Eq. (4–4), the corresponding maximum lateral jerk can be easily calculated as jmymax =

0.1924 g/s. In order to guarantee comfort and safety, the designed jymax at high speeds (v∗H > vth)

should be confined no larger than jmymax. Thus, we set jymax at vth as jmymax. In addition, it is

assumed that the designed jymax is continuous up to first derivative to assure smooth variation in

lateral jerk limit. Thus, the designed jymax should satisfy the following conditions:


jymax(vth) =jmymax

c1(vth/vlim)2 + c2 =c3 + c5

2c1vth/(v
2
lim) =c3 ln c4/(vlim − vth)

(4–18)

By manipulating Eqs. (4–17) and (4–18), the five coefficients c1-c5 can be solved accordingly. c1
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and c2 are identified as:

c1 = (jmymax − jupymax)/(vth/vlim)2, c2 = jupymax (4–19)

and c3 and c5 are expressed as:

c3 = (jlowymax − jmymax)/(c4 − 1), c5 = jmymax − c3 (4–20)

where c4 is satisfied with the following equation:

(jlowymax − jmymax) ln(c4) + 2c1vth(vlim − vth)(1− c4)/(vlim)2 = 0 (4–21)

Once c4 is solved through Eq. (4–21), c3 and c5 are subsequently known according to Eq. (4–20).

Figure 4.4 illustrates speed-adaptive jerk limit obtained from the above relations.
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Figure 4.4: The designed speed-adaptive jerk limit.
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4.4.4 Trajectory Planning Procedure

The host vehicle H is considered to initially cruise at speed vH well behind the preceding

vehicle P . While following the centerline of the current lane, the TRFC is firstly estimated based

on the longitudinal dynamics using the algorithms reported in [122, 123]. The speed of H is

restored to the original forward speed following the TRFC estimation. Since vH > vP , the initial

distance (d0) between H and P gradually decreases to dth where the lane change maneuver starts

and the corresponding longitudinal position of H is labeled as XS . Based on the available µ and

vH information, the adaptive lateral acceleration and jerk limits are calculated according to Eq.

(4–12) and Eq. (4–16), respectively. It is evident from Eq. (4–3) that the planned trajectory is

known once Lx is known after the start point is determined. Therefore, the lane change problem

is now transferred to find the optimal value for Lx. As tslc can be approximated as Lx/vH , the

optimal selection of Lx can be further transferred to find the optimal tslc at a given vH .

According to Eq. (4–4), aymax and jymax during the lane change maneuver can be expressed

as:

aymax =
7.513lw
t2slc

, jymax =
52.5lw
t3slc

(4–22)

Both aymax and jymax decrease as tslc increases, and we assume the shortest lane change duration

while satisfying safety and comfort constraints as the optimal maneuver. Thus, the choice of the

admissible lane change trajectory can be made by the selection of the smallest value of tslc, tminslc ,

by:

tminslc = max

{√
7.513lw

g · aQymax(µ)
, 3

√
52.5lw

g · jymax(v∗H)

}
(4–23)

After tminslc is selected, Lx is calculated as vHtminslc , and the planned trajectory is determined ac-

cordingly. The framework of the proposed trajectory planning scheme is shown in Figure 4.5.
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Figure 4.5: The planning diagram of the lane change scheme (H and P represent host and
preceding vehicle, respectively).

4.5 Simulations and Results Analysis

To study the performance of the proposed trajectory planning scheme, simulations were per-

formed using MATLAB and CarSim considering a series of highway scenarios involving different

forward speeds and road friction conditions. The trajectory planning was conducted in the MAT-

LAB/Simulink environment for the chosen speed and TRFC, which was subsequently fed to Car-

Sim as the target path to be followed. The traceability of the planned path is evaluated by observing

the vehicle’s responses obtained in the CarSim platform.

4.5.1 Trajectory Planning Simulations

In this section, the proposed trajectory planning scheme was validated considering different

scenarios, where the preceding vehicle P may be stationary or moving at different constant speeds.

At the initial instant t0, the origin of the global coordinate system XOY (Figure 4.1) was taken

as CG of H , while the initial distance d0 was set as 150 m. The key test parameters were taken

as follows: vehicle length, lv = 3.35 m; vehicle width, T = 1.74 m; lane width lw = 3.5 m and
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vlim = 120 km/h.

4.5.1.1 Stationary Preceding Vehicle

The simulations were initially performed assuming stationary preceding vehicle, which may be

caused by a breakdown or an accident. Trajectory planning was carried out considering multiple

forward speeds and road friction values to verify the effectiveness and robustness of the proposed

planning scheme.
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Figure 4.6: Lateral positions, velocities, accelerations and jerks of the host vehicle’s CG under
different speeds (µ = 0.8, v∗P = 0 km/h).
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Table 4.2: The main performance parameters under different forward speeds (v∗P = 0 km/h,
µ = 0.8).

v∗H (km/h) |vymax| (m/s) |aymax| (g) |jymax| (g/s) XS (m) Lx (m) tslc (s)

40 2.18 0.2176 0.4306 111.65 39.08 3.52
60 1.99 0.1820 0.3314 94.15 63.96 3.84
80 1.66 0.1276 0.1924 76.65 102.23 4.60

100 1.34 0.0826 0.1013 59.15 158.24 5.70
120 1.22 0.0675 0.0749 41.65 210.01 6.30

Trajectory Planning under Different Speeds Since the forward speed on low friction roads

would be lower for safety, a high value of TRFC (µ = 0.8) was selected so as to cover a wide

range of allowable forward speeds. Five different forward speeds of H (v∗H = 40, 60, 80, 100 and

120 km/h) were considered for path planning and conducting the lane change maneuver. Figure

4.6 illustrates the variations in the lateral position, velocity, acceleration and jerk of H with the

longitudinal positions, as a function of the forward speed. As it can be seen in Figure 4.6(a),

the distance between the lane change start point and the stationary vehicle P (located at 150 m

from the origin) increases with the forward speed to ensure safety, and the planned trajectory

becomes smoother as the forward speed increases for both the safety and comfort reasons. The

required longitudinal distance travelled during the lane change maneuver (Lx) also increases with

the forward speed, which is consistent with the designed lane change duration. Moreover, the

higher the forward speed is, the smaller the maximum values in lateral velocity, acceleration and

jerk are, as seen in Figures 4.6(b)-4.6(d). Values of the main performance parameters during the

lane change maneuver are presented in Table 4.2 for different forward speeds, namely peak lateral

velocity (vymax), acceleration (aymax) and jerk (jymax) in absolute values, lane change duration

(tslc) and start position (XS) and the distance travelled during the maneuver (Lx). Considering the

lane change start points and the maximum values of the generated lateral accelerations and jerks,

the results show that the proposed planning scheme ensures safe and comfortable lane change

maneuvers.
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Figure 4.7: Lateral positions, velocities, accelerations and jerks of the host vehicle’s CG on
different friction roads (v∗H = 40 km/h, v∗P = 0 km/h).

Trajectory Planning under Different Friction Conditions In this section, the proposed trajec-

tory planning scheme was conducted for lane change maneuvers on straight roads with different

friction coefficients. In order to conduct the lane change maneuvers under a wide range of friction

conditions, a lower forward speed of 40 km/h was selected for the host vehicle. Trajectory planning

for lane change maneuvers was realized for five different friction values (µ = 0.1, 0.3, 0.5, 0.7 and

0.9). The effects of road friction on the lateral position, velocity, acceleration and jerk of the host
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Table 4.3: The main performance parameters under different friction conditions (v∗P = 0 km/h,
v∗H = 40 km/h).

µ |vymax| (m/s) |aymax| (g) |jymax| (g/s) XS (m) Lx (m) tslc (s)

0.1 1.38 0.0872 0.1099 111.65 61.60 5.54
0.3 2.00 0.1832 0.3346 111.65 42.50 3.83
0.5 2.18 0.2167 0.4306 111.65 39.08 3.52
0.7 2.18 0.2167 0.4306 111.65 39.08 3.52
0.9 2.18 0.2167 0.4306 111.65 39.08 3.52

vehicle are shown in Figure 4.7 as a function of the longitudinal position. Since the preceding ve-

hicle is stationary (tstop = 0) and the host vehicle is traveling at the same constant speed (40 km/h),

identical lane change start position is obtained for all the roads, which is evident in Figure 4.7(a).

Since the allowable jerk corresponding to 40 km/h is relatively large according to Eq. (4–16), the

planned trajectories on low friction roads are mainly determined by the lateral acceleration limit,

which is constrained by the friction coefficient. As can be seen from Figure 4.7(c), the desired

maximum lateral acceleration increases with friction coefficient to achieve a quicker lane change

maneuver when the road friction is less than µ = 0.5. Increasing the friction coefficient up to 0.5

resulted in higher peak lateral velocity, acceleration and jerk, as seen in Figures 4.7(b)-4.7(d) and

Table 4.3. The length of the maneuver and thus the duration, however, decreases with the increase

in the road friction. For higher µ values, the lateral responses are constrained by the defined limits.

The maximum allowable lateral acceleration, however, does not always increase with the friction

coefficient. Since the constraints defined for comfortable and safe driving are related to both the

friction coefficient and the forward speed, the desired maximum lateral acceleration tends to satu-

rate at 0.2167 g even though the lateral acceleration corresponding to the road adhesion limit may

be considerably larger than the limiting value. The results also show saturation of peak lateral jerk

to 0.4306 g/s.
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Figure 4.8: Lateral positions, velocities, accelerations and jerks of the host vehicle’s CG under
different preceding vehicle speeds (µ = 0.8 and v∗H = 120 km/h).

4.5.1.2 Moving Preceding Vehicle

Simulations were subsequently performed for moving preceding vehicle, which is a more rep-

resentative driving scenario. As it can be seen from Eq. (4–23), tminslc varies only with the de-

signed acceleration and jerk limits aQymax(µ) and jymax(v∗H). It should be noted that aQymax(µ) and

jymax(v
∗
H) are related to the friction coefficient µ and host vehicle’s forward speed v∗H regardless of

the preceding vehicle’s forward speed vP , as evident in Eqs. (4–12) and (4–16). For given values

98



of µ and v∗H , identical curvature of the lane trajectories is obtained, irrespective of vP . However,

the position of the start point S with respect to the origin, XS , changes with vP . This is because

the threshold distance dth changes with vP to ensure safety, as it is seen in Eq. (4–7). The trajec-

tory planning was conducted for relatively higher host vehicle speed, v∗H = 120 km/h, and higher

friction coefficient, µ = 0.8, which permitted broad variations in vP . Figure 4.8(a) illustrates the

trajectories obtained for five different speeds of the preceding vehicle v∗P of 20, 40, 60, 80 and

100 km/h, where v∗P is the transformed vP in km/h. The results clearly show identical path curva-

tures, irrespective of v∗P . An increase in v∗P , however, leads to initial of the maneuver at a higher

relative position of H with respect to the origin. The peak values of the resulting lateral velocity,

acceleration and jerk are also identical, as seen in Figures 4.8(b)-4.8(d).
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Figure 4.9: Variations in threshold distance and relative speed as a function of the preceding
vehicle speed.

To clearly show how does the preceding vehicle speed v∗P affect the threshold distance starting

the lane change maneuver, dth and speed difference (vD = v∗H − v∗P ) as a function of v∗P are

simultaneously plotted in Figure 4.9. Two representative scenarios (µ = 0.8, v∗H = 120 km/h; and

µ = 0.4, v∗H = 80 km/h) were investigated. For µ = 0.8, v∗H = 120 km/h, dth was computed for v∗P

range of 0− 100 km/h at every 5 km/h; and for µ = 0.4, v∗H = 80 km/h, dth was computed for v∗P

range of 0−60 km/h at every 5 km/h. The results suggest that the threshold distance decreases with
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Table 4.4: The main parameters of the full-vehicle model.

Symbol Parameter Value Unit

m Vehicle mass 1416 kg
lf Distance between CG and front axle 1.016 m
lr Distance between CG and rear axle 1.562 m
td Track width 1.539 m
T Vehicle width 1.739 m
lv Vehicle length 3.35 m
Re Effective tire radius 0.316 m
hc Height of CG 0.54 m
Cyf Front-axle cornering stiffness 94 kN/rad
Cyr Rear-axle cornering stiffness 76 kN/rad

the increase of v∗P (or the decrease of vD), which is consistent with human driving experience of

leaving more space when the relative speed of the following vehicle with respect to the preceding

vehicle is higher.

4.5.2 Realization and Evaluation Simulations

This section evaluates the traceability of the planned lane change trajectories using a high-

fidelity, full-vehicle model in CarSim. The driver-model module, available in the CarSim, was used

to compute the steering angle required to track the planned path under different speeds and road

surface conditions. Comparative tracking simulations were performed for the planned trajectories

based on the proposed 7th-order polynomial and the classic 5th-order polynomial functions. Two

scenarios (µ = 0.8, v∗H = 80 km/h; and µ = 0.3, v∗H = 40 km/h) were considered and the

stationary preceding vehicle was initially located at 150 m ahead of the host vehicle. The full

vehicle model of a typical C-class hatchback, available in CarSim, was employed to verify path

tracking for the two lane-change scenarios. The key parameters of the vehicle are listed in Table

4.4. The driver model parameters, namely, driver preview time and driver time lag, were set as

0.75 s and 0.15 s, respectively, as suggested in [139].
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Figure 4.10: The CarSim vehicle’s responses to the proposed 7th-order trajectory (µ = 0.8 and
v∗H = 80 km/h).

Figure 4.10 demonstrates the CarSim vehicle’s responses to the proposed 7th-order trajectory in

lateral position, velocity, acceleration and tire slip angles under the scenario µ = 0.8 and v∗H = 80

km/h. The results show that the planned 7th-order trajectory can be well tracked by the CarSim

vehicle with small peak tracking errors. Figure 4.11 further compares the tracking errors of the

proposed 7th-order polynomial trajectory with those of the 5th-order polynomial trajectory. The

tracking errors in both the lateral position and velocity are obviously smaller than those of the

5th-order trajectory, as can be seen in Figures 4.11(a) and 4.11(b). Figure 4.11(c) shows that the
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Figure 4.11: Tracking errors and the desired lateral jerks of the proposed 7th-order polynomial
trajectory and the classic 5th-order polynomial trajectory (µ = 0.8 and v∗H = 80 km/h).

5th-order trajectory is comparable to the 7th-order trajectory in view of the peak value of lateral

acceleration error. However, more severe oscillations are observed near the lane change start and

end points. This is attributed to the sharp changes in the desired lateral jerk of the 5th-order

trajectory at the corresponding time instants, which are clearly seen in Figure 4.11(d).

The tracking results of the proposed 7th-order trajectory on road µ = 0.3 with v∗H = 40 km/h

are presented in Figure 4.12. As can be seen in Figures 4.12(b) and 4.12(c), greater deviations

from the desired values are observed for lateral velocity and acceleration. This is due to a poor
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Figure 4.12: The CarSim vehicle’s responses to the proposed 7th-order trajectory (µ = 0.3 and
v∗H = 40 km/h).

adhesion in this scenario. The tracking errors of the proposed 7th-order trajectory and the 5th-

order trajectory are illustrated in Figures 4.13(a)-4.13(c). While the magnitudes of the lateral

position errors of the two trajectories are close to each other, obviously smaller tracking errors of

lateral velocity are observed for the proposed 7th-order trajectory. Owing to smooth changes in

the desired lateral jerk at both the start and end points of the lane change maneuver, the 7th-order

trajectory resulted in smoother variations in lateral acceleration error than that of the 5th-order

trajectory, as clearly seen in Figures 4.13(c) and 4.13(d). It is further seen from Figure 4.13(d) that
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Figure 4.13: Tracking errors and the desired lateral jerks of the proposed 7th-order polynomial
trajectory and the classic 5th-order polynomial trajectory (µ = 0.3 and v∗H = 40 km/h).

the 7th-order trajectory has a farther lane change end point (a longer longitudinal length of the lane

change maneuver), which yields a smoother trajectory and thus achieving higher safety on the low

friction road, when compared to the 5th-order trajectory.
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Figure 4.14: The schematic of the Quanser self-driving car (QCar) experiment setup.

4.6 Experimental Results

To further demonstrate the practical effectiveness of the proposed lane change trajectory plan-

ning scheme, experimental tests were conducted on the QCar platform, which is a 1/10 scale model

car. The effectiveness is verified by comparison of the QCar’s responses with the desired charac-

teristics of the trajectory based on the proposed planning scheme.

4.6.1 Description of the Experimental Setup

The architecture of the experiment setup is demonstrated in Figure 4.14. The key parameters

of the QCar are summarized in Table 4.5. The desired trajectory is generated in the ground station

PC based on the proposed planning scheme, and is fed to the QCar as the reference trajectory.

The motion of the QCar is controlled by a drive and steering servo motor. The onboard 9-axis

inertial measurement unit (IMU) is used to obtain the real-time posture of the QCar. The control

algorithm is written with Simulink blocks and compiled to C-code running on an embedded Linux-

based system, which is powered by an onboard NVIDIA Jetson TX2 processor using a Quad-Core

ARM Cortex-A57 micro-controller. The onboard processor receives the commanded inputs from

the ground station PC, sends the data collected from the IMU and the motor encoder to the ground
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Table 4.5: The key parameters of the QCar.

Symbol Description Value Unit

lv Length 0.425 m
lw Width 0.192 m
h Height 0.182 m
l Wheelbase 0.256 m
T Track width 0.170 m
Re Tire radius 0.066 m
um1 Maximum speed 1.5 m/s
um2 Maximum steering angle 0.5 rad

station through Wi-Fi wireless communication, and generates appropriate pulse-width modulation

(PWM) signal to the servo motor.

4.6.2 QCar Test Results

In the experiment, the road friction µ is about 0.5. The lane width was set as l∗w = 0.35 m

and the speed of the QCar was selected as 0.83 m/s which corresponds to a full-scale speed of

about v∗H = 30 km/h (considering a 1/10 scale model). With utilization of the friction and speed

information, the adaptive acceleration and jerk limits, aQymax(u) and jymax(v∗H), can be obtained

according to Eqs. (4–12) and (4–16), respectively. However, as compressed lanes and scale model

car were used in the experiment, the minimum lane change duration calculated from Eq. (4–23)

should be multiplied by a factor ρ in this case, as:

tminslc = ρ ·max

{√
7.513l∗w

g · aQymax(µ)
, 3

√
52.5l∗w

g · jymax(v∗H)

}
(4–24)

for achieving reasonable planning and tracking results, where ρ = 3
√
lw/l∗w is a tuned coefficient

related to the width ratio of the real lane over the compressed lane. After tminslc is achieved, the

planned trajectory is determined accordingly.

The lane change start point is now the only unknown parameter which is related to the motion
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of the host and the preceding vehicle. Without loss of generality, the scenario of stationary pre-

ceding vehicle was considered. The minimum safe distance dth is thus only related to vH in this

case according to Eq. (4–7). For simplification, dth is set as 1.5vH for ensuring safety. At the

initial instant, the QCar was stationary at the origin of the global coordinate system, the stationary

preceding vehicle was located at 1.5 m ahead in the current lane.
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Figure 4.15: The QCar’s responses to the proposed 7th-order trajectory in lateral position,
velocity, acceleration together with front steering angle and yaw rate.

Figure 4.15 presents the planning and tracking results of the QCar based on the proposed

lane change planning scheme. In view of the planned trajectory, the QCar starts lane changing
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maneuver at X = 0.26 m and completes the maneuver near X = 3 m. The achieved comfort

can be demonstrated by the fact that the desired lateral position, velocity and acceleration vary

smoothly and the peak lateral velocity and acceleration of the QCar are less than 0.25 m/s and 0.35

m/s2, respectively. Overall, the QCar can track the desired values of lateral position, velocity and

acceleration with acceptable accuracy. However, obvious tracking errors are observed near the lane

change start and end points. The initial tracking errors are caused by the rapid acceleration of the

QCar when X < 0.5m, as the QCar needs to track the desired speed from initial zero speed in a

short distance (which is due to limited space of the indoor laboratory). As a result, similar increases

in lateral acceleration and yaw rate are witnessed near the start point, as shown in Figures 4.15(c)

and 4.15(d). After the QCar reaches the desired speed, the QCar closely tracks the desired values

until near the lane change end point. The measurement noises and the relatively low accuracy in

the localization of the QCar may contribute to the discrepancy between the QCar’s trajectory and

the planned trajectory near the end point. The smooth variations in front steering angle with the

maximum magnitude less than 0.18 rad, as shown in Figure 4.15(d), also illustrate the comfort of

the lane change maneuver.

4.7 Summary

In this chapter, a safe and comfortable lane change trajectory planning scheme is proposed for

AVs on straight highway. Human driving characteristics are reviewed and integrated to achieve

natural driving experience which is regarded as part of comfortable driving. As partly required

by the natural driving, 7th-order polynomial function is used to represent the planned trajectory to

ensure the continuity of the planned trajectory up to jerk. Dealing with the fact that vehicle dy-

namic limits are affected by road conditions and vehicle motions, friction-adaptive acceleration and

speed-adaptive jerk limits have been designed. After the lane change starting point is determined

by the desired worst-scenario-based longitudinal distance criteria, the problem of lane change tra-

jectory planning is reduced to a problem of selecting the approriate lane change duration. There
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is no need to solve a constrained optimization problem and only fast algebraic computations are

needed to select this single coefficient. Both numerical simulation and QCar experimental results

have revealed the effectiveness and practicability of the proposed lane change trajectory planning

scheme. The generated trajectories based on the proposed planning scheme can be well tracked by

the AVs. In order to achieve robust lane change trajectory tracking under a wide range of forward

speeds, an MPC-based adaptive controller is designed in the following chapter with combined

consideration of the estimated TRFC.
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Chapter 5

MPC-based Lane Change Trajectory

Tracking for AVs

5.1 Introduction

Path planning and tracking control play a critical role in autonomous driving, which refer to

determine and track the collision-free trajectory from the vehicle’s current location to a designated

target in accordance with the traffic rules, safety, comfortability and vehicular dynamics. There is

substantial research on path planning and tracking control for AVs and very good reviews on var-

ious planning algorithms and control methods can be found in [10, 114]. In order to find the best

trajectory to follow, different types of constraints imposed by vehicle dynamics, actuator satura-

tion, road boundary, should be taken into consideration while meeting the requirement of obstacle

avoidance.

Due to its capability of handling constraints in a systematic way, the MPC technique has re-

cently become an appealing method to solve the AVs’ path planning and tracking control prob-

lems [86,140]. The approach involves optimizing a performance index under operation constraints

with respect to a sequence of control inputs to generate a desired path or to track a given trajectory

by applying the first element of such optimal input sequence to the vehicle system [11, 86]. Two
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different research directions can be seen in the reported studies. Some researchers integrated the

control module with the path planner respecting the fact that path planning and tracking control

have strong connection to each other. Jalalmaab et al. [87] investigated a road-adaptive MPC strat-

egy to track the centerline of the lane while avoiding the obstacle. Although path planning and

tracking were realized within one linear MPC framework, it should be noted that only kinematic

point-mass vehicle model was used to ensure real-time implementation. In order to take into ac-

count both the tire force saturation and the vehicle nonlinearities, a nonlinear MPC based on the

four-wheel vehicle model and the MF tire model was designed to conduct path re-planning and

tracking task in [86]. The experimental results have shown that the computation time increases

rapidly and induced an issue of real-time implementation when the vehicle speed is over 40 km/h.

To avoid complex optimization process which may result in excessive computational demand,

an alternative way is to address the path planning and tracking problem separately in a hierarchi-

cal architecture. In the project of PRORETA 3, Bauer et al. [88] utilized a potential field-based

trajectory planner to calculate the optimal vehicle trajectory, which was then fed into the control

layer to achieve collision avoidance in the critical traffic situations. In [89], the collision-free tra-

jectory for AVs was generated based on a three-dimensional potential field method considering the

road boundary conditions and the vehicle’s kinematic model. The commanded steering angle to

track the generated trajectory was then obtained from a multi-constrained MPC framework. Sim-

ilarly, Shim et al. [90] designed a collision avoidance system which determined a collision-free

trajectory based on sixth-order polynomials, and the front steering and individual wheel torques

were controlled by an MPC scheme to track the reference trajectory. When the nonlinear vehicle

model was used in the MPC, the linearization technique can be applied in each prediction step

to reduce the computational burden, as shown in [91]. In addition to the computational burden,

the structure of the cost function and the tuning weights on outputs and inputs also have heavy

impact on the performance of MPC. Unfortunately, relatively less efforts have been made toward

this field. Another issue is related to the TRFC, which reflects the limitation of the available force

the road can provide to a vehicle. This coefficient is closely linked to the direction control and the
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Figure 5.1: A DLC scenario of vehicle collision avoidance.

stability performance of an on-road vehicle and is especially important for AVs since they should

be able to perform driving tasks on different road conditions. Most of the previous works in a

hierarchical architecture only introduce the TRFC to the trajectory tracking module as input and/or

state constraints, such as [86, 89, 91]. Actually, the quality or smoothness of the reference path

has a significant influence on the tracking control performance. Thus, considering the limitation of

the road friction earlier in the high-level path planner can significantly simplify the design of the

low-level tracking controller.

In this chapter, we focus on the two-level path planning and tracking for an autonomous vehicle

to avoid vehicle collision on a straight one-way, two-lane highway. In the high-level planning

module, a TRFC-based DLC trajectory is generated by making use of the road friction and vehicle

speed information. With the front tire steer angle as the control input, a linear dynamic MPC with

adaptive weights on outputs in the cost function is further designed to track the planned trajectory

as close as possible under a wide range of forward speeds. The proposed lane change trajectory

tracking control method will be described in detail in the following sections.

5.2 DLC Trajectory Planning

The scenario of a DLC vehicle collision avoidance is shown in Figure 5.1. XOY is the absolute

inertial frame with X-axis defined positive to the right along the centerline of the Lane 1, Y -axis
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defined positive upward along the perpendicular of the lane centerline. To simplify the generation

of the collision-free trajectory, the study in this chapter only focuses on the following conditions:

(1) The host vehicle A is driving at a constant forward speed vA all the time and moving along

the centerline of the Lane 1 before the lane changing maneuver.

(2) The obstacle vehicle B is static or moving at a very low speed vB 6 vA
3

ahead of the vehicle

A along the centerline of the Lane 1.

(3) There is no vehicle in the Lane 2 which is available for lane changing.

As the host vehicle A is approaching to the obstacle vehicle B, lane change maneuver has to

be conducted when a collision cannot be avoided through braking alone. A conservative safety

distance relevant to both the TRFC (µ) and the vehicle speeds (vA, vB) is used to determine where

the lane changing maneuver starts, which is defined as:

Lx = (v2A − v2B)/2µg + vA ∗ h0 + d∗0 + lv (5–1)

where the first term represents the minimum braking distance required to reduce speed from vA to

vB, with g = 9.81 m/s2 being the acceleration due to gravity; h0 and d∗0 are headway time and

standstill distance, respectively; lv is the vehicle length which is added here for consideration of

vehicle geometry. Based on the continuous-curvature path proposed by Nelson [55], the safety

distance is utilized to generate the desired trajectory of the host vehicle A, which is defined by

representing lateral position Yd as a function of the longitudinal position X , and is expressed as:

Yd =


lw[10(

X3

Lx
)3 − 15(

X3

Lx
)4 + 6(

X3

Lx
)5], X1 6 X 6 Xob

lw[10(
X4

Lx
)3 − 15(

X4

Lx
)4 + 6(

X4

Lx
)5], Xob < X 6 X2

0, else

(5–2)

where lw is the lane width, X1 = Xob−Lx, X2 = Xob+Lx, X3 = X−X1, X4 = 2Xob−X1−X ,

with Xob being the longitudinal position of the vehicle B as shown in Figure 5.1. By following
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Figure 5.2: Simplified one-track model used for path tracking.

the reference trajectory (5–2), vehicle A starts steering from the centerline of the Lane 1 to the

adjacent Lane 2 at X = X1, reaches the centerline of the Lane 2 at X = Xob, and goes back to

the original centerline at X = X2. The smoothness of the desired trajectory and the duration of

the DLC maneuver are determined by the safety distance Lx, and thus related to the TRFC and the

vehicle speeds. This is a simple way which may mimic a skillful driver taking the road friction

condition and vehicle speed into account on highway.

Remark 5.1 It is evident from (5–1) and (5–2) that the lower vA the sharper trajectory will be

generated. It may become difficult to follow the desired trajectory when the host vehicle is running

at a very low speed. vA > 30 km/h is thus considered in this study and this is reasonable especially

for studying DLC maneuver on highway.

Remark 5.2 The friction coefficient (µ) is assumed having been estimated before the DLC maneu-

ver when the vehicle is driving on the straight road. More details about the TRFC estimation can

be referred to the authors’ previous works [122, 123].

5.3 DLC Trajectory Tracking Controller Design

5.3.1 Vehicle Dynamic Model

Considering constant longitudinal velocity, a simplified one-track model of a vehicle is selected

to describe the lateral motion, as shown in Figure 5.2. The vehicle body frame xoy is centered
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on the CG, with x defined positive to the right along the centerline of the vehicle and y defined

positive upward along the perpendicular of x. With assumption of small tire steering angle and

small vehicle yaw angle, the motion equations of this model can be derived with the help of force

and torque balances with respect to the CG and coordinate transformations between the inertial

frame and the vehicle body frame, as:

m(v̇y + vxψ̇) = Fyf + Fyr

Izψ̈ = lfFyf − lrFyr

Ẏ = vxψ + vy

(5–3)

where m is the vehicle mass, Iz is the rotational inertia about the z-axis, lf and lr are the distances

from the CG to the front- and rear-axle, respectively. vx, vy are the vehicle longitudinal and lateral

velocities in the body frame. ψ, ψ̇ and Y are yaw angle, yaw rate and lateral position of the host

vehicle in the inertial frame, respectively. For small tire slip angle, the unknown cornering force

of front- and rear-axle, Fyf and Fyr, are approximated as a linear function of tire slip angle as:

Fyi = −2Ci · αi, i = f, r (5–4)

where Ci and αi are the individual tire cornering stiffness and the tire slip angle, i = f, r represents

front and rear tires, respectively. Using small angle approximation, the tire slip angle (αf , αr) are

described by [17]:

αf = (vy + lf ψ̇)/vx − δf

αr = (vy − lrψ̇)/vx

(5–5)

where δf is the front tire steer angle.
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5.3.2 MPC Controller Formulation

The state-space vehicle model for the MPC optimization process is derived based on the equa-

tions (5–3)-(5–5), and this model can be compactly written as:

ẋ(t) = Ax(t) +Bu(t)

z(t) = Cx(t)

(5–6)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the input and z(t) ∈ Rp is the output,

n = 4 is the number of states, m = 1 is the number of input and p = 3 is the number of

outputs. The four states are lateral velocity in the body frame, yaw angle, yaw rate, and lateral

coordinates of the CG of the host vehicle in the inertial frame. These are denoted respectively as

x = [vy, ψ, ψ̇, Y ]′. The only input for lateral control is the front tire steering angle u = δf . The

three outputs are denoted as z = [ψ̇, Y, β]′ where β is the vehicle’s sideslip angle. The matrices A,

B and C in (5–6) are listed as:

A =



−2Cf+2Cr

mvx
0 −vx − 2Cf lf−2Crlr

mvx
0

0 0 1 0

−2lfCf−2lrCr

Izvx
0 −2l2fCf+2l2rCr

Izvx
0

1 vx 0 0


(5–7)

B =



2Cf

m

0

2lfCf

Iz

0


, C =


0 0 1 0

0 0 0 1

1
vx

0 0 0

 (5–8)
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In order to obtain a finite-dimensional optimal control problem, we discretize the system dynamics

(5–6) with a fixed sampling time Ts using Euler’s method:

x(k + 1|k) = Ad · x(k|k) +Bd · u(k|k)

z(k|k) = Cd · x(k|k)

(5–9)

where Ad = E + ATs, Bd = BTs and Cd = C, with E an n-dimensional unit matrix.

Let k be the current time step, xk = x(k|k) is the state vector at k-th step and consider the

following cost function:

J(xk,Uk, εk) =

Hp∑
i=1

‖η(k + i|k)− ηr(k + i|k)‖2Q

+
Hc−1∑
i=0

‖∆u(k + i|k)‖2R + ρε2k

(5–10)

where η(k+i|k) = z(k+i|k) represent the predictive outputs and ηr(k+i|k) are the corresponding

reference signals at sampling step k + i. ∆u(k + i|k) = u(k + i|k) − u(k + i − 1|k) are the

differences of the control inputs at sampling step k + i and u(k − 1|k) are the known inputs from

the previous control interval. Uk = [u(k|k)′, ..., u(k +Hc − 1)′]′ is the optimization vector at time

step k. Hp and Hc are the prediction and control horizon, respectively, and Hp > Hc. To reduce

computational requirement, the control signal sequences u(k+ i|k) hold equal to u(k+Hc− 1|k)

while Hc 6 i 6 Hp. The term ρε2k penalizes the violation of the constraint, εk is a slack variable

and ρ is a weighting coefficient. Q and R are diagonal matrices with the squares of those output

weights and input rate weights, respectively, being the diagonal elements. They are written as

Q = diag(λ21, λ
2
2, λ

2
3), R = λ24.

The objective of the MPC controller is to track the desired trajectory generated in Section 5.2.

As shown in (5–2), only reference lateral position is directly generated. However, the host vehicle

is driving on a straight line before and after the lane change maneuver. Considering the physical

characteristics, the reference values of both the yaw rate and vehicle sideslip angle can be set zero
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Table 5.1: Constraints on outputs.

Outputs Minimum value Maximum value

ψ̇ −0.85µg/vx 0.85µg/vx

Y −lw/2 + T/2 3lw/2− T/2

β − arctan(0.02µg) arctan(0.02µg)

Table 5.2: Adaptive weights.

vx (km/h) (30, 50] (50, 60] (60, 70] (70, 80] (80, 92]

λ1 0.4 1.0 2.8 4.0 6.0

before and after the DLC maneuver. Still, the reference vehicle sideslip angle and yaw rate during

the DLC maneuver are unknown. In this case, the problem of minimizing (5–10) can not be solved

through the traditional MPC scheme. Here, we propose a new way to deal with this problem and

the prerequisite is only the reference lateral position.

Remind that the higher the output weights, the higher demand on tracking the corresponding

reference signal. The controller will ignore the setpoints with zero weight and allow the output to

vary freely. Based on this, the weight on the predictive output is set to zero when there is lack of

its reference value. Thus, the output weight on yaw rate (λ1) is set zero during the DLC maneuver

and a nonzero value otherwise. Unlike yaw rate being an easily measured signal, vehicle sideslip

angle is hard to be directly measured, its output weight is thus setting to zero all the time (λ3 = 0).

Doing so will enable the vehicle sideslip angle and yaw rate to vary freely around their respective

setpoints when no reference values are given. The setpoints of vehicle sideslip angle and yaw rate

are assigned both zero in ηr(k+ i|k) for respecting the fact that the host vehicle is starting from the

centerline and going back to the same centerline. Moreover, it is not safe when the generated yaw

rate or vehicle sideslip angle is beyond the value the road is able to provide [141]. At high vehicle

sideslip angle, the tires may lose their linear behavior and cause large tracking errors. Hence the

magnitude of these two outputs should be bounded by the friction-related constraints. At each time
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step k, the following finite horizon optimal control problem is solved:

min
Uk,εk

J(xk,Uk, εk)

s.t. x(k + 1|k) = Ad · x(k|k) +Bd · u(k|k)

η(k|k) = Cd · x(k|k)

u(k − 1|k) = u(k − 1)

∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k)

∆umin 6 ∆u(k + i|k) 6 ∆umax

umin 6 u(k + i|k) 6 umax

i = 0, ..., Hc − 1

∆u(k + i|k) = 0, i = Hc, ..., Hp
ψ̇min

Ymin

βmin

− εk 6 η(k + i|k) 6


ψ̇max

Ymax

βmax

+ εk

i = 1, ..., Hp, εk > 0

x(k|k) = xk, η
r(k + i|k) = [0 Yd 0]′

(5–11)

where umin and ∆umin, umax and ∆umax are the constraints imposed on the control signals. The

constraints exerted on the output variables are denoted in Table 5.1 with lw and T being lane width

and vehicle width, respectively. The empirical selection of the friction-related upper and lower

bounds of ψ̇ and β can be referred to [141].

Remark 5.3 Vehicle sideslip angle β is approximated as vy/vx and the output constraint βmin −

εk 6 β 6 βmax + εk is transferred to state constraint on vehicle lateral velocity.

The optimization problem (5–11) can be recast as a quadratic programming and it does not

require any complex optimization software. Denoted by U∗k = [u∗(k|k)′, ..., u∗(k +Hc − 1)′]′, the

sequence of optimal inputs are computed at time step k by solving (5–11) for the current system
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states xk, then the first sample of U∗k is applied to the vehicle at time k. At time k + 1, a new

optimization is solved over a shifted prediction horizon starting from the newly measured states

x(k + 1|k + 1) = xk+1.

5.3.3 Adaptive Weights in Cost Function

The performance of the above MPC is strongly related to the tuning weight set [λ1, λ2, λ3, λ4].

Given a vehicle forward speed, it is easy to tune a set of [λ1, λ2, λ3, λ4] to achieve acceptable track-

ing results. However, the performance of the controller with fixed values of λi, i = 1, 2, 3, 4 will

be degraded or even unacceptable (cause oscillations and instability) when the vehicle is moving

under a different velocity. A straightforward method is to design the adaptive weights varying with

vehicle speed. While there are four weights to be tuned, the output weights on yaw rate and lateral

position (λ1, λ2) have larger influence on the performance of the controller than the input weight.

Noted that the output weight on vehicle sideslip angle λ3 is zero as explained in Section 5.3.2,

only λ1 and λ2 are needed to set as speed-adaptive values by setting λ4 = 0.5. In order to fur-

ther simplify the tuning process, we set output weight on lateral position as fixed value of λ2 = 1.

Based on the principle that the higher forward speed, the higher weights should be imposed on yaw

rate to ensure vehicle’s stability. The adaptive weights on yaw rate were selected after extensive

simulations under a wide range of speeds, as shown in Table 5.2.

5.4 Simulation Results

To test the performance of the proposed planning and tracking framework, a series of col-

lision avoidance maneuvers at different forward speeds have been conducted using CarSim and

MATLAB/Simulink software. Two different road surfaces with friction coefficients of 0.8 and 0.3,

denoted as high-µ and low-µ road, respectively, have been set in CarSim. The main parameters for

the vehicle model and the highway road used in simulation are shown as:

• m = 1, 416 kg, Iz = 1, 523 kgm2, lf = 1.016 m, lr = 1.562 m, l = 2.578 m, T = 1.739 m,
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Cf = 47, 000 N/rad, Cr = 38, 000 N/rad, lw = 3.5 m, h0 = 2 s, d0 = 2 m

The adaptive MPC (5–11) is with the following parameters:

• Ts = 0.05 s, Hp = 15, Hc = 5

• u ∈ [−10◦, 10◦], ∆u ∈ [−1◦, 1◦]

• Q = diag(λ21, 1, 0), R = 0.52, ρ = 105

5.4.1 High-µ Road

A relatively high friction coefficient (µ = 0.8) was firstly selected to simulate the usual running

condition on concrete or asphalt surfaces for highway vehicles. The host and the obstacle vehicles

were initially located at longitudinal position 0 and 150 m, respectively. The host vehicle’s DLC

maneuvers under three constant forward speeds vx = 90, 60, 40 km/h, respectively, have been

conducted. The three desired trajectories, corresponding to the different speeds, are computed

based on (5–2), as shown in Figure 5.3(a). The higher the forward speed, the earlier the host vehicle

starts steering to the adjacent lane and thus leaving larger safety distance. The designed MPC tracks

the desired trajectories well and tightly confines the vehicle’s position within the road boundaries,

though a slightly larger error is observed under 90 km/h. The generated yaw rate, vehicle sideslip

angle and wheel steer angle are shown in Figures 5.3(c), 5.3(e) and 5.3(g), respectively. All of these

three variables are varying with peak values much smaller than their respective bounds showing the

smoothness of the generated trajectories. As can be seen from Figure 5.3(e), the magnitude of the

generated vehicle sideslip angle under 90 km/h is much larger than those under two lower speeds.

This shows that the vehicle forward speed has a strong influence on the sideslip angle and high

vehicle speed may generate high sideslip angle leading to unstable system. Higher sideslip angle

also results in larger vehicle modeling errors, which partly explains a slight tracking oscillation

under 90 km/h. It is also pointed out that the designed MPC is able to obtain acceptable closed-

loop performance up to vx = 92 km/h on high-µ road.
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Figure 5.3: Simulation results on two road conditions. (a), (c), (e) and (g) are µ = 0.8 road under
three different forward speeds. (b), (d), (f) and (h) are µ = 0.3 road under three different speeds.

(Note the red box in (a) and (b) represents the obstacle vehicle).
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5.4.2 Low-µ Road

The friction coefficient was set as µ = 0.3 to simulate road conditions covered by snow in win-

ter of highway. The host vehicle was initialized at longitudinal position 0 m. The location of the

obstacle vehicle was set asXob = 200 m considering that larger safety distance is required on a slip-

pery road under the same speed. Collision avoidance scenarios under three speeds vx = 80, 60, 40

km/h have been investigated. The desired and the actual trajectories are shown in Figure 5.3(b).

Compared to those results obtained on high-µ road, the designed MPC can achieve better track-

ing performances on this low-µ road. This is because the generated trajectories based on a larger

safety distance on the slippery road are smoother. Figures 5.3(d), 5.3(f) and 5.3(h) demonstrate

the generated yaw rate, vehicle sideslip angle and the road wheel steer angle, respectively, during

the DLC maneuver. Due to a poor road adhesion, the commanded wheel steer angle changes more

frequently than that on high-µ road to closely track the desired trajectory. As a result, both the yaw

rate and the vehicle sideslip angle also rapidly change with time during the lane-change maneuver.

The higher the forward speed, the more rapid changes are observed. Again, it is also pointed out

that the upper bound of the forward speed for the MPC to stabilize the vehicle and accurately track

the desired trajectory is vx = 82 km/h.

5.5 Summary

In this chapter, an MPC-based path planning and tracking framework for AVs using the esti-

mated TRFC is presented. The desired DLC trajectory is generated based on the safety distance

between the host vehicle and the obstacle vehicle, which is related to both the TRFC and the vehi-

cle speed. With integrated consideration of output weights in the cost function and the constraints

on the magnitude of the outputs defined by the TRFC, a linear dynamic MPC with adaptive output

weights is designed so that only lateral position is required to track the desired trajectory. More-

over, the adaptive weights on outputs in the cost function have been identified for a wide range of
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speeds making the designed controller very promising in practical applications. While the advan-

tage of integration of TRFC with the trajectory tracking is obvious, to validate the effectiveness

of the proposed method through lab experiments is not that easy since it is hard to simulate the

real tire-road interface and obtain the accurate value of the real TRFC in the indoor lab. It is also

noted that the trajectory tracking controllers should be designed according to the operating con-

ditions and environments. Based on the available scaled model QCar self-driving platform in our

lab, an adaptive trajectory tracking control scheme for AVs operating at low speeds is proposed

in the following chapter. Comparative simulations and experimental tests have been carried out to

demonstrate its advantages in tracking accuracy while meeting the requirements by the implemen-

tation capability of the actuators.
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Chapter 6

Adaptive Trajectory Tracking for

Low-Speed AVs with Input Constraints

6.1 Introduction

Car-like vehicles have attracted considerable attention and efforts from academia and indus-

try due to their flexible mobility [142–144]. These developments have been further fueled by the

emerging of AVs with the help of significant advancements in sensing and computing technologies.

It is believed that AVs have great potential to improve safety, comfort and efficiency of the trans-

portation [112,140,145–147]. Under nonholonomic constraints, a challenging problem in car-like

vehicles is trajectory tracking control which aims at driving the vehicle along a pre-defined trajec-

tory [143,144,148,149]. As an integral part of autonomous systems, the trajectory tracking control

problem of car-like vehicles has been widely studied. Depending on the utilized vehicle model, the

tracking control approaches in the literature can be generally divided into geometric, dynamic and

kinematic based controllers. When the AVs are operating at low speeds, most dynamic effects are

negligible. The designed controllers based on kinematic model alone may still achieve acceptable

trajectory tracking performances.

There are two paramount concerns in the problem of trajectory tracking for car-like vehicles
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based on kinematic model. One is the input constraints arising from the implementation capabil-

ity of the physical actuator(s). Large tracking errors or even system instability would occur when

the commanded inputs surpass the maximum capability of the actuator(s). Besides, the overlarge

inputs will reduce the operational life of the actuator(s) in real applications. Some studies utilized

the MPC [150–152] or neural network (NN) [153,154] methodologies to handle system constraints

and nonlinearities. However, the presence of nonlinear dynamics, time-varying states and input

constraints may contribute to the issue of heavy computation [11]. The design of tracking con-

trollers based on non-optimization-based methods may thus be a good alternative. Unfortunately,

most of these methods in the reviewed studies focus on stabilizing the vehicle at zero equilibrium

without imposing constraints on inputs. Accurate trajectory tracking with consideration of input

constraints would thus still be desirable for practical implementation. The other concern is the

operational range. In order to increase the controller’s operational range, the majority of the ex-

isting studies research on achieving control robustness against model uncertainties and external

disturbances considering only constant control gains [155–157]. Clearly, a set of constant gains

seldom meets all the driving scenarios especially when there are variations in initial errors and

desired speeds. It should be noted that the controller’s gains have a great influence on the tracking

performance and adaptive gains are of highly practical importance in real applications. The design

of adaptive gains not only enhances the tracking accuracy for various scenarios but also reduces

the time and efforts dedicated to the tuning of the gains.

In this chapter, a new trajectory tracking control scheme with adaptive gains is designed for the

low-speed AVs. While the input constraints are considered for practical application, backstepping

method is used to ensure zero deviations of the car-like vehicle based on the kinematic model. To

make the trajectory tracking control more explicit, the lateral position error is creatively taken as

a virtual input in the first step of the backstepping method to determine the commanded velocity

and steering angle. The proposed controller’s gains are automatically adjusted according to the

tracking errors and the desired vehicle speed, which can largely reduce the tuning time and efforts.

Compared to traditional controllers with constant gains, the proposed adaptive control scheme has a
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faster convergence rate of the tracking errors, especially for lateral position error. In the meanwhile,

the commanded inputs of the proposed controller are guaranteed not violating the input constraints.

The proposed trajectory tracking scheme will be described in detail in the following sections.

6.2 Problem Formulation

6.2.1 Kinematic Bicycle Model

A bicycle model is constructed by lumping the two wheels on front- and rear-axle, respectively,

as a single wheel located at the midpoint of each axle, as shown in Figure 6.1(a). The front-wheel

is the steering wheel, and the rear-wheel’s orientation is fixed. Assuming that the vehicle only has

planar motions, a posture consisting of three coordinates in the global coordinate frame (OXY ) is

required to describe the motion of the vehicle:

pc = [Xc, Yc, ψc]
′ (6–1)

where (Xc, Yc) are global coordinates of the control point C (midpoint of rear-axle) and ψc de-

scribes the orientation of the vehicle whose positive direction is taken counterclockwise from the

X-axis. For low-speed motion of the vehicle, it is reasonable to assume both the wheels roll with

no slipping [141]. The lines FO′ and CO′ are drawn perpendicular to the orientation of the front

and rear wheels, respectively. The intersectionO′ is the instantaneous rolling center for the vehicle.

The radius of the vehicle (R) is calculated by:

R = l/ tan δ (6–2)

where l is the vehicle’s wheelbase, δ is the steering angle of the front wheel (turning left is positive

steering). With assumption of low vehicle speed, the yaw rate of the vehicle (ψ̇c) is expressed by:

ψ̇c = V/R = V/l · tan δ (6–3)
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(a) (b)

Figure 6.1: Kinematic bicycle model and posture errors.

where V is the forward speed at the point C. The kinematic model of the vehicle’s motion is

derived as: 
Ẋc = V cosψc

Ẏc = V sinψc

ψ̇c = V/l · tan δ

(6–4)

6.2.2 Posture Error

For trajectory tracking control problem, the vehicle’s current posture pc must follow the refer-

ence posture (pd = [Xd, Yd, ψd]
′). In terms of control, it is better to define a posture error in the

local coordinate frame (Cxy) whose origin is at point C, x-axis is in the direction of ψc, and y-axis

is perpendicular to x-axis with positive upwards, as seen in Figure 6.1(b). Based on the geometric

relationship, the difference between pd and pc, pd − pc is transformed to local coordinate frame

as pe, which is described as:

pe =


xe

ye

ψe




cosψc sinψc 0

− sinψc cosψc 0

0 0 1



Xd −Xc

Yd − Yc

ψd − ψc

 (6–5)
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where xe, ye and ψe are longitudinal position, lateral position and yaw angle errors between the

desired trajectory and the actual trajectory tranformed into the local coordinate frame. Taking the

time derivative of Eq. (6–5) and combining it with Eq. (6–4), the dynamic equations of the posture

errors are obtained as: 
ẋe = −V + Vd cosψe + ye

V

l
tan δ

ẏe = Vd sinψe − xe
V

l
tan δ

ψ̇e = ψ̇d − ψ̇c =
Vd
l

tan δd −
V

l
tan δ

(6–6)

where Vd, δd and ψ̇d are the desired forward speed, steering angle and yaw rate, respectively. In

which, ψ̇d can be calculated as (Vd tan δd)/l according to Eq. (6–3). In this chapter, only forward

motion is considered (V > 0), the steering angle δ and the yaw angle ψc are confined within

[−0.5, 0.5] and (−π, π], respectively, and it is also assumed |ψe| < π.

6.2.3 Problem Statement

The actual controlled inputs to the car-like vehicle are the forward speed V and the steering

angle δ, the output of the vehicle is the current posture pc. Obviously, both the two inputs have

physical constraints in real applications. It is assumed that a feasible and smooth trajectory has

been generated and the reference posture pd together with the desired steering angle δd are known

information to the vehicle all the time. The trajectory tracking problem has now transferred to find

an appropriate input vector u = [u1, u2]
′ = [V, δ]′ to make the posture error pe to converge to zero

subject to the following constraints:

|ui| 6 umi , i = 1, 2 (6–7)

where umi , i = 1, 2, are the maximum values of the inputs which are determined by the implemen-

tation ability of the actuator.
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Figure 6.2: The architecture of the proposed adaptive trajectory tracking control system.

6.3 Adaptive Tracking Control Scheme

In this section, the adaptive nonlinear kinematic controller will be designed to stabilize the

posture error dynamics given by Eq. (6–6) (i.e., pe → 0 as t → ∞) with combined consideration

of the input constraints in Eq. (6–7). The backstepping control method is utilized in the control

scheme design since it can provide a systematic way to derive globally stabilizing control laws

[155]. The architecture of the proposed adaptive trajectory tracking control system is depicted in

Figure 6.2. The details about the green blocks inside the red rectangle will be discussed in the

following sections.

6.3.1 Backstepping Control Scheme without Input Constraints

First, the kinematic model without input constraints is considered. As ψ̇c equals to V tan δ/l,

Eq. (6–6) can be written in a compact form, as:


ẋe = −V + Vd cosψe + yeψ̇c

ẏe = Vd sinψe − xeψ̇c

ψ̇e = ψ̇d − ψ̇c

(6–8)
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Under this compact form of posture error dynamic equations, the tracking problem is trans-

formed to find an appropriate control input u∗ = [u1∗, u2∗]′ = [V, ψ̇c]
′ such that pe → 0 as

t→∞. In purpose of this objective, the following subsystem is firstly considered:

ẋe = −V + Vd cosψe + yeψ̇c

ẏe = Vd sinψe − xeψ̇c
(6–9)

We choose the Lyapunov function candidate for this subsystem as:

V1 =
1

2
(x2e + y2e) (6–10)

The derivative of V1 along Eq. (6–9) is:

V̇1 = xe(−u∗1 + Vd cosψe) + yeVd sinψe (6–11)

As lateral position error ye has an explicit reflection of trajectory tracking performance, we

here regard it as a virtual input. If ye varies along:

yde = −k2 sinψe
Vd

(6–12)

and the input u∗1 is selected as:

u∗1 = Vd cosψe + k1xe (6–13)

then we have:

V̇1 = −k1x2e − k2(sinψe)2 (6–14)

where k1 and k2 are positive constant gains. Therefore, V1 will converge to zero asymptotically,

which is equal to that both the longitudinal and lateral position errors will converge to zero asymp-

totically. While the actual input u1 can be selected as u∗1 given by Eq. (6–13), the lateral position

error ye has no guarantee to track yde precisely in this stage. Define the tracking error between ye
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and yde as:

ỹe = ye − yde (6–15)

The derivative of ỹe is calculated as:

˙̃ye = Vd sinψe − (xe +
k2 cosψe

Vd
)u∗2 +

k2 cosψeψ̇d
Vd

− k2 sinψeV̇d
V 2
d

(6–16)

where V̇d is the first-order derivative of the desired forward speed and can be calculated from the

reference trajectory. In order to ensure ỹe → 0 or ye → yde as t → ∞, we consider the Lyapunov

function as:

V2 = V1 +
1

2
ỹ2e (6–17)

The time derivative of V2 along Eqs. (6–11) and (6–16) is:

V̇2 =xe(−u∗1 + Vd cosψe) + yeVd sinψe

+ ỹe

[
Vd sinψe − (xe +

k2 cosψe
Vd

)u∗2 +
k2 cosψeψ̇d

Vd
− k2 sinψeV̇d

V 2
d

] (6–18)

Substituting Eqs. (6–12), (6–13) and (6–15) into Eq. (6–18), V̇2 can be derived as:

V̇2 =− k1x2e − k2(sinψe)2

+ ỹe

[
2Vd sinψe − (xe +

k2 cosψe
Vd

)u∗2 +
k2 cosψeψ̇d

Vd
− k2 sinψeV̇d

V 2
d

] (6–19)

We select u∗2 in Eq. (6–19) as:

u∗2 =
k3ỹe + 2Vd sinψe + k2 cosψeψ̇d

Vd
− k2 sinψeV̇d

V 2
d

xe + k2 cosψe

Vd

(6–20)

where

ỹe = ye +
k2 sinψe
Vd

(6–21)
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and k3 is a positive constant gain. Then, V̇2 is obtained as:

V̇2 = −k1x2e − k2(sinψe)2 − k3ỹ2e (6–22)

Obviously, V̇2 6 0 for ∀ t ∈ (0,+∞). It can be concluded that for all initial conditions,

the control system will converge to the set defined as {xe = 0, ye = 0, ỹe = 0}. As ỹe → 0,

ye → yde = −k2 sinψe/Vd. Since k2 > 0, Vd > 0 and |ψe| < π, the yaw angle error ψe also

converges to 0 when the lateral position error ye → 0. The control objective of pe → 0 as t → ∞

is thus achieved. The proposed control laws are given as:

u∗1 = Vd cosψe + k1xe

u∗2 =
k3ỹe + 2Vd sinψe + k2 cosψeψ̇d

Vd
− k2 sinψeV̇d

V 2
d

xe + k2 cosψe

Vd

(6–23)

As the actual input of the car-like system is u instead of u∗, the above control laws should be

transferred to u as:

u1 =u∗1 = Vd cosψe + k1xe

u2 = arctan

(
l

u∗1
u∗2

)

= arctan

 l(k3ỹe + 2Vd sinψe + k2 cosψeψ̇d

Vd
− k2 sinψeV̇d

V 2
d

)

u1(xe + k2 cosψe

Vd
)


(6–24)

where ỹe is given in Eq. (6–21).

6.3.2 Adaptive Gains and Input Constraints

The proposed control laws in Eq. (6–24) are functions of control gains and posture errors:

u = f(K,pe), where K = [k1, k2, k3]
′ and pe = [xe, ye, ψe]

′. Given a set of constant gains K,

the commanded inputs based on Eq. (6–24) may be outside the physically allowed range of the

inputs given by Eq. (6–7), especially for the scenarios where there are large initial errors. Due
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to implementation limits of the actuators, such too large inputs will lead to large tracking errors

or even instability of the system. Moreover, it is always expected to drive the vehicle close to the

reference trajectory as soon as possible when the vehicle is far away from the reference trajectory.

Taking into account these effects, adaptive control gains are designed together with consideration

of input constraints in this section.

From the equation of u1 in Eq. (6–24), the following result can be obtained:

|u1| 6 Vd + k1|xe| (6–25)

Define dx as the threshold distance of |xe| and dx > 0. If |xe| 6 dx, then:

|u1| 6 Vd + k1dx (6–26)

In order to ensure |u1| 6 um1 , then Vd + k1dx should be no larger than um1 . If we select k1 at

position where |xe| = dx as:

k1||xe|=dx =
um1 − Vd
dx

(6–27)

|u1| will then be ensured no larger than um1 for |xe| 6 dx. When |xe| > dx showing the vehicle

is far away from the reference trajectory, and the vehicle is expected to drive at the maximum

speed to move close to the trajectory quickly. Based on this, k1 is designed to vary as a reciprocal

function of |xe| when |xe| > dx, such that:

k1(|xe|) =
∆

|xe|
, |xe| > dx (6–28)

where ∆ is obtained based on the condition that the commanded speed is um1 at position where

|xe| = dx, thus:

∆ = um1 − Vd (6–29)

The reciprocal function increases quickly with decrease of |xe|. For |xe| 6 dx, only if the value
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of k1 is under the curve of reciprocal function, the commanded u1 is less than um1 . Generally, a

larger k1 corresponds to a faster response rate given a set of |xe| and Vd. However, too large k1 will

lead to excessive accelerations or even speed oscillations of the vehicle. Based on this, k1 is set to

be adaptive to |xe| following a quadratic function as follows:

k1(|xe|) = −a1|xe|2 + a2, |xe| 6 dx (6–30)

where a1 and a2 are two constant coefficients. It is assumed that the completed curve of k1 is

continuous up to first-order derivative at position |xe| = dx, thus:

−a1d2x + a2 =
∆

dx

−2a1dx = −∆

d2x

(6–31)

By manipulating the above equations, a1 and a2 are obtained as ∆/(2d3x) and 3∆/(2dx), re-

spectively. The designed control gain k1, as a piecewise function of |xe|, is thus described as:

k1(|xe|) =


− ∆

2d3x
|xe|2 +

3∆

2dx
, |xe| 6 dx

∆

|xe|
, |xe| > dx

(6–32)

where ∆ is given as Eq. (6–29). As required by the system stability, k1 should always be positive.

However, k1 may become zero when Vd is equal to um1 as seen in Eq. (6–32). In order to avoid this

from occurrence, the function of tanh() is introduced to ∆ as:

∆ = um1 − Vd tanh(
Vd
σ

) (6–33)

where σ > 0 is a tuning parameter. The designed control gain k1, as a piecewise function of |xe|,
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Figure 6.3: Variation of k1 as a function of |xe|.

is finally described as:

k1(|xe|) =


−
um1 − Vd tanh(Vd

σ
)

2d3x
|xe|2 +

3(um1 − Vd tanh(Vd
σ

))

2dx
, |xe| 6 dx

um1 − Vd tanh(Vd
σ

)

|xe|
, |xe| > dx

(6–34)

The schematic of k1 as a function of |xe| is plotted in Figure 6.3. As seen in the figure, k1

gently decreases as the increase of |xe| for achieving compromised performance with combined

consideration of both the response rate and the input constraints.

Looking at the equation of u2 in Eq. (6–24), it has complex expression and is related to all the

three errors xe, ye and ψe. It is hard to design adaptive k2 and k3 in a straight way similar to k1

with integrated consideration of the input constraint of u2. A compromised method is proposed

here. Recall that we expect ye to vary along yde , as shown in Eq. (6–12), k2 can be selected as a

function of Vd to compensate the influence of the forward speed on tracking results (especially for

enhancing the convergence rate of lateral position error). For simplicity, k2 is set as proportional

to Vd:

k2 = αVd (6–35)

where α > 0 is a constant tuning parameter. Then, k̇2 = αV̇d and yde becomes−α sinψe, regardless
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of the desired speed. By doing so, the convergence rate of lateral position error is obviously

improved. Following the procedure from (6–10)-(6–24), the new input vector uc = [uc1, u
c
2]
′ is

obtained as:

uc1 =Vd cosψe + k1(|xe|)xe

uc2 = arctan

 l
[
k3(ye + α sinψe) + 2Vd sinψe + α cosψeψ̇d

]
uc1(xe + α cosψe)

 (6–36)

It is worth noting that both k̇2 and V̇d disappeared because of algebraic simplification by selecting

k2 according to (6–35). Since uc1 6 um1 is always satisfied, the actual input of vehicle speed is thus

set as:

u1 = uc1 (6–37)

Due to the complex form of uc2, adjusting k3 alone cannot guarantee the steering angle not

violating the constraint. In order to simplify the problem, after setting constant gain k3, we use the

following steering control law:

u2 =


uc2, if |uc2| < um2

um2 , if u
c
2 > um2

−um2 , if uc2 6 −um2

(6–38)

to achieve acceptable trajectory tracking results for car-like vehicles.

Theorem 6.1 For low-speed car-like vehicles, using the control laws given by Eqs. (6–37) and (6–

38) will result in an approximate globally asymptotically stable equilibrium at pe = 0 for Vd > 0

and |ψe| < π.

Proof 6.1 The speed control law (6–37) and the steering control law (6–38) can make system

globally asymptotically stable at pe = 0 when |uc2| < um2 , as evident in Section 6.3.1.
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In order to analyze the system stability for |uc2| > um2 , we consider a Lyapunov function candi-

date as:

V3 =
1

2
(x2e + y2e) + um1 (1− cosψe) (6–39)

where um1 > 0 is the maximum forward speed of the vehicle. Clearly, V3 > 0. If pe = 0, V3 = 0.

If pe 6= 0, V3 > 0. The time derivative of V3 along the error dynamics (6–6) with the control laws

(6–37) and (6–38) is:

V̇3 = −k1(|xe|)x2e + yeVd sinψe + (
Vd
l

tan δd −
uc1
l

tanu2) sinψeu
m
1

= −k1(|xe|)x2e + yeVd sinψe + (ψ̇d ∓ ψ̇m) sinψeu
m
1

(6–40)

where ψ̇m = (uc1 tanum2 )/l > 0 is the maximum yaw rate at current speed. The first term

−k1(|xe|)x2e 6 0. Note that uc2 > um2 when ψe > 0; uc2 6 −um2 when ψe < 0, and |ψe| < π,

the third term (ψ̇d ∓ ψ̇m) sinψeu
m
1 is thus always non-positive. Under the saturated steering input

u2 = ±um2 , |sinψe| decreases, |yeVd sinψe| can be bounded. It should also be emphasized that the

posture errors ye and ψe will dramatically decrease during the period when |uc2| < um2 . Although

V̇3 has the possibility to become positive, the corresponding magnitude and duration are both very

small, imposing little influence on the convergence of the tracking errors to zero. The proposed

adaptive control scheme results in a closed-loop system with an approximate globally asymptot-

ically stable equilibrium at pe = 0. Once the initial errors of xe, ye and ψe are appropriately

selected, V̇3 can still be ensured non-positive all the time, which makes the tracking system glob-

ally asymptotically stable even under the influence of steering saturation. Both the simulation and

experimental results in the following sections will prove this.

Remark 6.1 The designed adaptive k1 in Eq. (6–34), which increases with decrease of |xe|, also

positively contributes to make V̇3 negative.

Remark 6.2 When steering saturation is considered under |uc2| > um2 , the globally asymptotically

stable region is quite large under the control laws given by Eqs. (6–37) and (6–38), although the

accurate determination may be difficult.
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Table 6.1: The initial conditions for circular trajectory.

pd(0) pc(0) pe(0)

[0.998,−1.470, 0.2]′ [−0.128, 0, 0]′ [1.126,−1.47, 0.2]′

6.4 Simulation Results

In order to demonstrate the effectiveness and superiority of the proposed control scheme, a

numerical simulation study was firstly conducted in the MATLAB/Simulink. The car-like vehicle

was required to track a circular trajectory which is governed by the following equations:

Xd(t) = 1.5 sin(0.4t+ 0.2) + 0.7

Yd(t) = 1.5(1− cos(0.4t+ 0.2))− 1.5

(6–41)

From (6–41), the reference vehicle speed, yaw angle and yaw rate can be obtained as:

Vd(t) =

√
Ẋ2
d(t) + Ẏ 2

d (t)

ψd(t) = atan2{Ẏd(t), Ẋd(t)}

ψ̇d(t) =
Ÿd(t)Ẋd(t)− ẌdẎd(t)

V 2
d (t)

(6–42)

The initial conditions for the tracking of the car-like vehicle are listed in Table 6.1. For the sake

of comparative study, the performances of a backstepping controller in [155] (marked as Controller

1) and a classic stable tracking controller presented in [158] (marked as Controller 2) were also

investigated. The control gains of the Controller 1 and Controller 2 were tuned as [1.98, 1.98, 1.98]′

and [1.65, 1.65, 1.65]′, respectively, so that acceptable tracking results were obtained. The control

parameters of the proposed controller in Eqs. (6–34) and (6–35) were chosen as dx = 1 m,

σ = 0.3, α = 0.75, and the fixed gain k3 in Eq. (6–36) was also selected as 1.65 for the fairness of

performance comparisons.
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Figure 6.4: Posture tracking results of the circular trajectory. (a) Longitudinal position error. (b)
Lateral position error. (c) Yaw angle error. (d) Reference and actual trajectories.
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Figure 6.5: Commanded inputs of the three controllers for tracking the circular trajectory. (a)
Velocity input. (b) Steering angle input.

Figure 6.4 presents the tracking results of the circular trajectory. Although all the three con-

trollers can ensure longitudinal position, lateral position and yaw angle tracking errors to finally

converge to zero, significant differences in the transient performances are observed. The proposed

controller enables all the three tracking errors to vary smoothly and the transient time is less than

5 s. While the Controller 1 has obvious oscillations in all the three tracking errors, the Controller

2 has slow convergence rate in both the lateral position and yaw angle errors. Consequently, the

actual trajectories by the three controllers differ considerably, as shown in Figure 6.4(d). It seems

that the Controller 1 steers too late leading the car-like vehicle to go outside the circular trajectory,

though it then tracks the reference trajectory well in a moderate convergence rate. The Controller

2 steers too early and follows the reference trajectory with a slow rate in decreasing the deviations

from the reference trajectory. Noted that it takes more than 12 s for the Controller 2 to converge

all the three tracking errors to zero, as evident in Figure 6.4(b).

The commanded inputs of the three controllers are shown in Figure 6.5. Due to large initial

errors, both the commanded velocity and steering angle from Controller 1 and Controller 2 have

significantly exceeded the input limits. Although the trajectory tracking results of Controller 1 and

Controller 2 are acceptable in the simulation, as seen in Figure 6.4(d), applying such overlarge
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Figure 6.6: Evolutions of the adaptive gains and the first-order derivative of the Lyapunov
functions of the proposed controller for tracking the circular trajectory.

inputs to the real platform may lead to instability of the control system resulting in failures of

trajectory tracking. In contrast, the commanded inputs from the proposed controller are ensured

within the input boundaries. These are realized by the design of adaptive gains and the consider-

ation of steering saturation. The evolutions of the adaptive gains, k1 and k2 are shown in Figure

6.6(a). During the first 1.5 s, k1 increases with the decrease of the absolute value of the longitudinal

position error to drive the vehicle close to the reference trajectory in a short time. After that, k1

stabilizes around 1.4 since the longitudinal position tracking error has become very small. k2 keeps

a constant value in this case since the desired velocity of a circular trajectory is constant. As can

be seen from Figure 6.5(b), the steering angle of the proposed controller is saturated during around

2-3 s. As a result, oscillations can be observed in the evolution of V̇3, as shown in Figure. 6.6(b).

However, V̇2 and V̇3 are both non-positive during the whole simulation showing the effectiveness

and stability of the proposed control laws given by (6–37) and (6–38), as seen in Figure 6.6(b).

6.5 Experimental Results

To further verify the effectiveness of the proposed control strategy in practice, experimental

tests have been conducted on the Quanser self-driving car (QCar) platform. Similar to the simu-

lation study, the trajectory tracking results of the Controller 1 [155] and Controller 2 [158] were

also demonstrated for the sake of comparative study. In order to compare conveniently, all the
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Table 6.2: The initial conditions for S-shape trajectory under experimental tests.

Scenario [a11, a12, a21] pd(0) pe(0)

I [0.2,−0.1,−2.4] [0.120,−0.211, 0.137]′ [0.248,−0.211, 0.137]′

II [0.7, 0.1,−2.2] [0.780,−0.011,−0.137]′ [0.908,−0.011,−0.137]′

control parameters of the three controllers were set as the same as those in simulation study. The

description of the experimental setup is referred to Section 4.6.1. The schematic of the experiment

setup is demonstrated in Figure 4.14. The key parameters of the QCar are summarized in Table

4.5. The QCar test videos can be viewed at https://youtu.be/JTpX6-I-hxo in our Lab’s

website.

6.5.1 Initial Conditions

In the experiment, a more complex but more similar to an actual road S-shape trajectory was

chosen as the reference trajectory. The equations of this trajectory were considered as follows:

Xd(t) = a11 + 0.8 sin(0.4t+ a12)

Yd(t) = a21 + 2.2 cos(0.2t+ a12)

(6–43)

where a11, a12 and a21 are coefficients used to define the initial conditions of the trajectory track-

ing. Two scenarios corresponding to small (Scenario I) and large (Scenario II) initial errors were

considered, and the initial conditions were listed in Table 6.2. From the real-time reference po-

sitions Xd(t) and Yd(t) in Eq. (6–43), the reference vehicle speed, yaw angle and yaw rate were

obtained according to Eq. (6–42).
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Figure 6.7: Posture tracking results of the S-shape trajectory (Scenario I). (a) Longitudinal
position error. (b) Lateral position error. (c) Yaw angle error. (d) Reference and actual trajectories.
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6.5.2 QCar Test Results

6.5.2.1 Scenario I

The tracking results of the S-shape trajectory under small initial posture errors are presented in

Figure 6.7. The longitudinal position errors of the three controllers are comparable to each other

as can be seen in Figure 6.7(a). However, the proposed controller has shown its obvious advantage

in eliminating the lateral position error. As seen in Figure 6.7(b), the lateral position error of the

proposed controller not only has a much faster convergence rate but also a smaller magnitude of

oscillation compared to the other two controllers. While the yaw angle error of the Controller 2 is

slightly smaller than that of the proposed controller at the first corner (during 3-5 s), it increases to a

much larger value than the proposed controller when the QCar comes to the second corner (during

12-14 s), as seen in Figure 6.7(c). The reference S-shape trajectory and the actual trajectories of

the QCar under the three controllers are shown in Figure 6.7(d). The proposed controller tracks

the reference trajectory with the highest accuracy during the whole experiment, though a small

deviation from the reference trajectory exists at the first corner due to the initial error. Although

the Controller 2 has shown comparable accuracy in tracking with the proposed controller during

the most time of the experiment, it is the only controller which has evident deviation at the second

corner. The Controller 1, however, generates a large deviation from the reference trajectory even

from the first corner. Despite the deviation gradually decreases to zero when the QCar enters the

second corner, small cutting corner error is observed thereafter.

The commanded inputs of the three controllers are depicted in Figure 6.8. Since small initial

posture errors are considered in this scenario, both the velocity and steering angle inputs are within

the input boundaries. The saturated steering angle input of the proposed controller in Figure 6.8(b)

reflects that the proposed controller makes full use of the steering capability to track the reference

trajectory at the first corner. By using the adaptive gains whose evolutions with time are shown

in Figure 6.9(a), the commanded steering input of the proposed controller at the second corner is

much smaller than that of the Controller 2 (whose commanded steering input is very close to the

145



0 5 10 15

Time (s)

0

0.2

0.4

0.6

0.8

1
C

o
m

m
a
n
d
e
d
 v

e
lo

c
it
y
 (

m
/s

)

Proposed controller

Controller 1

Controller 2

(a)

0 5 10 15

Time (s)

-0.5

0

0.5

C
o
m

m
a
n
d
e
d
 s

te
e
ri
n
g
 a

n
g
le

 (
ra

d
)

Proposed controller

Controller 1

Controller 2

Steering boundary

(b)

Figure 6.8: Commanded inputs of the three controllers for tracking the S-shape trajectory
(Scenario I). (a) Velocity input. (b) Steering angle input.
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Figure 6.9: Evolutions of the adaptive gains and the first-order derivative of the Lyapunov
functions of the proposed controller for tracking the S-shape trajectory (Scenario I).

steering boundary). The variations of V̇2 and V̇3 with time are demonstrated in Figure 6.9(b). It is

clear to see that both V̇2 and V̇3 are indeed ensured non-positive though the commanded steering is

saturated at the first corner (during 3-5 s).

6.5.2.2 Scenario II

The tracking results of the S-shape trajectory under large initial posture errors are presented in

Figure 6.10. The tracking performance of the Controller 1 is the worst, though the longitudinal

position error is close to that of the other two controllers. Compared to Controller 2 and the
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Figure 6.10: Posture tracking results of the S-shape trajectory (Scenario II). (a) Longitudinal
position error. (b) Lateral position error. (c) Yaw angle error. (d) Reference and actual trajectories.
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Figure 6.11: Commanded inputs of the three controllers for tracking the S-shape trajectory
(Scenario II). (a) Velocity input. (b) Steering angle input.

proposed controller, the Controller 1 leads to much larger magnitudes of the lateral position and

yaw angle errors. By contrast, the Controller 2 and the proposed controller have comparable

tracking performances in longitudinal and lateral position and yaw angle. The resulting trajectories

of the QCar are plotted in Figure 6.10(d). As seen from the figure, the proposed controller achieves

a slightly higher accuracy over the Controller 2 in tracking the reference trajectory, especially when

the QCar is located between the first and the second corner (during 5-14 s). However, the Controller

1 seems to steer the QCar too late and contributes to a large deviation from the reference trajectory

at the first corner. After that the Controller 1 gradually drives the QCar close to the reference

trajectory, however, a large cutting-corner error is observed after the second corner.

While the actual trajectories of the proposed controller and the Controller 2 are close to each

other, the big difference lies in the commanded inputs as seen in Figure 6.11. Due to large initial

posture errors considered in this scenario, the commanded velocity of the Controller 1 at about

1 s and the commanded steering angle of the Controller 2 during the second corner (during 12-

14 s) have exceeded their respective input boundary, 1.5 m/s and 0.5 rad to be specific. These

overlarge inputs may exert harmful effects on the motor and sometimes even cause instability of

the QCar. In contrast, the commanded velocity and steering angle of the proposed controller are
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Figure 6.12: Evolutions of the adaptive gains and the first-order derivative of the Lyapunov
functions of the proposed controller for tracking the S-shape trajectory (Scenario II).

both guaranteed within the input boundaries. At a slight sacrifice of the steering saturation of the

proposed controller, a small cutting-corner error exists after the second corner, as can be seen from

Figure 6.10(d). Anyway, the tracking result of the proposed controller are still comparable to that

of the Controller 2. The variations of the designed adaptive gains k1 and k2 are presented in Figure

6.12(a). Even under the influence of the steering saturation at the second corner, the first-order

derivatives of the Lyapunov functions, V̇2 and V̇3 are again guaranteed non-positive, as evident in

Figure 6.12(b).

6.6 Summary

In this chapter, the problem of trajectory tracking control of low-speed AVs under input con-

straints is investigated. Based on kinematic model, the design of adaptive control gains and consid-

eration of steering saturation are combined within the backstepping technique in an interesting way

to construct an adaptive trajectory tracking control scheme addressing the input constraints. The

design of adaptive control gains not only reduces the demanded tuning efforts, which are generally

neglected by the conventional methods, but also enhances the convergence rate of tracking errors

(especially for lateral position error). While under the influence of steering saturation, the globally

asymptotically stable region of the proposed control scheme is quite large, although the accurate

149



determination may be difficult. Comparative simulations and experimental tests have been car-

ried out to demonstrate the advantages of the proposed control scheme in tracking accuracy while

meeting the requirements by the implementation capability of the actuators.
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Chapter 7

Hightlights, Conclusions and Suggestions

for Further Studies

7.1 Major Contributions and Highlights

This thesis research contributed towards the design and development of trajectory planning and

tracking strategies integrating with the estimated TRFC so as to enhance the safety and reliability

of the AVs under varying road friction conditions. Unlike the reported GNC architectures for AVs,

which have mostly ignored the road friction, this study integrates the estimated TRFC information

in the planning and/or tracking stages for future AVs on roads. The consideration of the estimated

road friction during the planning stage is vital for AVs since the vehicle motion is directly influ-

enced by the forces and moments developed at the tire-road interface. The major contributions and

highlights of this thesis are summarized below:

• A hierarchical TRFC estimation framework is developed making full use of both the EKF

and the UKF techniques to effectively reduce the computational demand, while ensuring the

estimation accuracy. A CUKF framework is further designed so as to achieve rapid conver-

gence and improved accuracy of the TRFC estimation considering longitudinal dynamics of

the vehicle.
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• The TRFC estimation framework is developed on the basis of the measurements available

from the conventional on-board sensors to facilitate its practical applicability. The lateral

velocity constitutes the only exception, which is easily estimated within the proposed esti-

mation framework.

• Inputs in terms of short duration braking pressure pulses are defined for generating sufficient

longitudinal excitations for TRFC estimation, while ensuring only small disturbance in the

vehicle motion.

• The robustness and estimation accuracy of the TRFC framework are illustrated considering

a wide range of vehicle speeds, road friction coefficients, lane-change maneuvers.

• A new computationally efficient trajectory planning scheme is designed for AVs where the

lane change trajectory planning problem is reduced to the selection of an appropriate lane

change duration. The main features of the proposed trajectory planning scheme can be easily

customized according to the vehicle occupant’s preferences.

• TRFC-adaptive acceleration and speed-adaptive jerk limits are designed for intelligent driv-

ing, while ensuring occupant’s comfort. These are integrated in the trajectory planning

scheme considering a wide range of road friction conditions and forward speeds.

• A new MPC scheme is designed by integrating the output weights in the cost function to-

gether with the constraints on the magnitude of the outputs defined by the TRFC. The pro-

posed MPC scheme requires only lateral position input for tracking the desired path.

• The adaptive weights of the outputs in the cost function are identified to ensure effectiveness

of the proposed MPC scheme over a wide range of speeds. The adaptive trajectory tracking

control scheme thus enhances its operational range.

• The command inputs of the low-speed AVs are ensured within the defined boundaries by

integrating adaptive control gains with consideration of steering saturation using the back-

stepping technique. The proposed scheme resulted in rapid convergence of the tracking error,
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especially for the lateral deviation from the reference trajectory.

• An experiment is designed to verify the effectiveness of the proposed adaptive trajectory

tracking control scheme using the scaled model QCar test platform. The experimental results

demonstrated the efficacy of the proposed control scheme under low-speed operations.

7.2 Major Conclusions

The major conclusions drawn from various aspects of this thesis research are summarized be-

low:

• The proposed hierarchical TRFC estimation framework using both the EKF and the UKF

techniques could provide accurate estimations of TRFC on the basis of lateral dynamic re-

sponses of the vehicle to stimuli attributed to typical single and double lane-change maneu-

vers.

• The accuracy of the TRFC estimation framework strongly relies on the magnitudes of the

vehicle responses to maneuver-induced excitations. Relatively larger lateral tire excitation

encountered under a DLC input resulted in accurate estimations, although it would cause

greater disturbance to vehicle motion and occupants’ discomfort. The SLC input is thus

considered meritorious to limit the disturbance to vehicle motion, while ensuring equally

accurate estimations of TRFC, especially when the friction coefficient is below 0.8.

• The friction estimation error of the braking pressure pulse-based method is affected by the

magnitude of the braking pressure. Too small a magnitude of the braking pressure generates

insufficient slip ratio, which can lead to underestimation of the TRFC.

• Once the magnitude of the braking pressure is appropriately selected, the errors in the slip

ratio and the TRFC revealed very low sensitivity to variations in the vehicle speed. The pro-

posed short duration braking pressure pulse-based method can provide effective estimations
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of TRFC under a wide range of initial vehicle speeds with substantially smaller disturbances

to the vehicle motion.

• The trajectory planning on the basis of the proposed 7th-order polynomial curve can ensure

a smooth trajectory corresponding to a SLC maneuver with adequate, while satisfying target

occupant’s comfort.

• Integration of the friction-adaptive acceleration and speed-adaptive jerk limits into the plan-

ning scheme can help achieve the trajectory similar to that tracked by an experienced human

driver. The traceability of the planned trajectory was verified considering the tracking error

attained with the driver-model module.

• It is shown that a DLC trajectory of a skillfull driver can be simply simulated by taking into

account both the TRFC and the vehicle speed. By manipulating the output weights in the

cost function of the MPC, the DLC trajectory can be effectively tracked with knowledge of

only the lateral position.

• The magnitude of the tracking error of the MPC scheme strongly relies on the speed. In-

creasing the output weight of the yaw rate with the forward speed can lead to improved

tracking performance. Moreover, the maximum forward speed should be bounded to ensure

stability of the MPC.

• Design of a trajectory tracking controller with vehicle speed- and position error-adaptive

control gains can not only facilitate the tuning of the controller but also yield enhanced

tracking performance.

• When steering saturation is considered, the globally asymptotically stable region is quite

large under the proposed control law for low-speed car-like vehicles. However, the accurate

determination of such region may be difficult.

• The experimental results based on the scaled model QCar platform suggest that the track-

ing performance of the kinematic controller is acceptable when the AVs are driving under
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relatively low speeds.

• Long time input saturation should be avoided, which may lead to instability of the QCar in

the experimental tests.

7.3 Recommendations for Future Studies

The current thesis research offers attractive potentials for enhancing practical applications of

AVs by synthesizing planning and tracking methods with TRFC information while imposing min-

imal interference with the vehicle motion. Far more efforts, however, are desirable in developing

more reliable and robust path planning and path tracking for the AVs. Some of the suggested future

directions are briefly described below:

• TRFC estimation methods, invariably, require lateral or longitudinal excitations to the ve-

hicle to detect changes in the dynamic responses. Such excitations, however, cause notable

disturbances to the vehicle motion, which are perceived annoying for the occupant. It is thus

desirable to seek TRFC estimation methods that permit detection of changes in dynamic

states of the vehicle under relatively low side-slip or slip ratio variations.

• The proposed TRFC estimation methods for AVs in this thesis are only validated using

CarSimTM platform coupled with MATLAB/SimulinkTM. It is recommended that the ef-

fectiveness of the TRFC estimators be evaluated through road tests considering different

road friction conditions, vehicle speeds and lateral/longitudinal excitations.

• The trajectory planning framework and the MPC-based tracking scheme proposed in this

thesis are limited to a specific directional maneuver at a constant speed. The effectiveness

of the proposed schemes should be investigated considering widely different maneuvers per-

formed under varying speed. Alternatively, varying-speed trajectory planning and tracking

schemes should be explored for more practical applications in AVs.
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• The TRFC estimation methods on the basis of longitudinal dynamics have been limited to

vehicle operation on a straight-line course with uniform friction. The efficacy of the esti-

mation algorithm needs to be investigated for vehicle operations on curved roads, and road

segments with split or varying friction conditions. These would help increase the robustness

and effectiveness of the proposed trajectory planning and tracking schemes.

• In the present study, the trajectory planning and tracking control are limited to lane change

situations without considering the vehicles in the target lane (adjacent lane). It is important

to develop the trajectory planning and tracking framework applicable to coordinated driving

considering multiple vehicles around the host vehicle in both the current and the adjacent

lanes.

• In view of the practicality of trajectory tracking for low-speed AVs, the constraints on accel-

eration and steering rate are equally important and they should be considered in the adaptive

control scheme.
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[112] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning

and control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent

Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[113] B. Li, T. Acarman, Y. Zhang, L. Zhang, C. Yaman, and Q. Kong, “Tractor-trailer vehicle

trajectory planning in narrow environments with a progressively constrained optimal control

approach,” IEEE Transactions on Intelligent Vehicles, vol. 5, no. 3, pp. 414–425, 2020.

[114] F. You, R. Zhang, G. Lie, H. Wang, H. Wen, and J. Xu, “Trajectory planning and tracking

control for autonomous lane change maneuver based on the cooperative vehicle infrastruc-

ture system,” Expert Systems with Applications, vol. 42, no. 14, pp. 5932–5946, 2015.

[115] B. Li, Y. Zhang, Y. Feng, Y. Zhang, Y. Ge, and Z. Shao, “Balancing computation speed and

quality: A decentralized motion planning method for cooperative lane changes of connected

and automated vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 340–

350, 2018.

[116] Y. Chen, C. Hu, and J. Wang, “Motion planning with velocity prediction and composite

nonlinear feedback tracking control for lane-change strategy of autonomous vehicles,” IEEE

Transactions on Intelligent Vehicles, vol. 5, no. 1, pp. 63–74, 2019.

[117] J. Hu, S. Rakheja, and Y. Zhang, “Real-time estimation of tire–road friction coefficient based

on lateral vehicle dynamics,” Proceedings of the Institution of Mechanical Engineers, Part

D: Journal of Automobile Engineering, vol. 234, no. 10-11, pp. 2444–2457, 2020.

170



[118] J. Hu, Y. Zhang, and S. Rakheja, “Path planning and tracking for autonomous vehicle col-

lision avoidance with consideration of tire-road friction coefficient,” in 21st IFAC World

Congress, 2020.

[119] I. Bae, J. Moon, and J. Seo, “Toward a comfortable driving experience for a self-driving

shuttle bus,” Electronics, vol. 8, no. 9, p. 943, 2019.

[120] I. Bae, J. Moon, J. Jhung, H. Suk, T. Kim, H. Park, J. Cha, J. Kim, D. Kim, and S. Kim,

“Self-driving like a human driver instead of a robocar: Personalized comfortable driving

experience for autonomous vehicles,” arXiv preprint arXiv:2001.03908, 2020.

[121] G. Geng, Z. Wu, H. Jiang, L. Sun, and C. Duan, “Study on path planning method for imitat-

ing the lane-changing operation of excellent drivers,” Applied Sciences, vol. 8, no. 5, p. 814,

2018.

[122] J. Hu, S. Rakheja, and Y. Zhang, “Tire-road friction coefficient estimation under constant

vehicle speed control,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 136–141, 2019.

[123] J. Hu, S. Rakheja, and Y. Zhang, “Tire-road friction coefficient estimation based on designed

braking pressure pulse,” Proceedings of the Institution of Mechanical Engineers, Part D:

Journal of Automobile Engineering, vol. 235, no. 7, pp. 1876–1891, 2021.

[124] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change maneuvers of self-

driving vehicles based on formalized traffic rules,” in 2017 IEEE Intelligent Vehicles Sym-

posium (IV), pp. 1477–1483, 2017.

[125] D. Martin and D. H. Litwhiler, “An investigation of acceleration and jerk profiles of public

transportation vehicles,” in Proceedings of ASEE Annual Conference and Exposition, pp. AC

2008–1330, 2008.

171



[126] W. Chee, M. Tomizuka, S. Patwardhan, and W.-B. Zhang, “Experimental study of lane

change maneuver for AHS applications,” in Proceedings of the American Control Confer-

ence, vol. 1, pp. 139–143, 1995.
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