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Abstract

Comparison of Sequence-to-Sequence and Retrieval Approaches on the Code

Summarization and Code Generation Tasks

Nicolas Chausseau

In this study, we evaluate and compare state-of-the-art models on the code generation and

code summarization tasks (English-to-code and code-to-English). We compare the performance of

neural seq2seq BiLSTM [111] and attentional-GRU architectures [54], along with that of a semantic

code search model reproduced from [90]. We compare these three models’ BLEU scores (1) on

their original study datasets as well as (2) on additional benchmark datasets [111, 67, 54], each

time for translation and back-translation (i.e. English-to-code and code-to-English). We observe

that, surprisingly, semantic code search performs best overall, surpassing the seq2seq models on

5 task-dataset combinations out of 8. We find that the seq2seq BiLSTM always outperforms the

attentional-GRU, including on the relatively large (2M pairs) Javadoc-based dataset from the original

attentional-GRU study, setting a new high score on that dataset, higher than four previous published

studies.

However, we also observe that model scores remain low on several datasets. Some test-set

questions are harder to answer due to a lack of relevant examples in the training-set. We introduce a

new procedure for estimating the degree of novelty, and difficulty of any given test-set question. We

use the BLEU score of the highest-scoring training-set entry as reference point for model scores on

the question, a procedure which we call BLEU Optimal Search, or BOS. The BOS score (i) allows us

to generate an information retrieval ceiling for model scores for each test-set question, (ii) can help

to shed light on the seq2seq models’ capacity to generalize to novel, unseen questions on any dataset,

and (iii) helps to identify dataset-artifacts, by inspecting the rare model answers that score above it.

We observe that the BOS is not reliably surpassed by the seq2seq models, except in the presence

of dataset-artifacts (such as when the first words of the question contains the answer), and call for

further empirical investigation.
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Chapter 1

Introduction

Developers, beginners and experts alike, spend a significant amount of time searching for code,

especially when navigating new languages and frameworks [106]. They usually search using natural

language queries, describing a software engineering task; for example, looking for a code snippet for

the task of “determining variable type in Python”, or “filtering rows in pandas using regex”. Several

websites, e.g., StackOverflow, are used today for this purpose and provide community-generated

documentation and tutorials. In recent years, a number of systems were developed to make such

recommendations of code snippets automatically to accelerate the search for relevant code snippets

and to improve developer productivity [90, 47, 35, 81]. Systems take a natural language query as

input (intent) and return a code snippet. Search-based systems use information retrieval techniques

across a parallel corpus of English-code pairs to find the most relevant existing code snippet. In

contrast to search-based systems, generative, translation-based systems use statistical or neural

approaches, in particular sequence-to-sequence models, to produce a potentially new code snippet

to solve the specific query. In this case, the models are trained to generate new code, instead of

retrieving an existing code snippet. These neural translation systems can be trained on the same

corpora of English-code pairs that are used by search-based systems.

Systems which generate or retrieve code snippets based on an English description can also be run

in reverse taking a code snippet as input and summarizing it in natural language, i.e. performing the

Code-to-English task, also called code summarization. Automating code summarization can be useful

to, for example, generate descriptions for lengthy or complicated functions that are undocumented, or

for machine-generated code. Since most search and translation systems were designed to be language

agnostic [98], the code summarization task can be automated using the same search systems and

translation systems that are used for the English-to-code task, and can also be trained on the same

datasets of English-code pairs. Tables 1, 2, and 3 show some sample model outputs for three test-set
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questions from one of the datasets we use in this study (CoNaLa challenge dataset).

Sample test-set question Test-set answer AttendGRU answer

send a signal signal sigusr1 to the current process os.kill(os.getpid(), signal.SIGUSR1) print(`hello`, `hello.join(`\\ \\ python)

decode a hex string 4a4b4c to utf 8 bytes.fromhex('4a4b4c').decode('utf-8') ```````.decode(`utf-8`)

check if all elements in list mylist are identical all(x == myList[0] for x in myList) all(list(range(a)), set(b))

Table 1: Example outputs for the CodeSearch retrieval model on CoNaLa challenge test-set questions

Sample test-set question Test-set answer Seq2SeqLSTM answer

send a signal signal sigusr1 to the current process os.kill(os.getpid(), signal.SIGUSR1) round('<unk><unk><unk>}'.format(h), -1)

decode a hex string 4a4b4c to utf 8 bytes.fromhex('4a4b4c').decode('utf-8') urllib.parse.unquote('raw_unicode_escape')

check if all elements in list mylist are identical all(x == myList[0] for x in myList) all(x == 0 for x in L)

Table 2: Example outputs for Seq2SeqLSTM sequence-to-sequence model on CoNaLa challenge test-set questions

Sample test-set question Test-set answer CodeSearch answer

send a signal signal sigusr1 to the current process s.kill(os.getpid(), signal.SIGUSR1) subprocess.call(['/usr/bin/perl', './uireplace.pl', var])

decode a hex string 4a4b4c to utf 8 bytes.fromhex('4a4b4c').decode('utf-8') \"\"\"\\\\xc3\\\\x85\u3042\"\"\".encode('utf-8').decode('unicode_escape')

check if all elements in list mylist are identical all(x == myList[0] for x in myList) len(set(mylist)) == 1

Table 3: Example outputs for AttendGRU sequence-to-sequence model on CoNaLa challenge test-set questions

The goal of this work is to evaluate and compare the performance of a search model and neural

translation models for code generation and summarization. In particular, we would like to compare the

recent neural sequence-to-sequence translation models with a simpler code search model (document

retrieval model).

We select three state-of-the-art models: a seq2seq BiLSTM model (abbreviated Seq2SeqLSTM

throughout this text), replicated from Yin et al. [111], a seq2seq attentional-GRU model (abbreviated

AttendGRU), replicated from Leclair et al. [54], and a semantic code search model (abbreviated

CodeSearch), which is reproduced based on Sachdev et al. [90] (its code and dataset was not released

at the time our study was conducted). We evaluate these models on the following datasets: (1)

a dataset from Yin et al. [111] containing 3K manually annotated English-to-code pairs scraped

from StackOverflow (i.e. the small “manually annotated” CoNaLa dataset) (2) a dataset again from

Yin et al. [111] containing 600K English-to-code pairs scraped from StackOverflow (i.e. the large

“mined” CoNaLa dataset), (3) the dataset from Leclair et al. [54] containing 2M Java docstring-code

pairs from Github, and (4) the dataset from Sennrich et al. [67] which contains 143K Python

docstring-code pairs also from Github. Each time, we train in both translation directions, that is,

both for the English-to-code task and the code-to-English task. We answer the research questions

described below, in Chapter 5.
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To summarize, we evaluate three techniques: AttendGRU, Seq2SeqLSTM, and CodeSearch.

We have four datasets: StackOverflow manually annotated (SOa), StackOverflow (SO), Pydoc,

Javadoc. We have two tasks: code-to-English (C2E) and English-to-code (E2C). As a result, our

study involves 24 task-dataset-model combinations, which forces us to use the following notation:

Task-Dataset-Technique. For example, running the AttendGRU for the the code-to-English task on

the manually annotated StackOverflow dataset is represented as C2E-SOa-AttendGRU.

Research Questions and Contribution Summary

RQ1: (English-to-Code) How well do the existing techniques
perform for code generation?

In order to answer the research question described above, we start by replicating the Seq2SeqLSTM

model on its original dataset, the CoNaLa challenge dataset [111] (E2C-SO). We then run all models

on the datasets from all studies (novel task-dataset combinations).

E2C-SO (Yin et al. dataset [111], Seq2SeqLSTM replication). The first study replicated

is Yin et al. [111]. The seq2seq BiLSTM with attention was originally trained for the English-to-code

task, on the StackOverflow CoNaLa corpus (E2C-SO) and the CoNaLa challenge authors reported a

BLEU4 score of 14.26 on the CoNaLa leaderboard [111]. In our replication we obtain a marginally

higher score of 15.75. On this E2C-SO dataset from Yin et al. [111] the Seq2SeqLSTM remains the

best performing model. The AttendGRU and CodeSearch models have a much lower score of 4.63

and 4.90, respectively.

We observe that the models score zero on the large majority of the test-set questions. The

best-scoring Seq2SeqLSTM obtains a score of zero on 337 out of 500 test-set questions (67.40%). For

the AttendGRU and CodeSearch models, the number of zeros is even higher: 448 (89.60%) and 444

(88.80%) respectively. For all three models, we find that the BLEU metric is skewed and misleading,

as the median BLEU score for individual test-set questions is zero.

Finally we note that, since the authors of the CoNaLa challenge, Yin et al. [111], use the

Seq2SeqLSTM to filter the larger E2C-SO (CoNaLa) dataset, it might have an unfair advantage

on that dataset. This could be the cause of the unusually large lead of 10 BLEU4 points that the

Seq2SeqLSTM obtains over the other two models on that task-dataset combination, by far the largest

lead it has on the second-best scoring model on any dataset in our experiments (second largest lead

it obtains is 1.96 BLEU4, C2E-Javadoc).
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Novel task-dataset combinations (E2C-SOa, E2C-Pydoc, E2C-Javadoc). In theory the

Seq2SeqLSTM, AttendGRU and CodeSearch models are all three language agnostic: they can be run

on the other task-dataset combinations, and reversed for back-translation when necessary. We train

the models on the three remaining task-dataset combinations for code generation (E2C), which have

not been examined in prior work: E2C-SOa, E2C-Pydoc, and E2C-Javadoc.

On the three novel task-dataset combinations for E2C (code generation), surprisingly, CodeSearch

performs the best every time. We also observe that the Seq2SeqLSTM outperforms the AttendGRU

on all E2C task-dataset combinations, by a very large margin of at least 5 BLEU4 points.

Again here on novel task-dataset combinations, for all three models, we find that the average

BLEU score for the entire test-set is misleading, as the median score is zero for individual questions.

The median score for individual questions is zero on every task-dataset combination for E2C.

RQ2: (Code-to-English) How well do the existing techniques
perform for code summarization?

In order to answer the research question described above, we start by replicating the AttendGRU

model on its original dataset, the Leclair et al. dataset [55] (E2C-SO). We then run all models on

the datasets from all studies (novel task-dataset combinations).

C2E-Javadoc (LeClair et al. dataset [54], AttendGRU replication). The second study

replicated is LeClair et al. [54]. The AttendGRU model was trained for code summarization on the

C2E-Javadoc corpus [55] and the authors reported a BLEU4 score of 19.4. In our replication, we

obtain a score of 19.58 BLEU4.

Again for C2E, on the dataset from a previous study, we observe that the Seq2SeqLSTM is the

best performing: the Seq2SeqLSTM scores 21.28, above their AttendGRU model. The Seq2SeqLSTM

also outperforms three other recent studies on this same dataset: a neural seq2seq model using

attention to file context [53], and graph neural networks [38], as well as two Transformer models in

[36] and in [38]. CodeSearch scores below neural sequence-to-sequence models on this task-dataset

combination from Leclair et al. [54], but is not very far below, with a BLEU4 of 17.12.

Again for C2E, we observe a large number of model answers with zero score. The best-scoring

Seq2SeqLSTM obtains a score of zero on 73,338 (80.73%) out of the original 90,908 test-set questions

from the dataset of Leclair et al. [54]. For the AttendGRU and CodeSearch models, the number of

zeros is even higher: 75,158 (82.68%) and 78,435 (86.28%) respectively. For this reason, we believe

that corpus-level BLEU scores are inappropriate as a measure when the data is skewed, since they
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represent an average over the test-set as a whole. Also, for this C2E-Javadoc dataset, as we discuss

in Section 5.3 in more detail, we identified a large number of dataset-artifacts (trivial questions)

which inflate scores for the two neural sequence-to-sequence models, i.e. the Seq2SeqLSTM and

AttendGRU, but not for the CodeSearch model.

Novel task-dataset combinations (C2E-SOa, C2E-SO, C2E-Pydoc). On the novel task-

dataset combinations, again for C2E, CodeSearch performs the best. It surpasses the Seq2SeqLSTM

and AttendGRU models on 2 out of 3 task-dataset combinations. CodeSearch is only surpassed on

C2E-SO, by the Seq2SeqLSTM, and only by a very small margin of 1.05 BLEU points. This dataset

is also exceptional in that all three models score extremely low on it, each having more than 97%

answers with a BLEU4 score of zero.

We observe that the Seq2SeqLSTM outperforms the AttendGRU on all C2E task-dataset combi-

nations, although this time the AttendGRU does better, and comes within 2 BLEU4 points of the

Seq2SeqLSTM on 2 out of the 3 novel task-dataset combinations. On the two SO/SOa datasets, the

AttendGRU performs better in the E2C direction than in the C2E direction, while on the Pydoc and

Javadoc datasets it performs better in the C2E direction than in the E2C direction. This trend is

observed for all models, although less pronounced, and it appears as if the docstring datasets are

easier in the C2E direction.

These results lead us to a new question: why are scores so low on certain datasets, for all models,

yet so high on other ones, again for all models? For our datasets’ test-train splits, a large majority of

questions do not have relevant, related answers in the train-set, unlike in the study from Sachdev

et al. [90], where they tested the semantic search model only on answers which had a very similar

answer in the training-set (duplicate or quasi-duplicate across test and train sets). To investigate

this question, we examine, for each given test-set question, whether we have good, relevant training-

examples. We do this using the BLEU Optimal Search (BOS) procedure described in the next section.

RQ3: (Generalization and Dataset-Artifacts) Can
sequence-to-sequence models surpass the BOS ceiling for any
particular test-set question? Under what circumstances?

We make a novel contribution by introducing the BLEU Optimal Search (BOS) score. For each

document in the test-set (or for a random sample of them) we calculate the BLEU score against

all documents in the training set and report the training document with the highest BLEU score.

This result represents the best possible result that is contained in the training data for that test-set
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question, i.e. that could be found by search. This BOS score is thus the effective ceiling score for the

CodeSearch model and can be used as reference point for the neural sequence-to-sequence models.

Manually inspecting model answers that score above the BOS leads to discovery of

dataset-artifacts. The first observation from BOS results is that sequence-to-sequence models

rarely score above the BOS, on any individual test-set question and on the test-set as a whole. As

can be seen in Figures 11 to 18, the BOS ceiling (retrieval ceiling) is rarely surpassed. On the

docstring-derived datasets however, we can see that the sequence-to-sequence models are sometimes

able to score above the BOS score for a greater number of individual test-set question. In a random

sample of test-set questions for the C2E-Javadoc corpus from [54], we observe that for every one

of these instances the high score is explained by the dataset-artifact described in section 1: the

question contains the answer; that is, the function identifier split by underscore by the dataset

preprocessing from [54, 90] contains almost all the words of the docstring and in the same order. This

dataset-artifact, present mainly in the two docstring corpora (Pydoc, Javadoc), greatly inflates scores

for both sequence-to-sequence models, as they learn to copy the first tokens of the “question” as

“answer”. For example, on the C2E-Javadoc task-dataset combination from the original AttendGRU

study, both the AttendGRU and Seq2SeqLSTM are able to score above the BOS 15 and 22 times out

of the 58 and 56 non-zero answers that they obtain in our sample, respectively. This constitutes more

than 25% of the 58 non-zero answers for the AttendGRU, and more than 39% of the 56 non-zero

answers of the Seq2SeqLSTM. Given that non-zero model scores are so rare to start with, these

dataset-artifacts have a major influence on the sequence-to-sequence models’ scores. CodeSearch

cannot take advantage of such artifacts, since it can only return an existing training-set instance, intact.

The C2E-Javadoc original study dataset from Leclair et al. [54] is inherently easier

for the two neural seq2seq models due to the dataset-artifacts. After examining BOS scores

in relation to model scores for all datasets, we conclude that the original study dataset from [54]

(C2E-Javadoc) inherently favours neural sequence-to-sequence models, because it contains by far

the largest number of model answers that are affected by dataset-artifacts, across all task-dataset

combinations examined in our experiments.

The conclusion from the analysis of BOS scores in relation to model scores is that the capacity to

generalization is essentially absent in off-the-shelf neural seq2seq models tested, on our particular

datasets. The vast majority of the time, the neural seq2seq models can only answer a test-set

question as well as the best answer available in the training-set. Thus, in order to obtain high model

scores without the presence of artifacts, a high BOS score is a necessary prerequisite, in all of our

experiments over 24 different task-dataset-model combinations. This has important implications for
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predicting seq2seq model scores on a new test-set, as well as for data augmentation approaches for

practical applications.

This thesis is structured as follows. In Chapter 2, we perform a broad survey of previous

works on code generation, code summarization and code search as well as evaluation methods and

generalization in DNNs. In Chapter 3, we describe the three models evaluated in this study, the

BLEU metric and the BOS procedure. In Chapter 4, we describe the datasets, preprocessing and

training hyperparameters used in our experiments. In Chapter 5, we present results for each of our

research questions, and discuss threats to validity. In Chapter 6, we discuss our results, and suggest

avenues for future work. In Chapter 7, we conclude the thesis and highlight our contributions.
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Chapter 2

Survey of the Literature

The goal of this study is to evaluate systems that can find or generate a code snippet from an

English description, and vice versa. These two tasks are sometimes called the English-to-code and

code-to-English tasks. We break the related literature into the following categories:

1. Big Code and Naturalness (Machine Learning and Natural Language Processing in Software

Engineering)

2. Code Generation From Natural Language Inputs (English-to-code)

3. Code Summarization (Code-to-English)

4. Evaluation Methods and their Criticisms

2.1 Big Code and Naturalness

Since the advent of large online repositories of code and question-answer websites, such as Github

and StackOverflow, machine learning applications for source code have developed at a rapid pace.

Allamanis et al. [2] survey the literature on machine learning for big code and naturalness (machine

learning and statistics applied to source code datasets). They report that the interest in big code

and naturalness started with frequent API usage pattern mining approaches, that used for example

frequent itemset counting, clustering, retrieval approaches, while more recent approaches tend to use

deep neural networks (DNNs). Allamanis et al. criticize some of the metrics used to evaluate the

models on code-related tasks, such as the BLEU score: they note that those metrics were originally

devised for NLP tasks, but are often not well adapted to source-code-related tasks. They reflect

that the granularity over which the BLEU metric is computed (per-statement vs. per-token) can be

controversial. They remark on another downside of the BLEU score: the possibility of several correct
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answers for a given test-set question. Indeed, syntactically diverse answers may be semantically

equivalent, potentially causing BLEU scores to be low on a significant portion of test-set questions.

Allamanis et al. continue with noting that although DNNs have been shown to learn some aspects of

compositionality, highly compositional objects (such as the nested combinations of API elements

into abstract syntax trees present in code) remains a challenge. This is an aspect that is specific to

source code: they note the “highly compositional nature of code”, and its abstract syntax tree (AST)

structure, often forming deeper trees than the ones seen in natural languages. They suggest that

improving machine learning for big code, by improving representations of source code artifacts, could

also improve several downstream tasks, such as bug fixing, code auto-completion and recommendation,

and code transcompilation. This preoccupation with compositionality of source code is reflected in

many studies in this area of research. For example, many studies [54, 6, 3, 53, 18, 82, 72, 64, 115, 45]

have tried representing the source code processed by machine learning models as an abstract syntax

tree (AST), instead of a sequence of tokens, aiming to increase performance and generalization

capacity. Some AST-based approaches are shown to outperform non-AST based approaches [6],

but this is not always the case [30]. Finally, Allamanis et al. note the difficulty of finding data of

high quality for machine learning applications. They note the potential of data coming from coding

teaching websites for future applications.

API Usage Pattern Mining

Usages of API elements from programming languages and frameworks are sometimes complex and

often not well documented for corner use cases. To compensate for this lack of documentation, one

line of work aims to mine API usage patterns in large online code repositories such as Github. These

search approaches have aimed to identify and collect the different ways in which API elements are

used for different tasks.

Michail et al. [68] release CodeWeb, a system that mines frequently reused API methods and

classes from a library. Their tool can help developers learn new APIs, and facilitate code reuse.

Zhong et al. [119] developed MAPO, a tool that mines API usage patterns from clustered search

results, using a frequent subsequence mining technique. The results are presented to the developer

performing the search, for inspection. The API usage patterns mined are more complex than those

of previous works, and can involve multiple methods and temporal information. They find that

their tool returns fewer and more relevant results than previous search approaches, and assess the

effectiveness of their tool in an empirical study with developer users. Wang et al. [103] develop

BIDE, a system that mines API usage patterns more efficiently than previous approaches, using less

memory, and showing faster query speeds. Their approach relies on the BackScan pruning method

and the ScanSkip optimization technique.
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Code Retrieval for Source Code Recommendation, Auto-Completion

By using measures of similarity between user-generated code and source code in existing repositories,

it is possible to make recommendations of code changes, or provide auto-completions of source code.

Holmes et al. [43] develop Strathcona (2005), a system that recommends code snippets based on

their structural similarity with user-provided code. Their system is used as Eclipse plugin for source

code recommendation: it returns a list of best code snippets matches for the query, for perusal by the

developer. They conduct a human evaluation of their tool, and find that on 5 out of 8 development

tasks of increasing difficulty, the developers could find a relevant code snippet in the results list.

Yang et al. [63], similarly use the structural context of a code query to find suitable code examples

in a code repository. Cubranic et al. [23, 24] also develop and Ecplise plugin, HipiKat, which

recommend artifacts relevant to the tasks that is performed by the developer, by searching project

archives. Ying et al. [113] developed a source code recommender which suggests potentially relevant

source code based on the current set of files being modified by the developer, and previous project

history in version control. Sahavechaphan et al. [92, 71] also developed a combination of search,

graph-based code mining algorithm to recommend relevant code snippets based on the context of code

under development. Their tool provides both specialized, context-sensitive code recommendations as

well as more general results which cover a larger number of scenarios.

N-gram and Neural Language Models for Source Code Auto-Completion, Program

Repair

Hindle et al. [40] note that programming language present statistical regularities which make them

predictable, like natural languages. They used an n-gram language model to build a code completion

engine for Java. This work instead of relying on structural aspects of the code to search and provide

code recommendations, is inspired by statistical language models used in the field of natural language

processing (NLP). Several subsequent studies will adopt this approach and adapt machine learning

models, originally developed in the field of NLP, to source code related tasks.

Nguyen et al. [76] develop SLAMC, a system for source code auto-completion. It improves on the

simple n-gram language model proposed by Hindle et al. [40], by incorporating semantic information

in n-grams, by specifying pairwise associations (e.g. fopen, fclose), and by using topic modelling,

whereby a codebase can be charaterized by several “code topics”. In essence, it aims to improve

on the shortcomings of an n-gram model, for example (i) long dependencies (try ... catch), (ii)

capturing the “context” or topic of the code to-be-completed (e.g. file i/o, database connection, etc.).

They show very large improvements of 10 to 25% in top-k accuracy over an n-gram language model.

In [72], Nguyen et al. develop GRALAN, a graph-based statistical language model for source code

auto-completion. They reason that frequently-used code templates being mined are best represented
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as abstract syntax trees (AST). Moreover, unlike for natural languages, source code AST could be

parsed unambiguously if the code compiles. Their system therefore aims to mine a frequent parent

graph to the graph that was started by the developer, allowing for its completion. Matching a

sub-graph with its parent is done by Bayesian inference (since it can belong to more than one parent

graph). Their system outperforms an n-gram model, however, although not explicitly mentioned,

it appears to score lower in top-k accuracy compared to their previous SLAMC model, which was

based on a modified n-gram model, with no graph construct.

Maddison et al. [64] compare tree-traversal models with earlier off-the-shelf n-gram based language

models on the code generation task, from code inputs (not English-to-code). They reason that using

an AST representation of the source code is crucial in order to improve their system. They show

that their Log-bilinear Tree-Traversal (LTT) system which combines n-grams and AST outperforms

simple n-gram based models. They train their models on a code corpus scraped from TopCoder.com.

Liu et al. [59] use an LSTM for Javascript code completion. They approach the problem of

code completion as an AST-traversal problem, and use AST as input to the model, without the

type information. They train the model on a benchmark dataset of 100K Javascript functions from

previous work, and show that it can surpass a decision tree baseline.

More recently, Svyatkovskiy et al. [99] used a Transformer architecture for code completion. Their

model is based on the GPT-2 architecture, with a similar number of trainable parameters, and is

trained on 1.2 billion lines of source code in Python, C#, JavaScript and TypeScript. They obtain a

ROUGE-L precision and recall of 0.80 and 0.86, almost double the score of a 5-gram language model,

for code completion in the Python language. They also provide an efficient implementation that

meets the requirements for commercial applications in the Cloud and in IDEs such as Visual Studio.

Code search, in addition to helping software developers, can also be applied to improve automatic

bug fixing [8] and program repair when used in conjunction with a genetic algorithm [107]. The

search model complements the genetic algorithm by suggesting relevant candidate code modifications

to apply.

Code Transcompilers

Also inspired by language models coming from the field of NLP, other approaches adapt translation

models to the code transcompilation task. They use source code in one programming language as

input to generate new code in another programming language.

Karaivanov et al. [50] used phrase-based machine translation to translate C# into Java. They

train on a large C# and a Java parallel dataset. They observe that phrase-based machine translation

(PBMT) does not produce syntactically valid code, and decide to extend the PBMT to accomodate

the grammar of the language. Lachaux et al. [87] use neural translation models to translate between
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programming languages. They show that a neural unsupervised approach significantly outperforms

two rule-based baselines. They also show that the neural models are versatile and language-agnostic,

they can be trained to translate between a variety of programming languages. In our study, we also

use two neural machine translation (NMT) models, but instead of being trained on code as input

and guide to generate the code snippet answer, our models are trained on an English intent / guide.

2.2 Code Generation From Natural Language Input (English-

to-code)

One shortcoming of the first approaches for API usage pattern mining, code completion, and

recommendation is that they do not allow to search code with an English description. This use

case however is one of the most useful to developers, when they do not know in advance which

API elements to use to accomplish a particular software engineering task. Sadowski et al. [91] find

that 34% of internal code search queries at Google aim to find short code examples illustrating API

element usage; it is the most frequent goal of a code search. Other frequent uses involve locating

code to edit, understanding and debugging functions used, and finding code authors. They observe

that code search is essential to developer workflow, with queries being made on average 12 times

a day (with a median of 6). They note that code search tool usage has been increasing in recent

years. Shi et al. [95] report that 1.75 million code search queries were performed at Baidu in a year.

They estimate that using a new code search platform, iSearch, could save 7057 working hours per

year from code search features. iSearch provides code fragments search, navigation features, and

dependency analysis. Xia et al. [106] find that during the software development phase of software

projects, developers may search online for examples of API usage or to debug errors. They find that

developers spend a median of 15% of their time searching for code example online. Xia et al. [106],

also find that finding reusable code snippets is the third most frequent goal of developer web searches.

Code search systems can be used to search for common ways to use API elements, which is useful

to learn a new programming library or framework. Another important use of code search models

in industry is to search for functions inside large codebases, to retrieve all functions related to a

particular task or intent [90, 91, 95]. This is especially useful, to help find function usage examples,

locate existing functions to facilitate code reuse, or instead to find where to implement a particular

code change.

More recently generative models such as neural machine translation (NMT), or sequence-to-

sequence models, have been tested on the task of providing code examples given an English query.

The use case for these types of generative models would be more for code suggestion, or discovery

of new APIs and frameworks, but does not directly apply to the code search and reuse use case
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described above.

Search-Based Approaches

Several models were developed to search for code snippets using an English description, or intent.

A recent implementation a semantic code search system is Neural Code Search (NCS) by Sachdev

et al. [90]. The NCS system is a kNN-based code retrieval system, which evaluates the semantic

similarity between the user-provided English query and the English words associated with code

snippets from the training-set and returns top-k best matches for the user (developer) to inspect.

Sachdev et al. use as training-set a corpus of Github-scraped functions, and extract English words

from the function by, for example, splitting function names by underscore or camel case, or extracting

variable names, which will then be used together as “intent” for building the bag-of-word vectors

to-be-matched. In other words, their preprocessing procedures allow to extract English intents from

the code itself, creating a sort of parallel corpus. To evaluate the performance of the NCS model,

Sachdev et al. use a list of StackOverflow questions which have an associated code snippet identical

or very similar to an existing function available in the Github-extracted training set. They find

that their model is able to retrieve the correct answer 43 times out of 100. They then improve the

basic NCS model with query enhancement, which allows NCS to outperform other conventional

retrieval system such as ElasticSearch and BM25 by a large margin. NCS is called a semantic search

model because, by using Word2vec embeddings, it is able to match synonyms or semantically related

words between query and stored documents, instead of the exact same terms as other retrieval

approaches sometimes do. The CodeSearch model used in our study is reproduced from NCS, with

minor differences, specified in Section 3.1.1. In their study, Sachdev et al. also show by ablation on

their model that the use of TF-IDF weights on the words has a greater impact than the use of word

embedding vectors on the score.

Gu et al. [33], apply a deep learning approach to code search, in a system called CODEnn (not

to be confused with the LSTM-based CodeNN for generative source code summarization, from [48]).

Unlike NCS, CODEnn uses two embeddings, one for code tokens and one for English tokens, that

are unified into a single vector space. CODEnn uses recurrent neural networks (RNNs) for sequence

embedding of the English queries and source code tokens. They then retrieve documents from the

training set by matching these document embeddings with those from the training set, using cosine

distance as similarity metric. Like in the NCS paper and as is frequent for code summarization

and generation tasks, their preprocessing procedure splits functions and identifiers by underscores

and following camel case. They train their RNN embeddings on a Java corpus extracted from

Github. They report that their model outperforms information retrieval systems such as Lucene.

One advantage of their model is that, like NCS, their model is semantic, since it can match queries
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and documents by meaning, if they use semantically similar words (or code tokens).

Cambronero et al. [17] use a deep learning model for code search. They systematically evaluate

code search approaches from previous studies along with theirs. Their model, UNIF, is a modified

version of NCS from Sachdev et al. [90]. They use two embedding matrices, one for English query

tokens and one for code tokens. NCS used only query tokens embeddings to match a query to a

training-set document, and is thus considered unsupervised from their point of view. They also

replace TF-IDF weights with learned attention weights. Their model is observed to outperform

NCS, but not on all datasets tested. They test on both StackOverflow-derived and Github-derived

(docstring) corpora.

Liu et al. [60] observe that, when queries are short, the Neural Code Search (NCS) model from

Sachdev et al. [90] performs less well. To solve this problem, they developed NQE, a neural model

which recommends additional English terms to enhance the initial, short user query. They observe

that this neural query enhancement system is able to outperform the previous NCS model for very

short queries.

One known problem with the English-to-code task is that there can be different ways to code the

same software engineering task in a same programming language. For example in the Java language,

there are three or more different APIs that allow to open and read a file (Scanner, BufferedReader,

FileReader, etc.). Therefore, several different code snippets could be relevant for a given English

query. Premtoon et al. [80] develop a semantic code search system which also allows to retrieve

code snippets that are equivalent even if they use different API to accomplish the same task. They

accomplish this by defining a set of known possible code transformations, or rewrite rules, which

allow to compare and assess different code snippets for equality.

Statistical and Machine Translation Based Approaches For Code Generation

In contrast with search-based approaches, generative approaches for English-to-code generate code

token by token, and can potentially create new sequences that are unseen in the training set. To do

so, generative approaches use statistical and / or neural language models, that learn a probability

distribution over sequences of vocabulary tokens for a given language.

Raghothaman et al. [81] develop SWIM, a search-based system for code generation. They use

count-based, statistical translation inspired English to code token mappings to identify a list of

unordered relevant API elements to use, in a first step. These API elements are then matched to

existing, ordered call sequences through a bag-of-word word-to-vector approach and returned to the

user. They train and evaluate on a C# dataset.

Nguyen et al. [75, 73] develop a hybrid system based on SMT and graph-matching for code

generation. Their system is a response to the shortcoming observed in sequence-to-sequence translation
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models, which often do not respect the syntax of programming languages. After the English to API

SMT-based step, which is similar to the SWIM system, they then generate a code graph, or abstract

syntax tree (AST), through a graph-matching step, with the GraSyn tool. They prepare a parallel

corpus of English-code pairs extracted from StackOverflow, to train and evaluate their model.

Neural Generative Approaches For Code Generation

In addition to retrieval and SMT-inspired approaches, neural generative approaches were also

extensively explored in previous studies since 2015. A common theme in these approaches is the

preoccupation with compositionality and the use of abstract syntax trees (AST) as input and /

or output, in order to improve the capacity of the model to generalize and improve the syntactic

correctness of the generated code in the target programming language.

Gu et al. [34] develop DeepAPI, an RNN-based sequence-to-sequence approach for code generation.

They train on Java projects scraped from Github repositories. Their model is trained on a parallel

corpus built from the first line of a docstring and the list of API elements used in the body of

its associated function. Their system can be considered an off-the-shelf NMT system, except that

they weight the intput tokens using a count-based TF-IDF scheme, instead of with gradient descent

trained attention weights as is usual in more recent neural models for this task. DeepAPI tends to

produce very short API recommendations, which obtain a very high precision, but generally also low

recall, compared to the previous SMT-based approaches.

Yin et al. [112], in a study preceeding their release of the CoNaLa challenge, develop a new

seq2Tree neural system that learns to predict Python code from English descriptions. They use

a model that transduces the English description for the code into an abstract syntac tree (AST)

in the target programming language, and obtain better results than previous studies which were

not AST-based. In their results, a retrieval model surpasses an off-the-shelf NMT system, which

is also what we observe in our results. However, in their study, on their particular dataset, their

best-performing model seq2Tree surpassses the retrieval model.

Allamanis et al. [5] develop a bimodal neural models for the English-to-code and code-to-English

tasks, a model that uses structural information in both English and code token sequences. Ling

et al. [58] use a novel system based on neural language modeling to generate sequences of API

tokens for a game (Magic the Gathering and Hearthstone). Murali et al. [70] develop a system

for API-Element-to-code; their model generates code not based on English but rather on a list of

relevant API elements. Although it is not designed for English-to-code, their system has been used

later on as a substep in an English-to-code system [78]. Nye et al. [78] also develop a hybrid system

for English-to-code, which consists of a neural sketch generator (seq-to-seq RNN with attention). It

outputs a distribution over sketches as a first step, followed by a program synthesizer, which searches
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for full programs which satisfy the spec.

More recently, Feng et al. [29] release a pre-trained BERT-based model for programming and

natural language. Hu et al. [44] develop code embeddings for overcoming the problem of alignment

between English and code, which is not as exact as between two natural language pairs. Balog et al.

[14] develop a neural network to augment search-based techniques, such as an SMT-based solver and

enumerative search. For a range of inductive program synthesis (IPS) baselines, they improved the

runtime by 1-3 orders using neural networks. In our research, we compare a search based model with

neural generative approaches, but this study shows that the combination of the two can be fruitful

for improving the runtime of the system.

2.3 Code Summarization (Code-to-English)

Zhu et al. [120] survey the literature on automated code summarization. They find that approaches

fall in the following categories: Information Retrieval, Machine Learning, Stereotype Identification,

Natural Language Processing, External Description Usage. They also note that evaluation approaches

fall into the following categories: Manual Evaluation, Statistical Analysis, Gold Standard Summary

(e.g. BLEU score, ROUGE score, F1 measure), Extrinsic Evaluation (effect of the summary on

humans carrying out a particular task related to code comprehension), and None. In our study, we

reproduce a Information Retrieval approach, as well as two neural sequence-to-sequence generative

approaches. The evaluation technique, the BLEU score, falls under the Gold Standard Summary

category.

Search-based Approaches for Code Summarization

Liu et al. [61] develop a simple kNN-based retrieval system for commit message generation (a task

very similar to code summarization), and compare its BLEU score to those of NMT system from

previous studies. They observe that the retrieval model inspired from NCS outperforms the NMT

sequence-to-sequence generative models. The authors reach very similar conclusions to the ones

we have observed in our study, and that are discussed in Chapters 5 and 6: (i) the high-scoring

answers from neural machine translation (NMT) approaches generally are very similar to existing

training-examples, a conclusion we also reached in our BOS analysis in Section 5.3, neural sequence-

to-sequence models can only score high when the BOS score is high for that test-set question. (ii)

Liu et al. find 16% of “trivial” training-examples, which they find are responsible for a large portion

of the high-scoring NMT models’ answers. (iii) the NMT models’ scores decrease by a large amount

after removing trivial training-examples from the dataset, which were boosting the NMT models’

score. This study is an excellent confirmation of our results and conclusions.
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Zhang et al. [116] use a hybrid retrieval-NMT approach to code summarization. Since neural

sequence-to-sequence models have difficulty with low frequency words (out-of-distribution questions),

they decide to enhance the model with the most similar code snippets retrieved from the training set.

They compare the BLEU4 scores of a syntax-based retrieval model (20.2 BLEU4), a semantic-based

retrieval model (20.1 BLEU4), pure-NMT model (14.2 BLEU4), as well as their three novel variants

of hybrid models: NMT+semantic-retrieval (19.5 BLEU4), NMT+syntactic-retrieval (19.8 BLEU4),

NMT+semantic-syntactic-retrieval (20.7 BLEU4). Although they conclude that their third hybrid

model scores slightly above the two pure-retrieval models, we should note that this difference in score

is small (0.5 BLEU4) and well-within the natural variation that models can obtain on two different

test-train splits of the same datasets, or even on two different runs on the same test-train split. Also,

it is interesting to observe that in their experiments, the pure-NMT system scored more than 5

BLEU4 points below both retrieval models, which is substantial. Finally, out of their three hybrid

models, only one scored above pure retrieval models, and by a very small margin. These results

are aligned with the scores that we observed in our study, where our replicated semantic retrieval

model (CodeSearch) scored above neural NMT approaches on most datasets. Finally Zhang et al.

note that the retrieval part of their system takes longer to complete at query time, but because of

optimizations they are able to generate an answer in less than 89ms on their setup. In our study, we

also note that a downside to vector-similarity based retrieval models is the increased query time, in

comparison with neural sequence-to-sequence models.

Ye et al. [109] use another hybrid NMT-retrieval approach for code summarization, but instead

of feeding the retrieved code snippets to enhance the NMT’s inputs, they use the output of the NMT

to enhance the inputs of the retrieval model.

Statistical and Machine Translation Based Approaches For Code Summarization

Guerrouj et al. [35] use an n-gram statistical model trained on StackOverflow language and code

pairs to produce code summaries. They obtain an accuracy of 54% on a gold standard evaluation

using R-precision score. In our study, we have not included a statistical model; we only evaluate an

information retrieval model, and two neural generative models. It would be interesting in the future

to compare statistical and neural approaches with search-based approaches, as it has been done in

the natural translation domain [11].

Neural Generative Approaches For Code Summarization

A very large number of studies have experimented with neural sequence-to-sequence models for the

code summarization task. As for the code generation task, several papers have focused on representing

AST information in the neural input in order to improve scores, generalization and syntactic validity.
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Leclair et al. [54] train three variants of attentional-GRU models on the code summarization

task. They use as training-set a large dataset of 2M English-code pairs, scraped from Github,

previously released in [55]. They postulate that combining the AST and sequential-token input from

two separate encoders might lead to an increase in model performance, based on observations coming

from the neural image-recognition domain, where convolution embeddings and image tags were

similarly combined in some experiments. They flatten the AST, using a procedure called structure

based traversal (SBT), and use it as input to an additional encoder dedicated to the AST input

only. The embeddings from the AST and non-AST encoders are then concatenated and fed to the

decoder. They train three variants: one that uses an additional AST encoder, another without

AST, and a third that ensembles the two. They obtain BLEU4 score of 19.6 for the AST-based

model, which outperforms the non-AST based model (19.4), and a single decoder LSTM baseline,

CodeNN from Iyer et al. [48] (9.95). An ensemble of the AST and non-AST approaches obtains

20.9 BLEU4. This paper is the third replicated model in our study (AttendGRU), and we use the

non-AST model. We also use their Java dataset, initially released in [55], to train all our models.

In our study, we observe that the scores of a same model, from run to run, can diverge even more

than the improvement in scores obtained from the AST over the non-AST version. With the second

replicated model (Seq2SeqLSTM) we also obtained a score higher than all the previous published

papers on this dataset to date.

Haque et al. [38] use a AttendGRU model to generate summaries of code functions, by training

on the same Github-scraped parallel corpus of java functions and their docstrings previously released

in [55]. Based on the assumption that function dependencies can help further understand a code

snippet’s intent, they use dependencies of a given function to-be-summarized, as additional input

for the summarization model, in order to improve scores. They find that their model outperforms

baselines from previous studies. In our study, which uses the same java docstring dataset form Leclair

et al. [55], the LSTM model replicated from Yin et al. [111] scores above all previous models on this

dataset, including this graph neural network.

Leclair et al. [53] reuse again the java docstring corpus from Leclair et al. [55] but this time

they train a graph neural network for code summarization. Their best-performing combination is a

Convolution graph neural network BiLSTM, which obtains 19.93 BLEU4. Just like in our study, it is

frequent that the BiLSTM outperforms other models on code summarization and code generations

tasks [53] [30].

Gupta et al. [36] use a Transformer architecture for the code summarization task. They train

their model on the same Java dataset of doctstring-code pairs from Leclair et al. [54]. They obtain

slightly lower scores (17.99 BLEU4) than the original Leclair et al. study [54] (19.6, 19.4 BLEU4).

The paper is only published on arxiv for now, but is mentioned nonetheless since it is relevant to the
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present study.

Thanks to the sustained effort of Leclair et al. in doing systematic comparisons and ablation

testing on different variants for neural sequence-to-sequence architectures for code summarization,

we can now better compare different models and sequence-to-sequence architectures on the task.

Results from Leclair et al. in their three recent studies [54, 53, 38] and the additional one from

Gupta on the same dataset [36], are extremely interesting as they show that a wide variety of neural

architectures, attend-GRU (with and without AST as encoder input), sequence-to-sequence with

attention to file context, graph neural networks, Transformer, as well as previous baselines from

the literature such as CodeNN often obtain BLEU scores extremely close to one another, in the

range one would obtain by re-training the same model twice on the same dataset and test-set, with

identical hyperparameters (e.g. less than 0.5 BLEU4 difference). For example, their ast-attend-GRU

model scores 19.6 BLEU4 in their first code summarization study [54], but 18.69 BLEU4 in their

subsequent study [38], although they do not specify if the test-train split was exactly identical to

the one in first study. Similarly, their attend-GRU model shows a change in score between the two

studies, 19.4 and 18.22. When we replicated their attend-GRU on the same dataset and test-train

split as [54], we obtained 19.58 BLEU4, in contrast with their 19.4 original score. We also ran the

attend-GRU model several times to ensure we would obtain the highest possible score for that model,

and the highest results from each run, with identical hyperparameters, ranged between 18.35 and

19.58 BLEU4 after at least 20 epochs.

One of the first approaches using sequence-to-sequence generative models on the code summariza-

tion task, in 2016, is that of Iyer et al. [48], who use an off-the-shelf LSTM-with-attention model,

that they call CodeNN. Their model is trained on a dataset gathered from the StakOverflow website.

They use both gold standard evaluation, with the METEOR and BLEU4 scores (see 2.4 and 3.2.1 for

a definition of the BLEU score), as well as human evaluation, and find that their model outperforms

an information retrieval based model, as well as a phrase-based machine translation system statistical

based model (MOSES with a 3-gram language model), and an off-the-shelf approach from natural

language summarization, from Rush et al. [88]. In our study we find, in contrast, that the information

retrieval approach outperforms the neural ones on most datasets. We did not evaluate phrase-based

translation system or SMT-based system.

Allamanis et al. [4] use an attentional convolution neural network for source code summarization.

Their model generates function names, that can act as short descriptive summaries for the inputted

code snippet. For evaluation, they use the F1 score, as well as precision and recall. They compare the

summaries generated by their model with those of three baselines: TF-IDF retrieval model, Standard

Attention sequence-to-sequence from [9], Interestingly, and in line with the results obtained in our

study, they observe that the standard, off-the-shelf attention-based translation model from Bahdanau
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et al. (2015) [9], used as baseline in their experiments, scores below a simple TF-IDF retrieval model.

Alon et al. [6] develop code2seq, an AST-based sequence-to-sequence LSTM architecture for code

summarization (generating a function name from a function body) and code captioning (generating

an English description from a code snippet). They reason that a flattened AST is not in an ideal

form for use as training input. They decide to improve on the flattened AST approach, by instead

exhaustively collecting all possible paths between terminal nodes (user-defined variables) in the

AST, and using those paths as the representation of the code snippet, and as training input to the

sequence-to-sequence model. Because of the large number of possible subpaths between terminal

nodes, they use a sample of k paths as the representation of the code snippet. Each of the k

AST-subpaths are fed to one of k encoders, and the embeddings from all k encoders are then averaged

before being used as input to the decoder. They train their model on a large dataset of 16M C#

functions for the code captioning task, and find that their model outperforms all previous baselines

by a substantial margin. For exampe, their model obtains 23.04 BLEU, 2.51 BLEU points more than

the next-best model, CodeNN (20.53) [48] on the code captioning task. They also perform ablation

studies that clearly show improvements coming from the use of the AST subgraph inputs in their

model. This study shows the advantage of AST-based approaches for source code summarization. In

our study, we have not evaluated an AST-based approach. In future work, it would be interesting to

examine the capacity that the AST-based approaches have in general. Code2seq is a good candidate

for such an evaluation.

Fernandes et al. [30] use BiLSTM and graph neural network for code summarization, similarly to

the approach of Leclair et al. [53]. They train their model on a dataset of C# function-docstring pairs,

as well as on a Java dataset used in [6] for method naming. They compare a hybrid BiLSTM-GNN

(22.5 BLEU4) approach with an attention-GNN approach (21.4 BLEU4), and the BiLSTM-GNN is

the best performing model in their study. On the method naming task, their BiLSTM-GNN (51.4

F1) also outperforms the code2seq model (43.0 F1) from Alon et al. [6].

Zeng et al. [115] use an LSTM with attention sequence-to-sequence model for source code

summarization. They train their model not on the source code itself, but rather on an AST

representation of the code snippet. They use a Java dataset containing 396,184 English-code pairs

scraped from Github. They compare approaches with and without AST, and observe that the AST

improves scores significantly. They obtain a BLEU4 score of 52.80 for the model using AST, while

the best of non-AST models scores 47.82 BLEU4.

In [69] Moore et al. use a convolution encoder and LSTM decoder architecture for source code

summarization. They train their model on a large dataset of English-code pairs from Github. They

forego using AST as training inputs, and observe that their model matches AST-focused models from

a previous study, [45]. Their model obtains a BLEU4 score of 38.63, while the AST-driven model from
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Hu et al. [45] obtained 38.17. This result confirms the observations we made in the present study:

that improvement in BLEU4 scores coming from the use of AST-driven sequence-to-sequence models

from previous studies are not always significant and are sometimes within the normal variation of a

model from run to run.

In [19] Chen et al. use variational autoencoders (VAEs) to jointly model source code and natural

language descriptions of source code. They then use the semantic vector representations produced

by those VAEs to generate completely new descriptions for arbitrary code snippets. On the code

summarization task, they obtain a similar performance to previous approaches. They use BLEU4

and METEOR score for evaluation. They obtain 20.9 (20.5) BLEU4 on a C# summarization dataset,

and 19.7 (21.0) BLEU4 on a SQL summarization dataset, while previous approaches (CodeNN)

obtained 20.5 BLEU4 and 18.4 BLEU4, respectively.

2.4 Evaluation Methods and Their Criticisms

The CoNaLa challenge [111], whose dataset we use to train and evaluate models in this study, is

using BLEU4 score as evaluation metric, to rank models. This is not a surprising choice of metric,

since the tasks of “code generation from a query” and “code snippet search”, as well as their reverse,

“code summarization” can all be understood and approached as translation problems. BLEU score

was the first translation evaluation metric shown to correlate highly with human assessment on

natural language translation tasks [79], but it remains an open question whether the BLEU score

(see 3.2.1) is an adequate measure of the performance of code generation and summarization systems.

On this topic, we now discuss the study from Stapleton et al. [97].

Criticisms of BLEU in the Software Engineering Domain

Stapleton et al. [97] evaluate the relevance of the BLEU metric in the context of code summarization

task. They wanted to test the common assumption that higher BLEU scores for generated code

summaries implies better quality comments. To do so, they examined the correlation between

comments BLEU score and measures of code comprehension by humans, and find that there is

only a weak correlation between the BLEU score of the generated summary and the correctness of

answers on a code comprehension task based on the generated summary. They also found that human

generated summaries are better at positively affecting correctness on the code comprehension task

in comparison with machine generated summaries, even if the study participant is often unable to

detect the human-generated summaries as being of higher quality, when they are asked to rate them.

This would imply that machine generated comments are dangerously misleading, since they often do

not appear as low-quality, or incorrect at first, yet they contribute to errors in code comprehension.
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In our study, we also observe that neural generated summaries are too often not accurate: their

BLEU scores are so low on average that they cannot be useful in their current state.

However, it is important to notice that the study did find a correlation between the BLEU score

and comprehension outcomes, only that this correlation was very weak. This could be explained by

the fact that, like in NLP, multiple solutions exist for a given question, or input, and therefore a

large portion of the time, even a “perfect” model would score close to zero. As the average number of

possible answers increases in a dataset, the correlation between BLEU scores and human evaluation

will become weaker, eventually becoming non statistically significant, even if slightly positive. In

sum, while the BLEU score may be positively correlated with human judgement, if too many correct

answers exist for a given question, and a large portion of the correct answers from a model get a

very low score, then their observations would be expected: the correlation BLEU and comprehension

outcomes would be visible, but weak.

Criticisms of BLEU in the field of NLP

In the NLP literature, the BLEU score was shown to have several downsides, and is widely criticized

as an imperfect measure. A first important problem with the BLEU is that incorrect answers can

score high if they use the same words as the reference but in a different order, or if they add a few

modifier words (e.g. use a negation to modify meaning). This of course is also problematic in the

domain of code generation and summarization. On the code generation and summarization tasks, we

can observe that the neural generative models often do not respect syntax, do not order the English

or code tokens in a correct order, and frequently include irrelevant tokens as well, while still in some

cases obtaining high BLEU scores.

We provide here a list (non-exhaustive) of criticisms of the BLEU score, from previous studies in

the field of NLP:

1. BLEU correlates only partially with human evaluation [16].

2. Models can optimize specifically for BLEU score while bringing down the true quality of the

translation [16]. It is possible to cheat the score by having shorter answers, only including words

to which the model assigns high probability, since it is a precision based score. To mitigate this

problem however, the brevity penalty was introduced.

3. Despite the brevity penalty, it is still shown that when recall is included, correlation with

human performance increases [52]. The F1 score (harmonic mean of precision and recall) is

shown to correlate better with human evaluation than the BLEU score.

4. BLEU scores are shown to favour SMT over neural translation, and rule-based over neural

translation [16]. For this reason, human assessment is preferred over BLEU scores.

22



5. BLEU scores are hard to compare across different tasks and datasets [117]. High BLEU scores

of 35-40 can sometimes correlate to very high human assessment on some tasks and datasets

but not others.

6. BLEU scores are highly dependent on the preprocessing steps and tokenization, and often

different steps are used making the score impossible to compare.

7. Using only one reference translation per question for BLEU score calculation can result in low

BLEU scores; multiple accepted reference translations increase chance of matching with a given

translation [39].

8. BLEU does not guarantee correct meaning of translation, or syntax, only measures presence of

words, and n-gram overlap.

Alternatives to the BLEU score exist, but are not as widely used. The METEOR metric

for translation is based on F1 score as well as accepting synonyms: [10]. Other metrics such as

SacreBLEU, ROUGE, TER were also proposed [1]. Human assessment of machine translation

outputs is generally considered the most meaningful and reliable metric. Different protocols exist for

human evaluation of translation which are out of scope of this study.

Despite these criticism, because the BLEU score is widely used, in the CoNaLa chalenge and to

compare performance with previous models from [54, 55, 54, 38, 53, 36], we adopt the BLEU score

for evaluation of the models in the present study. The BOS score described in the following section

aims to make BLEU score easier to interpret.

Benchmark Datasets

In an effort to assess fairly the progress of models on the English-to-code and code-to-English tasks,

as well as on other related NLP tasks, several researchers have produced and released challenge

datasets.

Sennrich et al. [67] release a Python code-docstring dataset for automated source code generation,

automated source code documentation, and code search. They note recent breakthrough in machine

translation with neural sequence-to-sequence models, and highlight the need for large amounts

of parallel data to train on. They also note that one of the existing code datasets used in some

early studies on code generation with neural sequence-to-sequence models [58] yield BLEU scores

substantially higher than BLEU scores seen in natural language translation, sometimes twice as

high. They conjecture that those datasets are too easy for the models, which motivates their work to

produce a more realistic corpus that reflects industrial source code. In our study we use their dataset

to train and evaluate all models (E2C-Pydoc and C2E-Pydoc).
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Yin et al. [111] release a benchmark dataset for the English-to-code task, the CoNaLa dataset,

which is extracted from StackOverflow. Because StackOverflow posts are noisy, with intents often

not descriptive of the code they are associated to, they use a filtering procedure in an attempt to

identify code-English pairs which are of high quality to train NMT systems with. In order to produce

a high-quality dataset for English-to-code, they train a neural model on a manually annotated subset

of a large training dataset scraped from StackOverflow; they then use this trained model to filter the

rest of the dataset. More specifically, they use the next-token probabilities produced by the model

during prediction on a new training example as a proxy for the quality of this training example. In

our study, we use the CoNaLa benchmark dataset to train all three models replicated and reproduced

(CodeSearch, Seq2SeqLSTM, AttendGRU). The CoNaLa baseline NMT model is also replicated and

evaluated in our study (Seq2SeqLSTM) on all datasets examined.

LeClair et al. [55] note the difficulty of obtaining good training corpora for the summarization

task and the need for a corpus which can be used as reference point between models. They remark

that using different corpora makes models very hard to compare, and report swings of 33% in

performance for certain models depending on the dataset they are trained on. They release a corpus

which could become widely used in the community in future code summarization studies. Their

corpus is one of the four corpora used in this study, and all three models are trained and tested on it.

In addition to the quality of the dataset, the difficulty of the test-train split can produce swings in

models performance [55]. In particular they note that in the case of code summarization datasets,

which are often obtained from Github, it is important that a particular repository or codebase is not

spread across the test set and the train set, since a repository is more likely to contain very similar

functions and/or duplicate functions.

In [56], Chandra et al. release an a training dataset and separate evaluation dataset for code search.

It is different from other corpora for code search and summarization in that it uses StackOverflow

questions as test-set and Github functions as training set. It is also different from the Pydoc and

Javadoc datasets used in our study, in that the training-set does not include docstrings. Instead,

only the function name and body, url and filepaths are provided, and the features to-be-matched to

the query must be extracted from them, for example extracting English words and code tokens from

the function name, by splitting it by underscore or came case. Because this dataset was not released

at the same time as the NCS model that used it for evaluation, it was not available at the time the

experiments for the present study were conducted.

Husain et al. [47], release a training and evaluation corpus specifically designed for evaluating

code search models. Like the CoNaLa challenge for the English-to-code task, the challenge was

specifically designed to compare models and help assess better the state of the art in this area.

In the image-classification domain, Recht et al. [84] hypothesize that by repeatedly evaluating
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models on very few benchmark datasets, for example CIFAR-10, keeping the test-train split constant

over the years, the published models of gradually increasing scores over the years could be gradually

overfitting those datasets, instead of being true advances. They find that on their new test-train split

for CIFAR-10, all models score significantly lower, but that the ranking of the models relative to each

other remains, surprisingly, roughly the same. This indicates, according to their analysis, that their

new test-train split is more difficult than the original test-train split conventionally used by previous

studies, but that model are not overfitting CIFAR-10, since the ranking remains approximately the

same. In the present study, we have not examined the scores on different test-train split, so we

cannot come to a conclusion on this topic. What we do observe, however, is that the ranking of

models varies greatly across datasets for a same task.

Importance of using several datasets for a more fair assessment of models

Although the importance of using benchmark copora is well established in all domains of machine

learning, it is rare to see researchers advocate for testing models over several datasets, to obtain

a more complete picture of the comparative strengths and weaknesses of different models. Indeed,

models can be more sensitive to a certain type of dataset-artifact in one dataset but not another, but

also, there is the danger that models are, over time, selected to overfit one dataset in particular.

Some researchers have produced challenge datasets for NLP-related tasks. Goel et al. [32] develop

a set of challenge datasets that test the robustness of neural language models, their capacity to

generalize to new questions, bias and security. They want to make it easier for researchers to test

the performance of their models, on different dimensions of performance (generalization, bias and

security), using different datasets and tasks. In particular, they implement “five subpopulations

that capture summary abstractiveness, content distillation, information dispersion, positional bias

and information reordering”. They use their evaluation framework in case studies, and find that the

variety of challenges helps to obtain a more informative picture of the performance of the models,

and helps to identify the particular strengths and weaknesses of models on the different dimensions

mentioned.

In other application-domains of machine learning, researchers have also found that assessing

models on more than one dataset or challenge is crucial to obtain a more precise assessment of their

performance. Coleman et al. [22] develop an automated technique to generate evaluation tasks that

vary in certain key characteristics. They hypothesize that in order to properly assess alternative

neural models, to reach more robust conclusions about their relative performance, it is necessary

to test all models on a wider variety of challenges, and environments. They test three different

neural models in a variety of environments and find that different challenges, datasets and different

test-train splits affect models differently, and report that model ranking is not consistent across
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different environments. As we also observe in the present study, it is important to test models on a

wide variety of datasets in order to reach more robust conclusions about their relative performance,

as well as their respective strengths and weaknesses.

Dataset Difficulty in the field of NLP

In the field of NLP, several papers have tried to predict model performance, and / or assess dataset

difficulty. It is generally observed that machine learning models, including neural models, do not

perform well on test questions that are too different from examples in the training-set, also called

“out-of-distribution” questions.

In [105] Xia, Neubig et al. seek to predict the performance of models on a variety of NLP tasks,

in order to determine where current models can best be applied. Several models must be tested on

several datasets, and the combinations become exponentially large, and the computations expensive.

Is it possible to predict which dataset and model combination will yield high publishable results?

Which are the fruitful problems to apply ML models to? They observe that a high performance

of models on a subset of datasets for a task, say, translation, is not always a good predictor of

performance for all datasets available for the task. They observe that commonly used datasets are

largely not correlated in difficulty and taken individually are not representative of the difficulty of

the NLP task. They develop a lean regression model that is able to predict model performance on

a task and dataset with low computational complexity compared to training the full model. They

produce a random forest classifier to predict performance of models on different NLP tasks, based on

input features such as dataset size, vocabulary size, sentence length. They show that their predictor

can be more accurate than human experts in predicting performance of the models. They find that

the predictor when trained on a representative sample of datasets for a particular task, allows them

to obtain plausible predictions of model performance on the rest of the dataset for the task. Their

observations support the idea that evaluating models on only one particular benchmark dataset is

unrepresentative of results over a large spectrum of datasets for a particular NLP task; differences in

dataset difficulty can be large. Indeed, it is not because a model scores high on a dataset that the

problem is solved. Any particular dataset might be easier than the average, for example, if it has

artifacts, as we found in some of our experiments.

Similarly, Wang, Neubig et al. [104] develop an algorithm for selecting training data for neural

translation models, that will maximize translation performance for a given target sentence to produce.

Bugliarello et al. [14] seek to identify the causes of natural language translation difficulty on

different languages. They identify only two metrics that significantly correlate with dataset difficulty:

source-side type-token ratio and the distance between source and target languages. They find no

evidence that translating into morphologically rich languages is harder than into morphologically
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impoverished ones.

In [94] Scheidegger et al. propose and test different measures of dataset difficulty for several of

the most popular image classification challenge datasets (MNIST, CIFAR, etc.). They test three

methods for assessing dataset difficulty: silhouette score which measures the separability of the

classes as the proxy for dataset difficulty, k-means clustering, and finally probe nets which trains a

small neural network on the task as a proxy for the performance of the bigger networks. They show

that their dataset difficulty assessment approach using probe nets can run 27 times faster than a

training run, for the common neural architectures, given the same resources. Probe nets is also the

best performing approach for predicting the difficulty of a dataset, correlating best with the actual

scores of the actual models networks on the datasets.

Evaluating Generalization in Neural Models

In [51], Lake et al. assess the capacity of neural sequence-to-sequence model to generalize on a

particular set of questions, specifically designed to measure generalization: the SCAN dataset. They

observe that sequence-to-sequence models do not generalize beyond very simple examples in their

experiments, and postulate that these results might be observable with other models and datasets.

In [89] Russin et al. develop a compositional sequence-to-sequence model which learns syntax

and semantics separately, and test it on the SCAN generalization benchmark dataset [51]. They

demonstrate results substantially higher than previous works, hinting that compositionality and

modularity priors in neural model could allow for better generalization performance.

In [77] Nogueira et al. examine the ability of large pretrained language models to generalize on

an arithmetic task. They show that big Transformer models can only perform arithmetic on small

numbers, which are more likely to be present in the training set. Their work, despite some initially

encouraging results when feeding modified number encodings to the model, is ultimately an indication

that Transformer models are unable to generalize to symbolic tasks, and are mostly memorizing,

overfitting the training data. Specifically, they observe that the model can only perform arithmetic

on numbers that have the same length as the ones in the training data. Since programming code

and an arithmetic computational graphs are similar in nature, their paper can help shed some light

on the poor generalization capacity displayed by Transformer models in the code-to-English and

English-to-code domains.

Again in the NLP domain, Jastrzebski et al. [49] evaluate a 2-layer DNN from previous work along

with statistical count-based models (Bilinear, Factorized, Prototypical) on a task of knowledge-based

extraction mining. They want to assess the degree of generalization of the models to test-set questions

that they consider “novel”, i.e. sufficiently different from the training-set. They observe that model

scores degrade rapidly as the novelty of a test-set question increases. They also note that high scores
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reported by previous studies relied on a high number of test-set questions that were quasi-duplicates

(minor rewordings). Their work is similar to ours in that they develop a measure of novelty of

a test-set question (how different is it from the closest training-set examples), and examine the

performance of each model depending on the measured novelty of the test-set question. As measure

of novelty between a test-set question and a training-set example, they compute the distance of

word embeddings between corresponding items in a relation triple. For example, replacing an entity

in the triple with a close synonym would not create significant novelty. They notice many trivial

test-set questions in datasets of previous work, i.e. test-set questions that present a very small

degree of novelty to a training-set example, according to their metric. To evaluate the models, they

produce test-set question “bins” of increasing novelty, and observe that the performance of all models

degrades rapidly as the questions become more novel. They observe that the deep neural network

model (DNN), in their evaluation, shows the greatest degradation in performance as the novelty of

the test-set questions increases in each test-set bin, compared to simpler count-based models. In

addition to this comparative work and assessment of generalization, they observe that 60% of test-set

questions from prior work under evaluation consist of minor rewordings of training-set examples.

This is also another point of comparison with our study, since we also detected the presence of a

large percentage of excessively easy, or “unfair” test-set questions, in particular on the C2E-Javadoc

and E2C-Javadoc task-dataset combinations. In our case, the excessively easy or unfair questions

were due to the test-set question containing the answer (as described in Section 5.3), whereas in

their case, they observed a large number of test-set questions that were quasi-duplicates, i.e. minor

rewordings of examples from the training-set. They conclude that larger datasets will be necessary

to successfully mine novel common sense relation triples for knowledge bases; however, we seriously

doubt that dataset size will be a sufficient condition for increasing generalization in machine learning

models, We suggest thoroughly examining the effect of dataset size on capacity to generalize to

questions with high measured novelty, in future work, as we discuss in Chapter 6.

Dataset Artifacts

Dataset-artifacts are spurious correlations between question and answer in machine learning datasets

[65], which allow models to trivially answer the question, thereby inflating their score. In the field

of NLP, several papers have studied dataset-artifacts, and how they affect neural model scores on

different tasks ranging from text-generation to question answering.

McCoy et al. [65] observe that models can perform well on a dataset, yet their performance drops

on other datasets relative to other models. They study how this problem affects neural sequence-to-

sequence models, and observe that discrepancies in scores are frequently caused by the reliance of

sequence-to-sequence models on spurious patterns and dataset-artifacts to obtain high scores on a
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particular dataset. Wallace et al. [102] show that problematic dataset collection methodology can

often lead to dataset biases, or “artifacts”. They note that these spurious correlation between a

hypothesis and the classification label can misrepresent the true performance of neural models on NLP

tasks. Si et al. [96] examine what the pretrained BERT model can learn from multiple-choice reading

comprehension datasets. They observe that BERT is exploiting dataset-artifacts and statistical

regularities, which allow it to answer questions correctly without the full context. Dua et al. [25]

observe that “dataset artifacts” can be used by neural models to increase their score without having

to learn to reason about the question, in the way humans expect it to. Ross et al. [86] present

MICE, or Minimal Contrastive Editing, a technique for generating contrastive explanations of model

predictions, which can be used to uncover dataset-artifacts, and debug incorrect model predictions.

In our study, we use a completely different procedure, the BOS, to uncover dataset artifacts, and

our procedure also allows to debug low-scoring, or incorrect model answers. Trivedi et al. [101] ask

whether there has been real progress made in the area of multi-hop question answering, and note that

models often rely on dataset artifacts to produce correct answers, “without connecting information

across multiple supporting facts”.

Gururangan et al. [37] show that in a significant portion of datasets for natural language inference,

it is possible to identify the label by looking only at the hypothesis. They suggest that due to inflated

scores, caused by these dataset-artifacts, the success of natural language inference models in recent

years has been overestimated.
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Chapter 3

Background and Definitions

In this Chapter, we introduce the background on the three models being evaluated in this study:

Semantic Code Search (CodeSearch), Sequence-to-sequence BiLSTM with Attention and Beam

Search (Seq2SeqLSTM), Sequence-to-sequence Attentional-GRU (AttendGRU). We then describe

the outcome measure used, BLEU4, and the BOS ceiling procedure, the retrieval ceiling, which is

used as a reference point for scores of all models.

3.1 Models

3.1.1 Semantic Code Search

The semantic code search model reproduced in this study is based on a model from Sachdev et

al. [90], called Neural Code Search (NCS). Vector space retrieval models such as semantic search

models have been extensively used in the information retrieval domain for several decades [62, 15, 93].

The NCS model is a variant of the vector space retrieval model that uses neural word embeddings

(Word2vec) as the vector space for matching documents. This reproduced model is used in our

experiments, both for the English-to-code and code-to-English tasks, to retrieve code snippets, and

English descriptions of code.

CodeSearch Description. The CodeSearch model runs a k-nearest-neighbour search on English

intents from the training-set, which are represented using a weighted bag-of-words approach. More

specifically, a high-dimensional vector is computed for each intent in the training-set, as the TF-

IDF-weighted average of their Word2vec embedding vectors. At training-time, all training-set

English-intent vectors are pre-computed and stored. When presented with a new query, the model

vectorizes it using the same procedure, and searches the training corpus for the text-label (intent)

that is most similar to the query, according to the Euclidean distance, to then return its associated

30



content (code snippet) as the answer. The CodeSearch model can be reversed for the code-to-English

task, by instead vectorizing the code snippet for each training example, performing a Euclidean

similarity search with a new query or test-set question (i.e. a code snippet), and returning its

associated English intent, as the code summary.

NCS is called a semantic search model because, by using Word2vec embeddings, it is able to

match test-set questions (or user queries) to a training-set intent even if that intent uses synonyms

or semantically related words, instead of the exact same terms. The system is called a Neural Code

Search because it relies on neural word embeddings. NCS retrieves an existing code snippet from the

training-set, while neural seq2seq models generate a code snippet, token by token.

Although our CodeSearch model is mostly based on NCS [90], we changed the distance metric

used from cosine distance (used in original paper) to Euclidean distance (ours). Cosine distance is

often preferred for matching documents vectors, as it will be sensitive to the ratios of words in the

intent, and query, rather than to their absolute numbers. This means that a short document will be

matched to a very long document with an identical ratio of words used, before being matched to

another short document of identical length with a very close, but different ratio of words. In our

case, for the code generation and summarization tasks, since models are evaluated with the BLEU

procedure, it is arguably more appropriate to use the Euclidean distance, as we want to retrieve

documents not only with similar word usage and meaning (semantics) but also similar in length. We

reason that a training-set intent with a similar word count to the query is more likely to have a code

snippet similar in length to the reference, obtain a higher ratio of n-gram overlaps, and therefore a

high BLEU score. If on average in a dataset intent length is not correlated with the length of its

code snippet, then Euclidean distance might not increase BLEU scores. Future work should compare

outcomes for the two distance metrics.

Only the highest-ranked recommendation is used in our experiments. Another impor-

tant note and difference from the original NCS paper [90] is that, in all our experiments, only the top-1

recommendation is considered to produce the BLEU score for the code search model. In [90] the more

lenient Mean Reciprocal Rank (MRR) metric is used, which assigns credit to the model when the best

answer is not the first returned, but does appear in its top-k recommendations. In practice, if the user

of an English-to-code system is able to look at a few answers, a code search model could become even

more helpful than what our results could reflect. Additionally, as we pointed out in Chapter 1, the

evaluation in [90] is done only on questions for which a perfect answer exists in the dataset, which is

equivalent to testing on a test-train split where all answers have a BOS of 1.0, or very close to it (dupli-

cate or quasi-duplicates). This is not the case in the present study: most test-set answers do not have a

relevant examples in the train-set, as shown by the examination of BOS results in Section 5.3. Despite

these limitations, the code search model is the best performing overall, as we will discuss in Chapter 5.
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3.1.2 Seq2seq BiLSTM With Attention and Beam Search

The Seq2SeqLSTM model replicated in this study is based on the model used by Yin et al. [111], a

sequence-to-sequence bidirectional LSTM with attention and beam search. Seq2seq LSTM models

were originally developed for natural language translation [98] [9]. They were later applied to several

other problems that make use of sequential data: music generation [100], speech recognition [74],

text summarization [118], and more. In this study the seq2seq LSTM is used in both English-to-code

and code-to-English tasks, to generate code and English descriptions of code.

LSTMs Description. The LSTM, or long short term memory network, is a recursive neural

architecture developed by Hochreiter et al. in 1997 [42] for iterative sequence generation. In LSTMs,

like in other Recurrent Neural Networks (RNNs), and unlike in regular feed-forward neural networks

the inputs are fed in sequence (time-series): they are provided one at-a-time. LSTM cells process

inputs in sequence and compute the next activations, which are fed back to itself and to the next

layer or output, at the next time-step. Because of these recursive activations, backpropagation must

happen through time, in addition to flowing back through the layers. The LSTM variant used in this

study contains three memory gates: a forget gate, an input gate, an output gate. The internal gates

of the LSTM cell, which are themselves feed-forward neural networks, learn to produce a compressed,

synthetic representation of the sequence at each time step. They learn to selectively discard, or retain,

information that is less predictive for the task during training, and keep track of the most predictive

information from past events. LSTMs, with their particular architecture of recursive connections and

gates (particularly the Constant Error Carousel) were aimed at overcoming the vanishing gradient

problem during backpropagation-through-time, which was present in older recurrent neural network

(RNN) architectures and made training on long sequences infeasible [41].

The equations for computing LSTM weights at each of its gate, during the forward pass, are as

follows:
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ft = sigmoid(Wf xt + Uf ht−1 + bf )

it = sigmoid(Wixt + Uiht−1 + bi)

ot = sigmoid(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ct−1 ◦ ft + gt ◦ c̃t

ht = ot ◦ sigmoid(ct)

where

xt ∈ Rd : input vector

ft ∈ Rh : forget gate activation vector

it ∈ Rh : input gate activation vector

ot ∈ Rh : output gate activation vector

ht ∈ Rh : hidden state vector, i.e. output vector

c̃t ∈ Rh : cell input activation vector

ct ∈ Rh : cell state vector

W ∈ Rh×d, U ∈ Rh×handb ∈ Rh : weight matrices and bias vector

(1)

Seq2seq high-level description. The seq2seq architecture for translation [98] consists of an

encoder and a decoder, which both are stacks of LSTM cells. The encoder takes as input the word-

tokens from the sentence to translate and produces a thought-vector, which is generally considered

to represent the “contextualized meaning” of the current word-token. The decoder takes as input (1)

the thought-vector produced by the encoder at the current time step (bi-directional, contextualized

meaning of current word in view of the whole sentence) and (2) the already-generated words in

the translation (which can act as a second form of contextualized meaning, also predictive of the

next token). Note that in general words are inputted as Word2vec embeddings, for both languages

(English and code in our case).

BiLSTM architecture. In the present study, the seq2seq LSTM model that we evaluate uses a

BiLSTM architecture for its encoder. An LSTM encoder consists of LSTM cells, which are stacked on

top of each other; the top cell (i.e. layer) produces the state-vector (thought-vector). In a BiLSTM

encoder however, each layer consists of two cells: (1) one which does a forward pass on the words, up

to the current word, outputting a vector (hidden state) at each time-step (each new word), and (2)

another which does a backward pass on the words, down to the current word (starting from the end

of the sentence), outputting a vector (hidden state) at each time-step (each new word in reverse).
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The outputs from the two LSTM cells in each layer are concatenated and fed to the next layer (or to

the decoder if the encoder has only one layer). BiLSTMs were shown to better capture context for

a word than LSTMs; this is because they consider words both before and after the current word,

at each time steps. Intuitively, it does make sense that future information in a sentence can be

predictive of the current word-token, and the BiLSTM takes advantage of this.

Attention mechanism in Seq2SeqLSTM. Since earlier works on statistical machine transla-

tion (SMT), we know that information about word alignment can improve next token predictions

and improve translation BLEU scores. We also know, from the use of TF-IDF in retrieval models,

that focusing attention on certain words more than others, by specifying weights for each word, is a

very effective technique for improving the quality of semantic vectors representations for documents

or sequences of text-tokens. A few months after the original seq2seq architecture was proposed by

Sutskever et al. [98], Bahdanau et al. [9] added an attention mechanism that improved the seq2seq’s

performance on translation tasks. This attention mechanism simply learns weights for each hidden

state of the concatenated thought-vector described earlier. In other words, the attention mechanism

learns which time-steps in the encoder’s thought-vector are more “important” in order to predict the

next word-token; i.e. it learns which contextualized-word-representation to focus on in the encoder’s

representation of the source sentence, at any given time-step.

Beam search. Beam search is applied to the output of the Seq2SeqLSTM model. Beam search is

external to the neural network. Instead of keeping only the most likely token at each time-step (greedy

approach), it keeps a “beam” of top-k probabilities at each time-step, and picks the combination of

tokens that maximizes the overall probability of the sequence produced by the seq2seq’s decoder.

Beam search can help maintain coherence in the decoder’s outputs, especially on tokens that are

very frequent and can act undesirably as “pivots” to change the main topic of the generation. Beam

search has been observed to sometimes improve scores substantially in translation tasks, for example,

Huang et al. [46] report an average BLEU score increase of 4.2 on 4 benchmark datasets, while [83]

report a 2.2 increase.

3.1.3 Attentional-GRU

The AttendGRU model replicated in this study is based on the model used by Leclair et al. [54], a

sequence-to-sequence attentional GRU. In our study the sequence-to-sequence attentional GRU is

used in both English-to-code and code-to-English tasks, to generate code and English descriptions of

code.

Bahdanau, Cho et al. [20] develop the GRU as a slightly simplified, more computationally efficient

alternative to the LSTM cell. The GRU is similar to an LSTM but has only two gates instead of

three. The work from Cho et al. also introduced the idea of the sequence-to-sequence architecture,
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which was then adapted to use the older LSTM unit, in subsequent studies [9, 98].

The equations for computing weights at each gate of the GRU, during the forward pass, are as

follows:

zt = sigmoid(Wzxt + Uzht−1 + bz)

rt = sigmoid(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

ht = (1− zt) ◦ ht−1 + zt ◦ ht

where

xt ∈ Rd : input vector

zt ∈ Rh : input gate vector

rt ∈ Rh : reset gate vector

ht ∈ Rh : output vector

h̃t ∈ Rh : candidate vector

W ∈ Rh×d, U ∈ Rh×handb ∈ Rh : weight matrices and bias vector

(2)

GRU sequence-to-sequence architecture with attention. In the same way the LSTM cells

are used in the encoder of the Seq2SeqLSTM, the GRU cells are used for the encoder and decoder

of the AttendGRU model. Similarly to the Seq2SeqLSTM, an attention mechanism is used in the

AttendGRU model. The AttendGRU model does not use beam search in its implementation from

Leclair et al. [54]. The authors mention that since the main aim of their study is to compare an

AST model to a non-AST one, they decided to keep the models as simple as possible.

3.1.4 Reversal of Models For Back-Translation

The English-to-code (code generation) and code-to-English (code summarization) tasks are often

approached as a translation problem. Statistical Machine Translation (SMT) models, text-retrieval

models, or sequence-to-sequence translation models (such as the sequence-to-sequence BiLSTM and

AttendGRU presented in 3.1.2 and 3.1.3) can be used to map and translate in both directions, on

the two tasks. Translation models can, often with minimal changes, be retrained successfully on the

reversed corpus to perform translation in both direction; most translation model architectures are

essentially language-agnostic, and were designed for that purpose [98]. However, this reversal for

back-translation might not be possible if the model uses a different representation and encoding for

the code and the English; for example, using AST to represent code and word-tokens to represent
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English. If the representation of the code and the English intent are different, the reversal for

back-translation might require changes in the model’s architecture and / or preprocessing. This

study only uses published models that use word-tokens, since AST embeddings for code are more

complex to run in reverse, and have been shown to provide only modest improvements [54], in the

order of 1 BLEU4 point on a same corpus.

Reversal of retrieval model for docstring search. When approaching the task as a search

problem, it is also frequent that the search model can be reversed, with minimal changes, to search

in both directions (search for a code snippet given an intent, or search for an intent given a code

snippet). Again here, reversal is possible only if the search model uses the same representation for

code and English (for example word-tokens embedded as word2Vec vectors).

3.2 BLEU and BOS Scores

3.2.1 Background on BLEU score

The main purpose of the BLEU score is to evaluate translations automatically, without human

intervention, which is costly and time consuming. The BLEU score was developed at IBM, by

Papineni et al. [79], and was the first translation evaluation metric to be shown to correlate highly to

human assessment. As we saw in Section 2.4, many other evaluation metrics are shown to correlate

better with human assessment, including a simple F1 score [66] (harmonic mean of precision and

recall of n-gram overlaps, for any desired n). However, the BLEU score rapidly gained popularity and

became the dominant metric for ranking SMT models and later neural translation models. Often, in

order to compare new scores with previous studies, the BLEU score must be used.

Computing BLEU scores. The BLEU score, in short, is a measure of the number of n-gram

matches between two sentences. To compute it, the first step is to extract the tokens in both

the reference-translation and the hypothesis generated by the model. In order to be consistent

across evaluations, preprocessing steps must be identical: the same tokenization rules (e.g. whether

punctuation are marks excluded from tokens), case insensitivity, stemming rules (if used), as well as

the same n-gram order (4-gram in our case) must be used.

After preprocessing, matching n-grams from the reference-translation and the hypothesis are

counted. For each n-gram order for n = 1, 2, 3, ... k, the percentage of matching n-grams is

calculated:

P (n) = Matched(n)
H(n)

where H(n) is the number of n-gram instances in the hypothesis. This value is the precision for

the given n-gram level. In both the CoNaLa challenge [111] and the AttendGRU study [54], n is 4,

leading to the BLEU4 score.
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Matched(n) counts the number of n-gram matches in the hypothesis, but only up to the maximum

number of instances of that n-gram in each reference (there can be more than one reference).

Matched(n) is computed like so:

Matched(n) =
∑︂
tn

min{Ch(tn), max
j

Chj(tn)}

where tn is an n-gram instance in hypothesis h; Ch(tn) is the number of times tn occurs in the

hypothesis; Chj(tn) is the number of times tn occurs in reference j.

Then, the geometric average of the precision scores is computed:

BLEUa =
{︃ K∏︂

n=1
P (n)

}︃1/K

The BLEU score does not consider recall in its calculation. It is a precision-based metric. For this

reason, it would be possible to cheat the score, by generating very short sentences that only consist

of n-grams that the model is very sure about. To penalize such a strategy, the brevity penalty was

introduced:

ρ = exp
{︃

min(0,
n− L

n
)
}︃

BLEUb = ρ BLEUa

Finally, since the precision of higher-order n-grams is considered more important than lower-order

n-grams, some weights to the precision of different n-grams are introduced:

BLEUc = ρ

K∏︂
n=1

P (n)wn

where
∑︁K

n=1 wn = 1.

In the present study, all our BLEU score evaluations are computed with the CoNaLa challenge

evaluation script from Yin et al. [111], available online [110].

We compute the BLEU score at the test-set level in order to comply with the CoNaLa challenge

evaluation, and compare BLEU4 scores with previous studies. To compute the BLEU score at the

test-set level for a model, we pass the complete list of model hypotheses to the CoNaLa evaluation

script along with the test-set answers, to then obtain the test-set-level BLEU4 score.

BLEU4 scores on their own are misleading, as the score can be high despite a high number of

answers scoring zero. In addition to the test-set-level BLEU4 score, we computed the sentence-level

BLEU4 score, to observe the distribution of BLEU4 scores on a per-question basis (see Figures 2 to

8). To compute the BLEU4 for a given sentence (i.e. hypothesis for one given test-set question), we

pass one hypothesis to the CoNaLa evaluation script along with its corresponding test-set answer, to

obtain the sentence-level BLEU4 score for that question. Note that because of the peculiarities of

the BLEU score procedure, in particular the brevity penalty, the test-set BLEU4 score is not exactly

equivalent to the average of the sentence-level BLEU4 scores for the same test-set.
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3.2.2 Introducing the BLEU Optimal Score (BOS)

We make a novel contribution by introducing the BLEU Optimal Search (BOS) score. To obtain the

BOS score for a given test-set question, we simply search for the highest-scoring training-set example

for that test-set question. We do so by exhaustively computing the BLEU score of every example in

the train-set against the answer for that test-set question, and retaining the highest. The BOS is the

theoretical ceiling score for a retrieval model on a given test-set question, and is used as reference

point for all model scores in our results.

How is the BOS useful, and why do we use it? We find that the BOS is particularly effective to:

1. Debug any machine learning model, and inspect whether low-scoring answers are only due to a

lack of relevant training-data or a problem with model training, or model code.

2. Examine the model’s capacity to generalize, i.e. to successfully generate new, high-scoring

sequences of tokens that are not already present in the training-set. In this sense it is a very

good, and easy complement to generalization-specific benchmarks such as SCAN [51].

3. Help to identify hard-to-find dataset-artifacts beyond simple duplicates, as we do in section

5.3, given the knowledge that certain models generally do not surpass the BOS without the

presence of a dataset-artifact.

4. Provide a reference point, and allow one to better compare scores across different datasets and

test-train splits (since some can be substantially more difficult than others for models, as shown

in [54, 85]). It could help identify which machine learning models do generalize occasionally on

a certain task, even if those models are trained and benchmarked on different datasets.

5. Discover if some questions are likely unanswerable, and discover what the information retrieval

ceiling is for the question, since models rarely surpass the BOS; in practical applications of

machine learning, this knowledge can also help to discover which types of questions should be

targeted for additional data collection, or for data augmentation for example.

When the training and test sets are too large to exhaustively calculate the top answer in the

training set, we randomly sample test-set questions and calculate the BOS across this sample. The

BOS BLEU score can be computed for each individual test-set question. The BOS BLEU score can

also be computed at the test-set level, as is done for any model used on the task. The BOS procedure

is described in Listing 1.
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Algorithm 1: BOS procedure

1 initialization;

2 Set list_of_BOS_for_each_question to empty list;

3 foreach test_set_reference do

4 max_BLEU ← −1;

5 foreach training_set_answer do

6 current_BLEU ← computeBLEU(test_set_reference, training_set_answer);

7 if max_BLEU < current_BLEU then

8 max_BLEU ← current_BLEU ;

9 end

10 end

11 list_of_BOS_for_each_question.append(max_BLEU);

12 end

13 return list_of_BOS_for_each_question;

In an idealized setting where all test-set and training-set entries have the same length, the time

complexity of the naive, or brute-force BOS score calculation for a given test-set can be expressed as:

O(n · lh · lr · Str · Ste)

where n is the order of the BLEU score (4 in the present study), lr is the number of word-tokens in

the reference (answer), lh is the number of tokens in the hypothesis Str is the number of training-set

entries and Ste is the number of test-set entries. BOS scores can be long to compute, especially on

large datasets. On our datasets, the BOS took between approximately 15 minutes and 6 days to

compute, for a set of 500 or 610 test-set questions extracted from the smallest and largest datasets

we used (computation times were obtained on a standard personal computer with specifications

described in section 4). We should note however that, during our BOS calculations, we calculated not

only the BLEU4 BOS, but also the BLEU2 BOS, the BLEU1 BOS, and similarly the F1 (precision,

recall and their harmonic mean). The time could have been substantially decreased if those four

additional metrics were excluded from the script. Also, we should note that BOS calculations could be

parallelized if ran on very large corpora (we did not parallelize them). Another possible optimization

for the BOS calculation would be to initially index all dataset answers by 4-gram, and exclude, during

the BOS computation, all training-examples that don’t present at least one 4-gram match with the

current test-set question; this optimization is possible because the BLEU score for a question is
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zero if the model answer and the test-set answer (reference) have no 4-gram in common. Further

optimization can be achieved by considering only training entries which have the greatest number

of 4-gram matches in the dataset for the test-set question, since they are also guaranteed to have

a higher BLEU score. However, we did not implement n-gram indexing and use instead the naive,

or brute force implementation for the moment. We leave the optimizations of the BOS calculation

for future work. Because of its long computation time on the larger datasets (Javadoc in particular

with 90k test-set entries), we computed the BOS for a random sample of test-set questions for the

following task-dataset combinations: C2E-Javadoc (610 randomly sampled questions among 90,908

test-set answers) and E2C-Javadoc (500 randomly sampled questions among 90,908 test-set answers),

Pydoc-E2C (3882 questions out of 3885 test-set questions, due to a task hanging on the cluster

toward the end). For the C2E-Javadoc, we later computed the BOS on a larger random sample of

10,399 out of 90,908 test-set questions, which further confirmed our results, as discussed in section

5.4. A summary of the random sample sizes for the BOS analysis for each dataset can be seen in

section 4 in Table 9

We computed the BOS for the totality of test-set questions for the following task-dataset

combinations: SOa-E2C (500 questions), SO-E2C (500 questions), SOa-C2E (500 questions), SO-C2E

(500 questions), Pydoc-C2E (3885 questions). After obtaining a few hundred of those random samples,

we can already obtain a very good picture of the model’s performance on different types of questions.

In light of its usefulness for assessing model performance and generalization, as well as its use for

finding dataset-artifacts, visualize the number of test-train duplicates, close-duplicates, etc. we

believe that the moderate amount of computation necessary to calculate the BOS is a relatively small

downside.

Corpus-level BLEU score versus per-question BLEU score. BOS scores are computed

for each test-set question, and compared, or correlated against model scores, which are also calculated

on a per-question basis (as is done in the scatter-plot figures 9 to 18 in section 5.3). An overall BOS

score at the test-set level can also be computed, by scoring the entire list of top-scoring training-set

answers against the entire list of test-test answers, or reference (as can be seen in Tables 10 and

11 of section 5). Note that because of the particularities of the BLEU score calculation procedure,

the average of per question BLEU scores for a test-set is not exactly equivalent to the BLEU score

directly calculated on the whole test-set. As per the original BLEU metric procedure (Papineni et al.

2002) and as described previously in Section 3.2.1, the BLEU score for a test-set is not calculated by

taking the average of each individual hypotheses’ BLEU scores, but by considering the whole set of

model hypotheses for the test-set as a single hypothesis, scored against the whole set of references.
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Chapter 4

Experimental Setup

In this Chapter we describe the benchmark datasets and models from previous studies that we

selected, as well as the preprocessing and training regimen used for them in our experiments. Finally

we describe the evaluation procedure, and the collection of BOS scores.

4.1 Dataset Selection

CoNaLa Challenge. In 2018 a benchmark dataset for the English-to-code task was published,

called the CoNaLa challenge [111]. Each competing model should submit an answer to every one

of the 500 official test-set questions (the test-set is made public [110]). The BLEU4 score is then

used to score the answer against the known code answer to evaluate the model’s performance. This

dataset uses exclusively Python-related StackOverflow questions, and all source code in it is in the

Python language. Other Python code-English datasets are also allowed and recommended to be

used for training, but the test-set, extracted from the filtered StackOverflow question-answer pairs

remains the same for everyone. The CoNaLa dataset is separated into two different subset: a small,

clean dataset called CoNaLa-annotated (noted SOa in our experiments), and a larger dataset that

comprises both annotated dataset and additional English-code pairs (SO).

CoNaLa annotated (SOa, 3K English-code pairs). The CoNaLa “annotated” corpus is

a small collection of 3K question-answer pairs from StackOverflow, curated by hand. The intents

are re-written by hand by the study participant, to make them less ambiguous; they are meant

by the authors to define the code snippet more accurately than the original StackOverflow intents,

which are sometimes vague or not well formulated. They keep the original intent field, and add the

disambiguated intent in a second field called rewritten intent.

CoNaLa mined (SO, 600K English-code pairs). The CoNaLa annotated data, because
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Sample train-set question Train-set answer

Generate all possible strings from a list of token print([''.join(a) for a in combinations(['hel', 'lo', 'bye'], 2)])

trim whitespace s.strip()

Delete a file or folder os.rmdir()

How to convert strings numbers to integers in a list? changed_list = [(int(f) if f.isdigit() else f) for f in original_list]

Calling an external command stream = os.popen('some_command with args')

Table 4: CoNaLa annotated dataset (SOa): sample training-set examples

curated by humans, is of higher quality than the average SO post. As described in the study from

Yin et al. [111], this cleaner, annotated data is used to condition a sequence-to-sequence model to

later recognize good correlations between English and code. This model is then used to filter the

larger set of SO posts, to produce the mined corpus, which contains more than 600K English-code pairs.

Sample train-set question Train-set answer

Python regular expression matching a multiline block of text re.compile('^(.+)\\\\n((?:\\\\n.+)+)', re.MULTILINE)

How to convert a date string to different format datetime.datetime.strptime('2013-1-25', '%Y-%m-%d').strftime('%-m/%d/%y')

format strings and named arguments in Python \"\"\"{1} {ham} {0} {foo} {1}\"\"\".format(10, 20, foo='bar', ham='spam')

check for valid arguments print(valid(y, (), {'a': 'hello', 'b': 'goodbye', 'c': 'what'}))\nprint(valid(y, ('hello', 'goodbye'), {'c': 'what?'}))

Deleting already printed in Python if os.name == 'posix':\n os.system('clear')\nelif os.name in ('nt', 'dos', 'ce'):\n os.system('CLS')\nelse:\n print('\\n' * numlines)

Table 5: CoNaLa mined dataset (SO): sample training-set examples

Java-Javadoc corpus from Leclair et al. 2019 [54] (Javadoc, 2M code-English pairs).

Leclair et al. released an English-Javadoc corpus [55], before their AttendGRU study examining

the effect of AST representations of code in attentional-GRU models [54]. This corpus is based

on pairs of Javadoc docstrings and their associated Java code, extracted from open source repos-

itories. The parallel corpus consists of Javadoc and function bodies in the Java language (2.1M

functions). Most docstrings present in this corpus are for internal documentation of software projects.

The docstrings in that corpus generally do not describe low level API usages like SO posts. This

corpus is used in the original AttendGRU study, and we train all three models on it to compare results.

Sample train-set question Train-set answer

registers an instance for a given class protected void register instance class test class t instance instances put test class instance

return the selected button public jtoggle button get selected return selected button

the actual worker method of the thread protected void do run throws throwable

append an int value public jsonarray put final int value this put new integer value return this

returns the button onclick attribute value or null if not defined public string get on click if attributes null return attributes get onclick else return null

Table 6: Leclair et al. 2019 code summarization dataset [55] (Javadoc): sample training-set examples
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Python-Docstring corpus from Sennrich et al. 2018 [67] (Pydoc, 143K English-code

pairs). In addition to the CoNaLa and English-Javadoc corpus we add a Python docstring corpus,

from [67]. This corpus has 143K docstring-code pairs. We wanted to use this second docstring corpus

to further confirm the scores and get a better idea of the behaviour of the models on this type of

corpus (English-docstring corpus). This corpus is one of the additional corpora recommended by the

CoNaLa challenge authors.

Sample train-set question Train-set answer

upgrade the given database to revision with _temp_alembic_ini db_url as alembic_ini check_call alembic c alembic_ini upgrade revision

returns a random item from the list return random_module choice value

delete tarball with lcd logdir local rm le tar gz

shelve a server _find_server cs args server shelve

set the given properties on a group snapshot and update it return impl group_snapshot_update context group_snapshot_id values

Table 7: Sennrich et al. 2018 code generation dataset [67] (Pydoc): sample training-set examples

Table 8 shows statistics for the datasets used in our study.

4.2 Model Selection

For our study, we decided to replicate two published state-of-the-art sequence-to-sequence translation

models [111, 55] that have been developed for the English-to-code task and the code-to-English task,

respectively. We settled on these models because (1) we wanted to compare the sequence-to-sequence

LSTM and AttendGRU with the semantic search model, (2) they had both reached high BLEU

scores compared to other similar models evaluated on the same datasets, for English-to-code and

code-to-English respectively, on different datasets and (3) their code and dataset had been released.

The CodeSearch model reproduced from Sachdev et al. [90] uses the Gensim library for its

Word2vec word embeddings, and the sklearn library for its TF-IDF vectorizer and kNN search.

The sequence-to-sequence BiLSTM with attention and beam search is a common off-the-shelf

neural machine translation model by its authors, and is considered a baseline for the English-to-code

by the authors of the CoNaLa challenge. Its implementation relies on the Xnmt-DyNet framework.

Beam Search is used on sequential outputs of size 5.

The AttendGRU model from LeClair et al. [54] uses a Keras / Tensorflow implementation. The

model comes in two variants: the first variant’s encoder it is modified to concatenate 1) flattened-

AST and 2) programming-tokens; the second version only receives programming-tokens, as in a

standard encoder-decoder architecture. The AST structure is flattened into a string sequence during

preprocessing. Leclair et al. find that using a combination of AST and words-from-code provides a

43



CoNaLa-annot CoNaLa-mined Pydoc Javadoc

Dataset size (number of English-code pairs) 2,379 593,891 143,125 2,059,080

Test-set size 500 500 4K 90K

Provenance StackOverflow-derived StackOverflow-derived Github-derived Github-derived

Programming Language Python Python Python Java

Non-alphanumeric whitespace and underscore tokens? Yes Yes No No

Median English length (tokens) 8 8 10 9

Median snippet length (tokens) 17 14 31 20

Purpose code generation code generation code generation and summarization code summarization

Table 8: Statistics of datasets used in this study

0.2 BLEU4 increase over using only one or the other alone, however, because the AST and non-AST

models obtain very similar scores we choose to replicate the model that does not parse AST, for its

simplicity and reversibility on the Engligh-to-code task.

4.3 Preprocessing

We keep the studies’ original preprocessing pipeline intact when possible. We note that the processing

scripts from Leclair et al. [54] remove all non-alphanumeric tokens from the code and docstrings, while

this is not the case for the preprocessing of the CoNaLa challenge dataset for the Seq2SeqLSTM [110].

We make both docstring-derived corpora (Javadoc and Pydoc) use the processing scripts from [54], so

they both exclude non-alphanumeric tokens, both in the train-set and test-sets. This preprocessing

was done in the Leclair et al. [54] study on code summarization, and is more appropriate for code

summarization, because it provides new English word tokens from the source code, for the models to

learn from. For example, a code snippet to summarize appears as such:

6313385, public void call throws exception point cost pair pair optimizer

minimize cost function max evaluations checker vertex a vertex b queue in

x add pair get point terminated true it is the same condition used to say

that new x values are available but now they are null return void null

and the intent or docstring to generate appears similar to this:

6313385, <s> called by the thread executor when the thread is started </s>

When training the models on a new corpus, we use the original study’s preprocessing pipeline

also for the two other models. For example, when training the code search model and the seq2seq

LSTM on the Javadoc code-to-English, we used the original preprocessed data from [54] since it
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is, and simply re-formatted it in a jsonl, so it can be read by the two other models. That way, all

models train on an identical parallel corpus.

The preprocessing from Leclair et al. filters entries that are longer than 13. We had to disable

this option before training the AttendGRU on the CoNaLa dataset, since all other models have to

train on an intact version of the data, for a fair comparison for the challenge. This option was only

enabled on the C2E-Javadoc corpora: we simply used the intact Javadoc corpus from LeClair et al.,

and trained all models on it. On the Pydoc dataset, we also used the preprocessing from LeClair et

al., for all models, but removing the limit of 13 tokens for translation.

4.4 Training

We run and collect these two models’ BLEU scores on all the task-dataset combinations we selected:

(1) first, on their original study datasets then available, to confirm we obtain the same scores (2) on

the remaining datasets from other studies [111, 67, 55]. We train them and collect BLEU4 scores

each time for translation and back-translation (i.e. English-to-code and code-to-English). The two

sequence-to-sequence models, Seq2SeqLSTM and AttendGRU were trained with Nvidia Tesla V100

series GPUs with 16GBs of RAM, from a GPU cluster. The CodeSearch model was run for training

and retrieval on a cluster with access to high RAM: we used 80 GBs for all task-dataset combinations.

For the CodeSearch model, we used the Gensim library for the Word2vec model, and sklearn for

the TF-IDF vectorizer and kNN model, with the following parameters: Word2vec embedding size

800, min_count 1, epochs 100; kNN algorithm “brute” i.e. exhaustive search.

For the Seq2SeqLSTM and AttendGRU, we kept hyperparameters identical to the original studies

as much as possible. Vocabulary sizes for the Seq2SeqLSTM on each corpus are already adapted

to the size of the dataset in the open-source Seq2SeqLSTM repository: 4K for SOa (original study

value), 16K for SO (original study value), Pydoc and Javadoc. Vocabulary sizes for the AttendGRU

model were set to 44707 for English tokens and 75000 for code tokens (also original study value).

For the Seq2SeqLSTM: activation ReLU, dropout 0.3, default_layer_dim 512, trainer AdamTrainer

with learning of alpha 0.001, avg_batch_size 32, beam search size 5. AttendGRU: activation ReLU,

dropout (none), embdims 256, learning rate (unspecified), batch_size 200, beam search (none). Note:

the batch size for AttendGRU had to be reduced to 32 and 16 on the two larger docstring datasets

in the E2C direction, in order to fit into GPU RAM.

Leclair et al. [54] used early stopping to train their models. We also used the weights from the

epoch that had the best accuracy (next-token prediction accuracy) on the validation-set after 100

epochs, and this this is similar equivalent to the procedure followed by the Seq2SeqLSTM from

[111]. On all datasets, the Seq2SeqLSTM is run for 30 epoch, and the best scoring epoch on the
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validation-set is used for generations. The AttendGRU is run for more epochs (100), since it was not

performing as well, we wanted to maximize its chance of obtaining a high score. In general, however,

the AttendGRU’s validation-set loss plateaued after 10-20 epochs.

All three models can be run in reverse for back-translation. We use the version of the AttendGRU

from [54] that does not use an abstract syntax tree (AST) representation of code inputs, but rather

sequences of tokens, both for code and English words. The BiLSTM also handles words and code

tokens indiscriminately for both encoder input and decoder output. For this reason, these models

can be reversed for back-translation, and, as we will show, with minimal modifications, still generate

state-of-the-art scores on new datasets (as the Seq2SeqLSTM does on C2E-Javadoc), or in other

cases scores comparable to the other two models that were originally designed for the task. The code

search model can also be reversed successfully to search for English intents, given a code snippet. All

three models can be reversed for back-translation without any significant modification aside from

vocabulary size.

4.5 BLEU Evaluation Metric

The BLEU4 score is used to score the model’s answer (hypothesis) against the known code answer

(reference) to evaluate the model’s performance. To evaluate all models, we use the CoNaLa challenge

BLEU4 evaluation script.

4.6 BLEU Optimal Score (BOS)

We also provide the BOS score as a reference point for individual test-set questions. To obtain the BOS

for each test-set question and for the test-set as a whole, we use the CoNaLa BLEU score evaluation

script [110], and calculate the BLEU score obtained by train-set entry when scored against every

test-set answer, as described in section 3.2.2. Because the BOS computation can be long for corpora

that have long English intents or code snippets and millions of training-set entries, we computed

the BOS scores only for a random sample of total test-set questions on the following task-dataset

combinations: C2E-Javadoc (610 randomly sampled questions among 90,908 test-set answers) and

E2C-Javadoc (500 randomly sampled questions among 90,908 test-set answers), E2C-Pydoc (3882

questions out of 3885 test-set questions, due to a task hanging on the cluster toward the end). We

calculated the BOS on the entire test-set for the following task-dataset combinations: E2C-SOa (500

questions), E2C-SO (500 questions), C2E-SOa (500 questions), C2E-SO (500 questions), C2E-Pydoc

(3885 questions).

The time it takes to compute the BOS scores varies widely from corpus to corpus, depending
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Task-dataset combination Size of test-set Size of BOS random-sample as percentage of the test-set

E2C-SOa 500 code-English pairs 100%

E2C-SO 500 code-English pairs 100%

E2C-Pydoc 3,885 code-English pair 99.92%

E2C-Javadoc 90,908 code-English pairs 0.55%

C2E-SOa 500 code-English pairs 100%

C2E-SO 500 code-English pairs 100%

C2E-Pydoc 3,885 code-English pairs 100%

C2E-Javadoc 90,908 code-English pairs 0.67% (in section 5.3), 11.44% (in addendum 5.4)

Table 9: Size of random sample used for BOS analysis, on each task-dataset combination

on the average length of the English intent and code snippets. We collected the following BOS

computation times on a personal computer with a 2.5 GHz Intel Core i7 processor and 16 GBs

of 1600 MHz DDR3 RAM. They are not exactly the same completion times on the cluster with

high RAM, but do correlate approximately. On the small E2C-SOa task-dataset combination (500

test-set questions, 3K training-examples), we observe that it takes on average 1.63 sec per test-set

questions, and approximately 13.58 min for the entire test-set. On the larger E2C-SO task-dataset

combination (500 test-set questions, 600K training-examples), we observe that it takes on average 7

min 42 s s per test-set questions, and approximately 61 hr 49 min 39 sec for the entire test-set. On

the C2E-Javadoc task-dataset combination, which is the largest dataset we use in our experiments

(610 test-set questions examined, 2M training-examples), we observe that it takes on average 13

mins 43 sec per test-set question, and approximately 5 days 19 hr 25 min to obtain our 610 random

sample of the test-set. These times are for the simultaneous calculation of the BLEU4, BLEU2 and

BLEU1, and F1 scores. The BLEU2, BLEU1, and F1 scores were computed for all test-sets, but we

did not end up using them since results are extremely similar to those of the BLEU4 score, and most

previous studies use BLEU4 for evaluation. If exclusively the BLEU4 had been computed in our BOS

calculations, the time to complete would be reduced. We did not parallelize the BOS computation,

and did not implement 4-gram indexing of training-examples as described earlier in 3.2.2, but those

two optimizations could be done in order to reduce computation time for computing the BOS.
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Chapter 5

Results

To evaluate how well models perform on the code-to-English and English-to-code tasks:

• We first replicate existing models on their original task and dataset, to ensure they obtain a

score similar to the original study, and are well-functioning.

• We then train the models on the six remaining task-datasets combinations, which have not

been examined in prior work. As mentioned in Section 4, the Seq2SeqLSTM, AttendGRU,

and CodeSearch models are all language agnostic: they can be run on the other task-dataset

combinations, and reversed for back-translation when necessary.

We report two outcome measures: the BLEU4 score at the test-set-level, and the percentage

of answers with a BLEU4 score of zero. Tables 10 and 11 show the results for each outcome. In

Figures 2 to 8, we show the distribution of BLEU scores per question, for each approach on each

dataset and include the BOS score (retrieval ceiling) as reference point. Note: The BLEU score

generally ranges from zero to one hundred. It can theoretically allow scores above 100 BLEU, due to

the particularities of the brevity penalty, but BLEU scores are informally considered to be a 0-100

range.

5.1 RQ1: (English-to-code) How well do the existing tech-

niques perform for code generation?

To assess approaches on the code generation task, we start by replicating the Seq2SeqLSTM model

from Yin et al. [111], published on the CoNaLa leaderboard for the CoNaLa dataset (E2C-SO).

We then train and test the models on the task-dataset-model combinations not examined in prior work.
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E2C-SOa E2C-SO [111] E2C-Pydoc E2C-Javadoc

BLEU4 % B4=0 BLEU4 % B4=0 BLEU4 % B4=0 BLEU4 % B4=0

AttendGRU 8.66 81.28% 4.63 89.60% 0.54 83.56% 2.56 89.58%

Seq2SeqLSTM 14.15 70.20% 15.75 67.40% 1.67 93.77% 13.99 71.94%

CodeSearch 16.47 66.80% 4.89 88.80% 21.13 64.57%. 15.11 74.75%

BOS 40.33 8.79% 58.21 1.6% 31.70 26.96% 25.27 7.41%

Table 10: Code generation (E2C) model results with BLEU4, and the percentage of zero BLEU4

answers.

C2E-SOa C2E-SO C2E-Pydoc C2E-Javadoc [54]

BLEU4 % B4=0 BLEU4 % B4=0 BLEU4 % B4=0 BLEU4 % B4=0

AttendGRU 0.54 99.80% 0.77 99.00% 13.26 85.92% 19.58 90.49%

Seq2SeqLSTM 8.19 83.60% 2.01 97.40% 16.79 88.31% 21.28 90.82%

CodeSearch 8.27 83.20% 0.79 99.40% 36.91 66.54% 17.12 89.18%

BOS 25.44 23.0% 4.41 28.79% 38.78 40.87% 31.10 31.80%

Table 11: Code summarization (E2C) model results with BLEU4, and the percentage of zero BLEU4

answers.

E2C-SO (Yin et al. [111] Seq2SeqLSTM replication). The Seq2SeqLSTM was originally

trained by Yin et al. [111] for the English-to-code task, on the large version of the CoNaLa

corpus (E2C-SO) and the authors reported a BLEU4 score of 14.26. In our replication we obtain a

marginally higher score of 15.75. On E2C-SO, the BOS score at the test-set level is 58.21 BLEU4.

The Seq2SeqLSTM remains the best performing model on this task-dataset combination. The

AttendGRU and CodeSearch models have a much lower score of 4.63 and 4.90, respectively.

Most importantly, we observe that the models score zero on a large majority of the questions.

The best-scoring Seq2SeqLSTM obtains a score of zero on 337 out of 500 test-set questions (67.40%).

For the AttendGRU and CodeSearch models (second and third-scoring), the number of zeros is even

higher: 448 (89.60%) and 444 (88.80%) respectively. For all three models, we find that the overall

(corpus-level) BLEU score is misleading, as the median BLEU score per question is zero. We show

the distribution of model scores for the E2C task, in Figures 2 to 4.

As was previously noted in Chapter 4, the CoNaLa dataset was filtered using the Seq2SeqLSTM,

which can give an unfair advantage to the Seq2SeqLSTM. The Seq2SeqLSTM was first trained on

the smaller, high-quality CoNaLa-annotated corpus (E2C-SOa, vetted for having English intents very
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Figure 1: Distribution of per-question BLEU4 Scores for E2C-SOa

Figure 2: Distribution of per-question BLEU4 Scores for E2C-SO
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Figure 3: Distribution of per-question BLEU4 Scores for E2C-Pydoc

Figure 4: Distribution of per-question BLEU4 Scores for E2C-Javadoc
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descriptive of their associated code). Then the Seq2SeqLSTM model was used to predict answers on

new data, the mined data (not manually vetted for quality because too large), and the certainty of

the Seq2SeqLSTM model’s next-token predictions were used as part of a procedure to assess the

quality of the new, StackOverflow mined data. This filtering of the E2C-SO could give an unfair

advantage to the Seq2SeqLSTM on that dataset, and could explain why the Seq2SeqLSTM scores

approximately 10 BLEU4 points above the two other models, which is the largest lead in score that

the Seq2SeqLSTM has over other models in our experiments. The second largest lead in score that

the Seq2SeqLSTM has over other models is on the C2E-Javadoc where it scores only 1.96 BLEU4

points above the next best-scoring model, the AttendGRU. This surprising result is an anomaly in

our experiments, which seems to clearly correlate with the filtering procedure. The potential effect

of dataset filtering was not mentioned in by the authors of the CoNaLa challenge [111]. Since the

Seq2SeqLSTM does appear on the CoNaLa challenge leaderboard, we do include it in results.

Also, it is interesting to note that when we train the CodeSearch model on the smaller, man-

ually annotated corpus (C2E-SOa-CodeSearch, but test it on the E2C-SO test, it surpasses the

best-scoring Seq2SeqLSTM, with a score of 16.47 (the E2C-SOs and E2C-SO test-sets are identical,

but the train-sets are different, E2C-SO being larger but also noisier). The AttendGRU also benefits

from training on the cleaner E2C-SOa corpus even if it is smaller: it scores 8.66 instead of 4.63.

The Seq2SeqLSTM is the only model to score higher on E2C-SO than on E2C-SOa (15.75 versus

14.15), which is also an indication that its use for filtering of the E2C-SO corpus could be problematic.

E2C-SOa (novel task-dataset combination). On E2C-SOa, the small, manually curated

version of the CoNaLa corpus, the AttendGRU obtains 8.66 BLEU4, the Seq2SeqLSTM 14.15, and

CodeSearch 16.47. The percentage of answers with a BLEU4 score of zero is 81.20%, 70.20% and

66.80% for the AttendGRU, Seq2SeqLSTM and CodeSearch respectively. The BOS at the test-set

level is 40.33.

The test-set for this corpus is identical to that of E2C-SO dataset. Here it is interesting to note

that the CodeSearch model is able to surpass the E2C-SO-Seq2SeqLSTM (from [111]), when it is

trained on the smaller but cleaner E2C-SOa dataset (manually annotated subset of E2C-SO). It shows

that the performance of the Seq2SeqLSTM on E2C-SO is still below what a search model can produce.

E2C-Pydoc (novel task-dataset combination). On E2C-Pydoc, the AttendGRU obtains

0.54 BLEU4, the Seq2SeqLSTM 4.21, and CodeSearch 21.13. The percentage of answers with

a BLEU4 score of zero is 83.56%, 93.77% and 64.57% for the AttendGRU, Seq2SeqLSTM and

CodeSearch respectively. The BOS score at the test-set level is 31.70 BLEU4.

E2C-Javadoc (novel task-dataset combination). On E2C-Javadoc, the AttendGRU obtains
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2.56, Seq2SeqLSTM 13.99, and CodeSearch 15.11. The percentage of answers with a BLEU4 score of

zero is 89.58%, 71.94% and 74.75% for the AttendGRU, Seq2SeqLSTM and CodeSearch respectively.

The BOS score at the test-set level is 25.27 BLEU4.

CodeSearch outperforms the neural sequence-to-sequence models, Seq2SeqLSTM

and AttendGRU, but only on novel task-dataset combinations. We observe that CodeSearch

outperforms neural seq2seq models on all 3 novel task-dataset combinations. The Seq2SeqLSTM is

able to come very close to it on both E2C-SOa and E2C-Javadoc, scoring just 1.32 and 1.12 BLEU4

points below, respectively.

Seq2SeqLSTM outperforms AttendGRU every time. We also observe that the Seq2SeqLSTM

outperforms the AttendGRU on all C2E task-dataset combinations, by a very large marging of at

least 5 BLEU4 points. The AttendGRU is observed to be hard to train on the small and mid-sized

datasets used in our experiments and in previous studies (up to to 2M code-English pairs). The

AttendGRU is a model that was explicitly designed to be computationally more efficient, with

performance observed to be on par, or slightly lower than its LSTM counterparts. In our experiments,

we observe that the AttendGRU performs significantly below the Seq2SeqLSTM.

We successfully replicate Yin et al. [111]. When we test all technique data-set combinations,

we find that the CodeSearch model outperforms the AttendGRU and Seq2SeqLSTM on all but

the original E2C dataset. The BLEU metric provides misleading results because, depending

on the technique, between 64.57% and 93.77% of the answers have BLEU scores of zero.

5.2 RQ2: (Code-to-English) How well do the existing tech-

niques perform for code summarization?

To assess approaches on the C2E task, we start by replicating the AttendGRU model on the Javadoc

dataset from Leclair et al. [55]. We then train and test all models on the task-dataset-model

combinations not examined in prior work.

C2E-Javadoc (LeClair et al. [54] AttendGRU replication). The study replicated is

LeClair et al. [54]. The AttendGRU model was trained for code summarization on the English-

Javadoc corpus [55] and the authors reported a BLEU4 score of 19.4. In our replication, we obtain a

score of 19.58 BLEU4.
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The Seq2SeqLSTM scores 21.28, 1.70 BLEU4 above the AttendGRU model. Seq2SeqLSTM also

outperforms three recent studies using attention to function context [38], graph neural networks [53],

and two Transformers [36, 38]. The CodeSearch model has a BLEU4 of 17.12.

For all three models, again in the C2E direction, we find that the BLEU metric that is usually

reported is misleading, as the per-question median score is zero. The best-scoring Seq2SeqLSTM

obtains a score of zero on 73,338 out of 90,908 test-set questions (80.73%). For the AttendGRU and

CodeSearch models, the number of zeros is similar: 75,158 (82.68%) and 78,435 (86.28%) respectively.

On the subset of test-set questions considered for comparison with the BOS score in Tables 10 and

11 (500 in total), the number of zeros is higher than on the overall (90,908 entry) test-set: 90.49%,

90.82%, and 89.18% for the AttendGRU, Seq2SeqLSTM, and CodeSearch respectively. We show the

distribution of model scores for the C2E task, in Figures 6 and 8.

We also observe that several test-set questions contain the answer, that is, the function identifier

contains almost all the words of the docstring in the same order. This dataset-artifact often leads to

high scores for both Seq2SeqLSTM and AttendGRU on those types of test-set questions, as they

learn to copy the first tokens of the “question” as “answer”. This issue is discussed in more detail in

Section 5.3. Examples of the dataset-artifact can be seen in Table 5.3.

C2E-SOa (novel task-dataset combination). On C2E-SOa, the AttendGRU obtains 0.54,

Seq2SeqLSTM 8.19, and CodeSearch 8.27. The percentage of answers with a BLEU4 score of zero is

99.80%, 83.60% and 83.20% for the AttendGRU, Seq2SeqLSTM and CodeSearch respectively. The

BOS score at the test-set level is 25.44 BLEU4.

Here, and as is the case on several of our dataset, Seq2SeqLSTM and CodeSearch are near in

BLEU4 score, with CodeSearch slightly above Seq2SeqLSTM, and finally the AttendGRU much

lower than both.

We observe that, on the two CoNaLa datasets, all model scores are significantly lower than in

the E2C direction than in the C2E direction. This could be due to the great diversity of English

descriptions for a code snippet, which means that when provided with a code snippet as input,

English-to-code model can have difficulty deciding between several possible answers, when, in the

reverse direction, the number of possible code snippets is more restrained.

C2E-SO (novel task-dataset combination). On C2E-SOa, the AttendGRU obtains 0.77,

Seq2SeqLSTM 2.01, and CodeSearch 0.79. The percentage of answers with a BLEU4 score of zero is

99.00%, 97.40% and 99.40% for the AttendGRU, Seq2SeqLSTM and CodeSearch respectively. The

BOS score at the test-set level is very low, at 4.41 BLEU4.
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Figure 5: Distribution of per-question BLEU4 Scores for C2E-SOa

Figure 6: Distribution of per-question BLEU4 Scores for C2E-SO
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Figure 7: Distribution of per-question BLEU4 Scores for C2E-Pydoc

Figure 8: Distribution of per-question BLEU4 Scores for C2E-Javadoc
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C2E-SO is the most difficult task-dataset combination in our experiments. All three models

without exception score extremely low on it. This dataset is the only novel task-dataset combination

on which CodeSearch is surpassed by a neural sequence-to-sequence model. We can observe that

in addition to having one of the lowest BOS scores, C2E-SO presents at the same time a very low

CodeSearch score, which could indicates that code snippets are not good predictors of their intents, i.e.

that two very similar code snippets may have very, different, potentially irrelevant or unpredictable

intents. Another possible cause for low scores is if test-set answers are much shorter than the ones

found in the training-set on average. This could result in a heavy brevity penalty during the BLEU

computation, as described in 3.2.1.

C2E-Pydoc (novel task-dataset combination). On C2E-Pydoc, the AttendGRU obtains

13.26 BLEU4, Seq2SeqLSTM 16.79, and CodeSearch 36.91. The percentage of answers with a BLEU4

of zero score is 85.92%, 88.31% and 66.554% for the AttendGRU, Seq2SeqLSTM and CodeSearch

respectively. The BOS score is 38.78 BLEU4.

CodeSearch performs best on novel task-dataset combinations. On the novel task-

dataset combinations, again for C2E, CodeSearch performs the best. It surpasses both the

Seq2SeqLSTM and AttendGRU models on 2 out of 3 task-dataset combinations. CodeSearch

is only surpassed on C2E-SO, by the Seq2SeqLSTM, and only by a very small margin of 1.05 BLEU

point. This dataset is also exceptional in that all three models score extremely low on it, each having

more than 97% answers with a BLEU4 score of zero.

Seq2SeqLSTM outperforms the AttendGRU every time. We also observe that the

Seq2SeqLSTM outperforms the AttendGRU on all C2E task-dataset combinations, although this

time it performs better, and comes within 2 BLEU4 points of the Seq2SeqLSTM on 2 out of 3 novel

task-dataset combinations (and 3 out of the 4 C2E task-dataset combinations). The AttendGRU

performs better on the E2C direction for the two SO/SOa datasets, while it performs better in the

C2E direction for the Pydoc and Javadoc datasets. This trend is also observed with Seq2SeqLSTM

scores, but is less pronounced.

Trends in datasets. We observe that, on the docstring-derived datasets, scores are lower in

the E2C direction for the sequence-to-sequence models, Seq2SeqLSTM and AttendGRU. Functions

are longer in the docstring-derived datasets than in the StackOverflow-derived CoNaLa corpus

dataset. As we discuss in Section 6, this can make the task harder for sequence-to-sequence models.

CodeSearch on the other hand is not affected by the length of the generation because it returns

intact functions from the training-set. On the Stackoverflow-derived datasets however, this trend is

reversed, with sequence-to-sequence models performing better in the C2E direction.
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For the C2E task, we successfully replicate the LeClair et al.’s [54] AttendGRU on the original

C2E-Javadoc dataset. However, we find that Seq2SeqLSTM outperforms AttendGRU on this

original dataset. For novel datasets, Seq2SeqLSTM scores the highest on C2E-SO. On the

two remaining datasets, C2E-SOa and C2E-Pydoc, CodeSearch scores the highest. For the

C2E datasets, the proportion of answers with zero BLEU4 scores is even more problematic

ranging from 64.57% and 99.80% depending on the model.

5.3 RQ3: (Generalization and Dataset-Artifacts) Can sequence-

to-sequence models surpass the BOS ceiling for any par-

ticular test-set question? Under what circumstances?

BOS as a diagnostic tool. The initial intent in using the BLEU4 optimal search score, BOS,

was to get an idea of how well models were performing in comparison with the available, relevant

training data on a per-question basis. We wanted to understand why model scores were so low on

some test-set questions, and on some datasets. Because we were able to re-train the Seq2SeqLSTM

on the [54] dataset (C2E-Javadoc task-dataset combination) and obtain a state-of-the-art score for

it, we suspected that the training-data was at least one of the reasons for the large fluctuation in

scores across datasets and task-dataset combinations. To do this, we produced BOS to model-score

scatter-plots, for all task-dataset combinations. These scatter-plots can be seen in Figures 11 to 18.

The BOS (retrieval ceiling) is observed to act as a ceiling also for the sequence-

to-sequence models as well, with some rare exceptions. The first observation from the

scatter-plots was that the BOS score, which is the theoretical ceiling for the CodeSearch model, is

also usually not surpassed by the sequence-to-sequence models, on the large majority of test-set

questions. This is true for the BLEU4 scores (4-grams) but also for BLEU2 and BLEU1 (single

token matching). This is in itself an important finding, because it shows that sequence-to-sequence

model cannot generalize often, if at all, on our datasets for the tasks of code generation and code

summarization.

On some particular test-set questions however, the Seq2SeqLSTM and AttendGRU models can

occasionally surpass the BOS. This could mean that they were able to generalize successfully on

that particular test-set question. We wanted to examine such questions, to see what was actually

happening, and see if the model successfully generalized. On the scatter-plots, data points represent
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Figure 9: Scatter-plot of BOS scores versus model scores, for the small CoNaLa challenge annotated dataset from Yin et al. [111] (E2C-SOa). The
BOS score (BLEU) is measured along the X axis, while the models’ BLEU scores are measured along the Y axis. Each blue dot on the scatter-plots
represents one test-set question answer by the model in question. The BOS score (retrieval ceiling) is represented as the red line. Any dot above this red
line represents a model answer that obtained a BLEU score higher than that of any existing answer in the training-set. We see that the retrieval model,
CodeSearch, is strictly bounded by the BOS ceiling, which is expected if the model and the BLEU evaluation are well-functioning. We can also observe that
the two sequence-to-sequence models, AttendGRU and Seq2SeqLSTM can occasionally score above the BOS score, but that it is rare. In other words, the
sequence-to-sequence model BLEU scores are also mostly bounded by the BOS score, in a way similar to a retrieval model.

Figure 10: Scatter-plot of BOS scores versus model scores, for the large Javadoc dataset from Leclair et al. [54] (C2E-Javadoc). The BOS score (BLEU)
is measured along the X axis, while the models’ BLEU scores are measured along the Y axis. Each blue dot on the scatter-plots represents one test-set
question answer by the model in question. The BOS score (retrieval ceiling) is represented as the red line. Any dot above this red line represents a model
answer that obtained a BLEU score higher than any existing answer in the training-set. On this dataset, we see that, again, the retrieval model, CodeSearch,
is strictly bounded by the BOS ceiling. However, this time, the sequence-to-sequence model scores are able to surpass the BOS score more frequently, and
by a a large margin compared to what we saw on other datasets. We wanted to investigate to understand whether models were successfully generalizing,
or whether something else was happening on this dataset. We manually examined every sequence-to-sequence model answer scoring above the BOS in our
random sample, to discover that, in every case, these answers corresponded to a trivial test-set question (dataset-artifact) which gave away the tokens for
the answer. The sequence-to-sequence models learned to copy the question as answer.
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Figure 11: BOS versus Model score, per-question

BLEU4, E2C-SOa.

Figure 12: BOS versus Model score, per-question

BLEU4, E2C-SO.
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Figure 13: BOS versus Model score, per-question

BLEU4, E2C-Pydoc.

Figure 14: BOS versus Model score, per-question

BLEU4, E2C-Javadoc.
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Figure 15: BOS versus Model score, per-question

BLEU4, C2E-SOa.

Figure 16: BOS versus Model score, per-question

BLEU4, C2E-SO.
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Figure 17: BOS versus Model score, per-question

BLEU4, C2E-Pydoc.

Figure 18: BOS versus Model score, per-question

BLEU4, C2E-Javadoc.
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model scores for each test-set question on the task-dataset combination. Any point that is above the

<(0,0) (1,1)> diagonal (red) represents an answer that scored above the BOS. As we can see in Fig-

ures 11 to 18, model answers that are above the BOS for the test-set question do happen, but are rare.

Manually inspecting model answers that score above the BOS leads to discovery of

dataset-artifacts. The datasets where the two neural sequence-to-sequence models score above the

BOS most frequently are the docstring-derived datasets. For example, on C2E-Javadoc, the dataset

from [54], both the AttendGRU and Seq2SeqLSTM are able to score above the BOS 15 and 22 times,

respectively, out of the sampled 610 test-set questions.

These 12 instances constitute a very large portion (25.86%) of the 58 non-zero answers of the

AttendGRU. In the case of the Seq2SeqLSTM, these 12 instances constitute 39.29% of its 56 non-zero

answers. We inspect all outputs that scored above the BOS on this task-dataset combination. In

every single one of these instances, we observe that the test-set question contains the answer, that is,

the docstring is a duplicate or quasi-duplicate of the function name. In other words, the high score for

that test-set question is caused by the question containing the answer; that is, the function identifier

split by underscore by the dataset preprocessing from [54, 90] contains almost all the words of the

docstring and in the same order or a significant subset of it. Unfortunately, in some code-docstring

datasets, there may exists a large number of docstrings that are vertbatim copy of the function name,

split by underscore, and since the preprocessing on these studies handle splitting by underscore,

the model can simply copy the question as an answer. In Table 5.3 we show two examples of such

artifacts on the C2E-Javadoc dataset from the original AttendGRU study.

On E2C-Javadoc, this time, the Seq2SeqLSTM scores 20 times above the BOS on the 610 question

random sample, or 3.28% of the questions, which represent 11.68% of its non-zero answers. On

E2C-Javadoc, the AttendGRU scores 3 times above the BOS, i.e. 0.49% of the questions, which

account for 4.72% of its non-zero answers. It is interesting to note that on E2C-Javadoc, the task of

copying tokens from the question as answer is slightly more difficult than in the C2E direction, as

the sequence-to-sequence models need to guess the function modifier, the return type, as well as the

body of the function. This explains why the sequence-to-sequence models do not seem to be able

to take advantage of the dataset-artifacts as much in the E2C direction, and why we observe less

above-BOS answers for the sequence-to-sequence models. In the C2E direction, sequence-to-sequence

models need only extract information from the question in order to get a high BLEU score for the

question, which is an easier task than to reconstruct the function. Some examples for the E2C

direction (E2C-Javadoc-Seq2SeqLSTM) are shown in Table 5.3.

On E2C-Pydoc, the Seq2SeqLSTM scores above the BOS 9 times out of the 3582 test-set questions

for which we computed the BOS score, or 0.25%, and this account for 3.58% of its non-zero answers.
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Table 12: Examples of C2E-Javadoc-AttendGRU hypotheses scoring above the BOS.

Test-set question test-set answer AttendGRU hy-

pothesis

Example 1 private void write out

lat long bounding box

lat long bounding box

llbb int count throws

ioexception

write out a lat long

bounding box to the

stream

write out a lat long

bounding box

Example 2 private void set cur-

rent user comments

text string comment

changed true user

comments text set text

comment

sets the current user

comments text area to

comment

sets the current user

comments text

Table 13: Examples of E2C-Javadoc-Seq2SeqLSTM hypotheses scoring above the BOS.

Test-set question Test-set answer Seq2SeqLSTM hy-

pothesis

Example 2 register a bug code public void register

bug code bug code bug

code bug code map

put bug code get ab-

brev bug code

public void register

bug code bug code

bug code bug code bug

code

Example 1 gets controlling at-

tribute name

public string get

controlling attribute

name return control-

ling attribute

public string get

controlling attribute

name return con-

trolling attribute

name
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On E2C-Pydoc again, the AttendGRU scores 13 times out of the 3582 test-set questions for which

we computed the BOS score, or 0.36%, which account for 2.20% of its non-zero answers. The reason

why dataset-artifacts are so much rarer on the docstring-derived Pydoc dataset, is that in this corpus,

the code snippets only contain the function body, and exclude the function name. Docstrings tend to

contain tokens more similar to the function name than to the function body itself.

These dataset-artifacts inflate scores only for the neural sequence-to-sequence mod-

els, Seq2SeqLSTM and AttendGRU, and only on the docstring-derived dataset. This

dataset-artifact, present mainly in the two docstring corpora, and at higher rates on the Javadoc

dataset, lead to inflated scores for sequence-to-sequence models, as they learn to copy the first

tokens of the “question” as “answer”. CodeSearch on the other hand cannot take advantage of these

artifacts, since it can only return an existing training-set instance, intact. Despite this handicap,

CodeSearch scores higher than the sequence-to-sequence models on 3 out of 4 of the docstring-derived

task-datasets combinations (E2C-Pydoc, E2C-Javadoc, C2E-Pydoc). As we can see, the datasets

which produced the most artifact-related above-BOS model answers are, in order:

1. C2E-Javadoc, which is one of the only 2 task-dataset combinations in our 8 experiments on

which a sequence-to-sequence model could outperform CodeSearch; here the Seq2SeqLSTM

and AttendGRU obtain “for free” at least 39.29% and 25.86% of their non-zero scoring answers

from dataset-artifacts.

2. E2C-Javadoc; here the Seq2SeqLSTM and AttendGRU obtain at least 11.68% and 4.72% of

their non-zero scoring answers from dataset-artifacts.

3. C2E-Pydoc; here the Seq2SeqLSTM and AttendGRU obtain at least 3.58% and 2.20% of

their non-zero scoring answers from dataset-artifacts.

Note that these percentages of non-zero answers for which a dataset-artifact was identified is only a

lower bound, since we only inspected answers that scored above the BOS. It is possible that some

answers that scored below the BOS still benefited in BLEU score from the dataset-artifacts by

copying parts of the question in the answer. By looking at these numbers, it becomes more apparent

why the C2E-Javadoc task-dataset from the original AttendGRU study is the only task-dataset on

which neural sequence-to-sequence models were able to outperform CodeSearch: it is the dataset on

which sequence-to-sequence models benefit the most from artifacts, with more than a third of their

answers contained in the question, in our random sample. We conclude that the relatively low BLEU

scores for sequence-to-sequence models on novel task-dataset combinations are not an anomaly, and

that, contrarily to what it appears when only looking at the task-dataset combinations from previous

works, CodeSearch can be expected to surpass several variants of neural sequence-to-sequence models

on the code generation and summarization tasks, as long as the datasets are free, or sufficiently free
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of dataset-artifacts (such as test-set questions containing all, or a subset of the answer tokens).

Cases where a model scores above the BOS without the presence of a dataset-artifact

in the question are extremely rare. For example, on the E2C-SOa task-dataset combination

(CoNaLa challenge), the Seq2SeqLSTM surpasses the BOS on 1/500 test-set questions, the Attend-

GRU 0/500. These numbers are similar on other E2C-SO and C2E-SO/SOa: above-BOS answers

constitute less than 0.012% of model answers if we exclude cases of dataset-artifacts. We conclude

that the remaining cases where sequence-to-sequence models score above the BOS are only due

to chance, and the stochasticity of token-to-token predictions. In conclusion, we find that the

sequence-to-sequence models cannot outperform an optimal search.

BOS helps to show which datasets could have good results. C2E-SO has the lowest BOS

score at the test-set level, of all task-datasets combinations examined, at 4.41 BLEU4. It yields

extremely low scores from all models, below 2.01 BLEU4, with more than 97% of zero-scoring answers.

Since the same models perform otherwise extremely well on other datasets, obtaining scores higher

than several previous studies [54, 53, 38, 36, 111], we conjecture that the dataset is particularly

difficult to learn and predict, as the low BOS score of 4.41 BLEU4 indicates.

On some task-dataset combinations, we observe that some models score low even when the BOS

score is high. For example, the E2C-Pydoc but has a BOS score of 31.70 BLEU4, but yields extremely

low scores from both the AttendGRU and the Seq2SeqLSTM, below 2 BLEU4, with 83.56% and

93.77% of zero-scoring answers, respectively. It is interesting to note that with a similar number

of zero-scoring answers, thus a similar number of answers scoring above zero, the same models are

able to obtain very high scores of 19.58 BLEU4 (AttendGRU) and 21.28 (Seq2SeqLSTM) on the

C2E-Javadoc task-dataset combination which contained a large number of dataset-artifacts. This

could be explained by the fact that that a smaller number of very high scoring answers (scoring above

the BOS due to the dataset-artifacts), are able to skew the overall BLEU4 score on the Leclair et al.

dataset [55] (C2E-Javadoc). The brevity penalty (a step in the BLEU score computation procedure

as described in 3.2.1) can also bring down the scores if model answers are too short on average over

the whole test-set. This can be another reason for lower model score, compared to what the BOS

score could allow in theory.
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The Seq2SeqLSTM and AttendGRU do not surpass the BLEU4 optimal search score, i.e.

the retrieval ceiling score, except when the answer is contained in the question (presence of

dataset-artifact, or “trivial question”). The BOS score should be used in future work as a

reference point to evaluate sequence-to-sequence model performance.

5.4 Threats To Validity

Hyperparameter tuning could be explored further. A threat to validity of our conclusions

pertains to the sequence-to-sequence models’ hyperparameters, which, if explored more thoroughly,

might increase their scores further. As described in Chapter 4, we did not perform grid search,

random search, or any hyperparameter tuning for any of the models used in this study. We did adjust

the batch size when necessary to run the models with longer sentences in the available GPU memory,

but made no other modification to the original models to get all BLEU scores recorded. Therefore,

there might exist sets of hyperparameters that could lead to increased scores, on any of those datasets.

There are two problematic scores in particular that stand out as outliers: E2C-Javadoc-AttendGRU

and C2E-SOa-AttendGRU. It would be interesting to explore the hyperparameter space for the

AttendGRU on those task-dataset combinations, since the Seq2SeqLSTM is able to score substantially

higher on them, and indication that there is space for improvement for the AttendGRU on those

task-dataset combinations. However, we suspect that variation in dataset difficulty is at least one

important factor in the trends we observe. We believe it is likely that even if we explored the

hyperparameter space and increased model scores to some extend, our conclusions would remain

the same. In future work, to explore hyperparameter space further, a good approach would be

to use Bayesian or evolutionary hyperparameter search [27, 114], especially on the batch-size and

learning rate parameters which have been shown to affect scores significantly in some recent informal

hyperparameter optimization experiments on neural language models [57].

Random sample of test-set questions might not be representative. It is possible that

our random sampling of the test-set for the BOS analysis does not represent the true distribution.

For 3 datasets out of 8, we computed the BOS only for a random sample subset of the test-set

questions. On these 3 datasets (C2E-Javadoc, E2C-Javadoc, E2C-Pydoc), it is possible that this

random sample does not represent the true distribution on the overall test-set. The Javadoc-derived

corpus has more than 90K test-set entries, and we computed the BOS score for only 610 of them,

which represents a sample of 0.67% of the test-set. Among those 610, we examined all the model’s

generations that scored above the BOS, (as reported in Chapter 5). There is a possibility that this
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sample of 610 questions is not representative, because it is relatively small.

Both these threats are considered to be low, and we believe it is unlikely that our conclusions

(on CodeSearch generally outperforming neural sequence-to-sequence models, and neural sequence-

to-sequence model being incapable of generalizing above the BOS) are reversed by a change in

hyperparameters, or by taking a new random sample from the test-set for the BOS evaluation.

Addendum, confirming results with a larger random sample on C2E-Javadoc. Because

the 610 sample of test-set questions represents only 0.67% of the very large test-set from Leclair et

al. (90,908 code-English pairs), we wanted to confirm our results further on a larger sample of the

test-set. We thus re-computed the BOS scores over a larger sample of 10,399 test-set questions for

that dataset.

On this larger random sample of the test-set (sampled 10,399 test-set questions), we recorded

532 model answers scoring above the BOS for the AttendGRU model. In a manual inspection, we

observed again that every single model answer scoring above the BOS corresponds to a test-set

question which contained the answer, i.e. whose first tokens simply had to be copied over in order to

get a high BLEU score for the question. These questions represented 34.34% of the AttendGRU’s

1549 non-zero answers on this larger sample. This result is higher than the ratio of 25.86% that we

reported in section 5.3 and concurs with the initial observations made on the smaller sample of 610

test-set questions: model scores are greatly inflated on the C2E-Javadoc task-dataset combination,

due to the dataset-artifacts.

In the case of the Seq2SeqLSTM, again, all of its 659 answers scoring above the BOS were

observed to correspond to test-set questions which contained the answer tokens, and they represented

39.16% of the Seq2SeqLSTM’s 1683 non-zero scoring answers on the 10,399 larger sample of the

90,908 Leclair et al. test-set. This percentage on the larger sample of the test-set is similar to the

39.29% result that we initially reported in section 5.3 for the Seq2SeqLSTM, confirming our previous

results.
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Chapter 6

Discussion

In this Chapter, we discuss the main takeaways from our results, their causes, or potential causes,

and formulate hypotheses to be tested in future work. In particular, we discuss the five following

topics:

1. Sequence-to-sequence models performed better on originally reported datasets than on novel

task and datasets. Why?

2. Distribution of Individual BLEU Scores and Zero BLEU Scores

3. BOS, Dataset Size, and Resource Requirements

4. CodeSearch Outperforms Neural Seq2Seq Models

5. Seq2SeqLSTM Outperforms the AttendGRU

6.1 Sequence-to-sequence models performed better on origi-

nally reported datasets than on novel task and datasets.

Why?

One important finding of the present study is that, although we could obtain high scores for the

neural sequence-to-sequence models on the original study datasets (the Seq2SeqLSTM even setting a

new high score on the AttendGRU’s original study dataset), the same neural models did not perform

as well on the novel task-dataset combinations, both in absolute BLEU scores and in relation to

CodeSearch and the BOS. In Chapter 5, we identified reasons why some models are favoured on

some datasets, which we further discuss in this section.
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Dataset filtering with Seq2SeqLSTM on E2C-SO. We suspect that the use of the Seq2SeqLSTM

model to filter the CoNaLa dataset (SO dataset) gives this model an unfair advantage on that dataset

(E2C-SO). Using a model to filter a dataset in the way described in [111] could lead to favouring

question-answer pairs for which the Seq2SeqLSTM sees a strong link (strong prediction certainty from

question to answer), even if those links are the result of model priors or bias. This pre-filtering of the

CoNaLa dataset can help explain the surprisingly large gap (of approximately 10 BLEU4 points)

between the Seq2SeqLSTM and the two other models on this dataset. This task-dataset combination

is the only one on which the Seq2SeqLSTM leads and surpasses the two other models by such a large

margin. The next largest gap between the Seq2SeqLSTM and the second best-performing model is

approximately 2 BLEU4 points on the C2E-Javadoc task-dataset combination. To provide additional

evidence on the effect of model filtering of the corpus, it would be interesting to test whether filtering

the CoNaLa corpus with another model also boosts its score on the leaderboard.

Answer contained in the question (Seq2SeqLSTM and AttendGRU on C2E-Javadoc).

Dataset-artifacts, as previously discussed in 2.4, are spurious correlations between question and

answer, which allow machine learning models to answer correctly through shortcuts [65]. They create

“trivial” test-set questions that are easily answered by models, and can substantially inflate their

score if they are frequent in the data. On the original AttendGRU study dataset [54], as we showed

in Chapter 5, every neural model answers that scored above the BOS in the random sample can be

attributed to a dataset-artifact: the first tokens of the test-set question (code snippet) contain the

answer (docstring, reference translation). The dataset-artifact is inherent to the Github-scraped

English-docstring datasets, and the only way to avoid it would be to filter the dataset-artifact during

preprocessing by matching tokens in question and answer in the pair. After manual inspection

described in Chapter 5, we observe that these dataset-artifacts affected more than 25% and 39%

of the non-zero answers of the AttendGRU and Seq2SeqLSTM models respectively in our random

sample. This means that, if the random sample is representative, the artifacts account for a very large

portion of the BLEU points earned by the neural sequence-to-sequence models on this dataset. As

mentioned in 5.4, we observed very similar results on a larger random sample of 10K model answers

(11% of the Leclair et al. C2E-Javadoc test-set), to further confirm our conclusions. We observed

this time 39% and 34% of non-zero answers scoring above the BOS score, for the Seq2SeqLSTM and

AttendGRU, respectively, and observed again through manual inspection that every single one of

those answers corresponded to the dataset-artifact (the first tokens from the question contained a

significant number of tokens for the answer, which were simply copied by the models). As we already

discussed in Section 5.3, the simpler CodeSearch model is not affected by this dataset-artifact, as it

can only return answers from the training set, and thus cannot learn to copy the question as answer,

word-by-word.
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Evaluation on a single dataset. Our study highlights the need to evaluate models on a wider

range of datasets, and the need to report both high and low results. When evaluating a model,

researchers often try different datasets before deciding to use a dataset on which their model performs

relatively well and obtains a score worth publishing. Moreover, it is possible that papers that do not

use the datasets most favourable for a particular model are less likely to be published, either due to

the review process or self-selection from the authors. But such scores might not be representative.

McCoy et al. [65] observe discrepancies in model score on different datasets, due to the reliance

of sequence-to-sequence models on spurious patterns and dataset-artifacts on certain datasets to

obtain high scores. Feng et al. [28] also note the problem of dataset-artifacts and highlight the

need to test on several datasets, in the domain of language understanding. Even when there are

no identified dataset-artifacts, different datasets and their test-train splits could still vary in their

degree of novelty, and difficulty, and ranking models on only one dataset might not be statistically

significant and representative.

The need to evaluate competing models on several datasets to obtain a more representative

sample is rarely mentioned in the literature. We found one important mention for this idea in a

completely different application domains of machine learning: Coleman et al. [22] observe that

rankings of reinforcement learning models that are done on only one environment often are not

ultimately representative of model rankings on a wider ensemble of testing environments. This is

for them a motivation for automatically generating a large number of new testing environments for

reinforcement learning models. In the NLP domain, an initiative like Robustness Gym [32] (developed

by Salesforce Research and Standford Hazy Research), can help speed up the evaluation of models

on more diverse tasks and datasets, and could make such evaluations more complete, and robust, on

a variety of dimensions.

6.2 Distribution of Individual BLEU Scores and Zero BLEU

Scores

Another important finding of this study is that the majority of model answers have a BLEU score of

zero, even for the current state-of-the-art models. Even on the two original study datasets (E2C-SO,

C2E-Javadoc), the number of zeros is extremely high. On the original CoNaLa dataset (E2C-SO),

the best-scoring Seq2SeqLSTM has 67.40% of answers with a zero BLEU score. On the original

Javadoc dataset [54], the AttendGRU from the Leclair et al. obtains 90.49% of answers with a zero

BLEU score. This means that on most datasets, a small minority of model answers on the test-set

account for all the BLEU points gained by the model. As we showed in section 5.3, this situation can

result in a disproportionate influence of dataset-artifacts on the BLEU score, even if they represent a
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minority of examples in the dataset.

The BLEU evaluation procedure can lead to a large number of zero-scoring answers even for

a well-performing model if the programming language allows for multiple correct solutions to the

same software engineering task. Other evaluation metrics such as precision and recall, the F1 score

or METEOR would also suffer from this problem, when alternate answers are not available in the

test-set to cover the different acceptable solutions. This, in our opinion, highlights the need to

add alternate answers to a same test-set questions, especially for tasks such as English-to-code and

code-to-English, where the number of possible, valid mappings between intents and code could be

greater and more diverse than in natural language.

6.3 BOS, Dataset Size, and Resource Requirements

Another important finding from this study is that, on our particular tasks and datasets, neural

sequence-to-sequence models almost never surpass the BOS score, except due to the dataset-artifacts

noted. We observe that the neural sequence-to-sequence models are incapable of scoring higher than

answers already contained in the training set.

Do we simply need more data and bigger models? Would neural sequence-to-sequence models

eventually be able to generalize above the BOS ceiling if we increased the number of trainable

parameters of the models, or if we increased the dataset size? This might be possible, and would be

an interesting question to investigate in future work. Strictly looking at the results that we collected,

however, nothing allows us to conclude that increasing the dataset size will allow the models to

surpass the BOS ceiling. In our experiments, we observe that the BOS score ceiling is still in effect,

as the size of the dataset increases, from 3K to 2M pairs. The lack of answers above the BOS appears

more like a constant in our experiments, and neural sequence-to-sequence models consistently behave

like retrieval models in terms of BLEU score: they are capped by the same BOS ceiling score as the

retrieval model. One possibility with the very large sequence-to-sequence models trained on big text

corpora, such as BERT and GPT-3, is that as the training-set size increases, the BOS score increases

along with it for most test-sets that remain small, and constant in size. The BOS procedure really

measures the novelty, and difficulty of the test-train split. A large, high-quality dataset could still

have a very hard test-train split and thus a very low BOS (e.g. if duplicates across test and train

sets are avoided, which is frequent in published datasets). Vice-versa, a small, low-quality dataset

could have a very easy test-set, and a high BOS.

This question of whether a sequence-to-sequence model’s occasionally impressive text-generations

are already present in the training-set, is briefly addressed in the study on GPT-3 [13], but not

examined in detail due to “a technical difficulty” encountered by the researchers (“a bug in the filtering”
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of the test-set). In other previous studies, we do not observe a clear capacity for generalization

in sequence-to-sequence models. Jastrzebski et al. [49] developed a novelty metric for test-set

questions (based on word embeddings), and observe that a neural model is unable to answer test-

set questions when they are too novel. Studies using the SCAN dataset [51, 89] also observe

limited generalization capacity from neural sequence-to-sequence models, except when using a novel

“compositional” architecture (which has not been widely adopted yet), and only to a limited extend.

Nogueira et al. [77] observe the limited ability of neural sequence-to-sequence models to generalize

to do arithmetic on numbers of length longer than those contained in the training-set.

The conclusion from these observation, is that in order to increase model performance for practical

applications, increasing the BOS score is, in most cases, a pre-requisite. For end-users, whether the

model generalized or memorized the answer, the result is the same. Low-scoring queries could be

targeted for additional data collection, or data augmentation, in order to increase model scores and

user experience. Interestingly, if some particular neural sequence-to-sequence architectures do not

in practice score above the BOS for a task, then they should be used as, in essence, compressed

databases with fast query-times. Their downside is that they provide no warning when the query is

too novel, or “out-of-distribution”, and are likely to produce a non-sensical output. Another downside

is that they tend to favour high frequency tokens and sequences in their generations, and might

answer incorrectly questions that require the use of rare tokens, as noted by Gu et al. [7].

Comparison of the BOS analysis to the SCAN generalization dataset. To measure the

degree of generalization of a model, some recent studies have used the SCAN dataset [51], as well

as other similar datasets for generalization. SCAN and other similar datasets contain specifically

tailored generalization questions that are estimated to be “within reach”, possible and reasonable

to answer for a machine learning model, with different levels of difficulty, when given a particular

training-set. For example, an answer for a given SCAN test-set question could contain a token that

is completely absent from the training-set, while at the same time the training-set contains plenty of

helpful examples of similar cases, composed of other tokens, for models to learn and generalize from.

We believe that the BOS, although not as precise an assessment of the generalization capacity as the

short tailored questions from SCAN, can be a very good complement to such a study. In particular,

the BOS can help examine the generalization capacity of a model on any given dataset, in a “real

setting”, i.e. on actual questions on which the model will be used, and with the actual training-data

available. The BOS analysis as done in Section 5.3, uses the existing diversity of test-set questions

to assess capacity of the model to generalize, by sorting them by degree of novelty / difficulty and

correlating model scores with BOS scores, on each of these more, or less, novel questions. Test-set

questions with a non-perfect but high BOS score could in several cases be good candidate questions

for some of the easier generalization tests as done with SCAN, since those test-set questions will
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have only one or a few tokens differing from an existing training example. The BOS score could in

fact be used to collect good candidate generalization questions faster, from existing datasets.

Comparison of BOS to the novelty metric from Jastrzebski et al. [49]. Another approach

reminiscent of the BOS procedure is the “question novelty metric” used by Jastrzebski et al. [49] to

create subsets of test-set questions, or bins, which are measured to have different degrees of novelty.

In their work, the novelty, or “difficulty” of a test-set question is measured using word embedding

distance between word-tokens in relation triples, as discussed earlier in Section 2.4.

We believe that the BOS presents substantial advantages to both a specialized generalization

dataset and the novelty metric of Jastrzebski, as it is a simpler approach, that is less subjective. The

BOS also allows to carry out a more granular examination of generalization on any test-set. The

BOS allows to inspect model performance on test-set questions ranging from train-set duplicates

(BOS = 100) to quasi duplicates (test-set questions with very high BOS), and all the way to test-set

questions with (BOS = 0).

A low CodeSearch score indicates intents that are not descriptive, complementing

the BOS retrieval ceiling analysis. While the BOS can help identify the best-scoring training

example for a question, CodeSearch can give the score of the code snippet associated with the most

semantically similar intent to the test-set question, i.e. give an idea of the scores obtained by training

examples with intents that are reasonably descriptive, and related to the question. The BOS does

not guarantee that the best-scoring example for a question has a relevant, sufficiently descriptive

intent, and it is possible that the highest answer is unreachable, or “unlearnable” by the models, due

to the inconsistency of its descriptions. CodeSearch scores can be used to discover which datasets

have intents that are not descriptive of their code snippets.

Comparison of our results with previous Leclair et al. studies using the Javadoc

dataset [55], noting the similarity of scores of a wide variety of models. Thanks to the

recent efforts from Leclair et al. [54, 53, 38] and the additional study from Gupta [36], we can finally

compare several different sequence-to-sequence architectures on the same dataset (C2E-Javadoc),

for the task of code summarization. As we previously mentioned in 2.3, what is striking from this

sequence of studies is that a wide variety of models (attend-GRU, with and without AST as encoder

input, sequence-to-sequence with attention to file context, graph neural networks, Transformer,

CodeNN LSTM-based model) all obtain very similar BLEU scores, (e.g. 19.4, 19.6 BLEU4), that

are within the range one could obtain by re-training a sequence-to-sequence model with identical

hyperparameter, or by choosing a different epoch for the final model once the validation accuracy has

stabilized during training. The 21.28 BLEU4 score that we obtained with the Seq2SeqLSTM on that

same dataset, although higher than previous attempts, is also still very close to the other models. Its

slightly higher score could be due to the use of beam search in particular, which is well-known to

75



improve BLEU scores [83] for any sequence-to-sequence model, but is not used in the Leclair et al.’s

ablation studies [54].

One possibility is that sequence-to-sequence models, if they are indeed capped by the BOS score

on those tasks in practice, as we hypothesized in this section, will continue to stagnate. It is possible

that new models with an improved capacity to generalize will be necessary in order to increase

scores further, on the code summarization task, and other similar tasks. It would be interesting to

systematically compare machine learning models scores with BOS scores, on a wide variety of tasks

and architectures. Either we will be able to clearly identify whether the deep sequence-to-sequence

paradigm is fundamentally limited in the same way retrieval models are on these types of tasks, or, we

will discover certain architectures, training regimen or learning algorithms which are able to generalize

above it, on certain tasks, and that will be very interesting. Although the use of an AST-aware

model seems promising intuitively, it seems from the Leclair et al. studies that the improvements

are not as significant as expected. Maybe some approaches outside of the sequence-to-sequence

paradigm are better able to generalize, such as for example evolutionary or genetic program synthesis

[31], sketch discovery [78] and hybrid systems [107], or modular, "compositional" models such as

the one developed by Russin et al. [89]. A combination of approaches, i.e. hybrid approaches,

seems also a reasonable avenue for exploration since they can combine the strengths of different

models. One particularly interesting study from Ellis et al. [26] used a recombination-oriented

approach for program synthesis, where the model develops a library of code functions, over time,

which can be recombined by trial-and-error to solve new problems. Maybe this work can be adapted

for English-to-code. What is interesting is that the BOS analysis allows to discover which of these

models or combination of models is able to generalize to new questions, even if each study uses a

different training dataset. So obtaining those answers about model generalization becomes a more

realistic project.

Can some models score above the BOS score on certain tasks but not on others? It

is possible that when the task involves copying tokens from input sequence to output sequence, with

a relatively limited number of transformations such as is the case in natural language translation (i.e.

"well-aligned" input and output sentences), sequence-to-sequence models (and other models) are able

to generalize above the BOS score. It would be interesting to observe those cases. The capacity of

sequence-to-sequence models to take advantage of the dataset-artifact we observed is a strong clue

that this could be the case, especially because we anecdotally observe that sequence-to-sequence

models can often make “relevant changes” during copying, such as changing “get edge appearance

calculator” to “returns the edge appearance calculator”, which is essentially performing a translation.

It is possible that when the task is more difficult, beyond simple mappings between inputs and

outputs, models are not able to generalize above the BOS anymore, as we observe in the present study.
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If the input-output mapping rules necessary to succeed on the task are too complex, it is possible that

the sequence-to-sequence model is only incentivized to overfit, to memorize the training-examples

during training with gradient-descent, and has no way of reaching the correct internal representation

necessary to succeed on new inputs. If the training-examples do not fully define, or “teach” the

correct internal representation, then maybe it is too unlikely to appear during training.

One way to estimate the complexity of a task, and the complexity of the underlying internal

representation necessary for a model to answer a set of questions correctly, would be to ask several

human experts to report the steps in the decision-making that leads to the correct answers. The

depth of the tree in such an expert system could be used as a proxy for task complexity. Each

decision in the (experimental) expert system can be translated into a set of tensor operations (matrix

multiplications) to reach the correct output at each step, and this way a model size (and problem

complexity) can be estimated. Even if incomplete, such an expert system might give us an idea of

how unlikely it is that its structure (i.e. internal representation) will be discovered during training

with gradient-descent. Such a study could also provide us with a set of relevant sub-steps, for which

independent, modular machine learning models could be trained. Sequence-to-sequence models

already are composed of two sub-steps: the encoding of the meaning of the input sentence in a

thought-vector, and the next-token prediction by the decoder based on the thought-vector and the

previously generated tokens. These two sub-steps might not be sufficient on tasks beyond natural

language translation. After an empirical examination of the decision-making for the tasks when

carried out by humans, more sub-steps might be added, especially for a task like code generation.

Such an empirical study on expert systems could be carried out with software developers, to measure

the complexity of the task of writing code from requirements formulated either as tests (program

synthesis, English-to-code) or as an English intent (English-to-code).

6.4 CodeSearch Outperforms Neural Seq2Seq Models

Maybe the most surprising conclusion of this comparative study is that CodeSearch, a relatively

simple retrieval model, can on average surpass the two neural sequence-to-sequence models. When

there are no dataset-artifacts and when the dataset is not filtered by one of the sequence-to-sequence

models, the CodeSearch model performs above sequence-to-sequence models 5 out of 6 times, and

when it is surpassed, it is only by a very small margin, on a task-dataset combination where all three

model scores are near chance (E2C-SO). Even if we do not exclude the two problematic datasets

CodeSearch is still the best performing model overall, surpassing the two neural sequence-to-sequence

models on 5 out of the 8 data-set task combinations.

On some datasets, CodeSearch outperforms the neural sequence-to-sequence models by very large
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margins in BLEU4 score. On C2E-Pydoc and E2C-Pydoc, CodeSearch surpasses the neural models

by a large margin also, of 20.12 and 19.46 BLEU4 points. One reason could be that the Pydoc

dataset does not include the function name in the code snippet, only the function body. This reduces

the number of dataset-artifacts of the type identified in section 5.3, and might explain the low BLEU

scores of the neural models on that dataset, compared to the Javadoc dataset.

Some previous studies have also reported retrieval models outperforming standard off-the-shelf

neural sequence-to-sequence models, in similar experiments [61, 112, 116, 4]. Liu et al. [61] found

that the high-scoring answers from sequence-to-sequence NMT approaches tend to always contain

token sequences that are very similar to those in existing training-examples. We reached a similar

conclusion in Section 5.3: neural sequence-to-sequence models can only score high for a given test-set

question, if the answer is already in the training-set. They also find 16% of “trivial", or easy code-

English pairs, which they find are responsible for a large portion of the high-scoring NMT models’

answers. They find that NMT models’ scores are more than halved (31.92 to 14.19 BLEU) after

removing those trivial training-examples from the dataset. When they compare the NMT models

to a kNN-based retrieval model on a version of the dataset cleaned of the trivial examples that

boosted NMT model scores, they observe that the retrieval model outperforms NMT by a substantial

margin. In another study, Yin et al. [112], report that a retrieval model surpasses an off-the-shelf

neural sequence-to-sequence model on a code generation task, but the retrieval model was ultimately

surpassed by one of the study’s more sophisticated generative models, a seq2tree model, on that

particular dataset. Allamanis et al. [4] report that a TF-IDF based retrieval model surpassed an

off-the-shelf NMT sequence-to-sequence model in their experiments. although again here, their more

sophisticated sequence-to-sequence model (copy-attention) goes above the retrieval model. In a

similar study for the code-to-English task, Zhang et al. [116] report that, out of their three hybrid

models, only one scored above pure retrieval models, and by a very small margin (0.5 BLEU), a

change in score that can sometimes be obtained by simple re-training of the same model. These

results confirm that, despite being more recent, sequence-to-sequence models do not consistently

outperforms retrieval models on the code generation and code summarizaton task, and that the

outcome can be affected by issues with dataset quality, such as the ones we noted in section 5.3, and

the ones noted by Liu et al. [61].

Another important aspect in the comparison between neural sequence-to-sequence and retrieval

models is that CodeSearch has the advantage of always returning a complete, working code snippet

(in so far as the dataset is composed of relatively coherent code snippets). This can be important for

developer end users. CodeSearch returns code snippets intact from the dataset, and for that reason,

it might be more useful for developers in production environments. When performance is measured

by users instead of with the BLEU score, CodeSearch might be markedly preferred for that reason.
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It is important to note that BLEU favours the neural generative models, in that it does not test for

the syntactic validity of the code. Neural sequence-to-sequence models can generate code that does

not compile, uses API elements incorrectly nested for example, yet still score high in BLEU.

6.5 Seq2SeqLSTM Outperforms the AttendGRU

We also observe that the Seq2SeqLSTM outperforms the AttendGRU on all 8 out of 8 task-dataset

combinations. GRUs were explicitly designed to minimize training time complexity, but in terms of

BLEU4 score, we observe that they are unable to match the Seq2SeqLSTM and CodeSearch models

in our experiments. Several previous studies have also noted a small but significant decrease in

performance with the use of GRUs instead of LSTMs in sequence-to-sequence models [12, 108]. Britz

et al. [12] in a comparative study of LSTMs and GRUs in sequence-to-sequence architectures observe

that LSTM consistently surpass GRU cells in BLEU score. They also do not observe large differences

in training speed between the two variants. Yang et al. [108] find that the GRU is 29.29% faster

to train on an identical dataset, and also outperforms the LSTM in some cases, in the case of long

texts and a small dataset. They find that the LSTM outperforms the GRU in other configurations,

however. Chung et al. [21] report that a GRU-based sequence-to-sequence model can train faster

than its LSTM counterpart, and also can generalize better. In our experiments, the Seq2SeqLSTM

always outperforms the AttendGRU model, as discussed in section 5.
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Chapter 7

Contributions and Concluding

Remarks

In this study, we have assessed the performance of three state-of-the-art models on the code generation

task (code-to-English) and the code summarization task (English-to-code). We replicated two seq2seq

models, Seq2SeqLSTM and AttendGRU and a semantic CodeSearch model (document retrieval

model) for comparison. We first ran these models on their original study’s dataset, to ensure that

the models are working correctly and that the scores are similar to the original published scores. We

then ran these models on the datasets from other studies.

We observed that CodeSearch scores higher than the neural seq2seq models (Seq2SeqLSTM,

AttendGRU) on 5 out of 8 task-dataset combinations examined. On 2 of the 3 task-dataset

combinations where a sequence-to-sequence model scores above CodeSearch, problems with the

dataset were discovered: a dataset-filtering issue on the CoNaLa corpus [111] (E2C-SO), and the

presence of dataset-artifacts on the code-Javadoc corpus from Leclair et al. [55] (C2E-Javadoc). We

showed that these problems give an unfair advantage to Seq2SeqLSTM and AttendGRU, further

confirming CodeSearch’s superiority on the tasks. We also observed that the Seq2SeqLSTM always

outperforms the AttendGRU model, including on the relatively large (2M pairs) dataset originally

used in the AttendGRU study, which sets a new high score on that dataset (higher than four previous

studies on that dataset). We observed very large differences in scores from dataset to dataset, and

sometimes very low BLEU scores compared to scores seen in natural language translation.

We introduced the BOS score (retrieval ceiling score), to understand model performance in

relation to available data. For each test-set question, we search the training-set for the most relevant,

highest-scoring training-example, and reported its BLEU score. We observed that the BOS retrieval

ceiling is rarely surpassed by the AttendGRU and Seq2SeqLSTM models in our experiments. In
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a manual inspection, we observed that the rare model answers scoring above the BOS are caused

every time by dataset-artifacts, and concentrated mostly on one dataset: the Javadoc dataset from

Leclair et al. [54] (C2E-Javadoc). In two random samples of test-set questions, we measured that

these dataset-artifacts are responsible for at least 25% and 39% of the non-zero answers from the

two sequence-to-sequence models, Seq2SeqLSTM and AttendGRU respectivey, greatly inflating

their BLEU score. We observed that on the rest of the task-dataset combinations examined in our

experiments, without the presence of dataset-artifacts, neural sequence-to-sequence models are unable

to generalize on the task, and produce an answer that systematically scores below the BLEU score of

the best-scoring training-set answer for the given test-set question.

Potential future work includes examining neural seq2seq models such as LSTMs and GRUs and

Transformers (BERT family, GPT-C), to see whether they are able to surpass the BOS as the dataset

grows in size, and as the number of trainable parameters is increased. In our relatively modest

experiments, we see no evidence that increasing the dataset size enables neural seq2seq models to

score above the BOS. We formulate the possibility that, as the training-set size is increased, the BOS

score is simply increased along with it, and is still not surpassed by the sequence-to-sequence models.

An interesting question is whether a seq2seq model’s occasionally impressive test-set answers are

already present in the training-set. It would be interesting to discover which models and types of

architectures are able to generalize, and score above the BOS for a given dataset. Of course the BOS

can be adapted to any scoring metric, not just the BLEU.

We provide a final summary of our contributions as follows:

1. We compare sequence-to-sequence and retrieval models for the code generation and code

summarization tasks, on four different datasets.

2. We produce four new state-of-the-art high scores on three datasets (C2E-Javadoc-Seq2SeqLSTM,

E2C-SO-Seq2SeqLSTM, E2C-SOa-Seq2SeqLSTM, E2C-SOa-CodeSearch), using replicated and

reproduced models. These results surpassed six previous published BLEU scores on the same

datasets.

3. We observe that CodeSearch outperforms Seq2SeqLSTM and AttendGRU, which is also

occasionally observed in previous works on other datasets, but is nonetheless a surprising result.

4. We introduce a new question-novelty metric (BOS score), which allows to inspect whether a

model generalizes to unseen questions; this metric also helps to accelerate the identification of

dataset-artifacts (by looking at the rare model answers that score above their BOS score).

5. We observe that original study datasets [111, 55] unfairly favour sequence-to-sequence models,
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which helps to explain why 2 out of the 3 times CodeSearch is surpassed correspond the two

datasets from previous studies [111, 54].

6. We observe that, in the absence of dataset artifacts, neural seq2seq models never score above

the BOS, and do not generalize at all to unseen questions on the particular tasks and datasets

examined. In other words, we observe that, on the particular tasks and datasets from previous

studies that we examine, neural models cannot answer a question correctly unless it is already

in the training-set.
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