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Abstract

Domination : Offline, Online, Any Time

Jesse Racicot

Given a graph G = (V,E), a subset D ⊆ V is called a dominating set if each vertex v ∈ V ei-

ther belongs toD or is adjacent to some vertex inD. The typical objective is to find a dominating set

of minimum size. Depending on the context, the problem may be viewed from an algorithmic per-

spective or a purely mathematical one. The following thesis explores the topic of domination from

these two different perspectives, where the former is split further into two settings. In particular,

we study the topic as a computational problem within an offline setting where an algorithm is given

an input graph in its entirety and alternatively, in an online setting where an algorithm is forced to

make irrevocable decisions with limited information about an input graph. We also approach the

topic as a purely mathematical problem as we study the domination number of a well-known family

of graphs known as the Knödel graphs.

Prior to this thesis, research on the dominating set problem in an online setting was sparse. We

consider an online setting where a vertex is revealed to an algorithm and the choice to add this

vertex or not is a finality. In this setting, an adversary must reveal the entire neighborhood of a

vertex to an algorithm while keeping the revealed portion of the graph connected at all times. We

present algorithms that achieve 2-competitiveness on trees, 2.5-competitiveness on cactus graphs,

(t − 1) on K1,t-free graphs, and Θ(
√

∆) for maximum degree ∆ graphs. Moreover, we show that

all of those competitive ratios are tight. Then, we study several more general classes of graphs,

such as threshold, bipartite planar, and series-parallel graphs, and show that they do not admit com-

petitive algorithms (that is, when competitive ratio is independent of the input size). Our results

are compared with earlier results in a different input model, where a vertex is revealed alongside

iii



its restricted neighborhood: those neighbors that are among already revealed vertices. Thus, con-

ceptually, our results quantify the value of knowing the entire neighborhood at the time a vertex is

revealed as compared to the restricted neighborhood.

The family of graphs known as the Knödel graphs are studied extensively with an emphasis

on determining closed form expressions for certain graph parameters. Our main contribution is

the novel use of techniques from elementary number theory to establish an upper bound on the

domination number of the Knödel graph on n vertices. In particular, we show that whenever we

find a prime p dividing n with p ≤ dlog ne such that 2 is a primitive root modulo p then there is a

dominating set of size n
p . Moreover, if we suppose that 2 is a primitive root modulo pk, where pk

divides n and φ(pk) < dlog ne then we can construct a dominating set of size 2n
pk

.
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Chapter 1

Introduction

Planning a party that people enjoy is far from an exact science but planning one that people

attend can be. Oftentimes, we can both understand “what” influences someone and “who” influences

them. Perhaps a monetary amount, or another quantifiable object of value, may be enough to drag

someone to a party (although an additional fee is probably required if you want them to dance).

Even more coercive than money, is the influence of their close friends, who may have already been

bought out. As a thought experiment, suppose we could examine a group of people, and determine

an exact price for each person, that would ensure they attend a party. Moreover, suppose that we can

determine for each person in the group, the friends of theirs that they will convince to come (granted

that this person has already been payed). That is, we can safely assume a person will attend if they

have been payed or are directly influenced by someone who has been paid. You may find that some

demand a higher price but when they do attend, they bring with them many others, making your

dollars well-spent. Although, this is not always the case as some people cost an “arm and a leg” and

bring only their own (i.e. isolated individuals who trust the dollar more than their friends). If you

want to ensure that everyone attends the party, you can select some number of people you will pay,

obtain the guarantee that their friends will show, and work out whether this accounts for everyone.

If the “network” is adversarially interconnected, consists of more than a few hundred people, and

you wish to pay as little as possible then you probably won’t figure this out in your lifetime.

Much like this example, there are many other applications in the area of network communication

that allow certain physical details of the network to be ignored and instead only the nodes and the
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intercommunication lines between pairs of nodes are considered. This abstraction of a network can

be modeled as a graph and this motivating example is a concrete application of the minimum weight

dominating set problem.

A graph1 is a pair G = (V,E) where V is a finite set of elements called vertices and E is a

collection of unordered pairs of V called edges. Thus, the term “vertex” substitutes for the term

“node”, “edge” for “communication line”, and “graph” for “network”. Given two vertices u, v ∈ V

we say that u is adjacent to v if {u, v} ∈ E. A subset D ⊆ V is called a dominating set if each

vertex v ∈ V either belongs to D or is adjacent to some u ∈ D. One can always obtain a trivial

dominating set by selecting D = V , and per the definition, this is as large as a dominating set can

possibly be. Therefore the goal is typically to find dominating sets of small size, with the primary

aim being to determine γ(G), the size of a minimum dominating set in G.

More than a century ago, de Jaenisch (1862) asked for the minimum number of queens that

need to be placed on a chessboard so that every square is either occupied by a queen or attacked by

a queen. If we consider the 8× 8 = 64 squares of the chessboard as vertices of a graph where two

squares are adjacent if either can attack the other with a queen’s move, then this question is precisely

the problem of finding a minimum dominating set in this “queen’s graph”. This is often considered

the origins of the dominating set problem although no explicit mention of graphs were made. Berge

(1962) is credited for first introducing the idea of a dominating set in a pure mathematical setting,

where he defined the “coefficient of external stability” as the size of a minimum dominating set

in G although Ore (1962) was the first to introduce the terms “dominating set” and “domination

number” of a graph. Cockayne and Hedetniemi (1977), two of the largest contributors on the topic,

introduced the widely used notation γ(G).

The topic of domination is also widely studied by computer scientists due to important prac-

tical and theoretical applications, such as establishing surveillance service Berge (1962), routing

and transmission services in (wireless) networks Das and Bharghavan (1997), as well as broad-

casting Harutyunyan (2008); Harutyunyan and Liestman (2012). Finding a minimum sized dom-

inating set in a graph is a difficult computational problem. In particular, given a graph G and an

integer k, deciding whether γ(G) ≤ k is an NP -complete problem Garey and Johnson (1979).

1In this thesis we only deal with simple undirected graphs.
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The set cover problem was shown to be NP -complete by Karp (1972), and given the similarities

between the set cover and dominating set problems, some may regard this as the origins for dom-

ination as a computational problem. It is not only NP -complete to decide whether γ(G) ≤ k,

but there cannot be any constant-factor approximations for the optimization problem under com-

monly believed complexity assumptions. In particular, Lund and Yannakakis (1994) show that

if there is a polynomial-time algorithm that achieves approximation ratio c log n for c < 1/4

then NP ⊂ DTIME(nO(poly logn)) and Feige (1998) proved that if a polynomial-time algorithm

achieves approximation ratio (1− ε) lnn for any ε > 0 then NP ⊂ DTIME(nO(log logn)).

In modern times, some networks are extremely large and classical techniques can sometimes be

of little practical use. Oftentimes, a practitioner is inclined to design algorithms that are contingent

on only a small amount of local structure instead of the entire global structure of a network De Meo,

Ferrara, Fiumara, and Provetti (2014); Shun, Roosta-Khorasani, Fountoulakis, and Mahoney (2016).

Thus, in essence we have designed an algorithm that is supplied with limited information, e.g., only

the local structure, as well as having restrictions on its decision making. The general problem of

withholding information from an algorithm, demanding an irrevocable choice from said algorithm,

and then comparing the performance with that of an optimal algorithm (i.e. sees the input in its

entirety), is the interest of the area of online computation. The origins of online computation are

due to Graham (1966) who analyzed an online greedy algorithm for the makespan problem. Sleator

and Tarjan (1985) argued for worst-case analysis as opposed to the more popular average case

analysis of online algorithms at the time. The terms competitive analysis and competitive ratio were

introduced in Karlin, Manasse, Rudolph, and Sleator (1988). An extensive treatment of the area

of online computation can be found in the following books; Borodin and El-Yaniv (1998); Komm

(2016). The study of the dominating set problem in an online setting has received considerably less

attention than the offline setting (i.e. one in which an algorithm is provided as input a graph in its

entirety) with few papers published. In fact, the entirety of the research comprises of the following

papers; Böckenhauer, Hromkovič, Krug, and Unger (2021); Boyar, Eidenbenz, Favrholdt, Kotrbcı́k,

and Larsen (2019); Eidenbenz (2002); King and Tzeng (1997); Kobayashi (2017).

The remainder of the thesis is organized as follows: Chapter 2 provides the necessary prelimi-

naries for the thesis along with some basic, yet important facts about domination. Chapter 3 explores

3



domination in the classical offline setting; The chapter is a brief survey of offline domination. In

Chapter 4, the problem is explored in an online setting; The entire chapter comprises of an original

contribution which introduces and explores the problem in a previously unexplored setting. Chap-

ter 5 presents an original result on the domination number of a well-known family of graphs, the

Knödel graphs. Chapter 6 concludes with a summary of the thesis and potential directions of future

research.
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Chapter 2

Preliminaries

In this section we provide graph theoretic definitions and some basic results that help ease the

reader’s intuition on the topic of domination. For an overview of graph theory, three classical books

are Berge (1962); Harary (1969); Ore (1962) and a more modern text is Bollobás (1998). The

reader interested in domination specifically can refer to Haynes, Hedetniemi, and Slater (1998).

The first section consists of definitions that are used throughout the thesis along with some basic, yet

fundamental results about dominating sets. The second section provides results on some common

graph families. The first section can be considered the necessary preliminaries for the thesis whereas

the second is primarily intended to be pedagogical.

2.1 Definitions

Unless otherwise specified, the term graph G = (V,E) refers to an undirected graph without

loops at a vertex and at most one edge between two vertices. We sometimes use the notation V (G)

and E(G) to denote the vertex set and edge set of G, respectively. If |V | = n and |E| = m we

say that G is a graph on n vertices with m edges. Given two vertices u, v ∈ V we say that u is

adjacent to v (or u and v are neighbors) if {u, v} ∈ E and that the edge {u, v} is incident on u

and v. We define the open neighborhood of v, denoted by N(v), to be set of neighbors of v, that

is, N(v) = {u ∈ V | {u, v} ∈ E}. The closed neighborhood of v, denoted by N [v], is defined

as N(v) ∪ {v}. The degree of a vertex, denoted by deg(v), is the number of neighbors of v, that
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is, deg(v) = |N(v)|. We say that v is isolated whenever deg(v) = 0 and that v is a leaf when

deg(v) = 1. The minimum and maximum degree over all vertices in V is denoted by δ(G) and

∆(G), respectively. Typically, only δ and ∆ are used when the graph that is in context is clear.

A subset D ⊆ V is called a dominating set if each vertex v ∈ V either belongs to D or is

adjacent to some u ∈ D. The domination number of G, denoted by γ(G), is the size of a smallest

dominating set of G. A dominating set with γ(G) vertices is called a minimum dominating set or a

γ-set of G.

As a brief aside, we provide a list of observations followed by two basic bounds on the dom-

ination number of a graph. The upper bound is attributed to Ore (1962) and the lower bound was

originally proved by Berge (1962).

Observation 2.1.1. Let G = (V,E) be a graph on n vertices;

• γ(G) = 1 if and only if there is some v ∈ V with deg(v) = n− 1.

• γ(G) = n if and only if every vertex in V is isolated.

• If v ∈ V is isolated then it belongs to every dominating set of G.

• If v ∈ V is a leaf then there is a γ-set of G that does not contain v and contains the unique

neighbor of v.

Theorem 2.1.1. Ore (1962) If G is graph on n vertices with no isolated vertices then γ(G) ≤ n
2 .

Theorem 2.1.2. Berge (1962) If G is graph on n vertices then γ(G) ≥
⌈

n
∆+1

⌉
.

We extend the definitions of open and closed neighborhoods of subsets by taking unions. That

is, given a subset S ⊆ V we define N(S) =
⋃
v∈S

N(v) and N [S] =
⋃
v∈S

N [v] = N(S) ∪ S.

A path from u to v is a sequence of distinct vertices (v0, v1, ..., vk) where v0 = u, vk = v, and

{vi, vi+1} ∈ E for 0 ≤ i ≤ k − 1. Often, we will refer to the edges that appear in the path since

it is unambiguous to do so given the definition of a graph we use.1 The length of a path is the

number of edges in the path. The distance between u and v, denoted by d(u, v) is the length of a

minimum-length path from u to v. If there is no path from u to v we define d(u, v) =∞.
1Since we only consider graphs where there is at most one edge between two vertices, a sequence of vertices given by

a path uniquely determines a sequence of edges.
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With the preceding definitions in mind, we have the following equivalent definitions for a dom-

inating set.

Observation 2.1.2. Let G = (V,E) be a graph and D ⊆ V . Then D is a dominating set of G if

and only if any of the following hold:

(1) For all v ∈ V \D we have |N(v) ∩D| ≥ 1

(2) For all v ∈ V we have |N [v] ∩D| ≥ 1

(3) N [D] = V

(4) For all v ∈ V \D there is some u ∈ D with d(u, v) = 1.

A graphG is said to be connected if there is a path between any two vertices inG. The subgraph

of G induced on S ⊆ V , which we denote by 〈S〉, is the subgraph of G with exactly the vertices of

S and the edges in G that have both endpoints in S. That is, 〈S〉 = (S,ES) where ES = {{u, v} ∈

E | u, v ∈ S}. A connected component of G is an induced subgraph that is maximally connected

(i.e. adding any other vertex to the component results in a graph that is no longer connected).

The following observation shows that it is straightforward to carry over domination results from

connected graphs to those that are not connected.

Observation 2.1.3. IfG1, ..., Gk are the k ≥ 1 connected components ofG then γ(G) =
k∑
i=1

γ(Gi).

Consider a dominating set D ⊆ V and a vertex v ∈ V \D. If a message is to be communicated

along a path from v to some vertex u ∈ D, v can share the message to a neighbor w ∈ D, which

is guaranteed to exist, and w may then propagate the message to u along a shortest path.2 If D is

chosen so that pairwise distances (between vertices within D) is minimized then communication

between every pair of vertices in V can be efficient. Below is an observation that formalizes the

preceding comments. Hopefully, it provides the reader with a rough sense of how a dominating set,

when chosen appropriately, can be useful in networking communication.

Observation 2.1.4. Let G = (V,E) be a graph and D ⊆ V be a dominating set. If u ∈ D and

v ∈ V \D then d(u, v) ≤ max{d(u,w) | w ∈ D}+ 1.
2Remark that a shortest path from w to u may contain edges that are incident on vertices in V \D.
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The diameter of a graph, denoted by diam(G) is the maximum distance between any pair of

vertices in V (G). One might imagine a non-trivial relationship between domination number and

diameter of a graph. A graph with diameter 1 is a graph where all vertices are pairwise adjacent,

therefore it has a dominating set of size one. A graph with diameter 2 is slightly more interesting

but one can still make positive claims about dominating sets. The following result is attributed to

Haynes et al. (1998).

Theorem 2.1.3. Haynes et al. (1998) If diam(G) = 2 then γ(G) ≤ δ(G).

Proof. Let v ∈ V be an arbitrary vertex, we show that N(v) is a dominating set. In particular,

we show that any x ∈ V \ N(v) has a neighbor in N(v). Clearly, if x = v then we are done so

we take x ∈ V \ N(v) to be different from v. Remark that it is not adjacent to v by definition.

Since diam(G) = 2 there must be a path of length 2 from x to v. That is, x must share a common

neighbor with v and thus x is adjacent to some vertex in N(v). To finish the claim, simply consider

a vertex v with deg(v) = δ(G).

Consider a connected graph and a pair of vertices u, v. Notice that any vertex along a shortest

path from u to v has at most two neighbors on the path since a third neighbor along the path would

yield a shorter path from u to v. Similar reasoning yields that any vertex not on the path has at most

three neighbors that lie on this shortest path. This observation allowed Haynes et al. (1998) to give

a lower bound on the domination number, as a function of the diameter.

Theorem 2.1.4. Haynes et al. (1998) If G is connected then γ(G) ≥
⌈
diam(G)+1

3

⌉
.

Proof. Let diam(G) = k and assume that k ≥ 3 since the statement is trivial for k < 3. Take

vertices v0, vk such that d(v0, vk) = k = diam(G) and let P = (v0, v1, ..., vk) be a shortest path

from v0 to vk. Moreover, let VP denote the vertices on the path. We show that any dominating set

D satisfies |D| ≥
⌈
k+1

3

⌉
.

In earlier comments we remarked that any vertex on a shortest path has at most two neighbors

that lie on the path and any vertex not on a shortest path has at most three neighbors that lie on the

path. In particular, we have that any vertex in D dominates at most 3 vertices on the path P . That

is, for any v ∈ D we have |N [v] ∩ VP | ≤ 3. Since D is a dominating set we therefore have that
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N [D] = V =⇒ N [D] ∩ VP = VP . Therefore we have,

|VP | = |N [D] ∩ VP | = |
( ⋃
v∈D

N [v]
)
∩ VP | = |

⋃
v∈D

(N [v] ∩ VP )| ≤ 3|D|.

That is, k + 1 = |VP | ≤ 3|D| =⇒ k+1
3 ≤ |D| and the statement follows because |D| is an

integer.

Finally, we should mention that in the literature there are many variations of a dominating set

which impose conditions on the induced subgraph of the dominating set itself. For example, a subset

D ⊆ V is called an independent dominating set if 〈D〉 is a graph with only isolated vertices, a total

dominating set if 〈D〉 is a graph with no isolated vertices, and a connected dominating set if 〈D〉 is

a connected graph.

2.2 Results on Common Graph Families

In this section we define some well-known graph families and give their domination number as

a closed form expression, e.g. as a function of n where n indexes the family.

Definition 2.2.1. • Kn : The complete graph on n vertices, denoted by Kn, is the graph in

which every pair of vertices are adjacent. That is, given a positive integer n, |V (Kn)| = n

and E(Kn) = {{u, v} | u, v ∈ V (Kn), u 6= v}.

• Km,n : For 1 ≤ m ≤ n, the complete bipartite graph with parts of size m and n, denoted by

Km,n, is the bipartite graph in which each vertex of one part is adjacent to every vertex in the

other part. That is, V (Km,n) = X ∪ Y where |X| = m, |Y | = n and E(Km,n) = {{x, y} |

x ∈ X, y ∈ Y }. Whenever |X| = m = 1 we call this a star with n leaves and the only vertex

in X is called the center of the star.

• Pn : For n ≥ 1, we let Pn denote the path on n vertices where V (Pn) = {vi | 1 ≤ i ≤ n}

and E(Pn) = {{vi, vi+1} | 1 ≤ i ≤ n− 1}.

• Fn,k : For n ≥ 2 and k ≥ 1, we let Fn,k denote the fork on n vertices with k leaves which is

a graph containing a path on n−k vertices, where the (n−k)’th vertex is the center of a star
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with k leaves. That is, V (Fn,k) = {vi | 1 ≤ i ≤ n} andE(Fn,k) = E(Pn−k)∪{{vn−k, vj} |

n− k + 1 ≤ j ≤ n}.

• Cn : For n ≥ 3, we let Cn denote the cycle on n vertices where V (Cn) = {vi | 1 ≤ i ≤ n}

and E(Cn) = E(Pn) ∪ {{vn, v1}}.

• Wn : For n ≥ 3, we let Wn denote the wheel with n spokes which is a graph that consists of

a cycle on n vertices with an additional vertex that is adjacent to every vertex along the cycle.

That is, V (Wn) = {vi | 1 ≤ i ≤ n+ 1} and E(Wn) = E(Cn) ∪ {{vi, vn+1} | 1 ≤ i ≤ n}.

• Tm,h : For m ≥ 2 and h ≥ 0, we let Tm,h denote the perfect m-ary tree of height h. We

provide a recursive definition for Tm,h. A single vertex is a perfectm-ary tree of height h = 0

(where this vertex is the root of the tree). For h ≥ 1, the complete m-ary tree of height h has

a specified vertex r as the root, where r has exactly m children and each child is the root of a

perfect m-ary tree of height h− 1. Equivalently, a perfect m-ary tree of height h is a rooted

tree in which each internal vertex has exactly m children and every leaf is at distance h from

the root.

Observation 2.2.1. • For 1 = m ≤ n, γ(Wn) = γ(Kn) = γ(Km,n) = 1.

• For 2 ≤ m ≤ n, γ(Km,n) = 2.

• For n ≥ 1, γ(Pn) = γ(Cn) = dn3 e.

• For n ≥ 2 and k ≥ 1, γ(Fn,k) = 1 + γ(Pn−k−2) = 1 + dn−2−k
3 e.

• Let m ≥ 2, γ(Tm,0) = γ(Tm,1) = 1 and γ(Tm,2) = m.

For h ≥ 3, γ(Tm,h) = mh−1 + γ(Tm,h−3) =
bh

3
c−1∑
i=0

mh−3i−1 + mα, where α = 0 for

h ≡ 0, 1 (mod 3) and α = 1 for h ≡ 2 (mod 3).

Figure 2.1: P7 : A dominating set is shaded in black.
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Figure 2.2: F13,4 : A dominating set is shaded in black.

Figure 2.3: W8 : Single dominating vertex is shaded in black.

Figure 2.4: T2,3 : A dominating set is shaded in black.
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Chapter 3

Offline Domination: A Brief Survey

In this chapter we survey some results on domination from an algorithmic perspective. More

specifically, we consider the problem from the point of view of offline algorithms. In the first

section, we define the decision problem DOMINATING SET and show that it is NP -complete.

Based on the extensive research literature, we note that, for many restricted classes of graphs, the

problem remains NP -complete. In the section that follows we consider the problem of finding

a minimum dominating set (for any input graph G) as an optimization problem. Given that the

respective decision problem isNP -complete, a polynomial time algorithm that determines the exact

value of γ(G) for general graphs does not exist unless P = NP .

We therefore survey some restricted classes that admit polynomial time algorithms. The third

section introduces the notion of a polynomial-time approximation algorithm and describes some

known approximation results for the minimum dominating set problem. The final section concludes

the chapter by discussing some exact exponential time algorithms.

3.1 NP-Completeness

From the viewpoint of an algorithm designer for the dominating set problem, the primary chal-

lenge is to design an algorithm that takes a graph G = (V,E) as input and returns as output an

integer that corresponds to γ(G). After some time struggling to find an efficient algorithm for this

task, one might suspect that the problem is NP -hard. Although the theory of NP -completeness
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is reserved for decision problems, e.g., those problems whose answer is a simple “yes” or “no”,

translating an optimization problem into a decision problem is usually straightforward. For the

dominating set problem, the algorithm designer instead designs an algorithm that takes a graph G

and integer k as input and returns as output a “yes” if γ(G) ≤ k and a “no” otherwise (i.e. when

γ(G) > k). It is clear that an optimization algorithm can be used to solve this decision problem

and conversely, an algorithm for this decision problem can be used to find γ(G) by successively

applying the decision algorithm at most |V | times. That is, since we have 1 ≤ γ(G) ≤ |V | for any

graph G, using an algorithm that decides whether γ(G) ≤ k one simply asks γ(G) ≤ i for each

1 ≤ i ≤ |V | and finds the smallest j such that γ(G) ≤ j 1. In short, restricting our attention to

decision problems is appropriate, even for the algorithm designer concerned with the optimization

problem. The interested reader can refer to Garey and Johnson (1979) for a thorough treatment of

the theory of NP -completeness. We consider the dominating set problem as a decision problem,

using the format introduced therein.

DOMINATING SET

INSTANCE : A graph G = (V,E) and a positive integer k.

QUESTION : Does G have a dominating set of size ≤ k?

We start by stating a fundamental complexity result originally attributed to Garey and Johnson

(1979).

Theorem 3.1.1. Garey and Johnson (1979) DOMINATING SET is NP-complete.

The authors propose a reduction from the well-known NP-complete problem VERTEX COVER.

Given a graph G = (V,E), a subset C ⊆ V is called a vertex cover if every edge has at least one

endpoint in C. That is, for all {u, v} ∈ E we have that u ∈ C or v ∈ C (or both). In the VER-

TEX COVER problem you are given a graph G and an integer k and have to decide whether there

is a vertex cover of size ≤ k. The reduction from VERTEX COVER works as follows; Consider

an instance (G, k) of VERTEX COVER (assume without loss of generality that G has no isolated

vertices) and construct in polynomial time, a supergraph of G which has all the vertices of G along
1In fact, with the decision algorithm that answers γ(G) ≤ k, one can use a “binary search” type algorithm here with

a runtime overhead of a factor of O(log |V |)
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with all the edges of G. In addition, for each edge {u, v} in G, the supergraph has a new vertex w

which is adjacent to both u and v (and only u and v). This is not to be confused with an elementary

subdivision of an edge (see Figure 3.1 for an example). One can show that a vertex cover of size

≤ k exists in G if and only if a dominating set of size ≤ k exists in the resulting supergraph of G.

x y

z w

x y

z w

xy

yw

zw

xz

Figure 3.1: An example of the reduction described in Theorem 3.1.1. The vertices shaded gray are

respectively, a vertex cover in the left picture and a dominating set in the right picture.

Karp (1972) introduced the so-called SET COVER problem as one of his 21 NP -complete

problems. An instance to SET COVER is a finite set U (sometimes referred to as the ground set), a

finite family S of subsets of U whose union equals U , and an integer k. One must decide whether

there is a cover of U with size ≤ k, that is, whether there is a subfamily C ⊆ S with U =
⋃
X∈C

X

and |C| ≤ k. There is a tight relationship between SET COVER and DOMINATING SET and

many of the results surrounding the two are interchangeable.

A reduction from DOMINATING SET to SET COVER is straightforward. Consider an instance

(G, k) and set U = V and S = {N [v] | v ∈ V }. That is, the vertices are the elements to be covered

and the closed neighborhoods of vertices are those sets which can cover them. It is clear that D is a

dominating set of G if and only if SD = {N [v] | v ∈ D} is a cover of U .

Reducing SET COVER to DOMINATING SET requires slightly more care. Given an instance

(U ,S) for SET COVER, one constructs a graph GU ,S = (U ∪ S, E) where E = {{x, S} | x ∈

S}
⋃
{{X,X ′} | X 6= X ′ ∈ S}. That is, a graph which has all the elements of U and all the sets

in S as vertices, an edge between a set and all the elements that belong to that set, and an edge

between each pair of sets. One can show that there is a cover of U with size ≤ k if and only if

there is a dominating set of GU ,S with size ≤ k. If n = |U| and m = |S| then GU ,S is a graph on
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n+m vertices. In some instances, m can be exponential in n therefore we caution the reader when

translating results between the two problems.

When confronted with an NP -hard graph problem, one might attempt to simplify the problem

by restricting the inputs to a particular class of graphs. Depending on the class, it often happens

that the problem is no longer NP -hard. Unfortunately, this is not always the case as there are

restricted classes where the problem remains NP -hard. The remainder of the section is dedicated

to surveying the graph classes for which the DOMINATING SET problem remains NP -hard, and

hence NP -complete. For the classes mentioned below, ‘hardness’ is here to stay.

A subset of vertices is called an independent set if no two vertices of the set are adjacent and

it is called a clique if every pair of vertices are adjacent. A graph G = (V,E) is called bipartite

if V can be partitioned into two independent sets and is called split if V can be partitioned into

a clique and an independent set. Although the class of bipartite graphs and that of split graphs

are only superficially similar they are still both popular classes to investigate when studying NP -

complete graph problems. A proof that DOMINATING SET remains NP -complete for bipartite

graphs simultaneously appeared in Chang and Nemhauser (1984) and Bertossi (1984) and one for

split graphs appears in both Corneil and Perl (1984) and Bertossi (1984).

A natural approach to dissecting hard graph problems is to impose degree bounds on the inputs,

e.g., consider graphs with maximum degree bounded by a constant. A graph G with maximum

degree 2 has a rather simple structure; It consists of a disjoint union of path graphs and cycle graphs.

A straightforward algorithm for determining γ(G) is to find the connected components of G, which

are guaranteed to be either Pk or Ck for some k ≥ 1, and then apply the results of Section 2.2 for

each component. Unfortunately for those who love linear algorithms and graphs with small degree,

Kikuno, Yoshida, and Kakuda (1980) show that DOMINATING SET is NP -complete on planar

graphs of maximum degree 3. The DOMINATING SET problem has all but a couple degrees of

freedom, so to speak.

A graph is said to be chordal if every cycle of length at least 4 has a chord (an edge that does not

lie on the cycle but is incident on two vertices of the cycle). Booth and Johnson (1982) were the first

to show that the problem is NP -complete for chordal graphs. In fact, they prove a stronger result,
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that the problem is NP -complete even when inputs are restricted to undirected path graphs which

are a subclass of the chordal graphs. A simple proof of the result for chordal graphs is provided in

McRae (1996).

For some integer k ≥ 1, the class of k-trees is defined recursively as follows : Kk is a k-tree,

and if G is a k-tree then the graph H obtained by adding a new vertex v to G such that v has k

neighbours and N [v] forms a clique, is a k-tree. When k = 1 this is the familiar class of trees and

when k = 2, this is a proper subclass of series-parallel graphs. If we consider the class of graphs

{G | G is a k-tree for some k} then we obtain a proper subclass of all graphs. Restricted to this

class (i.e. when k is not fixed) the problem still remainsNP -complete as shown in Corneil and Keil

(1987). A straightforward result is that, for any k, a k-tree is also a chordal graph. Therefore, this

can also be seen as strengthening the result on chordal graphs.

3.2 Exact Polynomial Time Algorithms for Restricted Inputs

To know why a problem is difficult, it is also useful to know when it is easy. Moreover, finding

the easy version of your problem is just the beginning. Once a version is established as easy, one

can meticulously add back difficulty, in hopes of discovering the exact point at which it becomes

too difficult to deal with. For our purposes, this means finding a class of graphs which admits a

polynomial time algorithm (i.e. the easy versions of the problem) as well as consider superclasses

of these so-called easy classes until the problem becomes NP -complete again (i.e. the versions

that have become too difficult to deal with). In this section we attempt to do exactly this. As a

small caveat, when we discuss polynomial time algorithms we are now referencing the optimization

version of the problem, that is, a polynomial time algorithm that determines the exact value of

γ(G) when given an input graph G. Although, as previously mentioned this immediately implies a

polynomial time algorithm for the decision variant.

Periodically, we provide a chain of class inclusions with the intent of pointing out the area where

the problem becomes NP-complete again. A [P] or [NPc] following the class is taken to mean that

the class admits a polynomial-time algorithm or it remains NP-complete, respectively. If we assume

that P 6= NP then this disjunction of [P] or [NPc] is an exclusive one, e.g., a class cannot both be
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NP -complete and admit a polynomial time algorithm.

Since most problems that are NP -complete on general graphs happen to be solvable in poly-

nomial time on trees, the class of trees are considered the “training wheels” for a graph problem.

An algorithm designer can start to understand the problem by designing an efficient algorithm that

works for trees, which usually exists, and from there they can slowly add structure back and find the

problem’s breaking point. Unsurprisingly, a linear algorithm to find a minimum dominating set in a

tree exists as shown by Cockayne, Goodman, and Hedetniemi (1975). This algorithm is generalized

in Hedetniemi, Laskar, and Pfaff (1986) so that it applies to cactus graphs, that is, those graphs in

which every edge belongs to at most one cycle. A graphG = (V,E) is said to be biconnected if it is

connected and the removal of any vertex (and all of its incident edges) results in a graph that is still

connected. A block (biconnected component) of G is a maximal biconnected subgraph of G. Given

an integer k ≥ 0, a graph G is said to be almost-tree(k) if it is connected and every block of G can

be made into a tree by removing no more than k edges. For k = 0 and k = 1, we obtain the class

of trees and cactus graphs, respectively. An O(m4k/2) algorithm for almost-tree(k) graphs is given

in Gurevich, Stockmeyer, and Vishkin (1984), therefore this algorithm runs in polynomial time for

fixed k. Remarking that any connected graph is almost-tree(k) for some k then the problem clearly

remains NP -complete when k is not fixed. We recap the contents thus far in this chain of class

inclusions.

• trees[P] ⊂ cactus graphs [P] ⊂ almost-tree(k), fixed k [P] ⊂ almost-tree(k), arbitrary k

[NPc]

As we saw earlier, when k is unbounded, DOMINATING SET remains NP -complete for the

class of k-trees. Although, Corneil and Keil (1987) provide an algorithm, which takes a k-tree G as

input, and finds a minimum dominating set of G in O(nk+322k+2). Thus, when k is fixed this class

admits an exact polynomial time algorithm. Recalling that, for any k, a k-tree is a chordal graph

and that the problem is still NP -complete for chordal graphs we have the following chain.

• trees[P] ⊂ k-trees, fixed k [P] ⊂ k-trees, arbitrary k [NPc] ⊂ chordal [NPc]
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A graph is called a block graph (or clique tree) if every block of the graph is a clique. An

equivalent characterization for block graphs is that they are the vertex intersection graphs of blocks

in a graph. That is,G is a block graph if there is some graphH such that the set of blocks inH is the

vertex set of G and two vertices in G are adjacent if the corresponding blocks in G share a common

vertex. A graph is called an undirected path graph if it is the vertex intersection graph of paths in

a tree (i.e. there is some tree T such that the set of paths in T are the vertices and two vertices

are adjacent if the corresponding paths in T share a common vertex). A graph is called a directed

path graph if it is the vertex intersection graph of directed paths in a directed tree.2 Within Booth

and Johnson (1982), where the problem is shown to be NP -complete for undirected path graphs, a

polynomial time algorithm is given for the class of directed path graphs giving us the following.

• trees[P] ⊂ block graphs [P] ⊂ directed path graphs [P] ⊂ undirected path graphs [NPc] ⊂

chordal graphs [NPc]

A two-terminal graph (G, s, t) is a graph G with two distinguished vertices s, called a source,

and t, called a sink. For a pair of two-terminal graphs (G1, s1, t1) and (G2, s2, t2), there are two

composition operations:

• Parallel composition: take a disjoint union of G1 with G2 and merge s1 with s2 to get the

new source, as well as t1 with t2 to get the new sink.

• Series composition: take a disjoint union of G1 with G2 and merge t1 with s2, which now

becomes an inner vertex of the resulting two-terminal graph; s1 becomes the new source and

t2 becomes the new sink.

A two-terminal series-parallel graph is a two-terminal graph that can be obtained by starting

with several copies of the K2 graph and applying a sequence of parallel and series compositions.

Lastly, a graph is called series-parallel if it is a two-terminal series-parallel graph for some choice

of source and sink vertices. The series-parallel graphs are a popular graph class when studying

graph problems. A linear algorithm for series-parallel graphs first appeared in Kikuno, Yoshida, and
2There is a notion of a directed graph G = (V,E) for which E consists of ordered pairs (u, v) of vertices. Many of

the definitions for undirected graphs are analogous for directed graphs. A directed graph is called a directed tree if the
underlying undirected graph (i.e. the graph resulting from relaxing the direction on each edge) is a tree.
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Kakuda (1983). A graph is said to be a partial k-tree if it is a subgraph of a k-tree. In Arnborg and

Proskurowski (1989), an algorithm that is polynomial in the size of the graph but superexponential in

k is given. At the time of publication, the authors considered the algorithm only feasible for values

of k ≤ 8. Nonetheless, this yields a polynomial time algorithm for fixed values of k. Although the

series-parallel graphs do not generalize trees, the generalized series-parallel graphs, which are a

subclass of the partial 2-trees, contain both the series-parallel graphs and trees among other notable

classes. Hence, this result is more general than both the results on trees and series-parallel graphs.

Another chain of inclusions is in order.

• trees[P]⊂ generalized series-parallel graphs [P]⊂ partial 2-trees [P]⊂ partial k-trees, fixed

k [P]

The class of cographs can be defined recursively as follows: K1 is a cograph, and (1) if G is

a cograph then the graph complement G is a cograph and (2) if G and H are cographs then the

disjoint union of G and H is a cograph. It is straightforward to show that any connected cograph

has a dominating set of size 1 or 2, hence a polynomial time algorithm for cographs is obvious.

This simple observation is originally stated in Corneil and Perl (1984). The cographs, like trees,

make for a nice starting class of investigation. The class of k-CUBs are an interesting superclass of

cographs which arise by extending the recursive definition given above. Corneil and Stewart (1990)

provide a polynomial time algorithm for the class of 1-CUBs, as well as show that the problem is

NP -complete for k-CUBs when k ≥ 2.

• cographs [P] ⊂ 1-CUBs [P] ⊂ 2-CUBs [NPc] ⊂ CUBs [NPc]

3.3 Approximation Algorithms

An approximation algorithm yields a solution that is not necessarily optimal but can be guar-

anteed to lie within some range of an optimal solution. For our purposes, this is an algorithm that

returns a dominating set that is not necessarily of minimum size but is guaranteed to be no larger

than some function of the minimum size. Typically, the sacrifice of solution quality is traded for
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time (as well as simplicity). Under the assumption that P 6= NP , this trade-off is a necessary evil

as there can be no polynomial time algorithms that return exact solutions for our problem.

LetALG be an algorithm for the dominating set problem. That is, on any graphG,ALG returns

a dominating set for G and we denote this dominating set by ALG(G). We say that ALG achieves

approximation ratio c if for every input graph G, we have |ALG(G)| ≤ c · γ(G). The value c need

not be a constant and can often be a function of the input size.

For general graphs, a greedy-like algorithm, which at each iteration selects the vertex v with

the maximum number of undominated vertices in N [v], achieves an approximation ratio of H∆+1,

where ∆ is the maximum degree for the input graph and Hn =
n∑
i=1

1
i is the n’th harmonic number.

A straightforward result is that ln (n+ 1) < Hn ≤ lnn + 1 and therefore the greedy algorithm

achieves approximation ratio Θ(ln ∆). This result is originally attributed to Johnson (1974), al-

though the algorithm and analysis is given with respect to the set cover optimization problem. Duh

and Fürer (1997) consider the set cover problem where each set in the family has at most k elements

and provide an algorithm that achieves approximation ratio Hk+1 − 1
2 . If we recall the reduc-

tion from DOMINATING SET to SET COVER we see that this implies an approximation ratio of

H∆+1 − 1
2 for the dominating set problem.

With respect to the set cover optimization problem Lund and Yannakakis (1994) show that

if there is a polynomial-time approximation algorithm that achieves approximation ratio c log n

for c < 1/4 then NP ⊂ DTIME(nO(poly logn)) (where n denotes the number of elements in

the ground set). Feige (1998) strengthen these results by showing that if there is some ε > 0

such that a polynomial time algorithm achieves approximation ratio (1 − ε) lnn then NP ⊂

DTIME(nO(log logn)). Using the SET COVER to DOMINATING SET reduction we described

earlier, it is not immediately obvious that this hardness of approximation results carry over to the

dominating set problem. For example, if an instance (U ,S) of SET COVER with n = |U| and

m = |S| satisfies m = ω(n) then the construction yields a graph on |N | = n+m = ω(n) vertices.

Within Lund and Yannakakis (1994), the authors show that the hardness result applies even for set

cover instances where m is linear in n. Therefore the hardness results do in fact apply for the domi-

nating set problem. SinceH∆+1 = Θ(ln ∆), and ∆ can be Θ(n) for arbitrary graphs, it follows that
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the greedy-like algorithm achieves the best possible approximation ratio (ignoring low-order terms)

under plausible complexity assumptions.

When inputs have maximum degree bounded by a constant then the approximation ratioH∆+1−
1
2 is a constant. Hence, the problem is in APX . Alimonti and Kann (1997) show that the problem

is in fact APX-complete even for inputs with maximum degree 3.

3.4 Exact Exponential Time Algorithms

Certain applications call for exact solutions, regardless of the cost to be payed in running time.

The area of designing exact, but exponential, algorithms for the minimum dominating set problem

has seen some growth in recent years and here we give a brief overview of some of the work done

in this area.

Given a graph G = (V,E) on n vertices, a naive brute force approach is to determine whether

S is a dominating set for each of the 2n − 1 non-empty subsets S ⊆ V , and selects the smallest

such S. This gives rise to an Ω(2n) algorithm. The first exponential algorithm with running time

cn for c < 2 appeared in Fomin, Kratsch, and Woeginger (2004). In said paper, an algorithm

for arbitrary graphs with complexity O(1.93782n) and when inputs are restricted to split graphs,

bipartite graphs, and graphs with maximum degree 3, algorithms are given with time complexities

ofO(1.41422n), O(1.73206n), andO(1.51433n), respectively. Shortly thereafter, Grandoni (2006)

independently discovered an O(1.8021n) algorithm for arbitrary graphs and Fomin, Grandoni, and

Kratsch (2005) gave one with running time ofO(1.5263n). To date, the fastest known algorithm for

arbitrary graphs is given in Van Rooij and Bodlaender (2011) with a running time of O(1.4969n)

21



Chapter 4

Online Domination

In the offline setting, we often interpret hardness to mean that the problem inherently requires an

obstructive amount of time. In light of the preceding chapter, we see that the minimum dominating

set problem is hard in this sense. In an online setting, where information is withheld from an

algorithm but other computational resources such as time and space are not of interest, hardness is

interpreted to mean that the problem inherently requires an obstructive amount of information. In

this chapter we study the dominating set problem in the online setting, showing that it is also a hard

problem in this sense. The contents of this chapter is a collaborative work of the author which can

be found in the following; Harutyunyan, Pankratov, and Racicot (2021).

Consider a setting where a graph is revealed one vertex at a time. When a vertex is revealed its

entire neighborhood is revealed as well. An algorithm is required to make an irrevocable decision on

whether to include the newly revealed vertex into the dominating set the algorithm is constructing

or not. This decision must be made before the next vertex is revealed. Settings may differ on how

strict the condition of irrevocability is and in the amount of neighborhood information provided,

e.g., a vertex might be revealed with all of its neighbors or a restricted subset. The performance of

an online algorithm is measured against an optimal offline algorithm, i.e., an algorithm that knows

the entire input in advance and has infinite computational resources. This measure is captured by

the notion of competitive ratio and analysis.

We provide a brief overview of competitive analysis framework. For more details, an interested

reader should consult excellent books Borodin and El-Yaniv (1998); Komm (2016) and references
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therein. LetALG be an algorithm for the online dominating set problem. LetALG(G, σ) denote the

set of vertices that are selected by ALG on the input graph G with its vertices revealed according to

the order σ. We sometimes abuse the notation and omitG or σ (or both) when they are clear from the

context. Abusing notation even more, we sometimes writeALG(G, σ) to mean |ALG(G, σ)|. Sim-

ilar conventions apply to an offline optimal solution denoted by OPT . We say that ALG achieves

strict competitive ratio c if ALG ≤ c · OPT on all inputs. We say that ALG achieves asymp-

totic competitive ratio c (or, alternatively, that ALG is c-competitive) if lim supOPT→∞
ALG
OPT ≤ c.

The competitive ratio of ALG is the infimum over all c such that ALG is c-competitive. When

we simply write “competitive ratio” we typically mean “asymptotic competitive ratio” unless stated

otherwise.

Online dominating set problem has been studied in the vertex arrival model by Boyar et al.

(2019). In that model, when a vertex is revealed only a restricted neighborhood of that vertex is

revealed as well, namely, those neighbors that appear among previously revealed vertices. More-

over, in the model considered by Boyar et al. decisions are only partially irrevocable, i.e., when

a vertex arrives an algorithm may add this vertex together with any of its neighbors from the re-

stricted neighborhood to the dominating set. Thus, the decision to include a vertex is irrevocable,

while the decision not to include a vertex is only partially irrevocable – an algorithm has a chance to

reconsider when any yet unrevealed neighbors arrive. The catch is that the algorithm does not know

the input size and must maintain a dominating set of the revealed part at all times. In the model

considered in this chapter, all decisions (to include or exclude a vertex from a dominating set) are

irrevocable. Boyar et al. considered the online dominating set problem in two settings, namely,

with the restriction of an adversary being forced to maintain an always connected graph and without

this restriction. For the fairness of comparison, when we talk about Boyar et al. results we refer to

their results for the always-connected setting1.On one hand, this makes our model stronger for the

adversary. On another hand, our model is weaker for the adversary than the model of Boyar et al. in

the aspect of the adversary being forced to reveal all neighbors of a newly revealed vertex at once.
1In our model, two natural definitions of always-connected restriction are possible: (i) with respect to all vertices that

the algorithm is aware of at any particular moment (this includes vertices that have arrived and their neighbors that have
not yet arrived), and (ii) with respect to only those vertices that have arrived. Our work is in setting (ii). This distinction
is absent in the vertex arrival model.
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Thus, our results when compared to those of the vertex arrival model can be viewed as quantifying

the value of getting to know all neighbors of a vertex at the time of its revelation.

As a brief aside, we remark that a vertex arrival model (with restricted neighborhoods) and

strict irrevocability is rather hopeless for an online algorithm. Indeed, consider revealing each vertex

adjacent to all those previously revealed vertices as long as an algorithm continues to select vertices.

If the algorithm selects these vertices indefinitely we obtain an input with which all n vertices are

selected. If the algorithm decides not to select a vertex, then all vertices revealed thereafter are

adjacent only to this “excluded” vertex and an algorithm is forced to select each of these vertice

revealed after ultimately yielding an output of n− 1 vertices. In either of these cases, only 1 vertex

needs to be selected for an optimal solution. Similar remarks were mentioned in King and Tzeng

(1997) and this restrictive model was further explored in Böckenhauer et al. (2021), although with

advice.

Perhaps somewhat surprisingly, we discover in several results that the benefit of knowing all

neighbors outweighs the drawbacks of fully irrevocable decisions. Our results are summarized be-

low, but in particular we show that in our model ∆-bounded degree graphs admit O(
√

∆) online

algorithms, while Boyar et al. show that Ω(∆) is necessary in their model. Similarly, we demon-

strate and analyze a 2-competitive algorithm for trees, while Kobayashi (2017) shows a lower bound

of 3 in the vertex arrival model. Our degree upper bound implies that O(
√
n) competitive ratio is

tight for general graphs, whereas Boyar et al. showed the lower bound of Ω(n) in the vertex arrival

model. This paints a picture that knowing all the neighbors improves not only precise constants,

when graph classes allow for small competitive ratio algorithms, but also give asymptotic improve-

ments for more “challenging” graph classes for algorithms.

We shall consider performance of algorithms with respect to restricted inputs, specified by var-

ious graph classes, such as trees, cactus graphs, series-parallel, etc. The above definitions of com-

petitive ratios can be modified by restricting them to inputs coming from certain graph classes. We

denote the competitive ratio of an algorithm ALG with respect to the restricted graph class CLASS

by ρ(ALG,CLASS).

The following is a summary of our contributions with the section numbers where the results

appear.

24



• tight competitive ratio 2 on trees (Section 4.2.1);

• tight competitive ratio 5
2 on cactus graphs (Section 4.2.2);

• tight competitive ratio Θ(
√

∆) on maximum degree ∆ graphs (Section 4.2.3);

• tight competitive ratio t− 1 on K1,t-free graphs (Section 4.2.4);

• tight competitive ratio Θ(
√
n) for threshold graphs (Section 4.3.1), planar bipartite graphs

(Section 4.3.2), and series-parallel graphs (Section 4.3.3).

We note that all our upper bounds are in terms of strict competitive ratios, and all our lower

bounds, with the exception of K1,t-free graphs, are in terms of asymptotic competitive ratios.2

The remainder of the chapter is split into three main sections. Section 4.1 describes definitions

and establish notations that is used frequently throughout the chapter. Section 4.2 consists of graph

classes which admit algorithms with competitive ratio that is independent of the input size whereas

Section 4.3 consists of those which do not.

4.1 Preliminaries

Let G = (V,E) be a connected graph on n = |V | ≥ 1 vertices. The vertices of V are revealed

online in order (v1, ..., vn). Since we consider the online input model where vertices are revealed

alongside their neighbors, we distinguish between two notions: those vertices that are revealed by a

certain time and those that are visible. More precisely, we have the following:

Definition 4.1.1. • vi is revealed by time j if i ≤ j.

• vj is visible at time i if it is either revealed by time i or it is adjacent to some vertex revealed

by time i.

• Ri denotes the set of all vertices revealed by time i.

• Vi = N [Ri] denote the vertices visible at time i.

2With the small caveat that the performance ratio for threshold graphs is measured as a function of input size for
reasons provided later.
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The adversary chooses the graph G as well as the revelation order of vertices; however, the

adversary is restricted to those revelation orders that guarantee that 〈Ri〉 is connected for all i. Thus,

we observe that the process of revelation of a graph by the adversary is a natural generalization of

the breadth-first search (BFS) and depth-first search (DFS) explorations of the graph. Thus, we can

define the revelation tree analogous to BFS and DFS trees. We need the following observation first:

Observation 4.1.1. If vj ∈ Vi \ Vi−1 with i ≥ 2 then vi is the unique neighbour of vj at time i.

In the preceding observation, we say that vj is a child of vi and that vi is the parent of vj . The

edge {vi, vj} is called a tree edge. The subgraph induced on the tree edges is the revelation tree.

Any edge {u, v} where u is not the parent of v nor v the parent of u is called a cross edge.

After the vertex vi is revealed together with its closed neighborhood N [vi], an online algorithm

ALG must make a decision di ∈ {0, 1}, which indicates whether the algorithm takes this vertex to

be in the dominating set or not.

Definition 4.1.2. Given an online algorithm ALG we let:

• Si = {vk | dk = 1, 1 ≤ k ≤ i} denote the set of revealed vertices selected by ALG after

decision di where S0 = ∅.

• Di = N [Si] denote the set of vertices that are dominated after decision i.

• Ui = Vi \Di−1 denote the set of visible vertices undominated immediately before decision di

where U0 = ∅.

A series of figures are provided below which illustrate the preceding definitions. For these

figures, and all others in this chapter, the convention is that vertices that are shaded in gray are those

selected by ALG, vertices with thicker boundaries belong to OPT , an edge that is dashed is a cross

edge, and all the solid edges are tree edges.
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v1

v2 v3

v4

v1

v2 v3

v1

v2

v1

Figure 4.1: A series of prefixes of the graph depicted in Figure 4.2
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v1

v2 v3

v4

v5

v1

v2 v3

v4

v5

Figure 4.2: Top picture depicts the prefix of a graph with 5 revealed vertices and 10 visible vertices.

Bottom picture depicts its revelation tree. The thickened edges illustrate that the induced subgraph

on the revealed vertices is guaranteed to be connected.

Since an online algorithm makes irrevocable decisions and it must produce a feasible solution,

there may be situations where an algorithm is forced to select a vertex vj to be in the dominating

set. This happens because vj is the “last chance” to dominate some other vertex vi. In this case, we

say that vj saves vi or that vj is the savior of vi. Note that it is possible for a vertex vj to save itself.

The following definition makes the notion of “saving” precise.

Definition 4.1.3. A vertex vj , j ≥ 1 saves a vertex vi if j = max{k | vk ∈ N [vi]} and N [vi] \ {vj}

contains no vertices from Sj−1. Let s(vj) denote the set of vertices that vj saves.

Observe that if a vertex is saved then it must be that every one of its neighbours (itself included)

had a chance to dominate the said vertex.

Observation 4.1.2. If vi is saved then vi ∈ N [vj ] ∩ Uj for any vj ∈ N [vi].
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All our upper bounds are established by either a GREEDY algorithm or a k-DOMINATE algo-

rithm for some fixed integer value of parameter k:

• The algorithm GREEDY selects a newly revealed vertex if and only if the vertex is not cur-

rently dominated. Using the notation introduced above, GREEDY selects vi, i ≥ 1 if and

only if vi ∈ Ui.

• The algorithm k-DOMINATE (for some fixed integer parameter k) selects a newly revealed

vertex if and only if either (1) the vertex has at least k undominated neighbors, or (2) the vertex

saves at least one other vertex. Using the notation introduced above, vi, i ≥ 1 is selected if

and only if either (1) |N(vi) ∩ Ui| ≥ k, or (2) |s(vi)| ≥ 1.

Both GREEDY and k-DOMINATE give rise to rather efficient offline algorithms so that any of the

positive results given in this paper may be realized as efficient offline approximation algorithms.

4.2 Competitive Graph Classes

4.2.1 Trees

In this section we establish the tight bound of 2 on the best competitive ratio when the input

graph is restricted to be a tree. The upper bound is achieved by the 2-DOMINATE algorithm and

is proved in Theorem 4.2.2 below. The lower bound on all online algorithms is established in

Theorem 4.2.1. We begin this section with the lower bound.

Theorem 4.2.1. ρ(ALG, TREE) ≥ 2 for any algorithm ALG.

Proof. Consider an arbitrary small ε > 0. We will give an adversarial input that guarantees that

ALG ≥ (2 − ε)OPT . Let k = d3
ε e ≥ 4. At the start, the adversary reveals v1 with k children

{c1, . . . , ck}. Then we start the process described in the next paragraph at c1. The process can

terminate in two ways: (i) ALG stops selecting vertices to be in the dominating set, or (ii) ALG

selects k vertices revealed after c1 (inclusive). If the process terminates because of (i), then the

adversary restarts the process at child c2 of v1. The process again terminates either with (i) or (ii)

with respect to c2. If it is due to (i), then the adversary restarts the process at c3, and so on. If the

process terminates with (ii) with respect to ci then we reveal cj for j > i as leaves of v1.
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Next, we describe the process with respect to ci. The adversary reveals ci with 2 children and if

ALG selects ci then exactly one child of ci is revealed with two additional children. If ALG selects

the child then one of its children is revealed with two additional children, and so on. Let ji be the

number of these vertices that are selected by ALG. This process terminates only if ALG stops

selecting these vertices with two children (ji < k) or when ALG selects k of them (ji = k). At

this point the subtree grown at ci has some revealed vertices as well as visible, but not yet revealed

vertices. To finish revealing the entire subtree, the adversary proceeds as follows.

If ji < k then the two children on the (ji + 1)’st vertex are revealed to be leaves. Moreover,

each of the ji selected vertices have exactly one visible child that is not yet revealed. Reveal those

ji children, called support vertices, with an additional leaf child (i.e. the child is revealed to be a

leaf after its parent is revealed). Including the 2 children of the (ji + 1)’st vertex ALG must select

at least ji + 2 additional vertices to dominate these leaves for a total of ji + (ji + 2) = 2(ji + 1)

selected vertices in this subtree. In this case, OPT can select the support vertices together with the

(ji + 1)’st vertex for a total ji + 1 vertices to dominate the entire subtree.

If ji = k the procedure to finish revealing the entire subtree at ci is similar: the k’th vertex

children are both revealed to be leaves and each of the other k − 1 selected vertices has the other

child become a support vertex, i.e., revealed with an additional leaf child. The performance is

similar here but ALG is not forced to select the two children of the k’th vertex so ALG selects at

least k + (k − 1) = 2k − 1. In this case, OPT needs only select the k’th vertex together with the

support vertices for a total of k vertices to dominate the subtree.

To finish the analysis, we consider the following two cases:

Case 1 : for all iwe have ji < k. ThenALG ≥ 2(ji+1) on each subtree whereasOPT ≤ ji+1

on each subtree. Summing over all subtrees and remarking thatOPT might select v1 we obtain that

ALG/OPT ≥
(∑

2(ji + 1)
)
/
(

1 +
∑

(ji + 1)
)
≥ 2− 2/k ≥ 2− ε.

Case 2 : there exists ` such that j` = k. Then OPT selects ji + 1 vertices for i < `, k vertices

for i = `, 0 vertices for i > ` per subtree, plus v1. Whereas ALG selects at least 2(ji + 1) for

i < `, 2k − 1 for i = `, and 0 for i > `. By a similar calculation to Case 1, we obtain that

30



ALG/OPT ≥ 2− 3/k ≥ 2− ε.

ci

ci,1

ci,2

ci,3

si,1

si,2

si,3

ci

ci,1

ci,2

ci,3

Figure 4.3: An example of the process described in Theorem 4.2.1 where ALG selects ji = 3

vertices on the subtree rooted at ci. The top depicts the subtree immediately after revealing ci,3

whereas the bottom shows the entirely revealed subtree.

Now that we have established an asymptotic lower bound of 2 for any algorithm we show that

2-DOMINATE is 2-competitive.

Theorem 4.2.2. ρ(2-DOMINATE, TREE) = 2.

High level overview of the proof. Consider an arbitrary input T = (V,E) on n ≥ 3 vertices

and let OPT denote a minimum dominating set of T which contains no vertices of degree 1 (i.e.

any such vertex can be exchanged for its only neighbor). Recall that S is the set of vertices selected

by 2-DOMINATE. Initially, we assign charge 1 to each vertex v in S and charge 0 to each vertex

31



v not in S. Thus, |S| =
∑
v∈S

ch(v) where ch(v) denotes the charge of v. With a charging scheme

described shortly, we spread the charge from the vertices in S to the vertices of V . Let ch∗(v)

denote the new charge associated with vertex v. We extend the functions ch and ch∗ to subsets of

vertices linearly, e.g., for W ⊆ V we have ch(W ) =
∑

v∈W ch(v). We shall demonstrate that the

procedure of spreading the charge satisfies two properties:

(1) conservation property:
∑

v ch(v) =
∑

v ch
∗(v) meaning that the total charge is preserved;

and

(2) OPT -concentration property: for each v ∈ OPT we have ch∗(N [v]) ≤ 2.

With these two properties it follows that,

|S| ≤
∑
v

ch(v) =
∑
v

ch∗(v) ≤
∑

v∈OPT
ch∗(N [v]) ≤ 2OPT,

so 2-DOMINATE is strictly 2-competitive.

Before we proceed with this plan, we make a couple of useful observations:

Lemma 4.2.1. If input is a tree, there are no cross edges incident on any vi. In particular, vi has at

most one neighbour before it is revealed.

Corollary 4.2.1. If deg(vi) ≥ 3 then vi ∈ S.

Now, we are ready to present formal details of the above plan. We spread the charges according

to the following rule:

Consider any vi ∈ S with Xi = N [vi] ∩ Ui. Remarking that Xi 6= ∅ we then give each vertex

in Xi an equal charge of 1
|Xi| . That is, a vertex selected by 2-DOMINATE spreads its charge evenly

to all the newly dominated vertices in its closed neighbourhood. We say that each vertex in Xi is

charged by vi.

Observation 4.2.1. Every vertex is charged by exactly one vertex.

The preceding observation immediately implies that any vertex has charge at most 1. This

observation is tight in the sense that, on certain inputs, there are vertices with charge equal to 1. A
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vertex with charge 1 is a rather special case though. In particular, if vi has charge 1 then it must be

saved by some vertex vj where Xj = {vi} (this does not exclude the possibility that vi = vj). If vi

does not meet this condition then it must have charge at most 1
2 .

Lemma 4.2.2. If vi and vj both have charge equal to 1 then they share no common neighbours.

Proof. Suppose for the sake of deriving a contradiction that vi′ were a common neighbour of vi and

vj . Since vi is saved, by Observation 4.1.2 it must be that vi ∈ N(v′i) ∩ Ui′ . Similarly, we have

that vj ∈ N(v′i) ∩ Ui′ . That is, |N(v′i) ∩ Ui′ | ≥ 2 and thus v′i ∈ S. Moreover, Xi′ = N [vi′ ] ∩ Ui′

contains vi and vj . In particular, we have that |Xi′ | ≥ 2 with vi, vj ∈ Xi′ and therefore vi and vj

receive charge no larger than 1
2 , a contradiction.

Lemma 4.2.3. If vi and vj both have charge equal to 1 then they are not adjacent.

Proof. It is easy to see that v1 cannot have charge 1 on any input with at least 2 vertices. Therefore

we safely assume that 1 < i < j such that both vi and vj have a parent. We assume for the sake of

deriving a contradiction that vi and vj are adjacent.

Now, since both vi and vj have charge 1 it follows that they are both saved vertices. First we

show that both vi, vj /∈ S. Notice that any saved vertex vk has the property that |N [vk] ∩ S| = 1.

Therefore, if we assume by way of contradiction that vi ∈ S we obtain thatN [vi]∩S = N [vj ]∩S =

{vi} and therefore vi saves itself and vj . This yields that Xi = N [vi] ∩ Ui contains vi and vj . In

particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi and therefore vi and vj receive charge no larger

than 1
2 , a contradiction. An identical argument will yield that vj /∈ S.

Therefore it must be that vi is saved by some vertex vi′ with i′ /∈ {i, j}. Moreover, we must

have i < j < i′ since i < j by assumption and i′ = max{k | vk ∈ N [vi]}. This implies that both

vj , vi′ are children of vi by Observation 4.2.1 yielding that |N(vi) ∩ Ui| ≥ 2 but vi cannot be in

S.

From the two preceding lemmas we have the immediate corollary.

Corollary 4.2.2. For any vi, at most one vertex in N [vi] has charge 1.

Now, we finish the proof of 2-competitiveness of 2-DOMINATE on trees.
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(Proof of Theorem 4.2.2). The lower bound follows from Theorem 4.2.1. Let vi ∈ OPT be an

arbitrary vertex in OPT . We consider two cases (1) deg(vi) = 2 or (2) deg(vi) ≥ 3.

Case 1 : Suppose that deg(vi) = 2 and hence |N [vi]| = 3. By Corollary 4.2.2 it follows that at

most one vertex inN [vi] has charge 1. If no vertices inN [vi] have charge 1 then ch(x) ≤ 1
2 for each

x ∈ N [vi] and we obtain that
∑

x∈N [vi]

ch(x) ≤ 3
(

1
2

)
< 2. If there is exactly one vertex x′ ∈ N [vi]

with charge 1 we therefore obtain that
∑

x∈N [vi]

ch(x) =
∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤ 2

2 + 1 = 2.

Case 2 : Suppose that deg(vi) ≥ 3. By Corollary 4.2.1 it follows that vi ∈ S with at least 2

children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is, each child

of vi is charged by vi and only vi. Therefore the children of vi can receive at most the full initial

charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \Ci has a charge of at most 1
2 . Indeed, suppose a vertex

vi′ ∈ N [vi]\Ci has charge 1 then it must be saved by vi since |N [vi′ ]∩S| = 1 for any saved vertex

vi′ . That is, there is exactly one vertex in its closed neighbourhood that is selected and since vi is

selected it must be vi. Thus, we must have that vi′ ∈ Xi but since Ci ⊆ Xi we know that |Xi| ≥ 2

and thus vi′ receives a charge of no more than 1
2 < 1, contradicting our assumption that vi′ has

charge 1.

Thus, by remarking that |N [vi] \ Ci| ≤ 2 we obtain that
∑

x∈N [vi]

ch(x) =
∑

vj∈Ci

ch(vj) +∑
vi′∈N [vi]\Ci

ch(vi′) ≤ 1 + 2
(

1
2

)
= 2 as desired.

4.2.2 Cactus Graphs

A graph G is said to be a cactus graph if it is connected and every edge belongs to at most

one cycle. Hedetniemi et al. (1986) provide an exact offline algorithm that runs in linear time for

finding a minimum dominating set of a cactus graph. Of course, an efficient offline algorithm does

not guarantee that an online algorithm can perform well but fortunately, cactus graphs are a class

of graphs for which an online algorithm can achieve constant competitive ratio. In this section, we

show that 2-DOMINATE is 5
2 -competitive when inputs are restricted to cactus graphs, and that this

is as well as any algorithm can perform.

Before presenting a lower bound of 5
2 on all online algorithms we describe a gadget that is used
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in the proof. The gadget itself is a cactus graph on 3 ≤ n ≤ 4 vertices with the property that OPT

selects exactly 1 vertex and any algorithm ALG selects at least 2 vertices. Consider revealing a

root vertex r with 2 children c and c′. If ALG does not select r then both c, c′ are revealed as only

adjacent to r and ALG must select both whereas OPT selects only r. If ALG does select r then c

is revealed as adjacent to c′, and c′ is revealed with an additional child x. The vertex x is adjacent

only to c′ and thus ALG must select at least one of c′, x whereas OPT selects only c′ (both cases

are depicted in figure 4.4). Given any input cactus graph with a visible vertex r not yet revealed

this gadget can be constructed with r as the root. Within the proof of the lower bound we call this a

2-gadget.

r

c c′

r

c c′

x

Figure 4.4: The cactus 2-gadget : The leftmost figure depicts the case where ALG does not select

the root r and rightmost depicts the case where ALG selects r.

Theorem 4.2.3. ρ(ALG,CACTUS) ≥ 5
2 for any algorithm ALG.

Proof. Consider an arbitrary small ε > 0 and let k = d4
ε e ≥ 5. We will give an adversarial input

that guarantees that OPT ≥ k and ALG ≥ (5
2 − ε)OPT . To begin the input, the adversary reveals

v1 with k children {c1, . . . , ck}. Then we run an adversarial process starting with the child c1 of

v1. The process consists of rounds, where each round increases OPT by 2 while increasing ALG

by 5. The process might terminate for one of two reasons: either (i) we guarantee strict competitive

ratio at least 5/2 on the subcactus rooted at c1, or (ii) k rounds starting at c1 elapse. If the process

terminates because of (i), then the adversary restarts the process at child c2 of v1. The process again

terminates either with (i) or (ii) with respect to c2. If it is due to (i), then the adversary restarts the

process at c3, and so on. If the process terminates with (ii) with respect to ci then we reveal cj for

j > i as leaves. Below we describe the process starting at a child of v1 although the first round of

the process differs from the others that follow.
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We now describe the first round starting at a child c of v1. Initially, we reveal c with 3 children.

If ALG does not select c then each child of c is revealed as leaf and ALG must select all 3 children

whereasOPT selects c. Suppose then thatALG selects c and let c1,1, c1,2, c1,3 be the three children

of c. Reveal c1,1 as adjacent to c1,2 along with 2 additional children. If ALG does not select c1,1

then the children of c1,1 are revealed as leaves, forcing ALG to select them and c1,3 is revealed

as the root of a 2-gadget (c1,2 is revealed with no additional neighbours). Thus, ALG
OPT ≥

5
2 in this

case (see Figure 4.5). If instead ALG selects c1,1 then c1,2 and c1,3 are revealed as the roots of

two distinct 2-gadgets and since c is dominated by v1 (we assume that v1 ∈ OPT ) we have that

ALG
OPT ≥

5
2 on this subcactus (excluding c1,1) thus far (see Figure 4.6). At this point, c1,1 is selected

by ALG and we start the second round (which is described below) with c1,1 as the root. Every

round that follows will be the same as the second and requires a root selected by ALG which has

two children.

The second round starts at a selected root c1,1 and we let c2,1, c2,2 be the 2 children of c1,1. We

reveal c2,1 as adjacent to c2,2 with 2 children c3,1, c3,2. If ALG does not select c2,1 then c3,1, c3,2

are revealed as leaves and ALG selects c1,1, c3,1, c3,2 and OPT can select c2,1 for a performance

of 3 along with the running performance of 5
2 (see Figure 4.7). If ALG does select c2,1 then c3,1 is

revealed as adjacent to c3,2 with two children c4,1, c4,2. If ALG does not select c3,1 then c4,1, c4,2

are revealed as leaves and c2,2 is revealed with an additional leaf neighbour l2,2 so that ALG must

select at least one of c2,2, l2,2. Thus,ALG here selects c1,1, c2,1, c4,1, c4,2 and at least one of c2,2, l2,2

whereas OPT can select c3,1 and c2,2 for a performance of 5
2 (see Figure 4.8). If instead ALG

selects c3,1 (thus far c1,1, c2,1 and c3,1 are all selected) then c2,2 is revealed with an additional leaf

neighbour l2,2 so that ALG must select at least one of c2,2, l2,2, and c3,2 is revealed as the root of

a 2-gadget so that ALGOPT ≥
5
2 on the subcactus thus far (excluding c3,1) and we repeat the trap with

c3,1 as the selected root (see Figure 4.9).

Let ji ≥ 1 denote the number of rounds that passed in the adversarial process starting at the

child ci. To finish the analysis, we consider the following two cases:

Case 1 : for all iwe have that ji < k. ThenALG ≥ 5ji on each subcactus whereasOPT ≤ 2ji

on each subcactus3. Summing over all subcacti and remarking that OPT selects v1 we obtain that
3We have omitted the cases where ALG does not select the root ci. These cases result in ALG selecting 3 vertices
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ALG/OPT ≥ (
∑

5ji) / (1 +
∑

2ji) ≥ 5
2 −

5
2k ≥

5
2 − ε.

Case 2 : there exists ` such that j` = k. In this case, there is an additional vertex cj,1 with

j = 3(k − 1) that was selected by ALG and must also be selected by OPT . (i.e. cj is the root

where a (k + 1)’st round could start). Therefore, OPT selects 2ji vertices for each process on

child ci with i < `, 2k + 1 vertices for i = `, 0 vertices for i > ` plus v1. Whereas ALG

selects at least 5ji for i < `, 5k + 1 for i = `, and 0 for i > `. Ultimately, we obtain that

ALG/OPT ≥ (
∑

5ji + 5k + 1) / (
∑

2ji + 2k + 2) ≥ 5
2 − 4/k ≥ 5

2 − ε.

c

c1,1

c

c1,1 c1,2 c1,3

22

Figure 4.5: The case described in Theorem 4.2.3 where ALG does not select c1,1.

on the subcacti with OPT selecting only 1 and the result clearly still holds in this case.
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c

c1,1 c1,2 c1,3

222

Figure 4.6: The case described in Theorem 4.2.3 where ALG does select c1,1. The enclosed region

contributes a performance of 5
2 . A trap is continued in this case with the root c1,1.

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

Figure 4.7: The case described in Theorem 4.2.3 where ALG does not select c2,1.
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c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

c4,1 c4,2

l2.2

Figure 4.8: The case described in Theorem 4.2.3 where ALG does not select c3,1. The enclosed

regions each contribute a performance of 5
2 .

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

l2.2

2

Figure 4.9: The case described in Theorem 4.2.3 whereALG does select c3,1. The enclosed regions

each contribute a performance of 5
2 . The trap used on a selected root c1,1 is repeated on the root

c3,1.
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Theorem 4.2.4. ρ(2-DOMINATE, CACTUS) = 5
2 .

The proof can be viewed as an adaptation of our proof for trees to cactus graphs. We use a

charging argument similar to the one given in the section on trees. Initially, a charge of 1 is given

for each v ∈ S, the charge on each vertex is then spread to certain neighbours, and we then show

that
∑

x∈N [vi]

ch(x) ≤ 5
2 for each vi ∈ OPT . We spread the charge according to the same rule given

in the preceding section and recall that Observation 4.2.1 (each vertex receives a new charge from

one other vertex) still holds. In the analysis of how the charge gets reallocated, the structure of the

underlying graph is of paramount importance. We begin with an analogue to Lemma 4.2.1.

Lemma 4.2.4. In cactus graphs, there is at most one cross edge incident on any vi. In particular,

vi has at most 2 neighbours before it is revealed.

Proof. The statement is clearly true for vi = v1 so we assume that vi 6= v1 and let vh be the parent of

vi. Suppose for the sake of deriving a contradiction that there are two cross edges {vi, vi1}, {vi, vi2}

incident on vi. Notice that vi1 is visible at time i − 1 since otherwise would imply that {vi, vi1}

were a tree edge. Thus, at time i − 1, vi1 is visible and there is only one tree edge incident on vi.

In particular, this implies that there is a path consisting entirely of tree edges from vi1 to vh where

said path does not contain the edge {vh, vi} since it does not pass through vi nor does it contain

the edges {vi, vi1}, {vi, vi2} since they are cross edges. Thus, by adding edges {vh, vi}, {vi, vi1} to

this path we obtain a cycle (in the completely revealed input graph) that contains the edge {vh, vi}

but does not contain the edge {vi, vi2}. A similar argument yields that there is a path consisting

of tree edges from vi2 to vh that does not contain the edges {vh, vi}, {vi, vi1}, {vi, vi2} and hence

by adding edges {vh, vi}, {vi, vi1} we obtain a cycle which contains the edge {vh, vi} but does

not contain the edge {vi, vi1}. That is, two distinct cycles that share the common edge {vh, vi}, a

contradiction.

Since vi has at most 2 neighbours before it is revealed then it has at least deg(vi)− 2 children.

The following is analogous to Corollary 4.2.1 for trees.

Corollary 4.2.3. If deg(vi) ≥ 4 then vi ∈ S.
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Lemma 4.2.5. (1) If vi and vj both have charge equal to 1 then they share no common neigh-

bours.

(2) If vi and vj both have charge equal to 1 then they are not adjacent.

(3) For any vi, at most one vertex in N [vi] has charge 1.

Proof. (1) Follows identically to the proof of Lemma 4.2.2.

(2) First, note that v1 cannot have charge 1 on any input with at least 2 vertices. Therefore we

safely assume that 1 < i < j such that both vi and vj have a parent. We assume for the sake

of deriving a contradiction that vi and vj are adjacent.

Now, since both vi and vj have charge 1 it follows that they are both saved vertices. We first

argue that both vi, vj /∈ S. Notice that any saved vertex vk has the property that |N [vk]∩S| =

1. Therefore, if we assume by way of contradiction that vi ∈ S we obtain that N [vi] ∩ S =

N [vj ] ∩ S = {vi} and therefore vi saves itself and vj . This yields that Xi = N [vi] ∩ Ui

contains vi and vj . In particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi and therefore vi

and vj receive charge no larger than 1
2 , a contradiction. An identical argument will yield that

vj /∈ S.

Thus, we assume that vi is saved by a neighbour vi′ and vj is saved by a neighbour vj′ where

i′, j′ /∈ {i, j}. Moreover, i′ 6= j′ since vi and vj can share no common neighbours by part

1. Thus, we have that i, j, i′, j′ are all distinct with i < j < i′ and i < j < j′ since

i′ = max{k | vk ∈ N [vi]} and j′ = max{k | vk ∈ N [vj ]}. As mentioned above vi must

have a parent vh where h < i < j < i′. Therefore, deg(vi) ≥ 3 and since vi /∈ S it follows

by Corollary 4.2.3 that deg(vi) = 3.

We are now in the situation where vi, vj /∈ S and vi is incident on exactly 3 edges {vh, vi},

{vi, vj}, {vi, vi′} where exactly one of the edges {vi, vj}, {vi, vi′} is a tree edge (and the

other a cross edge). We finish the proof by examining the two cases where (1) : {vi, vi′} is a

tree edge or (2) : {vi, vj} is a tree edge.

Case 1 : Suppose {vi, vi′} is a tree edge so that vi′ is a child of vi. Therefore, vi′ ∈ Ci ⊆

N(vi) ∩ Ui, that is, vi′ is an undominated neighbour of vi when vi is revealed. Since vj
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is saved then by Observation 4.1.2 it follows that vj ∈ N(vi) ∩ Ui, that is, vj is also an

undominated neighbour of vi when vi is revealed. That is, both vi′ , vj ∈ N(vi)∩Ui implying

that |N(vi) ∩ Ui| ≥ 2 but vi /∈ S, a contradiction.

Case 2 : Suppose {vi, vj} is a tree edge so that vj is a child of vi. First notice that {vi, vj}

is the only tree edge incident on vj . Indeed, if there were a tree edge {vj , vl} then vl would

be the child of vj . Since vi is saved we have vi ∈ N(vj) ∩Uj by Observation 4.1.2 implying

that |N(vj)∩Uj | ≥ 2 but vj /∈ S. Thus, we are in the situation depicted in Figure 4.10 where

{vi, vj} is the only tree edge incident on vj and by assumption {vh, vi}, {vi, vj} are the only

two tree edges incident on vi. Therefore we have a path from vi′ to vh consisting of tree

edges where said path does not contain the edges {vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′}. Thus,

by adding edges {vh, vi}, {vi, v′i} to this path we obtain a cycle (in the completely revealed

input) that contains the edge {vh, vi} but does not contain the edge {vj , vj′}. Similarly, there

is a path from vj′ to vh consisting of tree edges where said path does not contain the edges

{vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′} and by adding edges {vh, vi}, {vi, vj}, {vj , vj′} we ob-

tain a cycle (in the completely revealed input) that contains the edge {vh, vi} but does not

contain the edge {vi, vi′}. That is, two distinct cycles that share the common edge {vh, vi}, a

contradiction.

(3) Follows immediately from the previous parts.

vh

vi vi′

vj vj′

Figure 4.10: Case 2 of the second part of Lemma 4.2.5.
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vh

vi vi′

vj vj′

vh

vi vi′

vj′vj

vh

vi vi′

vh

vi

vj vj′

Figure 4.11: Resolution of the preceding case in Figure 4.10. Two cycles sharing the common edge

{vh, vi}.

Now, we are ready to prove the upper bound for Theorem 4.2.4.

Proof of Theorem 4.2.4. The lower bound follows from Theorem 4.2.3. Let vi ∈ OPT be an arbi-

trary vertex in OPT . We consider two cases (1) deg(vi) ≤ 3 or (2) deg(vi) ≥ 4.

Case 1 : Suppose that deg(vi) ≤ 3 and hence |N [vi]| ≤ 4. By Lemma 4.2.5 part 3 it follows

that at most one vertex in N [vi] has charge 1. If no vertices in N [vi] have charge 1 then ch(x) ≤ 1
2

for each x ∈ N [vi] and we obtain that
∑

x∈N [vi]

ch(x) ≤ 4
(

1
2

)
= 2 < 5

2 . If there is exactly one vertex

x′ ∈ N [vi] with charge 1 we therefore obtain that
∑

x∈N [vi]

ch(x) =
∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤

3
2 + 1 = 5

2 .

Case 2 : Suppose that deg(vi) ≥ 4. By Corollary 4.2.3 it follows that vi ∈ S with at least 2

children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is, each child

of vi is charged by vi and only vi. Therefore the children of vi can receive at most the full initial

charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \ Ci has a charge of at most 1
2 . Indeed, suppose a

vertex vi′ ∈ N [vi] \ Ci has charge 1 then it must be saved by vi since |N [vi′ ] ∩ S| = 1 for any

saved vertex vi′ . That is, there is exactly one vertex in its closed neighbourhood that is selected

and since vi is selected it must be vi. Thus, we must have that vi′ ∈ Xi but since Ci ⊆ Xi
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we know that |Xi| ≥ 2 and thus vi′ receives a charge of no more than 1
2 < 1, contradicting

our assumption that vi′ has charge 1. Thus, by remarking that |N [vi] \ Ci| ≤ 3 we obtain that∑
x∈N [vi]

ch(x) =
∑

vj∈Ci

ch(vj) +
∑

vi′∈N [vi]\Ci

ch(vi′) ≤ 1 + 3
(

1
2

)
= 5

2 as desired.

4.2.3 Graphs of Bounded Degree

We study the problem when the inputs are restricted to graphs of bounded degree. That is, a

positive integer ∆ ≥ 2 is provided to the algorithm beforehand and the adversary is restricted to

presenting graphs where every vertex has degree no larger than ∆. The problem of bounded degree

graphs was explored by Boyar et al. (2019) although within the vertex arrival model described ear-

lier. The authors show that a greedy strategy obtains a competitive ratio no larger than ∆ and, when

inputs are further restricted to be “always-connected” (i.e. each prefix of the input is connected)

they provide a lower bound of ∆− 2 for any algorithm.

By definition, any input belonging to our setting is “always-connected” yet the lower bound

of ∆ − 2 does not apply. In particular, we show that
⌈√

∆
⌉
-DOMINATE is 3

√
∆-competitive

along with a lower bound of Ω(
√

∆) for any online algorithm, essentially closing the problem in

our setting. As previously mentioned, King and Tzeng (1997) consider a setting similar to ours

where their adversary is not required to reveal visible vertices and they assume that an algorithm

has additional knowledge of input size n. In this setting they provide an algorithm that achieves

competitive ratio of Θ(
√
n) for arbitrary graphs. For the upper bound below we follow a proof

nearly identical to theirs modulo some minor details and definitions.

Definition 4.2.1. A vertex vi ∈ S is said to be heavy if |N(vi) ∩ Ui| ≥
⌈√

∆
⌉

and light otherwise.

We let H and L denote the set of heavy and light vertices in S so that |S| = |H|+ |L|.

To establish that
⌈√

∆
⌉
-DOMINATE is 3

√
∆-competitive we use a charging argument different

from the two given in Sections 4.2.1 and 4.2.2. Initially, let ch(v) = 1 for each v ∈ S so that

|S| =
∑
v∈S

ch(v). Then spread the charge from S strictly to vertices in OPT so that
∑
v∈S

ch(v) =∑
v∈OPT

ch∗(v) where ch∗(v) is the new charge on a vertex in OPT . We then show that ch∗(v) ≤

3
√

∆ for all v ∈ OPT and thus |S| =
∑
v∈S

ch(v) =
∑

v∈OPT
ch∗(v) ≤ (2

√
∆)|OPT | and the result
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then follows. We spread the charge from S to OPT according to the following rules:

(1) If vi ∈ S ∩OPT then vi keeps its full initial charge.

(2) If vi ∈ H \ OPT then its spread its initial charge evenly over all vertices in OPT . That is,

each v ∈ OPT obtains an additional charge of 1
|OPT | from vi.

(3) For each vi ∈ L \ OPT , let s(vi) denote the set of vertices saved by vi. Given a vertex

vi′ ∈ s(vi) let opt(vi′) = vi′ if vi′ ∈ OPT and opt(vi′) = min{k | vk ∈ N(vi′) ∩ OPT}

otherwise. For each vi′ ∈ s(vi), vi spreads 1
|s(vi)| to opt(vi′).

Lemma 4.2.6. If vi ∈ OPT then it receives charge from at most d
√

∆e light vertices.

Proof. We consider two cases; (1) vi ∈ S or (2) vi /∈ S.

Case 1 : Suppose that vi ∈ S, we show that vi then it receives no charge from a distinct light

vertex (therefore it receives charge from at most one light vertex, itself). Since vi ∈ S this implies

that it is not saved by any vj , j 6= i. Thus, if vi were to receive charge from a light vertex it must be

that vi = opt(vi′) for some vi′ that is saved by some vk ∈ L different from vi. More precisely, vi

must be adjacent to some vi′ that is saved by some vk with k 6= i. Yet, if vi′ ∈ N(vi) is saved then

N [vi′ ] ∩ S = {vi} so this cannot be the case.

Case 2 : Assume that vi /∈ S and first remark that vi is saved by at most one vertex so that it

receives at most one charge from a light vertex in this way. If vi receives charge from any other light

vertex vk ∈ L, it must be that vi is adjacent to some vertex vi′ that is saved by vk. By Observation

4.1.2 it must be that vi′ ∈ N(vi) ∩ Ui, that is, is undominated when vi is revealed. All this to say,

that any light vertex that charges vi determines at least one neighbor of vi that is undominated at

time i. Since vi /∈ S we have |N(vi ∩ Ui| ≤ d
√

∆e − 1 and thus accounting for possibly one light

vertex that charges vi there are at most d
√

∆e light vertices that charge vi.

Lemma 4.2.7. |H|
|OPT | ≤

√
∆ + 1√

∆
.

Proof. Since every vertex inH is selected because it dominated at least d
√

∆e undominated vertices

it follows that |H| ≤
⌊

n
d
√

∆e

⌋
. Moreover, by Theorem 2.1.2 we have that |OPT | ≥

⌈
n

∆+1

⌉
.
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Ultimately this yields that

|H|
|OPT |

≤

⌊
n
d
√

∆e

⌋⌈
n

∆+1

⌉ ≤ n
d
√

∆e
n

∆+1

≤
n√
∆
n

∆+1

=
∆ + 1√

∆
=
√

∆ +
1√
∆
.

Theorem 4.2.5. ρ(
⌈√

∆
⌉
-DOMINATE,∆-BOUNDED) ≤ 3

√
∆.

Proof. Consider an arbitrary vertex vi ∈ OPT . In light of Lemma 4.2.6 we see that it receives

charge from at most d
√

∆e light vertices, where each charge is no larger than 1. Moreover, by

Lemma 4.2.7 the charge received by the heavy vertices is at most
√

∆+ 1√
∆

and vi possibly receives

charge from itself (it may be a heavy or light vertex). In particular we obtain that

ch(vi) ≤
|H|
|OPT |

+
⌈√

∆
⌉

+ 1 ≤
(√

∆ +
1√
∆

)
+
⌈√

∆
⌉

+ 1 ≤ 3
√

∆.

We now prove a lower bound Ω(
√

∆) for any online algorithm. We should note that the ad-

versarial input is bounded in size by a function of ∆. Although we have omitted the details, it is

straightforward to extend the input so that the lower bound is in fact an asymptotic one.

Theorem 4.2.6. ρ(ALG,∆-BOUNDED) = Ω(
√

∆).

Proof. For simplicity we assume that ∆ is a perfect square. Reveal v1 with ∆ children and reveal

each child of v1 with an additional
√

∆ children. Of the ∆ children of v1, suppose thatALG selects

exactly j where 0 ≤ j ≤ ∆. For the ∆− j vertices not selected, their
√

∆ neighbours are revealed

to have degree 1 and ALG is forced to select each of these (∆− j)(
√

∆) vertices of degree 1.

Let Sj denote the set of the j selected vertices in N(v1) and X =
⋃
vi∈Sj

N(vi). Since

each vertex in Sj has
√

∆ children, it follows that |X| = j
√

∆. Partition the vertices of X into

d j
√

∆
∆ e = d j√

∆
e parts of size ∆ (with at most one part having size < ∆). Letting the parts be

X1, X2, ..., Xd j√
∆
e we reveal each vertex in a given part to a common vertex yi (see figure 4.12 for

an example). ALG must select at least one vertex for each part to dominate yi and therefore at least

an additional d j√
∆
e vertices are selected.
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In total, ALG selects at least j + (∆ − j)(
√

∆) + j√
∆

whereas OPT simply selects v1, the

∆− j vertices in N(v1) \ Sj and the j√
∆

vertices with labels yi. Ultimately we have

ALG

OPT
≥
j + (∆− j)(

√
∆) + j√

∆

1 + (∆− j) + j√
∆

=
j + j

√
∆ + (∆− j)∆

j +
√

∆ + (∆− j)
√

∆

=

√
∆(j/

√
∆ + j + (∆− j)

√
∆)

2(j/2 +
√

∆/2 + (∆− j)
√

∆/2)
≥
√

∆

2
,

where the last inequality follows from the fact that j/2 +
√

∆/2 + (∆− j)
√

∆/2 ≤ j/
√

∆ + j +

(∆− j)
√

∆, since
√

∆/2 ≤ j/
√

∆ + j/2 + (∆− j)
√

∆/2, which can be seen since when j < ∆

then the last term on the right hand side already is at least as large as the left hand side and when

j = ∆ then the middle term on the right hand side is at least the left hand side.

v1

c1 c2 c3 c4

v1

c1 c2 c3 c4

y1 y2

Figure 4.12: An instance described in the proof of Theorem 4.2.6 with ∆ = 4. The top depicts the

graph after the children of v1 have been revealed. Assuming that ALG selects {c1, c3, c4} above,

the bottom depicts the completely revealed graph.
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4.2.4 Graphs with Bounded Claws

Let t ≥ 3, a graph G is said to be K1,t-free if it contains no induced subgraph isomorphic

to K1,t. When t = 3, this is the well-studied class of claw-free graphs. In this section we study

K1,t-free graphs, which we also refer to as graphs with bounded “claws”.

From the preceding sections one might notice that the existence of an induced subgraph K1,t

poses challenges for an algorithm. This section suggests that this intuition holds more than just a

grain of truth. We show that, when inputs are restricted to K1,t-free graphs, the competitive ratio of

every algorithm is bounded below by t− 1 and there is an algorithm that achieves competitive ratio

t − 1. The upper bounds that we have demonstrated so far were all based on the k-DOMINATE

algorithm for a suitable choice of parameter k. Interestingly, our upper bound onK1,t-free graphs is

based on a conceptually simpler GREEDY algorithm. The analysis is no longer based on a charging

scheme, but follows from combinatorial properties of graphs with bounded claws.

Theorem 4.2.7. ρ(ALG,K1,t-FREE) ≥ t− 1.

Proof. Reveal v1 with t − 1 children. If ALG does not select v1 then the input terminates as a

star on t vertices (i.e. the t − 1 neighbours of v1 are revealed with no additional neighbours). Any

feasible algorithm must select the t−1 neighbours of v1 whereas OPT selects v1 and the statement

then follows. Suppose that ALG selects v1 and let ci, 1 ≤ i ≤ t − 1 be the children of v1. Reveal

c1 as adjacent to each child of v1 and with an additional t − 2 children. If ALG does not select c1

then the children of c1 are revealed as leaves whereas the rest of the input is revealed to be a clique.

That is, N [v1] is a clique and only c1 has children. ALG selected v1 and is forced to select the t− 2

children of c1 whereas OPT selects only c1 as a single dominating vertex. It is not hard to see that

this input is K1,t-free and the result then follows (see Figure 4.13 for an example).

Suppose that ALG selects c1, the input then continues in the following way; For each 2 ≤ j ≤

t− 2, (as long as ALG is accepting cj) we reveal cj as adjacent to every visible vertex and with an

additional t − 3 children. That is, cj is adjacent to each child ci, i 6= j of v1 and the grandchildren

of v1 (i.e. the children of all the ci with 1 ≤ i ≤ j) so that cj is a single dominating vertex of this

prefix.

Case 1 : If there is some 2 ≤ j ≤ t− 2 such that ALG does not select cj then the t− 3 children
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of cj are revealed as leaves, N [vi] is revealed as a clique, and the (t−2)+
j∑
i=2

(t−3) = j(t−3)+1

grandchildren of v1 are revealed to form a clique. At this point, ALG has selected {v1, c1, ..., cj−1}

and is now forced to select the t−3 children of cj for an output of at least j+(t−3) ≥ 2+(t−3) =

t− 1 whereas OPT selects only cj so that ALGOPT ≥
t−1

1 .

We now argue that this input is K1,t-free. Notice that for all v in this input we have N(v) ⊆

N(cj) so that if there is a an induced K1,t with central vertex v then there is a claw with central

vertex cj . Therefore it is sufficient to show that is no claw with central vertex cj to finish the claim.

Suppose for contradiction’s sake that there were an induced K1,t where cj is the central vertex and

the t neighbors of cj are all pairwise non-adjacent. LetG denote the grandchildren of v1 and remark

that any neighbor of cj is either a child of cj , a grandchild of v1, or a vertex from N [v1] \ {cj}.

Since there are t vertices and cj only has t− 3 children by the pigeonhole principle we must have at

least two vertices u, v that both are grandchildren of v1 or both belong N [v1] \ {cj}. Yet, both the

set of grandchildren of v1 andN [v1]\{cj} are cliques. Therefore we have that u and v are adjacent,

contradicting our assumption.

Case 2 : If ALG selects each ci, 1 ≤ i ≤ t− 2 then the (t− 2)(t− 3) + 1 grandchildren of v1

are then revealed to form a clique (N [v1] has already been revealed as a clique). ALG has already

selected {v1, c1, ..., ct−2} and therefore has an output of at least t − 1 whereas OPT selects only

ct−2. An argument similar to the one above will yield that this input is K1,t-free and the result then

follows.
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v1

c1

v1

c1 c2 c3 c4

Figure 4.13: An instance described in Theorem 4.2.7 with t = 5 where ALG does not select c1. The

top depicts the graph at the moment c1 was revealed and the bottom depicts the completely revealed

graph.

v1

c1 c2

v1

c1 c2 c3 c4

Figure 4.14: An instance described in Theorem 4.2.7 with t = 5 where ALG does not select c2. The

top depicts the graph at the moment c1 was revealed and the bottom depicts the completely revealed

graph.
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v1

c1 c2

v1

c1 c2 c3 c4

c3

Figure 4.15: An instance described in Theorem 4.2.7 with t = 5 where ALG does not select c3. The

top depicts the graph at the moment c3 was revealed and the bottom depicts the completely revealed

graph.

When inputs are restricted to K1,t-free graphs, we show that the online algorithm GREEDY

is (t − 1)-competitive. The crucial observation to make here is that the output of GREEDY is an

independent set. We provide a result below that is a straightforward generalization of one given in

Cygan, Philip, Pilipczuk, Pilipczuk, and Wojtaszczyk (2011). The simplicity of the result suggests

that it may have appeared in earlier work.

Lemma 4.2.8. Let t ≥ 3, G = (V,E) be a K1,t-free graph and I be any independent set in G.

Then |D| ≥ |I|
t−1 for any dominating set D in G.

Proof. Suppose for the sake of deriving a contradiction that there is some dominating set D in G

with |D| < |I|
t−1 . Remarking that the vertices of D dominate the vertices of I as D is a dominating

set we notice that there is some vertex v ∈ D that dominates at least t vertices of I (i.e. if every

vertex of D dominated at most t − 1 vertices then D would dominate at most (t − 1)|D| < |I|

vertices). Moreover, since v is adjacent to at least one of the t ≥ 3 vertices of I it dominates, it

cannot belong to I as I is independent. Therefore, the vertices of I dominated by v /∈ I are adjacent

to v. In particular, at least t vertices of I , all pairwise non-adjacent, are neighbors of v and this
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induces K1,t in G.

The preceding lemma shows that for any independent set I in a K1,t-free graph G, |I| ≤ (t −

1)γ(G). Given that GREEDY outputs an independent set we obtain the following result which is of

interest to us.

Theorem 4.2.8. ρ(GREEDY, K1,t-FREE) = t− 1.

Proof. The upper bound is a consequence of Proposition 4.2.8 and the remarks that follow. The

lower bound follows from Theorem 4.2.7.

4.3 Noncompetitive Graph Classes

Recall that the setting defined in King and Tzeng (1997) is nearly identical to ours except that

an algorithm knows the input size n beforehand and the induced subgraph on the revealed vertices

is not necessarily connected. Within this setting the authors establish a lower bound of Ω(
√
n) for

arbitrary graphs. Their proof can be augmented to show a lower bound of Ω(
√
n) in our model,

which is tight by our upper bound of O(
√

∆) on degree at most ∆ graphs (applied to ∆ = n− 1).

Instead, we strengthen such a result in several ways by showing that the lower bound of Ω(
√
n)

applies to several restricted classes such as threshold graphs4, planar bipartite graphs, and series-

parallel graphs.

4.3.1 Threshold Graphs

The graph join operation applied to two graphs G1 and G2 takes the disjoint union of the two

graphs and adds all possible edges between the two graphs to the result (in addition to retaining the

edges of G1 and G2). The class of threshold graphs can be described recursively as follows:

(1) K1 (i.e. a single isolated vertex) is a threshold graph.

(2) If G is a threshold graph then the disjoint union G ∪K1 is a threshold graph.

(3) If G is a threshold graph then the graph join G⊕K1 is a threshold graph.
4With the caveat that, for threshold graphs, we instead consider the performance ratio as a function of input size.
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It is not hard to see that any connected threshold graph has a dominating set of size 1. Since

our setting only allows for connected graphs we instead measure ALG as a function of input size

n since OPT ≤ 1 on every input. In particular, we show that for any algorithm there is an infinite

family of threshold graphs for which this algorithm selects Ω(
√
n) vertices (where the input has n

vertices). Although OPT does not tend towards infinity, we consider this to be an asymptotic lower

bound, but with input size n tending to infinity. In a sense, this is a stronger lower bound since the

algorithm is guaranteed an input graph with a single dominating vertex, yet it still selects more than

Ω(
√
n) vertices in the input.

Observation 4.3.1. The star on n ≥ 1 vertices, that is, K1,n−1, is a threshold graph.

Now we describe a slightly more complicated graph belonging to the class of threshold graphs.

Let k ≥ 2 and j1, ..., jk be non-negative integers. Let n = k+ 1 +
k∑
i=1

ji and consider the following

graph G on n vertices; V (G) = {u}∪Ck ∪ I , where Ck = {v1, ..., vk} and I = Ij1 ∪ Ij2 ∪ ...∪ Ijk ,

with each Iji having exactly ji vertices (each Iji is possibly empty). The set {u} ∪ Ck is a clique

on k + 1 vertices, and for each i, Iji is an independent set where each v ∈ Iji is adjacent only to

vertices vi, ..., vk.

Lemma 4.3.1. The graph described above is a threshold graph.

Proof. We describe a construction using the recursive definition given above. Initially, start with

the single isolated vertex u. For each 1 ≤ i ≤ k, take the resulting graph from the previous step,

disjoint union said graph with an independent set Iji (i.e. repeatedly perform ji disjoint unions of

with a single vertex) and then join the vertex vi. That is, let G0 = ({u}, ∅) and for 1 ≤ i ≤ k,

Gi = (Gi−1 ∪ Iji)⊕ vi.

We are now ready to prove a strong lower bound for any online algorithm. Although we do not

mention this explicitly in the proof, the adversarial inputs given are either K1,k−1 for some k ≥ 3

or one that can be obtained by appropriately applying the recursive construction in Lemma 4.3.1.

Theorem 4.3.1. For infinitely many values of n there is a threshold graph Gn such that

ALG(Gn) = Ω(
√
n).
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Proof. Let k ≥ 3 be an integer and reveal v1 with k − 1 children. If ALG does not select v1 then

the input terminates as a star on k vertices (i.e. the k − 1 neighbours of v1 are revealed with no

additional neighbours). ALG is forced to select the k − 1 neighbours of v1 (OPT selects only v1).

In this case, the statement follows since ALG = k − 1 ≥
√
k =
√
n.

Suppose that ALG selects v1 and let ci, 1 ≤ i ≤ k − 1 be the children of v1. Reveal c1 as

adjacent to each child of v1 and with an additional k children. If ALG does not select c1 then the

children of c1 are revealed as leaves whereas the rest of the input is revealed to be a clique. That

is, N [v1] is a clique and only c1 has children. In this case, ALG must select the k children of v2

yielding an output of k + 1 (see Figure 4.16 for an example). Therefore, in this case the statement

follows since ALG ≥ k + 1 = n
2 + 1 ≥

√
n.

Suppose that ALG selects c1, the input then continues in the following way; For each 2 ≤ j ≤

k− 1, (as long as ALG is accepting cj) we reveal cj as adjacent to every visible vertex and with an

additional k children. That is, cj is adjacent to each child ci, i 6= j of v1 and the grandchildren of v1

(i.e. the children of all the ci with 1 ≤ i ≤ j) so that cj is a single dominating vertex of this prefix.

Case 1 : If there is some 2 ≤ j ≤ k − 1 such that ALG does not select cj then the k children

of cj are revealed as leaves and N [v1] is revealed as a clique (see Figure 4.17 for an example). The

input has n = 1 + (k − 1) +
j∑
i=2

ik = k + (j − 1)k = jk vertices. At this point, ALG has selected

{v1, c1, ..., cj−1} and is now forced to select the k children of cj (OPT selects only cj) for an output

of at least j + k ≥ 2 + k ≥
√
n since j < k and n = jk.

Case 2 : If ALG selects each ci, 1 ≤ i ≤ k − 1 then the input is terminated with n = 1 +

(k − 1) +
j∑
i=2

ik = k + (k − 1)k = k2 vertices after revealing ck−1. ALG has already selected

{v1, c1, ..., ck−1} and therefore ALG ≥ k =
√
n.
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v1

v2

v2 v3 v4 v5

v1

Figure 4.16: An instance described in Theorem 4.3.1 with k = 5 where ALG does not select v2.

The top depicts the graph at the moment v2 was revealed and the bottom depicts the completely

revealed graph.

v1

v2 v3

v1

v2 v3 v4 v5

Figure 4.17: An instance described in Theorem 4.3.1 with k = 5 where ALG does not select v3.

The top depicts the graph at the moment v3 was revealed and the bottom depicts the completely

revealed graph.
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4.3.2 Planar Bipartite Graphs

Below is a lower bound of Ω(
√
n) for planar bipartite graphs. We should mention that is strik-

ingly similar to the lower bound on general graphs given by King and Tzeng (1997). We provide

a simple augmentation of their lower bound so that it not only consists of inputs that are revealed

according to our model but inputs that are also planar bipartite graphs.

Theorem 4.3.2. ρ(ALG,PLANAR BIPARTITE) = Ω(
√
n).

Proof. Let k ≥ 2 and consider a path on k vertices with the vertices ordered vi, 1 ≤ i ≤ k. Each

vertex along the path is adjacent to k neighbors appearing as leaves. Every odd labeled vertex is

adjacent to a common vertex o and every even labeled vertex is adjacent to a common vertex e

where both e, o do not lie on the path (and have not yet been revealed). The ordering of the path is

the order in which these vertices were revealed to ALG (see Figure 4.18). Of the k vertices along

the path we suppose that ALG selects k − i where 0 ≤ i ≤ k. For each of the k − (k − i) = i

vertices not selected by ALG, the k leaves adjacent are revealed to remain leaves and ALG must

select them. For each of the k − i vertices selected by ALG, the leaves adjacent to said vertices are

revealed as adjacent to e if their neighbour had an odd label and o if their neighbour had an even

label. Thus, ALG selects at least (k − i) + (i)k = k + i(k − 1) vertices whereas OPT need only

select o, e and the i vertices not selected by ALG.

Thus, we have that ALGOPT ≥
k+i(k−1)

i+2 . Noting that k − 1 ≥ k
2 since k ≥ 2 we obtain that

i(k − 1) ≥ i(k/2) ⇐⇒ k + i(k − 1) ≥ i(k/2) + k =
k

2
(i+ 2) ⇐⇒ k + i(k − 1)

i+ 2
≥ k

2
.

Since the input consists of n = k2 + k + 2 vertices the result would then follow. To finish we

provide a justification that the input is planar and bipartite. To see that it is bipartite let one part X

consist of the vertices along the path with odd labels and the neighbors of the vertices with even

labels (this includes e). The other part Y consists of the vertices along the path with even labels

and the neighbors of the vertices with odd labels (this includes o). To see that it is planar, consider

a drawing with the vertices along the path drawn in a line from left to right, e placed above this

path and o placed below. For any odd labeled vertex vi, the k neighbors of vi that do not lie on the
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path (and are different from o) are placed immediately above vi but below e (i.e. vi along with said

neighbors are depicted as a star on k + 1 vertices with vi as the center). Similarly, for any even

labeled vertex vi, the k neighbors of vi that do not lie on the path and are different from e are placed

immediately below vi and above o.

e

v1

o

v2 v3 v4

e

o

v1 v2 v3 v4

Figure 4.18: An instance described in Theorem 4.3.2 with k = 4. The top depicts the prefix where

only vertices along the path have been revealed. Assuming the vertices on the path thatALG selects

are v2 and v4, the bottom depicts the completely revealed graph.
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We remark that in Theorem 4.3.2 there are cases when OPT ≤ α for some constant α ≥ 2. For

example, when ALG selects all k vertices along the path OPT selects only {e, o}. In this case, we

extend the input by revealing o with an additional neighbor u1, and repeat a similar trap with u1 as

the first vertex along the path.

4.3.3 Series-Parallel Graphs

In light of our 2-competitive algorithm for trees, it is natural to suppose that some class of graphs

generalizing trees might admit competitive algorithms, that is, algorithms with bounded competi-

tive ratio independent of the input size. One such generalization is graphs of bounded treewidth.

Trees have treewidth 1, so the next step is to consider graphs of treewidth 2. Unfortunately, in this

section we show that by increasing treewidth parameter from 1 to 2, the online dominating set prob-

lem becomes extremely hard for online algorithms. More specifically, we show that series-parallel

graphs do not admit online algorithms with competitive ratio better than Ω(
√
n). We remark that

series-parallel graphs have treewidth at most 2.

We begin by recalling the definition of a series-parallel graph. It is defined with the help of

the notion of a two-terminal graph (G, s, t), which is a graph G with two distinguished vertices s,

called a source, and t, called a sink. For a pair of two-terminal graphs (G1, s1, t1) and (G2, s2, t2),

there are two composition operations:

• Parallel composition: take a disjoint union of G1 with G2 and merge s1 with s2 to get the

new source, as well as t1 with t2 to get the new sink.

• Series composition: take a disjoint union of G1 with G2 and merge t1 with s2, which now

becomes an inner vertex of the resulting two-terminal graph; s1 becomes the new source and

t2 becomes the new sink.

A two-terminal series-parallel graph is a two-terminal graph that can be obtained by starting with

several copies of the K2 graph and applying a sequence of parallel and series compositions. Lastly,

a graph is called series-parallel if it is a two-terminal series-parallel graph for some choice of source

and sink vertices. Observe that intermediate graphs resulting in the construction of a series-parallel
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graph may have multiple parallel edges, so they are multigraphs. This is permitted, as long as the

resulting overall graph is a simple undirected graph at the end.

Now, we are ready to prove the main result of this section.

Theorem 4.3.3. ρ(ALG,SERIES-PARALLEL) = Ω(
√
n).

Proof. Let k ≥ 2 be an integer. The adversary reveals s with k neighbors c1, . . . , ck. Then

c1, . . . , ck are revealed in this order with k new neighbors each. Let neighbors of ci be di1, . . . , dik.

Let S ⊆ {c1, . . . , ck} be those vertices selected by ALG. For those i /∈ S we reveal their new

neighbors in order di1, . . . , dik. Each such dij is revealed with a single new neighbor fij . For i ∈ S

we reveal their new neighbors in order di1, . . . , dik. Each such dij is revealed with a new neigh-

bor t that is common to all these vertices. Then fij are revealed in arbitrary order with t as a new

neighbor. Lastly t is revealed without any new neighbors.

Let p = |S|. Observe that in addition to these p vertices ALG must select at least one vertex

from each of {dij , fij} pairs for those i /∈ S; otherwise, vertex dij would be undominated. Thus,

ALG ≥ p + k(k − p). Also, observe that {s, t} ∪ {ci | i /∈ S} is a dominating set, so OPT ≤

k − p+ 2. The bound on the competitive ratio is

ALG

OPT
≥ p+ k(k − p)

k − p+ 2
= k − 2k − p

k − p+ 2
≥ k

2
,

where the last inequality is obtained as follows. For k ≥ 2 we have k2 − kp ≥ 2k − 2p, which

implies k2 − kp + 2k ≥ 4k − 2p. This in turn implies that k(k − p + 2) ≥ 2(2k − p), hence

(2k − p)/(k − p + 2) ≤ k/2. The quantitative part of the statement of this theorem follows from

the fact that the total number of vertices is at most 2 + k + k2 + k(k − p) = Θ(k2).

Lastly, we note that the adversarial graph thus constructed is, indeed, series-parallel. For each

i /∈ S and j ∈ {1, . . . , k} the path ci → dij → fij → t is a series-composition of 3 copies

of K2. These paths can be merged by a parallel composition to obtain the subgraph induced on

{ci, t} ∪ {dij , fij | j ∈ {1, . . . , k}} for each i /∈ S. Each of these subgraphs is composed at ci with

another copy of K2 with the new vertex playing the role of s. Similar argument holds to show that

the subgraph induced on {s, ci, t}∪{dij | j ∈ {1, . . . , k}} for i ∈ S is a two-terminal series-parallel

graph. Lastly, all these subgraphs are merged by a sequence of parallel compositions at s and t.
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s

c1 c2 c3

s

c1 c2 c3

t

d11 d12 d13 d21 d22 d23 d31 d32 d33

f21 f22 f23

Figure 4.19: An instance described in Theorem 4.3.3 with k = 3. The top depicts a prefix where

ALG selects S = {c1, c3} whereas the bottom depicts the completely revealed graph.
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Chapter 5

Domination in Knödel graphs

Our investigation thus far has shown that determining γ(G) for an arbitrary graph G, is a com-

putationally difficult optimization problem. In many cases, restricting the inputs to belong to certain

classes allows the problem to be solved rather efficiently, e.g., with linear or polynomial time al-

gorithms that output γ(G). Taking this idea of restricted inputs to its extreme, one may discover

special classes with an exploitable combinatorial or algebraic structure for which a closed form

mathematical expression can be provided. For example, recall Section 2.2 where we gave mathe-

matical expressions, usually as a function of the number of vertices, for the domination number for

several common graph families.

Roughly speaking, we might regard an algorithm to be a sequence of instructions based on

mathematical insights, and a closed form expression to be one big mathematical insight (possibly

supported by lemmas, observations, etc). Yet, the distinction between an algorithm and a closed

form formula is somewhat artificial since the latter still possibly requires adding, subtracting and

multiplying many terms. Thus, a closed form expression can often give rise to a linear algorithm, if

we are actually interested in the output on a given instance. Perhaps, this distinction is often made

because a closed form formula is typically expressed in primitive mathematical terms that consist

only of summations, products, binomial coefficients, and so on.

In light of all this, there is still a looming sense that there is a qualitative difference between an

algorithm and a closed form expression, with the common notion being that a closed form expres-

sion is especially beautiful. Is there a reason as to why it is beautiful? To quote the late, great Paul

61



Erdős, when he was asked why it is that numbers are beautiful, “It’s like asking why is Ludwig van

Beethoven’s Ninth Symphony beautiful. If you don’t see why, someone can’t tell you.”

The following chapter explores domination, from the “superficially different”, mathematical

perspective. In particular, we study the domination number of a family of graphs known as the

Knödel graphs, which have an algebraic definition exploitable by techniques from elementary num-

ber theory. The contents of this chapter is the joint work of the author with Rosso in the following;

Racicot and Rosso (2021).

5.1 The Knödel graph

The Knödel graph was implicitly defined in Knödel (1975). Therein, Walter Knödel answers the

following question; Given n people, each with a unique message they wish to share with the others

where sharing the information with a peer requires one discrete time unit, what is the minimum

number of time units required so that every person knows every message. Knödel describes a

protocol, referred to as broadcasting in the literature, which gives rise to the structure of the Knödel

graph, e.g., the people are vertices and for any given person, the list of people they inform throughout

the protocol are their neighbors in the graph. The Knödel graph has been a topic of interest since

and the interested reader can see Fertin and Raspaud (2004) for an in-depth survey. Here we present

the definition of the Knödel graph used by Bermond, Harutyunyan, Liestman, and Perennes (1997)

which is equivalent to the original definition of the Knödel graph. We should mention that this

particular definition originally appeared in Khachatrian and Haroutunian (1990).

Definition 5.1.1. Let n ≥ 6 be even and let KGn = (V,E) denote the Knödel graph on n vertices

where

V = {0, 1, 2, ..., n− 1}

and

E = {{x, y} | x+ y ≡ 2t − 1(mod n)}
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where t = 1, 2, ..., blog nc.

Observe that every vertex in KGn has degree blog nc although it is worth mentioning that there

is a more general definition of the Knödel graph. By taking some integer 1 ≤ k ≤ blog nc, possibly

dependent on n, we can allow the value t (given in the preceding definition) to range from 1, 2, ..., k

so that you obtain a graph where every vertex has degree k.

Domination in Knödel graphs has been studied in Mojdeh, Musawi, and Nazari (2018); Xueliang,

Xu, Yuansheng, and Feng (2009) for the special case where the graph has small constant degree.

The study of different variants of domination have also appeared in Jafari Rad, Mojdeh, Musawi,

and Nazari (2021); Mojdeh, Musawi, and Nazari (2019); Varghese, Vijayakumar, and Hinz (2018).

The Knödel graphs are of particular interest in the area of broadcasting since KGn is known to be

a broadcast graph Bermond et al. (1997). Harutyunyan and Liestman (2012) provide an explicit

application of dominating sets to broadcasting. In particular, for a given value of n they construct

a sparse broadcast graph on n + 1 vertices by finding a dominating set of KGn satisfying certain

properties and joining an additional vertex to every vertex in this dominating set. In fact, the results

of Section 5.2 are heavily inspired by said paper.

The main results are Theorems 5.2.3 and 5.2.4. We fix a prime number p dividing n and we

suppose that 2 is a primitive root modulo p; in the first theorem we prove that if p ≤ dlog ne then

γ(KGn) ≤ n
p . In the second theorem we suppose that 2 is a primitive root modulo pk, where pk

divides n and Euler’s totient function φ(pk) < dlog ne, and then we show that γ(KGn) ≤ 2n
pk

.

Both results are constructive, as we exhibit an explicit dominating set. In summary, our main results

provide an upper bound on γ(KGn) for a very general class of even values of n. We remark that it

is important to have both results, as it is not expected that 2 is a primitive root modulo p2 any time

that 2 is a primitive root modulo p.

The remainder of the chapter consists of two sections. The first section is the core of the chapter

and presents both the state-of-the-art results on γ(KGn) and our main results. The second section

will discuss necessary conditions to achieve the best theoretical lower bound on γ(KGn).

63



5.2 Upper bounds on γ(KGn)

The following section presents some upper bounds on γ(KGn) that apply to a large class of

even integers. We state a few definitions and preliminary results from elementary number theory as

they will be heavily used in the arguments that follow.

Let n > 1 be a positive integer. The number of positive integers less than n that are relatively

prime to n is given by Euler’s totient function, denoted by φ(n). If gcd(a, n) = 1, it is well

known that aφ(n) ≡ 1 (mod n) but φ(n) is not necessarily the smallest integer for which this

congruence holds. Thus, we define the order of a modulo n as the smallest positive integer k such

that ak ≡ 1 (mod n). This prompts the following definition.

Definition 5.2.1. Let n > 1 be a positive integer and let a be an integer such that gcd(a, n) = 1. If

a has order φ(n) modulo n, then a is said to be a primitive root modulo n.

Note that most integers don’t have primitive roots; a primitive root exists only when n = pk or

n = 2pk, with p an odd prime, or n = 2, 4.

If we let a1, a2, ..., aφ(n) be the positive integers less than n and relatively prime to n then when-

ever a is a primitive root of n, we have that a, a2, ..., aφ(n) are congruent modulo n to a1, a2, ..., aφ(n)

in some order. As well, of particular interest in this paper is the fact that φ(p) = p − 1 and more

generally, φ(pk) = pk − pk−1 for prime p and k ≥ 1.

With the preliminaries out of the way we are ready to investigate γ(KGn). We state the follow-

ing result proved in Harutyunyan and Liestman (2012).

Theorem 5.2.1. Harutyunyan and Liestman (2012) Let n be even such that p = dlog ne where p is

an odd prime. Moreover, suppose that p divides n and that 2 is a primitive root modulo p. It then

follows that

γ(KGn) =
n

p
.

Given the conditions in the hypothesis, the authors construct a dominating set of size n
p which

yields that γ(KGn) ≤ n
p . By remarking that ∆(KGn) = blog nc and recalling Theorem 2.1.2

which states that γ(G) ≥
⌈

n
∆(G)+1

⌉
for any graph G on n vertices, they obtain that γ(KGn) ≥
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n
blognc+1 = n

dlogne = n
q (implicitly here, we have that blog nc + 1 = dlog ne = p which follows

because n is not a power of two since an odd prime p divides n). Thereby establishing γ(KGn)

exactly. Thus, the conclusion is as strong as one can hope for, although the conditions in the hy-

pothesis are rather restrictive. In fact, the best known upper bound on γ(KGn) for arbitrary even n,

also given in Harutyunyan and Liestman (2012) is stated in the following theorem.

Theorem 5.2.2. Harutyunyan and Liestman (2012) For arbitrary even n, γ(KGn) ≤ n
4 .

We will generalize the results of Theorem 5.2.1. In particular, we will relax some of the condi-

tions on the value of n and obtain positive results for γ(KGn). Our first main result of the section

is given below. It establishes an upper bound of γ(KGn) whenever n has an odd prime factor

p ≤ dlog ne such that 2 is a primitive root modulo p. Notice that we have relaxed the condition in

Theorem 5.2.1 that the prime p be equal to dlog ne. Although this result does not apply to all even

values of n, it applies to a rather general class of even integers.

Theorem 5.2.3. Let n be even and suppose that n has an odd prime factor p ≤ dlog ne such that 2

is a primitive root modulo p. It then follows that

γ(KGn) ≤ n

p
.

Proof. Notice that n
2p is indeed an integer because p, an odd prime, is assumed to be a factor of

n, where n is also an even number. Thus, we consider the following set S = {2pl | 0 ≤ l ≤
n
2p − 1} ∪ {2pl − 1 | 1 ≤ l ≤ n

2p}. We will argue that S is a dominating set in KGn and given that

the size of S is n
2p + n

2p = n
p , the result will then follow.

To show that S is a dominating set we will show that any vertex x /∈ S is adjacent to a vertex in

S with a constructive argument. That is, we will give a closed form expression for the neighbour in

S which depends on the value of x.

Let x ∈ V \S be an arbitrary vertex. Since x /∈ S, it follows that x takes the form x = 2pl0+m0,

where 0 ≤ l0 ≤ n
2p − 1 and 1 ≤ m0 ≤ 2p − 2. We break the proof into two cases, based on the

parity of x.

First consider the case where x is odd. Since x is odd we must have that m0 is odd which

implies that m0 6= p − 1. That is, 1 ≤ m0 ≤ 2p − 2 and m0 6= p − 1. Therefore, we have that
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gcd(m0 + 1, p) = 1. Using the fact that 2 is a primitive root modulo p we obtain that m0 + 1 ≡

2i (mod p) for some 1 ≤ i ≤ p− 1.

That is, 2i− 1 = m0 + jp where j is even because 2i− 1, m0 and p are all odd. Thus, consider

l1 = j
2 − l0 and l2 = n

2p + j
2 − l0. Notice that both l1 and l2 are integers because both n

2p and j
2 are

integers by previous remarks made. Also, notice that at least one of l1 or l2 is between 0 and n
2p −1,

as i < p ≤ dlog ne.

If 0 ≤ l1 ≤ n
2p − 1 then we take s = 2pl1 ∈ S. We have that x + s = (2pl0 + m0) + 2pl1 =

(2pl0 +m0) + 2p( j2 − l0) = (m0 + jp) = 2i−1. That is, x+ s = 2i−1 and s is therefore adjacent

to x.

Similarly, if 0 ≤ l2 ≤ n
2p − 1 then we take s = 2pl2 ∈ S and obtain that x+ s = (2pl0 +m0) +

2pl2 = (2pl0 +m0) + 2p( n2p + j
2 − lo) = (m0 + jp) +n = 2i−1 +n. That is, x+ s ≡ 2i (mod n)

and s is therefore adjacent to x.

Thus, in the case that x is odd we have shown that there is a vertex in S that is adjacent to x.

Now, consider the case where x is even. We have thatm0 must be even and therefore gcd(m0, p) =

1. Similarly we obtain that m0 ≡ 2i (mod p) for some 1 ≤ i ≤ p− 1.

That is, 2i = m0 + jp where j must be even. Following the argument given above we consider

l1 = j
2 − l0 and l2 = n

2p + j
2 − l0 and select s = 2pl1 − 1 or s = 2pl2 − 1 accordingly. One of

which must be a vertex in S adjacent to x.

We informally state an immediate consequence of this theorem. Consider any even n which has

an odd prime factor that satisfies the aforementioned conditions. One can select the largest such

prime factor of n to achieve the strongest result. When a prime greater than 3 with the desired

properties is found we have established a better upper bound than n
4 for a rather general class of

even integers. The formal statement is given explicitly in the following corollary.

Corollary 5.2.1. Let n be even and suppose that n has a prime factor 3 < p ≤ dlog ne such that 2

is a primitive root modulo p. It then follows that

γ(KGn) ≤ n

p
<
n

4
.

We now turn to the second main result in this section. We present an upper bound on a slightly
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more restricted class of even integers. Although it should be noted that, in certain cases, this upper

bound can be quite strong in comparison.

Theorem 5.2.4. Let n be even, p be an odd prime and k ≥ 2 be an integer. Suppose that φ(pk) <

dlog ne, that pk divides n, and that 2 is a primitive root modulo pk. It then follows that

γ(KGn) ≤ 2n

pk
.

Proof. Let S = {lpk | 0 ≤ l ≤ n
pk
− 1} ∪ {lpk − 1 | 1 ≤ l ≤ n

pk
}. We will show that S is a

dominating set of KGn by following a proof similar to 5.2.3 which now considers a couple more

cases.

Let x ∈ V \ S be an arbitrary vertex and remark that x takes the form x = l0p
k + m0, where

0 ≤ l0 ≤ n
pk
− 1 and 1 ≤ m0 ≤ pk − 2. We consider the case where x is odd and the details for the

case where x is even follow similarly.

Suppose that x = pkl0 + m0 is odd. We therefore have that either (1) l0 is even and m0 is odd

or (2) l0 is odd and m0 is even.

Case 1 : If we suppose that l0 is even and m0 is odd then we have that m0 + 1 is even and

therefore gcd(m0 + 1, pk) = 1 or gcd(m0 + 1, pk) = pa for some a > 0.

If gcd(m0 + 1, pk) = 1 we therefore obtain that m0 + 1 ≡ 2i (mod pk) for some 1 ≤ i ≤

pk − pk−1. That is to say, m0 = 2i − 1 + jpk.

Thus, consider l1 = −(j + l0) and l2 = n
pk
− (j + l0). Depending on the size of l1 or l2 we

select s = l1p
k or s = l2p

k as a vertex in S and obtain that s is adjacent to x.

If gcd(m0 + 1, pk) = pa with a > 0 then gcd(m0, p
k) = 1 and m0 = 2i + jpk. Similarly, we

consider l1 = −(j + l0) or l2 = n
pk
− (j + l0) and pick s = l1p

k − 1 or s = l2p
k − 1 accordingly

and we are done.

Case 2 : In the case that l0 is odd andm0 is even we have that gcd(m0, p
k) = 1 or gcd(m0, p

k) =

pa for some a > 0.

If gcd(m0, p
k) = 1 then m0 = 2i + jpk. Consider l1 = −(j + l0) or l2 = n

pk
− (j + l0) and

pick s = l1p
k − 1 or s = l2p

k − 1.

If gcd(m0, p
k) = pa with a > 0 then gcd(m0 + 1, pk) = 1 and m0 = 2i − 1 + jpk. Consider
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l1 = −(j + l0) or l2 = n
pk
− (j + l0) and pick s = l1p

k or s = l2p
k.

Informally, we can discuss the power of the two previous theorems. Take n to be even and

consider n = pk1
1 p

k2
2 ...p

kj
j . Find the largest prime pl that meets the conditions in Theorem 5.2.3 and

the largest prime ph that meets the conditions in Theorem 5.2.4. These two primes, pl and ph, may

coincide. We then have that γ(KGn) ≤ min

{
2n

p
kh
h

, npl

}
.

It is worth comparing our results with the results of Harutyunyan and Liestman (2012). For

the values of n for which their results apply, the authors achieved the strongest possible bound on

γ(KGn). Yet, one should mention that they have not necessarily provided results for an infinite

family of values. Indeed, a condition on n is that dlog ne is a prime with 2 as a primitive root

although it is not known whether there are infinitely many such primes (i.e. this is a special case of

Artin’s Conjecture Li and Pomerance (2002)). Thus whether their results apply to infinitely many

even values of n is conditional on the conjecture. Although not necessarily the strongest bounds in

some cases, the results that we have presented unconditionally apply to an infinite family of even

values.

5.3 Necessary Conditions for γ(KGn) =

⌈
n

blog nc+1

⌉
As previously mentioned we have a lower bound of

⌈
n

blognc+1

⌉
on γ(KGn). As shown in Haru-

tyunyan and Liestman (2012), there are some sufficient conditions which allow KGn to meet this

lower bound. Although this section could have been appropriately titled lower bounds on γ(KGn)

we will see that the results are not much better than the preceding general bound. In this section we

investigate necessary conditions on the value of n if γ(KGn) =

⌈
n

blognc+1

⌉
which can very well

be interpreted as lower bounds on the domination number.

To begin we present a few definitions and well known results which will be of use. A graph

G = (V,E) is said to k-regular for some integer k ≥ 0 if every vertex has degree k. A dominating

set S ⊆ V is called a perfect if every vertex in V \S has exactly one neighbour in S. A dominating

set S ⊆ V is called efficient if it is a perfect dominating set that is also independent (i.e. for any pair
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u, v ∈ S we have {u, v} /∈ E). The following result is attributed to Haynes et al. (1998).

Theorem 5.3.1. Haynes et al. (1998) Let G be a graph on n vertices and suppose that n
∆+1 is an

integer. If γ(G) = n
∆+1 then every γ-set is an efficient dominating set.

This result has some interesting implications which are illustrated in the following proposition.

We believe that this proposition may possibly already be known yet not stated in the literature

explicitly.

Proposition 5.3.1. Let G = (V,E) be a k ≥ 2-regular bipartite graph on n vertices and suppose

that n
k+1 is an integer. If γ(G) = n

k+1 then n
k+1 is an even integer. Moreover, every γ-set S of G

can be partitioned into two equal sized independent sets.

Proof. Let X and Y be a partition of V with |X| = x and |Y | = y. First, notice that x = y. One

can realize this by counting the edges of G in two ways. That is, |E| = k|X| and |E| = k|Y | since

G is a k-regular bipartite graph. Hence, kx = ky which implies that x = y.

Now let S be any γ-set of G and let SX = X ∩ S and SY = Y ∩ S. That is, SX and SY

partition the vertices in S with respect to the aforementioned partition of V. Denoting x0 = |SX |

and y0 = |SY | we will show that x0 = y0 and the result will then follow.

Remark that S is an efficient dominating set by Theorem 5.3.1. Thus, for the kx0 edges incident

on the x0 vertices in SX we count precisely kx0 distinct vertices belonging to Y that are not in

SY . Now, since every vertex in Y is either in SY or counted by these incident edges, we obtain that

y = y0 + kx0. Similar remarks yield that x = x0 + ky0.

Noting that x = y we obtain that y0 + kx0 = x0 + ky0. Standard algebraic manipulation yields

that x0 = y0 and the result then follows.

One obtains the immediate corollary by remarking thatKGn is a blog nc-regular bipartite graph

that is partitioned based on the parity of the vertices (i.e. even vertices belong to one partition and

odd vertices belong to the other).

Corollary 5.3.1. Let n be even and suppose that n
blognc+1 is an integer. If γ(KGn) = n

blognc+1

then n
blognc+1 is an even integer. Moreover, every γ-set S can be partitioned into two equal sized

independent sets SE and SO consisting of even and odd vertices, respectively.
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In some sense, this next proposition generalizes the last one. It is perhaps better understood by

considering the contrapositive. Roughly put, it states that if one were to meet this lower bound of

d n
k+1e and this value is an odd integer, then division of n by k + 1 must leave a small remainder.

Proposition 5.3.2. Let G = (V,E) be a k ≥ 2-regular bipartite graph on n vertices and suppose

that n = 2j(k + 1) + r with 4 ≤ r < k + 1. It then follows that γ(G) > 2j + 1 = d n
k+1e.

Proof. Suppose for the sake of deriving a contradiction that γ(G) = 2j + 1 and let S be a γ-set of

G. Consider SX = S ∩X and SY = S ∩X where X and Y are partitions of V .

Since |S| = 2j+ 1 it follows that at least one of SX or SY has no more than j vertices. Without

loss of generality, assume that |SX | ≤ j. We will show that S cannot possibly dominate all the

vertices of Y .

If |SX | = j then SX dominates at most k|SX | = kj vertices of Y . Since there are j+1 vertices

in SY we see that the number of vertices in Y that S dominates is at most k|SX | + (j + 1) =

kj + (j + 1) = j(k + 1) + 1 < n
2 . But we know that |X| = |Y | = n

2 from previous remarks and

thus the vertices of Y are not dominated by S contradicting the fact that S is a dominating set.

It is clear from the argument that that S cannot be a dominating set whenever |SX | < j. There-

fore, it must be that γ(G) > 2j + 1 = d n
k+1e.

Corollary 5.3.2. Let n be even and let k = blog nc. If n = 2j(k + 1) + r with 4 ≤ r < k + 1. It

then follows that γ(KGn) > 2j + 1 = d n
blognc+1e.
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Chapter 6

Conclusions and Further Research

This thesis explored the topic of domination from a computational perspective in Chapters 3 and

4 and from a pure mathematical perspective in Chapter 5. The area of offline domination is very

rich and Chapter 3 surveys some of the known computational complexity results for the dominating

set problem, and although no original contributions were made in this area, future research in this

area is still of interest. The rest of this section consists of concluding remarks for both Online

Domination and Domination in Knödel Graphs.

6.1 Online Domination

In Chapter 4 we studied the minimum dominating set problem in an online setting where a

vertex is revealed alongside all its neighbors. We also contrasted our results with those obtained by

Boyar et al. (2019) and Kobayashi (2017) in a related vertex-arrival model. In our setting, the best

achievable competitive ratio on general graphs is Θ(
√
n). This observation prompted us to study

this problem with respect to more restrictive graph classes. Trees provide a natural graph class that

usually allows for non-trivial competitive ratios. Indeed, we showed that in our model trees admit

2-competitive algorithms. There are several ways to try to extend this result to larger graph classes.

We considered cactus graphs and showed that the optimal competitive ratio is 2.5 on them. Another

way of generalizing trees is to consider graphs of higher treewidth. Unfortunately, once treewidth

goes up to 2, competitive ratio jumps to Ω(
√
n) (which is trivial in our setting due to O(

√
n) upper
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bound), as witnessed by series-parallel graphs. We also established non-trivial upper bounds on

graphs of bounded degree, as well as graphs with bounded claws. When one moves to planar (even

bipartite planar) graphs and threshold graphs, the competitive ratio jumps to Ω(
√
n) again.

The above can be viewed as the beginnings of a larger program of developing a deeper under-

standing of the dominating set problem in an online setting. What are the main structural obstacles

in graphs that prohibit online algorithms with small competitive ratios? In particular, we have the

following question.

Question 6.1.1. (Informal) Can one discover a family of graphs parameterized by some param-

eter t, which include cactus graphs, claw-free graphs, and bounded-degree graphs, such that the

competitive ratio scales gracefully with t?

If we restrict our attention to the results on trees and cactus graphs, a natural generalization of

these results suggests itself. A graph G is said to be almost-tree(k) if it is connected and every

block (biconnected component) of G can be made into a tree by removing no more than k edges.

For k = 0 and k = 1, we obtain the class of trees and cactus graphs, respectively. We suspect the

following conjecture to be true.

Conjecture 6.1.1. Let k ≥ 0 be an integer and f(k) be a linear function of k. Then there is an

algorithmALGk such that ρ(ALGk,ALMOST-TREE(k)) = 2+f(k). More specifically, we suspect

that ρ(2-DOMINATE, ALMOST-TREE(k)) = 2 + k
2 .

The unanswered question still remains,“What exactly is the value of getting to know all your

neighbors?” In the context of online domination, we would like to know if a quantitative comparison

could be made between the setting given in Boyar et al. (2019) and the setting explored in Chapter

4. We believe that regardless of the graph class, there is always utility in getting to know the entire

neighborhood of a vertex, even if decisions cannot be delayed. The results of Chapter 4 can be

seen as evidence for this claim. In the case that this belief is false, we would like to know what

are the exact classes for which the best possible online algorithm in a (partially irrevocable) vertex-

arrival setting is better than the best possible algorithm in our “full-neighborhood” setting where

decisions are completely irrevocable. An answer to this question would let us know exactly when

those “neighborhood block parties” can be a bad idea.
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We are under the impression that getting to know all your neighbors is a good idea, what can be

said about getting to know your neighbors’ neighbors? More generally, we could consider a setting

where a vertex v is revealed with all the vertices found at distance at most k from v for some k ≥ 1.

A hypergraph is a pair H = (V,E) where V is a finite set of vertices and E is a collection of

subsets of V called hyperedges. Thus, a graph is a hypergraph where every hyperedge has size two.

There is an analogous definition of a dominating set in a hypergraph; A subset D ⊆ V is called a

dominating set if for all v ∈ V \ D there is some u ∈ D such that {u, v} ⊆ e for some e ∈ E.

That is, both vertices u, v belong to a common hyperedge. It would be interesting to explore online

domination on hypergraphs.

Lastly, in another research direction, we mention that we have only considered the deterministic

setting, so it would be of interest to extend our results to the randomized setting, as well as the

setting of online algorithms with advice.

6.2 Domination in Knödel Graphs

In Chapter 5 we explored the topic of domination in Knödel Graphs. Our main contribution is

that we use techniques from elementary number theory in a novel way to establish an upper bound

on γ(KGn). In particular, in Theorem 5.2.3 we show that whenever we find a prime p dividing n,

where 2 is a primitive root modulo p and p ≤ dlog ne then γ(KGn) ≤ n
p . In Theorem 5.2.4 we

suppose that 2 is a primitive root modulo pk, where pk divides n and φ(pk) < dlog ne to ultimately

show that γ(KGn) ≤ 2n
pk

. In comparing our results with that of Harutyunyan and Liestman (2012)

we remark that their results apply to infinitely many even values of n only if Artin’s conjecture holds

whereas the results we have presented unconditionally apply to an infinite family of even values.

We propose a few conjectures in order from most likely to least likely. The first two conjectures

seem quite likely to be true although the details may be slightly hairier and we therefore decided

not to pursue them. In particular, these conjectures would allow one to relax the restrictions in

Theorems 5.2.3 and 5.2.4 which require that p be a factor of n. A possible dominating set could be

similar to the dominating sets provided in Theorems 5.2.3 and 5.2.4 but instead each vertex would

be translated by the remainder that n leaves upon division by said prime p.
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Conjecture 6.2.1. Let n be even and let p ≤ dlog ne be an odd prime such that 2 is a primitive root

modulo p. It then follows that

γ(KGn) ≤

⌈
n

p

⌉
.

Conjecture 6.2.2. Let n be even, p be an odd prime, k ≥ 2 be an integer. If φ(pk) < dlog ne and 2

is a primitive root modulo pk then

γ(KGn) ≤

⌈
2n

pk

⌉
.

Lastly, the final conjecture is that γ(KGn) is in fact very close to the trivial lower bound in

Theorem 2.1.2. Perhaps, with some small additive constant. Roughly put, due to the symmetry of

KGn we would imagine this to be true, yet believe that the dominating set would not be as neatly

described as it were in Theorems 5.2.3 and 5.2.4.

Conjecture 6.2.3. Let n be even and not a power of 2 with dlog ne = m. It then follows that

⌈
n

m

⌉
≤ γ(KGn) ≤

⌈
n

m

⌉
+ α.

for some small constant α > 0.

Finally, we leave some questions whose answer may be insightful in resolving these conjectures

and ultimately determining γ(KGn).

Question 6.2.1. The upper bounds presented in Section 5.2 impose the restriction that an odd prime

factor of dlog ne must have 2 as a primitive root. Can we relax this constraint? An idea may be to

construct a dominating set based on the order of 2 modulo some chosen prime p.

Question 6.2.2. The necessary conditions presented in Section 5.3 are based on general arguments

for k-regular bipartite graphs. Although these arguments are appreciated for their own sake they

do not incorporate the algebraic structure of KGn. Can we strengthen the necessary conditions

presented or simply find better lower bounds on γ(KGn)?
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Question 6.2.3. Can some of the techniques used here be applied to other classes of graphs that

exhibit a similar algebraic structure?
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Böckenhauer, H.-J., Hromkovič, J., Krug, S., & Unger, W. (2021). On the advice complexity of the

online dominating set problem. Theoretical Computer Science.

Bollobás, B. (1998). Modern Graph Theory. Springer.

Booth, K. S., & Johnson, J. H. (1982). Dominating sets in chordal graphs. SIAM Journal on

Computing, 11(1), 191–199.

Borodin, A., & El-Yaniv, R. (1998). Online computation and competitive analysis. Cambridge

University Press.

Boyar, J., Eidenbenz, S. J., Favrholdt, L. M., Kotrbcı́k, M., & Larsen, K. S. (2019). Online domi-

nating set. Algorithmica, 81(5), 1938–1964.

Chang, G. J., & Nemhauser, G. L. (1984). The k-domination and k-stability problems on sun-free

chordal graphs. SIAM Journal on Algebraic Discrete Methods, 5(3), 332–345.

76



Cockayne, E. J., Goodman, S., & Hedetniemi, S. (1975). A linear algorithm for the domination

number of a tree. Information Processing Letters, 4(2), 41–44.

Cockayne, E. J., & Hedetniemi, S. T. (1977). Towards a theory of domination in graphs. Networks,

7(3), 247–261.

Corneil, D. G., & Keil, J. (1987). A dynamic programming approach to the dominating set problem

on k-trees. SIAM Journal on Algebraic Discrete Methods, 8(4), 535–543.

Corneil, D. G., & Perl, Y. (1984). Clustering and domination in perfect graphs. Discrete Applied

Mathematics, 9(1), 27–39.

Corneil, D. G., & Stewart, L. K. (1990). Dominating sets in perfect graphs. Discrete Mathematics,

86(1-3), 145–164.

Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., & Wojtaszczyk, J. O. (2011). Dominating

set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science, 412(50),

6982–7000.

Das, B., & Bharghavan, V. (1997). Routing in ad-hoc networks using minimum connected dominat-

ing sets. In 1997 IEEE international conference on communications: Towards the Knowledge
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