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Abstract

Comparative Study of Speed-Up Routing Algorithms in Road

Networks

Raheleh Zarei Chamgordani

We study the problem of finding the shortest distance and the shortest path from one

node to another in graphs modeling large road networks. Classical algorithms like

Dijkstra and Astar do not have good performance in such networks [10, 22, 54]. In

recent years, two new approaches called Contraction Hierarchy [26] and Hub Labeling

[10] which use preprocessing to generate auxiliary data to improve the query time

performance were proposed, and many variants have followed. These algorithms

are very efficient on large networks when a large number of queries is expected.

In the literature, these algorithms are called speed-up algorithms. More recently,

dynamic routing algorithms have been proposed, such as Customizable Contraction

Hierarchy [21] and Dynamic Hierarchical Hub Labeling [18]. These are designed to

respond efficiently to edge weight changes resulting from changes in traffic.

In this thesis, we present an experimental study of the performance of the above

static and dynamic routing algorithms on two different road networks, in terms of

travel time and query processing time. Our results show that Customizable Contrac-

tion Hierarchy is the best for shortest path query in both the static and dynamic set-

tings, while Hub Labeling is the most efficient in answering shortest distance queries

in the static setting. We also show that Dynamic Hub Labeling’s edge weight update

operations are inefficient in practice.
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Chapter 1

Introduction

1.1 Motivation

Finding a shortest and quickest path from a given source to a given target in road

networks is an important component of real-world applications such as navigation

systems (e.g., Google Maps and Bing Maps), route planning apps, and traffic simula-

tion software. According to the data reported in Statistics Canada [64], the number

of Canadian commuters, defined as those who spend at least 60 minutes travelling

to work, has increased by 30 percent or by 3.7 million to 15.9 million between 1996

and 2016. In Canada, long commuting times are known as a big-city phenomenon.

In 2016, about 60 percent of workers in Toronto, Montréal or Vancouver had a long

commute to work by car. Among those, 37 percent worked in Toronto, 15 worked in

Montréal, and another 8 percent worked in Vancouver [64]. Although the proportion

of Canadian commuters using public transit has increased slightly over the past 20

years, the vast majority of commuters in Canada prefer travelling by car as their

commuting mode [64].

During 2016 and 2017, the American Driving Survey found that on average, drivers

spent 51 minutes driving approximately 31.5 miles each day, making an average of

2.2 driving trips. Countrywide in the USA, drivers made 183 billion trips, driving

2.6 trillion miles, in 2016 and 2017. In 2016-2017, all driving metrics increased when

1



comparing statistics with the previous period measured, 2014-2015 [40].

It is therefore not surprising that maps and navigation apps are indispensable tools

for smartphone users. According to the [34], 66.8 percent of smartphone users use

these apps monthly, with a growth of 5.8 percent from 2017 to 2018. They also

anticipated that more than 155 million people would use maps and navigation apps

by the end of 2019 and expected that growth will remain steady in the coming years,

and this extensive usage will reach 67.6 percent by 2021. The most popular navigation

app, Google Maps, was released in 2005 as a standard digital mapping service and

later that year launched driving and public transport directions. It is used by over

two-thirds (67 percent) of smartphone owners. It is used for driving routes, cycle

routes, as well as walking and public transport directions [45]. Waze, which launched

in 2009 by a startup based in suburban Tel Aviv with the motivation to save drivers

five minutes on every trip [1] comes in second at 12 percent as an app for driving

routes only [45].

In addition to this overwhelming use of navigation apps, there are other reasons

that justify the necessity of finding the shortest and fastest routes in today’s life such

as the expansion of road networks. Rapid road network expansion in a short period

may bring urban planning problems related to routing. This will cause bigger maps

and the resulting network will be a graph with more junctions and streets. As road

networks expand, the need for more efficient methods to respond to direction queries

of users will increase.

Another motivation for studying efficient routing is the extensive global phenomenon

which is traffic congestion. Researchers have defined congestion from different points

of view. The most common definition of congestion in the state of traffic flow is

when the travel demand exceeds road capacity [44]. Traffic congestion might be a

result of high population density, growth in the number of motor vehicles, and rise of

delivery services [48]. Congestion that occurs by a high density of vehicles results in

excess travel time [59]. Based on studies of TomTom navigation systems, nine out of

the 12 Canadian cities experienced more traffic congestion in 2019 than they did in

2018. Also according to the INRIX Roadway Analytics [2] in 2017, over the next 10

years, the most congested 25 cities of the U.S. are estimated to cost the drivers 480

billion due to lost time, wasted fuel, and carbon emitted during congestion [47]. It is

2



clear that road networks are not static and the travel time will frequently change due

to traffic jams and traffic congestion. This evokes the importance and necessity for

real-time navigation apps that are capable of responding to the changes in a timely

fashion.

1.2 Problem Definition

In this thesis, we study the classical shortest path problem in large road networks.

A road network is modelled by a graph, where the nodes represent intersections

between roads, and the edges represent roads. The weight of an edge can either be

the length/distance (in meters) of the corresponding road, or the estimated travel

time on the road. Given a source node and destination node in the road network, the

goal is to find a shortest path from the source to the destination, and to return the

answer quickly, that is, minimize the so-called query time.

The above problem can be studied in both the static setting, where edge weights

do not change, such as when the edge weight is the distance metric, or in the more

realistic dynamic setting, such as when the edge weight is the travel time on the

corresponding road. Classical algorithms like Dijkstra and Astar work very well in

small networks, but don’t have good query time performance on large networks. In

recent years, a number of researchers have proposed new and more efficient algorithms

for the shortest path problem in road networks.

In this thesis, we study the query performance of some of these new algorithms

in finding the shortest path and compare them with each other and with classical

approaches. We also study the query time performance of the dynamic variants of

these algorithms. Besides the efficiency of the query, we study the preprocessing time,

and the quality of the route in different algorithms.
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1.3 Thesis Contributions

We provide a comprehensive empirical study of recent shortest path algorithms in

road networks in both static and dynamic settings. We run our experiments using

the well-known simulator SUMO [3] on the Montreal downtown road network as well

as the Eichstaett road network. In the static setting, we evaluate and compare the

performance of Contraction Hierarchy [26] (CCH), Customizable Contraction Hierar-

chy [22] (CCH), and Hierarchical Hub Labeling [10] (HHL). In the dynamic setting,

we evaluate and compare the performance of Customizable Contraction Hierarchy

and Dynamic Hub Labeling [18].

• We compare the effect of different node orderings on the Contraction Hierarchy

routing algorithm in both road networks with respect to the query performance.

Our results show that performance of contraction hierarchy changes significantly

considering our different node ordering heuristic.

• We compare the effect of different node orderings extracted from different graph

partitioning algorithms on two different versions of the Customizable Contrac-

tion Hierarchy routing algorithm in both road networks with respect to the

query performance. Our results show that using Customizable Contraction Hi-

erarchy, to make a contraction hierarchy is very fast and leads to better query

performance.

• We compare the effect of different node orderings techniques on the Hierarchical

Hub Labeling routing algorithm in both road networks with respect to the query

performance. Our results show that size of the labels and query performance

depends on the node ordering method.

• We compare the best versions of Contraction Hierarchy, Customizable Contrac-

tion Hierarchy, and Hub Labelling with each other and also with Dijkstra and

Astar algorithms. Our results show that HHL is the best with respect to short-

est distance query performance and CCH is the best with respect to shortest

path query performance.

• In the dynamic setting, we implemented the fully dynamic Hub Labeling algo-

rithm that also returns the shortest distance and shortest path of a given source

4



and destination.

• We ran experiments with two dynamic speed-up algorithms, HHL and CCH and

compare their query performance in two road networks instances for different

number of queries. Our results show that the dynamic hub labelling operations

for responding to edge weight changes are too expensive in a highly dynamic

network. In contrast, the customization operation in CCH allows for an efficient

response to edge weight changes, which further ensures a better route quality.

1.4 Thesis Organization

In Chapter 2, we give a literature review about static routing algorithms and explain

the main speed-up algorithms in detail. In Chapter 3, we describe dynamic routing

algorithms in detail and provide a brief explanation of graph partitioning methods

used in the preprocessing phase. In Chapter 4, we present our detailed experiments

on comparing static routing algorithms and dynamic routing algorithms. The final

chapter concludes our thesis and gives some ideas for future work.
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Chapter 2

Static Routing Algorithms

In this chapter, we study the background of static routing algorithms in road networks.

In the point-to-point shortest path problem, the input is a directed or undirected

weighted graph G = (V,E), a source s ∈ V , and a target t ∈ V , and one must

compute the length of the shortest path from s to t in G which is denoted by d(s, t),

the distance between s and t. We call this the Shortest-Distance problem. If we

are also required to provide the shortest path itself, then we call it the Shortest-

Path problem. We start with basic techniques and continue with routing algorithms

that were designed for large road networks. In this thesis we use some terms precisely,

some of which are quite standard graph-theoretic terms. Let G = (V,E) be a directed

graph with weight function l : E −→ R that gives each edge (x, y) of G a positive

weight denoted by l(x, y). A path in G is a sequence of nodes 〈v1, ..., vk〉 such that

(vi, vi+1) ∈ E. The weight of a path P is defined as the sum of weights of all edges

in the path. We use n to refer to the number of nodes of the graph (|V |) and m to

refer to the number of edges of the graph (|E|).

2.1 Basic Techniques

The classic and best-known algorithm to compute the shortest distance (path) in a

graph is Dijkstra’s algorithm [23]. It uses a priority queue to scan (settle) the nodes
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during the search. Nodes are prioritized based on their distance to the source node.

At first, all the nodes have the distance set to infinity except the source that has the

distance zero. In every iteration, the algorithm chooses the node with the smallest

distance from the source from the priority queue, and relaxes 1 its outgoing edges.

The algorithm continues until it meets the target node. The number of nodes that

are scanned during this search is called the search space of the Dijkstra algorithm.

In practice, a faster version of point-to-point search which is bidirectional search,

was proposed in [19]. Two Dijkstra algorithms start simultaneously from source and

target nodes in forward and backward direction respectively. A stopping criterion as

explained by Goldberg et al. [29] could be when a node v is about to be scanned a

second time in each direction. Another stopping criterion is d(s, v)+l(v, w)+d(w, t) <

µ where l(v, w) is the length of edge (v, w) and µ is the length of the best path seen

so far. In road networks, bidirectional Dijkstra visits about half as many nodes as the

standard Dijkstra algorithm.

2.2 Goal-Directed Techniques

Goal-directed techniques guide the search toward the target by reducing the number

of nodes in the search space. It prunes the nodes that are not in the direction of the

target node. They use a heuristic for this purpose. Heuristics must be admissible,

that is, they should never overestimate the cost of reaching the target node. Astar is

a classic goal-directed technique for finding the shortest path. It uses a heuristic that

assigns a value to each node of the graph. It is denoted by the function h : V −→ R.

This value is a lower bound on the distance from a node v to target node t. The

Astar algorithm runs a modified version of Dijkstra that uses the d(u, v) + h(v) as

the value of nodes in the priority queue. This results in scanning the nodes that are

closer to the target t earlier than other nodes during the algorithm.

1The operation of relaxation is standard in shortest path algorithms and is described in Chapter
24 of the CLRS textboook [4].
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2.3 Other Techniques with Additional Preprocess-

ing Phase

Many types of networks, including road networks, are considered big for Dijkstra’s

algorithm to answer the shortest distance (path) in a reasonable time especially in the

situation that the number of shortest distance queries is huge. This is the motivation

to construct speed-up techniques for these type of networks and queries [61]. In this

situation, a speed-up technique is considered as a technique that uses precomputed

information to reduce the search space of Dijkstra’s algorithm. Precomputed infor-

mation is some auxiliary data that guides the search or prunes it. One such algorithm

is ALT (Astar, landmark, triangle inequality) [30] algorithm. It creates a better lower

bound than Astar during the preprocessing phase. It picks a small set L ⊆ V of

landmarks and stores the distances between them and all nodes in the graph. During

an s-t query, it uses triangle inequalities involving the landmarks to compute a valid

lower bound on d(u, t) for any node u. More precisely, for any landmark l, both

inequality, d(u, t) ≥ d(u, l)− d(t, l) and d(u, t) ≥ dist(l, t)− dist(l, u) hold.

Arc Flags [35, 41], Geometric Containers [57, 62] and Precomputed Cluster Dis-

tances [43] algorithms are other speed-up algorithms which create labels that encode

additional information on the edges of the network during a preprocessing phase.

Geometric Containers precomputes an edge label L(a) for each edge a = (u, v) ∈ E,

that encodes the set of nodes to which a shortest path from u begins with the edge a.

Instead of storing original node Ids in L(a), it approximates this set of nodes by using

their geometric information (coordinates). During a query, if the target node t is not

in L(a), the search can be pruned at a. In Arc Flag during the preprocessing, instead

of storing geometric information, the graph is partitioned to K cells with roughly

equal size with a small number of boundary nodes, then every edge contains a vector

of K bits such that bit i is set to one if the edge is on the shortest path to some nodes

of cell i and zero otherwise. Boundary nodes are used to compute the arc flag of a

cell i by running a backward shortest path tree from each boundary node of cell i

and setting the ith flag for all arcs of the tree. During the s-t query, the edge with no

bit set to one for the cell containing the node t can be pruned. Precomputed Cluster

Distances is similar to Arc Flags but in addition to the boundary nodes, it stores the

8



shortest path distances between all pairs of cells in labels. The query algorithm is a

pruned version of Dijkstra’s algorithm. For any node u visited by the search, a valid

lower bound on its distance to the target is d(s, u) + d(C(u), C(t)) + d(v, t), where

C(u) is the cell containing u and v is the boundary vertex of C(t) that is closest to t.

Separator-based techniques are another category of speed-up algorithms based on

the observation that road networks also have small separators (although they are not

considered as planar graphs). Separators are a subset of the nodes or edges whose

removal disconnect the graph. Node separators [57, 60] and Arc Separators [38], are

the separator-based techniques whose preprocessing phase builds an overlay graph

which contains additional information that is used during the query. This additional

information is the shortcuts added to the original graph to preserve the shortest path

between every two nodes. In Node separators, shortcuts are between the nodes of

S where S ∈ V are the nodes whose removal from the graph G, decompose it into

several partitions. In Arc Separators, at first, graph G is decomposed to K roughly

balanced blocks and then shortcuts are added between the boundary nodes of each

cell.

2.4 Hierarchical Techniques

Hierarchical methods are a category of speed-up routing algorithms that exploit the

inherent hierarchy of road networks [26]. The authors say that sufficiently long paths

in a road network pass through a small network of important nodes and edges, such as

highways [49]. Thus, in a preprocessing phase, they compute these important nodes

and generate some auxiliary data that will be used during the query.

Reach-Based Routing [32] introduced by Gutman, is a shortest path algorithm

optimized for road networks. Reach of a node u denoted by r(u, P ) is defined as

min{d(s, u), d(u, t)} for a shortest path P from s-t that contains node u. Reach

captures the importance of the node and use it to prune a Dijkstra-based search by

checking two conditions d(s, u) > r(u) and d(u, t) > r(u) which means u is not in the

s-t shortest path. Computing exact reach requires computing shortest path for all

pairs of nodes which is too expensive in large road networks.
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Another speed-up technique proposed was Highway Hierarchy (HH) [49]. The basic

idea of the HH approach is that, outside some local areas around the source and

the target nodes, only a subset of ‘important’ nodes has to be considered [49]. It

has two subroutines. Edge reduction and node reduction. Node reduction removes

(bypass) low degree nodes (nodes of degree one and two). Edge reduction removes

non highway edges. Highway edges are those belong to some shortest path P from

node s to node t such that they are not fully contained in the neighborhood of s nor

in the neighborhood of t. Neighbors of a node v are those that are in a user defined

radius of v.

Another speed-up technique which combines the idea of Highway Hierarchy and

labeling algorithms (to be described later), is Transit Node Routing [13] (TNR). TNR

is based on a simple observation intuitively used by humans. “When you drive to

somewhere ‘far away’, you will leave your current location via one of only a few ‘im-

portant’ traffic junctions [transit nodes]”. During preprocessing, it creates a distance

table in which for every node, it stores its distance to all neighboring transit nodes

and distance between all transit nodes as well. So a non-local shortest-path query

can be reduced to a small number of table lookups. Although fast in the query, TNR

needs considerably higher preprocessing time and space than previous approaches.

Highway-Node Routing (HNR) [55] , extends the idea from Highway Hierarchy and

Multi-Level Overlay Graphs. Multi-Level Overlay Graph [36] is a separator based

approach in the category of speed-up algorithms to find the shortest path. It finds a

subset S ⊂ V of important nodes and for each pair of nodes u, v ∈ S, an edge (u, v) is

added to the overlay if the shortest path from u to v in G does not contain any other

node w from S. In addition to edges between separator nodes of the same level, the

overlay contains, for each cell on level i, edges between the reduced level i separator

nodes and the interior level (i − 1) separator nodes. HNR, uses highway hierarchies

to classify nodes by ‘importance’ and construct multi-level overlay graphs based on

these nodes.
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2.4.1 Contraction Hierarchy(CH)

In this section, we describe in detail the Contraction Hierarchy algorithm, as it is

known to be one of the best algorithms in practice [12], and is also one of the algo-

rithms that we implement and evaluate in this thesis.

Contraction Hierarchy [26] is a successor of HH and HNR, and uses a new approach

regarding the node ordering and hierarchy construction. The algorithm obtains a

faster query time using two queues containing so-called forward and backward edges

of graph G that are denoted by G↓ and G↑. CH was invented with the motivation to

optimize HNR, and has three phases: node ordering, node contraction, and query.

Before explaining each phase in detail, we define the term overlay graph.

An overlay graph [54] is a subgraph that preserves the shortest path distance of

G. In other words, if G′ = (V ′, E ′) is an overlay graph of G, then dG(u, v) = dG′(u, v)

where V ′ ⊆ V and E ′ is a set of edges whose weights preserve the shortest path

distance.

2.4.1.1 Contraction

We construct a hierarchy by contracting the nodes in a specific order O, which we will

describe in the next section. A node v is contracted by removing it from the network.

The remaining graph after this contraction is an overlay graph that preserves all

shortest paths as in the original graph. The combination of resulting overlay graph

of Algorithm 1 and Order O, is called a Contraction Hierarchy (CH).

Contraction of a node v is achieved by replacing two-edge paths of the form 〈u, v, w〉
with a shortcut edge (u,w). See Figure 1 for an illustration. Note that this shortcut

is added only if 〈u, v, w〉 is the only shortest path from u to w. So, before contracting

the node v, and adding a shortcut to the graph, the algorithm searches for the shortest

path from u to w; if different from 〈u, v, w〉, this shortest path is a witness that adding

a shortcut is unnecessary. In other words, a path P = 〈u, ..., w〉 6= 〈u, v, w〉 such that

d(P ) ≤ d(〈u, v, w〉) is a witness path. See Figure 2 for an example. The search for
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finding this path is called witness search. The process of finding witnesses and adding

shortcuts for a node u, if no witness is found, is called the contraction of u. See lines

3-5 of Algorithm 1.

v

w

u

2
3

v

w

u

2
3

5

Figure 1: Shortcut added between u,w. Note that edge (u, v) and (v, w) do not belong to

the graph any more.

Witness search for contracting of a node v is actually a problem of finding many-

to-many shortest paths between u and w in G′ for all incoming neighbors u and

outgoing neighbors w of v. We want to know if there exists a shortest path whose

d(u,w) is equal to the shortcut length l(u, v) + l(v, w). To do this search, we can

simply perform a forward shortest path search in the current overlay graph from

source nodes {u|(u, v) ∈ E ′} to all target nodes {w|(v, w) ∈ E ′}. We can stop the

search from u when it has reached distance l(u, v) +max{l(v, w) : (v, w) ∈ E ′}. Such

a limited search is called local search.

v

w

u

x

y z

2
3

1

1
1

1

Figure 2: No shortcut added, path P = 〈u, x, y, z, w〉 already exist with d(〈u, v, w〉) >=

d(P )

Since this local search could be very costly, there are two ways to limit the search:

settled nodes limit and a hop limit. In running Dijkstra’s algorithm, from a source

node to a target node, we actually build the shortest path tree from source to target.

During this process, nodes are either unreached, reached or settled. Settled nodes

are the nodes that are already in the tree, while reached nodes are those that were

added to the queue but are not yet in the shortest path tree. In settled nodes limit

12



approach, we do the same as Dijkstra but we limit the number of settled nodes to

a certain maximum. This approach leads to a denser remaining graph and does not

speed up the contraction a lot [27].

Hop limit approach, limits the number of edges of witness paths. It provides a

better contraction speedup. As an example, in 1-Hop local search, we just scan all

the incident edges of start node u to find the target node w. As we see in Figure 3, for

1-hope limit, we start scanning all the forward edges from node u and only edge u,w

drawn in red is a 1-hop witness path. If we run the witness search without considering

the mentioned limitations, it is called Perfect witness search. We should notice that

these limitations do not influence the correctness of the contraction hierarchy as long

as we add a shortcut (u,w) when we have not found a witness path, but they will

cause a denser overlay graph and therefore slower query time.

v

wu

x1x2

x3

xp

...

Figure 3: 1-Hop search starting from node v leads to find the edge (u,w) as witness path

shown in red.

2.4.1.2 Node Ordering

As mentioned in the previous section, we contract nodes according to a node ordering.

Any node order will result in a correct procedure. However, the selected node order

has a significant impact on the running time performance of CH. Although finding

an optimal node ordering was shown to be an NP-hard problem [14], already simple

heuristics turn out to work quite well in practice.

A priority function can have several terms with different coefficients, forming a
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Algorithm 1: CHPreprocessing(G = (V,E), Order O)

1: for all v ∈ V in increasing importance O do

2: for all (u,w) s.t. u ∈ incoming(v), w ∈ outgoing(v) do

3: dist← length of u-w shortest paths in G′ − {v}
4: if dist > l(u, v) + l(v, w) then

5: Add shortcut (u,w) to G′ with l(u, v) + l(v, w)

6: end if

7: end for

8: Contract(v)

9: end for

linear heuristic function. The main element of ordering heuristics proposed in the

literature is the so-called edge difference, which is defined as the number of shortcuts

introduced when contracting node v minus the number of incident edges of v. The

aim of this term is to keep the edges in overlay graph as small as possible otherwise,

the overlay graph will mostly look like a complete graph.

Note that Contraction Hierarchy not only aims to reduce the number of shortcuts

but also as a second criterion, it aims to reduce the search space when performing a

query. These two criteria are competing criteria. To take this into account, uniformity

is introduced as another element in the ordering heuristic [26]. For example, as Figure

4 shows, if the graph is a path graph and we choose the illustrated node order, then

no shortcut will be added to the graph, but at query time, we need to visit all the

nodes. However if we contract every other node (non adjacent nodes), as shown in

Figure 7, then the contracted graph will have more shortcuts but with smaller search

space during the query time. So the idea is to contract nodes everywhere in the graph

uniformly rather than to keep contracting nodes in a small area. For this purpose,

Geisberger et al. proposed to add other terms to the formula [26], such as contracted

neighbors, which is a counter that is incremented when a neighbor is contracted, and

original edge term which is the number of original edges underlying shortcuts. This

last term increases the space requirements but is also beneficial for path unpacking

that we will talk about later in this section.

In order to contract nodes based on a good approximation of their priority, the
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Figure 4: No shortcut added for the contraction of nodes in the path graph. Numbers in

the nodes show the priority of each node for contraction and the number below each nodes

shows the edge difference calculated for each node.

algorithm needs to update the priority of nodes. This is because the contraction of a

node u can change the priority of other nodes especially nodes in its neighbors. See

Figures 5 and 6. In [54], it’s shown that updating all the neighbors of u is a good

compromise between accuracy and performance.

v

u

Figure 5: Before the con-

traction of node u, the edge

difference of contracting node

v is 3− 3 = 0.

v

Figure 6: After the contrac-

tion of node u, the edge dif-

ference of contracting node v

is 1− 2 = −1.

There exist three methods for this purpose:

1. Lazy update that updates the priority of a node before contracting it. If the

priority of node v exceeds the priority of the next node v′ that is in the queue,
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then we reinsert v into the queue and proceed with v′. This process continues

until a consistent minimum is found.

2. Update only the priority of the neighbors of node v

3. Periodically reevaluate all the priorities and rebuild the priority queue.

42513
3

1

5

2
4

Figure 7: Two shortcuts added in this node ordering. As we see the search space is

maximum two edges.

2.4.1.3 An Example of Contraction Hierarchy

Before explaining the query phase of Contraction Hierarchy, we illustrate all the steps

of the preprocessing phase in an example. Figure 8 shows our example graph G. In

this example for simplicity the priority heuristic is calculated as below

Priority = 2 ∗ edgeDifference + contractedNeighbors

The edge difference term of a node is calculated as

edgeDifference = shortcuts− (IncomingEdges +OutgoingEdges)

Table 1 illustrates the initial priority of each node before contracting any node

based on the given priority formula. To calculate the edge difference term of each

node we need to know the number of shortcuts that will be added to the overlay graph

after the contraction of a specific node. For example, to calculate the initial priority

of node a, note that it has incoming edges from b, c, e and outgoing edges to b, c, d, e.

To calculate the number of shortcuts, if node a gets selected for the contraction, the

number of shortcuts is 2, one for 〈e, b〉 pair and another one for 〈c, b〉 pair. So the

edge difference is 2− (3 + 4) = −5. At this point, a has no contracted neighbors, and
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therefore the priority of a is −10. After calculation of the priority of each node of the

graph, we select the node with the smallest priority number to contract. As Table 1

represents the first node that needs to be contracted is node a.

a

b

c

d

e1

1

1

3 2

1

2

10

2
4

1
3

Figure 8: Directed graph G = (V,E).

a b c d e

2× edgeDifference -10 -4 -6 -4 -8

1× contractedNeighbors 0 0 0 0 0

priority -10 -4 -6 -4 -8

Table 1: Initializing the priority of each node.

When we contract node a, all of its incident edges will be removed from graph G

and the new shortcuts will be added to G′. See Figure 9 for an illustration of graph

G and G′ after contracting node a. As we see, two shortcuts 〈e, b〉 with weight 3 and

〈c, b〉 with weight 3 which are depicted with red dashed arrows have been added to

the overlay graph.

Table 2 shows the priority of each node that is not yet contracted, after the con-

traction of node a. Note that now, the contractedNeighbors term has changed for all

the nodes. For example, node c now has 4 incident edges, and if we contract it, two

shortcuts 〈b, d〉 and 〈d, b〉 will be added , so its edge difference is -2, and since it has

a contracted neighbor (namely a), its priority is 2 × −2 + 1 = −3. Based on Table

2, the next candidate for contraction is either node b or node e. We break ties in
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Figure 9: Overlay graph G′ (Left) and graph G (Right) after the contraction of node a.

random and continue with node b. Contraction of node b, will not add any shortcut.

See Figure 10 for an illustration.

b c d e

2× -6 -4 -4 -6

1× 1 1 1 1

priority -5 -3 -3 -5

Table 2: Priority of the remaining nodes after the contraction of node a.
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Figure 10: Overlay graph G′ (Left) and graph G (Right) after the contraction of node b.

After the contraction of node b, as Table 3 shows, the next candidate is node d.

See Figure 11 for an illustration of overlay graph and graph G after the contraction

of node d. Note that contracting d adds two shortcuts 〈e, c〉 and 〈c, e〉 to the overlay

graph. We continue with contracting first node c, and then node e, neither of which

will add any shortcuts.
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c d e

2× -4 -4 -4

1× 2 1 2

priority -2 -3 -2

Table 3: Priority of the remaining nodes after the contraction of node b.
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Figure 11: Overlay graph G′ (Left) and graph G (Right) after the contraction of node d.

After contracting all the nodes of G, the final overlay graph will be as Figure

12. When the contraction is done, we have the order of nodes based on the order

of contracting nodes. Having both overlay graph and order of nodes, result in a

contraction hierarchy showed on the right of Figure 12. In our contraction hierarchy,

we show the original edges with solid arrows and shortcuts with red dashed arrows.

2.4.1.4 Query

The contraction hierarchy splits the overlay graph G′ into two graphs considering the

node ordering v1, v2, ..., vn: the Upward graph which is G↑ := (V,E↑) where E↑ :=

{(u, v) ∈ E : O(u) < O(v)} and the Downward graph which is G↓ := (V,E↓) where

E↓ := {(u, v) ∈ E : O(u) > O(v)}. Note that in Figure 13, the edges in G↑ and G↓

point upwards and downwards respectively. For the shortest path query from s to

t, we perform a modified bidirectional Dijkstra shortest path search, consisting of a

forward search in G↑ and a backward search in G↓. If there is a path from s to t in

the original graph, then both forward and backward search will meet at a node v that

19



a

b

c

d

e1

3

1

1

3 2

1
2

3

10

2

4 1

33

4

P
ri

or
it

y

e

c

d

b

a

c

d

a

b

e

1

1

3

2
10

2

4

1 3

4

3

1
2

1

3

3

Figure 12: Final overlay graph. Overlay graph together with the order of nodes lead to

a contraction hierarchy. On the right, the same graph is drawn but nodes of lower priority

are placed below nodes of higher priority.

has the highest rank among all the other nodes in this shortest path. An up-down

path P with respect to order O is a path that can be split into an upward path Pu

and a downward path Pd. The upward path is a sequence of nodes of increasing

rank, and the downward path is a sequence of nodes of decreasing rank. The upward

and downward paths meet at the node with the maximum rank on the path which is

called the meeting node. We have

d(s, t) = min{d(s, v) + d(v, t) : v is settled in both searches}

The query alternates between forward and backward search. Whenever we settle

a node in one direction that is already settled in the other search, the path will be

counted as a new candidate for the shortest path. Search is stopped in one direction if

the smallest element in the priority queue is at least as large as the best candidate path

found so far or if the queue is empty. Since additional settled nodes in this direction

cannot possibly contribute to better solutions, it does not affect the correctness of the

query. To illustrate the query phase in an example, we use the contraction hierarchy

we built in the previous section.

Assume the query asks to find the shortest path from node d to node b. For the

forward search, we need to only look at nodes with higher priority than d, outgoing

from d, and for the backward search only look at nodes with higher priority than b,
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Figure 13: Query in contraction hierarchy

of graph G.

incoming to node b. As we see in Figure 13, the search space from d is shown with

green area and it contains node e and c which are higher than d. Also, search space to

node b is shown with blue area which contains nodes d,e and c incoming to b. Among

two possible candidate for shortest paths, 〈d, c, b〉 with weight 5 and 〈d, e, b〉 with

weight 6, the first one has lower cost, and is therefore selected. Here, the meeting

point is the node c.

There is an optimized variant of the query which is called stall-on-demand tech-

nique. Before settling a node v with distance d(v) in forward search, we check the

information in G↓ to see if there is downward edges (w, v) with w > v such that

d(w) + l(w, v) < d(v). In this way, we can conclude that search can be stopped at

node v with distance d(w) + l(w, v) because the continuation of the search will be

futile. It means we won’t get a shortest path from v since distance to v is not optimal.

There is an additional step called Path unpacking if we want to obtain the actual

shortest path. In this case, it is required to store a contracted node v together with its

shortcut. In CH, since each shortcut (u,w) bypasses exactly one node v, therefore it is
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sufficient to obtain a simple recursive unpacking routine. For the example above, the

computed shortest path from e to c used the single edge (e, c), which was a shortcut

edge. When outputting the actual path, we would unpack the shortcut edge to its

corresponding two edge path, by retrieving the contracted node a.

The following theorems state the main results known about the complexity of Con-

traction Hierarchy.

Theorem 1 [17] The number of nodes that get settled during a shortest path query in

Contraction Hierarchy in a path graph is O(n log n) and in a tree graph is O(∆ log ∆+

n) where ∆ is the diameter of the tree graph.

Theorem 2 [17] For an arbitrary graph, deciding if there is an order that adds at

most k shortcuts in Contraction Hierarchy is NP-complete. In fact, it is APX-hard to

find an order that minimizes the number of shortcuts, and for all ε > 0 it is NP-hard

to approximate the optimal number of shortcuts within 7/6−ε.

The Figure 14 obtained from [5] shows the number of visited nodes in Dijkstra,

bidirectional Dijkstra and Astar algorithms and shows why contraction hierarchy

works much better in practice.

2.5 Routing algorithms based on Labeling Tech-

niques

The idea behind routing algorithms based on labeling technique, is to precompute

labels for nodes, so that distances between pairs of nodes can be computed simply

by examining the labels, and not the input graph. The idea of such graph labeling

schemes proposed in [25,46] is to compute a label L(u) for every node u in the graph

such that for every pair of nodes u, v, their distance can be obtained by only looking

at L(u) and L(v) without using any additional information.

A special case of this approach is Hub Labeling (HL) [16], in which the label L(u)

contains a set of nodes, the so-called hubs of u, together with their distances from
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Figure 14: Efficiency of contraction hierarchy compared to Dijkstra, bidirectional Dijkstra

and Astar

u. In order to find an existing s-t shortest distance for any source s and target t,

L(s) ∩ L(t) must contain at least one node of this path. This property is called

cover property. Then, the distance d(s, t) can be determined in linear time that is

proportional to the size of the inputs, i.e., to the length of the longest label [25]. It

is computed by evaluating

d(s, t) = min{d(s, u) + d(u, t)|u ∈ L(s) and u ∈ L(t)}

For directed graphs, the label associated with every node u is split into two separate

labels: the forward label LOUT (u) that has distances from u to the hubs, while the

backward label LIN(u) has distances from the hubs to u. In this case, to answer the s-t

shortest distance query it is enough to look for the common hub in LOUT (s)∩LIN(t).

We say that the forward (backward) label size of v, |LOUT (v)| (|LIN(v)|), is the

number of hubs in LOUT (v)(LIN(v)). In Hub Labeling the aim is to reduce the

average label size while preserving the cover property to answer the correct shortest

distance query. See Figure 19 for an example of the labels constructed by a hub

labelling algorithm.
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In [8] Abraham et al. provided a practical implementation of Hub Labeling. They

used the fact that in hierarchical algorithms such as CH, the set of nodes visited in

forward search and backward search contains the corresponding labels. For example,

labels of node v can be defined as forward (backward) search space of a CH query

from v. In their label construction paradigm, they use a fast heuristic similar to

stall-on-demand technique to decreases the average label size. In this method, when

it performs a forward CH search (or backward) from a node v and want to scan a

node w, with distance bound d(w), it first checks all incoming edge to v considering

G↓, if d(w) > d(u)+ (u,w), then d(w) is incorrect and as a result it can safely remove

w from the label of v, and it does not scan its outgoing arcs.

A special case of 2-hop cover labeling that is called Hierarchical Hub Labeling (HH)

is proposed in [9]. In HHL, we first order nodes by importance and then transform this

ordering to labels. In [9], a hub labeling is defined as a hierarchical hub labeling if, for

two distinct nodes v, w, the relation - defined by v - w if and only if L(v)(forward

or backward) contains w, is a partial order.

A hierarchical labeling L respects a total order O if the implied partial order is

consistent with O. Based on this definition, given a total order O, a canonical labeling

is the labeling that contains only the highest ranked node v in the forward label of

s and in the backward label of t for the s-t shortest distance where v belongs to the

s-t shortest path. Therefore O(v) ≥ O(s) and O(v) ≥ O(t). This also implies that

the canonical labeling respects O. Canonical hub labeling is minimal since removing

any hub w from a label set will break the cover property. In [9], author proposed to

use CH orders, in order to make canonical labeling. They also proposed a technique

that makes even smaller labels than CH-induced labels for a wide range of networks

by choosing the most important nodes greedily, based on how many shortest paths

they hit.
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2.5.1 Hierarchical Hub Labeling Using Pruned Landmark

Labeling

To construct a hierarchical hub labeling given a total order O, one can push the hub

information from a higher ranked node to its reachable lower ranked nodes such that

all shortest paths in input graph are covered. However, the labels created in this

method are not minimal. More recently, Akiba et al. in [10] proposed a fast exact

method referred to by Pruned landmark Labeling (PLL) algorithm, which efficiently

computes a canonical labeling (also called as index) from a given node order. Starting

from empty labels, PLL processes nodes based on a given order O, from most to least

important node. In the iteration corresponding to node v, it runs Breath First Search

(BFS) in an undirected unweighted graph from node v. Assuming that v is the i-
th node in the ordering, we construct the labelling Li by adding to the previous

labeling Li−1. Algorithms 2 and 3 show the pseudocode for label construction in an

undirected unweighted graph in the PLL algorithm. We describe the algorithm for

directed weighted graphs in more detail because that is the algorithm implemented

in this thesis.

Akiba et al. proved that PLL is correct and produces a minimal labeling. In [20],

it is proved that PLL is also hierarchical and canonical.

2.5.1.1 HHL for Directed Weighted Graphs

In this section, we show how to modify the algorithm for undirected graphs described

in the previous section for directed and weighted graphs. The pseudocode is given in

Algorithms 4 and 5. Note that we denote the directed by G = (V,E) the incoming

neighbors of u by NIN(u) and its outgoing neighbors by NOUT (u).

As in the undirected case, starting from empty labels, PLL processes nodes based

on a given order O, from most to least important node. In the iteration corresponding

to node v, it runs two pruned versions of Dijkstra’s algorithm from the node v. Next

we describe the modified Dijkstra procedure in the forward graph corresponding to

a node v. To decide if the labeling needs to be modified, when processing the next
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Algorithm 2: PrunedBFS(G, vi, Li−1)

1: distancei[vi]← 0 and distancei[v]←∞ for all v ∈ V \{vi}
2: Li[v]← Li−1[v] for all v ∈ V
3: Q← vi

4: while Q 6= ∅ do

5: u← Q.Dequeue()

6: if Query(vi, u, L) > distancei[u] then

7: Li[u]← Li−1[u] ∪ {(vi, distancei[u])}
8: end if

9: for all w ∈ N(u) s.t. distancei[w] =∞ do

10: distancei[w] = distancei[u] + 1

11: Q.Enqueue(w)

12: end for

13: end while

14: Return Ln

Algorithm 3: Compute Labels BFS(G, V , Order O)

1: L0 ← ∅ for all v ∈ V
2: for i = 0, 1, 2.., n do

3: Li ← PrunedBFS(G, vi, Li−1)

4: end for

5: Return Ln

node, say u with least estimated distance d from v, it first computes a v-u distance

by performing an HL query with the current partial labels. We represent this query

by δ = Query(vi, u, Li−1). Here L0 is the empty label, and Li is created from Li−1

using the information obtained by the i-th pruned Dijkstra from node vi in the order

of v1, v2, . . . , vn, as already mentioned. If the labels of u and v do not intersect

in Li−1, the query distance will be infinity (δ =∞). If δ ≤ d, the v-u pair is already

covered by previous hubs and the algorithm prunes the search (ignores u). In the case

δ > d, it adds (v, d(v, u)) to the labelling Li,IN(u) and relaxes the outgoing edges of

u as usual. The Dijkstra procedure in the backward graph works analogously. In the

same situation, it adds (v, d(u, v)) to Li,OUT (u) for all scanned nodes u.
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In order to respond to the shortest path query, we need to keep track of the node’s

predecessor and save it together with other information in the labels. So, labels

would be a set of triples instead of pairs ((v, δ(v, u), w)) where the third element,w,

would be the parent of node u, in the pruned Dijkstra search from v toward u. In

a directed graph like a road network, this needs to be done for both forward and

backward labels of each node. The Algorithm 6 in Section 2.5.1.4 shows the shortest

path query function in HHL. Since in this thesis our focus in on road networks which

are directed weighted graphs, and we are interested to know the shortest path, in

Algorithm 4, we show the label construction paradigm that enables us to retrieve the

shortest path from the labels after the construction. We also provide an example for

PLL for our directed weighted example graph introduced in previous section.

Algorithm 4: PrunedDijkstra(G, vi, Li−1, dir)

1: distancei[vi]← 0 and distancei[v]←∞ for all v ∈ V \{vi}
2: L(dir)i[v]← L(dir)i−1[v] for all v ∈ V
3: Q← (vi, distancei[vi], none)

4: while Q 6= ∅ do

5: u← Q.ExtractMin()

6: L(!dir)i[u]← L(!dir)i−1[u] ∪ {(vi, distancei[u], parent[u])}
7: for all w ∈ Ndir(u) do

8: dist = distancei[u] + l(u,w)

9: if dist < distancei[w] and dist < Query(vi, w, L, dir) then

10: distancei[w] = dist and parent[w] = u

11: if {w, distancei[w], parent[w])} is in Q then

12: Q.Update({w, distancei[w], parent[w])})
13: end if

14: else

15: Q.Enqueue({(w, distancei[w], parent[w])})
16: end if

17: end for

18: end while

19: Return L(dir)n
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Algorithm 5: Compute Labels Dijkstra(G, V , Order O)

1: L0 ← ∅ for all v ∈ V
2: for i = 0, 1, 2.., n do

3: L(OUT )i ← PrunedDijkstra(G, vi, L(OUT )i−1, forward)

4: L(IN)i ← PrunedDijkstra(G, vi, L(IN)i−1, backward)

5: end for

6: Return Ln

The theorem below gives upper bounds on the label size and preprocessing time of

PLL method.

Theorem 3 [10] Label construction needs O(nm) time and O(n2) space.

A more precise bound can be proved for graphs of bounded treewidth:

Theorem 4 [10] Let w be the tree-width of G. There is an order of nodes with

which the PLL takes O(wmlogn + w2nlog2n) time for preprocessing, stores an in-

dex(Labeling) with O(wnlogn) space, and answers each query in O(wlogn) time.
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2.5.1.2 Example of HHL for a Directed Weighted Graph

Here we use the same example graph as the one used in Section 2.4.1.3 to illustrate CH.

We order nodes based on their degree, that is, the sum of the number of incoming

edges and the outgoing edges to that node. In this case, the priority of nodes to

construct labels for our example graph is as shown in Figure 15. The node a with 7

incident edges is the first node to start constructing labels with, and node b with 3

incident edges is the least important and last node to construct labels with.

a

b

c

d

e1

1

1

3 2

1

2

10

2
4

1
3

a d c e b

Order of label construction

Figure 15: Directed weighted graph G = (V,E) with the order of nodes for label contrac-

tion

Starting from node a, and in forward direction, initially (a, 0, none) is in the queue.

This will cause the addition of triple (a, 0, none) to be added to the backward label of

a (Line 6 of Algorithm 4). In the next step we check all the outgoing edges of a and

put the corresponding neighbors in the queue only if their distance to a via the edge is

less than the previous estimate of distance to a (held in distancea array and initialized

to ∞ ) and is also less than the distance from a as given by Query(a, u, L, forward)

which is the distance given by the current labeling (Line 9). Figure 16 shows the

priority queue after reaching each outgoing edges of node a.

As the algorithm progresses it chooses triple (b, 1, a) from the queue and adds a

to the backward label of b and checks the outgoing edges of b to either insert new

nodes in the queue or update the weight of the existing ones. For example, c is the

neighbor of node b and its distance from a through b will be 2 while distancea(c) is 3,

and using the existing hub labeling, the query returns ∞, so we replace distancea(c)

by 2, change the parent to b, and update the queue entry for c accordingly. In this
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(b, 1, a)

(c, 3, a)

(d, 4, a)

(e, 10, a)

Figure 16: Priority queue status after visiting node a of our example graph in HHL

construction.

case the next node that get extracted from the queue will be c with weight 2. Figure

17 shows the label of each node after visiting all the remaining nodes in the queue (d

and e).

aIN (a, 0,−)

aOUT

bIN (a, 1, a)

bOUT

cIN (a, 2, b)

cOUT

dIN (a, 3, c)

dOUT

eIN (a, 6, d)

eOUT

aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a)

bOUT (a, 1, a)

cIN (a, 2, b)

cOUT (a, 2, a)

dIN (a, 3, c)

dOUT (a, 4, c)

eIN (a, 6, d)

eOUT (a, 2, a)

Figure 17: Label of nodes of graph G after the forward iteration (on the left) and after

the backward iteration (on the right) of node a.

This finishes the call to PrunedDijkstra(G, a, L(OUT )a, forward). Next we per-

form the call to PrunedDijkstra(G, a, L(IN)a, backward). Here we scan the incoming

edges to a and add an entry to the backward label of the nodes if necessary.

We now describe the forward iteration for node d, that is, the execution of

PrunedDijkstra(G, d, La, forward). After processing the first node in the priority

queue which is d itself, we will have c and e in the queue with weight 2 and 3
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respectively. The algorithm continues with c, and it inserts d in backward label of c

since there is no intersection node in forward label of d and backward label of c before

adding this new entry (Query(d, c, L, forward) = ∞). Also the distanced[c] = ∞.

After processing node e as the node with minimum distance in the queue, next we

process the outgoing neighbors of c, namely a. As an outgoing arc of c, node a with

the distance 4 is the next node that we extract from the queue. However, since the

intersection of forward label of d and backward label of a have an intersection with

the distance of 4, so we do not need to add any new entry to cover 〈d, a〉 path.

aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a)

bOUT (a, 1, a)

cIN (a, 2, b) (d, 2, d)

cOUT (a, 2, a)

dIN (a, 3, c)

dOUT (a, 4, c) (d, 0,−)

eIN (a, 6, d) (d, 3, d)

eOUT (a, 2, a)

Figure 18: Label of nodes of graph G after the forward iteration of node d.

After iterating forward and backward through all the nodes based on their order in

decreasing importance, the final labels of all nodes in the graph G will be as shown

in Figure 19.
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aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a) (b, 0,−)

bOUT (a, 1, a) (d, 2, c) (c, 1, c) (b, 0,−)

cIN (a, 2, b) (d, 2, d) (c, 0,−)

cOUT (a, 2, a) (d, 1, d) (c, 0,−)

dIN (a, 3, c) (d, 0,−)

dOUT (a, 4, c) (d, 0,−)

eIN (a, 6, d) (d, 3, d) (e, 0,−)

eOUT (a, 2, a) (d, 1, d) (e, 0,−)

Figure 19: Final label of nodes of example graph G.
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2.5.1.3 Different Node Ordering

In this section we explain three heuristics for node ordering that have been used to

construct labels in HHL algorithm.

Degree. In a graph, the Degree of a node could be a sign of the strength of that

node. The idea of using the degree for the ordering is that nodes with a higher degree

have more connections to many other nodes and therefore many shortest paths would

pass through them [10].

Betweenness. The betweenness of a node is defined as the number of shortest paths

that pass through that node. Abraham et al. [9] use shortest-path trees to calculate

the betweenness. The betweenness of a node is the sum of the descendant sizes of

that node in all shortest-path trees. To implement this, they build n full shortest

path trees, each rooted at one of the nodes in the graph. The tree rooted at node

v contains all the uncovered shortest path starting at v. Therefore, the number of

descendants of node w is the number of uncovered shortest paths that start at v and

contain w. So, it is the number of the shortest path that will be hit if we pick w as the

next most important node in label construction. This is denoted by σ(w). There are

two variants of this approach. Path-greedy, at each iteration, picks the node as the

next most important one, which covers the most uncovered paths by previous nodes.

In [51], they assign the value 1/σ(w) as the value of the importance. We denote it by

BTW-PG. Label-greedy, at each iteration, picks the node as the next most important

one, which maximize σ(w)/xw, where xw is the number of nodes such that w goes

into their labels. We denote it by BTW-LG.

2.5.1.4 Query

To answer distance queries, we apply merge-join-like algorithms. For this purpose,

pairs in labels need to be sorted by nodes. In [10], it does not sort labels explicitly

by storing ranks of nodes, but instead it stores them by construction based on their

rank. That is, instead of adding the pair (vk, δ) to the label of a node u in the k-th

pruned Dijkstra from node vk, it adds a pair (k, δ). Thus, because pairs are added

from higher rank nodes to those with lower rank, all the labels are automatically
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sorted.

Algorithm 6 shows the pseudocode for the Shortest Path Query function, which

returns the shortest path from u to v. Recall that P [u] is the predecessor of node u.

Algorithm 6: SPQuery(u, v, L)

1: if (u == v) then

2: Return u or v

3: end if

4: if (u == None) then

5: Return v

6: end if

7: if (v == None) then

8: Return u

9: end if

10: MP = Lf (u) ∩ Lb(v) // Finds the Meeting Point of (u, v)

11: Return Concatenate(SPQuery(P [u],MP, L), SPQuery(MP,P [v], L))

Referring to the example in Section 2.5.1.2, and the labeling given in Figure 19,

in order to find the shortest path from node a and d, it is enough to intersect the

forward label of a and the backward label of d. We see that the meeting point is

node a and the shortest path distance is 0+3=3. To get the actual path, we need to

recursively intersect the label of the parent of a and d with the label of meeting. In

this example, since the parent of a is empty it means that a is the end node. So, we

only need to intersect forward label of a and backward label of c which is the parent

node of d. In the next step, similarly, we need to intersect the forward label of a and

backward label of b until we find the complete path.

2.6 Empirical Studies of Static Routing Algorithms

In [26], the efficiency of CH has been examined with respect to the effect of different

priority terms in the ordering heuristic and it has been shown that for a good heuristic
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to lead to an efficient query performance we need a combination of terms. They

compare this efficiency with HNR algorithm which is mentioned as the fastest previous

algorithm. In [27], Geisberger at al again have shown that CH algorithm and its

variants are more effective than previous speed-up and non speed-up algorithms from

both preprocessing and query time point of view. They also show the robustness of

CH for distance as edge weight. In [21], the authors introduce a new node ordering

for CH, which we call R-CH and empirically study its performance versus other node

ordering heuristics. In [8], another node ordering heuristic which we call it S-CH was

proposed for CH. In our experiments, we compare (for the first time) the efficiency

of CH using R-CH and S-CH proposed in [8] and [21].

A comparison of a distance query time of CH algorithm with HL [8] algorithm

proved that HL algorithm is faster than any existing method on continental road

networks. A similar result was reported in [9] for HHL and CH comparison on a variety

of networks, such as social networks, artificially constructed networks, and some road

networks. The authors of [10] compare the performance of PLL with HHL. Their

experimental results show that for a variety of networks including road networks, the

label construction of PLL method is significantly more efficient than label construction

using path greedy and label greedy method for building HHL. It also examines the size

of the label of different networks using PLL and three different node ordering (Random

node ordering, Degree and Closeness) and shows that Random strategy is much worse

than other two strategies. Degree and Closeness can find central vertices successfully.

In our experiments, we use PLL and four different node orderings (Degree, BTW-LG,

BTW-PG and GP-FC20).

The authors of [42] compare HHL with different ordering schemes (Degree, Be-

tweenness and a new ordering scheme called significant path) with CH on the different

networks such as undirected road networks with respect to response time and index

size. They show that the shortest distance query is more efficient in HHL and the

shortest path query is more efficient in CH. In our experiment we run HHL with PLL

implementation and compare it with CH on directed road networks.
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Chapter 3

Dynamic Routing Algorithms

In some types of networks, it may happen that edge weight often changes, or edges

might be added or removed from the network. In fact, this is likely to happen in

road networks in the real world because of changes in traffic. So, it is not enough

to know about the shortest path between nodes in the static network. We also

want to efficiently find the shortest path and shortest distance route in a dynamic

network. One obvious solution to respond to the shortest path query in a dynamic

scenario using speed-up algorithms, is to run the preprocessing phase every time

that a modification happens in the network. Although this approach guarantees that

queries are as fast as queries in static conditions, re-running of the preprocessing

phase can be costly. As a consequence, other approaches have been developed to

solve this problem. In this section, we study the dynamic variants of two speed-up

algorithms for which we already explained their static versions in Sections 2.4.1 and

2.5.1.

3.1 Customizable Contraction Hierarchy (CCH)

As we noted in Section 2.4.1, a limitation of CH, is that in its preprocessing phase,

the weight of edges of the network needs to be known. For this reason, CH is called

metric-dependent. In other words, a significant change in the edge weights of the
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network may require a costly computation of the preprocessing phase. One way that

is proposed in [27], is to keep the original node order and instead of re-contracting

nodes from scratch, update existing shortcuts to comply with the changes and then

identify the subset U of nodes whose contraction has to be repeated to add new

shortcuts. In t in V that are not in U is not necessary because no new shortcuts need

to be added. In the mobile scenario of CH in [27], for dynamic edge weight changes,

it does not even re-contract a set of affected nodes, but it adapts these changes at

query time by bypassing affected shortcuts and going down the hierarchy. The same

technique is used in [55] that adapts the query algorithms to answer weight change

updates.

An interesting technique suggested in [24] is to make the contraction phase com-

pletely metric-independent. The authors suggest that the shortest path query might

not only consist of source and destination but also of a set of parameters which de-

termine under which metric the optimal path in the road network is to be computed

(These parameters are actually edge weights or other metrics). Thus, it moves all the

necessary metric-dependent work to the query phase. However, this makes the query

phase significantly slow.

Most recent approaches divide the preprocessing phase into two separate phases

[21,22], the metric-independent phase and the metric-dependent phase. In the metric-

independent phase, it only considers the topology of the input network which is

stable most of the time, and builds a contraction hierarchy based on that. In the

second phase, which is quite fast, it applies the user-defined metrics to the contraction

hierarchy built in the first phase. This also makes the query phase very fast. In these

techniques, when edge weights change, they only run the fast metric-dependent phase

without requiring the execution of the whole preprocessing phase. In this section, we

will describe the approach of [22] and in Chapter 4 we will run experiments using

different node ordering techniques.
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3.1.1 Building a Contraction Hierarchy

In this section, we describe how to build a metric-independent contraction hierarchy.

The main building block for this, is an algorithm called metric-independent Nested

Dissection Orders [28] (ND-orders). Given a partition of the network, ND-orders

produces an ordering of the nodes. (In Section 3.1.1.1, we describe several ways of

partitioning the network that we use in our experiments in this thesis.) We now

use this ordering to create a chordal graph by examining nodes in order from lowest

to highest and adding edges to make the set of neighbors of the current node that

have higher rank a clique. This chordal graph constitutes our metric-independent

contraction hierarchy.

In CCH context, a chordal graph is constructed by adding these extra edges as

shortcuts to the graph by first dropping all edge directions and edge weights of G.

More precisely, an unweighted node contraction of node v in G consists of removing v

and inserting edges between all neighbors N(v) of higher order than v, if not already

present. Given the order O, the core graph GO,i is obtained by contracting all nodes

O(1)...O(i − 1) in order. The original graph G augmented by the set of shortcuts is

denoted by G∗O =
⋃

iGO,i. Note that the order O for the final graph G∗O is a perfect

elimination ordering 1

Figure 20, represent an example of creating a chordal graph and its upward directed

representation of it for graph G that we used in previous sections. In this figure, the

rank of each node is shown next to it. We start by node d with rank 0. Since e and

c, are neighbors of it with higher rank, and there is no edge between them, we add a

new edge (dashed, red line). Note that no other shortcuts need to be added.

The created hierarchy corresponding to G∗O can be represented by an upward di-

rected graph which is denoted by G^O. By upward directed graph, we mean a graph

such that all its edges are directed upward. See Figure 20. Given a node order O,

every undirected graph can be represented by an upward directed graph. i.e., every

edge (O(i), O(j)) with i < j is replaced by a directed edge {O(i), O(j)}.
1A perfect elimination ordering of a graph is an ordering of the nodes of the graph such that for

each node v, the neighbors of v that come after v in the ordering as well as v form a clique. A graph
is chordal if and only if it has a perfect elimination ordering.
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Figure 20: Chordal graph of graph G and its upward directed graph with respect to a

ND-order O.

Theorem 5 [21] Running time complexity of contracting all nodes in metric-independent

Contraction Hierarchy is O(m̃α(n)) where m̃ is
∑
d(x) and d(x) is the degree of x

just before x is contracted.

3.1.1.1 Different Graph Partitioning Algorithms

Graph Partitioning is the problem of cutting a graph into separate regions of roughly

equal size while the number of edges between regions is as small as possible. A

cut is a set of edges whose removal from the graph partitions the set of nodes into

two subsets V1 and V2. It turns out that good graph separators are the ones that

contribute to many shortest paths. After finding good separators we need to create

an ordering for the nodes. There should be an algorithm to build contraction order

from graph partitioning. Finding a good order of nodes has a direct influence on the

time required for the customization and the shortest distance queries. The approach

used in all graph partitioning techniques mentioned below is nested dissection.
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In [22], metric-independent ND-orders need good graph bisectors which are NP-

hard in theory. However, there are previous studies that apply graph partitioning

techniques with nested dissections and show that it works well even for continental-

size road networks [31,50]. Nested dissection is an approach that recursively computes

order for V1, V2 and Q where V1 and V2 constitute the partition determined by the

cut Q resulting from a graph partitioning tool. We would like to study the effect of

different graph partitioning algorithms on the query time of CCH and in upcoming

sections, compare this experiment’s result with other basic and speed-up routing

algorithms.

In this section, we describe several node partitioning algorithms that can be used

by ND-order to create the ordering to be used by CCH. Implementations of all the

algorithms described in this section were available [31], and we have used them in our

evaluations described in Chapter 4. We give brief descriptions here for completeness.

FlowCutter [33] is an algorithm that heuristically finds balanced connected cuts in

a flow network. In FlowCutter, s-t cuts are computed in increasing size. It uses unit

capacity for every edge (c : E −→ {0, 1}). In the beginning, s is the only source

node and t is the only target node that is arbitrarily chosen. The algorithm starts by

computing a maximum s-t flow. With respect to this flow, there is a source-side cut

CS and a target-side cut CT . If the cut CS is balanced (it can also be CT ) then the

algorithm finishes, otherwise, one of the sides, source-side or target-side is smaller.

Assuming the source side is small, the algorithm now transforms non-source nodes

into additional source nodes to invalidate existing cut and computes a new, more

balanced s-t cut, which will be the second cut in the sequence. This is done in two

steps, first mark all the nodes on the source side as a source node and secondly pick

one node on the target side as the source node. This one node is called piercing

node. It ensures that we will find a different cut in the next iteration. Choosing

a good piercing node influences the quality of the cut. As the algorithm iterates,

it maintains a maximum flow. Based on this flow, there is a source-side cut and a

target-side cut. It computes a set of cuts or separators that trade off cut and separator

size, respectively, for a parameter ε called imbalance. The imbalance is a parameter

that represents the maximum acceptable unbalance of cuts.

To combine FlowCutter with nested dissection to generate node order for graph G,
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we bisect G along with the node separator Q created by FlowCutter into subgraphs

with V1 and V2 the sets of nodes. Then it recursively computes orders for V1 and

V2. The order of G is the order of V1 followed by the order of V2 followed by the

nodes in Q in an arbitrary order. It continues the recursion until it reaches a clique

or tree. For a clique, any order is optimal. For trees, an order can be derived from

an optimal node ranking which is a ranking that the largest rank assigned to some

node is as small as possible among all rankings [52]. In our experiments, we denote

the combination of ND-order and Flowcutter as obtained from [6] by FC followed by

the number of source-target pairs.

InertialFlow [53] combines sorting and maximum flow. In the first step, it projects

the geographical coordination of nodes to their closest point on a line l ∈ IR2 and then

sorts them by their appearance on l. In the next step, it defines S and T such that if

a node is in first bα.|V|c it belongs to S and if a node is in the last bα.|V|c, it belongs

to T for a parameter α ∈ [0, 0.5]. Then it computes the maximum flow between S and

T and returns a corresponding minimum s-t cut. In the implementation of the [31],

they use 0.2 for α, and instead of a line, they use four directions West-East, South-

North, Southwest–Northeast, and Southeast–Northwest as suggested in [33] since

their experiments have shown this approach works well for the road networks. The

nested dissection technique that is used for node ordering is the same as FlowCutter

and it only parallelizes the partitioning algorithm. We denote the combination of

ND-order and Inertial Flow as obtained from [6] by IF.

RoutingKit also implements InertialFlow followed by a nested dissection approach

to generate orders for CCH. It executes InertialFlow with three different α, [0.25,

0.33, 0.4] and then picks the one that creates more balanced cuts. We denote this

technique by IFR.

InertialFlowCutter [31]. It combines the idea of InertialFlow to use geographic

coordinates with the incremental cut computations of FlowCutter. It improves Flow-

Cutter by initializing S and T in the same way as Inertial Flow, but with a smaller α.

In addition, it chooses multiple nodes as piercing nodes at once. This is called bulk

piercing. In this way, it enumerates multiple InertialFlow cuts simultaneously, with-

out having to restart the flow computations. In [31], it is suggested to run multiple

InertialFlowCutter to improve solution quality. Therefore, they run q ∈ N different
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instances of InertialFlowCutter with different directions. In [31] implementation, [4,

8, 12, 16] are used as instances with different directions and we use the same setup.

We denote InertialFlowCutter by IFC followed by the number of q as instance number

in our experiments.

KaHiP [50]. It is a multi-level evolutionary and a general-purpose graph partition-

ing technique. It creates the most balanced cuts compared to other graph partitioning

techniques. KaHiP, uses a multi-level approach for partitioning large graphs. A par-

titioned graph consists of blocks which are nodes and connectivity between blocks

which are edges. Given a partition, the gain of a node v in block A with respect

to a block B is defined as the reduction in the cut when v is moved from block A

to block B. It consists of two components. The first component is local searches

on pairs of blocks that share a non-empty boundary in partitioned graphs(i.e. edges

in the partitioned graph). Local search finds an eligible boundary node v in block

A having a maximum gain. In another word, a node v that maximizes the reduc-

tion in cut size when moving it from block A to block B. If there is more than one

such node, it breaks ties randomly. These local searches are not restricted to the

balance constraint of the graph partitioning problem and are undone after they have

been performed. The second component uses the information gathered in the first

component. That means it builds a model using the node movements performed in

the first step enabling the algorithm to find combinations of those node movements

that maintain balance. There are different mode of KaHiP implementation such as

fast which creates Fast Partitioning, eco which creates Good Partitioning and Strong

which creates Very Good Partitioning [56]. We use strong mode. We also use version

2.11 for our experiment and denote it by K2.11. The same nested dissection technique

as InertialFlow is used for KaHiP.

Metis [39]. Like KaHiP this is a general-purpose graph partitioning tool but faster

than KaHiP. It works in three phases. In the coarsening phase, the graph G which is

shown by G0, is transformed into a sequence of smaller graphs, each with fewer nodes

G1, G2, ..., Gm such that |V1| > |V2| > |V3| > · · · > |Vm|. In the partitioning phase,

a 2-way partition |Pm| of the graph Gm = (Vm, Em) is computed that partitions Vm

into two parts, each containing half the nodes of G0. Finally, in the uncoarsening

phase, the partition Pm of Gm is projected back to G0 by going through intermediate
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partitions Pm−1, Pm−2,...,P1, P0. We used Metis 5.1.0, available from the authors’

website. Metis has its own node ordering tool called ndmetis which we used. It also

uses a nested dissection approach.

3.1.2 Customization

In the previous section, we described how to build a metric-independent contraction

hierarchy for the undirected unweighted graph corresponding to the original network.

The direction of edges, as well as edge weights, are introduced in the customization

phase. To start with, for each edge in the metric-independent contraction hierarchy

G∗, we assign two weights. If in the original road network graph G, both directed

edges were present, we simply use the same weights. If the edge is a one-way street

in the original road network, then either upward or downward weights are set to ∞.

We discuss three types of metrics: respecting metric, customized metric denoted by

mc and perfect customized metric denoted by mp.

Next we describe how to create these three types of metrics. To make a respecting

metric, it is enough to assign to all edges of G^O that already exist in G their input

weight and ∞ to all other edges (as described above for the initialization). Figure 22

illustrates the respecting metric for the directed weighted graph G that we already

used for our examples. For the red line between nodes c and e, since we do not have

equivalent edge in original graph G, we set both forward and backward weights to

infinity.

Before describing the procedure to make customized and perfect customized met-

rics, we need to define three types of triangles related to an edge. Consider an edge

(x, y) with O(x) < O(y) and let z be a node adjacent to both x and y. If O(z) < O(x)

then 4xyz is called a lower triangle; if O(z) > O(y), then 4xyz is called an upper

triangle; otherwise it is called an intermediate triangle. Figure 21 illustrates the lower

triangle of edge (y, z), intermediate triangle of edge (z, x) and upper triangle of edge

(x, y).

Now we are ready to describe how to make a customized metric. The main idea
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Figure 21: Lower Triangle, Intermediate Triangle and Upper Triangle of three nodes x, y

and z. Rank of each node is shown next to it.

is to make all lower triangles observe the triangle inequality. In these triangles they

need to check whether the path 〈x, y, z〉 is shorter than 〈x, y〉. In the affirmative case,

mc(x, y) is decreased to the distance of this path. We process edges by starting with

incident edges of the node with lowest rank and proceed in order of rank. When the

algorithm finishes, for all the edges, the triangle inequality holds.

Since we are customizing a directed weighted graph, we consider both md for down-

ward weight of an edge and mu for upward weight of an edge. Thus for every lower

triangle {x, y, z} of (x, y), we calculate

mu(x, y) = min{mu(x, y),md(x, z) +mu(z, y)}

md(x, y) = min{md(x, y),mu(x, z) +md(z, y)}

Figure 23 shows an example of building customized metric. We start with all the

edges of the node with the smallest rank which is node d and check for each edge their

lower triangle and based on the minimum value of all these lower triangle we set their

forward and backward weight. Then we continue the same process with nodes e, b,

c and a. When processing the edges incident on e, we observe that for edge (c, e),

when considering its lower triangle 4cde, we obtain a shorter forward distance of 3

and backward distance of 4 (from c), and we set the metric appropriately.

3.1.2.1 Perfect Customization and the CCH+P Algorithm

For a perfect customization metric, we need to ensure that all triangles (upper, inter-

mediate, and lower) observe the triangle inequality. In a perfect customization, we
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Figure 22: Respected metric of graph G.
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Figure 23: Customized metric of graph G.

want to compute mp given the customized metric mc. At first it copies all the mc

values into mp. Then in increasing rank of node x for all (x, y) edges, it enumerates

all its intermediate and upper triangles 4xyz and checks whether the path via z

is shorter or not. If it is shorter then it changes the value of mp to that path. In

other words, it computes mp(x, y) = min{mp(x, y),mp(x, z)+mp(z, y)}. After perfect

customization, the mp(x, y) is equal to the shortest path distance of (x, y). In the
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directed weighted graph, for intermediate triangles it computes

mu(x, y) = min{mu(x, y),mu(x, z) +mu(z, y)}

mu(x, y) = min{md(x, y),md(x, z) +md(z, y)}

and for upper triangles in computes

mu(x, y) = min{mu(x, y),mu(x, z) +md(z, y)}

md(x, y) = min{md(x, y),md(x, z) +mu(z, y)}

.

Note that after a customized metric or perfect customized metric is created, we can

optimize the contraction hierarchy by removing some edges. There are two variants

of this optimization. The first variant removes all the edges (x, y) whose weight

after basic customization is not equal to the shortest path distance between x and

y. The second version removes these edges and additionally, removes other (x, y)

edges if and only if an upper or intermediate triangle {x, y, z} exists such that the

shortest path from x to y over z is not longer than the x-y shortest distance. In

a directed weighted graph, a perfect witness search may remove edges only in one

direction. In this condition, like the original CH, it runs two searches: upward search

and downward search. The edge (x, y) is removed from the upward search graph if

and only if an intermediate with mu(x, y) = mu(x, z) + mu(z, y) exists or an upper

triangle with mu(x, y) = mu(x, z) +md(z, y) exists. The same operation needs to be

done analogously for the downward graph. In our implementation of CCH+P, we use

the second optimization. Figure 24 illustrate the graph G after performing perfect

customization. Dashed gray arrows are edges removed from the graph.

3.1.3 Query

There are three algorithms to compute the shortest path distance in CCH between

two nodes s and t in a directed weighted graph G. The first algorithm is the same as

the bidirectional Dijkstra that is explained in Section 2.4.1.4. The second one which

is also explained in that section is the stall-on-demand version of the first algorithm

that is also applicable in CCH.
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Figure 24: Perfect metric of graph G.

The third algorithm is an elimination tree search. Starting from the upward di-

rected graph, we now build an elimination tree TG,O, which is a tree directed toward

its root, to be used in the query phase. The parent of node u is its upward neighbor v

in the upward directed graph of minimum rank. The set of nodes on the path from v

to the root is the set of nodes in the search space of v denoted by SS(v) [15]. SS(s),

is all the ancestors of s by increasing rank.

Figure 25 shows the construction of the elimination tree of graph G∗ for the graph

G that we used in the previous chapter.

In the elimination tree search, for every node v we have two tentative distances

df (v) and db(v) that are initially set to ∞. It has four steps. In the first step, it

finds the Lowest Common Ancestor (LCA) of s and t. To do this, it checks all the

ancestors of s increasing by their rank and analogously for t until it finds node x as

LCA. In the second step, it iterates over all nodes y on the tree path from s to x and

relaxes all forward edges of such y. In the third step, it does a similar operation from

t to x. In the fourth step, it iterates over all nodes y from x to the root n of the tree

and relaxes all forward and backward edges. During the fourth step, it finds a node

z for which df (z) + db(z) is the minimum. It means that the up-down shortest path

from s to t goes through z.
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Figure 25: Elimination tree construction of graph G with respect the order O.

3.2 Dynamic Hierarchical Hub Labeling

The hub labeling algorithm was adapted to dynamic graphs or large evolving networks

in [11] for the first time. In this study, Akiba et al. have shown how to update the

labels in order to answer correct shortest distance where edges have been added to

the network. They prove the correctness of their algorithm in undirected unweighted

graphs and then very briefly describe how it can be generalized to cover not only edge

insertion but also the weight decrease of the edges, in both undirected graphs and

directed graphs. They call these label updates the incremental index updates. In their

approach, they do not remove outdated labels since these labels never underestimate

the shortest path distance and removing them is a costly process.

Recently the authors of [18] expanded this approach to cover edge removal or edge

weight increase in a network to make a fully dynamic hub labeling algorithm; their

algorithm is called a decremental index update. In Sections 3.2.1 and 3.2.2, we will

explain the incremental and decremental update algorithms respectively.
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3.2.1 Incremental Update

The key idea of the Incremental update algorithm is explained by [11, 18] as follows.

Suppose the edge weight of a directed edge (a, b) decreases, and the shortest path

distance from v to u decreases as a result, where v and u are any arbitrary nodes in

the graph. Then we can conclude that

1. All shortest paths from v to u must pass through the edge (a, b) and

2. The shortest path distance from v to every vertex w on the sub-path from b to

u must also decrease and

3. All such shortest paths must pass through a node in L(a)∪L(b), except for the

path from a to b.

These observations imply that it is enough to run Dijkstra starting at node b but

rooted at nodes in L(a) ∪ L(b) to see if labels need to be updated. We now describe

the algorithms in detail.

Let us assume that, in an undirected unweighted graph, the edge insertion happened

between two nodes a and b in graph G. As stated above, instead of starting BFS

from every node in the graph (inserting (vk, 0) into the initial queue of the BFS), we

start the search from node b rooted at node vk where vk ∈ L(a). That is, we insert

(b, d(vk, a)+1) into the queue. Algorithms 7 and 8 give the pesudocode of incremental

update in undirected unweighted networks.

Next we describe the algorithm for directed weighted graphs. Note that while it

is mentioned in [11] that the approach can be extended to weighted undirected and

directed graphs, no details are given. In [18], the extensions are described in detail

for directed weighted graphs, though no pseuodocode is given. Essentially, when the

weight of the edge between a and b decreases, we need to run both forward and

backward Dijkstra-like searches. The first type of search starts at node b and is

rooted at a node vk where vk ∈ LIN(a). That is, it inserts (b, dIN(a, vk) + l(a, b))

into the queue where dIN(a, vk) is the shortest distance between node a and vk and

l(a, b) is the weight of the edge (a, b) that is decreased. Note that dIN(a, vk) can
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be obtained by running Dijkstra from vk to a. This search continues from b in the

forward direction and first meets all the forward neighbors of b. When the algorithm

meets a node u, it checks the distance d from vk to u as obtained by a query to the

original labelling (i.e. by running Query(vk, u, L, forward)), and compares it with

the newly computed Dijkstra distance from vk to u that is denoted by δ. If d ≤ δ,

then the shortest path distance from vk and u has not changed, and no labels need to

be changed. Otherwise, it either needs to add an appropriate hub with distance δ to

the label of u if it doesn’t already exist or update labels. Note that, since we need to

preserve the canonical labeling property after any change in the labels, the algorithm

needs to check the rank of vk and u. If O(vk) < O(u), then we need to check the

backward label of u (LIN(u)) for the appropriate operation (adding or modify label)

and if O(vk) > O(u), then algorithm needs to check the forward label of vk (LOUT (vk))

and either add to its label or modify it.

The second search, starts at node a and is rooted at vk where vk ∈ LOUT (b). In

other words, it inserts (a, dOUT (b, vk) + l(a, b)) into the queue where dOUT (b, vk) can

be obtained by Query(b, vk, L, forward). The search continues from a in backward

direction and meets all the backward neighbors (and neighbors of these neighbors as

well) of a. When the algorithm meets a node u, it checks the distance from vk to

u in backward direction and computes d = Query(vk, u, L, backward). The rest of

algorithm is analogous to the first search and the only difference is the direction in

which the search runs.

In dynamic HHL, we also want to retrieve the actual shortest path. So we need

to follow the tuple structure of labels instead of pairs as explained in Section 2.5.1.4.

So, the first search algorithm starts with adding the triple (b, dIN(a, vk)+ l(a, b), a) to

the queue, and for backward search we start with adding (a, dOUT (b, vk) + l(a, b), b).

Algorithms 9 and 10 represent the pesudocode of incremental update in directed

weighted networks, and also illustrate how the the actual shortest path is retrieved

in incremental updates.
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Algorithm 7: Inc PLL(a, b, l(a, b), L)

1: for all vk ∈ L(a) ∪ L(b) from a lower i do

2: if vk ∈ L(a) then

3: ResumePrunedBFS(G, vk, b, d(vk, a) + 1, L)

4: end if

5: if vk ∈ L(b) then

6: ResumePrunedBFS(G, vk, a, d(vk, b) + 1, L)

7: end if

8: end for

Algorithm 8: ResumePrunedBFS(G, vk, u, δ, L)

1: Q.Enqueue((u, δ))

2: while Q 6∈ ∅ do

3: (v, δ)← Q.Dequeue()

4: if Query(vk, v, L) ≤ δ then

5: continue

6: end if

7: L(v)← L(v) ∪ {(vk, δ)}
8: for all w ∈ N(u) do

9: Q.Enqueue((w, δ + 1))

10: end for

11: end while
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Algorithm 9: Inc PLL(a, b, l(a, b), L)

1: for all vk ∈ LIN(a) ∪ LOUT (b) from a lower k do

2: if vk ∈ LIN(a) then

3: ResumePrunedDij(G, vk, b, d(vk, a) + l(a, b), a, L, forward)

4: end if

5: if vk ∈ LOUT (b) then

6: ResumePrunedDij(G, vk, a, d(b, vk) + l(a, b), b, L, backward)

7: end if

8: end for

Algorithm 10: ResumePrunedDij(G, vk, u, δ, p, L, dir)

1: Q.Enqueue((u, δ, p))

2: while Q 6∈ ∅ do

3: (v, δ, P [v])← Q.ExtractMin()

4: if Query(vk, v, L, dir) ≤ δ then

5: continue

6: end if

7: if O(vk) < O(v) then

8: LIN(v)← LIN(v) ∪ {(vk, δ, P [v])}
9: end if

10: if O(v) < O(vk) then

11: LOUT (vk)← LOUT (vk) ∪ {(v, δ, P [v])}
12: end if

13: for all w ∈ Ndir(v) do

14: Q.Enqueue((w, δ + l(u,w), v))

15: end for

16: end while

52



An example for Incremental update is shown in Figure 26 where the weight of edge

(c, a) has decreased from 2 to 1. In this case we need to run the Algorithm 9 for nodes

{a, c, d} ∈ LIN(c) and {a} ∈ LOUT (a). Since d ∈ LIN(c), we start the Dijkstra search

rooted at node d in forward direction, starting from node a. The tentative distance

of this search results in distance 3 for the path 〈d, c, a〉, while the distance resulting

from a query using the current labeling is 4. Thus, we need to update the forward

label of d, since O(a) < O(d). First we check if a is already one of the hubs of node

d, which is true in our example, so we only need to change the distance from 4 to 3.
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Order of label construction

Figure 26: Edge weight decrease of edge (c, a) of graph G.

After running the Algorithm 10, the labeling of graph G will look like as the Figure

27.

The following theorem states the complexity of Incremental Update.

Theorem 6 [11] The incremental update operation for edge (a, b) needs O(l2s) time,

where ` is |L(a) ∪ L(b)| and s is the maximum number of nodes visited during each

ResumedPrunedBfs. In the worst case, it takes time O(n3).

3.2.2 Decremental Update

In this section, we describe how to update the labeling in the case when an edge is

removed, or the weight of an edge is increased, as given in [18]. This operation is

called Decremental update. A real world example this situation is when a traffic jams
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aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a) (b, 0,−)

bOUT (a, 1, a) (d, 2, c) (c, 1, c) (b, 0,−)

cIN (a, 2, b) (d, 2, d) (c, 0,−)

cOUT (a, 1, a) (d, 1, d) (c, 0,−)

dIN (a, 3, c) (d, 0,−)

dOUT (a, 3, c) (d, 0,−)

eIN (a, 6, d) (d, 3, d) (e, 0,−)

eOUT (a, 2, a) (d, 1, d) (e, 0,−)

Figure 27: Removed outdated entries from labeling L of graph G after weight decrease of

the edge (c, a).

happens in the road network. In the following, we assume that we had a graph Gi−1

and a labelling for it, and the edge (a, b) has either been removed, or its weight has

increased to give graph Gi. The decremental update operation can be broken into 3

phases. The first phase is detecting the nodes that are affected by this decremental

change. In the second phase, the algorithm removes the outdated labels using the

set of affected nodes that are found in the previous phase. In the third phase, the

appropriate hubs with their correct distance need to be added to the labels.

3.2.2.1 Detecting Affected Nodes

We say that a node v is affected if the removal of an edge (a, b) from graph Gi−1 has

affected a shortest path between v and any other node u that is induced by labeling L

and passes through edge (a, b). The set of such affected nodes is denoted by AFFab,

and it can be partitioned into two disjoint subsets AFFa and AFFb as the nodes

closer to a and b respectively. In addition, in [18], they observed that if u and v are

two affected nodes such that u ∈ AFFa and v ∈ AFFb, then a hub h of pair (u, v) is
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also affected and either h ∈ AFFa or h ∈ AFFb.

The algorithm to find AFFa mimics a BFS search rooted at node b and starts at

a and it prunes the search when it reaches a node that is not affected. We put a in

AFFa as the first affected node and continue the search by visiting the neighbors of

a. In this search let u be each neighbor of a, the algorithm needs to detect whether

u is affected or not. For this purpose it needs to checks two conditions. Let h be the

hub of pair (u, b) in L of Gi−1. The first condition (Condition 1) checks whether the

hub between this pair is already in the set of affected nodes or not. If h is already

in the list of affected nodes then u is counted as an affected node as well. Note that

since we run BFS from a then the hub h of pair (u, b) is analyzed by the algorithm

before u. The second condition (condition 2) checks whether h is either u or b. In

this case, u is affected if a shortest path between u and b passes through edge (a, b).

To do this, it is enough two run two BFS searches one from u to b to compute the

distance di−1(u, b) and another one from u to a to compute the distance di−1(u, a) in

Gi−1.

1. h ∈ AFFa

2. (h = u ∨ h = b) ∧ (di−1(u, b) = di−1(u, a) + 1)

Algorithm 11 gives the pseudo code of this algorithm for AFFa in undirected un-

weighted networks. At the end of running the algorithm 11, AFFa will contain all

the affected nodes of node a. An analogous algorithm can be used to calculate AFFb.

In [18] it is assumed that the shortest path is not unique and different shortest paths

of (u, b) might contribute different hubs. So the algorithm repeats conditions 1 and 2

for the set of hubs of shortest paths of (u, b) (lines 11 to 15). However, in our imple-

mentation of detecting the affected nodes, since we use the Akiba label construction

approach which breaks ties on-line in favour of the most important nodes, there is

always a single hub for the pair (u, b).

For the case of a directed weighted graph G, for the edge (a, b) which is removed

or whose weight has increased, we have either di−1(u, a) < di−1(u, b) or di−1(a, u) >

di−1(b, u) or both. In this case, we use a different method to divide AFFab into sets

AFFa and AFFb. For labeling L and removal of the edge (a, b) (or increase in its
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weight), if there exists a shortest path (v, u) induced by L from node v to node u

that passes through the edge (a, b) then we say v belongs to AFFa and u belongs to

AFFb. Note that v might be the endpoint of a shortest path passing through (a, b)

from a different origin node, in other words, it is possible that v ∈ AFFb as well.

That is, AFFa and AFFb are not necessarily disjoint.

Both algorithms explained for undirected unweighted graphs are applicable for

directed weighted graphs. The only modification is the direction of searches and

instead of BFS, we need to run a Dijkstra-like search. For instance, to calculate the

AFFa, at the beginning, only node a is in the AFFa. As the algorithm progresses

in the backward direction and meets the backward neighbors of a, it checks two

conditions below:

1. h ∈ AFFa

2. (h = u ∨ h = b) ∧ (di(u, b) = di(u, a) + l(a, b))

The affected nodes of b can be computed analogously to affected nodes of a . In

this case, the Dijkstra search starts at b and is rooted in a in the forward direction. It

checks the forward neighbors of b and for each neighbor we check the similar conditions

as 1 and 2. Algorithm 12 shows the pseudo code of our algorithm to compute AFFa.

Figure 28 shows an example of detecting the affected nodes in our example graph

G. In this example we assume that the weight of edge (b, c) has increased from 1 to 5.

To detect affected nodes of node b, that is, AFFb, we run Algorithm 12 to execute a

backward search (Dijkstra) rooted at c, and starting at b. At the beginning, b is in the

queue, so we iterate over all the incoming neighbors of b and for each such neighbor

u, we find its hub with c, and check the condition on line 11. If this condition holds,

it means that the path from neighbor u of b to node c has changed due to the weight

increase of edge (b, c), then u is an affected node; we set its status as visited and

enqueue it. In this example, when we consider the incoming neighbor node a, we see

from Figure 19 that the hub to go from a to c is a itself, and since the condition in

line 11 of Algorithm 12 is met (because the shortest path from a to c before the edge

weight increase went through the edge (b, c), that is, di−1(a, c) = di−1(a, b) + l(b, c)) ,

we conclude that node a is affected. Indeed, we can see that the weight of the path
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Algorithm 11: AFFa In undirected unweighted graph

1: AFFa ← ∅
2: for all v ∈ V do

3: visited[v]← false

4: end for

5: visited[a]← true

6: Q.Enqueue(a)

7: while Q 6= ∅ do

8: v ← Q.Dequeue()

9: AFFa ← AFFa ∪ v
10: for all u ∈ N(v) s.t !visited[u] do

11: H ← Find the set of smallest–distance hub of (u, b)

12: for all h ∈ H do

13: if h ∈ AFFa ∨ ((h == u ∨ h == b) ∧ di−1(u, b) == di−1(u, a) + 1) then

14: visited[u]← true

15: Q.Enqueue(u)

16: end if

17: end for

18: end for

19: end while

〈a, b, c〉 has changed from 2 to 6. At the end of this process, the AFFb = {a, b}. We

run the same process for node c running a forward search rooted at b, and starting

at c and we get AFFc = {c, d, e}.

a

b

c

d

e1

1

5

3 2

1

2

10

2
4

1
3

a d c e b

Order of label construction

Figure 28: Edge weight increase of edge (b, c) of graph G.
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Algorithm 12: AFFa In directed weighted graph

1: AFFa ← ∅
2: for all v ∈ V do

3: visited[v]← false

4: end for

5: Q.Enqueue(a)

6: while Q 6= ∅ do

7: v ← Q.Dequeue()

8: AFFa ← AFFa ∪ v
9: for all u ∈ NIN(v) s.t !visited[u] do

10: h← Find the smallest–distance hub of (u, b)

11: if h ∈ AFFa ∨ ((h == u∨ h == b)∧ di−1(u, b) == di−1(u, a) + l(a, b)) then

12: visited[u]← true

13: Q.Enqueue(u)

14: end if

15: end for

16: end while

Theorem 7 [18] Algorithm 11 for the edge (a, b) requires O(mAFFaΛlog|AFFa| +
mAFFb

Λlog|AFFb|) worst-case computational time, where m(S) is the number of edges

incident on elements of a set of nodes and Λ is the maximum label size.

3.2.2.2 Removing Affected Hubs

In decremental updates, it is important to remove the outdated labels because if we

ignore such entries then we will underestimate some shortest path distances, and give

inaccurate answers. For this reason, removal of such entries can not be avoided. The

algorithm that removes these entries, checks all the (v, u) pairs such that v ∈ AFFa

and u ∈ AFFb. Algorithm 13 gives the pseudo code of this algorithm in undirected

unweighted networks. The modification of this algorithm in directed weighted graphs

is as follows: In the case that O(u) < O(v) if (u, δuv) ∈ lOUT (v) then the algorithm

removes (u, δuv, w) entry from lOUT (v). Similarly, for O(u) > O(v) if (v, δuv, w) ∈
lIN(u) then algorithm removes the (v, δuv, w) entry from lIN(u). Algorithm 14 gives
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the pseudo code of this algorithm.

Algorithm 13: RemoveOutdatedHubs(AFFa, AFFb) In undirected un-

weighted graph

1: for all (v, u) where (v ∈ AFFa ∧ u ∈ AFFb) ∨ (v ∈ AFFb ∧ u ∈ AFFa) do

2: Remove (v, δuv) from L(u) if v ∈ L(u)

3: end for

Algorithm 14: RemoveOutdatedHubs(AFFa, AFFb) In directed weighted

graph

1: for v ∈ AFFa do

2: for u ∈ AFFb do

3: if O(v) < O(u) then

4: Remove (v, δvu, w) from LIN(u) if v ∈ LIN(u)

5: else if O(u) < O(v) then

6: Remove (u, δvu, w) from LOUT (v) if u ∈ LOUT (v)

7: end if

8: end for

9: end for

To remove the outdated hubs in the example of Figure 28, we check each pair (u, v)

whose starting node u belongs to AFFb and whose end node v belongs to AFFc.

Recall that AFFb = {a, b} and AFFc = {c, d, e}. Consider the pair (a, c) where

a ∈ AFFb and c ∈ AFFc. In this case, since a is the smallest distance hub for the

pair (a, c) and O(a) < O(c), we need to remove a from the cIN label. When Algorithm

14 finishes, the labeling L of graph G is as shown in Figure 29. In this figure, the

entries shown in red are the removed hubs. Notice that the tuple (a, 2, b) has been

removed from CIN in Figure 29.

The time complexity to remove the outdated labels in an undirected and unweighted

graph is as follows.
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aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a) (b, 0,−)

bOUT (a, 1, a) (d, 2, c) (c, 1, c) (b, 0,−)

cIN (a, 2, b) (d, 2, d) (c, 0,−)

cOUT (a, 2, a) (d, 1, d) (c, 0,−)

dIN (a, 3, c) (d, 0,−)

dOUT (a, 4, c) (d, 0,−)

eIN (a, 6, d) (d, 3, d) (e, 0,−)

eOUT (a, 2, a) (d, 1, d) (e, 0,−)

Figure 29: Removed outdated entries from labeling L of graph G after the weight increase

of the edge (b, c) shown in red.

Theorem 8 [18] Algorithm 13 requires O(|AFFa|Λlog|AFFb|+ |AFFb|Λlog|AFFa|)
worst-case computational time where Λ is the maximum label size.

3.2.2.3 Computing New Hubs

In this phase, in order for labeling L to be correct, the algorithm needs to add

the necessary entries for the pairs whose shortest path is no longer correct due to

removing outdated hubs. This phase is similar to label construction that we explained

in Section 2.5.1 but limited to the pairs (s, t) such that s, t ∈ AFFab. For such pairs,

the algorithm first checks all the s-t shortest paths. Then it tests if the s-t path is

covered or not. If it is covered then it proceeds to the next path and if not, it needs

to add the proper label entries.

In [18], the authors describe an algorithm called Order Restore for restoring the

labeling. We describe it below for directed weighted graphs. Essentially, we perform

a Dijkstra-like visit rooted at v, for each affected node v ∈ AFFab. Searches are
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performed according to the node ordering. If v ∈ AFFa, then the direction of search

is forward, while if v ∈ AFFb, then the direction of the search will be backward.

We also change the label entries to a tuple data structure instead of pairs, in order

to be able to retrieve the shortest path. Algorithm 16 shows the pseudo code of our

implementation. The algorithm can also be used in undirected unweighted networks

and the only modification is removing the direction of search, replacing edge weights

with 1 and Dijkstra-like search with BFS-like search in the network. We omit the

pseudo code for this case.

Returning to our example in Figure 29, to add new hubs to the labeling, we need

to iterate over all affected nodes AFFbc and for each node, run a Dijkstra-like search

to compare the tentative distance with the distance resulting from current labeling

L and add necessary hubs. In our example, when we scan node a ∈ AFFbc, we

check its distance to the nodes b, c, d, e. The tentative distance from a to c resulting

from Dijkstra search is 3 through the path 〈a, c〉 and the distance resulting from

Query(a, c, L) is∞, so we will add tuple (a, 3, a) into the backward label of c. At the

end of running the Algorithm 16, the labeling is as shown in Figure 30.

aIN (a, 0,−)

aOUT (a, 0,−)

bIN (a, 1, a) (b, 0,−)

bOUT (a, 1, a) (b, 0,−)

cIN (a, 3, a) (d, 2, d) (c, 0,−)

cOUT (a, 2, a) (d, 1, d) (c, 0,−)

dIN (a, 4, a) (d, 0,−)

dOUT (a, 4, c) (d, 0,−)

eIN (a, 7, d) (d, 3, d) (e, 0,−)

eOUT (a, 2, a) (d, 1, d) (e, 0,−)

Figure 30: New hubs added to the labeling L of graph G.
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Algorithm 15: ComputeNewLabels() In undiredcted unweighted graph

1: Sort AFFab by the node ordering

2: for all x ∈ AFFab in increasing order do

3: for all v ∈ V \{x} do

4: distance[v]←∞
5: end for

6: distance[x]← 0

7: Q.Enqueue({(x, distance[x])})
8: while Q 6= ∅ do

9: (v, distance[v])← Q.Dequeue()

10: if O(v) < O(x) then

11: Continue

12: end if

13: if (x ∈ AFFa ∧ v ∈ AFFb) ∨ (x ∈ AFFb ∧ v ∈ AFFa) then

14: if distance[v] < Query(x, v, L) then

15: L(v) ← {(x, distance[v])}
16: end if

17: for all u ∈ N(v) do

18: if distance[u] > distance[v] + l(v, u) then

19: distance[u]← distance[v] + l(v, u)

20: Q.Enqueue{(u, distance[u])}
21: end if

22: end for

23: end if

24: end while

25: end for
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Algorithm 16: ComputeNewLabels() In diredcted weighted graph

1: Sort AFFab by the node ordering

2: for all x ∈ AFFab in increasing order do

3: for all v ∈ V \{x} do

4: distance[v]←∞
5: end for

6: distance[x]← 0 , Q.Enqueue({(x, distance[x])})
7: while Q 6= ∅ do

8: (v, distance[v])← Q.Dequeue()

9: if O(v) < O(x) then

10: Continue

11: end if

12: if x ∈ AFFa ∧ v ∈ AFFb then

13: if distance[v] < Query(x, v, L) then

14: LIN(v)← {(x, distance[v])}
15: end if

16: for all u ∈ NOUT (v) do

17: if distance[u] > distance[v] + l(v, u) then

18: distance[u]← distance[v] + l(v, u) , Q.Enqueue({(u, distance[u])})
19: end if

20: end for

21: end if

22: if v ∈ AFFa ∧ x ∈ AFFb then

23: if distance[v] < Query(v, x, L) then

24: LOUT (v)← {(x, distance[v])}
25: end if

26: for all u ∈ NIN(v) do

27: if distance[u] > distance[v] + l(u, v) then

28: distance[u]← distance[v] + l(v, u) , Q.Enqueue({(u, distance[u])})
29: end if

30: end for

31: end if

32: end while

33: end for
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Theorem 9 [18] Algorithm 15 requires O(|AFFab|(m+ nlog|AFFab|+ nΛ)) worst-

case computational time.

3.3 Empirical Studies of Comparison of Dynamic

Routing Algorithm

Previous studies have compared the performance of dynamic routing algorithms with

each other and with static routing algorithms with respect to customization time and

query performance. In [21] CCH has been compared with two variants of CH( [21,27])

and with another metric-independent algorithm called CRP [22] to show the efficiency

of query in CCH for travel time and distance metric. In addition, the effect of three

different orders, Metdep, the order used in [27], which we refer to as R-CH, and two

graph partitioning algorithms (viz. Metis, KaHip) on query performance is studied.

No attempt to study the dynamic behavior of CCH, in terms of running customization

after a certain number of edge weight changes or after a certain amount of time.

To reach a better query and preprocessing performance Gottesbüren et al com-

bined the idea of InertialFlow and FlowCutter - two flow-based graph bipartitioning

algorithms- and created InertialFlowCutter algorithms [31]. To prove the efficiency of

their algorithm, they use CCHB from RoutingKit and run the experiment on different

setups of these partitioning algorithms on the Colorado, California and Nevada, USA

and Europe road networks. In our experiments described in Section 4.2.2, we use the

same partitioning algorithms as [31] in combination with CCH+P, on the Montreal

and Eichstaett road networks.

In the experimental analysis of dynamic HHL in [18], they compare the efficiency of

running only Decremental, only Incremental, and both Incremental and Decremental

update in the the case of weight change with running the label construction from

scratch. Their experiments were conducted on many types of networks, such as

communication networks, social networks, and one road network in the Netherlands.

Moreover, no comparison with other dynamic routing algorithms has been done.
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Chapter 4

Experimental Analysis

4.1 Experimental Settings

In this Chapter, we present an extensive experimental analysis of the algorithms

introduced and described earlier. We use the setup explained below.

Compiler and machine. All the experiments were run on an Intel i7-8550U CPU

@ 1.80GHz, 4 Cores, 8 Logical Processors of a personal computer. The necessary

implementation and integration are done in C++.

FrameWork. SUMO [3] is an open-source, traffic simulation package designed to

handle large networks implemented in C++. It can import real city maps and gen-

erate random traffic. We use version 1.6.0 of SUMO to run our experiments and

compare the algorithms.

Instances. We run experiments in two different real city road networks. The map

of Eichstaett, a city in Germany which is our smaller instance is available in SUMO

website. Our second road network is based on the Montreal downtown map which

is extracted from OpenStreetMap(OSM) [7] with [45.45122,-73.6830711,45.5305231,-

73.5390472] as the latitude and longitude coordinates.

Figures 31 and 32 show these two road networks. Table 5 describes the properties
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of each road network.

Queries. For our experiments, we use a tool in SUMO, called randomTrips.py that

generates a set of trips/queries, choosing source and destination nodes uniformly at

random.

The vehicle arrival rate, ie. the number of steps after which the next trip/query

starts, is randomized based on a binomial distribution whose parameters are set to

generate the desired number of queries. 1

Edge Weights. We study two different weight functions for the edges in the network.

• Travel time: Moving average is used to calculate the travel time of each edge.

The option, –device.rerouting.adaptation-steps for period N is used to obtain

the average. For static experiments, we use the default value of N that is 180

simulation steps and for dynamic experiments, we set N to 10 simulation steps.

• Distance: Another weight function we use for the weight of edges is the geo-

graphical distance of corresponding roads in the map.

Performance Measures: We use the following two main performance measures to

analyze our experiments.

• Avg QT (millisecond): Average running time of shortest distance query

• Avg QT-WP (millisecond): Average running time of shortest path query (the

result gives the shortest path in addition to shortest distance)

We also use the following performance measures to better analyze the algorithms.

• Avg TT (second): Average travel time of trips

• Avg RL (meter): Average route length of trips when edge weight is distance

• CHE: Number of edges in the contraction hierarchy in CCH and CCH+P

1However as mentioned in SUMO documentation, the actual number of trips may be lower if the
road capacity is insufficient to accommodate that number of vehicles.
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• Avg E: Average explored edges during the distance query in CCH. In the elim-

ination tree search, this is the average number of forward and backward edges

from ancestors of s to LCA and t to LCA and from LCA to the root.

• Avg PP (millisecond): Average preprocessing time. In CH, this time is the

time required to make contraction hierarchies. In CCH, is the time necessary

to make a metric-independent contraction hierarchy plus the time required for

the initial basic customization. Finally, in CCH+P it is the time required to

make perfect customization following by a perfect witness search. In HHL, this

is the time required to make the labels.

• Avg CT (millisecond): Average customization time in dynamic experiments.

• Avg LS: Average label size for HHL algorithm.

Algorithm Implementations. We compared the performance of Dijkstra, Astar,

two variants of CH, called S-CH and R-CH, and HHL. Dijkstra, Astar and S-CH

are integrated into SUMO, and we used these implementations in our experiments.

For R-CH, CCHB, CCH+P and HHL that are not implemented in SUMO, we use

the code available in their Github repository and integrated them in SUMO. For

dynamic HHL, the code was not available and we implemented it. For all the graph

partitioning algorithms, we use the source code available at [6] and create the different

node orderings as separate files and used them in CCHB and CCH+P.

To ensure the fairness of our comparisons, we make sure that all the implementa-

tions are done in C++ and complied with the same compilation flags. No external

libraries are used and there is no parallelization in any of the algorithms.

Experiments. We run two classes of experiments. In the static experiments, we run

the static algorithms given in Sections 2.4.1 and 2.5.1 as well as Dijkstra and Astar.

In these experiments, the preprocessing is done once at the beginning, and queries are

answered based on this preprocessing. Edge weights which might change as a result

of the queries are not updated during the experiments. For static experiments, we

created 1000 random trips/queries for both networks.

In the dynamic experiments, we run the algorithms given in Sections 3.1 and 3.2.
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Algorithm Source Code

Dijkstra SUMO

Astar SUMO

S-CH SUMO

R-CH [58]

CCHB [58]

CCH+P [58]

HHL [51]

All graph partitioning [6]

Dynamic HHL Our implementation

Table 4: Algorithms used in our experiments.

After an update interval, edge weights are updated. We considered update intervals

of 100, 200, 500, and 1000 simulation steps. We ran experiments for 1000, 5000, and

10000 random trips.

The Avg QT, Avg QT-WP and Avg CT for static experiment is the averaged

over 10 runs and for dynamic experiment is the average over 3 runs. For HHL, we

used the code available at [51] For dynamic HHL, the code was not available and we

implemented it.

Road Network Nodes Edges

Montreal 1735 3854

Eichstaett 248 598

Table 5: Benchmark road networks
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Figure 31: Montreal downtown road network

Figure 32: Eichstaett road network
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4.2 Analysis of Static Routing Algorithms

In this section, we present the results of our static experiments, ie. experiments in

which edge weights are not updated during the simulation; all queries are answered

based on the initial edge weights. In Sections 4.2.1, 4.2.2, and 4.2.3, we give the results

for CH, CCH, and HHL respectively, for different node orderings, in an attempt to

find the ordering that gives the best query performance for each algorithm. Finally in

Section 4.2.4, we compare the results of these three algorithms. In Tables 6 and 7 be-

low, we give the performance of Dijkstra and Astar to serve as a benchmark. There is

no special setup for Dijkstra. For Astar, euclideandistance/ maximumV ehicleSpeed

is chosen as the heuristic to bound travel time. For distance edge weight it is only

the euclidean distance.

Instance Edge Weight Measures Dijkstra Astar

M
on

treal

T
ravel

T
im

e

Avg TT 477.16 477.16

Avg E 2719.81 1876.37

Avg QT 23370.5 17197.2

Avg QT-WP 26600 21023.5

D
istan

ce

Avg RL 3590.19 3590.19

Avg QT 18166.7 21580.4

Avg QT-WP 24097.9 26663.9

Table 6: Dijkstra and Astar for Montreal downtown road network.

4.2.1 Contraction Hierarchy

Recall that constructing a contraction hierarchy is based on contracting nodes in a

certain order. The strategy of node ordering has a direct impact on the efficiency of

CH. Although optimal node ordering is an NP-hard problem [14], there are heuristics

that work well in practice. In this section, we describe two ordering heuristics and

then compare their effect on query performance in CH.
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Instance Edge Weight Measures Dijkstra Astar

E
ich

staett

T
ravel

T
im

e

Avg TT 284.43 284.43

Avg E 418.25 319.19

Avg QT 1929.9 1640.1

Avg QT-WP 1964.2 1535.6

D
istan

ce

Avg RL 2049.70 2049.70

Avg E 422.81 415.92

Avg QT 3049.2 3422.2

Avg QT-WP 3084.9 3622.3

Table 7: Dijkstra and Astar for Eichstaett road network.

4.2.1.1 Two Different Node Ordering Heuristics

The first ordering is based on a node ordering introduced in [8]. We denote it by S-

CH. The priority of a node to contract, is the linear combination of several terms. It

is an on-line heuristic that is used to select which node to shortcut next. The equation

below, shows the priority heuristic used to contract nodes. P (u) is the priority.

P (u) = 2 ∗ ED(u)− CN(u)−H(u)− 5 ∗ L(u)

Where CN(u) is the number of previously contracted neighbors of u; H(u) is the

number of edges represented by the shortcuts added; L(u) is the level of u that is

defined as L(u) = L(v) + 1 where v is the highest level node among all lower ranked

neighbors of u in G′ (if there is no such v, then L(u) = 0); and ED(u) is calculated

as below:

ED(u) = Incoming(u) +Outgoing(u)− 2 ∗ Shortcuts

It should be mentioned that formula above is the one implemented in SUMO, but

is slightly different from the original formula in [8]. S-CH uses lazy update to keep

the priority queue updated. The witness search stopping criteria is the settled nodes

limit which is implemented by creating shortest path trees with depth 4.

The second heuristic, we denote by R-CH, and has a different way to define the

priority of each node for contraction. It uses the formula below:

I(u) = L(u) +
| A(u) |
| D(u) |

+

∑
a∈A(u) h(a)∑
a∈D(u) h(a)
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[21]. In this expression, I(u) is the priority or importance of u; A(u) is the number of

edges that are inserted when we contract node u; D(u) is the number of edges removed

after contracting node u; h(a) is the number of edges that shortcut a represents if

fully unpacked and L(u) is the approximate level of u. Initially, the level of all nodes

is zero. If a node x is contracted, then the level of every incident node y, is the

maximum of level y or L(x) + 1. This setup dose not use lazy update or periodic

queue rebuilding. It updates the priority of the neighbors of node being contracted

and uses the limited hop search as the stopping criteria which is set to p = 1500

4.2.1.2 CH Performance Analysis

As shown in Tables 8 and 9 for both travel time and distance as edge weights, and

regardless of the size of the network, R-CH has better shortest distance query time

and shortest path query time and explores fewer edges than S-CH. In addition, R-CH

has approximately 10 orders of magnitude faster preprocessing time which is a result

of ordering heuristics and witness search stopping criteria that we already discussed.

We also observed that the size of the backward search and forward search queues in

S-CH, is approximately 2.5 times bigger than R-CH for both networks. For example

for the Eichstaett road network, there are 430 edges in forward search for R-CH and

1094 Edges for S-CH.

Another interesting observation is the sensitivity of CH to the edge weight used: for

distance edge weight, the preprocessing time is slower compared to travel time (This

is more evident in Table 8, which is a larger road network). Regarding the quality of

the route, S-CH, appears to have a slightly better quality of the route, when using

travel time as edge weight.
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Instance Edge Weight Measures CH

R-CH S-CH

M
on

treal

T
ravel

T
im

e

Avg PP 3419.5 39006.8

Avg TT 479.77 477.16

Avg E 23.28 182.5

Avg QT 355 3170.5

Avg QT-WP 470.1 3361.2

D
istan

ce

Avg PP 5073.9 40452.1

Avg RL 3590.19 3590.19

Avg E 25.39 173.5

Avg QT 437.9 2834.6

Avg QT-WP 535.9 3458.2

Table 8: Contraction Hierarchies performance for 1000 queries for two different node order

for Montreal downtown road network

Instance Edge Weight Measures CH

R-CH S-CH

E
ic h

staett

T
ravel

T
im

e

Avg PP 262.4 2836.2

Avg TT 293.96 294.17

Avg E 8.36 51.34

Avg QT 88.1 753.7

Avg QT-WP 154.4 929.2

D
istan

ce

Avg PP 265.6 2863.3

Avg RL 2182.44 2182.44

Avg E 8.1 50.44

Avg QT 90 727.5

Avg QT-WP 168.2 939.6

Table 9: Contraction Hierarchies performance for two different node order for Eichstaett

road network.

4.2.2 Customizable Contraction Hierarchies

In this section, we compare the performance measures in CCH with respect to different

node ordering. We study two different variants of CCH. In the first version, which

we call it CCHB, elimination tree search for queries, and basic customization with

an upper triangle instead of the lower triangle has been used. The second variant,

which we denote CCH+P, uses perfect customization. In the following sub-sections,
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we measure the query performance and preprocessing time of CCHB and CCH+P

according to the graph partitioning algorithms described in Section 3.1.1.1.

4.2.2.1 CCHB Performance Analysis

Tables 10 and 11 show the query performance as well as preprocessing time for travel

time and distance as edge weights for CCHB corresponding to all graph partitioning

algorithms. As we see, a graph partitioning algorithm that creates a smaller chordal

graph (smaller CHE) has smaller search space in elimination tree. Thus, a partitioner

which leads to sparser chordal graph (fewer nodes and edges in the search space), al-

ways has the fastest query. For example, in Montreal downtown network, we observed

that the average number of edges in the search space is 481 for FC20 which has the

fastest query time and 27431 for IF which has the slowest query times respectively.

In this road network, for travel time as edge weight, FC20 outperforms the other

partitioners for both shortest distance query and shortest path query. For distance

as edge weight, however, FC100 performs better for distance query time. Both FC20

and FC100 have the closest trip duration to Dijkstra and Astar as shown in Table

6. In this network, after all variants of FlowCutter, next best orders are Metis and

K2.11 for both edge weights.

In Table 11 we see the same pattern as Montreal road network for Eichstaett

for relation between the CHE, average number of edges in search space and other

performance measures. In this network, IFR outperforms other graph partitioning

algorithms for both shortest distance query and shortest path query. It also has the

closest trip duration to Dijkstra and Astar as shown in Table 7. InertialFlowCutters

are better configurations after IFR in Eichstaett network.

Observing Tables 10 and 11, all variants of InertialFlowCutter (IFC) are substan-

tially better than all variants of InertialFlow (IF and IFR). For Montreal downtown,

all variants of InertialFlowCutter, fall behind FlowCutter, Metis and K2.11. This is

correct for Eichstaett as well, except IFC4 which is marginally better than K2.11.
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Instance Edge Weight Measures CCHB

FC3 FC20 FC100 IFC16 IFC12 IFC8 IFC4 IF IFR Metis K2.11

M
on

treal

T
ravel

T
im

e

CHE 8697 8429 8480 16035 15689 16263 17218 52037 54245 9243 10467

Avg PP 343.1 337.7 352.2 468.8 456.5 471.8 451.5 940.9 1067.0 359.4 379.2

Avg TT 476.88 477.08 477.16 479.01 479.64 479.56 479.01 479.36 480.5 476.91 478.17

Avg E 38.55 38.09 37.9 118.59 118.4 119.6 123.05 267.63 282.46 42.56 44.77

Avg QT 343.4 328.1 332.6 3191.5 3121.2 3178.6 3231.5 15243.5 13819.3 419.3 477.9

Avg QT-WP 607.6 575.7 592.2 3345.4 3506.9 3506.5 3673.1 16724.4 14380.5 621.3 721.3

D
istan

ce

CHE 8697 8429 8480 16035 15689 16263 17218 52037 54245 9243 10467

Avg PP 333.0 325.4 318.1 442.6 416.1 427.1 439.8 902.8 1013.3 358.1 375.1

Avg RL 3601.19 3601.19 3601.19 3601.19 3601.19 3601.19 3601.19 3601.19 3601.2 3601.19 3601.19

Avg E 38.55 38.07 37.92 118.55 118.41 119.6 123.01 267.59 282.56 42.56 44.77

Avg QT 321.9 328.6 308.7 2981.0 2863.0 2923.7 3009.4 14324.3 13784.8 405.8 453.7

Avg QT-WP 622.7 638.9 624.8 3555.3 3485.0 3526.0 3714.9 16960.6 14640.4 669.5 803.3

Table 10: CCHB performance for different node ordering, averaged over 1000 queries for

Montreal downtown road network.

Instance Metric Measures CCHB

FC3 FC20 FC100 IFC16 IFC12 IFC8 IFC4 IF IFR Metis K2.11

E
ic h

staett

T
ravel

T
im

e

CHE 1878 1748 1748 1645 1652 1645 1680 2241 994 1801 1612

Avg PP 102.8 111.7 99.7 105.3 104.8 99.9 105.6 109.1 95.6 101.1 100.1

Avg TT 281.51 282.97 282.97 286.33 289.55 286.33 286.33 295.68 291.57 281.36 281.31

Avg E 43.84 38.26 38.26 37.24 37.81 37.24 37.74 53.07 24.86 38.74 38.06

Avg QT 444.3 377.0 381.2 369.5 366.2 342.9 341.5 619.7 158.5 378.0 654.4

Avg QT-WP 596.9 513.2 530.6 460.3 464.0 467.1 365.9 754.0 258.7 453.6 423.4

D
istan

ce
CHE 1878 1748 1748 1645 1652 1645 1680 2241 994 1801 1612

Avg PP 95.9 96.9 96.0 93.6 94.6 96.3 90.4 104.3 88.9 98.4 90.7

Avg RL 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44

Avg E 43.57 37.95 37.95 37.0 37.54 37.0 37.5 53.08 24.81 38.52 38.31

Avg QT 438.7 357.6 359.6 325.0 326.5 317.7 322.3 585.7 178.4 351.3 651.9

Avg QT-WP 628.1 553.5 568.2 497.8 477.9 476.5 495.1 793.9 282.9 505.1 440.6

Table 11: CCHB performance for different node ordering, averaged over 1000 queries for

Eichstaett road network.

4.2.2.2 CCH with Perfect Witness Search Performance Analysis

In this section, we study the performance of CCH+P. For the query, we use a stall-

on-demand type of bidirectional search.

As we see in Tables 12 and 13, for the Montreal downtown network, FC20 is the
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preferred configuration for both CCH and CCH+P considering distance query time

and shortest path query time (Difference between FC20 and FC3 in distance query

time for travel time edge weight is negligible). But for Eichstaett, Metis is the best

one for CCH+P while IFR is the best algorithm for CCH. From Tables 12 and 13 we

see that the relative performance of graph partitioning algorithms is different when

used with CCHB and CCH+P.

Instance Edge Weight Measures CCH+P

FC3 FC20 FC100 IFC16 IFC12 IFC8 IFC4 IF IFR Metis K2.11

M
on

treal

T
ravel

T
im

e

CHE 5302 5165 5165 5680 5635 5622 5707 7466 7557 5456 5712

Avg PP 572.7 539.6 560.4 1272.2 1259.5 1309.6 1404.4 8701.0 7725.9 544.4 635.4

Avg TT 481.75 475.15 478.49 478.95 478.71 481.32 479.46 478.26 477.49 476.22 477.23

Avg E 28.13 27.32 27.71 48.31 48.45 49.12 48.77 75.66 65.52 29.7 31.4

Avg QT 365.8 366.1 398.9 815.5 788.7 787.2 769.8 1420.0 1058.2 422.0 450.2

Avg QT-WP 443.7 442.1 457.4 741.7 754.4 798.3 906.6 1433.9 1037.2 444.1 462.7

D
istan

ce

CHE 5302 5165 5165 5680 5635 5622 5707 7466 7557 5456 5712

Avg PP 652.7 626.4 652.4 1456.6 1569.6 1484.5 1607.8 9270.4 9161.1 674.3 722.3

Avg RL 3601.19 3601.13 3601.19 3601.19 3601.2 3601.19 3601.2 3601.19 3601.19 3601.19 3601.13

Avg E 28.25 27.38 27.81 47.77 48.18 48.61 48.32 77.04 68.01 29.7 31.57

Avg QT 446.8 429.5 488.0 943.1 901.7 847.8 873.9 1501.2 1345.8 502.1 522.6

Avg QT-WP 520.8 492.1 539.9 941.5 921.9 963.5 982.9 1645.6 1390.5 590.1 597.5

Table 12: CCH+P performance with perfect witness search for different graph partitioning

for Montreal downtown road network.

Instance Edge Weight Measures CCH+P

FC3 FC20 FC100 IFC16 IFC12 IFC8 IFC4 IF IFR Metis K2.11

E
ic h

staett

T
ravel

T
im

e

CHE 951 1022 1022 918 899 918 916 888 665 819 1069

Avg PP 161.2 150.0 165.0 171.3 160.4 149.3 144.7 198.1 141.4 145.1 225.7

Avg TT 288.59 284.17 284.17 286.67 286.67 286.67 286.67 290.73 290.48 292.42 296.54

Avg E 16.91 18.85 18.85 16.74 16.51 16.74 16.72 15.39 14.3 12.36 20.32

Avg QT 238.8 275.9 286.8 209.2 189.2 193 203.7 164.5 151.3 129.9 374.2

Avg QT-WP 333.5 389.8 384.4 282.9 266.9 280.3 282 241.5 224.7 150.9 462.7

D
istan

ce

CHE 951 1022 1022 918 899 918 916 888 665 819 1069

Avg PP 174.1 189.1 199.6 190.8 200.4 205.4 187.5 225.6 143.8 185.1 258.6

Avg RL 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44 2182.44

Avg E 17.45 19.51 19.51 18.17 17.75 18.17 18.14 16.6 14.72 12.83 20.46

Avg QT 234.8 287.5 265.9 220.9 196.8 213.9 207 177.9 137 125.8 322.7

Avg QT-WP 321.2 373.9 385.1 344.6 301.7 311 309.1 267.5 182.9 215.6 489.1

Table 13: CCH+P performance with perfect witness search for different graph partitioning

for Eichstaett road network.
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4.2.2.3 CCHB or CCH+P ?

In Tables 14 and 15, we compare the best variant of CCHB and CCH+P with respect

to shortest path query for both travel time and distance edge weight. We see that

CCH+P leads to a significantly better query performance than CCHB for all graph

partitioning algorithms, regardless of edge weight (travel time or distance) and the

road network used (Montreal or Eichstaett). However this is at the cost of higher

preprocessing time compared to CCHB. Therefore, depending on the application and

the specific trade-off between preprocessing and query time, either of them could be

the better algorithm. Since CCH+P creates a sparser contraction hierarchy than

CCHB, the shortest path query is faster in CCH+P than CCHB.

Going forward in this thesis, assuming that the query time is the important metric

to optimize, we will only use CCH+P when comparing with other algorithms.

Instance Edge Weight Measures CCHB CCH+P
M

on
treal

T
ravel

T
im

e

CHE 8429 5165

Avg PP 337.7 539.6

Avg TT 477.08 475.15

Avg E 38.09 27.32

Avg QT 328.1 366.1

Avg QT-WP 575.7 442.1

D
istan

ce

CHE 8697 5165

Avg PP 333 626.4

Avg RL 3601.19 3601.19

Avg E 38.55 27.38

Avg QT 321.9 429.5

Avg QT-WP 622.7 492.1

Table 14: Comparison of CCHB and CCH+P for Montreal downtown road network.

4.2.3 Hierarchical Hub Labeling

Since finding a good node ordering to construct effective labels in HHL is challenging,

we would like to study the effect of different node orderings on label construction in
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Instance Edge Weight Measures CCHB CCH+P

E
ic h

staett

T
ravel

T
im

e

CHE 994 819

Avg PP 95.06 145.1

Avg TT 291.57 292.42

Avg E 24.86 12.36

Avg QT 158.5 129.9

Avg QT-WP 258.7 150.9

D
istan

ce

CHE 994 665

Avg PP 88.9 143.8

Avg RL 2182.44 2182.44

Avg E 24.81 14.72

Avg QT 178.4 137

Avg QT-WP 282.9 182.9

Table 15: Comparison of CCHB and CCH+P for Eichstaett road network.

road networks. For our experiments, we use the label construction paradigm that was

proposed by Akiba (as explained in Section 2.5.1).

Previous studies use different node ordering approaches, such as the degree of

nodes and betweenness of nodes. In our experiments, we use Degree, two versions

of betweenness, BTW-PG and BTW-LG as node ordering techniques. We are also

interested to see how ordering based on graph partitioning works, compared to these

approaches. The reason for this selection is the fast order construction of graph

partitioning compared to variants of betweenness. For Degree as node ordering, we

use the product of the number of outgoing edges and incoming edges instead of their

sum since it results in better performance in practice [37,63]. Since label construction

using both variants of betweenness, is very slow, so in our experiments, we only use

the order extracted from this approach and give to Akiba algorithm as a file of ordered

nodes. By looking at the experiments done for CCH+P, we use the graph partitioning

algorithms which have the best performance. Thus, we use FC20 for the Montreal

downtown network and Metis for Eichstaett. We denote them by GP-FC20 and

GP-Metis.
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4.2.3.1 HHL Performance Analysis

As we see in Tables 16 and 17, regardless of the label size, the best configuration

is BTW-PG for the query time. BTW-LG and Degree are second and third best

options and the GP-FC20 has the slowest query time. This result holds for all the

edge weight/network size combinations. The quality of the route doesn’t change for

different node ordering strategies. Degree doesn’t create a good ordering compared

to betweenness, since in the road networks, the degree of nodes is small. GP-FC20

has the slowest query time and it has the slowest preprocessing time after Degree.

Betweenness strategies have the lowest preprocessing time.

The time to create the ordering is not included as part of the preprocessing time.

We note that in our experiments, for the Montreal downtown network, Degree took

1ms, GP-FC20, 191ms, BTW-LG, 295729ms and BTW-PG, 320833ms, to create the

ordering. The same relative time to create the ordering holds for Eichstaett as well.

Instance Edge Weight Measures HHL

Degree BTW-LG BTW-PG GP-FC20
M

on
treal

T
ravel

T
im

e

Avg PP 10314.2 5888.3 5031.6 37659.2

Avg TT 476.96 476.96 476.96 476.96

Avg LS 36.34 34.72 39.89 71.64

Avg QT 100.7 92.4 82 182.1

Avg QT-WP 1030.6 1139 1027.3 3979

D
istan

ce

Avg PP 10765.5 7506.8 4947.3 37564.3

Avg RL 3601.19 3601.19 3601.19 3601.19

Avg LS 38.53 35.74 43.49 71.32

Avg QT 100.6 102.1 81.8 181.6

Avg QT-WP 1085 1262.9 1006.1 4010.2

Table 16: Hub Labeling performance with different node ordering for Montreal downtown

road network.
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Instance Metric Measures HHL

Degree BTW-LG BTW-PG Metis

E
ich

staett

T
ravel

T
im

e

Avg PP 264.1 94.4 87.7 586

Avg TT 294.17 294.17 294.17 294.17

Avg LS 13.51 10.70 11.32 32.54

Avg QT 34.9 33.2 31.1 37.5

Avg QT-WP 367.7 341.5 337.5 637.2

D
istan

ce

Avg PP 251.3 120.2 111.7 575.6

Avg RL 2182.44 2182.44 2182.44 2182.44

Avg LS 13.06 12.51 12.84 32.29

Avg QT 34.4 35.5 30.9 35.8

Avg QT-WP 378.1 379.1 371.4 631.6

Table 17: Hub Labeling performance with different node ordering for Eichstaett road

network.

4.2.4 Comparison with Other Routing Algorithms

In this section, we compare the speed-up algorithms (CH, CCH+P and HHL) with

each other. In Tables 18 and 19 we provided the results of the best version of each

algorithm in order to compare them.

Regarding the shortest distance query, the best algorithm in our road networks is

HHL. This is because the labels already represent shortest path information, and the

algorithm only needs to perform merge-join-like operations to answer distance queries,

without needing to explore the graph. However, the preprocessing time to construct

the labels is much higher than the preprocessing time for the other algorithms for

the Montreal network. The preprocessing time for all algorithms is comparable in

the Eichstaett network. CCH+P and R-CH stands as the second and third best

algorithm for this type of query. Note that the preprocessing time is higher for CH

than CCH+P, but query time of CH is generally better or comparable to that of

CCH+P.

Next we discuss the shortest path query. Although HHL is efficient for shortest

distance query, we see that it is less efficient than CH and CCH+P in returning the

actual shortest path, which is likely due to its recursive implementation. Note that
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HHL is still a better option than Dijkstra and Astar in terms of query performance.

CCH+P can be seen to be better that R-CH for shortest path query performance for

both edge weights for the Montreal network, and for the travel time edge weight in

the Eichstaett network.

We noted already that we can answer the shortest path query as fast as the shortest

distance query in CCH+P; this is not the case for CH or for HHL. In fact for HHL

as already noted, the time to answer the shortest path query is much worse than the

time to answer the shortest distance query.

Comparing the preprocessing time of algorithms in the Montreal downtown network

and Eichstaett network shows that label construction time is very sensitive to the size

of the network. In Eichstaett, HHL has the fastest preprocessing time compared to

other speed-up algorithms. In Montreal downtown network, HHL has the slowest

preprocessing time among other speed-up algorithms. Our experiments show that

contraction hierarchy construction can be done faster in CCH+P which has perfect

customization followed by a perfect witness search compared to CH. Thus Avg PP

is faster in CCH+P than CH; this difference will even more if we consider CCHB

which has faster preprocessing time than CCH+P. In addition, CCH+P is not very

sensitive to the edge weight which is in contrast to CH.

For both networks, considering the overall performance (query time and preprocess-

ing time) of each algorithm, it is obvious that speed-up algorithms overtake Dijkstra

and Astar.
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Instance Edge Weight Measures CCH+P CH HHL Dijkstra Astar

(FC20) R-CH BTW-PG

M
on

treal

T
ravel

T
im

e

Avg PP 539.6 3419.5 5031.6 - -

Avg TT 475.15 479.7 476.96 477.16 477.16

Avg E 27.32 23.28 - 2719.81 1879.37

Avg QT 366.1 355 82 23370.5 17197.2

Avg QT-WP 442.1 470.1 1027.3 26600 21023.5

D
istan

ce

Avg PP 508 5073.9 4947.3 - -

Avg RL 3590.19 3590.19 3590.19 3590.19 3590.19

Avg E 27.38 25.39 - 2717.23 2654.56

Avg QT 429.5 437.9 81.8 18166.7 21580.4

Avg QT-WP 492.1 535.9 1006.1 24097.9 26663.9

Table 18: Comparing static routing algorithms for 1000 queries for Montreal downtown

road network

Instance Edge Weight Measures CCH+P CH HHL Dijkstra Astar

(Metis) R-CH BTW-PG

E
ic h

staett

T
ravel

T
im

e

Avg PP 145.1 262.4 87.7 - -

Avg TT 281.36 293.96 294.17 294.17 294.17

Avg E 12.36 8.36 - 434.31 332.8

Avg QT 129.9 88.1 31.1 3534.2 2984

Avg QT-WP 150.9 158.2 337.5 4588.5 3840

D
istan

ce

Avg PP 110.2 265.6 111.7 - -

Avg RL 2182.44 2182.44 2182.44 2182.44 2182.44

Avg E 12.83 8.1 - 436.3 428.08

Avg QT 125.8 90 30.9 2961.8 3304.8

Avg QT-WP 215.6 162.1 371.4 3801.1 4347.8

Table 19: Comparing static routing algorithms for 1000 queries for Eichstaett road network

82



4.3 Dynamic Routing Algorithms

In this section, we compare the performance of dynamic speed-up algorithms in road

networks in which the edge weights often change. In this case, new queries (vehicles)

and even those who are already running in the network, might need to reroute in order

to find the quickest path. Table 20 shows the improvement in travel time that can be

achieved by updating the edge weights after different time intervals for both Montreal

downtown and Eichstaett networks. Figure 33 shows that for the Montreal downtown

network, up to 35 % improvement in travel time can be obtained by updating the

edge weight after every 100 simulation steps. Similarly for the Eichstaett network,

up to 21 % improvement in travel time can be obtained by updating the edge weight

after every 100 simulation steps.

Interval CCH+P

100 1672.31

200 1867.19

500 2394.20

1000 2509.37

No update interval 2509.37

Interval CCH+P

100 4850.84

200 4733.02

500 4937.03

1000 5444.56

No update interval 5962.07

Table 20: Travel time changes for different interval for 10000 queries for Montreal down-

town network (Left) and Eischtaett (Right) for CCH+P algorithm.

In SUMO we use parameter –device.rerouting.period to set the period after which

vehicles might be rerouted. We set the value of this parameter to be equal to the

value of –device.rerouting.adaptation-interval which is the time interval after which

the edge weights of the network are updated.

To respond to the edge weight changes, our static speed-up algorithms, such as

CH and HHL would have to repeat the preprocessing stage, which incurs a large

extra cost. Since it would be too expensive to run the preprocessing after every

update interval, we instead estimate it by multiplying the preprocessing cost with

the number of customization runs and denote it by Est.PP. In Tables 21 and 22, we

show the total customization cost and estimated preprocessing cost for the Montreal
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Figure 33: Improvement of Avg TT with respect to different update interval for 10000

queries using CCH+P algorithm for Montreal downtown network (Left) and Eichstaett

(Right).

downtown and Eichstaett networks respectively for different combinations of number

of queries and update intervals.

In Figures 34 and 35, we show the total customization cost as a fraction of the

total estimated preprocessing cost for the Montreal and Eichstaett networks. We

see that in general, for smaller number of queries (1000 queries), and smaller update

intervals, the customization cost is a smaller fraction of the estimated preprocessing

cost. For 5000 queries, the customization cost stays the same fraction of the estimated

preprocessing cost, and for larger number of queries, the ratio of the customization

cost to the preprocessing cost decreases with the length of the update interval.

Figure 34: Avg CT as a percentage of Est.PP with respect to different update interval

for different number of queries using CCH+P algorithm for Montreal downtown network

(Left) and Eichstaett (Right).
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Interval Measures 1000Q 5000Q 10000Q

CCH+P HHL CCH+P HHL CCH+P HHL

100

Avg CT 2791 133519856 4577 - 11800.6 -

Est.PP 12410.8 115726.8 14569.2 - 22663.2 -

200

Avg CT 1596 52274734 3509 - 7607 -

Est.PP 6475.2 60379.2 8633.6 - 13490 -

500

Avg CT 532 27001860.5 1731 - 3855 -

Est.PP 2158.4 20126.4 4856.4 - 5935.6 -

1000

Avg CT 264 17857173 1124 - 2114 -

Est.PP 539.6 5031.6 2698 - 4316.8 -

Table 21: Comparison of Avg CT and Est.PP after each edge update interval for different

number of queries for Montreal downtown network.

Interval Measures 1000Q 5000Q 10000Q

CCH+P HHL CCH+P HHL CCH+P HHL

100

Avg CT 582.3 650891 4476 5371200 8672.6 13684369

Est.PP 2031.4 1227.8 17847.3 10787.1 35694.6 21574.2

200

Avg CT 382.3 439089 2636.6 3968182 4518 8177463.6

Est.PP 1015.7 613.9 6819.7 4121.9 21039.5 12716.5
500

Avg CT 154.3 173783 1229 1731928.3 2145.3 3724850.3

Est.PP 435.3 263.1 3482.4 2104.8 10592.3 6402.1

1000

Avg CT 96 86075 680 865964.15 936 1582816.3

Est.PP 145.1 87.7 1886.3 1140.1 4788.3 2894.1

Table 22: Comparison of Avg CT and Est.PP after each edge update interval for different

number of queries for Eichstaett network.

To conclude our remarks above, dynamic speed-up algorithms achieve better travel

times than static speed-up algorithms if the latter only perform pre-processing once or

very rarely. On the other hand, a dynamic speed-up algorithm like CCH can be much

more efficient at answering queries than a static speed-up algorithm that repeats the

preprocessing step often.
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Figure 35: Avg CT as a percentage of Est.PP with respect to different update interval for

different number of queries (1000 queries for Montreal and 1000, 5000 and 10000 queries) us-

ing dynamic HHL algorithm for Montreal downtown network (Left) and Eichstaett (Right).

In this section, we therefore only consider the dynamic algorithms - CCH and dy-

namic HHL - since we are able to customize them to respond to edge weight changes

without performing the entire preprocessing phase. We use the best version of these

algorithms with respect to the query time for this experiment. Thus, for the Mon-

treal downtown network, we use CCH+P with FC20 and CCH+P with Metis for

Eichstaett; For CCH+P after every edge weight change operation, we run only the

perfect customization phase. We run dynamic HHL with BTW-PG for both networks;

after each weight change update, we scan all the edges whose weight has changed since

the last update. If the weight of an edge increased, we run Decremental update for

that edge and if it decreased we run Incremental update for the edge. We explained

these functions in detail in Sections 3.2.1 and 3.2.2.

Since travel time is an edge weight whose value may change over time, we run

dynamic experiments considering travel time change in our road networks. We run

the experiment in three query sizes (1000, 5000, and 10000 queries) and four weight

change intervals (100, 200, 500, 1000 simulation steps). When the edge weights are

updated, we also run the customization phase of both algorithms. We are interested

in investigating which algorithm is the most efficient one to use for dynamic scenarios

with respect to query time and customization time.
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4.3.1 Effect of Update Interval on Customization Time

As we see in Tables 23 and 24, CCH+P is very efficient to respond to weight updates in

road networks compared to dynamic HHL. Its light customization phase makes it very

efficient to answer dynamic conditions without running a heavy preprocessing phase.

This holds regardless of the weight update frequency and the number of queries. For

instance, for the Montreal downtown network in 1000 queries experiment, for 100

simulation steps as update interval, the customization runs about 23 times which

takes 2791ms in all on average, and 121.3ms per customization run on average. In

contrast, the preprocessing run which consists of building the metric-independent

contraction hierarchy followed by perfect customization takes 539.6ms.

For Dynamic HHL however, our experiments show that for more frequent weight

updates, we get very slow customization time to the point that it is impractical for

large networks, and for large numbers of queries. In fact, we had to stop the simulation

for the Montreal downtown network for 5000 and 10000 queries after some hours of

simulation. In this situation, it may be beneficial to reconstruct the labels for the

entire network from scratch, as the whole preprocessing time would be less than the

customization time. This is also true for the Eichstaett, the smaller network (See

Tables 21 and 22).

We conclude that CCH+P is much more efficient than dynamic HHL in responding

to weight updates in road networks compared to dynamic HHL. This holds for both

networks, regardless of the number of queries and the length of the update interval.

In fact, for large networks and large number of queries (i.e. heavy traffic), dynamic

HHL proves to be impractical. Figures 36 and 37 which has log-scaled y-axis illustrate

that for both networks and for all the number of queries, customization time decreases

when the time interval for edge weight update increases.
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Figure 36: Avg CT (ms) for different weight update intervals for 1000 queries for Montreal

Downtown road network. Numbers are the log-scaled.

Figure 37: Avg CT (ms) for different weight update intervals for different number of

queries for Eichstaett road network. Numbers are the log-scaled.
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4.3.2 Effect of Update Interval on Travel Time

As expected, in Figures 38 and 39 for both approaches and both networks, average

travel time increases as we do the updates less frequently.

Figure 38: Avg TT (s) for different weight update intervals for 1000 queries for Montreal

Downtown road network.

Figure 39: Avg TT (s) for different weight update intervals and different number of queries

for Eichstaett road network.
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Interval Measures 1000Q 5000Q 10000Q

CCH+P HHL CCH+P HHL CCH+P HHL

100

Avg CT 2791 133519856 4577 - 11800.6 -

Avg TT 495.24 485.63 774.33 - 1619.99 -

200

Avg CT 1596 52274734 3509 - 7607 -

Avg TT 496.76 492.44 865.26 - 1866.74 -

500

Avg CT 532 27001860.5 1731 - 3855 -

Avg TT 502.26 497.12 891.75 - 2275.73 -

1000

Avg CT 264 17857173 1124 - 2114 -

Avg TT 502.26 497.02 878.04 - 2358.81 -

Table 23: CCH+P and HHL with different edge weight update interval and different

number of queries for Montreal downtown road network.

Interval Measures 1000Q 5000Q 10000Q

CCH+P HHL CCH+P HHL CCH+P HHL

100
Avg CT 582.3 650891 4476 5371200 8672.6 13684369

Avg TT 249.3 241.93 3034.71 3015.6 4850.84 4833.41

200

Avg CT 382.3 439089 2636.6 3968182 4518 8177463.6

Avg TT 273.66 260.35 3173.27 3161.52 4733.02 4961.10

500

Avg CT 154.3 173783 1229 1731928.3 2145.3 3724850.3

Avg TT 272.22 267.48 3325.49 3321.27 4937.03 5355.41

1000

Avg CT 96 86075 680 865964.15 936 1582816.3

Avg TT 271.07 284.43 3558.98 3528.3 5444.56 5535.6

Table 24: CCH+P and HHL with different edge weight update interval and different

number of queries for Eichstaett road network.
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4.3.3 Improving the Performance of Dynamic HHL

In this section, we investigate if we can make a better trade-off between the quality

of the route and customization time for dynamic HHL. For this purpose, we con-

sider both road network instances of our study with 1000 queries and weight update

interval of 200 simulation steps. The key idea is to only perform Incremental and

Decremental update operations for edge weight changes that change the weight sig-

nificantly. Figures 40 and 41 show the percentage of edges whose weight has increased

or decreased over all the edge weight update intervals.

We run two experiments. Let parameter c represent the minimum percentage of

weight change that has to occur for an edge to be considered for an Increment or

Decrement operation. For example, c = 0 means that any weight change will cause

an edge to be considered, and c = 0.1 means any edge whose weight changed by more

than 10% will be considered.

The first experiment considers the edges whose weight has changed by more than 10

percent. The second experiment only consider the edges whose weight has changed by

more than 20 percents. As we see in Tables 23 and 24, even though the customization

time has been improved significantly, yet it doesn’t compete with the customization

time using CCH+P algorithm and CCH algorithm stands as the best algorithm to

use for dynamic scenario.

Measures c = 0.1 c = 0.2 All the changes

Avg CT 28838672 25389141 52274734

Avg TT 491.34 490.31 492.44

Table 25: Avg CT (ms) and Avg TT (s) for c = 0.1 and c = 0.2 for 1000 queries and 200

as weight update interval for Montreal downtown road network.

Measures c = 0.1 c = 0.2 All the changes

Avg CT 112364 52617 439086

Avg TT 256.81 255.47 260.35

Table 26: Avg CT (ms) and Avg TT (s) for c = 0.1 and c = 0.2 for 1000 queries and 200

as weight update interval for Eichstaett network.
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Figure 40: Sum of all the edges whose weight has changed during the simulation for 1000

queries and 200 as weight update interval for Montreal downtown Network.

Figure 41: Sum of all the edges whose weight has changed during the simulation for 1000

queries and 200 as weight update interval for Eichstaett Network.
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To investigate the reason for the inefficiency of dynamic HHL, we measured the

average time taken for Incremental updates versus the average time taken for Decre-

mental updates. The results are shown in Table 27 for Montreal and Eichstaett

networks for 1000 queries and update interval 200 simulation steps. We see that the

average time for Incremental updates is much less than the average time for Decre-

mental updates in both networks.

Montreal Eichstaett

Incremental Update 9015.8 239.18

Decremental Update 56917.6 995.6

Table 27: Average time (ms) of running Incremental and Decremental update for 1000

queries and 200 as weight update interval for Montreal downtown and Eichstaett network.

The reason for the inefficiency of Decremental updates, is the process of finding

the affected nodes separately for each edge whose weight has increased which requires

to run Dijkstra (See Algorithm 12). In addition, during the phase in which we add

new hubs, we need to run Dijkstra for all (u, v) pairs of affected nodes. To show

this, we calculated for each edge whose weight has increased, the fraction of nodes in

the network that was found by our Algorithm 12 to be ”affected”, i.e. the fraction

of affected nodes. Then we ordered the edges in increasing order of the fraction of

affected nodes and plotted it. As we see in Figures 42 and 43, the fraction of affected

nodes for each edge whose weight has increased, is about 10% at minimum and about

200% at maximum for the Montreal downtown network and about 30% at minimum

and about 200% at maximum for the Eichstaett network. Note that when a node

belongs to AFFa as well as AFFb for an edge (a, b), then it is counted twice, which is

why in some cases, we show that > 100% of nodes are affected. We can see that for 10

% of the edges, at least 50 % of nodes are affected nodes in the Montreal downtown

network, while in the Eichstaett network, for at least 7 % of edges, at least 50 % of

the nodes are affected. The high number/percentage of affected nodes illustrates the

workload that Decremental update needs to do in dynamic HHL.

93



Figure 42: X–axis shows the percentage of edges whose weight has increased in the second

interval of weight update. The Y–axis shows the fraction of affected nodes for the Montreal

downtown network. (update interval is 200).

Figure 43: X–axis shows the percentage of edges whose weight has increased in the second

interval of weight update. The Y–axis shows the fraction of affected nodes for Eichstaett

network. (Update interval is 200).
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Chapter 5

Conclusion and Future Work

The use of navigation systems in road networks is increasing every day. In this the-

sis, we run experiments to compare state of the art routing algorithms that are used

to respond to point-to-point queries in a graph. The algorithms in our study are

Contraction Hierarchy, Hierarchical Hub Labeling, Customizable Contraction Hier-

archy, Customizable Contraction Hierarchy with perfect customization and dynamic

Hierarchical Hub Labeling. We run experiments on the Montreal and Eicstaett road

networks to measure the performance of each algorithm with respect to the query

time and travel time in static road networks and also considering the customization

time in dynamic road networks.

Regarding the static routing algorithms, we compared two variants - R-CH and

S-CH of Contraction Hierarchy with respect to query and preprocessing performance

and showed that R-CH node ordering heuristic, together with stall-on-demand query

leads to a better performance. We were interested to see the effect of perfect cus-

tomization on CCH, thus we used two variants of CCH, one named as CCHB which

uses basic customization and the other one, CCH+P, which uses using different graph

partitioning algorithms and ND-orders. We illustrated that using perfect customiza-

tion results in a significant improvement in query efficiency. However this is at the

cost of slower preprocessing time.
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For the Hub Labeling algorithm, we ran experiments with four different node order-

ings and showed that label construction using PLL algorithm together with BTW-PG

as node ordering results in an efficient shortest distance query performance for both

networks. However, label construction is very sensitive to the size of the network.

By comparing all these five algorithms together, we showed that, although in terms

of distance query times HHL algorithm was the fastest in both networks, it is not a

good approach to answer shortest path query. For shortest path queries, CCH+P is

significantly better than HHL. We observed that both variants of CCH+P, have a sig-

nificant improvement in preprocessing time compared to R-CH. Regarding the query

time, CCH+P with FC20 as graph partitioning algorithm for Montreal network, and

Metis for Eichstaett, results in a better query performance compared to R-CH. All

the speed-up routing algorithms have better performance than Dijkstra and Astar.

Another interesting experiment was to see how dynamic speed-up algorithms react

to changes of the network. We ran this experiment with CCH and dynamic HHL

since we can respond to edge weight changes without running the entire preprocess-

ing phase. We use three sets of queries 1000, 5000 and 10000 queries. We observed

that CCH+P outperforms HHL for any size of network and queries in terms of the

customization time. For dynamic HHL our results showed that running the prepro-

cessing is more efficient than updating labels after each update change interval. We

investigated the reason for low efficiency of dynamic HHL and observed that for both

networks, for about 10% of the edges whose weight has changed already contains

half of the nodes as affected nodes which in consequence leads to a very expensive

decremental update operation.

It would be interesting to do our experiments on other city networks, and also

larger road networks. However in larger networks, the time taken is prohibitive even

for road networks, and paralleization and more powerful computers would be needed.

Implementations based on real-time traffic data from road networks, rather than

simulated traffic, would also be interesting.

Finally, our experiments make it clear that dynamic hub labelling, particularly

the decremental update operation, is not efficient in practice. A new approach to

handle several edge weight changes together, rather than individually, would seem to

be needed. Another algorithmic contribution could be to find an ordering for nodes
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that leads to better query performance.
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in graphs. Journal of Algorithms, 53(1):85–112, 2004.

[26] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-

traction hierarchies: Faster and simpler hierarchical routing in road networks. In

International Workshop on Experimental and Efficient Algorithms, pages 319–

333. Springer, 2008.

[27] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Ex-

act routing in large road networks using contraction hierarchies. Transportation

Science, 46(3):388–404, 2012.

[28] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal

on Numerical Analysis, 10(2):345–363, 1973.

[29] Andrew V Goldberg. Point-to-point shortest path algorithms with preprocess-

ing. In International Conference on Current Trends in Theory and Practice of

Computer Science, pages 88–102. Springer, 2007.

[30] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A

search meets graph theory. In SODA, volume 5, pages 156–165, 2005.

100
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