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ABSTRACT
Stochastic control, numerical methods, and machine learning in finance and insurance

Xiang Gao, Ph.D.
Concordia University, 2021

We consider three problems motivated by mathematical and computational finance which uti-
lize forward-backward stochastic differential equations (FBSDEs) and other techniques from stochas-
tic control. Firstly, we review the case of post-retirement annuitization with labor income in frame-
work of optimal stochastic control and optimal stopping. We apply the martingale approach to a
Cobb–Douglas type utility maximization problem. We have proved the theoretical existence and
uniqueness of an optimal solution. Several analyses are made based on the simulations for the
optimal stopping choice and strategies. Secondly, We review the convolution method in back-
ward stochastic differential equations (BSDEs) framework and study the application of convolution
method to Heston model. We provide an easy representation of the Heston characteristic function
that avoids the discontinuities caused by branch rotations in the logarithm of complex functions
and is able to be applied in calibration. We proposed two convolution schemes to the Heston model
and provide the error analysis that shows the error orders of discretization and truncation. We re-
view two error control methods and improve the accuracy on the boundaries. Numerical results
comparing to a Fourier method and an integration method is provided. Thirdly, we review the
forecasting problem in bond markets. Our data include both U.S. Treasuries and coupon bonds
from twelve corporate issuers. We apply the arbitrage-free model in predicting the yields and the
prices of coupon bonds in a sequential model with the Kalman filter, the extended Kalman filter
and the particle filter. We implement the arbitrage penalty and obtain the optimal dynamic param-
eterization using deep neural networks. The purpose of the prediction is to examine the effect of
arbitrage penalty and the forecasting performance on different time horizons. Our result shows
that the arbitrage-free penalty has improving performance on short time period but downgrading
performance on long time period. We provide analysis on the prediction errors, the distribution of
errors, and the average excess return. The predicted bond prices shows the prediction errors have
non-Gaussian distribution, excess kurtosis, and fat tails. Future works will be from two aspects,
refine the importance sampling by non-parametric distribution and refine the term structure model
with jump process and credit risk.

Keywords: forward-backward stochastic differential equations, stochastic control optimal stopping,
martingale approach, high dimensional option, Heston model, fast Fourier transform, HJM forward
rate, dynamic Nelson-Siegel, Kalman filter, particle filter, recurrent neural network.
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Introduction

This thesis contains three projects: the martingale approach to the optimal annuitization problem
with stochastic control and deterministic control, the convolution method in option pricing, and
the application of arbitrage-free pricing theory in bond price forecasting. The three topics lead
into deep research from pure mathematics to the application of modern tools such as deep neural
networks from which we make contribution to both theory and practical methodology. This thesis
is organized as follows. In Chapter 1, we present the martingale approach to optimization problem
related to retirement planning using stochastic control and deterministic control. In Chapter 2, we
demonstrate the convolution method as an extremely fast and accurate approach to pricing options
with stochastic volatility and solving BSDEs numerically. In Chapter 3, we show the application of
arbitrage-free pricing theory in forecasting bond prices and yields with a dynamic parameterization
using deep neural networks.

In Chapter 1, we have studied the optimal annuitization problem with labor constraints. Utility
maximization problems using stochastic control and optimal stopping goes back at least to the
seminal articles of Merton [99] and has been studied extensively in past decades, for instance
Pliska [108] studies its application in optimal trading, Karatzas, Lehoczky, and Shreve [81] study
the optimal portfolio and consumption decision in very explicit feedback form and Cox and Huang
[27] study the consumption-portfolio problem when asset prices follow a diffusion process. The
current papers dealing with financial risk of pre-defined pension schemes in stochastic frameworks
is quite rich, for instance Cairns, Blake, and Dowd [17], Gao [62] and Gerrard, Højgaard, and
Vigna [63].

Related work by Karatzas and Wang [80] has shown the application of the martingale method
together with Lagrange transformations in solving the optimal control problem. Karatzas and
Wang [80] introduced the shadow process and the corresponding budget constraint which is applied
to relax the control terms from the objective function and obtain a deterministic problem. He and
Pages [65] study optimal investment with borrowing constraints. Bodie, Merton, and Samuelson
[9] study an optimal problem with flexibility in labor supply and demonstrated the dependence
of agent’s risk tolerance on flexibility of labor supply. Bodie, Detemple, Otruba, and Walter [10]
study the optimal consumption and investment problem in a context of retirement which has a
fixed time of retirement rather than an optimal time of retirement. Farhi and Panageas [55] study
the binomial choice of leisure with the Cobb-Douglas utility function which is more generally
used in measuring labor and capital inputs in economic production and is a special case of the CES
utility function. Lim, Shin, and Choi [88] study a similar problem as Farhi and Panageas [55] in
optimal consumption-leisure, portfolio, and retirement choice of an infinitely lived investor whose
instantaneous utility is given by constant elasticity of substitution (CES) function of consumption
and leisure. Lim et al. [88] uses combination of portfolio and consumption-leisure choice and an
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optimal stopping time for a retirement problem, in which the investor derives utility from adjusting
between consumption and leisure, and also has an option for full retirement from labor. Lim et al.
[88] provided a solution to the free boundary problem but without a solid proof of the existence
and uniqueness.

We study the properties of the Cobb-Douglas utility function and its application as the ob-
jective function in the maximization of the postponed annuitization problem. We fully solve the
post-retirement annuity problem with a closed form solution and provide numerical analysis. We
review the optimization model in Gerrard et al. [63] and the martingale method in Lim et al. [88]
to give some methodological and realistic contribution to finalize the rigorous proof of the closed
form that is lacking in most papers. We make contribution to addressing an optimization problem
with a stochastic control and a deterministic control in closed-form and provide rigorous proofs to
the optimal solutions. In numerical implementations, we investigate the properties of the optimal
solution by varying the parameters and analyze the pensioner’s behavior in Monte-Carlo simula-
tions. We present the 2-dimensional graph of the utility surface with varying labor rate and wage
rate showing that the utility is concave in the labor rate and convex in the wage rate. In the simu-
lation study, we find that the optimal annuitization time is strongly linear with respect to the initial
wealth in cases with and without labor income. We also find that there exists a critical wealth level
below which the extra labor income decreases the annuitization time, and above which the extra la-
bor income postpones the annuitization time in exchange for higher annuities. With different labor
schemes, the pensioners have similar consumption strategies. However, a more interesting finding
is that different pension schemes could lead to very differently optimal investment strategies and
annuitization times.

In Chapter 2, we study the option pricing problem. Mathematical finance experiences rapid de-
velopments since the revolutions made by Markowitz and Black-Scholes in 1970s. Markowitz [96]
propose the argument that all rational investors should select mean-variance efficient portfolios
either minimizing variance under a given expected return or maximizing expected return under a
given variance in Markowitz [95]. Influenced by Markowitz’s revolution, Sharpe [112] develop the
capital asset pricing model. Black and Scholes [8] bring the second revolution to modern finance
by solving the option pricing problem using delta hedging and provided the closed form of solution
of option pricing formulas. The theoretical study of option pricing was introduced by Black and
Scholes [8] and Merton [99]. Cox and Ross [28] introduce the martingale pricing method based
on risk-neutral pricing theory. A simple but efficient binomial tree model is introduced by Cox,
Ross, and Rubinstein [29] for solving American style options which allows investors to exercise
the option as soon as the payoff is positive. The most adaptable and widely used method in option
pricing is Monte-Carlo simulation introduced by Boyle [14]. Monte-Carlo methods are very robust
but the cost paid for high accuracy is the increasing computational requirement since the accuracy
is highly dependent on the sample size and sample variance. Accelerating techniques were intro-
duced by Boyle, Broadie, and Glasserman [13] in which they compared antithetic variates, control
variates, importance sampling and stratified sampling. The theoretical study of backward stochas-
tic differential equations started more recently but has a rapid progress, see El Karoui, Peng, and
Quenez [53], Pardoux and Peng [104] and Barles, Buckdahn, and Pardoux [3]. In addition to its
excellent mathematical properties, BSDEs have important applications in finance. Many deriva-
tives like options and futures can be theoretically described and priced by BSDEs, see (Duffie and
Epstein [48], El Karoui and Quenez [52], El Karoui et al. [53]). For most exotic options without
analytic solutions, PDE based numerical methods such as finite difference and finite elements are
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developed, see Zvan, Vetzal, and Forsyth [121] and Duffy [50].
We follow another vein that based on Fourier transformations introduced by Carr and Madan

[18], and cosine method introduced by [70]. Lord, Fang, Bervoets, and Oosterlee [93] and Hynd-
man and Oyono Ngou [74] consider transforms for pricing options and demonstrate very fast and
efficient results. The convolution method in option pricing is not only new but also has advantages
compared to Fourier-based integration method. Our interest is to extend the convolution method to
the Heston model. Then we study the feasibility to approach to higher dimensional cases such as
basket options. Heston [67] provides semi-closed form solutions to address the volatility smile in
pricing vanilla options with the Black-Scholes formula. The traditional approach using the char-
acteristic function given by Heston is problematic since the characteristic function provided by
Heston [67] has discontinuities which lead to unreliable integration results. As proposed by many
other authors, different schemes are introduced to overcome the discontinuity in the characteristic
function such as Kahl and Jäckel [79], Lord and Kahl [92] and Levendorskiı̆ [87]. Numerical cali-
bration finds the optimal parameters that best fit the observed data into the Heston model (see Cui,
del Baño Rollin, and Germano [32]). Other calibration approach using simulation methods avoid
the space complexity in the characteristic function but become time consuming when applied to
the BSDEs (see Cohen and Tegnér [24]).

In Chapter 2, we give the explicit solution for the characteristic function of the Heston model
in the two-dimensional case from the joint processes. We review the convolution method for
numerically solving one-dimensional BSDEs and propose a new method for pricing options with
the Heston model. We investigate two boundary control techniques: damping and shifting methods
introduced in Carr and Madan [18] and Hyndman and Oyono Ngou [74] and proposing the most
efficient way to control the boundary error for the Heston model, which are seldom considered
in practice. We will show that the convolution method is faster and more accurate than the direct
integration method, especially, in the limiting behavior.

In Chapter 3, we study bond pricing and forecasting with arbitrage-pricing theory. The tradi-
tional approach to pricing problems in fixed income markets relies on interpreting the term struc-
ture interest rates model or the forward rate model. McCulloch [97] introduced spline methods
for measuring the term structure of interest rates and many subsequent work improves the spline
method, such as Waggoner [116]. Fama and Bliss [54] applied the bootstrap method to obtain
zero-coupon bond prices from coupon bonds, and this method is still used to provide daily and
monthly data for research on term structure. In recent years, approaches to term structure mod-
eling are mainly spit in two veins: the no-arbitrage approach following Hull and White [71] and
Heath, Jarrow, and Morton [66] or the equilibrium approach following Vasicek [114] and Cox and
Huang [27].

Duffie and Kan [49] present a consistent and arbitrage-free multi-factor model of the term
structure of interest rates in which yields at selected fixed maturities follow a parametric multi-
variate Markov diffusion processes with stochastic volatility. Ang and Piazzesi [1] introduce the
linearized vector model in which they identify restrictions based on the absence of arbitrage. They
conclude that macro factors primarily explain 85% of the movements at the short end and middle
of the yield curve while unobservable factors still account for most of the movements at the long
end of the yield curve. Diebold and Li [37] describe the evolution of the term structure directly by
viewing the factors as time dependent variables. They extended the estimation of yield curves from
in-sample fitting to out-of sample forecasting and produced good forecast results. Christensen,
Diebold, and Rudebusch [21] assume the dynamic factors in a term structure model evolve as
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Vašíček process with latent parameters. Though Christensen et al. [21] claims the factor model
with yield adjustment term gives arbitrage-free forward rate curves, it is very hard to provide such
evidence. Our proposal follows the regularization method introduced by Kratsios and Hyndman
[86] and apply machine learning to minimize the arbitrage opportunity. We theoretically investigate
such arbitrage opportunities from a HJM forward rate model and introduce a regularization term
which is minimized while solving the optimization problem. Deep feed-forward neural networks,
established by Cybenko [33], Hornik, Stinchcombe, White, et al. [69] and Goodfellow, Bengio,
and Courville [64], will be applied to dynamically parameterize the yield curves.

In Chapter 3, we first combine the equilibrium model with a no-arbitrage model and introduce
an easily implementable method to obtain rigorous arbitrage-free forecasting from both a theoret-
ical and practical perspective. Our arbitrage-free scheme quantifies average excess returns, with
minimal arbitrage from the pricing and forecasting process. We also show that the forecasting
performance is minimally downgraded by the arbitrage-free regularization scheme in long time
predictions, but that it improves the performance in short time predictions. Secondly, we introduce
an advanced and efficient framework using dynamic parameterizations in deep neural networks
supported by consistent and stable performance in both in-sample and out-of-sample tests. Our
method is more flexible in balancing the bias-variance trade-off compared to the classical model
using Bayesian inference for the parameters, see Koop [85] and Carriero, Clark, and Marcellino
[19]. Thirdly, we investigate bond price differences between the observation and theoretical prices
and find that the error distribution possesses large kurtosis and fat tails. We also provide an analysis
showing that the error distribution could be fitted into a non-parametric distribution smoothed by
a Gaussian density. Finally, we present numerical results that show the performance of machine
learning in forecasting yield curves and bond prices on different forecasting time horizons.

In Chapter 4, we conclude our work in the thesis and discuss future work for each of the projects
in Chapters 1, 2, and 3. All proofs are provided in the appendix.
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Chapter 1

Optimal annuitization with labor constraints

In this chapter, we study the utility maximization problem in a defined contribution scheme
where pensioners balance their consumption and investment with a limited capacity to gain extra
labor income after retirement until they reach the level of optimal annuity. The benefit of including
labor income is to help interpret the value of the solution more realistically when the labor and
wage rates can be viewed as a benchmark. One of our purposes is to investigate the effect of labor
work and wage rate after retirement to achieve the optimal annuity. The current papers dealing
with financial risk of defined contribution schemes in a stochastic framework are quite rich, for
instance Cairns et al. [17], Gao [62] and Gerrard et al. [63]. Most of this literature shares the
common setting of an agent who receives a deterministic initial capital, which he must then invest
in a market (complete or incomplete) so as to maximize the expected utility of his consumption
and terminal wealth. Utility maximization problems in the form of stochastic control and stopping
problems go back at least to the seminal articles of Merton [99] and have been studied extensively
in the past decades.

Karatzas and Wang [80] show the application of martingale methods together with the La-
grange transformation in solving the optimal control problem. They introduced the shadow process
and the corresponding budget constraint which is applied to relax the control terms from the ob-
jective function and obtain a deterministic problem. He and Pages [65] studied optimal investment
with borrowing constraints. Bodie et al. [9] studied an optimal problem with flexibility in labor
supply and demonstrated the dependence of an agent’s risk tolerance on the flexibility of labor
supply. Bodie et al. [10] studied the optimal consumption and investment problem in a context of
retirement which has a fixed time of retirement rather than an optimal time of retirement. Lim et al.
[88] studied a similar problem as Farhi and Panageas [55] in optimal consumption-leisure portfolio,
and retirement choice of an infinitely lived investor whose instantaneous utility is given by a CES
function of consumption and leisure. Farhi and Panageas [55] combine investment with borrowing
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constraints, consumption-leisure choice and an optimal stopping time for the retirement problem,
in which the investor derives utility from adjusting between consumption and leisure, and also has
an option for full retirement from labor. Farhi and Panageas [55] choose the Cobb-Douglas utility
function with a choice of binomial leisure (l1 before retirement and l̄ after retirement) and solve
the free boundary problem but without a proof of the existence and uniqueness of the solution. In-
spired by Farhi and Panageas [55], we choose the same utility function and treat the labor-leisure
as a deterministic control in our model which is more realistic. By the martingale approach, we
derive the closed-form of the value function with optimal strategies and provide a rigorous proof
showing they are the optimal solutions.

1.1 Economic background
The classical consumption-investment problem is described by an expectation of the accumulative
running profit f (·) plus the terminal value g(·)

J (c,τ,x) = E
[︃∫︂ τ

0
f (t,ct ,Xx)+g(τ,Xx

τ )

]︃
, (1.1.1)

where the portfolio value Xx
t is a stochastic process with initial value x which is controlled by a

deterministic term ct

dXx
t = b(t,ct ,Xx

t )dt +σ (t,ct ,Xx
t )dWt . (1.1.2)

The goal is to choose a control term and a stopping time (c∗t ,τ
∗) such that maximize the objective

function

(c∗t ,τ
∗) = arg sup

ct ,τ∈U
J(ct ,τ,x),

where all the available pairs of (c,τ) are from a space of feasible set U which can be generally
defined as

U = {(c,τ) |such that Xt and J(c,τ,x) are well defined} ,

which will be made more precise. Theoretically a unique solution exists if the function f and g are
Lipchitz continuous and the process Xt has bounded quadratic variation for all (ct ,τ) ∈U .

In our research, we add extra income as the second control term which has a dis-utility effect in
the running strategy but will increase the final value by a deterministic amount. Suppose the agent
receives a lump sum of size x at retirement when t = 0. Up until the time of annuitization, the
agent can choose to keep working after retirement with labor rate Lt , consume at the rate of ct and
invest some amount of his or her wealth πt in the financial market. We assume that the remaining
lifetime of the agent, TD, is independent of the financial market and exponentially distributed with
force of mortality δ . In defined contribution pension schemes, the agent has the possibility to defer
the annuitization of his wealth. The objective function of the agent before annuitization consists of
the utility from consumption, dis-utility from labor, and the final utility from annuitization.

The consumption rate ct is an amount from agent’s total wealth that he consumes during one
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unit of time. In our model we measure the dis-utility of labor by its utility from leisure lt =
1−Lt . We assume the labor rate is bounded, Lt ≤ L̄ ≤ 1, and so the leisure rate is also bounded
1− L̄ = L ≤ lt ≤ 1. Thus, we set a minimum leisure rate L = 1− L̄ and the leisure rate is bounded,
0 ≤ L ≤ lt ≤ 1. In the special case of leisure rate lt = 1, the agent has no extra income except from
investment after retirement and the problem becomes a classical consumption-investment problem.
If the labor rate Lt is greater than 0 the agent has extra labor income wtLt = wt (1− lt) with wage
rate wt but he receives a penalty for his leisure rate lt which is less than 1. The amount of leisure lt
and the amount of consumption ct together are measured by a utility function which is introduced
in the next section and the annuity is measured by another utility function. Therefore, the objective
function is to maximize the agent’s total expected utilities from running the consumption and
leisure strategies and the choice of final annuity.

For simplicity, we suppose that the wage rate wt and the annuity scheme k, defined as a portion
of the finally wealth, are fixed at the agent’s retirement. The financial market consists of a riskless
asset and a risky asset. The riskless asset pays interest at fixed rate r which can be the money
market account or a locked in retirement account. The risky asset can be a portfolio or funds from
a market which evolves as a geometric Brownian motion with mean µ and volatility σ ,

dSt

St
= µdt +σdBt .

Here, given the probability space (Ω,F ,P) and a terminal time T > 0, Bt is a standard Brownian
motion in Rd under the probability P on a finite-time horizon.

Given an initial endowment x ≥ 0, an income stream from labor work w(1− lt), a consumption
rate ct , an investment policy πt , the remaining wealth stays in a bank account. The agent’s total
wealth evolves according to the following stochastic process

dXt = (rXt +πt(µ − r)− ct +w(1− lt))dt +σπtdBt . (1.1.3)

Once the agent annuitizes, he or she receives a fixed periodic payment until death, t = TD. The
periodic payment of an annuity purchasable by wealth X is kX , for some constant k > r. Thus we
define the objective function

J(x;τ) = Ex

[︃∫︂ τ∧TD

0
e−rtU1(ct , lt)dt +1{τ<TD}

∫︂ TD

τ∧TD

e−rtU2

(︂
kXx,c,l,π

τ

)︂
dt
]︃
,

where

(i) Xt is the pensioner’s total wealth at time t with X0 = x;

(ii) ct is the consumption rate, lt is the leisure rate, and wt is the wage rate;

(iii) πt is the amount invested in the risky asset with price St ;

(iv) τ is the annuitization time; and

(v) TD is the pensioner’s death time.

We assume the pensioner’s force of mortality, δ , is constant and is independent of the Brownian
motion. According to the method in Gerrard et al. [63], we can rewrite the the above objective
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function as

J(x;τ) = Ex

[︄∫︂ τ

0
e−ρtU1(ct , lt)dt +

e−ρτ

ρ
U2(kXx

τ )

]︄
, (1.1.4)

where ρ = r+δ . The optimization problem is to determine the four control variables, ct , lt , πt and
τ in such a way as to maximize the discounted expected utility in (1.1.4).

Definition 1.1. (Admissible control): The admissible control set U is the set of all F-progressively
measurable processes (ct , lt ,πt) such that

1) J(x;τ)≤∞ for all (ct , lt ,πt) ∈U;

2) the control terms (ct , lt) satisfy the constraints 0 ≤ ct and L ≤ lt ≤ 1;

3) the portfolio strategy πt satisfies E |πt |2 <+∞.

The admissible control in Definition 1.1 only ensure the wealth process Xt has bounded quadratic
variation. Next, we specify the Lipchitz condition on the utility function to ensure the objective
function J(x;τ) is also bounded.

Remark 1.2. A sufficient condition for J(x;τ)<∞ in Definition 1.1) is given by

max{U1(x, l),U2(x)} ≤ k1 + k2xδ , ∀x ∈ (0,∞) and l ∈ [0,1]

for some constant k1, k2 > 0 and δ ∈ (0,1), see Karatzas et al. [81].

We denote by S be the class of F-stopping times τ : Ω → [0,T ]. The value function is defined
as the optimal objective function

V (x) = sup
(ct ,lt ,πt ,τ)
∈U×S

Ex
[︃∫︂ τ

0
e−ρtU1(ct , lt)dt +

e−ρτ

ρ
U2(kXx

τ )

]︃
. (1.1.5)

As is well known from the theory of stochastic control and optimal stopping (see, Øksendal
[102] and Pham [107]), the unconstrained value function can be characterized by an HJB equation.
Therefore, we now proceed to unconstrain the original problem 1.1.5 to a dual problem using the
martingale method. Define the relative risk process

θ =
µ − r

σ
,

the exponential martingale

Zt = e−
1
2 θ

2t−θBt ,

and the state-price-density (shadow process)

Ht = e−rtZt = e−(r+ 1
2 θ

2)t−θBt .
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By Girsanov’s theorem, the process

dB̄t = θdt +dBt ,

defines a standard Brownian motion B̄t under the equivalent martingale measure P̄(A) = E[ZT1A],
0 ≤ T .

Applying Itô’s formula to the product of the processes Ht and Xt +
w
r , we have

Ht

(︂
Xt +

w
r

)︂
+
∫︂ t

0
Hs (cs +wls)ds = x+

w
r
+
∫︂ t

0
Hs

(︂
σπs −θ

(︂
Xs +

w
r

)︂)︂
dBs. (1.1.6)

For any feasible control set (ct , lt ,πt), the process

Ht

(︂
Xt +

w
r

)︂
+
∫︂ t

0
Hs (cs +wls)ds, (1.1.7)

is a continuous, positive local martingale, hence a supermartingale, under measure P. Therefore,
by Fatou’s Lemma the stochastic integral of equation (1.1.6) is a P-supermartingale. Thus by the
optional sampling theorem, we have the following inequality constraint

E

[︄∫︂ τ

0
Ht (ct +wlt)dt +Hτ

(︂
Xτ +

w
r

)︂]︄
≤ x+

w
r
, ∀τ ∈ S. (1.1.8)

We call the inequality (1.1.8) the budget constraint under which the solvency property Xc,l,π
t ≥ 0

over the time interval [0,τ] is satisfied. In the following sections, we will show that equality can
hold for the budget constraint and a martingale approach can relax the control terms from the
objective function. Eventually, we can transform the control and stopping problem to a simple
stopping problem.

1.2 The optimization problem and dual approach
In the classical Merton problem (Merton [99]), the optimal control terms are derived from the
HJB equation in the form of the first order and second order derivatives of the value function. In
this approach, we eventually have to solve the HJB equation by a numerical method or by a good
ansatz. Jin Choi and Shim [78] and Gerrard et al. [63] give a theoretical representation of the value
function and critical wealth level in the form of duality function. However, the exact solution is
hard to determine from the dual form and the existence and uniqueness of the solution are not
rigorously proved. In this section, we will determine the optimal control term before we reach
the HJB equation. Then by the martingale method, we can relax the constraints and transform the
optimal control and stopping problem to a dual problem. Finally, we give the mathematical form
of the solution and prove the existence and uniqueness of the optimal stopping time.
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1.2.1 Utility and conjugate form
The Cobb-Douglas utility function was introduced in Cobb and Douglas [23] and is often used
in economics for analyzing supply-side production in the relationship between capital and labor
inputs. This utility function has a decreasing marginal rate of substitution and a constant utility
elasticity. We choose the utility presented in Barucci and Marazzina [4] with a small adjustment for
the elasticities of leisure and consumption. We assume the utility function U1(ct , lt) to be isoelastic
(with constant elasticity coefficient) and the relationship between leisure lt and consumption ct is
similar to the labor and capital in the original Cobb-Douglas utility function:

U1(c, l) =
lβ (1−p1)cα(1−p1)

1− p1
. (1.2.1)

After annuitization the leisure rate is l = 1, so U1(·) becomes a power utility

U2(x) =
x1−p2

1− p2
, (1.2.2)

where p1, p2 > 1 are the coefficients of relative risk aversion and α, β > 0 are elasticities of
consumption and leisure.

We can easily check that U1 and U2 satisfy elasticity requirement for utility functions, and
existence of the value function. Therefore, the instantaneous utility function U (ct , lt) at time t is a
concave function for consumption and leisure

∂U1

∂ct
> 0,

∂U1

∂ lt
> 0.

Since lt represents leisure, the fact that ∂U1
∂β

=
(︂

lβ cα

)︂−p1
lβ ln l < 0 shows that as the value of

β increases, the pensioner’s utility from the same amount of leisure decreases which means he
prefers to work less. Therefore, we say β is the pensioner’s preference to labor. We also define
α as the pensioner’s preference to consume. As the value of α increases, the pensioner prefers to
consume more.

We define the conjugate function Ū1 and Ū2 for U1 and U2 as

Ū1(y) = sup
0≤ct

L≤lt≤1

[U1(c, l)− (c+wl)y] , (1.2.3)

and

Ū2(y) = sup
x≥0

[U2(kx)− xy] . (1.2.4)

which is the Legendre-Fenchel transform for a concave function.
To optimize [U1(c, l)− (c+wl)y] over positive c and l, first order conditions will give the

optimizer since the function is concave in both c and l. For optimization of [U1(c, l)− (c+wl)y]
over the constraint l ∈ [L,1], we consider the following two cases
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Definition 1.3. Optimization rules and conditions for the utility function:

(i) the optimizer of equation (1.2.3) is unconstrained if the variables belong to some constraint
set, or

(ii) the optimizer of equation (1.2.3) is on the boundary of the constraint set.

If case (i) holds, it means that l ∈ [L,1] but in terms of y this condition is equivalent to y ∈ [ỹ, ȳ].
We can derive the unconstrained optimizer of c and l from first order condition

1
w

∂Ū1

∂ l
=

∂Ū1

∂c
= y, (1.2.5)

from equation (1.2.5) we get the unconstrained relationship between c and l when l is uncon-
strained

c =
αw
β

l, for l ∈ [L,1]. (1.2.6)

Replacing c in the first order equation (1.2.5) using the unconstrained relationship (1.2.6), we
obtain the following optimal condition for unconstrained l

y = α

(︃
αw
β

)︃α(1−p1)−1

l(α+β )(1−p1)−1, for l ∈ [L,1]. (1.2.7)

Equivalently, we define the unconstrained region for y as [ỹ, ȳ]

ỹ = α

(︃
αw
β

)︃α(1−p1)−1

≤ y ≤ α

(︃
αw
β

)︃α(1−p1)−1

L(α+β )(1−p1)−1 = ȳ,

and the unconstrained region for c as [c̄, c̃]

c̄ =
αw
β

L ≤ c ≤ αw
β

= c̃.

If case (i) fails, i.e., when y /∈ [ỹ, ȳ] then according to case (ii) the boundary condition gives
y < ỹ and c > c̃ or y > ȳ and c < c̄. Denote by l∗(c) = βc

αw and according to the optimization rules,
we rewrite (1.2.3) as

Ū1(y) ={U1(c,L)− (c+wL)y}1y>ȳ

+{U1(c, l∗(c))− (c+wl∗(c))y}1ỹ≤y≤ȳ +{U1(c,1)− (c+w)y}1y<ỹ. (1.2.8)
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If we take the partial derivative with respect to c in equation (1.2.8), we get the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂c
U1(c,L)− y = 0, y > ȳ

∂

∂c
U1(c, l∗(c))− (1+

α

β
)y = 0, ỹ ≤ y ≤ ȳ

∂

∂c
U1(c,1)− y = 0, y < ỹ,

(1.2.9)

which solves the optimal consumption on three regions: the full labor region (0, ỹ) for c > c̃, the
full leisure region (ȳ,∞) for 0 < c < c̄, and the flexible labor region [ỹ, ȳ] for c ∈ [c̄, c̃].

Solving each equation for c in equation (1.2.9), we get the optimal value of c⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c = (y/α)p′1−1 L− β

α
p′1, y > ȳ

c = (y/α)p−1 (αw/β )
β

(α+β )
p
, ỹ ≤ y ≤ ȳ

c =
(︂ y

α

)︂p′1−1
, y < ỹ,

(1.2.10)

where

p =
(α +β )(1− p1)

(α +β )(1− p1)−1
∈ (0,1), (1.2.11)

p′1 =
α (1− p1)

α (1− p1)−1
∈ (0,1). (1.2.12)

Therefore, equation (1.2.8) is reduced to

Ū1(y) =

[︄
Ãyp′1 −wy

]︄
1{0<y≤ỹ}+Ayp1{ỹ<y<ȳ}+

[︄
Āyp′1 −wLy

]︄
1{ȳ≤y}, (1.2.13)

where A =−α+β

p α
− α

α+β β
− β

α+β w
β

α+β
p
< 0, Ã =−α

1−p′1
p′1

< 0 and Ā =−α
1−p′1
p′1

L− β

α
p′1 < 0.

The optimal value of c and l are given by c∗ = Ic(y) and l∗ = Il(y)

Ic(y) =
(︂ y

α

)︂p′1−1
1{0<y≤ỹ}+

(︂ y
α

)︂p−1
(︃

αw
β

)︃ β

(α+β )
p

1{ỹ<y<ȳ}

+
(︂ y

α

)︂p′1−1
L− β

α
p′11{ȳ≤y}, (1.2.14)

Il(y) =1{0<y≤ỹ}+
(︂ y

α

)︂p−1
(︃

αw
β

)︃ β

(α+β )
p−1

1{ỹ<y<ȳ}+L1{ȳ≤y}, (1.2.15)

where Ic(·) is the inverse of the marginal utility of consumption ∂U1
∂c and Il(·) is the inverse of

the marginal utility of labor ∂U1
∂ l . We can easily show that Ic and Il are decreasing functions; the

function Ic maps (0,∞) onto itself and satisfies Ic(0+) = +∞ and Ic(+∞) = 0; the function Il
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satisfies Il(0+) = 1 and Il(+∞) = L.
The conjugate function Ū2(y) is given by

Ū2(y) =U2(kx∗)− x∗y =− 1
p′2

(︂y
k

)︂p′2
,

where

p′2 =
p2 −1

p2
∈ (0,1). (1.2.16)

The optimal values x∗ and he marginal utility I(y) are given by

x∗ = I(y) =
1
k

(︂y
k

)︂p′2−1
. (1.2.17)

Through the Legendre-Fenchel transform for concave functions (1.2.3) and (1.2.4) and inverse
marginal functions Ic(·), Il(·) and I(·), we have

Ū ′
1(y) =−(Ic(y)+wIl(y)) ,

Ū ′
2(y) =−I(y),

and

U2(kx) =min
y>0

[Ū2(y)+ xy] = Ū2
(︁
I′(x)

)︁
+ xI′(x).

It can be shown that Ū1(·) and Ū2(·) are strictly decreasing and convex. We derive the duality form
of the utility function and give the optimal controls ct , lt and πt depending on the dual process y.
Thus the original optimal problem could be free from the control terms and be simplified by solving
the relationship between Xt and the dual process y.

1.2.2 Martingale and convex duality methods
In solving the optimization problem by dynamic programming or the martingale approach, the
control process that influences the state process plays an essential role in carrying out the opti-
mization. However, through the duality form of the utility function we find the optimal controls
can be obtained from the dual process y. Now we look into the duality of the wealth process Xt by
means of a series of super-martingales satisfying the budget constant (1.1.8) at the same time.

We define the dual of Xt as the shadow process Y y
t

Y y
t = yeρtHt . (1.2.18)

with the stochastic dynamics

dYt

Yt
= (ρ − r)dt −θdBt . (1.2.19)

13



For a Lagrange multiplier y > 0, we give the dual objective function as the Lagrange function of
(1.1.4) and its budget constraint (1.1.8)

J̄(x,y;τ) = J(x;τ)+ y
(︃(︂

x+
w
r

)︂
−E

[︃∫︂ τ

0
Ht(ct +wlt)dt +Hτ

(︂
Xτ +

w
r

)︂]︃)︃
. (1.2.20)

By the inequality of budget constraint (1.1.8), it is obvious that

J̄(x,y;τ)≥ J(x;τ). (1.2.21)

Applying the conjugate utilities (1.2.3) to equation (1.2.20)), we move the supremum into the
expectation and obtain the following inequality

sup
ct ,lt

J̄(x,y;τ) =sup
ct ,lt

E
[︃∫︂ τ

0
e−ρt (U1 (ct , lt)−Ht (ct +wlt))dt

+

(︃
e−ρτ

ρ
U2(kXx

τ )−Hτ

(︂
Xτ +

w
r

)︂)︃]︃
+ y
(︂

x+
w
r

)︂
≤E

[︄∫︂ τ

0
e−ρt sup

ct ,lt
(U1 (ct , lt)−Ht (ct +wlt))dt

+ sup
ct ,lt

(︃
e−ρτ

ρ
U2(kXx

τ )−Hτ

(︂
Xτ +

w
r

)︂)︃]︄
+ y
(︂

x+
w
r

)︂
=E

[︄∫︂ τ

0
e−ρtŪ1(Y

y
t )dt + e−ρτ

(︃
1
ρ

Ū2(ρY y
τ )−

w
r

Y y
τ

)︃]︄
+ y
(︂

x+
w
r

)︂
. (1.2.22)

We define the equation at the right side of (1.2.22) as the dual value function

V̄ (x,y;τ) = E

[︄∫︂ τ

0
e−ρtŪ1(Y

y
t )dt + e−ρτ

(︃
1
ρ

Ū2(ρY y
τ )−

w
r

Y y
τ

)︃]︄
+ y
(︂

x+
w
r

)︂
. (1.2.23)

Actually equality can be obtained with the optimal control given in (1.2.10), we have the equality

V̄ (x,y;τ) = sup
ct ,lt

J̄(x,y;τ). (1.2.24)

Therefore, the dual problem is reduced to an optimal stopping problem

V̄ (x,y) = sup
τ∈S

V̄ (x,y;τ)

= sup
τ∈S

E

[︄∫︂ τ

0
e−ρtŪ1(Y

y
t )dt + e−ρτ

(︃
1
ρ

Ū2(ρY y
τ )−

w
r

Y y
τ

)︃]︄
+ y
(︂

x+
w
r

)︂
. (1.2.25)

By equation (1.2.21) we obtain the following inequality between the original and dual objective
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functions

V (x;τ) = sup
(ct ,lt ,πt)

J(x;τ)≤ sup
(ct ,lt ,πt)

J̄(x,y;τ) = V̄ (x,y;τ)≤ sup
τ

V̄ (x,y;τ) = V̄ (x,y). (1.2.26)

The two inequalities in (1.2.26) give us the following important information:

1. As long as the first inequality in (1.2.26) is obtainable, the control terms ct , lt and πt given
from the dual value function (1.2.25) is the optimal controls to the original problem

c∗t = Ic
(︁
Y y

t
)︁
, l∗t = Il

(︁
Y y

t
)︁

and X∗
τ = I

(︁
ρY y

τ

)︁
, ∀0 ≤ t ≤ τ a.s.

2. If the second inequality in (1.2.26) holds, then we can obtain the relationship between the
optimal wealth process Xt and the shadow process Yt .

The first inequality in (1.2.26) is obtainable as long as there exists an πt that satisfies the budget
constraint

x+
w
r
= E

[︃∫︂ τ

0
Ht
(︁
Ic(Y

y
t )+wIl(Y

y
t )
)︁

dt +Hτ

(︂
I(ρY y

τ )+
w
r

)︂]︃
, (1.2.27)

The second inequality in (1.2.26) holds for all x >−w
r and y > 0, we obtain the following inequal-

ities

V (x;τ)≤ inf
y>0

V̄ (x,y;τ)≤ inf
y>0

V̄ (x,y). (1.2.28)

as well as for the original and the dual problems

V (x) = sup
τ

V (x;τ)≤ sup
τ

inf
y>0

V̄ (x,y;τ) = inf
y>0

V̄ (x,y). (1.2.29)

Next, we present the main results in this paper and show the optimal solution obtained through
the dual problem is the optimal solution to the original problem. Firstly, we show that the equality
of the budget constraint (1.2.27) is obtainable.

Lemma 1.4 (Obtainable budget constraint). For any τ , any Fτ -measurable B with P [B > 0] = 1,
any progressively measurable process ct ≥ 0 and lt ∈ [0,1]that satisfy, for all t ≤ τ

E
[︃∫︂ τ

0
Ht (ct +wlt)dt +Hτ

(︂
B+

w
r

)︂]︃
= x+

w
r

there exists a portfolio process πt such that, a.e.

X (ct ,lt ,πt)
t >−w

r
, for all 0 ≤ t < τ , and X (ct ,lt ,πt)

τ = B.

Proof: see Appendix 5.1.

Note that if L ≤ lt ≤ 1, we will have the following inequality giving the lower bound for Xt

Xt ≥−w
r
(1−L).
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Before we obtain the optimal dual function, we need to show that all x and y that satisfies
(1.2.27) cover (−w

r ,∞) and (0,∞). To see this, we define the following map on (0,∞),

Xτ(y) = E
[︃∫︂ τ

0
Ht
(︁
Ic(Y

y
t )+wIl(Y

y
t )
)︁

dt +Hτ

(︂
I(ρY y

τ )+
w
r

)︂]︃
− w

r
, for τ ∈ S, (1.2.30)

Recall from equations (1.2.14), (1.2.15) and (1.2.17) that Ic(·), Il(·) and I(·) are continuous, strictly
decreasing functions satisfy Ic(0+) = I(0+) = +∞ and Ic(+∞) = I(+∞) = 0. We can verify that
X(y) is a continuous, strict decreasing function with X(0+) = ∞ and X(∞) > −w

r . Therefore,
Xτ(y) is a map from (0,∞) onto (−w

r ,∞) for all τ ∈ S. Thus Xτ has an one-to-one inverse
function Yτ(·) from (−w

r ,∞) onto (0,∞) with Yτ(0) =∞ and Yτ(0) =−w
r . For any τ ∈ S, and

all y ∈ (0,∞)⋃︂
τ∈S,y∈(0,∞)

Xτ(y), (1.2.31)

covers (0,∞). For any τ ∈ S, and all x ∈ (−w
r ,∞)⋃︂

τ∈S,x∈(−w
r ,∞)

Yτ(x), (1.2.32)

covers (−w
r ,∞). Therefore, the two sets (1.2.31) and (1.2.32) have no gap between initial x in

original problem and initial y in dual problem. Therefore, we can conclude the second inequality
in (1.2.29) holds and we can obtain the following result given the smoothness of the dual function

Lemma 1.5 (Optimal dual function). If V̄ (x,y) of (1.2.25) is differentiable at y > 0, then

∂V̄
∂y

(x,y) = 0. (1.2.33)

Proof: see Appendix 5.2.

By Lemma 1.5 and the inequality in (1.2.26), we can obtain the optimal solution from the
following theorem.

Theorem 1.6 (Attainable dual problem). Suppose the value function V (x) defined in (1.1.5) is
attainable. For any x > 0, we have

V (x) = inf
y>0

V̄ (x,y). (1.2.34)

Conversely, if ct = Ic
(︁
Y y

t
)︁

and lt = Il
(︁
Y y

t
)︁

are optimal then equation (1.2.34) hold and the optimal
stopping rule is τ∗y = inf

{︁
t
⃓⃓
Y y

t ≤ y∗
}︁

.

Proof: see Appendix 5.3.

It remains to solve the dual problem (1.2.25) and then we can find the solution to the original
problem (1.1.5) by Lemma 1.5 and Theorem 1.6. Following the dynamic programming principle,
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we consider the stopping problem on a small interval [t,τ]

ψ (t,y) = sup
τ>t

E

[︄∫︂ τ

t
e−ρsŪ1(Ys)ds+ e−ρτ

(︃
1
ρ

Ū2(ρYτ)−
w
r

Yτ

)︃⃓⃓⃓
Yt = y

]︄
. (1.2.35)

Define the differential operator L = (ρ − r)y ∂

∂y +
1
2θ 2y2 ∂

2

∂y2 , then we obtain the following HJB
equation (see Fleming and Rishel [59])

max

{︄
e−ρt

(︃
1
ρ

Ū2(ρy)− w
r

y
)︃
−ψ(t,y),

∂ψ

∂ t
+Lψ + e−ρtŪ1(y)

}︄
= 0. (1.2.36)

We use the ansatz ψ(t,y) = e−ρtφ(y) to separate the time term from the objective function, so
that the HJB equation (1.2.36) can be written as

max

{︄
1
ρ

Ū2(ρy)− w
r

y−φ(y), −ρφ(y)+Lφ(y)+Ū1(y)

}︄
= 0. (1.2.37)

By analogy of Section 2.7 in Karatzas, Shreve, Karatzas, and Shreve [82], the solution to
the stopping problem (1.2.35) satisfies the following variational inequalities. We determine the
boundary y∗ and a continuous function φ ∈C1 (R+)∩C2 (R+ \{y∗}) satisfying

Definition 1.7. (Variational inequality) Find a free boundary y∗ and a non-increasing convex func-
tion φ ∈C1 (R+)∩C2 (R+ \{y∗}) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−ρφ +Lφ +Ū1(y) = 0, y∗ < y
−ρφ +Lφ +Ū1(y)≤ 0, 0 < y ≤ y∗

φ(y)≥ 1
ρ

Ū2(ρy)− w
r

y, y∗ < y

φ(y) =
1
ρ

Ū2(ρy)− w
r

y, 0 < y ≤ y∗.

(1.2.38)

If φ(y) solves the variational inequalities (1.2.38) then according to the definition of the dual
problem (1.2.25) the solution to the dual problem is given by

V̄ (x,y) = ψ(0,y)+ y
(︂

x+
w
r

)︂
= φ(y)+ y

(︂
x+

w
r

)︂
, (1.2.39)

thus we have the following verification theorem as a result of (1.2.25) and (1.2.38).

Theorem 1.8 (Verification theorem). Suppose φ(y) is a solution to (1.2.38) and there exists a y∗

such that φ ′(y) is absolutely continuous at y∗. Then V̄ (x,y) = φ(y)+ y
(︁
x+ w

r

)︁
and τ∗y = inf{t ≥

0 : Y y
t ≤ y∗} are the unique solution of the problem (1.2.25).

Proof: see Appendix 5.4.

The following two lemmas give the unique solution to the variational inequalities.
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Lemma 1.9 (Existence and uniqueness). If p′1 < p′2 then there exists an unique y∗ > 0 such that

∫︂ y∗

+∞

Ū1(z)+
n(p′2)

ρ
Ū2(ρz)+wz

zn1+1 dz = 0, (1.2.40)

where n(x) = 1
2θ 2x2 +(ρ − r− 1

2θ 2)x−ρ .

Proof: see Appendix 5.5.

Lemma 1.10 (Optimal solution). If p′1 < p′2 then there exists an unique free boundary y∗ > 0 and
a unique function φ that solves the free boundary ODE in (1.2.38).

φ(y) =

⎧⎪⎪⎨⎪⎪⎩
Cyn2 +

2yn1

θ 2(n1 −n2)

∫︂ y

+∞

−Ū1(z)
zn1+1 dz− 2yn2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz, y∗ < y

1
ρ

Ū2(ρy)− w
r

y, 0 < y ≤ y∗,
(1.2.41)

where

C =
y∗−n2

n1 −n2

(︃
(n1 − p′2)

1
ρ

Ū2(ρy∗)− (n1 −1)
w
r

y∗
)︃
,

and n1 and n2 are the two roots of

n(x) =
1
2

θ
2x2 +(ρ − r− 1

2
θ

2)x−ρ,

with n1 > 1, n2 ≤−2(ρ−r)
θ 2 .

Proof: see Appendix 5.6.

Consider the case of no labor income (L = 1). By Lemma 1.10 we have

2Āy∗p′1

θ 2(p′1 −n1)
=

(p′2 −n2)y∗
p′2

ρ p′2

(︂
ρ

k

)︂p′2
.

The value p′1 =
α(1−p1)

α(1−p1)−1 and p′2 =
p2−1

p2
given in (1.2.12) and (1.2.12) are the same in the models

with labor income or without labor income. The optimal solution to the model without labor exists
if and only if p′1 ̸= p′2 and the unique solution to the dual value function is given by

y∗ =
(︃
−

p′1
p′2

θ 2

2ρ
(p′1 −n1)(p′2 −n2)α

p′1−1
(︂

ρ

k

)︂p′2
)︃ 1

p′1−p′2
.

According to the Lemma 1.10, we define the critical wealth level

x∗ = I(ρy∗).
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By Lemma 1.5 and Lemma 1.10, we obtain

x =−φ
′(y)− w

r

=−Cn2yn2−1 − 2n1yn1−1

θ 2(n1 −n2)

∫︂ y

+∞

−Ū1(z)
zn1+1 dz+

2n2yn2−1

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz− w

r
,

From Theorem 1.6, Theorem 1.8 and Lemma 1.10, we have the following theorem which gives
the main results of the original value function.

Theorem 1.11 (Optimal value function). If α(1− p1) > 1− p2, then there exists an unique free
boundary x∗ that solves the optimal stopping problem (1.1.5) and the value function V (x) is given
by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y
(︂

x+
w
r

)︂
+Cyn2 +

2yn1

θ 2(n1 −n2)

∫︂ y

+∞

−Ū1(z)
zn1+1 dz

− 2yn2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz, x < x∗

1
ρ

U2(x), x∗ ≤ x,

(1.2.42)

and the value of x∗ is given by

x∗ = I(ρy∗),

where y∗ is determined by the following equation

2y∗n1

θ 2

∫︂ y∗

+∞

Ū1(z)+wz
zn1+1 dz =−(p′2 −n2)

1
ρ

Ū2(ρy∗), (1.2.43)

and y is the solutions to the equation

x =−Cn2yn2−1 − 2n1yn1−1

θ 2(n1 −n2)

∫︂ y

+∞

−Ū1(z)
zn1+1 dz+

2n2yn2−1

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz− w

r
. (1.2.44)

Equation (1.2.44) in Theorem 1.11 shows the map between wealth level x in the original prob-
lem (1.1.5) and the shadow price y in dual problem (1.2.25). To obtain the optimal wealth process
and optimal strategy, we let Yt be the stochastic process defined in equation (1.2.18) and y is the
solution from the Theorem 1.11. We substitute Yt for y and Xt for x into equation (1.2.44), then we
get the optimal wealth process

Xt =−Cn2(Yt)
n2−1 − 2n1(Yt)

n1−1

θ 2(n1 −n2)

∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz

+
2n2(Yt)

n2−1

θ 2(n1 −n2)

∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz− w

r
. (1.2.45)

The optimal stopping time to both the original problem (1.1.5) and the dual problem (1.2.25) is
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given by

τ
∗ = τ̄

∗
y = inf

{︁
t : Y y

t ≤ y∗
}︁
.

Theorem 1.12 (Optimal controls). The optimal strategies (c∗t , l
∗
t ,π

∗
t ,τ

∗) are given by

c∗t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︃
Yt

α

)︃p′1−1

, if Yt < ỹ(︃
Yt

α

)︃p−1(︃
αw
β

)︃ β

(α+β )
p

, if ỹ ≤ Yt ≤ ȳ(︃
Yt

α

)︃p′1−1

L− β

α
p′1, if ȳ < Yt ,

l∗t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if Yt < ỹ(︃

Yt

α

)︃p−1(︃
αw
β

)︃ β

(α+β )
p−1

, if ỹ ≤ Yt ≤ ȳ

L, if ȳ < Yt ,

π
∗
t =

µ − r
σ2

(︄
Cn2(n2 −1)Y n2−1

t − 2Ū1(Yt)

θ 2Yt

+
2n1(n1 −1)Y n1−1

t

θ 2(n1 −n2)

∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz− 2n2(n2 −1)Y n2−1

t

θ 2(n1 −n2)

∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

)︄
,

and

τ
∗ = inf

{︁
t > 0 : Xt ≥ x∗

}︁
.

Proof: see Appendix 5.7.

We obtain the explicit solutions for the optimal control terms (c∗t , l
∗
t ,π

∗
t ) in terms of the dual

process. As for the optimal stopping time τ∗, it can be solved by numerical methods, which we
will present in the next section.

1.3 Numerical Results
In this section, we present the analytic results and simulation results. In the first part, the analytic
results show the connection between the amount of the annuity, labor rate and wage rate under
different annuity schemes. In the second part, we investigate the optimal annuity time that is
not revealed from the analytic solution. We choose a typical market scenario for investment and
simulate the behavior of retirees by Monte-Carlo methods. Throughout the applications we analyze
the optimal consumption, labor and investment strategies under the same market scenario with

20



different labor constraints. Some comparisons are made between retirees with labor income and
without labor income after retirement. We show statistical results including the distribution of the
optimal annuitization time τ and the size of the annuity upon annuitization.

1.3.1 Analytic results
Recall the optimal solution x∗ which is the critical wealth level that once reached triggers annu-
itization. We are interested in the dependency of the optimal solution x∗ on the parameters of the
problem. In our model, we have introduced the wage rate w and labor rate L = 1− l as new fac-
tors in addition to the consumption rate ct . We can also extend the solutions from Lemma 1.10
and Theorem 1.11 to the model without labor by simply letting w = 0 and L = 1. We include the
weights given to the penalty for running consumption v1 and the penalty for final annuitization,
v2. The ratio of these rates v1/v2 is the relevant quantity and it gives us the following objective
function.

V (x) = max
ct ,lt ,πt ,τ

Ex

[︄
v1

∫︂ τ

0
e−ρtU1(ct , lt)dt + v2

e−ρτ

ρ
U2(kX0,x

τ )

]︄
.

We choose the death rate of a male retiree at age 60 to be δ = 0.00887 with the same risk aversion
between consumption and annuity p1 = p2. Financial profiles and utility schemes are given by the
parameters

r = 0.03; µ = 0.08; σ = 0.2; ρ = 0.03887; k = 0.095;

p1 = 2; p2 = 2; α = 0.5; β = 1; v1 = 0.01; v2 = 0.1;

The optimal solution x∗ and value functions are given in Figure (1.1) from which we see that the
extra labor income after retirement has a significant impact on increasing the critical wealth level.
If the retiree does not work after retirement, then his critical wealth level is x∗(w) = 1028.05.
Otherwise, his critical wealth level are x∗(w) = 1179.42 for wage rate w= 50 and x∗(w) = 1413.38
for wage rate w = 100.
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Figure 1.1: Value Function with different wage rates and labor rates
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Figure 1.2: Optimal solution (p1 = p2 = 2, v1 = v2 = 0.01).

Recall that the value β is the retiree’s preference to labor. Since ∂U1/∂β < 0, a retiree with a
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higher β prefers to work less. Figure 1.2 shows the dependence of critical wealth level x∗ on the
choice of labor and consumption. We obtain the following results

1) If α(1− p1) = 1− p2, the wage rate does not affect the annuity which is shown in the case
α = 1 in Figure 1.2.

2) If α(1− p1) > 1− p2, the wage rate has decreasing marginal effect on annuity which is
shown in the case α = 0.5 in Figure 1.2.

3) Everything else equal, the critical wealth level x∗ increases as β decreases. In other words,
a labor tolerant retiree receives a higher annuity than a labor averse retiree.

4) Everything else equal, the critical wealth level x∗ increases as α increases. In other words,
the retiree consumes less before annuitization will receive a higher annuity than the one who
consumes more.
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Figure 1.3: Annuity/wage ratio as function of Sharpe ratio

Figure 1.3 shows the dependence of annuity/wage ratio on the Sharpe ratio and (v1/v2). The
value of the Sharpe ratio is changed by varying the value of µ ∈ (0.07,0.15), σ ∈ (0.1,0.25).
The weight v1 is fixed at 0.01 and the weight v2 is chosen between 0.01 and 0.1. The relevant
quantity v1/v2 shows the retiree’s preference between consumption and annuitization. As shown
in Figure 1.3, the retiree with high ratio of v1/v2 = 1 has a lower annuity than the retiree with low
ratio of v1/v2 = 0.1. This can be explained from the weights of utility functions. The retiree with
low ratio of v1/v2 gets less utility from consumption and gets a higher utility from the annuity as
compensation. On the contrary, the pensioner with high ratio of v1/v2 receives higher utility from
consumption and receives less utility from the annuity.
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1) The optimal value with labor is higher than the optimal value without labor in any scenario.
The effect of labor on the optimal solution x∗ becomes more obviously as the Sharpe ratio
increases.

2) Everything else equal, increasing the ratio of v1/v2, increases the critical level and it becomes
harder to reach x∗ when the Sharpe ratio is also high. This can be explained easily. For a
higher ratio of v1/v2, the retiree puts higher weight on the stopping utility and makes the
running utility less important in the objective function, so a higher value is formed.
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Figure 1.4: Optimal annuity as a function of wage rate and labor rate

Figure 1.4 shows the optimal annuity as a function of wage rate w and maximum labor rate
L. Through these results, we can conclude that the labor income is a crucial factor to increase the
critical wealth level and the relevant quantity v1/v2 has a large impact on balancing consumption
and the final annuity. In next section, we assume the retiree wants a higher target value of the
annuity, therefore, a low ratio of v1/v2 will be chosen in the following simulations.

1.3.2 Simulation results
In this section, we apply the numerical results of our model to analyze the behavior of retirees with
different labor schemes. The following scenarios have been implemented by Monte-Carlo simu-
lation for n = 1000 financial scenarios and in each scenario the retiree has adopted the optimal
investment, labor, and consumption strategies. We also set 15 years as the deadline for annuitiza-
tion whether the retiree reaches the critical wealth level or not. We study the behavior of a age 60
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male pensioner (δ = 0.00875) with labor income (w = 100) or no labor income (w = 0). We vary
the initial lump sum from x0 = 300 to x0 = 1500 and choose other parameters as following

r = 0.03; µ = 0.08; σ = 0.20; k = 0.095; L = 0.5867

p1 = 2; p2 = 2; α = 0.5; β = 0.65; v1 = 0.01; v2 = 0.1.

In this case the critical wealth level is

x∗(w = 0) = 1028.05, and x∗(w = 100) = 1413.38.

We investigate how labor income affects annuitization. Firstly, we compare two models one
with labor income (w = 100) and the other one without labor income (w = 0) by fixing the other
parameters.
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Figure 1.5: Average years to annuitization as a function of initial wealth

Figure 1.5 shows the simulation results of the optimal annuitization (τ∗) time shown as scatter
points with fitted straight lines where we start the simulations with different initial wealth (x0) and
different labor schemes (w). As the optimal annuitization times are linear to the initial wealth, we
can see that the labor income increases optimal annuitization time as the critical wealth is increased
from from x∗(w = 0) = 1028.05 to x∗(w = 100) = 1413.38. Only when the initial wealth x0 < 600,
does the labor income decrease the optimal annuitization time.
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Figure 1.6: Histogram: The distribution of the optimal annuitization time
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Figure 1.7: Distribution of the present value of total annuity of the pensioner

Figure 1.6 and Figure 1.7 shows the distribution of annuitization time and the present value
of the final annuity of the retiree with labor income (w = 100). In both figures, the first columns
labeled ’Nan’ shows 159 cases out of 1000, in which the retiree has failed to reach the critical
wealth level within 15 years and thus no optimal annuitization occurred. In other words, the
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probability of annuitization within 15 years is 84.10% and the average annuitization time is 5.57
years after retirement. In 59% of the cases, the annuity amount is greater than 4000 and in 25.1%
of the cases the annuity amount is less than 4000. The average annuity amount is 3682.60.

Secondly, we compare the two retirees with the same critical level but different labor scheme.
The first retiree has labor scheme (L = 0.5867, β = 0.65) and second one has labor scheme (L = 1,
β = 1) such that they have the same critical level x∗ = 1413.38. Figure 1.8 shows their optimal
strategies when they face the same market case. The graphs on left side of Figure 1.8 report
the strategies of the first retiree who is willing to work more after retirement. The first retiree’s
investment strategy is to hold stocks in a long position until his total wealth hits the critical level.
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Figure 1.8: Optimal strategies: portfolio, consumption and labor

The graphs on the left side in Figure 1.8 report the strategies of the first retiree and the graphs
on right side in Figure 1.8 report the strategies of the second retiree. From the portfolio amount we
see they implemented the opposite investment strategies. The first retiree invests more when the
stock price is increasing while the second retiree intends to buy low and sell high. We can notice
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that the first retiree takes longer to annuitize than the second one because his wealth accumulation
speed is lower than the second retiree. However, from the comparison of consumption and labor,
the first retiree both consumes and works more than the second retiree. We also find the interesting
relationship between the optimal strategies. The consumption rate is exactly positively proportional
to total wealth. The labor rate is opposite to the tendency of stock price. Both retirees tend to work
more when the stock price is declining and work less when the stock price is increasing. Therefore,
we can conclude that the labor income is a hedging tool for the portfolio and the total wealth is
sustained with high stability with the help of labor income.

Table 1.1: Comparison of the expected present value of labor income, consumption, annuity and
annuitization time

Labor Consumption Annuity Total EPV Years
model 1 model 2 model 1 model 2 model 1 model 2 model 1 model 2 model 1 model 2

min 3.02 0.37 5.81 4.52 1096.30 302.49 1647.20 735.98 1 1
5th 10.55 1.22 19.59 13.64 1357.30 563.53 1834.90 992.24 1 1

25th 19.90 3.63 29.98 26.57 3507.10 3672.60 3859.60 3942.70 1 1
50th 27.30 6.71 36.92 32.87 4156.20 4220.30 4285.90 4318.10 3 3
75th 30.93 11.77 41.67 36.94 4367.30 4403.30 4417.80 4438.10 9 7
95th 32.89 23.39 47.50 42.20 4444.40 4479.30 4466.10 4498.30 15 15
max 34.91 40.44 52.90 46.95 4516.30 4581.40 4536.30 4597.70 15 15

mean 25.01 8.69 35.59 31.18 3682.60 3676.60 3877.80 3839.40 5.57 5.08

Finally, we summarize the statistical difference between ’model 1’ with labor scheme (L =
0.5867, β = 0.65) and ’model 2’ with labor scheme (L = 1, β = 1), which is shown in Figure
1.1. For the retirees who do not reach the critical wealth level within 15 years, we force them to
annuitize at the end of 15 years. All the streams of labor income, consumption and annuity are
discounted to retirement with the interest rate r. The labor column reports the expected present
value (EPV) of yearly labor income before annuitization. The consumption column reports the
EPV of yearly consumption before annuitization. The annuity column reports EPV of total annuity
from annuitization to death. Total EPV reports the EPV of all consumption and annuity since
retirement. On average, the optimal annuitization, annuity and total EPV occurs in both models
are almost the same. However, the consumption in model 1 is higher than that in model 2 in all
cases and the minimums of annuity and total EPV in model 1 are almost double the amounts in
model 2. Therefore, the comparison indicates model 1 is more stable in the final results and thus
more appealing to risk-averse pensioners.

1.4 Conclusion
In this chapter, we fully solved the maximization of the Cobb-Douglas utility with stochastic con-
trol and deterministic control, and derived a closed-form solution to the value function. We give
a rigorous proof that shows our solution is the optimal one to the post-retirement annuitization
problem with extra labor income. We studied the explicit solution and the property of adding the
extra labor income to the system showing that the utility is concave in labor rate and convex in
wage rate. In the simulation, we find the optimal annuitization time is strongly linear to the initial
wealth in both cases with and without labor income. We also find there exits a critical wealth level
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below which the extra labor income shrinks the annuitization time and above which the extra labor
income postpone the annuitization time in exchange for higher annuities. We also find that with
different labor schemes, the pensioners could have similar consumption strategies. However, they
would work and invest in the opposite way and achieve to very different annuitization times.
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Chapter 2

Convolution methods in option pricing

In this chapter, we review option pricing problems with a convolution approach. Basket op-
tions and spread options with multiple underlying assets are examples of options which depend
on multiple assets and risk-factors. The difficulty of pricing high-dimensional options is mainly
from two aspects. Classical numerical approaches suffer from the curse of dimensionality. An-
other important reason is lacking of efficient tools to handle computation under high-dimensional
environments. Monte-Carlo simulation is applicable to high-dimensional problems but as the di-
mension of underlying assets grows, simulation methods require sampling of increasing number
of paths. That is computational complexity grows exponentially as the dimension increases, while
the accuracy declines sharply. Recently, deep-learning method has have achieved great success in
many application areas, such as computer vision, natural language processing, gaming, and other
including finance.

2.1 Option pricing background
Black and Scholes [8] proposed what is now called the Black-Scholes formula to price options.
The Black-Scholes model gives a theoretical calculation of European-style option price given the
following assumptions:

1. The stochastic process of stock price follows a geometric Brownian motion.

2. The stock has no dividends or other cash gains during the life of the option.

3. The financial market is frictionless and complete. There are no taxes, transaction costs
or risk-free arbitrage opportunities. Together with the second point, the investors’ income
comes only from price changes, and there are no other influencing factors.
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4. The risk-free rate is constant. Investors can borrow funds at this rate

Mathematically, the above assumptions give the following formulation of the market model. The
stock price St is geometric Brownian motion

dSt = µStdt +σStdWt , (2.1.1)

where Wt is standard Brownian motion.
Black and Scholes [8] introduced the hedging argument that we can setup a self-financing

portfolio using a certain amount of a risky asset and the corresponding option at a specific invest-
ing/borrowing rate. Under the hedging argument, Black and Scholes [8] find the option V (t,S)
with European-style boundary conditions in a complete market satisfies the PDE given by

∂V
∂ t

+ rS
∂V
∂S

+
1
2

σ
2S2 ∂ 2V

∂S2 = rV,

V (T,S) = g(S),

where g(S) = (S−K)+ or (K−S)− is the boundary condition for call or put options with strike K,
respectively. The Black-Scholes model model leads to a semi-explicit solution for the price of the
option:

Vc = S0N(d1)−Ke−rT N(d2), for a call option

Vp = Ke−rT N(−d2)−S0N(−d1), for a put option

where N(x) is the cumulative function of Gaussian distribution

d1 =
ln
(︂

S0
K

)︂
+
(︁
r+ 1

2σ2)︁T

σsqrtT
,

d2 =
ln
(︂

S0
K

)︂
+
(︁
r− 1

2σ2)︁T

σsqrtT
= d1 −σ

√
T .

We use the Black-Scholes model model as a benchmark to compare the performance of different
models.

A basket option is an exotic option whose underlying asset is composed of a portfolio of differ-
ent assets. For a d-dimensional basket option with the underlying assets St ∈ Rd and a strike price
K, we define the price as a conditional expected form

BC(S,K) = E
[︁
e−rT g(ST )

⃓⃓
S0 = S·

]︁
.

where g(·) is the payoff function at terminal time T ,

g(X) = max
{︁

wT X −K,0
}︁
,

wT X is sum of weighted asset prices, and w represents the percentage investment in each asset.
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2.2 BSDE characterization of option prices
Suppose the stock prices St are defined with d-underlying assets in Rd

St = S0 exp
{︃(︃

µ −d − 1
2

tr
(︁
σσ

T)︁)︃ t +σW t

}︃
, (2.2.1)

and the logarithm of the stock prices St = S0eX t is given by

X t = X0 +
∫︂ t

0
µ (s,X s)−d (s,X s)−

1
2

tr
(︁
σσ

T)︁(s,X s)ds+
∫︂ t

0
σ (s,X s)dW s, (2.2.2)

where d is dividend, the d-dimensional standard Brownian motion W t is subject to d-dimensional
Gaussian density N d(0, t) with the density function

φ (X) = (2πt)−
d
2 e

XT X
2td . (2.2.3)

Denote the contingent claim Yt with payoffs g(XT ) at time T by a backward stochastic process
with a control term Z (see Pardoux and Peng [103])

Yt = g(XT )+
∫︂ T

t
f (s,X s,Ys,Zs)ds−

∫︂ T

t
ZsdW s (2.2.4)

with respect a driver function f which ensures the contingent claim is arbitrage-free under the risk
neutral measure and the strategy Z. In the market with borrowing rate Rt , the driver function for
basket options of European or American type is given by

f (t,x,y,z) =−rty−
(︁
µ

T −dt − r
)︁

σ
−1z+(Rt − rt)

(︁
y− tr

(︁
σ
−1z
)︁)︁−

. (2.2.5)

Equation (2.2.2) and equation (2.2.4) define a forward-backward stochastic differential equations
(FBSDE)⎧⎪⎪⎨⎪⎪⎩

X t = X0 +
∫︂ t

0
µ (s,X s)ds+

∫︂ t

0
σ (s,X s)dW s,

Yt = g(XT )+
∫︂ T

t
f (s,X s,Ys,Zs)ds−

∫︂ T

t
ZsdW s.

(2.2.6)

The problem is to find a pair of adapted processes (Yt ,Zt), which satisfy (2.2.6), given the dynamics
of X t and the terminal condition of YT . To ensure the existence and uniqueness of an adapted
solution to (2.2.6), we define the following Lipschitz conditions and bounded variation conditions
(see e.g. Ma, Morel, and Yong [94]).

Assumption 2.1. For the existence of a solution of the FBSDE, we assume the following conditions
are satisfied:

(i) The functions µ : [0,T ]×Rd → Rd , σ : [0,T ]×Rd → Rd×d , f : [0,T ]×Rd ×R×Rd → R
and g : Rd →R are uniformly Lipchitz continuous with bounded first order derivatives in the
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space variables, for all t ∈ [0,T ],

|µ(t,u)−µ(t,v)| ≤K(|u− v|),
|σ(t,u)−σ(t,v)| ≤K(|u− v|),

|g(u)−g(v)| ≤K(|u− v|),
| f (t,ξ )− f (t,ζ )| ≤K(|ξ −ζ |∞),

for some constant K independent of u,v ∈ Rd and ξ ,ζ ∈ Rd ×R×Rd .

(ii) The volatility Σ = σσT is continuous and bounded in L2 space

∥Σ∥2 ≤C, (2.2.7)

for some positive constant C.

Under the Assumption 1, the FBSDE (2.2.6) has an unique solution and the adapted process in
(2.2.4) is given by (see Duffie [47])

Y t,x
t = E

[︃
g(XT )+

∫︂ T

t
f (s,X s,Ys,Zs)ds

⃓⃓⃓⃓
X t = x

]︃
, (2.2.8)

Given a deterministic function u(t,x) such that Y t,x
t = u(t,x), by the Markov property of the diffu-

sion process, we have

Y s,x
t = u(t,X s,x

t ),

and X s,x
t satisfies

X s,x
t = x+

∫︂ t

s
α (u,Xu)du+

∫︂ t

s
σ (u,Xu)dW u.

By Itô’s formula, we have, for 0 ≤ s ≤ t ≤ 1

Y s,x
t −Y s,x

s = u
(︁
t,X s,x

t
)︁
−u(s,x) , (2.2.9)

=
∫︂ t

s

(︃
∂u
∂ t

+Lu
)︃
(r,X s,x

r )dr+
∫︂ t

s
σ

T∇u(r,X s,x
r )dW r. (2.2.10)

From the the dynamics of Yt defined in (2.2.6), we have

Y s,x
t −Y s,x

s =−
∫︂ t

s
f (r,X s,x

r ,Y s,x
r ,Zr)dr+

∫︂ t

s
ZrdW r. (2.2.11)

where L is the infinitesimal generator of the diffusion X . By equating (2.2.9) and (2.2.11), we
obtain

Zt (X t) = σ
T (t,X t)∇u(t,X t) . (2.2.12)
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Applying ∇xY
s,x

t =∇xu
(︁
t,X s,x

t
)︁
=∇u

(︁
t,X s,x

t
)︁

∂xX s,x
t to equation (2.2.12), we have

Zs,x
t = σ

T (︁X s,x
t
)︁

∂xY
s,x

t
(︁
∂xX s,x

t
)︁−1

.

The following Feynman-Kac formula for coupled BSDE summarizes the connection between
partial differential equations (PDEs), like the heat equation, and expectation of stochastic processes
with controls (see Pham [107]).

Theorem 2.2 (Feynman-Kac Theorem). If the following PDE has a solution u(t,x) ∈ C1,2,

∂u
∂ t

(t,x)+
d

∑
i=1

µi
∂u
∂xi

(t,x)+
1
2

d

∑
i, j=1

Σi, j
∂ 2u

∂xi∂x j
(t,x)+ f

(︁
t,x,u,σT∇xu

)︁
= 0, (2.2.13)

u(T,x) = g(x), (2.2.14)

then the solution u(t,x) can be written as a conditional expectation

u(t,x) = EP

[︃
g(XT )+

∫︂ T

t
f (s,X s,Ys,Zs)ds|X t = x

]︃
,

where X t is an Itô process under the probability measure P

dX t = µ (t,X t)dt +σ (t,X t)dW t ,

and Y and Z are given by

Ys = u
(︁
s,X t,x

s
)︁
,

Zs =∇xu
(︁
s,X t,x

s
)︁

σ(s,X t,x
s ).

for all s ∈ [t,T ].

The PDE problem can be converted to a BSDE problem which can be solved by Monte-Carlo
method. Conversely, the BSDE problem can be converted to a PDE problem (see Pardoux and
Tang [105]), which can be solved by finite difference method. Since we are aiming at solving
a high-dimensional problem, which is restricted by finite difference or finite elements, we will
give a method under the BSDE framework. Probabilistic approaches include approximating the
conditional expectation with a numerical scheme and simulating the forward process by Monte-
Carlo methods (see Bouchard and Touzi [11]).

Next, we look into the discrete form of (2.2.6). Partition the time interval on [0,T ] as 0 =
t0 < t1 < t2 < ... < tN−1 < tN = T . We define ∆ti = ti+1 − ti and ∆W ti =W ti+1 −W ti , where W ti ∼
Nd(0,∆ti), for i = 0,1,2, ...,N −1. Thus we rewrite (2.2.6) as the following Euler discretization

X ti+1 = X ti +µ (ti,X ti)∆ti +σ (ti,X ti)∆W i, (2.2.15)
Yti+1 = Yti − f (ti,X ti,Yti,Zti)∆t +Zti∆W ti. (2.2.16)

By taking the conditional expectation of (2.2.16) with respect to the underlying filtration Ft we
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obtain the following approximation, (see Bouchard and Touzi [11] and Zhang [120])

Yti = Eti
[︁
Yti+1

]︁
+∆ti f (ti,X ti,Yti,Zti) , (2.2.17)

Similarly, by multiplying equation (2.2.16) with ∆Wt then taking conditional expectation we have

Zti =
1

∆ti
Eti
[︁
Yti+1∆W t

]︁
, (2.2.18)

Under Assumption 2.1, for discretization {0 = t0 < t1 < ... < tn = T} and sufficiently small
|∆ti|∞ = max0≤i<n |ti+1 − ti|, Bouchard, Elie, and Touzi [12] show that the following system with
Eti = E [· |X ti = x ]

YT = g(XT ), (2.2.19)

Zti =
1
∆t

Eti
[︁
Yti+1∆W ti

]︁
, (2.2.20)

Yti = Eti
[︁
Yti+1

]︁
+ f

(︁
ti,X ti,Eti

[︁
Yti+1

]︁
,Zti
)︁

∆ti, (2.2.21)

has a solution (Xπ ,Y π ,Zπ) and a first order quadratic error

max
0≤i<n−1

E

[︄
sup

t∈[ti,ti+1)

|Yt −Yti|
2

]︄
+

n−1

∑
i=0

E
[︃∫︂ ti+1

ti
|Zs −Zti|

2 ds
]︃
=O(|∆ti|∞).

In Bouchard et al. [12], the above result is proved for the explicit scheme and the same techniques
can be applied to prove the implicit scheme with f (ti,X ti,Yti,Zti). From the relationship between
the solutions of PDEs and BSDEs, we have that the first order derivative ∂u can be estimated
through equation (2.2.18) by a fast Fourier transform (FFT) (see Hyndman and Oyono Ngou [74]).
Following the same idea, we develop an estimation for the second order derivatives ∂ 2u. When
applying the Fourier transform, the Nyquist relation, giving the minimal sampling frequency that
is free of aliasing in the discrete time sequence, is required in the Discrete Fast Fourier Transform
(DFT) while it is not required in the Fractional FFT algorithm (FrFT). In next section, we review
the Discrete Fourier transform and convolution method in solving the BSDE.

2.3 Convolution method for BSDEs
The fast Fourier transform (FFT) algorithm introduced by Cooley and Tukey [25] is a milestone in
signal processing which reduces the computation time of discrete Fourier transform (DFT) from
O(N2) to O(N logN). The DFT algorithm is widely used in all areas of science and technology.
Inspired by the convolution approach introduced by Hyndman and Oyono Ngou [74] which shows
fast and accurate numerical solutions of the BSDEs associated with European option pricing under
the Black-Scholes model, we aim to extend this method to higher-dimensional models such as
the Heston model (Heston [67]) or basket options. First, we define the Fourier transform and its
inverse as

F [ f (x)] (u) =
∫︂
Rd

e−iuT x f (x)dx, (2.3.1)
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and

F−1 [F(u)] (x) =
1

(2π)d

∫︂
Rd

eixT uF(u)du, (2.3.2)

where i is the complex unit. The Discrete Fourier transform and its inverse are defined in a 2-
dimensional case as

D [ f (x,y)] (ui,v j) =
N−1

∑
k=0

M−1

∑
l=0

e−i
(︂

ki
N + l j

M

)︂
f (xk,yl), (2.3.3)

and

D−1 [F(u,v)] (xk,yl) =
1

NM

N−1

∑
i=0

M−1

∑
j=0

e−i
(︂

ki
N + l j

M

)︂
F(ui,v j), (2.3.4)

where ui, v j, xk, and yl are the (i, j,k, l)th component in the discretization.
When FFT transforms the information from the real space to frequency, inappropriate or ade-

quate sampling frequency may lead to aliasing. When the signal is under sampled, its spectrum has
non-zeros overlapping tails and the tail spectrum is folded back onto other spectrum. This inver-
sion phenomenon in spectrum is called aliasing. The aliasing makes the signal indistinguishable in
both real and frequency and not recoverable since the Fourier transform carries incomplete infor-
mation from the sampled signals. For example, when the sampling rate is T = 1, the signals at the
frequencies 1 and 2π −1 are indistinguishable. The Nyquist equation gives the highest frequency
in the frequency space such that no aliasing occurs (see Lord et al. [93])

∆x∆u =
2π

N
. (2.3.5)

Suppose we sample N and M points on each dimension, the discretization in real space and
frequency space are performed by

xn =

(︃
n− N

2

)︃
∆x, un =

(︃
n− N

2

)︃
∆u, for n = 0, · · · ,N −1, (2.3.6)

and

ym =

(︃
m− M

2

)︃
∆y, vm =

(︃
m− M

2

)︃
∆v, for m = 0, · · · ,M−1. (2.3.7)

By the Nyquist equation (2.3.5), the relation between ∆x and ∆u must satisfy

∆x∆u =
2π

N
, (2.3.8)

and

∆y∆v =
2π

M
. (2.3.9)
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On the truncation region [x0,xN ]× [y0,yM] in real space, we obtain the following transform of
DFT for any objective function f (x,y) to the frequency space [u0,uN ]× [v0,vM]

F [ f (x,y)] (ui,v j)

≈
N−1

∑
k=0

M−1

∑
l=0

wk,le−i(uixk+v jyl) f (xk,yl)∆x∆v

=
N−1

∑
k=0

M−1

∑
l=0

wk,l f (xk,yl)∆x∆yexp
(︃
−i
(︃

i− N
2

)︃
∆u
(︃

k− N
2

)︃
∆x− i

(︃
j− M

2

)︃
∆v
(︃

l − M
2

)︃
∆y
)︃

=
N−1

∑
k=0

M−1

∑
l=0

wk,l f (xk,yl)∆x∆yexp
(︃
−2πi

N

(︃
i− N

2

)︃(︃
k− N

2

)︃
− 2πi

M

(︃
j− M

2

)︃(︃
l − M

2

)︃)︃
=∆x∆ye−2πi(N

4 +
M
4 )e(i+ j)πi

N−1

∑
k=0

M−1

∑
l=0

wk,le
−2πi

(︂
ki
N + l j

M

)︂
e(k+l)πi f (xk,yl)

=(−1)i+ j
∆x∆y

N−1

∑
k=0

M−1

∑
l=0

wk,le
−2πi

(︂
ki
N + l j

M

)︂
(−1)k+l f (xk,yl)

=(−1)i+ j
∆x∆yD

[︃{︂
wk,l (−1)k+l f (xk,yl)

}︂N−1,M−1

k=0,l=0

]︃
i, j
.

Similarly, the inverse DFT transform from frequency [u0,uN ]× [v0,vM] to real space [x0,xN ]×
[y0,yM] is given by

F−1 [F(u,v)] (xk,yl)

=
1

(2π)2

N−1

∑
i=0

M−1

∑
j=0

wk,le2πi(uixk+v jyl)F(ui,vi)∆u∆v

=
1

(2π)2

N−1

∑
i=0

M−1

∑
i=0

wi,iF(ui,vi)∆u∆vexp
(︃

i
(︃

i− N
2

)︃
∆u
(︃

k− N
2

)︃
∆x+ i

(︃
j− M

2

)︃
∆v
(︃

l − M
2

)︃
∆y
)︃

=
1

(2π)2

N−1

∑
i=0

M−1

∑
i=0

wi,iF(ui,vi)∆u∆vexp
(︃

2πi
N

(︃
i− N

2

)︃(︃
k− N

2

)︃
+

2πi
M

(︃
j− M

2

)︃(︃
l − M

2

)︃)︃
=

1
(2π)2 ∆u∆ve2πi(N

4 +
M
4 )e−(k+l)πi

N−1

∑
i=0

M−1

∑
j=0

wi, je
2πi
(︂

ki
N + l j

M

)︂
e−(i+ j)πiF(ui,v j)

=
(−1)k+l

∆x∆y
1

NM

N−1

∑
i=0

M−1

∑
j=0

wi, je
2πi
(︂

ki
N + l j

M

)︂
(−1)i+ j F(ui,v j)

=
(−1)k+l

∆x∆y
D−1

[︃{︂
wi, j (−1)i+ j F(ui,v j)

}︂N−1,M−1

i=0, j=0

]︃
k,l
.

We define the density function of X t as

φ(x) = (2π∆t)−
k
2 |Σ|−

1
2 exp

(︄
−(x−α∆t)T

Σ
−1 (x−α∆t)

2∆t

)︄
, (2.3.10)
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We define Ẏ t as the expectation term in equation (2.2.21). The convolution approach to E [·∆Wt |X t = x]
and E [·|X t = x] in equation (2.2.20) and (2.2.21) are given by

Ẏ t (x) =Et
[︁
Yt+1

⃓⃓
X t = x

]︁
=
∫︂ ∞

−∞

∫︂ ∞

−∞
Yt+1 (s1,s2)φ(s1 − x1,s2 − x2)ds1ds2

=(Yt+1(s)∗φ(−s))(x)

=F−1 [F [Yt+1] (v)Ψy(v)] (x), (2.3.11)

and

Zt (x) =
1
∆t

Et
[︁
Yt+1∆W t

⃓⃓
X t = x

]︁
=

1
∆t

∫︂ ∞

−∞

∫︂ ∞

−∞
Yt+1 (s1,s2)(∆W1,t ,∆W2,t)

T
φ(s1 − x1,s2 − x2)ds1ds2

=
1
∆t

∫︂ ∞

−∞

∫︂ ∞

−∞
Yt+1 (s1,s2)σ

−1 (s1 − x1 −µ1∆t,s2 − x2 −µ2∆t)T

φ(s1 − x1,s2 − x2)ds1ds2

=
1
∆t

(︁
Yt+1(s)∗σ

−1(−s−∆tα)φ(−s)
)︁
(x)

=
1
∆t

F−1 [F [Yt+1] (v)Ψz(v)] (x), (2.3.12)

where Ψy = F[φ ] and Ψz = F[σ−1(−x−∆tα)φ ] are the kernels, and ∗ denotes the convolution
operator

( f ∗g)(x) =
∫︂ ∞

−∞
f (y)g(x− y)dy. (2.3.13)

The DFT approximation of Ẏ t(x) and Zt is given by

Ẏ t(xk,vl) = (−1)k+l D−1

[︄{︃
ψ
(︁

pi,q j
)︁

Wi, jD

[︃{︂
(−1)k+l Yt+1

}︂
k,l

]︃}︃
i, j

]︄
k,l

, (2.3.14)

Zt = (−1)k+l D−1

[︄{︃
ivσ

T
ψ
(︁

pi,q j
)︁

Wi, jD

[︃{︂
(−1)k+l Yt+1

}︂
k,l

]︃}︃
i, j

]︄
k,l

. (2.3.15)

The following algorithm summarizes the FFT method to numerically solve the BSDEs. We
create a discretized N1×N2 real space with a corresponding N1×N2 frequency space and a equally
discretized timeline 0 = t1 ≤ t2 ≤ ·· · ≤ tn = T .

Algorithm 2.3. FFT approach to BSDEs problem (2.2.19) to (2.2.21) on N1×N2 two-dimensional
grid
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1. Initialize boundary conditions, ∀(i, j) ∈ {1,2, . . . ,N1}×{1,2, . . . ,N2}

Zi, j
n = 0,

Y i, j
n = g(xi, j),

2. for k = n−1,n−2, . . . ,1, calculate

Ẏ i, j
k = (−1)i+ jD−1

[︂(︁
Ψy
(︁
vs,l
)︁

ws,lD [Ȳ k+1]
(︁
vs,l
)︁)︁N1,N2

s=1,l=1

]︂(︁
vi, j
)︁
,

Zi, j
k = (−1)i+ jD−1

[︂
ivσ

T (︁
Ψz
(︁
vs,l
)︁

ws,lD [Ȳ k+1]
(︁
vs,l
)︁)︁N1,N2

s=1,l=1

]︂
i, j
.

Yk = Ẏ k +∆t f
(︁
tk,X ,Ẏ k,Zk

)︁
where v =

(︁
vi, j
)︁

is N1 ×N2 matrix formed by all frequency basis vi, j and Ȳ k = (Y i, j
k ) is the

matrix form by the value of Yk at point xi, j.

Figure 2.1: European call: Convolution result of Black-Scholes model with BSDE approach

K = 100, r = R = 0.03, µ = 0.05, σ = 0.2, L = 10, T = 1, N = 8000, n = 1000

In Figure 2.1, we implement the Algorithm 2.3 in 1-dimensional case for a European call option
and compare the convolution result to the Black-Scholes model. The real space Xt = lnSt/K is
truncated on [−5,5] with N = 8000 and the time space is discretized with n = 100 steps with
∆t = 0.01. As we can see there exist a huge boundary errors and we will discuss and improve the
boundary problem in late sections.
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2.4 Convolution method for Heston model
The Black-Scholes-Merton model assumes that volatility is constant over time. However, the
volatility smile occurs when plotting the stock price and implied volatility calculated from the
Black-Scholes model. The volatility smile demonstrates that implied volatility actually varies with
strike price. Restricted by the assumptions, the Black-Scholes model is unrealistic in capturing
the properties of the underlying assets since it generates the smile phenomenon in the volatility
and skewness distribution in the return. Many facts indicate that the volatility, instead of being a
constant parameter, is driven by a mean-reverting stochastic process, (see Fouque, Papanicolaou,
and Sircar [60]). Therefore, various models are suggested to capture the such properties in stock.
A popular model assuming stochastic volatility is proposed by Heston [67] which is a semi-closed
form solution for pricing vanilla options.

2.4.1 Heston’s stochastic volatility model
We assume the stock price St obeys a diffusion process on a filtered probability space (Ω,F ,P).
The filtration {Ft}t≥0 is generated by two independent Wiener processes satisfying the usual con-
ditions of completeness and right continuity. The stock price is given as

dSt = µStdt +σtStdWt , (2.4.1)

where Wt is a standard Brownian motion and σt is time dependent process which is given by an
Ornstein-Uhlenbeck process

dσt =−βσtdt +δdW1t , (2.4.2)

Consider σt =
√

vt , where vt is the volatility. By Itô’s formula, vt follows a mean reverting process
also known as a Cox, Ingersoll, and Ross [30] (CIR) model

dvt =
(︁
δ

2 −2βvt
)︁

dt +2δ
√

vtdW1t . (2.4.3)

Equation (2.4.3) can be written as square-root process

dvt = κ (θ − vt)dt +σ
√

vtdW1t , (2.4.4)

The coefficient κ represents the speed that pulls the volatility towards its long-term mean θ . The
Wiener process Wt is correlated with the Wiener process W1t by

dWt = ρdW1t +
√︂

1−ρ2dW2t , (2.4.5)

where ρ ∈ [−1,+1] is the correlation coefficient between W1t and W2t the two independent Wiener
process.

The Heston model under probability measure P can be written as

dSt = µStdt +
√

vtSt

(︃
ρdW1t +

√︂
1−ρ2dW2t

)︃
,
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dvt = κ (θ − vt)dt +σ
√

vtdW1t . (2.4.6)

Feller [56] classifies the boundaries for a one-dimensional parabolic heat equation implies the
stochastic volatility process (2.4.4) has the following properties

(i) if 2κθ ≥ σ2, then zero is unattainable for vt and vt > 0,

(ii) if 2κθ < σ2, then zero is a regular, attainable and reflecting boundary, which means that vt
can touch 0, but does not spend time there.

We assume the market price of risk scheme Λ̃ = (Λ1,Λ2) associated with (W1,W2) satisfy the
following condition

µ − r
√

vt
= ρΛ1 +

√︂
1−ρ2Λ2. (2.4.7)

By the Cox and Ross [28] risk-neutral valuation model, we define an equivalent measure QΛ on Ft
by

dQΛ

dP

⃓⃓⃓⃓
⃓
Ft

= exp
(︃
−1

2

∫︂ t

0

(︁
Λ

2
1 +Λ

2
2
)︁
ds+

∫︂ t

0
Λ1dW1(s)+

∫︂ t

0
Λ2dW2(s)

)︃
. (2.4.8)

We have that QΛ is equivalent to P provided that E
[︂

dQΛ

dP |Ft

]︂
= 1 for all t ∈ [0,T ]. Though the

risk scheme Λ̃ can be chosen arbitrarily, to obtain a complete Heston model we follow Heston’s
suggestion and let Λ1(vt) =Λ

√
vt for some positive constant Λ such that Λ2 is uniquely determined

by equation (2.4.7). Further, by Girsanov’s theorem, we define two independent Wiener processes
under QΛ

dW Λ
1 (t) = dW1(t)+Λ

√
vtdt, (2.4.9)

dW Λ
2 (t) = dW2(t)+

µ − r−Λρvt√︁
(1−ρ2)vt

dt, (2.4.10)

which gives the risk-neutral dynamics

dSt = rStdt +
√

vtSt

(︃
ρdW Λ

1t +
√︂

1−ρ2dW Λ
2t

)︃
, (2.4.11)

dvt = κ̄
(︁
θ̄ − vt

)︁
dt +σ

√
vtdW Λ

1t , (2.4.12)

where κ̄ = κ +σΛ, θ̄ = κθ/(κ +σΛ), provided that κ +σΛ ̸= 0.
Using the transform from P to QΛ, We define the driver function for Heston model without

borrowing rate f : R2 ×R×R2 → R as

f (X ,Y,Z) =−rY −Zρ, (2.4.13)
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where

ρ =

[︃
Λ
√

vt
µ−r−Λρvt√

(1−ρ2)vt

]︃
.

We consider the European call option price in the Heston model where the backward stochastic
process Yt is given by

dYt =− f (xt ,vt ,Yt ,Zt)dt +ZtdW Λ
t , (2.4.14)

YT = g(xT ).

g(x) = max(S0ex −K,0) . (2.4.15)

Next, we investigate the conditional density of the Heston model under the Feller condition
2κθ ≥ σ2. Firstly, we review the distribution behavior of the volatility. As indicated in Cox,
Ingersoll Jr, and Ross [31], with

q =
2κ̄ θ̄

σ2 −1, and c =
2κ̄

σ2
(︁
1− e−κ̄(t−s)

)︁ , (2.4.16)

for 0 < s < t, the process 2cvt has the non-central Chi-square distribution

2cvt ∼ χ
2
(︂

q,2cvseκ̄(t−s)
)︂
, (2.4.17)

with degree q and non-centrality parameter 2cvse−κ(t−s). The probability density of vt conditional
on its value vs is given by

P(vt |vs) = ce−u−v
(︂v

u

)︂ q
2

Iq

(︂
2(uv)

1
2

)︂
, (2.4.18)

where

u =cvse−κ̄(t−s),

v =cvt ,

and Iq(·) is the modified Bessel function of the first kind with order q

Iq(z) =
1

2πi

∮︂
e(z/2)(t+1/t)t−q−1dt. (2.4.19)

The Feller condition 2κ̄ θ̄ ≥ σ2 is equivalent to q ≥ 0 in the conditional density (2.4.18). However,
we often observe 2κ̄ θ̄ ≪ σ2 from market data. When it is the case of 2κ̄ θ̄ ≪ σ2, the cumulative
distribution of the volatility density is singular at the origin. The phenomenon of the fast growing
of left tail may lead to significant errors when the integration range is truncated. So we will assume
Yt = 0 when the value of vt falls below 0.
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We define the log-stock process, with initial value X0 = 0 by

Xt = log
(︃

St

S0

)︃
. (2.4.20)

By introducing parameter ρ̃ =
(︂

ρ,
√︁

1−ρ2
)︂

and the joint process dW Λ
t =

(︁
dW Λ

1 (t),dW Λ
2 (t)

)︁T
,

the dynamics of xt are given by

dXt =

(︃
r− 1

2
vt

)︃
dt +

√
vt ρ̃dW Λ

t . (2.4.21)

The joint process Xt = (xt ,vt)
T is given by

dXt = η(vt , t)dt +
√

vtξ dW Λ
t , (2.4.22)

where

η(vt , t) =
(︃

r− 1
2 vt

κ̄(θ̄−vt)

)︃
, and ξ =

(︂
ρ

√
1−ρ2

σ 0

)︂
. (2.4.23)

Given the value of the vt , the conditional density of the log-stock price can be studied using
the Fokker-Planck equation (see Risken [109]). Drăgulescu and Yakovenko [42] also showed that
given a short time period t, the probability distribution of xt evolves in Gaussian manner in discrete
time with the given variance vi

P(xi+1|xi,vi) =
1√

2πvi∆ti
exp

(︄
−
(︁
xi+1 − xi − (r− 1

2vi)∆ti
)︁2

2vi∆ti

)︄
. (2.4.24)

The following theorem gives the asymptotic behavior of the conditional probability of Xt in a short
time period ∆t = t − ti.

Theorem 2.4. (Short period asymptotic density function) Given the value of joint process Xs and
the filtration Fs = F{τ : τ ≤ s}, then the increment ∆Xt = Xt −Xs evolves as bi-variate Gaussian
manner in a short time period ∆t = t − s

∆Xt ∼N (η(vs)∆ts,Σ(vs)∆ts) , (2.4.25)

the conditional density function is thus given by

φ(∆Xt |Xs) =
|Σ(vs)|−

1
2

2π
√

∆t
exp

(︄
−(∆Xt −η(vs)∆t)T

Σ−1(vs)(∆Xt −η(vs)∆t)
2∆t

)︄
, (2.4.26)

where

∆Xt = Xt −Xs, η(v) =
(︂

r− 1
2 v,

κ(θ−v)

)︂
, and Σ(v) = ξ ξ

T v =
(︂

1 σρ

σρ σ
2

)︂
v. (2.4.27)

Proof: see Appendix 5.8.

43



The characteristic function of the Heston model has closed form solution and is the key to solv-
ing the pricing problem. The original characteristic function given by Heston has a discontinuity
problem and the discontinuity problem has been solved by other authors such as Kahl and Jäckel
[79] where they count the phase rotation and Cui et al. [32] where they split the term that causes
the phase shift. In our approach, we need the characteristic function that applies to two frequency
variables thus we consider the boundary function E

[︁
ei px+iqv]︁ including the effect from v.

Definition 2.5. The characteristic function of the joint variable X t = (xt ,vt)
T under measure P

with corresponding characteristic parameter U = (p,q)T given the current state X = (x,v)T is
defined by

ϕ(U ,X , t) = EP
[︂
eiUT XT |X t = (x,v)T

]︂
, (2.4.28)

with boundary value ϕ(U ,X ,T ) = eiUT X .

Under a different measure, the form of the characteristic function (2.4.28) would be different.
Similar to the Black-Scholes model, the original Heston model contains two measures and we can
see this from the pricing formula of European call option

Ct =e−rτEQ [︁(ST −K)+ |St ,vt
]︁

(2.4.29)

=e−rτ

(︂
EQ [ST1ST>K |St ,vt ]−KEQ [1ST>K |St ,vt ]

)︂
(2.4.30)

=StEQ
[︃

ST

F(t,T )
1ST>K |St ,vt

]︃
−Ke−rτEQ [1ST>K |St ,vt ] (2.4.31)

=StES [1ST>K |St ,vt ]−Ke−rτEQ [1ST>K |St ,vt ] , (2.4.32)

where F(t,T ) = erτSt is the forward price, as seen from t. We define the measure change from the
risk neutral measure Q to the equivalent martingale measure S which can be seen as an invariant
measurement

dS
dQ

=
ST

F(t,T )
. (2.4.33)

For simplicity, we denote P1 = S and P2 =Q, under which

P1(ST ,K) =P1(ST ≥ K), (2.4.34)
P2(ST ,K) =P2(ST ≥ K), (2.4.35)

and the pricing formula becomes

Ct = StP1 (ST ,K)−Ke−rτP2 (ST ,K) . (2.4.36)

According to arbitrage pricing theory, the Heston call option C (S,v, t) satisfies the following PDE
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(see Heston [67] and Black and Scholes [8]):

1
2

vS2 ∂ 2C
∂S2 +ρσvS

∂ 2C
∂S∂v

+
1
2

σ
2v

∂ 2C
∂v2 + rS

∂C
∂S

+
[︁
κ̄
(︁
θ̄ − v

)︁
−σΛv

]︁ ∂C
∂v

+
∂C
∂ t

− rC = 0.

(2.4.37)

Due to the similar structure to the Black-Scholes model, P1 and P2 must satisfy the following PDE
in terms of X = ln S

K

1
2

v
∂ 2Pi

∂X2 +ρσv
∂ 2Pi

∂X∂v
+

1
2

σ
2v

∂ 2Pi

∂v2 +(r+ civ)
∂Pi

∂X
+(a−biv)

∂Pi

∂v
+

∂Pi

∂ t
= 0, (2.4.38)

where c1 =
1
2 ,c2 =−1

2 , a = κ̄ θ̄ , b1 = κ̄ +Λσ −ρσ , b2 = κ̄ +Λσ for i = 1,2.
By the Feynman-Kac representation theorem, the characteristic functions ϕi defined by (2.4.28)

under measures Pi satisfying (2.4.38) are the unique bounded solutions to the following PDEs

∂ϕi

∂ t
+(r+ civ)

∂ϕi

∂x
+(a−biv)

∂ϕi

∂v
+

1
2

v
∂ 2ϕi

∂x2 +
σ2

2
v

∂ 2ϕi

∂v2 +ρσv
∂ 2ϕi

∂x∂v
= 0, (2.4.39)

with boundary condition where U = (p,q)T and X = (x,v)T

ϕ(U ,X ,T ) = eiUT X = ei(px+qv). (2.4.40)

Theorem 2.6. (Characteristic function) The characteristic functions of the joint variable Xt =
(xt ,vt)

T under measurements Pi with real initials X = (x,v)T and frequency components U = (p,q)
are given by

ϕi (U,X) = exp
(︃

i p(x+ rτ)+ iq(v+aτ)+
γi +λi

σ2 (1−ζ )v− γi −λi

σ2 aτ +
2a
σ2 lnζ

)︃
, (2.4.41)

where

γ =

√︂
σ2 (p2 −2ici p)+(bi − iσρ p)2, (2.4.42)

λ =bi − iσρ p− iσ2q, (2.4.43)

ζ =
2γ

γ +λ +(γ −λ )e−γτ
. (2.4.44)

Proof: see Appendix 5.9.
In the estimation, we will use the characteristic function of the incremental variable XT −Xt

which can be obtained from Theorem 2.6

ψ(U,X) =E
[︂
eiUT (XT−Xt)

⃓⃓
Xt = X

]︂
=e−iUT X

ϕ(U,X)

=exp
(︃

i prτ + iqaτ +
γ +λ

σ2 (1−ζ )v− γ −λ

σ2 aτ +
2a
σ2 lnζ

)︃
. (2.4.45)
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The characteristic function is used to calculate the values of Pi given by Heston [67]

P1 =
1
2
+

1
π

∫︂ ∞

0
Re

ϕ1 (u− i,x,v)
iu

du, (2.4.46)

P2 =
1
2
+

1
π

∫︂ ∞

0
Re

ϕ2 (u,x,v)
iu

du. (2.4.47)

However, in the original characteristic function given by Heston [67], the logarithm term given by

ln
1− λ+γ

λ−γ
eγτ

1− λ+γ

λ−γ

, (2.4.48)

has two problems: the term λ+γ

λ−γ
may encounter zero denominator, and discontinuity may occur

from the logarithm. The discontinuity is usually caused by the term eγτ when the ranges of τ and
p are large. We see it from the limiting behavior

eγτ → eσ

√
1−ρ2|p|τ , as p →∞. (2.4.49)

which leads to the phase shifting from the logarithm as it goes to infinity. The logarithm term
in our characteristic function (2.4.41) will not approach to infinity. Therefore, our version of the
characteristic function does not have the discontinuity problem. Other solutions to the disconti-
nuity can be found in Kahl and Jäckel [79] where they use rotation counts and in Cui et al. [32]
where they use hyperbolic functions. In Figure 2.2, we present the original characteristic function
given by Heston [67] and in Figure 2.3, we present the characteristic function given by (2.4.41).
The integrand shown in Figure 2.2 and 2.3 shows the values of φi/ui in the integral of (2.4.46) and
(2.4.47).
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Figure 2.2: Heston’s characteristic function
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Figure 2.3: Our characteristic function
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We introduce the following notation

α =
γ +λ

σ2 ,

β =
γ −λ

σ2 ,

ζ =
α +β

α +βe−γτ
,

and simplify equation (2.4.45) as

ψ(U,X) = exp
(︃

i prτ + iqaτ +α (1−ζ )v−βaτ +
2a
σ2 lnζ

)︃
. (2.4.50)

We obtain the first order derivative from (2.4.50) as

∂ψ

∂ p
=ϕ

(︃
irτ +(αp (1−ζ )−αζp)v−βpaτ +

2a
σ2 ζ1

)︃
, (2.4.51)

∂ψ

∂q
=ϕ

(︃(︁
αq (1−ζ )−αζq

)︁
v+

2a
σ2 ζ2

)︃
, (2.4.52)

where

γp =
σ2(1−ρ2)p− i(σ2ci +σρbi)

γ
,

αp =
γp − iσρ

σ2 ,

βp =
γp + iσρ

σ2 ,

ζp =
αp +βp

α +β
ζ −

αp +βpe−γτ

α +β
ζ

2 + γpτ

(︃
1− αζ

α +β

)︃
ζ ,

ζq =
1− e−γτ

α +β
ζ

2i,

ζ1 =
αp +βp

α +β
−

αp +βpe−γτ

α +β
ζ + γpτ

(︃
1− αζ

α +β

)︃
,

ζ2 =
1− e−γτ

α +β
ζ i.

2.4.2 Convolution method for Heston model
The PDE (2.4.38) with boundary conditions P1(T,S,v) =P2(T,S,v) = 1S>K cannot lead to a closed
form solution, Heston [67] suggests obtaining the analytic solution for the probabilities by inverting
their characteristic functions. By comparing equation (2.4.39) to equation (2.4.38), we obtain the
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characteristic functions φ1 for P1 and φ2 for P2 from Theorem 2.6 by letting p = u and q = 0

ϕ1(u;x,v) =ϕ(u;x,v,γ1,λ1), (2.4.53)
ϕ2(u;x,v) =ϕ(u;x,v,γ2,λ2), (2.4.54)

where for i = 1,2

γi =

√︂
σ2 (u2 −2iciu)+(bi − iσρu)2, (2.4.55)

λi =bi − iσρu. (2.4.56)

The solutions given in Heston [67] are

P1 =
1
2
+

1
π

∫︂ ∞

0
Re

ϕ1 (u− i,x,v)
iu

du, (2.4.57)

P2 =
1
2
+

1
π

∫︂ ∞

0
Re

ϕ2 (u,x,v)
iu

du, (2.4.58)

with x = ln(S/K).

Remark 2.7. We refer to the numerical evaluation of (2.4.57) and (2.4.58) as the integral method.
We shall compare our proposed methods to the integral method in later sections.

Next, we introduce the convolution approach to estimate the value of Pi. The premise of the
convolution method is that the conditional probability density φ(y|x,v) depends only on the differ-
ence of x and y

φ(y|x) = φ(y− x). (2.4.59)

Applying the Fourier transform to P1 and P2, we have

F [Pi(x)] (u) =F

[︃
Ei

[︃
1ST≥K

⃓⃓⃓⃓
x = ln

S
K

]︃]︃
(u)

=F

[︃∫︂
R

δ (y)φi(y|x)dy
]︃
(u)

=F [(δ (y)∗φi(y− x))(x)] (u)
=F [(δ (y)∗φi(−y))(x)] (u)
=F [δ (y)] (u)F [φi(−y)] (u), (2.4.60)

where the delta function δ (·) is

δ (x) =
{︃

1, if x ≥ 0
0, otherwise.

The Fourier transform of the density function gives us

F [φi(−y)] (u) =
∫︂
R

e−iuy
φ(−y)dy
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=
∫︂
R

eiuy
φi(y)dy

=
∫︂
R

eiu(y−x)
φi(y− x)dy

=e−iux
∫︂
R

eiuy
φi(y |x)dy

=e−iuxEi

[︂
eiuxT |x

]︂
=e−iux

ϕi(u,x,v)
=ψi(u,v). (2.4.61)

We denote (2.4.61) as the kernel for the convolution method which is equivalent to the character-
istic function (2.4.45) without the effect of x

ψi(u,v) = exp
(︃

iurτ +
γ +λ

σ2 (1−ζ )v− γ −λ

σ2 aτ +
2a
σ2 lnζ

)︃
, (2.4.62)

where

γ =

√︂
σ2 (u2 −2iciu)+(bi − iuρσ)2, λ = bi − iuρσ , and ζ =

2γ

γ +λ +(γ −λ )e−γτ
.

We simplify (2.4.60) as

F [Pi(x)] (u) = F [δ (x)] (u)ψi(u,v), (2.4.63)

and recover Pi by

Pi(x) = F−1 [F [δ (x)] (u)ψi(u,v)] . (2.4.64)

We apply the change of variables to x = ln S
K with varying S and obtain the pricing formula to

(2.4.36) by DFT

C(S,K,v, t) =SP1 (S,K)−Ke−rτP2 (S,K)

=SF−1 [F [δ (x)] (u)ψ1(u,v)] (x)−Ke−rτF−1 [F [δ (x)] (u)ψ2(u,v)] (x)

≈SP̃1 −Ke−rτ P̃2, (2.4.65)

where the truncation of the real space is

xn =

(︃
n− N

2

)︃
∆x, for n = 0,1, · · · ,N −1, and ∆x =

L
N
, (2.4.66)

the truncation of the frequency space is

un =

(︃
n− N

2

)︃
∆u, for n = 0,1, · · · ,N −1, and ∆u =

2π

L
, (2.4.67)
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and the calculations of P̃i are

P̃i = (−1)nD−1
[︃{︂

wkD
[︂
{wn(−1)n

δ (xn)}N−1
n=0

]︂
(uk)ψi (uk)

}︂N−1

k=0

]︃
n
. (2.4.68)

for some weight scheme wn.

Remark 2.8. The pricing formula in (2.4.65) is similar to the Black-Scholes model instead of
having the explicit formulas we using (2.4.68) to estimate the probabilities. We call this approach
Scheme I.

Next, we introduce an alternative approach to the pricing formula, which is popular in BSDEs
framework as applied by Huijskens et al. [70] and Hyndman and Oyono Ngou [74]. The BSDE
based convolution method was introduced in the Section 2.3. Here we introduce an simple ver-
sion to the option pricing using convolution without BSDEs which we call Scheme II. Scheme II
approaches the pricing formula of the option is similar to Carr and Madan [18]’s approach but we
apply the Fourier transform on the log-price region. Involving a damping parameter which will be
discussed in later section, we obtain the following Fourier transform

F [eαxC(x)] =e−rτ

∫︂
R

Re
(︂

e−iuxeαxEQ
[︂
(KexT −K)+ |x = ln(S/K)

]︂)︂
dx

=e−rτRe
(︃∫︂

R
e−iuxeαx

∫︂
R

g(y)φ̃ 2(x− y)dydx
)︃

=e−rτF [eαxg(x)]ψ2(u+αi), (2.4.69)

where

g(x) = (Kex −K)+ and φ̃(x) = φ(−x).

The call option can be recovered from reverting and undamping (2.4.69)

C(x) = e(−rτ−αx)F−1 [F [eαxg(x)]ψ2(u+αi)] (x). (2.4.70)

We denote (2.4.70) as Scheme II which have similar discretization as Scheme I. In next sections,
we present the error analysis first then we introduce two method to improve the boundary error.

2.4.3 Error analysis
We denote the convolution result in (2.4.65) as C̃ = SP̃1 −Ke−rτ P̃2. To analyze the error from
truncation and discretization in the calculation, we need knowledge of the bound of the Fourier
series and the decay behavior of the characteristic function. Firstly, we investigate the Fourier
expansion of a piece-wise smooth function f with finite limiting point on [−L

2 ,
L
2 ]

f (x) =
∞

∑
j=−∞

Fje−i j 2πx
L , (2.4.71)
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with the coefficients Fj

Fj =
1
L

∫︂ L
2

− L
2

f (x)ei j 2πx
L dx. (2.4.72)

It is well known that the Fourier coefficients Fj tend to 0 as j →±∞ and the modulus of Fj can
not exceed || f ||∞ if f is bounded on [−L

2 ,
L
2 ]. Thus we can bound the modulus of Fj by

⃓⃓
Fj
⃓⃓
≤ min

(︃
|| f ||∞,

ε(L)
| j|

)︃
, (2.4.73)

for a positive bounding constant ε(L) depending only on L.
Secondly, we investigate the limiting behavior of the characteristic function. Usually, the char-

acteristic function of the Black-Scholes model decays as exp
(︁
−cx2)︁ and that of the Heston model

has exponential decay exp(−c|x|) for some constant value of c such discussions can be found in
Lord and Kahl [91]. More precisely, we summarize the asymptotic behavior of the characteristic
function by the following proposition.

Proposition 2.9 (Asymptotic characteristic function). Assuming that κ , θ , σ , v, τ > 0 and ρ ∈
(−1,1), we have the following limit for the kernel function (2.4.61)

lim
u→∞

ψi(u)≈ A∞eiB∞ exp(−D |u|) , (2.4.74)

where

A∞ =
(︁
4
(︁
1−ρ

2)︁)︁ a
σ2 ,

B∞ =
2a
σ2 arcsin

(︃
|u|
u

ρ

)︃
− ρ

σ

(︃
v+

|u|
u

aτ

)︃
u,

D =

√︁
1−ρ2

σ
(v+aτ)> 0.

Proof: see Appendix 5.10.

By Proposition 2.9 we could bound the modulus of the characteristic function with a positive
constant ε

|ψi(u)| ≤ εA∞e−D|u|. (2.4.75)

Finally, we can give the both truncation and discretization errors using (2.4.75) and (2.4.73).
The following theorem gives an error bound for

⃓⃓
C−C̃

⃓⃓
.

Theorem 2.10 (Error of convolution method). Assuming an integrable function f is bounded on
[−L

2 ,
L
2 ], then under measurement Pi, the error between the true value

E(x) = EPi [ f (xT ) |x0 = x ] ,
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and the estimation using convolution method

Ẽ(xn) = (−1)nD−1
[︃{︂

wkD
[︂
{wn(−1)n f (xn)}N−1

n=0

]︂
(uk)ψi (uk)

}︂N−1

k=0

]︃
n
,

on the truncation regions [−L
2 ,

L
2 ] with discretization (∆x,∆u)

xn =

(︃
n− N

2

)︃
∆x, for n = 0,1, · · · ,N −1, and ∆x =

L
N
,

un =

(︃
n− N

2

)︃
∆u, for n = 0,1, · · · ,N −1, and ∆u =

2π

L
,

is bounded by⃓⃓
E − Ẽ

⃓⃓
≤ ε1e−

πD
L N + ε2N−m,

where

ε1 =
LA∞|| f ||∞e

2πD
L

πD
εv,τ , and ε2 =

LA∞
πD

εLεv,τ ,

for some positive constants εv,τ and εL.

Proof: see Appendix 5.11.

Applying Theorem 2.10, we obtain the error estimation for
⃓⃓
Pi − P̃i

⃓⃓
as

|ei|=
⃓⃓
Pi − P̃i

⃓⃓
≤ LA∞|| f ||∞e

2πD
L

πD
εv,τe−

πD
L N +

LA∞
πD

εLεv,τN−m. (2.4.76)

We obtain the error estimation for the Heston call option by Scheme I

|e(x)|=
⃓⃓
C(x)−C̃(x)

⃓⃓
=
⃓⃓
Kex (︁P1(x)− P̃1(x)

)︁
−Ke−rτ

(︁
P2(x)− P̃2(x)

)︁⃓⃓
≤Kex |e1|+Ke−rτ |e2|

≤K
(︁
ex + e−rτ

)︁(︄LA∞|| f ||∞e
2πD

L

πD
εv,τe−

πD
L N +

LA∞
πD

εLεv,τN−m

)︄
. (2.4.77)

We summarize the error bound of |e| by the following corollary.

Corollary 2.11. The convolution method to the Heston call option by Scheme I and Scheme II has
the following error bound

|e| ≤ O
(︂

e−
πD
L N
)︂
+O

(︁
N−m)︁ , (2.4.78)

for m ≥ 2.
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Note 2.12. We can see from (2.4.77), as we vary the values of x ∈ [−L
2 ,

L
2 ], the error would increase

when x approaches the boundary. Therefore, as long as the boundary error is bounded the interior
error is also bounded. In the next section, we introduce some method that could control and
improve the boundary error.

2.4.4 Boundary control schemes
Sufficient conditions of successfully applying Fourier transform requires the target function to be
L1-integrable. However, we note that the call option itself is not L1-integrable with respect to
either the log-price or the log-strike. Nevertheless we can still apply the Fourier transform to the
target function on a truncated region regardless of the non-integrable sides out of the region. As a
consequence, the approximation result may suffer large boundary errors and lead to unstable result.
Introducing a damping parameter eαx that could dampen the value of non-integral side approaching
zero which ensures the Fourier transform can be applied successfully. As suggested by Carr and
Madan [18], a positive damping parameter is applied to the target function on the grid of log-strike

F
[︂
eαkC(k)

]︂
=e−rτ

∫︂ ∞

−∞
Re
(︃

eiukeαkE
[︃(︂

S− ek
)︂+]︃)︃

dk

=
e−rτϕ(u− (α +1)i)

−(u−αi)(u− (α +1)i)
,

=e−rτ
ψ(u,α), (2.4.79)

where

ϕ(u) =EQ
[︂
eiu ln(ST )

]︂
= ϕ2(u),

ψ(u,α) =
ϕ(u− (α +1)i)

−(u−αi)(u− (α +1)i)
.

Directly inverting (2.4.79) gives us Fourier pricing formula on the discretization of log-strike

C(t,k) =
e−rτ−αk

2π

∫︂ ∞

−∞
Re
(︂

e−iuk
ψ(u,α)

)︂
du. (2.4.80)

By the same argument, a negative damping parameter is applied to the Scheme II (2.4.69) method
on the grid of log-price.

The advantage of including the damping parameter in (2.4.79) is to increase the numerical
stability whereas the equation (2.4.36) could suffer from the cancellation error when the values of
P1 and P2 get too close. The necessary and sufficient condition that (2.4.80) exists is satisfied as
long as the (α +1)th moment of the asset price exists, as pointed out by Lord and Kahl [91]

|ϕ(u− (α +1)i)| ≤ ϕ(−(α +1)i) = E
[︂
S(α+1)

T

]︂
≤∞. (2.4.81)

A sufficient condition that the Fourier transform could successfully applied in (2.4.79) requires
the target function to be integrable. The call option valued on the discretization of the log-strike
is bounded between 0 and S. However, as k → −∞ the call option approaches S that makes the
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target function non-integrable with respect to the log-strike. Introducing the damping parameter α

could solve the problem as we can see that for some positive value of α the target function would
approach zero as k → −∞. Our method is applied on the discretization of the log-price which
has unbounded value of call option as the log-price approaches to infinity. Therefore, the damping
method could also applied in our method and we need α to be negative with large absolute value.

Adding a damping parameter α ≤ −1 to equation (2.2.20) and (2.2.21) would also affect the
kernel Ψ

F [eαx f (x)] (u) = F [eαxY (x)]Ψ(u+αi), (2.4.82)

and the inverse transform to recover the target function

f (x) = e−αxF−1 [F [eαxY (x)]Ψ(u+αi)] . (2.4.83)

Comparing the truncation on logarithms of the strike price in Lord and Kahl [91], our trun-
cation on the logarithm of the stock price could lead to large boundary errors when the option is
exponentially increasing as the underlying asset moves to deep in-the-money. Such problems can
be found in Hyndman and Oyono Ngou [74], however, they introduced a shifting method on the
target function to address the boundary error. The basic idea of shifting the target function is to map
it from non-periodic to a periodic function which would be considered as a real signal. The shifting
method requires a shifting function h(x) with explicit expectation E [h(xt) |x ]. Thus the candidate
for shifting function h(x) is usually the polynomial and the exponential functions. Hyndman and
Oyono Ngou [74] suggests the first order polynomial as the shifting function h(x) = Ax+B such
that the damping of the shifted target function f̃ α

(x) = eαx ( f (x)−h(x)) is smooth connected at
the boundary

f̃ α
(x0) = f̃ α

(xn), (2.4.84)

d f̃ α

dx
(x0) =

d f̃ α

dx
(xn). (2.4.85)

In our implemention, we find that shifting the call option by a linear function will generate kinked
point at-the-money and does not perform very well. Therefore, we suggest using a similar function
to shift the target function. In Scheme I we choose a linear function h1 = Ax+B to shift the delta
function and in Scheme II we choose an exponential function h2 = Aex +B to shift the call option
which can also applied in BSDEs based method. We summarize the shifting results to Scheme I

α =0, (2.4.86)

A =
f (xN)− f (x0)

xN − x0
, (2.4.87)

B =
xN f (x0)− x0 f (xN)

xN − x0
, (2.4.88)

h(x) =Ax+B, (2.4.89)

f̃ α
(x) = f (x)−h(x), (2.4.90)

(2.4.91)
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and to Scheme II

α <−1, (2.4.92)
h(x) =Aex +B, (2.4.93)

f ′0 =
−3 f (x0)+4 f (x1)− f (x2)

2∆x
, (2.4.94)

f ′N =
3 f (xN)−4 f (xN−1)+ f (xN−2)

2∆x
, (2.4.95)

A =
eαxN f ′N − eαx0 f ′0

e(α+1)xN − e(α+1)x0
, (2.4.96)

B =
xN f (x0)− x0 f (xN)

xN − x0
, (2.4.97)

f̃ α
(x) =eαx ( f (x)−h(x)) . (2.4.98)

We can recover Scheme I by reversing the shifting

EPi [ f (xT ) |x ] =EPi
[︁

f̃ (xT ) |x
]︁
+EPi [h(xT ) |x ]

=F−1 [︁F[︁ f̃ (x)
]︁
(u)ψi(u)

]︁
(x)+AE [xT |x ]+B

=F−1 [︁F[︁ f̃ (x)
]︁
(u)ψi(u)

]︁
(x)− iA

∂ϕi

∂u
(x,0)+B,

and recover Scheme II by reversing the shifting and the damping

EP2 [ f (xT ) |x ] =EP2
[︁

f̃ (xT ) |x
]︁
+EP2 [h(xT ) |x ]

=e−αxF−1 [︁F[︁eαx f̃ (x)
]︁
(u)ψ2(u)

]︁
(x)+AE [exT |x ]+B

=e−αxF−1 [︁F[︁eαx f̃ (x)
]︁
(u)ψ2(u)

]︁
(x)+Aϕ2(x,−i)+B.

In BSDEs, for the calculation of (2.3.12), we can recover Z from the following transform

EP2 [ f (xT )∆WT |x ] =EP2
[︁

f̃ (xT ) |x
]︁
+EP2 [h(xT )∆WT |x ]

=e−αxF−1 [︁F[︁eαx f̃ (x)
]︁
(u)ψZ(u)

]︁
(x)+AE [exT ∆WT |x ]

=e−αxF−1 [︁F[︁eαx f̃ (x)
]︁
(u)ψZ(u)

]︁
(x)+Aex

ψZ(u)

=e−αxF−1 [︁F[︁eαx f̃ (x)
]︁
(u)ψZ(u)

]︁
(x)

+Aσ
−1
(︃
−µ∆tex

ψZ(−i)− iex dψZ

du
(−i)

)︃
,

where we assume that ∆WT = σ−1 (xT − x−µT ).
In next section, we present the result of the convolution method for Heston call option and

compare our result to the integration method and the Fourier method (2.4.79).
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2.4.5 Application and conclusion
We apply the convolution method to the European call with Heston model on the log-price region
x = log(S/100) ∈ [−5,5] and the log-strike region k = logK ∈ [−10,10], K = 100. We make
the comparison to the Fourier method on the log-strike region. The convolution method and the
Fourier method are implemented with different grid points and are compared at S = 100.

Figure 2.4: P1 and P2 by convolution method

r = 0.03, v = 0.1, Λ = 1, ρ =−0.8, κ = 3, θ = 0.1, σ = 0.25, L = 10, N = 2000, T = 1

In Figure 2.4, we present the value of Pi obtained from the Scheme I convolution method. The
left panel of Figure 2.4 shows the original transform without using damping and shifting method.
The right panel of Figure 2.4 shows the modified transform without using the shifting. By looking
into the values shown in Figure 2.4

P1(xN) =0.99999844,
P2(xN) =0.99999839,

we find that adding the shifting scheme in the convolution method could improve accuracy at the
boundaries and performs stably even without the damping scheme.
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Figure 2.5: Heston call option by convolution method

r = 0.03, v = 0.1, Λ = 1, ρ =−0.8, κ = 3, θ = 0.1, σ = 0.25, L = 10, N = 2000, T = 1

Figure 2.5 shows the Heston call option priced using Scheme I method in log-price grid and
log-strike grid with N = 2000 grid points. The results are smooth everywhere in Figure2.5 and the
error is presented in Figure 2.6.

Figure 2.6: Convolution vs Fourier method
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r = 0.03, v = 0.1, Λ = 1, ρ =−0.8, κ = 3, θ = 0.1, σ = 0.25, L = 10, T = 1, α =−2

We implement Scheme I, Scheme II and Carr and Madan [18]’s Fourier method for N = 2000,
N = 4000 and N = 8000 grids. The error are taken logarithms and cut when the value is less than
25. The left panel in Figure 2.6 shows the log error of Scheme I method compared to the Fourier
method and the right panel in Figure 2.6 shows the log error of Scheme II method compared to
the Fourier method. As we can see the error converges as N increases and some oscillation occurs
when K near in-the-money side.
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Figure 2.7: Comparison with different damping parameters
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r = 0.03, v = 0.1, Λ = 1, ρ =−0.8, κ = 3, θ = 0.1, σ = 0.25, L = 10, T = 1, N = 2000

Figure 2.8: Convolution method in BSDE with Black-Scholes model

r = R = 0.03, µ = 0.05, σ = 0.2, L = 10, T = 1, N = 8000, n = 1000, α =−2

When we implement the convolution method in BSDEs structure, the error at deep in-the-
money side would accumulate through time iterations and the result is shown in Figure 2.8. In
Figure 2.8, we present the improved result of Figure 2.1 for a European call option in the Black-
Scholes model with consistent damping scheme and exponential shifting scheme. Comparing to
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Hyndman and Oyono Ngou [74]’s result shown in Figure 2.1, our method greatly improve the
boundary errors and increases the stability of the convolution method.

Table 2.1: Heston model: CPU time, European Call price and error of Scheme II
CPU time (s) S=80,K=100 S=100,K=100 S=120,K=100

Convolution Fourier Call Error Call Error Call Error
N=2000 1.80E-04 2.25E-04 3.80787 8.84E-05 13.45867 2.60E-04 28.06620 9.96E-05
N=4000 2.81E-04 3.96E-04 3.80779 8.04E-06 13.45887 6.50E-05 28.06607 3.05E-05
N=8000 4.50E-04 7.44E-04 3.80779 6.86E-06 13.45892 1.63E-05 28.06609 3.36E-06

2.5 Conclusion
The main advantages of the convolution method are its flexibility and computational speed. Like
other FFT-based methods, we achieve a complexity of O(N log2 N), where N is the number of grid
points. We provide a new scheme in formulating the characteristic function of the Heston model.
Our formula has no-discontinuity and is easy to take derivatives which gives us the flexibility for
applications to calibration. We have studied the application of the convolution method in a direct
approach and in a BSDE approach for pricing options. In the direct approach, we propose a new
method to accurately estimate the probabilities under the martingale measures with risk neutral
measures. In the BSDE approach, we have improved performance with consistent damping pa-
rameter and exponential shifting function which shows large decreases in boundary errors. We
also show that the convolution method in BSDEs framework has a error problem in-the-money
which is accumulated from the boundary error during time iterations. We make comparisons be-
tween the convolution method, Fourier method and the integration method on grid of log-strike
and log-price. Our comparison shows that convolution method possess good convergence on the
whole grid and very fast computational speed and the Scheme II convolution method is even faster
than the Fourier method. Our methods have advantages in a wide range of accuracy, fast com-
putation and stable boundary control, which could be applied in calibration in the future studies.
Future research will focus on reducing the accumulated boundary error in the BSDE approach and
to extend the convolution method to high-dimensional applications.
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Chapter 3

Arbitrage-free pricing and forecasting
of coupon bonds
with dynamic parameterization
with deep neural networks

In this chapter, we propose the deep-learning based neural network structure to model the
time-varying factors of term-structure and filter-based methods to capture the information from
time evolution. We test our model by forecasting yield curves and prices of coupon bond. In
practice, our forecast shows accurate forecasting of yields at both short and long horizons and
accurate forecasting of bond prices with short-term of tenors.

3.1 Introduction
No-arbitrage modeling has many applications in economic and financial markets: from studying
term structure of interest model, pricing bonds and its derivatives to risk management. The no-
arbitrage tradition follows from the theoretical structure introduced by Heath et al. [66] which al-
lows for infinite-dimensional risk factors in the dynamics of forward rate curve. Ang and Piazzesi
[1] implemented the no-arbitrage restriction in affine term structure model which precludes the
arbitrage opportunity between the dynamic evolution of the yield curve factors. The interest rate
point forecasting introduced by Diebold and Li [37] shows good out-of-sample forecasting per-
formance using no-arbitrage approach. Christensen et al. [21] demonstrates that the no-arbitrage
approach the downgrades in the forecasting performance when the model is restricted to preclude
the arbitrage opportunity. However, it is still hard to draw the conclusion that the no-arbitrage
model is not important in forecasting especially when achieving a no-arbitrage model is compli-
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cated using statistic models.
The no-arbitrage approach using HJM-type models are popular for pricing bonds and term-

structure derivatives where interest rate forecasting becomes crucial for the risk management. The
most widely used no-arbitrage models are Hull-White model introduced by Hull and White [71]
and HJM model introduced by Heath et al. [66]. The HJM model allows the infinite dimensional
expansion of the risk factors which is considered to be problematic but is also fitting very well
in long time. The Hull-White model is a single-factor short rate model which can be seen as a
simplified version of Vasicek [114]. Both Hull-White and Vašíček assume that the short rates have a
normal distribution and that the short rates are subject to mean reversion. Cox et al. [31] introduces
the CIR model to overcome the negative interest problem in both Hull-White and Vašíček models.
However, the recent economic environment shows that negative interest rates are not impossible.
These short rate models all demonstrate accurate valuation of interest rate related derivatives in a
short time period. Motivated by their work, we choose the Vašíček model for the short-time period
factor selection.

The fitting of the yield curve has a long history and dates back to McCulloch [97], which applies
cubic splines in fitting yield curve. Fama and Bliss [54] firstly proposed discounting method also
known as smooth bootstrap method to extract zero-coupon bonds from market data. However, the
discounted bonds have only one to five years to maturity and are available by monthly due to the
lack of enough long-term bonds in market. The limitation of Fama-Bliss method is obviously: one
is that it is not possible to study the excess returns for longer holding periods and the other one is
that it contains only a short period for the term structure.

The earliest bond price forecasting starts since 1980s, such literature is given by Brennan and
Schwartz [15]. The most widely used model is Nelson-Siegel term structure introduced by Nelson
and Siegel [101] due to the simple interpretation from economics perspective and the applicable
of forecasting. Recent literature that involves forecasting includes Duffee [44] and Diebold and
Li [37] where they extended the estimation work of yield curve from in-sample fitting to out-of
sample forecasting. Their prominent contribution in predicting the yield curves mainly depends
on the dynamic affine structure and the linearity between observations and models. Christensen
et al. [21] advanced the prediction work by implementing Kalman filter on sequential observations
and proceed to maximize the log-likelihood. Later Duffee [45] shows how important the no-
arbitrage restriction is when using the term structure to forecast future bond yields. The arbitrage-
free condition is claimed from the theoretical perspective, however, there is little practical evidence
layer that shows that the models are actually arbitrage-free. In our approach, we will quantify the
arbitrage opportunity in the dynamic Nelson-Siegel model and use it as the regularization term.

The application of machine learning in finance, appears earlier in equity markets and espe-
cially focuses on forecasting methods with deep neural network such as Ding, Zhang, Liu, and
Duan [40], Selvin, Vinayakumar, Gopalakrishnan, Menon, and Soman [111] and Chong, Han, and
Park [20]. Recent work by Ganguli and Dunnmon [61] extend machine learning to bond price
forecasting where they evaluated the performance of various supervised learning algorithms and
presented results by the weighted error in prediction per sample. Bianchi, Büchner, and Tamoni [5]
applied machine learning in bond return forecasting and studied the risk factors between macroe-
conomic and yield information. Their research are based upon pure machine learning technique to
analyze the dependence layer between the observation and input variable. In our model, we will
deploy several deep neural networks such as Long Short-term memory (LSTM), Recurrent Neural
Networks (RNN) and Convolutional Neural Network (CNN) that serves as the parameter selection.
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Our research in bond price forecasting includes three parts: arbitrage-free pricing theory, deep
neural networks, and a filter-based sequential method using the Kalman filter, extended Kalman
filter, or particle filter. For the filtering theory we refer to Musoff and Zarchan [100], Del Moral
[36], and Wan and Van Der Merwe [117]. A good summary of the particle filter can be found
in Doucet and Johansen [41] and the application of filtering in finance can be found in Javaheri,
Lautier, and Galli [76].

We organize the following sections by such an order. First, we review HJM forward rate model
and derive the arbitrage-free condition under risk neutral measure. We assume the yield curve can
be explained by a Nelson-Siegel term structure with three state variables that evolve dynamically
and are modeled by a Vašíček process. Second, we review filter based method in finance and intro-
duce the Kalman filter based method for updating and forecasting the linear model of yield curve.
Then we extended the updating framework in the Kalman filter to the extended Kalman and which
is applied for bond price forecasting. In the particle filter we consider using the updating process
in the extended Kalman filter for importance sampling and systematic resampling. Instead of max-
imizing the log-likelihood, we choose our objective function to minimize the mean square error of
the target values (yields or prices). Third, we introduce the parameter selection method by deep
neural networks. We use convolution neural networks as a dimension reduction tool to process the
multiple observations each of which contains multiple features. We use recurrent neural networks
to capture temporal information from sequential observations. We train our model by minimizing
the mean square prediction error and minimizing the arbitrage penalty at the same time. Finally,
we present forecasting results when the methodology is applied to Treasury bonds and corporate
bonds. We provide the error analysis of predicted yields and prices of coupon bond for different
time horizons and maturity horizons. We present the average excess return (AER) as the quanti-
fied arbitrage opportunity for different time horizons. The effect of arbitrage-free regularization
will be viewed through the comparison between the performance of non-arbitrage forecasting and
arbitrage-penalized forecasting. In addition, we also investigate arbitrage regularization and show
their effect on the filters.

3.2 Background
The term structure of interest rate has been widely studied since McCulloch [97] introduced spline
method, McCulloch [98] introduced second-order and third-order spline method, Vasicek and Fong
[115] introduced exponential spline, Fisher, Nychka, and Zervos [58] and Waggoner [116] im-
proved the cubic spline with smooth penalty. The cubic spline

y(x) =
K

∑
i=1

(︁
ai +bi(x− τi)+ ci(x− τi)

2 +di(x− τi)
3)︁1{τi≤t<τi+1}

is constructed using polynomials smoothly connected at the knots τi for i = 1, · · · ,K, which are se-
lected in a way such that the observations are spread equally between adjacent knots. The approach
to cubic spline using basis spline is given by

y(x) =
K

∑
i=1

βiφ
p
i (x),
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where the p denotes the degree of the basis φ
p
i (x), p = 3 for a cubic spline. The basis φ p(x) is

defined by Cox-de Boor recursion

φ
p
n (x) =

x− τn

τn+p−1 − τn
φ

p−1
n (x)+

τn+p − x
τn+p − τn+1

φ
p−1
n+1 (x),

with

φ
0
n (x) =

{︃
1, if τn ≤ x < τn+1
0, otherwise.

Denote the cubic spline basis by a row vector

φ(x) = (φ1(x), · · · ,φK(x)) .

Then for any x ∈ [τi,τi+1), there are four adjacent non-zero basis at φi−1, φi, φi+1 and φi+2, with
adjacent intervals sharing three basis. Thus the augmented basis matrix

Φ = (φ(x1), · · · ,φ(xN))
T ,

for N observations xn, n = 1, · · · ,N, gives a semi-orthogonal structure which provides numerical
stability. The parameter β = (β1,β2, · · · ,βK)

T can be obtained using ordinary least square estima-
tion or regression estimation with an extra linear penalty that controls the smoothness of the tail of
the yield curve.

These models provide good fits for the data and controlling for the tail smoothness. How-
ever, the cubic spline models are lack of sufficient support from economic theoretical perspective.
Nelson and Siegel [101] propose flexible parametric curves and Svensson [113] introduced an ad-
ditional term in the Nelson-Siegel term structure to compensate the hump in the term structures.
Filipovic et al. [57] extend Nelson-Siegel term structure to exponential polynomial model. Com-
paring to cubic spline models, the Nelson-Siegel model is a parsimonious term structure with only
four parameters: level (L), slope (S), curvature (C) and decay (λ ) (or shape) :

y(τ) = L+S

(︄
1− e−λτ

λτ

)︄
+C

(︄
1− e−λτ

λτ
− eλτ

)︄
. (3.2.1)

Svensson includes a second curvature parameter (C′) and an additional decay parameter (λ ′) for
the the second curvature term. The yield curve has a variety of shapes through time, including
upward, downward, humped and inverted humped. The Nelson-Siegel term structure can replicate
all these shapes dependent upon the variation in (L,S,C,C′) and the choice of decay parameters
(λ ,λ ′).

Due the parsimonious parameterization and the economic interpretability of the Nelson-Siegel
model, it has been world-widely used by central banks and monetary policy maker in different
markets. The most common way to fit the Nelson-Siegel term structure is to estimate the param-
eters L, S and C using yield data or zero-coupon bonds data provided by Famma-Bliss data. In
practice, by fixing the shape parameter λ we can convert the non-linear problem to linear problem
and estimate the remaining three parameters θ = (L,S,C)T using ordinary least squares (OLS) to
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minimize the sum of square errors

Q(θ) =
(︂

Xθ −Y obs
)︂T (︂

Xθ −Y obs
)︂
, (3.2.2)

where

X =

⎛⎜⎝1 φ1(τ1) φ2(τ1)
...

...
...

1 φ1(τN) φ2(τN)

⎞⎟⎠ ,

Y obs =(Y1, · · · ,YN)
T ,

φ1(τ) =
1− e−λτ

λτ
,

φ2(τ) =
1− e−λτ

λτ
− eλτ .

Though fixing the decay parameter simplifies our model, the effect of the decay parameter still
exists if one wants to fit sequential yield curves and this effect can only be revealed by non-linear
estimation. Diebold and Li [37] studied the Nelson-Siegel model with time-varying decay param-
eter and found that the fitting and forecasting are not influenced by a varying decay parameter.
On the other hand, Hurn, Lindsay, and Pavlov [73] and De Pooter [35] point out that the Nelson-
Siegel model is very sensitive to the choice of the decay parameter and the remaining parameter
estimates may take extreme values under different decay parameters. However, Annaert, Claes,
De Ceuster, and Zhang [2] found that ridge regression can reduce the multi-collinearity problem
caused by fixed decay parameter in time series and also reduce the sensitivity problem. Diebold
and Li [37] show that the Nelson-Siegel model performs well in forecasting yields and the fixed
decay parameter does not impact the out-of-sample forecasting. The effect of decay parameter can
be viewed from the the forward rate model

f (t) = L+Se−λ t +Cλ te−λ t . (3.2.3)

which is in accordance with Nelson-Siegel term structure. If the value of λ is small, then the
forward curve (3.2.3) decays slowly and fits better to the observations on long time intervals. On
the contrary, if we choose a large value for λ , then the forward curve decays fast and fit better on
short time intervals.

Theoretically, the Nelson-Siegel model does not naturally preclude the arbitrage opportunities
as shown by Björk and Christensen [6]. However, there are different opinions on the arbitrage-
freeness of the Nelson-Siegel model. Coroneo, Nyholm, and Vidova-Koleva [26] find that Nelson-
Siegel is compatible with the arbitrage-freeness on the US market in a statistical sense. Christensen
et al. [21] try to remove the arbitrage from the Nelson-Siegel model and also obtain good results.
The most common way to investigate arbitrage opportunities in the Nelson-Siegel model is to
consider the forward rate curve by an affine term-structure model which simplifies fitting procedure
and improves forecasting performance. Ang and Piazzesi [1] presents the class of arbitrage-free
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Nelson-Siegel model by

y(t,τ) = aτ +bτXt ,

where bτ is the loading parameter given by

bτ =

(︄
1,

1− e−λτ

λτ
,
1− e−λτ

λτ
− eλτ

)︄
,

and Xt = (Lt ,St ,Ct) is the time varying parameters assumed to follow a Gaussian vector autore-
gression process

Xt = µ +ΦXt−1 +ut ,

with error term ut ∼N(0,ΣΣT ) as a 3×1 vector, µ as a 3×1 vector, and Φ as a K×K autoregressive
matrix. The arbitrage-free restrictions are given by

Aτ+1 =Aτ +BT
τ (µ −Σλ0)+

1
2

BT
τ ΣΣ

T Bτ −A1, (3.2.4)

Bτ+1 =(Φ−Σλ1)
T Bτ −B1, (3.2.5)

with

Aτ =−aττ,

Bτ =−bττ.

Arbitrage is precluded form the recursive equations (3.2.4) for some parameters λ0 (3×1 matrix)
and λ1 (3×3 matrix) governing the market price of risks

Λt = λ0 +λ1Xt .

Another approach to the arbitrage-free Nelson-Siegel model follows the arbitrage pricing theorem.
For example, Christensen et al. [21] introduce a theoretically rigorous yield curve model that si-
multaneously displays empirical tractability, well fitness, and superior forecasting performance.
They conclude that imposing the arbitrage-free restrictions in the yield curve model downgrades
the performance of forecasting. Another approach by Kratsios and Hyndman [86] implement the
arbitrage restrictions in deep-forward neural networks and also find the same conclusion. However,
the classical approaches used by the above authors can only obtain models statistically arbitrage-
free for the in-sample-data. It is not know whether the models still keep arbitrage-free for the
out-of-sample data. Therefore, we will consider the arbitrage-free Nelson-Siegel model with deep
dynamic parameters and implement different filtering methods to update the parameters.
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3.3 Arbitrage-free pricing framework
The no-arbitrage term-structure literature builds upon the theoretical structure introduced by Heath
et al. [66]. Ang and Piazzesi [1] studied affine no-arbitrage term structure models which preclude
arbitrage opportunities between the dynamic evolution of the yield curve factors and the yields at
different maturity segments. The interest rates forecasting introduced by Diebold and Li [37] shows
good out-of-sample forecasting performance using the no-arbitrage approach. Christensen et al.
[21] demonstrates that the no-arbitrage approach downgrades the performance when the model is
restricted to preclude the arbitrage opportunity.

3.3.1 Arbitrage-free forward rate model
The Heath-Jarrow-Morton (HJM) model [66] provides a powerful framework in modeling the in-
stantaneous forward and fixed income assets in an arbitrage-free setting. The theoretical form of the
HJM model allows infinite-dimensional combinations of risk factors. Given that the affine struc-
ture is widely applied in dynamic models, we consider the realization of HJM in finite-dimensional
affine structure and the arbitrage-free condition under the risk-neutral measure Q

d f (t,τ) = µ (t,τ)dt +
d

∑
i=1

ηi (t,τ)dWi(t), (3.3.1)

where τ is the tenor from time t to maturity T , Wi(t) for i = 1,2, . . . ,d are independent standard
Brownian motions, µ ∈R is the drift term and ηi ∈R for i = 1,2, . . . ,d are risk factors. We assume
that (3.3.1) is separable in t and τ and has a finite-dimensional representation by the following
affine structure

f (t,τ) = βτXt , (3.3.2)

for a deterministic loading parameter βτ ∈ R1×d and a dynamic process Xt ∈ Rd×1 containing the
risk factors. We assume the loading parameter is chosen such that the corresponding yield curves
are in the class of Nelson-Siegel term structure and the risk is only from the time varying process
Xt .

Next, we determine the realization of the forward rate process in finite space and the specifica-
tion of the volatility term. The finite-dimensional realization of the forward rate process requires
the drift and volatility located in the tangent space of the manifold where the forward rate evolves to
avoid the projection error, see Björk and Svensson [7]. The different choice of volatility will reduce
the HJM forward rate curve to simpler finite-dimensional models such as the Ho-Lee model with
constant volatility ot the Hull White model with exponentially decaying volatility. The most com-
mon specification of volatility in bond markets is a multiple factor interpretation using Principle
Component Analysis (PCA). As documented by Litterman and Scheinkman [89], the three-factor
approach explains no less than 94% of the total variance in the U.S yields crossing different term
of maturities. The first factor as a ‘parallel shift’ accounts for 80%˘90% of the term structure varia-
tion. The second factor as a ’steepness’ where the short and long rates move in opposite directions
accounts for on average 81% of the remaining variation. The third factor as a ’curvature’ accounts
for 0%˘5% of the total variation. Therefore, we will consider a three-factor model for Xt with
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cross-variable interaction instead of independent variables.
Another requirement for the calibration of the forward rate model is that the initial forward

curve requires empirically observed forward rates. We implement the calibration under a machine
learning framework where the observations will be sequentially batched into many subsets. Thus,
we apply a ’fake’ initials to all subsets, which is obtained from the training set. In the following
section, we introduce the loading parameter βτ in exponential space and specify the risk variable
Xt as a mean-reverting process which we will be tested in later section. We define Xt as extended
Vašíček process

dXt = κt (θt −Xt)dt +σtdWt , (3.3.3)

where κt , θt and σt are functions which depend on Xt . Equation (3.3.3) is the factor model and
the risk factor Xt is the state variable. The dynamics of the forward rate model f defined in (3.3.2)
with state variable Xt defined in (3.3.3) is also mean-reverting process

d f (t,τ) =− dβτ

dτ
Xtdt +βτdXt

=− dβτ

dτ
Xtdt +βτκt (θt −Xt)dt +βτσtdWt

=

(︃
βτκtθt −

(︃
βτκt +

dβτ

dτ

)︃
Xt

)︃
dt +βτσtdWt

=

(︃
βτκt +

dβτ

dτ

)︃(︄(︃
βτκt +

dβτ

dτ

)︃−1

βτκtθt −Xt

)︄
dt +βτσtdWt

=κ̄(t,τ)
(︁
θ̄(t,τ)−Xt

)︁
dt +βτσtdWt ,

where

κ̄(t,τ) =
(︃

βτκt +
dβτ

dτ

)︃
, (3.3.4)

θ̄(t,τ) =
(︃

βτκt +
dβτ

dτ

)︃−1

βτκtθt . (3.3.5)

From the affine forward rate (3.3.2), we obtain the short rate

r (t) = β0Xt , (3.3.6)

and the value of zero-coupon bond PV (t,τ) which pays unit dollar at time T = t + τ

PV (t,τ) = exp
(︃
−
∫︂ τ

0
f (t,s)ds

)︃
= exp(−BτXt) , (3.3.7)

where Bτ =
∫︁ τ

0 βudu.
Following the arbitrage-free methodology introduced by Heath et al. [66], we define an ac-

cumulation factor R(t) corresponding to the accumulated value of a dollar invested in the money
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market account over the time period [0, t] by

R(t) = exp
(︃∫︂ t

0
r(s)ds

)︃
. (3.3.8)

The relative bond price Z (t,τ) = PV (t,τ)
R(t) representing the bond’s excess value over the risk-free

investment follows the dynamics

dZ (t,τ)
Z (t,τ)

= Λ(t,τ)dt −BτσtdWt , (3.3.9)

where

Λ(t,τ) =
1
2

BτΣtB
T
τ −Bτκt (θt −Xt)+(βτ −β0)Xt , (3.3.10)

and

Σt = σtσ
T .

Note that Λ(t,τ) defines the instantaneous excess return on the bond above the risk free rate and
Heath et al. [66] proves that there exists a unique market price of risk such that the forward rate
model is arbitrage-free. Therefore, the condition Λ(t,τ) = 0 determines risk neutral pricing mea-
sure and precludes arbitrage opportunities. We summarize these facts in the following theorem.

Theorem 3.1. Suppose the forward rate model has an affine structure give by (3.3.2)

f (t,τ) = βτXt ,

and a mean-reverting state variable defined by (3.3.3)

dXt = κt (θt −Xt)dt +σtdWt ,

where βτ ∈ R1×d , Xt ∈ Rd×1, and

κt (Xt) :Rd×1 → Rd×d,

θt (Xt) :Rd×1 → Rd×1,

σt (Xt) :Rd×1 → Rd×d.

If the following condition is satisfied for all t ≥ 0 and τ ≥ 0.

1
2

BτΣtB
T
τ −Bτκt (θt −Xt)+(βτ −β0)Xt = 0, (3.3.11)

then f (t,τ) is an arbitrage-free forward rate model under risk-neutral measure Q.

Proposition 3.2. Suppose Xt evolves as mean-reverting process with time-dependent parameter
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given by equation (3.3.3). Then (3.3.3) with initial condition X0 has a unique solution Xt given by

Xt = e−
∫︁ t

0 κuduX0 +
∫︂ t

0
e−

∫︁ t
u κvdv

κuθudu+
∫︂ t

0
e−

∫︁ t
u κvdv

σudWu, (3.3.12)

where the mean and variance of Xt are given by

E [XT |Ft ] = e−
∫︁ T

t κuduXt +
∫︂ T

t
e−

∫︁ T
u κvdv

κuθudu, (3.3.13)

Var [XT |Ft ] =
∫︂ T

t
e−

∫︁ T
u κvdv

Σue−
∫︁ T

u κ
T
v dvdu. (3.3.14)

Proof: see Appendix 5.12.

3.3.2 Dynamic Nelson-Siegel term structure
Choosing different loading parameters βτ , we can generate forward rate curves by (3.3.2) that
give different shapes of the term structure. Inspired by the prediction framework introduced by
Diebold, Rudebusch, and Aruoba [38] and Diebold, Li, and Yue [39] where they introduced the
dynamic Nelson-Siegel term structure and modeled the factors using auto-regressive processes,
we will apply dynamic Nelson-Siegel term structure within the framework of the arbitrage-free
forward rate model. We define the loading parameter βτ as a three-dimensional vector basis for
some λ ∈ R+

βτ =
(︂

1, e−λτ , λτe−λτ

)︂
, (3.3.15)

with each component

β1(τ) =1,

β2(τ) =e−λτ ,

β3(τ) =λτe−λτ .

The Nelson-Siegel term structure space NS(τ) is spanned by the exponential polynomial basis βτ

with one decay parameters λ

NS(τ) = Span
{︂(︂

1, e−λτ , λτe−λτ

)︂⃓⃓⃓
for some λ ∈ R+

}︂
. (3.3.16)

As shown by Björk and Svensson [7], as long as the drift and volatility of the forward rate process
lie in NS(τ) whose tangent space is itself then the forward rate process will evolve in NS(τ). For
some three-dimensional state vector Xt = (X1(t), X2(t), X3(t))

T ∈ R3×1, the forward rate model
f (t,τ) ∈NS(τ)

f (t,τ) = βτXt = X1(t)+ e−λτX2(t)+λτe−λτX3(t), (3.3.17)
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defines the dynamic Nelson-Siegel yield model

y(t,τ) =− logPV(t,τ)
τ

=
Bτ

τ
Xt

=X1(t)+X2(t)

(︄
1− e−λτ

λτ

)︄
+X3(t)

(︄
1− e−λτ

λτ
− eλτ

)︄
, (3.3.18)

where

Bτ =
∫︂ τ

0
βudu =

(︄
τ,

1− e−λτ

λ
,
1− e−λτ

λ
− τeλτ

)︄
. (3.3.19)

In time-series of yields using the loading parameters B2 =
1−e−λτ

λτ
and B3 =

1−e−λτ

λτ
− eλτ as sug-

gested by Diebold and Li [37] avoids the multicollinearity from similar loading parameters using
the original setup given by Nelson and Siegel [101]. Reviewing the limiting behavior of the loading
parameters β1, β2 and β3 and on [0,+∞), we interpret X1 as the long-term risk factor (level), X2
as the short-term risk factor (slope), and X3 as mid-term risk factor (curvature). The term structure
space B can be expand to include additional loading term and different decay parameter so that we
can also interpret the forward rate process as Svensson [113] term structure model with four state
variable.

SV(τ) = Span
{︂(︂

1, e−λ1τ , λ1τe−λ1τ , λ2τe−λ2τ

)︂⃓⃓⃓
for some λ1,λ2 ∈ R+

}︂
. (3.3.20)

By Theorem (3.1), the state vector Xt and loading parameters must satisfy the following con-
dition to preclude the arbitrage opportunity from the dynamic Nelson-Siegel yield model (3.3.18)

Λ(t,τ) =
1
2

BτΣtB
T
τ −Bτκt (θt −Xt)−β0Xt = 0. (3.3.21)

The value of τ is the maturity as seen from t and we can easily make it analogous to the maturities
of bonds. It is feasible to measure the excess return at the maturities of bonds, however, it is
complicated minimizing it in practice when the maturities of bonds vary from day to day. Thus,
we choose some fixed values between 3 months and 30 years as Tj and define the accumulated
excess return (AER) introduced by Kratsios and Hyndman [86] as the penalty term

Λ
(p) =

1
n

n

∑
i=1

⃦⃦
Λ(t)(ti,Tj)

⃦⃦
p =

1
n

n

∑
i=1

p
√︄

1
m

m

∑
j=1

⃓⃓
Λ(t)(ti,Tj)

⃓⃓p
, (3.3.22)

The accumulated excess return gives the mean square root term when p = 2 and at time ti its value
quantifies the average distance of the objectives (yield or price) to the arbitrage-free values over
the selected maturities Tj for j = 1, · · · ,m.

Credit risk can be added as additional term ξt in the forward rate model (see Ejsing, Grothe,
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and Grothe [51])

f (t,τ) = ξt +βτXt ,

the price of corporate bond (3.3.7) is given by

PV (t,τ) = exp(−ξtτ −BτXt) ,

and the yield curve model is given by

y(t,τ) = ξt +
Bτ

τ
Xt .

However, our interest is to study the arbitrage-free pricing and forecasting problem, we simply as-
sume the d market risks in state vector Xt include credit risk when we apply the model to corporate
data instead of modeling it separately.

Next, we consider the application of the affine term structure in pricing coupon bonds. Assume
the coupon bond periodically pays ci at time τi up to m total payments and has value Y (t,τ) given
by the arbitrage-free Nelson-Siegel model (3.3.18)

Ŷ (t,τ) =
m

∑
i=1

cie−τiy(τi) =
m

∑
i=1

cie−BτiXt . (3.3.23)

From equation (3.3.23), we can extract the yield curve and the state variables from observations.
The observations that we used are the daily closed bond data. We choose the coupon bonds whose
tenors are greater than 3 months and less than 30 years. The state variable Xt can be extracted by
minimizing the mean square error (MSE) between the observation Y and the model value Ŷ

Xt = argmin
Xt∈Rd

1
n

n

∑
i=1

⃓⃓
Y (t,τi)− Ŷ (t,τi)

⃓⃓2
, (3.3.24)

using classical methods such as linear estimator with smoothing penalties.

3.3.3 Data and estimation result
Our data set is composed of coupon bonds from both the corporate bond market (TRACE) and
U.S.Treasures (Overbond) from 2017 to 2019, includes the daily closing prices (clean price), yield-
to-maturity, coupon rate, coupon frequency, instrument type, indicator for convertible bonds, indi-
cator for callable bonds, issue date and maturity date. The total data was pre-processed to retain
bond prices according to the following principles:

i. Fixed coupon bond

ii. Non-callable bond

iii. Nonconvertible bond

iv. Unsecured and Senior Unsecured note and bond
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v. Yield-to-maturity ≤ 700 basis points

vi. The difference between yields-to-maturity and coupon rate ≤ 500 basis points

vii. Remaining time to the maturity ≥ 3 months and ≤ 30 years from the trade date

After the pre-processing, we index the bonds by trading dates and keep four basic features for
each bond: price, coupon rate, coupon frequency, and the remaining time to maturity (tenor). We
run two separate estimations determining in each we determine the optimal decay parameter and
daily optimal state variables.

For the first estimation, we select a common data consisting of a fixed number of daily obser-
vations from total data and split the bonds into three terms of maturity. We consider the short-term
maturities is less than 2 years where the yield curves are rapidly increasing or decreasing until the
top or the bottom of the hump, the mid-term maturities is from 2 years to 10 years where the yield
curves may change the direction, and long-term maturities from 10 years to 30 years where the
yield curves are almost flat. The common data are selected such that the bonds are almost traded
everyday and the number of bonds in each term of maturity are represented of the total proportion
in total data. For example, if the total data has 20% bonds in short-term maturities, 67% bonds
in mid-term maturities, and 13% bonds in long-term maturities, then the common data with daily
68 number of bonds could consist of almost 14 bonds in short-term, 45 bonds in mid-term, and 9
bond in long-term. We may drop some trading dates with too few observations that occupy approx-
imately 1% to 3% in total data. The common data is used with the Nelson-Siegel model (3.3.18)
with trainable variable XT as a 3× T matrix including all the three state variables and trainable
variable λ controls the decay parameter. The model is trained to minimize the mean squares root
error (3.3.24) and to determine the optimal decay parameter λ . The optimal value of decay param-
eter is λ = 0.4488779759 obtained from Treasury data. We also use this value for corporate data
instead of estimating different decay parameters for each corporate since we mentioned before that
a fixed decay parameter does not impact the out-of-sample forecasting.

In the second estimation, we fix the decay parameter as λ = 0.4488779759 and fit the Nelson-
Siegel model with daily observations from total data by a sequential regression. We run the sequen-
tial regression using the optimal state variable Xt−1 trained from previous data set as the initial state
variable to fit the next data set and obtain the optimal state variable Xt . We choose the tenors in
proportion to the number of bonds in each term of maturities and obtain yield data at those tenors
shown in Table 3.1 with yield curves shown in Figure 3.1. The yield data is used as the input for
the linear model and the common data is used as the input for the non-linear model which will be
introduced in the next section.

Table 3.1: U.S. Treasury yields (in %)

date 3M 6M 9M 12M 15M 18M ... 120M 180M 240M 300M 360M
1/9/2017 0.735 0.822 0.906 0.987 1.066 1.143 ... 2.532 2.798 2.938 3.024 3.081
1/10/2017 0.648 0.745 0.839 0.929 1.016 1.100 ... 2.541 2.806 2.946 3.031 3.088
1/11/2017 0.672 0.768 0.861 0.950 1.035 1.117 ... 2.535 2.794 2.932 3.015 3.071
1/12/2017 0.695 0.785 0.873 0.958 1.039 1.118 ... 2.531 2.797 2.939 3.024 3.082
1/13/2017 0.702 0.791 0.879 0.963 1.045 1.124 ... 2.547 2.817 2.960 3.047 3.105

...
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Figure 3.1: Treasury yield curves from 2017 to 2019
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Figure 3.2: State variables of Treasury from 2017 to 2019

0.022
0.024
0.026
0.028
0.030
0.032
0.034
0.036

1st estimated level X1
2nd estimated level X1

−0.030
−0.025
−0.020
−0.015
−0.010
−0.005

0.000
0.005

1st estimated slope X2

2nd estimated slope X2

20
17

/01
/03

20
17

/05
/02

20
17

/08
/29

20
17

/12
/28

20
18

/04
/30

20
18

/08
/24

20
18

/12
/27

20
19

/04
/29

20
19

/08
/26

20
19

/12
/30

−0.03

−0.02

−0.01

0.00

0.01
1st estimated curvature X3
2nd estimated curvature X3

In Figure 3.2, we present the extraction optimal state variables obtained from second estima-
tion. The dotted line shows the results of first estimation and the dashed line shows the results of
second estimation.
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In Table 3.2, we check the validity of the mean reversion assumption by Augmented Dickey-
Fuller (ADF). The null-hypothesis of ADF test is that there exists a unit root (non-stationary) in the
time series. The more negative the ADF statistics, the stronger the rejection of the null-hypothesis.
The ADF test statistics of X1, X2 and X3 are −1.601, −2.345 and −1.321 shown in Table 3.2 and
are greater than the critical value −2.569 at 10%. This means we cannot reject the null-hypothesis
and conclude that the series X1, X2 and X3 are not stationary.

Table 3.2: Statistic of state variables

Factor Mean Std Min. Max. Correlation ADF P-value CV(10%)
X1(t) 0.03120 0.0030 0.0221 0.0362 1 -0.541 0.430 -1.601 0.483 -2.569
X2(t) -0.0098 0.0093 -0.0310 0.0041 - 1 -0.353 -2.345 0.157 -
X3(t) -0.0163 0.0111 -0.0366 0.0049 - - 1 -1.321 0.619 -

In the next section, we will introduce the filter-based method to calibrate the arbitrage-free
model. The common data will be used as the input for the non-linear model and the yields will be
used as the input for the linear model.

3.4 Forecasting framework
In this section, we introduce three filter-based sequential methods to estimate bond yields and
bond prices given the parameters (κt ,θt ,σt). We then we introduce the estimation of parameters
(κt ,θt ,σt) by deep neural networks. The Kalman filter and the extended Kalman filter have similar
structure but one deals with yields prediction and the other deals with bond price prediction. We
begin by introducing the Kalman filter in detail then extend the prior and post information updating
method to the extended Kalman filter and the particle filter.

3.4.1 Yields prediction by Kalman filter
Consider the yields yt = (y1, · · · ,ym) at time t observed for fixed tenors τ1, · · · ,τm. We assume that
the noise between the observations and the state model (3.3.18) is Gaussian with mean zero and
variance Ut

y(t,τ) =
Bτ

τ
Xt + εt , (3.4.1)

where E [εt ] = 0 and Var [εt ] = Ut . It is difficult to calculate the expectation and variance of Xt
directly using Proposition 3.2 if the state variable is non-scalar and the parameters κt , θt and σt are
matrices. So we seek a simplification by considering that the time increment ∆tk = tk+1 − tk are
the same for the discretization [t0, t1, . . . , tk, tk+1, . . . ] and κt , θt , and σt are invariant on each time
interval t ∈ [tk, tk+1). Then by Proposition 3.2, we obtain the following estimations

E [Xk+1|Fk] = e−κk∆tXk +
(︂

I − e−κk∆t
)︂

θk, (3.4.2)

Var [Xk+1|Fk] =
∫︂ ∆t

0
e−κkt

Σke−κ
T
k tdt. (3.4.3)
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We denote (3.4.3) as Qt = Var [Xk+1|Fk] and the computation of Qt can be simplified using the
diagonalization of the matrix κk

κk = EV E−1,

where E is the eigenvectors matrix of κk, and V is the diagonal matrix consisting of the eigenvalues
ζ of κk. The integral in (3.4.3) can be simplified to

Qk = E
(︃∫︂ ∆t

0
e−V t

Ωe−V T tdt
)︃

ET , (3.4.4)

where Ω = E−1ΣkE−T =
(︁
ωi, j
)︁

i, j. The integral in (3.4.4) can be simplified to

∫︂ ∆t

0

(︂
e−V t

Ωe−V T t
)︂

i, j
dt

=
∫︂ ∆t

0
e−ζitωi, je−ζ jtdt

=
ωi, j

ζi +ζ j

(︂
1− e−(ζi+ζ j)∆t

)︂
.

Therefore, the estimation of Qk is given by

Qk = E
(︃

ωi, j

ζi +ζ j

(︂
1− e−(ζi+ζ j)∆t

)︂)︃
i, j

ET . (3.4.5)

Equations (3.4.1) and (3.4.2) give us the state and observation equations

Xk+1 =g(tk, Xk)+wk, (3.4.6)
yk+1 =y(tk+1, Xk+1)+ εk, (3.4.7)

where

g(t,x) =Atxt +Dt ,

y(t,x) =Mxt ,

At =e−κt∆t ,

Dt =
(︂

I − e−κt∆t
)︂

θt ,

M =

⎡⎢⎢⎣
B1(τ1)

τ1
, B2(τ1)

τ1
, B3(τ1)

τ1...
...

...
B1(τm)

τm
, B2(τm)

τm
, B3(τm)

τm

⎤⎥⎥⎦ .
and τm is the maximum tenor among all the observations. The noise terms wk and εk are assumed

77



to be Gaussian noise with mean zero and covariance Qk and Uk(︃
wk
εk

)︃
∼ N

(︃(︃
0
0

)︃
,

(︃
Qk 0
0 Uk

)︃)︃
.

Following Date and Ponomareva [34], the prediction step of the Kalman filter is given by

X̂k|k−1 = Ak−1X̂k−1|k−1 +Dk−1,

P̂k|k−1 = Ak−1P̂k−1|k−1AT
k−1 +Qk−1,

ŷk = MX̂k|k−1,

and measurement step of the Kalman filter is given by

X̂k|k = X̂k|k−1 +Kkvk,

P̂k|k = P̂k|k−1 −KkMP̂k|k−1,

vk = yk − ŷk,

Fk = MP̂k|k−1MT +Uk−1,

Kk = P̂k|k−1MT F−1
k .

3.4.2 Price prediction by the extended Kalman filter
If, instead of considering predicted yields, we wish to consider price prediction directly, then we
need to change the linear observation model to a non-linear model. In this case the extended
Kalman filter will be considered. The observations Yk =

(︂
PV (1)

k , . . . ,PV (n)
k

)︂
contain n prices of

coupon bonds and each observation is defined from (3.3.23) as

Ŷ (Xt , t) =
m

∑
j

cτ je
−Bτ j Xt =Cτ exp(−BτXt) , (3.4.8)

where

Cτ = (cτ1,cτ2, · · · ,cτm) ∈ R1×m,

Bτ = (Bτ1,Bτ2 , · · · ,Bτm)
T ∈ Rm×3.

The extended Kalman filter (see Christensen et al. [21]) by the following system

X̂k|k−1 = AkX̂k−1|k−1 +Dk,

P̂k|k−1 = AkP̂k−1|k−1AT
k +Qk, (3.4.9)

and measurement process

X̂k|k = X̂k|k−1 +Kkvk,

P̂k|k = P̂k|k−1 −KkMkP̂k|k−1,
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vk = Yk − Ŷ (X̂k|k−1, tk), (3.4.10)

Fk = MkP̂k|k−1MT
k +Uk,

Kk = P̂k|k−1MT
k F−1

k ,

where the Hessian matrix Mk is calculated by

Mk =
∂Ŷ (X , t)

∂X

⃓⃓⃓
(X ,t)=(X̂k,tk)

(3.4.11)

Instead of using log-likelihood, which seeks to estimate parameters from statistical perspective, we
directly minimize the the prediction error

L(t) =
1
n

vT
k vk.

In addition to the prediction error, we add the arbitrage penalty (3.3.22) in to the regularization so
that our loss function is given by

L(t) =
1
n

vT
k vk +λ ×Λ

(p), (3.4.12)

with an arbitrage regularization term λ .

3.4.3 Price prediction by the particle filter
Compared to the extended Kalman filter, the particle filter has the advantage of not requiring any
functional approximation and there is no need to calculate the Hessian matrix. However, these
advantages are offset by increased computational requirements: the particle filter is a broad class
of recursive Monte Carlo algorithms thus large samples are inevitable. Similar work can be found
by Christoffersen, Dorion, Jacobs, and Karoui [22] predicting yield curves using the extended
Kalman filter and the particle filter as well with LIBOR, Swap rates and Caps prices.

First, we introduce the general sequential Monte Carlo method then we add importance sam-
pling from the measurement equations of the extended Kalman filter into the particle filter. Suppose
the marginal densities of observations Yt given the states Xt can be measured by some distribution
M

Yt |Xt ∼M(Yt
⃓⃓
Ŷ (Xt , t)). (3.4.13)

In applications, we assume that the prediction error of prediction follows a Multivariate Gen-
eralized Gaussian Distribution (MGGD). Following the definition given by Pascal, Bombrun,
Tourneret, and Berthoumieu [106], we define the pdf of n-dimensional MGGD for any x ∈ Rn

as

q(x |x̄) = |U |−
1
2 Cp,n exp

⎛⎜⎝−

[︂
(x− x̄)T U−1 (x− x̄)

]︂p

2mp

⎞⎟⎠ , (3.4.14)
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where p is the shape parameter and m is the scale parameter, U ∈ Rn×n is the variance matrix and
Cp,n is a normalization coefficient such that the integral of the distribution is 1

Cp,n = p
(︂

2
1
p πm

)︂− n
2

Γ

(︂n
2

)︂/︃
Γ

(︃
n

2p

)︃
In particular, if p = 0.5, (3.4.14) gives multivariate Laplace distribution, and p = 1 gives a multi-
variate Gaussian distribution. In our model, we set the scale parameter m equal to the number of
x.

The conditional expected value of Xt from the previous state Xt−1 given observations Y1:t−1 =
y1:t−1 is denoted as the posterior distribution

pt(X) =❘(Xt ∈ X |Y1:t−1 ) .

The calculation of the expectation is estimated by Monte Carlo sampling

E❘ [ f (X)] =
f (X1)+ f (X2)+ · · ·+ f (XN)

N
,

In practice, it is hard to sample from the posterior distribution p(Xk |Y1:k ). Assume we can sample
from some prior distribution q(Xk |Y1:k ) called the importance distribution, then we can estimate
the conditional expectation through the following steps

E❘ [ f (Xt) |Y1:t ] =
∫︂

f (Xt)p(Xt |Y1:t)dXt

=
∫︂

f (Xt)
p(Xt |Y1:t)

q(Xt |Y1:t)
q(Xt |Y1:t)dXt

=
1

p(Y1:t)

∫︂
f (Xt)

p(Y1:t |Xt)p(Xt)

q(Xt |Y1:t)
q(Xt |Y1:t)dXt

=

∫︁
f (Xt)wt(Xt)q(Xt |Y1:t)dXt∫︁

wt(Xt)q(Xt |Y1:t)dXt

=
Eq [wt(Xt) f (Xt)|Y1:t ]

Eq [wt(Xt)|Y1:t ]
, (3.4.15)

where

wt(Xt) =
p(Y1:t |Xt)p(Xt)

q(Xt |Y1:t)
.

The calculation of (3.4.15) can be estimated by sampling {X (i)
t } ∼ q(Xt |Y1:t) for i = 1, · · · ,N. That

is,

EQ [ f (Xt) |Y1:t ] =
Eq [wt(Xt) f (Xt) |Y1:t ]

Eq [wt(Xt) |Y1:t ]

=
1
N ∑

N
i=1 wt(X

(i)
t ) f (X (i)

t )

1
N ∑

N
i=1 wt(X

(i)
t )
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=
N

∑
i=1

ŵt(X
(i)
t ) f (X (i)

t ),

where ŵt are normalized weights

ŵt(X
(i)
t ) =

wt(X
(i)
t )

∑
N
i=1 wt(X

(i)
t )

.

Suppose the prior distribution q(·) satisfies the Markov property, then we can rewrite wk as a
recursive identity

w(i)
t = w(i)

t−1

p
(︂

Yt
⃓⃓
X (i)

t

)︂
p
(︂

X (i)
t
⃓⃓
X (i)

t−1

)︂
q
(︂

X (i)
t
⃓⃓
X (i)

t−1,Y1:t

)︂ . (3.4.16)

If we choose the prior distribution q
(︁
Xt
⃓⃓
Xt−1,Y1:t

)︁
= p

(︁
Xt
⃓⃓
Xt−1

)︁
which is also widely used, we

obtain the simple recursion

w(i)
t = w(i)

t−1 p
(︂

Yt
⃓⃓
X (i)

t

)︂
.

This choice of prior distribution does not incorporate the most recent observations Yt , so it is inef-
ficient. Javaheri et al. [76] propose using the extended Kalman filter to obtain the posterior infor-
mation from the observations. The following distribution with prior mean X̂k−1|k−1 and posterior
covariance Pk−1 from the extended Kalman filter

q
(︁
Xk
⃓⃓
Xk−1,Y1:k

)︁
=N

(︁
Xk
⃓⃓
g(X̂k−1|k−1),Pk−1

)︁
gives one way to implement the importance sampling in particle filter.

Standard importance sampling suffers the variance explosion problem since some particles may
have increasingly large weights and others have very small weights. The variance of weights in-
creases exponentially with respect the number of particles. This degeneration problem decreases
the effectiveness of particles and increases variance of the weights. To address this problem, a re-
sampling step is introduced into the recursive procedure. The resampling is equivalent to resample
each particle in such a way that their offspring ot =

(︂
o[1]t , · · · ,o[N]

t

)︂
follows a multinomial distri-

bution with parameter vector (N, ŵt) and each particle is distributed with equally probability of
1/N. The resampled distribution is an unbiased estimation of the original particle distribution. As
a consequence, resampling carries the computational efforts to retain the particles in dense proba-
bility mass by precluding the particles of low weights with high probability. The most widely-used
resampling method is systematic resampling introduced by Kitagawa [84] which we will introduce
in the algorithm.

On the other hand, resampling also has disadvantages. There could be the situation that a
particle having a low weight could have a high weight at the next time and if this happens then
resampling could be wasteful. Another immediate effect of resampling is some extra noise being
introduced. One way we need resampling to control variance of weights and one way we do
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not want introduce additional variance. However, a controlled variance of weights benefits more
from the additional variance noise after resampling. In practice, it is more sensible to resample
only when the variance of the normalized weights reaches some threshold. The commonly used
threshold (see Liu [90]) is the Effective Sample Size (ESS)

ESS =

(︄
N

∑
i=1

(︂
ŵ(i)

t

)︂2
)︄−1

.

The ESS takes values between 1 and N and resampling is usually done when ESS is below N/2.
This method is called adaptive resampling. In our application we do not apply the adaptive method
but we will examine the efficiency of our model by investigating the ESS after the training.

Sequential importance resampling (SIR) particle filter

At time k = 0

• Sample initial X (i)
0 from the initial states

X (i)
0 = X̂0 + P̂0W (i),

where P0 = P̂0P̂
T
0 is the prior covariance matrix and W (i) is standard Gaussian random number.

• Update weights by initial observations and resampling to obtain equally distributed particles
{X (i)

0 ,w(i)
0 = 1/N}

From time k ≥ 1

• Importance sampling:

From the measurement and updating equations given by (3.4.9) and (3.4.10) in EKF, we obtain
the posterior particles along with the posterior covariance

X̂
(i)
k−1|k−1 =X (i)

k−1 +Kk−1v(i)k−1,

P(i)
k−1|k−1 =P(i)

k−1 −Kk−1Mk−1P(i)
k−1,

then we sample particles from the posterior space

X (i)
k = Ak−1X̂

(i)
k−1|k−1 +Dk−1 +

√︂
P(i)

k W (i),
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where

P(i)
k = AT

k−1P(i)
k−1|k−1Ak−1 +Qk−1,

vi
k−1 = Yk−1 − Ŷ (tk−1, X (i)

k−1),

Fk−1 = Mk−1P(i)
k|k−1MT

k−1 +Uk−1,

Kk−1 = P(i)
k−1MT

k−1F−1
k−1,

Mk−1 =
∂Ŷ
∂X

⃓⃓⃓⃓
X=X (i)

k−1

.

• Update weights:

w(i)
k = w(i)

k−1

p
(︂

Yk
⃓⃓
X (i)

k

)︂
p
(︂

X (i)
k

⃓⃓
X (i)

k−1

)︂
q
(︂

X (i)
k

⃓⃓
x(i)k−1,Y1:k

)︂ ,

where

p
(︂

Yk
⃓⃓
X (i)

k

)︂
=M

(︂
Yk

⃓⃓⃓
Ŷ (X (i)

k ),Uk

)︂
,

p
(︂

X (i)
k

⃓⃓
X (i)

k−1

)︂
=N

(︂
X (i)

k

⃓⃓⃓
g(X (i)

k−1),Qk−1

)︂
,

q
(︂

X (i)
k

⃓⃓
X (i)

k−1,Y1:k

)︂
=N

(︂
X (i)

k

⃓⃓⃓
g(X (i)

k−1|k−1),P
(i)
k

)︂
.

Calculate normalized weights

w̄(i)
k =

w(i)
k

∑
N
i=1 w(i)

k

.

• Systematic Resampling from
{︂

w̄(i)
k ,X (i)

k ,P(i)
k

}︂
to obtain equally weighted particle sample

{︂
1
N ,X

(i)
k ,P(i)

k

}︂
• Set s(i)k = i−1+s̃k

N with s̃k ∼ U [0,1] for i = 1, · · · ,N.

• Then set the number of particles equal to the offspring

o(i)k =

⃓⃓⃓⃓
⃓
{︄

s( j)
k :

i−1

∑
n=1

w̄(n)
k ≤ s( j)

k ≤
i

∑
n=1

w̄(n)
k

}︄⃓⃓⃓⃓
⃓ ,

which is the number of s( j)
k that locates in

[︂
∑

i−1
n=1 w̄(n)

k ,∑i
n=1 w̄(n)

k

]︂
.
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3.5 Dynamic parameterization by Recurrent Neural Networks
The minimal neuron in neural networks is called dense which consists of a linear transform and an
activation. In what follows, we denote a dense layer by D

y = D(x) := a(Wx+b) , (3.5.1)

where x are the inputs, W are the weights, b is the bias, and the operation between the weights W
and the input x is usually a matrix product or a tensor product. The function a is called a activation
function. The main reason why we use activation functions in neural networks is because we want
some neurons to be activated or not activated. The activation functions can be basically divided
into 2 types: linear function and non-linear functions. The non-linear activation functions are the
most used activation functions.

In our model, we feed the data through sequential modules that repeatedly connect as a RNN
and each module has four layers. Each layer is composed by several neurons and serves different
purpose. The four layers are: the input layer, the residual layer, the state layer and the filter layer.
The filter layer is also an output cell where we implement the filters, update the forward rate
model, and output the predicted values. The filter layer uses the state variables (κt ,θt ,σt) which
are generated from the state layer using weights, bias and the outputs from the input layer. In this
section, we introduce the architecture of the input layer, the residual layer, and the state layer.

3.5.1 Input layer
Since the data are different for the linear model (yield model) and the non-linear model (price
model), we will have different input layers. The linear model is trained with the yield data in a
3-dimensional tensor with a total size of S×T ×F and the input data for each time step is a 1×F
vector. The input data for the linear model is in a 3-dimensional tensor with a size of S×T ×F
where S is the total number of sample, T is the sequential length, and F is the feature size. In the
yield model, we use the extracted yields as inputs and predict the yields as the model output. We
choose the yields at the F = 23 fixed tenors 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, 60, 72,
84, 96, 108, 120, 180, 240, 300 and 360 months to match the proportion of traded bonds in each
terms.

The input layer of the linear model consists of a stack of two connected cells of long short-
term memory (LSTM). The LSTM is proposed by Hochreiter and Schmidhuber [68] in solving the
vanishing gradient problem and is popular in supervised learning under RNN structure, especially
training on a set of sequential data. In LSTM, except the data inputs x it requires two variables as
the state inputs (c,h) including the output c and hidden state h from precious LSTM and generate
two outputs with updated value of c and h correspondingly. We denote the LSTM cell by L in short

(ct ,ht) = L(x,(ct−1,ht−1)). (3.5.2)

The compact forms of equations of the LSTM are composed by the following four dense layers
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each serving different purpose

ft =ag
(︁
W f x+W ′

f ht−1 +b f
)︁
,

it =ag
(︁
Wix+W ′

i ht−1 +bi
)︁
,

ot =ag
(︁
Wox+W ′

oht−1 +bo
)︁
, (3.5.3)

c̃t =ac
(︁
Wcx+W ′

cht−1 +bc
)︁
,

ct = ft ◦ ct−1 + it ◦ c̃t ,

ht =ot ◦ah (ct) ,

where the operator ◦ denotes the Hadamard product (element-wise product). In each LSTM cell,
we have four gates (or layers): ft is the ’forget’ gate that serves to drop some weights, it is the
input layer that receive the input, ht is the hidden layer that passes the hidden states, and ct is the
output layer that combing the precious output ct−1 and current output c̃t . initial values are with
initials c0 = 0̄ and h0 = 0̄. The outputs of the LSTM include the hidden states ht and the outputs
ct . For the input Xt ∈RN with feature size N and the predefined hidden units H, the model weights
and bias are predefined by

W ,W ′ ∈ RH×N , and b ∈ RH .

The activation functions are suggested by

ag(x) =
1

1+ e−x ,

ac(x) = tanh(x),
ah(x) = tanh(x).

The sigmoid function ag exists between 0 to 1 and is mainly used between layers in the neuron or
especially to predict the probability as an output. The tanh function is like the sigmoid but ranges
from −1 to 1 and is mainly used in the output layers or to classify between two classes. The input
layer of the linear model with two connected LSTM L1 and L2 at time step t with input Yt can be
written as(︂

cI1
t ,h

I1
t

)︂
=L1

(︂
Yt ,
(︂

cI1
t−1,h

I1
t−1

)︂)︂
,(︂

cI2
t ,h

I2
t

)︂
=L2

(︂
cI1

t ,
(︂

cI2
t−1,h

I2
t−1

)︂)︂
, (3.5.4)

cI
t =cI2

t ,

where cI
t is the output from input layer.

The non-linear model is trained with the price data in a 4-dimensional tensor with a size of
S × T ×N ×F where N is the number of bonds and F = 4 is the feature size. The input data
at each time step is then a N ×F matrix that can not be fed into a standard LSTM. Hence, we
apply a convolution LSTM (CLSTM) to decrease the input dimension from N ×F to 1×H for
some integer hyper-parameter H. Then we could connect it to the standard LSTM. The CLSTM is
usually applied for image processing but we can consider our input as an image of single channel
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N ×F ×1 and use the convolution operation to obtain a vector output of any size H. The compact
forms of equations of the CLSTM are similar to the standard LSTM (3.5.3) but using convolution
instead of matrix product

ft =ag
(︁
W f ∗ x+W ′

f ∗ht−1 +b f
)︁
,

it =ag
(︁
Wi ∗ x+W ′

i ∗ht−1 +bi
)︁
,

ot =ag
(︁
Wo ∗ x+W ′

o ∗ht−1 +bo
)︁
, (3.5.5)

c̃t =ac
(︁
Wc ∗ x+W ′

c ∗ht−1 +bc
)︁
,

ct = ft ◦ ct−1 + it ◦ c̃t ,

ht =ot ◦ah (ct) ,

where the operator ∗ denotes the convolution operation. The kernel of the convolutional LSTM is
defined by

W ,W ′ ∈ RKW×KH×KD,

with KW as width, KH as height and KD as depth. The convolution of W ∈ RKW×KH×KD and
x ∈ RN×F×1 is a tensor satisfying the following dimension calculation

dim(W ∗ x) =
(︃⌊︃

N +2p−KW

sW
+1
⌋︃
,

⌊︃
F +2p−KH

sH
+1
⌋︃
,KD

)︃
,

where p is the size of padding usually taking value of 0, (sW ,sH) is the size of stride, and the
operator ⌊·⌋ takes the integer part. To reduce the dimension of the input and obtain H-dimensional
vector output, we set stride size (sW ,sH) = (1,1) and kernel size (KW ,KH ,KD) =

(︁
⌊N

H ⌋,F,1
)︁

for
some hyper-parameters H < N, and eventually obtain an output with a size of (H,1,1) which can
be compressed to 1×H. Then we could connect it to a standard LSTM. The input layer for the
non-linear model consisting of a CLSTM Lc and a standard LSTM L is given by

Yt ∈ RN×F :→ Y ′
t ∈ RN×F×1,(︁

cIc
t ,h

Ic
t
)︁
=Lc

(︂
Y ′

t ,
(︂

cIc
t−1,h

Ic
t−1

)︂)︂
, (3.5.6)

cIc
t ∈ RH×1×1 :→ c′t ∈ R1×H ,(︁

cI
t ,h

I
t
)︁
=L
(︁
c′t ,
(︁
cI

t−1,h
I
t−1
)︁)︁

.

After some transformation, we obtain the final output from the input layer as a vector cI
t ∈ R1×H

and pass it to the state layer.

3.5.2 State layer and Residual layer
Suppose we have an output cI

t ∈R1×H from the input layer and consider it as the input for the state
layer. We simply connect it to three dense layers κ , θ and σ in the state layer

κ(cI
t ) : [0,T ]×R1×H → Rd×d,
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θ(cI
t ) : [0,T ]×R1×H → Rd,

σ(cI
t ) : [0,T ]×R1×H → Rd×d.

The equations of the state layer are given by

κ =aκ

(︁
Wκ · cI

t +bκ

)︁
,

θ =aθ

(︁
Wθ · cI

t +bθ

)︁
, (3.5.7)

σ =aσ

(︁
Wσ · cI

t +bσ

)︁
,

where · is the tensor product, the kernels and bias are

Wκ ∈ RH×d×d,Wθ ∈ RH×d,Wσ ∈ RH×d×d,

and the bias are

bκ ∈ Rd×d,bθ ∈ Rd,bσ ∈ Rd×d.

The activation functions in the state layer are chosen as

aκ(x) =x,
aθ (x) = tanh(x),
aσ (x) = tanh(x).

Each time we obtain predicted values Ŷ t and observed values Yt , we could analyze the residual
values and estimated the covariance matrix. In our model, we do these in the residual layer. We
firstly batch normalize (BN) (see Ioffe and Szegedy [75]) the residual values et = |Yt − Ŷ t | and
then feed the normalized residual ēt = BN(et) into a LSTM LR and obtain a noise matrix ut by
connecting a dense layer DR to it. The equations in the residual layer are given by

et =|Yt − Ŷ t |,
ēt =BN(et), (3.5.8)

(cR
t ,h

R
t ) =LR

(︁
ēt ,
(︁
cR

t−1,h
R
t−1
)︁)︁

,

ut =DR
(︁
cR

t
)︁
.

Once the parameters (κt ,θt ,σt ,ut), the state variables Xt , the predicted values Ŷ t and the ob-
served values Yt are obtained, we implement the filters in the filter layer and output state variables
Xt+1 and predicted values Ŷ t+1. We obtain the final prediction Ŷ T after feeding the whole se-
quential data through the fully connected RNN networks and calculate the values of the arbitrage-
free penalties Λ(p) using the sequential states (Xt ,κt ,θt ,σt). The model weights including all the
weights W and bias b in each layers will be trained to minimize the a measurement of the predic-
tion error |Ŷ T −YT | and the penalty Λ(p) at the same time.

The basic module of RNN is formed from a fully linked four cells and the RNN is a stack of
basic modules whose. Figure 3.3 shows the structure of basic module and the RNN.
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Figure 3.3: Recurrent Neural Networks

3.5.3 Loss function and optimizer
The loss function is summation of the MSE of the prediction errors and the arbitrage-free regular-
ization

L(ϑ) =
1
n

n

∑
i=1

⃓⃓
Yi − Ŷ i

⃓⃓2
+λΛ

(p), (3.5.9)

where ϑ denotes the model weights. The learning objective is to search the optimal parameters ϑ̂

on the manifold of ϑ that minimizes the loss function

ϑ̂ = argmin
ϑ

L(ϑ) ,

by the following gradient descend learning step with a learning rate αk ∈ (0,1)

ϑk = ϑk−1 −αk∇ϑ L(ϑk−1) , (3.5.10)

and the learning rate αk is a step function of the loss value.
The training process is an optimization procedure in which an optimizer implements gradient

computation by back-propagation through time and gradient descent in order to change model
weights in proportion to the derivative of the error with respect to corresponding weights. The
optimizer is an algorithm that defines how the gradient is decreased. The optimizer plays a key
role in optimization process and a good optimizer brings fast training and good results. The most
popular optimizers are Stochastic Gradient Descent (SGD) with momentum, RMSprop (root mean
square), Adam (adaptive momentum estimation) and so on.

The Adam algorithms is introduced by Kingma and Ba [83] and is widely used in many kinds
of training tasks. We briefly introduce the updating rules of the Adam optimizer which depends
on the first-order gradient and the estimations of lower-order moments. At each time step t, the
Adam optimizer updates the biased first moment mt and biased second moment vt according to the

88



gradient of the loss function gt =∇ϑ L(ϑt), with initial m0 = 0 and v0 = 0

mt = β1mt−1 +(1−β1)gt ,

vt = β2vt−1 +(1−β2)g2
t ,

then we apply bias-correction since the value of mt and vt will decline to their initial zeros if no
adjustment is applied

m̂t =
mt

1−β t
1
,

v̂t =
vt

1−β t
2
,

where β t
1 and β t

2 denote β1 and β2 to the power t. The learning step is then given by

ϑt = ϑt−1 −αt
m̂t√
v̂t + ε

, (3.5.11)

where the parameters settings are β1 = 0.9, β2 = 0.999 and ε = 10−8. We reduce the learning rate
αt by a factor of 10−1 once the value of loss function stagnates

αt =

(︄
1−0.91⃓⃓⃓ L(ϑt )−L(ϑt−1)

L(ϑt−1)

⃓⃓⃓
<0.001

)︄
∗αt−1,

with

1⃓⃓⃓ L(ϑt )−L(ϑt−1)
L(ϑt−1)

⃓⃓⃓
<0.001

=

{︄
1, if

⃓⃓⃓
L(ϑt)−L(ϑt−1)

L(ϑt−1)

⃓⃓⃓
< 0.001,

0, otherwise.

The adaptive optimizer means the learning rate αk will be automatically adjusted by the optimizer
according to the current gradient and the momentum. The advantage is obviously: firstly it reduces
the risk of over training, secondly, it reduces the time to reach optimal solution, thirdly, we do not
need to manually adjust the learning rate too frequently.

3.6 Applications
In this section, we apply the arbitrage-free prediction models on daily U.S. Treasury coupon bonds
with minimum 60 daily bonds and 12 corporate bond issuers with around 10 to 30 daily bonds
from 2017/01/03 to 2019/12/30. Our data contains four attributes: bond price, tenor, coupon
frequency and coupon rates for each observation. This is a small feature size compared to Ganguli
and Dunnmon [61] where they use 61 features including extensive trading information. We keep
80% of the data as training set (in-sample data) and the remaining 20% as test set (out-of-sample
data). We feed the data in monthly sequence each contains T = 20 daily observations and generate
h-day-ahead predictions. The results are presented as the mean absolute prediction error (MAPE)
and root mean square prediction error (RMSPE). In addition to the forecasting error, we present
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the forecasting accuracy as the hit rate measured from the absolute forecasting error and bid-ask
spreads which we consider three spread level: 0.1, 0.25 and 0.5 in dollars

Hit rate (spread) =
1

NT

T

∑
i

N

∑
j
1{|Y (ti,τ j)−Ŷ (ti,τ j)|≤ 1

2 spread}. (3.6.1)

Generally in finance, if the price predictions are within bid-ask spreads we would consider them as
good predictions. To compare the hit rate, we include a benchmark where we apply the observed
yield curve to forecast the price of coupon bond in h days.

We consider 1-day-ahead and 5-day-ahead forecasting. The data used for h-day-ahead fore-
casting is batched from daily observations by every 5 days. By this method, we batch our data
into h non-overlapping sequences and we can assume the h sequences as the observations on every
Monday, Tuesday, Wednesday, Thursday and Friday. Restricted by the amount of data, we mixed
the five distinct sequences as one training set instead of training them separately. To compare the
forecasting results, we present the forecasting of yields in different terms of maturity: 3, 12, 36,
60, 120, 240, 360 months and group the forecasting of bond prices by maturities: 0 ∼ 2, 2 ∼ 10,
10 ∼ 30 year.

We train three models: Kalman filter (KF), extended Kalman filter (EK) and particle filter
(PF) with two arbitrage schemes λ = 0 and λ = 1 (arbitrage-regularized). The results from the
Kalman filter contains only yield forecasts, hence we transform the predicted yields into prices of
coupon bonds to examine the performance of our model. The extended Kalman filter provides both
yields and prices forecasting. The particle filter predicts only prices and we apply an additional
step to extract forecasted yields from the forecasted prices. Here, we briefly mention the forecast-
ing results given by Ganguli and Dunnmon [61] where they calculated the forecasting error by a
weighted error in prediction per sample (WEPS). However, it is difficult to exactly compare our
results to Ganguli and Dunnmon [61] and we will estimate a forecasting benchmark where we use
the observed yield curve to forecast h-day-ahead bond prices.

In our training, we run our models on Google Colab around 30∼50 epochs which shows the
optimal result without significant bias. The running times for the three filters are very different:
the Kalman filter runs with the fastest speed in a couple of minutes, the extended Kalman filter
takes at most 15 seconds to finish 1 epoch depending on the amount of daily observations and the
training time of the particle filter increases exponentially as the number of particles increase which
can take a few hours with 300 particles.

3.6.1 Results of U.S. Treasury
In Figure 3.4 and 3.5, we present the h-day-ahead forecasting of state variables X = (X1,X2,X3)
comparing to the observed state variables on a daily basis as short-term, mid-term and long-term
levels. In Figure 3.4 showing the 1-day-ahead forecasting, the difference between the forecasted
result and observed results are undiscernible. However, in Figure 3.5 showing the 5-day-ahead
forecasting, we see that the forecasted result with arbitrage regularization (AR) is closer to the
observed results. The forecasted path of state variables of extended Kalman filter shows more
oscillation than that of particle filter.
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Figure 3.4: Result of U.S. Treasury: path of state variables in 1-day-ahead forecasting

Figure 3.5: Result of U.S. Treasury: path of state variables in 5-day-ahead forecasting
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Figure 3.6: Result of U.S. Treasury: yield curves of 1-day-ahead forecasting

Figure 3.7: Result of U.S. Treasury: yield curves of 5-day-ahead forecasting
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We present two examples of predicted yield curves in Figure 3.6 and Figure 3.7: one is an
increasing yield curve from the training set and the other one is an inverted humped yield curve
from the testing set. The effect of arbitrage-free regularization is more obvious in 5-day-ahead
forecasting as we can see that it heavily controls the convergence of the tail part of the yield curve
in most cases and affects the yield points at mid-term level of maturity. In Tables (3.3) and (3.6), we
see that the Kalman Filter performs better in out-of-sample data and in different time horizons than
other two filters. We interpret the reason as the yield points contains more substantial information
to forecast the evolution of the yield curve than using the coupon bonds.

In Tables 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 we present the mean absolute prediction error (MAPE)
and root mean square prediction error (RMSPE) to compare the yield error and price error. In these
tables, we can see that the yield forecasting using the dynamic Nelson-Siegel model shows small
variation in prediction errors from the short-term maturities to long-term maturities. The Kalman
filter performs better in bias-variance trade-off and in long time forecasting than the other two fil-
ters which have high variance between the training results and testing results. The best results are
given by the Kalman filter where the prediction errors of Treasury yields are around 2.8 bps to 4.9
bps in 1-day-ahead forecasting and 4.5 bps to 8 bps in 5-day-ahead forecasting. Arbitrage regular-
ization improves the forecasting error of yields with short-term (3 months to 1 year) and long-term
(10 years to 30 years) maturities but downgrades the performance of predicted yields in mid-term
(3 years to 5 years) maturities. Comparing the MPE between our models and the benchmark, we
find that our models has almost the same performance in 1-day-ahead forecasting but the Kalman
filter without arbitrage-penalty out performs the benchmark in 5-day-ahead forecasting and in all
terms of maturities.

Tables 3.3, 3.4 and 3.5 show the results of the 1-day-ahead forecasting error. The three filters
have similar performance of 1-day-ahead forecasting forecasting. The Kalman filter performs
better in bias-variance trade-off and in long time forecasting than the other two filters which have
high variance between the training results and testing results. By looking into the testing MAPE,
we find that the arbitrage-penalty slightly improves the fornicating performance of the Kalman
filter in short and mid-term maturities, and improves that of the particle filter in mid and long-term
maturities. However, the extended Kalman filter seems not affected too much from the arbitrage
regularization. In Tables 3.6, 3.7 and 3.8 we present the results of 5-day-ahead forecasting error.
We find that the arbitrage-regularization downgrades the forecasting performance in most level of
maturities.

Therefore, we conclude that: firstly, the yield forecasting model without arbitrage penalty has
better forecasting performance in long time horizons than the benchmark; secondly, the arbitrage-
restriction has better forecasting performance in short time horizons and downgrades the forecast-
ing performance as the time horizons increase which is consistent to the finding of Christensen
et al. [21]; thirdly, the Kalman filter has better forecasting performance in short and mid maturities
and the particle filter has better forecasting performance in long maturities.
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Table 3.3: U.S. Treasury: yield prediction error (in bps) of 1-day-ahead forecasting

Tenor MAPE RMSPE STD MAPE RMSPE STD
Train Test Train Test Train Test Train Test Train Test Train Test

KF(λ=0) KF(λ=1)
3M 3.01 2.90 4.13 3.83 4.12 3.78 3.02 2.86 4.17 3.88 4.17 3.81
1Y 2.14 2.85 2.87 3.78 2.87 3.74 2.13 2.78 2.90 3.61 2.89 3.57
3Y 2.40 3.66 3.15 4.90 3.15 4.89 2.39 3.51 3.16 4.52 3.15 4.51
5Y 2.75 3.95 3.52 5.21 3.52 5.21 2.75 3.73 3.54 4.83 3.53 4.83

10Y 2.64 3.92 3.40 4.99 3.40 4.99 2.73 3.72 3.49 4.74 3.49 4.73
20Y 2.56 3.81 3.35 4.89 3.35 4.88 2.74 3.82 3.58 4.78 3.58 4.77
30Y 2.62 3.83 3.44 4.97 3.44 4.95 2.82 3.89 3.72 4.91 3.72 4.89

EK(λ=0) EK(λ=1)
3M 3.42 3.69 4.47 4.92 4.35 4.72 3.85 3.64 5.06 4.69 5.01 4.68
1Y 2.30 3.40 2.97 4.57 2.87 4.48 2.63 3.27 3.38 4.37 3.34 4.37
3Y 1.61 3.96 2.08 5.24 2.06 5.24 1.80 3.89 2.30 5.19 2.29 5.18
5Y 1.71 4.18 2.20 5.43 2.19 5.43 1.88 4.15 2.38 5.46 2.37 5.45

10Y 1.57 4.03 2.06 5.11 2.06 5.11 1.70 4.10 2.17 5.24 2.16 5.23
20Y 1.54 3.91 2.04 4.99 2.04 4.98 1.64 4.08 2.11 5.16 2.10 5.16
30Y 1.60 3.94 2.12 5.07 2.12 5.05 1.69 4.11 2.20 5.25 2.19 5.24

PF(λ=0) PF(λ=1)
3M 4.72 4.83 6.46 6.24 6.24 6.21 6.74 5.89 9.31 8.10 9.30 8.10
1Y 3.07 4.01 4.12 5.07 3.95 5.05 4.32 4.38 5.84 5.90 5.84 5.89
3Y 1.75 3.97 2.17 5.15 2.12 5.15 2.25 3.67 2.89 4.84 2.89 4.83
5Y 1.84 4.15 2.27 5.34 2.26 5.34 2.52 3.87 3.20 5.00 3.19 4.98

10Y 1.64 4.01 2.10 5.05 2.09 5.05 2.49 3.80 3.18 4.80 3.18 4.79
20Y 1.49 3.93 1.99 5.01 1.97 5.00 2.35 3.77 3.07 4.79 3.06 4.79
30Y 1.57 4.01 2.08 5.13 2.06 5.12 2.40 3.85 3.16 4.92 3.15 4.92

Table 3.4: U.S. Treasury: price prediction error (in dollars) of 1-day-ahead forecasting

Model Yield MAPE Yield RMSPE Yield STD Price MAPE Price RMSPE Price STD
Train Test Train Test Train Test Train Test Train Test Train Test

KF(λ=0) 2.49 3.55 2.51 3.57 0.28 0.44 0.15 0.17 0.25 0.32 0.25 0.32
EK(λ=0) 1.87 3.86 1.93 3.87 0.48 0.27 0.11 0.18 0.16 0.35 0.16 0.35
PF(λ=0) 2.19 4.06 2.35 4.07 0.85 0.22 0.11 0.18 0.16 0.34 0.16 0.34
KF(λ=1) 2.53 3.42 2.55 3.45 0.32 0.41 0.16 0.17 0.26 0.31 0.26 0.31
EK(λ=1) 2.08 3.85 2.16 3.86 0.57 0.33 0.12 0.18 0.17 0.35 0.17 0.35
PF(λ=1) 3.09 4.03 3.32 4.06 1.20 0.54 0.15 0.17 0.23 0.33 0.23 0.33
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Table 3.5: U.S. Treasury: hit rate and percentage error of 1-day-ahead forecasting

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Model Train Test Train Test Train Test Train Test Train Test Train Test

Benchmark 84% 79% 87% 80% 65% 42% 0.059 0.065 0.131 0.157 0.427 0.683
KF(λ=0) 83% 77% 87% 80% 65% 45% 0.060 0.067 0.133 0.159 0.440 0.672
EK(λ=0) 87% 78% 94% 76% 86% 38% 0.058 0.066 0.103 0.168 0.265 0.725
PF(λ=0) 85% 79% 94% 77% 85% 37% 0.059 0.065 0.105 0.167 0.260 0.722
KF(λ=1) 84% 77% 86% 81% 61% 42% 0.061 0.066 0.133 0.152 0.475 0.681
EK(λ=1) 84% 80% 93% 77% 83% 38% 0.059 0.065 0.107 0.168 0.284 0.741
PF(λ=1) 81% 77% 88% 79% 68% 42% 0.062 0.067 0.128 0.157 0.400 0.693

Table 3.6: Result of U.S. Treasury: yield prediction error (in bps) of 5-day-ahead forecasting

Tenor MAPE RMSPE STD MAPE RMSPE STD
Train Test Train Test Train Test Train Test Train Test Train Test

KF(λ=0) KF(λ=1)
3M 5.92 4.55 8.36 6.00 8.35 5.76 6.26 9.21 8.87 11.2 8.86 6.68
1Y 4.34 4.70 5.82 6.25 5.81 6.23 4.56 5.70 6.34 7.51 6.32 6.66
3Y 5.16 7.06 6.84 9.29 6.83 9.20 5.25 7.14 7.25 9.35 7.21 9.06
5Y 6.12 7.99 7.85 10.3 7.80 10.1 6.08 7.91 8.10 10.1 8.00 9.85

10Y 6.25 8.01 7.98 10.2 7.80 9.93 6.24 7.80 8.54 9.99 8.25 9.83
20Y 6.22 7.60 8.16 9.80 7.84 9.48 6.84 9.23 9.72 12.0 9.24 10.0
30Y 6.37 7.51 8.41 9.75 8.04 9.43 7.32 10.3 10.4 13.3 9.90 10.3

EK(λ=0) EK(λ=1)
3M 7.59 6.66 10.1 8.19 9.76 8.14 7.68 6.95 10.3 8.66 10.0 8.65
1Y 5.11 6.53 6.78 8.27 6.52 8.27 5.16 6.88 6.90 8.31 6.74 8.23
3Y 3.41 8.45 4.40 11.0 4.38 11.0 3.93 9.81 5.01 12.5 5.01 12.3
5Y 3.49 9.25 4.48 11.9 4.48 11.8 4.14 10.7 5.25 13.8 5.24 13.6

10Y 3.15 8.91 4.06 11.4 4.06 11.3 3.69 10.2 4.67 12.9 4.67 12.8
20Y 3.05 8.36 3.98 11.0 3.98 10.9 3.34 9.40 4.28 11.9 4.28 11.8
30Y 3.21 8.29 4.18 11.0 4.17 10.9 3.38 9.21 4.38 11.7 4.38 11.6

PF(λ=0) PF(λ=1)
3M 6.92 8.33 9.36 10.1 8.81 9.81 8.03 10.4 11.3 13.4 11.3 10.0
1Y 4.87 7.66 6.38 9.89 6.00 9.78 5.61 8.56 7.70 11.3 7.68 9.44
3Y 3.62 9.23 4.67 12.0 4.58 12.0 4.40 9.19 5.73 11.8 5.71 11.6
5Y 3.71 9.57 4.77 12.5 4.74 12.5 4.74 9.66 6.10 12.4 6.08 12.3

10Y 3.27 9.16 4.26 11.8 4.22 11.8 4.43 9.23 5.85 11.9 5.83 11.9
20Y 3.10 9.07 4.09 11.8 3.98 11.8 4.24 8.69 5.72 11.8 5.69 11.8
30Y 3.23 9.30 4.25 12.2 4.12 12.1 4.34 8.64 5.87 12.0 5.83 12.0
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Table 3.7: Result of U.S. Treasury: price prediction error (in dollars) of 5-day-ahead forecasting

Model Yield MAPE Yield RMSE Yield STD Price MAPE Price RMSPE Price STD
Train Test Train Test Train Test Train Test Train Test Train Test

KF(λ=0) 5.51 6.75 5.57 6.89 0.83 1.37 0.29 0.30 0.55 0.62 0.54 0.61
EK(λ=0) 3.96 8.11 4.13 8.17 1.18 1.01 0.18 0.35 0.28 0.74 0.28 0.73
PF(λ=0) 3.98 8.85 4.10 8.88 0.95 0.64 0.18 0.37 0.29 0.78 0.28 0.78
KF(λ=1) 5.71 7.50 5.78 7.62 0.88 1.35 0.30 0.34 0.63 0.79 0.62 0.79
EK(λ=1) 4.32 9.13 4.45 9.24 1.05 1.45 0.20 0.40 0.31 0.79 0.31 0.79
PF(λ=1) 4.93 9.11 5.01 9.13 0.93 0.52 0.23 0.37 0.39 0.79 0.39 0.78

Table 3.8: Result of U.S. Treasury: hit rate and percentage error of 5-day-ahead forecasting

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Model Train Test Train Test Train Test Train Test Train Test Train Test

Benchmark 71% 68% 66% 55% 36% 25% 0.078 0.085 0.234 0.320 0.897 1.439
KF(λ=0) 72% 69% 63% 58% 30% 19% 0.077 0.081 0.249 0.286 1.071 1.301
EK(λ=0) 73% 66% 81% 50% 57% 22% 0.075 0.087 0.157 0.343 0.515 1.533
PF(λ=0) 73% 65% 80% 49% 58% 15% 0.074 0.091 0.164 0.362 0.516 1.614
KF(λ=1) 70% 67% 65% 57% 30% 22% 0.081 0.086 0.240 0.284 1.161 1.706
EK(λ=1) 72% 65% 76% 44% 52% 19% 0.077 0.090 0.178 0.399 0.557 1.673
PF(λ=1) 66% 64% 72% 49% 47% 25% 0.087 0.096 0.202 0.365 0.717 1.580

In Figure 3.8, we present the convergence of our model with the training and testing results.
The loss of the Kalman filter is the MSE of yield prediction and the loss of the particle filter is
the MSE of the bond price prediction. Figures 3.9, 3.10, 3.11 and 3.12 show the variation of
the state parameters: κt , θt and σt obtained from the yield prediction and bond price prediction
models using the Kalman filter and the particle filter, respectively, with and without arbitrage-free
regularization. We graph the path of each component of the state parameters. Figure 3.9 shows
the state parameters for the yield prediction model using the Kalman filter without regularization
and we observe that there appears to be regime-switching in κt , θt and σt . Figure 3.10 shows the
result of the yield prediction model using the Kalman filter with arbitrage-free regularization and
we observe that the state parameters become stabilized. Figures 3.11 and 3.12 show the result of
the bond price prediction model using the particle filter and we observe that the state parameters
estimated with and without arbitrage-free regularization are both stable. These results deserve
further investigation.
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Figure 3.8: Result of U.S. Treasury: Model loss
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Figure 3.9: Result of U.S. Treasury: State parameters (Kalman filter)
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Figure 3.10: Result of U.S. Treasury: State parameters (Kalman filter + arbitrage regularization)
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Figure 3.11: Result of U.S. Treasury: State parameters (Particle filter)
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Figure 3.12: Result of U.S. Treasury: State parameters (Particle filter + arbitrage regularization)
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In Figure 3.13, we present the average excess return (AER) obtained from the evolution of
forward rate curves that indicates the excess rate of the bond prices over the risk-free prices. The
AER theoretically improves the soundness of the model and minimizes arbitrage opportunity in the
dynamics of forward curves. The value of AER shown in Figure 3.13 is obtained from the trained
model with arbitrage-free regularization, in contrast, which is very high in the model without
arbitrage-free regularization. Among the three filters, the prediction result of the Kalman filter
has the least arbitrage opportunity than the other two filters. The prediction result of the extended
Kalman filter has the highest arbitrage opportunity at long-term maturities and that of the particle
filter is in the short-term maturities. From the perspective of models, the consistency and the
minimum value of AER provided by the Kalman filter across the training result and the testing
result indicates that the yield forecasting with arbitrage-free regularization is more robust than the
bond price model.
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Figure 3.13: Result of U.S. Treasury: Average excess return of 1-day-ahead forecasting
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The effective sample size (ESS) shown in Figure 3.14 and 3.15 presents the variance of the
particles over the maximum number of particles (300). The value of ESS is between 0 and 100%
and the threshold in adaptive resampling is usually at 50%. In other words, if the ESS is less than
half of the total number of particles then the particle filter is considered inefficient and resampling
is necessary. In our application, we run systematic resampling at every time step instead of an
adaptive method and examine the efficiency of the particle filter using the ESS. In Figure 3.14, we
vary the regularization and compare the ESS at degree p = 1.5. The small initial value of ESS in
the first step is due to the inexact initial particles which are sampled from the sample means of the
estimated state variables and are not exactly the accurate initials for the forward rate curve. The
result in Figure 3.14 shows the ESS of the particles stays above 85% in the training set and decays
to 60% in the testing set over time, which also indicates that the particle filter does not suffer from
serious degeneracy. In Figure 3.15, we vary p, the degree of the distribution, and compare the ESS
with regularization λ = 1. We observe that the MGGD with p = 0.62 has much higher ESS in the
later time steps and the ESS is not decaying in the testing set. Later, we will show that the optimal
value of p is around 0.62 in the error distribution of the predicted bond prices. Therefore, we
conclude that the particle filter with multivariate generalized Gaussian distribution is very efficient
and stable for bond prices forecasting in both training and testing data.
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Figure 3.14: Result of U.S. Treasury: Effective sample size with different regularization
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Figure 3.15: Result of U.S. Treasury: Effective sample size with different degree
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Figure 3.16: Result of U.S. Treasury: Price error distribution of 1-day-ahead forecasting

Figure 3.17: Result of U.S. Treasury: QQ-plot (price error) of 1-day-ahead forecasting
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Figure 3.18: Result of U.S. Treasury: Yield error distribution of 1-day-ahead forecasting

Figure 3.19: Result of U.S. Treasury: QQ-plot (yield error) of 1-day-ahead forecasting
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In Figures 3.16, 3.17, 3.18 and 3.19, we fit the 1-day-ahead prediction error of Treasury yields
and bond proces with three distributions and make an analysis from the qq plot. Figure 3.16 shows
the prediction error distribution of bond prices and there exists excess kurtosis problem which
could be decreased by arbitrage-penalty. Figures 3.17 shows qq plot of the price error fitting with
MGGD and we find that the fat tail problem is very severe for the non-linear model. Figure 3.18
shows the prediction error distribution of yields and the kurtosis below than 1 and find that the
prediction error of yields has a low kurtosis problem which could be increased by the arbitrage-
penalty. Comparing the the result of the paricle filter shown in Figure 3.16 and 3.18, we find the
MGGD could fit in both of the excess kurtosis and low kurtosis situations and the main problem of
the prediction error is the fat tail problem. For the problem of excess kurtosis in the particle filter, it
could be improved by considering a non-parametric distribution for the observation instead of the
MGGD. For the fat tail problem, we refer to Brigo, Dalessandro, Neugebauer, and Triki [16] who
suggest adding a jump term in the mean-reverting dynamics to solve the fat tail problems which
we will discuss later as a future direction.

From Tables 3.9 to 3.16, we present the h-day-ahead forecasting results on data from twelve
corporate bond issuers with the predicted corporate spread calculated by subtracting the the pre-
dicted Treasury yield from the predicted corporate yield and comparing to the observed value. For
the forecasting results of corporate data, we present the predicted spread error (predicted corporate
yield - predicted Treasury yield) ranging between 2.8 bps to 11 bps in 1-day-ahead forecasting and
between 5.2 bps to 14 bps in 5-day-ahead forecasting. Since credit risk factors are not included
and the corporate data contains only around 10 to 30 daily bonds which is too few, the forecast-
ing performance of corporate data is not comparable to that of Treasury data. From the corporate
results, we find that the Kalman filter significant outperforms the extended Kalman filter and the
particle filter. Therefore, we recommend to using yield points for forecasting both corporate yields
and coupon coupon bonds when the daily number of bonds is not sufficiently large.

Other models with credit risk factors such as Duffie [46] show that the forecasting has a predic-
tion error around 100 basis points on short-term corporate bond yields and around 9 basis points
on long-term. Duffee [43] investigates 161 firm’s bonds on monthly basis and shows the RMSE
forecasting yield error in 34.56 bps for 6 months maturity and 7.77 bps for 30 years maturities,
using the Kalman filter and a CIR model as interest rate in 1-month-ahead forecasting. However,
Duffee [43] does not provide the out-of-sample tests.

Available corporate coupon bonds contain only 10 to 30 bonds on average which are much
fewer than Treasury bonds traded on a daily basis. The overall forecasting performance for the
corporate is not comparable to the Treasury result, since our model isn’t including the credit risk
and the corporate data is deficient on both daily observation and features. As comparison we found
in Ganguli and Dunnmon [61]’s work, they have 61 features including information from second
market and from both trading sides and present training/testing results of different models and
running times: (0.8043 / 0.8455) by OLS in 23 seconds, (0.0055 / 2.4369) by regression trees with
83 hours, (0.6668 / 0.7012) by neural networks (two-layer 30 neurons) in 2 hours. As noted in
Diebold and Li [37], there is a persistent discrepancy between actual bond prices and the prices
estimated from term structure models for the Treasury bonds. We do not smooth the observed
prices so the discrepancy in the corporate bonds would be much larger than the Treasury bonds
due to credit risk and/or liquidity problem.
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3.6.2 Results of corporate data

Table 3.9: Summary of 1-day-ahead forecasting: predicted spread error (in bps) and price error
(in dollars), part 1

Ticker Spread MAPE Spread RMSPE Spread STD Price MAE Price RMSPE Price STD
Model Train Test Train Test Train Test Train Test Train Test Train Test
AAPL

KF(λ=0) 3.05 2.81 3.27 2.96 1.16 0.93 0.161 0.156 0.267 0.224 0.267 0.223
EK(λ=0) 4.04 4.86 4.49 5.33 1.96 2.20 0.161 0.185 0.263 0.310 0.263 0.309
PF(λ=0) 4.08 6.45 4.60 7.55 2.13 3.93 0.154 0.187 0.240 0.291 0.240 0.290
KF(λ=1) 3.06 2.65 3.29 2.83 1.19 1.00 0.159 0.153 0.267 0.219 0.267 0.219
EK(λ=1) 3.91 5.89 4.37 6.63 1.95 3.04 0.154 0.188 0.243 0.293 0.243 0.292
PF(λ=1) 4.02 6.04 4.58 7.02 2.19 3.58 0.152 0.180 0.239 0.285 0.239 0.284

BAC
KF(λ=0) 9.07 11.16 9.36 11.47 2.34 2.63 0.384 0.408 0.618 0.664 0.616 0.658
EK(λ=0) 9.22 8.56 9.83 9.46 3.40 4.03 0.365 0.343 0.557 0.514 0.557 0.514
PF(λ=0) 10.07 9.65 10.69 10.16 3.58 3.17 0.362 0.449 0.555 0.716 0.555 0.691
KF(λ=1) 8.73 11.87 9.01 12.15 2.22 2.59 0.367 0.454 0.592 0.728 0.590 0.727
EK(λ=1) 9.95 9.09 10.48 9.39 3.29 2.32 0.369 0.401 0.567 0.620 0.567 0.613
PF(λ=1) 10.10 8.85 10.65 9.33 3.38 2.96 0.373 0.396 0.583 0.633 0.583 0.630

C
KF(λ=0) 6.03 6.36 6.32 6.57 1.91 1.65 0.264 0.344 0.419 0.545 0.419 0.545
EK(λ=0) 6.75 7.29 7.10 7.64 2.22 2.29 0.257 0.366 0.408 0.557 0.408 0.557
PF(λ=0) 6.71 8.40 7.13 9.18 2.39 3.70 0.241 0.369 0.362 0.573 0.362 0.573
KF(λ=1) 6.09 6.56 6.38 6.83 1.90 1.89 0.263 0.361 0.414 0.577 0.414 0.575
EK(λ=1) 6.76 8.05 7.15 8.53 2.33 2.80 0.249 0.374 0.384 0.576 0.384 0.576
PF(λ=1) 6.67 8.39 7.06 8.80 2.30 2.63 0.246 0.398 0.380 0.606 0.380 0.606

DIS
KF(λ=0) 4.44 4.91 4.71 5.19 1.56 1.67 0.193 0.264 0.317 0.572 0.317 0.572
EK(λ=0) 5.45 6.23 5.98 6.68 2.47 2.41 0.188 0.261 0.291 0.447 0.291 0.447
PF(λ=0) 6.18 8.16 6.95 9.28 3.18 4.43 0.185 0.264 0.268 0.430 0.268 0.430
KF(λ=1) 4.53 8.24 4.80 8.72 1.58 2.86 0.195 0.323 0.325 0.694 0.325 0.684
EK(λ=1) 5.67 7.13 6.26 7.81 2.65 3.18 0.185 0.268 0.269 0.484 0.269 0.483
PF(λ=1) 5.85 9.09 6.56 10.60 2.98 5.45 0.183 0.274 0.268 0.487 0.268 0.484

GS
KF(λ=0) 5.69 6.16 5.96 6.36 1.77 1.58 0.293 0.339 0.453 0.493 0.452 0.491
EK(λ=0) 6.54 6.86 7.16 7.12 2.91 1.93 0.282 0.341 0.419 0.513 0.418 0.511
PF(λ=0) 6.30 7.31 6.84 7.54 2.68 1.87 0.262 0.358 0.376 0.553 0.375 0.553
KF(λ=1) 5.64 6.41 5.91 6.55 1.77 1.36 0.288 0.359 0.441 0.537 0.441 0.534
EK(λ=1) 6.44 8.52 7.13 9.05 3.06 3.06 0.268 0.373 0.389 0.565 0.388 0.564
PF(λ=1) 6.22 7.44 6.83 7.82 2.84 2.41 0.257 0.361 0.372 0.547 0.372 0.546

JNJ
KF(λ=0) 5.15 5.33 5.51 5.81 1.98 2.30 0.269 0.296 0.427 0.440 0.427 0.439
EK(λ=0) 5.99 6.44 6.64 7.00 2.85 2.74 0.270 0.329 0.414 0.551 0.414 0.550
PF(λ=0) 6.29 6.57 6.96 7.25 2.96 3.06 0.267 0.323 0.398 0.524 0.398 0.523
KF(λ=1) 5.22 5.35 5.62 5.83 2.07 2.30 0.267 0.294 0.416 0.438 0.416 0.438
EK(λ=1) 6.34 7.16 7.18 7.88 3.37 3.31 0.267 0.322 0.409 0.497 0.409 0.496
PF(λ=1) 6.50 6.98 7.41 7.85 3.57 3.60 0.266 0.301 0.407 0.477 0.406 0.476
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Table 3.10: Summary of 1-day-ahead forecasting: predicted spread error (in bps) and price error
(in dollars), part 2

Ticker Spread MAPE Spread RMSPE Spread STD Price MAE Price RMSPE Price STD
Model Train Test Train Test Train Test Train Test Train Test Train Test
JPM

KF(λ=0) 4.73 5.11 4.96 5.48 1.49 1.97 0.289 0.441 0.557 1.060 0.557 1.030
EK(λ=0) 5.78 8.56 6.34 9.55 2.61 4.22 0.220 0.312 0.335 0.566 0.335 0.563
PF(λ=0) 6.03 9.57 6.66 10.75 2.84 4.90 0.217 0.305 0.329 0.511 0.329 0.510
KF(λ=1) 4.74 5.56 4.98 5.98 1.51 2.21 0.286 0.448 0.538 1.062 0.536 1.027
EK(λ=1) 6.37 10.87 7.05 11.92 3.01 4.89 0.232 0.338 0.354 0.550 0.354 0.550
PF(λ=1) 5.79 9.48 6.45 10.45 2.85 4.38 0.214 0.326 0.326 0.572 0.326 0.570

MS
KF(λ=0) 6.60 6.62 6.90 6.81 2.00 1.60 0.248 0.268 0.379 0.432 0.377 0.432
EK(λ=0) 6.90 7.06 7.39 7.34 2.66 2.01 0.239 0.272 0.370 0.429 0.369 0.427
PF(λ=0) 6.89 8.64 7.53 9.38 3.03 3.66 0.221 0.283 0.330 0.439 0.330 0.438
KF(λ=1) 6.46 6.51 6.83 6.74 2.19 1.75 0.240 0.259 0.376 0.421 0.376 0.421
EK(λ=1) 6.72 7.84 7.20 8.19 2.60 2.36 0.227 0.282 0.342 0.455 0.342 0.455
PF(λ=1) 7.06 8.54 7.66 9.22 2.97 3.46 0.232 0.276 0.361 0.441 0.361 0.441
MSFT

KF(λ=0) 3.49 3.27 3.82 3.45 1.56 1.10 0.215 0.244 0.333 0.332 0.333 0.331
EK(λ=0) 4.18 5.31 4.81 6.02 2.38 2.84 0.201 0.250 0.296 0.362 0.296 0.361
PF(λ=0) 4.69 5.95 5.53 6.71 2.93 3.12 0.192 0.246 0.271 0.356 0.271 0.355
KF(λ=1) 3.56 3.22 3.92 3.47 1.65 1.29 0.215 0.242 0.331 0.327 0.331 0.326
EK(λ=1) 4.54 5.90 5.26 6.41 2.66 2.52 0.196 0.263 0.283 0.384 0.283 0.381
PF(λ=1) 4.33 6.22 5.01 7.25 2.51 3.73 0.194 0.253 0.279 0.374 0.279 0.371

T
KF(λ=0) 5.69 5.25 6.18 5.53 2.42 1.73 0.264 0.278 0.418 0.585 0.418 0.585
EK(λ=0) 6.38 7.47 7.06 8.25 3.03 3.49 0.258 0.310 0.396 0.576 0.396 0.576
PF(λ=0) 6.51 7.53 7.38 8.29 3.46 3.46 0.242 0.304 0.362 0.579 0.362 0.579
KF(λ=1) 5.79 6.31 6.30 6.97 2.47 2.95 0.264 0.301 0.421 0.582 0.420 0.581
EK(λ=1) 6.43 8.08 7.28 8.93 3.41 3.80 0.246 0.316 0.372 0.563 0.372 0.562
PF(λ=1) 6.61 8.77 7.60 10.20 3.76 5.21 0.239 0.302 0.356 0.527 0.356 0.527

UNH
KF(λ=0) 4.36 4.86 4.73 5.31 1.81 2.13 0.213 0.220 0.343 0.377 0.342 0.377
EK(λ=0) 5.45 5.87 6.13 6.43 2.81 2.63 0.209 0.228 0.324 0.368 0.324 0.368
PF(λ=0) 5.89 6.59 6.78 7.40 3.36 3.37 0.203 0.228 0.295 0.392 0.295 0.392
KF(λ=1) 4.45 5.93 4.82 6.48 1.86 2.60 0.213 0.256 0.344 0.465 0.343 0.464
EK(λ=1) 5.85 6.56 6.63 7.09 3.11 2.69 0.208 0.236 0.315 0.397 0.314 0.397
PF(λ=1) 5.53 6.67 6.30 7.46 3.03 3.36 0.205 0.230 0.316 0.371 0.316 0.368

WFC
KF(λ=0) 5.56 5.43 5.79 5.64 1.61 1.53 0.271 0.288 0.511 0.585 0.510 0.585
EK(λ=0) 6.70 8.06 7.29 8.25 2.88 1.78 0.260 0.344 0.465 0.626 0.465 0.625
PF(λ=0) 6.40 8.36 6.84 8.60 2.42 2.02 0.243 0.353 0.419 0.641 0.419 0.639
KF(λ=1) 5.58 5.53 5.81 5.70 1.61 1.37 0.267 0.278 0.508 0.536 0.507 0.536
EK(λ=1) 6.53 8.22 7.03 8.40 2.63 1.74 0.248 0.369 0.438 0.729 0.438 0.728
PF(λ=1) 6.69 10.02 7.30 10.49 2.90 3.13 0.245 0.394 0.428 0.783 0.428 0.783
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Table 3.11: Summary of 1-day-ahead forecasting: hit rate and percentage error, part 1

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Ticker Train Test Train Test Train Test Train Test Train Test Train Test
AAPL

KF(λ=0) 67% 64% 80% 75% 53% 54% 0.082 0.085 0.157 0.174 0.639 0.604
EK(λ=0) 66% 58% 80% 70% 58% 37% 0.083 0.096 0.160 0.194 0.578 0.900
PF(λ=0) 65% 62% 80% 76% 55% 38% 0.087 0.089 0.160 0.177 0.597 0.800
KF(λ=1) 67% 63% 81% 78% 52% 46% 0.082 0.086 0.154 0.170 0.643 0.572
EK(λ=1) 66% 53% 82% 68% 59% 33% 0.084 0.108 0.154 0.198 0.543 0.776
PF(λ=1) 67% 58% 81% 72% 60% 40% 0.082 0.101 0.153 0.189 0.525 0.784

BAC
KF(λ=0) 41% 40% 50% 51% 31% 30% 0.161 0.153 0.331 0.287 0.957 0.911
EK(λ=0) 38% 35% 50% 56% 42% 50% 0.170 0.181 0.320 0.277 0.763 0.602
PF(λ=0) 38% 41% 50% 41% 39% 24% 0.176 0.158 0.335 0.363 0.801 0.994
KF(λ=1) 40% 38% 50% 48% 34% 29% 0.161 0.155 0.337 0.321 0.935 0.904
EK(λ=1) 39% 40% 48% 39% 36% 38% 0.173 0.168 0.339 0.365 0.844 0.786
PF(λ=1) 40% 42% 49% 42% 35% 39% 0.171 0.151 0.339 0.344 0.870 0.820

C
KF(λ=0) 44% 33% 58% 47% 33% 27% 0.136 0.166 0.267 0.303 0.767 0.913
EK(λ=0) 45% 33% 60% 46% 37% 26% 0.134 0.185 0.265 0.332 0.740 0.924
PF(λ=0) 44% 31% 61% 47% 45% 25% 0.138 0.193 0.254 0.327 0.611 0.961
KF(λ=1) 44% 34% 59% 48% 36% 31% 0.136 0.165 0.267 0.297 0.765 0.924
EK(λ=1) 43% 28% 60% 43% 42% 27% 0.139 0.194 0.257 0.334 0.679 0.953
PF(λ=1) 45% 32% 61% 40% 40% 24% 0.135 0.186 0.256 0.365 0.673 1.027

DIS
KF(λ=0) 47% 43% 73% 59% 33% 29% 0.122 0.140 0.195 0.256 0.853 1.832
EK(λ=0) 48% 44% 73% 58% 41% 30% 0.121 0.145 0.198 0.265 0.760 0.996
PF(λ=0) 47% 43% 72% 56% 48% 23% 0.126 0.146 0.197 0.280 0.592 0.914
KF(λ=1) 49% 44% 72% 58% 33% 24% 0.122 0.138 0.199 0.262 0.868 1.860
EK(λ=1) 47% 41% 73% 57% 45% 27% 0.123 0.149 0.199 0.268 0.589 1.060
PF(λ=1) 48% 39% 73% 58% 42% 30% 0.124 0.161 0.194 0.273 0.631 1.040

GS
KF(λ=0) 40% 33% 64% 62% 46% 42% 0.141 0.171 0.223 0.210 0.644 0.602
EK(λ=0) 40% 40% 64% 56% 49% 44% 0.150 0.150 0.223 0.242 0.593 0.623
PF(λ=0) 39% 40% 64% 58% 57% 43% 0.152 0.156 0.218 0.250 0.501 0.661
KF(λ=1) 42% 34% 64% 59% 49% 42% 0.142 0.175 0.221 0.223 0.623 0.637
EK(λ=1) 39% 40% 64% 52% 55% 42% 0.149 0.158 0.218 0.263 0.531 0.686
PF(λ=1) 41% 40% 65% 58% 57% 40% 0.148 0.151 0.210 0.248 0.505 0.676

JNJ
KF(λ=0) 44% 42% 67% 64% 48% 47% 0.137 0.150 0.215 0.217 0.614 0.533
EK(λ=0) 44% 39% 64% 61% 51% 44% 0.142 0.154 0.224 0.227 0.593 0.699
PF(λ=0) 44% 42% 65% 61% 51% 42% 0.143 0.154 0.226 0.227 0.558 0.672
KF(λ=1) 45% 42% 68% 62% 48% 49% 0.138 0.151 0.213 0.218 0.607 0.520
EK(λ=1) 42% 39% 67% 61% 50% 45% 0.148 0.165 0.220 0.242 0.575 0.619
PF(λ=1) 43% 37% 67% 64% 51% 52% 0.147 0.161 0.219 0.227 0.574 0.570
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Table 3.12: Summary of 1-day-ahead forecasting: hit rate and percentage error, part 2

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Ticker Train Test Train Test Train Test Train Test Train Test Train Test
JPM

KF(λ=0) 41% 41% 70% 64% 30% 14% 0.143 0.148 0.200 0.211 0.991 1.930
EK(λ=0) 41% 41% 72% 60% 52% 27% 0.139 0.152 0.186 0.248 0.520 0.921
PF(λ=0) 42% 41% 68% 63% 44% 31% 0.145 0.147 0.210 0.225 0.636 0.755
KF(λ=1) 41% 41% 69% 65% 29% 14% 0.143 0.150 0.203 0.206 0.961 1.790
EK(λ=1) 43% 39% 69% 49% 50% 27% 0.137 0.162 0.202 0.311 0.539 0.845
PF(λ=1) 42% 46% 67% 65% 43% 35% 0.142 0.134 0.210 0.210 0.651 0.640

MS
KF(λ=0) 45% 51% 59% 56% 44% 39% 0.139 0.131 0.269 0.269 0.638 0.706
EK(λ=0) 48% 42% 60% 57% 49% 36% 0.132 0.154 0.260 0.275 0.615 0.713
PF(λ=0) 48% 40% 63% 56% 54% 38% 0.132 0.167 0.238 0.289 0.530 0.671
KF(λ=1) 44% 49% 62% 59% 44% 36% 0.138 0.131 0.254 0.257 0.661 0.683
EK(λ=1) 48% 43% 63% 55% 46% 38% 0.132 0.154 0.243 0.287 0.576 0.767
PF(λ=1) 48% 42% 63% 56% 47% 38% 0.133 0.158 0.249 0.278 0.610 0.730
MSFT

KF(λ=0) 47% 33% 71% 58% 46% 28% 0.128 0.163 0.196 0.237 0.653 0.723
EK(λ=0) 48% 37% 72% 63% 56% 46% 0.125 0.164 0.191 0.224 0.550 0.645
PF(λ=0) 49% 40% 73% 61% 60% 53% 0.124 0.155 0.186 0.231 0.478 0.568
KF(λ=1) 46% 34% 71% 57% 46% 36% 0.129 0.165 0.194 0.238 0.660 0.669
EK(λ=1) 48% 35% 73% 61% 60% 43% 0.128 0.168 0.186 0.239 0.510 0.654
PF(λ=1) 51% 39% 73% 62% 59% 48% 0.121 0.164 0.187 0.231 0.499 0.615

T
KF(λ=0) 35% 34% 67% 69% 39% 30% 0.165 0.172 0.209 0.200 0.803 0.966
EK(λ=0) 37% 41% 67% 64% 38% 29% 0.161 0.165 0.210 0.218 0.786 0.988
PF(λ=0) 35% 39% 68% 67% 48% 30% 0.164 0.168 0.204 0.215 0.667 0.956
KF(λ=1) 36% 34% 67% 70% 38% 27% 0.165 0.168 0.210 0.193 0.809 0.995
EK(λ=1) 36% 36% 69% 65% 43% 24% 0.167 0.179 0.201 0.223 0.714 0.987
PF(λ=1) 37% 38% 69% 66% 47% 31% 0.163 0.179 0.200 0.216 0.655 0.915

UNH
KF(λ=0) 48% 47% 72% 70% 36% 34% 0.124 0.133 0.194 0.194 0.804 0.878
EK(λ=0) 48% 41% 71% 66% 48% 30% 0.125 0.144 0.197 0.211 0.673 0.936
PF(λ=0) 47% 44% 71% 65% 52% 28% 0.130 0.142 0.195 0.211 0.565 0.954
KF(λ=1) 49% 45% 72% 63% 36% 26% 0.122 0.149 0.196 0.216 0.798 1.158
EK(λ=1) 47% 45% 71% 65% 48% 36% 0.131 0.139 0.197 0.218 0.628 1.036
PF(λ=1) 49% 47% 72% 65% 46% 26% 0.125 0.141 0.192 0.214 0.656 0.964

WFC
KF(λ=0) 50% 63% 72% 61% 31% 30% 0.118 0.094 0.218 0.275 0.970 1.028
EK(λ=0) 50% 49% 72% 50% 31% 26% 0.121 0.124 0.210 0.351 0.915 1.062
EK(λ=0) 50% 49% 72% 50% 31% 26% 0.121 0.124 0.210 0.351 0.915 1.062
PF(λ=0) 53% 50% 70% 47% 31% 26% 0.118 0.128 0.219 0.396 1.077 1.281
EK(λ=1) 52% 51% 73% 53% 37% 22% 0.118 0.119 0.205 0.360 0.836 1.256
PF(λ=1) 51% 47% 73% 50% 33% 25% 0.120 0.126 0.201 0.383 0.827 1.345
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Table 3.13: Summary of 5-day-ahead forecasting: predicted spread error (in bps) and price error
(in dollars), part 1

Ticker Spread MAPE Spread RMSPE Spread STD Price MAE Price RMSPE Price STD
Model Train Test Train Test Train Test Train Test Train Test Train Test
AAPL

KF(λ=0) 5.30 5.27 5.71 5.85 2.13 2.54 0.265 0.241 0.457 0.355 0.456 0.353
EK(λ=0) 5.98 11.47 6.55 12.54 2.66 5.08 0.223 0.397 0.349 0.636 0.349 0.635
PF(λ=0) 6.66 10.40 7.23 10.95 2.81 3.44 0.261 0.259 0.437 0.393 0.437 0.386
KF(λ=1) 5.88 6.70 6.18 7.35 1.91 3.02 0.249 0.246 0.421 0.359 0.421 0.359
EK(λ=1) 6.62 10.52 7.28 11.09 3.02 3.51 0.240 0.355 0.390 0.524 0.389 0.523
PF(λ=1) 6.15 9.44 6.70 9.79 2.66 2.58 0.230 0.351 0.369 0.534 0.369 0.533

BAC
KF(λ=0) 12.71 14.74 13.25 15.79 3.75 5.65 0.521 0.568 0.844 0.931 0.842 0.910
EK(λ=0) 12.47 11.77 13.30 12.01 4.63 2.42 0.436 0.527 0.655 0.857 0.655 0.853
PF(λ=0) 12.35 11.45 13.36 11.86 5.10 3.06 0.430 0.499 0.640 0.799 0.639 0.796
KF(λ=1) 12.92 14.64 13.44 15.77 3.71 5.86 0.502 0.534 0.802 0.874 0.802 0.867
EK(λ=1) 12.82 11.56 13.65 11.81 4.68 2.40 0.442 0.508 0.677 0.813 0.676 0.789
PF(λ=1) 12.32 12.38 13.12 12.83 4.51 3.37 0.429 0.630 0.645 1.018 0.645 0.946

C
KF(λ=0) 9.02 9.93 9.46 10.35 2.83 2.92 0.359 0.447 0.602 0.722 0.602 0.713
EK(λ=0) 8.48 10.66 8.82 11.16 2.44 3.27 0.310 0.454 0.494 0.728 0.494 0.726
PF(λ=0) 8.20 11.05 8.50 11.32 2.24 2.44 0.303 0.490 0.464 0.847 0.464 0.816
KF(λ=1) 8.41 9.34 8.70 9.53 2.22 1.92 0.326 0.449 0.538 0.709 0.538 0.704
EK(λ=1) 8.85 13.00 9.32 13.95 2.93 5.06 0.302 0.491 0.467 0.793 0.466 0.793
PF(λ=1) 8.65 14.03 8.99 15.44 2.46 6.45 0.310 0.534 0.486 0.899 0.486 0.898

DIS
KF(λ=0) 7.15 7.83 7.70 8.56 2.85 3.46 0.279 0.365 0.484 0.849 0.483 0.847
EK(λ=0) 7.90 11.24 8.61 12.23 3.43 4.81 0.251 0.372 0.387 0.673 0.386 0.670
PF(λ=0) 8.56 11.33 9.51 12.17 4.16 4.44 0.251 0.383 0.382 0.724 0.382 0.721
KF(λ=1) 7.27 11.76 7.69 12.26 2.52 3.48 0.258 0.369 0.424 0.594 0.424 0.587
EK(λ=1) 8.18 11.02 8.97 11.70 3.68 3.94 0.248 0.394 0.386 0.761 0.385 0.757
PF(λ=1) 7.80 9.61 8.49 10.23 3.35 3.52 0.249 0.382 0.375 0.812 0.375 0.812

GS
KF(λ=0) 8.32 8.75 8.70 9.21 2.55 2.89 0.376 0.426 0.587 0.622 0.587 0.615
EK(λ=0) 7.78 9.16 8.37 9.37 3.10 1.96 0.318 0.437 0.469 0.666 0.469 0.649
PF(λ=0) 7.77 10.24 8.47 10.69 3.37 3.06 0.295 0.433 0.423 0.655 0.423 0.653
KF(λ=1) 7.84 8.66 8.11 8.82 2.06 1.71 0.347 0.428 0.531 0.605 0.531 0.604
EK(λ=1) 7.98 10.81 8.74 11.15 3.57 2.72 0.299 0.434 0.430 0.663 0.429 0.658
PF(λ=1) 8.05 11.03 8.62 11.42 3.08 2.94 0.303 0.475 0.436 0.733 0.436 0.727

JNJ
KF(λ=0) 7.54 7.38 8.20 8.29 3.21 3.78 0.410 0.454 0.668 0.709 0.668 0.706
EK(λ=0) 8.59 10.61 9.67 12.25 4.45 6.13 0.366 0.540 0.566 0.880 0.566 0.879
PF(λ=0) 8.43 9.96 9.51 10.74 4.39 4.01 0.349 0.578 0.519 0.960 0.517 0.937
KF(λ=1) 7.15 8.06 7.63 8.77 2.67 3.46 0.371 0.429 0.596 0.651 0.596 0.645
EK(λ=1) 8.77 10.21 9.89 10.82 4.57 3.58 0.344 0.541 0.519 0.884 0.518 0.882
PF(λ=1) 8.00 11.01 8.84 11.68 3.77 3.90 0.347 0.607 0.522 1.042 0.522 1.012
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Table 3.14: Summary of 5-day-ahead forecasting: predicted spread error (in bps) and price error
(in dollars), part 2

Ticker Spread MAPE Spread RMSPE Spread STD Price MAE Price RMSPE Price STD
Model Train Test Train Test Train Test Train Test Train Test Train Test
JPM

KF(λ=0) 5.97 6.46 6.12 6.70 1.39 1.77 0.346 0.346 0.585 0.617 0.585 0.616
EK(λ=0) 7.55 10.07 8.12 10.82 3.01 3.95 0.310 0.473 0.493 0.909 0.492 0.909
PF(λ=0) 7.67 10.62 8.25 11.21 3.05 3.58 0.299 0.491 0.464 0.917 0.461 0.914
KF(λ=1) 7.34 8.49 7.70 9.43 2.32 4.12 0.365 0.450 0.661 0.926 0.661 0.914
EK(λ=1) 8.39 11.31 9.22 11.80 3.83 3.38 0.311 0.508 0.485 0.961 0.485 0.960
PF(λ=1) 7.91 12.63 8.59 13.57 3.35 4.97 0.303 0.482 0.471 0.929 0.471 0.926

MS
KF(λ=0) 9.66 8.79 10.16 9.09 3.17 2.29 0.347 0.350 0.579 0.573 0.578 0.564
EK(λ=0) 9.27 12.14 9.95 12.57 3.60 3.27 0.294 0.399 0.461 0.610 0.460 0.608
PF(λ=0) 10.19 11.37 10.96 11.82 4.04 3.24 0.341 0.352 0.539 0.558 0.539 0.549
KF(λ=1) 9.14 9.72 9.56 10.49 2.79 3.95 0.308 0.322 0.508 0.505 0.508 0.505
EK(λ=1) 9.75 15.84 10.52 16.40 3.94 4.23 0.293 0.483 0.458 0.741 0.458 0.741
PF(λ=1) 9.68 14.24 10.51 15.23 4.08 5.40 0.295 0.414 0.456 0.675 0.456 0.675
MSFT

KF(λ=0) 7.92 5.62 8.55 6.27 3.21 2.77 0.419 0.343 0.814 0.503 0.813 0.492
EK(λ=0) 6.95 10.56 7.67 11.09 3.26 3.37 0.284 0.441 0.455 0.681 0.454 0.653
PF(λ=0) 7.52 11.60 8.29 12.32 3.50 4.14 0.323 0.393 0.522 0.609 0.522 0.594
KF(λ=1) 6.60 8.34 7.06 9.71 2.50 4.96 0.322 0.448 0.542 0.825 0.542 0.807
EK(λ=1) 7.34 9.90 8.22 10.30 3.70 2.84 0.288 0.429 0.465 0.681 0.465 0.662
PF(λ=1) 6.80 10.84 7.53 11.42 3.23 3.60 0.282 0.433 0.440 0.684 0.439 0.670

T
KF(λ=0) 9.33 9.41 10.07 10.96 3.79 5.62 0.411 0.450 0.717 1.024 0.716 1.022
EK(λ=0) 9.54 10.56 10.59 11.52 4.59 4.59 0.353 0.489 0.545 0.956 0.545 0.951
PF(λ=0) 11.13 12.81 12.67 13.87 6.05 5.31 0.406 0.389 0.668 0.772 0.668 0.750
KF(λ=1) 8.75 10.26 9.24 11.46 2.98 5.11 0.369 0.407 0.641 0.855 0.640 0.850
EK(λ=1) 9.89 14.14 11.05 15.00 4.94 5.00 0.342 0.611 0.535 1.120 0.534 1.057
PF(λ=1) 10.08 14.04 11.26 15.50 5.03 6.55 0.349 0.530 0.546 1.035 0.546 1.032

UNH
KF(λ=0) 7.24 8.34 7.88 9.10 3.12 3.63 0.314 0.404 0.548 0.885 0.548 0.881
EK(λ=0) 7.73 9.23 8.62 10.13 3.80 4.18 0.281 0.364 0.450 0.588 0.450 0.588
PF(λ=0) 8.91 10.96 9.82 11.39 4.12 3.09 0.332 0.378 0.562 0.744 0.561 0.744
KF(λ=1) 7.39 10.15 7.89 11.39 2.76 5.18 0.281 0.433 0.471 0.923 0.470 0.909
EK(λ=1) 8.24 11.68 9.13 12.57 3.92 4.65 0.284 0.376 0.446 0.618 0.446 0.615
PF(λ=1) 8.12 10.34 9.11 11.05 4.13 3.89 0.280 0.371 0.442 0.605 0.442 0.602

WFC
KF(λ=0) 9.07 7.03 9.49 7.57 2.80 2.82 0.418 0.368 0.810 0.785 0.809 0.778
EK(λ=0) 8.88 12.14 9.44 12.60 3.21 3.38 0.330 0.560 0.557 1.128 0.557 1.117
PF(λ=0) 9.37 12.77 10.05 13.20 3.65 3.34 0.339 0.538 0.588 1.042 0.586 1.029
KF(λ=1) 8.79 10.64 9.17 11.27 2.61 3.72 0.365 0.442 0.709 0.898 0.708 0.878
EK(λ=1) 9.11 13.25 9.64 13.54 3.15 2.80 0.330 0.562 0.553 1.182 0.553 1.166
PF(λ=1) 9.58 13.71 10.31 14.15 3.79 3.52 0.350 0.583 0.587 1.132 0.587 1.120
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Table 3.15: Summary of 5-day-ahead forecasting: hit rate and percentage error, part 1

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Ticker Train Test Train Test Train Test Train Test Train Test Train Test
AAPL

KF(λ=0) 59% 60% 58% 57% 33% 18% 0.098 0.104 0.283 0.281 1.048 0.868
EK(λ=0) 55% 48% 64% 37% 47% 12% 0.107 0.133 0.237 0.463 0.732 1.739
PF(λ=0) 57% 57% 60% 54% 35% 18% 0.107 0.105 0.273 0.304 1.019 0.961
KF(λ=1) 60% 60% 60% 54% 38% 18% 0.097 0.106 0.267 0.290 0.942 0.735
EK(λ=1) 57% 40% 62% 42% 37% 17% 0.110 0.158 0.254 0.410 0.853 1.369
PF(λ=1) 59% 50% 64% 39% 42% 24% 0.102 0.127 0.244 0.420 0.799 1.179

BAC
KF(λ=0) 34% 32% 39% 38% 23% 22% 0.204 0.198 0.465 0.381 1.283 1.292
EK(λ=0) 32% 38% 41% 30% 35% 29% 0.215 0.167 0.419 0.506 0.909 1.112
PF(λ=0) 30% 35% 42% 33% 35% 34% 0.221 0.172 0.399 0.471 0.919 1.033
KF(λ=1) 38% 37% 45% 40% 30% 26% 0.171 0.196 0.384 0.386 1.060 1.144
EK(λ=1) 33% 38% 42% 32% 35% 28% 0.216 0.166 0.416 0.462 0.955 1.090
PF(λ=1) 33% 38% 42% 28% 33% 14% 0.209 0.170 0.404 0.541 0.923 1.475

C
KF(λ=0) 40% 28% 46% 38% 27% 24% 0.154 0.195 0.369 0.398 1.093 1.179
EK(λ=0) 42% 38% 49% 36% 32% 21% 0.145 0.185 0.331 0.410 0.881 1.245
PF(λ=0) 40% 34% 49% 38% 37% 35% 0.152 0.193 0.328 0.445 0.779 1.296
KF(λ=1) 42% 31% 49% 36% 31% 20% 0.147 0.177 0.338 0.402 0.943 1.223
EK(λ=1) 41% 29% 49% 36% 38% 19% 0.150 0.213 0.329 0.446 0.772 1.282
PF(λ=1) 40% 29% 49% 31% 33% 22% 0.155 0.221 0.330 0.485 0.834 1.413

DIS
KF(λ=0) 45% 45% 56% 48% 27% 6% 0.141 0.155 0.300 0.367 1.206 3.345
EK(λ=0) 45% 35% 57% 40% 41% 21% 0.137 0.182 0.285 0.408 0.819 1.478
PF(λ=0) 43% 37% 57% 40% 42% 16% 0.142 0.173 0.285 0.416 0.778 1.662
KF(λ=1) 46% 38% 58% 39% 31% 25% 0.135 0.170 0.281 0.481 1.028 1.252
EK(λ=1) 46% 40% 58% 39% 39% 20% 0.138 0.167 0.277 0.433 0.865 1.758
PF(λ=1) 45% 35% 58% 44% 39% 20% 0.138 0.184 0.281 0.385 0.798 1.887

GS
KF(λ=0) 38% 29% 52% 54% 37% 34% 0.157 0.204 0.303 0.267 0.823 0.751
EK(λ=0) 38% 40% 56% 48% 48% 33% 0.158 0.167 0.271 0.310 0.631 0.813
PF(λ=0) 38% 36% 57% 49% 54% 33% 0.161 0.174 0.259 0.313 0.547 0.779
KF(λ=1) 40% 24% 54% 50% 41% 37% 0.146 0.199 0.288 0.292 0.732 0.720
EK(λ=1) 37% 35% 57% 51% 51% 35% 0.165 0.179 0.257 0.301 0.570 0.799
PF(λ=1) 38% 40% 54% 44% 53% 37% 0.159 0.170 0.267 0.355 0.567 0.849

JNJ
KF(λ=0) 38% 32% 52% 48% 31% 30% 0.161 0.181 0.322 0.318 0.985 0.908
EK(λ=0) 39% 27% 54% 41% 36% 29% 0.162 0.226 0.301 0.398 0.834 1.108
PF(λ=0) 37% 30% 50% 43% 35% 32% 0.172 0.201 0.334 0.365 0.946 0.892
KF(λ=1) 42% 24% 55% 51% 33% 30% 0.148 0.191 0.297 0.308 0.862 0.821
EK(λ=1) 38% 32% 56% 41% 42% 25% 0.166 0.195 0.292 0.400 0.727 1.135
PF(λ=1) 35% 31% 55% 42% 40% 24% 0.166 0.201 0.295 0.404 0.739 1.390
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Table 3.16: Summary of 5-day-ahead forecasting: hit rate and percentage error, part 2

Spread ≤ 0.1 ≤ 0.25 ≤ 0.5 MPE MPE MPE
Tenor(y) 0 ∼ 2 2 ∼ 10 10 ∼ 30 0 ∼ 2 2 ∼ 10 10 ∼ 30
Ticker Train Test Train Test Train Test Train Test Train Test Train Test
JPM

KF(λ=0) 38% 40% 54% 51% 33% 35% 0.159 0.155 0.296 0.322 0.923 0.851
EK(λ=0) 41% 39% 57% 43% 36% 16% 0.152 0.171 0.269 0.390 0.785 1.525
PF(λ=0) 37% 35% 55% 44% 31% 27% 0.165 0.176 0.282 0.387 0.833 0.883
KF(λ=1) 38% 36% 55% 49% 24% 13% 0.161 0.165 0.287 0.295 1.120 1.640
EK(λ=1) 39% 35% 56% 37% 34% 15% 0.160 0.181 0.269 0.435 0.784 1.567
PF(λ=1) 40% 35% 57% 41% 38% 19% 0.156 0.171 0.267 0.411 0.740 1.504

MS
KF(λ=0) 44% 44% 46% 47% 27% 38% 0.164 0.157 0.378 0.358 1.111 0.900
EK(λ=0) 44% 30% 50% 43% 35% 24% 0.152 0.215 0.323 0.417 0.815 0.978
PF(λ=0) 38% 45% 45% 46% 31% 40% 0.177 0.164 0.369 0.374 1.000 0.737
KF(λ=1) 44% 41% 49% 51% 27% 36% 0.154 0.161 0.330 0.326 0.991 0.761
EK(λ=1) 43% 28% 50% 33% 40% 20% 0.158 0.252 0.322 0.503 0.785 1.263
PF(λ=1) 43% 35% 50% 41% 39% 33% 0.159 0.219 0.324 0.434 0.780 1.008
MSFT

KF(λ=0) 44% 37% 46% 44% 23% 21% 0.145 0.165 0.366 0.355 1.725 1.030
EK(λ=0) 45% 35% 57% 39% 36% 24% 0.138 0.195 0.273 0.413 0.918 1.240
PF(λ=0) 42% 38% 53% 39% 30% 23% 0.154 0.175 0.299 0.416 1.052 1.329
KF(λ=1) 45% 38% 53% 44% 28% 18% 0.143 0.166 0.304 0.362 1.282 1.058
EK(λ=1) 43% 36% 57% 42% 36% 15% 0.145 0.181 0.270 0.385 0.952 1.364
PF(λ=1) 46% 37% 58% 41% 32% 27% 0.140 0.188 0.267 0.402 0.908 1.252

T
KF(λ=0) 30% 38% 51% 56% 21% 13% 0.197 0.160 0.305 0.274 1.456 2.448
EK(λ=0) 33% 37% 52% 48% 25% 16% 0.186 0.191 0.285 0.321 1.125 1.850
PF(λ=0) 29% 38% 50% 56% 20% 14% 0.221 0.163 0.311 0.273 1.354 1.810
KF(λ=1) 32% 41% 55% 58% 24% 16% 0.177 0.157 0.278 0.269 1.277 2.022
EK(λ=1) 32% 35% 54% 33% 27% 19% 0.191 0.200 0.274 0.446 1.082 2.064
PF(λ=1) 30% 33% 51% 56% 23% 14% 0.214 0.174 0.303 0.266 1.335 1.971

UNH
KF(λ=0) 44% 43% 55% 50% 20% 20% 0.145 0.179 0.287 0.331 1.303 2.258
EK(λ=0) 45% 36% 56% 47% 38% 18% 0.140 0.175 0.272 0.362 0.901 1.558
PF(λ=0) 40% 40% 51% 51% 24% 22% 0.166 0.161 0.311 0.319 1.253 1.969
KF(λ=1) 48% 37% 59% 49% 25% 14% 0.128 0.177 0.261 0.349 1.104 2.556
EK(λ=1) 42% 36% 57% 47% 33% 18% 0.149 0.189 0.269 0.374 0.944 1.580
PF(λ=1) 43% 36% 57% 47% 36% 36% 0.146 0.179 0.266 0.382 0.907 1.343

WFC
KF(λ=0) 44% 57% 53% 54% 18% 15% 0.149 0.109 0.337 0.298 1.666 1.582
EK(λ=0) 44% 48% 57% 39% 23% 11% 0.143 0.145 0.288 0.511 1.123 2.054
PF(λ=0) 35% 42% 53% 42% 20% 16% 0.187 0.135 0.338 0.418 1.414 1.527
KF(λ=1) 47% 51% 59% 39% 20% 16% 0.134 0.122 0.296 0.425 1.430 1.650
EK(λ=1) 45% 43% 57% 42% 24% 14% 0.145 0.160 0.290 0.500 1.110 2.078
PF(λ=1) 33% 41% 53% 44% 19% 19% 0.184 0.145 0.342 0.399 1.504 1.543
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3.7 Conclusion
We have implemented the Kalman filter, the extended Kalman filter and the particle filter in
deep neural network using dynamic parameterization to calibrate the forward curves in sense of
arbitrage-free evolution and examine the model performance from the forecasting results. We pro-
vide various in-sample and out-of-sample tests under non-arbitrage regularization and arbitrage-
free regularization where we find that the arbitrage-free regularization does not always downgrade
the performance as suggested by other authors. We find that the arbitrage-restriction downgrades
the forecasting performance in long time horizons which is consistent Christensen et al. [21]. How-
ever, we also find that the arbitrage-restriction could improve the forecasting performance in short
time horizons. We find that the yield forecasting model without arbitrage penalty has better fore-
casting performance in long time horizons than the benchmark that uses the observed yield curve
to predict bond prices. The filters demonstrate different advantages in calibrating the forward rate
curves: the Kalman filter is the most consistent and stable model where the variance between
in-sample data and out-of-sample data is the less than extended Kalman filter and particle filter.
From the practical purpose, the extended Kalman filter is the most flexible model that could han-
dle the forecasting of yield curves and bond prices at the same time with the least computational
cost. The particle filter is the very robust model in studying different error distributions since it’s
sophisticated in theoretical structure.

The arbitrage penalty that derived from the forward rate model is able to fit into different
type of asset pricing models in fixed income market. The implementation of AR method in our
model does not cost too much extra computational effort and the benefit of AR method is obvious
in short time level of forecasting. As pointed out by Christensen et al. [21] and Diebold and
Li [37], models in arbitrage-free tradition are only theoretically rigorous insofar as they enforce
absence of arbitrage theoretically, they still admit arbitrage possibility and there are still ways to
go for overcoming this problem. The periodic phenomenon occurred in AER through out different
terms of maturity can be applied further to portfolio optimization and risk management. Further
research can be conducted to quantify the AER so as to identify the coupon bonds whether they
are over-valued or under-valued. The fat tail problem can be further viewed by interpreting the
mean-reverting process with extra jump process. The flexibility of machine learning allows us to
study the arbitrage-opportunities in more details and the dynamic parameterization provides us a
wide directions to study the classic no-arbitrage theory in the future researches.
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Chapter 4

Conclusion and Future work

In this chapter, we summarize the thesis and our contributions including new theoretical results
and numerical results. we also present some future directions for the three projects: the optimal
annuitization problem with labor income, the convolution method for option pricing, and the bond
pricing and forecasting problems.

4.1 Optimization problem
We extend the traditional annuitization problem to include labor market income and study with
Cobb-Douglas utility. We derive closed-form solutions using martingale approach to the stochastic
control and optimal stopping formulations of the problem and provide the semi-closed solution to
the critical point. We also provide rigorous proofs that show our solution is optimal for the post-
retirement annuitization problem with extra labor income. Usually the explicit solution is difficult
to obtain for most of the stochastic control problem and is more difficult to prove the optimality of
the explicit solution, for example, Lim et al. [88] provide the explicit solution but lack a rigorous
proof.

With the explicit solution, we could investigate more deep into the model and obtain more ap-
plication results than Gerrard et al. [63] where they studied the annuitization problem with labor
income and they only give a numerical approach to the critical wealth. Thus Gerrard et al. [63]
provide the only analysis of the effect of labor income to the critical point. Our model and nu-
merical results provide sufficient analysis including the effect of labor income, the wage rate, the
Sharpe Ratio, the optimal stopping time and so on.

From our numerical application, we find many new facts. First, the Cobb-Douglas utility is
concave in labor rate and convex in wage rate. Second, the optimal annuitization time is strongly
linear with respect to the initial wealth in both cases with and without labor income. Adding
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other disturbance such as extra labor could change the slope and the continuation region where
the optimal annuitization time is decreasing to 0. Third, we also find that under different labor
schemes, the pensioners could have similar strategies of consumption but different strategies of
work and investment strategies. Such different strategies behave in the opposite way and lead to
very different results in the final annuity and the annuitization time.

4.1.1 Future work on regime-switching problem
We can assume the wage rate in a regime-switching environment (see Yin, Krishnamurthy, and Ion
[119]), for a Markov chain wt to model the wage rate in a finite state space M= {w1,w2, · · · ,wm}

dXt = (r(XT −πt)− ct +wt(1− lt))dt +πtdSt .

under transition probability matrix

P∆t = I +∆tQ,

where I is an m×m identity matrix, and Q = (qi j) ∈ Rm×m is a generator of a continuous-time
Markov chain. Therefore, including the effect of wage rate in the utility U(w, l,c), we could study
the labor income in the regime-switching problem.

4.2 The option pricing problem
We have studied the convolution method in the BSDEs framework following Hyndman and Oy-
ono Ngou [74] and proposed new shifting scheme to improve the numerical performance reaching
a stable and converging result. The main advantages of the convolution method are its flexibility
and computational speed. Like other FFT-based methods, we achieve a complexity of O(N log2 N),
where N is the number of grid points. We provide the error analysis of the convolution transform
using DFT approach and provide solid proofs. From our analysis, we find that the truncation error
is at least O

(︁
N−2)︁ order and the discretization error is at e−cN method.

We provide a new scheme in formulating the characteristic function of Heston model. Our
formula has no-discontinuity and is easy to take derivatives which gives us the flexibility to apply
for calibration. We have studied the application of convolution method in direct approach and
in BSDEs approach for pricing options. In the direct approach, we propose a new method to
accurately estimate the probabilities in martingale measure and risk neutral measure. In the BSDEs
approach, we have improved the performance with consistent damping parameter and exponential
shifting function which shows huge decrease in boundary errors. Except the improvement, we also
show that the convolution method in BSDEs framework has a error problem at in-the-money side
which is accumulated from the boundary error during time iterations.

We introduced two convolution schemes for pricing options with Heston model. Scheme I
is similar to the Black-Scholes model and is able to give the accurate result of the value of the
probabilities. The error analysis shows that if Scheme I has bounded errors at boundaries then the
errors are bounded everywhere. Scheme II is similar to the Fourier method of Carr and Madan
[18] but our truncation region is on log-prices. From our numerical results, Scheme II is even
faster than Fourier method of Carr and Madan [18] with the same grid points and is very accurate
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compared to their method. In conclusion, our methods have advantages in wide range of accuracy,
fast computation and stable boundaries, which is able to applied for calibration purpose in the
future studies. And our approach shows improved accuracy of application in BSDE framework
than Hyndman and Oyono Ngou [74].

We make comparison between the convolution method, Fourier method and the integration
method on grid of log-strikes and log-prices. Our comparison shows that convolution method pos-
sess good convergence on the whole grid and very fast computational speed in which the Scheme
II convolution method is even faster than the Fourier method. Our methods have advantages in
wide range of accuracy, fast computation and stable boundaries control, which could be applied in
calibration in the future studies. Future research will focus on reducing the accumulated boundary
error in BSDEs approach and potential extension of the convolution method to high-dimensional
applications.

4.2.1 Future work on high-dimensional BSDEs
Aiming to solve the high-dimensional pricing problem in the future direction, we introduce some
recent approaches that applied to the high-dimensional BSDEs. One approach that combines BS-
DEs with machine learning is to convert the BSDEs problem to an optimal stopping problems and
estimate the control term by feed-forward neural network. The objective function is calculated
from the boundary condition of the BSDEs. The learning process are performed on sample-based
batch from the forward SDE. For example, in (2.2.15) and (2.2.16), if we regard the initial value
of Yt and Zt as controls which in turns to minimize the loss function |YT −g(XT )|2, then we obtain
a control problem. Such idea defines the first kind of the learning schemes. In Weinan, Han, and
Jentzen [118], they applied this scheme and proposed the algorithms in such a way: the approx-
imation of u(t,Xt) starts from random variable U0, then at each time step, a multi-layer neural
networks Z(Xt ;θt) is established as an approximation for Zt , the whole process is defined as

inf
U0,{θt}0≤t≤T

E
[︂
|g(XT )−YT |2

]︂
, (4.2.1)

s.t. Y0 = U0, (4.2.2)
Zt = Z(t,Xt ;θt), (4.2.3)

Yt+1 = Yt − f (t,Xt ,Yt ,)+ZtdWt , (4.2.4)
Xt+1 = Xt +µ (t,Xt)dt +σ (t,Xt)dWt . (4.2.5)

(4.2.6)

The same approach is applied in solving fully coupled FBSDEs in Ji, Peng, Peng, and Zhang
[77], the problem is defined as below

Xti+1 = Xti +µ (ti,Xti,Yti)dt +σ (ti,Xti,Yti)dWti, (4.2.7)
Yti+1 = Yti − f (ti,Yti,Zti)dt +ZtidWti, (4.2.8)

(4.2.9)

where they define the loss function recursively by backward induction at each time step. If we
regard both of Yt and Zt as controls, the optimal control problem can be defined in the following
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variational form

inf
{Ut ,Zt}0≤t≤T

E

[︄
|g(XT )−YT |2 +

T

∑
i=1

|Yti −Uti|
2 dt

]︄
,

s.t. Yt0 = U0,

Zt = Z(t, ·;θt),

Xti+1 = Xti +µ (ti,Xti,Uti)dt +σ (ti,Xti,Uti)dWti,

Yti+1 = Yti − f (ti,Yti,Zti)dt +ZtidWti.

The first approach (4.2.1) is a scheme defined on the forward dynamic relation, while another
scheme defined on the backward dynamic relation see Huré, Pham, and Warin [72], where they
propose the algorithms

inf
θ
(1)
t ,θ

(2)
t

E
[︂
|Yt+1 −Yt + f (t,Xt ,Yt ,Zt)−ZtdWt |2

]︂
,

s.t. UT = g(XT ) ,

Yt = U(t, ·;θ
(1)
t ),

Zt = σ
T∇xUt , or ,Z(t, ·,θ (2)

t ),

Xt+1 = Xt +µ (t,Xt)dt +σ (t,Xt)dWt .

A possible topic for future research is to apply the machine learning with convolutional neu-
ral networks and the recurrent neural networks to solve the high-dimensional problem in BSDE
framework. Considering the relationship that Yt = u(t,Xt) and Zt = σT∇xu(t,Xt) from equation
(2.2.18), we only need to build a deep neural network for Yt and its first order derivatives which
gives the approximation to Zt . We use only one control ut to approximate the target function Yt .
The learning problem can be defined in the following variational form

inf
Y0,{Zt}0≤t≤T

E
[︂
|g(XT )−YT |2

]︂
,

s.t. Y0 = u(·;θ),

Zti = σ
T∇xYt , or ,φ(·;θ)

Xt+1 = Xt +µ (t,Xt)dt +σ (t,Xt)dWi,

Yt+1 = Yt − f (t,Yt ,Zt)dt +ZtdWt .

Applying the feed forward neural network for every θ m ∈ Rp and every n ∈ {0,1, ...,N − 1}
we may estimate (Xti,Yti,Zti) using the discrete from

Y m,i
0 = h

(︂
Xm,i

0

)︂
,

Zm,i
ti = σ

T
∂Yti/∂Xti, (4.2.10)

Y m,i
tn+1

= Y m,i
tn − f

(︂
tn,X

m,i
tn ,Y m,i

tn ,Zm,i
tn

)︂
dt +Zm,i

ti ∆Wti.
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To estimate σT ∂Yti/∂Xti , firstly we look into the dynamics of Y t,x
t in a small interval of time

[t, t +∆t]

Y t,x
t+∆t = Y t,x

t −
∫︂ t+∆t

t
f
(︁
s,Y t,x

s ,Zt,x
s
)︁

ds+
∫︂ t+∆t

t
Zt,x

s dWs.

Applying derivatives with respect ot x which is the value of Xt at time t to the above equation, we
obtain

∂xY
t,x
t+∆t = ∂xY

t,x
t −

∫︂ t+∆t

t
fy∂xY

t,x
t + fz∂xZt,x

t ds+
∫︂ t+∆t

t
∂xZt,x

s dWs, (4.2.11)

where fy = ∂y f (t,y,z) and fz = ∂z f (t,y,z). Between Yt and Zt we have the following relationship
under Lipschitz conditions,

Zt,x
s = σ

T (︁X t,x
s
)︁

∂xY t,x
s
(︁
∂xX t,x

s
)︁−1

. (4.2.12)

Using equation (4.2.12), we can simplify equation (4.2.11) as the following discrete form

∂xY
t,x
t+∆t ≈ σ

−T
t
(︁
I −∆t fy

(︁
t,Y t,x

t ,Zt,x
t
)︁)︁

Zt,x
t +

(︁
∆Wt −∆t fz

(︁
t,Y t,x

t ,Zt,x
t
)︁)︁

∂xZt,x
t . (4.2.13)

Equation (4.2.13) shows us that we only need to calculate one derivative of ∂xZt ,
t,x so as to obtain

an approximation of ∂xY
t,x
t+∆t .

Through equations (4.2.11) and (4.2.13), we obtain the following approaches: suppose we have
an estimator Ẏ which is to estimate the value of Y 0,x

0 and we build a deep neural network {Żti}n
i=0

as estimators for Zti , i = 0, . . .n, then we can build the model to satisfy the following conditions
from (4.2.12) and (4.2.13)

σ (x)∂xẎ
0,x
0 =Ż0,x

0 ,

Żt,x
t+∆t =σ

T (︁X t,x
t+∆t

)︁
∂xY

t,x
t+∆t

(︁
∂xX t,x

s
)︁−1

,

∂xY
t,x
t+∆t =σ

−T
t

(︂
I −∆t fy

(︂
t,Y t,x

t , Żt,x
t

)︂)︂
Żt,x

t

+
(︂

∆Wt −∆t fz

(︂
t,Y t,x

t , Żt,x
t

)︂)︂
∂xŻt,x

t ,

Y 0,x
T =g

(︂
X0,x

T

)︂
,

for all t ∈ {1,2, . . . ,n}.
The main difficulties of implementing machine learning schemes in high dimensional BSDEs

is the accuracy. By decreasing the versatility of the algorithm, we will increase the computational
complexity in each sample point, which in turn will give more accurate results. The advantage
of the machine learning in high dimensional BSDEs is the versatility and small computation cost
comparing to Monte-Carlo method. As the model can be reused and be applied to different sample
region while the Monte-Carlo can not unless the sample region is contained inside the simulation.
The recent researches we mentioned in this section, they focus on define a good updating scheme
from the boundary ot the solution either by a forward method using the BSDE or a backward
method using the PDE. In the future research, we plan to interpret the BSDE scheme in backward
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method and also try to combine the fast Fourier transform inside the updating steps.

4.3 The yield curve and bond price problem
We combine the equilibrium model with no-arbitrage model together and introduced an feasible
and easy implementable method to obtain rigorous arbitrage-free in both theoretical perspective
and practical perspective. We provide the closed-form to the Vašíček model with fully dynamic
parameters and provide the estimation method to the expectation and variance. We introduced an
advanced and efficient framework using deep neural networks to dynamically parameterize model
parameter and present stable performance in both in-sample test and out-of-sample test. The par-
ticle filter in the recurrent neural networks has overcome the degeneracy problem and shows good
efficiency in long sequential process. From our forecasting result, we show that yield prediction
is also stable enough for forecasting coupon bonds. As the forecasting model, the Kalman filter
shows the best performance in yield forecasting and the particle filter is very robust in model setup.
In the practical views, we studied the distribution of predicted price errors and yield errors. We
show that both of these error are not Gaussian style and there exists fat tail problem in the fore-
casting errors. We also quantify and present the average excess return as a measurement to the
arbitrage opportunity. We provide various in-sample and out-of-sample tests under non-arbitrage
regularization and arbitrage-free regularization where we find that the arbitrage-free regularization
could improve the forecasting performance in short time horizons and decrease that in long time
horizons.

4.3.1 The fat tail problem and excess kurtosis
The fat tail and excess kurtosis is usually two characteristics in financial time series and we have
seen these problems in our forecasting results. As the volatility of most financial factors evolves
over time, modeling the dynamic behavior of the state variables, yield curves and bond prices
based on Gaussian distribution or generalized Gaussian distribution may be insufficient.

An inference method using bootstrapping method has been studied by Ruiz and Pascual [110]
to overcome the excess kurtosis problem in financial time series. However, in out study of bond
prices and yields, the observations containing high-dimensional features at each time step form a
multi-variate time series which is more complicated to apply the traditional bootstrapping method.
Therefore, a future direction could be extending the bootstrapping method on multi-variate time se-
ries. Another future direction could be improve importance sampling with a non-parametric distri-
bution instead of the MGGD or change the measurement of the observation with a non-parametric
distribution in the particle filter.

The fat tail problem and credit risk factors can be addressed at the same time by including
an extra term Jt in our factor model. Proposed by Brigo et al. [16], if Jt is a jump process in
mean-reverting dynamic, the fat tail problem will be improved. Such Jt process has the following
dynamic

dXt = κt (θt −Xt)dt +σtdWt +dJt , (4.3.1)
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where the jumps Jt are defined as

Jt =
Nt

∑
i=1

Gi, dJt = GNt dNt , (4.3.2)

with Poisson process Nt of tensity γ and i.i.d random variable Gi modeling the ith jump size, see
Brigo et al. [16]. The extra jump term has significant effect to reduce the fat-tail. In our model, the
fat-tail problem comes from the residual error between the yields Yt and the state variables Xt and
such problem is amplified in price error. Considering another approach, the residual error shows
auto-correlation in time series, therefore, we could add the jump term to the yield process in stead
of the state process

yt =−Bτ

τ
Xt + Jt , (4.3.3)

and the residual shows we consider the residual term We assume that the jump size is determined
from the residual from previous time step

GNt ∼ y(Xt−1, t −1)− ŷ(Xt−1, t −1). (4.3.4)

Therefore, the extra jump term Jt could be used to model the credit risk and improve the fat tail
problem at the same time.
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Chapter 5

Appendix

5.1 Proof of Lemma 1.4
Proof. We define the following continuous process Xt and by Bayes’s rule we have

Xt =
1
Ht

EP

[︄∫︂ τ

t∧τ

Hs (cs +wls)ds+Hτ

(︂
B+

w
r

)︂ ⃓⃓⃓⃓⃓Ft

]︄
− w

r

= EP0

[︄∫︂ τ

t∧τ

e−r(s−t) (cs +wls)ds+ e−r(τ−t)
(︂

B+
w
r

)︂ ⃓⃓⃓⃓⃓Ft

]︄
− w

r
,

Obviously we have X0 = x and Xτ = B a.s.
By Fatou’s lemma, the process inside the expectation holds for all positive B and any stopping

time τ∫︂ τ

t
e−r(s−t) (cs +wls)ds+ e−r(τ−t)

(︂
B+

w
r

)︂
≥ 0, ∀t ∈ [0,T ],

which gives

Xt ≥−w
r
.
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Similarly to Karatzas and Wang [80], we define the following process

M(t) = e−rt
(︂

X(t)+
w
r

)︂
+
∫︂ t

0
e−rs (c(s)+wl(s))ds. (5.1.1)

Then M(t) in (5.1.1) is a martingale under P0

EP0

[︁
M(t)

⃓⃓
F(s)

]︁
=EP0

[︃∫︂ τ

0
e−rt (c(t)+wl(t))dt + e−rτ

(︂
B+

w
r

)︂⃓⃓
F(s)

]︃
=e−rsEP0

[︃∫︂ τ

s
e−r(t−s) (c(t)+wl(t))dt + e−r(τ−s)

(︂
B+

w
r

)︂⃓⃓
F(s)

]︃
+
∫︂ s

0
e−rt (c(t)+wl(t))dt

=e−rs
(︂

X(s)+
w
r

)︂
+
∫︂ s

0
e−rt (c(t)+wl(t))dt

=M(s).

By martingale representation theorem, there exists a progressively measurable process φ(t) such
that

∫︁ T
0 ∥φt∥2dt <∞ with probability one and M(t) can be written as

M(t) = x+
w
r
+
∫︂ t

0
φsdB̄s. (5.1.2)

Let πt = ertφt/σ , then we can verify from (1.1.3), (5.1.1) and (5.1.2) that Xt = X (π)
t a.e.

5.2 Proof of Lemma 1.5
Proof. The convexity of Ū1 and Ū2 gives

Ū i(x)−Ū i(y)≥ Ū ′
i(y)(x− y), ∀x, y > 0, for i = 1,2.

By the definition of Ū1 and Ū2 we obtain

Ū ′
1(y) = Ic(y)+wIl(y),

Ū ′
2(ρy) = I (ρy) ,

For any real number h satisfying |h|<< y, we have

V̄ (x,y+h)−V̄ (x,y)

≥hE
[︃∫︂ τ

∗
y

0
HtŪ

′
1(Y

y
t )+Hτ∗y

(︂
Ū ′

2

(︂
ρY y

τ∗y

)︂
− w

r

)︂]︃
+h(x+

w
r
)

=−hE
[︃∫︂ τ

∗
y

0
Ht
(︁
Ic(Y

y
t )+wIl(Y

y
t )
)︁

dt +Hτ∗y

(︂
I
(︂

ρY y
τ∗y

)︂
+

w
r

)︂]︃
+h(x+

w
r
)

=h
(︂

x−Xτ∗y (y)
)︂
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=0,

which leads to

lim
h→0−

V̄ (x,y+h)−V̄ (x,y)
h

≤ 0 ≤ lim
h→0+

V̄ (x,y+h)−V̄ (x,y)
h

.

If V̄ (y) is differentiable at y, then we have

∂V̄
∂y

(x,y) = lim
h→0−

V̄ (x,y+h)−V̄ (x,y)
h

= lim
h→0+

V̄ (x,y+h)−V̄ (x,y)
h

= 0.

5.3 Proof of Theorem 1.6
Proof. Consider τ∗y = inf

{︁
t
⃓⃓
Y y

t ≤ y∗
}︁

,. For any x > 0, we know that there exists a y > 0 satisfying
(1.2.30) that x = Xτ∗y (y). By lemma (1.4), we know that there exists a portfolio process π̄ with

Xx,c∗,l∗,π∗

τ∗y
= I
(︁
Yτ∗y (x)

)︁
, where c∗ = Ic

(︁
Yτ∗y (x)

)︁
and l∗ = Il

(︁
Yτ∗y (x)

)︁
. we obtain

V (x)≥ J(x;τ
∗
y )

=E

[︄∫︂ τ
∗
y

0
e−ρtU1(ct , lt)dt +

e−ρτ
∗
y

ρ
U2(kX0,x

τ )

]︄

=E

[︄∫︂ τ
∗
y

0
e−ρtŪ1(Y

y
t )dt +

e−ρτ
∗
y

ρ

(︂
Ū2(ρY y

τ∗y
)−ρ

w
r

Y y
τ∗y

)︂]︄

+ yE
[︃∫︂ τ

∗
y

0
Ht
(︁
Ic(Y

y
t )+wIl(Y

y
t )
)︁

dt +Hτ∗y

(︂
I(ρY y

τ∗y
)+

w
r

)︂]︃
=E

[︄∫︂ τ
∗
y

0
e−ρtŪ1(Y

y
t )dt +

e−ρτ
∗
y

ρ

(︂
Ū2(ρY y

τ∗y
)−ρ

w
r

Y y
τ∗y

)︂]︄
+ y(x+

w
r
)

=V̄ (x,y)
≥ inf

y>0
V̄ (x,y). (5.3.1)

Combine (5.3.1) and (1.2.29) we have proved the equality of (1.2.34)

V (x) = inf
y>0

V̄ (x,y).

Conversely, if for some pair (x,y) that satisfies (1.2.34) then such pair (x,y) also satisfies (1.2.28)

V (x;τ
∗
y ) = V̄ (x,y;τ

∗
y ).

123



For the optimal stopping time τ̄
∗
y , we say it is an optimal stopping time to V (x) as well. We can see

this from below

V (x) = inf
y>0

V̄ (x,y)≤ V̄ (x,y) = V̄ (x,y;τ
∗
y ) =V (x;τ

∗
y ),

on the other hand, we have

V (x) = V̄ (x,y)≥ V̄ (x,y;τ
∗
y ) =V (x;τ

∗
y ),

which concludes that

V (x) =V (x;τ
∗
y ).

Therefore, τ∗y is the optimal stopping time to V (x).

5.4 Proof of Theorem 1.8
Proof. Assume that V̄ ∗

(y) is the solution to (1.2.38) and ∂V̄∗

∂y is absolutely continuous. First, we
show that V̄ ∗ is the solution to the dual problem (1.2.25). We apply Ito’s formula to e−ρtV̄ ∗

(Yt) for
any t ≥ 0

e−ρtV̄ ∗
(Yt) = V̄ ∗

(y)+
∫︂ t

0
e−ρs

θYs
∂V̄ ∗

∂y
(Ys)dBs +

∫︂ t

0
e−ρs (︁−ρV̄ ∗

(Ys)+LV̄ ∗
(Ys)
)︁

ds. (5.4.1)

Hence, we obtain the following definitive equation for all t

V̄ ∗
(y) = E

{︄
e−ρtV̄ ∗

(Yt)+
∫︂ t

0
e−ρs (︁

ρV̄ ∗
(Ys)−LV̄ ∗

(Ys)
)︁

ds

}︄
. (5.4.2)

Equation (1.2.38) implies V̄ ∗
(Yt) ≥ 1

ρ
Ū2(ρYt)− w

r Yt and ρV̄ ∗
(Yt)−LV̄ ∗

(Yt) ≥ Ū1(Yt) for all Yt .
For all stopping time τ , we have

V̄ ∗
(y)≥ E

{︄
e−ρτ

(︃
1
ρ

Ū2(ρYτ)−
w
r

Yτ

)︃
+
∫︂ τ

0
e−ρsŪ1(Y y

s )ds

}︄
.

Therefore, we obtain

V̄ ∗
(y)≥ V̄ (y).

Let t = τ∗ = inf{t ≥ 0 : Y y
t ≤ y∗} in (5.4.2) and notice that V̄ ∗

(Yτ∗) =
1
ρ

Ū2(ρYτ∗)− w
r Yτ∗ and(︁

ρV̄ ∗
(Ys)−LV̄ ∗

(Ys)
)︁
= Ū1(Y

y
s ), hence we see that

V̄ ∗
(y) =E

{︄
e−ρτ

∗
(︃

1
ρ

Ū2(ρYτ∗)−
w
r

Yτ∗

)︃
+
∫︂ τ

∗

0
e−ρsŪ1(Y y

s )ds

}︄
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≤ V̄ (y).

Therefore, V̄ (y) = V̄ ∗
(y) and τ∗ is the optimal solution to dual problem (1.2.25).

Consider any y > 0 and any stopping time τ . If P(τ < τ∗)> 0, then we have Yτ > y∗ and

E

{︄
e−ρτ

(︃
1
ρ

Ū2(ρYτ)−
w
r

Yτ

)︃
+
∫︂ τ

0
e−ρsŪ1(Y y

s )ds

}︄

<E

{︄
e−ρτV̄ (Yτ)+

∫︂ τ

0
e−ρs (ρV̄ (Ys)−LV̄ (Ys))ds

}︄
=V̄ (y),

which implies τ is not optimal in problem (1.2.25). Assuming that P(τ > τ∗)> 0, for the process
Ỹ t = Yτ∗+t −Yt and any ε > 0, we have inft∈[0,ε] Ỹ t < 0 a.s.. It follows from (5.4.2) that V̄ (Yt) ≥
1
ρ

Ū2(Yt)− w
r Yt and ρV̄ (Yt)−LV̄ (Yt) > Ū1(Yt) a.s. on (0,∞) \ y∗ indicating that τ is not optimal

in (1.2.25). Therefore, τ∗ is the unique optimal stopping time to (1.2.25).

5.5 Proof of Lemma 1.9
Proof. We denote

Ū(x) = Ū1(x)+
n(p′2)

ρ
Ū2(ρx)+wx,

and

F(x) =
∫︂ x

+∞

Ū(z)
zn1+1 (z)dz

If 0 < p′1 < p′2 < 1, then there is a unique y0 ∈ (0,∞) such that Ū(y0) = 0 and{︄
Ū(y)> 0, y0 < y
Ū(y)< 0, 0 < y < y0.

Since

lim
x→0+

Ū(x)
xn1+1 = lim

x→0+
xp′1−(1+n1)

(︄
Ã−

n(p′2)

ρ p′2kp′2
xp′2−p′1

)︄
=−∞,

and

lim
x→+∞

Ū(x)
xn1+1 = 0+,
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that implies

lim
x→0+

F(x) = +∞,

and

lim
x→+∞

F(x) = 0−.

Thus, there exists a y∗ ∈ (0,y0) such that F(y∗) = 0.
Suppose there exists another y∗ ∈ (0,y0) such that F(y∗) = 0, then we get∫︂ y∗

y∗

Ū(z)
zn1+1 dz = 0,

since Ū is negative on (0,y0), we must have y∗ = y∗. Therefore, the solution of y∗ is unique and{︄
F(y)≥ 0, y ≤ y∗

F(y)≤ 0, y ≥ y∗.

5.6 Proof of Lemma 1.10
Proof. First, we show that the following ODE with the boundary has a unique solution

−ρφ(y)+(ρ − r)yφ(y)′+
1
2

θ
2y2

φ(y)′′+Ū1(y) = 0. (5.6.1)

We first consider the general solution to the following ODE

−ρφ(y)+(ρ − r)yφ(y)′+
1
2

θ
2y2

φ
′′(y) = 0. (5.6.2)

Solving (5.6.2), we obtain

φ(y) =C1yn1 +C2yn2, (5.6.3)

where C1 and C2 are some constant that is determined from boundary value y∗, n1 > 1 and n2 ≤
−2(ρ−r)

θ 2 < 0 are the two roots of function n(x)

n(x) =
1
2

θ
2x2 +(ρ − r− 1

2
θ

2)x−ρ. (5.6.4)

A particular solution for (5.6.1) is given by

φ(y) =
2

θ 2(n1 −n2)

(︃
yn1

∫︂ −Ū1(y)
yn1+1 dy− yn2

∫︂ −Ū1(y)
yn2+1 dy

)︃
. (5.6.5)
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Combining (5.6.3) and (5.6.5), we have general solution to (5.6.1),

φ(y) =C1yn1 +C2yn2 +
2

θ 2(n1 −n2)

(︃
yn1

∫︂ y

y∗

−Ū1(z)
zn1+1 dz− yn2

∫︂ y

y∗

−Ū1(z)
zn2+1 dz

)︃
. (5.6.6)

For the boundary problem, We show that for some positive y∗ the solution given in (5.6.6) sat-
isfies the boundary condition φ(y) = 1

ρ
Ū2(ρy)− w

r y, for 0 < y ≤ y∗. By investigating the convexity
of V̄

φ
′(y) =

(︃
C1n1 +

2n1

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn1+1 dz

)︃
yn1−1

+

(︃
C2n2 −

2n2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz

)︃
yn2−1,

we find that φ(y) is strictly convex and decreasing. Thus the first term containing yn1−1 in (5.6.6)
must be zero as y →+∞

lim
y→+∞

C1n1 +
2n1

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn1+1 dz = 0,

and we obtain

C1 =
2

θ 2(n1 −n2)

∫︂ y∗

+∞

−Ū1(z)
zn1+1 dz. (5.6.7)

Use (5.6.7) and simplify (5.6.6) with some constant C.

φ(y) =Cyn2 +
2yn1

θ 2(n1 −n2)

∫︂ y

+∞

−Ū1(z)
zn1+1 dz− 2yn2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū1(z)
zn2+1 dz. (5.6.8)

Applying the smooth connected conditions at y∗, we obtain

C =C (y∗) =
y∗−n2

n1 −n2

(︃
(n1 − p′2)

1
ρ

Ū2(ρy∗)− (n1 −1)
w
r

y∗
)︃
, (5.6.9)

and

2y∗n1

θ 2

∫︂ y∗

+∞

−Ū1(z)
zn1+1 dz = y∗U ′

2 (ρy∗)− n2

ρ
Ū2(ρy∗)− (1−n2)

w
r

y∗. (5.6.10)

Since we can rewrite

y∗U ′
2(ρy∗)− n2

ρ
Ū2(ρy∗) =

p′2 −n2

ρ
Ū2(ρy∗) =

2y∗n1

θ 2

∫︂ y∗

+∞

n(p′2)
ρ

Ū2(ρz)

zn1+1 dz, (5.6.11)
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and

(1−n2)
w
r

y∗ =
(1−n2)(1−n1)

r
wy∗

1−n1
=

2y∗n1

θ 2

∫︂ y∗

+∞

n(1)w
r z

zn1+1 dz=−2y∗n1

θ 2

∫︂ y∗

+∞

wz
zn1+1 dz. (5.6.12)

We simplify (5.6.10) using (5.6.11) and (5.6.12)

2y∗n1

θ 2

∫︂ y∗

+∞

Ū1(z)+
n(p′2)

ρ
Ū2(ρz)+wz

zn1+1 dz = 0. (5.6.13)

By Lemma 1.9, there exists a unique y∗ > 0 that solves equation (5.6.13). Therefore, φ(y) with C
given in (5.6.9) and the value y∗ determined by (5.6.13) satisfies the boundary condition.

Second, we show that φ(y) and y∗ are the optimal solutions to the dual problem by showing
that φ(y) and y∗ solve the variational inequalities. We denote

Φ(y) = φ(y)−
(︃

1
ρ

Ū2(ρy)− w
r

y
)︃
.

For 0 < y < y∗, we have

−ρφ(y)+Lφ(y)+Ū1(y) =−ρ

(︃
1
ρ

Ū2(ρx)+
w
r

x
)︃
+L

(︃
1
ρ

Ū2(ρx)+
w
r

x
)︃
+Ū1(y)

= Ū1(y)+
n(p′2)

ρ
Ū2(ρy)+wy

= Ū(y)
≤ 0. (5.6.14)

For y∗ ≤ y, we have

−ρΦ(y)+LΦ(y) =−ρ

(︃
φ(y)− 1

ρ
Ū2(ρy)+

w
r

y
)︃
+L

(︃
φ(y)− 1

ρ
Ū2(ρy)+

w
r

y
)︃

=−ρφ(y)+Lφ(y)−
(︃

n(p′2)
ρ

Ū2(ρy)+wy
)︃

=−
(︃

Ū1(y)+
n(p′2)

ρ
Ū2(ρy)+wy

)︃
=−Ū(y). (5.6.15)

Since Φ(y∗) = 0 and Φ′(y∗) = 0, the (5.6.15) implies

Φ(y) =
2yn1

θ 2(n1 −n2)

∫︂ y

y∗

−Ū(z)
zn1+1 dz− 2yn2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū(z)
zn2+1 dz.

Denote

ψ(y) = y−n2Φ(y) =
2yn1−n2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū(z)
zn1+1 dz− 2

θ 2(n1 −n2)

∫︂ y

y∗

−Ū(z)
zn2+1 dz. (5.6.16)
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Taking derivative to (5.6.16), we obtain

ψ
′(y) =

2yn1−n2−1

θ 2

∫︂ y

y∗

−Ū(z)
zn1+1 dz− 2yn1−n2

θ 2(n1 −n2)
· Ū(y)

yn1+1 +
2

θ 2(n1 −n2)
· Ū(y)

yn2+1

=
2yn1−n2−1

θ 2

∫︂ y

y∗

−Ū(z)
zn1+1 dz

=− 2yn1−n2−1

θ 2 F(y).

Since F(y)≤ 0 for y ≥ y∗, we have

ψ
′(y)≥ 0,

which implies ψ(y) is monotone increasing function on [y∗,∞].

Φ(y) = yn2ψ(y)≥ yn2ψ(y∗) = 0.

Therefore, we have φ(x)≥
(︂

1
ρ

Ū2(ρx)− w
r x
)︂

for y ∈ [y∗,∞).

5.7 Proof of Theorem 1.12
Proof. The optimal stopping time τ̄ is a straightforward result of Theorem 10.4.1 of Øksendal
[102]. The optimal consumption and labor income are directly results from the dual problem. So
we only need to show the optimal portfolio processes is generated by the optimal wealth processes
(1.2.45). Applying Itô’s formula to the optimal wealth process (1.2.45), we obtain

dX∗
t =

(︃
−(ρ − r)YtV̄

′′
(Yt)−

1
2

θ
2Y 2

t V̄ ′′′
(Yt)

)︃
dt +θYtV̄

′′
(Yt)dBt

=−

(︄
Cn2

(︃
(ρ − r)(n2 −1)+

1
2

θ
2(n2 −1)(n2 −2)

)︃
Y n2−1

t

+
2n1Y n1−1

t

θ 2(n1 −n2)

(︃
(ρ − r)(n1 −1)+

1
2

θ
2(n1 −1)(n1 −2)

)︃∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz

− 2n2Y n2−1
t

θ 2(n1 −n2)

(︃
(ρ − r)(n2 −1)+

1
2

θ
2(n2 −1)(n2 −2)

)︃∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

+
2Ū1(Yt)

Yt
−Ū ′

1(Yt)

)︄
dt +θYtV̄

′′dBt

=
(︂

rX
(︂

X∗
t +

w
r

)︂
+Ū ′

1(Yt)
)︂

dt +θYtV̄
′′dBt

−

(︄
Cn2

(︃
(ρ − r)n2 −ρ +

1
2

θ
2(n2 −1)(n2 −2)

)︃
Y n2−1

t
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+
2n1Y n1−1

t

θ 2(n1 −n2)

(︃
(ρ − r)n1 −ρ +

1
2

θ
2(n1 −1)(n1 −2)

)︃∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz

− 2n2Y n2−1
t

θ 2(n1 −n2)

(︃
(ρ − r)n2 −ρ +

1
2

θ
2(n2 −1)(n2 −2)

)︃∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

+
2Ū1(Yt)

Yt

)︄
dt

=(rX∗
t +w+Ū ′

1(Yt))dt +θYtV̄
′′dBt

−

(︄
Cn2

(︃
−1

2
θ

2n2(n2 −1)+
1
2

θ
2(n2 −1)(n2 −2)

)︃
Y n2−1

t

+
2n1Y n1−1

t

θ 2(n1 −n2)

(︃
−1

2
θ

2n1(n1 −1)+
1
2

θ
2(n1 −1)(n1 −2)

)︃∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz

− 2n2Y n2−1
t

θ 2(n1 −n2)

(︃
−1

2
θ

2n2(n2 −1)+
1
2

θ
2(n2 −1)(n2 −2)

)︃∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

+
2Ū1(Yt)

Yt

)︄
dt

=(rX∗
t +w+Ū ′

1(Yt))dt +θYtV̄
′′dBt

+θ
2Yt

(︄
Cn2(n2 −1)Y n2−2

t − 2Ū1(Yt)

θ 2Y 2
t

+
2n1(n1 −1)Y n1−2

t

θ 2(n1 −n2)

∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz− 2n2(n2 −1)Y n2−2

t

θ 2(n1 −n2)

∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

)︄
dt

=

(︃
rX∗

t +(r− r)
θ

σ
YtV̄

′′
+Ū ′

1(Yt)+w
)︃

dt +σ
θ

σ
YtV̄

′′dBt . (5.7.1)

We replace the last term in (5.7.1) using that fact that

π
∗
t =

θ

σ
YtV̄

′′

=
θ

σ

(︄
Cn2(n2 −1)Y n2−1

t − 2Ū1(Yt)

θ 2Yt

+
2n1(n1 −1)Y n1−1

t

θ 2(n1 −n2)

∫︂ Yt

+∞

−Ū1(z)
zn1+1 dz− 2n2(n2 −1)Y n2−1

t

θ 2(n1 −n2)

∫︂ Yt

y∗

−Ū1(z)
zn2+1 dz

)︄
,

and

Ū1(Yt)
′ =−c∗t − l∗t w,
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then we have

dX∗
t = (rX∗

t +(r− r)π∗− c∗+(1− l∗)w)dt +σπ
∗dBt .

So the optimal wealth process and optimal controls are verified.

5.8 Proof of Theorem 2.4
Proof. Firstly, we refer to the solution given by Drăgulescu and Yakovenko [42]. The time evolu-
tion of the probability density function Pt (x,v|xi,vi) is governed by the following Fokker Planck
equation,

∂

∂ t
P = κ

∂

∂v
((v−θ)P)+

(︃
1
2

∂

∂x
+ρσ

∂ 2

∂x∂v
+

1
2

∂ 2

∂x2

)︃
(vP)+

σ2

2
∂ 2

∂v2 (vP), (5.8.1)

with initial given by a product of 2 delta functions

Pt=ti (x,v|xi,vi) = δ (x− xi)δ (v− vi). (5.8.2)

For simplicity, in the following proof, x is stand for x− xi.
By introducing a parameter u with respect to Fourier transform on x

P̄t(u,v|vi) =
∫︂
R

e−2πiuxPt(x,v|vi)dx, (5.8.3)

and a parameter s with respect to Laplace transform on v

P̃t(u,s|vi) =
∫︂ +∞

0
e−svP̄t(u,v|vi)dv), (5.8.4)

we obtain the following Riccati type PDE with constant coefficient[︃
∂

∂ t
+

(︃
σ2

2
s2 +αs+β

)︃
∂

∂ s

]︃
P̃ =−κθsP̃, (5.8.5)

with initial

P̃t=ti(u,s|xi,vi) = e−2πiuxi−svi, (5.8.6)

where the parameter functions α and β are given by

α = 2πiρσu+κ,

β = iπu−2π
2u2.
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The solution to(5.8.5) is given by

P̃t(u,s|vi) = exp

(︄
−s̃(ti)vi +

κθ (α −λ )∆ti
σ2 − 2κθ

σ2 ln
γ − e−λ t

γ − e−λ ti

)︄
, (5.8.7)

where

∆ti = t − ti,

λ =
√︂

α2(u)−2σ2β ,

γ = 1+
2λ

σ2s+α −λ
,

s̃(τ) =
2λ

σ2
1

Ceλ (t−τ)−1
− α −λ

σ2 ,

and s̃(τ) is obtained from the following characteristic differential equation

∂

∂τ
s̃(τ) =

σ2

2
s̃2(τ)+α s̃(τ)+β , (5.8.8)

with the boundary condition s̃(t) = s at τ = t.
Second, we consider the behavior of xt and vt in a short time interval ∆ti = t− ti. Then equation

(5.8.7) can be simplified to

P̃t(u,s|vi) = exp(−s̃(ti)vi −κθ∆tis) , (5.8.9)

and equation (5.8.8) gives

s̃(ti) =−β∆ti −
σ2

2
s2

∆ti − (α∆ti −1)s. (5.8.10)

Substitute (5.8.10) into (5.8.9) and apply inverse Laplace transform on P̃ and retrieve P̄t(u,v|xi,vi),
we obtain

P̄t(u,v|vi) =L−1 [︁P̃t(u,s|vi)
]︁
(v)

=
1

2πi

∫︂ +i∞

−i∞
esv exp

(︃
σ2vi∆ti

2
s2 +(αvi∆ti − vi −κθ∆ti)s+βvi∆ti

)︃
ds

=
1

2π

∫︂ +∞

−∞
exp
(︃
−σ2vi∆ti

2
y2 + i(αvi∆ti + v− vi −κθ∆ti)y+βvi∆ti

)︃
dy

=
1√︁

2πσ2vi∆ti
exp

(︄
−(αvi∆ti + v− vi −κθ∆ti)

2

2σ2vi∆ti
+βvi∆ti

)︄
. (5.8.11)

We apply inverse Fourier transform to (5.8.11) and retrieve Pt(x,v|vi), and to make it short, we
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denote ι = v− vi −κ(θ − vi)∆ti

Pt(x,v|vi) =F−1 [P̄t(u,v|vi)] (x)

=
1√︁

2πσ2vi∆ti

∫︂ +∞

−∞
e2πiux exp

(︄
−(αvi∆ti + v− vi −κθ∆ti)

2

2σ2vi∆ti
+βvi∆ti

)︄
du

=
1√︁

2πσ2vi∆ti

∫︂ +∞

−∞
exp

(︄
−(2πiσρvi∆tiu+ ι)2

2σ2vi∆ti
+πi (2x+ vi∆ti)u−2π

2vi∆tiu2

)︄
du

=
1√︁

2πσ2vi∆ti

∫︂ +∞

−∞
exp

(︄
−
(︁
1−ρ

2)︁vi∆tiu2 +πi
(︃

2x+ vi∆ti −
2ρ

σ
ι

)︃
u

− 1
2σ2vi∆ti

ι
2

)︄
du

=
1√︁

2πσ2vi∆ti

1√︁
2π (1−ρ2)vi∆ti

exp

⎛⎝−
(︁
x+ 1

2vi∆ti − ρ

σ
ι
)︁2

+ 1−ρ
2

σ2 ι2

2(1−ρ2)vi∆ti

⎞⎠
=

1

2πσ
√︁
(1−ρ2)vi∆ti

exp

(︄
−

σ2 (︁x+ 1
2vi∆ti

)︁2 −2ρσι
(︁
x+ 1

2vi∆ti
)︁
+ ι2

2σ2 (1−ρ2)vi∆ti

)︄

=
|Σ(vi)|−

1
2

2π∆ti
exp

(︄
−(X −η(vi)∆ti)

T
Σ−1(vi)(X −η(vi)∆ti)
2∆ti

)︄
,

where X = (x,v− vi)
T and

X = ( x
v−vi ) ,

η(v) =
(︂

− 1
2 v,

κ(θ−v)

)︂
,

Σ(v) =
(︂

v σρv
σρv σ

2v

)︂
.

Finally, we replace x by x− xi, which gives X = (x− xi,v− vi). The above result shows that,
in short time ∆ti, the conditional probability density of the joint process X evolves in bi-variate
Gaussian manner.

5.9 Proof of Theorem 2.6
Proof. We solve the PDE (2.4.39)

∂Pi

∂ t
+(r+ civ)

∂Pi

∂x
+(a−biv)

∂Pi

∂v
+

1
2

v
∂ 2Pi

∂x2 +
σ2

2
v

∂ 2Pi

∂v2 +ρσv
∂ 2Pi

∂x∂v
ψ = 0, (5.9.1)
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with boundary condition where U = (p,q)T and X = (x,v)T

Pi(T,U ,X) = eiUT X = ei(px+qv). (5.9.2)

According to the form of the initial condition and some experience with PDE function, we make
an ansatz for ψ(t, p,q,x,v) in the following form

Pi(t, p,q,x,y) = exp(Ai(t)x+Bi(t)v+Ci(t)) , (5.9.3)

where functions A(t), B(t) and C(t) depend only on t and satisfy boundary conditions A(T ) = i p,
B(T ) = iq and C(T ) = 0.

Applying the ansatz to the PDE, we simplify and obtain the following ODE

A′
i(t)x+

(︃
B′

i(t)+
1
2

A2
i + ciAi −biBi +

1
2

σ
2B2

i +ρσAiBi

)︃
v+C′

i(t)+rAi(t)+aBi(t) = 0. (5.9.4)

If the ansatz ODE (5.9.4) hold for all x ∈ R, v ∈ (0,∞) and t ∈ [0,T ], then we must have

A′(t) = 0, (5.9.5)

B′(t)+
1
2

A2 + ciA−biB+
σ2

2
B2 +ρσAB = 0, (5.9.6)

C′(t)+ rA(t)+aB(t) = 0, (5.9.7)

so we obtain

A(t) = i p. (5.9.8)

Replace equation (5.9.8) in equation (5.9.6) and simplify

B′(t)+
1
2

σ
2B2(t)− (bi − iσρ p)B(t)− p2 −2ici p

2
= 0. (5.9.9)

Equation (5.9.9) is Riccati equation with constant coefficients. Solve it with boundary B(T ) = iq,
we obtain

B(t) =
iγ
σ2 tan

(︃
iγ
2
(T − t)+ϑ

)︃
+

bi − iσρ p
σ2 , (5.9.10)

where

ϑ =arctan
(︃

iλ
γ

)︃
,

γ =

√︂
σ2 (p2 −2ici p)+(bi − iσρ p)2,

λ =bi − iσρ p− iσ2q.
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Solve equation (5.9.7) with boundary C(T ) = 0 and simplify it with notation τ = T − t, we obtain

C(t) =−
∫︂ t

T
(i pr+aB(s))ds

=i pr(T − t)+
a(bi − i pρσ)

σ2 (T − t)− 2a
σ2 ln

cos
(︂

iγ
2 (T − t)+ϑ

)︂
cos(ϑ)

=i prτ +
a(bi − i pρσ)

σ2 τ − 2a
σ2 ln

cos
(︂

iγτ

2

)︂
cos(ϑ)− sin

(︂
iγτ

2

)︂
sin(ϑ)

cos(ϑ)

=i prτ +
a(bi − i pρσ)

σ2 τ − 2a
σ2 ln

(︃
cos
(︃

iγτ

2

)︃
− sin

(︃
iγτ

2

)︃
tan(ϑ)

)︃
=i prτ +

a(bi − i pρσ)

σ2 τ − 2a
σ2 ln

(︃
cosh

(︂
γτ

2

)︂
− i sinh

(︂
γτ

2

)︂ iλ
γ

)︃
=i prτ +

a(bi − i pρσ)

σ2 τ − 2a
σ2 ln

(︄
e

γτ

2 + e−
γτ

2

2
+

λ

γ
· e

γτ

2 − e−
γτ

2

2

)︄

=i prτ +
a(bi − i pρσ)

σ2 τ − 2a
σ2 lne−

γτ

2
γ (eγτ +1)+λ (eγτ −1)

2γ

=i prτ +
a(bi − iσρ p+ γ)

σ2 τ +
2a
σ2 ln

2γ

(γ +λ )eγτ + γ −λ
. (5.9.11)

We keep simplifying (5.9.10)

B(t) =
iγ
σ2 tan

(︃
iγτ

2
+ϑ

)︃
+

bi − iσρ p
σ2

=
iγ
σ2

⎛⎝ tan
(︂

iγτ

2

)︂
+ tan(ϑ)

1− tan
(︂

iγτ

2

)︂
tan(ϑ)

⎞⎠+
bi − iσρ p

σ2

=
iγ
σ2

(︄
i tanh

(︁
γτ

2

)︁
+ i λ

γ

1− i λ

γ
i tanh

(︁
γτ

2

)︁)︄+
bi − iσρ p

σ2

=
iγ
σ2

⎛⎜⎜⎝ i e
γτ

2 −e−
γτ

2

e
γτ

2 +e−
γτ

2
+ i λ

γ

1+ λ

γ

e
γτ

2 −e−
γτ

2

e
γτ

2 +e−
γτ

2

⎞⎟⎟⎠+
bi − iσρ p

σ2

=− γ

σ2

⎛⎝e
γτ

2 − e−
γτ

2 + λ

γ

(︂
e

γτ

2 + e−
γτ

2

)︂
e

γτ

2 + e−
γτ

2 + λ

γ

(︂
e

γτ

2 − e−
γτ

2

)︂
⎞⎠+

bi − iσρ p
σ2

=− γ

σ2

(︃
γ (eγτ −1)+λ (eγτ +1)
γ (eγτ +1)+λ (eγτ −1)

)︃
+

bi − iσρ p
σ2

=− γ

σ2

(︃
(γ +λ )eγτ +λ − γ

(γ +λ )eγτ + γ −λ

)︃
+

bi − iσρ p
σ2
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=− γ

σ2

(︃
1+

2(λ − γ)

(γ +λ )eγτ + γ −λ

)︃
+

bi − iσρ p
σ2

=
2γ (γ −λ )

σ2 ((γ +λ )eγτ + γ −λ )
+

bi − iσρ p− γ

σ2 . (5.9.12)

Finally, we finalize the characteristic, denoting ζ̃ = 2γ

(γ+λ )eγτ+γ−λ

ψ(p,q,x,y) =exp(A(t)x+B(t)v+C(t))

=exp
(︃

i px+
(︃

2γ (γ −λ )

σ2 ((γ +λ )eγτ + γ −λ )
+

bi − iσρ p− γ

σ2

)︃
v

i prτ +
a(bi − iσρ p+ γ)

σ2 τ +
2a
σ2 ln

2γ

(γ +λ )eγτ + γ −λ

)︃
=exp

(︄
i p(x+ rτ)+

(︄
(γ −λ ) ζ̃

σ2 +
λ − γ

σ2 + iq

)︄
v

+
λ + γ

σ2 aτ + iqaτ +
2a
σ2 ln ζ̃

)︃
=exp

(︃
i p(x+ rτ)+ iq(v+aτ)+

γ −λ

σ2

(︂
ζ̃ −1

)︂
v+

γ +λ

σ2 aτ +
2a
σ2 ln ζ̃

)︃
.

The logarithm term ln ζ̃ may still encounter discontinuity as p increases. We can see that for
p →∞, we have

Re(γ)→∞,

Im(γ)→∞,

and

ζ̃ → 0.

Though the value of ζ̃ is bounded, the value of logarithm of ζ̃ will change very fast when ζ̃

approaches 0 and shifts phase eventually. To avoid the value of the logarithm term approaching
either zero or infinity, we do the following variable change

ζ =
2γ

γ +λ +(γ −λ )e−γτ
,

ζ̃ =ζ e−γτ ,

ln ζ̃ =− γτ + lnζ ,

γ −λ

σ2 (ζ̃ −1) =
γ +λ

σ2 (1−ζ ),
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Therefore, we finalize our characteristic function as

ψ(p,q,x,v) = exp
(︃

i p(x+ rτ)+ iq(v+aτ)+
γ +λ

σ2 (1−ζ )v− γ −λ

σ2 aτ +
2a
σ2 lnζ

)︃
. (5.9.13)

5.10 Proof of Proposition 2.9
Proof. We investigate the limiting behavior of the characteristic function given by (2.4.45) and the
parameters γ , λ and ζ defined from (2.4.42) to (2.4.44)

lim
u→∞

γ

u
=σ

√︂
1−ρ2 |u|

u
, (5.10.1)

lim
u→∞

λ

u
=−σρi, (5.10.2)

lim
u→∞

ζ =2
√︂

1−ρ2
(︃√︂

1−ρ2 +
|u|
u

ρi
)︃
, (5.10.3)

which leads to

lim
u→∞

lnζ = ln
(︃

2
√︂

1−ρ2
)︃
+ ln

(︃√︂
1−ρ2 +

|u|
u

ρi
)︃
, (5.10.4)

and

lim
u→∞

1
u

γ +λ

σ2 (1−ζ )v = lim
u→∞

γ +λ

σ2u

(︃
1− 2γ

γ +λ +(γ −λ )e−γτ

)︃
= lim

u→∞
γ +λ

σ2u

(︃
λ − γ +(γ −λ )e−γτ

γ +λ +(γ −λ )e−γτ

)︃
= lim

u→∞
λ − γ

σ2u

=− |u|
u

√︁
1−ρ2

σ
v− ρ

σ
vi, (5.10.5)

as well as

lim
u→∞

1
u

γ −λ

σ2 aτ =
|u|
u

√︁
1−ρ2

σ
aτ − aτ

σ
i. (5.10.6)

Let ϑ = arcsin
(︂
|u|
u ρ

)︂
and transform (5.10.4) as

lim
u→∞

lnζ (u) = ln
(︃

2
√︂

1−ρ2
)︃
+ϑ i. (5.10.7)
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Combining (5.10.5), (5.10.6) and (5.10.7), we finalize the proof

lim
u→∞

ψi(u)≈ A∞eiB∞ exp

(︄
−
√︁

1−ρ2

σ
(v+aτ) |u|

)︄
. (5.10.8)

where

A∞ =
(︁
4
(︁
1−ρ

2)︁)︁ a
σ2 ,

B∞ =
2a
σ2 arcsin

(︃
|u|
u

ρ

)︃
− ρ

σ

(︃
v+

|u|
u

aτ

)︃
u.

5.11 Proof of Theorem 2.10
Proof. We see that

Ei(x) =
∫︂
R

f (y)hi(x− y)dy, (5.11.1)

with f (y) replaced by its Fourier expansion given in (2.4.71)

Pi(x) =
∫︂
R

∞

∑
j=−∞

Fje−i j 2πy
L hi(x− y)dy

=
∞

∑
j=−∞

Fje−i j 2πx
L

∫︂
R

ei j 2π(x−y)
L hi(x− y)dy

=
∞

∑
j=−∞

Fje−i j 2πx
L

∫︂
R

ei j 2πy
L φi(y)dy. (5.11.2)

Replace the integral in equation (5.11.2) by the kernel function (2.4.61)

Pi(x) =
∞

∑
j=−∞

Fje−i j 2πx
L ψi

(︃
2π j

L

)︃
. (5.11.3)

We truncate the infinite summation in equation (5.11.3) from −N
2 to N

2 −1

Ṗi(x) =

N
2 −1

∑
j=−N

2

Fje−i j 2πx
L ψi

(︃
2π j

L

)︃
, (5.11.4)

and denote the truncation error as ei,1

|ei,1|=
⃓⃓
Pi(x)− Ṗi(x)

⃓⃓
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=

⃓⃓⃓⃓
⃓⃓ −∞

∑
j=−N

2 −1

Fje−i j 2πx
L ψi

(︃
2π j

L

)︃
+

∞

∑
j=N

2

Fje−i j 2πx
L ψi

(︃
2π j

L

)︃⃓⃓⃓⃓⃓⃓
≤

∞

∑
| j|=N

2

⃓⃓
Fj
⃓⃓ ⃓⃓⃓⃓

ψi

(︃
2π j

L

)︃⃓⃓⃓⃓
.

By Proposition 2.9, there exists a positive constant εv,τ such that

|ψi(u,v)| ≤ εv,τA∞ exp

(︄
−
√︁

1−ρ2

σ
(v+aτ) |u|

)︄
, for all u. (5.11.5)

Denote

D =

√︁
1−ρ2

σ
(v+aτ) .

Combining (5.11.5) and (2.4.73) yields

|ei,1| ≤2εv,τ f̄ A∞
∞

∑
j=N

2

exp
(︃
−D

⃓⃓⃓⃓
2π j

L

⃓⃓⃓⃓)︃
≤2εv,τ f̄ A∞

L
2π

∫︂ ∞

π(N−2)
L

exp(−Du)du

≤
εv,τ f̄ LA∞

π
exp
(︃
−D

π(N −2)
L

)︃
=ε1e−

πD
L N ,

where

ε1 =
LA∞e

2πD
L

πD
εv,τ f̄ .

Next, we consider the discretization error arising from the DFT (2.4.68) which is equivalent to the
following calculation

P̃i(x) =

N
2 −1

∑
j=−N

2

F̃ je−i j 2πx
L ψi

(︃
2π j

L

)︃
, (5.11.6)

by approximating the Fourier coefficients Fj in (5.11.4) with

F̃ j =
∆x
L

N−1

∑
k=0

f (xk)ei j 2πxk
L . (5.11.7)
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We denote the discretization error as ei,2

|ei,2|=
⃓⃓
Ṗi(x)− P̃i(x)

⃓⃓
≤

N
2 −1

∑
j=−N

2

⃓⃓
Fj − F̃ j

⃓⃓ ⃓⃓⃓⃓
ψ j

(︃
2π j

L

)︃⃓⃓⃓⃓
. (5.11.8)

Assuming that the discretization error of
⃓⃓
Fj − F̃ j

⃓⃓
is of O

(︁
N−m)︁, we can bound it with a positive

bounding constant εL depending only on L⃓⃓
Fj − F̃ j

⃓⃓
≤ εLN−m. (5.11.9)

It is easy to see that under the trapezoidal rule for wn, we can apply m ≥ 2 in (5.11.9). Using
the fact that u j =

2π j
L defined in (2.4.67) for j = −N

2 , · · · ,
N
2 −1, we finalize the approximation in

(5.11.8)

|ei,2| ≤
N
2 −1

∑
j=−N

2

⃓⃓
Fj − F̃ j

⃓⃓ ⃓⃓⃓⃓
ψ j

(︃
2π j

L

)︃⃓⃓⃓⃓

≤εLεv,τA∞N−m

N
2 −1

∑
j=−N

2

exp
(︃
−D

⃓⃓⃓⃓
2π j

L

⃓⃓⃓⃓)︃

≤εLεv,τA∞N−m L
2π

∫︂ Nπ

L

−Nπ

L

exp(−D |u|)du,

≤
εLεv,τLA∞N−m

π

∫︂ ∞

0
exp(−Du)du,

=
εLεv,τLA∞N−m

πD
=ε2N−m,

where

ε2 =
LA∞
πD

εLεv,τ .

Therefore, the error of the Pi can be summarized as

|ei|=
⃓⃓
Pi(x)− P̃i(x)

⃓⃓
≤
⃓⃓
Pi(x)− Ṗi(x)

⃓⃓
+
⃓⃓
Ṗi(x)− P̃i(x)

⃓⃓
≤|ei,1|+ |ei,2|

≤ε1e−
πD
L N + ε2N−m,

where the first component gives the top bound of the truncation error and the second component
gives the top bound of the discretization error.
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5.12 Proof of Proposition 3.2
Proof. We show that

Xt = e−
∫︁ t

0 κuduX0 +
∫︂ t

0
e−

∫︁ t
u κsds

κuθudu+
∫︂ t

0
e−

∫︁ t
u κsds

σudWu, (5.12.1)

with initial X0 is the solution to

dXt = κt (θt −Xt)dt +σtdWt .

Take differentiation to equation (5.12.1), we obtain

dXt =−dtκte−
∫︁ t

0 κuduX0 −dt
∫︂ t

0
κte−

∫︁ t
u κsds

κuθudu−dt
∫︂ t

0
κte−

∫︁ t
u κsds

σudWu

+ e−
∫︁ t

t κsds
κtθtdt + e−

∫︁ t
t κsds

σtdWt

=−κtdte−
∫︁ t

0 κuduX0dt −κtdt
∫︂ t

0
e−

∫︁ t
u κsds

κuθudu−κtdt
∫︂ t

0
e−

∫︁ t
u κsds

σudWu

+ e0̄
κtθtdt + e0̄

σtdWt

=−κtdt
(︃

e−
∫︁ t

0 κuduX0 +
∫︂ t

0
e−

∫︁ t
u κsds

κuθudu+
∫︂ t

0
e−

∫︁ t
u κsds

σudWu

)︃
+ Iκtθtdt + IσtdWt

=−κtXtdt +κtθtdt +σtdWt

=κt(θt −Xt)dt +σtdWt .

Similarly, the process for XT , t ≤ T , is given by

XT = e−
∫︁ T

t κuduXt +
∫︂ T

t
e−

∫︁ t
u κsds

κuθudu+
∫︂ T

t
e−

∫︁ t
u κsds

σudWu, (5.12.2)

and the mean and variance are given by

E [XT |Ft ] =e−
∫︁ T

t κuduXt +
∫︂ T

t
e−

∫︁ t
u κsds

κuθudu,

Var [XT |Ft ] =
∫︂ T

t
e−

∫︁ T
u κvdv

Σue−
∫︁ T

u κ
T
v dvdu.
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