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Abstract

Bias-Corrected Peaks-Over-Threshold Estimation of the CVaR and Application to
Multi-Armed Bandits

Dylan Troop

The conditional value-at-risk (CVaR) is a useful risk measure in fields such as machine learning,

finance, insurance, energy, etc. When measuring very extreme risk, the commonly used CVaR

estimation method of sample averaging does not work well due to limited data above the value-at-risk

(VaR), the quantile corresponding to the CVaR level. To mitigate this problem, the CVaR can

be estimated by extrapolating above a lower threshold than the VaR using a generalized Pareto

distribution (GPD), which is often referred to as the peaks-over-threshold (POT) approach. This

method often requires a very high threshold to fit well, leading to high variance in estimation, and

can induce significant bias if the threshold is chosen too low. We address this bias-variance tradeoff

by developing a novel CVaR estimator based on the POT approach that is proven to be asymptotically

unbiased and less sensitive to lower thresholds being used. It is then shown empirically that the new

estimator provides a significant reduction in error compared with competing CVaR estimators in

finite samples from heavy-tailed distributions. To demonstrate the use of the estimator in sequential

decision-making, it is applied in a best arm identification multi-armed bandit problem under a fixed

budget, and a significant performance improvement is shown when compared with other estimators.
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Chapter 1

Introduction

Traditional machine learning algorithms typically consider the expected value of a random variable as

the target to optimize. In a risk-averse setting, the objective function needs to be adapted to consider

the full distribution and account for severe outcomes. Recently, risk-averse machine learning has

become an important area of study, especially in the context of multi-armed bandits (MABs) and

reinforcement learning, for example, Chow and Ghavamzadeh (2014); Tamar et al. (2015); Torossian

et al. (2019); Hiraoka et al. (2019) and Keramati et al. (2020) address learning with a risk-averse

agent. In the stochastic MAB problem, a learning agent is presented with the repeated task of

selecting from a number of choices (arms), each providing independent and identically distributed

rewards/costs. The agent has no prior knowledge of the underlying arm distributions. Through a

combination of exploration and exploitation, the agent attempts to identify the arm with the most

favorable reward/cost distribution as quickly as possible; see Lattimore and Szepesvári (2020) for a

description of such a setting.

Most often, the risk measure of interest is the conditional value-at-risk (CVaR). Given a continu-

ous random variable X representing losses (i.e., where larger values are less desirable), the CVaR at

a confidence level α ∈ (0, 1) measures the expected value of X given that X exceeds the quantile

of level α. This quantile is referred to as the value-at-risk (VaR). Compared to the VaR, the CVaR

captures more information about the weight of a distribution’s tail, making it a more useful object

of study in risk-averse decision making. In practice, the CVaR is usually estimated by averaging

observations above the estimated VaR, which we call the sample average estimator of the CVaR.
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When α is close to 1, these observations can be very scarce in small samples, leading to volatile

estimates of the CVaR. This work is motivated by a lack of reliable estimators and performance

guarantees for the CVaR at these extreme levels. As secondary motivation, we seek to address the

CVaR estimation problem described above within the MAB framework, which has applications in

any scenario where the primary goal of the agent is to avoid a severely unfavourable outcome, such

as patient deaths in clinical trials, a natural disaster, or financial ruin.

In this thesis, we consider estimating the CVaR of heavy-tailed random variables, which are

ubiquitous in application domains such as finance, insurance, energy, and epidemiology, e.g., Manz

and Mansmann (2020). In this setting, extreme events correspond to very large observations (and

hence severe losses), which is in contrast to the light- or short-tailed cases where similar low

probability events are closer to the mean. Extreme value theory provides the tools to construct a new

CVaR estimator that is appropriate for this setting. By selecting a threshold lower than the VaR, it

is possible to approximate the tail distribution of a random variable by using a generalized Pareto

distribution (GPD) and extrapolating beyond available observations. The estimation of quantities

using this approximation is commonly referred to as the peaks-over-threshold (POT) approach. An

estimator for the CVaR using the POT approach is given in, for example, McNeil et al. (2005, Section

7.2.3), where the CVaR is referred to as the expected shortfall. However, this estimator suffers from

one of the main drawbacks of the POT approach, which is the difficult bias-variance tradeoff of

selecting the threshold. Unless the threshold is chosen very high, the estimator will encounter two

sources of potentially significant bias:

(i) The deviation between the GPD and the true tail distribution;

(ii) The bias associated with parameter estimation using the approximate GPD tail data.

Perhaps even more significantly, the CVaR estimator of McNeil et al. (2005) comes with no perfor-

mance guarantees unless one assumes exactness of the GPD approximation and of the empirical

distribution function, so it has not been previously possible to determine the precise conditions where

using the POT approach for CVaR estimation is actually superior to the more common sample average

estimator. The goal of this thesis is to make a significant refinement to the existing CVaR estimator

based on the POT approach and correct the sources of bias induced by the GPD approximation,
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resulting in a more accurate estimator that is less sensitive to the choice of threshold, as well as to

derive performance guarantees in the form of confidence intervals.

1.1 Major Contributions

First, the GPD approximation error is derived, a deterministic quantity measuring the deviation

between the GPD approximation of the CVaR and its true value. We then derive bias-corrected

maximum likelihood estimators for the GPD parameters, ξ and σ, using the POT approach, which

in turn requires the derivation of a new estimator for a second-order parameter that may be of

independent interest. These bias-correction methods are consolidated to form a new estimator for

the CVaR based on the POT approach that is proven to be asymptotically unbiased (up to some

mild technical conditions). Using the convergence result for the bias-corrected CVaR estimator, a

confidence interval for the CVaR is derived which has asymptotically correct coverage probability.

From a computational perspective, the design of a novel CVaR estimation algorithm applying

automated threshold selection (Bader et al. (2018)) and second-order parameter tuning (Caeiro and

Gomes (2015)) is implemented, which provides an automated estimation process suitable for machine

learning. The algorithm is then applied to identify the arm with the lowest CVaR value in a fixed

budget (pure exploration) MAB problem.

Limitations. The proposed approach for CVaR estimation takes the assumption that observations

are independent and identically distributed. Therefore, in the context of reinforcement learning, it

must be ensured that the costs sampled at a certain state/action pair follow this assumption. This

is valid in most situations but may not hold for sequentially dependent data such as financial time

series. From experiments, it was found that the CVaR estimator can be volatile in low sample sizes

(approximately less than 500), and therefore is unreliable in this range. However, this tends to be the

case for all CVaR estimators that were tested when the underlying distribution is heavy-tailed.

1.2 Related Work

Asymptotic analysis of the deviation in (i) with respect to the underlying distribution can be found in

Raoult and Worms (2003), and Beirlant et al. (2003) considers the deviation with respect to quantile
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approximations based on the GPD tail model. Bias correction methods for (ii) have been developed

in, for example, Peng (1998); Gomesa and Martins (2002); Beirlant et al. (2009) and Haouas et al.

(2018). These works target the estimation of ξ, the shape parameter of the GPD. A central idea is to

employ the theory of second-order regular variation to establish asymptotically unbiased extensions

of the well-known Hill estimator of ξ. However, maximum likelihood estimation is considered the

most efficient parameter estimation method for the GPD (see de Zea Bermudez and Kotz (2010,

Section 7)) and targets both ξ and the σ (the scale parameter of the GPD). This thesis is, to the best

of our knowledge, the first to address (ii) for maximum likelihood estimation in view of application.

Estimation of the CVaR using the POT approach has been applied in, for example, Gilli and

Këllezi (2006); Marinelli et al. (2007); Bah et al. (2016); Gkillas and Katsiampa (2018) and Szubzda

and Chlebus (2019), where threshold selection typically involves applying judgment to ultimately

select a value. Threshold selection methods for the GPD approximation have been well-studied,

for an overview of such methods, see Scarrott and MacDonald (2012). A recent and empirically

successful threshold selection method is given in Bader et al. (2018), and has been applied in Zhao

et al. (2018) to estimate the VaR at extreme levels using the POT approach. In the MAB context,

MAB problem with heavy-tailed underlying arm distributions has been analyzed in, for example,

Bubeck et al. (2013) and Kolla et al. (2019). Extreme value theory has been used to estimate reward

distributions in the MAB setting, i.e., Carpentier and Valko (2014), however, this work is, to the best

of our knowledge, the first to use extreme value theory in the MAB setting under risk criteria.

In terms of performance guarantees, concentration bounds for the CVaR estimated by sample

averaging exist in the literature, which bound the probability of deviation between the CVaR estimate

and its true value for a given sample size. While a major benefit with concentration bounds is that

they provide a guaranteed bound in finite samples, it is usually not possible or impractical to apply

them to heavy-tailed random variables. For example, Brown (2007); Thomas and Learned-Miller

(2019) derive concentration bounds which apply to bounded random variables. The concentration

bounds of Kolla et al. (2018, 2019); Bhat and L.A. (2019) can be used for heavy-tailed random

variables but require distribution-dependent constants, making them impractical. Kagrecha et al.

(2019) give concentration bounds which can apply to heavy-tailed random variables without exact

distributional knowledge, but their bound is based on a truncated version of the sample average CVaR
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estimator and requires selecting parameters based on moment bounds of the underlying random

variable. An alternative to concentration bounds is to use estimated asymptotic confidence intervals,

which typically become good approximations in large sample sizes. Asymptotic confidence intervals

for the CVaR using sample average estimation can be found in Trindade et al. (2007); Brazauskas

et al. (2008) and Sun and Hong (2010). These confidence intervals only apply to random variables

with bounded variance, which excludes many heavy-tailed random variables. Therefore, it is often

not possible to establish measures of uncertainty for CVaR estimates using either the sample average

method or the original POT method in the heavy-tailed domain, and this thesis aims to address this

problem with a rigorous formulation of a new CVaR estimator using the POT approach.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. In chapter 2, the VaR and CVaR are formally

defined, and the sample average estimator of the CVaR is given. Needed background from extreme

value theory and second-order regular variation is discussed and we formalize the notion of heavy-

tailed random variables. The CVaR approximation using the POT approach is given. Chapter 3 derives

the GPD approximation error for the CVaR and its asymptotic behaviour. In chapter 4, bias-corrected

maximum likelihood estimators for the GPD parameters using the POT approach are derived. These

estimators are then used in a CVaR estimator with partial bias correction and its asymptotic normality

is derived. Chapter 5 establishes an estimator for the GPD approximation error, and our results are

consolidated to give the unbiased POT estimator for the CVaR. Its asymptotic normality is derived

and a confidence interval is given. Chapter 6 gives details on second-order parameter estimation,

which plays an important role in bias correction. Chapter 7 provides background on the MAB

problem, and we introduce the risk-averse successive rejects algorithm for best arm identification

using our CVaR estimator. In chapter 8, simulations are shown to provide empirical evidence of the

finite sample performance of our estimator on data, along with its efficacy in the MAB framework.

Chapter 9 concludes, with directions for future work. All proofs are given in appendix A.
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Chapter 2

Preliminaries

Let X denote a random variable and F its corresponding cumulative distribution function (cdf). In

this thesis, we adopt the convention that X represents a loss, so larger values of X are less desirable.

Definition 2.0.1 (Value-at-Risk). The value-at-risk of X at level α ∈ (0, 1) is

qα , VaRα(X) = inf{x ∈ R|F (x) ≥ α}. (1)

VaRα(X) is equivalent to the quantile at level α of F . If the inverse of F exists, VaRα(X) =

F−1(α). The VaR can be estimated in the same way as the standard empirical quantile. Let

X1, . . . , Xn be i.i.d. random variables with common cdf F . Let X(1,n) ≤ X(2,n) . . . ≤ X(n,n)

denote the set of order statistics for the sample of size n, i.e., the sample sorted in non-decreasing

order. An estimator for the VaR is

V̂aRn,α(X) = min
{
X(i,n) | i = 1, . . . , n; F̂n

(
X(i,n)

)
≥ α

}
= X(m,n),

where F̂n denotes the empirical cdf and m = dαne. We now define the CVaR as in Acerbi and

Tasche (2002).1

1The expression given in Acerbi and Tasche (2002) is for the expected shortfall (ES), but they show that the ES and
CVaR are equivalent. They also use different conventions for X and α, where smaller values of X represent less desired
outcomes and α represents a tail probability. Equation (2) can be derived by replacing their X with −X and their α with
1− α in the equations of the former paper.
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Definition 2.0.2 (Conditional Value-at-Risk). The conditional value-at-risk of a continuous random

variable X at level α ∈ (0, 1) is

cα , CVaRα(X) = E[X|X ≥ VaRα(X)] =
1

1− α

∫ 1

α
VaRγ(X)dγ. (2)

Typical values of α are 0.95, 0.99, 0.999, etc. Without loss of generality, the current work

will only consider continuous random variables. Typically, the CVaR is estimated by averaging

observations above V̂aRα(X). This estimator is given by

ĈVaRn,α(X) =

∑n
i=1Xi1{Xi≥V̂aRn,α(X)}∑n
j=1 1{Xj≥V̂aRn,α(X)}

. (3)

The use of the eq. (3) can be problematic when the confidence level α is high due to the scarcity

of extreme observations. We now provide tools from extreme value theory to address this problem,

which will be needed to give the CVaR estimator based on the POT approach.

Let Fn(x) = P(max(X1, . . . , Xn) ≤ x) denote the cdf of the sample maxima. Suppose there

exists a sequence of real-valued constants an > 0 and bn, n = 1, 2, . . ., and a nondegenerate cdf H

such that

lim
n→∞

Fn (anx+ bn) = H(x), (4)

for all x, where nondegenerate refers to a distribution not concentrated at a single point. The class

of distributions F that satisfy (4) are said to be in the maximum domain of attraction of H, denoted

F ∈ MDA(H). The Fisher–Tippett–Gnedenko theorem (see De Haan and Ferreira (2006, Theorem

1.1.3)) states that H must then be a generalized extreme value distribution (GEVD), given in the

following definition.

Definition 2.0.3 (GEVD). The generalized extreme value distribution (GEVD) with single parameter

ξ ∈ R has distribution function

Hξ(x) =


exp

(
−(1 + ξx)−1/ξ

)
if ξ 6= 0,

exp (−e−x) if ξ = 0

7



over its support, which is [−1/ξ,∞) if ξ > 0, (−∞,−1/ξ] if ξ < 0 or R if ξ = 0.

If F ∈ MDA(H), then there exists a unique ξ ∈ R such that H = Hξ. It is important to note

that essentially all common distributions used in applications are in MDA(Hξ) for some value of ξ.

When ξ > 0, F is a heavy-tailed distribution. It is useful to characterize heavy tails using the theory

of regular variation, which requires the following definition.

Definition 2.0.4 (Regularly varying function). Let f be a positive, measurable function defined on

some neighborhood [x0,∞) of∞, for some x0 ∈ R. If

lim
x→∞

f(tx)/f(x) = tρ for all t > 0,

then f is called regularly varying (at infinity) with unique index of regular variation ρ ∈ R, and we

denote this by f ∈ RVρ. If ρ = 0, then f is called slowly-varying.

For the remainder of this thesis, we focus exclusively on heavy-tailed random variables (or

distributions), defined next. We denote the tail distribution F̄ = 1− F .

Definition 2.0.5 (Heavy-tailed random variable). Let X be a random variable with cdf F . Then X

(or F ) is heavy-tailed if F ∈ MDA(Hξ) with ξ > 0.

If F is heavy-tailed, then moments of order greater than or equal to 1/ξ do not exist. Otherwise,

F is light-tailed with a tail having exponential decay (ξ = 0), or the right endpoint of F is finite

(ξ < 0). If ξ ≥ 1, then F has infinite mean, and therefore the true CVaR, eq. (2), is also infinite. For

the remainder of this thesis, we assume the following condition is satisfied.

Assumption 2.0.1. F is heavy-tailed with ξ < 1.

When F ∈ MDA(Hξ), there exists a useful approximation of the distribution of sample extremes

above a threshold, and we define this distribution next.

Definition 2.0.6 (Excess distribution function). For a given threshold u ≥ ess infX , the excess

distribution function is defined as

Fu(y) = P(X − u ≤ y|X > u) = [F (y + u)− F (u)] /F̄ (u), y > 0.

8



Note that the domain of Fu is [0,∞) under assumption 2.0.1. The y-values are referred to as

the threshold excesses. Given that X has exceeded some high threshold u, this function represents

the probability that X exceeds the threshold by at most y. The Pickands-Balkema-de Haan theorem

states that Fu can be well-approximated by the GPD, which we give now.

Theorem 2.0.1 (Pickands III (1975); Balkema and De Haan (1974)). Suppose assumption 2.0.1 is

satisfied. Then, there exists a positive function σ = σ(u) such that

lim
u→∞

sup
0≤y≤∞

|Fu(y)−Gξ,σ(y)| = 0, (5)

where Gξ,σ is the generalized Pareto distribution, which for ξ 6= 0 has a cdf given by

Gξ,σ(y) = 1−
(

1 +
ξy

σ

)−1/ξ
. (6)

Using theorem 2.0.1, it is quite straightforward to derive approximate formulas for the VaR and

CVaR using the definition of the excess cdf and eqs. (1) and (2), for example, see McNeil et al.

(2005, Section 7.2.3). Before stating these formulas, we make precise the choice of function σ(u) in

theorem 2.0.1, which we give next after some needed definitions. Let U = (1/F̄ )−1, the functional

inverse of 1/F̄ . Assume such U exists and is twice-differentiable. The following functions will

become important tools for characterizing the tail behaviour of F .

Definition 2.0.7. The first- and second-order auxiliary functions are defined as, respectively,

a(t) = tU ′(t), A(t) =
tU ′′(t)

U ′(t)
− ξ + 1. (7)

For the remainder of this thesis, let σ(u) = a(1/F̄ (u)). It is proven in Raoult and Worms (2003,

Corollary 1), with different notation, that eq. (5) achieves the optimal rate of convergence with

σ(u) = a(1/F̄ (u)) when the following condition on A holds, which we assume to be true for the

rest of this thesis.

Assumption 2.0.2. If F ∈ MDA(Hξ), the second-order auxiliary function A exists and satisfies the

following conditions:
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(i) limt→∞A(t) = 0;

(ii) A is of constant sign in a neighborhood of∞;

(iii) ∃ρ ≤ 0 such that |A| ∈ RVρ.

While assumption 2.0.2 may seem restrictive at first glance, it is in fact a very general condition,

satisfied by all common distributions that belong to a maximum domain of attraction (Drees et al.,

2004). Counterexamples are fairly contrived and rarely seen in practice, e.g., De Haan and Ferreira

(2006, Exercise 2.7 on p. 61).

Now, with a precise definition of σ(u), we state the approximations for the VaR and CVaR which

follow from theorem 2.0.1. For the rest of this thesis, we shall denote su,α = F̄ (u)/(1− α).

Corollary 2.0.1 (POT approximations). Suppose that assumption 2.0.1 and assumption 2.0.2 are

satisfied. Fix u ∈ R and let σ = a(1/F̄ (u)). Then, the POT approximations for the VaR and CVaR

are given by, respectively,

qu,α = u+
σ

ξ

(
sξu,α − 1

)
, cu,α = u+

σ

1− ξ

(
1 +

sξu,α − 1

ξ

)
. (8)

The accuracy of the POT approximations depends on how high of a threshold is used. When

these approximations are used in statistical estimation, a lower threshold is preferable to make use

of as much data as possible, but this can induce a significant bias. To estimate this bias, explicit

expressions are required for the approximation error when using eq. (8). In the next section, we

derive these expressions.
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Chapter 3

GPD Approximation Error

When applying the POT approximation for the CVaR, there is a deviation between cu,α and cα that

can be quantified asymptotically. We define this deviation as follows.

Definition 3.0.1. The GPD approximation error (of the CVaR) at level α and threshold u is defined

as

εu,α , cu,α − cα.

Note that when we do not consider the statistical estimation of any parameters, εu,α is a deter-

ministic quantity. In this section, the asymptotic behaviour of εu,α as u→∞ is derived, which leads

to a useful approximation for finite u. For the rest of this thesis, we shall denote τu = 1/F̄ (u).

Theorem 3.0.1. Suppose assumption 2.0.1 and assumption 2.0.2 hold. Let α = αu = 1− F̄ (u)/β,

where β > 1 is a constant not depending on u. Then,

εu,α
a(τu)A(τu)Kξ,ρ(β)

→ 1 as u→∞,

where

Kξ,ρ(β) =



1
ρ

(
βξ

ξ(1−ξ) −
1
ξ+ρ

(
βξ+ρ

(1−ξ−ρ) + ρ
ξ

))
, ρ < 0, ξ + ρ 6= 0,

1
ρ

(
βξ

ξ(1−ξ) − log β + ξ−1
ξ

)
, ρ < 0, ξ + ρ = 0,

βξ

ξ(1−ξ)

(
1−2ξ
ξ(1−ξ) − log β

)
+ 1

ξ2
, ρ = 0.

(9)

In practice, we would typically be interested in the CVaR at a fixed value of α, so it may appear
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unsatisfactory that α→ 1 in theorem 3.0.1. However, a useful approximation in the non-asymptotic

setting which holds for large u is εu,α ≈ a(τu)A(τu)Kξ,ρ(su,α), which is valid as long α > F (u). In

subsequent sections, we derive estimators for all needed quantities to estimate cu,α and εu,α (and thus

cα) from data, namely the parameters ξ, σ, ρ, and function A, leading to an asymptotically unbiased

estimator of cα.
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Chapter 4

POT Estimator with MLE Bias

Correction

In this section, we discuss the estimation of cu,α using corollary 2.0.1 and maximum likelihood. One

possible way to do so is by first selecting a threshold u, and then estimating the GPD parameters

using the threshold excesses above u. Let X(1,n) ≤ X(2,n) . . . ≤ X(n,n) denote the order statistics

for a sample of size n. Let u = X(n−k,n) for some value of k = kn < n. Then, the threshold

excesses Yi = X(n−k+i,n) − u, i = 1, .., k are i.i.d. (De Haan and Ferreira, 2006, Section 3.4) and

approximately distributed by a GPD (theorem 2.0.1). Maximum likelihood estimators (MLEs) are

obtained by maximizing the approximate log-likelihood function with respect to ξ and σ,

(ξ̂(n)MLE, σ̂
(n)
MLE) = arg max

ξ,σ

k∑
i=1

log gξ,σ(Yi), (10)

where gξ,σ is the probability density function (pdf) of the GPD, which for ξ 6= 0 is given by

gξ,σ(y) =
1

σ

(
1 +

ξy

σ

)−1/ξ−1
.
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Based on partial derivatives of the log-pdf with respect to parameters, the resulting maximum

likelihood first-order conditions when ξ > 0 are given by


1

k

k∑
i=1

log

(
1 +

ξYi
σ

)
= ξ,

1

k

k∑
i=1

Yi
σ + ξYi

=
1

ξ + 1
.

(11)

A closed-form solution to eq. (11) does not exist, but the MLEs can be obtained numerically through

standard software packages. See, for example, Grimshaw (1993) for an overview of the commonly

implemented algorithm.

While the usual asymptotic theory of maximum likelihood does not apply in the approximate

GPD model, the following theorem establishes the fact that the MLEs are asymptotically normal

with a biased mean as long as the number of threshold excesses is chosen suitably. We will include a

correction for the asymptotic bias in an estimator for the CVaR subsequently. The following theorem

is given in De Haan and Ferreira (2006, Theorem 3.4.2).

Theorem 4.0.1. Suppose that assumption 2.0.1 and assumption 2.0.2 hold. Then for k = kn →∞

and k/n→ 0 as n→∞, if limn→∞
√
kA(n/k) = λ <∞, then the MLEs satisfy

√
k(ξ̂(n)MLE − ξ, σ̂(n)

MLE/a(n/k)− 1)
d→ N(λbξ,ρ,Σ),

where N denotes the normal distribution and

bξ,ρ =
(
b
(1)
ξ,ρ, b

(2)
ξ,ρ

)
=

[ξ + 1, −ρ]

(1− ρ)(1 + ξ − ρ)
,

Σ =

 (1 + ξ)2 −(1 + ξ)

−(1 + ξ) 1 + (1 + ξ)2

 . (12)

For the remainder of this thesis, let u = un = X(n−k,n). In the assumption of theorem 4.0.1, it

does not seem possible to give conditions to guarantee
√
kA(n/k)→ λ <∞ in full generality, but a

common approach when working with heavy-tailed distributions is to assume that they belong to the

Hall class (Hall, 1982), which nests those most often seen in practice, for example, the Burr, Fréchet,
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Student, Cauchy, Pareto, F , stable etc. The Hall class satisfies assumption 2.0.2 with A(t) = ctρ for

some constant c ∈ R, and so to ensure convergence we only require that k = O(n−2ρ/(1−2ρ)).

To obtain an asymptotically unbiased estimator of the CVaR, we will first correct the asymptotic

bias in theorem 4.0.1 using consistent estimators for A(n/k) and bξ,ρ (which requires an estimator

for ρ). We use the consistent estimator ρ̂n of Fraga Alves et al. (2003) to estimate ρ, and a new

estimator for A(n/k) is given in eq. (22), which we denote Ân. We prove Ân is consistent, in the

sense that Ân/A(n/k)
p→ 1, in appendix A.5. We provide details of the estimators ρ̂n and Ân in

chapter 6. To obtain a consistent estimator for bξ,ρ, it suffices to plug in any consistent estimators for

ξ and ρ into eq. (12), which follows from the continuous mapping theorem (see, for example, Vaart

(1998, Theorem 2.3)). Since ξ̂(n)MLE
p→ ξ by theorem 4.0.1, we set

b̂n = (b̂(1)n , b̂(2)n ) ,
[ξ̂(n)MLE + 1, −ρ̂n]

(1− ρ̂n)(1 + ξ̂(n)MLE − ρ̂n)
(13)

as an estimator for bξ,ρ, where b̂n
p→ bξ,ρ. We now give bias-corrected estimates of the GPD

parameters, which we define by

ξ̂n , ξ̂(n)MLE − Ânb̂(1)n , σ̂n , σ̂(n)
MLE(1− Ânb̂(2)n ), (14)

The following theorem shows that ξ̂n and σ̂n are asymptotically normal and centered with the same

asymptotic variance Σ as in eq. (12).

Theorem 4.0.2. Suppose that the assumptions of theorem 4.0.1 hold. Then

√
k(ξ̂n − ξ, σ̂n/a(n/k)− 1)

d→ N(0,Σ).

Using theorem 4.0.2, a new estimator for cu,α can be constructed from eq. (8), which we then

show is asymptotically normal and centered. The only missing requirement is an estimate for

F (u), which, with u = X(n−k,n), can be obtained using the empirical distribution function, i.e.,

F̂n(u) = 1− k/n.

Definition 4.0.1 (POT estimator). Suppose that (ξ̂n, σ̂n) are obtained from k threshold excesses with
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ξ̂n < 1. Then, an estimator for cu,α at level α > 1− k/n is

ĉ(n)α ,
σ̂n

1− ξ̂n

(
1 +

1

ξ̂n

[(
k

n(1− α)

)ξ̂n
− 1

])
+X(n−k,n). (15)

Typically, when the CVaR is estimated using the POT approach in the literature, e.g., McNeil

et al. (2005), eq. (15) is used with (ξ̂(n)MLE, σ̂
(n)
MLE) in place of our estimators (ξ̂n, σ̂n). Hence, the typical

approach introduces two sources of bias with respect to the true CVaR: the bias from the MLEs and

the bias from the misspecification of the threshold excesses by the GPD (which can be corrected

using the GPD approximation error). We now state the main theorem of this section, in which the

asymptotic normality of ĉ(n)α is derived.

Theorem 4.0.3. Suppose that the assumptions of theorem 4.0.1 hold. Let α = αn = 1− (1/β)k/n

where β > 1 is a constant not depending on n. Let

dβ(x, y) =
y

1− x

(
1 +

βx − 1

x

)
.

Then, assuming the asymptotic independence of (ξ̂n, σ̂n) and the random variable
√
k
(
(kτu/n)ξ − 1

)
,

√
k

a(n/k)

(
ĉ(n)α − cu,α

)
d→ N (0, V ) , (16)

where V = ∇dβ(ξ, 1)>Σ∇dβ(ξ, 1) + 1 and ∇dβ(ξ, 1) denotes the gradient of dβ evaluated at

(ξ, 1), given at the end of appendix A.3.

Remark 4.0.1. The assumption that (ξ̂n, σ̂n) is asymptotically independent of
√
k
(
(kτu/n)ξ − 1

)
seems justified by the proofs of Beirlant et al. (2009, Theorem A.1 and Theorem 3.1), where a

similar asymptotic independence is established for a bias-corrected Hill estimator of ξ. We leave the

confirmation of conditions under which this holds for future work.

Remark 4.0.2. The conditions of theorem 4.0.3 imply that α→ 1, however, this is not very restrictive

in a practical setting since finite sample approximations will be valid for any fixed choice of α as

long as α > 1− k/n, since β is arbitrary.

Using eq. (16) combined with an estimator for εu,α, we derive an asymptotically unbiased
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estimator and confidence interval for the CVaR in the next section.

17



Chapter 5

Unbiased POT Estimator

In the previous section, we derived the asymptotic normality of the POT estimator with bias corrected

parameters, ĉ(n)α . While ĉ(n)α is asymptotically unbiased with respect to cu,α, we still need to include

the GPD approximation error to correct the remaining deviation induced by the GPD model. For a

confidence level α and u = X(n−k,n), using theorem 3.0.1 we can derive an estimator for the GPD

approximation error, given by

ε̂(n)α , σ̂nÂnK̂n, (17)

where K̂n = Kξ̂n,ρ̂n
(k/(n(1−α))), defined in eq. (9) with known values replaced by their respective

estimators. We can now define the following estimator for the CVaR.

Definition 5.0.1 (Unbiased POT estimator). The unbiased POT estimator is an estimator for the

CVaR at level α > 1− k/n, which is defined for ξ̂n < 1, and is given by

ĉ(n)ε,α , ĉ(n)α − ε̂(n)α . (18)

Note that ĉ(n)ε,α is asymptotically unbiased with respect to cα, a statement which is made precise

in the following theorem.

Theorem 5.0.1. Suppose that the assumptions of theorem 4.0.3 hold. Then,

√
k(ĉ

(n)
ε,α − cα)

σ̂n
√
V̂n

d→ N(0, 1), (19)
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Where V̂n denotes a consistent estimator of V , which can be obtained by plugging in ξ̂ into the

expression for V given in theorem 4.0.3.

Corollary 5.0.1. Based on the above limit, an asymptotic confidence interval with level 1− δ for cα

is

Cnδ =

(
ĉ(n)ε,α − zδ/2σ̂n

√
V̂n/k, ĉ

(n)
ε,α + zδ/2σ̂n

√
V̂n/k

)
, (20)

where zδ/2 satisfies P(Z > zδ/2) = δ/2 with Z ∼ N(0, 1). Equation (20) has asymptotically correct

coverage probability, i.e., P(cα ∈ Cnδ )→ 1− δ as n→∞.

Our confidence interval enables quantifying the level of uncertainty in ĉ(n)ε,α . The correct coverage

probability ofCnδ is a property that has not been previously possible with other CVaR estimators based

on the POT approach, where the error from the GPD approximation and the empirical distribution

function is ignored. In the next section we give estimators for the second-order parameters ρ and

A(n/k) which are needed to compute ĉ(n)ε,α from data.
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Chapter 6

Estimation of Second-order Parameters

6.1 Estimation of ρ

The parameter ρ controls the rate of convergence in eq. (4) (Gomes et al., 2002b). The smaller in

magnitude the value of ρ, the more bias exists in the largest observations from a sample with respect

to the GEVD. Therefore, estimates of ρ can be used to control the bias associated with estimates of ξ.

In our forthcoming experiments, we choose the ρ estimator of Fraga Alves et al. (2003) combined

with the adaptive selection of tuning parameters given in Caeiro and Gomes (2015). Let

M (j)
n (m) =

1

m

m∑
i=1

[logX(n−i+1,n) − logX(n−m,n)]
j ,

T (τ)
n (m) =

(M
(1)
n (m))τ − (M

(2)
n (m)/2)τ/2

(M
(2)
n (m)/2)τ/2 − (M

(3)
n (m)/6)τ/3

, τ ∈ R,

with the notation abτ = b log a if τ = 0. Then, an estimator for ρ is given by Fraga Alves et al. (2003,

Equation 2.18),

ρ̂n =
3(T

(τ)
n (m)− 1)

T
(τ)
n (m)− 3

. (21)

The number of upper order statistics chosen to estimate ρ is usually much larger than the choice used

to estimate (ξ, σ), i.e., m > k. It is shown in Fraga Alves et al. (2003) that ρ̂n is consistent under

certain conditions. Let A0 denote the function satisfying the second-order condition of De Haan and

Ferreira (2006, Equation 2.3.22). If m = mn →∞,m/n→ 0 and
√
mA0(n/m)→∞ as n→∞,
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then ρ̂n
p→ ρ. The estimator ρ̂n has an asymptotic bias, and the reduction of this bias is dependant

on the choice of m as well as the tuning parameter τ . Fortunately, the adaptive algorithm given

Caeiro and Gomes (2015, Section 4.1) provides an effective method of bias correction by choosing

m and τ via the most stable sample path of ρ̂n. Details of the full estimation procedure are given in

appendix B.1.

6.2 Estimation of A(n/k)

Currently, no estimators for A(n/k) exist in the literature (to the best of our knowledge). As part of

a secondary contribution of this thesis, we derive an estimator for A(n/k) in order to estimate ĉ(n)ε,α

from i.i.d. samples. Following the formulation of Haouas et al. (2018), we can adapt their estimator

for A0(n/k) to non-truncated data. Then, using the relation between A0 and A in De Haan and

Ferreira (2006, Table 3.1), an estimator for A(n/k) is

Ân ,
(ξ̂(n)MLE + ρ̂n)(1− ρ̂n)2(M̂

(2)
n − 2(M̂

(1)
n )2)

2ξ̂(n)MLEρ̂nM̂
(1)
n

, (22)

where we define M̂ (j)
n ,M

(j)
n (k). The proof that Ân is consistent is given in appendix A.5.
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Chapter 7

Algorithm for Risk-Averse MABs

The MAB framework of this paper involves a finite horizon multi-stage decision setting, where

an agent makes decisions at stages t = 1, . . . , n. Let {1, . . . ,K} denote a set of arms, which

are possible actions that can be taken at each stage. In the risk-averse setting, we consider the

outcome of each draw from an arm to be a cost to the agent. Define the K-dimensional random

vector Xt ≡ (Xt
1, . . . , X

t
K), where Xt

j denotes the cost incurred if the arm j is selected at stage t.

Vectors X1, . . . , Xn are assumed to be independent and identically distributed. Therefore, for all

arms i = 1, . . . ,K, cost variables X1
i , . . . , X

n
i are i.i.d. copies of some random variable Xi. Let

{F1, . . . , FK} denote the respective CDFs of X1, . . . , XK ; these distribution functions are unknown

to the agent.

Throughout the rest of the paper, it is assumed that each arm’s cost distribution satisfies assump-

tion 2.0.1. The integrability assumption that ξi < 1, i = 1, . . . ,K is equivalent to the bounded

moment condition often seen when analyzing bandit algorithms under risk criteria in the heavy-tailed

domain (e.g., Bhat and L.A. (2019)), which is required for the CVaR to be finite.

We consider the problem of identifying the arm with the lowest CVaR value (at a pre-specified

value of α) in a fixed budget of n stages. The sequence of selected arms is denoted by a ≡

(a1, . . . , an), where at ∈ {1, . . . ,K}. When an arm at is selected at stage t, its associated cost

Xt
at is observed, but the costs associated with all other arms {Xt

i | i 6= at} remain unobserved. Let

i∗ = arg mini=1,...,K CVaRα(Xi), i.e., the arm with the lowest CVaR value. At the end of n stages,

the bandit algorithm outputs an arm selection î∗ ∈ {1, . . . ,K}, which is perceived to be optimal by
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the learning agent.

The best arm identification algorithm we consider is the successive rejects (SR) algorithm of

Audibert and Bubeck (2010), modified to select the arm with lowest CVaR value as in Kolla et al.

(2019) and with (unbiased) POT CVaR estimation. The steps are presented in algorithm 1. The

algorithm proceeds through K − 1 phases, eliminating the arm with the highest estimated CVaR

value at each phase. The number of samples taken from each arm at each phase is designed such that

the total arm samples does not exceed the given fixed budget n at the end of K − 1 phases. For arms

i = 1, . . . ,K, denote CVaR estimates using eq. (18) by ĉ(m)
ε,α (i) (at a sample of size m).

Algorithm 1: Unbiased POT CVaR-SR algorithm

Initialize: A1 = {1, . . . ,K}, logK = 1
2 +

∑K
i=2

1
i , n0 = 0, nk =

⌈
1

logK
n−K
K+1−k

⌉
.

Output: The single unique element in AK

1 for k = 1, . . .K − 1 do
2 Sample nk − nk−1 costs from each arm in Ak.

3 Compute CVaR estimates ĉ(nk)ε,α (i) for each arm i in Ak using eq. (18).

4 Set Ak+1 = Ak \ arg max
i∈Ak

ĉ
(nk)
ε,α (i), i.e., remove the arm with the highest CVaR

estimate (ties broken arbitrarily).
5 end

23



Chapter 8

Numerical Experiments

In this section, we investigate the finite sample performance of ĉ(n)ε,α (denoted UPOT in this section)

compared with the sample average estimator (eq. (3)), and POT estimator with no bias correction,

i.e., eq. (15) with (ξ̂n, σ̂n) replaced by (ξ̂(n)MLE, σ̂
(n)
MLE). Denote these estimators as SA and BPOT,

respectively. First, in the theoretical setting, we compare the exact values of the asymptotic variance

of UPOT and SA at different values of α and sample sizes on the Fréchet distribution. This analysis

provides justification for the cases where UPOT is expected to perform better than SA on data. Next,

we assess the statistical accuracy of the three estimation methods at different sample sizes among

several classes of heavy-tailed distributions. The accuracy of the asymptotic confidence interval

given in eq. (20) on finite samples is then assessed by using the empirical coverage probability, and

finally an application in the risk-averse MAB framework is shown.

8.1 Comparison of Asymptotic Variance

In this section, the magnitude of the asymptotic variance (AVAR) of UPOT and SA are compared.

Since both estimators are asymptotically unbiased and assuming they are both efficient, the mean

squared error of each estimator approaches the AVAR in large samples (by the Cramér-Rao lower

bound). Hence, this comparison gives evidence of the distributional properties and level of α where

UPOT results in lower error than SA. The comparison is made on the Fréchet distribution with

single parameter γ, which has ξ = 1/γ, ρ = −1 (see appendix C.2). We compute σ2V/k (given in
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theorem 4.0.3) with n = 10000, 20000, . . . , 100000 and set k = dn2/3e to satisfy the assumption of

theorem 4.0.1. An expression for the AVAR of SA is given in, for example, Trindade et al. (2007), and

we provide the details of this calculation for the Fréchet distribution in appendix C.2. To the best of

our knowledge, the AVAR of SA can only be derived for distributions with a bounded second moment,

which corresponds to distributions with ξ < 1/2 (or γ > 2 in the Fréchet case). The AVAR of SA

and UPOT is compared for the Fréchet distribution with γ = 2.25, 2.5, 3, 4 and α = 0.99, 0.999

in fig. 8.1. The results indicate that UPOT is preferable for high values of α and low values of γ.

Increasing α would lead to lower sample availability in SA, and thus higher variance, while UPOT

is unaffected. Decreasing γ is equivalent to increasing ξ and thus increasing tail thickness. This

increases the AVAR of SA since extreme observations are much further from the mean but not readily

observed. Based on evidence from the Fréchet distribution, it is reasonable to extrapolate that UPOT

should always perform better than SA on heavy-tailed distributions with ξ ≥ 1/2 at high values of α.
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Figure 8.1: Asymptotic variance of the SA CVaR estimator (blue) and unbiased POT estimator
(green) for the Fréchet(γ) distribution at α = 0.99, 0.999.

8.2 Error Analysis of CVaR Estimators

In the experiments that follow, samples are generated from the Burr, Fréchet, and half-t distributions,

which provide a good characterization of heavy-tailed phenomena with finite mean. Relevant details

for each distribution class are provided in appendix C. The estimation performance of SA, BPOT,
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and UPOT are compared via the root-mean-square error (RMSE) and absolute bias on five examples

from each distribution class, shown in fig. 8.2. We fix α = 0.998 as an example of an extreme risk

level. Experiments are conducted as follows. Generate N = 1000 random samples of size 50000

from each distribution. For each sample, the CVaR is estimated using the three methods at subsample

sizes n = 5000, 10000, . . . , 50000. In practice, it can be difficult to choose the number of threshold

excesses k, and so we apply the ordered goodness-of-fits tests of Bader et al. (2018) to choose the

optimal threshold. This threshold selection procedure, which we employ in both BPOT and UPOT,

is given in detail in appendix B.2. The average threshold selected (in terms of the percentile of a

given sample) was between 0.80 and 0.96 in all simulations performed. The complete algorithm for

UPOT is summarized in appendix B.3.

Discussion. The chosen Burr distributions allow us to investigate the effect of varying ρ while

keeping a fixed ξ. In this case, we set ξ = 2/3 while ρ = −0.25,−0.33,−0.44,−1.33,−2.22 in

the respective Burr distributions. In general, when ρ approaches 0, the distribution’s tail deviates

more severely from a strict Pareto model, and therefore we see the largest bias and RMSE occur in

BPOT in the Burr(0.38, 4) and Burr(0.5, 3) models, while the bias-correction of UPOT leads to the

most substantial performance gain. As a non-parametric estimator, SA is less affected by changes

in the value of ρ, outperforming the POT estimators in terms of bias on some Burr distributions.

However, as alluded to in section 8.1, high values of ξ leads to high variance in observations, typically

causing poor performance of SA in terms of RMSE. This effect is similarly observed in the Fréchet

simulations, where SA has relatively low bias. The Fréchet distribution always has ρ = −1, a

property shared with the GPD, giving its tail a similar shape. Therefore, the bias-correction of UPOT

is less significant, but still provides a noticeable performance gain over BPOT. The results of the

half-t simulations are similar to the Fréchet, but we note a larger bias in BPOT due to the fact that

the half-t distribution has a ρ value that varies with its parameter. Like in the Burr simulations,

SA is unaffected by different values of ρ and obtains good performance in terms of bias in the

half-t simulations, except when ξ is largest in the half-t(1.5) model. Finally, we note that UPOT

consistently had the lowest RMSE in all simulations except in a few cases at a sample size of 5000.

Next, the finite sample performance of the UPOT confidence interval is investigated.
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Figure 8.2: RMSE of and absolute bias of estimating CVaR0.998 using UPOT (black), BPOT (red),
and SA (blue).

8.3 Coverage Probability of the Asymptotic Confidence Interval

The accuracy of the confidence interval given in eq. (20) is assessed by its empirical coverage

probability for each distribution using the same simulated data from section 8.2. Let Cni,δ denote the

confidence interval computed for a sample of size n for sample i, i = 1, . . . , N . Then, the empirical

coverage probability is defined as

P̂nδ (N) =
1

N

N∑
i=1

1{cα∈Cni,δ}.
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Plots of the coverage probability at each sample size for each distribution are shown in fig. 8.3. We

set δ = 0.05 and compute the coverage probability at sample sizes n = 5000, 10000, . . . , 50000.

The final value of each distribution’s coverage probability at n = 50000 is reported in appendix D.

Most of the distributions tested achieve nearly the correct coverage of 0.95, sometimes surpassing it

in some cases, and this is due to the estimated confidence interval being wider than its true asymptotic

counterpart. The coverage is worst in the Burr(0.38, 4) distribution, achieving a final coverage

probability of just 0.73. The small magnitude of ρ in this distribution causes slow convergence of the

tail to the GPD, and hence a relatively high average threshold percentile of 0.96 was chosen by the

threshold selection procedure. This high threshold increases the variance of parameter estimation

which explains the poor coverage.
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Figure 8.3: Coverage probabilities with α = 0.998, δ = 0.05. The solid line indicates the theoretical
coverage, i.e., 1− δ = 0.95.

8.4 Multi-Armed Bandit Experiment

In this section, we compare the performance of the three CVaR estimation methods in a best arm

identification problem. Algorithm 1, with CVaR estimates computed using either UPOT, BPOT,

or SA, is analyzed in five 5-arm MAB settings, where in each setting, the five underlying arm

distributions come from the same distribution class, either the Burr, Fréchet, or half-t. Again we

fix α = 0.998 and use the same distributional parameters as in section 8.2. Such parameters were
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chosen to vary the shape of the underlying distributions while keeping the arm CVaRs relatively

close in magnitude, making the task of distinguishing them more difficult to the agent. The algorithm

is executed at fixed budgets of n = 10000, 20000 . . . , 100000, and N = 1000 independent runs

are performed at each budget. The performance metric we use to compare the two methods is the

probability of incorrect best arm identification, i.e, P(̂i∗ 6= i∗), estimated empirically at a given fixed

budget by ∑N
j=1 1{̂i∗j 6= i∗}

N
,

where î∗j denotes the arm selected for independent run j, j = 1, . . . , N , and i∗ denotes the arm with

the lowest CVaR value. Plots of the empirical estimates of the probability of incorrect best arm

identification using the three estimation methods are given in fig. 8.4. Consistent with the results of

section 8.2, the improved accuracy of UPOT in these classes of distributions leads to a lower error

rate in the MAB setting for all budgets in our experiments compared to BPOT or SA. In particular,

while the performance of UPOT and BPOT are close in the Fréchet and half-t experiments, these

distributions have tails that are similar to the GPD based on their ρ values. Using BPOT in the Burr

experiment, which includes distributions with a variety of different ρ values, results in a very high

probability of error. This demonstrates that the naive BPOT estimator is not robust to distributions

with tails that are distinct from the GPD, and the bias-correction of UPOT provides a solution to this

problem.
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Figure 8.4: Empirical probability of incorrect best arm identification using UPOT (black), BPOT
(red), and SA (blue) in the risk-averse successive rejects algorithm.
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Chapter 9

Conclusion

We have studied the asymptotic properties of a new CVaR estimator based on the peaks-over-threshold

approach. Using extreme value theory and second-order regular variation, we derived estimators

for the bias induced by the approximate GPD model of the threshold excesses and the bias from

maximum likelihood estimators of the GPD parameters. Using these results, we proved that our

estimator is asymptotically normal and unbiased (up to some technical conditions). This convergence

result allowed us to derive confidence intervals for the CVaR, enabling us to measure the level of

uncertainty in our estimator. We compared the magnitudes of the asymptotic variance of our CVaR

estimator with that of the sample average CVaR estimator, demonstrating a significant improvement

in asymptotic performance for some cases.

An algorithm for CVaR estimation was developed using automated threshold selection to put our

proposed estimator into practice. An empirical study showed that our CVaR estimator can lead to a

significant performance improvement in heavy-tailed distributions when compared to the sample

average estimator and the existing peaks-over-threshold estimator. We investigated the finite-sample

performance of the asymptotic confidence interval, and found that good coverage probability is

achieved in reasonable sample sizes. Finally, we demonstrated the use of the estimator within a

risk-averse multi-armed bandit problem, showing a significant performance gain and revealing the

weaknesses of the naive peak-over-threshold CVaR estimator.

While our evidence suggests that our CVaR estimator is most effective in the heavy-tailed domain,

it would also be instructive to perform the same theoretical analysis for light-tailed distributions in
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future work. Doing so would allow our CVaR estimator to be robust to situations where it is not

possible to make any assumptions about the underlying data distribution.
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Appendix A

Proofs

We first recall the stochastic order notation (e.g., Vaart (1998, Section 2.2)), which will be used

throughout subsequent proofs.

Definition A.0.1 (Stochastic o and O symbols). Let Xn, Rn denote sequences of random variables.

Then,

Xn = op(Rn) means ∀ε > 0, lim
n→∞

P(|Xn/Rn| > ε) = 0,

Xn = Op(Rn) means ∀ε > 0, ∃M,N > 0, ∀n > N, P(|Xn/Rn| > M) < ε.

The often used notationXn = op(1) means thatXn converges to zero in probability, andXn = Op(1)

means that Xn is bounded in probability.

A.1 Proof of Theorem 3.1

We first state the following lemma, which is equivalent to Beirlant et al. (2003, Proposition 1) with

different notation.

Lemma A.1.1. Suppose assumption 2.1 and assumption 2.2 hold. Then ∀ε > 0, ∃t0, ∀t, x such

that t ≥ t0 and tx ≥ t0,

(1− ε)e−ε| log x| ≤
[
U(tx)− U(t)

a(t)
− xξ − 1

ξ

]
/ [A (t) Iξ,ρ(x)] ≤ (1 + ε)eε| log x|, (23)

38



where

A(t) =
tU ′′(t)

U ′(t)
− ξ + 1 and Iξ,ρ(x) =



1
ρ

(
xξ+ρ−1
ξ+ρ −

xξ−1
ξ

)
, ρ < 0, ξ + ρ 6= 0,

1
ρ

(
log x− xξ−1

ξ

)
, ρ < 0, ξ + ρ = 0,

1
ξ

(
xξ log x− xξ−1

ξ

)
, ρ = 0.

Proof. In Beirlant et al. (2003), the statement is given as ∀ε > 0, ∃t0, ∀t, x such that t ≥ t0 and

t+ x ≥ t0,

(1− ε)e−ε|x| ≤
[
V (t+ x)− V (t)

V ′(t)
− eξx − 1

ξ

]
/
[
Ã
(
et
)
Ĩξ,ρ(x)

]
≤ (1 + ε)eε|x|, (24)

where

V (t) = (F̄ )−1
(
e−t
)
, Ã(t) =

V ′′(log t)

V ′(log t)
− ξ, Ĩξ,ρ(x) = Iξ,ρ(e

x).

Then, for t ≥ 1,

V (log t) = (F̄ )−1(1/t) = (1/F̄ )−1(t) = U(t),

and

V ′(log t) = tU ′(t) = a(t), V ′′(log t) = t2U ′′(t) + tU ′(t) ⇒ Ã(t) = A(t).

Since log is strictly increasing, eq. (24) holds with log t and log x where log t ≥ t0 and log tx ≥ t0.

Substituting expressions in eq. (24), we get eq. (23).

The following corollary will also be used in the main proof of this section.

Corollary A.1.1. An immediate consequence of lemma A.1.1 is for all x > 0,

lim
t→∞

U(tx)−U(t)
a(t) − xξ−1

ξ

A(t)
= Iξ,ρ(x). (25)

corollary A.1.1 can also be found in De Haan and Ferreira (2006, Theorem 2.3.12). Before

proving our main result of this section, we first recall the dominated convergence theorem which will

be needed later.
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Theorem A.1.1 (Dominated convergence theorem). Let {fn}∞n=1 be a sequence of real-valued

functions defined on S ⊂ R such that ∀x ∈ S, limn→∞ fn(x)→ f(x). If ∀x ∈ S, n,

|fn(x)| ≤ g(x)

for some integrable (i.e., the integral is finite over S) function g, then

lim
n→∞

∫
S
fn(x)dx =

∫
S

lim
n→∞

fn(x)dx =

∫
S
f(x)dx.

Proof of Theorem 3.1. We use corollary A.1.1 to derive a convergence result for the approxima-

tion error of the VaR, i.e, qα − qu,α. Then, using lemma A.1.1 and theorem A.1.1, we will be able to

derive the convergence of εu,α.

For any p ∈ (0, 1) and y ∈ domF such that F (y) = p,

(
1

F̄

)
(y) =

1

F̄ (y)
=

1

1− p
,

which implies that

U

(
1

1− p

)
=

(
1

F̄

)−1
(1/(1− p)) = y.

Hence,

U(1/(1− α)) = U(τuβ) = qα and U(τu) = u.

Then, from the definition of qu,α we get

qu,α = u+
σ(u)

ξ

(
βξ − 1

)
= U(τu) +

a(τu)

ξ
(βξ − 1).

Setting Du(β) = (qα − qu,α)/(a(τu)A(τu)), it then follows from the previous two equations and

corollary A.1.1 with t = τu, x = β that

Du(β) =
U(τuβ)− U(τu)− a(τu)

ξ (βξ − 1)

a(τu)A(τu)
=

U(τuβ)−U(τu)
a(τu)

− βξ−1
ξ

A(τu)
→ Iξ,ρ(β) as u→∞.

(26)
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From the definition of the GPD approximation error and the CVaR, for a fixed u, α,

εu,α
a(τu)A(τu)

=
cu,α − cα
a(τu)A(τu)

= − 1

1− α

∫ 1

α

qγ − qu,γ
a(τu)A(τu)

dγ = −β
∫ ∞
β

Du(x)

x2
dx, (27)

whereDu(x) = (qγ−qu,γ)/(a(τu)A(τu)) and we have used the substitution x = F̄ (u)/(1−γ). We

now apply the dominated convergence theorem to get the limiting behaviour of eq. (27) as u→∞.

From lemma A.1.1, ∀ε > 0, ∃u0 such that ∀u ≥ u0, x ∈ [β,∞),

∣∣∣∣Du(x)

x2

∣∣∣∣ ≤ (1 + ε)xε−2Iξ,ρ(x).

(1 + ε)xε−2Iξ,ρ(x) is integrable over [β,∞) as long as ε < 1− ξ. Since ξ < 1, let ε = (1− ξ)/2.

Then theorem A.1.1 can be applied to Du(x)/x2. Setting Kξ,ρ(β) = −β
∫∞
β [Iξ,ρ(x)/x2]dx, it

follows that

lim
u→∞

εu,α
a(τu)A(τu)

= lim
u→∞

−β
∫ ∞
β

Du(x)

x2
dx

= −β
∫ ∞
β

lim
u→∞

Du(x)

x2
dx

= −β
∫ ∞
β

Iξ,ρ(x)

x2
dx

= Kξ,ρ(β),

where the last integral can be computed explicitly to obtain eq. (9).

A.2 Proof of Theorem 4.2

First recall Slutsky’s lemma (see, for example, Vaart (1998, Lemma 2.8)).

Lemma A.2.1 (Slutsky). Let Xn, X, Yn be random vectors or variables. If Xn
d→ X and Yn

p→ c

for a constant c, then

(i) Xn + Yn
d→ X + c;

(ii) XnYn
d→ Xc;
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(iii) Xn/Yn
d→ X/c provided c 6= 0.

Proof of Theorem 4.2. First note that since Ân and b̂n are consistent, i.e.,

Ân
A(n/k)

p→ 1, b̂n
p→ bξ,ρ,

then by lemma A.2.1, the fact that σ̂(n)
MLE/a(n/k)

p→ 1 (which follows from theorem 4.0.1), and the

assumption of theorem 4.0.1 that limn→∞
√
kA(n/k)→ λ <∞,

√
kÂn

(
b̂(1)n ,

σ̂(n)
MLE

a(n/k)
b̂(2)n

)
=
√
kA(n/k)

Ân
A(n/k)

(
b̂(1)n ,

σ̂(n)
MLE

a(n/k)
b̂(2)n

)
p→ λ

(
b
(1)
ξ,ρ, b

(2)
ξ,ρ

)
= λbξ,ρ.

Then, by expanding terms and applying lemma A.2.1 once again,

√
k(ξ̂n − ξ, σ̂n/a(n/k)− 1) =

√
k(ξ̂(n)MLE − Ânb̂(1)n − ξ, σ̂(n)

MLE(1− Ânb̂(2)n )/a(n/k)− 1)

=
√
k(ξ̂(n)MLE − ξ, σ̂(n)

MLE/a(n/k)− 1)−
√
kÂn

(
b̂(1)n ,

σ̂(n)
MLE

a(n/k)
b̂(2)n

)
d→ N(λbξ,ρ,Σ)− λbξ,ρ

= N(0,Σ).

A.3 Proof of Theorem 4.3

We first give the delta method, which can be found in, for example, Rémillard (2016, Appendix

B.3.4.1).

Theorem A.3.1 (Delta method). Let θ̂n ∈ Rm be a random vector based on a sample of size

n. Suppose that h : Rm 7→ R is such that for i = 1, . . . ,m, ∂h
∂θi

exists and is continuous in a
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neighborhood of θ. If
√
n(θ̂n − θ)

d→ N(0, V ), then

√
n(h(θ̂n)− h(θ))

d→ N(0,∇h(θ)>V∇h(θ)),

where∇h(θ) is the gradient of h evaluated at θ.

Next, we prove some useful lemmas which will be used in the proof of theorem 4.0.3.

Lemma A.3.1. Let X1, . . . , Xn be an i.i.d. sample with common cdf F , and suppose k = kn →∞

and k/n→ 0 as n→∞. With u = X(n−k,n) and ξ ∈ R,

√
k
(

(kτu/n)ξ − 1
)

d→ N(0, ξ2).

Proof. Letting hξ(x) = x−ξ,

√
k
(

(kτu/n)ξ − 1
)

=
√
k
(

(nF̄ (u)/k)−ξ − 1
)

=
√
k
(
hξ(nF̄ (u)/k)− hξ(1)

)
.

From Beirlant et al. (2009, Theorem 3.1), we know that
√
k(nF̄ (u)/k − 1)

d→ N(0, 1). Hence, by

theorem A.3.1,

√
k
(

(kτu/n)ξ − 1
)

d→ N(0, h′ξ(1) · 1 · h′ξ(1)) = N(0, ξ2).

Corollary A.3.1. Let α = αn = 1 − (1/β)k/n where β > 1 is a constant not depending on n.

Then,
√
k(sξu,α − βξ)

d→ N(0, ξ2β2ξ).

Proof.

su,α = F̄ (u)
(n
k

) k

n(1− α)
= βnF̄ (u)/k =

βn

kτu
,

and so

√
k(sξu,α − βξ) = βξ

√
k((kτu/n)−ξ − 1) = −βξ(nF̄ (u)/k)ξ

√
k((kτu/n)ξ − 1). (28)
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Beirlant et al. (2009, Theorem 3.1) implies that nF̄ (u)/k
p→ 1. Hence, lemma A.3.1 with eq. (28)

implies
√
k(sξu,α − βξ)

d→ N(0, ξ2β2ξ).

Lemma A.3.2. Suppose that the assumptions of theorem 4.0.1 hold. Then as n→∞,

√
k

(
a(τu)

a(n/k)
− (kτu/n)ξ

)
= op(1). (29)

Proof. Under assumption 2.0.1 and assumption 2.0.2, the following uniform inequality from De Haan

and Ferreira (2006, Theorem 2.3.6) holds: for any ε, δ > 0 there exists t0 = t0(ε, δ) such that for all

t, tx ≥ t0, ∣∣∣∣∣∣
a(tx)
a(t) − x

ξ

A(t)
− xξ x

ρ − 1

ρ

∣∣∣∣∣∣ ≤ εxξ+ρ max
(
xδ, x−δ

)
. (30)

Hence, with t = n/k and x = kτu/n, for any ε, δ > 0 and with large enough n,

√
k

(
a(τu)

a(n/k)
− (kτu/n)ξ

)
=
√
kA(n/k)

 a(τu)
a(n/k) − (kτu/n)ξ

A(n/k)
− (kτu/n)ξ

(kτu/n)ρ − 1

ρ


+
√
kA(n/k)(kτu/n)ξ

(kτu/n)ρ − 1

ρ

≤
√
kA(n/k)

∣∣∣∣∣∣
a(τu)
a(n/k) − (kτu/n)ξ

A(n/k)
− (kτu/n)ξ

(kτu/n)ρ − 1

ρ

∣∣∣∣∣∣
+
√
kA(n/k)(kτu/n)ξ

(kτu/n)ρ − 1

ρ

≤
√
kA(n/k)ε(kτu/n)ξ+ρ max

(
(kτu/n)δ, (kτu/n)−δ

)
+
√
kA(n/k)(kτu/n)ξ

(kτu/n)ρ − 1

ρ
.

Since kτu/n
p→ 1 and

√
kA(n/k)→ λ <∞ as n→∞ (by the assumption of theorem 4.0.1), and

since ε can be made arbitrarily small as n → ∞, both terms tend to 0 in probability as n → ∞,

hence eq. (29) follows.

The following corollary is an immediate result by combining lemma A.3.1 and lemma A.3.2.
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Corollary A.3.2. Suppose that the assumptions of theorem 4.0.1 hold. Then,

√
k

(
a(τu)

a(n/k)
− 1

)
d→ N(0, ξ2).

Proof of Theorem 4.3. With α = 1− (1/β)k/n and u = X(n−k,n),

ĉ
(n)
α

a(n/k)
=
σ̂n/a(n/k)

1− ξ̂n

(
1 +

β ξ̂n − 1

ξ̂n

)
+

u

a(n/k)
= dβ(ξ̂n, σ̂n/a(n/k)) +

u

a(n/k)
,

and recalling that su,α = F̄ (u)/(1− α),

cu,α
a(n/k)

=
σ(u)/a(n/k)

1− ξ

(
1 +

sξu,α − 1

ξ

)
+

u

a(n/k)

=
1

1− ξ

(
1 +

sξu,α − 1

ξ

)
+
σ(u)/a(n/k)− 1

1− ξ

(
1 +

sξu,α − 1

ξ

)
+

u

a(n/k)
.

Then for the first term,

1

1− ξ

(
1 +

sξu,α − 1

ξ

)
=

1

1− ξ

(
1 +

sξu,α − 1 + βξ − βξ

ξ

)

=
1

1− ξ

(
1 +

βξ − 1

ξ
+
sξu,α − βξ

ξ

)

= dβ(ξ, 1) +
sξu,α − βξ

ξ(1− ξ)
.

Recalling that σ(u) = a(τu) and combining the previous expressions,

√
k

a(n/k)

(
ĉ(n)α − cu,α

)
=
√
k
(
dβ(ξ̂n, σ̂n/a(n/k))− dβ(ξ, 1)

)
−
√
k

(
a(τu)/a(n/k)− 1

1− ξ

(
1 +

sξu,α − 1

ξ

)
+
sξu,α − βξ

ξ(1− ξ)

)
= S −R, (31)

where we have denoted each term by S and R, respectively. By the delta method (theorem A.3.1),

S
d→ N(0,∇dβ(ξ, 1)>Σ∇dβ(ξ, 1)).
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For the second term, let

P =
√
k

(
a(τu)

a(n/k)
− (kτu/n)ξ

)
and Q =

√
k
(

(kτu/n)ξ − 1
)
.

Then
√
k(a(τu)/a(n/k)− 1) = P +Q and from eq. (28),

√
k(sξu,α − βξ) = −sξu,αQ. Hence,

R =
1

ξ(1− ξ)

[
(P +Q)(ξ + sξu,α − 1)− sξu,αQ

]
=

(ξ + sξu,α − 1)

ξ(1− ξ)
P − Q

ξ
.

corollary A.3.1 implies that sξu,α = βξ + op(1) as n → ∞ and from lemma A.3.2 we know that

P = op(1) as n→∞. By lemma A.3.1, Q d→ N(0, ξ2), and so R d→ N(0, 1). By the assumption

that (ξ̂n, σ̂n) and Q are asymptotically independent, R and S are as well. Hence, eq. (31) implies

√
k

a(n/k)

(
ĉ(n)α − cu,α

)
d→ N

(
0,∇dβ(ξ, 1)>Σ∇dβ(ξ, 1) + 1

)
= N(0, V ),

where

∇dβ(ξ, 1) =

[
∂dβ
∂x

(ξ, 1),
∂dβ
∂y

(ξ, 1)

]>
,

with
∂dβ
∂x

(ξ, 1) =
βξ(2ξ + ξ(1− ξ) log β − 1)

ξ2(1− ξ)2
+

1

ξ2
,

∂dβ
∂y

(ξ, 1) =
βξ + ξ − 1

ξ(1− ξ)
.

A.4 Proof of Theorem 5.1

We first prove the following lemma, which shows that when τu is replaced by n/k in theorem 3.0.1,

the asymptotic behaviour of εu,α is the same (in probability).

Lemma A.4.1. Suppose that the assumptions of theorem 4.1 hold. Let α = 1 − (1/β)k/n where

β > 1 is a constant not depending on n. Then,

εu,α
a(n/k)A(n/k)Kξ,ρ(β)

p→ 1.
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Proof. We follow the same line of reasoning as in the proof of theorem 3.0.1. First, we have

qu,α = u+
σ(u)

ξ
(sξu,α − 1)

= U(τu) +
a(τu)

ξ
(sξu,α − 1)

= U(n/k) +
a(n/k)

ξ
(βξ − 1) + U(τu)− U(n/k) +

1

ξ

[
a(τu)(sξu,α − 1)− a(n/k)(βξ − 1)

]
= U(n/k) +

a(n/k)

ξ
(βξ − 1) + U(τu)− U(n/k)

+
1

ξ

[
a(τu)(sξu,α − βξ) + (a(τu)− a(n/k))(βξ − 1)

]
.

Given that qα = U(1/(1− α)) = U(nβ/k),

qα − qu,α
a(n/k)A(n/k)

=

U(nβ/k)−U(n/k)
a(n/k) − βξ−1

ξ

A(n/k)

− U(τu)− U(n/k)

a(n/k)A(n/k)
− a(τu)(sξu,α − βξ)
ξa(n/k)A(n/k)

−
(
a(τu)

a(n/k)
− 1

)
βξ − 1

ξA(n/k)

= I − II − III − IV.

In what follows, terms I-IV will be analyzed separately then finally combined.

I: By corollary A.1.1, with t = n/k and x = β we know that term I tends to Iξ,ρ(β) as n→∞.

II: Under assumption 2.0.1 and assumption 2.0.2, the following uniform inequality from

De Haan and Ferreira (2006, Theorem 2.3.6) holds: for any ε, δ > 0 there exists t0 = t0(ε, δ) such

that for all t, tx ≥ t0,

∣∣∣∣∣∣
U(tx)−U(t)

a(t) − xξ−1
ξ

A(t)
− xξ+ρ − 1

ξ + ρ

∣∣∣∣∣∣ ≤ εxξ+ρ max
(
xδ, x−δ

)
. (32)

We can write II as

II =

U(τu)−U(n/k)
a(n/k) − (kτu/n)ξ−1

ξ

A(n/k)
+

(kτu/n)ξ − 1

ξA(n/k)
.

Hence, with t = n/k and x = kτu/n, the first term tends to 0 in probability using eq. (32) and

essentially the same arguments as in the proof of lemma A.3.2. So, by the assumption of theorem 4.0.1
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that
√
kA(n/k)→ λ <∞ as n→∞ and lemma A.3.1,

II =
Q

ξ
√
kA(n/k)

+ op(1) =
Z

λ
+ op(1), n→∞,

where Q =
√
k((kτu/n)ξ − 1) and Z denotes a standard normal random variable.

III: corollary A.3.2 implies that a(τu)/a(n/k)
p→ 1 and by eq. (28), sξu,α − βξ = −sξu,αQ/

√
k.

Corollary A.3.1 implies that sξu,α
p→ βξ, and so

III =
a(τu)(sξu,α − βξ)
ξa(n/k)A(n/k)

=
−sξu,αQ

ξ
√
kA(n/k)

(1 + op(1)) = −β
ξ

λ
Z + op(1), n→∞.

IV : With P =
√
k
(
a(τu)
a(n/k) − (kτu/n)ξ

)
and applying lemma A.3.2,

IV =

(
a(τu)

a(n/k)
− 1

)
βξ − 1

ξA(n/k)
= (P +Q)

βξ − 1

ξ
√
kA(n/k)

=
βξ − 1

λ
Z + op(1), n→∞.

Now combining all terms, as n→∞,

qα − qu,α
a(n/k)A(n/k)

= I − II − III − IV

= Iξ,ρ(β)− Z

λ
+
βξ

λ
Z − βξ − 1

λ
Z + op(1) = Iξ,ρ(β) + op(1), n→∞.

Hence, following the same reasoning as in the proof of theorem 3.0.1,

εu,α
a(n/k)A(n/k)

=
cu,α − cα

a(n/k)A(n/k)

= − 1

1− α

∫ 1

α

qγ − qu,γ
a(n/k)A(n/k)

dγ
p→ −β

∫ ∞
β

Iξ,ρ(x)

x2
dx = Kξ,ρ(β).

Proof of Theorem 5.1. First,

ĉ(n)ε,α − cα = ĉ(n)α − ε̂(n)α − cα = ĉ(n)α − cu,α − ε̂(n)α + cu,α − cα = ĉ(n)α − cu,α − ε̂(n)α + εu,α.
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Hence, √
k(ĉ

(n)
ε,α − cα)

σ̂n
=

√
k(ĉ

(n)
α − cu,α)

σ̂n
−
√
k(ε̂

(n)
α − εu,α)

σ̂n
. (33)

For the first term on the right-hand side of eq. (33),

√
k(ĉ

(n)
α − cu,α)

σ̂n
=
a(n/k)

σ̂n

√
k(ĉ

(n)
α − cu,α)

a(n/k)

d→ N(0, V ), (34)

which follows from theorem 4.0.3 and applying lemma A.2.1 with the fact that σ̂n/a(n/k)
p→ 1.

For the second term, first recall that

ε̂
(n)
α

a(n/k)A(n/k)
=

σ̂nÂnK̂n

a(n/k)A(n/k)

p→ Kξ,ρ(β),

which follows from lemma A.2.1 and the continuous mapping theorem. Then, under the assumption

that
√
kA(n/k)→ λ <∞ (n→∞), it follows from lemma A.2.1 and lemma A.4.1 that

√
k(ε̂

(n)
α − εu,α)

σ̂n
=
a(n/k)

√
kA(n/k)

σ̂n

(
ε̂
(n)
α − εu,α

a(n/k)A(n/k)

)

= λ(1 + op(1)) (Kξ,ρ(β)−Kξ,ρ(β) + op(1)) = op(1), n→∞. (35)

Combining the convergence in eq. (34) and eq. (35) with eq. (33), it follows that

√
k(ĉ

(n)
ε,α − cα)

σ̂n

d→ N(0, V ),

and hence, √
k(ĉ

(n)
ε,α − cα)

σ̂n
√
V̂n

=

√
k(ĉ

(n)
ε,α − cα)

σ̂n
√
V

√
V√
V̂n

d→ N(0, 1),

which follows from the fact that V̂n
p→ V (from the continuous mapping theorem) and lemma A.2.1.
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A.5 Consistency of A(n/k) Estimator

In Haouas et al. (2018), an estimator for A0(n/k) is given,1 where the function A0 satisfies the

second-order condition of De Haan and Ferreira (2006, Theorem 2.3.9), where for all x > 0,

lim
t→∞

U(tx)
U(t) − x

ξ

A0(t)
= xξ

xρ − 1

ρ
. (36)

Note that under assumption 2.0.1 and assumption 2.0.2, eq. (36) is satisfied. The relation between

the function A defined in eq. (7) and A0 is given in De Haan and Ferreira (2006, Table 3.1), where

A =
ξ + ρ

ξ
A0. (37)

We shall use this relation and an estimator for A0(n/k) to derive an estimator for A(n/k). To prove

consistency of the forthcoming estimator, we start with the following relation from Haouas et al.

(2018):

lim
t→∞

A0(t)

R(t)
= 1, (38)

where

R(t) =
(1− ρ2)(M (2)(t)− 2(M (1)(t))2)

2ρM (1)(t)
, M (j)(t) = t

∫ ∞
U(t)

logj (x/U(t)) dF (x).

This leads to an estimator for A0(n/k) Haouas et al. (2018, p. 7),

Â
(n)
0 =

(1− ρ̂2n)(M̂
(2)
n − 2(M̂

(1)
n )2)

2ρ̂nM̂
(1)
n

,

where M̂ (j)
n is an estimator for M (j)(n/k), given by

M̂ (j)
n =

1

k

k∑
i=1

[logX(n−i+1,k) − logX(n−k,n)]
j ,

1The results of Haouas et al. (2018) are presented in the truncated data setting, where for a sample (Xi, Yi), i =
1, . . . , n from a couple of independent random variables (X,Y ), Xi is only observed when Xi ≤ Yi. Their results can be
adapted to the non-truncation setting by assuming that P(X ≤ Y ) = 1.
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which is also given in section 6.2. Note that M̂ (1)
n is the well-known Hill estimator of ξ. M̂ (j)

n is

consistent for j = 1, 2 under the conditions of the following lemma.

Lemma A.5.1. Suppose that assumption 2.0.1 holds. If k = kn →∞, k/n→ 0 as n→∞, then

M̂
(j)
n

M (j)(n/k)

p→ 1, j = 1, 2.

Proof. From Haouas et al. (2018, equation 1.9),

M (1)(t)→ ξ and M (2)(t)→ 2ξ2, t→∞.

By De Haan and Ferreira (2006, Theorem 3.2.2), M̂ (1)
n

p→ ξ, and by De Haan and Ferreira (2006,

Equation 3.5.7), M̂ (2)
n

p→ 2ξ2. Hence, by lemma A.2.1,

M̂
(1)
n

M (1)(n/k)
→ 1 and

M̂
(2)
n

M (2)(n/k)
→ 1, n→∞.

From eq. (37), an estimator for A(n/k) is

Ân ,
(ξ̂(n)MLE + ρ̂n)(1− ρ̂n)2(M̂

(2)
n − 2(M̂

(1)
n )2)

2ξ̂(n)MLEρ̂nM̂
(1)
n

,

which is consistent under the conditions of the following lemma.

Lemma A.5.2. Suppose that the assumptions of theorem 4.0.1 hold. If ρ̂n
p→ ρ,

Ân
A(n/k)

p→ 1.

Proof. By theorem 4.1, ξ̂(n)MLE
p→ ξ, and so by eq. (38) and eq. (37),

Ân
A(n/k)

=
ξ̂(n)MLE + ρ̂n

ξ̂(n)MLE

· ξ

ξ + ρ
· Â

(n)
0

A0(n/k)
= (1 + op(1))

Â
(n)
0 R(n/k)

R(n/k)A0(n/k)
= (1 + op(1))

Â
(n)
0

R(n/k)
,
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as n→∞. By lemma A.5.1,

Â
(n)
0

R(n/k)
=
ρ(1− ρ̂2n)M (1)(n/k)

ρ̂n(1− ρ2)M̂ (1)
n

· M̂
(2)
n − 2(M̂

(1)
n )2

M (2)(n/k)− 2(M (1)(n/k))2

= (1 + op(1))
M̂

(2)
n − 2(M̂

(1)
n )2

M (2)(n/k)− 2(M (1)(n/k))2
,

as n→∞. From Gomes et al. (2002a, p. 389),

M̂
(2)
n − 2(M̂

(1)
n )2

A0(n/k)

p→ 2ξρ

(1− ρ)2
.

Hence,

M̂
(2)
n − 2(M̂

(1)
n )2

M (2)(n/k)− 2(M (1)(n/k))2
= (1 + op(1))

2ξρ

(1− ρ)2
· A0(n/k)

M (2)(n/k)− 2(M (1)(n/k))2
, n→∞.

Finally, combining eq. (38) with the fact that M (1)(n/k)→ ξ as n→∞,

A0(n/k)

M (2)(n/k)− 2(M (1)(n/k))2
= (1 + o(1))

(1− ρ)2

2ρM (1)(n/k)
= (1 + o(1))

(1− ρ)2

2ρξ
, n→∞,

and thus

M̂
(2)
n − 2(M̂

(1)
n )2

M (2)(n/k)− 2(M (1)(n/k))2
p→ 1 which implies

Ân
A(n/k)

p→ 1.
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Appendix B

Estimation Algorithms

B.1 Adaptive ρ Estimation

The ρ estimator given in section 6.1,

ρ̂n =
3(T

(τ)
n (m)− 1)

T
(τ)
n (m)− 3

,

requires the choice of two parameters: a sample fraction m, and tuning parameter τ . Depending on

the underlying distribution, the reliability of ρ̂n can be very sensitive to the choice m and τ . The

adaptive algorithm of (Caeiro and Gomes, 2015, Section 4.1) provides an automated way to select

these parameters. We present a slightly modified version of their algorithm in algorithm 2, which we

use in our experiments.

B.2 Automated Threshold Selection

The method of Bader et al. (2018) is as follows. Consider a fixed set of thresholds u1 < . . . < ul,

where for each ui we have ki excesses. The sequence of null hypotheses for each respective test i,

i = 1, . . . , l, is given by

H
(i)
0 : The distribution of the ki excesses above ui follows the GPD.
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Algorithm 2: Adaptive algorithm for ρ estimation (ADARHO)
Input: An i.i.d. sample X1, .., Xn, test parameters τ1, . . . τq, test sample fractions

m1, . . . ,mr, precision p.
Output: ρ̂n

1 for i = 1, . . . q do
2 for j = 1, . . . r do
3 Compute ρ̂(τi)n (mj) using eq. (21), rounded to p decimal places
4 end
5 Set m(τi)

min , m(τi)
max to be the minimum and maximum m values associated with the

longest run of consecutive equal ρ̂(τi)n values
6 Set l(τi) = m

(τi)
max −m(τi)

min + 1, the length of the largest run
7 end
8 Set k = arg maxi=1,...,q l

(τi)

9 Set ρ̂n to the median of ρ̂(τk)n (m
(τk)
min ), ρ̂

(τk)
n (m

(τk)
min + 1), . . . , ρ̂

(τk)
n (m

(τk)
max )

For each threshold ui, let θ̂i = (ξ̂
(n)
ui , σ̂

(n)
ui ) denote the MLEs computed from the ki excesses above

ui. The Anderson-Darling (AD) test statistic comparing the empirical threshold excesses distribution

with the GPD is then calculated. Let y(1) < ... < y(ki) denote the ordered threshold excesses for test

i, and apply the transformation z(j) = Gθ̂i(y(j)), j = 1, . . . ki, where G denotes the cdf of the GPD.

The AD statistic for test i is then

A2
i = −ki −

1

ki

ki∑
j=1

(2j − 1)
[
log
(
z(j)
)

+ log
(
1− z(ki+1−j)

)]
. (39)

Corresponding p-values for each test statistic can then be found by referring to a lookup table (e.g.,

Choulakian and Stephens (2001)) or computed on-the-fly. Using the p-values p1, . . . , pl calculated

for each test, the ForwardStop rule of G’Sell et al. (2016) is used to choose the threshold. This is

done by calculating

ŵF = max

{
w ∈ I

∣∣∣∣ − 1

w

w∑
i=1

log (1− pi) ≤ γ
}
, (40)

where γ is a chosen significance parameter and I ⊆ {1, . . . , l}, I 6= ∅. Under this rule, the threshold

uv is chosen, where v = min{w ∈ I |w > ŵF }. If no ŵF exists, then no rejection is made and

umin(I) is chosen. If ŵF = max(I), then umax(I) is chosen. The overall procedure is summarized in
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Algorithm 3.

Remark B.2.1. In the threshold selection procedure of Bader et al. (2018), ŵF is given with

I = {1, . . . , l}, but we make the modification that I is an arbitrary index set in view of CVaR

estimation: since cu,α tends to infinity when ξ tends to 1, in order to ensure reasonable estimates of

the CVaR we use a cutoff parameter ξmax < 1, where the MLE ξ̂(n)ui and corresponding threshold ui

are discarded if ξ̂(n)ui > ξmax.

Remark B.2.2. Instead of choosing the candidate thresholds u1, . . . , ul directly, it is usually more

convenient to choose threshold percentiles q1, . . . , ql and compute u values via the empirical quantile

function, i.e., ui = F̂−1n (qi).

B.3 Algorithm to Compute the Unbiased POT Estimator

This section provides the algorithm used to compute UPOT in its entirety, presented in algorithm 4,

which makes use of both algorithm 2 and algorithm 3. In our experiments, we set τ1 = −1.5, τ2 =

−1.25, . . . , τ13 = 1.5, m1 = 100,m2 = 200, . . . ,mr = n− 1, p = 1 in algorithm 2, and γ = 0.1,

q1 = 0.79, q2 = 0.80, . . . , q20 = 0.98, ξmax = 0.9 in algorithm 3. Assume these choices of values

in the algorithm 4.

Remark B.3.1. It may happen that Algorithm 4 fails if AUTOTHRESH returns NaN, in which case

no suitable estimates of ξ are found. This is an indication that the underlying data distribution does

not satisfy the condition ξ < 1 and the CVaR does not exist. To make Algorithm 4 robust, the sample

average estimate is used as a fallback when the latter occurs. We report the failure rate of UPOT

during experiments in table D.1.
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Algorithm 3: Automated threshold selection (AUTOTHRESH)
Input: An i.i.d. sample X1, .., Xn, significance parameter γ, threshold percentiles

0 < q1, . . . , ql < 1, cutoff ξmax < 1.
Output: (ξ̂(n)MLE, σ̂

(n)
MLE), u if I 6= ∅, otherwise return NaN

1 I ← ∅
2 for i = 1, . . . l do
3 Set ui = F̂−1n (qi)

4 Compute (ξ̂
(n)
ui , σ̂

(n)
ui ) from ki threshold excesses using maximum likelihood

5 if ξ̂(n)ui ≤ ξmax then
6 Compute A2

i using eq. (39)
7 Set pi to p-value for A2

i using lookup table
8 I ← I ∪ {i}
9 end

10 end
11 if I 6= ∅ then
12 Set W = {w ∈ I | − 1

w

∑w
i=1 log (1− pi) ≤ γ}

13 if W 6= ∅ then
14 Compute ŵF using eq. (40)
15 if ŵF = max(I) then
16 v ← max(I)
17 else
18 v ← min{w ∈ I |w > ŵF }
19 end
20 else
21 v ← min(I)
22 end
23 u← uv

24 (ξ̂(n)MLE, σ̂
(n)
MLE)← (ξ̂

(n)
uv , σ̂

(n)
uv )

25 end
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Algorithm 4: Unbiased peaks-over-threshold CVaR estimator (UPOT)
Input: An i.i.d. sample X1, .., Xn, confidence level α
Output: ĉ(n)ε,α

1 x← AUTOTHRESH(X1, .., Xn)
2 if x is not NaN then
3 (ξ̂(n)MLE, σ̂

(n)
MLE), u← x

4 ρ̂n ← ADARHO(X1, .., Xn)
5 Compute b̂n using eq. (13)
6 Compute Ân using eq. (22) and the k threshold excesses above u

7 (ξ̂n, σ̂n)← (ξ̂(n)MLE − Ânb̂
(1)
n , σ̂(n)

MLE(1− Ânb̂
(2)
n ))

8 Compute ε̂(n)α using eq. (17)

9 Compute ĉ(n)α using eq. (15)

10 ĉ
(n)
ε,α ← ĉ

(n)
α − ε̂(n)α

11 end
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Appendix C

Examples of Heavy-tailed Distributions

C.1 Burr

The Burr distribution with parameters c, d has cdf given by

Fc,d(x) = 1− (1 + xc)−d , c, d, x > 0.

The CVaR for the Burr distribution can be derived from its expression for the conditional moment

given in Kumar (2017, Section 2.2). If X ∼ Burr(c, d),

CVaRα(X) =
d[(1/qα)c]d−1/c

(1− α)(d− 1/c)
2F1

(
d− 1

c
, 1 + d, d− 1

c
+ 1;− 1

qα

)
, cd > 1, (41)

where 2F1 denotes the hypergeometric function and qα = F−1c,d (α). Values of ξ, ρ and functions a

and A are given by

ξ =
1

cd
, ρ = −1

d
, a(t) =

t1/d

cd

(
t1/d − 1

)1/c−1
, A(t) =

1− c
cd(t1/d − 1)

,

where a and A are defined for t ≥ 1.
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C.2 Fréchet

The Fréchet distribution with parameter γ has cdf given by

Fγ(x) = e−x
−γ
, γ, x > 0.

If X ∼ Fréchet(γ),

CVaRα(X) = (1− α)−1 [Γ (γ − 1/γ) − Γ (γ − 1/γ,− log(α))] , γ > 1, (42)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete gamma functions, respectively. Values

of ξ, ρ and functions a and A are given by

ξ =
1

γ
, ρ = −1, a(t) =

log
(

t
t−1

)−1− 1
γ

γ(t− 1)
, A(t) = −

1 + γ + γt log(1− 1
t )

γ(1− t) log(1− 1
t )
− 1

γ
,

where a and A are defined for t ≥ 1.

Asymptotic variance of SA estimator for Fréchet distribution

An expression for the asymptotic variance (AVAR) of the SA estimator is given in (Trindade et al.,

2007, Theorem 2). Let Z be a continuous random variable such that E[Z2] is finite. Then, for a

confidence level α,
√
n
(

CVaRα(Z)− ĈVaRn,α(Z)
)

d→ N(0, θ2),

where ĈVaRn,α(Z) is the SA estimator given in eq. (3) and

θ2 =
Var ([Z − qα]+)

(1− α)2
,

and [x]+ = max{0, x}. If Z ∼ Fréchet(γ), the condition that E[Z2] is finite is equivalent to γ > 2.

By the law of total expectation,

E[[Z− qα]+] = P(Z ≤ qα)E[0] +P(Z > qα)E[Z− qα|Z > qα] = (1− e−q
−γ
α )E[Z− qα|Z > qα].
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The distribution of the conditional random variable on the right hand side has the same form as the

excess distribution function, given in definition 2.0.6. Let

Fα,γ(z) = P(Z − qα ≤ z|Z > qα) =
Fγ(z + qα)− Fγ(qα)

1− Fγ(qα)
=
e−(z+qα)

−γ − e−q
−γ
α

1− e−q−γα
,

fα,γ(z) = F ′α,γ(z) =
γ(z + qα)−γ−1e−(z+qα)

−γ

1− e−q−γα
, z > 0.

Hence,

E[[Z−qα]+] =

∫ ∞
0

γ(z+qα)−γ−1ze−(z+qα)
−γ
dz =

∫ ∞
qα

t−1/γe−tdt = Γ(1−1/γ, qα), γ > 1,

where t = (z + qα)−γ and Γ(·, ·) denotes the upper incomplete gamma function. With a similar

calculation, the second moment is

E[([Z − qα]+)2] = Γ(1− 2/γ, qα), γ > 2.

Finally, we can compute the AVAR of the SA estimator for the Fréchet distribution, which is

θ2

n
=

E[([Z − qα]+)2]− E[[Z − qα]+]2

n(1− α)2
=

Γ(1− 2/γ, qα)− Γ(1− 1/γ, qα)2

n(1− α)2
, γ > 2.

C.3 Half-t

If X follows the t distribution with ν degrees of freedom, then |X| follows the half-t distribution,

which has cdf given by

Fν(x) = 2− It(x)
(
ν

2
,
1

2

)
, ν > 0, x ≥ 0,

where t(x) = ν
x2+ν

and It(a, b) is the regularized incomplete Beta function. The CVaR for the half-t

distribution can be derived from the expression for the CVaR of the t-distribution given in (Norton
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et al., 2019, Proposition 12). If X ∼ half-t(ν), then

CVaRα(X) = 2
ν + qα

(ν − 1)(1− α)
gν(qα), ν > 1,

where gν is the probability density function of the standardized t-distribution, and qα = T−1
(
α+1
2

)
where T−1 is the inverse of the cdf of standardized t-distribution. The half-t distribution is in

MDA(Hξ) with ξ = 1/ν, and has ρ = −2/ν (Caeiro and Gomes (2015, Remark 2.1)). It does

not seem possible to compute closed-form expressions for the functions a and A for the half-t

distribution.
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Appendix D

Numerical Results

In this section, values presented in plots from section 8.2 and section 8.3 are given in tabular form. In

table D.1, CVaRα denotes the exact CVaR value for α = 0.998. Given at a sample size n = 50000,

UPOT, BPOT, and SA denote the average estimated CVaR values across N = 1000 independent runs,

and TP denotes the average threshold percentile chosen by algorithm 3. FR denotes the failure rate,

the number of independent runs where algorithm 3 returned NaN, i.e., where no suitable estimate of

ξ could be obtained and no CVaR estimate could be produced by the POT methods. This value is

given at a sample size of n = 5000 since very few failures occurred beyond this sample size. CP

denotes the coverage probability achieved by our confidence interval at a sample size n = 50000.
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Table D.1: Data from CVaR estimation for all distributions used in experiments.

CVaRα UPOT BPOT SA TP FR CP

Burr(0.38, 4.0) 124.87 89.83 235.70 121.03 0.96 2 0.73
Burr(0.5, 3.0) 166.18 135.62 245.74 163.39 0.92 1 0.87
Burr(0.67, 2.25) 175.93 140.53 219.55 173.19 0.84 0 0.88
Burr(2.0, 0.75) 188.98 191.48 180.22 190.34 0.80 0 0.94
Burr(3.33, 0.45) 190.15 189.71 187.26 192.83 0.80 4 0.95
Fréchet(1.5) 188.96 188.94 182.11 181.76 0.80 4 0.89
Fréchet(1.75) 81.32 81.88 78.91 81.97 0.80 2 0.93
Fréchet(2.0) 44.71 44.76 43.25 44.52 0.80 1 0.94
Fréchet(2.25) 28.49 28.66 27.75 28.45 0.80 2 0.95
Fréchet(2.5) 20.02 20.07 19.49 19.94 0.80 1 0.95
half-t(1.5) 156.58 159.92 145.89 175.91 0.81 0 0.94
half-t(1.75) 74.52 75.40 69.49 74.02 0.82 2 0.94
half-t(2.0) 44.70 45.36 42.29 44.50 0.83 0 0.94
half-t(2.25) 30.74 31.27 29.26 30.68 0.84 1 0.95
half-t(2.5) 23.10 23.34 22.15 23.12 0.85 1 0.94

Table D.2: RMSE and bias of the three CVaR estimation methods at a sample size of n = 50000.

RMSE Bias

UPOT BPOT SA UPOT BPOT SA

Burr(0.38, 4.0) 48.56 134.15 64.04 -35.03 110.83 -3.84
Burr(0.5, 3.0) 47.71 121.18 124.71 -30.56 79.56 -2.78
Burr(0.67, 2.25) 48.88 58.97 81.34 -35.41 43.62 -2.75
Burr(2.0, 0.75) 17.48 22.27 88.48 2.50 -8.76 1.36
Burr(3.33, 0.45) 13.83 19.40 128.88 -0.44 -2.89 2.67
Fréchet(1.5) 19.47 21.31 69.35 -0.02 -6.85 -7.19
Fréchet(1.75) 6.10 7.07 24.25 0.56 -2.41 0.65
Fréchet(2.0) 2.71 3.36 7.45 0.05 -1.47 -0.20
Fréchet(2.25) 1.50 1.90 3.21 0.16 -0.75 -0.05
Fréchet(2.5) 0.92 1.18 1.69 0.05 -0.52 -0.08
half-t(1.5) 16.78 22.68 765.05 3.34 -10.69 19.33
half-t(1.75) 6.11 8.72 16.40 0.89 -5.03 -0.50
half-t(2.0) 3.58 4.92 7.62 0.66 -2.41 -0.20
half-t(2.25) 2.07 2.78 3.49 0.53 -1.48 -0.06
half-t(2.5) 1.44 1.88 2.06 0.23 -0.95 0.02
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