
Tracking the Evolution of Static Code Warnings: the
State-of-the-Art and a Better Approach

Junjie Li

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

May 2021

© Junjie Li, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Junjie Li

Entitled: Tracking the Evolution of Static Code Warnings: the State-of-the-Art

and a Better Approach

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Juergen Rilling

External Examiner
Dr. Weiyi Shang

Examiner
Dr. Juergen Rilling

Supervisor
Dr. Jinqiu Yang

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

13 May 2021
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Tracking the Evolution of Static Code Warnings: the State-of-the-Art and a Better
Approach

Junjie Li

Static bug detection tools help developers detect problems in the code, including bad program-

ming practices and potential defects. However, it is known that static bug detectors remain underuti-

lized due to various reasons. Recent advances to incorporate static bug detectors in modern software

development workflows, such as in code review and continuous integration, are shown capable of

better motivating developers to fix the reported warnings on the fly. A proper mechanism to track

the evolution of the reported warnings can better support such integration. Moreover, tracking the

static code warnings will benefit many downstream software engineering tasks, such as learning the

fix patterns for automated program repair and learning which warnings are of more interest, so they

can be prioritized automatically. Hence, precisely tracking the warnings by static bug detectors is

critical to improve the utilization of static bug detectors further.

In this thesis, we study the effectiveness of the state-of-the-art (SOA) solution in tracking the

warnings by static bug detectors and propose a better solution based on our analysis of the insuf-

ficiencies of the SOA solution. In particular, we examined over 2000 commits in four large-scale

open-source systems (i.e., JClouds, Kafka, Spring-boot, and Guava) and crafted a dataset of 3,452

static code warnings by two static bug detectors (i.e., Spotbugs and PMD). We manually uncover

the ground-truth evolution status of the static warnings: persistent, resolved, or newly-introduced.

Moreover, upon manual analysis, we identified the main reasons behind the insufficiencies of the

SOA solution. Finally, we propose a better approach to improve the tracking of static warnings

over software development history. Our evaluation shows that our proposed approach provides a

significant improvement in terms of the precision of the tracking, i.e., from 66.9% to 90.0%.

iii

Acknowledgments

Foremost, I would like to express my greatest gratitude to my supervisor Dr. Jinqiu Yang.

Her guidance, knowledge, and mentorship helped me to overcome research obstacles, and more

importantly, to grow to become a better person. Without her supervision and support, nothing of

this would have been possible.

Apart from my supervisor, I would like to sincerely thank my thesis examiners, Dr. Shang and

Dr. Rilling, for their extremely valuable and constructive suggestions. Furthermore, I appreciate Dr.

Peter Chen for his valuable guidance in my research.

I am very lucky to have lively communications and fruitful discussions with all the members of

SE group. I learned so much from all of you, it is my honor and pleasure to work with you all. My

special thanks go to my friends, Bo Yang, Zehao Wang, and Triet Pham who were always there for

me, in both fun and difficult times.

Nothing can express my gratitude to my parents, for their love and constant encouragement, and

unconditional support to keep me going.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Thesis Organization . 4

2 Background 5

2.1 The Metadata of Static Code Warnings . 5

2.2 Tracking Static Code Warnings . 6

2.3 The State-of-the-Art (SOA) Solution . 8

2.3.1 Exact Matching . 9

2.3.2 Location-based Matching . 9

2.3.3 Snippet-based Matching . 10

2.3.4 Hash-based Matching . 10

2.3.5 How One Incorrect Mapping May Impact All 11

3 Examining the performance of the State-of-the-Art Solution in Tracking the Evolution

of Static Code Warnings 14

3.1 Studied Subjects . 15

3.1.1 Static Bug Detectors . 15

3.1.2 Analyzed Open-Source Systems . 15

3.2 Collecting the Dataset Through Manual Labelling 16

v

3.3 Investigating the Inaccuracies of the SOA approach 19

3.3.1 Class Relocating or Renaming . 21

3.3.2 Method Renaming . 21

3.3.3 Attribute and Variable Renaming . 22

3.3.4 Code Shifting . 23

3.3.5 Volatile Class/Method/Variable Names 23

3.3.6 Drastic and Non-refactoring Code Changes 24

3.3.7 Discussions on Composite False Positives 25

3.4 A Summary of Our Investigation . 25

4 A Better Approach and Its Comparison with the SOA Approach 26

4.1 Improvement 1 - Including Refactoring . 26

4.2 Improvement 2 - Decide Matched Pairs Using Hungarian Algorithm 27

4.3 Improvement 3 - Working with Volatile Identifiers 29

4.4 Evaluation . 30

5 Threats to Validity 35

5.1 External Threats . 35

5.2 Internal Threats . 35

6 Related Work 37

6.1 Tracking the Evolution of Code Issues . 37

6.2 Empirical Studies on Static Bug Detectors . 38

6.3 Utilizing the Tracking of Static Code Warnings 39

7 Conclusions and Future Work 41

7.1 A Summary of the Thesis . 41

7.2 Future Work . 42

7.2.1 Mining the Anti-patterns From Static Code Warnings 42

7.2.2 Exploring the Relationship Between Code Refactoring and Static Warnings 42

vi

Bibliography 42

vii

List of Figures

Figure 2.1 An example of metadata of one static code warning that is detected by Spot-

Bug. Note that the metadata information has been simplified to only show the in-

formation used by the SOA tracking approach (Avgustinov et al., 2015). 6

Figure 2.2 An example of matching the warnings between two consecutive revisions. . 7

Figure 2.3 An example commit to show how location-based matching works. 10

Figure 2.4 Examples to demonstrate how incorrect mappings may impact all. 12

Figure 3.1 An overview of our study. 15

Figure 3.2 An example of the false positives due to class renaming. 19

Figure 3.3 An example of false positives due to method renaming. 21

Figure 3.4 An example of the false positives due to attribute renaming. 22

Figure 3.5 An example of the false positives due to code shifting. 22

Figure 3.6 An example of Scala code that has implicit code changes. The metadata

of the relevant warning from the pre- and post-commit revisions are shown in Fig-

ure 3.7 and Figure 3.8. 23

Figure 3.7 The warning information from pre-commit revision. 23

Figure 3.8 The warning information from post-commit revision. 24

Figure 3.9 An example of false positives due to a change of method name and drastic

code changes. 25

Figure 4.1 A simple example of Hungarian matrix. 29

Figure 4.2 The box plot of time execution for both approaches. 33

viii

List of Tables

Table 3.1 The studied systems and development periods. The release marks the end date

of our studied development period, and we include 18 months development history

before the specified release. 16

Table 3.2 A summary on how we collect the static code warnings based on the results

of the SOA approach. 18

Table 3.3 A summary of the 1,715 static code warnings in the dataset based on manually-

labeled evolution statuses. The dataset with ground-truth labels is used to evaluate

the SOA approach and ours. 19

Table 3.4 The performance of the SOA approach. 19

Table 3.5 Six causes of False Positives. 20

Table 4.1 Refactoring types included in our proposed approach. 28

Table 4.2 A summary on Guava and Spring-boot based on the results of the SOA approach. 30

Table 4.3 The labeled results of the two projects. 31

Table 4.4 The performance comparison between the SOA approach and our approach.

Note that FP is short for false positive. A lower FP ratio is desired. 31

Table 4.5 The evaluation of execution time for both approaches. 32

Table 4.6 Six causes of False Positives after using our approach in Kafka and JClouds. 33

Table 4.7 The sampled commits for the independent evaluation. 34

Table 4.8 The performance of our approach in the independent evaluation. 34

ix

Chapter 1

Introduction

Static bug detection tools have been widely applied in practice to detect potential defects in

software. To name a few, both Google and Facebook adopt static bug detectors in their large code-

bases on a daily basis (Sadowski, Aftandilian, Eagle, Miller-Cushon, & Jaspan, 2018). However,

static bug detectors are known to be underutilized due to various reasons. First, static bug detectors

detect an overwhelming number of warnings, which may be far beyond what resources are allowed

to resolve. For example, Spotbugs (Spotbugs latest version, 2019), i.e., the spiritual successor of

Findbugs, detects thousands of or more static code warnings in one version of JClouds. Second,

static bug detectors are known to detect many false positive warnings. The existence of a large

number of false positives discourages developers from actively working on resolving the reported

warnings. As a result, a significant portion of static code warnings remain unresolved by developers

and can hinder software quality.

There have been efforts from a variety of directions to improve the utilization of static bug de-

tection tools, e.g., prioritizing and recommending actionable static warnings and identifying false

positive warnings. For example, researchers have been working on techniques to identify the ac-

tionable warnings and reduce the false static code warnings, such as recommending actionable

warnings by learning from past development history (Hanam, Tan, Holmes, & Lam, 2014; S. Kim

& Ernst, 2007). On the other hand, recent studies show that by better integrating static bug detec-

tors in software development workflows, such as code review and continuous integration, develop-

ers demonstrated a higher response rate in resolving the reported static warnings (Sadowski et al.,

1

2018; Sadowski, van Gogh, Jaspan, Soederberg, & Winter, 2015). Developers are presented with

much fewer warnings, which are introduced by a new commit, and encounter fewer context switch

problems in fixing the warnings.

Making static bug detectors more frequent in workflows such as code review requires proper

management of the evolving static code warnings. Such proper management is not straightforward.

One way is to adapt differential static analysis to only analyze modified code files, yet to achieve

satisfactory performance. However, it requires algorithm innovation and non-trivial engineering

effort for every static bug-finder. Alternatively, we advocate for management that tracks the evo-

lution of static code warnings in the commit history, i.e., diff the static code warnings from two

consecutive software revisions. Tracking the evolution of static code warnings reveals that given a

commit, which warnings remain unresolved by developers, which warnings are resolved, and which

warnings are newly-introduced in the commit.

More importantly, effective management of static code warnings will benefit many downstream

software engineering tasks. To name a few, researchers have been crawling past fixes of static code

warnings to provide fix suggestions for new warnings (Bavishi, Yoshida, & Prasad, 2019; Liu, Kim,

Bissyande, Yoo, & Le Traon, 2018), which has been shown can further improve the utilization of

static bug detectors. Furthermore, such concluded fix patterns are shown to be effective in automated

program repair techniques (Liu, Koyuncu, Kim, & Bissyandé, 2019).

Till this end, there has been little effort to systematically review existing solutions to track the

evolution of static code warnings and accordingly to propose better solutions. Prior studies rely

on simple heuristics to track the static code warnings (Boogerd & Moonen, 2009; S. Kim & Ernst,

2007), i.e., two warnings are identical if they are of the same warning type, in the same file, etc.

Avgustinov et al. (Avgustinov et al., 2015) present an algorithm that combines various types of in-

formation of one warning, compares two warnings in layers and eventually establishes mappings

between two sets of warnings from two software revisions. This algorithm is adopted by recent au-

tomated program techniques, and in this thesis, we refer to it as the state-of-the-art (SOA) solution.

For example, Liu et al. (Liu et al., 2018) adapt the SOA solution to identify warning-fixing commits

in software repositories for automated program repair. However, it remains unknown how accurate

the SOA solution is in tracking the static code warnings. An unacceptable performance of the SOA

2

solution in tracking static code warnings has subsequent negative impacts on the downstream tasks.

Hence, to foster future research in static code warnings, in this thesis, we examine the perfor-

mance of the SOA solution in tracking static code warnings and propose a better approach after

analyzing the insufficiencies of the SOA solution. We answer the following research questions:

RQ1 Is the SOA approach good at tracking the evolution of static code warnings?

RQ2 What are the limitations of the SOA approach?

RQ3 Can our proposed approach perform better than the SOA approach?

RQ4 How accurate is our proposed approach for tracking the evolution of static code warnings?

In particular, our study includes two static bug detectors (i.e., PMD and Spotbugs) and four

large-scale open-source software systems (i.e., JClouds, Kafka, Spring-boot, Guava) for manual

analysis.

To answer RQ1 and RQ2, we crafted a dataset of static code warning and their evolution. In

particular, we took statistically significant samples of the reported static code warnings from the

entire development history of JClouds and Kafka, and performed manual analysis to label whether

each sampled static code warning is persistent, resolved, or newly-introduced between two consec-

utive revisions. Eventually we crafted a dataset of 1,715 static code warnings and their evolution

status for both manual analysis and future evaluation.

After analyzing the limitations of the SOA solution (RQ2), we propose a better approach by

addressing the uncovered limitations to answer RQ3. Our proposed approach leverages refactoring

information and a better matching strategy: Hungarian algorithm (Kuhn, 1955), a classic algo-

rithm to solve the assignment problem in bipartite graphs to reduce the impact from the order of the

SOA approaches.

In RQ4, in addition to JClouds and Kafka, we also select two other open-source software sys-

tems (i.e., Spring-boot and Guava), which provides a systematic comparative evaluation between

our approach and the SOA approach. There are 3,452 labeled warnings we collect from four soft-

ware systems. Our evaluation based on this dataset shows that our approach provides a significant

improvement over the SOA solution, i.e., from 66.9% to 90.0% in terms of the tracking precision.

We also take an independent evaluation on the performance of our approach by taking a statisti-

cally significant sample of all commits from the four software systems with each static bug detector,

3

and determine the resolved and newly-introduced warnings. Finally, the tracking precision of our

approach is calculated, and our approach achieves 91.8% accuracy.

In summary, this thesis makes the following contributions:

• We collected and manually labeled a dataset of 1,715 static code warnings and uncovered the

ground-truth evolution status between two consecutive commits. The static code warnings

are detected by two mature and widely used static bug detectors (PMD and Spotbugs) on two

real-world open-source software projects (JClouds and Kafka).

• We examined the state-of-the-art solution in tracking the evolution of static code warnings in

terms of tracking accuracy based on the collected dataset. Our investigation shows that the

SOA solution achieves inadequate results.

• We performed a manual analysis to uncover the inaccuracies and the reasons behind the low

accuracy of the SOA solution. Our findings offer empirical evidence to further improve the

tracking of static code warnings in the development history. We also select two other top-

rated projects (Guava and Spring-boot) with 1,737 static code warnings to evaluate between

both approaches.

• We proposed a better approach to track the static code warnings. The evaluation based on

the crafted dataset shows that our approach can significantly improve tracking precision. The

dataset is available online (The shared dataset, 2020).

1.1 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the background, i.e., the

relevant knowledge on static code warnings and how the SOA approach works to track the static

code warnings in development history. Chapter 3 illustrates the process and results of our manual

analysis to understand the problems of the SOA solution, including how the dataset is crafted and

what are the insufficiencies of the SOA solution. Chapter 4 shows our proposed approach and its

evaluation. Chapter 5 describes the threats to validity. Chapter 6 lists the related work, and Chapter 7

concludes the thesis and proposes future works.

4

Chapter 2

Background

This chapter will introduce the background information on the basics of static code warnings and

how the state-of-the-art (SOA) solution proposed by Avgustinov et al. works to track the evolution

of static code warnings in software development history.

2.1 The Metadata of Static Code Warnings

Static bug detectors often represent detected static code warnings using metadata. Examples of

such metadata include file path (i.e., the path of the source-code file where one warning is detected)

and types of static code warnings. Previous studies (Avgustinov et al., 2015) (Liu et al., 2018) utilize

the metadata information that static bug detectors provide for each warning to track the evolution of

the detected static code warnings.

Different static bug detectors are different in many aspects, such as the warning types and source

code representations (e.g., binary or source-code). Despite the differences, the metadata that are

generated by static bug detectors include more or less similar information. Such metadata can

distinguish one static code warning from another in the same revision (e.g., warning type and code

location). When the metadata of the same static code warning across two revisions (i.e., before

and after one commit) is modified due to the introduced code changes by the commit, tracking the

evolution of this static code warning may become challenging.

Figure 2.1 provides an example of static code warning in JClouds that is detected by Spotbugs.

5

We show the example of metadata in XML format. The metadata of the static code warning includes

the following detailed information: the type of the static code warning (i.e., SE BAD FIELD), and

the problematic code region of this warning, which is represented by project name, class name,

method name, field name, and the code range that is defined by a start line and an end line.

1 <WarningInstance>
2 <WarningType>SE_BAD_FIELD</WarningType>
3 <Project>jclouds</Project>
4 <Class>ContextBuilderTest</Class>
5 <Method></Method>
6 <Field></Field>
7 <FilePath>org/jclouds/ContextBuilder.java</FilePath>
8 <StartLine>70</StartLine>
9 <EndLine>75</EndLine>

10 </WarningInstance>

Figure 2.1: An example of metadata of one static code warning that is detected by SpotBug. Note
that the metadata information has been simplified to only show the information used by the SOA
tracking approach (Avgustinov et al., 2015).

2.2 Tracking Static Code Warnings

Static bug detectors, when being run in batch mode, report a list of static code warnings given

one version of a software system (i.e., one snapshot). Tracking the evolution of static code warnings

in development history is based on comparing the generated reports from every two consecutive

revisions. Figure 2.2 shows a simple example of how the tracking works between two revisions.

Given one commit, the left block represents all the warnings from the pre-commit revision and the

right one is the post-commit revision. Between the two revisions, some static code warnings persist,

i.e., w1, w2, w3 and w4. Note that w1 is in different shapes in the two revisions as the representation

of w1 may have different values due to code changes. One warning is resolved (i.e., w5) and one

warning is newly-introduced (i.e., w6) by the commit.

A proper tracking mechanism needs to precisely label each static code warning as either

persistent, resolved or newly-introduced. In particular, it is required that all the mappings are

correctly established despite that code changes may modify the metadata information of the same

warnings across versions. For example, the solid lines in the figure describe one possible matching

outcome, which is not ideal as the w2 warnings of the two revisions are not correctly mapped, and

w3 of the post-commit revision is incorrectly mapped with w4 of the pre-commit revision. After the

6

mappings are established, a tracking solution will determine the label of each static code warning,

i.e., both w2 and w4 are decided as resolved while both of them actually persist between the two

revisions. Both are false positives of the tracking solution. Differently, w5 and w6 are true positives

of the tracking solution as their labels are correct, i.e., w5 is resolved and w6 is newly-introduced.

Interestingly, although w4 is also incorrectly matched, the label of w4 of the pre-commit revision,

which is resolved, is indeed correct. However, the labels of w3 of the pre-commit revision and w4

of the post-commit revision are incorrect.

Post-Commit Revision

w1

w2

w3

w4

w5

Matched warning

Unmatched warning

Mismatched warning

Unmatched warning

Unmatched warning

Pre-Commit Revision

Matched warning

Unmatched warning

Mismatched warning

Unmatched warning

Unmatched warning

w6

w4

w3

w2

w1

Figure 2.2: An example of matching the warnings between two consecutive revisions.

There exist various software maintenance efforts to make the tracking problem more compli-

cated than one may imagine. For example, code changes that are irrelevant to efforts of resolving

static code warnings, such as a drastic refactoring, may modify the metadata information of many

7

static code warnings so they cannot be mapped while they should. On the contrary, a warning that

is resolved may share similar information (due to code changes) with one other irrelevant warning,

which causes an incorrect mapping. In short, a fine line needs to be drawn to precisely distinguish

the three evolution types.

Based on the status of the static code warnings (i.e., persistent, resolved, and newly-introduced),

we define the true positive, false positive, true negative, and false negative of tracking static warnings

in our study.

• True positive (TP): A static warning is identified as a resolved/newly-introduced warning by

a tracking approach correctly.

• False positive (FP): A static warning is identified as a resolved/newly-introduced warning by

a tracking approach incorrectly.

• True negative (TN): A static warning is identified as a persistent warning (i.e., neither re-

solved nor newly-introduced) by a tracking approach correctly.

• False negative (FN): A static warning is identified as a persistent warning (i.e., neither re-

solved nor newly-introduced) by a tracking approach incorrectly.

2.3 The State-of-the-Art (SOA) Solution

Avgustinov et al. (Avgustinov et al., 2015) proposed a multi-stage matching algorithm that can

properly track the evolution of static code warnings under certain complicated software evolution,

which we refer to as the state-of-the-art solution (SOA for short). The overall structure of the SOA

solution is based on a pair-wise comparison between each warning in the pre-commit revision and

each warning in the post-commit revision. Once a mapping is established, the two warnings from

the two revisions are excluded for further comparisons. In particular, for each pair-wise matching

process, i.e., between one warning from the pre-commit revision and one from the post-commit

revision, four different matching strategies are placed in order, namely exact matching, location-

based matching, snippet-based matching, and hash-based matching.

8

Algorithm 1 illustrates how the SOA solution works to establish mappings between the list of

warnings of two consecutive revisions. Exact matching requires every piece of metadata informa-

tion to be matched and therefore is the most strict matching strategy among the four. When exact

matching fails, the SOA solution will then utilize the less strict matching strategy, i.e., location-

based matching, which employes the diff algorithm to tolerate certain line shifts. If location-based

matching fails, the SOA solution will continue to use snippet-based matching. When a class file

was renamed or moved, the above matching strategies cannot handle that. Thus, the SOA solution

will utilize hash-based matching.

At the end, when all the possible mappings are established, the unmatched warnings in the pre-

commit revision are determined as resolved, and the ones in the post-commit revision are considered

as newly-introduced.

2.3.1 Exact Matching

Exact matching establishes the mappings for the warnings that are totally unaffected by the

commit. For the two warnings, it is required that they have exactly the same source location (i.e.,

defined by the start and end line of the warning), warning type, and code information (i.e., class

name, method name, and variable name).

2.3.2 Location-based Matching

A commit may modify the information of certain static code warnings. Therefore when the exact

matching fails, the following matching strategy, location-based matching, is used to tolerate the

impacts to some extent. Location-based matching utilizes the diff algorithms (Hunt & Szymanski,

1977) (Myers, 1986) to derive source position mappings for each modified file. When a (potential)

matching pair of warnings is in the diff output, location-based matching compares the offset of the

corresponding warnings in the mappings. This matching requires the same warning metadata of

code information (i.e., class name, method name, and variable name), but does not require the same

source location(i.e., the start and end line of the warning). If the difference of offsets is equal to or

lower than 3 (i.e., a fixed threshold), the location-based matching will decide the two warnings as a

matching pair.

9

@@ -84,3 +84,5 @@
84 84 public class MyClass{

85 + // add code
86 + //

85 87 private String str = null;
86 88 }

Figure 2.3: An example commit to show how location-based matching works.

As an example, Figure 2.3 shows a diff mapping. The numbers on the left hand are the line

numbers in the pre-commit revision. The numbers on the right hand are the line numbers in the

post-commit revision. There is a warning reported in the pre-commit revision (line 85) and line

87 in the post-commit revision. Due to code adding, the source location (i.e., part of the warning

metadata) has been changed. Location-based matching firstly computes the offsets between the

source location and the diff mappings, respectively. The offset between the first line of the diff

mapping (line 84) and the warning (line 85) is 1 for the pre-commit revision and 3 (line 87 and line

84) for the post-commit revision. Then, the difference between the two offsets is calculated. In

this example, the difference is smaller than 3, so that location-based matching will match the two

warnings.

2.3.3 Snippet-based Matching

When code location changes significantly, the location-based matching approach may fail to

identify persistent warnings across revisions. Snippet-based matching is used to address this prob-

lem. Given the source location defined by a start line and an end line, code snippets in between

are extracted from both revisions. By performing the string matching on the two code snippets,

snippet-based matching will decide a mapping if they are identical. Same as location-based match-

ing, snippet-based matching requires the same warning metadata of code information (i.e., class

name, method name, and variable name).

2.3.4 Hash-based Matching

It is possible that a file is moved to a new location or renamed (i.e., class and file path are

modified). Snippet-based matching cannot handle such cases well since the class name are required

10

to be identical to perform snippet-based matching. For such cases, a hash-based matching approach

can be helpful. This matching approach tries to match warnings based on the similarity of their

surrounding code. It first splits the text of warning location into several tokens. Two hash values

are calculated h(WtopN) and h(Wlatter). WtopN is n tokens from the first one. Wlatter is tokens

from the n + 1 th token to the last token. n is a fixed threshold. If two warnings(i.e., one is from

pre-commit revision and another one is from post-commit revision) whose h(W post
topN) = h(W pre

topN)

or h(W post
latter) = h(W pre

latter), they will be considered as a matched pair.

2.3.5 How One Incorrect Mapping May Impact All

Tracking the warnings across two consecutive revisions should be treated as one integral issue

because each incorrect mapping not only impacts the two warnings involved but also impacts other

warnings. For example, in the imperfect mappings in Figure 2.2, w3 on the left is incorrectly

mapped with w4 on the right. This incorrect mapping not only impacts these two warnings, but also

w4 on the left and w3 on the right. Now w4 on the left is decided as resolved (incorrect), and w3

on the right is considered as newly-introduced (also incorrect). Interestingly, not all the incorrect

mappings must introduce false positives. Figure 2.4 shows an example in this category. On the left

figure, we can see two incorrect mappings: w1 to w2 and w2 to w1. Although both mappings are

incorrect, there is no false positive generated since these four warnings form a closure that therefore

does not impact the mappings of other warnings. On the contrary, Figure 2.4(b) is a worse case: two

false positives (w1 on the left and w2 on the right) are generated). Our goal is to reduce the second

type of mappings through our analysis.

11

Post-Commit Revision

w1

w2

Pre-Commit Revision

w1

w2

Post-Commit Revision

w1

w2

Pre-Commit Revision

w1

w2

a b

Figure 2.4: Examples to demonstrate how incorrect mappings may impact all.

12

Algorithm 1: The basic algorithm of the SOA approach.
Input: The set of warnings from the pre-commit revision, Wp; The set of warnings from

the post-commit revision, Wc;
Output: The set of resolved warings, Wresolved; The set of newly-introduced warings,

Wnewly−introduced; The set of matched pairs, MatchedPairs;
1 for each wi in Wp do
2 for each wj in Wc do
3 if source file of wi is not a changed file then
4 take ExactMatching(wi, wj);

5 else
6 take ExactMatching(wi, wj);
7 if wi is not be matched up then
8 take LocationMatching(wi, wj);

9 else
10 make a MatchedPair(wi, wj);
11 remove wj from Wc ;
12 break;

13 if wi is not be matched up then
14 take SnippetMatching(wi, wj);

15 else
16 make a MatchedPair(wi, wj);
17 remove wj from Wc;
18 break ;

19 if wi is not be matched up then
20 take HashMatching(wi, wj);

21 else
22 make a MatchedPair(wi, wj);
23 remove wj from Wc;
24 break;

25 if wi is not be matched up then
26 add wi into Wresolved;

27 Wnewly−introduced = Wc −MatchedPairs;

13

Chapter 3

Examining the performance of the

State-of-the-Art Solution in Tracking the

Evolution of Static Code Warnings

In this chapter, we describe how we investigated the performance of the SOA approach in terms

of the tracking accuracy, and answer RQ1 in Chapter 3.3 and RQ2 in Chapter 3.4. In particular,

we first crafted a dataset of static code warnings and their evolution status (i.e., persistent, resolved,

or newly-introduced) between two consecutive revisions. To craft this dataset, we re-implemented

the SOA approach, applied it to the development history of the studied open-source systems, and

performed a manual analysis to determine the evolution status for each sampled static code warning.

Then we manually analyzed whether the SOA approach correctly tracked each sampled static code

warning and categorized the reasons behind any failures. Figure 3.1 shows the overview of our

study.

14

Figure 3.1: An overview of our study.

3.1 Studied Subjects

3.1.1 Static Bug Detectors

In this thesis, we include two static bug detectors, i.e., PMD and Spotbugs, both of which are

widely used in prior studies and adopted in practice. In particular, Spotbugs, a spiritual successor of

the well-known Findbugs, can detect more than 400 bug patterns in Java programs through bytecode

analysis. Differently, PMD supports multiple languages and is known to be easily integrated into

the build process. We use the two static bug detectors with their default configuration.

3.1.2 Analyzed Open-Source Systems

Our study includes four Java open-source systems, JClouds, Kafka, Spring-boot and Guava.

Two of the systems (i.e., JClouds and Kafka) are used to summarize the insufficiencies of the SOA

and provide reasons for the introduction of false positives. The other two systems (i.e., Spring-boot

and Guava) are selected to evaluate both approaches systematically. We applied the two static bug

detectors to all the revisions in a specific development period of the four studied software systems.

We started with the official releases of the two software systems when we started this study, i.e.,

15

Table 3.1: The studied systems and development periods. The release marks the end date of our
studied development period, and we include 18 months development history before the specified
release.

KLOC # Commits Release # Average Warnings
PMD Spotbugs

Kafka 434 2,000 2.3.1-rc2 12,972 27,911
JClouds 494 300 2.1.0 18,176 2,090

Spring-boot 2695 400 v2.3.6 5,931 6,918
Guava 2112 2,000 v20.0 6,474 3,819

2.3.1-rc2 of JClouds, 2.1.0 of Kafka, v2.3.6 of Spring-boot and v20.0 of Guava. We selected the

last commit of the studied release as the end date and its previous one and a half year as the studied

development history. We were not able to successfully compile some revisions of systems in the

studied period and excluded them from further studies. Besides, we also excluded the revision that

has multiple pre-commit revisions. Table 3.1 lists the statistics of the studied systems, including the

lines of code (LOC), the number of analyzed commits, the official release that we used to decide

the end date of the studied development history, and the number of aggregated warnings in all the

analyzed commits.

3.2 Collecting the Dataset Through Manual Labelling

Before we describe how we collect the dataset, i.e., a list of static code warnings and their

evolution status, we would like to motivate a few key points that drive our design choice in crafting

the dataset. First, given a large number of accumulative warnings across the revisions, we have to

set our priorities, i.e., the evolution status of which static code warnings can better showcase the

performance of the tracking approach since we have limited manual resources to spare. Second,

it is not surprising that in reality, the majority of the warnings persist in the codebases (Johnson,

Song, Murphy-Hill, & Bowdidge, 2013). Therefore we do not consider it particularly interesting

to include a corresponding percentage of persistent warnings in the dataset. Third, considering the

downstream software engineering research this study can benefit from, we set our priorities to focus

more on the static warnings that are resolved or newly-introduced. Fourth, when doing sampling,

whenever possible, we include all the warnings in one commit due to the inherent challenge in

16

the mapping problem: one incorrect mapping may impact others, if only including one, we may

observe part of the impact (i.e., “the tip of the iceberg”). Last, we have certain confidence in

the performance of the SOA approach from its design. For example, we find that majority of the

established mappings by the SOA approach is by the exact mapping (e.g., 3,137 out of the 3,163 by

Spotbugs in JClouds-09936b5). The exact matching is the most strict matching process and rarely

produces wrong results.

Guided by these key points, we decide to craft the dataset based on the tracking results of the

SOA approach and set our priorities on resolved and newly-introduced static code warnings. As

illustrated in Chapter 3.1, we apply the static bug detectors on a total of 2,300 commits in Kafka

and JClouds. We re-implemented the SOA approach based on the original paper (Avgustinov et

al., 2015) with references to a recent implementation by Liu et al. (Liu et al., 2018). Note that the

implementation by Liu et al. is based on Findbugs. Thus, we decided to re-implement the SOA

approach for PMD and Spotbugs. Then, we applied the SOA approach to track the evolution of the

static code warnings across all the analyzed commits.

We select a subset of static code warnings for manual labelling following the steps:

(1) For JClouds Spotbugs and JClouds PMD, we include all the static warnings labelled as re-

solved by the SOA approach.

(2) Since there are many (i.e., 2,038 and 1,359) resolved static warnings in Kafka PMD and

Kafka Spotbugs, we took a statistically significant (95%±5%) sample, i.e., 326 and 301 re-

solved static code warnings for both of them. Using Kafka PMD as an example, we pursued

the sampling process by firstly getting an estimation on the sample size, i.e., 323 warnings,

then starting to randomly select one commit from the 436 Kafka commits with at least one

resolved warning, until we collected more than 323 warnings. In the end, we collected 326

resolved warnings from 53 commits in Kafka PMD.

(3) In each of the four settings, there exist a large number of newly-introduced code warnings.

Hence, we took a statistically significant sample (95%±5%) of warnings in each setting and

followed a similar sampling process as Step 2, i.e., including all newly-introduced warnings

in one sampled commit. In the end, we collected totally 704 warnings (i.e., in 47 commits)

17

Table 3.2: A summary on how we collect the static code warnings based on the results of the SOA
approach.

SOA: “Resolved” SOA: “Newly-Introduced”
Commits # Warnings # Commits # Warnings

PMD
JClouds 57 280 19 155
Kafka 53 326 14 255

Spotbugs
JClouds 23 104 5 78
Kafka 26 301 9 216
Total 159 1,011 47 704

labeled as ‘newly-introduced’ by the SOA approach.

Table 3.2 summarizes the breakdown of the static code warnings we collect following the

above-mentioned steps. Note that in Table 3.2, the evolution statuses such as resolved and newly-

introduced are labeled by the SOA approach, which might be incorrect. We performed a manual

analysis to reveal the true evolution status of each warning. Table 3.3 summarizes the ground-truth

evolution status on the dataset. In total, our dataset contains 1,715 static code warnings and their

true evolution status in the development history of JClouds and Kafka: 37.6% are persistent, 32.2%

are resolved, and 30.1% are newly-introduced. In particular, two of the researchers individually

performed a manual analysis to uncover the ground-truth evolution status of each selected static

code warning. The manual analysis includes understanding the nature of each static code warning

and code changes that may evolve the code warnings. The two researchers discussed the labels to

resolve any disagreements. In our experiments, most of the disagreements are caused by human er-

rors and can be easily agreed on. We calculated Cohen’s kappa to measure the inter-rater agreement,

which is the almost perfect level (0.96) in our experiment.

It is noticeable that there exists a non-trivial discrepancy between Table 3.2 and Table 3.3 re-

garding the distribution of the evolution statuses. That is because the SOA approach produces a

non-negligible number of incorrect results. We present more details on the inaccuracies in the next

chapter.

Except for the resolved and newly-introduced warnings, we also inspect the persistent warnings

of the SOA approach. Due to a large number of persistent warnings, we take a statistically significant

(95%±5%) sample, i.e., 384 persistent warnings. After checking all of them, we do not find there

18

Table 3.3: A summary of the 1,715 static code warnings in the dataset based on manually-labeled
evolution statuses. The dataset with ground-truth labels is used to evaluate the SOA approach and
ours.

Persistent Resolved Newly-Introduced
PMD

JClouds 235 102 98
Kafka 170 178 233

Spotbugs
JClouds 32 86 64
Kafka 208 187 122
Total 645 553 517

Table 3.4: The performance of the SOA approach.

Resolved by SOA # New-Introduced by SOA
Total True Positive False Positive Total True Positive False Positive

PMD
JClouds 280 102 (36.4%) 178 (63.6%) 155 98 (63.2%) 57 (36.8%)
Kafka 326 178 (54.6%) 148 (45.4%) 255 233 (91.4%) 22 (8.6%)

Spotbugs
JClouds 104 86 (82.7%) 18 (17.3%) 78 64 (82.0%) 14 (18.0%)
Kafka 301 187 (62.1%) 114 (37.8%) 216 122 (56.5%) 94 (43.5%)
Total 1,011 553 (54.7%) 458 (45.3%) 704 517 (73.4%) 187 (26.6%)

are any mismatching pairs. The sampled persistent are available online (The shared dataset, 2020).

3.3 Investigating the Inaccuracies of the SOA approach

--- org/jclouds/SGOrCreate.java
+++ org/jclouds/SGInRegOrCreate.java

@@ -73,4 +71,4 @@
73 71 RegionName input = new RegionName();
74 72
75 - Func<SGReg> group = new Func<SGReg>() {

73 + Func<SG> group = new Func<SG>() {
76 74

Figure 3.2: An example of the false positives due to class renaming.

For the crafted dataset of 1,715 static code warnings, we manually uncover their ground-truth

evolution status (i.e., one of persistent, resolved, or newly-introduced), and compare their status

decided by the SOA approach. Table 3.4 summarizes the performance of the SOA approach on

19

Table 3.5: Six causes of False Positives.

Cause Number
1. Class relocating or renaming 106
2. Method renaming 33
3. Attribute and variable renaming 46
4. Code shifting 135
5. Volatile class/method/variable names 93
6. Drastic and non-refactoring code changes 232

the crafted dataset. Among 1,011 warnings that are determined as resolved by the SOA approach ,

only 553 (54.7%) are truly resolved, i.e., true positives. Among 704 warnings that are determined

as newly-introduced, only 517 (73.4%) are actually newly-introduced, i.e., true positives. The false

positives in these two categories are the warnings that are persistent as the ground-truth. In short, the

overall precision of the SOA approach on the collected dataset is only 62.4%, i.e., (553+517)/1,715.

Our evaluation of the SOA approach reveals that tracking the evolution of static code warnings over

the development period is not that straightforward. The low precision of the SOA approach will

negatively impact many downstream software engineering tasks, such as mining fix patterns from

software repositories or performing empirical studies on software quality.

Till this end, we answer RQ1 after examining the performance of the SOA approach by analyz-

ing a number of tracked static code warnings.�

�

	

RQ1. Is the SOA approach good at tracking the evolution of static code warnings?

We present a dataset of 1,715 static code warnings and their evolution statuses. The

dataset is crafted with support from the SOA approach. The precision of the SOA approach

on the dataset is only 62.4%, and this tracking approach will impact many downstream

software engineering tasks negatively.

Furthermore, we manually analyzed the insufficiencies of the SOA approach, i.e., based on

645 cases, and concluded into six categories as follows. Table 3.5 summarizes six causes of false

positives in our dataset.

20

3.3.1 Class Relocating or Renaming

In the SOA approach, specifically in the first three types of matching algorithms (i.e., ex-

act matching, location matching, and snippet matching, in Chapter 2), having the same class name

is a condition that must be satisfied. Hence, if a Java class is renamed or relocated, these three types

would fail to find a mapping. The last matching strategy, namely hash-based matching, may han-

dle some of such cases. However, hash-based matching is highly sensitive to code changes, i.e., if

the hashed region has code changes, the hash values would alter,and then the hash-based matching

strategy would also fail to match the warnings. In total, we find 106 false positives in this category.

Figure 3.2 is a case of a false positive due to Class renaming. The top two lines show the class

file has been renamed, i.e., a different file name and also a different file path, which will cause the

first three matching strategies to fail. Hash-based matching has the potential to handle this case;

however, this file does have code changes, e.g., lines 73-75, and then hash-based matching may fail.

In the end, there exist no mappings established by the SOA algorithm at all due to the file renaming.

As a result, warnings in SGOrCreateTest.java are considered resolved even though the code

changes do not resolve the static warnings.

@@ -92,5 +81,5 @@
92 81 @Test
93 - public void shouldClloseOpenIterators() {

82 + public void shouldCloseOpenRange(){
94 83 nodes.put(new Node("host1",8121));
95 84 nodes.put(new Node("host2",8122));
96 85

Figure 3.3: An example of false positives due to method renaming.

3.3.2 Method Renaming

Similar to class renaming, method renaming affects the tracking in a similar fashion, i.e., the

same method name is required in the first three matching strategies. Different method names force

the SOA approach to rely on the hash-based matching strategy. However, the hash-based matching

strategy is sensitive to regional code changes, which causes it unable to map the persistent warnings

between two revisions. In total, we find 33 false positives in this category. Figure 3.3 is a case

of a false positive due to method renaming. There is one warning reported in the pre-commit

21

revision (line 95), which persists (line 83) in the post-commit revision. However, as the method

name changes (i.e., highlighted in red and green), the first three matching strategies cannot match

the warnings in the method. Thus the SOA approach relies on hash-based matching strategy. Due

to the high sensitivity of the hash-based matching strategy, some persistent warnings in this method

will not be mapped at all, which leads to inaccurate evolution statuses.

@@ -64,6 +64,6 @@
64 64 this.name = name;
65 65 this.des = options.description();
67 - this.IPAddress = option.ipAddress();

67 + this.ipAddress = option.ipAddress();
68 68 this.portRange = option.portRange();
69 69 this.target = option.target();
70 70

Figure 3.4: An example of the false positives due to attribute renaming.

3.3.3 Attribute and Variable Renaming

Attribute and variable renaming, as a common refactoring, also causes the SOA approach to mal-

function. However, the impact process is different from the two above-mentioned cause categories.

The SOA approach uses attribute and variable information to filter out some matching candidates.

Obviously, the two warnings with the attribute or variable information cannot be matched after such

changes. Totally, we find 46 false positives in this category.

Figure 3.4 is a case of a false positive due to Attribute and Variable renaming. The same warning

is located in line 67 of the pre-commit revision and the post-commit revision. An attribute IPAddress

is renamed to ipAddress, which causes false positives in the original algorithm.

200 204
201 205 assertEquals(a,null);
202 206
203 207 assertEquals(b,null);
204 208
205 209 assertEquals(c,null);

Figure 3.5: An example of the false positives due to code shifting.

22

3.3.4 Code Shifting

Commits may modify the line numbers of some code statements, although these code statements

are not directly modified by the commits. We call this code shifting. Because there exist similar

code statements with similar static code warnings (e.g., same warning type, same variable, etc.),

when code shifting happens, the SOA approach does not always handle the shifting well, and false

positives will be produced. Totally, we find 135 false positives in this category.

Figure 3.5 shows an example of how code shifting may cause the SOA approach to malfunction.

Even though the three statements remain unchanged, their line numbers become different. In the

pre-commit revision, the line numbers are 201, 203, and 205, while in the post-commit revision, the

line numbers are 205, 207, and 209. The SOA approach uses line numbers as part of the code range

to build a mapping. As a result, the warning in line 205 from the pre-commit revision is mapped with

the warning in line 205 from the post-commit revision by exact matching. This incorrect mapping

causes the warnings on line 201 and 203 from the pre-commit revision to be considered as resolved

while they actually persist.

groups.map(_ -> getAcl(opts,
Set(Read))).toMap[ResourcePatternFilter, Set[Acl]]

Figure 3.6: An example of Scala code that has implicit code changes. The metadata of the relevant
warning from the pre- and post-commit revisions are shown in Figure 3.7 and Figure 3.8.

1 <WarningInstance>
2 <WarningType>SE_BAD_FIELD</WarningType>
3 <Project>kafka</Project>
4 <Class>AclCommand</Class>
5 <Method></Method>
6 <Field>opts$4</Field>
7 <FilePath>kafka/admin/AclCommand.scala</FilePath>
8 <StartLine>206</StartLine>
9 <EndLine>206</EndLine>

10 </WarningInstance>

Figure 3.7: The warning information from pre-commit revision.

3.3.5 Volatile Class/Method/Variable Names

Even though there is no explicit code changes in one commit, on certain files, the warning re-

ports by Spotbugs, which uses bytecode analysis, are sensitive to compilation. Although everything

23

1 <WarningInstance>
2 <WarningType>SE_BAD_FIELD</WarningType>
3 <Project>kafka</Project>
4 <Class>AclCommand</Class>
5 <Method></Method>
6 <Field>opts$1</Field>
7 <FilePath>kafka/admin/AclCommand.scala</FilePath>
8 <StartLine>330</StartLine>
9 <EndLine>330</EndLine>

10 </WarningInstance>

Figure 3.8: The warning information from post-commit revision.

else remains unchanged, persistent warnings across revisions may have different line numbers or

different class/method/variables names. Such differences will cause all the matching strategies to

malfunction. This happens frequently in Scala code when anonymous classes and methods are used

heavily. Then some persistent warnings are not matched correctly. Totally, we find 93 false positives

in this category.

Figure 3.6 is an example of false positives even though there are no explicit code changes.

The line number of the code line with a warning changes from 206 to 330. We examined the

metadata of this warning across two revisions (Figure 3.7 and Figure 3.8) and found that not only

the line numbers are different, the variable names are also different (line 6 in Figure 3.7 and line 6

in Figure 3.8).

3.3.6 Drastic and Non-refactoring Code Changes

If there exist drastic code changes in close proximity with the persistent warnings, it is possi-

ble that location-based matching will not decide a mapping pair. Furthermore, if there exist code

changes surrounding the code locations of the warnings, snippet-based matching strategy may also

malfunction to establish correct mappings. Figure 3.9 shows an example of such a case. A warning

is located from lines 382 to 387 of pre-commit revision, and the potential matched warning is from

lines 463 to 467 of post-commit revision. Location-based matching cannot match them because the

difference of offsets is higher than the location matching threshold. Snippet-based matching also

fails due to the modified snippet.

24

3.3.7 Discussions on Composite False Positives

We notice that many false positives have more than one cause. For example, a file combines

class renaming with attribute renaming or drastic non-refactoring code changes.

@@ -381,5 +429,37 @@
381 429 @Test

430 + ...
431 + ...
... + ...

382 463 final Runtime = new RuntimException()
383 464
384 - client.Response(new RequestMatcher()){
385 - @Override

465 + cient.Response(body -> {
386 466
387 467 }

Figure 3.9: An example of false positives due to a change of method name and drastic code changes.

3.4 A Summary of Our Investigation

Overall, to answer RQ2, we performed further manual analysis on the 645 FPs of tracked static

warnings. We summarized six main causes which leads to FPs in the SOA approach. There are

Class relocating or renaming, Method renaming, Attribute and variable renaming, Code shifting,

Volatile class/method/variable names, and Drastic and non-refactoring code changes.�

�

�

�

RQ2. What are the limitations of the SOA approach?

We perform further manual analysis on the FPs of the crafted dataset, and identify six

main causes behind the inaccuracies of the SOA approach in tracking the evolution of

static code warnings.

25

Chapter 4

A Better Approach and Its Comparison

with the SOA Approach

In this chapter, guided by our manual analysis results, we propose to improve the SOA approach

by better handling refactoring changes and revises a few key steps to improve the accuracy of irrel-

evant code changes. In particular, our proposed approach (as illustrated in Algorithm 2) reuses the

three matching strategies of the SOA approach (i.e., Exact matching, Location-based matching, and

Snippet-based matching) and revise a few key steps to improve the inaccurate tracking.

4.1 Improvement 1 - Including Refactoring

We include the refactoring information to improve the tracking using RefactoringMiner (Tsan-

talis, Mansouri, Eshkevari, Mazinanian, & Dig, 2018). We firstly create a replica of wi (namely

w
′
i), which is from the pre-commit revision, and then modify the metadata of w

′
i with the infor-

mation from RefactoringMiner. For instance, if RefactoringMiner reveals that the class in wj is a

result from a refactoring of “move and rename class”, we modify the class name in w
′
i with the one

after the refactoring activity. Two of the matching strategies (i.e., snippet matching in line 10 and

location matching in line 13) are re-applied to decide two warnings (i.e., wi, and wj) whether they

are candidates of a matched pair. In particular, Hash-based matching is designed to handle the case

of the class files renamed or moved that are included in refactoring information. Thus we remove

26

Algorithm 2: The algorithm of our improved approach.
Input: The set of warnings from the pre-commit revision, Wp; The set of warnings from

the post-commit revision, Wc;
Output: The set of resolved warings, Wresolved; The set of newly-introduced warings,

Wnewly−introduced; The set of matched pairs, MatchedPairs;
1 Construct W hash

c , a hash index of Wc

2 Initialize a Two-dimensional array HMatrix.
3 Remove all Identifiers in Wp and Wc

4 for each wi in Wp do
5 if source file of wi is not a changed file then
6 take ExactMatching(wi,W

hash
c [h(Wi)]);

7 else
8 w

′
i = refactoring(wi); . if there is no refactoring in the location of wi, w

′
i =

wi.
9 for each wj in Wc do

10 else
11 take SnippetMatching(w

′
i, wj);

12 if there is a candidate from snippet matching then
13 HMatrix[i][j]+ = 1;

14 take LocationMatching(w
′
i, w

′
j);

15 if there is a candidate from location matching then
16 HMatrix[i][j]+ = 1;

17 MatchedPairs = Hungarian(HMatrix);
18 Wresolved = Wp −MatchedPairs;
19 Wnewly−introduced = Wc −MatchedPairs;

hash-based matching.

As of now, we include 22 types of refactoring that cause the modified metadata of warnings.

Table 4.1 shows the refactoring types we include.

4.2 Improvement 2 - Decide Matched Pairs Using Hungarian Algo-

rithm

Commonly, a warning of pre-commit revision may have more than one of matched warnings

from post-commit. Thus it is a problem which one should be matched up. In the SOA approach, it

takes the first-come-first-matched, which may cause mismatching. Besides, the order of the match-

ing strategies will affect the result. For example, we may get different results when we adopt

27

Table 4.1: Refactoring types included in our proposed approach.

Refactoring type Modified metadata of static wanrings
1. Extract method Method name
2. Rename method Method name
3. Move class Class name
4. Rename class Class name
5. Rename variable Field name
6. Rename parameter Field name
7. Rename attribute Field name
8. Move and rename class Class name
9. Move Method Method name
10. Move attribute Field name
11. Pull up method Method name
12. Pull up attribute Field name
13. Push down method Method name
14. Push down attribute Field name
15. Extract Superclass Class name
16. Extract and move Method Method name
17. Extract Class Class name
18. Extract Subclass Class name
19. Move and Rename Attribute Field name
20. Replace Variable with Attribute Field name
21. Move and Rename Method Method name
22. Move and Inline Method Method name

location-matching first and snippet-matching first. The order in the SOA approach is doing Exact

matching first, then Location-based matching, and last one, Snippet-based matching. In our inves-

tigation, this order has introduced many false positives like code shifting (Figure 3.5). Besides, the

first-matched warning may not be the best or correct one,i.e., there exist better-matched warnings.

Thus we adopt Hungarian algorithm, a classic approach to solve the assignment problem in bipar-

tite graphs. When a warning of post-commit revision is found that can be matched with a warning of

pre-commit revision from the two matching strategies (i.e., Location-based matching and Snippet-

based matching), instead of deciding it as a matched pair (i.e., a persistent warning), we construct a

Hungarian matrix to save it as a potential matched pair. An example is like Figure 4.1. w1p,w2p and

w3p are the warnings from parent revision. w1c,w2c and w3c are the warnings from post-commit re-

vision. When two warnings are considered as a (potential) matched pair, the Hungarian matrix adds

one (e.g., w1p and w1c). A value of 2 (e.g., w2p and w2c) means they are a (potential) matched pair

28

from both matching strategies. It also means that this pair is more likely to be an actual pair of per-

sistent warnings. If the SOA is applied on the six static warnings , it is possible that w1p is matched

with w1c, and w2p is matched with w3c, so w3p and w2c become false positives. In our algorithm,

we construct a matrix HMatrix (line 2) like Figure 4.1. The size of HMatrix is (the number of

Wp) ∗ (the number of Wc) and the values are 0 initially. Two matching strategies, Snippet-based

matching and Location-based matching are used to find out the potential matched warnings. Then

we leverage maximum matching to decide the matched pairs. Besides, there is an Exact match-

ing for changed files in the SOA matching, but if we adopt Hungarian algorithm, the matched

warnings by Exact matching can also be identified by Location-based matching or Snippet-based

matching. Thus, we simply remove Exact matching for changed files in our approach. However, we

keep it for unchanged files.

Figure 4.1: A simple example of Hungarian matrix.

4.3 Improvement 3 - Working with Volatile Identifiers

Anonymous classes and methods are given an identifier after compilation. However, the as-

signed identifiers are sensitive to change when there are code changes, even irrelevant. We try to

minimize such sensitivity by removing the variable part in such identifiers. In particular, for identi-

fiers such as opt$1, we use a regular expression to remove the numeric suffix after $ and only keep

opt as the variable identifier in the metadata of a warning for the subsequent matching process.

29

4.4 Evaluation

We evaluate our improved approach on the crafted dataset to show how much improvement

our approach has compared to the SOA approach and answer RQ3 by conducting an evaluation.

In addition to JClouds and Kafka, we also select two other open-source software systems (i.e.,

Spring-boot and Guava), which provides a systematic evaluation between our approach and the

SOA approach. Two static bug detectors are applied on a total of 400 commits for Spring-boot and

2,000 commits for Guava. Then we take the SOA approach on them. Table 4.2 shows the results of

the SOA approach.

Table 4.2: A summary on Guava and Spring-boot based on the results of the SOA approach.

SOA: “Resolved” SOA: “Newly-Introduced”
Commits # Warnings # Commits # Warnings

PMD
Spring-boot 59 218 82 277

Guava 220 1241 281 1417
Spotbugs

Spring-boot 17 193 22 182
Guava 344 1164 430 1441
Total 640 2816 815 3317

For Spring-boot Spotbugs and Spring-boot PMD, all static warnings are included. We take the

same sample strategy on Guava Spotbugs and Guava PMD, a statistically significant (95%±5%)

sample of resolved warnings with newly-introduced warnings of their commits, i.e., 41 commits

with 296 resolved warnings and 188 newly-introduced warnings in Guava PMD, and 44 commits

with 289 resolved warnings and 204 newly-introduced warnings in Guava Spotbugs. Our approach

is also applied to these commits. Sampled warnings and the warnings from our approach are labeled

by two authors with Cohen’s kappa coefficient of 0.62, which has a substantial agreement. Table 4.3

illustrates the labeled results of the two projects.

Since tracking the static code warnings is not a standalone task for each warning, it is, in fact, a

mapping problem between two sets. Hence, we applied our improved approach to all the warnings

in the 200 commits, which is a superset of the 3,452 warnings in the manually-labeled dataset. The

remaining warnings in the 200 commits, while not in our crafted dataset, have a pre-assumed label,

“persistent”. If our approach changes the pre-assumed label of some warnings, then we manually

30

Table 4.3: The labeled results of the two projects.

SOA: Resolved SOA: Newly-Introduced
TP/FP (SOA) TP/FP (our approach) TP/FP (SOA) TP/FP (our approach)

PMD
Spring-boot 138/80 138/22 109/80 109/22

Guava 172/124 172/15 64/124 64/15
Spotbugs
Sprin-boot 186/7 186/1 153/7 153/1

Guava 231/58 231/15 151/53 151/10
Total 727/269 727/53 477/264 477/48

examine the ground-truth labels of these warnings. If our approach does not change the pre-assumed

labels, it means that our approach is at least not worse than the SOA approach on the warnings that

are not in our evaluation dataset.

Table 4.4: The performance comparison between the SOA approach and our approach. Note that
FP is short for false positive. A lower FP ratio is desired.

Resolved Newly-Introduced
FP (SOA) FP (our approach) FP (SOA) FP (our approach)

PMD
JClouds 63.6% (178/280) 3.8% (4/106) 36.8% (57/155) 8.4% (9/107)
Kafka 45.4% (148/326) 27.0% (66/244) 8.6% (22/255) 4.1% (10/243)

Spring-boot 36.7% (80/218) 13.8% (22/160) 42.3% (80/189) 16.8% (22/131)
Guava 41.9% (124/296) 8.0% (15/187) 66.0% (124/188) 19.0% (15/79)

Spotbugs
Jclouds 17.3% (18/104) 1.1% (1/87) 17.9% (14/78) 3.0% (2/66)
Kafka 37.8% (114/301) 15.8% (35/222) 43.5% (94/216) 17.0% (25/147)

Spring-boot 3.6% (7/193) 0.5% (1/187) 4.4% (7/160) 0.6% (1/154)
Guava 20.1% (58/289) 6.1% (15/246) 26.0% (53/204) 6.2% (10/161)
Total 36.2% (727/2007) 11.1% (159/1437) 31.2% 451/1445) 8.6% (94/1087)

Table 4.4 lists the comparison results between the SOA approach and our improved approach

on the collected dataset of 3,452 static code warnings. Note that there are 3,452 static warnings

from the SOA approach. However, when we applied our approach on the same dataset, we obtained

only 2,524 resolved and newly-introduced warnings, which means that the rest (i.e., 928 warnings)

are identified by our approach as persistent warnings. We categorized the 3,452 warnings into two

categories according to the labels by the SOA approach for ease of comparison. The evaluation

shows that our proposed approach can significantly reduce the false positive rate. Overall, for the

31

Table 4.5: The evaluation of execution time for both approaches.

The SOA approach Our approach
Median Average Median Average

PMD
JClouds 12.9 25.8 9.0 20.5
Kafka 23.0 41.0 18.1 41.2
Guava 18.0 50.5 16.2 55.2

Spring-boot 21.2 29.5 17.7 24.3
Spotbugs
JClouds 10.9 30.4 9.3 24.0
Kafka 45.6 60.4 33.9 119.2
Guava 17.7 39.4 19.2 45.9

Spring-boot 9.3 20.4 7.8 16.8

3,452 warnings, the SOA approach has 1,178 warnings with a wrong evolution status, i.e., the

false positive rate is 34.1%. Compared to that, our proposed approach reduces the false positives

significantly, from 1,178 to 253, i.e., the false positive rate drops to 10.0%, yielding a precision

of 90.0%. To give an example in Table 4.4, for JCloud with PMD, the SOA labels 168 persistent

warnings wrongly as resolved while our approach correctly labels 160/168 as persistent, leaving

eight false positives with a wrong label. Our approach reduces the false positives by correctly

labeling the persistent warnings, which are mistakenly labeled as resolved or newly-introduce

by the SOA approach.

Among the six causes of the false positives of the SOA approach, our approach is shown to

effectively reduce false positives for all causes. Table 4.6 shows the breakdown of the left false

positives by each cause after using our approach on the resolved warning dataset.

Additionally, the execution time between the two approaches is evaluated on four projects. Ta-

ble 4.5 shows that the SOA approach is faster than our approach on Kakfa Spotbugs. It has no

significant difference in others. Figure 4.2 shows box plots of time evaluation for both the SOA

approach and our approach. The time performance of our approach is not bad compared with the

SOA approach.

Till this end, to answer RQ3, we proposed a tracking approach combining three improvement

32

a b

Figure 4.2: The box plot of time execution for both approaches.

Table 4.6: Six causes of False Positives after using our approach in Kafka and JClouds.

Cause Number
1. Class relocating or renaming 23
2. Method renaming 2
3. Attribute and variable renaming 3
4. Code shifting 4
5. Volatile class/method/variable names 1
6. Drastic and non-refactoring code changes 119

steps, which outperforms the SOA approach.�

�

�

�

RQ3. Can our proposed approach perform better than the SOA approach?

We proposed a better tracking approach. Compared with the SOA approach, our approach

can reduce FPs significantly (i.e., from 1,178 to 253) and yield a precision of 90.0%.

Apart from the SOA approach, we also take an independent evaluation of our approach by

a statistically significant (95%±5%) sample on commits for each project to answer RQ4. Our

approach is applied on sampled commits to collect resolved and newly-introduced warnings. Then

two authors manually check them to determine whether a warning is a false positive or a true positive

with Cohen’s kappa coefficient of 0.82. Table 4.7 shows the number of commits we sampled.

Note that there are a lot of commits that have no resolved or newly-introduced warning in this

evaluation. In other words, the code changes of many commits are too small to change the status of

all static warnings. Totally, we sampled 2,014 commits with 495 resolved and 837 newly-introduced

33

Table 4.7: The sampled commits for the independent evaluation.

Commits # Resolved # Newly-Introduced
PMD

JClouds 169 83 150
Kafka 322 154 152
Guava 322 40 109

Spring-boot 194 6 17
Spotbugs
JClouds 169 41 107
Kakfa 322 98 186
Guava 322 53 106

Spring-boot 194 20 10
Total 2,014 495 837

Table 4.8: The performance of our approach in the independent evaluation.

TP (Resolved) # TP (Newly-Introduced)
PMD

JClouds 97.6% (81/83) 96.0% (144/150)
Kafka 78.6% (121/154) 95.4% (145/152)
Guava 75.0% (30/40) 91.7% (100/109)

Spring-boot 100% (6/6) 100% (17/17)
Spotbugs
JClouds 97.6% (40/41) 98.1% (105/107)
Kakfa 82.7% (81/98) 90.3% (168/186)
Guava 96.2% (51/53) 98.1% (104/106)

Spring-boot 100% (20/20) 100% (10/10)
Total 86.9% (430/495) 94.7% (793/837)

warnings by our improved approach. Table 4.8 shows the performance of our approach. Overall,

Our approach has a great performance with a precision of 91.8% (i.e., (430+793)/(495+837)), which

means our approach can handle the task of tracking static warnings very well.

RQ4 could be answered by conducting an independent evaluation on our approach.�

�

	

RQ4. How accurate is our proposed approach for tracking the evolution of static code

warnings?

By conducting an independent evaluation on our approach, results show that our ap-

proach achieves a precision of 91.8%, and it can handle the task of tracking static warn-

ings very well.

34

Chapter 5

Threats to Validity

5.1 External Threats

In this thesis, we focus on tracking the static code warnings in Java projects. Our study results

may not be generalizable to projects in other languages. It is expected that programs with similar

evolution details to Java systems may benefit from our study. We include two static bug detectors

in our study, whose representation of static code warnings are similar to some extent, i.e., use of

class/method/variable names and code ranges for matching purposes. The improvement of our

proposed approach may not be generalizable to a static bug detector with a totally different set

of metadata of the reported warnings. However, most of the popular static bug detectors provide

similar information. Last, our crafted dataset for evaluating and improving the SOA approach is

based on two open-source projects. To increase the diversity, we analyzed a reasonable number

of commits in the two projects. In general, we find that the evolution details that make the SOA

approach malfunction are consistent in our collected dataset.

5.2 Internal Threats

When it comes to manually label the dataset, human errors are inevitable. We tried to reduce

human errors by having two persons annotating the dataset and resolve conflicts through discus-

sions. Although our dataset covers warnings with all three evolution statuses, we do not claim that

35

our dataset is representative in terms of following the distribution of the three evolution statuses. In

particular, we set our criteria in crafting the dataset based on our observations on the SOA approach

(i.e., most of the established mappings are correct) and also our priorities, which is to focus on the

resolved and newly-introduced warnings.

36

Chapter 6

Related Work

6.1 Tracking the Evolution of Code Issues

Tracking the evolution of code issues, whether bugs, code smells, or static code warnings, is a

central question in many software quality studies. For example, the SZZ algorithm, which identifies

the origin of bug-introducing commits, is widely used in defect prediction studies. Recent evalua-

tions have uncovered many previously unknown deficiencies in SZZ and inspire many researchers

to work on improving SZZ. For example, a study (Neto, da Costa, & Kulesza, 2018) empirically

investigated how bug-fix changes and bug-introducing changes of the SZZ are impacted by code

refactoring. Then they proposed refactoring-aware SZZ. Another study (da Costa et al., 2017) pro-

posed a framework to provide a systematic evaluation of the data collected by SZZ. Palix et al.

conducted two studies on mining the code patterns. The first study (Palix, Lawall, & Muller, 2010)

presented a language-independent tool for mining and tracking code patterns across the evolution

of software by building graphs and computing statistics. Their other study (Palix, Falleri, & Lawall,

2015) combined the tool with AST for the detection of code patterns across multiple versions. There

is a study (Querel & Rigby, 2018) that presented a tool that combines static analysis with statistical

bug models to detect which commits are likely to contain risky codes, which provides more pre-

cise information of a static warning. Dong-Jae et al. (D. J. Kim, Tsantalis, Chen, & Yang, n.d.)

conducted an empirical study on the evolution of annotation changes and create a taxonomy to un-

cover what annotation changes have and the motivation of annotation changes. In addition, Felix et

37

al. (Grund, Chowdhury, Bradley, Hall, & Holmes, n.d.) proposed a tool to uncover method histories

with no pre-processing or whole-program analysis, which quickly produces complete and accurate

change histories for 90% methods.

Compared to tracking the defects, tracking the static code warnings has been increasingly

needed in recent research, yet rarely studied for its challenges and insufficiencies. Spacoo et

al. (Spacco, Hovemeyer, & Pugh, 2006) propose to match warnings across revisions using a com-

bination of some basic information of each warning (e.g., warning type, class/method names) and

allow inexact matching to some extent. Their approach is not able to match warnings if they are

moved to a different class/method. Other diff-based approaches are used to identify which static

code warnings are resolved. In particular, Sunghun et al. (Kim, Zimmermann, Pan, & Jr. White-

head, 2006) proposed an algorithm to automatically identify bug-introducing changes with high

accuracy by combining the annotation graphs, ignoring non-semantic source code changes. Re-

sults show that their algorithm outperforms the SZZ. Cathal and Leon (Boogerd & Moonen, 2009)

conducted an empirical study to investigate the relation between static warnings and actual faults.

More recently, Avgustinov et al. (Avgustinov et al., 2015) proposed to combine several diff-based

matching strategies to tackle this problem, which we refer to as the state-of-the-art approach in our

study for evaluation and comparison.

However, a proper examination of the performance of the SOA approach is still lacking in the

field. In this thesis, we manually crafted a dataset of 1,416 static code warnings and their evolution

status from two real-world open-source systems and used it to identify potentials for improvement

in the SOA approach.

6.2 Empirical Studies on Static Bug Detectors

Researchers have been working on understanding and improving the utilization challenge of

static bug detectors. Johnson et al. (Johnson et al., 2013) study the reasons that developers do not

fully utilize static bug detectors via conducting interviews with developers. Results show develop-

ers cannot be satisfied with the current static analysis tools due to the high rate of false positives.

38

This study also provides some suggestions to improve future static tools, e.g., improving the in-

tegration of the tool and automatic fixes. Beller et al. (Beller, Bholanath, McIntosh, & Zaidman,

2016) performed a large-scale study to understand the current status of using static bug detectors in

open-source systems, e.g., whether or not use, and what running configurations are used. Wang et

al. (Wang, Wang, & Wang, 2018) aimed to find whether there is a golden feature to indicate action-

able static warnings. Additionally, a survey was conducted by Muske et al. (Muske & Serebrenik,

2016) who reviewed static warnings handling studies as well as collected and classified handling

approaches.

Studies are also conducted to understand the nature of the issues found by static bug detectors.

Ayewah et al. (Ayewah, Pugh, Morgenthaler, Penix, & Zhou, 2007) discuss the defects found by

static bug detectors at Google with regards to false positives, types of warnings generated and their

severity. Wedyan et al. (Wedyan, Alrmuny, & Bieman, 2009) found that the issues by static bug

detectors are much more related to refactoring than defects. Habib et al. (Habib & Pradel, 2018)

study the effectiveness of static bug detectors in terms of their ability to find real defects and find

that static bug detectors do find a non-trivial portion of defects. An empirical study (Yan et al.,

2017) evaluated the degree of correlation between defects and warnings on the evolution of projects.

Tomassi et al. (Tomassi, 2018) examined static bug detectors by considering 320 real java bugs.

Their evaluation shows that static analyzers are not as effective in bug detection, with only one

bug detected by Spotbugs. Trautsch et al. (Trautsch, Herbold, & Grabowski, 2019) conducted a

longitudinal study on static analysis warning trends. They found that the quality of code with regards

to static warnings is improving, and the long-term effects of static bug detectors are positive.

Our study focuses on a different aspect, which is to provide better ways to track how static code

warnings involve. Also, our study includes manual analysis on a non-trivial dataset of static code

warnings for the purpose of improving the tracking precision, which is not covered by prior work.

6.3 Utilizing the Tracking of Static Code Warnings

Better tracking static code warnings across development history provides many benefits. For

example, there has been an increasing interest to conclude fix patterns. Kui et al. (Liu et al., 2018)

39

mines the fix patterns on static code warnings from the software repository, and the SOA approach

was applied in their research. However, they did not conduct an evaluation on the approach about

how accurate the SOA approach performs. A study (Bavishi et al., 2019) proposed a novel solu-

tion to automatically generate code fixing patches for static code warnings via learning from fixing

examples. Another recent work (Yang, Tan, Peyton, & A Duer, 2019) proposed a tool to help devel-

opers better utilize static bug detectors on security issues by clustering based on common preferred

fix locations. This line of work can definitely benefit from an improved tracking approach. In ad-

dition, there have been many works to prioritize and recommend certain types of warnings based

on development history. Among them, a study (S. Kim & Ernst, 2007) observed the static warn-

ings in different static bug detection tools and proposed a history-based warnings prioritization to

mining the fix cases recorded in the code change history. Results show that over 90% of warnings

remain in the projects or removed during code non-fix changes. Ted et al. (Kremenek & Engler,

2003) explored the ranking of warnings from static bug detectors, and presented a technique with

a statistical model to rank the static warnings that are most likely to be true positives. In addition,

another work, Quinn et al. (Hanam et al., 2014), aimed at actionable static warnings, and presented

an actionable alert prediction model by creating feature vectors based on code characteristics. In

comparison, our work focuses on the status changes of the static warnings in the evolution of the

software projects. The other work (Burhandenny, Aman, & Kawahara, 2016) statistically investi-

gated the trend of static warnings over the releases of OSS products, and introduced a novel metric

(e.g., the index of programmers’ attention) to analyze the automatically pointed static warnings and

the actual attentions which programmers paid to those static warning. Higo et al. (Higo, Hayashi,

Hata, & Nagappan, 2020) proposed an approach based on static analysis across the development

history to identify project-specific bug patterns. A better tracking mechanism will provide more

accurate results for such work.

40

Chapter 7

Conclusions and Future Work

In this chapter, we summarize the studies and contributions discussed in the thesis, and pro-

pose potential future work that might be complementary to this thesis for better understanding and

utilizing of tracking the evolution status of static code warnings.

7.1 A Summary of the Thesis

Tracking the evolution of static code warnings across software development history becomes

a vital question due to the increasing interest to further utilize static bug detectors by integrating

them in developers’ workflow, e.g., CI. Also, such tracking is widely used in many downstream

software engineering tasks that include performing empirical studies for software quality, learning

which static warnings are of more interest, as well as mining fix patterns of static code warnings.

This study presents a careful investigation of the performance of the state-of-the-art approach in

tracking static code warnings on two open-source projects. In particular, a dataset of 1,715 static

code warnings and their evolution status is crafted through manual labeling. We performed a further

manual analysis to summarize six main causes of false positives, and proposed an improved tracking

approach based on the main causes. Last, this thesis independently evaluates our approach and the

SOA approach on two other projects with a dataset of 1,737 static code warnings. Results show that

our improved approach outperforms the SOA approach significantly in terms of tracking precision.

41

7.2 Future Work

This thesis makes a major contribution towards the improvement of the utilization of static bug

detectors in the software evolution. However, there are still many open problems that are related to

this thesis. We highlight some aspects for future work that may complement this thesis.

7.2.1 Mining the Anti-patterns From Static Code Warnings

There are many newly-introduced warnings detected by our improved approach in our study.

We can focus on the newly-introduced warnings to investigate and explore the reasons that new

static warnings are introduced by conducting a systemic study and categorize the causes. Through

analyzing them, the future study can uncover the frequent newly-introduced static warnings and

might provide some suggestions to help developers having better practice in software development

and avoid bad programming practice.

7.2.2 Exploring the Relationship Between Code Refactoring and Static Warnings

During the process of our manual analysis in the thesis, we noticed that some resolved warnings

are fixed due to code refactoring. Previous studies (Lacerda, Petrillo, Pimenta, & Guéhéneuc, 2020)

show that code smells and code refactoring have a strong relationship with quality attributes. Code

refactoring is considered an effective process to remove code smells (Refactoring: Improving the

Design of Existing Code, 1999). In addition, Part of code smells can be detected by static bug

detection tools. Thus it is an open problem the relationship between code refactoring and static

warnings.

42

References

Avgustinov, P., Baars, A. I., Henriksen, A. S., Lavender, G., Menzel, G., de Moor, O., . . . Tibble,

J. (2015). Tracking static analysis violations over time to capture developer characteris-

tics. In Proceedings of the 37th international conference on software engineering - volume 1

(p. 437–447). IEEE Press.

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., & Zhou, Y. (2007). Evaluating static analysis

defect warnings on production software. In Proceedings of the 7th acm sigplan-sigsoft work-

shop on program analysis for software tools and engineering (p. 1–8). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

1251535.1251536 doi: 10.1145/1251535.1251536

Bavishi, R., Yoshida, H., & Prasad, M. R. (2019). Phoenix: Automated data-driven synthe-

sis of repairs for static analysis violations. In Proceedings of the 2019 27th acm joint

meeting on european software engineering conference and symposium on the foundations

of software engineering (p. 613–624). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3338906.3338952 doi:

10.1145/3338906.3338952

Beller, M., Bholanath, R., McIntosh, S., & Zaidman, A. (2016). Analyzing the state of static

analysis: A large-scale evaluation in open source software. In 2016 ieee 23rd international

conference on software analysis, evolution, and reengineering (saner) (Vol. 1, p. 470-481).

Boogerd, C., & Moonen, L. (2009). Evaluating the relation between coding standard violations and

faults within and across software versions. In 2009 6th ieee international working conference

on mining software repositories (p. 41-50).

43

https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/3338906.3338952

Burhandenny, A. E., Aman, H., & Kawahara, M. (2016). Examination of coding violations focus-

ing on their change patterns over releases. In 2016 23rd asia-pacific software engineering

conference (apsec) (pp. 121–128).

da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., & Hassan, A. E. (2017).

A framework for evaluating the results of the szz approach for identifying bug-introducing

changes. IEEE Transactions on Software Engineering, 43(7), 641-657.

Grund, F., Chowdhury, S., Bradley, N. C., Hall, B., & Holmes, R. (n.d.). Codeshovel: Constructing

method-level source code histories.

Habib, A., & Pradel, M. (2018). How many of all bugs do we find? a study of static bug de-

tectors. In Proceedings of the 33rd acm/ieee international conference on automated soft-

ware engineering (p. 317–328). New York, NY, USA: Association for Computing Ma-

chinery. Retrieved from https://doi.org/10.1145/3238147.3238213 doi:

10.1145/3238147.3238213

Hanam, Q., Tan, L., Holmes, R., & Lam, P. (2014). Finding patterns in static analysis alerts:

Improving actionable alert ranking. In Proceedings of the 11th working conference on min-

ing software repositories (p. 152–161). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/2597073.2597100 doi:

10.1145/2597073.2597100

Higo, Y., Hayashi, S., Hata, H., & Nagappan, M. (2020). Ammonia: an approach for deriving

project-specific bug patterns. Empirical Software Engineering, 1–29.

Hunt, J. W., & Szymanski, T. G. (1977). A fast algorithm for computing longest common subse-

quences. Communications of the ACM, 20(5), 350–353.

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t software developers

use static analysis tools to find bugs? In Proceedings of the 2013 international conference on

software engineering (p. 672–681). IEEE Press.

Kim, D. J., Tsantalis, N., Chen, T.-H. P., & Yang, J. (n.d.). Studying test annotation maintenance

in the wild.

Kim, S., & Ernst, M. D. (2007). Which warnings should i fix first? In Proceedings of the

the 6th joint meeting of the european software engineering conference and the acm sigsoft

44

https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/2597073.2597100

symposium on the foundations of software engineering (p. 45–54). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

1287624.1287633 doi: 10.1145/1287624.1287633

Kim, S., Zimmermann, T., Pan, K., & Jr. Whitehead, E. J. (2006). Automatic identification of

bug-introducing changes. In 21st ieee/acm international conference on automated software

engineering (ase’06) (p. 81-90).

Kremenek, T., & Engler, D. (2003). Z-ranking: Using statistical analysis to counter the impact of

static analysis approximations. In Proceedings of the 10th international conference on static

analysis (p. 295–315). Berlin, Heidelberg: Springer-Verlag.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research logistics

quarterly, 2(1-2), 83–97.

Lacerda, G., Petrillo, F., Pimenta, M., & Guéhéneuc, Y. G. (2020). Code smells and refactoring: A

tertiary systematic review of challenges and observations. Journal of Systems and Software,

167, 110610.

Liu, K., Kim, D., Bissyande, T. F., Yoo, S., & Le Traon, Y. (2018). Mining fix patterns for findbugs

violations. IEEE Transactions on Software Engineering, 1-1.

Liu, K., Koyuncu, A., Kim, D., & Bissyandé, T. F. (2019). AVATAR: fixing semantic bugs with

fix patterns of static analysis violations. In X. Wang, D. Lo, & E. Shihab (Eds.), 26th IEEE

international conference on software analysis, evolution and reengineering, SANER 2019,

hangzhou, china, february 24-27, 2019 (pp. 456–467). IEEE. Retrieved from https://

doi.org/10.1109/SANER.2019.8667970 doi: 10.1109/SANER.2019.8667970

Muske, T., & Serebrenik, A. (2016). Survey of approaches for handling static analysis alarms. In

2016 ieee 16th international working conference on source code analysis and manipulation

(scam) (pp. 157–166).

Myers, E. W. (1986). Ano (nd) difference algorithm and its variations. Algorithmica, 1(1-4),

251–266.

Neto, E. C., da Costa, D. A., & Kulesza, U. (2018). The impact of refactoring changes on the

szz algorithm: An empirical study. In 2018 ieee 25th international conference on software

analysis, evolution and reengineering (saner) (p. 380-390).

45

https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2019.8667970

Palix, N., Falleri, J.-R., & Lawall, J. (2015). Improving pattern tracking with a language-aware

tree differencing algorithm. In 2015 ieee 22nd international conference on software analysis,

evolution, and reengineering (saner) (pp. 43–52).

Palix, N., Lawall, J., & Muller, G. (2010). Tracking code patterns over multiple software ver-

sions with herodotos. In Proceedings of the 9th international conference on aspect-oriented

software development (pp. 169–180).

Querel, L.-P., & Rigby, P. C. (2018). Warningsguru: Integrating statistical bug models with static

analysis to provide timely and specific bug warnings. In Proceedings of the 2018 26th acm

joint meeting on european software engineering conference and symposium on the founda-

tions of software engineering (pp. 892–895).

Refactoring: Improving the design of existing code. (1999). USA: Addison-Wesley Longman

Publishing Co., Inc.

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., & Jaspan, C. (2018, March). Lessons

from building static analysis tools at google. Commun. ACM, 61(4), 58–66. Retrieved from

https://doi.org/10.1145/3188720 doi: 10.1145/3188720

Sadowski, C., van Gogh, J., Jaspan, C., Soederberg, E., & Winter, C. (2015). Tricorder: Building a

program analysis ecosystem. In International conference on software engineering (icse).

The shared dataset. (2020). Retrieved from https://drive.google.com/drive/

folders/1OSYkm6QIfHO7z zgdZdDRMbIqQOZ5IGW?usp=sharing

Spacco, J., Hovemeyer, D., & Pugh, W. (2006, 01). Tracking defect warnings across versions. In

(p. 133-136). doi: 10.1145/1137983.1138014

Spotbugs latest version. (2019). Retrieved from http://spotbugs.readthedocs.io

Tomassi, D. A. (2018). Bugs in the wild: examining the effectiveness of static analyzers at finding

real-world bugs. In Proceedings of the 2018 26th acm joint meeting on european software

engineering conference and symposium on the foundations of software engineering (pp. 980–

982).

Trautsch, A., Herbold, S., & Grabowski, J. (2019). A longitudinal study of static analysis warning

evolution and the effects of pmd on software quality in apache open source projects. arXiv

preprint arXiv:1912.02179.

46

https://doi.org/10.1145/3188720
https://drive.google.com/drive/folders/1OSYkm6QIfHO7z_zgdZdDRMbIqQOZ5IGW?usp=sharing
https://drive.google.com/drive/folders/1OSYkm6QIfHO7z_zgdZdDRMbIqQOZ5IGW?usp=sharing
http://spotbugs.readthedocs.io

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., & Dig, D. (2018). Accurate and

efficient refactoring detection in commit history. In Proceedings of the 40th international

conference on software engineering (pp. 483–494). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/3180155.3180206 doi: 10.1145/3180155

.3180206

Wang, J., Wang, S., & Wang, Q. (2018). Is there a” golden” feature set for static warning iden-

tification? an experimental evaluation. In Proceedings of the 12th acm/ieee international

symposium on empirical software engineering and measurement (pp. 1–10).

Wedyan, F., Alrmuny, D., & Bieman, J. M. (2009). The effectiveness of automated static analy-

sis tools for fault detection and refactoring prediction. In 2009 international conference on

software testing verification and validation (p. 141-150).

Yan, M., Zhang, X., Xu, L., Hu, H., Sun, S., & Xia, X. (2017). Revisiting the correlation between

alerts and software defects: A case study on myfaces, camel, and cxf. In 2017 ieee 41st

annual computer software and applications conference (compsac) (Vol. 1, pp. 103–108).

Yang, J., Tan, L., Peyton, J., & A Duer, K. (2019). Towards better utilizing static application

security testing. In 2019 ieee/acm 41st international conference on software engineering:

Software engineering in practice (icse-seip) (p. 51-60).

47

http://doi.acm.org/10.1145/3180155.3180206

	List of Figures
	List of Tables
	Introduction
	Thesis Organization

	Background
	The Metadata of Static Code Warnings
	Tracking Static Code Warnings
	The State-of-the-Art (SOA) Solution
	Exact Matching
	Location-based Matching
	Snippet-based Matching
	Hash-based Matching
	How One Incorrect Mapping May Impact All

	Examining the performance of the State-of-the-Art Solution in Tracking the Evolution of Static Code Warnings
	Studied Subjects
	Static Bug Detectors
	Analyzed Open-Source Systems

	Collecting the Dataset Through Manual Labelling
	Investigating the Inaccuracies of the SOA approach
	Class Relocating or Renaming
	Method Renaming
	Attribute and Variable Renaming
	Code Shifting
	Volatile Class/Method/Variable Names
	Drastic and Non-refactoring Code Changes
	Discussions on Composite False Positives

	A Summary of Our Investigation

	A Better Approach and Its Comparison with the SOA Approach
	Improvement 1 - Including Refactoring
	Improvement 2 - Decide Matched Pairs Using Hungarian Algorithm
	Improvement 3 - Working with Volatile Identifiers
	Evaluation

	Threats to Validity
	External Threats
	Internal Threats

	Related Work
	Tracking the Evolution of Code Issues
	Empirical Studies on Static Bug Detectors
	Utilizing the Tracking of Static Code Warnings

	Conclusions and Future Work
	A Summary of the Thesis
	Future Work
	Mining the Anti-patterns From Static Code Warnings
	Exploring the Relationship Between Code Refactoring and Static Warnings

	Bibliography

