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Abstract

Model Predictive Control with Fault Detection and Diagnosis for Multivariable Systems

Vinayak Deshpande

The feedback control system design technique of Model Predictive Control (MPC) has been vastly

used in the chemical and process engineering industry, due to its ability to handle dynamics with

multiple inputs and multiple outputs, which are essentially the majority of today’s engineering sys-

tems. In addition, the field of Fault Detection and Diagnosis (FDD) in control systems also has been

extensively researched over the past decades as it is critical for the controller to realize when and

if a fault has occurred within a system. However, due to the high computational requirements, it is

often challenging to implement FDD based MPC algorithms in resource limited real world systems.

This thesis addresses the development of MPC algorithms with combined state and fault estimation.

Firstly, a novel Quadratic Programming (QP) formulation is developed for a recently proposed

efficient MPC method along with simultaneous state and fault estimation. Another contribution is

the enhancement of a standard integral action MPC algorithm (which has an implicit fault tolerance

capability), to provide state and actuator fault estimation in real time. This work focuses on faults

which are modeled as a Loss Of Effectiveness (LOE). The algorithm to estimate the system faults

and states simultaneously is a simple observer based method which can be tuned beforehand, thus

eliminating the need for on-line real time complex calculations. Lastly, a third contribution of this

thesis is the application of the above methods to design MPC based flight control systems for fixed

wing aircraft. Simulations are presented to demonstrate the effectiveness of the proposed methods.
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Chapter 1

Introduction

1.1 Multivariable Constrained Systems

The vast majority of today’s engineering systems have operational limits and also possess multiple

inputs and outputs. This classifies them as MIMO (multi-input-multi-output) systems. A simple

example is a car; the inputs include steering wheel turn angle, gear setting, brake setting, and outputs

include vehicle velocity, orientation, and tire friction. An illustration of a MIMO system is provided

here.

Figure 1.1: MIMO System with Constrained Actuators

The application of the developed MPC models in this thesis will focus on Unmanned Aerial Vehicles

(UAVs), particularly fixed wing aircraft. In general, UAVs have very complex dynamic behaviour.

There is a strong amount of coupling present, between the various input control surfaces and the

1



response of these vehicles, for each output. As a result, control system design for UAVs begins with

linearizing the nonlinear dynamic equations of motion and then decoupling them into longitudinal

and lateral modes [1, 2]. When considering the longitudinal and lateral dynamics separately, these

are still multivariable in nature as more than one control surface is involved in each of these modes.

In addition, the actuators on-board an aircraft such as spoilers, elevator, ailerons etc. have opera-

tional limits as highlighted in [3]. The limits are in the form of 1) Position constraints, where the

actuator maximum and minimum position is bounded and 2) Rate constraints, where the incremen-

tal actuator movement (i.e motion at each moment in time) is bounded. Both constraints are equally

critical since if any are exceeded, it can result in mechanical damage to the actuator and/or the UAV.

A schematic of a MIMO constrained system is illustrated in Figure 1.1.

For a MIMO system, each output will typically have a different response time with respect to each

input. As a result, it would be useful to utilize an MPC method which attempts to decouple these

outputs in relation to each input, so that system performance can be maximized.

1.2 Model Predictive Control

There are multiple methods to design controllers and a large amount of research has been performed

in linear and nonlinear flight control system design. For instance, the well known Proportional Inte-

gral Derivative (PID) control has been used extensively as per [4, 5]. However, this control method

does not work very well for MIMO systems as the individual gains have to be tuned perfectly, and

it also does not account for the actuator rate constraints. Using more advanced nonlinear methods

such as sliding mode or backstepping control [6,7] are very complex to implement, and also do not

take actuator constrains into account.

Model Predictive Control (MPC) is a method where at each time step, the optimal system inputs are

calculated and assigned based on constraints in real time, via a standard Quadratic Programming

(QP) procedure. These inputs are based on the predicted system outputs over a specified time in the

future, known as the ‘prediction horizon’. The concept of Receding Horizon Control (RHC) is to

only apply the first obtained set of inputs. The prime benefit of MPC is it’s ability to account for all

kinds of constraints, and the fact that it is ideal for MIMO systems as explained in [8]. The standard

2



MPC method is the ‘Integral-Action’ method, where the incremental input is calculated [9]. How-

ever, recent advancements in MPC have led to faster efficient algorithms where the absolute input

is calculated and assigned [10]. Typically, internal MPC models consist of very large matrices and

this requires a large amount of processing time. Furthermore, the quadratic programming solvers

calculate the optimal input through an iterative process at each time step. Due to these reasons, has

not been used widely in aerospace systems, especially for commercial applications.

It will be later seen that the efficient MPC method provides a few advantages in that it 1) the matrices

are of much smaller dimension as they are based on the state transition matrix and 2) it solves for the

optimal absolute input rather than the incremental input. This study aims to develop a constrained

formulation for the efficient MPC method and adjust the control law in the presence of actuator

faults. However, the Integral-Action MPC method provides a degree of implicit fault tolerance

capability as highlighted in [11], unlike the efficient MPC method. In this study, two QP solvers

will be utilized. Neither involves calculating matrix inverses, which is a cumbersome process. The

first solver is the well known Hildreth’s Quadratic Programming (HQP) procedure which uses active

set methods [12]. The second algorithm, a Parallel Quadratic Programming (PQP) algorithm, first

proposed by Brand et al. [13], uses iterative multiplication. If the PQP algorithm is run on a parallel

platform, the solver time can be reduced significantly. Moreover, the PQP algorithm will be faster

to implement on hardware since it is only a single equation, whereas the HQP algorithm requires

an additional maximum element search at each iteration. These above factors need to be considered

when choosing solver to be implemented on a flight computer.

1.3 Fault Detection and Diagnosis

The technology of today is largely automated in nature and does not require a significant amount

of intervention during operation. Examples include self driving cars and aircraft autopilots. This

inherently poses a risk for unexpected software and hardware failures. In the majority of situations,

vehicle operators such as pilots and drivers do not have sufficient knowledge or the time to diagnose

sudden failures. Hence, there is a growing need for algorithms to automatically detect and diagnose

faults before occurrence of a catastrophe. This increased reliance on autonomy has led to ongoing

3



research in the field of fault tolerant control design [14]. In order to prevent a catastrophe, the

ability of any control algorithm to detect a fault is critical. Various types of faults could occur such

as sensor, actuator, and faults in the internal plant model. This thesis will focus on actuator faults,

which typically involve a Loss Of Effectiveness (LOE) [15]. For instance, if a spoiler is commanded

to deploy to 75% of it’s maximum, a 50% LOE indicates that the spoiler will behave as if it is only

deployed to 37.5% of it’s maximum. The least complex fault detection algorithms are typically

observer based [16].

1.4 Motivation & Thesis Organization

Since MPC is a promising solution to multivariable constrained systems and considering the impor-

tance of Fault Detection and Diagnosis, this study aims to combine these two methods to develop

novel low complexity MPC algorithms for linear-time-invariant (LTI) systems. Chapter 2 provides

the detailed theory of the two MPC algorithms in question. Chapter 3 describes the method used to

detect actuator faults. Chapter 4 provides the aircraft mathematical models used for the MPC appli-

cation. Chapter 5 illustrates the performance of the developed MPC methods and finally Chapter 6

draws conclusions obtained and outlines possible topics for future study.

1.4.1 Accepted Publications

• Vinayak Deshpande and Youmin Zhang, “Multivariable Receding Horizon Control of Air-

craft with Actuator Constraints,” in 2020 IEEE International Conference on Systems, Man,

and Cybernetics (SMC). IEEE, 2020, (pp. 1846-1851).

• Vinayak Deshpande and Youmin Zhang, “Integral Action Model Predictive Control with

Actuator Fault Estimation,” Accepted by 4th IEEE International Conference on Industrial

Cyber-Physical Systems (ICPS′21). (May 10-13, 2021)
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1.4.2 Submitted Publications

• Vinayak Deshpande and Youmin Zhang, “Fault Tolerant Model Predictive Control of Un-

manned Aircraft with Actuator Fault Estimation,” To be submitted to Guidance Navigation
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Chapter 2

Model Predictive Control

2.1 Mathematical Preliminaries

The following notation will be used throughout this thesis: R+ denotes positive real numbers, Rn

denotes n×1 real column vectors, Rn×m denotes n×m real matrices, X̂ is an estimate of the vector

X ∈ Rn, L represents the Lagrange operator, Ai,j denotes the ijth element of the matrix A, A[i]

is the ith row of matrix A, Ri represents the ith element of the column R, A ⊗ B is the Kronecker

product of A,B. In represents the n × n identity matrix, AT , A−1 represents the transpose and

inverse of matrix A. Cov(v) is the covariance of v. A Gaussian normal distribution with mean

µ and variance σ2 is represented by N (µ, σ2), and sgn, dim represent the sign and dimension

functions, respectively. An n×m zero matrix, n× 1 zero column vector, 1× n zero row vector is

given by 0n·m, 0
n, 0n respectively.

2.2 MIMO State Space Models

Using a discrete-time setting where k being the time step, Linear Time Invariant (LTI) systems are

considered. The nominal model with faulty actuators is given by:

Xk+1 = AXk +BfUk + wk (1)

Yk = CXk + vk (2)
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Zk = HYk (3)

For this discrete system, the equivalent continuous time model is given by:

Xk+1 = AcXk +BcfUk + wk (4)

Yk = CXk + vk (5)

Zk = HYk (6)

where the states are given byX ∈ Rn, inputs areU ∈ Rm, outputs are Y ∈ Rp. If p > 1 andm > 1,

the system is considered MIMO. The discretization time is dT and should be as small as possible

to preserve accuracy. The controlled variables (CVs) are Z ∈ Rr. That is to say, the setpoints

are defined for Z. The process and measurement noise is represented by w ∈ Rn and v ∈ Rp

respectively, having covariances Q ∈ Rn×n and R ∈ Rp×p. The faulty input matrix Bf ∈ Rn×m is

given by:

Bf = B(Im + diag(f)) = Bc(Im + diag(f)) (7)

where B, (Bc) is the nominal system discrete, (continuous) input matrix, and the fault parameter

vector f ∈ Rm → [f1 . . . fm]T represents the loss of effectiveness having a valid range of: −1 ≤

fi ≤ 0. Hence, when fi = −1 it represents a 100% LOE and when fi = 0, the actuator is fault-free.

2.3 An Efficient MPC Method

The efficient model predictive control algorithm was first proposed in [10]. This algorithm directly

solves for the absolute system input U (whilst considering all constraints), at each time step k, and

it uses the state transition matrix (φ ∈ Rn×n) to solve for the predicted outputs or CVs. A visual

representation of this method is provided in Fig. 2.1.
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Figure 2.1: Single Point Efficient MPC Algorithm - 2 Horizons and CVs

A unique advantage of the efficient algorithm is that different prediction horizons can be defined

for each CV / output as emphasized in [17]. The matrix φ is formed from the equivalent continuous

time system matrix Ac and is given by:

φ(δti+1 − δti) , eAc(δti+1−δti) , S ·



eλ1(δti+1−δti) 0 ... 0

0 eλ2(δti+1−δti)

...
. . .

...

0 0 . . . eλn(δti+1−δti)


S−1 (8)

where the length of the prediction horizon is given by (δti+1− δti) ∈ R+. Clearly, the system must

not be ill-conditioned otherwise in that case, no MPC algorithm would be closed loop stable. For

this study, to reduce complexity, each CV (Zk) is chosen to be predicted forward rather than each

output (Yk), as all outputs may or may not be controlled (i.e. r ≤ p).

To proceed with MPC, a unique prediction horizon for each CV Npi ∈ R+ is specified by: ∀i ∈

[0, r]. If a single prediction point is used for each output, the control horizon Nc is unity. By

partitioning H into [Hi . . . Hr]
T , the CVs Zk are split into [Zi . . . Zr]

T .

The first step of MPC is to solve for the predicted control variables Zpr ∈ Rr at each time step

k. For r control variables, the index i ∈ [1, r]. If multiple prediction points np are used, the index

j ∈ [1, np]. For the efficient MPC method, the predicted CVs can then be expressed from the current

state and future control inputs as follows:
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Zpri,j = HiCφ(δti,j)X̂ +

j∑
k=1

HiCφ(δti,j − δti,k)Γ(δti,k − δti,k−1) (9)

If a single prediction point is used for each CV, which was the case throughout this study, then

j = 1, and (9) can be simplified to:

Zpri = HiCφ (δti)︸︷︷︸
Npi

X̂ +HiCΓ (δti)︸︷︷︸
Npi

(10)

Then, (10) can be broken up and further simplified into the following terms

Zpr = FX̂k +GUk (11)

where F ,



H1Cφ(Np1)

H2Cφ(Np2)

...

HrCφ(Npr)


(12)

and G ,



H1CΓ(Np1)

H2CΓ(Np2)

...

HrCΓ(Npr)


(13)

The matrices F ∈ Rr×n and G ∈ Rr×m can either be constant or defined at each interval k, for

time varying prediction horizons i.e. a changing Npi at each time step. The matrix Γ ∈ Rn×m is

solved from the equivalent continuous time model and is given by:

Γ(δti+1 − δti) = A−1
c [φ(δti+1 − δti)− In]Bc (14)

In MIMO systems, it is well known that when m ≤ r, it is only possible to track maximum m CVs.

However, for all simulations in this study either it was the case that m = r or m > r. Defining the

setpoint vector as R ∈ Rr, which contains the desired value for each CV, the error vector E ∈ Rr

can then be calculated:
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E = R− FX̂k (15)

The optimal control input U is solved by evaluation of a cost function. Using the standard Linear

Quadratic Regulator (LQR) method and substituting (11), the objective function can be defined as

in [18]:

(min
U

)J = UTHU + 2fTU + ETQE (16)

Here H , GTQG + R and H > 0, H ∈ Rm×m. The term f , −GTQE and f ∈ Rm. The

matrices Q ∈ Rr×r, Q > 0 and R ∈ Rm×m, R > 0 are positive definite symmetric matrices

representing weights on the CV error and control action respectively. The symmetric Q,R matrices

will then result in H = HT . Setting ∂J/∂U = 0, the unconstrained solution is obtained as:

U = H−1f = KE (17)

The feedback gain K ∈ Rm×r is used to solve for the unconstrained optimal input U . Based on K

the closed loop system matrix Acl can be determined. The corresponding equations are given by:

K = (GTQG+R)−1GTQ (18)

Ac = A−BKF (19)

where Q ∈ Rr×r and R ∈ Rm×m are the weight matrices on the CVs and the inputs respectively.

This is analogus to the weighting matrices used in the LQR control design method. If the uncon-

strained U from (17) exceeds the input constraints, the quadratic optimization procedure is activated

to resolve for the constrained optimal inputs U , and that is assigned to the system. A novel QP pro-

cedure was developed by the author in [19], and a full derivation, along with the QP solvers used in

this study is provided in Appendices A and B.
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2.4 An Integral Action MPC Method

This is the traditional well known MPC method which solves for the optimal incremental input ∆U .

A visual representation is provided in Figure 2.2 [20].

Figure 2.2: Integral Action MPC Algorithm

This time, only a single prediction and control horizon N̂p, N̂c ∈ R+ is assigned where N̂c ≤ N̂p.

However, the definition of the predicted CVs Zpr is more complex because multiple points are used,

unlike the efficient MPC method where only one prediction point is present (which covers a longer

time interval).

To explain further, let’s compare a single point efficient MPC (EMPC) and integral action MPC

(IMPC). For simplicity, let’s also state that for EMPC, the prediction horizon is the same for all

CVs (i.e Np1 = Np2 = . . . Npr). Table 2.1 provides a comparison.

Table 2.1: Prediction Points - Efficient vs Integral Action MPC

Parameter Description EMPC IMPC
dT Simulation Sampling Time 0.01 0.05
Np (all CVs) Prediction Horizon (s) 3.00 1.50
Nc Control Horizon (s) dT = 0.01 2 · dT = 0.10
True Np (all CVs) Number of Prediction Points (for Zk) 1 30
True Nc Number of Control Points (for Uk) 1 2

Hence, it is evident that the number of prediction points is larger for the integral action method

(based on the time step size). They are evenly spaced from the current time k to the end of the
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horizon (k+ 1, k+ 2 . . . k+Np/dT ) - as also seen in Fig. 2.2. For this MPC method, the predicted

CVs Zpr can then be expressed from the current state and future control inputs as follows. A

complete derivation is provided within [21].

Zpr(k+1) = H̄ĀX̄k + H̄B̄∆Uk

Zpr(k+2) = H̄Ā2X̄k + H̄ĀB̄∆Uk + H̄B̄∆Uk+1

Zpr(k+3) = H̄Ā3X̄k + H̄Ā2B̄∆Uk + H̄ĀB̄∆Uk+1 + H̄B̄∆Uk+2

...

Zpr(k+Np) = H̄ĀNpX̄k + H̄ĀNp−1B̄∆Uk + . . .+ H̄ĀNp−NcB̄∆Uk+Nc−1

(20)

Similar to the efficient MPC method, (20) can be simplified to:

Zpr = Fz
ˆ̄Xk +Gz∆Uk (21)

where X̂ represents the state estimate and the matricesFz ∈ R(Np·r)×(n+r) andGz ∈ R(Np·r)×(m·Nc)

are used to determine the predicted CVs and should be calculated ahead of time as they are usually.

The ∆Uk term in (21) is expressed across the entire control horizon i.e. ∆U = [∆Uk, ∆Uk+1,

∆Uk+2 . . .∆Uk+Nc−1]T , because it may not be unity unlike the efficient MPC. Next, the matrix Fz

is given by:

Fz ,



H̄Ā

H̄Ā2

H̄Ā3

...

H̄ĀNp


(22)

and the matrix Gz is given by:
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Gz ,



H̄B̄ 0r×m 0r×m 0r×m

H̄ĀB̄ H̄B̄ 0r×m 0r×m

H̄Ā2B̄ H̄ĀB̄ H̄B̄ 0r×m
...

...
...

...

H̄ĀNp−1B̄ H̄ĀNp−2B̄ H̄ĀNp−3B̄ H̄ĀNp−NcB̄


(23)

The terms H̄ ∈ Rr×(n+r), Ā ∈ R(n+r)×(n+r), and B̄ ∈ R(n+r)×m are formed from the nominal

discrete model and are given by:

H̄ , [HC Ir] (24)

B̄ ,

 B

0r×m

 (25)

Ā ,

 A 0n×r

HC Ir

 (26)

The augmented estimated state vector ˆ̄X ∈ Rn+r containing both the incremental states along with

the CV output values, is given by:

ˆ̄X ,

X̂k − X̂k−1

HCX̂k

 (27)

Once again, Defining the setpoint vector as R ∈ RNp×r, the error vector Ē ∈ RNp×r, which is

clearly spread out over the entire prediction horizon, can then be formulated as:

Ē = R− FzX̂k (28)

In a similar fashion to the efficient MPC algorithm, this time the cost function for the Integral Action

method has the incremental optimal input ∆U as the decision variable and is expressed as:

(min
∆U

)J = ∆UTH∆U + 2f̄TU + ET Q̄E (29)
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In (29), the term H , GTz Q̄Gz + R̄, and H ∈ R(m·Nc)×(m·Nc). The term f̄ , −GzT Q̄Ē and

f̄ ∈ Rm×Nc . Two positive definite matrices Q ∈ Rr×r and R ∈ Rm×m are defined as weighting

matrices on the CVs and the control action, respectively. Next, they are augmented into Q̄, R̄ by

the expressions: Q̄ = INp ⊗ Q and R̄ = INc ⊗ R, to express the weight factors over the entire

prediction and control horizons. The setpoint vectorR ∈ RNp×r is also defined over the prediction

horizon.

The unconstrained optimal solution for ∆U∗ at each time step, based on the Receding Horizon

principle, is to select the first calculated m elements of:

∆U∗ = H−1GTz Q̄(Ē) = K̄E (30)

Similar to the efficient MPC method, the feedback gain K̄ ∈ R(m·Nc)×(Np·r) is used to solve for the

unconstrained optimal input ∆U . Once again, based on K̄ the closed loop system matrix Acl can

be determined, this time the first (m×n) elements can be extracted from K̄Fz . The corresponding

equations are given by:

K̄ = (GTz Q̄Gz + R̄)−1GTz Q̄ (31)

K = [K̄Fz]1:m, 1:n (32)

Acl = A−BK (33)

If the unconstrained solution ∆U from (30) exceeds the incremental/ absolute input constraints,

the quadratic optimization procedure is activated to resolve for the constrained optimal inputs ∆U ,

and that is assigned to the system. The QP procedure and solvers are identical to that used in

the efficient MPC method, since the definition of each cost function is practically equivalent. The

Integral Action MPC cost function is just expressed in terms of ∆U instead of U . In addition, it’s

dimension is larger, as opposed to using single point predictions in the efficient MPC method.
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2.5 Realization of Constraints

Constraints on actuator position U and incremental movement ∆U are expressed as:

Umin ≤ U ≤ Umax (34)

∆Umin ≤ ∆U ≤ ∆Umax (35)

Incremental actuator motion is calculated by ∆Uk , Uk − Uk−1. Next, the constraints for the

efficient MPC algorithm can be compactly expressed together as:

MU ≤ γ (36)

This is because the objective variable is U . However, for the integral action MPC algorithm, the

constraints are expressed as:

M̄∆U ≤ γ̄ (37)

For the efficient MPC method, assuming a unity control horizon Nc, The term M ∈ R4m×m con-

tains indices (1,−1, 0) for position and rate constraints (or M ∈ R2m×m if either position or rate

constraints are accounted for), and γ ∈ R4m contains the numerical values of these constraints (or

γ ∈ R2m if either position or rate constraints are accounted for). Note that it is easily possible to

consider both absolute and incremental constraints whether (36), or (37) is used. To illustrate, let us

assume that there are 2 actuators with active position and rate constraints i.e. (m = 2), maximum

constraints are > 0 and minimum constraints are < 0, (36) would be expressed as:
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sgn(U1max) 0

sgn(U1min) 0

0 sgn[(U2max)]

0 sgn[(U2min)]

sgn[∆(U1max)] 0

sgn[∆(U1min)] 0

0 sgn[∆(U2max)]

0 sgn[∆(U2min)]


︸ ︷︷ ︸

M

U1k

U2k

 ≤



U1max

−U1min

U2max

−U2min

∆(U1max) + U1k−1

−∆(U1min)− U1k−1

∆(U2max) + U2k−1

−∆(U2min)− U2k−1


︸ ︷︷ ︸

γ

(38)

For the integral action MPC, the control horizon Nc may not necessarily be unity. In this case, the

definition of M̄ , ∆U and γ̄ becomes more complex. Firstly, ∀k → M̄ ∈ R(4m·Nc)×(m·Nc), γ̄ ∈

R4m·Nc and ∆U ∈ Rm·Nc . If either position or rate constraints are accounted for, then 4m → 2m.

In other words, there are Nc copies created to map the constraints across the entire control horizon.

The identity matrices are present because once again the indices are±1 or 0 based on the sign of the

max/min constraint. Generally, identity matrices either on their own or in lower triangular form are

used within the M̄ term and the complete methodology is demonstrated in [21]. To illustrate, let us

assume that there are 2 actuators with active position and rate constraints, and their max constraints

are > 0 and min constraints are < 0. In this case, (37) would be expressed as:
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[
Im·Nc

]
[
−Im·Nc

]

Im 0

Im Im
...


︸ ︷︷ ︸
Nc rows


−Im 0

−Im −Im
...


︸ ︷︷ ︸

Nc rows


︸ ︷︷ ︸

M̄



U1k

U2k


︸ ︷︷ ︸
Nc copies

...


≤





∆(U1max)

∆(U2max)

−∆(U1min)

−∆(U2min)


︸ ︷︷ ︸

Nc copies

...U1max − U1k

U2max − U2k


︸ ︷︷ ︸

Nc copies

...−U1min + U1k

−U2min + U2k


︸ ︷︷ ︸

Nc copies


︸ ︷︷ ︸

γ̄

(39)

In conclusion, it can be seen that the matrix M,M̄ can be defined beforehand, whereas the term

γ, γ̄ has to be updated in real time with each input Uk comes in. Note that if any of the maximum

or minimum constraints (for U,∆U ) equal 0, then within (M,M̄ ) the mapping element would have

to be changed from (−1 or 1) to 0 respectively.

2.6 Predictive Control with Disturbance Observers

2.6.1 Disturbance Observer Design

During real life operation, a non zero external disturbance can occur on a system. For instance a car

could be driving and there could be a wind turbulence force on the vehicle frame of some magnitude

and direction. Another example is an antenna positioning system under the influence of an external

force. This disturbance leads to a mismatch (offset) between the intended plant operation and it’s

true desired operation. As the disturbance is not captured within the system’s intended dynamics, the

plant must be augmented with the disturbance model. This leads to the problem of offset-free Model
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Predictive Control, as mentioned in [22]. It is crucial for any control algorithm (not just MPC based)

to correctly estimate this disturbance, so that the reference signal can be adjusted (i.e. offset) and

the true plant outputs can then reach the reference signal. This is a form of “disturbance rejection”

control. Assuming that not all system states may be necessarily subject to this disturbance, (1) can

be rewritten as:

Xk+1 = AXk +BfUk +Bdwk (40)

Yk = CXk + Cdwk + vk (41)

In control theory, an “observer” or estimator, is an algorithm/ equation used to estimate an unknown

parameter. Observers are generally used to estimate the system states X̂ . This is because a system

equipped with a sensor will only be able to read the noisy outputs Y . In this section, the disturbance

w is assumed to be constant, hence (40) is to a degree, a deterministic signal. Within this disturbance

w, there is noise present (known as the process noise). To design the observer, an optimal gain

matrix must be computed and used. The objective is to now estimate not only the states X̂ , but

also this constant non zero disturbance ŵ. This is done in the form of a “disturbance observer”.

Intuitively, an initial guess value of X̂, ŵ must be provided. It is assumed that the number of states

X affected by w, i.e. nd is known.

In (40), the disturbance is given by: w ∈ Rnd , where w ∈ N (µ, σ2) and the mean µ 6= 0. The

gain matrices Bd ∈ Rn×nd and Cd ∈ Rp×nd are assumed to be known, and either nd 6= n or

nd = n. Since w represents the constant load disturbance, it has a constant non-zero mean. The

term v ∈ Rp ∈ N (0, σ2) is the measurement noise (captured by the sensor). This is a normal

(Gaussian) distribution with zero mean and some variance σ2. The methodology used to design the

observers is taken from [22]. It must be true that nd ≤ p, for the observability test to hold. Then,

the estimates for both states and disturbances (X̂, ŵ) can be calculated from the noisy outputs Y

and inputs U as:

X̂k+1 = AX̂k +BfUk +Bdŵk +Kx(Yk − CX̂k) (42)

ŵk+1 = Ind
ŵk +Kw(Yk − CX̂k) (43)
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The term (yk −CX̂k) represents the innovation or the estimation error, and must be as close to 0 as

possible, to guarantee convergence. The gains Kx ∈ Rn×p and Kw ∈ Rnd×p are constant, i.e. this

is an optimal steady state observer.

2.6.2 Augmented Model

To obtain Kx,Kw the model is first augmented [22] to obtain:

X̂
ŵ


k+1

=

 A Bd

0nd×m Ind


︸ ︷︷ ︸

Ã

X̂
ŵ


k

+

 B

0nd×m


︸ ︷︷ ︸

B̃

+

Kx

Kw

 (Yk − CX̂k) (44)

Yk = [C Cd]︸ ︷︷ ︸
C̃

X̂
ŵ


k

+ vk (45)

In addition, define the process noise covariance termsQn ∈ Rn×n = Cov(v) andQnd
∈ Rnd×nd =

Cov(w), and for the measurement noise Rv ∈ Rp×p. Then define:

Q̃ ,

 Qn 0n×nd

0nd×n Qnd

 ≥ 0 (46)

From Ã, B̃, C̃, Q̃, Rv above, the matrix P ∈ R(n+nd)×(n+nd), (P ≥ 0) can be obtained from the

following Discrete Algebraic Riccati Equation (DARE) as follows:

P = ÃP ÃT + Q̃− ÃP C̃T (C̃P C̃T +Rv)
−1C̃P ÃT (47)

Once P is solved, the observer gains L = [Kx Kw]T , L ∈ R(n+nd)×p are obtained by:

L = ÃP C̃T (C̃P C̃T +Rv)
−1 (48)

The first n rows of L are Kx and the remaining nd rows are Kw. After the state and disturbance

estimates are obtained, X̂ is fed back into the closed loop MPC formulation (akin to state feedback),

and ŵ is used to offset the setpoint (or reference signal) as:
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Rc = R− ŵk (49)

where Rc is the corrected setpoint, and in (49), since the disturbance is assumed to be the same for

all states, the r best estimates of ŵk can be chosen. In practicality, this implies that the observer can

be defined beforehand and then implemented within the control system on real hardware.

2.7 MPC Stability

It is critical to design a closed loop nominal (default) MPC controller that is stable. Based on the lit-

erature, the traditional MPC algorithms calculate the predicted outputs Ypr rather than the setpoints,

from the state estimate X̂ . However, to further save computational time for the optimization, the

predicted CVs Zpr have been used instead. This reduces the dimension of the F,G, Fz, Gz matrices

of the internal MPC model as usually, r ≤ p (if m ≤ p) i.e the number of state variables to be

controlled is less than the number of sensor outputs. Using this simplification, it was demonstrated

in this study that a stable MPC controller can still be designed as long as the prediction and control

horizons (Np, Nc) are tuned properly. Sections 2.7.1 and 2.7.2 provides an example. In this case,

the control horizon was set to Nc = 1 for both methods. The open loop systems are very similar

however they do not have the exact same poles. This was done to demonstrate that regardless of the

open loop system characteristics, both methods can yield closed loop stable controllers. Note that

the pole zero plot presented is in the z plane. Stable poles lie within the unit circle (|z| < 1).

2.7.1 Efficient MPC Stability

As the efficient MPC does not place prediction points at each time step k from k = t→ k = t+Np,

it is more important to tune Np even more carefully, especially in the case of single point prediction

used in this study. Fig. 2.4 and Table 2.2 displays the closed loop system poles vs the same open

loop model for different prediction horizons, Np = 1.0s, 3.0s, 5.0s respectively. It can be seen that

as Np increases, the overshoot of the closed loop poles decreases until a point where increasing Np

may increase the resulting overshoot. The settling time tends to increase due to the larger horizon

length. Also making Np too large in practicality will cause the MPC controller to miss a reference
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signal if it changes within the horizon.

Figure 2.3: Pole Zero Plot - Efficient MPC Open vs. Closed Loop

Table 2.2: Open Loop vs. Closed Loop Characteristics for different Prediction Horizons - eMPC

System Eigenvalue Settling Time (s) %Overshoot

Open
Loop

0.975± 0.032i 1.64 9.55
1± 0.002i 4.01 79.55
1.00 2.626 0.0

Np : 1.0s
0.977± 0.033i 1.64 10.5
0.985± 0.014i 2.626 3.203
0.991 4.01 0.0

Np : 3.0s
0.975± 0.032i 1.64 9.55
0.997 11.60 0.0
0.996± 0.004i 10.93 4.89

Np : 5.0s
0.975± 0.032i 1.64 9.55
0.998 18.978 0.0
0.998± 0.002i 19.653 6.38

2.7.2 Integral Action MPC Stability

As the integral action MPC algorithm is very similar to the standard MPC algorithm where predic-

tion points are placed at each time step ∆T , it is easier to tune Np to design a closed loop stable

controller. Here, 5, 10 and 30 prediction points are used. Setting Np to a small number of points

does not affect the performance much (except stabilizing the system). However, setting the number

of prediction points to a large enough value (e.g. 30), drastically improves stability and decreases
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the pole overshoot (Fig. Y and Table 2.3). Another major advantage is that increasing Np to a large

value also brings the poles close to zero, thus also drastically decreasing the settling time as well.

It can be concluded that the integral action MPC method is far superior in terms of closed loop

stability and performance. Granted however, both methods do yield closed loop stable controllers.

Figure 2.4: Pole Zero Plot - Integral Action MPC Open vs. Closed Loop

Table 2.3: Open Loop vs. Closed Loop Characteristics for different Prediction Horizons - iMPC

System Eigenvalue Settling Time (s) %Overshoot

Open
Loop

0.971± 0.147i 2.493 68.30
0.881 8.44 0.0
0.999 8.44 0.0

Np : 5
0.911± 0.15i 2.49 21.2
0.966± 0.14i 8.44 59.65

Np : 10
0.966± 0.151i 9.087 64.069
0.653± 0.222i 0.538 2.829

Np : 30
0.782± 0.115i 0.85 0.64
0.021 0.052 0.0
0.889 1.697 0.0

2.8 The MPC Algorithm

Any MPC based feedback controller is implemented as follows, and is represented by Algorithm

1 and in block diagram form, by Fig. 2.5 [21]. Note that the predicted CVs in this algorithm are
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calculated by F,G, this is just a change of notation. The total simulation time is given by T , and the

system matrices are given by A,B,C,Ac, Bc. Based on which specific MPC method is used, either

the continuous time models are needed or they may not be. The unconstrained feedback is given by

K and the observer gain is given by L.

Algorithm 1 Generic MPC Algorithm

Require: A,B,C, F,G,∆T, L,K
Require: Ac, Bc, Np, Nc, T,M
Ensure: ∆T > 0, T > 0, ∃[X̂(0), U(0), X(0), Y (0)]

1: k = 0
2: kf = T/∆T

Ensure: Np > 0 and Nc ≤ Np

3: for k = 0→ kf do . k is the time step
4: Xk+1 = AXk +BUk + wk
5: Yk+1 = CXk+1 + vk
6: Obtain X̂ ← from Y,C, L . Call the observer
7: Zpr = FX̂k +GUk . Predicted Outputs
8: Obtain E ← from Zpr . (Error)
9: Uu = KE . Unconstrained Input

10: Obtain γk ← from Uk
11: if MUu ≤ γk then . Does Uu meet constraints?
12: U = Uu
13: GOTO 17
14: else Obtain Uc from Algorithm 3
15: U = Uc
16: end if
17: k = k + 1
18: end for
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Figure 2.5: Model Predictive Control - Block Diagram
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Chapter 3

Fault Detection and Diagnosis (FDD)

3.1 Uncertain Systems

Before proceeding with the proposed fault detection and estimation method, it is crucial to gain a

theoretical understanding of the various methods used. Firstly, an “uncertain” dynamical system is

any type of system subject to time varying uncertainties in its behaviour. Notice that in 2.6, as the

disturbance is assumed to be constant, this type of system is not considered uncertain. There has

been significant research done in observer design for these systems. The standard Kalman Filter

consists of “Predict” and “Update” components [23] and is illustrated here (Initial guess is [.]0):

Figure 3.1: Kalman Filter Loop
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Looking at the general Kalman filter, an initial guess of the error covariance P is required. For the

system to be stable, the term A−KC must be stable. Clearly, the general Kalman Filter is not the

same as the steady state observer (or steady state Kalman Filter) because in that case, the Kalman

gain is optimally solved for beforehand and stays constant. Generally, the term “observer” is used

for estimators with a steady state (or constant) gain. However, if the observer is designed using

adaptive or sliding mode laws, then this is termed an “adaptive observer”. Though not identical to

the Kalman Filter, it still serves the same purpose.

Moving on to fault detection in linear systems, since the Loss Of Effectiveness parameter f is not

measured directly, the objective is to estimate f̂ in the event of LOE occurrence. Many methods

have been researched to figure out the best way to solve for f̂ for linear systems. The Two Stage

Kalman filter has been widely used as per [24], [25] and [26]. However, this method contains a

lot of numerical operations including coupling and bias free estimation equations, and also requires

matrix inversion, which is not ideal. On the contrary, classical observer based methods are more

effective as they provide both state and fault estimates with minimal computations.

When it comes to diagnosing and detecting faults in linear or nonlinear systems, the concept of dis-

continuous observers has been used and an extended discussion is provided in [27]. These discon-

tinuous observers are based on sliding mode theory, and are used to design controllers for uncertain

dynamical systems. Speaking in terms of fault detection, any system in the presence of unknown

faults (either in the system or actuators) is considered uncertain (due to the unknown effective in-

put in relation to the actual input). The task of this observer is to estimate this effective input. A

Lyapunov based method is used to design these observers and it provides an accurate estimate of

the error (or fault) within the uncertain system. One condition to keep in mind is that for this ob-

server to work, the error or uncertainty must be bounded. This is inherently true for a faulty actuator

because the fault parameter is bounded, as explained in 2.2. The “Walcott and Zak” observer is a

type of Lyapunov based sliding mode observer which is very useful for estimation of uncertainty

and is highlighted in [27], along with more information provided by the original authors in [28]. In

general, consider any dynamic system G containing an unknown error ξ given by:

G(ξ) = f(t,X,U) −→ |ξ| ≤ ρ, ∀X ∈ Rn (50)
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where once again, the states are X , inputs are U and the fault error is ξ, and as expressed in (50), ξ

is bounded between ρ. The “Walcott and Zak” observer considers problems of this nature to provide

estimates of states in the presence of faults (and the fault parameter ξ as well).

3.2 State and Fault Parameter Estimation

The method used for state and fault estimation is taken from [29] and it is based on the “Walcott

and Zak” observer. One of the primary benefits is that the required parameters can be defined ahead

of time. This allows rapid real time detection of the effective inputs and estimation of f̂ . Firstly, the

Lyapunov equation in discrete time is:

ATPA− P + Q̃ = 0 (51)

where P,Q ∈ Rn×n and if P > 0, Q > 0, then A is discrete-time stable and all state trajectories

Xk+1 = AXk are bounded. Lyapunov theory has been used to design asymptotically stable ob-

servers. Next, let L ∈ Rn×p represent the observer gain i.e. then the closed loop observer matrix is

Acl = A − LC. In other words A can be unstable, however Acl must be Hurwitz. A bank of ob-

servers can then be designed provided the following Observer Existence Assumption (OEA) holds

true (in discrete time).

ATclPAcl − P + Q̃ = 0 (52)

DC = (PB)T (53)

Another condition to design the bank of observer is that the nominal input matrix B must be of full

column rank. This indicates that CB must also be full column rank. To begin, let Uf ∈ Rm repre-

sent the effective input vector. In other words, if f1 = 0.75, then Uf1 = 0.25U1. Considering that

generally only the noisy sensor outputs Yk are available, The following (discrete time equivalent)

expressions solve for X̂ and Ûf .
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X̂i(k+1) = AX̂ik − L(CX̂ik − Yk) + biÛfi +

m∑
j=1,j 6=i

bjUj (54)

Ûfi = Ûfi − 2εi(CX̂ik − Yk)Tdi (55)

where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Looking at (54) and (55), it is clear that they have to be repeated

m times for m inputs. This indicates that there are m sets of X̂ and any one of them can be used for

feedback. As a result for each effective input Ufi, the parameter εi (∀i) must be carefully tuned to

provide accurate results for each estimated X̂ . The proof behind the derivation of (54) and (55) is

provided within [29].

In (54) the term bi is the ith column of B, and L is the observer gain obtained from the DARE (47).

It is given by:

L , AP̃C(CP̃CT + R̃)−1 (56)

Here, P̃ ∈ Rp×p is the solution to the DARE, R̃ ∈ Rp×p is a postive definite matrix defining the

noise covariance Cov(vk). In (55) the term di is the ith column of D and the matrix D ∈ Rm×n is

obtained from (53), and P ∈ Rn×n is obtained from solving (51) using Acl and a positive definite

matrix Q̃.

3.2.1 Loss Of Effectiveness Estimation

With the observer, one can have simultaneous values of U and Uf . These are passed through

a standard moving average filter having window length Mv ∈ R+. Each LOE estimate is then

calculated as follows ∀i: (Note 1 ≤ i ≤ m).

f̂i = max
[Γ(Uf )

Γ(U)

]
− 1 (57)

where Γ is the Fast Fourier Transform (FFT) operator, also taken over a moving windowMv2 ∈ R+.

The FFT method is one of the most accurate ways to estimate the ratio between two noisy signals.

Fig. 3.2 provides a schematic representation.
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Figure 3.2: Fault Estimation via Moving Window FFT

3.3 Using FDD within MPC

Another key contribution of this study was integrating these FD algorithms within the two MPC

controllers via simultaneous state and fault estimation. Previously, the majorty of MPC research

work was done for chemical engineering applications [8] and for low complexity SISO systems such

as quadrotors [24]. The large dimensionality of the MIMO system models for fixed wing aircraft is

a major drawback of implementing FDD based MPC controllers for this specific application. For

the Integral Action MPC, as the optimization variable is ∆U , it already has a degree of implicit

fault tolerance capability. Hence, X̂ can be used for feedback, and no active reconfiguration method

is needed. As the efficient MPC has a greater risk of destabilizing in the presence of faults due to

solving U directly, reconfiguration is required here. It is applied to the unconstrained solution from

(17):

U = KE + (U − Ûf )︸ ︷︷ ︸
Reconfiguration

(58)

The reconfiguration must be done for the unconstrained solution because regardless if faults are

present, the overall actuator movement must still not exceed its position and rate constraints. This
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indicates that if the fault is large, the MPC based feedback controller will eventually become unsta-

ble, that is also the case without any reconfiguration mechanism. It is also important to emphasize

that the LOE faults considered do not affect the ability of the actuator’s motion i.e it does not re-

duce or increase their constraints. The LOE affects the actuator’s performance rather. For instance,

consider the spoiler actuator on an aircraft. If the spoiler is deployed to it’s maximum position, any

wing damage will reduce it’s generated drag force which will affect how “effective” the spoiler is.

This is what actuator LOE takes into account.

3.4 Comparison to Previous Methods

As mentioned in 3.1, the Two stage Kalman filter used to detect the LOE in an actuator contains a

lot of operations in comparison to the more simpler observer based method presented in this study.

Fig. 3.3 presents a comparison of the two methods. It can be clearly seen that the observer based

method contains a maximum of 4 · m operations, while the two stage Kalman Filter has a fixed

number of 18 operations. Hence, for the majority of LTI systems which do not have many inputs,

the observer method is superior. Furthermore, several of these equations within the TSKF contain

matrix inversion unlike the observer method. The TSKF method however is superior for Linear

Time Varying (LTV) systems since it is able to calculate f̂ as it contains “Predict” and “Update”

(corrector) equations which automatically calculate the required observer gain in real time. This

indicates that it can handle stochastic systems. The observer method is better for more determinstic

systems such as LTI models where although the fault can vary with time, the system parameters stay

constant. Additionally, the TSKF algorithm does not require a moving window FFT algorithm to

divide the effective and actual inputs. In conclusion, for this study it is superior to use the observer

method as only LTI systems are considered and it is significantly faster, making it ideal for systems

with limited computational complexity.
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Figure 3.3: Two stage Kalman filter vs Observer
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Chapter 4

Aircraft Mathematical Model

4.1 Fixed-Wing Aircraft

A contribution of this study was the novel application of the above methods to fixed-wing air-

craft. Aircraft contain multiple inputs such as thrust, elevator, rudder, aileron, and flaps along with

multiple outputs such as the six-degree-of-freedom (6-DOF) orientation: NED (North-East-Down)

position, roll/pitch/yaw angles, along with velocities and accelerations. In addition, each output will

intuitively have a different response time with respect to each input. Hence, this makes it ideal to

use MPC techniques for this application. However, the onboard flight computer’s available capac-

ity must be taken into consideration before choosing the ideal MPC algorithm to use. This is the

underlying reason why the efficient MPC algorithm was proposed by the authors in [10].

4.1.1 Nonlinear Model

Assuming the aircraft is modeled as a rigid body, the flat Earth 6-DOF equations of motion are as

follows. Note: sθ = sin(θ), cφ = cos(φ), tψ = tan(ψ):

X −mgsθ = m(u̇+ qw − rv) (59)

Y +mgcθsφ = m(v̇ + ru− pw) (60)

Z +mgcθcφ = m(ẇ + pv − qu) (61)
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L = Ixṗ− Ixz ṙ + qr(Iz − Iy)− Ixzpq (62)

M = Iy q̇ + rp(Ix − Iz) + Ixz(p
2 − r2) (63)

N = −Ixz ṗ+ Iz ṙ + pq(Iy − Ix) + Ixzqr (64)

p = φ̇− ψ̇sθ (65)

q = θ̇cφ+ ψ̇cθsφ (66)

r = ψ̇cθcφ− θ̇sφ (67)

θ̇ = qcφ− rsφ (68)

φ̇ = p+ tθ(qsφ+ rcφ) (69)

ψ̇ =
qsφ+ rcφ

cθ
(70)

dx
dt

dy
dt

dz
dt

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ



u

v

w

 (71)

Table 4.1 contains the definitions of the terms in (59) to (71).

Table 4.1: Aircraft Equations of Motion - Terms and Definitions

Term Definition Units
X, Y, Z Body Axis Forces in X, Y and Z direction Newtons (N)
L, M, N Body Axis Moments in X, Y and Z direction Newton-Meter (Nm)
p, q, r Body Axis Angular Velocities in X, Y and Z direction Radians/sec (rad/s)
u, v, w Body Axis Linear Velocities in X, Y and Z direction Meters/sec (m/s)
θ, φ, ψ Orientation (Roll, Pitch, Yaw) Angles Radians (rad)
x, y, z Location in 3D space with respect to Inertial Axis Meters (m)
Ix, Iy, Iz, Ixz Moments of Inertia with respect to Body X, Y, Z, and

XZ (cross) axes
Kilogram-sq.-Meter
(kgm2)

From (59) to (71), further parameters characterizing the motion of an air vehicle can be calculaed

and used for control system design and simulation. These are for the angle of attack (α), flight

velocity (VT ), flight path angle (γ), altitude (h), and sideslip angle (β):
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α = tan−1
(w
u

)
(72)

γ = θ − α (73)

VT =
√
u2 + v2 + w2 (74)

h = −z (75)

β = sin−1
( v

VT

)
(76)

4.1.2 Linearized Model and Inputs

As the nonlinear model is highly complex, the linearization process is done at a specific flight

condition. For instance, possible linearization points are:

(1) Straight and Level Flight

(2) Steady Pitch up / down

(3) Steady Turn (Roll)

(4) Steady Heading (Yaw)

In the majority of situations, straight and level flight is chosen to be the linearization point because

it is a good starting point to design controllers for. Furthermore, a small angle approximation can

be used for designing pitch, roll or yaw controllers, or steady climb/ descent. For the straight and

level flight condition, the following equilibrium points are used:

• v = w = 0, p = q = r = 0

• θ̇ = φ̇ = ψ̇ = 0, θ = φ = ψ = 0

• dy
dt = dz

dt = 0

• L = M = N = 0

34



Table 4.2: Aircraft Control Surface Inputs

Term Definition Units
δt Thrust Setting (−)
δe Elevator Deflection rad
δa Aileron Deflection rad
δr Rudder Deflection rad
δc Canard Deflection rad
δf Flaperon Deflection rad
δeR, δeL Right / Left Horizontal Tail Deflection rad
δfR, δfL Right / Left Flaperon Deflection rad

The input actuators for the aircraft are represented in Table 4.2. Once linearization is performed in

the chosen flight condition, the dynamics are decoupled into longitudinal and lateral modes, which

makes it a lot simpler to design linear controllers. All inputs may not necessarily be present for all

types of aircraft.

4.1.3 Longitudinal Dynamics

The longitudinal motion of the aircraft only considers pitching motion, and movement in the 2D

(XZ) plane. As a result, this is a three degree of freedom (3-DOF) planar model. A schematic is

provided in Fig. 4.1. The states and control inputs are as follows [19].

X = [h θ v α q δt δe]
T (77)

Y = [h θ v α q]T (78)

U = [δt δe]
T (79)

Figure 4.1: Longitudinal Dynamics - Free Body Diagram
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4.1.4 Lateral Dynamics

The lateral motion of the aircraft only considers pitching motion, and movement in the XY plane.

Hence this is also a 3-DOF planar model. A schematic is provided in Fig. 4.2. The states and

control inputs are as follows:

X = [φ ψ v β p r δa δr]
T (80)

Y = [φ ψ v β p r]T (81)

U = [δa δr]
T (82)

Figure 4.2: Lateral Dynamics - Free Body Diagram

4.1.5 Coupled Longitudinal and Lateral Dynamics

Sometimes, a linearization is performed however the longitudinal and lateral dynamics are not cou-

pled (i.e. within the states or the inputs). This is the case in [30]. Hence, this is a six-degree of

freedom (6-DOF) model and its state space representation can be given as:

X = [θ u α q φ β p r]T (83)

Y = X (84)
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U = [δeR δeL δfR δfL δc δr]
T (85)

4.2 System Models Used

4.2.1 F-16 Aircraft

For the MPC design, an open source fixed wing flight dynamics model was used, and it is taken from

[31], and can also be downloaded from this link. This is a full Matlab/Simulink based high fidelity

nonlinear flight dynamics model for the Lockheed Martin F-16 Fighting Falcon, one of the greatest

aircraft ever built! The LINMOD command in Matlab/Simulink is used to obtain the linearized

longitudinal and lateral models and then controller design can be performed. The equilibrium flight

condition and setting can be chosen by the user. More information about the LINMOD command

can be found at this link.

Figure 4.3: F-16 Aircraft

4.2.2 F-16 Longitudinal Model

The continuous time longitudinal model of the F-16 is provided. To design the MPC controllers,

the model was first discretized using a Zero Order Hold. Here are the continuous time parameters.

This model is open loop marginally stable, and this can be demonstrated by the pole-zero plot in

Fig. 4.4.
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Ac =



0 500 0 −500 0 0 0

0 0 0 0 1 0 0

0.0001 −32.2 −0.013 −2.948 −1.028 0.002 0.102

0 0 −0.0003 −0.751 0.928 0 −0.002

0 0 0 −1.837 −1.027 0 −0.134

0 0 0 0 0 −1 0

0 0 0 0 0 0 −20.2



(86)

Bc =


05×2

1 0

0 20.2

 (87)

C =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 −7 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0


(88)

H =

1 0 0 0 0 0 0

0 0 1 0 0 0 0

 (89)

Figure 4.4: Longitudinal Dynamics - Pole Zero Plot
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4.2.3 F-16 Lateral Model

Here is the continuous time F-16 lateral model. Once again, the model was first discretized using a

Zero-Order-Hold. This model is open loop marginally stable, demonstrated in Fig. 4.5. The poles

in continuous time are 0.00,−0.35± 2.88i,−0.012,−2.55,−0.013,−1.00,−20.20 and −20.20.

Ac =



0 0 0 0 1.00 0.06 0 0

0 0 0 0 0 1.00 0 0

0 0 −0.01 0 0 0 0 0

0.06 0 0 −0.24 0.06 0.99 2e− 3 0.01

0 0 0 −25.23 −2.67 0.58 −0.54 0.07

0 0 0 7.01 −0.04 −0.37 −0.03 −0.05

0 0 0 0 0 0 −20.2 0

0 0 0 0 0 0 0 −20.2



(90)

Bc =


05×2

20.2 0

0 20.2

 (91)

C = [I6 06 06] (92)

H =

1 0 0 0 0 0

0 0 0 1 0 0

 (93)

Figure 4.5: Lateral Dynamics - Pole Zero Plot
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4.2.4 F-16 Coupled Longitudinal and Lateral Model

Another simulation was carried out with coupled linearized longitudinal and lateral dynamics to

study how the efficient MPC would perform. The Advanced Fighter Technology Integration (AFTI)

F-16 was a combined NASA and Department of Defense (DoD) program to test possible future

aircraft systems. Its model is taken from [30]. This model is open loop unstable and its pole zero plot

is presented in Fig. 4.6. The poles in continuous time are: −3.22,−0.0047±0.05i, 0.9642,−0.39±

2.96i,−0.027 and −2.69.

Figure 4.6: Longitudinal and Lateral Dynamics - Pole Zero Plot

Ac =



0 0 0 1 0 0 0 0

−32.183 0.0121 38.2906 −30.1376 0 0 0 0

−0.00112 −0.00002 −1.4845 0.9948 0 0 0 0

−0.0003 −0.00013 4.2717 −0.7772 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0.0345 −0.3435 0.0326 −0.9976

0 0 0 0 0 −55.253 −2.8000 0.1457

0 0 0 0 0 7.237 −0.0232 −0.3625



(94)
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Bc =



0 0 0 0 0 0

1.003 1.003 1.1584 1.1584 0 0

−0.0746 −0.0746 −0.1224 −0.1224 0 0

−12.029 −12.029 −3.2363 −3.2363 0 0

0 0 0 0 0 0

0.0133 −0.0133 −0.0007 0.0007 0.0267 0.0370

−25.3645 25.3645 −25.5251 25.5251 5.5319 10.3955

−2.5686 2.5686 −0.6250 0.6250 5.8925 −5.8089



(95)

C = [I8] (96)

H =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


(97)

4.2.5 Generic Longitudinal Model

For the simulations demonstrating the fault tolerant control shown later in 5.2.2, this generic longi-

tudinal model of a fixed wing aircraft was used, and it is taken from [10].

Ac =



−0.026 0.074 −0.804 −9.809 0.000

−0.242 −2.017 73.297 −0.105 −0.001

0.003 −0.153 −2.941 0.000 0.000

0.000 0.000 1.000 0.000 0.000

−0.011 1.000 0.000 −75.000 0.000


(98)

Bc =



4.594 0.000

−0.0004 −13.735

0.0002 −24.410

02×2


(99)
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C = [I5] (100)

H =

0 0 0 0 1

1 0 0 0 0

 (101)

This model is open loop marginally stable, demonstrated by the pole-zero plot in Fig. 4.7. The

poles (continuous time) are −2.48± 3.32i,−0.0115± 0.16i, and −0.0007.

Figure 4.7: Generic Longitudinal Model - Pole Zero Plot

4.2.6 Reduced Order Longitudinal and Lateral Model

A final simulation was performed with reduced order longitudinal and lateral models of the F-16

obtained from [32]. The longitudinal states and system matrices in continuous time are as follows:

Xlon = Ylon = [VT α θ q]
T (102)

Ulon = [δT δe]
T (103)

Alon =



−0.0172 −3.8858 −32.1696 −1.1096

−0.0026 −0.7506 0.00 0.9278

0.00 0.00 0.00 1.00

−0.74e− 12 −4.2783 0.00 −1.2612


(104)
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Blon =



19.722 0.09849

−0.0026 −0.0016

0.00 0.00

0.00 −0.1386


(105)

C = [I4] (106)

H =

1 0 0 0

0 0 1 0

 (107)

The open loop longitudinal pole zero plot is shown in Fig. 4.8. As clearly seen it is unstable, with

two complex poles outside the stable plane.

Figure 4.8: Reduced Order Longitudinal Model - Pole Zero Plot

Next, the lateral states and system matrices in continuous time are as follows:

Xlat = Ylat = [β φ p r]T (108)

Ulat = [δa δr]
T (109)

Alat =



−0.2372 0.0642 0.0663 −0.992

0.00 0.00 1.00 0.0662

−25.533 0.00 −2.6634 0.5906

7.692 0.00 −0.0395 −0.3851


(110)
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Blat =



0.00022 0.000593

0.0 0.0

−0.5415 0.0938

−0.0241 −0.0489


(111)

C = [I4] (112)

H =

1 0 0 0

0 1 0 0

 (113)

The open loop lateral pole zero plot is shown in Fig. 4.9, and is marginally stable. The poles are:

−2.55,−0.008 and −0.40± 2.65i.

Figure 4.9: Reduced Order Lateral Model - Pole Zero Plot
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Chapter 5

Simulation Studies

5.1 Fault-Free Conditions

The first two simulations were to test the performance of the novel constrained QP program formu-

lated along with the disturbance observer in 5.1.1 and 5.1.2. The simulations were for the efficient

MPC algorithm, and were performed in the Python programming language, and successful perfor-

mance of the QP program along with the disturbance observer is achieved. The simulation in 5.1.1

is fault free and noise free as it just tests the QP program, and that in 5.1.2 contains process and

measurement noise and a nonzero disturbance. No actuator fault was present for the time being.

5.1.1 Longitudinal Model

This is a simulation performed on the F-16 longitudinal model from 4.2.2. The control variables

are h and v (incremental i.e ∆h, ∆v). The position and rate constraints on the actuators δt, δe are

presented in Table 5.1. This simulation is taken from [19].

Table 5.1: F-16 Actuator Constraints

Actuator Constraints
Type Absolute Incremental (∆/s)

Thrust (δa
t ) 0.0 ≤ δt ≤ 1.0 −4.0 ≤ ∆(δt) ≤ 4.0

Elevator (δe) −0.4363 ≤ δe ≤ 0.4363 −1.04 ≤ ∆(δe) ≤ 1.04
aApproximate Value
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The parameters are presented in Table 5.2. Note that Np1 corresponds to the horizon for h and Np2

corresponds to the horizon for v. Recall that since the efficient MPC is used, this allows defining

multiple horizons, one for each CV. Note: Refer to Appendix B for more information regarding the

last two rows (Error convergence and PQP vector)

Table 5.2: Simulation Parameters - Longitudinal Model

Parameter Description Value
∆T, T Sampling, Simulation Time 0.01s, 60s
Np1 , Np2 Prediction Horizons 1.5s, 2.0s
h0, v0 Trim Height & Speed 3048m, 152.4m/s
θ0, q0 Trim Orientation 0.064rad, 0rad/s
α0 Trim Angle of Attack 0.064rad

δt0 , δe0 Inputs at Trim 0.06, −0.039rad
Q Error Weight Matrix diag(1, 49)
R Control Weight Matrix diag(20, 50)

(λj − λj−1)max Error Convergence 1.0e− 6
r PQP Vector [0 0 0 0 0 0 0 0]

Fig. 5.1 demonstrates the tracking of h and v respectively for a step setpoint. The controller is able

to track both simultaneously with good performance. Tracking performance is slightly better for v.

In addition, a rapid change in setpoint between 5s ≤ T ≤ 15s causes slight deterioration in tracking

performance, due to the values of Np1 , Np2 .

Figure 5.1: Tracking Performance of h and v and absolute actuator positions

46



For the unconstrained case, the simulation parameters were kept identical. However the R matrix

was changed to diag(2, 50), to provide more effort by the elevator. The tracking result for h, v

was identical, however the elevator input clearly exceeded its maximum position limit, as demon-

strated in Fig. 5.2. In addition, neither of the actuators met their rate limit which is even more

crucial. The unconstrained case is an example of utilizing the standard output feedback LQR (using

weight matrices Q,R although the cost function is not the exact same). The proposed constrained

MPC method is able to match tracking performance whilst taking both actuator position and rate

constraints into account. This demonstrates that MPC is the required choice of control method if ac-

tuator constraints need to be accounted for in implementation. To elaborate on comparing MPC vs

LQR, they are similar in the sense that weighting matrices are defined and an optimization process

is used. LQR could satisfy the actuator constraints if the Q,R matrices are tuned properly, however

the MPC controller will guarantee this.

Figure 5.2: Tracking Performance - Unconstrained Case

The incremental changes, i.e. ∆(δt),∆(δe) are displayed in Fig. 5.3. These constraints are also met

with the maximum values equalling their upper bounds respectively. Note that absolute values are

plotted. Conclusively, the actuator slew rates do not exceed their limits.

The performance of the HQP and PQP solvers is provided in Table 5.3. Clearly, the HQP procedure

converges significantly faster, taking an average of only 2 iterations compared to the PQP procedure
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Figure 5.3: Incremental Actuator Movement (Absolute)

which takes roughly seven times longer. However, this simulation was not run on a parallel plat-

form. It could be the case that if the PQP algorithm is run in parallel, solver time can be reduced

significantly. Additionally, the PQP algorithm will be faster to implement on hardware as it moves

on to the next iteration after obtaining λ, whereas the HQP algorithm which searches for max(λ) at

each iteration, requiring the need for an additional maximum search algorithm (See Appendix B).

These above factors are critical when choosing which QP solver to run on a flight computer. Note

that the number of iterations will drastically increase when there is a setpoint step change.

Table 5.3: QP Solver Performance

Solver Iterations To Converge
Used Min Max Average
HQP 1.0 177.0 2.05
PQP 6.0 3631 15.55

As mentioned in [10], the prediction horizons Npi is not set too large or small. A small Npi may

be less than the non-minimum phase time of the system (common for aircraft), posing a risk of

destabilizing the closed loop MPC. A large Npi will intuitively cause a slower response leading

to greater steady state error. Additionally, a large Npi will be unable to capture any time varying

setpoints over a shorter interval. To verify this behavior, Npi was set equal for h and v and was
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adjusted from 0.5s → 1s → 2s → 3.5s respectively. When Npi = 0.5s, oscillations start to occur

with significant overshoot (45%). WhenNpi = 1.0s, the overshoot drops to 6.5%. WhenNpi = 2.0

or 3.5s, there is no longer any overshoot due to the increase in the damping ratio, as seen in Fig. 5.4

Figure 5.4: Effect of Adjusting the Prediction Horizons

5.1.2 Lateral Model

This is a simulation performed on the F-16 lateral model from 4.2.3. The control variables are φ and

β (incremental i.e. ∆φ, ∆β). The position and rate constraints on the actuators δa, δr are presented

in Table 5.4. The parameters are presented in Table 5.5. Note that Np1 corresponds to the horizon

for φ and Np2 corresponds to the horizon for β.

Table 5.4: F-16 Actuator Constraints

Actuator Constraints
Type Absolute Incremental (∆/s)

Rudder (δr) −0.523 ≤ δr ≤ 0.523 −2.094 ≤ ∆(δr) ≤ 2.094

Aileron (δa) −0.3752 ≤ δa ≤ 0.3752 −1.3962 ≤ ∆(δa) ≤ 1.3962

This simulation included a cascaded PID controller for tracking of heading angle ψ. In other words,

the setpoint for ψ became the setpoint for φ, because the aircraft has to roll to a certain heading!
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Table 5.5: Simulation Parameters - Lateral Model

Parameter Description Value
∆T, T Sampling, Simulation Time 0.01s, 60s
Np1 , Np2 Prediction Horizons 2.00s, 0.15s
h0, v0 Trim Height & Speed 3048m, 152.4m/s
θ0, q0 Trim Orientation 0.064rad, 0rad/s
α0 Trim Angle of Attack 0.064rad

δa0 , δr0 Inputs at Trim 0.06, −0.00rad
Q Error Weight Matrix diag(150, 10)
R Control Weight Matrix diag(1, 1)

(λj − λj−1)max Error Convergence 1.0e− 6
r PQP Vector [0 0 0 0 0 0 0 0]

PID Control is arguably one of the most popular controller methods used in industry. A simple

proportional (P) control law for a single CV d is provided by (where dr is the desired value and da

is the output for d respectively).

U = Kp(dr − da) (114)

The disturbances were set to w = N (−0.05, 0.002) and, v = N (0.00, 5e − 5). The aircraft was

commanded to track step changes in ψ via the outer PID loop, and the inner MPC loop tracked φ

whilst regulating β = −0.0523 (3.0o). Hence, the PID controller output became the setpoint for

φ. A precompensator N = 7.5 was used for the setpoint φ. The maximum permissible value was

φ = 0.300 (17.2o). A block diagram of this controller structure along with the constraints is shown

in Fig. 5.5

Figure 5.5: Cascaded PID and MPC Control Architecture

The observer parameters Kx,Kw in (43) and (42) were set to:
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Kx =



0.4 3.5e− 07 −2.1e− 15 0.00024 −0.00045 −3.5e− 05

3.7e− 07 0.4 3.7e− 16 −6.4e− 05 5.2e− 06 −0.00045

1.2e− 15 1.3e− 16 0.4 5.2e− 15 −3e− 15 2.4e− 15

−0.00015 2.8e− 05 1.8e− 15 0.4 −0.017 0.0052

0.00072 −1.1e− 05 −3.1e− 15 0.011 0.4 −0.0017

2.8e− 05 0.00069 −2.1e− 16 −0.0038 −0.00071 0.4

−8.6e− 06 −5e− 07 4.1e− 16 1.3e− 05 −0.00075 −4.5e− 05

1.1e− 06 −9e− 07 1.7e− 15 −2.2e− 07 9.8e− 05 −7.9e− 05



(115)

Kw =



0.4 −1.9e− 07 1.1e− 15 −0.00022 0.00051 3.4e− 05

−2.1e− 07 0.4 −2.7e− 16 5.7e− 05 −6.1e− 06 0.0005

−2.2e− 15 −3.3e− 17 0.4 −3.9e− 15 1.3e− 15 −2.5e− 15

0.00017 −3.4e− 05 −4.6e− 16 0.4 0.015 −0.0048

−0.00066 9.8e− 06 1.4e− 15 −0.012 0.4 0.0012

−2.9e− 05 −0.00063 1.8e− 16 0.0041 0.00019 0.4


(116)

Fig. 5.6 displays the estimation of ŵ from Kw, for two states, β, v. The observer performs well

with a very fast settling time of around 0.1s. Hence, this estimate can now be used to offset the

setpoint within the MPC formulation.

Figure 5.6: Disturbance Observer Performance

Fig. 5.7 displays tracking performance for a step command of ψ = 30o. Perfect tracking is achieved

though the settling time is slow due to the constraint imposed on φ. The MPC rejects the constant
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disturbance and achieve the desired ψ without steady state error. Sideslip angle β is regulated near

−3o. The “Perfect” plot represents the disturbance-free scenario i.e. the situation where w =

N (0.0, σ2).

Figure 5.7: Tracking Performance for ψ and φ, β

Fig. 5.8 displays the rudder and aileron absolute and incremental positions (in deg). Clearly, both

the position and incremental movement constraints are met as both QP solvers ensure this at each

time step.

Figure 5.8: Absolute and Incremental Actuator Movement

52



5.1.3 Combined Longitudinal and Lateral Model

This is a simulation performed on the AFTI F-16 lateral model from 4.2.4. The CVs are θ, u, φ, β, r

(incremental i.e. ∆θ,∆u,∆φ,∆β,∆r). The position and rate constraints on the actuators δeR, δeL, δfR,

δfL, δc, δr are presented in Table 5.6.

Table 5.6: AFTI F-16 Actuator Constraints

Actuator Constraints
Type Absolute Incremental (∆/s)

Right / Left Horizontal Tail (δeR, δeL) −0.4363 ≤ δeR, δeL ≤ 0.4363 −1.0472 ≤ ∆(δeR, δeL) ≤ 1.0472
Right / Left Flaperon (δfR, δfL) −0.3752 ≤ δfR, δfL ≤ 0.3752 −0.9076 ≤ ∆(δfR, δfL) ≤ 0.9076

Canards (δc) −0.3752 ≤ δc ≤ 0.3752 −1.8849 ≤ ∆(δc) ≤ 1.8849
Rudder (δr) −0.3752 ≤ δr ≤ 0.3752 −2.0944 ≤ ∆(δr) ≤ 2.0944

When the simulation was attempted using these constraints, the QP became infeasible and a valid

solution could not be found for the constrained input U . As a result, the incremental constraints

for only the right and left horizontal tail had to be softened by a factor of 20 from −1.0472/s ≤

∆(δeR, δeL) ≤ 1.0472/s −→ −20.944/s ≤ ∆(δeR, δeL) ≤ 20.944/s. The remaining constraints

were left as is and now the QP remained feasible throughout the simulation. With the MPC param-

eters in Table 5.7, the closed loop poles are stabilized, as demonstrated in Fig. 5.9.

Figure 5.9: AFTI F-16: Open Loop vs. Closed Loop

In regards to the setpoints for the 5 CVs (θ, u, φ, β, r) some were tasked to regulate around 0 while

others were set for tracking. To begin, the pitch angle θ and sideslip β were set for tracking to a
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small value (0.04rad,0.10rad ) at 30s intervals. The yaw rate r and speed u were regulated to 0, i.e.

no change from the linearized operating point. Lastly, the roll angle φ was commanded to 0.25rad

at 30s intervals. The tracking / regulation performance for the CVs θ, β, u, r is shown in Fig. 5.10

and that for the CV φ is in Fig. 5.11. The performance is good for θ, β with little to no overshoot.

Figure 5.10: Tracking Performance - AFTI F-16

Figure 5.11: Tracking Performance - AFTI F-16

Since there is a setpoint change at 30s and 60s respectively, this will create a sharp change in u

and r. For u the change is very minimal however there is a large overshoot for r. Finally, for φ,

steady state tracking is good however there is a large overshoot. By observing the AFTI model from

4.2.4, the longitudinal and lateral states are decoupled in Ac, however there is coupling between the

control in Bc. This creates the overshoot in some of the CVs. To reduce this overshoot, the values
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for Npi can be increased, however this would then reduce the settling time.

Table 5.7: Simulation Parameters - AFTI F-16 Model

Parameter Description Value
∆T, T Sampling, Simulation Time 0.01s, 90s

Np1 , Np2 , Np3 , Np4 , Np5 Prediction Horizons 0.15s, 1.15s, 6.00s, 0.10s, 1.00s
h0, v0 Trim Height & Speed 6096m, 308.4m/s
θ0, q0 Trim Orientation 0.00rad, 0rad/s
α0 Trim Angle of Attack 0.032rad

δeR0, δeL0 , δfR0, δfL0 Inputs at Trim 0, 0, 0, 0rad
δc0, δr0 Inputs at Trim 0, 0rad
Q Error Weight Matrix diag(50, 50, 50, 50, 50)
R Control Weight Matrix diag(1, 1, 1, 1, 1, 1)

(λj − λj−1)max Error Convergence 1.0e− 6
r PQP Vector [0 0 0 0 0 0 0 0]

Figs 5.12 and 5.13 display the inputs and incremental inputs. The constrained QP once again per-

forms successfully with all position and rate constraints satisfied.

Figure 5.12: Inputs and Incremental Inputs - AFTI F-16

To conclude this section, the AFTI F-16 simulation demonstrated that generally when designing

linear controllers, it is not the best idea to couple the longitudinal and lateral control inputs as

this can cause suboptimal performace, leading to issues such as overshoot and slow settling time

for specific control variables, depending upon how the controller is configured. Using seperate
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Figure 5.13: Inputs and Incremental Inputs - AFTI F-16

longitudinal and lateral MPC based controllers provide the best results.

5.2 Fault Conditions

This section contains simulations for both the integral action and the efficient MPC method, this

time in the presence of faults. The purpose of these simulations was to demonstrate the performance

of the fault observer along with the reconfiguration method for the efficient MPC algorithm. The

model used was the generic longitudinal model from 4.2.5. These simulations were also performed

with Python, and successful performance of the FDD algorithm is achieved. Note that the results

are shown side by side for the efficient and integral action MPC methods because the same setpoints

and CVs were used, for easier comparison.

5.2.1 Observer Design and MPC Parameters

The parameters for the fault diagnosis observer discussed in 2.6 were set as follows:

L =



0.63 −0.0062 −0.023 −0.27 0.078

−0.012 1.00 1.80 0.0068 0.0012

−0.00045 0.064 0.45 0.00092 4.2e− 5

−0.011 0.0083 0.026 0.53 −0.087

0.078 0.025 −0.0029 −2.1 1.20



D =

0.2755 −0.0009 −0.0007 0.014 −0.0031

0.0279 −2.3998 −3.103 −0.0098 −0.014
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ε1 = 1.995, ε2 = 0.018← Integral-Action MPC

ε1 = 15.995, ε2 = 0.400← Efficient MPC

In both MPC simulations, the following faults were injected at the same times, and are listed in

Table 5.12. The LOE for both actuators was changed after a random time interval to mimic faults

which could potentially occur in real life.

Table 5.8: Actuator Faults

Time (s) LOE: (δt) LOE: (δe)
1.60 -0.20 -0.45
8.25 -0.50 -0.75

12.25-end -0.65 -0.55

The position and slew (incremental) constraints of both inputs δt, δe are provided in Table 5.9.

Table 5.9: Actuator Constraints

Actuator Constraints
Type Absolute Incremental (∆/s)

Thrust (δa
t ) −0.2 ≤ δt ≤ 0.8 −0.8 ≤ ∆(δt) ≤ 0.8

Elevator (δe) −0.4363 ≤ δe ≤ 0.4363 −0.52 ≤ ∆(δe) ≤ 0.52
aApproximate Value

Table 5.10 provides the simulation parameters used for both model predictive control schemes. To

ensure the most accurate results, parameters such as the discretization time dT and the weighting

matricesQ,R along with the prediction and control horizonsNp, Nc were adjusted for each method.

The moving window filters Mv,Mv2 have to be appropriately scaled up for the efficient MPC since

dT is scaled down.

5.2.2 Longitudinal Model - Integral Action vs Efficient MPC

The model used was taken from 4.2.5. The aircraft was initially commanded to track a step change

in vertical velocity of ∆uc = 25m/s and after 9.0s, ∆uc = 20m/s. It was also commanded to

track an increasing time varying setpoint for the height ∆h, which decreased after 9.0s. Fig. 5.14
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Table 5.10: Integral Action and Efficient MPC Parameters

Parameter Integral Action MPC Efficient MPC
dT (s) 0.05 0.01

Time (s) 20.0 45.0
∆(δt) 0.04 0.008
∆(δe) 0.026 0.0052
Np, Nc 30.0, 2.0 (1.5s, 0.1s) 3.0, 1.0 (3.0s, 0.01s)
Q diag(1, 1) diag(10, 10)
R diag(1, 1) diag(4, 4)

Mv,Mv2 k = 8, k = 32 k = 40, k = 160

is the nominal closed loop discrete time pole plot for both MPC methods. As required, the system

is stable with the magnitude of all poles less than 1.

Figure 5.14: Pole Zero Plot - Efficient vs Integral Action Closed Loop MPC

Figure 5.15 displays the tracking performance for the CVs height h and the forward velocity u for

both MPC methods. Good tracking is achieved. In addition, the configured state observer displays

good performance yielding perfect estimates for the CVs, and correspondingly for the other states

as well.

Figs. 5.16 and 5.17 shows the control inputs from δt and δe along with the incremental inputs ∆(δt)

and ∆(δe). All inputs meet their constraints, thus demonstrating the successful performance of the

QP solver for both simulations.
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Figure 5.15: Tracking Performance - Efficient vs Integral Action Closed Loop MPC

Figure 5.16: Inputs - Efficient vs Integral Action Closed Loop MPC

Figure 5.17: Incremental Inputs - Efficient vs Integral Action Closed Loop MPC
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Fig. 5.18 provides the tracking performance for both MPC methods in the presence of faults, with-

out any reconfiguration. As displayed, the integral action MPC scheme does a very good job of

stabilizing the system once faults occur and ensuring that the CVs track the setpoints. This is be-

cause the optimization variable is ∆U rather than U , so in the event of faults, the states X̂ do not

deviate a large amount from their nominal values. Furthermore, this simulation reinforces the fact

that this MPC algorithm has implicit fault tolerant capability, as demonstrated in [11]. As long as

the faults are not severe and the resulting closed loop system is stable, the above holds true.

Figure 5.18: Tracking in Fault Conditions - Efficient vs Integral Action MPC

Looking at the efficient MPC results, the states deviate a large amount from their fault-free values

in Fig. 5.19. The values of X̂ go beyond the domain of the MPC optimization, and as a result u and

h never reach their setpoint value. This clearly indicates that the efficient MPC has a significantly

lesser degree of implicit fault tolerant capability and there should be a reconfiguration mechanism

present. Fig. 5.19 displays the results when the controller is reconfigured using 17. Both u, h reach

their setpoints without much delay. Note that after 12.0s, the LOE faults are still present at 65% for

δt and 55% for δe respectively.

Fig. 5.20 shows the performance of the moving average filter algorithm i.e. the filtered inputs for

both simulations. The moving average filter removes a lot of noise from the input signal, increasing

the accuracy of the calculation of f̂ . Lastly, Fig. 5.21 is the estimation of f̂ . The estimation is

accurate with a small delay (due to the value of Mv2). This indicates that the value for Mv2 should

not be too small as it will affect the accuracy, albeit not too large to increase the delay of the reported

value of f̂ .

60



Figure 5.19: Reconfiguration - Efficient MPC

Figure 5.20: Moving Average Filter Performance
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Figure 5.21: Fault Estimation - True vs. Estimated faults

5.2.3 Efficient vs. Integral Action MPC - Detailed Comparison

Looking at the simulation results from 5.2.2, Figures 5.15 and 5.16 provide a great comparison

of how both the MPC methods perform. Firstly, the simulation run time was about 180s for the

efficient MPC simulation and 1175s for the integral action MPC. This is inherently due to the larger

dimension for the latter method and it’s quadratic optimizer. In Fig. 5.15, the settling time for ∆u is

similar at ' 8.0s, along with very similar control inputs from δt, δe. This is because the prediction

horizons were carefully tuned to yield similar performance.

For the fault conditions in 5.18, the integral action MPC has a much better degree of stability

compared to the efficient MPC (without reconfiguration). The maximum observed tracking error

for the eMPC is as large as 210% at ( t = 14s), as for the iMPC, it does not exceed 35%. Furthermore

towards the end of the simulation (t = 25s+), the steady state error for the integral action MPC

converges towards zero, with minimal damping, while for the efficient MPC the controller has to be

reconfigured to reach zero.

In regards to the observer performance for both methods (Fig. 5.21), due to the tuning of the εi

parameter, the resulting accuracy is near identical for both methods. Note that the moving FFT

ratio window length (Mv) is identical for both methods, because the sampling time is 0.05s, 0.01s

respectively i.e (k = 32, k = 160) in Table 5.10. To conclude this simulation demonstrates that the

62



efficient MPC can yield similar results to the integral action MPC if it is tuned properly and recon-

figured in the presence of faults. However the reconfiguration does have limits as U is bounded, so

the integral action could potentially handle faults of a larger magnitude.

5.3 Closed Loop Guidance Design

5.3.1 Reduced Order Model - Integral Action vs. Efficient MPC

For this final simulation, the model used was the reduced order longitudinal and lateral dynamics

from 4.2.6. A closed loop guidance model was also developed where the aircraft was commanded

to follow a predefined trajectory. Both MPC methods were utilized. To begin, the CVs (control

loop setpoints) for the longitudinal and lateral model were Zlon = [VT θ]T and Zlat = [β φ]T

respectively. Table 5.11 displays the actuator constraints for this model.

Table 5.11: Actuator Constraints - Reduced Order Model

Actuator Constraints
Type Absolute Incremental (∆/s)

Thrust (δa
t ) −0.2 ≤ δt ≤ 0.8 −0.8 ≤ ∆(δt) ≤ 0.8

Elevator (δe) −0.4363 ≤ δe ≤ 0.4363 −1.04 ≤ ∆(δe) ≤ 1.04

Aileron (δa) −0.3752 ≤ δt ≤ 0.3752 −1.38 ≤ ∆(δt) ≤ 1.38

Rudder (δr) −0.4363 ≤ δe ≤ 0.4363 −2.08 ≤ ∆(δe) ≤ 2.08
aApproximate Value

Two separate simulations were performed. Section 5.3.2 describes the performance for tracking a

generic time varying setpoints in fault-free and fault conditions, and Section 5.3.3 describes results

where the aircraft is commanded to follow a trajectory. Parameters are shown in Table 5.12.

The parameters for the fault diagnosis observer discussed in 2.6 were set as follows:

Llon =



0.91 −0.11 −1.0 −0.065

−0.01 0.58 −0.0047 0.011

−0.095 −0.009 0.57 0.033

−0.00045 −0.14 0.0046 0.57
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Table 5.12: Integral Action and Efficient MPC Parameters

Parameter I-MPC E-MPC
Simulation 1 Simulation 2 Simulation 1 Simulation 2

dT (s) 0.05 0.01

Time (s) 80.0 50.0a, 190.0b 80.0 54.0a, 195.0b

∆(δt),∆(δe) 0.04, 0.052 0.008, 0.0104

∆(δa),∆(δr) 0.069, 0.104 0.0138, 0.0208

Nplon, Nclon (s) 0.45, 0.05 3.50, 0.01

Nplat, Nclat (s) 10.50, 0.00 2.20, 0.01

Qlon, Rlon diag(100, 900), diag(1, 1) diag(150, 150), diag(1, 0.1)

Qlat, Rlat diag(150, 150), diag(1, 1) diag(150, 150), diag(1, 0.1)

Mv,Mv2 k = 8, k = 32 k = 40, k = 160
aStraight Line Trajectory, bHelical Trajectory

Dlon =

0.9857 0.0005 0.0148 0.0015

0.0052 −0.0002 −0.0004 −0.008



Llat =



0.87 0.0027 −0.0073 −0.041

−0.027 0.89 0.043 0.0037

−1.1 9.2e− 4 0.8 0.045

0.34 4.4e− 4 −0.0084 0.87



Dlat =

 0.002 −0.0007 −0.0254 −0.0012

1e− 4 1e− 4 0.0043 −0.0024


ε1 = 0.075, ε2 = 350.0← Integral-Action MPC (Longitudinal)

ε1 = 150.0, ε2 = 1200.0← Integral-Action MPC (Lateral)

ε1 = 0.50, ε2 = 750.0← Efficient MPC (Longitudinal)

ε1 = 250.0, ε2 = 2050.0← Efficient MPC (Lateral)

The discrete time (z-plane) pole zero plot of the closed loop stable lateral and longitudinal model

for both methods is provided in Fig. 5.22. The longitudinal model is at the top and lateral is at

the bottom. Clearly, the closed loop system is stabilized with the selected prediction and control

horizons, along with the weight matrices in Table 5.12. In particular, the unstable or marginally

stable poles are brought back within the unit circle.
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Figure 5.22: Closed Loop Longitudinal and Lateral PZ Plot

5.3.2 Simulation 1 - MPC Performance

The objective of Simulation 1 was to determine the performance of the controller whilst tracking a

setpoint varying with time. Usually in autonomous flight control applications, the desired pitch and

roll (θ, φ) change with time and are calculated based on a reference trajectory. Tracking of Zlon in

fault free conditions is shown in Fig. 5.23.

Figure 5.23: Longitudinal Controller Performance - Fault Free

The setpoint for VT is changed as a function of θ. Note that these are incremental states, i.e. the

actual flight speed only varies between 150− 154m/s (the operating point is at 152m/s). Tracking
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for θ is good, with a small inherent time delay due to the constrained inputs and the prediction

horizon. Next, the tracking of Zlat in fault free conditions is shown in Fig. 5.24. The key objective

is to track φ as closely as possible whilst regulating β = 0, to minimize shear forces on the aircraft.

As the controller does a good job of tracking the roll angle, this will lead to a similar tracking

performance for the heading angle ψ, demonstrated in 5.3.3.

Figure 5.24: Lateral Controller Performance - Fault Free

In the interest of time, the inputs and incremental inputs are not shown for the fault free conditions

as all inputs met their operational constraints during all simulations. Next, the tracking for Zlon

and Zlat was re-evaluated whilst in the presence of faults. As explained in 3.3, the reconfiguration

is only done for the efficient MPC algorithm as the integral action MPC has a degree of implicit

fault tolerant capability. For Ulon, a 50% LOE was set for δt at the one-third point in the simulation

(efficient MPC) and a 50% LOE was set for δe at the halfway point in the simulation (integral action

MPC) . For Ulat, a 50% LOE was set for δa at the simulation halfway point. In all situations, the

closed loop MPC remains stable. Figs 5.25 and 5.26 show tracking performance for the longitudinal

and lateral controller respectively, in the presence of faults.

In Fig. 5.25, for the integral action MPC, since there is an LOE for δe, this has a big impact

on the tracking for θ as intuitively, the elevator directly controls the pitch angle of the aircraft.

Although the controller is compromised, it is still stable with θ remaining between its constraint of

−0.1 < θ < 0.1. As demonstrated by the simulation for the efficient MPC, the LOE for δt has
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Figure 5.25: Longitudinal Controller Performance - Faults

Figure 5.26: Lateral Controller Performance - Faults
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a large impact on VT . However unlike the previous situation, it does also have a little impact on

θ. In both cases, the CVs are still maintained within a specific range due to the reconfiguration

mechanism. In Fig. 5.26, as the aileron has the biggest impact on the roll angle φ, the resulting

performance is compromised. The performance for β is unaffected. However, the efficent MPC

does a better job of attempting to minimize the error as much as possible due to its reconfiguration

mechanism. Once again, the controller in the presence of faults is stable in both cases. Lastly,

the inputs and incremental inputs in the presence of faults are shown in Figs. 5.27 and 5.28 to

demonstrate that the observer works perfectly with correct estimation of Ûf−lon and Ûf−lat.

Figure 5.27: Longitudinal Inputs with Estimation

Figure 5.28: Lateral Inputs with Estimation

68



5.3.3 Simulation 2 - Closed Loop Guidance

The final simulation consisted of a complete closed loop guidance design using these decoupled

dynamics. A reference trajectory was pre-generated and then a closed loop guidance method was

used to generate the required attitude commands. The MPC controllers were part of the innermost

loop which converted the setpoints to the required actuator inputs. A block diagram is provided.

Figure 5.29: Guidance and Control Design Block Diagram
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The algorithm for the outer loop guidance simulation to calculate the setpoint commands for φ, VT , ψ, β

(combined longitudinal and lateral) is as follows (Algorithm 2). The outermost loops are two PID

loops which convert the error between the positions to the required roll, pitch and heading angles.

Hence this is a form of attitude control based on position, which is widely used in all aerospace

systems. A simple proportional (P) controller works well for the outer loop.

Algorithm 2 Closed Loop Guidance

Require: Xcmd, Ycmd, Zcmd . All waypoint coordinates
1: OP . Operating point vector (both lateral / longitudinal

Ensure: ∆T > 0, T > 0
2: k = 0
3: kf = T/∆T
4: for k = 0→ kf do . k is the time step
5: Xlon,k+1 = AXlon,k +BUlon,k . Longitudinal Simulation
6: Ylon,k+1 = CXlon,k

7: Xlat,k+1 = AXlat,k +BUlat,k . Lateral Simulation
8: Ylat,k+1 = CXlat,k

9: Estimate X̂lon, X̂lat from observer
10: Get positions Xtrue, Ztrue, Ztrue from OP,Xlon, Xlat . Use equations of motion
11: ez = Zcmd − Ztrue
12: ∆θcmd = Kz · fθ(ez) . Controller for ∆θ
13: ex = Xcmd −Xtrue

14: ey = Ycmd − Ytrue
15: ψcmd = atan2(ey, ex) . Function to get heading
16: eψ = ψcmd − ψ̂, ey = Ycmd − Ytrue
17: φcmd = Kxy · eψ . PID Controller for ∆ψ
18: |∆θ| ≤ 0.1rad and |∆φ| ≤ 0.5rad
19: βcmd = 0
20: ∆Vcmd = −20 ·∆θcmd
21: Send ∆θcmd,∆φcmd, βcmd,∆Vcmd to MPC controller
22: Obtain required Ulat,(k+1) = [δa δr]

T

23: Obtain required Ulon,(k+1) = [δT δe]
T

24: k = k + 1
25: end for

The P gain values were set toKz = ±−1 depending on the sign of ez andKxy = 1.15. Furthermore,

the required pitch attitude function fθ is:

fθ = acos

( √
e2
x + e2

y√
e2
x + e2

y + e2
z

)
(117)
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Two reference trajectories were defined, the first being a single waypoint defined at an arbitrary

XY Z position. The second trajectory is a discretized semi helical trajectory with the aircraft com-

manded to climb and then descend at the halfway point. Performance was evaluated in both fault

free and fault conditions. Once again in the interest of time, the actuator inputs will only be shown

for the fault conditions in the single waypoint simulation. The trajectory tracking performance for

the single waypoint in both fault free and fault conditions is shown in Figs. 5.30 and 5.31. In regards

to the faults, a 50% LOE was applied to δe, δa at the halfway point.

Figure 5.30: Single Waypoint - Fault Free Tracking

Figure 5.31: Single Waypoint - Tracking in the presence of faults
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Firstly, the aircraft deviates largely in the Y plane before getting closer to the target for both MPC

methods. This is because initially, ψ0 = 0, so the aircraft has to also turn around 20 degrees while

moving forward inX . To keep the MPC and QP stable, the roll angle φwas constrained to±0.5rad.

Hence, given this condition the resulting trajectory is acceptable. From the above, the results are

near identical for the fault conditions despite the faults occurring at t = T/2. This demonstrates

that at the halfway point, the longitudinal and lateral setpoints are far from their maximum value,

and hence the faults can be compensated for. To clearly illustrate, the CVs for the results in Fig.

5.31 are shown here.

Figure 5.32: Control Variables - Tracking in the presence of faults

As can be seen, for φ, θ when t ≥ 20s, their commanded values are around 0.05, 0.15rad respec-

tively, far from the limit of ±0.1,±0.5rad. In other words, the impact of the fault is minimal. This

emphasizes the fact that for best MPC performance, the setpoints must be kept away from their lim-

its as much as possible. Results for the semi helical flight trajectory (fault free and fault conditions)

are shown in Figs. 5.33 and 5.34. Once again, the initial setting was ψ0 = 0.

This time, the deviation in the Y position (ψ) is not as large at the beginning since the setpoint
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Figure 5.33: Helical Trajectory - Fault Free Tracking

Figure 5.34: Helical Trajectory - Tracking in the presence of faults
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change in φ small. By observing the results in Fig. 5.25, the reconfiguration mechanism of the

efficient MPC method works very well here, as the tracking performace for a circular trajectory is

orders of magnitude better than that for the integral action MPC, which fails to track the h and θ

correctly. Furthermore, in general the efficient MPC keeps the setpoints away from their max and

min limits. To emphasize this, Fig. 5.35 shows all CVs Zlon, Zlat. For the integral action MPC,

θ is pushed to its maximum constraint (−0.1rad), and the fault in δe leads to a large steady state

tracking error. This then significantly affects the resulting height, leading in the aircraft failing to

track the required helix trajectory altitude. The reconfiguration mechanism plus the fact that the

eMPC has a less overall steady state error in the presence of faults, leads to near perfect tracking of

θ, leading to the aircraft tracking the helix correctly. Another point to note; the roll angle φ is not

as severely affected from the fault in δa, which corresponds to the heading angle ψ being minimally

affected throughout the flight, using both MPC methods.

Figure 5.35: Control Variables - Tracking in the presence of faults

Fig. 5.36 shows all the inputs in the presence of faults. This is for the single waypoint tracking

flight. The observer and QP work as expected with the constraint met, and correct estimation of
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Ûf−lon and Ûf−lat.

Figure 5.36: Inputs - Presence of faults

5.3.4 FlightGear Visualization

Lastly, a flight simulation is performed by using Matlab, Simulink, and FlightGear, a free open

source flight simulator. The aircraft states and position / velocities were extracted from Python

and imported into Matlab via a csv file. Then, a Simulink model was developed and connected

to FlightGear. Specialized blocks within the Aerospace Toolbox in Matlab automatically convert

position into latitude and longitude. Once that is done, a nice looking 3D animation can then be

viewed by the user! Fig. 5.37 shows a portion of the block diagram in Simulink and Fig. 5.38 is the

animation viewed in FlightGear.
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Figure 5.37: Simulink Block Diagram

Figure 5.38: FlightGear Simulator
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Chapter 6

Conclusion and Future Work

This study demonstrated the promising use of Model Predictive Control techniques with integrated

Fault Detection, Diagnosis and Reconfiguration for multivariable systems with limited on-board

capacity, such as aircraft and potentially systems like cars and boats, and builds upon the work

performed by previous researchers at the Diagnosis, Flight Control and Simulation / Networked

Autonomous Vehicles Lab at Concordia University. Due to the fact that real life operational con-

straints are always present on any system, it is key to develop the control system in a way that these

limitations are considered, which then makes it very easy to then implement the algorithms onto the

system motherboard, flight computer etc. This is the primary reason why Model Predictive Control

is now making its way from the process control industry to other sectors such as aviation and self-

driving cars. This study focused on applying the novel FDD based MPC methods for fixed-wing

aircraft as they are a very good practical example of a constrained multivariable system with on-

board computational limitations, prone to actuator faults. The open source F-16 models provided

were of great use to test the developed MPC algorithms on.

Chapter 1 of this study provided a brief introduction to multivariable constrained systems in an en-

gineering context. Chapter 2 described the two MPC algorithms (Efficient and Integral Action) in

great detail. Chapter 3 provided the algorithms for the Fault Detection and Diagnosis method. It can

be clearly seen that the observer based method proves superior to other more complex algorithms.

It can be easily implemented on a microcontroller as part of the overall MPC architecture. The

next two chapters provided the models of fixed wing flight dynamics and successful performance of
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the proposed methods through simulations. The contributions of this study are highlighted through

the simultaneous (on-line) use of the fault detection algorithms with MPC, and applying these algo-

rithms on flight control design of fixed wing aircraft. The appendices contain detailed description of

the novel constrained QP program along with the QP solvers used. Future potential work involves:

(1) Implementing these algorithms on hardware platforms to further study the performance and/or

any extra limitations which may arise onboard.

(2) Using these methods for Linear Time Varying (LTV) systems, where the system matrices

change in real time. This would require developing additional methods to ensure that on each

time step, the closed loop MPC stays stable (both nominal and in the presence of faults).

(3) Implementing faster and more efficient QP algorithms specific to MPC purposes, knowing

that Quadratic Programming is used in multiple engineering fields such as machine learning

etc.

(4) Developing model reference adaptive MPC algorithms where if there is a sudden change in

the system, the controller can react and match its nominal performance.
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Appendix A

Constrained Quadratic Optimization

A.1 Overview

The field of optimization is widely used in engineering and finance, and it is the process for finding

the solution of a variable which either maximizes or minimizes an objective (or cost) function,

which may or may not be constrained. A simple example could be calculating the optimum amount

of fuel required for maximum range whilst simultaneously minimizing the overall weight of the

vehicle. In Quadratic Optimization, this cost function is quadratic and the general notation is:

(min
x

)f(x) =
1

2
xTQx+ bTx −→ Fx ≤ G (118)

In (118), the decision variable is a vector x ∈ Rn, Q is a positive definite matrix (Q ∈ Rn×n, Q >

0), If there are p constraints, then they are represented in the form Fx ≤ G, whereG ∈ Rp, contains

the numerical values of the constraints, and F maps these constraints i.e. F ∈ Rp×n. Note that Q

must be positive definite because only then will this objective function be convex, and a minimum

solution can be found. An example of the constraint model is already demonstrated in 2.5.

A.2 QP Development - Efficient MPC

This section describes the novel constrained Quadratic Program developed for the efficient MPC

method in [19]. Firstly, the cost function and the constraint model is provided within (2.3). To recap
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the objective is to minimize the cost function:

(min
U

)J = UTHU + 2fTU + ETQE −→MU < γ (119)

The task is to now convert this cost function along with the constraints into a dual problem. This is

done using the well known Primal Dual procedure, where the primal problem (above) is converted

in to an equivalent Dual Problem in terms of the Lagrange Multiplier (λ). This is part of the Duality

Principle, a key concept in optimization theory. To begin, using (119), the Lagrangian for the primal

problem can be formed as:

L(U, λ) = UTHU + (2fT + λTM)U + ETQE − λTγ (120)

Next, by setting ∂L/∂U = 0 and ∂L/∂λ = 0 the optimum solutions U∗ and λ∗ are obtained as:

U∗ = −H−1(f + 0.5MTλ) (121)

λ∗ = −2[MH−1MT ]−1γ − 2[MH−1MT ]−1(MH−1)f (122)

Then by substituting (121) into (120) and knowing the fact that H = HT ∴ H−1 = (H−1)T =

(HT )−1, one can obtain:

(min
U

)J = −fTH−1f − fTH−1MTλ

− 0.25λTMH−1MTλ− λTγ + ETQE

=
−1

2
λT [0.5(MH−1MT )]λ

− λT (MH−1f + γ)− fTH−1f + ETQE

(123)

Next, defining a matrix W ∈ R(4m)×(4m) and a vector Z ∈ R4m as:

W , 0.5(MH−1MT ) (124)

Z ,MH−1f + γ (125)
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The dual problem in terms of λ can then be written as:

(max
λ≥0

)q =
−1

2
λTWλ− λTZ − fTH−1f + ETQE (126)

This is now another QP problem with λ as the decision variable, and H,H−1 are both positive

definite. The matrix W is positive semidefinite. This will be the case even if M does not have full

column rank. Alternatively, the Dual Problem can also be expressed as:

(min
λ≥0

)q =
1

2
λTWλ+ λTZ + fTH−1f − ETQE (127)

Here, fTH−1f and ETQE are > 0.

It has been well established that the dual problem is a convex optimization problem regardless of the

convexity of the primal problem. In order to ensure that the primal and dual problem are equivalent,

setting ∂q/∂λ = 0, results in the optimum solution as: λ∗ = −W−1γ −W−1(MH−1)f , and after

substituting (124) and (125), this equals the optimum λ∗ obtained for the primal problem, i.e. (122).

Remark : The scalars ETQE and fTH−1f can be dropped without loss of generality, since they

do not have an impact on the optimal solutions for U and λ.

A.3 QP Program - Integral Action MPC

This section describes the Quadratic Program for the Integral-Action MPC method. In the literature,

the cost function is slightly different, and the primal dual procedure is provided in detail in [21].

However for this study, the cost function was changed to match with the previous method. Hence,

the Primal Dual procedure for this is almost identical, and will be highlighted here. Note that a

slight change of the cost function does not affect the end result, i.e as long as H is positive definite

and the Dual problem is equivalent to the Primal problem, a solution can be found. Firstly, as a

recap from 30, the objective is to:

(min
∆U

)J = ∆UTH∆U + 2f̄TU + ET Q̄E −→ M̄∆U ≤ γ̄ (128)
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Going through the same steps from (120) to (123), the terms forW and Z can be obtained, this time

they will be called W̄ and Z̄ to differentiate. Here, W̄ = R(4m·Nc)×(4m·Nc) and Z̄ = R4m·Nc .

W̄ , 0.5(M̄H−1M̄T ) (129)

Z̄ , M̄H−1f̄ + γ̄ (130)

The Dual Problem then becomes:

(min
λ≥0

)q =
1

2
λT W̄λ+ λT Z̄ + f̄TH−1f̄ − ET Q̄E (131)

A.4 Activating a QP Solver

Once the Dual Problem is obtained (in terms of λ), the objective is to now solve for the optimum λ,

and then the optimal input U or ∆U can be calculated. A graphical representation is shown in A.1.

Hence, the terms W/W̄ can be defined beforehand. However since γ/γ̄ is updated on each time

step, Z/Z̄ has to be updated as well. Note that dim(λ) = dim(γ) = dim(γ̄)

Figure A.1: Activating the Quadratic Programming Solver - Flowchart
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Appendix B

Quadratic Programming Solvers

B.1 Basic Information

From the Dual Problem, the goal is to now solve for the optimum Lagrange multiplier λ∗. The

generic algorithm for a QP solver works as follows. For convenience, W,Z,U will be shown,

however it’s the identical process for W̄ , Z̄,∆U :

Algorithm 3 Generic QP Solver
1: if MUu > γ then

Require: W,Z
Require: v = 0 . Number of Iterations
Require: λv=0, ev=0 . Initial Lagrange multiplier and error
Require: c ' 0, c > 0 . Error Convergence term
Ensure: ev=0 > 0.1 . Initial error - program stops when e ' 0

2: while ev > c do
3: Get λv+1

4: e = λv+1 − λj
5: v = v + 1 . Update λ, error term and iterations
6: end while
7: return λv ← λ∗ . This is the optimal λ
8: end if
9: Get Uc from λv . Get the optimal input

Algorithm 3 provides the generic model of a QP Solver. The error convergence term c should be

set very close to zero. For instance c = 1e − 6 works well. It should not be set too low otherwise

the number of iterations required will increase and there will be more delay. During each iteration
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of the solver loop, the λ is calculated and error is compared. Eventually, provided that W ≥ 0 and

the problem is feasible the QP converges where (λv+1 − λv) ≤ c. There are several algorithms

to calculate λ, however this study focused on the Hildeth’s Quadratic Programming Procedure and

the Parallel Quadratic Programming Procedure. In both these methods, each component λi, ∀i ∈

dim(λ) is solved for. Note that dim(λ) = dim(Z) or dim(Z̄). This leads to the conclusion that for

the efficient MPC,max(dim(Z)) = 4m since the control horizon is unity. However for the integral

action MPC, max(dim(Z̄)) = 4m · Nc, and since Nc > 1, it would take several times longer for

the QP solver to obtain the optimum λ. This is why the efficient MPC algorithm is so useful for

aircraft as the time delay is minimized!

B.2 Hildreth’s Quadratic Programming Method

For convenience, W,Z will be shown, however it’s the same idea for W̄ , Z̄.

The Hildreth’s QP procedure is a well known method and has been used for decades [12]. It relies

on active set methods to get the optimum λ. During each step, λ is varied one at a time and is

adjusted to minimize the objective function (i.e the Dual Problem). However, if the value of λ

needed to minimize the Dual Problem is ≤ 0, then that component of λ is set to zero. The HQP

method relies on an element-by-element search and does not require matrix inversion. The optimum

λ vector contains λi = 0 for active constraints, and λi > 0 for inactive constraints. Considering one

complete cycle (v is the number of iterations), the method is:

λv+1
i = max(0, wv+1

i ) (132)

wv+1
i → − 1

hii

[
ki +

i−1∑
j=1

hijλ
v+1
j +

n∑
j=i+1

hijλ
v
j

]
(133)

In (133), the terms hij , ki are given as:

hi,j = Wi,j (134)

ki = Zi (135)
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Notice how wv+1
i = f(λvj , λ

v+1
j ), i.e it depends on λ at the current and the next iteration. The

strong benefit of the HQP algorithm is that it takes a very small amount of iterations to converge

as shown in 5.1.1, however it does involve a maximum search which may take time especially for

higher order systems, or if dim(λ) is very large.

The HQP algorithm is presented in Algorithm 4:

Algorithm 4 HQP Solver
Require: W,Z
Require: r = dim(Z)
Require: λ = 0r, e > 0

1: while e > 1e− 6 do
2: λo = deepcopy(λ)
3: for i = r do
4: w = W [i]λ−Wi,iλi + Zi
5: w = −w/Wi,i

6: λi = max(0, w)
7: end for
8: e = (λ− λo)T (λ− λo)
9: end while

10: λ∗ = λ
11: return λ∗

For a Quadratic Programming solver, it is best to use the simplest solver which provides the solution

in the fastest amount of time. For real time embedded applications such as control theory and MPC,

the Parallel Quadratic Programming method is superior, and will be explained next.

B.3 Parallel Quadratic Programming Method

The Parallel Quadratic Programming (PQP) procedure was first developed at Mitsubishi Electric

Research Laboratories (MERL). Instead of a maximum search, this algorithm uses a simple iterative

multiplication process to get the optimum λ. This means that only a single equation is needed, and

several terms can be defined beforehand to save time. The update law is given by:

λi = λi

[Z−i + (W−λ)i

Z+
i + (W+λ)i

]
(136)

The PQP algorithm is presented here as follows: Note that the max operator is taken elementwise.
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Algorithm 5 PQP Solver

Require: Z−i = max(−Z, 0), Z+
i = max(Z, 0)

Require: r = 0dim(Z)

Require: W− = max(−W, 0) + diag(r)
Require: W+ = max(W, 0) + diag(r)
Require: λ > 0, e > 0

1: while e > 1e− 6 do
2: λo = deepcopy(λ)
3: for i = 1 : dim(r) do

4: λi = λi

[Z−i + (W−λ)i

Z+
i + (W+λ)i

]
5: end for
6: e = (λ− λo)T (λ− λo)
7: end while
8: λ∗ = λ
9: return λ∗

The vector r is chosen such that ∀i,Wii + ri > 0. Choosing the smallest r possible reduces the

number of iterations for convergence. In order for convergence, the initial guess value for the PQP

algorithm must be λj=0 > 0.

B.4 HQP vs PQP - Performance

Fig. B.1 shows the number of iterations of the HQP vs PQP algorithm to converge.

Figure B.1: Number of Iterations - HQP (left) vs PQP (right)
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The iterations for Fig. B.1 were taken from the single waypoint trajectory simulation described in

5.3.3. In addition, it was for the integral action MPC algorithm without faults present. The following

conclusions can hence be drawn:

• As the setpoints for the heading and roll angles (ψcmd, φcmd) were large, this resulted in a

large error (E), hence it intuitively took longer for the lateral MPC controller to calculate the

optimal constrained ∆Ulat for both the HQP and PQP cases.

• Eventually, as ψcmd− ψ̂ → 0, i.e the error approaching zero, the number of iterations reduced

from 100, 600 respectively to zero at k ' 100 or t ' 100 · 0.05 = 2.0s

• The longitudinal setpoint for θ, VT was not large (it’s constrained at |θ| ≤ 0.1rad. Hence,

it does not take a lot of iterations for the longitudinal MPC controller calculate the optimal

constrained ∆Ulon.

• It takes approximately 5.5-6 times more iterations for the PQP vs. the HQP algorithm.

Future work will be required to experimentally verify the overall time taken for each of these algo-

rithms when they are implemented in low level format, on hardware. Conclusively, both algorithms

produce the same result and are very stable, thus making it ideal for real time applications including

but not limited to Model Predictive Control.
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