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Abstract: Molecular p-doping allows increasing the conductivity of organic semiconduc-

tors, which is regularly exploited in thermoelectric devices. Upon doping, integer and

fractional charge transfer have been identified as the two competing mechanisms to occur,

where the former is desired to promote the generation of mobile holes in the semiconduc-

tor host. In general, high dopant electron affinity is expected to promote integer charge

transfer, while strong coupling between the frontier molecular orbitals of dopant and host

promotes fractional charge transfer instead. Here, we investigate the role the width of

the density of states (DOS) plays in the doping process by doping the conjugated poly-

mer poly(3-hexylthiophene) (P3HT) with tetracyanoquinodimethane (TCNQ) derivatives

of different electron affinities at 2% dopant ratio. Cyclic voltammetry confirms that only

the electron affinity of F4TCNQ exceeds the ionization energy of P3HT, while TCNQ

and FTCNQ turn out to have significantly lower but essentially identical electron affinities.

From infrared spectroscopy we learn, however, that ca. 88% of FTCNQ is ionized while all

of TCNQ is not. This translates into P3HT conductivities that are increased for F4TCNQ

and FTCNQ doping, but surprisingly even reduced for TCNQ doping. To understand the

remarkable discrepancy between TCNQ and FTCNQ we calculated the percentage of ion-

ized dopants and the hole densities in the P3HT matrix resulting from varied widths of

the P3HT HOMO-DOS via a semi-classical computational approach. We find that broad-

ening of the DOS can yield the expected ionization percentages only if the dopants have

significantly different tendencies to cause energetic disorder in the host matrix. In particu-

lar, while for TCNQ the doping behavior is well reproduced if the recently reported width

of the P3HT HOMO-DOS is used, it must be broadened by almost one order of magni-

tude to comply with the ionization ratio determined for FTCNQ. Possible reasons for this

discrepancy lie in the presence of a permanent dipole in FTCNQ, which highlights that

electron affinities alone are not sufficient to define the strength of molecular dopants and

their capability to perform integer charge transfer with organic semiconductors.
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Thermoelectric organic-semiconductor (OSC) devices are of particular interest because they

are based on cheap constituents from abundant elements, provide large-area scalability and pro-

cessability at low temperatures, and exhibit superior mechanical flexibility as compared to their

inorganic counterparts.1–3 Conjugated polymers are promising in this field as they exhibit low ther-

mal conductivities while molecular doping can be used to achieve high electrical conductivities,

and both properties are key for thermoelectric applications because they promote the thermoelec-

tric figure of merit (ZT ).2,4–8 In a simplified view of the fundamental processes at work in the

molecular p-doping of OSCs, the dopant molecule, typically a strong electron acceptor, receives

an electron from the surrounding OSC host and thus populates it with holes as potentially mobile

charge carriers. Energetically, this requires the electron affinity of the dopant (EA) to exceed the

ionization energy of the OSC host material (IE). This process is commonly referred to as integer-

charge transfer (ICT) or ion-pair formation in literature and has been found to stand in competition

with fractional charge transfer (FCT), which happens through the formation of supramolecular

ground state charge-transfer complexes between the OSC and dopant species.9–11 We note that

the designation of these two competing processes is not always consistent in pertinent literature,

where (spatially separated) ion-pairs and charge-transfer complexes are sometimes being used as

synonymous for ICT and FCT, respectively. In the following we use ICT and FCT to address the

question as to whether integer charge is being transferred or not. The parameters favoring one

process over the other are still under debate and gaining control over FCT is of high application-

related relevance. In principle, suppressing FCT is desired to maximize the doping efficiency,11

while, in turn, the presence of a moderate fraction of FCT has recently been found beneficial for

maintaining the performance of thermoelectric devices over time.5,6

Notably, although FCT does not entail immediate ionization, significant increases in conduc-

tivity have been reported for this scenario as well.9–11 The necessary precondition for FCT is the

overlap between the highest occupied molecular orbital (HOMO) of the OSC and the lowest unoc-

cupied molecular orbital (LUMO) of the p-dopant, which results in intermolecular rehybridization.

This leads to an energy level splitting into a doubly occupied bonding, and an empty anti-bonding

orbital in the FCT complex (i.e. the dopant-OSC pair performing FCT). The latter orbital is the

LUMO of the complex and exhibits an electron affinity EACPX lower than that of the pristine p-

dopant, which makes the complex a weaker electron acceptor than the pristine (non-hybridized)

dopant species.11,12 This view is not least based on the inherent disorder inferred by the weak

non-covalent interaction of organic molecules in the solid state. It entails that the density of
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states (DOS) follows a Gaussian distribution with a non-zero probability of finding states deep

in-between the ground-state HOMO and LUMO, which is in marked contrast to the sharp cut-off

at the band edges in inorganic semiconductors.13 Then, the tail of the semiconductor HOMO-DOS

can still experience ionization due to the disorder-governed width of the Gaussian DOS and (po-

tentially) mobile holes can be generated in this scenario as well, albeit to limited extent. This

is likely the same reason as to why also weak p-dopants of EA < IE can still directly generate

holes in the OSC via ICT and increase the OSC conductivity, however, less efficiently than for

EA ≥ IE. Knowing the limits of charge transfer in one and the other scenario is of practical

importance as it can promote the use of weaker dopants whose decreased reactivity can lead to

higher environmental stability of OSC devices.14 In that regard, the OSC poly(3-hexylthiophene)

(P3HT) p-doped with tetrafluorotetracyanoquinodimethane (F4TCNQ) has been widely investi-

gated as it was found that both ICT and FCT can occur under some circumstances,5–7,15–17 and

that regio-random (rra) P3HT is more prone to FCT than its regio-regular (rr) variety16 which has

been ascribed to a higher IE.18 However, (semi)crystalline rr-P3HT and amorphous rra-P3HT are

structurally and energetically only comparable to a limited extent, in particular if we assume that

disorder may play a crucial role in the doping process. Therefore, structurally more similar OSCs

of different IE, or such dopants of different EA, are required to elaborate the role of EA and IE.

In the present study, we probe the prevalence of FCT versus ICT for rr-P3HT by using dopants

of different EA at an application-relevant low molar ratio of 2%. This is done for thin films

by using 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its derivatives of increasing degree of

fluorination (FxTCNQ with x = 0,1,4) with increasing EA.19 We are particularly interested in

this system as, only recently, a very narrow HOMO-DOS of only 63 meV (Gaussian standard

deviation σ ) has been reported for rr-P3HT by using energy resolved–electrochemical impedance

spectroscopy by the groups of Bässler and Köhler,20 which is at least four times narrower than

that inferred from photoemission. By combining cyclic voltammetry (CV), Fourier-transform

infrared spectroscopy (FTIR), conductivity measurements on thin films with theoretical modeling

on a semi-classical level, we investigate the interplay between the width of the HOMO-DOS and

doping-related charge transfer and show that EA > IE is not a strict condition for ICT in p-type

doping. Rather, we argue that doping-related microstructural changes induce a broadening of

the DOS which must be considered alongside the common EA-IE relation in order to assess the

doping efficiency.
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FIG. 1. Ionization energy (IE) of rr-P3HT and electron affinity (EA) of F4TCNQ, FTCNQ, and TCNQ,

as determined by cyclic voltammetry (CV; voltammograms in Supplementary Material Fig. S1). For each

material both the binding energy for electrons (in eV) is given versus the vacuum level (left value) together

with the according potential (in V) versus ferrocene/ferrocenium (Fc/Fc+) (right value). Gaussian curves in

the background symbolize the density of states (DOS) of the P3HT HOMO (grey) and the dopant LUMO

(filled white-transparent) plotted with σ of 63 meV for P3HT20 and 50 meV for the dopants.

As thoroughly investigated in a recent publication by Wegner et al. (Ref. 21) CV-derived redox

potentials Vredox of dopant and host materials offer a reliable resource for the prediction of ICT;

our CV results are depicted in Fig. 1. For TCNQ, FTCNQ, and F4TCNQ we find an EA (V LUMO
redox

versus ferrocene/ferrocenium (Fc/Fc+)) of 4.91 eV (−0.19 V), 4.97 eV (−0.13 V), and 5.31 eV

(0.21 V), respectively, and an IE (V HOMO
redox ) of 5.21 eV (0.11 V) for P3HT in the solid state (thin

film on ITO). Compared to literature values for the dopants21 as well as for P3HT22 (where Fc/Fc+

has been used as an external standard as well), our Vredox values are in agreement within ±0.1 V,

which is in the expected error margin of energy levels derived from CV;23 see the Supplementary

Material for plots and details of the data treatment. Strictly following the precondition EA > IE

for ICT these results would predict ICT to occur with F4TCNQ only. As the EA values of TCNQ

and FTCNQ lie few hundred meV below the IE of the host, these two dopant species appear well

suited to probe the role of the tailing of the Gaussian HOMO-DOS of P3HT in the doping process.

To quantify the occurrence of ICT we examine the dopant responses in FTIR absorbance for

drop-cast films of P3HT doped with FxTCNQ from common solution. We thereby exploit that

some vibrational modes of TCNQ derivatives undergo a softening which can be related to the de-

gree of charge transfer δ .5–7,10,11,15,16,24–28 Especially, the C≡N stretch modes from the FxTCNQ
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FIG. 2. FTIR spectra of rr-P3HT thin films doped with F4TCNQ, FTCNQ, and TCNQ at 2% dopant molar

ratio (solid lines) and the according pristine compounds (dashed lines); range is focused on C≡N stretch

modes of the dopants (full range in Supplementary Material Fig. S2); normalized to the highest absorbance

within the range. Rings (◦) mark the peaks of neutral dopant species at ν0, bars (|) mark their anions at ν1,

and asterisks (∗) dopants undergoing fractional charge transfer.

series (occurring around 2200 cm−1) offer unambiguous insights into the charged state of the

dopant without masking by vibrational modes of P3HT (see black curve in Fig. 2). With the

wavenumbers ν0 of the neutral dopant (δ = 0) and ν1 of its anion (δ = 1) known from alkali

salts, the displacement ∆ν from the neutral position is correlated to the degree of charge transfer

δ = 2∆ν/ν0
(

1−ν2
1/ν2

0

)−1
.25Values of ν0 = 2227cm−1 and ν1 = 2194cm−1 have been reported

for F4TCNQ,26 and ν0 = 2227cm−1, ν1 = 2183cm−1 for TCNQ;24 as the F4TCNQ and TCNQ

ν0-positions coincide, it is reasonable to expect a similar value for FTCNQ as well. In our data we

find the respective positions of the pristine dopant C≡N stretch modes in good agreement (Fig. 2)

at 2228, 2224, and 2225 cm−1 for F4TCNQ, FTCNQ, and TCNQ, respectively. For the doped

P3HT films, the sample with F4TCNQ (red curve) exclusively shows ICT features as it has been

reported before,26 with its main band in line with the expected ν1 value. Notably, the FTCNQ-

doped film (green curve) shows strong vibrational modes highly similar to the ICT-related features

found for F4TCNQ. Here, the dominant peak is found at 2180 cm−1 which we assign to ν1 for

its proximity to the respective value reported for TCNQ.24 At the expected ICT position for the

latter (blue curve), however, we observe no indication of a ν1 peak above background noise. The

dominant mode in TCNQ and the much weaker mode in FTCNQ close-by which lie in-between
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FIG. 3. Ionized dopant content in P3HT doped with F4TCNQ, FTCNQ, and TCNQ at 2% dopant molar

ratio as calculated for varied widths (standard deviations) of the P3HT HOMO-DOS (solid lines) while

keeping the width of the dopant DOS fixed (see text); dashed lines mark the ionization percentages as

expected from the integrated absorbances in Fig. 2.

the ν0 and ν1 are assigned to the dopants in a FCT complex, which is in analogy to our previous

findings for quaterthiophene.10 The peak positions around 2208 cm−1 (FTCNQ) and 2214 cm−1

(TCNQ) translate into δ values 0.36 and 0.27, respectively, while F4TCNQ does not show indi-

cations of FCT whatsoever. Since for FCT the value of δ correlates with the interaction strength,

these data for FTCNQ versus TCNQ suggest that not only is the ICT fraction higher for dopants

with increased EA, but also the dopant-host interaction is stronger.

It is surprising though that with the EA of FTCNQ being over 0.2 eV lower than the IE of

P3HT, the majority of the FTCNQ dopants reside ionized in the polymer matrix, which clearly

violates the strict criterion EA > IE for ICT. Therefore, we assume doping-induced disorder to

cause significant broadening of the P3HT HOMO-DOS which enables ICT, an assumption which

we investigate in the following by semi-classical modeling. Our calculations are based on the

assumption that the HOMO/LUMO DOS are well represented by Gaussian distributions, as il-

lustrated in Fig. 1.20,29 The distribution centers of the P3HT HOMO and the dopant LUMO as

the most relevant energy levels are deduced from our experimental IE and EA values, as derived

from CV. The distribution onsets then lie off the center by twice the standard deviation σ which

has been determined for pristine P3HT in a recent study by Bässler et al. to 63 meV20 (for more

details, see Methods in the Supplementary Material). We further used molecular volume densities

taken from the single-crystal structures of P3HT and the FxTCNQ series.30–32 In our calculations,
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the Fermi level in each system as well as the occupancy of the relevant energy levels (HOMO and

LUMO of both the dopants and the host) are then determined by imposing overall charge neutral-

ity. This condition is achieved recursively through the self-consistent solution of the discretized

Poisson equation, following the procedure originally described by Oehzelt et al. (Ref. 29) and

also detailed in Refs. 10, 11, 33, and 34. We then explored the role of the DOS broadening of

the P3HT host by performing these calculations for each P3HT-dopant combination with σ val-

ues for the P3HT DOS ranging from 0.05 to 0.5 eV; σ for the dopant LUMO DOS was thereby

held constant at the lowest value of 0.05 eV, thus essentially assuming all the broadening occurs

in the P3HT DOS. This approach stands in contrast to recent investigations on the facilitation of

charge separation between dopant and host through Gaussian broadening. There, both donor and

acceptor were small molecules and, therefore, equal broadening was assumed for the DOS prior

to doping, as well as for the DOS of the resulting charge-transfer states.35,36 We stress that, rather

than for practical purposes, our approach is based on the argument that small dopant molecules

such as FxTCNQ will incur only limited geometrical disorder due to their rigid structure, which

is in marked contrast to a polymer such as P3HT which can undergo a plethora of conformational

changes37 and where geometrical disorder is a leading cause of DOS broadening. Still however,

the local polarizable environment of the dopant in the blend with the OSC will impact the width

of the DOS, e.g., if it is randomly distributed in the alkyl-chain region of P3HT or packed with the

polymer backbone. For the low doping concentration of 2% as we target in the present work, this

aspect is very difficult to quantify experimentally, e.g., by scattering techniques. The percentages

of ionized dopants resulting from our modeling are plotted in Fig. 3 alongside the respective values

estimated from the FTIR spectra in Fig. 2 (horizontal dashed lines), which have been derived from

ratios between the integrated absorbance in the C≡N stretch mode associated with ICT and the

total absorbance.

Generally, we observe that both increased σ and stronger dopants yield higher ionization per-

centages. The fact that the modeling of F4TCNQ-doping does not reach 100% is expected because

our computational approach focuses on the broadening of the host HOMO-DOS. Since the EA of

F4TCNQ is higher than the IE of P3HT, it likely experiences ionization by the next-deeper occu-

pied levels of P3HT as well, which is in line with the shape and position of the occupied states re-

ported in literature,20 and the landscape of the oxidation states in our P3HT cyclic-voltammogram

(Supplementary Material Fig. S1), where the next-to-HOMO peak follows within 0.2 eV. Most no-

tably, while the reported σ = 63 meV of pristine P3HT,20 yields <3% ionization for the FTCNQ-
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doped sample, the experimentally observed 88% are only met around σ = 450 meV. At the same

σ value, in turn, TCNQ would be expected to exhibit 85% ionization, however, our experimental

data tends towards 0%. Again using the pristine-P3HT σ value of 63 meV provides here, indeed,

negligible TCNQ ionization of <1%, in line with the experiment. Thus, in contrast to TCNQ, the

width of the P3HT HOMO-DOS appears to be significantly altered by the presence of FTCNQ.

Our assumption of negligible broadening of the dopant DOS alongside the greater geometrical

disorder expected in the polymer might be the reason why our broadening far surpasses the up

to 263 meV considered in recent investigations on the facilitation of charge separation between

small-molecule acceptors and donors,35,36 as explained in the previous paragraph.

EA-wise only less than 0.1 eV weaker than FTCNQ, TCNQ thus seems to draw a limit for

ICT with P3HT. FCT clearly demands π-π stacking of P3HT and the dopant, hence, reducing

disorder and forming even a crystalline lattice.15 For ICT, it is known that P3HT-F4TCNQ pairs

can already form in mixed solution,38 which lets these “first” active dopants encounter a different

energy landscape than those acting upon transition to the solid state. Thus, we hypothesize that

the discrepancy between FTCNQ and TCNQ might well originate in a self-amplifying effect. In

general, there must be a threshold in energy where the dopant EA is close enough to the host IE

for initial ionization sufficient to cause effective DOS broadening which, as a result, provides even

more accessible states for ionization. For P3HT doped with FTCNQ and TCNQ such a threshold

lying between their respective EA values would explain their remarkably different doping behav-

ior. For ICT, the distribution of the dopant molecules in the hexyl sidechain region of P3HT has

been reported to be crucial for F4TCNQ and ionized dopants have been suggested to pack also

with the polymer backbone.39,40 Thus, P3HT-FxTCNQ systems undergoing ICT have more mi-

crostates to mutually arrange than systems performing FCT, hence, such systems can be expected

to exhibit more structural disorder. This effect is likely further promoted by a broadening of the

dopant LUMO-DOS in the case of ICT, where dopant dispersion in the alkyl chain region provides

a complex polarizable environment for the dopant (also in its ground state).20 As deduced from

density functional theory (DFT) calculations (see Supplementary Material for methodology,41,42)

TCNQ and F4TCNQ both have a negligible dipole moment (<0.001 D, residual due to the accu-

racy of the method), while FTCNQ carries a significant dipole of 0.908 D. Thus, the presence of

a net permanent dipole due to the sole C-F bond makes this species special and even more sus-

ceptible to polarization-driven DOS broadening. Recently, dopants with strong quadrupole and

dipole moments have also been identified to improve charge separation.35,36 A further relevant ef-
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FIG. 4. (a) Conductivity of P3HT pure and doped with F4TCNQ, FTCNQ, and TCNQ at 2% dopant molar

ratio. (b) Charge-carrier density (holes) as calculated for varied widths (standard deviations) of the P3HT

HOMO-DOS. Dashed lines mark the DOS width that provides the same ionization percentage as deduced

from the FTIR data (Fig. 3), and the corresponding hole density.

fect might be added by the reduced symmetry of FTCNQ which effectively induces more disorder

than TCNQ (or F4TCNQ, for that matter) for exhibiting only one instead of three planes of sym-

metry, thus, yielding more possibilities of distinguishable spatial arrangements. In turn, this might

promote regular packing of TCNQ with the polymer backbone and, thus, exclusive FCT-complex

formation in this case, as we observe experimentally.

Being aware that ICT does not automatically imply the generated charge carriers to be mo-

bile, we chose electrical conductivity of spin-cast P3HT:FxTCNQ thin films (on patterned ITO

electrode structures on glass) as an application-directed indicator for the impact of FCT and ICT.

As shown in Fig. 4 (a), 2% of F4TCNQ-doping provides an increase of more than three orders

of magnitude, from (5.59 ± 0.49)10−6 S ·cm−1 for pristine P3HT to (1.08 ± 0.64)10−2 S ·cm−1.

For FTCNQ, the conductivity only increases to (3.4 ± 1.9)10−4 S ·cm−1 and TCNQ even brings a

significant reduction to (1.18 ± 0.43)10−6 S · cm−1. Alongside, we calculated the doping-related

charge-carrier (hole) densities for varied P3HT HOMO-DOS widths (Fig. 4 (b)). (Note that our

calculations cannot discriminate between mobile holes and those trapped at the dopant site.) While

hole densities for TCNQ and FTCNQ doping increase over two orders of magnitude within the

investigated σ range of the P3HT HOMO-DOS, F4TCNQ-doped P3HT is virtually unaffected in

this sense and yields a charge-carrier density between 6.7 and 7.8×1019 cm−3. For the σ values

10

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
5
2
5
9
2



that provide the same ionization percentages as deduced from the FTIR data (marked by dashed

lines), the hole density upon FTCNQ doping gives around 7.0×1019 cm−3 (σ = 450 meV) while

that due to TCNQ doping stays below 1018 cm−3 (σ = 63 meV). With practically two orders of

magnitude difference, this is well-reflected in the conductivities of the FTCNQ- and TCNQ-doped

films. We note though that the conductivities of F4TCNQ and FTCNQ are still one order of mag-

nitude apart while the calculated hole densities are very similar. Further, the addition of TCNQ

highly reproducibly decreases the conductivity by over one order of magnitude, as compared to

pure P3HT. This is remarkable in our view, since the related oligomer quaterthiophene doped with

F4TCNQ, which exclusively exhibits FCT, still sees an increase in conductivity.10 We cannot ex-

plain this observation without ambiguity on the basis of the present data, as conductivity hinges on

the microstructure of the films which will be characterized in a forthcoming study. However, both

trends can be well linked to FCT as well. Going with the idea that the LUMO of the FCT complex

(for strong dopants) can effectively act as an electron-accepting level of EACPX, thus, rendering

the FCT complex a p-dopant to the surrounding OSC host matrix,10,11 the complex LUMO re-

sulting from FCT with a weak dopant such as TCNQ would yield EACPX too low to significantly

ionize P3HT. The spatial vicinity of dopant and host that is required for FCT can then make the

neutral complex act as trap for hole transport along the polymer backbone. Such a detrimental

influence of the presence of FCT complexes would also explain why FTCNQ-doping yields lower

conductivity than F4TCNQ despite a similar charge-carrier density, as, in contrast to F4TCNQ,

FTCNQ does experience both ICT and FCT, as it is evident from our FTIR data.

In summary, we have investigated the validity of the perception that for ICT the EA of a p-

dopant must exceed the IE of an OSC. We focused on rr-P3HT doped with TCNQ derivatives

where only the EA of F4TCNQ exceeds the IE of P3HT. We first employed CV to precisely

determine the IE of rr-P3HT and the EA of F4TCNQ, FTCNQ, TCNQ, and deduced from FTIR

data to which extent ICT occurs for P3HT doped with these species at a ratio 2%. Via a semi-

classical modeling we then calculated the percentages of ionized dopants that result from varying

the width of the P3HT HOMO-DOS while keeping that of the dopant fixed. Finally, we compared

the calculated hole densities in P3HT which result for these widths, with experimental conductivity

data. While F4TCNQ doping of P3HT exclusively resulted in ICT, FTCNQ-doping showed ICT

for 88% of the dopants in the film. Our calculations demonstrate that this ionization percentage

cannot be achieved without significant broadening of the P3HT HOMO-DOS. In marked contrast,

despite an EA almost identical to that of FTCNQ, TCNQ-doping resulted in no indication of ICT
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whatsoever, which emerges naturally from our calculations if the reported σ value for the HOMO-

DOS of P3HT of 63 meV is used. For this very system we observed that exclusive occurrence

of FCT can even lead to a decrease in conductivity, which we ascribe to charge carrier trapping

through the formation of the neutral FCT complexes. Our study indicates that different molecular

dopants of similar structural properties and almost identical EA may show largely different doping

behavior, which we explain by different tendencies for inducing disorder and, thus, for broadening

the DOS to promote ICT. The markedly different behavior of TCNQ and FTCNQ might be due to

anisotropy and the presence of a strong permanent dipole moment present in the latter, the role of

which we plan to investigate in more detail in a forthcoming study.

SUPPLEMENTARY MATERIAL

See Supplementary Material for details on experimental and computational methods, cyclic

voltammograms corresponding to energy levels in Fig. 1 (Fig. S1), and the full-range version

of the FTIR spectra in Fig. 2 (Fig. S2).
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