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Abstract

Realistic Occlusion Augmentation for Human Pose Estimation

Amin Ansarian

Occlusion occurs naturally in a high percentage of real-world images. Handling

occlusion has been a difficult challenge in human pose estimation methods, specially

those using CNN. A main reason is the a lack of a proper dataset with an actual

focus on realistic occlusion, prompting researchers to create datasets with synthetic

(bounding-box based) occlusion, as a means of data augmentation. In this thesis,

we investigate how to increase learning through data preparation (i.e., data-centric

approach). To this end, we introduce a new realistic data augmentation approach

built on top of an original (base) dataset (e.g., Human3.6m and MPI-INF-3DHP)

that tackles this issue, creating realistic samples similar to those found in the wild.

Arguing that CNN models pay higher attention to local as opposed to global fea-

tures, we define occlusion levels, process a large set of occluder objects from different

categories, augment them adaptive to the joints types and to the size of the human

subject, and effectively blend those occluders within the original RGB image from

the base dataset. We, then, test top-performing CNN-based 2D and 3D human pose

estimation models with and without our occlusion-augmented datasets (RealPose).

Our experiments show that a significant drop in accuracy of these CNN models under

occlusion. When we then train them on RealPose, we observe a major increase in

accuracy under occlusion, without any change to the models themselves. Achieved

results indicate the effectiveness of the proposed data augmentation method in tack-

ling the occlusion issue both in the 2D and 3D models, with a significantly much more
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accuracy increase of the 3D models. We have trained and tested the models under

different dataset combinations such as ”training on the original dataset but testing

under the augmented dataset” or ”training and testing with the mixed original and

augmented dataset”. A significant outcome is that, our data-centric approach re-

sults in a higher accuracy of CNN models trained under occluded samples but tested

under the original (not-occluded) samples, indicating the model achieves a higher un-

derstanding of the dependency of different joints induced to it. Proposed approach is

dataset and network independent, i.e., researchers can apply our approach (using its

open-source code) to any dataset and feed the result to any human pose estimator.
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Chapter 1

Introduction

1.1 Motivation

Human Pose estimation has many applications in human action recognition and

Human-Computer Interaction. The purpose is to estimate a certain number of joints

in the two-dimensional space from an RGB image, which due to factors such as

the high variation among human anatomies, different and unexpected occlusion, has

deemed to be a sophisticated task. With the emergence of complex deep-learning-

based models, especially those using Convolutional Neural Networks (CNN), a high

level of advancement has been obtained [8, 56, 57, 60, 49], resulting in models deployed

in industrial applications.

A major challenge for human pose estimation is occlusion [38, 39, 40, 52, 12, 49,

48], meaning one or more joints are hidden from the camera due to various factors such

as self-occlusion, camera zoom, angle or obstruction by random objects. This issue

causes divergence in both training and testing, often resulting in poor accuracy by the

CNN model. To handle occlusion, generally, researchers have followed two approaches:

1) directly target occlusion of the human subject by designing a customized loss

function or taking anatomy information into account[8, 9, 53, 6] and 2) incorporating
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data augmentation during the training of the model [61, 51, 10, 64, 11, 45, 9, 55, 20].

The problem with these approaches is a lack of realism that usually occur in the wild.

1.2 Problem Statement

There is an important discussion in the research community [42, 41] about data-

centric versus model-centric learning. In this thesis, we show that learning can be

increased through well-shaped data preparation. To this end, we propose a data

augmentation approach that results in a realistic occlusion dataset that incorporates

real-world objects for occluding any specific joint of a human subject (sample) and

provides the occlusion label for that specific joint. By doing so, we move further closer

to the actual occlusion in real life, providing an opportunity for researchers to train

occlusion-aware models on the said dataset. The significant need for a well-shaped

occlusion augmented dataset is due to the fact that no dataset with such level of reality

and detail exists in literature that would allow researchers to test their methods under

realistic occlusion. Moreover, since the base datasets we use are the Human3.6m and

the MPI-INF-3DHP, which both provide the full skeleton annotations for each human

subject in a video frame, the proposed (augmented) dataset will be fully compatible

with the original base dataset, not affecting the model (without occlusion) training.

The contributions of this thesis are: i) a data augmentation approach that works on

any available human pose estimation dataset, providing close to realistic occlusion;

ii) extensive testing of the functionality of the approach on both 2D and 3D human

pose estimation CNN models in the presence of the occlusion problem; iii) significant

improvement of the accuracy of 2D and 3D human pose estimation models under

occluded and not occluded subjects, itself a breakthrough to be considered when

introducing data augmentation for training.
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1.3 Summary of Contributions

The main objective of this thesis is handling the occlusion problem in Human Pose

Estimation. To this end, we propose a novel data augmentation method to create an

occlusion dataset (called RealPose) that incorporates contextual information close to

the cases that might occur in real-world cases. In order to verify the effectiveness of

our dataset, we implement two 2D human pose estimators and evaluate them under

different conditions, namely, original not-occluded datasets, occluded datasets and a

novel mixed dataset. We further extend our work to 3D human pose estimation to

assess the functionality of RealPose and implement two 3D human pose estimators

and then, evaluate their performance under the same conditions. Furthermore, we

confirm the validity of our occlusion augmentation method by extending our work

to a second dataset. As a result of our work, the paper [1] ”Realistic Augmentation

for Effective 2D Human Pose Estimation under Occlusion” has been accepted for

publication at the IEEE ICIP on May 20, 2021.

1.4 Thesis Outline

In Chapter 2, a comprehensive analysis of related works is presented. We analyze

and discuss multiple works in Human Pose Estimation, Works that deal with oc-

clusion without augmentation methods and finally, works that handle occlusion by

augmentation methods.

In Chapter 3, we present our occlusion augmentation approach. First we introduce

the datasets that are used in thesis and discuss their specifications and the reasons

they were selected. Then, we elaborate on our approach and its details. At the end,

we discuss the various hyper-parameters used in our method.

In Chapter 4, we begin by discussing the implementation details of the candidate

models. Then, we present the 2D pose estimation results with and without our
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occlusion augmentation method. Next, we extend the work to 3D pose estimation

and discuss the results. We finalize the chapter by discussing several points regarding

the evaluation.

In Chapter 5, we summarize our contributions and present future work to conclude

the thesis.

4



Chapter 2

Related Works

In this section, we first provide a review of state-of-the-art to human pose estimation

and then we discuss two categories of occlusion-aware pose estimation methods: those

without and those with data augmentation.

2.1 Human Pose Estimation - a review

Human pose estimation can be classified into monocular-image based estimators [49,

21, 8], multi-view based estimators [27, 23, 44, 25], single-person pose estimator [6, 43,

11], and multiple-persons pose estimators [8, 21] (Recent survey papers are [7, 18, 33,

54]). Furthermore, estimated poses can be 2D or 3D, where 3D poses can be extracted

directly from 2D images [51] or based on estimated 2D poses [43, 6, 11]. Multi-

view methods receive images of the human subject from different angles and using

various methods [27, 23, 44, 25], fuse them together, producing a more accurate pose

compared to that of monocular images [28]. However, these methods are expensive,

both in terms of computational cost and their hardware requirements to capture

the multi-view images. Also, fusing multiple images together is an extra level of

complexity added to the algorithm, making it less efficient compared to one based on

commonly available monocular images.
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Deep learning-based 2D human pose estimators have shown significant results

recently [39, 40, 4, 5, 8, 21, 49, 37]. However, 3D pose estimation is still a challenging

task due to the ambiguous third dimension and occlusion. The work of [43] studies

the application Dilated Convolutions and Temporal neural networks in the task of 3D

pose estimation, achieving a favourable result in addition to a relatively low number

of parameters.

Looking at the human skeleton as a graph-like data, [3] and [62] aim to utilize

the connectivity of the nodes and local-to-global features by creating Convolutional

Graph Neural Networks to extract features on different levels of representation. While

both works effectively manage the regression of the 3D joints by reforming the data

into a graph, they do not fully exploit the functionality of these models by introducing

occlusion into the data.

The work of [11, 10], directly address the case of occlusion in 3D pose estimation.

[11] creates an occlusion-aware network by manipulating the extracted 2D heatmaps

of the joints and enforcing multiple constraints and penalties on the loss functions.

[10] completes the work of [11] by creating multi-scale features for pose estimation to

capture fast motions in videos resulting in failures.

Our augmentation approach has been tested for 2D single-pose estimation directly

from a 2D RGB image [8, 21] and for 3D single-pose estimation based on these

extracted 2D poses [43, 6]. However, it can be extended to 3D pose estimation

directly from a 2D image or to multiple-pose estimation by providing a bounding box

for each human subject in the RGB image and occluding each separately.
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2.2 Occlusion-aware approaches without augmen-

tation

Works using this approach handle occlusion without augmenting the training set with

additional data and instead integrate the information regarding the structural infor-

mation of the human body to the training. The work of [8] adds a sub-network called

RefineNet to their architecture that collects features extracted from multiple resolu-

tions that accounts only for hard-examples which are ignored by the main network.

The works of [9, 53] use a spatio-temporal discriminator based on body structure

to assess the validity of the predicted pose while the work of [6] explores the role

of 2D visibility scores, indicating the probability of the presence of the joint, as a

complementary information to handle occlusion.

2.3 Occlusion-aware approaches with augmentation

Works of this category handle occlusion by adding more samples to the training set

that contain occlusion-related information [61, 51, 10, 64, 11, 30, 2, 58, 14]. The

method in [19] aims to jointly optimize data augmentation and network training

where the augmentation is done by deforming a human template model with the

ground truth in order to improve the detection accuracy for occluded cases. The

authors of [17] augment the human subject with additional segmented body parts in

an adversarial way and use a discriminator to learn the correct pose. However, the

added cost in model size and training time makes the method not attractive for data

augmentation. In [34], the authors propose data augmentation by applying complex

image transformations in image classification; the method is computationally very

complex and not scalable for large datasets. The work of [30] generates synthetic

3D poses based on an initial training set and project them back to 2D using camera
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parameters, creating additional 2D-3D pairs for generalizing the model. The work of

[58], similarly, generates 2D synthetic 2D poses by projecting a 3D pose on virtual

camera planes and extracts the 2D poses by conditional sampling. The work of

[11] also creates additional 3D samples by creating a synthetic ”Cylinder-Man” and

rotating the camera to create several additional samples for training.

The most common data augmentation approach in the literature, however, is

random erasing[64] or cutout [14], where a random part of the image is masked by a

uniform patch. This approach is unrealistic in the sense that occlusion and obstruction

do not happen in real-world samples in this way. Furthermore, based on an interesting

observation by [16, 15] it is argued that CNN-based object detectors (and we argue

human pose estimator as well), pay a higher amount of attention to local as opposed

to global content. For instance, when detecting an exemplary joint, the joint’s visual

features and its integration into the background image are much more important

than the joint’s global location. As networks get more complicated, this” context-

aware” characteristic of CNN networks gets more sophisticated. Therefore, the model

will learn the ”black-patch” instead of the missing joint, failing during inference on

real-world cases.

The authors of [45] investigated the accuracy of 3D humane pose estimation meth-

ods under occlusion, which was simulated through random box erase and random ad-

dition of objects anywhere to the input RGB image; the objects can be from any, even

unrealistic, category (such as airplane) and they may appear at random locations in

the image, not necessary covering portion of the human subject.

Since pose estimation models typically estimate poses (2D and 3D) based on

the bounding box of the subject, occlusion needs to be defined based on bounding

box. Another important difference to [45] and all other related work, is that we

show the effectiveness of our approach and the pose estimation models under several

combination of samples: occlusion, no-occlusion, mixed occlusion/no-occlusion, etc.,
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as detailed in Table 2.

In non-pose estimation literature, the work of [29] studies the vulnerability of Deep

CNNs to occlusion in object detection and proposes mixing DCNNs with composi-

tional models along with synthetic data generation with samples similar to those of

ours to handle object detection under occlusion. Similarly, the authors of [63] propose

to exploit contextual information using LSTM [24] networks as well as occluded sam-

ples, created using the random erasing technique, to outperform conventional CNN

networks for the task of object classification.
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Chapter 3

Proposed Occlusion Augmentation

Occlusion occurs when the target object (here human subject) is occluded by another

visual object (occluder) that can be of any category (such as Cat, Laptop, or Pants).

Inspired by the observation in [16, 15] that CNN models pay higher attention to local

context as opposed to global features, we define the concept of ”occlusion level,” to

indicate how much of the human subject body, specifically, how many joints of the

total joints J are occluded. We propose 3 local levels of occlusion: heavy, medium,

and light, where respectively Jl joints of the total joints J are occluded. We use one

occluder object per joint for occlusion (see examples in Figure 2(f)-(h)).

3.1 Base Datasets for Augmentation

The majority of 2D human pose estimators are trained on the COCO dataset [32]

due to the high number of samples, high variation in the images and partial occlusion

present in the dataset. While this will result in accurate classification [60, 8, 49, 31]

of the joints that are present, it makes the skeleton reconstruction impossible, which

is crucial for tasks such as human action recognition (a major application requiring

human pose estimation) since the skeleton is incomplete and only includes a portion

of joints that are visible in the image. Due to this issue we decided to choose, as a
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base dataset, one with complete annotations for all samples.

Several datasets are used for 3D human pose estimation [26, 36, 47, 50]. We

selected the popular datasets MPI-INF-3DHP [36] and Human3.6m[26] that provide

complete skeleton for every image, which is a raw foundation to test the usefulness of

our approach. In these datasets, each subject performs different scenarios and each

scenario consists of several thousand of samples.

The Human3.6m dataset [26] consists of 3.6 million samples collected with the

help of 11 real-world actors across 15 scenarios. This is the largest available dataset

that is mostly used in 3D human pose estimation tasks, but it provides 2D anno-

tations as well. We use subjects 1,5,6,7,8,9,11, per standard practice in literature,

that include roughly two million samples recorded at 50 frames/second (fps) from 8

different angles. To reduce redundancy in the dataset, we downsample each video

to 10fps by sampling 1 in 5 consecutive frames, resulting in precisely 422,420 frames

used for creating the base dataset.

The MPI-INF-3DHP [36] dataset consists of 8 subjects performing various actions

in two different sequence, each using 14 cameras from different angles. The subjects

wear different sets of clothing in each sequence to increase generalizations. The test

set for this dataset takes place both indoors and outdoors to test the robustness

and generalization of the model. In order to reduce redundancy in the dataset, we

downsample the frames by a factor of 5.

Since the Human3.6m and MPI-INF-3DHP datasets provide different categories,

number and order of joints, we unify them using a fixed set of joints J = 17 with the

same skeleton arrangement, as displayed in Figure 1, to facilitate occlusion augmen-

tation and model training.
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Figure 1: Illustration of our unified pose arrangement applied to the base datasets
Human3.6M and MPI-INF-3DHP.

3.2 Proposed Approach

Our approach consists of three main steps: i) process the occluder objects; ii) perform

the occlusion scenario; iii) blend the occluders with the human subject in the RGB

image.

For the first step, we obtained the masks from the COCO 2017[32] training dataset

due to its wide variety of categories, however, we remove categories such as boat, horse

or vehicle, etc. from the list of eligible categories due to either not compatible size

12



or not realistic match with the subjects in the base datasets (here, Human3.6m and

MPI-INF-3DHP). A researcher can, however, easily add such categories if needed

for the application. We use the features of each occluder object (its RGB image,

bounding box, binary mask, area, and category) to facilitate creating the occlusion

scenario (i.e., blending into the input RGB image).

In the second step, we perform occlusion on a batch of n images from the orig-

inal RGB samples. For each of the 3 occlusion levels (light, medium, and high) we

assign Jl joints to occlude, i.e., in each image Jl joints should be occluded with Jl

occluders. The occlusion levels are balanced using weights wl, meaning, for a batch

of n images, w1% are lightly occluded, w2% are moderately occluded, and w3% are

heavily occluded. In order to increase the realistic nature of our augmented dataset

(RealPose), we limit certain occluder categories to certain joints category of the body.

Hence, each occluder category will belong to a limited number of joints category. As

an example, a potted plant will not appear on the upper body and is limited to the

bottom joints. Therefore, for a certain occluder object with a category we have a

number of potential candidate joints that we can assign it to; to do this we randomly

select a joint j from the specific joints to which the object category is limited. We do

not select the joints 8,9,10,11 and 14, i.e., the shoulders, neck and head, due to the

less probable occlusion in real-world cases. Thus, for occlusion, in total we consider

in total 12 joints out of the 17 available. Note that for training we still use 17 joints;

the 12 joints are only used for occlusion. We define 4 joint categories and occluders

as follows:

• Only Foot: Cat, Dog, Fire hydrant, Bench, Chair, TV, Potted plant, Laptop

• Only Hand: Banana, Apple, Sandwich, Orange, Broccoli, Carrot, Hot dog,

Pizza, Donut

• Upper Body: Bird, Sports ball, Bottle, Wine glass, Cup, Bowl, Cake, Mouse,
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Remote, Keyboard, Cell phone, Scissors, Teddy bear, Hair drier, Toothbrush

• All Body: Backpack, Umbrella, Handbag, Suitcase, Frisbee, Book, Clock,

Vase, Laptop

There are overlaps in these categories: All Body includes all of the joints and Upper

Body includes Hands as well. This overlap is due to the specific nature of some

categories, for example, Books can be on any part of the body while a Fire hydrant

will never be on the hands. We randomly select occluders from 64,234 objects across

40 different object categories from the COCO dataset. Given the large number of

input RGB samples (422K in the Human3.6m dataset), the majority of the occluder

objects are selected by our method. Each Joint category consists of several joints

which are illustrated in Table 1:

Table 1: Annotation of Joints and Joint categories

Joint Category Joints
All Body All Candidate Joints
Upper Body Pelvis, Right Hip, Left Hip, Spine, Left Elbow, Left Wrist, Right Elbow, Right Wrist
Only Hand Left Elbow, Left Wrist, Right Elbow, Right Wrist
Only Foot Right Knee, Right Foot, Left Knee, Left Foot

Since the area Ah of the human bounding box can be much larger or much smaller

than the area Ao of the occluder object, we need to resize the occluder. In order to

increase variety in the occlusion dataset (and hence reduce bias), we randomly select

the ratio of the occluder object area to the human bounding box area X = Ao/Ah

from certain ranges [a, b]. The upper b and lower a bounds of these ranges are chosen

based on the joint categories, for example, occluders that are assigned to the feet and

legs will have a larger size than those assigned to only hands. We resize each occluder

using the scale factor SF

SF =
Ah × (X ∼ U(a, b))

Ao

, (1)
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where, Ah is the area of the human bounding box, Ao is the area of the occluder

object, and X randomly selected from the uniform distribution denoted by U, with

lower bound a and upper bound b.

SF is a positive real number. And hence, if the width of the occluder image is

W and its height H, then the width of the resized occluder becomes SF ×W and

its height SF ×H, each rounded to the nearest integer, e.g., if SF = 3.865, and the

occluder size is 15 × 15, then the output size would be 58 × 58, while if SF = 3.8,

the output size would be 57 × 57. As a consequence, if SF > 1 the occluder image

will be interpolated; otherwise it will be downsampled (to resize we use the OpenCV

function cv2.resize). To our best knowledge no data augmentation method proposes

a procedure to compute an adaptive scale factor. Related works such as [46, 59, 45]

use a fixed scale factor. Our adaptive scale factor increases the realistic nature of

our occlusion augmentation; the randomness we use in computing the scale factor

increases variety in our dataset and hence helps reducing overfitting.

At the third and final step of our method, in order to smoothly blend each oc-

cluder (from the COCO dataset) on an input RGB image of the base dataset (here

Human3.6m and MPI-INF-3DHP) we propose the following. Let I be the input im-

age, O the image of the occluder, M the binary mask of O with pixels either 0 or 255,

and B a binary structuring element. To blend O into I, we first apply morphological

erosion to M as in Mb = M 	B, where B is a 8× 8 disk. Then, we get E = M −Mb,

resulting in an edge mask E that is 255 on the edges and 0 otherwise. Next, we mark

the respective edge pixels of E in the mask M with special label (e.g., 191). With

this, we get a gray-level mask Mo: 0 (not-object), 191 (edge), and 255 (object); we

divide Mo by 255 to get a non-integer mask of 0, 0.75, 1. Finally, we blend O into I

as in

Io = (1−Mo) · I + Mo ·O (2)
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We apply blending to all of the three channels of the input RGB image. With equa-

tion 2, at edges of the occluder, we get a weighted summation of both the input RGB

image and the RGB image of the occluder; inside the boundaries of the occluder we

only add the occluder RGB values; and finally outside the occluder, the input RGB

image remains unchanged.

3.3 Parameter Analysis

The parameters of our augmentation approach are Jl the number of joints per each of

the three occlusion levels (light, medium, and heavy), wl the weight of each occlusion

level across the whole database, and a, b the area ratio bounds (see equation 1).

The number of joints Jl to occlude depends on the resizing coefficient range [a, b],

meaning, if the range is too wide (e.g., a = 30, b = 50), setting Jl too high (such as

5 or 6 out of 12) will cause out-of-proportion occlusion, covering the entire human

subject, while setting Jl too small along with a narrow range (e.g., a = 5, b = 10) will

result in insignificant occlusion, having no effect on the training. Based on empirical

experiments and 12 selected joints, we set J1 = 2, J2 = 4, and J3 = 6 for light,

medium and heavy occlusion, respectively. Using a fixed scale factor SF for resizing,

we observed that lower or higher Jl will result in either insignificant occlusion or

completely blocking the sample and thus, poor training.

For the area ratio range [a, b], first experiments have shown that any value over

30% of the human subject bounding box area will result in too much occlusion,

creating a high amount of ambiguity for the potential pose. Second, since in real-

world scenarios lower human body parts (such as foot) is more occluded than upper

part (such as head), the range should depend on the joint category. In consequence,

we distribute the ranges [a, b] per joint category as follows:

• Only Foot: 0.15 to 0.30
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• Only Hand: 0.075 to 0.15

• Upper Body: 0.09 to 0.18

• All Body: 0.075 to 0.15

Thus, each range indicates a uniform distribution from which a random value is

selected which indicates the final ratio (see equation 1) of the occluder object area to

the human subject area.

As for the weight wl of occlusion levels on the dataset, the key idea is to balance the

number of heavily occluded samples, which are the most difficult, and the number of

lighter occluded samples which will preserve the ability of the pose estimation model

to detect the skeleton and maintain training, avoiding divergence during the training

phase. As a result, we set w1 = 15%, w2 = 50%, and w3 = 35% for light, medium, and

heavy occlusion, respectively. We optimized the values of the discussed parameters

experimentally, however, they can be adapted to specific needs of an application by

a researcher using our code. Figure 2 illustrates output samples using our approach.

The proposed joint-occluder category constraints maybe viewed as a high degree

of manual intervention to augment occlusion. We argue that such constrained aug-

mentation is important for the following three reasons. First, our objective is to

make the occlusion augmentation as realistic as possible (for example, not includ-

ing objects such as bus or airplane in an indoor environment). Second, contextual

information is of high importance for learning [16], and thus, we argue that adding

joint-occluder context (meaning what occluder category to what joint to occlude) will

improve learning of the CNN model trained with our occlusion dataset. Third, there

is an important discussion [41, 42] in the AI research community about data-centric

versus model-centric advantages [42, 41]. We argue that our data augmentation, re-

sulting in the RealPose dataset contributes to data-centric approaches. Alternatively,

we could have created a dataset with minimal intervention, for example, by occluding
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any joint of any occluder object. The effect of this, however, would be a reduced

amount of contextual information and reduced realism. To show this, we imple-

mented a method where we augment any joint with any occluder object and results

show that lower accuracy of pose estimation is achieved compared to our constrained

augmentation method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Output of our data augmentation approach applied to different subjects
and scenarios of the Human3.6m dataset (Top and middle rows) and MPI-INF-3DHP
dataset (Bottom row). Images (f), (g) and (h) are samples of light, medium and heavy
occlusion, respectively.
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Chapter 4

Experimental Results

To test the effect of our data augmentation accurately, first, we train a pose estima-

tion model on the original (base) datasets without occlusion augmentation to have

a base error for comparison. Then, we test the model separately on both original

(without occlusion) and the augmented dataset (RealPose) to see if the expected

higher estimation error occurs due to occlusion. Finally, we train and then test the

model using the augmented dataset to observe if the error decreases. We do this for

different dataset combinations OrgOrg, OrgOcc, OccOrg, MixOrg, OccOcc, MixMix,

as detailed in Table 3.

It is important to note that pose estimation models, for example [8, 21, 49, 35],

consist of two main parts, a large size feature extractor such as ResNet [22] (often

referred to as ”backbone”) and the estimation network (often referred to as ”head” or

”main network”), which transforms features received from the backbone to features of

the pose estimation (joints). The feature extractor of these models are all trained on

large size datasets such as ImageNet [13], which consists of one million training image

samples and 1000 object categories. It is common practice that during CNN model

training, the feature extractor is not re-trained and only the head of the network is

trained.
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4.1 Implementation Details

Our primary evaluation metric is the Mean Per Joint Positional Error (MPJPE) in

millimeter, which is the per joint Euclidean distance. MPJPE is calculated as follows

[26]

MPJPE =
1

T

1

J − 1

T∑
t=1

J−1∑
j=1

||(K(t)
j −K

(t)
root)− (K̂

(t)
j − K̂

(t)
root)||2. (3)

In this equation, the joint values are normalized based on a reference joint, which is

set to pelvis as per standard practice, hence, the number of joints is J − 1, meaning

16. Furthermore, T is the total number of samples, K
(t)
j is the ground truth joint,

K
(t)
root is the ground truth pelvis, K̂

(t)
j is the predicted joint, and K̂

(t)
root) is the predicted

pelvis.

In our experiments, we have picked 2D human pose estimation models based on

their accuracy, speed and their application in 3D human pose estimation [10, 43, 6]

which would in turn, allow us to correctly evaluate and analyze the 3D pose esti-

mators. The 2D models in ascending order of their accuracy (Percentage of Correct

Keypoints) are Mask R-CNN [21] and Cascaded Pyramid Network (CPN)[8]. Note

that these models are substantially different in their methodology and network ar-

chitectures: while MaskRCNN modifies the original segmentation network to handle

pose estimation, CPN uses two different networks (RefineNet and GlobalNet) to per-

form pose estimation.

As for the 3D human pose estimators, we chose TemporalCNN[43] and Anatomy3D[6].

The training of these 3D models takes place as follows: Both 2D models CPN and

Mask RCNN are trained and tested to obtain 2D joints for training and testing sets.

These 2D joints are then used as input to the stated 3D pose estimators during the

training and testing phases. We trained each model (both on the original and aug-

mented datasets) using the same parameters, given by the authors of the 2D and 3D

pose estimation models.
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For the Human3.6m dataset, we trained each 2D and 3D model on the subjects

S1, S5, S6, S7, S8 and tested on the subjects S9 and S11 for a total of 422420 samples.

For the MPI-INF-3DHP dataset, we trained each 2D and 3D models on the subjects

S1, S2, S3, S4, S5, S6 and tested on the subjects S7 and S8 for a total of 367522

samples.

In order to boost the computation efficiency of the generation process of the

dataset, we save each object using a python dictionary consisting of several features,

including area, object image retrieved from the bounding box provided by the dataset,

object mask and the category of the object similar to the COCO dataset format.

4.2 2D pose estimation results

In Table 2, we summarize the usefulness of our data augmentation approach when

applying both 2D pose estimators under different combinations based on the Hu-

man3.6m. The output of all 2D pose estimators includes a layer that predicts a

certain number of output heatmaps (probability map of the location of the joint),

which is here 17, the same as the number of joints. Under OrgOcc, compared to

OrgOrg in Table 2, the produced output for the occluded joint is predicted at a

significantly higher distance from the ground truth location when introducing as an

occluder object, leading to an increase in the positional error for a specific joint. Table

2 further shows that under OccOcc, i.e., training and then testing the models on the

augmented dataset (RealPose) boosts their accuracy in terms of MPJPE error com-

pared to OrgOcc. It is interesting to see that the error under our occlusion dataset

(RealPose) is close to that under the original dataset, meaning with our RealPose

dataset, the problem of occlusion has been reduced to a large extent.

Since occlusion happens randomly in real-world cases, the effect of training on

mixed occluded and not-occluded samples is also important to consider. For this, we
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Table 2: Human3.6m: Average MPJPE (in millimeter) of 2D pose estimation models
trained and tested on a combination of datasets. OrgOrg indicates training and then
testing on the original dataset, OrgOcc training on the original dataset but testing
under the occlusion dataset, OccOcc training and testing under the occlusion dataset,
MixMix training and testing with the mixed dataset, OccOrg training under occlusion
and testing under the original dataset, and MixOrg training under mixed dataset and
testing under the original dataset. The gains (in millimeter) of OrgOcc, OccOrg,
and MixOrg are with respect to OrgOrg, and gains of MixMix and OccOcc are with
respect to OrgOcc.

MaskRCNN Gain CPN Gain
OrgOrg 11.09 - 9.47 -
OrgOcc 14.64 -3.55 13.00 -3.53
OccOrg 10.52 +0.57 9.41 +0.06
MixOrg 10.46 +0.63 9.35 +0.12

OccOcc 11.70 +2.94 10.87 +2.13
MixMix 10.69 +3.95 9.56 +3.44

created a mixed dataset comprising of both occluded and not-occluded samples (50%

from each of RealPose and base dataset), which is the closest to real-world images

and scenarios. Table 2 displays the effect of training the two 2D models on MixMix

data combinations, the most-realistic case; we see that the models show significant

gain compared to OrgOcc. Interesting to note that MaskRCNN shows improved

accuracy (of 0.4 millimeter) under MixMix compared to OrgOrg. We also performed

simulations under several other data combinations that produced similar results, for

example, under MixOcc, i.e., training under mixed set and testing under occlusion

set.

We note that MixMix indicates the effect of our data augmentation approach when

combined with the original set, resulting in a novel data combination, non-existent

in literature. OccOcc entry showcases the effect of training on our RealPose dataset,

directly and solely on the occlusion problem which is our main focus when we started

our study.

To further show the importance of adding contextual information (i.e., constrained

occlusion), we examined the 2D pose estimation models under two combinations:
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OccOrg and MixOrg, that is testing under original dataset while training either under

occlusion or mixed dataset. As we see in Table 2, the accuracy improves on average

by 4% compared to OrgOrg. We associate this improvement with the contextual

occlusion which is learned by the model during training on occluded samples.

To examine accuracy per scenario of the Human3.6m datasets, Table 3 displays

the MPJPE for each scenario. We see a significant increase in MPJPE between the

cases OrgOrg and OrgOcc for each scenario, especially for those in which occlusion

is inherently present, such as Discussion and Sitting. With our OccOcc the average

estimation error is significantly reduced, with both models MaskRCNN and CPN.

Table 3: Human3.6m scenarios: Comparison of 2D human pose estimators in terms
of MPJPE (in millimetres).

Dir. Eat. Dis. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average

MaskRCNN - OrgOrg 9.37 10.87 7.47 9.77 12.27 15.27 8.77 8.47 16.47 19.97 11.27 8.17 13.17 6.97 7.17 11.09
MaskRCNN - OrgOcc 10.97 10.94 12.86 13.00 14.26 22.36 11.83 14.56 18.37 20.50 17.23 12.22 21.32 11.61 7.54 14.64
MaskRCNN - OccOcc 5.76 7.98 7.69 11.02 9.19 21.25 7.05 9.31 18.19 19.68 15.25 10.68 19.27 6.77 6.46 11.70

CPN - OrgOrg 8.32 9.15 6.45 8.27 10.25 13.21 7.97 7.85 14.45 15.97 9.27 6.54 11.12 6.48 6.60 9.47
CPN - OrgOcc 13.83 11.68 9.76 12.88 13.40 18.47 10.75 12.38 19.23 18.22 15.65 10.36 11.50 8.27 8.16 13.00
CPN - OccOcc 12.47 10.15 8.54 11.66 11.81 13.24 9.63 10.48 16.02 15.20 13.08 8.20 8.19 7.14 7.38 10.87

Visual comparison based on the Human3.6m test set and the CPN 2D human

pose estimator is displayed in Figure 3. By observing this figure, the disfigurement

of the skeleton is observed when occlusion is added to the sample. Even in minor

cases of occlusion, such as the sample in the second row, the disfigurement is present.

OccOcc which is the direct training on an entirely occluded set fixes this issue and

reduces the error. Furthermore, by observing the third row of the figure, in which

the sample has inherent occlusion due to the special pose, it can be observed that

the OccOcc result is closer to the Ground truth than the OrgOrg result, verifying the

effectiveness and generalization ability of our approach.
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Figure 3: Visual Results of our approach applied to the 2D estimator CPN for different
scenarios of the test set of the Human3.6m dataset.

4.3 3D pose estimation results

Table 4 illustrates the results for both 3D pose estimation models on scenarios of

the Human3.6m dataset. We see that under OrgOcc the 3D models suffer a major

accuracy drop compared to OrgOrg, across all scenarios. Now, when training both

models on the RealPose dataset (OccOcc case), a significant accuracy improvement

compared to OrgOcc is seen, indicating the effectiveness of our approach on handling

the occlusion issue. Comparing 3D results in Table 4 with 2D results in Table 3

for OrgOcc, we notice the significantly higher error of 3D models compared to 2D

models. This is because i) 3D pose estimation is a more ill-posed task, compared

to 2D estimation because of the depth realization of the final output, creating a list

of potential candidates for the final pose; ii) Recent top-performing 3D estimators

have a decoupled nature, meaning they estimate based on 2D joints, and not directly

regressing 3D points from an RGB image; iii) In our simulations we are training 3D
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models on 2D joints extracted from another 2D estimator, and not on the ground

truth joints, and thus, we are facing a second layer of error meaning, the 2D joints

have an MPJPE themselves, adding up to the 3D MPJPE.

Table 4: Human3.6m scenarios: Comparison of 3D human pose estimators in terms
of MPJPE (in millimetres). The CPN 2D model was used to estimate 2D pose for
these 3D models.

Dir. Eat. Dis. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average

TemporalCNN - OrgOrg 109.64 110.72 69.07 94.88 87.73 110.57 98.56 107.39 91.5 110.51 85.04 99.68 95.14 76.34 70.85 94.5
TemporalCNN - OrgOcc 248.18 252.69 227.02 258.63 233.55 290.37 250.16 272.87 258.32 278.70 229.03 232.13 253.29 251.86 211.66 249.90
TemporalCNN - OccOcc 59.73 63.39 59.54 59.30 69.96 78.01 59.69 56.82 85.76 96.59 65.66 62.66 68.85 52.10 48.12 65.70
Anatomy3D - OrgOrg 102.98 104.84 64.66 88.35 81.96 105.58 89.23 105.12 86.17 105.69 80.63 90.68 90.17 66.93 61.73 88.30
Anatomy3D - OrgOcc 227.13 229.57 208.94 234.48 212.99 269.21 226.81 251.79 241.04 259.14 208.05 211.45 231.45 223.91 187.22 228.20
Anatomy3D - OccOcc 58.04 60.16 57.80 56.99 68.65 77.12 57.90 55.45 83.08 90.44 64.43 60.65 65.11 48.15 43.49 63.20

The error due to occlusion under OrgOcc has blow out of proportions, which

is itself an indication of the fragility of the top-performing 3D estimators and the

importance of occlusion handling in 3D human pose estimation. Training both 3D

models on our RealPose dataset, results in a significant drop in the MPJPE, and

we see OccOcc is remarkably better than OrgOrg, indicating the effectiveness of our

approach on handling the occlusion issue. This effect is visible across all scenarios,

the difficult ones such as Sitting Down and the easiest such as Discussion together.

Table 5 summarizes the effect of applying our method to both 3D estimators under

OrgOrg, OrgOcc, OccOcc, OccOrg, MixOrg and MixMix. MixMix is the closest to

real-world occlusion; it shows a lower error compared to OccOcc, similar to the 2D

case, again indicating the effectiveness of our approach in handling occlusion. Similar

to 3D models, OccOrg and MixOrg show how the 3D models benefit from augmented

realistic occlusion to even improve accuracy when testing under no occlusion. Visual

results for the 3D human pose estimation, using CPN for 2D and TemporalCNN

for 3D, based on the OrgOrg, OrgOcc and OccOcc are illustrated in Figure 4. As

expected, we observe a heavy distortion when occlusion is added to the samples. As

as mentioned before, the error due to the 2D estimator (here, CPN) adds up to the

error caused by the 3D estimator (here, TemporalCNN), resulting in the distorted

skeleton. In the OccOcc case, we observe the significant improvement in the pose,
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Table 5: Human3.6m: Average MPJPE for Anatomy3D and TemporalCNN trained
and tested on a combination of datasets (as defined in Table 2). The CPN 2D model
was used to estimate 2D pose for these 3D models.

TemporalCNN Gain Anatomy3D Gain
OrgOrg 94.50 - 88.30 -
OrgOcc 249.90 -155.4 228.20 -139.9
OccOrg 61.70 +32.8 59.50 +28.8
MixOrg 60.90 +33.6 58.20 +30.1

OccOcc 65.70 +184.2 63.20 +165.0
MixMix 61.90 +188.0 60.20 +168.0

when compared to the OrgOrg or the ground truth cases, indicating the effectiveness

of our approach starting from the RGB image, to the 2D estimator, ending with the

3D estimator. In some cases, where inherent occlusion is present, such as the third

row of Figure 4, the OccOcc result is more accurate than the OrgOrg case.

4.4 MPI-INF-3DHP Results

We applied our approach to the MPI-INF-3DHP dataset in order to test its general-

ization potential. The pipeline is the same as that of the Human3.6m dataset. The

original images are occluded; then the 2D estimators are trained and tested on mul-

tiple scenarios of the set. After extracting the 2D joints of the entire dataset using

the trained models, the 3D estimators are trained and tested. Results of the 2D pose

estimator CPN and the 3D pose estimator TemporalCNN, using 2D poses estimated

from CPN, are displayed in Table 6. Overall, all our observations from Human3.6m

dataset are confirmed for MPI-INF-3DHP dataset. Specifically, we observe a high

increase in MPJPE in the case of OrgOcc, indicating the failure of the models to

accurately regress the joints under occlusion. OccOcc case indicates correcting this

failure, resulting in a positive gain while the MixMix case shows an even higher gain

due to training on the Mixed set.
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Figure 4: Visual Results of our approach applied to the 3D pose estimator Tem-
poralCNN of the test set of the Human3.6m dataset. In the third row, note the
better orientation of the legs under and OccOcc compared to OrgOrg and certainly
compared to OrgOcc.

4.5 Discussions

In this work, we explicitly separated different test scenarios so that we would be

able to analyze them accurately. This allows for not only evaluating the effectiveness

of handling occlusion (OccOcc), but also to make sure it would not fail under the

original condition (OccOrg). To our best knowledge, we are the first to benchmark

our approach on these multiple levels. Furthermore, the importance of the mixed

dataset lies in the fact that related work addressing occlusion by augmentation, apply

their methods to the entire training set (Occ case). However, observations of Tables 2,
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Figure 5: Results of TemporalCNN applied to unlabeled samples with subject per-
forming challenging scenarios. Note the better precision under OccOcc and MixMix
in both scenarios compared to OrgOrg: the head is not detected under OrgOrg but
is well detected under OccOcc and MixMix. This shows that without proper training
under occlusion, contextual information is not properly handled and thus, the model
might fail on samples with the slightest occlusion (here a person with a cap).

5, and 6 indicate the effect of considering both occluded and not-occluded samples

on boosting the final accuracy of the pose estimation model.

In order to further verify our approach, we tested the 3D models on the unan-

notated test set of the Human3.6m, namely, subjects 2, 3 and 4 which are typically

not used in the literature due to absence of annotations. Samples of these subjects

are illustrated in Figure 5, where we used the 3D model TemporalCNN to extract 3D

joints from 2D joints estimated using the 2D model CPN.

Results of the 2D pose estimation models clearly indicate the superiority of CPN

compared to MaskRCNN. The reason for this better performance is that CPN is in-

herently designed to be a pose estimation model, while MaskRCNN is an architecture

with a variety of applications, namely, object detection, segmentation and of course

pose estimation. We apply the same pipeline to the MaskRCNN as well, meaning,

training both 3D estimators based on 2D joints, inferenced from MaskRCNN. Our ex-

periments indicated poorer performance of MaskRCNN compared to the CPN model.
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Table 6: MPI-INF-3DHP: Average MPJPE for the 2D pose estimator CPN and
the 3D pose estimator model TemporalCNN trained and tested on a combination of
datasets (as defined in Table 2).

CPN Gain TemporalCNN Gain
OrgOrg 28.97 - 84.8 -
OrgOcc 82.64 -53.67 218.20 -133.4
OccOrg 13.70 +15.27 57.19 +27.61
MixOrg 13.17 +15.8 56.87 +27.93

OccOcc 16.93 +65.71 65.38 +152.82
MixMix 15.17 +67.47 61.79 +156.41

To show that the proposed joint-occluder category constraints are important, we

implemented a method where we augmented any of the 17 joints with any occluder

objects out of the 64K objects, randomly cross-matched joints and occluders, and

resized the occluder randomly but adaptive to the bounding box of the human subject,

meaning, Equation 1 is still utilised. However, the area ratio range [a,b] is now

fixed to a = 0.075, which is the lowest bound of the area ratios of the constrained

augmentation method, and b = 0.30 which is the highest bound for the constrained

augmentation method. This means that the resizing operation is now independent

from the joint-occluder categories. We then trained the 2D pose estimator CPN and

the 3D pose estimator TemporalCNN under the revised occlusion dataset. As shown

in Table 7, for the OccOcc combination, our method achieves significantly higher

accuracy (lower MPJPE) compared with this no-constraint method.

Table 7: Comparison of our method under constrained and not-constrained situations.
Results are based on OccOcc, using Human3.6m dataset. CPN 2D pose estimator
and TemporalCNN 3D pose estimators were used for evaluation.

OccOcc 2D 3D
no-constraint 13.37mm 80.4mm
constrained 10.87mm 65.7mm
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we studied the effect of occlusion on the task of human pose estimation

using CNN. We observed a significant decrease of accuracy of both 2D and 3D pose

estimation models under occlusion. We then proposed an approach to augment base

datasets with occlusion data (called occluders). We have chosen different occluder

levels categories and limited each to a particular area of the human body where it

would more probably appear, and utilized morphological erosion operation to blend

the occluder onto the original image. We have then applied top-performing 2D and

3D human pose estimators which are CNN based, and tested them on a combination

of occluded, not-occluded and mixed samples. The combinations are base dataset (no

occlusion added), occluded dataset (the base dataset augmented with occlusion), and

mixed dataset (50% from the base dataset and 50% from the augmented dataset).

We have divided each dataset into training and testing sets. Then we first trained the

CNN models on the training set and then tested on the test dataset of the respective

combination. The results of our extensive experiments have indicated that while

without proper training, occlusion lowers the accuracy of the CNN model; on the
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other side, using the augmented samples for training will incorporate occlusion into

the model and as a result significantly boosts their accuracy. Our approach resulted

in creation of different augmented datasets: OccRealPose (consisting of occluded

samples only) and MixRealPose (consisting of occluded and not-occluded samples).

A significant outcome of our work is that, our method results in a higher accuracy

of CNN models when trained under occluded samples but tested under the original

(not-occluded) samples, indicating the model achieves a higher understanding of the

dependency of different joints induced to it. Our proposed approach is independent of

the base dataset and can be used on any human pose estimation dataset and network.

These datasets as well as the code of our approach are available for download under

https://users.encs.concordia.ca/∼amer/RealPose/. Our approach has been tested

for single-person pose estimation, however, it can be extended to multi-person pose

estimation by providing a bounding box for each human subject and and occluding

each in an isolated manner.

5.2 Future Work

While our occlusion augmentation method provides an excellent opportunity to di-

rectly address occlusion, it still lacks occlusion labels, meaning the exact location of

the occurring occlusion. This opens the way to two main future research opportuni-

ties. First, to design and embed occlusion labels to the occluded image both for 2D

and 3D human pose estimation. Second, a model can be designed to actually train on

the occlusion samples, meaning, taking into account the occlusion labels and enforce

a penalty, mark the sample as a difficult sample, or work as a pose discriminator.

Regarding the dataset itself, while we did our best efforts to pay special attention

to the reality of the dataset it might still contain artifacts from the blending and

resizing resulting in blurry samples. Recent advancements in Generative Adversarial
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Networks indicate that they can be used to create conditional samples, meaning we

specify the details of the output image. The output samples are realistic to a degree

that it is undetectable by the human eye.
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