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ABSTRACT 

Large Displacement Analysis and Design of Stiffened Plates with Parallel Ribs 

in Large Industrial Ducts 

 

Ali Rezaiefar, Ph.D. 

Concordia University, 2021 

 

The structural design of stiffened plates of the walls of rectangular-sectioned industrial ducts 

and similar structures is conventionally based on the linear beam theory assuming that the 

displacements are small and the membrane forces that generate in the panel plate are negligible. 

The design of such stiffened plates is divided into two main steps where the panel plate and the rib 

stiffener are designed sequentially. Depending on the nature of the loads applied to the industrial 

duct, a third step might involve determining the vibration frequency of the panel plates for 

resonance verifications.   

In the first phase of this thesis, the conventional design method for the panel plate is studied in 

order to examine the effects of large displacements on the behaviour of the structure and ultimately 

present a new design approach accordingly. Two different sets of formulas are presented based on 

Finite Element analysis of rectangular plates with relatively long aspect ratios that estimate the 

maximum stress and deformation in the typical and edge panels of stiffened plates. These formulae 

are then applied to establish empirical design equations for the panel plates. The new design 

approach is capable of reducing the panel plate thickness significantly in comparison with the 

conventional method.  

In the second phase of the thesis, the structural design of the rib stiffeners is evaluated through 

a comparison between the conventional design which is based on Modelling the stiffened plate 

using an Equivalent Beam Analogy (EBA) and calculating the geometrical cross-sectional 

properties of it in linear beam theory, and FE analysis of the stiffened plate using shell elements 

with and without the consideration of large displacement effects. It is shown that the EBA and 

linear beam theory, as well as the FE using small displacements, are not relevant for the analysis 

and design of stiffened plates. In this phase, it is shown that the load-displacement behaviour of 
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stiffened plates with parallel ribs could be different under positive and negative pressures as the 

membrane forces generated in the panel plate would affect the overall behaviour of the stiffened 

plate differently. 

The third phase of the thesis provides means for obtaining the first three significant vibration 

modes for rectangular plates based on mass participation ratios. A non-dimensional frequency 

parameter is presented which results in the vibration frequency of rectangular plates at each of 

these three significant modes. Various aspect ratios and four combinations of boundary conditions 

at the plate edges are studied, and a correlation between the nonlinear load-deformation behaviour 

of the panel plate and its vibrational behaviour is also presented accordingly. It is demonstrated 

that the vibration frequency of the studied rectangular plates increases significantly upon 

increasing the applied lateral pressure if the large deformation effects are considered in the 

analysis. The easy-to-follow method of frequency calculation presented in this paper is useful for 

assessing the dynamic characteristics of rectangular plates with or without lateral pressure that are 

subject to vibration.   
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CHAPTER 1 

Introduction 

1.1 Background and Problem Definition 

Stiffened plates with parallel ribs account for a major part of thin-walled structures found 

typically in industrial facilities in the forms of rectangular ducts, dust collectors, boilers, hoppers, 

containers, and similar structures. Although the structural design of such structures is not directly 

addressed in the North-American codes, engineers usually refer to CSA-S16 in Canada and AISC 

Steel Construction Manual in the US. They often make several simplifications that lead to proper 

design procedures based on the nature of the loading and configurations of the stiffened plates. On 

the other hand, Eurocodes EN-1993: Design of Steel Structures addresses the steel plates and shells 

in parts 1-5, 1-6, and 1-7 and provides guidelines for designing such structures. However, in all 

those codes and standards, the panel plates in the stiffened plates with long spans (i.e., L≥2B) are 

often simplified and regarded as a unit-width beam for which the classical beam theory is deemed 

appropriate and acceptable. 

The principal assumption associated with the structural design of stiffened plates in the 

conventional methods, based on the classical beam theory, is that the plate displacements are 

infinitesimally small compared to their dimensions. Thus, the principal internal stresses in the 

panel plate following this assumption are produced by the flexural behaviour. This assumption, 

however, does not result in the correct load-displacement behaviour of the panel plate if the 

displacements are not infinitesimally small. The definition of large displacement is often provided 

with respect to the plate thickness. The following are some examples for such definition in the 

literature, in all of which δ is the maximum deflection and t is the thickness of the plate: 

- δ>0.5t (Levy, 1941a), 

- δ>1.0t (Timoshenko and Woinowsky-Kreiger, 1959) and (Ugural, 1981), or, 

- δ>0.2t (Bakker et al., 2008). 
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In large displacement analysis, the contribution of the membrane (tangential) forces generated 

in the plate in combination with the flexural stresses are accounted for, as explained further in the 

upcoming chapters of this thesis.  

1.2 Research Significance and Motivation 

As the environmental challenges that face the planet call for an overall reduction of energy and 

resources in the construction industry, any improvement in the optimization of the usage of the 

materials would be of great significance. On the other hand, steel production has a 190% CO2 

emission rate, i.e., for each tonne of steel production, 1.9 tonne of CO2 is released into the air 

bringing the steel industry accountable for 4-5% of the world’s overall CO2 emission according 

to the International Energy Agency annual data.  

The ultimate goal of the research which led to this thesis is to demonstrate the effectiveness of 

the consideration of the membrane forces in the panel plate by utilizing the Large Displacement 

Analysis (LDA) as a replacement for the conventional design approach, which is based on the 

Small Displacement Analysis (SDA) that takes into account only the flexural behaviour of the 

panel plate. At the beginning of this research, an overall thickness reduction of 30% was set as a 

realistic goal. However, when the definitions of the limit states are explicitly set based on the 

nature of the structure in which the stiffened plates are utilized, a more significant reduction in the 

steel panel plate thickness is easily within reach, as shown in Chapter 3. Moreover, the LDA could 

also be implemented as a better replacement for the conventional approach for the rib stiffeners' 

design in which the stiffener and a portion of the panel plate are modelled as an equivalent beam 

cross-section and designed using the classical beam theory.  

Another critical factor in the design of stiffened plates for industrial ducts is vibrational 

concerns. If the loading or flow-induced vibration resonates with the stiffened plate, the result 

would be excess structural vibration for natural modes with higher mass participation or excessive 

noise for natural modes with lower mass participation. A good design involves both of those 

aspects by calculating the natural frequencies of the stiffened plate. Although there are many 

analytical and empirical methods available in the literature to calculate the natural frequencies of 

rectangular plates, if the effects of membrane forces in the LDA are not considered, the calculated 

frequencies are not realistic. In this regard, there is a need for an easy-to-follow empirical method 
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that calculates the frequency of vibration in the structurally important modes of vibration for such 

plates under the applied lateral pressure in LDA. 

1.3 Objectives and Scope of Work 

In order to address the needs of the industry for a reliable and optimized design that is based on 

LDA, the objectives of this thesis are to (i) evaluate the applicability of the FE method for the LDA 

of rectangular plates and stiffened plates with parallel ribs, (ii) break down the structural design of 

industrial duct walls and stiffened plates in general from the perspective of LDA, (iii) review the 

limit stated design for stiffened plates and establish the applicable failure criteria, (iv) FE analysis 

of stiffened plates using the LDA and establish easy-to-follow empirical methods to estimate the 

load-displacement behaviour, the ultimate design load, and the vibrational frequencies of the 

rectangular plates accordingly. In order to achieve these objectives, the scope of the research in 

this thesis is as follows: 

- Developing a reliable FE Modelling approach and appropriate elements and boundary 

conditions that best simulate the stiffened plates of the walls of rectangular ducts and 

similar industrial structures, 

- Evaluating the FE results against the available experimental tests and analytical solutions 

in the literature, 

- Performing LDA on various aspect ratios of rectangular plates and tabulate their load-

displacement and load-stress behaviour, 

- Establish a meaningful empirical design approach based on LDA for the rectangular panel 

plates of the walls of industrial ducts and similar structures, 

- Performing LDA on stiffened plates with the most common form of rib stiffener and panel 

plate combinations in order to study the stress distributions in the panel plates as well as 

the load-displacement charts, 

- Establish a meaningful approach for the estimation of the ultimate load for stiffened plates 

in limit states design, 

- Evaluate the modes of vibration and mass participations in rectangular plates with various 

aspect ratios and loadings and determine the effect of LDA on their frequencies, 
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- Establish a meaningful and easy-to-follow approach to estimate the structural modes and 

their frequencies of vibration for rectangular plates with various aspect ratios under 

uniform lateral pressure.  

1.4 Thesis Layout 

The thesis is divided into six chapters and presented as followings: 

• Chapter 1 consists of the introduction, research significance and motivation, and 

objectives and scope of work. 

• Chapter 2 is the literature review that briefly addresses the available research on LDA 

topics of rectangular plates, stiffened plate analysis and design, and the vibration of 

rectangular plates.  

• Chapter 3 consists of a numerical investigation of the LDA effects on the load-

displacement and stress behaviour of rectangular panel plates of large industrial ducts. 

An evaluation of the existing design methodologies is presented, and the challenges in 

the FE Modelling of such structures are explained. Furthermore, the applicability of the 

existing LDA load-displacement estimations for the rectangular plates to the particular 

case of industrial duct walls is presented based on a thorough verification of the 

boundary conditions in such structures. A simple equation is presented at the end of this 

chapter for the limit states design of such panel plates based on the LDA and the 

applicable design standard.  

• Chapter 4 focuses on the structural analysis and design of stiffened plates with parallel 

ribs from a general perspective. The conventional design based on the linear beam 

theory that simplifies the stiffened plate into a built-up cross-section is reviewed and 

discussed. The Equivalent Beam Analogy (EBA) relevance is discussed through 

comparisons of its results with the load-displacement behaviour of the stiffened plate 

and the stress distributions in the panel plate in the FE method with shell elements in 

LDA and SDA. Following this discussion, it is shown that the LDA is the correct 

analysis method for the stiffened plates as it captures the actual behaviour of such 

structural assemblies by taking into account the membrane forces in the analysis. A 

simple design methodology is presented at the end of this chapter which could be used 
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in future studies to generate empirical design equations for stiffened plats using the 

LDA.  

• Chapter 5 is mainly focused on the dynamic behaviour of the panel plates in rectangular 

ducts. It involves estimating three structurally-significant modes of vibration for the 

rectangular panel plates based on their mass participation ratios. The panel plate FE 

models are analyzed under a uniform lateral pressure which is applied incrementally 

using LDA. At the end of each loading increment, the plate's natural frequencies are 

calculated for the three significant modes to study the effects of large displacements on 

the modal frequencies of the panel plate. At the end of this chapter, design charts are 

provided for various panel plate aspect ratios and loads based on which the vibration 

frequency of the three significant modes could be estimated for various applied 

pressures. A practical example of how to use the charts is also provided. 

• Chapter 6 provides a summary of the research project, the main contributions and 

conclusions, and recommendations for future works.  
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CHAPTER 2 

Literature Review 

2.1 Background 

There is a great wealth of literature about the structural analysis and design of stiffened plates 

with parallel ribs. This literature review is divided into three sections to distinguish the references 

used in various parts of this research study, as well as the FE methodology and the element utilized 

in the numerical studies of this thesis. Section 2.2 is mainly about the works on the large 

displacement analysis of thin rectangular plates. Section 2.3 focuses on the stiffened plates and the 

available analysis and design methods. Lastly, Section 2.4 consists of a selection of the available 

references on the topic of modal analysis and free vibration of rectangular plates.  

2.2 Large displacement analysis of thin rectangular plates 

Thin plates are defined based on their relatively small thickness compared to their planar 

dimensions. Although a clear distinguishing thickness-to-width ratio is not defined, many 

references, including Timoshenko and Weinomsky-Kreiger (1959) identify thin plates as those 

with t < 0.1B, where t and B are the plate thickness and width.  

The Kirchhoff-Love plate theory is generally applied to thin rectangular plates with small 

displacements. The plate governing equation (Eq. 2.1) in this method involves the flexural 

behaviour in a single, linear differential equation.   

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
= 𝑞/𝐷     (Eq. 2.1) 

In this equation, w is the deformation at any point on the x,y plane of the plate, q is the applied 

lateral load, and D=Et3/12(1-υ2) is the flexural rigidity of the plate where E and υ are the plate 

material’s modulus of elasticity and Poisson’s ratio respectively.  

There are several closed-form and numerical solutions to Eq. 2.1 in the literature for various 

rectangular plate dimensions and any combinations of loading and boundary conditions. However, 

if the plate deformations are relatively large, Eq. 2.1 is not relevant as it does not consider the 
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membrane (tangential) stresses. Different references have defined the large deformations in 

relation with the plate thickness including δ > 0.5t (Levy, 1941-a), δ > 1.0t (Timoshenko and 

Weinomsky-Kreiger, 1959) and (Ugural, 1981), and δ > 0.1t (Bakker et al., 2008). Regardless of 

the triggering deformation limit, large deformations introduce nonlinearities in the load-

deformation behaviour of the plate and governed by the von-Kármán equations (Eq. 2.2 and 2.3). 

𝜕4𝐹

𝜕𝑥4
+ 2

𝜕4𝐹

𝜕𝑥2𝜕𝑦2
+
𝜕4𝐹

𝜕𝑦4
= 𝐸 [(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)
2

−
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
]     (Eq. 2.2) 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=

𝑡

𝐷
(
𝑞

𝑡
+
𝜕2𝐹

𝜕𝑦2
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− 2

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
)   (Eq. 2.3) 

A solution to Eq. 2.2 for specific boundary conditions will result in the stress function (F) 

determining the membrane stresses in the middle surface of the plate. Once the stress function is 

determined, the displacements could also be calculated in Eq. 2.3. The membrane forces Nx, Ny, 

and Nxy are calculated based on the stress function and the plate thickness as: 

{
 
 

 
 𝑁𝑥 = 𝑡

𝜕2𝐹

𝜕𝑦2

𝑁𝑦 = 𝑡
𝜕2𝐹

𝜕𝑥2

𝑁𝑥𝑦 = −𝑡
𝜕2𝐹

𝜕𝑥𝜕𝑦

        (Eq. 2.4) 

The existence of the stress function at the right side of the differential equation results in a 

nonlinear load-displacement and load-stress relation for the plate. This nonlinear behaviour is 

fundamentally different from the material nonlinearities induced by the plastic deformations.    

The first general closed-form solution to the von-Kármán equations were presented by Levy 

(1941-a) for the case of rectangular simply-supported plate. The proposed solution was examined 

for the two geometries of square, and rectangular (1:3 ratio) plates in specific load cases of 

symmetrical normal pressure, uniform lateral pressure, and combined uniform lateral pressure and 

edge compression. Moreover, Levy (1941-b and 1942) provided another solution to the von-

Kármán equations for the case of square plates with clamped edges under uniform lateral pressure. 

The load-displacement charts by Levy (1941-a and 1941-b) for square plates are shown in Fig. 2.1. 
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Fig. 2.1: Load-displacement charts for square clamped (right) and simply-supported (left) plates by Levy (1941-a 

and 1941-b) 

Following the solutions by Levy, an experimental testing program on 56 rectangular plates with 

clamped edges, and 5 plates with freely-supported edges was conducted by Ramberg et al. (1942). 

The test setup was arranged as shown in the section view in Fig. 2.2.  

 
Fig. 2.2: Schematic section view of the testing apparatus for clamped plates (Ramberg et al., 1942) 

The experimental tests of Ramberg et al. resulted in load-displacement and load-stress charts 

which were used as a reference for future research on the large-displacement analysis of 

rectangular plates. Some examples of these load-displacement charts are shown in Fig. 2.3. 
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Fig. 2.3: Load-displacement charts for square clamped plates by Ramberg et al. (1942) 

Given the importance of such advancements in the design of aeroplanes and warcrafts during 

the WW2 era, the Levy and Ramberg reports were kept classified for 50 years. Following these 

reports, some further solutions to the von Kármán equations for the cases of rectangular plates 

with planar aspect ratios of 1.5 and 2.0 were proposed by Wang (1948). The rectangular plates in 
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Wang’s report had boundary conditions that resembled riveted edges and uniformly applied lateral 

pressure.  

 
Fig. 2.4: Load-displacement charts for rectangular plates with aspect ratio of 1.5 (right), and 2.0 (left) by Wang 

(1948) 

A series of equivalent equations were offered by Ciarlet (1980) for the von Kármán equations 

in which the nonlinear large deformation analysis of the plate was explained in the “method of 

asymptotic expansions”. This method which was claimed to be a simplified yet equivalent 

replacement to the von Kármán equations have never gained attention as it was stating the problem 

in a different set of equations with more terms and parameters, new assumptions, and different 

methodologies that those offered previously for the von Kármán equations. A series of numerical 

solutions to the von Kármán equations were offered by Katsikadelis and Nerantzaki (1994) in 

forms of an “analog equation method” in which two sets of linear bending problems were used as 

the stress and deflection functions.  

In all references up to this point, the boundary conditions considered in the solutions were 

symmetrical, i.e., the plate had the same boundary conditions at opposite edges. A new method 

was offered by Little (1999) in which the large-displacement analysis of rectangular plates with 

special cases of boundary conditions combinations such as those supported at three edges and free 

at one edge became possible. Moreover, the solution by Little (1999) involved the consideration 

of potential initial imperfections on the plate surface, and out-of-plane equilibrium in forms of 

energy formulations.  

Most recently, the large displacement analysis of rectangular plates gained more attention 

objectively by researchers trying to provide applicable analysis and design analogies in order to 
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implement it in the engineering design of thin-walled structures. Thanga et al. (2013) implemented 

this analogy to adopt a design method for the panels of the stiffened plates of duct walls. Their 

method was based on a FE Modelling on the ADINA platform in which three different stages of 

through-thickness yielding were defined as the limits for the ultimate load. Similarly, El-Aghoury 

and Galal (2014) provided an approximation of the nonlinear load-displacement behaviour of long 

rectangular plates using FE analysis and a 3-point approximation method as shown in Fig. 2.5.  

 
Fig. 2.5: Three-point Bezier approximation of the load-displacement chart by El-Aghoury and Galal (2014) 

2.3 Analysis and design of stiffened plates 

The dominant form for the walls of industrial structures, ship hulls, aircraft fuselage, and other 

similar structures is a combination of rectangular panel plates with rib stiffeners. The stiffened 

plate geometry and configuration make it very useful for warcraft and military applications. In this 

regard, there was a boost in the research on this topic in the 3rd and 4th decades of the previous 

century followed by some large time gaps afterwards due to the confidentialities imposed by the 

funding authorities at that era.  

There are hundreds of published articles about the analysis and design of stiffened plates from 

the stand points of various applications, design methodology, and analysis. One of the most 

referenced works on the concept of stiffened plates is the book by Triotsky (1976) in which various 

topics surrounding the structural analysis and design of stiffened plates are addressed and 

discussed. A recent literature study by Bedair (2009) has provided a brief review over more than 

400 such publications from the perspective of analytical techniques, closed-form and numerical 

solutions, and limit states design over the span of 1902 to 2008. According to Bedair’s literature 
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review, the earliest attempts on the analysis of stiffened plate were on the basis of simulations 

using the classical beam theory. As this thesis mainly focuses on the effects of large displacement 

on the behaviour of stiffened plates, most of the works in Bedair’s literature review are left out as 

irrelevant as their methodologies were based on the classical beam theory and small displacement 

analysis. However, it is worth mentioning that the simulation of stiffened plated as an equivalent 

beam (EB) has been the grounds for most of the literature on this topic.  

 
Fig. 2.6: Examples of stiffened plates and shells applications (Bedair, 2009) 

When the stiffened plate is simplified into an EB, the rib stiffener and the panel plate take part 

in the overall resistance of the EB to flexural, shear, and axial stresses. An extensive literature 

review on the aspect of the effectiveness of the panel plate in the overall behaviour of the stiffened 

plate was published by Paik (2008) where some key terms such as effective breadth, effective 

width, and effective shear modulus were reviewed and discussed. The effective breadth was 

defined by Paik (2008) as a portion of the plate with contributions in the EB flexural resistance as 

shown in Fig. 2.7.  

Integrally stiffened panels wing covers

Ship hull

Aircraft fuselage
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Fig. 2.7: Schematic display of the effective breadth in a typical stiffened plate (Paik, 2008) 

Compared to the previously available values for the be in the literature such as, be=32t (Blodgett, 

1966), and be=32t+ts (ASCE, 1995), in which t and ts are the plate and stiffener thicknesses 

respectively, Paik (2008) provided a more robust method for the calculation of be when the 

stiffened plate is under uniform lateral load as: 

𝑏𝑒 =
4𝐿sinh2⁡(𝜋𝑏/𝐿)

𝜋(1+𝑣)[(3−𝑣)sinh⁡(2𝜋𝑏/𝐿)−2(1+𝑣)(𝜋𝑏/𝐿)]
    (Eq. 2.5) 

Where L is the length of the stiffened plate, b is the panel plate width, and υ is the plate material 

Poisson’s ratio. An approximation of Eq. 2.5 was also presented by Paik (2008) as: 

𝑏𝑒

𝑏
= {

1.0⁡𝑓𝑜𝑟⁡ 𝑏 𝐿⁄ ≤ 0.18
0.18

(𝑏 𝐿⁄ )
⁡𝑓𝑜𝑟⁡ 𝑏 𝐿⁄ > 0.18

      (Eq. 2.6) 

Furthermore, Paik and Seo (2009-a) presented a FE analysis approach for steel stiffened plates 

under combined biaxial compression and lateral pressure aiming for providing grounds for the 

ultimate limit states (ULS) design of such structures mainly in ship hulls. They then applied their 

methodology and analysis approach to three stiffened plate models as shown in Fig. 2.8 (Paik and 

Seo, 2009-b).  

 
Fig. 2.8: The geometry and loading in the FE models by Paik and Seo (2009-b) 
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More recently, a study by Rahbar Ranji (2014) introduced an imaginary effective breadth/web 

concept for the evaluation and determination of the torsional buckling of the EB on the basis of 

the Euler stress for the coupled buckling mode.  

Aside from the studies on the EB and the panel plate effectiveness, there are several attempts 

in the literature to formulate and simplify large displacement analysis of stiffened plates. In a series 

of papers, Brubak and Hellesland (2007-a, 2007-b, and 2007-c) studied the case of arbitrarily 

stiffened plates from the perspectives of buckling strength, local and global bending, and 

postbuckling by implementing a semi-analytical approach based on the von Mises yield criterion. 

The local and global equilibrium paths were traced in their work (2007-b) by using the large 

deflection theory combined with the Rayleigh-Ritz criterion on an incremental form. Furthermore, 

they evaluated various criteria to estimate the ultimate flexural strength of such structures using 

semi-analytical methods separately (Brubak and Hellesland, 2008). The general schematic view 

of the stiffened plate in all studies by Brubak and Hellesland is shown in Fig. 2.9. While the semi-

analytical approach by Brubak and Hellesland was a great effort to obtain closed-form solutions 

to the large deflection analysis of stiffened plates, it often involved lengthy and sophisticated 

mathematical formulations with approximations and assumptions for case-specific boundary 

conditions. On the other hand, they also provided some verifications using FE analysis using 

ANSYS software to verify their method further. 

 
Fig. 2.9: Schematic display of the stiffened plate; (a) Stiffened plate subjected to applied in-plane shear stress (Sxy) 

and in-plane, linear varying compression or tension stress (Sx, Sy), and cross section of an eccentric, (b) flat bar and 

(c) T-stiffener. (Brubak and Hellesland, 2007-a, 2007-b, 2007-c, 2008) 

Another approach for the large deflection FE analysis of stiffened plates was presented by Ojeda 

et al. (2007) in which the equilibrium equations were derived using the principle of virtual work. 
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The analysis approach was then interpreted into a computer script in FORTRAN and the results 

were compared to what were obtained from a similar analysis in ANSYS.  

In a more generalized study on stiffened plates with arbitrarily placed ribs, Sapountzakis and 

Dikaros (2012) considered the effects of deformable connections on the geometrically nonlinear 

analysis of such plates by retaining the nonlinear terms in the kinematical relationship equations. 

They provided a robust method for deriving an approximate solution to the von Kármán equation 

for orthotropic plates as a generalization of stiffened plates. They verified their results against FE 

analysis in three different examples with a good correlation.  

As stated before, one of the main applications of stiffened plates is in the structure of ship hulls, 

such as the example in Fig. 2.10 (Badran et al., 2013). The stiffeners are often standard steel 

profiles such as L-angles, C-channels, Tee, and Y sections in such structures. A comparison 

between Y and Tee sections' ultimate strengths as the ribs in ship hull stiffened plates was provided 

by Badran et al. (2013). Moreover, the effects of imperfections in the rib stiffeners on the stiffened 

plate's overall behaviour were also studied in more than 200 FE models using ANSYS software, 

and the results were presented in forms of load-displacement curves. 

   
Fig. 2.10: Actual midship section of a double-hull oil tanker (Badran et al., 2013) 
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A similar study by Leheta et al. (2015) focused on the application, analysis, and advantages of 

Y stiffeners as a replacement for other shapes and profiles of stiffeners typically used in the ship 

hull design and construction. Detailed comparisons of the geometrical characteristics of the newly-

proposed rib stiffener shape with the typical ones were presented, and a FE analysis using ANSYS 

software on some stiffened plate panels from an existing ship hull design were followed.  

While there is a great need for extensive experimental studies on stiffened plates, there are 

minimal such studies in the literature. The experimental program by Xu and Guedes Soares (2013) 

consisted five stiffened plate specimens under axial compression to obtain their load-deformation 

and collapse loads, as shown in Fig. 2.11. Following the experimental tests, an empirical design 

method was presented in which the effects of various parameters were included. Moreover, some 

general conclusions, including a suggested arrangement of the rib stiffeners to potentially avoid 

the collapse of the side bays, were presented at the end of the study. 

  
Fig. 2.11: The test setup and one of the specimens tested by Xu and Guedes Soares (2013) 
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Another experimental study that could be related to the stiffened plates analysis and design was 

presented by Kwon (2014), in which the direct strength method that had been previously tested for 

cold-formed steel members was evaluated for welded steel members, including the stiffened plate 

geometry. A total of 14 specimens were tested under direct compression as shown in Fig. 2.12 by 

Kwon and the results were used for the evaluation of the direct strength method by the author. The 

experimental work ultimately resulted in an empirical equation for the calculation of the limiting 

load, which accounts for local and overall buckling of the stiffened plate under direct compression 

(Kwon, 2014).  

 
Fig. 2.12: Test setup and deformed shape of the stiffened plate specimen (Kwon, 2014) 

The experimental tests by Shanmugam et al. (2014) are unique because they are the only ones 

that include bending of stiffened plates and the combined bending and compression. A total of 12 

stiffened plates were tested by Shanmugam et al. (2014) in two separate divisions: series A and 

series B with slenderness ratios (b/t) of 100 and 76. The test setup is shown in Fig. 2.13.  
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Fig. 2.13: Test setup (up), and the sectional view of the test setup (down) by Shanmugam et al. (2014) 

Shanmugam et al. (2014) also included a FE modelling using ABAQUS software to establish 

an accurate modelling approach for such analysis. The tests results were presented in the form of 

comparisons between the deformed shapes observed from the tests and predicted by the FE 

analysis, lateral load-displacement charts, and interaction diagrams for axial load and lateral 

pressure. 

2.4 Modal analysis and free vibration of rectangular plates with large 

deformations 

The earliest attempts on the vibration analysis of rectangular plates in presence of in-plane 

(membrane and shear) forces were made by Dawe (1969) and followed by alternative solutions 

including numerical methods by Mei and Yang (1972), Dickinson (1973) and Bassily and 
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Dickinson, (1973). Chan and Foo (1979) were amongst the first to apply the Finite Strip method 

to solve the case of rectangular plate vibration with membrane forces.  

The general equation of motion for a rectangular plate under lateral and in-plane loading is 

presented in Eq.2.7.  

𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝑐ℎ𝑤̇ + 𝜌ℎ𝑤̈ = 𝑓 + 𝑞 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (Eq.2.7) 

In which D is the flexural rigidity of the plate, c is the viscous damping, ρ is the mass density 

per unit volume of plate material, h is the plate thickness and w(x, y, t) is the dynamic displacement 

at any given point of plate surface at specific time (t).  The first and second derivatives of w with 

respect to t (i.e. ẇ and ẅ) represent the velocity and acceleration at a specific time. On the right 

side of Eq.2.7, f is the external excitation as a function of time, q is the lateral pressure applied at 

the plate surface while Nx, Ny are the membrane forces distributed along the edges of plate and Nxy 

is the in-plane shear force, respectively.   

The simplest form of plate vibration analysis represents the free vibration of unloaded 

rectangular plates with negligible damping. In this case, the forcing terms at the right side and the 

viscous damping term at the left side of Eq. 2.7 are set to zero and it reduces to Eq. 2.8. 

𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝜌ℎ𝑤̈ = 0       (Eq. 2.8) 

There is an infinite number of natural frequencies (and mode shapes) available from the closed-

form or numerical solutions to Eq. 2.8 for various boundary conditions of rectangular plates 

(Amabili, 2008).  As an example, the closed form solution to Eq. 2.8 for rectangular plates with 

all edges simply-supported could be presented as Eq. 2.9.  

𝜔𝑚,𝑛 = 𝜋
2 [(𝑚 𝐿⁄ )

2
+ (𝑛 𝐵⁄ )

2
]√𝐷 𝜌ℎ⁄       (Eq. 2.9) 

In which m and n indicate the number of wave fronts along the length (L) and breadth (B) of 

the rectangular plate for any particular mode shape with natural frequency ωm,n. Amabili (2006) 

verified the natural frequencies of 15 modes of vibration resulted from Eq. 2.9 experimentally for 

the case of a rectangular aluminium plate as shown in Fig. 2.14.  



20 

 

 
Fig. 2.14: Experimental test setup of Amabili (2006) 

In another case, the free vibration of rectangular plates with negligible damping in presence of 

membrane forces was studied by Singh and Dey (1990) using the energy method. They discretized 

the total energy of free vibration of the system by replacing the derivative terms with their Finite 

Difference equivalents and used a specific energy minimization technique to solve the resulting 

eigenvalue problem. One step further into the case of rectangular plate vibration with membrane 

forces, Leissa and Kang (2002) presented one of the first exact solutions for the case of vibration 

and buckling of rectangular plates with a particular boundary conditions in which two opposite 

edges of the plate were clamped and the two other edges were simply-supported. A linearly 

variable in-plane load was considered to act at the simply-supported edges (Leissa and Kang, 

2002). A similar case was presented by Wang et al. (2006) that simplified Eq. 2.7 into the form 

presented in Eq. 2.10 for the case of free vibration of rectangular plates with membrane forces 

acting at opposite edges along x axis.  

𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝜌ℎ𝑤̈ = 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
      (Eq. 2.10) 

Wang et al. (2006) used the differential quadrature method to solve Eq. 2.10 and calculated the 

vibration frequency for six mode shapes of the rectangular (m=1 to 3, n=1 and 2). They estimated 

the w(x,y,t) function by w(x,y)sin(ωt) and presented the in-plane force Nx with a linear function. 

Aside from those references that address the plate vibration from a general point of view, there 

are some more detailed works that focus on some special aspects of the problems related to the 
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vibration of plates. Phillips and Jubb (1974) studied the effect of lateral distortion on the natural 

frequency of rectangular plates by performing experimental tests on a rectangular plate with 

approximately clamped edges and verified the findings with the existing theory. 

 Kaldas and Dickinson (1981-a) used the Finite Difference method and Rayleigh-Ritz analysis 

to estimate the vibration modes and frequencies of rectangular plates with complications such as 

weld lines or initial in-plane residual stresses. Furthermore, Kaldas and Dickinson (1981-b) studied 

the effects of weld runs and the residual stresses due to welding or flame cuts on the flexural 

vibrational characteristics of rectangular plates by applying Finite Difference analysis and the 

Rayleigh-Ritz method along with experimental tests on plates with beam characteristic functions. 

The case of forced vibration of rectangular plates with initial imperfections such as deflections or 

displaced supports was studied by Yamaki and Chiba (1983), and it was followed by the 

experimental tests by Yamaki et al. (1983) in order to address the nonlinear vibrations of a square 

plate with clamped edges in a more realistic way. Gorman (1982) applied the superposition method 

to obtain accurate solutions for the case of free vibration frequencies and mode shapes of 

rectangular plates resting on elastic supports at their edges. He generated an eight-by-eight matrix 

for the schematic presentation of the eigenvalues based on four-term expansions for building block 

solutions for different cases of supports flexibility.  

 

 
Fig.  2.15: The experimental test setup (up), and the expected modal shapes for the duct segment (down) by David et 

al. (2018) 



22 

 

The most recent work on the vibrational responose of rectangular ducts was presented by David 

et al. (2018) in which the concept of flow-induced vibration in rectangular ducts was presented 

through experimental and analytical studies. A 0.2 m × 0.1 m section of a steel duct with 0.5 m 

length was experimentally tested in the specifically-designed gas flow test table shown in Fig.  

2.15 in order to obtain its vibration modes during various scenarios of turbulent flow with 

velocities of 20 m/s and 30 m/sec. The experimental results were then used to validate the results 

of the numerical analysis in which the acoustic and aerodynamic components of vibration were 

presented. They concluded that the prediction of the flow-induced vibrations is achievable by 

numerical analysis.  
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CHAPTER 3 

Structural Design of Stiffened Plates of Industrial Duct Walls with 

Relatively Long Panels Undergoing Large Deformations 

3.1 Abstract 

Structural design of stiffened plates of the walls of rectangular-sectioned industrial ducts is 

currently based on the strip method that follows the linear flexural beam theory. The current design 

method assumes that the displacements generated in the plate are small and the membrane forces 

that generate in the plate are negligible. This paper addresses the current design method and 

discrepancies associated with it to present a new design approach that takes into account the effects 

of large displacements on the load-deformation and load-stress behaviour of stiffened plates. Two 

different sets of formulas are presented based on Finite Element analysis of rectangular plates with 

relatively long aspect ratios that estimate the maximum stress and deformation in the typical and 

edge panels of stiffened plates. These formulas are then used to establish design equations for 

stiffened plates. Based on the findings of this paper, a reduction of 30 to 40 percent in the plate 

thickness could be achieved if the new design approach is selected over the conventional design 

method. 

3.2 Introduction 

Many industries require transferring large amounts of air and flue gas between different points 

as part of their production or treatment procedures. Depending on the nature of flu gas and the 

volume of transfer, ducts with different shapes and sizes are used in various parts of a given 

industry. Most duct line assemblies consist of various segments connected to each other to form a 

conduit line that transfers large amounts of air or flue gas in industrial facilities. A segment of a 

duct line assembly forms a straight line or an elbow with circular, rectangular or transfer cross-

sections. A typical rectangular duct segment consists of four plates sealed together to form the 

walls of a rectangular section resting on supporting frames at two ends. The wall plates are 

stiffened by rib elements at certain intervals throughout the length of the duct segment as shown 
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in Fig. 3.1 to form stiffened plates with relatively long rectangular panels. This paper studies the 

structural design of the stiffened plates of the walls of large rectangular sectioned industrial ducts.  

 
Fig. 3.1: (a) Large industrial rectangular duct segments under construction (courtesy of fives-solios Inc.). (b) 

Schematic view of a typical rectangular duct segment 

ASCE (1995) defines various loads that apply to duct line assemblies considering the duct 

segment geometry, the method of application, environmental conditions, the indoor or outdoor 

location, the nature of flue gases transferred, the flow temperature and position of duct segment in 

the flow system. Although there are various external loads (dead, live, wind and earthquake loads) 

applicable to the duct segment, the main load acting on duct walls is the internal hydrostatic 

pressure that transfers the air or flu gas inside the ductline. The hydrostatic pressure inside the duct 

is positive if the fans that generate the flow are installed upstream but in most cases the pressure 

is negative (suction) since the fans are installed at the outlet of the flow (ASCE, 1995). 

Structural design of duct walls consists of two stages namely, local and global design (ASCE, 

1995). In the local stage, the plate thickness and stiffener arrangements are designed under the 

internal pressure whereas in the global stage the whole duct segment is designed for the external 

loads.  

One of the major aspects in the analysis and design of industrial ducts and similar structures is 

the load-displacement behaviour of the stiffened plates. Although the effects of large deformations 

(i.e., geometrical nonlinearities) on the load-displacement behaviour of rectangular plates are well 

known, the design of plates in ductwork industries is mainly based on linear analysis without 

consideration of large deformations effects. ASCE (1995) briefly mentions the membrane forces 
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induced in the plate as a result of large deformations without giving any further technical guidance. 

Since then, the effects of large deformations on the failure criteria of long rectangular plates have 

been studied by several researchers. Young and Budynas (2002) presented nonlinear load-

deformation curves of rectangular plates for various plate boundary conditions and aspect ratios 

considering large deformation effects. More recently, Thanga et al. (2011) studied the case of 

stiffened plates of duct walls while considering large displacements and allowing for partial 

yielding of the plate within an acceptable limit. They concluded that a design approach that is 

based on large deformation analysis would be more economic than the linear method stated in 

ASCE (1995) guideline. Following these findings, the load-displacement and load-stress relations 

for long rectangular plates were then formulated by El-Aghoury and Galal (2014) using Bezier 

equations. Similar findings were reported by Zhong (2014) for ducts with wall plate thicknesses 

ranging between 3/16" to 3/8". From the above, it can be noted that there is a need for developing 

design equations that take into account the effect of large deformations using boundary conditions 

that represent stiffened plates of duct walls.  

The duct line segments are supported against the external loads by means of structural frames 

and footings or through connections with other segments. The term “structural design of duct 

walls” in this paper refers to the local design of duct wall plates. After the design of duct walls and 

segments, the duct line assembly shall be checked for thermal expansion. Thermal expansion might 

cause destructive axial force if restrained and should be released along the duct line by using 

expansion joints and elbows. It is practical in the design of duct lines to use expansion joints at 

one or both ends of straight segments (ASCE, 1995). An expansion joint may transfer shear, 

moment, torsion or a combination of all of them between two adjacent segments of the duct line 

but it generally provides full release of axial forces. Thus, the boundary conditions at the edge 

panel (see Fig. 3.1-b) at the location of the expansion joint are different from those of the typical 

panels of the wall plate. Therefore, this paper focuses on evaluating the linear and nonlinear 

behaviour of stiffened plates of duct walls considering the large deformation effects as well as the 

effects of expansion joints at the ends of the duct segment on the boundary conditions.   
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3.3 Analysis and Design of Long-Spanned Rectangular Plates 

The current procedure of the design of long-spanned plates with aspect ratio greater than 2.0 

is based on the application of flexural beam analogy by using a “unit-width strip” at the middle of 

the plate as shown in Fig. 3.2. The analysis of this unit-width beam element (design strip) could 

be linear or nonlinear depending on the nature of design.  

 
Fig. 3.2: Unit-width strip and beam analogy 

3.3.1 Linear analysis of long rectangular plates under uniform lateral pressure 

The principal assumption in the linear analysis of plates under uniform lateral pressure is that 

the deformations are small compared to the plate thickness, and strains are infinitesimal so the 

classic beam bending equations apply to the design strip of the plate as a beam element. 

Using the unit-width beam analogy, the cross-sectional properties of the plate are calculated 

based on the plate thickness, t, as shown in Eq. 3.1. 

{
𝐼 = 𝑡

3

12⁄

𝑆 = 𝑡
2

6⁄
         (Eq. 3.1)  

where S is the section modulus and I is the moment of inertia of the unit-width strip. Applying 

the beam bending analogy to the unit-width strip of the plate for the three boundary condition 

combinations shown in Fig. 3.2, results in the elastic stresses and deflections as shown in Table 

3.1. In this table, q is the lateral uniformly distributed load, σ is bending stress, δ is the plate 

deflection and λ is the plate length-to-thickness ratio (L/t). The boundary conditions indicators “S” 

and “C” represent the simply-supported (hinged) and clamped (fixed) ends respectively. The 
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design stresses and deflections in Table 3.1 are calculated by applying the section modulus and 

moment of inertia in the classical bending moment equations, respectively.  

Table 3.1. Stresses and deflections of long plates when using unit-width strip method and beam 

analogy   

 
Boundary Conditions 

S-S C-C C-S 

σ 3qt2x(L-x) q(6xL-L2-6x2)/(2t2) 0.75q(3xL-4x2)/t2 

σ - (max) 0 
0.5qλ2 

[at x=0, x=L] 

0.75qλ2 

[at x=0] 

σ + (max) 
0.75qλ2; 

[at x=0.5L] 

0.25qλ2 

[at x=0.5L] 

0.422qλ2 

[at x=0.625L] 

δ/t q(xL3-2Lx3+x4)/(2Et4) qx2(L-x)2/(2Et4) q(xL3-3Lx3+2x4)/(4Et4) 

δ/t (max) 
5qλ4/(32E) 

[at x=0.5L] 

qλ4/(32E) 

[at x=0.5L] 

12qλ4/(185E) 

[at x=0.5785L] 

The formulas presented in Table 3.1 are useful for the linear analysis of long (i.e. S>2.0) 

rectangular plates based on the unit-width strip method. These equations could be interpreted in 

conventional design formulas in forms of Eq. 3.2 and Eq. 3.3 for the three applied boundary 

conditions combinations.    

(
𝑞
𝐹𝑌
⁄ ) 𝜆2 = {

1.33(𝜎𝑚𝑎𝑥 𝐹𝑌⁄ ); (𝑆 − 𝑆)

2(𝜎𝑚𝑎𝑥 𝐹𝑌⁄ ); (𝐶 − 𝐶)

1.33(𝜎𝑚𝑎𝑥 𝐹𝑌⁄ ); (𝐶 − 𝑆)

      (Eq.3.2)  

(
𝑞
𝐸⁄ )𝜆4 = {

6.4(𝛿 𝑡⁄ ); (𝑆 − 𝑆)

32(𝛿 𝑡⁄ ); (𝐶 − 𝐶)

15.42(𝛿 𝑡⁄ ); (𝐶 − 𝑆)

      (Eq.3.3)  

In equations 3.2 and 3.3, the length-to-thickness ratio (i.e. λ) of plate is calculated for the given 

load (i.e. uniform pressure, q) by replacing the (σmax/Fy) and (δ/t) ratios with the maximum stress 

and deflection limits set by the design criteria (i.e. design codes adopted by the engineer). The 

final design results are the plate length and thickness that fit into the length-to-thickness ratio 

calculated from these design equations. Since the plate gauges are limited, it is practical to select 

the thickness of the plate from the available gauges then design the ribs spacing using equations 

3.2 and 3.3. In cases where the presence of expansion joints dictates the boundary conditions of 



28 

 

the edge panel, a practical design calls for keeping the same plate thickness while reducing the rib 

spacing for the edge panel. In cases when the stress criterion is used, the rib spacing ratio for the 

edge panel would be calculated using Eq. 3.2 as: 

λedge/λtypical=(1.33/2.0)0.5 = 0.815 

and similarly, for the deflection criterion using Eq. 3.3: 

λedge/λtypical=(15.42/32)0.25 = 0.833 

Thus, as a general rule it is practical to design the rib spacing at the edge panels of duct 

segments within the range of 80% of the typical rib spacing when expansion joints are used. 

3.3.2 Nonlinear Analysis of Plates Under Uniform Lateral Pressure with Large 

Deformations 

Applying uniform lateral pressure to a rectangular plate results in deformations throughout 

the plate with the peak deflection at the centroid. A relationship between applied lateral pressure 

and the resulting deflections could be established if the types of stresses generated in the plate due 

to the applied pressure are known.  

In general, plate stresses are categorized into three main types by the classic plates and shells 

theory namely the in-plane (tangential) stresses, the out-of-plane (shear) stresses and the bending 

(flexural) stresses (Love, 1888). One of the governing parameters in the classic plate theory is the 

thickness of the plate. In extremely thin plates, the effects of bending and shear stresses on the 

overall load-deformation behaviour are minimal and any out-of-plane deflection is significantly 

greater than the thickness of the plate. Plates with such behaviour are classified as membrane 

elements in most of the available references including Timoshenko and Woinowsky-Kreiger 

(1959). On the other hand in thicker plates, the effects of bending stresses on the overall plate 

behaviour increase with the thickness of plate while the tangential stresses and lateral 

displacements reduce significantly. In cases where the deflections are small compared to the 

thickness of the plate, the tangential stresses are negligible and the plate is considered as “pure 

bending plate” (Timoshenko, 1938).   
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In general, Kirschhoff-Love plate theory is applied to thin plates where the plate thickness is 

at least one degree smaller than its width (Timoshenko, 1938) as shown in Eq. 3.4. 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=

𝑞

𝐷
       (Eq. 3.4) 

where w is the deformation at any point, x and y stand for the coordinates of the point where 

the deflection is desired, q is the applied uniform pressure and D is the flexural rigidity of the plate 

calculated as: 

𝐷 =
𝐸𝑡3

12(1−𝜈2)
        (Eq. 3.5) 

in which E and ν are the modulus of elasticity and Poisson’s ratio of the plate material 

respectively. There are several available solutions for Eq. 3.4 when applying various boundary 

conditions in terms of closed-form and numerical approaches in the literature, including the 

solutions given by Timoshenko and Woinowsky-Kreiger (1959).  

The contribution of shear stresses in the overal response of thick plates (e.g. thick concrete 

slabs) to the applied pressure must be considered in the plate governing equations. Such thick 

plates are often called the “Mindlin-Reissner plates” since their case was first presented and solved 

separately by Mindlin (1951) and Reissner (1945) as an extension to the Kirschhoff-Love plate 

theory. The case of thick plates with shear behaviour is out of scope of this paper. 

 
Fig. 3.3: Rectangular simply supported plate under uniform lateral pressure. a) Plate dimensions and loading b) 

Contour display of plate deflection 
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If the displacements of thin plates are relatively large, Eq. 3.4 does not result in accurate 

answers because it ignores the contribution of tangential stresses in the plate behaviour. The load-

deformation behaviour of thin plates is governed by von-Kármán equations in the case of 

rectangular plates with large deformations. Different references defined large deformations based 

on portions of the thickness of the plate e.g. δ>0.5t (Levy, 1941a), δ>1.0t (Timoshenko and 

Woinowsky-Kreiger, 1959) (Ugural, 1981) and δ>0.2t (Bakker et al., 2008) where δ is the 

maximum deflection normally at the center of plate as shown in Fig. 3.3. The von-Kármán 

equations are presented in Eq. 3.6 and Eq. 3.7 where F is a stress function of x and y (Timoshenko 

and Goodier, 1951).  

𝜕4𝐹

𝜕𝑥4
+ 2

𝜕4𝐹

𝜕𝑥2𝜕𝑦2
+
𝜕4𝐹

𝜕𝑦4
= 𝐸 [(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)
2

−
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
]    (Eq. 3.6) 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=

𝑡

𝐷
(
𝑞

𝑡
+
𝜕2𝐹

𝜕𝑦2
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− 2

𝜕2𝐹

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
)  (Eq. 3.7) 

A solution to von-Kármán equations for specific boundary conditions results in stress and 

deformation functions. The stress function (F) determines the tangential stresses in the middle 

surface of the plate and the deformation function, (w) defines the deflected shape of the plate as: 

{
 
 

 
 𝑁𝑥 = 𝑡

𝜕2𝐹

𝜕𝑦2

𝑁𝑦 = 𝑡
𝜕2𝐹

𝜕𝑥2

𝑁𝑥𝑦 = −𝑡
𝜕2𝐹

𝜕𝑥𝜕𝑦

        (Eq. 3.8) 

The bending and shear stresses could be then extracted from the classic plate theory 

considering small deformations. In other words, the distributed uniform load q could be resolved 

into two components q1 and q2 where q1 is balanced in total by bending and shear stresses 

calculated using the equations of plates with small deformations and q2 is balanced by the 

membrane (tangential) stresses calculated using Eq. 3.8 (Timoshenko and Woinowsky-Kreiger, 

1959).  

Although general closed form solutions to von-Kármán equations do not exist yet, several 

cases of plates with different geometry and boundary conditions are solved in the literature. First 

attempts were made by Levy in three separate reports for the National Committee for Aeronautics 

(Levy, 1941a, 1941b, 1942) to present a closed form solution to von-Kármán equations for specific 



31 

 

boundary conditions and geometries of rectangular and square plates. In order to support and verify 

the previously derived solutions by Levy, Ramberg et al. (1942) performed normal pressure 

experimental tests on 56 rectangular plates with clamped edges and 5 plates with freely supported 

edges. The results of those tests only qualitatively verified the results obtained from the theoretical 

solutions to the plate deformation equations, thus more improved solutions were required. Some 

improved solutions to von-Kármán equations for rectangular plates were obtained for the special 

cases of plates with aspect ratios of 1.5 and 2.0 under normal uniform pressure by Wang (1948). 

In similar attempts, other researchers (Little, 1999)(Wang and El-Sheikh, 2005)(Imrak and 

Gerdemeli, 2007) stated various closed form solutions for the same problem using different 

methods. Latest attempt to derive a closed form solution for the case of rectangular plate with large 

deformations was by Ibearugbulem et al. (2013) where the maximum deflection at the center of 

rectangular plates simply-supported at four edges (SSSS) was calculated. Rectangular plates with 

aspect ratios varying from 1.0 to 2.0 were solved by this method and the solutions were verified 

with the previous methods by Timoshenko and Krieger (Ibearugbulem et al. 2013).  

Aside from the closed form types of solutions that lead to lengthy mathematical formulations 

which are not simple to follow by the design engineers, approximate and numerical methods were 

also suggested in most of the previously mentioned references. Bakker et al. (2008) used a shape 

function corresponding to the first buckling mode shape of the plate under in-plane compressive 

stresses in order to approximately determine the large deflection behaviour of rectangular simply-

supported thin plates. In their approach, the large-deflection behaviour of the plate under transverse 

loading was estimated as a function of the ratio of the pre-buckling to post-buckling stiffness of 

the plate. Both pre- and post-buckling stiffnesses are available in the literature for rectangular 

plates.  

As in most of the available references on plate analysis, in this paper long rectangular plates 

are those with aspect ratios of 2.0 and greater, which mainly refer to panels of stiffened plates used 

as the walls of thin-walled structures such as industrial ducts, bunkers and similar structures. There 

is very limited research work available in the literature addressing the behaviour of such plates 

under transverse pressure considering large deformations effects; this is in part due to the general 

definition of long plates as elements whose behaviour could be resembled as one-way plate action 

using beam theory as mentioned in the previous section. Thanga et al. (2011) used FE analysis in 
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order to study the effects of yielding of steel material on the behaviour of duct wall plates under 

lateral pressure considering the membrane forces induced by large deformation. They modeled a 

strip of plate with unit width and various lengths using shell elements. They established design 

equations for three different cases of through-thickness yielding namely 0%, 16.5% and 33% of 

the thickness of steel plate in order to increase the load carrying capacity. Same Modelling 

approach (unit width strip geometry) was used by El-Aghoury and Galal (2013) in a parametric 

study on the specific case of plates between two adjacent ribs of the walls of industrial ducts. The 

main result of their work was a very close approximation of the load-deformation of plates with 

large deformations under uniform pressure by applying the Bezier curves (Bezier, 1972) based on 

numerical Modelling. Both of last two references assumed that using a unit width strip model based 

on beam analogy give very accurate approximations of the case of long rectangular plates under 

lateral uniform pressure. Contrary to the traditional method of treating rectangular plates with 

aspect ratios higher than 2.0 as one-way plates, Wang and El-Sheikh (2005) showed that two-way 

plate action still applies to plates with aspect ratios from 1.5 to 10.0 and the application of one-

way action will result in over-estimated deflections calculation for relatively long plates.   

3.4 Nonlinear Finite Element Analysis of Duct Walls  

The Finite Element Modelling and analysis in this paper are done using standard SHELL181 

element from the element library of the general-purpose commercial software package ANSYS 

(ANSYS, 2013-a). SHELL181 is a 4-node shell element with six degrees of freedom (translation 

in and rotation about three dimensional axes) which is designed for the analysis of thin to 

moderately-thick shell structures (Dvorkin and Bathe, 1984). SHELL181 element covers three 

types of behaviour namely “plate-type” which covers only the bending-type using the classical 

Mindlin/Reissner theory, “membrane-type” which neglects any bending and considers pure 

membrane behaviour and “shell-type” that covers both bending and membrane behaviours by 

implementing the geometrical nonlinearities effects. The element is tested by ANSYS for the linear 

and nonlinear applications concerning large deformations, large rotations and large strains through 

benchmark verification examples (ANSYS, 2013-b). SHELL181 stress output covers the normal 

and shear stresses namely SX, SY and SXY at top, bottom and middle of each shell layer. It also 

provides the equivalent von-Mises stresses as well as other types of common failure criteria. More 

importantly, it provides stress resultants corresponding to membrane forces (N11, N22), In plane 
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shear force (N12), bending moments (M11, M22), in plane moment (M12) and transverse shear forces 

(Q13, Q23) as shown in Fig. 3.4.  

 
Fig. 3.4: SHELL181 geometry and stress output (ANSYS, 2010-b) 

3.4.1 Validation of Modelling and boundary conditions 

Most of the FE models and experimental tests available in the literature for rectangular plates 

under lateral pressure consist of a unit-width strip or a single panel plate model with clamped, 

hinged or free boundary conditions assigned to each of the four edges. This approach results in 

geometry and boundary conditions for the edge and typical panels of duct walls as shown in Fig. 

3.5. 
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Fig. 3.5: Boundary conditions for the single-span plate model (a): Typical panel (b): Edge panel 

The wall plate panel with boundary conditions shown in Fig. 3.5(a) is modeled here to verify 

the element and analysis method. The unitless load displacement curve is shown in Fig. 3.6 in 

comparison to the results of El-Aghoury and Galal (2013) and Young et al. (2002). Similarly in 

Fig. 3.7, the load-stress curves resulted from the FE analysis are presented against the available 

results in the literature.  

 
Fig. 3.6: Load-deformation curve of rectangular plate (typical panel) 

Comparing the results of current study for the single panel plate with those available in the 

literature, it is seen that for the analysis of typical panel plates of duct walls independently (without 

considering the effects of expansion joints), the available equations in the literature are adequate 

in predicting the behaviour of duct wall plates. In other words, the plate model has no significant 
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advantage over the existing unit-width strip method that applies the large displacement beam 

theory to plates.   

 
Fig. 3.7: Normalized tangential (membrane) stress (left); and total stresses (right) for a single span rectangular plate 

with large deformations 

Expansion joints at one or both ends of a duct segment release the axial force and bending 

moment by providing discontinuity along the length of the stiffened plate. The equilibrium of 

forces and deformations changes with the release of axial force as shown in Fig. 3.8 for a sample 

three span beam (or plate strip) that is subjected to uniform load with consideration of large 

deformations. In case (a) the large deformations resulting from the distributed load produce the 

axial force N (membrane action) in each span and the reactions at the two ends of the beam as 

shown in the free body diagram in Fig. 3.8(a). If the axial restrain is removed at one end (or both 

ends), the axial force N could not generate due to the equilibrium of forces, hence the deflections 

will be larger and the large deflections result in cumulative in-plane displacements of the beam as 

shown in Fig. 3.8(b). 

 
Fig. 3.8: Loading and free body diagram for the equilibrium of continuous beams with large deformation 
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Thus, neither the strip method used in the previous works nor the single span plate Modelling 

apply to the case of duct walls (typical and edge panels) if expansion joints are present in the duct 

assembly. In other words, a realistic model that represents the stiffened plates of duct walls must 

cover the geometry of the wall plates in a way that the assumed boundary conditions correspond 

to the existence of expansion joint at the edge of the duct segment. Such a plate model obviously 

cannot consist of only a single panel of the stiffened plate, thus in this paper multi-span plates are 

used.  

 
Fig. 3.9: Geometry and FE mesh of a sample 3D duct segment model 

Fig. 3.9 shows the geometry, FE mesh and the boundary conditions of the 3D model of a duct 

segment that is designed based on the linear design method. In this model, the DOFs of plate 

elements at the corners of the duct segment are fully integrated to resemble the fully welded 

situation in reality. The rib stiffeners are also fully connected at the duct corners based on the 

XZ

Y

U(Y)

U(Y)

U(Z)

U(Y)

U(Z)

U(X)



37 

 

assumption of moment connection at the ends of the ribs. Geometric nonlinearities (large 

deformation effects) are included in the analysis to verify the behaviour of the duct segment.   

Fig. 3.10 shows the absolute deformed shape of the duct segment model under internal 

uniform pressure in terms of displacements and rotations. The overall deformation of the wall 

plates is the sum of panel plates and rib stiffeners deformations. Since the rib elements are out of 

the scope of this paper, they are removed from the view in the figure. It is seen in Fig. 3.10 that 

the deformed shapes of the duct wall plates are similar for all the panels except for the edge panel 

where the expansion joint exists. It is observed from the absolute displacement contours that the 

edge panel displacements are smaller than those of the typical panels considering the smaller 

length used for the edge panels. It is also observed that the free edge of the edge panel shows the 

maximum rotation at the middle due to the connectivity of wall plates at the duct corners that 

prevent the rotations. Considering the symmetry of the deformations and rotations, it is concluded 

that a multi-span wall plate model will well represent the full duct segment model for the analysis 

of the wall plate. 

 
Fig. 3.10: Absolute deformation and rotation of the duct segment model under the applied internal pressure (rib 

elements removed from the view for clarity) 

3.4.2  Multi-span plates with internal line supports 

The total displacement of a duct wall plate consists of the rib displacements and the plate 

displacement (see Fig. 3.10). In order to study the wall plate behaviour, the plate load-displacement 

needs to be distinguished from that of the ribs. Thus, in the numerical models of this paper, multi-
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span plates with internal line supports are used. Plates with internal line supports are an imaginary 

type of stiffened plates where the rib elements are assumed to be infinitely rigid so they could be 

replaced with appropriate boundary conditions. Fig. 3.11 shows the sketch of a 10-span segment 

of a duct wall plate with panel aspect ratio S=5.0 and internal line supports. The boundary 

conditions used in this model represent expansion joints at both ends of the segment. Equal rib 

spacing was used for all the panels in order to distinguish between the load-displacement 

behaviours of different panels.  

 
Fig. 3.11: General arrangement of duct wall plate models with internal and edge line supports resembling the 

restraints provided by the end panels, ribs and other walls of the duct when expansion joints exist at both ends of the 

segment 

As seen in Fig. 3.12, the plate undergoes in-plane as well as out-of-plane deformations under 

the applied uniform pressure when the large displacements (geometrical nonlinearities) are 

included in the analysis. It is also seen in the D(Z) contours in Fig. 3.12 that various panels of the 

stiffened plate tend to follow different load-displacement patterns.   

 
Fig. 3.12: Displacement contours in three global directions for 10-span plate model with internal line supports and 

span aspect ratio S=5 

Fig. 3.13 shows the load-displacement curves of different panels of stiffened plates with three 

aspect ratios S=2, S=5 and S=10. As seen in Fig. 3.13 for plates with equal spans, the edge panel 
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has the weakest load-displacement behaviour i.e. under the same pressure it undergoes highest 

deformations. Similar observation exists for the case of linear analysis due to the boundary 

conditions provided by the expansion joint. On the other hand, the 2nd panel tends to have the 

lowest displacements under the same pressure in general comparing to the typical panels. The 

reason for this behaviour is that due to the free rotational degree-of-freedom at the free edge of the 

edge panel and the continuity of the plate between the edge and 2nd panel, the rotation at one edge 

of the 2nd panel has a non-zero value. Thus, the load-displacement curve of the 2nd panel shows 

slightly stiffer behaviour (i.e., lower displacement under the same pressure) compared to the 

typical panels where the rotation at the edges are zero.  

 
Fig. 3.13: Out of plane load-displacement charts for different panels of the plate with internal line supports in three 

aspect ratios S=2, S=5 and S=10 

3.5 Design of Duct Wall Plates Based on Nonlinear Analysis 

Based on the load-displacement charts in Fig. 3.13, two main categories for the panels of 

stiffened plates in this paper are the “edge” and “typical” while the design of typical panels could 

be conservatively applied to the 2nd panel accordingly. Similar to the conventional design, there 

are two criteria to be used in the nonlinear design of plates namely stress and deflection. In this 

section nonlinear equations will be driven from the FE analysis of 10 span plates with panel aspect 

ratios from 2 to 10 for stress and deflections criteria.  

3.5.1 Stress criterion 

The load-stress charts for the edge and typical panels of multi-span plates with various aspect 

ratios (S) from 2 to 10 are shown in Fig. 3.14. The stress in these charts is the maximum absolute 

von-Mises stress normalized with plate’s yield stress.  
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Fig. 3.14: Maximum von-Mises stress in typical and edge panels of multi-span plates with aspect ratios from 2 to 10  

The charts in Fig. 3.14 are estimated using a trend line with second order equation as shown 

in Eq. 3.9.  

𝑞𝜆2

𝐹𝑦
⁄ = 𝑎 (𝜎 𝐹𝑦⁄

)
2

+ 𝑏 (𝜎 𝐹𝑦⁄
)     (Eq. 3.9) 

The values of “a” and “b” constants depend on the plate aspect ratio for the edge and typical 

panels and could be found in Table 3.2. Eq. 3.9 is applicable in both ultimate limit states and 

allowable stress design methods to calculate the length-to-thickness ratio for the given load when 

appropriate stress limits are used for σ/Fy. 

Table 3.2. Aspect ratio numerators to be used in Eq. 3.9 

S 
TYPICAL PANEL EDGE PANEL 

a b a b 

2 3.42 2.52 3.07 2.05 

3 2.82 2.61 2.27 2.03 

4 2.41 2.65 1.72 2.06 

5 2.1 2.69 1.35 2.1 

6 1.87 2.72 1.09 2.14 

7 1.69 2.75 0.91 2.18 

8 1.55 2.76 0.76 2.21 

9 1.43 2.77 0.66 2.23 

10 1.33 2.78 0.57 2.25 
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3.5.2 Deflection criterion 

The load-deformation charts of the typical and edge panels of the multi-span plates under 

uniform lateral pressure are shown in figures 3.15 and 3.16. These charts reflect the nonlinear load-

deformation behaviour when the geometric nonlinearities are considered in the analysis.  

 
Fig. 3.15: Load-deformation charts for typical panel with aspect ratios S2 to S10 

Fig. 3.15 shows that for typical plates the nonlinear behaviour has two trends. The first trend 

starts from the beginning of loading and follows a cubic function up to the point where the material 

yielding occurs. 

 
Fig. 3.16: Load-deformation charts for edge panel with aspect ratios S2 to S10 
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The second trend results from the addition of material nonlinearities after yielding in 

combination with stress redistributions to the original nonlinear load-displacement. The plastic 

behaviour of plate after yielding is out of scope of design for the plates being used for the walls of 

industrial ducts. Thus, if yielding of material is set as the limit state i.e., the first trend of the charts 

in figures 3.15 and 3.16 are used for the design, the load-displacement behaviour for the typical 

and edge panels could be estimated by a trend line with cubic equation as shown in Eq. 3.10. 

𝑞𝜆4/𝐸 = 𝑎′(𝛿/𝑡)3 + 𝑏′(𝛿/𝑡)2 + 𝑐′(𝛿/𝑡)       (Eq. 3.10) 

where a’, b’ and c’ account for the plate aspect ratio (S) effects listed in Table 3.3. 

Table 3.3. Aspect ratio numerators to be used in Eq. 3.10 

S 
Typical panels Edge panel 

a’ b’ c’ a’ b’ c’ 

2 2.51 7.82 31.34 1.28 3.97 14.1 

3 1.52 5.93 31.51 0.58 1.49 13.72 

4 1.01 5.15 31.18 0.31 0.8 13.62 

5 0.67 4.95 30.55 0.17 0.69 13.47 

6 0.47 4.69 30.35 0.11 0.5 13.5 

7 0.35 4.46 30.09 0.08 0.42 13.55 

8 0.27 4.27 29.79 0.06 0.36 13.64 

9 0.26 3.82 29.87 0.05 0.31 13.73 

10 0.23 3.58 29.74 0.04 0.26 13.83 

 

3.5.3 Application of design equations 

Design of duct wall plates consists of determination of plate thickness and length based on the 

stress limits defined by the adopted design code and verification of the deflections of the designed 

wall plate with the deflection limits set by the authorities. The calculation of plate maximum stress 

and deflection was covered in the previous section by means of equations 3.9 and 3.10 for the 

typical and edge panels respectively. In this section, those equations are used to provide a more 

meaningful design approach by adopting the ultimate limit states for stress set by the two main 

North American steel design codes for plates. The ultimate stress for plate elements under bending 

and tension is σu=0.9Fy (CISC-S16.09), (AISC, 2003). Thus, for σu/Fy=0.9 in Eq. 3.9, 

qλ2/Fy=a(0.9)2+b(0.9). Replacing a and b numerators in this equation with their values from Table 
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3.2 for various panel aspect ratios will result in a power function that calculates the normalized 

plate length-to-thickness ratio (λ/√Fy) for the given lateral pressure: 

𝜆𝑢
√𝐹𝑦
⁄ = 𝜂𝑞−

1
2⁄          (Eq. 3.11) 

where λu is the ultimate plate length-to-thickness ratio based on the ultimate stress limit (0.9Fy), 

and η is the plate aspect ratio factor (η=0.81a+0.9b). The values of η for various panel aspect 

ratios are presented in Table 3.4 for the edge and typical panels. The last row in Table 3.4 shows 

the value of η for linear design by replacing the ultimate limit state stress in Eq. 3.2 for the edge 

(C-S) and typical (C-C) panels. 

Table 3.4. Aspect ratio numerators to be used in Eq. 11 

 

S 

Typical panels Edge panel 

η η 

2 2.24 2.08 

3 2.15 1.91 

4 2.08 1.80 

5 2.03 1.73 

6 1.99 1.68 

7 1.96 1.64 

8 1.93 1.61 

9 1.91 1.59 

10 1.89 1.58 

Linear 1.34 1.09 

 
Fig. 3.17: Normalized plate length-to-thickness ratio for various lateral pressures on duct walls typical and edge 

panels 
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The normalized plate length-to-thickness ratio calculated from Eq. 3.11 is plotted against a 

regular range of lateral pressures set by ASCE (1995) in Fig. 3.17 for edge and typical panel plates.   

The value of η in Table 3.4 indicates the effect of plate aspect ratio in the nonlinear design. In 

order to evaluate the effectiveness of nonlinear design in comparison with the conventional linear 

design, the length-to-thickness ratios resulted from Eq. 3.11 for typical and edge panels from 

nonlinear and linear designs are compared in Table 3.5. As seen in Table 3.5, the plate length for 

edge panel is 83 to 93 percent of the typical panel length if nonlinear design is used showing that 

for shorter aspect ratios the edge panel design gets closer to that of the typical panel. It is also seen 

in the table that for the typical panels the nonlinear design results in 41 to 67 percent higher length-

to-thickness ratios accordingly depending on the aspect ratio. In other words, for the same plate 

length, the plate thickness resulted from the nonlinear design is 30 to 40 percent lower than what 

would result from the conventional linear design. 

Table 3.5. Comparison between the length-to-thickness ratios resulted from the nonlinear and 

linear designs for edge and typical panels 

S λu(edge)/λu(typical) 
λu(typical)/λu(typical-

linear) 

λu(edge)/λu(edge-

linear) 

2 0.929 1.67 1.91 

3 0.888 1.60 1.75 

4 0.865 1.55 1.65 

5 0.852 1.51 1.59 

6 0.844 1.49 1.54 

7 0.837 1.46 1.50 

8 0.834 1.44 1.48 

9 0.832 1.43 1.46 

10 0.83 1.41 1.41 

Linear 0.815 1.00 1.00 

It is worth to mention that although separate equations are presented for the design of edge and 

typical panels, it is practical not to use different plate thicknesses for the edge and typical panels. 

In other words, the design could be done by only calculating the length-to-thickness ratio for the 

typical panels using Eq. 3.9 and multiplying the length of the typical panel by the 

λu(edge)/λu(typical) factor from Table 3.5 to get the length of the edge panel.  
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3.5.4 Displacement limits for the design of duct walls 

Contrary to the ultimate limit states design or other approaches where the stress limitations 

are set by the codes, in the field of industrial structures design serviceability limit states (i.e., the 

displacement limits) are often set by the local authorities, mechanical engineers or the owner of 

the industrial facilities where the duct system is built in a way to keep the duct functional. A general 

rule of thumb followed by most of the design engineers for the displacement limits is a portion of 

the plate length (e.g., L/50, L/75, L/100 etc.). However, this type of displacement limits tends to 

meet the serviceability demands of building structures, it might result in unnecessary plate 

thicknesses without addressing the true nature of wall behaviour in thin-walled structures such as 

industrial duct assemblies. On the other hand, the authors were unable to find any tabulated 

displacement limits set for the duct wall plates (or similar structures) or any explanation on the 

basis of such limits as L/50 or L/100 in the literature.  

Table 3.6. Ratio of maximum lateral pressure resulted from the nonlinear approach to linear 

method, q(nonlinear)/q(linear) 

(δ/t)max S2 S3 S4 S5 S6 S7 S8 S9 S10 

1.0 1.30 1.22 1.17 1.13 1.11 1.09 1.07 1.06 1.05 

2.0 1.78 1.55 1.42 1.35 1.30 1.26 1.23 1.20 1.18 

3.0 2.42 1.97 1.74 1.61 1.52 1.46 1.41 1.36 1.33 

4.0 3.21 2.49 2.12 1.91 1.77 1.67 1.60 1.54 1.49 

5.0 4.16 3.10 2.57 2.25 2.05 1.91 1.81 1.73 1.67 

6.0 5.27 3.81 3.08 2.64 2.36 2.17 2.04 1.94 1.86 

7.0 6.53 4.61 3.65 3.06 2.69 2.45 2.28 2.17 2.06 

8.0 7.95 5.51 4.28 3.53 3.06 2.76 2.54 2.41 2.28 

9.0 9.53 6.50 4.98 4.04 3.46 3.08 2.82 2.67 2.52 

10.0 11.27 7.59 5.74 4.60 3.88 3.43 3.11 2.94 2.77 

In order to be able to compare the nonlinear design approach to the conventional linear design 

method this paper uses a different way to set the displacement limits that tends to be more practical 

for the plate elements such as duct walls. The displacements in this method are compared to the 

plate thickness. By using this method, replacing the δ/t with the desired displacement limit in Eq. 

3.10 will result in plate length to thickness ratio for the applied pressure. Since the displacement 

limits are different from case to case, it is not possible to formulate the design as in the ultimate 

limit states in which a certain stress limit is set by the code. The ratio of maximum lateral pressure 

calculated from Eq. 3.10 to the pressure resulted from Eq. 3.3 are shown in Table 3.6 for various 

plate panel aspect ratios and displacement limitations (δ/t) max from 1.0 to 10.0 respectively. As 
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seen in Table 3.6, the effectiveness of the presented nonlinear design approach in displacement 

criterion depends highly on the applied displacement limit and plate panel aspect ratio.  

3.6 Conclusions 

Two sets of design equations have been set using verified numerical analysis of multi-span 

plates with internal line supports under uniform lateral pressure that take into account the effects 

of large deformations nonlinearities. These equations stand for the design of plate length and 

thickness by applying stress and displacement criteria to the plate structure. If used appropriately 

in conjunction with well-defined stress and deflection limits, a duct wall plate designed by these 

equations will be up to 40% more economical compared to the conventionally designed plates that 

use the linear beam theory. 
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CHAPTER 4 

Large Displacement Analysis of Stiffened Plates with Parallel Ribs 

under Lateral Pressure 

4.1 Abstract 

The conventional approach for the structural analysis and design of stiffened plates with parallel 

ribs involves assuming that the stiffened plate could be modeled as a beam with the geometrical 

properties of an equivalent built-up cross-section consisting the rib stiffener, and a portion of the 

plate. The load-displacement and the internal forces of this equivalent beam are then calculated 

based on the conventional beam theory in order to design it according to the adopted design 

criteria. This study numerically analyzes the stress distributions in such plates in order to assess 

the equivalent beam analogy while pointing out the significance of considering the large 

displacement effects. The numerical investigation indicated that the linear beam theory does not 

correctly presume the true behaviour of the stiffened plate, and the corresponding load-

displacement estimation does not align with its actual behaviour. It also shows that the internal 

forces and stresses in the panel plate are calculated correctly, only if the large displacement effects 

are considered in the analysis. A method for the estimation of the ultimate load capacity of 

stiffened plates based on the large displacement FE analysis is provided at the end of this study 

which could be used in future to establish empirical design equations. 

4.2 Introduction 

Stiffened plates with parallel ribs are widely used in industrial structures, ship hauls, and marine 

applications. An example of such assemblies in industrial structures is the large industrial ducts 

with rectangular cross-sections (Fig. 4.1) for heavy industries such as cement plants, aluminum 

smelter facilities, steel manufacturing, etc., where significant amounts of air or flue gases are 

transferred.  
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Fig. 4.1: A duct segment with stiffened plate walls being delivered in an industrial project [courtesy of fives Inc.] 

The structural design of stiffened plates has not been directly-addressed to official code 

provisions, standards, or guidelines that establish grounds such as limit states for basic estimations 

and procedures. However, there has been an extensive number of studies in the literature 

addressing the behaviour of longitudinally and transverse stiffened plates experimentally and 

analytically from various perspectives. Bedair (2009) has gathered the research conducted in the 

analysis and design of stiffened plates up to 2009, where the developments of the analysis methods, 

experimental works, and design fundamentals over the 20th century are presented by referring to 

more than 400 scientific publications. According to Bedair (2009), the earliest attempts on the 

formulization of load-deformation of the stiffened plates dates back to 1902, where the stiffened 

plate case was simulated as a simple beam resting on an elastic foundation. That approach was 

then used in the early 20th century by researchers to study the initial buckling of plates stiffened 

with transverse and longitudinal stiffeners and developed over the years based on the advances in 

the numerical methods and experimental capabilities. Another extensive literature review report 

was published by Paik (2008), which is mainly focused on the recent developments and advances 

in the field of stiffened plates under various types of loading regarding the effectiveness of plate 

elements when stiffened by a rib element. In that study, the concepts of effective breadth, effective 

width, and effective shear modulus were explained and categorized based on the details from the 

available literature. Those concepts are based on the main assumption that the stiffened plate 

assembly could be theoretically modeled by an equivalent beam (EB) for which the cross-sectional 

properties such as the moment of inertia and section modulus are calculated for the design. The 

displacements in that method are calculated with respect to the applied loads following the 

principles of the classical beam theory.  
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Recent research on stiffened plates was mainly focused on the ultimate limit states design and 

the nonlinear analysis of the EB for various types of stiffeners. The nonlinear analysis of stiffened 

plates considers the geometrical and material nonlinearities in the Finite Element method. An 

approach was introduced by Ojeda et al. (2007) for the large deflection analysis of isotropic and 

composite arbitrary orientated stiffened plates based on the principle of virtual works. The 

stiffeners modeled in that work were in the forms of Flat-bars with and without eccentricity from 

the centerline of the plate. In a similar work, Brubak and Hellesland (2008) applied various 

strength criteria in semi-analytical methods for the ultimate strength evaluation of arbitrarily 

stiffened plates. Two types of Flat-bar and Tee-bar profiles were studied for the stiffeners, 

considering the eccentricity of the ribs from the centerline of the plate. 

One of the common places where the stiffened plates are most often used is the ship hull 

structures. Various types of stiffened plates with different combinations of panel plates and 

stiffeners are used widely in that industry worldwide. The ultimate strength analysis of stiffened 

plates used in the large ship hulls industry was presented by Paik and Seo (2009). The nonlinear 

analysis was performed using the Finite Element package ANSYS together with some semi-

analytical methods. Three types of stiffeners were studied, namely Flat-bars, L-angles, and Tee-

bars. However, that study lacks a profound parametric study to reveal the nature of stresses in the 

plate and stiffener. Sapountzakis and Dikaros (2012) proposed a general type of solution for the 

geometrically nonlinear analysis of stiffened plates with a parallel arrangement of stiffeners. They 

considered general arbitrary mono-symmetric cross-sections for stiffeners with a deformable 

connection subjected to arbitrary loading. The analytical solution was then compared to the 

findings of the FE analysis regarding the load-displacement curves. Two mostly-used types of rib 

stiffeners in ship hulls, namely T and Y shapes were studied by Badran et al. (2013). The main 

parameter studied was the initial imperfections and the impact on the load-deformation behaviour 

of such stiffened plates under combined uniaxial and lateral loading. They studied 200 different 

cases using nonlinear FE analysis and discussed the benefits and disadvantages of each type of 

stiffener. More recently, Brubak et al. (2013) studied the effects of various types of boundary 

conditions on the load-deformation behaviour of arbitrarily stiffened plates with T ribs. The 

buckling and post-buckling behaviour of plates with and without stiffeners under uniaxial thrust 

was presented by Sadamoto et al. (2013) where they implemented a mesh-free approach to perform 
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the nonlinear analysis of such plates and discussed the influence of various parameters on the 

analysis.  

An experimental program in which four multi-span stiffened plates with narrow panels were 

tested under axial compression was conducted by Xu and Guedes Soares (2011-a) along with FE 

Modelling of the same specimens (Xu and Guedes Soares, 2011-b) in order to study the deflection 

shape, mode of failure, ultimate load and the load-displacement behaviour of such stiffened plates 

as well as verifying the FE Modelling. Furthermore, Xu and Guedes Soares (2013) extended their 

experimental studies by five new specimens with wide stiffened panels to measure their collapse 

strength under axial compression in comparison with the existing data from their previous tests 

and FE analysis. The deflection shape, load-displacement behaviour, and collapse mechanisms 

were identified for those specimens and utilized to better establish their future FE Modelling.  

More recently, a total of twelve stiffened plates were experimentally tested to failure under 

combined in-plane and lateral pressure by Shanmugam et al. (2014) to measure their ultimate load-

displacement behaviour and capacity. The correlations between the ultimate load-carrying capacity 

of stiffened plates with the axial load to lateral pressure ratio were discussed. Moreover, the plate 

slenderness was described as a key parameter with a major influence on the ultimate load capacity 

and the load-displacement behaviour. The experimental results were then compared to the FE 

analysis results and concluded that a well-established numerical Modelling would capture the true 

behaviour of the stiffened plates with acceptable margins.  

Various buckling modes for plates stiffened with Flat-bar type of ribs were studied by Rahbar-

Ranji (2014) in order to distinguish between the effectiveness of each failure mode and interactions 

between them. An equivalent cross-section for the case of Flat-bar stiffened plates was analyzed 

by introducing an “effective breadth/web concept” that tended to simplify the analysis of such 

stiffened plates. A more in-depth study on the ultimate strength of welded stiffened plates was 

presented by Tekgoz et al. (2015), in which various parameters involved in the welded interface 

of Flat-bar stiffeners to the plate were discussed in micro-scaled FE analysis. The work mainly 

focused on residual stresses and welding-induced issues in the design of stiffened plates with Flat-

bar stiffeners. In a similar study, the case of residual stresses and welding of stiffened plates with 

Hat-type stiffeners was studied by Yetman et al. (2015) using micro-scaled nonlinear FE analysis. 
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4.3 Stresses in Rectangular Plates in Theory 

The response of a rectangular plate to external forces is categorized into three main domains of 

membrane (in-plane) forces, shear (in-plane and out-of-plane) forces, and bending moments 

(flexural and twisting). These responses are mainly controlled by the following parameters: 

- Boundary conditions, 

- Plate aspect ratios, 

- Plate thickness, and 

- External loads nature. 

There are several solutions to the plate’s governing equation in the forms of analytical closed-

form and numerical analysis in the literature, which include a vast array of combinations of the 

above-mentioned parameters. Those solutions often present simplified approaches that establish a 

meaningful relationship between the applied loads and the plate deformation. Among those 

solutions, there are several attempts for the case of thin plates that undergo large displacements. 

The definition of large displacements is often given in relation to the plate thickness. While 

displacements greater than the plate thickness are mostly considered as “large”, a recent study by 

Bakker et al. (2008) showed that even when the maximum displacement of the plate reaches 20% 

of the plate thickness, it should be calculated using the large displacement analysis (LDA) rather 

than the small displacement analysis (SDA). When a uniformly-distributed lateral pressure is 

applied to such thin plates, the in-plane bending moments and shear forces as well as the out-of-

plane shear forces are negligible (Timoshenko and Woinomsky-Kreiger, 1959). In such plates, the 

membrane forces, the bending moments, and the deformations are calculated by solving the von 

Kármán equations in combination with the classical plate theory (Timoshenko and Woinomsky-

Kreiger, 1959).  

4.4 Equivalent Beam Analogy 

Generally, the analysis and design of stiffened plates is a two-step procedure, with the first step 

involving the design of panel plates between adjacent ribs as a rectangular plate, and the second 

step consisting of the design of stiffeners. The outcomes of these two steps are the plate thickness, 

the ribs spacing, and the sizing of the ribs. The rib stiffener profile could be selected from the 
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library of the design standard on a case-by-case basis. Common types of stiffeners used in 

industrial applications are shown in Fig. 4.2.  

 
Fig. 4.2: Stiffened plates with common types of stiffeners and their effective breadth forming the equivalent beam 

cross-section 

In the Equivalent Beam Analogy (EBA), the stiffener and the panel plate form a built-up cross-

section with combined geometrical properties. The axial, bending, and shear stresses and 

deformations are therefore calculated for the built-up section as an individual structural shape 

called the equivalent beam (EB). The conventional design suggests that only a certain portion of 

the panel plate be taken into account in the EB cross-section. This portion of the panel plate is 

often called the “effective breadth” if the stiffened plate is mainly under bending stresses, i.e., the 

stresses induced in the plate are mainly influenced by the shear lag effects from flexure. On the 

other hand, the term “effective width” is often applied to this portion of the panel plate if the main 

stresses induced in it are due to axial compression (Paik, 2008).  

Plate effectiveness in stiffened plate structures was first mentioned by von Karman et al. (1932) 

as an imaginary width of the continuous thin plate under compression that follows the Euler-

buckling criterion while the remainder of the plate (i.e., the edges of this imaginary width) remain 

straight and follow the stress-strain criterion. The effective width concept was then expanded in 

various fields of steel structures design and became “the concept on which the categorization of 

steel structural profiles by the codes was established in order to classify the modes of failure for 

steel thin-walled profiles” (Rahbar Ranji, 2014).  
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As shown in Fig. 4.2, the effective breadth is the sum of the unstiffened breadth (bu) at each 

side of the stiffener plus the portion of the breadth covered by the stiffener. Various sources defined 

bu or beff based on the thickness, breadth, and yield stress of the plate, as summarized in Table 4.1. 

Table 4.1. Effective breadth of the plate in stiffened plates in the available literature 

Reference bu beff 

Blodgett (1966) - 32t 

ASCE (1995) 16t - 

Paik (2008) - 0.18b/(b/L) 

CSA S16 (2014) 670t/(Fy)1/2 - 

Aside from the values in Table 4.1, there are more specific methods available in the literature 

which take into account more parameters in order to address the effective breadth. An example of 

that is the set of three empirical equations presented by Rahbar-Ranji (2014) to calculate the 

effective breadth of stiffened plates with Flat-bar stiffeners based on the stiffener to plate cross-

sectional area ratio. The effectiveness of the panel plate in the EBA was first discussed by Paik 

(2008), which ultimately resulted in his specific formula for the effective breadth (See Table 4.1).  

 
Fig. 4.3: Effect of the ratio of stiffener area over plate area (AS/APL) on the EB moment of inertia in stiffened plates 

with flat-bar ribs 

The flexural behaviour of the stiffened plate in the EBA could be greatly influenced by the ratio 

of the stiffener cross-sectional area over that of the panel plate (AS/APL). As an example, the 

contribution of the plate and stiffener in the overall moment of inertia of the EB are calculated and 

presented in Fig. 4.3 for stiffened plates with Flat-bar ribs. It should be noted that the Flat-bar 

stiffener geometry in Fig. 4.3 satisfies the maximum height-to-thickness ratio set by CSA S16 
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(2014) for Class-1 conditions in flexural compression (i.e., hS/tS≤145/Fy
1/2) which terminates the 

local buckling failure mode. 

As seen in the chart, although the stiffener at very low ratios of AS/APL (i.e., less than 0.05) 

barely contributes to the flexural capacity of the EB, it has the dominant effect at higher ratios. It 

is also noted from the chart that an optimized situation exists at ratios close to 1.5 (i.e., AS≈1.5APL), 

where the stiffener and the plate contribute to 60% and 40% of the built-up section’s overall 

moment of inertia. After that, as the AS/APL ratio increases, the plate's contribution in the overall 

built-up section’s flexural capacity decreases, and the built-up section becomes stiffener-dominant 

again. Similar charts could be developed for other types of rib profiles as shown in Fig. 4.4. The 

plate and stiffener contributions in the overall flexural behaviour of the EB depends highly on 

AS/APL ratio as shown in these charts. 

 
Fig. 4.4: Effect of the ratio of stiffener area over plate area (AS/APL) on the EB flexural strength in stiffened plates 

with various ribs profiles 
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Although the EBA offers a simple way of estimating the flexural capacity of the stiffened plates 

and could be applied to any design philosophy, there is a need for assessing its relevance in 

comparison with more developed analysis methods such as the FE analysis. Thus, a numerical 

model will be developed in this study to simulate the stiffened plates under lateral uniform 

pressure. The FE analysis results will be verified against the existing experimental results from the 

literature and used in comparison with the conventional EBA results.  

4.5 Finite Element Modelling and Verification 

The FE Modelling in this study uses the standard 4-node “SHELL181” element from the 

element library of the general-purpose commercial software package, ANSYS (2020-a). This 

element supports six degrees of freedom (three rotational and three transitional DOFs) at each node 

with the ability to turn the rotational DOFs off to have a “pure membrane” behaviour or turning 

the translational DOFs off to have “pure bending” conditions. This element has been rigorously 

tested by ANSYS through benchmark verification examples (ANSYS, 2020-b). Moreover, this 

software has been previously utilized for similar research by Paik and Seo (2009-a, and 2009-b), 

where various failure criteria for stiffened plates were investigated.  

4.5.1 Geometry, loading, and boundary conditions of the FE models 

The numerical analysis in this study consists of two phases of FE Modelling. The first phase 

aims at the stress distribution in the panel plate of a stiffened plate assembly in order to compare 

the SDA, LDA, and EBA methods while identifying its load-stress behaviour at key points. The 

second phase focuses on the effects of panel plate width on the overall behaviour of the stiffened 

plate from the limit states design perspective. The geometry of the stiffened plate models is shown 

in Fig. 4.5.  

The rib stiffener in all models has a Flat-bar cross-section and designed as a Class-1 section per 

CSA-S16 (2019) in order to prevent the local buckling. The only load in the FE models is a uniform 

lateral pressure applied to the panel plate. The pressure is positive when it is applied in the Y 

direction and vice-versa. 
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Fig. 4.5: Geometry of the FE models 

The plate continuity at the long edges is represented by restraining the R(X) and U(Z) assuming 

the continuity of the panel plate in Z direction while the short edges could be clamped or simply-

supported. Thus, there are two cases of boundary conditions combinations for the FE models in 

this study, namely simply-supported (S) and clamped (C). Moreover, each of these cases is solved 

for the negative and positive pressures separately in order to verify the effect of loading nature on 

the behaviour of the stiffened plates in the large-displacement analysis. Thus, a total of 8 models 

are generated for the first phase of FE studies, as described in Table 4.2. 

Table 4.2. First set of FE models  

MODEL 
Analysis 

type 

Short edges 

rotational BC 

Short edges 

in-plane BC 

Lateral 

pressure 

SD-S-P SDA Simply-supported N/A Positive 

SD-S-N SDA Simply-supported N/A Negative 

SD-C-P SDA Clamped N/A Positive 

SD-C-N SDA Clamped N/A Negative 

LD-SF-P LDA Simply-supported Fixed Positive 

LD-SF-N LDA Simply-supported Fixed Negative 

LD-CF-P LDA Clamped Fixed Positive 

LD-CF-N LDA Clamped Fixed Negative 

B

L

Y

X

Z
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In the second phase, a total of 6 stiffened plate geometries are modeled wherein the only 

variable is the panel plate width over thickness ratio (λ), and all models are analyzed using the 

LDA. The details of these models are shown in Table 4.3. 

Table 4.3. Second set of FE models 

Loading 
Simply-supported (S) Clamped (C) 

λ=B/tPL AS/APL 
Model Short Edges BC Model Short Edges BC 

Positive 

Pressure 

S1-P 

U(X), U(Y) 

C1-P 

U(X), U(Y), R(Z) 

140 1.32 

S2-P C2-P 180 1.03 

S3-P C3-P 220 0.84 

S4-P C4-P 260 0.71 

S5-P C5-P 300 0.62 

S6-P C6-P 340 0.54 

Negative 

Pressure 

S1-N C1-N 140 1.32 

S2-N C2-N 180 1.03 

S3-N C3-N 220 0.84 

S4-N C4-N 260 0.71 

S5-N C5-N 300 0.62 

S6-N C6-N 340 0.54 

 

The steel material model for the plate and stiffener in the FE models is based on the bilinear 

isotropic behaviour with strain hardening (EN 1993-1-5), which sets the plastic strain limit at 5% 

for the failure criterion.  

4.5.2 Verification of FE Modelling 

The FE Modelling approach and the selected element are verified against the results of three 

experimental tests by Shanmugam et al. (2014). The distributed lateral pressure in the experimental 

work of Shanmugan et al. (2014) was applied to the specimen using an airbag, and the in-plane 

axial loads were applied by hydraulic jacks, as shown in Fig. 4.6. The three specimens were 

identical except for the in-plane loads as 0.0, 170.0 and 300.0 kN for A1, A2, and A3 specimens, 

respectively. While the in-plane axial load was kept constant throughout the test, the lateral 

pressure was increased, and the displacement at the center of the plate was monitored (Shanmugan, 

2014). The experimental test results for those three specimens and their respective FE analysis 
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results from the current study are plotted in the charts of Fig. 4.7, in which a good correlation 

between the FE analysis and experimental results is demonstrated. 

 
Fig. 4.6: Geometry and load setup for verification model; Left: Experimental specimen of Shanmugan et al. (2014); 

Right: FE mesh and loading in the current study 

 
Fig. 4.7: Lateral load-displacement charts for three experimental tests of Shanmugan et al. (2014) and resulted from 

the FE analysis 
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4.5.3 FE analysis output 

The FE outputs are the midspan displacements, overall internal forces and stresses at key points. 

The displacement profile of the stiffened plate under positive pressure is shown in Fig. 4.8. As 

shown in the figure, the midspan displacement at the stiffener location is significantly smaller than 

at the mid-panel of the plate. On the other hand, the midspan displacement calculated in the EBA 

does not correspond to what is shown in Fig. 4.8 as it is unique for the whole cross-section of the 

EB. In this regard, when the FE analysis results are compared to the EBA, it is beneficial to draw 

the load-displacement charts for the average of the midspan cross-section (Av.) as well as at the 

stiffener location (St.).  

 
Fig. 4.8: Displacement profile of stiffened plate at midspan (only half of the stiffened plate is shown for better 

display) 

The schematic internal forces and main stresses in a typical element of the panel plate are shown 

in Fig. 4.9.  The membrane forces (NX and NZ) are only calculated in the LDA, while the bending 

moments (MX and MZ) are calculated in both SDA and LDA. Since the plate material is 

homogeneous and isotropic, the linear distribution of the SX and SZ stresses through the thickness 

of the plate is applicable.  

The most relevant failure criterion for steel and other ductile materials is the Maximum-

Distortion-Energy, or the equivalent (von Mises) stress (Gere and Timoshenko, 2012). 
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Fig. 4.9: (a) Bending moments and resulting stresses; (b) Membrane forces and resulting stresses  

The equivalent stress is defined based on the 9 global structural stress components as follows: 

𝑆𝐸𝑄. = √
1

2
[(𝑆𝑥 − 𝑆𝑦)

2
+ (𝑆𝑦 − 𝑆𝑧)

2
+ (𝑆𝑧 − 𝑆𝑥)2 + 6(𝑆𝑥𝑦2 + 𝑆𝑦𝑧2 + 𝑆𝑥𝑧2 )]  (Eq.  4.1) 

As discussed previously, the governing stresses in the panel plate are the Sx and Sz, while as the 

plate element is relatively thin, the Sy, Sxy, Sxz, Szx, and Szy deem negligible (except at the corners 

of the plate). Thus, Eq. 4.1 simplifies for the panel plate as: 

𝑆𝐸𝑄. = √𝑆𝑥
2 + 𝑆𝑧

2 − 𝑆𝑥𝑆𝑧        (Eq.  4.2) 

The forces and stresses in Fig. 4.9 and the equivalent stress could be obtained from the FE 

models in the form of contour displays over the geometry at any load step, or in the time-history 

format against the applied load. These results will be presented and discussed in the following 

sections. 

4.6 Load-Displacement Analysis 

The midspan displacement of the stiffened plates is discussed in this section. In the load-

displacement charts presented in this section, q*= qλ(L/t)2/E and δ*= δ/t are the unitless 

representers of the pressure and the midspan displacement respectively where q is the uniformly-

distributed pressure, λ is the plate width over thickness ratio (B/t), E is the Young’s modulus of the 

plate material, δ is the midspan displacement, and t is the plate thickness. 

(a)

MZ Mx

Z X

Y

NZ

Z X

Y

NX
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The midspan load-displacement charts resulted from the clamped, and simply-supported 

models are presented in Fig. 4.10.  

 
Fig. 4.10: Mid-span load-displacement charts for the clamped (left) and simply-supported (right) models 

The charts in Fig. 4.10 result from the same stiffened plate geometry under positive and 

negative uniform pressures using the LDA and SDA. The linear trends from the EBA based on the 

panel plate effective widths from the values in Table 4.1 are also plotted in the charts for 

comparison. As seen in the charts of Fig. 4.10, the average displacements (Av.) from the SDA are 

unrealistically higher than all others. This is because the displacements of the panel plate are 

calculated without the consideration of the membrane forces. Another general observation from 

these charts is that the load-displacement of the stiffened plate follows different trends under 

positive and negative pressures when the LDA is used.  

4.7 Stress Analysis 

When a uniform lateral pressure is applied to the stiffened plate, the stiffener mainly exhibits 

flexural behaviour as a beam element in combination with the panel plate along the longitudinal 

axis (X-direction). On the other hand, the internal bending and membrane forces are exhibited in 

the panel plate as discussed previously. The following section provides the distribution of the 

membrane forces and bending moments in the panel plate through comparisons between the SDA 

and LDA in order to discuss the effectiveness of each analysis method in capturing the true 

behaviour of the stiffened plate.  
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4.7.1 Membrane forces and bending moments in the panel plate 

Distinguishing between the flexural and membrane actions in the panel plate is the key to 

further discussions on the stress analysis of stiffened plates. However, it should be noted that the 

membrane action is only captured when the LDA is implemented. The membrane forces in the 

panel plate at q*=0.5 are shown in figures 4.11 and 4.12. These forces are normalized by dividing 

them by the equivalent yielding force (NYield=Fy×tPL). 

 
Fig. 4.11: Membrane force ratio NZ/NYield in the panel plate at q*=0.5 for simply-supported models (stiffener is not 

shown)  

 
Fig. 4.12: Membrane force NX/NYield in the panel plate at q*=0.5 for simply-supported models (stiffener is not 

shown) 



63 

 

As seen in the figures, there is a fundamental difference between the membrane forces in the 

global X and Z directions. The panel plate is not stiffened along the Z-axis; thus, it merely has a 

plate behaviour in that direction while it is part of a built-up cross-section along the X-axis. As a 

result, the NX forces exist in both SDA and LDA since the plate undergoes flexural tension and 

compression under negative and positive pressures respectively. However, the LDA results in 

significantly greater NX under negative pressure while exhibiting significantly smaller NX values 

under positive pressure.  

This phenomenon is because the membrane forces calculated in the LDA are always tensile, 

regardless of the direction of the applied pressure. Thus, they are added to the flexural tension but 

are deducted from the flexural compression in the plate. This phenomenon also explains the 

different load-displacement charts under positive and negative pressures which was demonstrated 

in the previous section. Similar results for the membrane forces are expected for the clamped 

models. 

The other aspect of the panel plate behaviour is described in the bending moment contours in 

figures 4.13 and 4.14. These bending moments are normalized by dividing them by the equivalent 

yielding moment (MYield=Fy×SPL). 

 
Fig. 4.13: Bending moment MZ/MYield in the panel plate at q*=0.5 for simply-supported models (stiffener is not 

shown) 
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Fig. 4.14: Bending moment MX/MYield in the panel plate at q*=0.5 for simply-supported models (stiffener is not 

shown) 

In the SDA, the plate behaviour is dominated by the MZ bending as it is significantly higher 

than MX in both clamped and simply-supported SDA models. On the other hand, the MZ values 

decrease substantially when the LDA is implemented. This phenomenon is explained by looking 

at the NZ contours of the previous figures for the LD-C and LD-S models. Simultaneously, the MX 

values across the panel plate are increased in the LDA compared to the SDA. This phenomenon 

could be explained through a more in-depth analysis of the stresses across the cross-section of the 

panel plate.  

4.7.2 Global stresses in the panel plate 

Following the assessment of the internal forces of the panel plate in the previous section, the 

plate stresses (SX and SZ) are foreseeable per the schematic element in Fig. 4.9. Given that these 

stresses are combined in the actual analysis, a perfect flexural behaviour suggests that the MID 

stresses are negligible while the TOP and BOT stresses have the same magnitudes in the opposite 

directions. On the other hand, a perfect membrane behaviour suggests that the TOP, MID, and 

BOT stresses be of the same magnitudes in the same directions. The load-stress plots could be 

extracted for TOP, MID, and BOT stresses at any point in the panel plate in the FE analysis. 

However, there are key points at which the stresses are expected to be significant, thus worth 

studying from a design perspective. These key points are: 



65 

 

- Point 1: Mid-span under the stiffener, 

- Point 2: Mid-span at middle of the panel plate, 

- Point 3: End-span under the stiffener, and, 

- Point 4: End-span at middle of the panel plate. 

The charts in figures 4.15 to 4.18 demonstrate the stress behaviour at these key points. 

 
Fig. 4.15: Panel plate load-stress charts at Point 1 for SD-C, LD-C, SD-S, and LD-S 
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Fig. 4.16: Panel plate load-stress charts at Point 2 for SD-C, LD-C, SD-S, and LD-S 

 
Fig. 4.17: Panel plate load-stress charts at Point 3 for SD-C, LD-C, SD-S, and LD-S 
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Fig. 4.18: Panel plate load-stress charts at Point 4 for SD-C, LD-C, SD-S, and LD-S 

As seen in the load-stress charts in these figures, the SDA merely reflects the bending stresses 

in all four key points. On the other hand, the load-stress charts resulted from the LDA include the 

effects of both bending and membrane forces in the panel plate. The von Mises stress distribution 

in the clamped stiffened plate is shown at four levels of loading in Fig. 4.19. 

 
Fig. 4.19: Contour plots of the deformed shape and the von Mises stress distribution in the clamped model at four 

stages of loading (only half of the plate length is shown for better clarity) upper: positive pressure, lower: negative 

pressure 
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4.8 Limit States Design of Stiffened Plates with Parallel Ribs 

Depending on their application, various loads are applied to the stiffened plates in industrial 

structures. The structural engineer decides on the main loading components while coordinating the 

design based on the applicable failure modes accordingly. The following failure modes are 

expected for stiffened plates with parallel ribs in industrial applications: 

• Global (lateral) buckling of the stiffened plate in axial compression, 

• Local buckling of the rib stiffener in flexural compression, 

• Plate buckling in flexural compression, 

• Yielding of the plate, 

• Yielding of the stiffener, and/or, 

• Welds fracture under the shear lag effects. 

The global buckling of the stiffened plate under direct axial compression has been extensively 

investigated in the literature, including Paik (2008). The local buckling of the stiffener is generally 

prevented by implementing the requirements of the design codes for compact sections. The plate 

buckling in flexural compression is related to the concepts of effective width and effective breadth 

(Paik 2008), on which basis the equivalent beam analogy (EBA) is used as a conventional design 

method. The fracture of welds under shear lag effects is out of the scope of the current study as it 

requires its dedicated investigations. Lastly, the yielding of the panel plate and stiffener under the 

combined stresses from the internal flexural and membrane actions are the expected failure modes 

in the FE models of this study.  

4.8.1 Ultimate Limit State (ULS) 

The ULS involves calculating the stresses in the structural components and verifying them 

against certain limit states, which are set mainly based on their nature in the design standards. The 

ULS sets forth the limitations to be satisfied in the design on a case-by-case basis. In this regard, 

the distribution of the stresses in the stiffened plate must be compared to the principles of the 

conventional design, which is based on the EBA. The stresses in the EBA are straightforward, i.e., 

the maximum flexural stresses are at the two ends of the clamped beam and the midspan of the 

simply-supported beam. Once the portion of the plate width (effective breadth) is determined, the 
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effective moment of inertia and the section modulus of the EB are calculated, and the flexural 

resistance of the EB is determined.  

4.8.2 Serviceability (displacement) Limit State (SLS) 

One key parameter in the structural design of stiffened plates in industrial applications is the 

maximum displacements of the panel plates and the rib stiffeners. Conventionally, the 

displacement limits are defined based on the serviceability limit states. In other words, a certain 

limit is set for the deformation of the structural members such that the functionality of the structure 

stays intact. Those limits are mainly available for buildings and other types of structures in building 

codes and other standards. However, industrial structures require the serviceability limit states to 

be defined on a case-by-case basis regarding the requirements of the equipment assemblies 

supported or provided by the structural system.  

4.8.3 Limit states design based on LDA 

As mentioned previously, the structural design of the stiffener follows the panel plate design. 

Regardless of the analysis method, the stiffener in the stiffened plates of this study is regarded as 

a beam element with flexural behaviour. In the EBA, the elastic section modulus of the stiffened 

plate cross-section is calculated, and the elastic bending moment capacity is achieved accordingly.  

On the other hand, the ULS design involves the plastic behaviour of the beam element, which 

collapses when abundant plastic hinges develop. The regions at which the plastic hinges are to be 

expected are those regions with the highest von Mises stress (see Fig. 4.19) at various stages of 

loading. It is established that ductile beams are expected to deform in three distinguished regimes 

(Paik and Thayambali, 2003). The linear elastic regime is where there are no plastic hinges formed 

in the beam. The linear elastic regime ends at a “threshold load” at which the plastic deformations 

start. Then the beam undergoes a transition regime in which the plastic hinges spread until the 

beam reaches the large deflection regime where the plastic hinges are well developed, and the 

slope of the load-displacement curve decreases significantly (Paik and Thayambali, 2003). The 

maximum displacement of the beam at the end of the transition and large deflections regimes are 

estimated by Belenkiy and Raskin (2001) at 0.005L and 0.01L, respectively, while the deflection 

corresponding to the ultimate load on the linear elastic regime is between 0.001L and 0.004L. The 

ultimate design load for the beam is obtained by finding Point A on the bilinear estimation of the 
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load-displacement chart, as shown in Fig. 4.20. In the absence of strain measurements at the 

highest stress points of the beam, the above-mentioned estimated point determines the ultimate 

load for the beam.  

 
Fig. 4.20: Mid-span load-displacement chart for the C1-N model and the bilinear design points 

A more realistic approach is to use the plastic strains as a guide for the design. In this approach, 

the linear elastic behaviour continues until the first plastic strains appear in the beam. The actual 

transition regime then starts as the plastic strains grow in different regions of the beam and continue 

until failure. The von Mises strain at failure for flexural members is recommended by most design 

codes, including EN 1993-1-5 (2006) at 5%. The authors estimate a maximum von Mises strain of 

1% at which the plastic strains start to develop at more than one point in the stiffened plate after 

reviewing such strains throughout the loading history of all FE models in this study. This point 

could be used as the indicator of the end of the transition regime. If a straight line is drawn from 

the point of 5% strain to the point of 1% strain and continued to intercept the linear elastic trend 

at Point A, the corresponding load is the ultimate load in the ULS design accordingly. This 

approach is applied to the load-displacement charts of all the models in this study, and the results 

are presented in Fig. 4.21 in comparison with the design loads from the linear EBA.  

As seen in the charts of Fig. 4.21, the ultimate loads obtained from the LDA are significantly 

greater than those of the linear EBA design for the clamped stiffened plates under both positive 

and negative pressures, while the corresponding displacements are also larger than those of the 

linear EBA. On the other hand, the LDA results for the simply-supported models show smaller 

ultimate displacements under both positive and negative pressures than the linear EBA, while the 
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ultimate load is only greater for the positive pressure. The ultimate loads obtained from the models 

under negative pressure are within the same range as those of the linear EBA. 

 
Fig. 4.21: Ultimate load and displacement at Point-A obtained from the LDA in comparison with the conventional 

EBA methods for the clamped (left) and the simply-supported (right) models 

4.9 Conclusions 

The case of stiffened plates with parallel ribs under lateral uniform pressure was discussed in 

this paper from the analysis and design points of view. The main purpose of this study was to 

compare the linear beam equations which are adopted for the stiffened plate conventionally by the 

engineers in the form of an Equivalent Beam Analogy (EBA) and the advanced FE analysis using 

shell elements for the plate and stiffener. The FE analysis was divided into two main categories of 

Small Displacement Analysis (SDA) and Large Displacement Analysis (LDA). The stress 

distribution in the panel plate was reviewed in both SDA and LDA in order to verify the potential 

failure modes and the points at which plastic behaviour could be expected. This study contained a 

total of 16 FE models, all of which had the same stiffener geometry and panel plate thickness and 

subjected to either positive or negative uniform pressure over the panel plate. The main 

geometrical variable was the panel plate width, for which a total of 6 different B/t ratios were 

studied. Two main cases of clamped and simply-supported end boundary conditions were 

considered in the FE models and analysis. The following conclusions are obtained from this study; 

• The linear beam theory does not correctly represent the actual behaviour of the stiffened 

plate for the internal stresses in the panel plate. Moreover, the load-displacement estimation 

provided based on the EBA does not correspond with the actual behaviour of the stiffened 

plate.  
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• The internal forces and stresses in the panel plate are not correctly calculated in the SDA 

as the membrane forces are neglected. Thus, the load-displacement behaviour is not 

correctly estimated by the FE analysis if the SDA is applied.  

• The most accurate method for the FE analysis of stiffened plate is the LDA, in which the 

contributions of the panel plate and the rib stiffener are calculated based on the combination 

of internal flexural and membrane stresses.  

• The load-displacement behaviour of the stiffened plate is not independent of the nature of 

the applied uniform pressure. Different load-displacement charts are obtained for the same 

stiffened plate model under positive and negative uniform pressures.  

• The end boundary conditions have a significant effect on the load-displacement of the 

stiffened plates. However, the stiffened plate does not follow the classical beam theory in 

which the simply-supported beam has a five times greater displacement under the same 

uniform load than the clamped beam.  

• The ultimate design loads and displacements achieved from the LDA are mainly different 

from those obtained from the linear beam theory with the EBA.  

• In the case of clamped ends, the LDA results in greater ultimate loads and displacements 

under both negative and positive pressures compared to the linear beam theory using the 

EBA.  

• In the case of simply-supported ends, the LDA results in smaller maximum displacements 

than the linear beam theory using the EBA, while the ultimate loads resulting from the 

LDA under positive pressure are greater than the EBA within the same range as the EBA 

under negative pressure.  

  



73 

 

CHAPTER 5 

Free Vibration of Thin Rectangular Steel Plates with Geometrically-

Nonlinear Load-Displacement Behaviour 

5.1 Abstract 

This paper provides means for obtaining the first three significant vibration modes for 

rectangular plates based on mass participation ratios. A non-dimensional frequency parameter is 

presented which results into the vibration frequency of rectangular plates at each of these three 

significant modes. Various aspect ratios and four combinations of boundary conditions at the plate 

edges are studied. A correlation between the nonlinear load-deformation behaviour of the plate 

and its vibrational behaviour is also presented accordingly. It is demonstrated that the vibration 

frequency of the studied rectangular plates increases significantly upon increasing the applied 

lateral pressure if the large deformation effects are considered in the analysis. The easy-to-follow 

method of frequency calculation presented in this paper is useful for assessing the dynamic 

characteristics of rectangular plates with or without lateral pressure that are subject to vibration. 

5.2 Introduction 

Stiffened plates with rectangular panels are one of the most common forms of thin-walled 

structures in industrial, naval and aerospace structures. The walls of industrial ducts, ship hauls, 

rectangular bins and aircraft wings are examples of such plates. The vibration of rectangular plates 

has gained the attention of many researchers in the past decades. Structural vibration analysis 

involves studying the vibration properties of any structure that is subjected to any form of vibrating 

force. Resonance conditions where the forcing frequency and the natural frequency of the structure 

are the same (or very close) are to be avoided. Although there are no code regulations about the 

resonance checking, structural engineers tend to set the limits of ±20% as the resonance domain, 

i.e., if the forcing frequency is within the range of 0.8 to 1.2 times the natural frequency, the 

structure is considered as “prone to resonance”. However, there are still questions to be answered 

e.g.: “How many modes should be considered?” and “Which modes are important?” that are 

involved with the vibration analysis of structures. The answer to these questions for the cases of 
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single-degree-of-freedom (SDOF) and multi-degrees-of-freedom (MDOF) structures involve the 

measurement of the participation of the structural mass in the desired DOFs. For the case of SDOF 

systems, there is only one mode of vibration and the mass participation for that mode is 100%. 

The vibration frequency at this mode is often called the “fundamental frequency”. The 

fundamental frequency in MDOF systems corresponds to the first mode in each DOF i.e., the mode 

with the highest mass participation in each DOF.  

While the main aspects of the structural design of rectangular plates are the load-deformation 

and load-stress behaviour, vibration-induced limit states such as fatigue and loosening of 

connections might cause unforeseen deficiencies during the service life of the structure if the 

structure is prone to resonance.  

Several studies in terms of closed-form solutions and numerical methodologies to calculate the 

frequencies of vibration of rectangular plates are available in the literature including Gorman 

(1982), Soedel (1993), Amabili (2008) and Chakraverty (2009). Effects of several parameters on 

the natural frequency of rectangular plates are the topic of further research including the studies 

by Liew et al. (1993) wherein the effects of in-plane isotropic pressure on the vibration response 

of thick rectangular plates were discussed. More recently, Xiang et al. (2002) presented one of the 

first known exact solution for the vibration of rectangular multi-span plates with two opposite 

edges simply supported using the Levy type solution method and the state-space technique. 

Phillips and Jubb (1974) presented a series of tests to verify the natural frequency of variation of 

an approximately clamped rectangular plate due to increasing lateral distortion against the existing 

theory initially presented by Reissner (1955). The initial distortion of the plate in their 

experimental tests was applied by deflecting the plate using a rigid block at the center of the plate 

and a hydraulic jack prior to the vibration test. Manzanares-Martinez et al. (2010) presented the 

lower normal modes of vibration of rectangular plates through experimental and theoretical 

analysis. Their experimental tests involved employing electromagnetic-acoustic transducers on a 

thin rectangular plate in order to measure the frequencies of vibration mainly in the acoustic modes 

with high frequencies.  

Cho et al. (2015) studied the vibration of rectangular plates for the case of bottom plate of fluid 

containers where the plate is in direct contact with fluid. The fluid-structure interaction was the 

focus of that study using the Lagrange’s equation of motion to relate the potential and kinetic 
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energies of the plate structure and surrounding fluid kinetic energy. The study of the effects of 

imperfections on the vibration of rectangular plates was further extended by Zeng et al. (2016) 

where a loaded side-cracked plate was studied using the Moving-Least-Square (MLS-Ritz) 

method. Huang and Lin (2016) also studied the vibration of rectangular plates with a straight-

through crack using Fourier cosine series with domain decomposition. Lately, Wang et al. (2017) 

studied the effects of rectangular openings on the vibration characteristics of rectangular plates in 

order to establish a methodology for noise reduction and vibration control in thin-walled structures 

with openings using Fourier series.  

It has to be mentioned that the concept of nonlinear vibration of plates that includes the 

response of plates to periodic loading with large amplitudes is out of the scope of this paper. This 

paper mainly focuses on the free vibration and fundamental frequencies of rectangular steel plates 

with various aspect ratios and the effects of large deformations caused by static lateral pressure on 

those frequencies. 

5.3 Theoretical Background, FE Modelling, and Verification 

The earliest attempts on the vibration analysis of rectangular plates in presence of in-plane 

(membrane and shear) forces were made by Dawe (1969) and followed by alternative solutions 

including numerical methods by Mei and Yang (1972), Dickinson (1973) and Bassily and 

Dickinson, (1973). Chan and Foo (1979) were amongst the first to apply the Finite Strip method 

to solve the case of rectangular plate vibration with membrane forces.  

The general equation of motion for a rectangular plate under lateral and in-plane loading is 

presented in Eq. 5.1.  

𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝑐ℎ𝑤̇ + 𝜌ℎ𝑤̈ = 𝑓 + 𝑞 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
(Eq. 5.1) 

In which D is the flexural rigidity of the plate calculated as D=Eh3/12(1-υ2), c is the viscous 

damping, ρ is the mass density per unit volume of plate material, h is the plate thickness and w(x, 

y, t) is the dynamic displacement at any given point of plate surface at specific time (t).  The first 

and second derivatives of w with respect to t (i.e., 𝑤̇ and ẅ) represent the velocity and acceleration 

at a specific time. On the right side of Eq. 5.1, f is the external excitation as a function of time, q 
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is the lateral pressure applied at the plate surface while Nx, Ny are the membrane forces distributed 

along the edges of plate and Nxy is the in-plane shear force, respectively.   

The simplest form of plate vibration analysis represents the free vibration of unloaded 

rectangular plates with negligible damping. In this case, the forcing terms at the right side and the 

viscous damping term at the left side of Eq. 5.1 are set to zero and Eq. 5.1 reduces into Eq. 5.2. 

⁡𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝜌ℎ𝑤̈ = 0       (Eq. 5.2) 

There is an infinite number of natural frequencies (and mode shapes) available from the closed 

form or numerical solutions to Eq. 5.2 for various boundary conditions of rectangular plates 

(Amabili, 2008).  As an example, the closed form solution to Eq. 5.2 for rectangular plates with 

all edges simply supported could be presented as Eq. 5.3.  

𝜔𝑚,𝑛 = 𝜋
2 [(𝑚 𝐿⁄ )

2
+ (𝑛 𝐵⁄ )

2
]√𝐷 𝜌ℎ⁄       (Eq. 5.3) 

In which m and n indicate the number of wave fronts along the length (L) and breadth (B) of 

the rectangular plate for any particular mode shape with natural frequency ωm,n. Amabili (2008) 

verified the natural frequencies of 15 modes of vibration resulted from Eq. 5.3 experimentally for 

the case of a rectangular aluminium plate.  

In another case, the free vibration of rectangular plates with negligible damping in presence of 

membrane forces was studied by Singh and Dey (1990) using the energy method. They discretized 

the total energy of free vibration of the system by replacing the derivative terms with their Finite 

Difference equivalents and used a specific energy minimization technique to solve the resulting 

eigenvalue problem. One step further into the case of rectangular plate vibration with membrane 

forces, Leissa and Kang (2002) presented one of the first exact solutions for the case of vibration 

and buckling of rectangular plates with a particular set of boundary conditions in which two 

opposite edges of the plate were clamped and the two other edges were simply supported. A 

linearly variable in-plane load was considered to act at the simply supported edges (Leissa and 

Kang, 2002). A similar case was presented by Wang et al. (2006) that simplified Eq. 4.1 into the 

form presented in Eq. 5.4 for the case of free vibration of rectangular plates with membrane forces 

acting at opposite edges along x axis (Wang et al., 2006).  
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𝐷 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
]
2

+ 𝜌ℎ𝑤̈ = 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
      (Eq. 5.4) 

Wang et al. (2006) used the differential quadrature method to solve this equation and calculated 

the vibration frequency for six mode shapes of the rectangular plate (m=1 to 3, n=1 and 2). They 

estimated the w(x,y,t) function by w(x,y)sin(ωt) and presented the in-plane force Nx with a linear 

function. More recently, Akhavan et al. (2009) studied a similar case where closed-form solutions 

for the free vibration analysis of Mindlin plates with uniform and linearly distributed in-plane 

loading at two opposite edges with simply supported boundary conditions were given for different 

configurations of boundary conditions at the opposite edges while the plate is resting on elastic 

foundation. As seen in the previous section, closed-form solutions are mainly available in the 

literature for simple structural assemblies with basic boundary conditions and loading schemes. 

On the other hand, numerical approaches give acceptable approximations of the vibrational 

behaviour of more complex systems. The Finite Element method approximates the flexural 

vibration of plates by dividing the plate into a mesh of two-dimensional finite elements (i.e. plate 

elements) in rectangular, triangular or quadrilateral shapes (Petyt, 2010). 

 
Fig. 5.1: (a) General view of the nodes, surfaces, global and local coordinates of the shell element (b) Local degrees 

of freedom at a given joint 

The element used for the FE Modelling in this paper is the generalized shell (Wilson, 2016) 

with four joints as shown in Fig. 5.1. The shell stiffness formulation is based on a four-point 

numerical integration where stiffness components are calculated for six degrees of freedom 

(DOFs) namely U1, U2, U3, R1, R2 and R3 at each node (Powell, 2010). The internal forces of 

the element are evaluated at the 2-by-2 Gauss integration points and extrapolated to the element 

joints (Wilson, 2016). The term “generalized shell” is used for this element because it could be 
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reduced into plate (i.e. pure bending) behaviour with only the U3, R1 and R2 DOFs at each node, 

or membrane (i.e. no bending) behaviour with stiffness components only at U1, U2 and R3 

accordingly (Wilson, 2016). Regarding the transverse shearing deformations, there are two 

available options for the generalized shell element namely the thick-shell and the thin-shell where 

the element formulations include those deformations in the analysis in the former case based on 

Reissner-Mindlin plate theory (Reissner, 1945) (Mindlin, 1951) and neglecting them in the latter 

case based on Kirchhoff-Love plate theory (Love, 1888). Although shearing deformations tend not 

to affect the overall plate deflections considerably when the plate thickness is less than a decimal 

fraction of its dimensions, the developer of the generalized shell element (Wilson, 2016) 

recommends using the thick-plate option for the FE analysis even for the case of thin-plate bending 

problems. The main issue involved with the Modelling of relatively thin plates in FE analysis is 

the shear locking. There are several techniques in the literature to reduce or remove this 

phenomenon including the Reduced Integration method (Hughes et al., 1978), the Discrete Shear 

Gap (DSG) method (Bletzinger et al., 2000), the Isogeometric analysis (Hughes et al., 2005), the 

hierarchic family of isogeometric shells (Echter et al., 2013) and the Modified Mindlin plate theory 

(Senjanovic et al., 2014). The generalized shell element in this paper is a locking-free element, 

which has been verified for the more complex case of orthotropic thin-walled beams by Minghini 

et al. (2007).  

The geometric nonlinearities (i.e., large displacement effects) are included in the analysis for 

the static step-by-step procedure in which the equilibrium equations are updated in the deformed 

configuration of the structure at the end of each step. Large displacements and rotations are 

accounted for but strains are assumed to be small. The position of each element is tracked during 

the analysis using an updated Lagrangian formulation (Wilson, 2016).  

Table 5.1. Various boundary conditions combinations for a panel of industrial duct walls 

 

Boundary Condition Combination 
Edge Number 

1 2 3 4 

CC Clamped Clamped Clamped Clamped 

CS Clamped Clamped Simple Simple 

SS Simple Simple Simple Simple 

SC Simple Simple Clamped Clamped 

3

1

2

4
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This paper considers four combinations of boundary conditions for the case of rectangular 

plates. These combinations are addressed as SS, SC, CS and CC as shown in Table 5.1. 

 

 
Fig. 5.2: First stage of the validation study: Comparison of the results of FE analysis (current work) with available 

literature for the nonlinear load-deformation of rectangular plates under lateral uniform pressure   

There are three stages of verification of the FE analysis in this paper. In the first stage, as shown 

in Fig. 5.2, the load-displacement curves resulted from FE static analysis are compared to the 

results of two experimental tests by Ramberg (1952), one analytical solution by Wang (1948) and 

one numerical solution by El-Aghoury and Galal (2014). It is seen in the chart (Fig. 5.2) that the 

FE analysis is in a very good correlation with the experimental and analytical data in the literature.  

 
Fig. 5.3: Second stage of the validation study: Comparison of the FE results (current work) with the natural 

frequencies of 15 modes of vibration of the plate tested by Amabili (2008) and their reported analytical results 

In the second stage, as shown in Fig. 5.3, the natural frequencies calculated by the FE modal 

analysis for the case of a rectangular plate are verified against the experimental data and the closed-
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form solution to Eq. 5.3 by Amabili (2008). The results of FE analysis show an excellent 

correlation with the experimental and analytical results in the literature.  

 
Fig. 5.4: Third stage of the validation study: Non-dimensional frequency [ωL2(ρh/D)0.5] of rectangular SC plates 

with uniaxial membrane force resulted from FE analysis (current work) against the analytical results of Wang et al. 

(2006) (a) Plate aspect ratio: 1.0 (b) Plate aspect ratio: 0.5 

In the third stage, as shown in Fig. 5.4, the vibration frequencies of two rectangular plates with 

different aspect ratios at four different levels of membrane forces are verified against the analytical 

results of Wang et al. (2006). Those four membrane force levels represent 0%, 50%, 80% and 95% 

of the plate critical buckling load. For the first plate with aspect ratio 1.0 (Fig. 5.4-a), the vibration 

frequencies of seven modes are reported by Wang et al. (2006) and for the second plate with aspect 

ratio 0.5 (Fig. 5.4-b), there are six modes reported by Wang et al. (2006). The FE analysis was 

able to capture all of the reported modes with very good correlation. As seen in the charts, an 

excellent correlation between the results of FE analysis and the existing experimental, analytical 

and numerical results from the literature has been achieved for all the three stages of verification.  

5.4 Free vibration of Rectangular Plates at Rest 

This section presents the modal analysis of rectangular plates at rest i.e., no loads are applied 

to the plate. To uncouple the analysis results from the plate dimensions, the non-dimensional 

frequency parameter (ω*) which is used frequently in the literature is adopted here as shown in 

Eq. 5.5.  

𝜔∗ = 𝜔(𝐿 𝜋⁄ )2√𝜌ℎ 𝐷⁄         (Eq. 5.5) 

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

ω
L2

(ρ
h
/
D

)0
.5

Sequential mode number

FE (Current study)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

ω
L2

(ρ
h
/
D

)0
.5

Sequential mode number

FE (Current study)

N0/Ncr=0.0

N0/Ncr=0.5

N0/Ncr=0.8

N0/Ncr=0.95

N0/Ncr=0.0

N0/Ncr=0.5

N0/Ncr=0.8

N0/Ncr=0.95

(a) (b)

Wang et al. (2006)Wang et al. (2006)



81 

 

As mentioned before, several works in the literature address the calculation of vibration 

frequencies of rectangular plates in various pre-defined mode shapes. Although the pre-defined 

mode shapes are limited by nature, some of the available closed-form solutions tend to calculate 

the vibration frequency for any given mode (see Eq. 5.3). On the other hand, numerical techniques 

such as Finite Element method, allow for the calculation of vibration frequencies for unlimited 

sequential modes by implementing verified methods such as Eigen and Ritz analysis (Wilson, 

2016). As an example, the non-dimensional frequency parameter (ω*) that is associated with the 

first 20 modes of free vibration of rectangular plates with 2 different boundary conditions 

combinations (CC and SS) and 3 different aspect ratios (S=1, S=2 and S=4) are shown in Fig. 5.5.  

 
Fig. 5.5: Non-dimensional frequencies associated with the first 20 modes of vibration for simply-supported (SS) and 

clamped (CC) rectangular plates with aspect ratios S=1.0, S=2.0 and S=4.0 

5.4.1 Structurally significant modes 

Each of the four nodes of the rectangular plate element in the FE models of this paper involves 

six DOFs (i.e., transition in and rotation about the global Cartesian axes X, Y and Z). Assuming 

the uniform distribution of the plate mass over these nodes, the nodal mass participation at each 

node for every individual vibration mode is determined as a result of the modal analysis. The 

overall mass participation of the plate at each DOF is then calculated as the summation of all 

individual nodal mass participations. As an example, the mass participation ratios of the first 20 

modes of vibration of the rectangular plate with aspect ratio S=2.0 and SS boundary conditions 

(see Fig. 5.5 for the frequencies) are shown in Table 5.2.  
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As seen in the table, the overall mass participation is zero for the three in-plane DOFs i.e., U(X), 

U(Y) and R(Z). This phenomenon is easily understandable considering the plate geometry and 

boundary conditions. As for the main DOFs i.e., U(Z), R(X) and R(Y), it is seen in Table 5.2 that 

the cumulative mass participation ratio reaches 0.884, 0.761 and 0.784 respectively with the 

consideration of 20 modes.  

Table 5.2. Modal mass participation ratios at the six DOFs for the rectangular plate with aspect 

ratio S=2.0 and SS boundary conditions 

MODE ω* 
MODAL MASS PARTICIPATION RATIO 

UX UY UZ RX RY RZ 

1 0.20 0 0 0.682 0 0 0 

2 0.32 0 0 0 0 0.524 0 

3 0.52 0 0 0.076 0 0 0 

4 0.68 0 0 0 0.537 0 0 

5 0.80 0 0 0 0 0 0 

6 0.80 0 0 0 0 0.131 0 

7 1.00 0 0 0 0.059 0 0 

8 1.16 0 0 0.027 0 0 0 

9 1.27 0 0 0 0 0 0 

10 1.48 0 0 0.075 0 0 0 

11 1.59 0 0 0 0 0.115 0 

12 1.59 0 0 0 0 0.004 0 

13 1.63 0 0 0 0.021 0 0 

14 1.79 0 0 0.008 0 0 0 

15 2.07 0 0 0 0 0.014 0 

16 2.07 0 0 0 0 0 0 

17 2.11 0 0 0.014 0 0 0 

18 2.42 0 0 0.003 0 0 0 

19 2.58 0 0 0 0.011 0 0 

20 2.59 0 0 0 0 0 0 

 TOTAL: 0 0 0.884 0.761 0.784 0 

In order to better visualize these mode shapes and their mass participations, they are displayed 

schematically in Fig. 5.6. It is obvious that higher cumulative mass participations are achievable 

by considering greater number of modes but it should also be noted that individual modes with 

great mass participations are already achieved in the three significant DOFs. In this case, they are 

mode 1 for U(Z), mode 2 for R(Y) and mode 4 for R(X) with mass participation ratios of 0.682, 
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0.524 and 0.537, respectively. Similar outcomes for the mass participation ratios are obtained for 

the other boundary conditions combinations and aspect ratios. In all cases, the first two sequential 

modes correspond to the highest mass participation for U(Z) and R(Y) respectively. On the other 

hand, the third significant mode i.e., the mode with the highest mass participation along R(X) does 

not necessarily correspond to the third sequential mode. These three mode shapes are considered 

as the “significant modes” and will be the topic of the upcoming parametric studies in this paper. 

 
Fig. 5.6: Visual display of the first 20 modes of vibration for a rectangular plate with aspect ratio S=2.0 and SS 

boundary conditions  

5.4.2 Vibration frequencies of significant modes for rectangular plates at rest  

The frequency parameters of rectangular plates with various aspect ratios between 1.0 and 4.0 

are shown in Fig. 5.7 and Table 5.3 for the three significant modes of vibration. Based on these 

charts, it is observed that although an increase in the plate aspect ratio tends to lower the 

fundamental frequencies, this effect diminishes as the aspect ratio reaches higher values. It is also 

seen in the charts of Fig. 5.7 that the plate aspect ratio has a greater effect on the 2nd significant 

frequency than those of the other two modes.  
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Fig. 5.7: Frequency parameter associated with the three significant modes for rectangular plates with various 

boundary conditions and aspect ratios 

Table 5.3. Values of ω* associated with the three significant modes for rectangular plates with 

various boundary conditions and aspect ratios 
 

BC SS SC CS CC 

 
MODE 1ST 2nd 3rd 1ST 2nd 3rd 1ST 2nd 3rd 1ST 2nd 3rd 

A
S

P
E

C
T

 R
A

T
IO

 (
S

) 

1 0.3181 0.7946 0.7946 0.4668 0.8805 1.1172 0.4667 0.8805 1.1171 0.5797 1.1814 1.1814 

1.25 0.2610 0.5659 0.7383 0.4253 0.6724 1.0729 0.3441 0.6958 0.8564 0.4819 0.8452 1.1044 

1.5 0.2300 0.4417 0.7077 0.4043 0.5654 1.0492 0.2803 0.5696 0.7326 0.4357 0.6715 1.0669 

1.75 0.2113 0.3668 0.6893 0.3922 0.5044 1.0351 0.2436 0.4549 0.7047 0.4112 0.5729 1.0459 

2 0.1992 0.3182 0.6773 0.3847 0.4668 1.0260 0.2209 0.3813 0.6875 0.3969 0.5129 1.0331 

2.25 0.1909 0.2849 0.6691 0.3796 0.4422 1.0198 0.2061 0.3314 0.6762 0.3879 0.4744 1.0247 

2.5 0.1849 0.2611 0.6632 0.3761 0.4253 1.0154 0.1960 0.2962 0.6683 0.3820 0.4486 1.0189 

2.75 0.1805 0.2435 0.6589 0.3735 0.4133 1.0121 0.1888 0.2706 0.6627 0.3778 0.4305 1.0147 

3 0.1772 0.2301 0.6556 0.3716 0.4043 1.0096 0.1835 0.2514 0.6585 0.3748 0.4174 1.0116 

3.25 0.1746 0.2196 0.6530 0.3701 0.3975 1.0077 0.1795 0.2367 0.6553 0.3726 0.4077 1.0093 

3.5 0.1725 0.2114 0.6510 0.3689 0.3923 1.0062 0.1764 0.2252 0.6528 0.3709 0.4003 1.0074 

3.75 0.1708 0.2047 0.6493 0.3679 0.3881 1.0049 0.1740 0.2160 0.6508 0.3695 0.3945 1.0059 

4 0.1695 0.1992 0.6480 0.3672 0.3847 1.0039 0.1721 0.2086 0.6492 0.3685 0.3899 1.0047 
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It should be noted that the values presented in Table 5.3 as the non-dimensional frequency 

parameters could be used for interpreting a reasonable approximation of ω* for any plate aspect 

ratios by using a linear interpolation.  

5.5 Free vibration of rectangular plates with uniform lateral pressure and 

large deformation effects 

As discussed earlier in section 5.2, the lateral load and in-plane forces affect the natural 

frequency of rectangular plates (See Eq. 5.1). Although the effect of directly-applied in-plane 

forces on the vibration of plates is not studied in this paper, a correlation between the lateral 

pressure and in-plane forces will be the main parameter in this section.  

The classical plate theory establishes the lateral load-displacement behaviour of thin rectangular 

plates mainly based on the assumption of pure flexural behaviour that follows a linear trend. This 

assumption along with other less significant assumptions involved with Kirchhoff’s plate theory 

are used widely by the design engineers as the accepted design basis for thin-walled structures. On 

the other hand, regardless of the boundary conditions, if the maximum deflection of the plate 

exceeds a certain limit, the linear load-displacement assumption does not reflect the true behaviour 

(see Fig. 5.2). This deflection limit is defined as a portion of the plate thickness e.g. Δ>0.5t (Levy, 

1941a), Δ>1.0t (Timoshenko and Woinowsky-Kreiger, 1959) (Ugural, 1981) and Δ>0.2t (Bakker 

et al., 2008) where Δ is the maximum deflection at the center of plate as shown in Fig. 5.8.  

 
Fig. 5.8: Deformation of a CC rectangular plate under uniform lateral pressure 

The nonlinear load-displacement behaviour of thin plates with large deformations is governed 

by von-Kármán equations (von-Kármán, 1910). One of the main assumptions in von-Kármán 

equations is that all strain components are small and linear elasticity is applicable to the plate 

Δ

h
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material. Kirchhoff’s plate hypothesis is also applicable to von-Kármán equations indicating that 

the stresses normal to the middle surface of the plate are negligible and the strains are linearly 

distributed through the thickness of the plate. The main advantage of von-Kármán equations over 

the classical plate theory is the consideration of membrane stresses that generate in the plate as a 

result of large deformations. There are a number of experimental, analythical and numerical works 

on rectangular plates with geometrical nonlinearities based on von-Kármán equations including 

Ramberg et al. (1942), Wang (1948), Little (1999), Young and Budynas (2002), El-Aghoury and 

Galal (2014) and Rezaiefar and Galal (2016) where the load-displacement and load-stress curves 

for various geometries and boundary conditions were presented.  

A sequential analysis method is adopted in this section in order to study the effects of nonlinear 

load-deformation behaviour on the free vibration properties of rectangular plates. The analysis 

consists of two stages for a series of uniform lateral pressure values. At the first stage, the uniform 

lateral pressure is applied to the plate and a nonlinear static large deformation analysis is 

performed. At the end of this stage, a modal analysis is performed on the plate and the  frequencies 

of the three significant modes are recorded. This procedure is repeated for various lateral pressure 

values. The results of this analysis are presented in the charts of Fig. 5.9 as the non-dimensional 

frequency parameter against the unitless pressure (P/E)(L/h)4 for various aspect ratios and 

boundary conditions combinations.  
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Fig. 5.9: Non-dimensional frequency parameter charts for plates with different boundary conditions and aspect ratios 

under various non-dimensional pressure (q*) values 

It is seen in the charts of Fig. 5.9 that the vibration frequencies of the three significant modes 

increase with the applied uniform pressure for all the studied cases. Although the charts presented 

in Fig. 5.9 could be used directly for specific cases, these charts are converted into more 

meaningful data by dividing the frequency parameter at each pressure by the value of the frequency 

parameter at rest (values presented in Table 5.3) and presented in the charts shown in Fig. 5.10. 
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Fig. 5.10: Non-dimensional frequency parameter charts for plates with different boundary conditions and aspect 

ratios under various uniform lateral loads 

5.6 Analysis example 

The walls of an industrial duct segment consist of 8 mm steel plates (Fy=300 MPa, E=200000 

MPa, υ=0.3 and ρ=7850 kg/m3) with relatively rigid stiffener ribs placed at 1.2 m intervals per the 

static analysis and design. The duct cross-section is a 3.0×3.0 square with fully welded corners. 

The internal negative pressure acting on the duct walls is 31.6 kPa. The working and cut-off 

frequencies of the fan are 90 Hz and 35 Hz, respectively. It is required to verify if the designed 

duct wall plates will cause resonance with the fan. A resonance margin of ±20% is to be considered 

for the study.   
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Based on the problem definitions, each individual wall panel is a 3000×1200×8 mm rectangular 

plate. The stiffened plate with fully welded duct corners suggests the CCSS boundary conditions.  

Plate aspect ratio:   S=3000/1200= 2.5 

Plate flexural rigidity: D=Eh3/12(1-υ2)= 9.377  kN.m 

    (L/π)2×(ρh/D)0.5= 0.0121 

The cut-off frequency of the fan corresponds to zero pressure on the walls thus, it is compared 

to the significant natural frequencies at rest based on the values from Table 5.3 as following: 

ω*(1st mode)=  0.196 Thus: ω1= 0.196/0.0121= 16.2 Hz 

ω*(2nd mode)=  0.2962 Thus: ω2= 0.2962/0.0121= 24.5 Hz 

ω*(3rd mode)=  0.6683 Thus: ω3= 0.6683/0.0121= 55.3 Hz 

The problem requires the verification of fan frequencies with ±20% margins: 

Working frequency: Lower limit: 90-20%=  72.0 Hz 

    Upper limit: 90+20%=  108.0 Hz 

Cut-off frequency:  Lower limit: 35-20%=  28.0 Hz 

    Upper limit: 35+20%=  42.0 Hz 

It is seen that none of the three significant natural frequencies of the plate at rest falls within 

the 20% margins of the cut-off frequency of the fan. 

At working conditions, the fan produces a uniform pressure of 31.6 kPa (0.0316 MPa) on the 

wall, thus: 

Unitless pressure:  (P/E)(L/h)4= (0.0316/2e5)(1200/8)4= 79.99 ≈ 80.0  

Using the charts from Fig. 5.10 to obtain the increase in frequencies as shown in Fig. 5.11, the 

frequencies at the 1st, 2nd and 3rd significant modes should be increased by 270%, 155% and 59% 

respectively to account for the working condition of the duct walls: 

ω1(work)= 16.2+270%=  59.9 Hz 

ω2(work)= 24.5+155%=  62.5 Hz 

ω3(work)=  55.3+59%=  87.9 Hz 

It is seen that the 3rd significant natural frequency of the plate falls within the 20% margins of 

the working frequency of the fan (i.e. 72.0<87.9<108.0). This indicates that the plate is prone to 

resonance with the fan at working conditions. 
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Fig. 5.11: Application of the pressure-frequency charts in an example 

In order to verify these results, the plate in the example is also modeled using FE analysis. The 

frequencies at rest and at the given pressure (31.6 kPa) are listed in Table 5.4 along with their 

difference in percentage. It is seen that the results obtained from the proposed55 method in this 

paper are in excellent correlation with the results obtained from the FE analysis. 

Table 5.4. Frequencies resulted from the method in this paper and case-specific FE analysis 

 P= 0.0 (rest) P= 31.6 kPa 

 1ST 2ND 3RD 1ST 2ND 3RD 

Proposed method in this paper 16.2 24.5 55.3 59.9 62.5 87.9 

FE analysis 16.37 24.76 55.83 61.88 64.33 88.97 

Discrepancy (%)† 1.05 1.06 0.96 3.3 2.93 1.22 

†: Discrepancy = 100×(ωFE-ω)/ω 

5.7 Concluding remarks 

This paper presented the case of free vibration of rectangular plates with and without lateral 

pressure. It was shown that although an unlimited number of mode shapes could be considered for 

the vibration analysis of rectangular plates, there are only three modes with structural significance 

that need to be considered in the structural design. These three modes are: 

1- The mode shapes with one curvature along the breadth and length of the plate. 

2- The mode shape with one curvature along the breadth and two curvatures along the length 

of the plate. 

3- The mode shape with two curvatures along the breadth and one curvature along the length 

of the plate.  

Non-dimensional vibration frequencies for these three significant modes were provided for four 

boundary conditions combinations and varying aspect ratios from 1.0 to 4.0. The frequency of 
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vibration for any rectangular plate could be easily calculated by using these non-dimensional 

frequencies.  

The effects of lateral pressure on the vibration frequencies of rectangular plates were studied in 

the last section of this paper based on the concept of large displacement analysis. It was 

demonstrated that for rectangular plates with various aspect ratios and boundary conditions 

combinations, the vibration frequencies increase significantly (up to 450%) with the lateral 

pressure. The charts and tables given in this paper for the vibration frequencies are all non-

dimensional. Thus, they could be used for specific cases of rectangular panel plate design 

regardless of plate material, thickness and aspect ratios.  

This work could be continued into the nonlinear vibration domain by studying the vibration 

interactions and the influence of loading frequencies on the dynamic response of the plate.  
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CHAPTER 6 

SUMMARY, CONCLUSIONS, LIMITATIONS AND 

RECOMMENDATIONS FOR FUTURE WORKS 

6.1 Summary 

The purpose of this study was to evaluate the current methods for the structural design of the 

stiffened plates of the walls of industrial ducts and similar structures and seek potential 

improvement to them by taking into consideration the effects of large displacements in the 

analysis.  

In Chapter 3, two sets of empirical design equations were provided using verified numerical 

analysis of multi-span plates with internal line supports under uniform lateral pressure that take 

into account the effects of large deformations nonlinearities. These equations stand for the design 

of plate length and thickness by applying stress and displacement criteria to the plate structure.  

In Chapter 4, the case of stiffened plates with parallel ribs under lateral uniform pressure was 

discussed. The main purpose of this chapter was to compare the linear beam equations which are 

adopted for the stiffened plate conventionally by the engineers in the form of an Equivalent Beam 

Analogy (EBA) and the advanced FE analysis using shell elements for the plate and stiffener. The 

FE analysis was divided into two main categories of Small Displacement Analysis (SDA), and 

Large Displacement Analysis (LDA). The stress distribution in the panel plate was reviewed in 

both SDA and LDA in order to verify the potential failure modes and the points at which plastic 

behaviour could be expected. This chapter contained a total of 16 FE models, all of which had the 

same stiffener geometry and panel plate thickness, and subjected to either positive, or negative 

uniform pressure over the panel plate. The main geometrical variable was the panel plate width, 

for which a total of 6 different B/t ratios were studied. Two main cases of clamped, and simply-

supported end boundary conditions were considered in the FE models and analysis.  

In Chapter 5, the case of free vibration of rectangular plates with and without lateral pressure 

was discussed. It was shown that although an unlimited number of mode shapes could be 

considered for the vibration analysis of rectangular plates, there are only three modes with 
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structural significance that need to be considered in the structural design. Non-dimensional 

vibration frequencies for those three significant modes were provided for four boundary conditions 

combinations and varying aspect ratios from 1.0 to 4.0. The effects of lateral pressure on the 

vibration frequencies of rectangular plates were studied in the last section of Chapter 5 based on 

the concept of large displacement analysis.  

6.2 Concluding Remarks 

The following conclusions are derived from the studies conducted in this study: 

• The assumptions involved in the design of panel plates of the walls of rectangular ducts 

are often not correct. The edge panels and the typical panels in such assemblies have 

different boundary conditions. 

• A duct wall plate designed by the LDA, if used appropriately in conjunction with well-

defined limit states, will be up to 40% more economical compared to the conventionally 

designed plates that use the linear beam theory. 

• The linear beam theory does not correctly represent the actual behaviour of the stiffened 

plate for the internal stresses in the panel plate. Moreover, the load-displacement 

estimation provided based on the EBA does not correspond with the actual behaviour of 

the stiffened plate.  

• The internal forces and stresses in the panel plate are not correctly calculated in the SDA 

as the membrane forces are neglected. Thus, the load-displacement behaviour is not 

correctly estimated by the FE analysis if the SDA is applied.  

• The most accurate method for the FE analysis of stiffened plate is the LDA, in which 

the contributions of the panel plate and the rib stiffener are calculated based on the 

combination of internal flexural and membrane stresses.  

• The load-displacement behaviour of the stiffened plate is not independent of the nature 

of the applied uniform pressure. Different load-displacement charts are obtained for the 

same stiffened plate model under positive and negative uniform pressures.  

• The end boundary conditions have a significant effect on the load-displacement of the 

stiffened plates. However, the stiffened plate does not follow the classical beam theory 
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in which the simply-supported beam has a five times greater displacement under the 

same uniform load than the clamped beam.  

• The ultimate design loads and displacements achieved from the LDA are mainly 

different from those obtained from the linear beam theory with the EBA.  

• In the case of clamped ends, the LDA results in greater ultimate loads and displacements 

under both negative and positive pressures compared to the linear beam theory using the 

EBA.  

• In the case of simply-supported ends, the LDA results in smaller maximum 

displacements than the linear beam theory using the EBA, while the ultimate loads 

resulting from the LDA under positive pressure are greater than the EBA within the 

same range as the EBA under negative pressure.  

• The frequency of vibration for any rectangular plate could be easily calculated by using 

empirical non-dimensional frequencies provided in Chapter 5. 

• For rectangular plates with various aspect ratios and boundary conditions combinations, 

the vibration frequencies increase significantly (up to 450%) with the lateral pressure if 

the LDA is applied. 

• The calculation of the modal frequencies of rectangular duct walls without the 

consideration of the LDA effects is irrelevant and misleading.   

 

6.3 Limitations 

The studies in this thesis were entirely on the basis of numerical analysis and FE modelling. 

Although some experimental results from the literature were utilized in order to evaluate the 

modelling procedure, meshing, elements, boundary conditions, and analysis settings, the need for 

case-specific experimental tests on the studied topics was undeniable during the work. The 

numerical work was focusing on the Ultimate Limit States concept for the structural design of the 

stiffened plates. Thus, the thermal behaviour was not within the scope of the studies.  

In Chapter 3, the goal was to involve the effects of geometrical nonlinearities in the overall 

behaviour of the duct wall panel plates in order to establish grounds for a more economical design 

procedure based on the LDA. The experimental research that was used as the reference for the 
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validation of the FE analysis in that chapter were from six decades ago while the boundary 

conditions in those tests were different from what was then associated with the case of the walls 

of rectangular ducts. Despite the fact that those differences in the boundary conditions became the 

main distinguishing factor at the end, the authors could have achieved more realistic results if an 

experimental program was designed and performed accordingly in parallel. Moreover, the thermal 

behaviour of the plates should be studied in a different work in which the temperature gradients as 

well as thermal expansion of the panels are the main topics.  

In Chapter 4, the shortcomings of the existing design analogy that is based upon the linear beam 

theory for the stiffened plates were demonstrated and explained. Similar to Chapter 3, an 

experimental testing program would have been greatly beneficial. Moreover, it was not feasible to 

produce sufficient FE models in order to achieve the required statistical data to establish an 

empirical design method for the stiffened plate on the basis of LDA without exceeding the space 

limitations for one journal article in this chapter. The authors believe that such work must be 

presented in a separate article which is beyond the scope of this thesis. 

In Chapter 5, there was a need to extend the numerical analysis for the case of stiffened plates 

with flexible stiffeners. However, such an extension requires a basis with more simplified 

boundary conditions which was the topic of the chapter. Moreover, a more realistic loading 

frequency such as flow-induced vibration in the example at the end of the chapter could have been 

more beneficial. Unfortunately, such data was not found in the literature by the author at the time 

of the preparation of Chapter 5. As mentioned in the introductions of the chapter, the concept of 

nonlinear vibration was out of the scope of the studies.  

6.4 Recommendation for Future Works 

It is essential that further investigations on more combinations of rib stiffeners and panel plate 

geometries be done in the future in order to establish a robust empirical design method based on 

the LDA and key parameters. Such investigations must include other types of rib stiffener profiles, 

more realistic boundary conditions for case-specific applications, nature of applied loads, and the 

effects of thermal stresses. This work could also be continued into the nonlinear vibration domain 

by studying the vibration interactions and the influence of loading frequencies on the dynamic 

response of the stiffened plates. In all stages of the work on the stiffened plates of the walls of 
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industrial ducts, experimental testing shall provide realistic data on which basis, more advanced 

FE modelling could be developed. The data presented in chapters 3,4 and 5 of this thesis could be 

used in order to design an experimental test setup for a realistic investigation of the case of 

rectangular duct walls. Both load-displacement behaviour and the modal frequencies are 

achievable from such experiments if designed and executed properly.  
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