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Montréal, Québec, Canada

July 2021

c� Hamidreza Heidarzadeh, 2021



Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Hamidreza Heidarzadeh

Entitled: The e↵ect of methodological flexibility on membrane pro-

tein classification

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

20

Dean

Faculty of Engineering and Computer Science

Dr. Lata Narayanan

Dr. Tristan Glatard

Dr. Gregory Butler

Dr. Yiming Xiao

Dr. Mourad DebbabiJuly, 16 21



Abstract

The e↵ect of methodological flexibility on membrane protein

classification

Hamidreza Heidarzadeh

Reproducibility, the ability to reproduce computational results using identical data

and software, is a cornerstone of the scientific methodology. However, through the

past decade, several studies revealed a widespread lack of results’ reproducibility, to

the point that the existence of a reproducibility crisis is now acknowledged in various

fields. In Machine Learning, given the flexibility available in various phases of con-

structing a computational model, the experiments are not immune to reproducibility

issues either. In case of imbalance learning for problems with multiple classes, the

problem is even more severe since there are more parameters in play for construct-

ing a model. The resulting reproducibility challenges have implications in various

disciplines including bioinformatics, the primary focus of our study.

Researchers have already taken counter-measures proposing various recommenda-

tions for having results’ reproducibility in this domain of study. Some conferences

have even adopted new measures in that regard. Following those guidelines could

ensure reproducibility to an agreeable degree in balanced problems. In this work we

demonstrate that in an imbalanced scenario, even in its basic form, a study report

with a fair amount of details, could reproduce a wide range of results if methodological

flexibility is permitted.
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Chapter 1

Introduction

Reproducibility, the ability to reproduce computational results using identical data

and software [73], is a cornerstone of scientific methodology. In the past decade,

however, several studies revealed a widespread lack of results reproducibility, to the

point that the existence of a reproducibility crisis is now acknowledged in various

fields [5].

To improve the results’ reproducibility, counter-measures were identified and the

movement towards examining and enhancing the reliability of research was expanded [10].

Scientists addressed the issue by defining reproducibility-specific terms and terminolo-

gies (e.g. methodological reproducibility, replicability, robustness, etc.) and providing

guidelines [18, 32] and best practices [63, 81] for having a reproducible research. It

was then suggested that the scientific community needs to develop a “culture of re-

producibility” for computational science and require it for the published claims [72].

Given the methodological flexibility associated with computational experiments, a

reproducible study through this culture is required to share the analytical data sets

(original raw or processed data), the relevant metadata, the analytical code(s) and

the related software [92].

Given the available flexibility in data pre-processing, train/test set definitions,

algorithm selection and parametrization, library implementations, and evaluation

metrics, machine learning experiments are not immune to reproducibility issues ei-

ther [78]. In case of imbalance learning for problems with multiple classes, the problem

is even more severe since there are more parameters in play for constructing a compu-

tational model. The resulting reproducibility challenges have implications in various
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disciplines including bioinformatics, the primary focus of our study.

Membrane proteins are vital molecules that act as gatekeepers to a cell. It is esti-

mated that one in every three proteins found in a cell is a membrane protein [15]. In a

living organism, they play several important roles such as: cell signaling, transporta-

tion of molecules and nutrients across the membrane of a cell, energy production and

foreign bodies recognition [50]. Considering the contribution of these molecules to

cell functionalities, defects in membrane proteins could lead to di↵erent diseases [34].

Today, almost half of the drugs target these proteins [17]. Due to the hydrophobic

surfaces of these molecules and their lack of conformational stability, using conven-

tional experimental methods for annotation of these proteins are time-consuming,

costly and sometimes impossible. So, researchers have turned into computational in-

telligent techniques for annotation and prediction of the structure and functionalities

of the membrane proteins [35, 36, 68, 82, 16]. Year after year, with advances in

technology, researchers can use cheaper and faster sequencing methods (more data

for their problems), new computational intelligent techniques and software tools. In

search for more accurate and generalizable results, reproducible studies allows apply-

ing the same technique on new datasets and new techniques on the initial ones.

This work presents a reproducibility study of a classification problem with an

imbalanced dataset involving multiple classes which is a common case when dealing

with proteins in bioinformatics. We report our attempts to reproduce a membrane

protein classification problem with an imbalanced dataset [62], showing the impact

of methodological flexibility (the flexibility associated with implementing the orig-

inal study experiment using the same data, analysis tools and through the same

environment to obtain the same result) on classification performance, and deriving

best practices to report Machine Learning results for similar problems. We explore

methodological options related to data preparation, hyperparameter tuning, classifier

implementation, aggregation of binary classifiers for multi-class classification, and pre-

diction method for final labels. The resulting variations emulate the range of results

that might be obtained by reasonably skilled experimenters aiming at reproducing

the same model.

The work in [62] is a reference contribution that we selected given the availability

of its input data, the quality of its writing and methods reporting, and its overall

impact in the field.
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Chapter 2

Background

2.1 Reproducible Experiment

Reproducing an experiment is a common practice by which scientists verify claims

and apply new ideas to their own domain of study. Reproducible research saves a

great amount of time and budget when another scientist picks a study and tries to

recreate the same experiment. Overall, it avoids “reinventing the wheel.”

In the scientific community, the reproducibility concept is often approached from

two di↵erent perspectives. Some researchers view it as a tool for verifying a claim.

This approach is required when for example new findings are planned to be applied

to real life problems. There is also a complementary perspective through which the

scientists view reproducibility as a tool for improving an existing method, adapting

it to new requirements and needs, or applying the methodology to a new domain of

research.

Through recent years, along with the increase in the amount of data available to

the scientific community, more high performance computational resources have also

become accessible to researchers. The combination of these two, has led to both new

discoveries and research opportunities while introducing new challenges. The tradi-

tional scientific paper of an experiment (being designed to include all the necessary

information of a study) does not appear to be able to contain all the required infor-

mation of the data-intensive and computationally-intensive methods of the modern

studies. While it’s challenging to reproduce a study from scratch using the provided

information on the study report, not having proper enough details, adds up to the
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problem and endangers the reproducibility of a claim for verification, adjustment or

application purposes.

In an attempt to reproduce a paper on protein classification on an imbalance

dataset (which is a common case in this domain) from the second perspective men-

tioned above, we obtained a wide range of results with the available details on the

study report. The authors had shared a fair amount of details on the paper which

does not seem to be enough for problems with an imbalanced dataset. In such prob-

lems, for predicting the final labels, a researcher needs to take some extra steps which

involves more parameters throughout the whole process. We believe in similar prob-

lems, the study report should also include details on these important parameters to

enable reproducibility.

In our study, we approach the methodological reproducibility of the classification

problems with an imbalance dataset from the perspective mentioned above. We

address the potential underlying reproducibility-related issues of the similar studies

and how those could lead to a wide range of results in reproduction. In this section,

we will briefly provide our adopted definition of some common reproducibility terms

to further clarify the upcoming discussions.

2.1.1 Taxonomy and Terms

Reproducibility

The term “reproducibility” came about in the early 90s in computational science

by John Claerbout and through the context of transparency. He provided a set of

procedures on the paper allowing the reader to see the entire process from the data

to figures and tables [23]. The concept has been carried forward into other domains

(e.g. bioinformatics, economics, etc) afterwards [47, 74, 83]. since then and has been

transformed into the context we use today.

In its modern context, the U.S. National Science Foundation (NSF) [18] defines

reproducibility as “the ability of a researcher to duplicate the results of a prior study

using the same materials as were used by the original investigator. That is, a second

researcher might use the same raw data to build the same analysis files and implement

the same statistical analysis in an attempt to yield the same results.”
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Reproducibility, Replicability, Robustness and Generalizability

For the Reproducible, Replicable, Robust and Generalizable studies, we adopt the

following definitions from [75]. A study is reproducible when the same results could

be obtained using the same data, analytical tools and through the same environment.

Figure 1: Reproducible, Replicable, Robust and Generalizable research reproduced from [90]

For achieving reproducibility, all the required information for re-doing the exper-

iment should be available on the study report. For example, when collecting the

initial data for the study, if the data is collected within a predetermined framework

or it is being cured before being used, then all the related information needs to be in-

cluded. For a machine learning problem, the same rule applies to data pre-processing,

feature engineering, classification algorithm, result generation, performance metrics

calculation and any other possible involved process.

A replicable study is the one that could re-generate the same results, if the same

analytical tools are applied to a di↵erent set of data (relevant data being collected

and cured through the same framework, distribution and method) and through the

same environment.

A study is robust, if the same results could be achieved by applying di↵erent

analysis (e.g. re-implementing the code in a di↵erent environment or using the same

algorithm from a di↵erent well-recognized library) to the same set of data.

A generalizable study leads to the same results if a di↵erent analysis is applied

to a di↵erent set of data (in such a way mentioned above).

Figure 1 illustrates reproducible, replicable, robust and generalizable research in
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regards to data and analysis. If a study is not reproducible, then replicability, ro-

bustness and generalizability of that experiment could not be assessed. Through this

study, our focus is on reproducible research as being addressed in this section.

Method reproducibility, Result reproducibility, Inferential reproducibility

Goodman et al [8] explain that the reproducibility and replicability definitions being

provided by the U.S.National Science Foundation (NSF) [18], do not provide a clear

operational criteria for making a distinction in between these two concepts. Based on

the published definitions, one can not draw a clear line in between what constitutes a

successful reproduction or replication. To address the underlying construct of a repro-

ducibility study, they suggest using three following terms instead of reproducibility.

They believe these terms can make a more meaningful distinction in between various

interpretations of reproducibility.

Method reproducibility is the ability to implement the original study experi-

ment using the same data, analysis tools and through the same environment to obtain

the same result. In definition and practice, it is the same as the original reproducibil-

ity term being defined in the last section.

Results reproducibility (previously defined as replicability) is the ability to

re-generate the same results in a new (independent) study by following the same

experimental procedures being provided in the original study on a new set of data.

Inferential reproducibility is the ability to achieve qualitatively similar con-

clusions from reanalysis or replication of the original study.

In our study, we address the methodological reproducibility of the problems with

an imbalance datasets as being described in this section.

Low, Medium and High Reproducibility

According to the current standards (being placed to ensure the reproducibility of a

claim) for a paper to be reproducible (adopted by conferences like NeurIPS [75]), all

the details of the study should be included in the submitted paper. Also, the data,

programs and any involved software needs to be submitted along with the study

report. But sometimes due to some restrictions (e.g. confidentiality [25]) submitting

all the required materials are not possible. Thus, the “reproducible” term, can not

describe how reproducible an experiment is. When it comes to older studies, this
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problem is even more visible as some involved materials are not accessible anymore.

To address this problem [86] proposes three following terms by which the amount of

reproducibility could be expressed.

Low reproducibility: A low reproducible study is one that has only submitted

the experiment report for the claim. The paper needs to contain all the correspondent

details for an independent reproduction of the same experiment from scratch. The

reproduced work needs to generate the same results.

Medium reproducibility: A study with medium level of reproducibility shares

the codes and data along with the experiment report. The submitted data and code

should permit an independent reproduction of the experiment leading to the same

conclusion.

Figure 2: Studies with Low, Medium and High degree of Reproducibility

High reproducibility: A study is highly reproducible if the environment infor-

mation through which the experiment has been conducted, is also shared along with

the data, code and the submitted paper. By definition, the environment includes all

the libraries and dependencies necessary for a program to be run on a new machine.

This level of reproducibility has been referred to as ”linked and executable code and

data” in [72].

Figure 2, shows the reproducibility spectrum through which the above three terms

could be addressed. In our study of classification problems with an imbalance dataset,

we address the potential underlying issues of the studies with low degree of repro-

ducibility and how those could lead to a wide range of results in reproduction.
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2.1.2 Reproducibility Crisis

As being mentioned earlier in this section, the “reproducibility” term has been around

for a while meaning that researchers were always concerned about the results of the

studies in their domain of interest. We can track this back to the early 90s when John

Claerbout in his book, ”Earth Soundings Analysis” [22] claimed that few published

results are reproducible in practice.

Figure 3: Reproducibility crisis related results of the survey conducted by Nature in 2016 extracted

from [5]

With the emergence of disappointing results from large scale reproducibility projects

in various domains, the term “Reproducibility crisis” gained currency in publications

over the last decade (e.g. [69]). In a study being conducted by the Nature journal

in 2016 [5], more than 70% of surveyed scientists reported failure in their attempt to

reproduce another scientist’s experiments, and more than half (52%) believed that

science is facing a “reproducibility crisis”. The cause of the problem covers a wide

range of subjects from pressure to publish and selective reporting to poor analysis.

Most of the researchers believed that failure to reproduce published results does not

mean that the result is probably wrong, and most say that they still trust the pub-

lished literature. Figure 3 shows reproducibility crisis related results of the survey

conducted by Nature in 2016 .

On the same subject in machine learning, Nicolas Rougier, a computational neu-

roscientist says “I think people outside the field might assume that because we have
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code, reproducibility is kind of guaranteed” but ”far from it” he said at France’s Na-

tional Institute for Research in Computer Science and Automation in Bordeaux [42].

One of the common problems is that due to some restrictions (e.g. confidentiality),

the dataset or source code used in the study is not open-sourced. For example in a

reproducibility study on 400 presented papers at two top AI conferences conducted

by Odd Erik Gundersen, 6% of the presenters had released their codes, third of them

had shared their data, and 50% had shared their pseudocodes [38].

Through recent years, the results of similar studies across di↵erent domains, have

raised great concerns in the scientific community leading to various works providing

reproducibility-related lexicons, guidelines, and platforms for measuring and improv-

ing the reproducibility of the research results. In a move aimed at providing repro-

ducible research, some conferences even put new mandates in places for submitting

the publications [75, 32, 86]. In this work, we address the potential reproducibility-

related issues of the classification problems with imbalanced datasets.

2.1.3 Reproducibility-related works

Throughout the past decade, reproducibility-related studies have received a notable

amount of attention in the scientific community. Figure 4 shows the publications

recorded in the Scopus that have, in the title or abstract, at least one of the reproducibility-

related expressions [32]. The studies have been conducted in various domains from

di↵erent perspectives to define the terms, address the cause of the problem, create

frameworks, platforms, guidelines and mandated to encourage reproducible research

in practice. In this section, we will mention some of the related works in the field.

Around the same time when Claerbout claimed that few published results are

reproducible [22], a computer scientist, Donald Knuth, introduced the concept of

Literate Programming [49]. In Literate Programming, computer code is embedded

within the program’s documentation making it more understandable for humans. The

consolidated standards of reporting trials or consort [http://www.consort-statement.

org ], published a set of guidelines In 1996 to fix problems associated with inadequate

reporting of randomized controlled trials.

In 2004, the International Committee of Medical Journal [http://www.icmje.org

] announced that they would not publish a clinical trial without registration. The

updated publication’s criterias includes conditions like “Manuscripts submitted to

9



ICMJE journals that report the results of clinical trials must contain a data sharing

statement”. In a move towards reproducible research, the Journal of Biostatistics

[https://academic.oup.com/biostatistics ] began marking accepted papers based on

the standards of reproducibility. also encouraged reproducible practices of authors

submissions. For example, D means the study data is freely available, A C means the

code is available and R means the paper is reproducible.

Figure 4: publications recorded in the Scopus that have, in the title or abstract, at least one of the

reproducibility-related expressions extracted from [32]

In research on 500 research papers in 2011 [2], 30% of the submitted papers did

not adopt any data sharing policy. Among the ones who adhered to the data sharing

instructions, 91% deposited only the specific required data type and 9% made the

full primary raw data accessible online. The Open Science Collaboration in 2015

[66] announced that only 30-50 percent of the results being taken from more than

100 studies were reproducible. U.S. National Science Foundation (NSF) [18] in 2015,

addresses the reproducibility problem providing definitions for reproducibility, repli-

cability, robustness and generalizability.

ASCB’s survey on reproducibility in 2015 [4] showed that almost 70% of the ques-

tioned researchers were unable to replicate the results of studies they were interested
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in. Nature journal in 2016 [5], addresses the “reproducibility crisis” by conducting a

survey. The study showed that more than 70% of surveyed scientists reported fail-

ure in their attempt to reproduce another scientist’s experiments. In 2106, Mark

D. Wilkinson et al [91] wrote a paper on FAIR principles, providing guidelines for

implementing Findable, Accessible, interoperable and Reusable research in practice.

Steven N. Goodman et al in 2016 [32] published a paper suggesting new terms

for reproducibility. They believed the underlying construct of the reproducibility

studies could be addressed by using these new terminologies. In 2017, Babatunde

K. Olorisade et al [65], published a paper on practicing reproducibility in machine

Learning studies by providing an example in the text mining domain. Through the

same year Hans E. Plesser [76] also published a paper in “Frontiers in Neuroinformat-

ics” clearing up on the various in-use definitions of the reproducibility-related term

in the field.

In 2018, Joelle Pineau et al [75] provided guidelines for improving reproducibility

in machine learning research. She also published a “The Machine Learning Repro-

ducibility Checklist” designed to be used simultaneously with the ML code submission

checklist for NeurIPS. In his paper, Rachael Tatman [86] provided a new taxonomy

for reproducibility for machine learning research in 2018 by which the amount of

reproducibility could be expressed.

In 2019, Andrew L. Beam et al [9] published a paper on the reproducibility of

the machine learning models in health care discussing the unique challenges for the

problems using machine learning models to predict the outcome. Since a machine

learning model should be reproduced, and ideally replicated, before it is deployed in

a clinical setting, they highly encourage adopting reproducible research practices for

the studies in this field. Through the same year, Matthew B.A. McDermott et al [61]

also published a paper on reproducibility in machine learning for health (ML4H)

providing a comparison between the available amount of reproducibility in the field

and other machine learning-based domains of studies. They also discuss the causes

of the problem, the unique challenges associated with the problems in this field (e.g.

confidentiality) providing guidelines over how to improve reproducibility considering

the current challenges.

The scientific community has also initiated and developed various softwares and

platforms (such as scikit-learn [71], R [19], etc.) for software development in general
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and statistical computing in specific (in our case) through the reproducible research

framework. All these cumulative e↵orts have been done in an aim to provide all the

researchers with free, well-documented and publicly accessible softwares leading to

creation of standard practices and reproducible studies.

2.2 Bioinformatics Context

In July 2000, the NIH Biomedical Information Science and Technology Initiative

Consortium released a document [41] through which they defined bioinformatics as

“Research, development, or application of computational tools and approaches for

expanding the use of biological, medical, behavioral or health data, including those

to acquire, store, organize, archive, analyze, or visualize such data.”

Bioinformatics is a highly interdisciplinary field. Figure 5 shows the Interaction

of various disciplines that have contributed to the formation of bioinformatics [8].

It conceptualizes biology in terms of macromolecules and aims to extract knowledge

from the information associated with these molecules on a large-scale. It extracts the

intended information by applying ”informatics” techniques (derived from various dis-

ciplines such as statistics, computer science, maths, linguistics, etc.) to the biological

data. Depending on the goal of the study, the biological data could be collected from

sources such as information stored in the genetic code, experimental results, patient

statistics, scientific literature, etc. [64, 58].

Figure 5: Disciplines contributed to the formation of bioinformatics reproduced from [8]
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With the exponential growth in the amount of available biological data, research in

bioinformatics should be able to address method development for both data manage-

ment (e.g. storage, retrieval of data) and extraction of useful information from these

data (data analysis). One of the main challenges in bioinformatics is development of

the tools and methods capable of transforming data into biological knowledge which

is the focus of the second area being mentioned above. These tools and methods

should be able to extract knowledge in the form of testable models. By this simpli-

fying abstraction that constitutes a model, we will be able to predict the behavior

of the system. In modern biology and medicine, bioinformatics is essential and has

many practical applications in di↵erent areas of those fields.

One of the popular data analysis tools by which researchers try to predict the

behavior of a system is “Machine Learning”. It is a direct descendant of statistical

model fitting. Machine learning tries to extract useful information from a set of data

by building good probabilistic models. However, according to [6],

the particular twist behind machine learning, is to automate this process

as much as possible, often by using very flexible models characterized by

large numbers of parameters, and to let the machine take care of the rest

In a problem, the term “learning” refers to running a computer program to induce

a model by using training data or past experience. Machine-learning approaches are

best suited for areas where there is a large amount of data but little theory which is

exactly the situation in computational molecular biology [20].

There are various biological domains where computational methods and tech-

niques are applied for data analysis and knowledge extraction from the data. Pedro

Larrañaga et al. [54] have classified those problems into following domains: genomics,

proteomics, microarrays, systems biology, evolution and text mining. Figure 6 shows

the main biological problems where machine learning and computational methods are

being applied. The “other applications” category includes all the remaining problems

besides the ones mentioned above.

In the proteomics domain, supervised machine learning techniques are used for

protein structure prediction and protein function prediction [55, 62]. As a subcate-

gory of machine learning, supervised learning is defined by its use of labeled datasets

for training the algorithm that is supposed to classify data or predict the outcome ac-

curately. Unlike supervised learning, unsupervised learning tries to discover patterns
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Figure 6: Main biological problems where computational methods are applied extracted from [54]

in an unlabeled set of data.

Since extraction and annotation of the protein sequences are a time consuming

and expensive process, the researchers often have to build and train models on im-

balanced datasets (imbalanced learning). As we mentioned earlier, bioinformatics is

a highly interdisciplinary field. With the new achievements in the related fields (e.g.

sequencing, machine learning), researchers should be able to apply new techniques

to the fairly older problems to see if those new techniques could improve results or

solve the problem. In the case of machine learning, new achievements can provide

the researchers with more data which can improve learning and eventually the model

performance.

Due to the reasons mentioned above, along with the fact that bioinformatics

research in some areas directly deals with humans health (e.g. medicine), like some

other fields of studies with similar characteristics (e.g. psychology), reproducible

research has received a notable amount of attention through the past decade [86, 61].

Reproducibility plays an important role as a tool for both claim verification and

research improvement and adjustment.

In the case of imbalanced learning (which is the focus of this study), a researcher

needs to take some extra steps (compared to machine learning problems on a balanced
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set of data) for building the model and predicting the final outcome. Since there are

more parameters involved, we believe in similar problems, the study report should also

include details on these important parameters to ensure high degree of reproducibility.

Otherwise, older studies need to be remodeled and programmed from scratch which

could be time consuming, expensive and sometimes may not be possible since some

resources being used in the initial study may not be available anymore.

The following section will provide a brief introduction to the supervised classi-

fication of imbalance data (imbalanced learning). We will briefly review the corre-

sponding concepts, how imbalanced data classes could a↵ect the learning process,

performance metrics and suggested solutions for similar problems through di↵erent

domains of studies. The section intends to picture how balanced classification is

di↵erent from the imbalanced one which is the focus of this study.

2.3 Imbalanced Learning

Exponential growth in generated raw data through various domains (e.g. security,

bioinformatics, finance, etc.), has introduced new challenges to the research commu-

nity for knowledge discovery and data analysis. The existing knowledge discovery and

data engineering techniques have shown great success in many real-world applications,

but the problem of learning from imbalanced data is a relatively new challenge. The

problem is concerned with the performance of learning algorithms in the presence of

underrepresented data and severe class distribution skews. Due to the characteristics

of imbalanced data sets, learning from such data requires new principles, algorithms,

and tools for knowledge discovery and information extraction. Though this section

we will briefly go over the correspondent concepts and common approaches related

to our study.

2.3.1 Problem Definition

Haibo He [39], defines imbalanced learning as

the learning process for data representation and information extraction

with severe data distribution skews to develop e↵ective decision bound-

aries to support the decision making process. The learning process could
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involve supervised, unsupervised, semi supervised learning or combination

two or all of them.

In other words, it is learning from two (binary classification) or multiple classes (multi-

class or multi-label classification) of data where the member classes have an unequal

amount of examples.

Generally, any dataset with an unequal distribution of examples in between the

member classes is technically imbalanced. But when a dataset is labeled as “imbal-

anced”, it means that through that dataset, there is a significant (or in some cases

extreme) disproportion in between the number of examples of member classes.

In a binary classification problem with an imbalanced dataset, the class with

lower number of instances is called the minority (positive) class and the one with

the higher number of examples is called the majority (negative) class. In such a

problem, Imbalance Ratio (IR) refers to the degree of existing imbalance in between

the two member classes of the dataset [67]. It is defined as the number of negative

class examples divided by the number of positive class examples which is 10 for our

example in Figure 7. In other words, IR 10 (or 1:10) refers to the fact that for

every instance of the minority class, there exist 10 instances in the majority class.

Figure 7 shows a sample imbalanced dataset for a binary classification problem with

an unequal distribution ratio of 1:10.

In bioinformatics (as we mentioned earlier through the last section) protein re-

search is one of the fields where researchers try to identify the protein structures or

its functions [62, 55]. One of the popular approaches for solving these kinds of prob-

lems is protein classification. But the protein datasets are mostly imbalanced and

therefore specific techniques are required. However, bioinformatics is not the only

domain where researchers have to deal with imbalance datasets. Email classification

[11], face recognition [94], anomaly detection [46] and medical decision making [60]

are among other applications where scientists need to learn and model on imbalanced

sets of data.

Most of the imbalanced classification literature has been devoted to binary clas-

sification problems. However, there are also multi-class problems where the dataset

is imbalanced [62, 84]. The approach for solving these sorts of problems normally

includes transforming the multi-class classification problem into multi-binary classi-

fication problems. Which is one of the reasons the literature is mostly focused on
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Figure 7: Sample binary imbalanced problem with ratio 1:10

binary classification problems. The multi-class and multi-label classification problem

and approaches will be discussed in further details later through this section.

2.3.2 Challenges in Imbalanced learning

The main issue with the imbalanced problems is that normally, the underrepresented

class (minority class instances) is the class of interest of the problem from the appli-

cation point of view [21]. Usually, standard classifier learning algorithms are biased

toward the majority class.

In a standard learning algorithm, rules for prediction of the instances are positively

weighted in favour of the accuracy metric or the corresponding cost function. In such

an algorithm, specific rules for prediction of the examples from the minority class can

be ignored (it treats them as noise), because more general rules are preferred. As a

consequence, compared to instances from the majority class, minority class instances

are more often misclassified. The amount of misclassified instances is even greater for

highly imbalanced datasets.

By analyzing 26 binary-class datasets in a study, N. Japkowicz [44] shows how

class imbalance impacts minority class classification performance. Figure 8 (being
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extracted from the study) shows that the ratio between the minority and the ma-

jority class error rates is the greatest when the dataset is highly imbalanced. It also

shows that the above error rate decreases as the amount of class imbalance decreases.

With an error rate ratio above 1.0, it shows that class imbalance leads to a poorer

performance on classifying minority class elements.

So, in similar problems, accuracy is no longer a proper metric for measuring the

model performance in an imbalance scenario. The accuracy only takes into account

the total number of correctly classified instances. In an imbalance scenario, it often

provides a high accuracy value with a very low true positive and a very high true

negative value in the confusion matrix. For such a problem, We need to somehow

construct classifiers that are biased toward the minority class without being harmful

to the accuracy over the majority class.

Figure 8: Impact of class imbalance on minority class performance reproduced from [44]

In an imbalanced scenario, the following distributions of the instances of the mi-

nority class could also add up to the di�culty of the classification task.

Small sample size Generally imbalanced datasets have a lack of minority class

examples. The ratio in between the minority and majority class examples indicates

the degree of imbalance in a problem. Datasets with the higher degree of imbalance

produce greater error rates.

Overlapping (class separability) When the elements from both minority and

majority classes are mixed in the feature space, the decision boundary cannot be

clearly established. As a result, more general rules will be applied to the problem in
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the classification phase, which will then lead to misclassifying some instances from

the minority class [31].

Figure 9: Imbalanced datasets di�culties (a) Class overlapping. (b) Small disjuncts extracted

from [28]

Small disjuncts this problem occurs when the represented concept by the minority

class is formed of subconcepts [89]. As an example, in case of protein classification, the

transporter proteins are classified into 7 substrate specific classes (amino acid trans-

porter, anion transporter, cation transporter, electron transporter, protein/mRNA

transporter, sugar transporter and other transporter). In most of the problems, small

disjuncts increase the complexity of the problem because the amount of instances

among them is not usually balanced.

Imbalanced Classification Approaches

Various techniques have been developed to correctly classify the minority class exam-

ples. These techniques can be categorized into four main groups, depending on the

way they deal with the problem.

Algorithm level approaches are the ones trying to bias the existing learning algo-

rithms towards the minority class [56]. To achieve this goal, knowledge of both the

corresponding classifier and the application domain is required to comprehend the

reasons behind the classifier failure when the class distribution is uneven.

Data level approaches are the ones trying to rebalance the class distribution by

resampling the data space [7, 27]. This approach does not need to modify the learning
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algorithm since the e↵ect caused by the imbalance will decrease after the rebalancing

process.

Cost-sensitive learning approach falls between data and algorithm level approaches.

In order to achieve the desired classification result on the minority class, It incorpo-

rates data level transformations and algorithm modifications [57, 21].

Ensemble-based methods are usually a combination of an ensemble learning al-

gorithm and one of the approaches above [29]. In the data level ensemble learning

approach, the data will be preprocessed before training each classifier. On the other

hand, the cost-sensitive ensemble learning hybrid guides the cost minimization via

the ensemble learning algorithm.

2.3.3 Performance Measurement

The quality of the trained model is generally evaluated by analyzing how well it

performs on the test data [2]. To evaluate the model, the provided predictions of the

trained classifier are compared to the true classes of test data and some performance

measures will be then calculated. Depending on the information being provided by

the classifier, we can evaluate the model using either of following approaches:

Nominal class predictions where we compare the predicted class labels with the

actual true class values, create a confusion matrix and then calculate the performance

measure(s) for evaluating the model.

Scoring Predictions where we use the associated scores (or the probability values)

of the predictions to grade test examples according to the likelihood of pertaining to

a class and then calculate the required measure for evaluating the model.

For the nominal class predictions, a convenient way for summarizing the perfor-

mance of classifiers is to create a confusion matrix [10]. The columns of the confusion

matrix represent the counts of instances in the predicted classes while the rows rep-

resent the counts of instances in the actual classes (or vice versa). In this matrix (for

a binary class problem), TP and TN (for true positives /true negatives ) indicate the

correct classification of positive and negative instances, respectively, and FN and FP
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(for false negatives /false positives ) indicate positive/negative instances misclassified

as negative/positive, respectively.

Figure 10: Confusion Matrix

Various performance measures could be calculated using the confusion matrix.

These measures correspond to di↵erent views of what constitutes a good classifier.

Using these di↵erent measures we can summarize the confusion matrix into perfor-

mance metrics so that we can assess the strengths and weaknesses of a classifier from

di↵erent perspectives.

The first and mostly used measure for evaluating the classification performance

is accuracy. Accuracy [1] is the ratio of the correctly classified instances to the total

instances of the test set. In the confusion matrix, it is the sum of the true positive and

the true negative (which in the binary case is TP + TN) divided by the total number

of instances. Error rate [2] is the percentage of incorrectly classified instances.

Accuracy =
TP + TN

N
(1)

Error = 1� Accuracy =
FP + FN

N
(2)

The accuracy or error rate is widely used as a performance measure in various

problems. But it is not a proper measure in the imbalance scenario [26]. In a highly

imbalanced scenario, regardless of number of truly classified instances (tp), it is easy

to obtain high accuracy. Figure 11 shows three possible scenarios for an imbalanced

problem where all produce the same accuracy value. Accuracy assumes that errors
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have an equal cost. But, in an imbalanced classification problem, when compared

to the instance of the majority class, misclassifying instances of the minority class is

much costlier.

Figure 11: 3 confusion matrices with the same accuracy

Due to the drawbacks of the accuracy for assessing the performance of the models

in an imbalanced scenario, we need some other measures along with the accuracy

through which we could obtain more insight on the performance of the model. There

are various measures such as Kappa, G-mean, G-measure, Sensitivity, Specificity,

MCC, Precision, Recall, F-Measure etc. that could be calculated from the confusion

matrix, but the common ones for the problems with an imbalance datasets are as

follow.

Sensitivity and Specificity:

The sensitivity of a classifier [3] corresponds to its true positive rate (TPR). It is the

proportion of the positive examples being predicted as positive by the model. The

complementary metric to the sensitivity is called the specificity of the classifier [4]. It

corresponds to the proportion of negative examples that are being predicted correctly.

These two metrics are typically used to assess the e↵ectiveness of a clinical test in

detecting a disease.

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

MCC

The MCC [59] is a measure that comes from the field of Bioinformatics, where class

imbalance occurs very often [5]. It is a measure that takes into account all values

of the confusion matrix, considering errors and correct classification in both classes.
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MCC ranges from 1 (when the classification is always wrong) to 0 (when it is no

better than random) to 1 (when it is always correct).

MCC =
(TP ⇤ TN)� (FP ⇤ FN)p

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

Precision and Recall

The precision of a classifier indicates how precise the model is when identifying the

examples of a given class [6]. It assesses whether the proportion of the examples being

predicted as positive are truly positive or not. In this pair, recall is the same as the

Sensitivity measure being mentioned above [7]. These two measures are commonly

used together where scientists are interested in the proportion of the identified relevant

information along with the amount of actually relevant information.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Geometric Mean

Introduced by Kubat et al. [52], The G-mean [8] was a response to the class imbalance

problem in an e↵ort to create a single metric by combining a pair. This measure takes

into account the relative balance of the classifier’s performance on both the positive

and the negative classes. By defining a function which takes into account both the

sensitivity and the specificity of the classifier.

G�Mean =
p
(Sensitivity ⇤ Specificity) (8)

F-Measure

The F-measure is a combination metric whose purpose is to combine the values of the

precision and recall of a classifier to a single scalar [9]. It does so in a di↵erent way

than the G-mean, as it allows the user to weigh the contribution of each component
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as desired.

F↵ =
(1 + ↵)[Precision ⇤Recall]

[↵ ⇤ Precision] +Recall
(9)

Scoring Predictions

Let’s consider a classifier that gives a numeric score or a probability of an instance

belonging to a class. Therefore, instead of a simple positive or negative prediction,

we will have a score (probability value) for each predicted instance, instances with

higher probabilities are more likely to have to be classified as positive.

Having a probability value (or a score) for an instance, we can determine our own

threshold to interpret the result of the classifier. Di↵erent thresholds will result in

di↵erent values for the confusion matrix elements (TP, TN, FP, FN) which leads to

di↵erent values for the calculated measures (e.g sensitivity, specificity, etc.).

A higher threshold will reduce the false positive rate (FPR) and increase the false

negative rate (FNR), because less instances will be classified as positive. On the other

hand, a lower threshold will increase the FPR and reduce the FNR value. To evaluate

these kinds of models, we use the ROC curve.

The ROC curve [26] is a graphical evaluation method that is not dependent on a

specific threshold. A ROC graph is a plot of False Positive Rate (FPR) on the x-axis,

and True Positive Rate (TPR) on the y-axis. The threshold starts with the one that

produces the highest score, all the way to the lowest score. For each possible value

of the threshold, there is a point in the ROC space based on the values of FPR and

TPR for that threshold.

The AUC (or the Area Under Curve) of the ROC can be interpreted as the prob-

ability that the probabilities (or scores) given by a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one. The AUC

ROC of random guessing is 0.5, so it is expected that the AUC ROC for a useful

classifier is higher than 0.5 and the ideal classifier would produce an AUC ROC value

of 1.

2.3.4 Dealing with multiple classes

Traditionally, when we talk about imbalance classification, we refer to a binary clas-

sification problem with one class having more instances (majority) than the other
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Figure 12: Sample ROC graph extracted from [28]

one (minority) [39, 14]. However, there are many cases in real life that we have to

deal with more than two classes. Target detection [79], microarray research [95] and

protein classification [96] are among those topics where we face multiple classes of

data and the distribution of examples among the classes is not homogeneous.

In such cases, the problem that must be taken into account is the presence of

multi-minority and multi-majority classes [88] which somehow implies that we can no

longer just focus on a single class to reinforce the learning models towards it. Also,

any further complication (e.g. overlapping classes) can a↵ect the problem severely

and must be analyzed in depth [80].

To address all the issues, a simple and e↵ective way is to somehow decompose the

multi-class imbalance problem into multiple binary-class problems with an imbalanced

dataset. We can then assign a classifier to each decomposed problem and the outputs

of all the classifiers for a given instance will be aggregated to make the final decision

[53]. Therefore, the di�culty in addressing the multi-class problem will be shifted

from the classifier itself to the combination stage.

The underlying idea is to undertake the multi-classification using binary classi-

fiers with a divide and conquer strategy. Among decomposition strategies, the most
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popular techniques are the One-vs-One (OVO) [40, 48] and One-vs-All (OVA) [24, 3].

The One-vs-All Scheme (OVA)

In OVA decomposition strategy, a problem with n classes of instances is divided into

n binary problems. An independent classifier will be then assigned to each binary

sub-problem which is responsible for distinguishing one of the classes from all other

classes. The learning step of the classifiers is done using the whole training data,

considering the patterns from the single class as positives and all other examples as

negatives. Figure 13 shows the OVA binarization technique for a 3-class problem.

Figure 13: Sample OVA binarization technique for a 3-class problem extracted from [28]

The One-vs-One Scheme (OVO)

In this strategy, a problem with n classes is divided into n ⇤ (n + 1)/2 binary class

problems (one for each possible pair of classes). An independent classifier will be then

assigned to each binary sub-problem. For each binary subset, the learning phase is

then carried out using a subset of the original training instances with only those that

contain any of the two classes and the instances with di↵erent class labels are simply

ignored. Figure 14 shows the OVO binarization technique for a 3-class problem.
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Figure 14: Sample OVO binarization technique for a 3-class problem extracted from [28]

Multi-class Classification vs Multi Label Classification

Multi-class classification refers to a classification task with more than two classes.

The classification makes the assumption that one and only one label will be assigned

to an instance through the prediction phase. As an example we can consider a fruit

image classification problem with 3 classes of Orange, Apple and Tangerine. Using

a multi-class classification approach, through the prediction phase, an image can be

either an apple or an orange or a tangerine.

Multi-label (multi-output) classification on the other hand, is a generalization

of multi-class classification where multiple labels may be assigned to each instance.

As an example, we can consider a comment classification problem with 4 classes of

Positive, Negative, Toxic, Insulting. Using a multi-label classification approach, an

instance can be both Negative and Toxic while another one can be just Negative.

Aggregation

After decomposing the initial multi-class problem into multiple binary class problems,

a classifier will be assigned to each problem. As an example, in an OVA case, a

problem with 3 classes (labeled as Orange, Tangerine and Apple) will be decomposed

into a 3 binary class problem with its own classifier. In order to classify a new

27



example, the instance will be submitted to all the classifiers. Then, the predictions

of all the classifiers are considered in the combination phase, which is also known as

classifier fusion or aggregation [93].

In case of Multi-class classification problems, since we are looking for one and

only one prediction for each instance, in the aggregation phase, the result with the

highest score/probability will be chosen as the final prediction for that instance. In

the example mentioned above, if classifier 1 predicts Orange with 0.75, classifier 2

predicts not a Tangerine with 0.64 and classifier 3 predicts Apple with 0.82, then the

final predicted label will be an Apple. The predicted results are then put together

and compared to the actual labels to generate the confusion matrix which is then

used to calculate the performance metrics.

In case of Multi-label classification problems, since all the labels are acceptable,

then all will be considered. As an example, in a comment classification problem, a

comment can be both Negative and an Insult.

Threshold-Moving

Many machine learning algorithms are capable of producing a probability or a score

value for an instance of a dataset. This value needs to be interpreted before be-

ing mapped to a class label. The decision for converting a predicted probability or

scoring into a class label is governed by a parameter referred to as the “decision

threshold,” “discrimination threshold,” or simply the “threshold.” The default value

for the threshold is 0.5 for normalized predicted probabilities or scores in the range

between 0 or 1.

When studying problems with imbalanced data, using the classifiers produced by

standard machine learning algorithms without adjusting the output threshold may

well be a critical mistake” [77]. So, for those classification problems with an imbal-

ance dataset, the default threshold can result in poor performance. A simple and

straightforward approach for improving the performance of a classifier that predicts

and produces probability values for instances of an imbalanced classification prob-

lem, is tuning the default threshold being used by the algorithm for mapping the

probability values to class labels.

In a problem, if a specific threshold is considered, the threshold should be applied

to each classifier before the aggregation phase. For example in the case of the classifier
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for Oranges, Tangerines and Apples, if the considered threshold is 0.71 (which means

the scores/probabilities above that threshold is considered as positive) then the re-

sults will be Oranges (classifier 1), not a Tangerine (classifier 2) and not an Apple

(Classifier 3). Which then leads to the final prediction of the Orange as the label for

the instance after aggregation. The threshold-moving e↵ect could be observed and

analyzed through the ROC/AUC or Precision/Recall curves.

Micro averaging vs Macro averaging

Considering a performance metric P being calculated based on the confusion matrix

elements (true positives tp, true negatives tn, false positives fp, false negatives fn).

The macro and micro averages of a specific measure can be calculated as follow:

Pmacro =
1

q

qX

�=1

P (tp�, tn�, fp�, fn�) (10)

Pmicro = P (
qX

�=1

tp�,
qX

�=1

tn�,
qX

�=1

fp�,
qX

�=1

tp�) (11)

Where � is a Label and L = �j : j = 1...q is the set of all labels.

For a problem in machine learning, normally, we take di↵erent samples from a

dataset and then we run the model on all of those samples independently to estimate

the performance of a machine learning model on the unseen data. A popular technique

in this area is k-fold cross validation [43]. In order to produce the final metrics for a

model, we need to average between a performance metric (e.g. sensitivity) of di↵erent

classifiers in a model or multiple models on di↵erent samples of data (which is the case

in multi-class or multi-label classification problems). The averaging could be done by

either macro or micro averaging approach which can produce di↵erent results.

Micro and macro-averages compute slightly di↵erent things. So, their generated

result’s interpretation is di↵erent from one another. Macro-average approach, com-

putes the metric independently for each class and then takes the average (hence

treating all classes equally), whereas the micro-average approach, aggregates the con-

tributions of all classes to compute the average metric [85]. For imbalanced problems

involving multiple classes, the micro-averaging approach is preferable.
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Support Vector Machines (SVM)

Algorithm-level solutions (the ones trying to bias the existing learning algorithms

towards the minority class [56]) concentrate on modifying existing learners methods

for handling imbalanced datasets. Instead of focusing on modifying the training set

in order to combat class skew, this approach aims at modifying the classifier learning

procedure itself to alleviate their bias towards majority class instead on altering the

supplied training set [51].

Due to their powerful generalization abilities, convergent properties and flexibility

in adapting to various learning di�culties, Support Vector Machines (SVMs)[87] are

among the most popular algorithms for pattern classification in problems with imbal-

anced datasets. The algorithm is e↵ective in high dimensional spaces and it accepts

di↵erent Kernel functions for the decision making process.

Figure 15: Support Vector Machine boundries for an imbalanced dataset: (left) standard approach;

(right) instance-level weighting extracted from [28]

Fernandez et al [28] explains the support vector machine, involved parameters and

the algorithm’s related imbalanced classification concerns as:

SVM algorithm aims at finding the optimal hyperplane which separates in-

stances into two classes. Traditional linear classifiers o↵er many desirable

properties, but they are not able to cope with complex data structures.

SVM transforms the input instances into a higher dimensional artificial

feature space(s). So, by using a non-linear mapping ✓, it can achieve a

linear separation between classes in the new space, which in turn trans-

lates to a non-linear decision boundary in the original feature space. The

potential separating hyperplane can be represented as:

w.✓(x) + b = 0 (12)
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Where w stands for a weight vector normal to this hyperplane. In case

of considered data are linearly separable, the decision hyperplane charac-

terized by a maximum margin can be obtained by optimization of margin

as: min(1/2w.w) subject to 8i=1...l, yi(w.✓(xi) + b) � 1 where l stands for

the number of training instances.

However, datasets are rarely linearly separable. So, we need to modify

the the equation to include the possibilities of classifying some of training

instances, to achieve greater generalization and reduce overfitting. This is

done by using slack variable associated with i � th instance ✏i � 0. This

allows to rewrite the margin optimization problem as soft margin:

min(
1

2
w.w + C

lX

i=1

✏i) (13)

Subject to 8i=1...l, 8✏�0, yi(w.✓(xi) + b) � 1 � ✏i Where C stands for the

regularization parameter that controls the trade-o↵ between maximizing

the separation margin between classes and minimizing the number of mis-

classified instances. This is a quadratic optimization problem that can be

solved by transforming it into Lagrangian optimization problem with the

following dual form:

max↵i

 
lX

i=1

↵i �
1

2

lX

i=1

lX

j=1

↵i↵jyiyj✓(xi).✓(xj)

!
(14)

Subject to 8i=1...l, 80✏iC ,
Pl

i=1 yi↵i = 0. As learning the mapping func-

tion ✓(x) may be di�cult or even impossible, SVMs use kernel functions

K(xi, xj) = ✓(xi).✓(xj). So, would be able to write the dual optimization

problem in its kernelized form as:

max↵i

 
lX

i=1

↵i �
1

2

lX

i=1

lX

j=1

↵i↵jyiyjK(xi, xj)

!
(15)

Subject to 8i=1...l, 80✏iC ,
Pl

i=1 yi↵i = 0. Solving this kernelized dual op-

timization form and finding optimal values of ↵i allows us to calculate
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w =
P

i = l↵iyi✓(xi) and determine value of parameter b from Karush-

Kuhn-Tucker conditions. Training instances with associated non-zero val-

ues of ↵i are known as support vectors and deemed as su�cient to rep-

resent the training set. Therefore, SVMs achieve instance reduction by

relying only on support vectors. This will lead to the following equation:

f(x) = sign(w.✓(x) + b) = sign

 
lX

i=1

↵iyiK(xi, x) + b

!
(16)

In its original form, SVMs are prone to imbalanced class distributions. The first

problem is about the soft margin optimization task (formula 13).The regularization

parameter C here is the misclassification cost for penalizing errors on the training

set. But, it assumes that the cost assigned to both of classes are identical. Therefore,

the learning algorithm will favor the majority class over the minority class.

Another potential drawback of SVMs is related to the support vectors derived

from imbalanced data. Only instances with ↵i � 0 will be preserved and used as

support vectors. As this process is also skew-insensitive, the larger imbalance ratio

will lead to bigger disproportions in the number of support vectors associated with

each class.

The following algorithm-level solutions has been proposed to overcome these short-

comings:

• Kernel Modifications

• Kernel Boundary and Margin Shift

• Kernel Target Alignment

• Kernel Scaling

• Weighted Approaches

• Instance Weighting

• Support Vector Weighting

• Fuzzy Approaches
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SVM Implementation Libraries (SVMLight, Scikit-Learn)

Scikit-learn [70] is one of the main libraries for machine learning in python. It

provides a wide range of functionalities for machine learning problems. As a part

of it’s library, it provides an implementation of the Support Vector Machine al-

gorithm with more options. The support vector machines in scikit-learn support

both dense (numpy.ndarray and convertible to that by numpy.asarray) and sparse

(any scipy.sparse) sample vectors as input. However, to use an SVM to make

predictions for sparse data, it must have been fit on such data. For optimal per-

formance, use C-ordered numpy.ndarray (dense) or scipy.sparse.csrmatrix (sparse)

with dtype = float64.

SVMLight, is another implementation of Vapnik’s Support Vector Machine [87]

in C. According to the description being provided by it’s creator Thorsten Joachims

[45], It can be used in pattern recognition, regression and learning a ranking function.

The software also provides methods for assessing the generalization performance.

Through this chapter, we explained how learning from the imbalanced sets of

data is di↵erent from the balanced ones when dealing with multiple classes (which

is a common case for protein classification). The issue was addressed by describing

the reproducibility-related terms, reproducibility-related studies in machine learning,

bioinformatics context and its subdomains, the characteristics of the protein classifi-

cation problems, imbalanced learning approach in machine learning and the involved

phases and parameters for calculation of the final results.

Compared to the machine learning problems with balanced sets of data, imbal-

anced learning involves more parameters. The model also needs to go through extra

phases to predict the labels and eventually calculate the final performance metrics.

Failing to report on these parameters creates methodological flexibility in the repli-

cation process which could then produce a wide range of results.
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Chapter 3

Protein Classification Process

Through this chapter and the next one, we demonstrate the impact of methodological

flexibility (the flexibility associated with implementing the original study experiment

using the same data, analysis tools and through the same environment to obtain the

same result) on the classification performance in an imbalanced scenario.

The materials and methods described in this section present a replication of the

study performed by [62]. In cases where insu�cient details were provided for repli-

cation, these decision points were noted and several sensible options selected and

compared. All software developed to curate the dataset and perform the exper-

iment, including a Jupyter notebook to reproduce our key results, can be found

publicly available on our GitHub repository: https://github.com/big-data-lab-team/

reproducibility-bioinfo/ .

3.1 Dataset

The SwissProt UniProt database with rich sequence and substrate annotations [12]

was subsampled to include 900 membrane transporter proteins and 660 non-transporter

proteins. For the training set, 780 transport proteins were divided into 7 substrate-

specific classes (70 amino acid transporters, 60 anion transporters, 260 cation trans-

porters, 60 electron transporters, 60 sugar transporters, 70 protein/mRNA trans-

porters, and 200 other transporters). With the addition of 600 non-transporter pro-

teins, the total dataset contained 1, 380 protein sequences.

The independent set contains 60 non-transporter proteins and the remaining 120

34



transporter proteins being divided into the same 7 substrate-specific classes (15 amino

acid transporters, 12 anion transporters, 36 cation transporters, 10 electron trans-

porters, 12 sugar transporters, 15 protein/mRNA transporters, and 20 other trans-

porters).

Features were computed for each protein, including: Amino Acid Composition

(AAC), Dipeptide Composition (DPC), Physico-Chemical Composition (PHC), Bio-

chemical Composition (AAindex) and Position-specific scoring matrix (PSSM) pro-

file. Each feature was computed identically to the methods described by [62] and are

briefly summarized below:

• Amino Acid Composition (AAC): a feature vector of 20 values ranging from

0 – 100 indicating the percentage of all standard amino acids present within a

protein, as defined by [33]. Also known as Monopeptide Composition (MPC).

• Dipeptide Composition (DPC): a feature vector of 400 values ranging from

0 – 100 indicating the percentage of all possible ordered amino acid pairs present

within a protein, as defined by [33].

• Physico-Chemical Composition (PHC): a feature vector of 11 values corre-

sponding to percentage composition of physico-chemical residue classes, includ-

ing: Aliphatic, Neutral, Aromatic, Hydrophobic, Charged, Positively charged,

Negatively charged, Polar, Small, Large, and Tiny.

• Biochemical Composition (AAindex): a feature vector of 49 physical,

chemical, energetic, and conformational amino acid properties which have been

averaged across all amino acids present within the protein.

• Position-specific scoring matrix (PSSM) profile: a feature vector of 400

sequence likelihoods aggregated across min-max scaled probabilities for each

ordered amino acid pair within proteins in the SwissProt database.

While the computed AAC, DPC, and PHC features were verified against those

previously generated in literature [62], the web reference on the initial study for

AAindex and PSSM profiles were not available. So, to validate their similarity they

were checked with Munira Alballa, a PHD student of Dr. Gregory Butler who was

working on related subject [1] and was experienced with the matter.

35



3.2 Model Flexibility

Though the majority of dataset and model specifications were clearly specified by [62],

there remains flexibility along various axes in the analysis, namely:

1. the number of involved classes in the classification task,

2. the sorting and balancing of samples within the dataset,

3. the selected SVM hyperparameters, gamma and cost,

4. the uniformity (or possible lack of) SVM hyperparameters across binary classi-

fiers,

5. the technique applied to aggregation and evaluation of binary classifiers, and

6. the prediction method for the final labels.

Considering the available degrees of freedom and limited computational resources,

the AAC feature was used initially to train and evaluate model parameters. The best

performing model using AAC was then re-trained using the full feature set. In the

following section, the experimental design is described in detail with reference to

the axes of flexibility, above. Diagram 16 provides a graphic representation of the

parameters explored in this section alongside the process through which the study

was conducted.

3.3 Experimental Design

Despite the multi-class nature of this task, the models developed and evaluated below

were constructed in a binary classification scenario. This was accomplished using the

“one versus rest” strategy which was performed either prior to training or automat-

ically depending on the classifier. Support Vector Machine (SVM) Classifiers were

initially built using the SVMLight library, originally used by [62], which reported a

probability of class membership in each binary setting which were then combined

as a multi-class confusion matrix. These models were replicated using SciKit-learn

(Scikit-Learn), a popular library for machine learning in Python, in both an identical
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setting to SVMLight (termed: Scikit-Learn Probability) and an approach which auto-

matically performs the class reconstruction and prediction described above (termed:

Scikit-Learn Prediction).

3.3.1 Training

All models were fit for both 7 and 8 class scenarios (Addr: 1) – excluding and in-

cluding non-transport proteins, respectively. The models were fit using 3 distinct

training paradigms: i) balanced, ii) shu✏ed, and iii) downsampled (Addr: 2). In the

balanced case, training- and testing-sets were created for each model through 5-fold

cross validation (CV) that were randomly generated and stratified to balance class

membership across folds. The shu✏ed case was performed similarly to the balanced

case without stratification guaranteeing balanced class membership across folds. The

downsampled case was performed in accordance to the balanced case following a re-

duction in samples to 60 observations per class. This resulted in 6 distinct training

methods.

3.3.2 Model Hyperparameters

For all models, the Radial Basis Function (RBF) kernel was used and the gamma

and cost parameters for the model ranged from 1e�5 – 10 (gamma) and 1 – 4 (cost),

respectively, consistent with those presented by [62]. Specific values were determined

through a grid search (Addr: 3). In the case of SVMLight and Scikit-Learn Proba-

bility scenarios, gamma and cost values were either uniform or varied across classes

(Addr: 4), whereas the implementation of the Scikit-Learn Prediction model permit-

ted only uniform pairs across all classes.

3.3.3 Performance Evaluation

Model performance was evaluated through standard measures of sensitivity, speci-

ficity, accuracy, true positives (TP), false positives (FP), true negatives (TN), false

negatives (FN), and Matthew’s Correlation Coe�cient (MCC) which is a measure

of correlation suitable for imbalanced classification problems [13]. As micro- and

macro-averaging approaches – evaluating binary classifiers before or after aggrega-

tion into a multi-class model, respectively – lead to di↵erent results in an imbalanced

37



classification setting, both approaches were used for scoring here (Addr: 5).

In the case of both the SVMLight and Scikit-Learn Probability models, the re-

sulting classification and performance for each model was determined by the aggrega-

tion of independent binary classifiers according to three distinct methods: maximum

probability, unweighted average, and balanced average (Addr: 6). The maximum

probability method assigns each sample a label corresponding to the binary classifier

with the highest certainty, resulting in a non-overlapping classification result which

was evaluated. In the case of both averaging methods, each probability is converted

into a binary classification through thresholding and is scored independently prior

to aggregating the performance of all classifiers. The unweighted average thresholds

probabilities at the median value, whereas the balanced case uses a threshold propor-

tional to the true number of members belonging to a given class. As the Scikit-Learn

Prediction model returned pre-determined group confusion matrix and class member-

ships, performance metrics were computed upon these directly.

3.4 Model Comparison

Models were compared to the reported reference classifier through the Euclidean dis-

tance between a 4-dimensional feature vector containing Sensitivity, Specificity, Ac-

curacy, and MCC. The closest models were chosen as those which minimized this dis-

tance. Model settings, such as those defined to address points 1 – 6 above, were com-

pared quantitatively through the pairwise application of two-sided Mann–Whitney

U Tests on the distribution of distance values for all unique settings within a given

category (i.e. the distribution of distances for all models using micro-averaging was

compared to the equivalent distribution for all models using macro-averaging). To

avoid overfitting, the closest 10% of models to the reference were selected as the

models used for further investigation.
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Figure 16: The study process
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Chapter 4

Results

In this work, considering the available flexibility along the various axes in the analysis

(Section 3.2), multiple models were built on the AAC (amino acid composition) fea-

ture set (Tables 1, 2, 3). For each model, the distance between the generated results

and the reference values from the original study was then calculated (Figure 17).

We then picked the settings from the 16 models showing the least distance from the

reference values. The model settings from those 16 models were then used to build

models for the 18 remaining feature sets (Tables 4, 5, 6, 7, 8, 9). The results from

all the 19 feature sets were then compared and illustrated in Figure 18. Through this

section, the context is also organized accordingly.

4.1 AAC Models

Tables 1 contains the results of the probability-based models with 7-classes of proteins

in the dataset. All the models were evaluated using the performance metrics in [62].

Among all the models, the 8 highlighted ones had a distance value between 0.07 and

0.13 from the reference. These are the ones that produced the closest results to the

initial ones.

Tables 2 shows the performance of the probability-based models with 8-classes of

proteins in the dataset. Among all the models, the closest ones (8 highlighted models)

reported distance values between 0.08 and 0.10 from the reference values.

Table 3 shows the results of the scikit-learn prediction-based models for the models

with 7- and 8-classes of proteins in the dataset. This function from the scikit-learn
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library, by default, aggregates the results using the maximum probability technique.

Using this approach, all the models reported distance values above 0.32 from the

reference values.

4.2 Closest Models

Figure 17 shows the sensitivity and specificity of each tested model alongside the

performance of the originally published model (on AAC feature set), with 10% of

models most closely matching performance to the reference highlighted.

The closest 10% of models (16) used a variety of configurations, and each reported

a distance score of less than 0.13 from the reference. The breakdown of configura-

tions for these models included: micro aggregation (all), balanced average prediction

method (all), balanced (8) or shu✏ed (8) dataset, contained 7 (8) or 8 (8) classes

in the dataset, were trained with uniform (8) or heterogeneous (8) hyperparameters,

and were developed using SVMLight (8) or the Scikit-Learn Probability (8) model

architectures. While the Scikit-Learn Prediction model and downsampled dataset

configuration are notably absent from these models, all other settings were either

dominated by a single value, such as in the case of micro aggregation and the balanced

average prediction method, or the settings were equally represented. This uniformity

in representation is consistent with the direct comparisons between settings described

above.

4.3 Model Di↵erences

This section will explore the di↵erences in the model performances based on the

defined axes of flexibility enumerated in Section 3.3.

Number of Classes While the 7-class models appear to be slightly closer to the

reference, there was no significant di↵erence between the number of classes and the

distance from reference (p > 0.1). Models trained with 8 classes tended to achieve

higher sensitivity and specificity values. It seems that the addition of the background

class improved the performance.
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Figure 17: Sensitivity and Specificity of each tested model. Each panel contains models trained with

a fixed number of categories (7: left; 8: right), and shows the published reference performance in

red. The closest 10% of models to this reference have been outlined in black. The symbol colour

and shape refer to the classifier type and aggregation strategy, respectively. Each shaded region

illustrates the bounds of performance for a given binary classifier aggregation strategy.

Dataset Sampling The dataset composition had no significant impact on the close-

ness of the model to the reference (p > 0.1 for all comparisons). However, none of

the closest 10% of models were trained using the downsampled dataset.

SVM Hyperparameters All uniformly parameterized models converged to same

set of hyperparameters within the number of classes. For the models with 7-classes

of proteins, the ones with the closest performance used Gamma and Cost values of

0.02 and 4.5 while for the models with 8-classes of proteins, the closest results were

achieved using the values of 0.01 and 4 for Gamma and Cost respectively. There was

no significant di↵erence between these sets of parameters.

Hyperparamter Heterogeneity Similarly to the case of uniform parameters,

models converged on Gamma values between 0.02 and 0.04 for all classes and models,

and Cost values between 4 and 5, with no statistically significant di↵erence between

models or classes.
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Aggregation Technique Models using the micro performance-aggregation tech-

nique (i.e. evaluating individual binary classifiers prior to aggregation into a multi-

class classifier) obtained closer results to the reference than those using the macro

technique (p < 1⇥ 10�4). All of the closest models used micro-aggregation.

Prediction Method The balanced averaging prediction method produced signifi-

cantly closer results to the reference than both the unweighted average and maximum

probability methods (p < 1⇥ 10�5 for both). The maximum probability method also

produced significantly closer results than the unweighted average method (p < 0.001).

Tool The SVMLight classifiers produced closer results to the reference than both

Scikit-Learn Probability and Prediction models (p < 0.05 for both). While the Scikit-

Learn Prediction model architecture did not appear in the set of closest models, there

was no statistically significant di↵erence between its performance and that of the

Scikit-Learn Probability models.

4.4 All Feature Sets Results

According to [62], among all the 19 feature sets, the hybrid dataset that includes the

biochemical composition (AAindex) and the PSSM profile, provides the best results

for the membrane protein classification with the highest MCC value.

Table 4 shows the results from running the closest-performing models (from the

AAC experiment) on the main and the independent datasets for the AAindex+PSSM

profile dataset. All 16 models reported distance values between 0.07 and 0.09 from

the reference values.

Tables 5, 6, 7, 8, 9 contain the results from running the 10% closest-performing

models (16) on all the other 18 features.

Table 5 shows the results from running those models on DPC, PHC, AAindex

and PSSM feature sets. They all reported the distance values between 0.06 and 0.13

from the reference values. For the DPC feature set, the models seem to perform

slightly better in the 7-class-based settings. The rest of the models (for the PHC,

AAindex and PSSM feature sets) reported quite close performance values in both 7-

and 8-class-based settings.
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Tables 6, 7 show the results from running the closest models’ settings on the

hybrid feature sets being produced by combining 2 di↵erent features (8 features). All

the models reported distance values between 0.06 and 0.13 from the reference values.

The models for DPC+AAC, DPC+PSSM and DPC+AAINDEX feature sets seem to

perform slightly better in 7-class-based settings while the results from all the other 5

feature sets show a close performance in both 7- and 8-class-based settings.

Tables 8, 9 show the results from running the closest models’ setting on the hy-

brid datasets being produced by combining 3 feature sets(6 features). All the models

reported distance values between 0.06 and 0.11 from the reference values. The hy-

brid AAC+DPC+AAINDEX model seems to perform slightly better in 7-class-based

settings while all the models show a close performance in both 7- and 8-class-based

settings.

Figure 18 compares the MCC values resulting from running the closest-performing

models on all the feature sets (19 features). The hybrid dataset that includes the bio-

chemical composition (AAindex) and the PSSM profile, outperforms others. Com-

pared to all the other models, these models produce the highest MCC values.
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7-class based model for AAC

Original Results
Accuracy Sensitivity Specificity MCC
73.74 74.65 73.22 0.46

SVM Light

Dist Gamma-Cost di↵erent for each class same Gamma-Cost for all classes Dist
ance acc sens spec mcc acc sens spec mcc ance
0.25 82.28 56.53 86.58 0.37 b b 80.73 60.00 84.18 0.37 0.21
0.43 84.07 39.28 91.55 0.32 d Micro d 81.90 48.33 87.5 0.32 0.33

unweighted 0.26 81.74 54.74 86.24 0.36 s s 80.42 59.61 83.88 0.36 0.21

average 0.37 82.28 43.76 84.31 0.31 b b 80.73 46.64 81.69 0.30 0.33
0.43 84.08 39.28 91.54 0.32 d Macro d 81.90 48.33 87.49 0.33 0.33
0.38 81.73 43.27 84.06 0.28 s s 80.42 46.96 81.49 0.29 0.33
0.09 73.84 75.25 73.60 0.36 b b 74.10 75.12 73.93 0.36 0.09
0.18 69.45 70.00 69.36 0.28 d Micro d 69.96 71.19 69.76 0.29 0.16

balanced 0.11 72.06 76.15 71.39 0.34 s s 72.91 75.38 72.50 0.35 0.13

average 0.20 73.84 64.18 70.45 0.28 b b 74.10 63.42 70.70 0.28 0.21
0.18 69.45 70.00 69.36 0.28 d Macro d 69.96 71.19 69.76 0.30 0.16
0.20 72.06 66.89 68.16 0.27 s s 72.91 64.46 69.24 0.26 0.21
0.35 84.87 47.05 91.17 0.38 b b 84.54 45.89 90.98 0.36 0.36
0.37 84.35 45.24 90.87 0.36 d Micro d 83.87 43.57 90.59 0.34 0.38

maximum 0.37 84.32 45.12 90.85 0.35 s s 84.21 44.74 90.79 0.35 0.37

probability 0.48 84.87 34.05 89.58 0.28 b b 84.54 33.59 89.48 0.27 0.49
0.37 84.35 45.23 90.87 0.34 d Macro d 83.87 43.57 90.59 0.33 0.39
0.48 84.32 33.52 89.14 0.27 s s 84.21 33.47 89.15 0.27 0.48

Scikit Learn

0.61 87.51 21.47 98.44 0.33 b b 87.45 19.39 98.69 0.32 0.63
0.65 87.03 17.43 98.60 0.29 d Micro d 86.68 15.28 98.56 0.27 0.68

unweighted 0.61 87.49 21.66 98.41 0.34 s s 87.55 20.878 98.63 0.34 0.62

average 0.66 87.49 18.29 98.20 0.24 b b 87.44 14.87 98.46 0.20 0.71
0.67 87.03 17.46 98.61 0.24 d Macro d 86.68 15.32 98.56 0.22 0.70
0.67 87.47 17.52 98.18 0.23 s s 87.53 16.32 98.40 0.21 0.69
0.07 75.33 76.42 75.13 0.38 b b 75.33 76.41 75.15 0.38 0.07
0.20 68.09 70.95 67.62 0.27 d Micro d 67.31 70.47 66.78 0.26 0.21

balanced 0.07 75.32 76.41 75.15 0.38 s s 73.46 75.25 73.16 0.35 0.10

average 0.20 75.32 61.79 71.51 0.29 b b 75.32 61.79 71.51 0.30 0.20
0.18 68.09 70.95 67.61 0.29 d Macro d 67.31 70.47 66.78 0.27 0.20
0.20 75.32 61.79 71.22 0.29 s s 73.46 61.48 69.51 0.25 0.24
0.34 85.38 48.84 91.47 0.40 b b 85.20 48.20 91.36 0.39 0.34
0.37 84.21 44.76 90.79 0.35 d Micro d 84.14 44.52 90.75 0.35 0.37

maximum 0.34 85.12 47.95 91.32 0.39 s s 85.12 47.94 91.32 0.39 0.34

probability 0.43 85.38 38.43 89.98 0.32 b b 85.20 37.61 89.90 0.31 0.44
0.38 84.21 44.76 90.79 0.32 d Macro d 84.14 44.52 90.75 0.33 0.38
0.44 85.12 38.33 89.94 0.31 s s 85.12 36.43 89.85 0.30 0.46

B, D and S are balanced, down-sampled and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 1: The average sensitivity, specificity, accuracy, and MCC for 7 class-based models.
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8-class based model for AAC

Original Results
Accuracy Sensitivity Specificity MCC
73.74 74.65 73.22 0.46

SVM Light

Dist Gamma-Cost di↵erent for each class same Gamma-Cost for all classes Dist
ance acc sens spec mcc acc sens spec mcc ance
0.24 87.33 64.92 90.53 0.49 b b 86.22 63.40 89.48 0.46 0.23
0.49 85.86 34.16 93.24 0.30 d Micro d 85.02 40.83 91.34 0.32 0.42

unweighted 0.24 87.02 63.98 90.31 0.48 s s 86.24 62.46 89.63 0.46 0.23

average 0.43 87.33 39.91 88.02 0.30 b b 86.22 34.78 86.71 0.25 0.48
0.49 85.85 34.16 93.24 0.28 d Macro d 85.02 40.83 91.34 0.30 0.42
0.44 87.02 38.81 87.71 0.28 s s 86.24 33.57 86.89 0.23 0.50
0.10 79.98 79.78 80.01 0.44 b b 79.74 77.97 80.00 0.43 0.10
0.19 68.93 71.87 68.51 0.27 d Micro d 68.07 69.79 67.82 0.25 0.22

balanced 0.09 77.71 79.93 77.40 0.41 s s 78.31 78.33 78.31 0.41 0.09

average 0.21 79.59 57.34 76.24 0.28 b b 79.59 57.34 76.24 0.28 0.25
0.19 68.93 71.87 68.51 0.27 d Macro d 68.07 69.79 67.82 0.25 0.22
0.21 77.71 53.55 74.14 0.27 s s 78.31 58.42 74.72 0.26. 0.26
0.31 88.91 55.65 93.66 0.49 b b 88.51 54.05 93.43 0.47 0.32
0.43 84.84 39.37 91.33 0.30 d Micro d 84.79 39.16 91.30 0.30 0.44

maximum 0.32 88.44 53.76 93.39 0.47 s s 88.33 53.33 93.33 0.46 0.32

probability 0.54 88.91 29.87 91.65 0.26 b b 88.51 25.93 91.35 0.22 0.58
0.44 84.84 39.37 91.34 0.29 d Macro d 84.79 39.16 91.31 0.28 0.44
0.57 88.44 27.85 91.28 0.23 s s 88.33 24.93 91.22 0.20 0.60

Scikit Learn

0.48 90.22 36.33 97.84 0.46 b b 90.11 35.22 97.92 0.45 0.49
0.72 88.10 12.18 98.86 0.23 d Micro d 87.75 9.63 98.86 0.19 0.76

unweighted 0.48 90.10 36.52 97.68 0.45 s s 89.89 33.28 97.96 0.43 0.50

average 0.68 90.19 17.30 96.85 0.22 b b 90.10 15.26 96.98 0.17 0.71
0.74 88.10 12.21 98.86 0.18 d Macro d 87.75 9.71 8.86 0.13 0.78
0.68 90.07 17.17 96.68 0.20 s s 89.88 12.90 97.02 0.15 0.74
0.08 77.08 80.0 76.66 0.40 b b 77.70 78.18 77.63 0.40 0.08
0.22 67.91 69.16 67.73 0.25 d Micro d 68.75 67.28 68.96 0.25 0.23

balanced 0.08 76.66 78.47 76.40 0.39 s s 74.36 79.41 73.64 0.37 0.09

average 0.24 77.08 59.13 73.10 0.27 b b 77.70 54.72 74.14 0.25 0.28
0.21 67.91 69.16 67.73 0.26 d Macro d 68.75 67.29 68.95 0.26 0.22
0.27 76.66 56.55 72.78 0.25 s s 74.36 56.27 0.07 0.22 0.30
0.31 89.33 57.31 93.90 0.51 b b 88.73 54.92 93.56 0.48 0.32
0.42 85.10 40.41 91.49 0.31 d Micro d 85.31 41.25 91.60 0.32 0.41

maximum 0.31 89.09 56.37 93.76 0.50 s s 88.15 52.60 93.22 0.45 0.33

probability 0.47 89.32 36.12 91.94 0.34 b b 88.73 31.39 91.51 0.29 0.52
0.43 85.10 40.41 91.48 0.30 d Macro d 85.31 41.25 91.60 0.31 0.42
0.49 89.09 33.78 91.73 0.30 s s 88.15 28.05 91.14 0.23 0.56

B, D and S are balanced, down-sampled and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 2: The average sensitivity, specificity, accuracy, and MCC for 8 class-based models.
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Scikit-learn prediction-based models

Original Results
Accuracy Sensitivity Specificity MCC
73.74 74.65 73.22 0.46

Dist 7 class-based models 8 class-based models Dist
ance acc sens spec mcc acc sens spec mcc ance

Prediction-based

0.70 76.88 19.10 86.51 0.05 s s 84.58 38.33 91.19 0.29 0.45
0.39 83.66 42.86 90.47 0.33 d Micro d 84.79 39.16 91.31 0.30 0.44
0.36 84.43 45.51 90.91 0.36 sh sh 88.71 54.85 93.54 0.48 0.32
0.81 76.88 6.69 81.70 0.01 s s 84.58 76.82 86.79 0.03 0.81
0.39 83.67 42.85 90.47 0.32 d Macro d 84.79 39.16 91.31 0.29 0.44
0.39 85.27 43.31 90.33 0.35 sh sh 88.71 35.32 91.94 0.29 0.48

S, D and SH are sorted, down-sampled and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 3: The average sensitivity, specificity, accuracy, and MCC values for scikit-learn prediction-based models for

amino acid composition (AAC).

PSSM + AAindex

number of gamma Dist main independent Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 77.76 77.57 77.80 0.42 b b 76.50 72.00 77.25 0.37 0.05
0.07 77.32 77.69 77.26 0.42 sh scikit sh 75.78 73.83 76.11 0.37 0.05

same
0.07 76.74 78.72 76.41 0.42 b learn b 75.71 73.34 76.11 0.37 0.05
0.07 76.99 77.95 76.84 0.42 sh sh 75.38 73.83 75.64 0.37 0.05

di↵erent
0.09 76.10 76.41 76.05 0.40 b b 74.24 70.67 74.84 0.34 0.08
0.08 77.13 76.03 77.31 0.41 sh svm sh 74.60 69.67 75.42 0.34 0.08

same
0.09 75.88 78.20 75.49 0.40 b light b 74.60 75.50 74.44 0.37 0.06
0.09 76.12 77.69 75.85 0.40 sh sh 74.67 75.33 74.55 0.37 0.06

8

di↵erent
0.08 80.89 80.80 80.90 0.46 b b 79.57 77.33 79.89 0.43 0.02
0.09 81.73 81.96 81.70 0.48 sh scikit sh 79.63 77.11 79.98 0.42 0.02

same
0.08 80.80 80.94 80.78 0.46 b learn b 79.85 77.66 80.16 0.43 0.02
0.09 81.58 81.81 81.54 0.48 sh sh 79.89 77.44 80.24 0.43 0.02

di↵erent
0.08 80.77 78.05 81.16 0.45 b b 78.94 71.78 79.97 0.39 0.02
0.08 81.42 78.41 81.85 0.46 sh svm sh 79.20 71.45 80.30 0.39 0.02

same
0.08 81.11 80.14 81.25 0.46 b light b 79.24 78.55 79.33 0.43 0.02
0.08 81.35 81.09 81.39 0.47 sh sh 79.51 77.56 79.79 0.43 0.02
b and sh are balanced and shu✏ed instances of the main dataset.

Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 4: The results from running 10% best models on the hybrid feature set including AAindex and PSSM for both

main and independent datasets. This feature set outperfms the other 18 combinations.
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number of gamma Dist DPC PHC Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 75.074 75.256 75.044 0.38 b b 72.034 72.180 72.006 0.33 0.06
0.07 74.358 74.36 74.358 0.36 sh scikit sh 71.098 71.154 71.088 0.31 0.07

same
0.07 74.78 74.998 74.744 0.37 b learn b 71.008 71.154 70.984 0.31 0.07
0.07 74.396 74.104 74.444 0.36 sh sh 70.918 70.898 70.918 0.31 0.07

di↵erent
0.07 74.962 74.486 75.044 0.37 b b 72.400 72.306 72.412 0.33 0.06
0.06 74.376 74.614 74.336 0.37 sh svm sh 71.888 71.538 71.944 0.32 0.06

same
0.07 75.238 75.128 75.256 0.38 b light b 72.804 72.180 72.906 0.33 0.06
0.07 74.818 74.232 74.916 0.37 sh sh 71.942 71.666 71.988 0.32 0.06

8

di↵erent
0.12 78.254 78.55 78.21 0.41 b b 74.056 74.276 74.026 0.34 0.07
0.11 77.828 77.898 77.814 0.41 sh scikit sh 73.550 73.478 73.562 0.33 0.07

same
0.13 78.95 78.116 79.068 0.42 b learn b 74.184 74.132 74.190 0.34 0.07
0.11 77.978 77.464 78.056 0.41 sh sh 74.176 74.130 74.184 0.34 0.07

di↵erent
0.12 78.024 78.476 77.96 0.41 b b 75.202 75.218 75.198 0.36 0.08
0.12 78.242 78.188 78.25 0.41 sh svm sh 75.644 75.940 75.600 0.37 0.09

same
0.13 78.396 78.554 78.376 0.42 b light b 76.784 76.668 76.802 0.39 0.11
0.13 78.38 78.696 78.334 0.42 sh sh 75.644 75.940 75.600 0.37 0.09

number of gamma Dist AAINDEX PSSM Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 72.068 72.050 72.074 0.33 b b 76.282 76.794 76.194 0.40 0.07
0.08 71.684 71.282 71.750 0.32 sh scikit sh 76.010 77.950 75.682 0.40 0.08

same
0.08 71.942 71.284 72.048 0.32 b learn b 76.540 76.026 76.624 0.40 0.08
0.08 71.686 71.408 71.732 0.32 sh sh 76.130 77.820 75.860 0.40 0.08

di↵erent
0.09 71.136 71.536 71.070 0.31 b b 75.934 75.514 76.006 0.39 0.08
0.11 70.054 70.128 70.046 0.29 sh svm sh 77.216 75.000 77.586 0.40 0.08

same
0.09 71.264 71.280 71.260 0.31 b light b 75.840 76.920 75.660 0.40 0.07
0.10 70.622 70.898 70.578 0.30 sh sh 76.230 76.790 76.130 0.40 0.07

8

di↵erent
0.07 75.154 75.508 75.104 0.36 b b 80.346 80.146 80.372 0.45 0.09
0.07 74.910 74.492 74.968 0.35 sh scikit sh 80.136 81.958 79.876 0.46 0.10

same
0.07 75.570 75.506 75.580 0.37 b learn b 80.152 80.074 80.166 0.45 0.09
0.07 74.294 75.000 74.192 0.35 sh sh 80.884 81.086 80.860 0.46 0.10

di↵erent
0.08 76.322 76.378 76.318 0.38 b b 80.308 80.216 80.318 0.45 0.09
0.08 76.008 76.232 75.974 0.38 sh svm sh 81.006 81.160 80.984 0.46 0.10

same
0.08 76.142 76.014 76.160 0.38 b light b 80.354 80.508 80.332 0.45 0.09
0.08 75.960 75.726 75.992 0.37 sh sh 80.408 81.666 80.230 0.46 0.10

b and sh are balanced and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 5: The results from running 10% best models for DPC, PHC, AAindex and PSSM feature sets on main dataset.
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number of gamma Dist AAC+DPC AAC+PHC Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 76.830 76.412 76.900 0.40 b b 74.854 74.486 74.914 0.37 0.07
0.06 75.970 75.640 76.026 0.39 sh scikit sh 73.846 73.974 73.824 0.36 0.08

same
0.06 75.898 75.642 75.940 0.39 b learn b 74.798 74.488 74.852 0.37 0.07
0.07 75.458 75.898 75.386 0.38 sh sh 73.900 73.460 73.972 0.35 0.09

di↵erent
0.08 74.526 74.360 74.552 0.36 b b 74.964 74.872 74.980 0.37 0.07
0.08 74.212 74.490 74.166 0.36 sh svm sh 74.196 74.488 74.146 0.36 0.08

same
0.07 75.568 75.128 75.640 0.38 b light b 74.524 74.616 74.508 0.37 0.07
0.08 74.212 74.486 74.166 0.36 sh sh 73.168 73.974 73.036 0.35 0.09

8

di↵erent
0.11 80.084 80.362 80.040 0.45 b b 77.998 77.896 78.012 0.41 0.08
0.10 79.438 79.782 79.390 0.44 sh scikit sh 77.030 77.030 77.030 0.39 0.08

same
0.12 80.434 80.072 80.484 0.45 b learn b 77.928 77.682 77.962 0.41 0.08
0.10 79.682 79.420 79.718 0.44 sh sh 76.984 76.882 76.998 0.39 0.08

di↵erent
0.10 79.374 79.494 79.358 0.43 b b 78.324 78.042 78.366 0.41 0.09
0.09 78.986 78.840 79.008 0.42 sh svm sh 77.870 77.680 77.898 0.41 0.08

same
0.11 79.920 79.782 79.940 0.44 b light b 78.036 78.044 78.034 0.41 0.08
0.10 79.394 79.276 79.408 0.43 sh sh 77.628 77.606 77.628 0.40 0.08

number of gamma Dist AAC+AAINDEX AAC+PSSM Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 76.814 76.154 76.924 0.40 b b 76.812 76.924 76.794 0.41 0.07
0.06 75.532 75.898 75.470 0.39 sh scikit sh 75.934 75.386 76.028 0.39 0.07

same
0.06 75.880 75.256 75.980 0.39 b learn b 76.356 76.026 76.412 0.40 0.06
0.07 74.248 74.358 74.230 0.37 sh sh 75.332 75.130 75.364 0.38 0.07

di↵erent
0.07 74.948 74.232 75.064 0.37 b b 76.042 76.410 75.980 0.39 0.07
0.10 72.986 72.948 72.990 0.34 sh svm sh 75.018 75.126 75.002 0.38 0.07

same
0.07 74.396 74.998 74.296 0.37 b light b 75.144 75.128 75.150 0.38 0.07
0.09 73.702 73.460 73.740 0.35 sh sh 73.956 73.332 74.056 0.35 0.09

8

di↵erent
0.10 79.050 79.276 79.016 0.43 b b 78.172 78.044 78.188 0.41 0.09
0.09 78.206 78.044 78.228 0.41 sh scikit sh 78.278 78.118 78.304 0.41 0.09

same
0.08 77.960 77.898 77.972 0.41 b learn b 78.650 78.696 78.642 0.42 0.09
0.08 77.082 77.028 77.092 0.39 sh sh 78.396 78.550 78.374 0.42 0.09

di↵erent
0.11 79.874 79.708 79.898 0.44 b b 78.198 78.694 78.126 0.41 0.09
0.10 78.898 78.912 78.892 0.42 sh svm sh 77.864 77.682 77.888 0.41 0.08

same
0.10 79.012 79.204 78.986 0.43 b light b 77.832 77.826 77.838 0.41 0.08
0.09 78.372 78.334 78.376 0.41 sh sh 77.990 77.972 77.992 0.41 0.08

b and sh are balanced and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 6: The results from running 10% best models for AAC+DPC, AAC+PHC, AAC+AAindex and AAC+PSSM

hybrid feature sets on main dataset.
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number of gamma Dist DPC+PHC DPC+PSSM Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 74.872 74.614 74.914 0.37 b b 76.282 76.924 76.176 0.40 0.09
0.07 74.782 74.230 74.870 0.37 sh scikit sh 76.354 76.156 76.390 0.40 0.09

same
0.07 75.036 75.770 74.914 0.38 b learn b 76.300 76.540 76.262 0.40 0.09
0.07 74.854 74.616 74.892 0.37 sh sh 76.006 76.538 75.918 0.39 0.09

di↵erent
0.07 74.760 74.232 74.850 0.37 b b 75.880 75.640 75.920 0.39 0.08
0.07 73.956 73.848 73.974 0.36 sh svm sh 75.550 75.386 75.578 0.38 0.08

same
0.08 73.754 73.460 73.804 0.35 b light b 75.422 75.256 75.450 0.38 0.08
0.09 73.004 73.078 72.990 0.34 sh sh 75.458 75.386 75.470 0.38 0.08

8

di↵erent
0.10 78.178 78.622 78.116 0.41 b b 78.106 78.550 78.042 0.41 0.12
0.09 77.736 77.898 77.710 0.41 sh scikit sh 78.088 78.260 78.066 0.41 0.12

same
0.09 77.952 77.970 77.950 0.41 b learn b 77.444 77.968 77.370 0.40 0.11
0.10 78.262 78.042 78.292 0.41 sh sh 77.942 77.896 77.952 0.41 0.12

di↵erent
0.09 77.934 77.898 77.942 0.41 b b 77.946 77.754 77.970 0.41 0.12
0.08 77.282 77.172 77.298 0.40 sh svm sh 77.980 77.100 78.106 0.40 0.12

same
0.08 76.994 76.594 77.052 0.39 b light b 77.446 77.900 77.382 0.40 0.11
0.08 76.314 76.374 76.304 0.38 sh sh 78.080 78.118 78.074 0.41 0.12

number of gamma Dist DPC+AAINDEX AAINDEX+PHC Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 75.330 75.000 75.384 0.38 b b 71.978 71.668 72.030 0.32 0.07
0.07 74.358 74.360 74.358 0.36 sh scikit sh 71.044 71.284 71.002 0.31 0.07

same
0.07 75.002 75.000 75.002 0.37 b learn b 71.264 71.026 71.302 0.31 0.07
0.07 74.468 74.230 74.510 0.36 sh sh 71.100 71.410 71.048 0.31 0.07

di↵erent
0.07 74.596 74.616 74.596 0.37 b b 72.436 72.306 72.456 0.33 0.06
0.07 74.340 74.488 74.318 0.36 sh svm sh 71.814 71.794 71.816 0.32 0.07

same
0.07 74.854 74.870 74.850 0.37 b light b 72.490 72.692 72.458 0.33 0.06
0.06 73.918 73.848 73.930 0.36 sh sh 71.942 71.280 72.052 0.32 0.07

8

di↵erent
0.12 78.416 78.188 78.446 0.41 b b 74.086 74.202 74.070 0.34 0.08
0.11 77.854 77.970 77.836 0.41 sh scikit sh 73.560 73.478 73.572 0.33 0.07

same
0.13 78.684 78.406 78.728 0.42 b learn b 74.056 74.566 73.988 0.34 0.08
0.11 77.854 77.464 77.908 0.40 sh sh 74.088 74.130 74.080 0.34 0.08

di↵erent
0.12 78.134 78.622 78.066 0.41 b b 75.164 75.218 75.156 0.36 0.08
0.12 78.160 78.044 78.180 0.41 sh svm sh 75.202 75.000 75.226 0.36 0.08

same
0.13 78.672 78.114 78.748 0.42 b light b 76.840 76.306 76.916 0.39 0.11
0.13 78.922 78.044 79.048 0.42 sh sh 75.924 75.942 75.922 0.37 0.10

b and sh are balanced and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 7: The results from running 10% best models for DPC+PHC, DPC+AAindex, DPC+PSSM and

AAindex+PHC hybrid feature sets on main dataset.
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number of gamma Dist AAC+DPC+PHC AAC+DPC+AAINDEX Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.08 75.952 75.130 76.092 0.39 b b 76.996 76.668 77.054 0.41 0.06
0.09 74.578 75.128 74.486 0.37 sh scikit sh 76.006 76.794 75.878 0.40 0.06

same
0.08 75.916 75.384 76.006 0.39 b learn b 76.374 76.412 76.366 0.40 0.06
0.08 75.366 75.258 75.384 0.38 sh sh 75.988 75.640 76.046 0.39 0.06

di↵erent
0.10 74.140 74.486 74.082 0.36 b b 74.506 74.744 74.466 0.37 0.07
0.11 73.810 73.078 73.930 0.35 sh svm sh 74.102 74.104 74.104 0.36 0.08

same
0.10 74.138 74.872 74.018 0.36 b light b 75.074 75.768 74.956 0.38 0.07
0.11 73.240 73.972 73.120 0.35 sh sh 74.086 74.486 74.020 0.36 0.08

8

di↵erent
0.10 79.880 79.708 79.906 0.44 b b 79.856 79.856 79.856 0.44 0.11
0.09 78.948 78.766 78.976 0.42 sh scikit sh 79.014 79.202 78.984 0.43 0.09

same
0.09 78.786 78.840 78.778 0.42 b learn b 80.236 80.796 80.154 0.45 0.12
0.09 78.896 78.404 78.964 0.42 sh sh 79.648 79.926 79.606 0.44 0.10

di↵erent
0.09 79.466 79.056 79.524 0.43 b b 78.676 78.842 78.654 0.42 0.09
0.09 79.094 79.566 79.026 0.43 sh svm sh 78.860 78.188 78.954 0.42 0.09

same
0.08 78.396 78.622 78.364 0.42 b light b 79.810 79.854 79.804 0.44 0.11
0.09 77.926 77.244 78.024 0.40 sh sh 79.546 79.058 79.618 0.43 0.10

number of gamma Dist AAINDEX+PSSM AAC+DPC+PSSM Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 77.76 77.57 77.80 0.42 b b 78.276 78.078 78.312 0.43 0.08
0.07 77.32 77.69 77.26 0.42 sh scikit sh 77.232 77.438 77.202 0.41 0.07

same
0.07 76.74 78.72 76.41 0.42 b learn b 77.600 77.178 77.670 0.42 0.07
0.07 76.99 77.95 76.84 0.42 sh sh 77.090 77.054 77.094 0.41 0.07

di↵erent
0.09 76.10 76.41 76.05 0.40 b b 75.988 75.898 76.006 0.39 0.06
0.08 77.13 76.03 77.31 0.41 sh svm sh 75.144 75.898 75.020 0.38 0.07

same
0.09 75.88 78.20 75.49 0.40 b light b 75.972 75.896 75.984 0.39 0.06
0.09 76.12 77.69 75.85 0.40 sh sh 75.110 75.384 75.064 0.38 0.07

8

di↵erent
0.08 80.89 80.80 80.90 0.46 b b 78.704 78.552 78.726 0.42 0.09
0.09 81.73 81.96 81.70 0.48 sh scikit sh 78.614 78.622 78.610 0.42 0.09

same
0.08 80.80 80.94 80.78 0.46 b learn b 78.860 78.262 78.944 0.42 0.09
0.09 81.58 81.81 81.54 0.48 sh sh 78.486 78.768 78.446 0.42 0.09

di↵erent
0.08 80.77 78.05 81.16 0.45 b b 77.318 77.100 77.352 0.40 0.08
0.08 81.42 78.41 81.85 0.46 sh svm sh 77.038 77.028 77.040 0.39 0.08

same
0.08 81.11 80.14 81.25 0.46 b light b 78.566 78.042 78.642 0.42 0.09
0.08 81.35 81.09 81.39 0.47 sh sh 78.098 78.260 78.074 0.41 0.08

b and sh are balanced and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 8: The results from running 10% best models for AAC+DPC+PHC, AAC+ DPC+AAindex,

AAC+DPC+PSSM and AAindex+PSSM hybrid feature sets on main dataset.

51



number of gamma Dist AAC+AAINDEX+PHC AAC+AAINDEX+PSSM Dist
classes cost ance acc sens spec mcc acc sens spec mcc ance

7

di↵erent
0.07 74.854 74.486 74.914 0.37 b b 77.068 77.694 76.966 0.41 0.07
0.08 73.864 73.846 73.868 0.36 sh scikit sh 75.934 75.514 76.004 0.39 0.07

same
0.07 74.414 74.744 74.360 0.37 b learn b 76.208 76.282 76.196 0.40 0.06
0.08 73.956 73.716 73.996 0.36 sh sh 75.238 75.386 75.216 0.38 0.07

di↵erent
0.07 75.000 75.128 74.978 0.38 b b 76.082 76.796 75.962 0.40 0.06
0.08 74.214 74.358 74.190 0.36 sh svm sh 75.018 75.126 75.000 0.38 0.07

same
0.07 74.468 74.616 74.444 0.37 b light b 75.018 75.000 75.020 0.37 0.08
0.09 73.076 73.716 72.968 0.35 sh sh 73.918 73.460 73.994 0.35 0.09

8

di↵erent
0.08 77.996 77.968 78.002 0.41 b b 78.196 78.114 78.212 0.41 0.09
0.08 77.038 77.030 77.040 0.39 sh scikit sh 78.010 78.406 77.950 0.41 0.08

same
0.08 77.928 77.682 77.962 0.41 b learn b 78.650 78.696 78.642 0.42 0.09
0.08 76.984 76.956 76.988 0.39 sh sh 78.532 78.190 78.582 0.42 0.09

di↵erent
0.09 78.324 78.042 78.366 0.41 b b 78.416 78.334 78.424 0.42 0.09
0.08 77.852 77.680 77.878 0.41 sh svm sh 77.798 77.608 77.826 0.40 0.08

same
0.09 78.044 78.044 78.044 0.41 b light b 77.842 77.898 77.838 0.41 0.08
0.08 77.628 77.606 77.628 0.40 sh sh 77.990 77.972 77.992 0.41 0.08

b and sh are balanced and shu✏ed instances of the main dataset.
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Mcc: Matthews correlation coe�cient

Table 9: The results from running 10% best models for AAC+AAindex+PHC, AAC+AAindex+PSSM, hybrid

feature sets on main dataset.
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Figure 18: MCC results from applying the closest 10% models to all the features. The hybrid model

that included the AAindex and the PSSM profile (7th box), outperforms others.
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Chapter 5

Conclusion and future work

5.1 Conclusion

Reproducible research saves a great amount of time and budget as it enables other

researchers to quickly run either the same experiment or a modified version of the

same experiment for various purposes. However, through the past decade, concerns

over the reproducibility of scientific results have been steadily rising with reports

revealing a widespread lack of results reproducibility in various domains of science.

Since there are numerous parameters involved in building a model for a prob-

lem in machine learning, the experiments in this field of study are not immune to

reproducibility-related issues either. When it comes to learning from multiple imbal-

anced sets of data, the process (from data sampling to calculating the performance

metrics) requires even more analysis and considering more parameters.

In this work, we demonstrated that in an imbalanced learning problem with mul-

tiple classes in the dataset, a study report with a fair amount of details could generate

a wide range of results on a reproducibility attempt if methodological flexibility is

permitted.

For such a problem, flexibility allows researchers to make di↵erent assumptions

for the parameters involved in constructing a model. As mentioned in 2.3, compared

to balanced binary datasets, learning from imbalanced multiclass datasets involves

more parameters. So, one should even make more assumptions for building a model.

These di↵erent assumptions made by various experts could then lead to numerous

results for the same problem. Some close to the initial one published in the study
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and some far from it.

Another source of variation could be using di↵erent approaches (from the same

library) for building a model and calculating the final performance metrics. The

di↵erence could occur due to the existing presumptions in the underlying layers of

that specific approach for di↵erent phases of building a model on imbalanced data.

Although insignificant, for the same classification algorithm (e.g. support vector

machines), various libraries could also produce di↵erent results.

Among all the methodological flexibilities, we believe dataset sampling, aggrega-

tion and averaging techniques a↵ect the final results the most.

Regarding the dataset, if the applied re-sampling technique balances out the sets

(e.g. down-sampling, up-sampling, etc.), micro and macro averaging, produce close

results. If the model is built on an imbalanced sets of data, since the ratio between

the minority and the majority class error rates increase with the amount of available

degree of imbalance in the dataset [44], the Imbalance Ratio should be kept the lowest.

In such a scenario, stratified sampling with micro averaging technique produces the

closest results.

With regards to the aggregation technique, According to Haibo He et al. [39]:

“It has been stated that trying other methods, such as sampling, without trying

by simply setting the threshold may be misleading”. Because, usually, standard

classifier learning algorithms are biased toward the majority class. “When studying

problems with imbalanced data, using the classifiers produced by standard machine

learning algorithms without adjusting the output threshold may well be a critical

mistake” [77]. So, for imbalanced learning problems, applying the threshold-moving

technique is recommended.

For such problems, we believe the recommendations in appendix A could ensure

an agreeable amount of reproducibility. We produced this recommendations as an ex-

tension to the ”The Machine Learning Reproducibility Checklist”. According to the

authors in [75] the checklist was ”designed to improve the standards across the com-

munity for how we conduct, communicate and evaluate machine learning research.”

The recommendations are organized under data provenance, feature provenance

and model provenance. According to W3C Incubator Group Report [37], provenance

of a resource is a record that describes entities and processes involved in producing

and delivering or otherwise influencing that resource. Provenance provides a critical
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foundation for assessing authenticity, enabling trust, and allowing reproducibility.

5.2 Future Work

Considering the nature of imbalanced data, and characteristics of the machine learning

algorithms (Section 2.3), learning from imbalanced sets of data requires more analysis.

A researcher also needs to consider more parameters. When it comes to learning from

multiple imbalanced classes of data, the process takes even more analysis and involves

even more parameters.

So, there could be 2 directions to follow from here. The first path to follow

would be to focus on exploring the approaches that could improve the results for such

problems. It would be interesting to explore how combining several individual models

on the same dataset could lead to a better generalization performance (ensemble

learning for imbalanced data).

The second one would be to focus on the approaches through which reproducibility-

related issues could be avoided for these types of problems. There are various appli-

cations for imbalanced data in various domains of science, reproducible experiments

could save a big amount of time and budget.

Results Improvement In machine learning, combining several classifiers into a

single one (ensemble learning) is known to improve performance. However, ensemble

learning techniques by themselves are not able to solve the class imbalance problem.

To solve this problem, we need to adapt the ensemble learning algorithms. For

this purpose, usually, we can combine an ensemble learning strategy with any of the

methods that deal with the class imbalance (section 2.3). Di↵erent solutions mainly

di↵er on how this hybridization is done and which ones are the methods considered

for the construction of the new model.

On the other hand, there are several approaches for building a model in ensem-

ble settings. The ensemble models could be broadly categorised into models like

bagging, boosting and stacking, negative correlation based deep ensemble models,

explicit/implicit ensembles, homogeneous/heterogeneous ensemble, decision fusion

strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental,

multilabel based deep ensemble models [30].
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An interesting field of study would be exploring hybridization techniques. One

can research what type of hybridization would improve the performance in a specific

domain. Combining and training the classifiers in this category also could increase

the training cost. Hence, one can investigate the alternate ways of inducing diversity

in the base models with lesser training costs.

Reproducibility-related Issues Through this path, one can conduct deeper anal-

ysis into various approaches for learning from imbalanced datasets through various

domains of machine learning applications with a focus on the key points and param-

eters that could lead to an irreproducible experiment.

When it comes to learning from imbalanced sets of data, there are numerous

approaches available for di↵erent applications in this field. Each model depending on

the problem it solves has its own characteristics. These approaches could be explored

and the key points could be addressed to improve reporting on the matter.
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Appendix A

Reproducible Experiment Report

Data Provenance and Sharing
•Report on the source(s) of the raw data

•Explain the curation process

•Share the final dataset.

Feature Provenance and Sharing
•Explain the concept associated with the extracted feature

•Explain the process through which the feature is extracted

•For formulas, describe the associated parameters

•Share the extracted feature file (or reasonable amount of the final extracted feature file)

Model Provenance and Sharing:
Data Pre-processing

•Explain the pre-processing technique concept along with any involved process, formula and parameters

•Share the final transformed feature file (or reasonable amount of the final transformed feature file)

Model Structure

•Explain any applied sampling technique along with the process formula and parameters

•Describe the strategy for splitting the original data into train, validation and test

•For problems with multiple classes, describe the decomposition strategy

•Explain the deployed algorithm, considered range of hyper-parameters and the associated values for obtaining

the published results. For multiple classes, this process should be done for all the decomposed models.

•If a specific optimal hyper-parameters search technique is used, provide the final deployed values resulted

from the process, describe the method, any involved parameter(s), the process and how it has been

applied to the model(s).

•For problems with multiple classes (or ensemble models), report on the structure, describe the underlying

models and the aggregation strategy and how all those were applied to the model to generate the final

results. If the results are generated using a di↵erent threshold rather than using

the default one used by the classification algorithm, report on the threshold value for each decomposed model.

•Share reasonable amount of the generated results (where possible)

Model Evaluation

•Describe the choice of statistical method used for evaluation of the results, any involved formula

and its parameter(s)

•If averaging through multiple results, describe the technique (micro vs macro)

•Define error bars (if any)
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[54] Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano,
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Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in Python.

arXiv:1201.0490 [cs], June 2018. arXiv: 1201.0490.

[72] R. D. Peng. Reproducible Research in Computational Science. Science,

334(6060):1226–1227, December 2011.

[73] Roger D Peng. Reproducible research in computational science. Science,

334(6060):1226–1227, 2011.

[74] Roger D. Peng, Francesca Dominici, and Scott L. Zeger. Reproducible Epidemi-

ologic Research. American Journal of Epidemiology, 163(9):783–789, May 2006.

[75] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière,
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