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Abstract

STATIC AND DYNAMIC THEORETICAL STUDIES ON IMPROVING
MATCHING DESIGN

Asefeh Salarinezhad, Ph.D.
Concordia University, 2021

This thesis consists of three independent papers on market design and matching theory.
Each paper addresses a different matching model and environment, and together they
represent a significant range of real-life matching problems which have not received enough
attention.

In the first paper, we consider a new matching model to assign agents and objects on
two sides of the market to each other. The new feature is that agents have consecutive
acceptance intervals which are based on an exogenously given commonly known ranking of
the objects. Each agent finds acceptable a consecutive set of objects with respect to this
objective common ranking of the objects. Each agent has an individual preference ranking
of the objects in her acceptance interval, which is determined independently of the common
ranking of the objects. The main objective is to find new matching rules (algorithms)
which are simpler and more efficient than the complicated conventional general algorithms
for achieving a maximum matching which is Pareto-optimal, exploiting the special structure
of consecutive acceptance intervals which are a common feature of many real-life matching
problems.

Our main algorithm, the Block Serial Dictatorship Rule, starts with finding an ordering
of agents based only on the acceptance interval structure and thus it is preference profile
independent. This ordering is then used as a basis for a Serial Dictatorship which always
finds a maximum Pareto-optimal matching, regardless of the agents’ preferences, for the
solvable interval profiles that we characterize in the paper. These rules are also group
strategy-proof.

In the second paper, I consider a matching model with minimum quotas for one side of
the market. The main objective is to find algorithms which respect minimum quotas and find
matchings which are both nonwasteful and fair if there exists such a matching. Otherwise,
the algorithms find either fair or nonwasteful matchings. My algorithms, CNWF and
FCNW (constrained nonwasteful fair and fair constrained nonwasteful), start with finding
the range of possible matchings when there are minimum quotas. Then, using an innovative
graph, they select the matchings which are both fair and nonwasteful, and if there do
not exist such matchings, CNWF selects a constrained nonwasteful matching with a
maximum degree of fairness, and FCNW selects a fair matching with a maximum degree
of nonwastefulness.

Furthermore, I show that my algorithms are applicable to the case where there are
different types of agents, which is a key factor for matching markets that are concerned
with diversity. Compared to the existing algorithms my algorithms are unified and more

iii



intuitive.

In the third paper, I consider a novel matching model in a dynamic environment. I
define a dynamic environment in which the market is open for more than one period. At
the beginning of each period new agents enter the market and the matched agents leave at
the end. My model is motivated by couple match-making but the results apply to other
similar matching markets as well. The main objective is to find an appropriate gender-
neutral algorithm with nice properties. I introduce a new algorithm which is based on
the DA (Deferred Acceptance) algorithm and whose structure provides an opportunity to
find two-sided optimal matchings, considering the requirements and characteristics of this
dynamic marriage problem.

The novel structure of my algorithm, DM (Dynamic Marriage), allows both sides to
make offers simultaneously and selects a matching which is optimal for both sides in a
realistic dynamic setup whenever such a matching exists, and otherwise the algorithm finds
a matching without favouring either side. This property makes the matching fair in the
sense that it gives both sides a fair chance. I also study the dynamic strategy-proofness of
the algorithm, as well as its stability and efficiency properties.

Compared to previous algorithms that apply to the marriage problem in a static or
dynamic environment, my algorithm is more realistic since it allows for realistic dynamic
preferences and for real-life marriage considerations. Furthermore, it is more integrated
regarding the optimality of the two sides than other algorithms and avoids some of the
common issues of dynamic algorithms.
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Chapter 1

Introduction

This thesis consists of three independent studies on Matching Theory. Each study has
its own introduction, therefore here I provide a general overview of the fundamental and
common concepts as well as the structure of the chapters.

1.1 Market Design
Traditionally markets have been simply decentralized markets, a place where supply and
demand meet. Nowadays a new branch of economic science, Market Design, highlights that
markets not only are places to cover demand by supply but also that the structure of the
market and detailed rules have a significant role in the operation of many markets and in
reaching the desired results.

Market design is a practical methodology for the creation of markets with certain
properties. This methodology helps not only to analyze existing markets but also to create
desirable markets from scratch or fix the broken ones.

The ultimate goal of market design is to study the markets and recognize their
differences, working processes and requirements. This deep understanding will help market
designers to define the rules and procedures that make different kinds of markets operate
well. Relying on these studies, they should be able to provide thickness and safety to bring
together enough number of participants who feel safe to share required information. In
addition, there should be adequate time and means for transactions. Eventually all of these
lead to finding practical solutions for real-life matching problems.

Overall, market designers have the responsibility to make sure that all details and parts
of a market function together well. This is why market design studies often include a detailed
description of the market’s unique and distinguishing features which are collectively reflected
as the model of each separate study.

Within this context, I focus on three separate market design projects, three studies which
form the main body of this thesis. My work deals with matching problems and combines
tools and concepts from different fields, including economic engineering, matching theory,
mechanism design, graph theory, axiomatic resource allocation and game theory. I define
special matching models and consider their applicable aspects in the design of matching
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mechanisms when there are consecutive acceptance intervals, in the presence of minimum
quotas and also in dynamic environments. Furthermore, I aim for desirable properties and
study the characteristics of the proposed mechanisms, such as efficiency, Pareto-optimality,
maximality, stability, fairness, strategy-proofness and nonwastefulness.

1.2 Matching Theory
Many real-world problems are concerned with the allocation of resources. How efficiently
and fairly people are matched to each other or to goods is a crucial concern in all societies.
A new approach to address the issues of supply and demand in markets which work under
their own special rules is called Matching Theory. Matching theory is the quantitative model
of choice for studying markets where one needs to be chosen or selected, based on certain
attributes, and simply paying for a good or service (or a person) is not possible due to legal,
ethical or other considerations. There are lots of such matching problem examples in the
real world, such as matching students to schools or dormitories, organ transplantation, so
patients who need a transplant are matched to potential organ donors (kidney exchange
is a well-studied case in this category), settling refugees in host countries, and matching
workers and firms to one another.

Up to now market designers and matching theorists have made a significant improvement
in societies by modeling and analyzing different real-life matching problems. Based on these
models, they have introduced matching mechanisms which have been used in many cases.
For instance, New York City, Boston and other U.S. cities have designed their school choice
programs, medical communities in some countries such as Japan have reorganized their
hiring procedure, and systematic kidney exchange programs have been designed to maximize
the number of patients who receive required organs as well as minimize the number of wasted
organs.

In the matching theory literature generally there are two main types of matching models:
two-sided and one-sided. Two-sided models consist of agents on both sides of the market
who have their own preferences over the other side. A very famous example is the marriage
model with agents on both sides, namely men and women, who have preferences over each
other. The fact is that in both models there are two sides involved in the market, but in
one-sided models agents on one side are matched to indivisible objects on the other side,
or more accurately agents are assigned objects. One important aspect of these matching
models is that agents have their own preferences over the agents or objects on the other side,
while objects don’t have preferences over the agents, but often the objects have some kind
of priorities over the agents on the opposite side. The agents’ preferences have been formed
either through a data gathering process or are based on personal taste and experiences. By
contrast, the objects’ priorities could be imposed by regulators or by law. For instance,
when assigning students to dormitory rooms, senior students may have higher priorities
than others based on the school’s regulations. The reason for calling such a model one-
sided is that only the agent side is considered to be active in the sense that they may have
incentives to misrepresent their preferences that are private information, while the objects
may not have such incentives, or the priorities can simply be verified if they are imposed
by law.
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In matching models all players are assumed to be rational and agents, as opposed to
objects, are considered to be strategic who have the power to decide for themselves based
on their own personal preferences, which have not been imposed by laws, for example, or
given exogenously in general. Generally speaking, agents are often humans, but they could
be countries, universities, or any kind of organization. A good example is matching medical
students to medical residency positions at hospitals. Hospitals and medical residency
programs are the agents in this application, and they have their own decision-making
procedure which is based on their policies. These policies and the corresponding procedures
form the hospitals’ preferences.

I study both types of the matching models in this thesis: one-sided matching models in
chapter 3 and two-sided matching models in chapters 4 and 5. For either type of matching
model several well-known matching mechanisms have been defined in the literature, and I
rely on three of these important mechanisms in my analysis: Serial Dictatorships (SD), Top
trading cycles (TTC) and Deferred Acceptance (DA). I have used SD and TTC in chapter
3 and DA in chapters 4 and 5.

1.2.1 Serial Dictatorships (SD)

First introduced by Satterthwaite and Sonnenschein (1981, [66]), a Serial Dictatorship (SD)
mechanism (also known as a priority mechanism) specifies an arbitrary ordering of the
agents on one side of the market and all objects on the other side are marked “available”.
Then it lets the first agent in the ordering, the first “dictator,” receive her favorite good
based on her stated preferences and removes her choice from the available set of goods.
Continuing this way the next agent, the second dictator, receives her favorite good among
the remaining objects, and so forth, until all agents or all objects are matched. It can be
said that the serial dictatorship mechanism is very easy to implement:

• Fix a priority function π which specifies a permutation of agents randomly, or by
using some existing priority ordering such as seniority.

• Let applicants choose their objects according to the permutation: for all agents, i = 1
to n, set the match of agent i, µ(i), equal to her favorite remaining object.

Serial dictatorships have many applications and have been used in many real-life
matching problems, such as the allocation of offices to professors, the school choice system in
New York, housing allocation at Columbia and Harvard, etc. In addition, serial dictatorship
has several good properties such as Pareto-efficiency and strategy-proofness, which will be
discussed later in Chapter 2.

1.2.2 Top Trading Cycles (TTC)

The Top Trading Cycles (TTC) rule, which is an algorithm for trading indivisible objects
without using money, is attributed to David Gale by Shapley and Scarf (1974, [67]). The
basic TTC algorithm, also known as Gale’s Top Trading Cycle rule, is illustrated by the
following housing market situation. Assume that there are n students living in student
dormitories. Each student currently lives in a single house and has her own preferences
over all houses. Therefore, there are some students who prefer the houses assigned to other
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students to their current endowment. This may lead to mutually beneficial exchanges.
For example, if student 1 prefers the house allocated to student 2 and vice versa, both of
them will benefit by exchanging their houses. The goal is to find a core-stable allocation,
a reallocation of houses to students, such that all mutually beneficial exchanges have been
realized (i.e., no group of students can together improve their situation by exchanging their
houses).

The algorithm works as follows:

• Ask each agent (student) i indicate his “top” (most preferred) house.

• Draw an arrow from each agent i to the agent who holds the top house of i.

• Note that there must be at least one cycle in the graph (this might be a cycle of length
1, if some agent i currently holds his own top house).

• Implement the trade indicated by such cycle (i.e., reallocate each house to the agent
pointing to it), and remove all the agents involved in trade from the graph.

• If there are remaining agents, go back to round 1 and repeat the same procedure in
the reduced market as in round 1, except that now each students points to the student
who is endowed with her top house among the houses that are still in the market.

• The algorithm must terminate, since in each iteration we remove at least one agent.
It stops when all students who were given an initial endowment have been removed
from the market with an assigned house.

1.2.3 Deferred Acceptance (DA)

First introduced by Gale and Shapley (1962, [25]), the Deferred Acceptance (DA)
mechanism produces a matching for each preference profile. It is an iterated procedure
which is based on agents’ preferences on both sides of the market. It can be applied both
to one-to-one matching models, such as marriage markets, and to many-to-one matching
models, such as college admission problems. Focusing on marriage markets there are two
alternative DA mechanisms: either the men propose or the women propose. The two
mechanisms are symmetric in the two sides of a one-to-one matching market (it is presented
here using the language of marriage, but can be applied to any matching problems with the
same properties).

The DA mechanism involves a number of rounds (or iterations):

• In the first round, each man proposes to his most preferred acceptable woman (if
a man finds all women unacceptable he remains single). Each woman who received
at least one offer replies “maybe” to her suitor she most prefers (temporarily holds
the offer from the most preferred man among those who proposed to her and are
acceptable) and “no” to all other suitors, if there are any. She is then provisionally
“engaged” to the suitor she most prefers so far, and that suitor is likewise provisionally
engaged to her.

• In each subsequent round, round k (k ≥ 2), each unengaged man whose offer has been
rejected in the previous round proposes to the most preferred acceptable woman to
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whom he has not yet proposed, regardless of whether the woman is already engaged
(if there is no such woman he remains single). Each woman who received at least
one offer in this round replies "maybe" if she is currently not engaged or if she prefers
this man over her current provisional partner (in this case, she rejects her current
provisional partner who becomes unengaged). Therefore, she temporarily holds the
offer from the most preferred man among those men who proposed to her in this (or
any previous) step and are acceptable to her. She also rejects all other offers, if there
are any.

• This process is repeated until everyone is engaged and there is no man whose offer is
rejected in a given round.

The provisional nature of engagements preserves the right of an already-engaged woman
to “trade up”.

In the final matching of a DA mechanism, each woman is matched to the man whose
offer she was holding temporarily when the algorithm stopped (if any). Note that the final
acceptance was deferred until the end. Thus, each man is matched to the woman he was
temporarily matched to when the algorithm stopped (if any).

Gale and Shapley (1962, [25]) showed that the DA mechanism is fair 1. In addition,
Dubins and Freedman (1981, [18]) and Roth (1982, [58]) proved that this mechanism is
strategy-proof for the proposing side. It has been proved that the DA is optimal for the
proposing side. Therefore, there are men-optimal and women-optimal matchings, but these
are not Pareto-optimal when considering one side only. However, based on Gale and Shapley
(1962, [25]) the DA allocation Pareto-dominates all other fair allocations at each preference
profile. Moreover, when considering agents on both sides of the market the DA is Pareto-
optimal.

In many-to-one matching problems, such as college admissions, the outcome of the
student-proposing DA algorithm is also called the student-optimal stable matching (SOSM).
Kesten (2010, [40]) provided theoretical evidence showing that the outcome of SOSM may
cause large welfare losses when considering the students’ welfare only. He introduced an
efficiency-adjusted DA mechanism (EADAM) and proved that this algorithm selects the
fair and Pareto-optimal matching when it exists and it is nonwasteful, but EADA is not
strategy-proof. I discuss the properties of matching rules in Chapter 2.

Here is a simple example of how DA mechanism works:

Let us assume that there are two men (m1, m2) and two women (w1, w2) in the market
with the following preferences:

w1 ≻m1 w2 and w1 ≻m2 w2, while m1 ≻w1 m2 and m1 ≻w2 m2.

• Round 1: m1 and m2 both propose to w1, who is their more preferred woman. w1
accepts the better offer she received, m1, and rejects the offer from m2. w2 has received
no offer, so she does nothing at this round.

1The definition of fairness in the matching theory literature is different from the common one. I define
and review all relevant properties in Chapter 2.
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• Round 2: m2, who has been rejected by w1, now proposes to his next preferred woman,
w2, while w1 is engaged to m1. w2 has only received this one offer, so she she accepts
the proposal.

• There are no rejections and the algorithm stops. The final matching is µ(m1) = w1
and µ(m2) = w2.

1.3 Historical Background of Matching Theory
Market design is partially based on matching theory which has been originally derived from
R.J. Herrnstein’s (1961, [30]) classic study known as pigeons’ key peck. He formulated his
famous matching law based on the results of his experiment with pigeons. Pigeons were
presented with two buttons, each of which led to varying rates of food reward. The pigeons
tended to peck the button that yielded the greater food reward more often than the other
button, and the ratio of their rates to the two buttons matched the ratio of their rates
of reward on the two buttons. Although Gale and Shapley (1962, [25]) published their
study on college admission and marriage models early on, this field of science has started to
develop mainly since the 1990’s. Market design pioneer scientists started this development
by using matching theory combined with empirical experiments and analysis, as well as
other mathematical tools such as Graph Theory.

Matching theory has been a very active research field over the past several decades,
and many formal models have been developed to describe and analyze matching markets.
New mechanisms have been proposed and practical aspects of matching design have been
considered in order to help real-world matching markets function more effectively. One of
the most significant early works is Roth and Sotomayor (1992, [64]). They studied two-sided
matching markets through a game-theoretic perspective. Later Roth and Peranson (1999,
[63]) worked together to redesign the matching market for American physicians. Their
algorithm is a modified DA algorithm that can be viewed as a process in which applicants
offer to come to residency programs. They worked on many-to-one matching models (in
which firms employ multiple workers, but workers seek just one job) and their mechanism
is currently used for matching medical interns to residency programs. Balinski and Sönmez
(1999, [9]) who studied the student placement problem were also among the first scholars
who have worked on matching markets.

There are some examples of early matching models with money involved, such as Shapley
and Shubik (1971 [68]), and Kelso and Crawford (1982, [37]), as well as Roth and Sotomayor
(1992, [64]) and Hatfield and Milgrom (2005, [29]). They worked on models in which firms
employ multiple workers, and wages are explicitly allowed to vary.

Shapley and Scarf (1974, [67]) studied the one-sided matching model of “housing
markets”. Their work resulted in of the classic mechanisms in matching theory, the Top
Trading Cycle mechanism. Continuing with TTC mechanisms, Abdulkadiroğlu and Sönmez
(1999, [2]) introduced a hybrid house allocation model with existing tenants. Pápai (2000,
[51]) worked on assignments by hierarchical exchange and introduced assignment rules which
generalize Gale’s top trading cycle procedure.

6



Abdulkadiroǧlu and Sönmez (2003, [3]) also proposed centralized mechanisms to replace
the poorly functioning existing mechanisms for student placement. Their work was the first
paper which applied matching theory to the practical design of public school choice systems.
Their work resulted in adopting a new school choice mechanism by several cities in U.S., and
has continued to be an active area of research for marker designers whose goal is to design
improved mechanisms and to study the performance of mechanisms in use. One year later,
Kesten (2004, [38]) studied the properties of a well-working student placement mechanism.
He argued that equity (fairness), efficiency and non-manipulability are the most important
properties of a good matching mechanism. It is well-known that there is an impossibility
if one requires the co-existence of all three of these properties. In fact, fairness (formally
identical to core-stability) already cannot be reconciled with efficiency when considering one
side of the market, which is already discussed in the early work of Gale and Shapley (1962,
[25]). There is now a large literature analyzing the resulting tradeoffs among incompatible
properties for matching mechanisms.

Roth, Sönmez and Ünver (2004, [65]) introduced a kidney exchange model. According
to their model, there are a number of pairs of patients and their donors who may be
incompatible with them. For each patient a subset of donors can feasibly donate a kidney
and the patient has strict preferences over these donors and his own donor (who may or may
not be compatible with him). In addition to ranking all compatible donors, each patient
also ranks a “wait list option” which represents trading his donor’s kidney with a priority
in the wait list.

Roth, A. E. (2015, [62]) published another paper on match-making and market design
where he targeted a general audience by focusing on the basic questions of “Who Gets What
– and Why”. Matching theory is a subject that attracted much attention in recent years.
As a mile stone in the development process of this subject, 2012 has a special place since
the Nobel Memorial Prize in Economic Sciences was awarded to Alvin Roth at Stanford
University and Lloyd Shapley at UCLA who are pioneers in matching theory and market
design. In addition, Parag Pathak won the John Bates Clark medal (a.k.a. “baby Nobel”)
in 2018 for his research on school assignment mechanisms.

Although market design and matching theory are very young fields of science, they have
been applied to many real-life allocation problems such as job market assignments and school
choice problems among many other potential applications and have provided successful
solutions for them. Without any doubt, matching theory has played a positive role in making
the world a fairer place by by applying formal mathematical approaches to these resource
allocation problems. It is not just house allocation or marriage markets that this subject
has impacted, as the symbolic names of matching models might suggest. Rather, matching
theory has made a difference in school choice systems, university admissions, medical
residency allocations and other entry-level labor markets, and saved lives by affecting organ
exchange programs, refugee settlement and adoption, among many others.
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1.4 Goals and Motivations
My studies, which address some important matching problems that have been rarely, if ever,
considered in the matching theory literature, are motivated by many real-life applications2.
One of the main objectives of writing this thesis is to study different matching markets
which cover a variety of day-to-day life matching problems which have been addressed very
little in the literature up to now. My objective is also to increase the range of my knowledge
about various matching markets, the models which represent them and their applications.

As a result of these studies, my goal is to introduce new matching mechanisms which
represent special matching markets which perform better in some ways and can be a
substitute or an alternative to existing or already studied mechanisms. I aim to introduce
novel mechanisms that avoid unrealistic assumptions and overcome some weaknesses of the
already existing mechanisms.

My ultimate objective is to provide a strong integrated theoretical foundation which
contributes to a more flourishing society by introducing new tools which ensure that all
crucial resources, including human resources, are used fairly and efficiently.

1.5 Thesis Outline

1.5.1 Chapter 2: Properties of Matching Rules

In Chapter 2 I briefly review the standard properties of matching rules which will be used
throughout this thesis. The properties will also be defined more precisely in each chapter
according to the topic of each study and its requirements.

1.5.2 Chapter 3: Maximum Matching with Consecutive Acceptance
Intervals

In Chapter 3 we consider a novel model to match agents and objects on two sides of the
market to each other, namely, a matching model with consecutive acceptance intervals
according to a given commonly known ranking of the objects. Each agent is associated with
a consecutive set of objects with respect to this objective common ranking of the objects,
which represents the set of acceptable objects for the agent, that is, the agent’s consecutive
acceptance interval. Each agent has an individual preference ranking of the objects in
her acceptance interval, which is determined independently of the common ranking of the
objects. The main objective is to find new matching rules (algorithms) which are simpler
and more efficient than the complicated conventional general algorithms for achieving a
maximum matching which is Pareto-optimal, exploiting the special structure of consecutive
acceptance intervals which are a common feature of many real-life matching problems.

We present first the Common-Ranking Successive Rules which are greedy algorithms
and find a maximum matching in this model. This set of rules is extended to the class
of Successive Rules, which find all maximum matchings for the general case of arbitrary
acceptance intervals. To ensure that matchings are not just of maximum cardinality but

2I will discuss these applications in detail in Chapters 3 to 5.
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are also efficient, we propose two further classes of matching mechanisms which are maximal,
Pareto-optimal and group strategy-proof. One is based on the TTC rules and the other one
is a sequential dictatorship.

Since these two maximal and Pareto-optimal mechanisms are based on fairly complex
algorithms, we also focus on serial dictatorships which are simple and transparent. Since
not all consecutive interval profiles allow for the existence of a maximal serial dictatorship,
we establish first this impossibility result and then characterize the set of interval profiles
for which a maximal serial dictatorship exists. We also identify all permutations of the
agents that work for serial dictatorships. Each class of matching rules that we propose are
group strategy-proof, since the acceptance intervals are common knowledge and cannot be
manipulated.

1.5.3 Chapter 4: Matching with Minimum Quotas

The main focus of Chapter 4 is matching agents on two sides of the market to each other
when there are minimum quota restrictions for one side. Using the school choice model, this
means that some schools have a minimum quota requirement, which puts a distributional
constraint on the matching problem. This is a common feature of many real-life matching
markets. Standard matching mechanisms, such as the DA, cannot be used, as the minimum
quotas cannot be violated.

The principal objective of this study is to find algorithms which respect minimum quotas
and find matchings which are both nonwasteful and fair if there exists such a matching.
Otherwise, the algorithms find fair or nonwasteful matchings. I introduce an innovative
graph for my algorithms which greatly assists in finding a solution to these matching problem
and clearly represents information to effectively help the matching procedure. Compared
to the existing algorithms for providing a matching which is fair, nonwasteful, or if possible
both, my algorithms are integrated and more intuitive.

These algorithms, CNWF and FCNW (constrained nonwasteful fair and fair
constrained nonwasteful), start with finding the range of possible matchings in the presence
of minimum quotas. Then, using the representative graph, they select matchings which are
both fair and nonwasteful, and if there do not exist such matchings then CNWF selects
a constrained nonwasteful matching with the maximum degree of fairness, and FCNW
selects a fair matching with the maximum degree of nonwastefulness.

I also show that these algorithms work properly when there are different types of
students, which is hugely important for any matching market that is concerned with
diversity.

1.5.4 Chapter 5: Dynamic Marriage Markets

Chapter 5 of the thesis focuses on dynamic matching. I consider a model that matches
agents on two sides of the market to each other. Agents on both sides have their preferences
and the market environment is dynamic. This means that while the market operates for
more than one period, at the beginning of each period new agents enter the market and the
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matched ones leave it at the end of the period. In my model each agent has an individual
preference ranking over the other side’s agents who are in her acceptance set.

The main objective is to find an algorithm which, considering the dynamic features of
the model, finds matchings which are optimal for both sides if there exists such a matching,
and if not then it finds matchings which are fair for both sides in the sense that it does not
favour any side. I introduce a new algorithm, Dynamic Marriage (DM), which is based on
the DA algorithm. The structure of the DM algorithm provides the opportunity to find
two-sided optimal matchings, considering the requirements and characteristics of a dynamic
environment. I present my model based on the marriage problem (couple match-making),
but it can also be used in other similar matching markets. Compared to existing algorithms
for the marriage problem in static or dynamic environments, my algorithm is more realistic
since it includes real-life marriage considerations and it is based on realistic assumptions.
Furthermore, it is more integrated regarding the optimality of the two sides and avoids
some of the issues of already existing algorithms, such as using a pre-defined list of agents
for the proposing procedure.

The DM algorithm is designed for a dynamic marriage market environment. The
structure of the algorithm allows both sides to make offers simultaneously and selects a
matching which is optimal for both sides, considering the dynamic structure, if such a
matching exists. Otherwise the algorithm finds a matching which lies somewhere in-between
the optimal solutions for the two sides. This property makes the matching fair in terms of
giving both sides a fair chance, and fairness is a very important concept to be considered
in marriage markets, whether static or dynamic. This is why my algorithm is set up to
allow both sides to propose, alongside the dynamic nature of the model. The novelty of my
study is not only that the DM algorithm has both sides making offers simultaneously in a
dynamic setting, but additionally it also allows agents on either side to stay loyal to their
chosen mates and wait multiple periods until their proposal might be accepted.

Within this framework I study the dynamic strategy-proofness of the algorithm and
analyze its Pareto-optimality and stability. Furthermore, I discuss methods to increase the
matching size in each period.

1.5.5 Chapter 6: Conclusion

In the last chapter I provide a brief conclusion of the three main studies of the thesis,
presented in Chapters 3, 4 and 5, and discuss some extensions and further questions related
to my findings.
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Chapter 2

Properties of Matching Rules

In this chapter I review the general definitions of properties of matching rules that will be
used in this thesis. All of these properties are standard properties that have been studied
extensively in various models. In later chapters the properties used for each specific topic
have been adopted based on the models’ requirements.

A matching market is generally given by (I, J, ≻I , ≻J), where I is the set of agents i on
one side of the market, J is the set of agents (or objects) j on the other side, ≻I and ≻J

are agents’ preference/priority orderings on two sides of the market, respectively.

2.1 Matching
A matching is a mapping µ : I → J that satisfies:

• µ(i) ∈ J ∪ {i} for all i ∈ I.

• µ(j) ∈ I ∪ {j} for all j ∈ J ,

• for any i ∈ I and j ∈ J , we have µ(i) = j if and only if i = µ(j) or i ∈ µ(j).

Here µ(i) = i indicates that the agent remains unmatched.

A matching rule is a function f that assigns a matching µ to each preference profile,
≻. Formally, a matching rule (or mechanism) is f : R → M, mapping from the set of
preference profiles R to the set of matchings M.

2.2 Individual Rationality
Based on a common definition in economics, a rational individual is an individual who
has or can access the information and knowledge about her options, their alternatives, the
respective consequences of her actions and the involved risks. Knowing all these, she chooses
the best possible option which will provide her either the optimal result or the one with the
highest expected value in case of any uncertainty.

11



In matching theory, a matching µ is individually rational if all agents prefer their
current match under µ to being unmatched, i.e., for each agent i, µ(i) ≻i i.

We also say that a matching µ is blocked by an agent i if i ≻i µ(i). Then a matching
µ is individually rational if it is not blocked by any agent.

A matching rule f is individually rational if it assigns an individually rational
matching to each preference profile.

2.3 Stability
A pair of agents (i, j) from the opposite sides of the market is called a blocking pair to
matching µ if i and j prefer each other to their current match under µ.

A matching µ is stable if there is no blocking pair (i, j) who prefer each other to their
current match under µ, and each agent is individually rational.

A matching rule f is stable if f(R) is stable for each preference profile R, i.e., it
assigns a stable matching to each preference profile.

2.4 Justified Envy
In one-sided matchings problems, if an agent i is assigned an object such that another agent
i′ who has a higher priority for this object prefers it to her current assigned object, then i′

has justified envy for i. This is called justified envy since the envy is justified based on the
priorities.

Agent i′ justifiably envies agent i who is assigned an object k under µ if k ≻i′ µ(i′)
and i′ ≻k i.

Similarly, in two-sided matching problems, if agent i′ has been matched to µ(i′) under
matching µ but i′ prefers another agent j to µ(i′) while j also prefers i′ to her current match,
i, then the pair of agents, (i′, j) (as discussed before) is called a blocking pair. Blocking
pairs are formally identical to justified envy instances, and eliminating these blocking pairs
together with individual rationality results in a stable matchings.

2.5 Fairness
A matching µ is fair (F ) if there is no agent who justifiably envies another agent.

Fairness is the result of eliminating all justified envy instances for all different profiles
of preferences or priorities.
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Since eliminating blocking pairs together with individual rationality means that we
have a stable matching, fairness combined with individual rationality is formally identical
to stability. The only difference is in the interpretation of these notions. Fairness applies
to one-sided matching models, while the concept of stability is more relevant for two-sided
matching.

A matching rule f is fair if f(R) is fair for each preference profile R.

2.6 Pareto-optimality
When a matching is Pareto-optimal there is no way to improve anyone’s outcome unless
someone else gets hurt.

A matching µ is Pareto-optimal if there is no other matching µ′ that makes at least
one agent better off without making any other agent worse off.

That is, matching µ is Pareto-optimal if there is no other matching µ′ such that, for
all agents i, µ′ ⪰i µ, while µ′ ≻j µ for some agents j. A Pareto-optimal matching is not
Pareto-dominated in the sense that there is another matching which makes none of the
agents worse off and at least one agent better off.

A matching rule f is Pareto-optimal if it specifies a Pareto-optimal matching for
each preference profile.

First Gale and Shapley (1962, [25]) and then Balinski and Sönmez (1999, [9]) showed
that it is impossible to have a matching rule which finds matchings which satisfy both
fairness and Pareto-optimality for the agents’ side at each preference profile. In fact, there
exist preference profiles for which none of the fair matchings are Pareto-optimal (when
considering one side of the market only).

Due to this incompatibility problem, lots of matching theorists have studied the issue
from different angles. They have introduced modified definitions of fairness/stability or
efficiency which are compatible weakened versions of these properties. Kesten (2004, [38]),
Cantala and Pápai (2014, [13]), Morrill (2013, [50]) and Pápai (2013, [53]) are some of the
studies inspired by the incompatibility between fairness and efficiency which shed light on
the trade-offs. Inspired by the same issue, Ergin (2002, [22]) and Kesten (2006, [39]) chose
the structure of priorities as the focus of their studies and have identified priority structures
for which Pareto-optimality and fairness are compatible.

2.7 Strategy-proofness
A matching rule is strategy-proof if it is not manipulable. This means no agent can make
herself better off by misreporting her preferences and thus truth-telling is a weakly dominant
strategy for all agents. A matching is therefore strategy-proof if it is a weakly dominant
strategy for every player to report her true preferences. Every agent fares best (or at least

13



not worse) by being truthful, regardless of what preferences the others report. Strategy-
proofness is also known as dominant strategy incentive compatibility which means that it
cannot be manipulated by any agent at any preference profile.

A matching rule f is strategy-proof if there do not exist i, ≻ and ≻̂i such that
fi(≻̂i, ≻−i) ≻i fi(≻).

An even more demanding incentive property of matching rules than strategy-proofness
is group strategy-proofness, which requires that no group of agents can collude to misreport
their preferences in a way that makes at least one member of the group better off, without
making any other member of the group worse off. Note that this is the stronger notion of
the two standard notions of group strategy-proofness.

We will say that a group of agents S ⊂ N can manipulate matching rule f at profile ≻
if there exists ≻̂S such that for all i ∈ S, fi(≻̂S , ≻−S) ⪰i fi(≻) and there exists j ∈ S such
that fj(≻̂S , ≻−S) ≻j fj(≻).

A matching rule f is group strategy-proof (GSP) if there is no group of agents
that can manipulate f(≻) at any preference profile ≻.

It is clear that group strategy-proofness of a matching rule implies strategy-proofness
of the rule, but not vice versa.

Roth (1982, [58]) proved that there is no stable matching rule that is strategy-proof for
both sides of the market. On the other hand, if only one side of the market is active then the
DA rule is stable (i.e., fair and individually rational) and strategy-proof for the proposing
side of the market if the proposing agents have unit capacity. Moreover, Pareto-optimality
and group strategy-proofness are compatible with each other, and the TTC rule satisfies
both.

2.8 Nonbossiness
A matching rule f is nonbossy if for all i, ≻, and all ≻̂i, fi(≻) = fi(≻̂i, ≻−i) implies
that f(≻) = f(≻̂i, ≻−i).

If there is such an agent, then this agent is bossy at preference profile R, since she can
change somebody else’s assignment without changing her own.

Nonbossiness combined with strategy-proofness is equivalent to group strategy-proofness
in the static models that I study.

2.9 Maximum Cardinality
A matching is maximum (cardinality) if there is no other matching which matches
more agents to each other.

Consequently, a maximum matching should contain the highest number of possible
matches. Note that the cardinality of a matching does not depend on the preference profile,
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and thus maximum matchings can be determined based on the set of acceptable objects
only.

A matching rule f is a maximal rule if it specifies a maximum matching for each
preference profile.

2.10 Nonwastefulness
If there is an unmatched agent j whom agent i prefers to her current match under µ and
j also prefers i to being unmatched then i justifiably claims this possible match. Similarly,
if there is an empty slot at a hospital or university (when assigning doctors to hospitals or
students to universities) that i prefers to her current match under µ and i is acceptable to
the hospital or university then it is wasteful not to use this slot and i justifiably claims it.

Agent i justifiably claims a possible match with unmatched agent j (or an empty slot
at j) under a feasible matching µ if j ≻i µ(i) and i ≻j ø for any j, while µ(j) = ø or
|µ(j)| is less than j’s capacity.

A feasible matching µ is nonwasteful if there is no agent who justifiably claims a
possible match with an unmatched agent j (or an empty slot at j).
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Chapter 3

Maximum Matching with
Consecutive Acceptance Intervals

3.1 Introduction
Matching markets, such as school choice, entry-level labor markets and kidney exchange,
have been explored by numerous theoretical and applied papers. The purpose of this study is
to define and analyze a model in which agents on one side of the market rank only a subset
of the objects on the other side of the market, and these subsets are consecutive, where
consecutiveness is determined by an objectively given ranking of the objects. However, each
agent independently ranks the objects in these consecutive acceptance intervals according
to their own preferences.

The study of consecutive acceptance intervals is motivated by several real-life
applications. For instance, employers that offer an internship may choose applicants for
interviews from a given applicant pool, where applicants have been ranked according to
some known criterion, such as the number of years of experience, level of education or
grades. Employers choose a range of applicants according to this criterion to interview, and
rank the interviewed applicants based on the interviews. If this is a buyer’s market, which
could be a realistic assumption since paid internships may be highly desirable and relatively
rare, then applicants could be modeled as objects to be assigned to internships. Or consider
adoptions arranged by an agency between a fixed pool of adoptive parents and children for
adoption. Eligible families that are ready to adopt a child may only be able to or willing to
adopt a child from a certain age group, for example. After meeting the children from the
selected age interval, the families rank the children according to their personal preferences.

Another application involves prospective students who are choosing universities to apply
to. Each prospective student chooses a certain range of universities on the basis of a
published ranking of universities, a range that the student deems compatible with her
background and records, and after campus visits ranks the selected universities according
to the information that the student has obtained. Here the universities’ preferences may
simply be expressed by a cutoff score for students, and if these are consistent with the
publicly known ranking of universities, this may dictate the choice of acceptance intervals
for students. Our model is less relevant for this application, however, since in this study we
only consider one-to-one matching, as a first exploration of consecutive acceptance models.
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This paper addresses an open question raised by Al Roth on economic design engineering
(Roth, 2002 [61]), where he states that some properties of the medical residency market in
the US are related to the fact that applicants apply for a small fraction of the jobs only,
and that both applicants and residency programs only list each other in their preferences
if they had completed an interview. This is an important feature of many markets, not
just the US medical residency market, and Al Roth has suggested that this fact may have
important consequences. He concluded that better theory is needed to deal with this issue,
and this study aims to provide some theoretical foundations by constructing a new model
with an explicit structure of acceptance sets.

The main objective of this paper is to find more straightforward algorithms than
the complicated general algorithms to achieve Pareto-optimal maximum matchings, while
taking incentives into consideration as well. To this end, we assume consecutive acceptance
intervals, which makes our model unique and at the same time realistic in some settings,
as already discussed. To the best of our knowledge our paper is the first one that studies
matching markets with consecutive acceptance intervals. Another assumption that is used
by most of our results is that the acceptance sets allow for a matching that assigns an object
to each agent. This is a realistic assumption in both of our main applications. Internship
positions may be in short supply, which would imply that the applicant pool is large enough
to fill each internship position. Qualified adoptive parents are also likely to be able to adopt
a child typically, especially if they are flexible enough in terms of their requirements for the
child.

Maximum matchings have been considered in general and there are some well-known
classical results. Philip Hall in his paper titled “On Representatives of Subsets” (Hall,
1935 [27]) describes the general requirement to have a maximum matching which saturates
one side of the market, known as Hall’s Theorem. Other examples include the Hopcroft
and Karp algorithm (Hopcroft and Karp, 1973 [31]) which finds a maximum matching
by iteratively increasing the size of the matching using augmenting paths, and the Ford-
Fulkerson algorithm (Cormen et al. 2001 [14]) which is based on the max flow in a graph.

Taking into account preferences, Irving at al. (2006, [32]) proposed “rank-maximal”
matchings, which maximize first-choice matches for one side of the market and, subject
to this, it maximizes second-choice matches, and so on. For the refugee resettlement
application Andersson and Ehlers (2020, [5]) proposes an algorithm that starts with
a maximum matching and tries to improve the optimality through trade steps while
maintaining stability. Afacan et al. (2020, [4]) have introduced two classes of mechanisms,
the Efficient Assignment Maximizing and the Fair Assignment Maximizing mechanisms,
which first enumerate all feasible matchings and then eliminate non-maximum matchings.
In their setting, as well as in Andersson and Ehlers (2020, [5]), the model is two-sided and
they also study stability, which is not possible in our one-sided model.

The incentive properties of maximal rules have also been studied. These are mostly
negative findings. For example, neither of the two proposed mechanisms are strategy-proof
in Afacan et al. (2020, [4]), and thus they study the Nash equilibria of the revelation
games corresponding to their mechanisms. The closest paper to ours studying incentives of
maximal matching rules is Krysta et al. (2014, [7]) who show that in a housing allocation
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problem there is no deterministic matching rule which is maximal and strategy-proof. This is
in contrast to our maximal matching rules which are all group strategy-proof. The difference
is due to our assumption that the consecutive acceptance intervals are common knowledge
and are independent of the preferences, which is a natural assumption in some settings
with consecutive acceptance intervals. For example, in the case of internship matching the
employers may insist on a minimal level of experience or a minimum GPA (grade point
average) which would be established in advance, and commonly known upper bounds are
also plausible, especially regarding the level of experience (e.g., the applicant should have
graduated no more than three years prior to the application). Such requirements would be
included in the internship application materials and are likely to be fixed rules that don’t
change from one year to the next. In the case of adoptions, adoptive parents may not be
allowed to adopt an infant, depending on the parents’ age, so a lower bound on the adopted
child’s age might be required by law, although upper bounds are more likely to be based
on preferences and less easy to verify in advance.

Our hope is that this paper will serve as a basis for further research which will generalize
the newly designed algorithms to extend our findings to more complex matching models in
which the acceptable set of matches is relatively small, thus eventually leading to better
theoretical and practical understanding of the questions raised by Al Roth about the
phenomenon of small acceptance sets in matching markets.

3.2 A Matching Model with Consecutive Acceptance
Intervals

Let I = {1, . . . , n} be the set of n agents and let O = {o1, . . . , om} be the set of m objects.
The objects are ordered according to the common ranking (o1, . . . , om), an exogenously
given ranking of the objects. Each agent i ∈ I has a set of acceptable objects Ai ⊆ O,
the consecutive acceptance interval, which is assumed to be a primitive of the model.
Acceptance intervals are consecutive with respect to the common ranking: for each agent
i ∈ I, Ai = {oxi , oxi+1, . . . , oxi+ki

} such that xi ∈ {1, . . . , m}, ki ∈ {0, . . . , m − 1}, and
ki + 1 is the number of objects in Ai, with xi + ki ≤ m. We will also use the notation
No for o ∈ O to indicate the set of agents who have object o in their acceptance interval.
Each agent is to be matched to at most one object and the assigned object has to be in
her acceptance interval. The interval profile A = (Ai)i∈I is the fixed profile of consecutive
acceptance intervals which is assumed to be common knowledge. The set of interval profiles
is denoted by A.

Agent i ∈ I has strict preferences ≻i over objects in her acceptance interval. Individual
preference rankings are independent of the “objective” common ranking and are private
information. A preference profile ≻ = (≻i)i∈I specifies strict preferences for each agent over
the objects in their respective acceptance intervals. Let R denote the set of preference
profiles. We also use the following additional notation to indicate various preferences.
Weak preferences are denoted by ⪰i, but given that preferences are assumed to be strict,
µ(i) ⪰i ν(i) means that either µ(i) ≻i ν(i) or µ(i) = ν(i). In addition, ≻−i denotes strict
preferences for all agents except for i, and ≻S indicates strict preferences for a set of agents
S ⊆ I.
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A feasible matching µ : I → O ∪ {∅} is a function such that either µ(i) = o, where
o ∈ Ai, or µ(i) = ∅ which means that agent i remains unmatched. Each object is assigned
to at most one agent, so if µ(i), µ(j) ∈ O for a pair of agents i and j then µ(i) ̸= µ(j).
We will write matchings, when unambiguous, in the order of the agents. For example,
matching µ = (a, d, b,∅) for a four-agent problem means that agents 1, 2 and 3 are assigned
objects a, d and b respectively, and agent 4 is unmatched. Let M denote the set of feasible
matchings. A matching rule is a function f that assigns a feasible matching µ to each
preference profile ≻ ∈ R, that is, f : R → M. Let fi( ≻) denote agent i’s assignment at
preference profile ≻ when the matching rule is f .

3.3 Properties of Matching Rules
The properties of matching rules that we study are standard properties that have been
studied extensively in various models.

Let |µ| denote the number of agents who are assigned an object in matching µ. A feasible
matching is a maximum matching if there is no other feasible matching which assigns objects
to more agents: µ ∈ M is a maximum matching if there is no µ′ ∈ M such that |µ′| > |µ|.
Note that whether a matching is a maximum matching does not depend on the preference
profile and can be determined solely based on the interval profile A.

Property 1: A matching rule is maximal if it assigns a maximum matching to each
preference profile.

Property 2: A matching µ is Pareto-optimal if it is not Pareto-dominated, that
is, there is no other matching ν such that, for all i ∈ I, ν(i) ⪰i µ(i), while ν(j) ≻j µ(j) for
some j ∈ I.

A matching rule is Pareto-optimal if it assigns a Pareto-optimal matching to each
preference profile.

The following example demonstrates that in our model not all Pareto-optimal matchings
are maximum matchings, and not all maximum matchings are Pareto-optimal.

Example 1 Independence of Pareto-optimal and maximum matchings.

Consider the preference profile shown below. Agent 1’s acceptance interval is {a}, and
agent 2’s and 3’s is {a, b, c}.

≻1 ≻2 ≻3
a a b

c a
b c

The matching µ = (∅, a, b) is Pareto-optimal, but it is not a maximum matching, while the
matching µ′ = (a, b, c) is a maximum matching but it is not Pareto-optimal. The unique
maximum Pareto-optimal matching at this preference profile is µ′′ = (a, c, b). ▲
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Property 3: A matching rule f is strategy-proof if there do not exist i ∈ I, ≻ ∈ R
and alternative preferences ≻̂i for i such that fi(≻̂i, ≻−i) ≻i fi(≻).

A matching rule is strategy-proof if it is a weakly dominant strategy for every player
to report her true preferences. A stronger incentive property than strategy-proofness is
group strategy-proofness, which requires that no group of agents can collude to misreport
their preferences in a way that makes at least one member of the group better off, without
making any other member of the group worse off. Note that this is the stronger notion of
the two standard notions of group strategy-proofness. We will say that a group of agents
S ⊆ I can manipulate matching rule f at profile ≻ if there exist alternative preferences
≻̂S for S such that for all i ∈ S, fi(≻̂S , ≻−S) ⪰i fi(≻), and there exists j ∈ S such that
fj(≻̂S , ≻−S) ≻j fj(≻).

Property 4: A matching rule f is group strategy-proof if there is no preference
profile ≻ ∈ R and a group of agents S ⊆ I who can manipulate f at preference profile ≻.

Group strategy-proofness of a matching rule implies strategy-proofness of the rule, but
not vice versa. An additional well-known property of matching rules is nonbossiness. A
matching rule f is nonbossy if for all ≻ ∈ R, i ∈ I, and ≻̃i, fi(≻) = fi(≻̂i, ≻−i) implies
thatf(≻) = f(≻̂i, ≻−i). In our model strategy-proofness and nonbossiness together imply
group strategy-proofness (Pápai, 2000 [51]).

3.4 Maximum Matchings
The main criterion that we study in this paper is maximizing the size of the matching,
that is, matching as many agents to objects as possible. While maximum matchings are
not straightforward to find in a general matching model (i.e., in an arbitrary bipartite
graph)1, in our model the bipartite graph that describes feasible matchings has a consecutive
structure due to the consecutive acceptance intervals, and this makes it possible to identify
a maximum matching in one round using a greedy algorithm, and hence does not require
the use of augmenting paths. We define next the Common-Ranking Successive Rules which
identify a maximum matching for an arbitrary consecutive interval profile.

3.4.1 Common-Ranking Successive Rules

Let Π be the set of permutations of I. A permutation π ∈ Π is used as a tie-breaker for the
Common-Ranking Successive Rule f . Given the common ranking (o1, . . . , om) of objects,
consider first No1 , the set of agents who have object o1 in their acceptance interval. If
No1 ̸= ∅, assign o1 to the agent in No1 with the shortest acceptance interval (i.e., the least
number of objects in the agent’s acceptance interval compared to all other agents in No1).
If there is more than one such agent, break the tie according to the fixed permutation π
by assigning o1 to the first agent in π who meets the above criterion. Remove object o1
together with the agent to whom it was assigned, and repeat the procedure in the reduced
problem iteratively for o2, o3, and so on, until om is reached. If there is an object that is

1See, for example, the Ford–Fulkerson algorithm which computes the max flow (Cormen et al., 2001
[14]). This method requires an initial matching which is then improved upon by searching for augmenting
paths. An augmenting path for a matching µ is a path in the bipartite graph with an odd number of edges
e1, e2, · · · , em such that eodd /∈ µ and eeven ∈ µ.
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not in any remaining agent’s acceptance interval then the object remains unassigned, and
the procedure moves on to the next object in the common ranking.2

This determines a matching for a given interval profile, independently of the preferences
of the agents. Thus, a Common-Ranking Successive Rule can be written as fπ : A → M,
a function of the interval profile A, where each rule fπ is associated with the tie-breaking
permutation π ∈ Π. As we state next, all Common-Ranking Successive Rules are maximal
rules. Therefore, a straightforward greedy algorithm is enough to identify a maximum
matching for each consecutive acceptance interval profile, without the use of improvement
steps.

Theorem 1 The Common-Ranking Successive Rules are maximal.

Theorem 1 is proved in Appendix A.

Once π is fixed, the corresponding Common-Ranking Successive Rule identifies a
maximum matching, but there may be multiple maximum matchings for a given fixed
interval profile which may not be reached, even if we allow the agent permutation π to
vary. This is because, for example, if two agents i and j with ki < kj , where these are the
respective indices of the last-ranked objects according to the common ranking in i’s and j’s
acceptance intervals, both have two consecutive objects, say ox and ox+1 in their acceptance
intervals, then if i is assigned ox and j is assigned ox+1 in a maximum matching, there is
also a maximum matching such that these assignments are swapped and i is assigned ox+1
and j is assigned ox, but the latter maximum matching cannot be reached by any Common-
Ranking Successive rule.

One may conjecture that if we use different orderings of the objects and apply a similar
sequential rule with a fixed permutation π then we can identify all maximum matchings.
While this is true, an arbitrary ordering of the objects may lead to a matching at some
interval profiles which is not a maximum matching, which we demonstrate in Example 2.
Therefore, in order to characterize all maximum matchings, we now introduce a more general
class of rules than Common-Ranking Successive Rules, called Successive Rules, which ensure
that the output is a maximum matching. These rules use different object orderings which,
together with the different tie-breaking rules π, allow for reaching all maximum matchings
for a given interval profile. Since we no longer use the common ranking of objects for the
following result, it applies in general to arbitrary acceptance sets, not just to problems with
a consecutive acceptance interval.

However, since we know that finding maximum matchings in an arbitrary bipartite
graph is a complex problem which has been solved already, in order to simplify this task
and provide accessible results, we assume for the rest of this paper that the interval profile
A is such that each agent i ∈ I can be assigned an object, and thus n ≤ m. This is not
necessarily a crucial assumption since our results could be generalized by accounting for the
omitted cases, but we believe that the increased technical detail that would be necessary
without this assumption would only distract from the clear intuition behind our results, why

2Note that we could define a symmetric set of rules which work the same way as the Common-Ranking
Successive Rules, except that they are based on the reverse order of the common ranking, starting from om.
The results hold for these rules as well.
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the assumption itself is quite realistic in our applications, as explained in the Introduction.

Definition 1: I-block

An I-block at interval profile A consists of a set of k agents and a set of k objects such that
the k agents only have these k objects in total in their acceptance intervals at A.

Note that it is not required that all k agents in an I-block have all k objects in their
acceptance intervals. We call this an I-block because the set of agents in an I-block can
only be assigned the objects in the I-block. Note that agents who are not in an I-block may
also have objects in an I-block in their acceptance intervals, but they also have some other
acceptable objects.

Definition 2: Minimal I-block for an object

The minimal I-block for an object at interval profile A is the smallest I-block containing the
object.

Note that a minimal I-block for an object always exists if there is an I-block which
contains the object. Moreover, it is unique, given our assumption that a maximum matching
µ is such that |µ| = n.

Example 2 I-blocks and minimal I-blocks.

Consider the two interval profiles below.3

A1 A2 A3 A1 A2 A3
a a a a a a
b b b b b

c c c c

Both interval profiles form an I-block with the three agents and three objects. The first
one is a minimal I-block for all three objects. The second one is a minimal I-block for
objects b and c. The minimal I-block for object a in the second interval profile is the I-block
consisting of agent 1 and object a. ▲

Let Σ denote the set of permutations of O, and denote the common ranking of objects
by σ̄ ∈ Σ.

3.4.2 Successive Rules

The Successive Rules work the same way as the Common-Ranking Successive Rules, with
two exceptions: (1) an arbitrary ordering of the objects σ ∈ Σ may be used instead of the
common ranking σ̄, and (2) if an object is in an I-block then it cannot be assigned to an

3In all the examples, the interval profiles indicate all the acceptable objects for agents, in the order of
the common ranking when relevant. Interval profiles do not indicate preferences over objects.
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agent who is not in the minimal I-block for this object; instead, the object is assigned to
the first agent according to π who is in the minimal I-block for this object.

Note that I-blocks need to be considered iteratively in the successively reduced problem
where agents who have already been assigned an object have been removed together with
their assigned objects. Each Successive Rule can be written as f̂σπ : A → M, which yields
a matching for each object ordering σ ∈ Σ and tie-breaking agent permutation π ∈ Π.

Example 3 A Successive Rule.

Consider the following interval profile with four agents and four objects:

A1 A2 A3 A4
a a
b b

c c
d d

Let the tie-breaking permutation be π = (1, 2, 3, 4). The common ranking is σ̄ = (a, b, c, d)
and the Common-Ranking Successive Rule f σ̄π yields matching µ̄ = (a, b, c, d). Now
consider the Successive Rule fσπ with object ordering σ = (b, c, a, d). Note that without
considering I-blocks the resulting matching would have been ν = (b, c, d,∅), since after
assigning b to agent 1, c would have been assigned to agent 2 based on the tie-breaking.
However, given that agents 3 and 4 and objects c and d form the minimal I-block for c, c
cannot be assigned to 2 and it is thus assigned to 3 who is the only agent in the minimal
I-block for c who can be assigned c. Thus, the resulting matching is µ = (b, a, c, d). Given
that |ν| < |µ̄| = |µ|, ν is not a maximum matching but µ is. ▲

The example demonstrates that using the common ranking to guarantee a maximum
matching is important, as already explained above, and thus Theorem 1 relies on the special
structure of consecutive acceptance intervals and would not hold for arbitrary acceptance
sets. If we use a different ordering of the objects from the common ranking then we need
to take special care to ensure that the resulting matching is a maximum matching. In fact,
it is interesting to note that the class of Common-Ranking Successive Rules is a special
case and a subset of the class of Successive Rules (fσπ)σ∈Σ,π∈Π, because when the common
ranking σ̄ is used as the object ordering by a Successive Rule, if an object is in an I-block
then the agent who is to be assigned the object (regardless of the tie-breaking rule) is always
in the minimal I-block for the object. Hence the rule simplifies to the Common-Ranking
Successive Rule and f̂ σ̄π = fπ.

Theorem 2 The Successive Rules are maximal. Moreover, a matching µ is a maximum
matching for interval profile A, given the tie-breaker agent permutation π ∈ Π, if and only
if there exists an object ordering σ ∈ Σ such that the Successive Rule f̂σπ yields µ at A,
that is, f̂σπ(A) = µ.

Theorem 2 is proved in Appendix B.

Theorem 2 not only says that Successive Rules are maximal but also provides a
characterization of maximum matchings. This theorem, unlike Theorem 1, does not rely
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on the special structure of consecutive acceptance intervals. It parallels the well-known
characterization of Pareto-optimal matchings in assignment problems, given in terms of the
existence of an agent permutation used by a serial dictatorship. As opposed to the existence
of an agent ordering for Pareto-optimal matchings, maximum matchings are identified by the
existence of an object ordering, since the tie-breaker agent ordering can be fixed exogenously.

3.5 Maximal Trading Rules and Sequential Dictatorships
While the maximum cardinality and Pareto-optimality of a matching are independent
properties, as shown by Example 1, for any preference profile there exists at least one
matching which is both maximum and Pareto-optimal. This is easy to see since starting
from an arbitrary maximum matching which is not Pareto-optimal we can make Pareto-
improvements until the matching becomes Pareto-optimal, without losing its maximum
cardinality property. Next we introduce the Maximum Endowment Hierarchical Exchange
Rules, which are a subset of the hierarchical exchange rules of Pápai (2000, [51]) and are
based on the principle of trading objects such that the initial endowments for trading include
a maximum matching, which guarantees a maximum matching after all the trading takes
place.

Let us recall that hierarchical exchange rules are generalized top trading cycle (TTC)
rules (Shapley and Scarf, 1974 [67]) and are based on the well-known original TTC algorithm
attributed to David Gale. For hierarchical exchange rules objects are endowed to agents
without necessarily endowing them in a one-to-one fashion, and each agent points to the
agent who is endowed with his favorite object, which could be the agent herself. Since I
is finite, there exists at least one cycle of pointing agents, and the agents in these cycles
are assigned the object for which they are pointing. The assigned agents and objects are
removed from the market, after which the new endowments of objects that are left behind
are determined. Each object is endowed to the highest priority agent who is still in the
market, and we repeat the procedure iteratively in the reduced market. For further details
and formal definitions see Pápai (2000, [51]).

Given a fixed interval profile A, each hierarchical exchange rule is associated with a
system of trading priorities which determines which agent is endowed with which object in
each round of the procedure.4 In our setup the system of trading priorities only allows to
endow agents with objects that are in their acceptance interval, which imposes a natural
feasibility requirement on the initial endowments and on inheritance in later rounds of the
procedure. This is a slight departure from the original definition, since in Pápai (2000, [51])
all objects were assumed to be acceptable to agents.

3.5.1 Maximum Endowment Hierarchical Exchange Rules

Each Maximum Endowment Hierarchical Exchange Rule is associated with a system of
trading priorities, in addition to an agent ordering π ∈ Π used for tie-breaking and to
an object ordering σ ∈ Σ, to determine a maximum matching using the corresponding

4A formal description of inheritance trees is given by Pápai (2000, [51]), and a more concise and general
definition of trading rights can be found in Pycia and Ünver (2017, [55]), which they call a structure of
control rights.
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Successive Rule. In order to ensure maximum matchings, a restriction on endowments is
imposed in Step 1, while Step 2 is the usual trading with iterative rounds.

Step 1: Given the Successive Rule f̂σπ, find the resulting maximum matching for interval
profile A, that is, determine f̂σπ(A). Let this matching be part of the initial
endowments. The rest of the trading priorities are fixed arbitrarily.

Step 2: The iterative procedure of trading objects as in hierarchical exchange rules, given
the system of trading priorities determined in Step 1.

Theorem 3 Maximum Endowment Hierarchical Exchange Rules are maximal, Pareto-
optimal and group strategy-proof.

Proof: In Step 1 of a Maximum Endowment Hierarchical Exchange Rule we use a
Successive Rule to find the initial endowments for agents together with arbitrarily fixing
the rest of the system of trading priorities. This step is independent of the preferences, so
agents cannot manipulate it. Then in Step 2 we run the hierarchical exchange rule based on
this system of trading priorities, which is shown to be individually rational, Pareto-optimal
and group strategy-proof by Pápai (2000, [51]). Finally, these rules are maximal since a
maximum matching is part of the initial endowments by Theorem 2, given Step 1, and the
individual rationality of hierarchical exchange rules ensures that the final matching is also
a maximum matching at each preference profile. ■

The following example demonstrates that the results in Theorem 3 cannot be extended
to the Trading Cycle rules of Pycia and Ünver (2017, [55]). As the example shows, this is
because if not all objects are acceptable to agents, the presence of brokers may lead to a
violation of individual rationality.

Example 4 Maximum Endowment Trading Cycle rules are not maximal.

Consider the preference profile shown below. Agent 1’s and 2’s acceptance interval is
{a, b, c}, and agent 3’s is {a}. Let the initial endowments be given by the maximum matching
(b, c, a). Assume that agent 3 is a broker.

≻1 ≻2 ≻3
a a a
b c ∅
c b b
∅ ∅ c

Here both agents 1 and 2 point to 3, and since agent 3 is a broker 3 points to 1 for object
b. Agents 1 and 3 trade their endowed objects and the final matching is µ = (a, c,∅), since
b is not in 3’s acceptance interval. Clearly, µ is not a maximum matching. ▲

Maximum Endowment Hierarchical Exchange Rules are not the only rules which are
maximal, Pareto-optimal and group strategy-proof. Although a maximum endowment is
sufficient to guarantee the maximality of the rule, it is not necessary. We can define, for
example, sequential dictatorships which have the same properties. The well-known and
straightforward serial dictatorships allocate objects based on an ordering of the agents, by
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assigning each agent sequentially. A sequential dictatorship as defined in Pápai (2001, [52])
is similar to a serial dictatorship, except that it only fixes the first agent in the ordering, and
subsequent agents in the ordering are determined based on the assignments of preceding
agents in the ordering. Before introducing similar sequential dictatorships that produce
maximal matchings in our setting, let us recall the definition of serial dictatorships.

Serial dictatorships (Satterthwaite and Sonnenschein, 1981 [66]; Svensson, 1994
[69]):

Each serial dictatorship is associated with a fixed agent ordering π ∈ Π. A serial dictatorship
assigns the first agent in π her first choice among all the objects, the second agent in π her
first choice among all the remaining objects, and so forth.

3.5.2 Maximal Sequential Dictatorships

Each Maximal Sequential Dictatorship is associated with a fixed agent ordering π ∈ Π.
Each agent is assigned her favorite object among the remaining objects according to π, just
like in a serial dictatorship, unless the favorite object of the next agent according to π, say
agent i, is in an I-block, given the remaining agents and objects, and i is not in the minimal
I-block for this object. In this case the agents in the minimal I-block for this object become
the agents to be assigned objects next. Using π as a tie-breaker among these agents in
the minimal I-block if needed, these agents receive their assignments subject to minimal
I-blocks as well. Once the assignments to agents in the minimal I-block are determined, we
return to agent i and continue iteratively according to π in a similar manner. Note that
I-blocks need to be considered iteratively in the successively reduced problem where agents
who have already been assigned an object have been removed together with their assigned
objects.

Theorem 4 Maximal Sequential Dictatorships are maximal, Pareto-optimal and group
strategy-proof.

Proof: Since sequential dictatorships in the case of full acceptance sets are hierarchical
exchange rules (see Pápai, 2000 [51]), Maximal Sequential Dictatorships in our setting are
also Pareto-optimal and group strategy-proof, which can be verified similarly. To see that
these rules are maximal, suppose by contradiction that there exist a preference profile ≻ ∈ R
and an agent permutation π ∈ Π such that the Maximal Sequential Dictatorship associated
with π assigns a matching µ to ≻ which is not a maximum matching. Let agent i be the first
agent according to π such that if the assignment of all previous agents before i according to
π remained the same but agent i was not assigned her favorite object o among the remaining
objects (i.e., µ(i) = o), then it is still possible to have a maximum matching, but once we
assign o to i the matching can no longer be a maximum matching. This implies that when it
is agent i’s turn to obtain her assignment at preference profile ≻ there is a minimal I-block
for object o, and agent i is not in the minimal I-block for o. Then the agents in the minimal
I-block are assigned their objects first, and given that in any I-block the number of agents
is the same as the number of objects, the minimal I-block requirement ensures that each
agent in the minimal I-block obtains an object. This means that object o is assigned to an
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agent other than i, which is a contradiction. Hence Maximal Sequential Dictatorships are
maximal. ■

3.6 Maximal serial dictatorships: An Impossibility Result
So far we have identified two classes of matching rules which are maximal, Pareto-optimal
and group strategy-proof, namely Maximum Endowment Hierarchical Exchange Rules and
Maximal Sequential Dictatorships. Both of these classes of rules are fairly complex,
since both involve the identification of I-blocks in an iterative manner. Even the subset
of Maximum Endowment Hierarchical Exchange Rules which start with the maximum
endowment based on a Common-Ranking Successive Rule require iterative trading rounds.
We now want to find rules that have similar nice properties but are simpler, and we focus
here on serial dictatorships that produce maximum matchings. Serial dictatorships are also
a subset of Pápai’s (2000, [51]) hierarchical exchange rules, namely, they are associated with
the same fixed trading priority ordering being assigned to each object (although in this case
the priorities don’t lead to any trading). These rules are vastly simpler than the matching
rules proposed in the previous section, and thus even though less equitable they are of
particular interest. Unfortunately our first result indicates that, depending on the interval
profile, serial dictatorships may not always produce a maximum matching regardless of
which agent ordering we use. This is in line with our understanding that most well-known
matching rules are not maximal.

Theorem 5 If there are at least four agents and four objects, there may not exist a maximal
serial dictatorship for an arbitrary interval profile.

Proof: We demonstrate this result by showing an example of an interval profile with four
agents and four objects for which no agent permutation guarantees that the corresponding
serial dictatorship yields a maximum matching at each preference profile. The example
can be extended to an arbitrary number of agents and objects by adding more agents and
objects such that the acceptance intervals for additional agents don’t include any of the
four objects in the example.

Let the interval profile be the following:

A1 A2 A3 A4
a a
b b b
c c c c

d d

First note that µ = (a, b, c, d) is a maximum matching at this interval profile, so each
agent is assigned an object in a maximum matching. If the agent permutation for the serial
dictatorship makes agent 1 or 2 last, then consider a preference profile where agents 1 and
2 both rank a first, and agents 3 and 4 rank b and c first, respectively. Then if agent 1 is
last then 1 remains unmatched, and if agent 2 is last then 2 remains unmatched. Similarly,
if the agent permutation for the serial dictatorship makes agent 3 or 4 last, then consider a
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preference profile where agents 1 and 2 rank b and c first, respectively, and agents 3 and 4
both rank d first. Then if agent 3 is last then 3 remains unmatched, and if agent 4 is last
then 4 remains unmatched. Therefore, there is no agent permutation that can guarantee a
maximum matching at this interval profile. ■

We know that if each agent finds all objects acceptable (i.e., Ai = O for all agents i ∈ I),
then all permutations of agents for a serial dictatorship result in a maximum matching.
Thus, one interesting question for our more restrictive setting is the following: for which
interval profiles would some permutations of agents give a maximum matching? Moreover,
if we can identify the set of interval profiles for which such an agent permutation exists,
can we characterize all the agent permutations which produce a maximum matching? We
address these questions next.

3.7 Block Serial Dictatorships
Now we introduce another class of matching rules, the Block Serial Dictatorships, and
we prove that these rules yield Pareto-optimal maximum matchings for a large subset
of consecutive interval profiles. We call these interval profiles solvable. Block Serial
Dictatorships are serial dictatorships with a restricted set of agent permutations, and thus
they are Pareto-optimal and group strategy-proof.

Definition 3: O-block

An O-block at interval profile A consists of a set of k agents and a set of k objects such that
each of the k agents has all of the k objects in her acceptance interval and no other agents
have any of these k objects in their acceptance interval at A. We will refer to agents in an
O-block as block agents.

An O-block is important because the set of objects in an O-block can only be assigned
to the agents in this O-block. Since k objects are available to k agents, the agents in an
O-block would not remain unmatched even if they were to choose their objects last and no
other objects were left. O-blocks have the property that a serial dictatorship restricted to
an O-block with any arbitrary agent ordering always matches each of the k agents to one of
the k objects, that is, a matching within an O-block is always a maximum matching, since
each agent in an O-block finds each object in an O-block acceptable.

Definition 4: Fully flexible agent

A fully flexible agent at interval profile A is an agent who has more objects acceptable than
the number of agents overlapping with her in terms of their acceptance intervals. Formally,
agent i is a flexible agent if

|Ai| > |{j ∈ I \ {i} : Ai ∩ Aj ̸= ∅}|.

Fully flexible agents are flexible in the sense that if each of the other agents were to
choose their favorite object before a fully flexible agent, a flexible agent would still have at
least one object left in her acceptance interval, regardless of the choices of the other agents,
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since there are fewer competing agents than acceptable objects for a fully flexible agent. A
special case of a fully flexible agent is an agent who has at least as many objects in her
acceptance interval as the total number of agents.

We will refer to the set of agents whose acceptance interval overlaps with i’s acceptance
interval the competing agents for i at a given interval profile. We will also apply this
terminology to subsets of Ai for agent i.

Definition 5: Flexible agent

A flexible agent at interval profile A is an agent who has at least one subset of her acceptable
objects for which the number of competing agents for i is less than the number of objects in
this subset. Formally, agent i is a flexible agent if there exists Āi ⊆ Ai such that

|Āi| > |{j ∈ I \ {i} : Āi ∩ Aj ̸= ∅}|.

Flexible agents are flexible in the sense that if each of the other agents were to
choose their favorite object before a flexible agent, a flexible agent would still have at
least one object left in her acceptance interval, namely in a subset Āi which satisfies the
above inequality, regardless of the choices of the other agents, since there exists a subset
of acceptable objects for these agents for which there are fewer competing agents than
acceptable objects for i.

Note that both fully flexible agents and block agents are flexible agents, so both of
these are special cases of the more general definition of flexible agents. Fully flexible agents
are clearly flexible agents since the definition of a flexible agent holds for the fully flexible
agent’s entire set of acceptable objects. Block agents are flexible agents because for the k
objects in the O-block there are k −1 competing agents, so the k objects in the block satisfy
the definition of a flexible agent.

The definitions of an O-block, fully flexible agents and flexible agents are all based on
the interval profile only (as opposed to the preferences), and we will apply them not only
to the entire problem with all agents and objects, but also to reduced problems with fewer
agents (and objects) after some of the agents are removed. It is an important property of
flexible agents that they remain flexible agents after the removal of other agents, and new
flexible agents may also emerge in such a reduced problem.

Using these above definitions we can now define interval profiles which are solvable. We
will say that such interval profiles have an iterated block structure (a more suitable name
than “iterated flexible structure”).

Definition 6: Iterated block structure and solvable interval profiles

An interval profile A has an iterated block structure if all agents can be removed using the
following iterated block procedure:

• Given the interval profile, there is at least one flexible agent.
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• Remove all flexible agents.

• Repeat iteratively based on the interval profile of the reduced problem.

If all agents can be removed this way then the interval profile has an iterated block
structure and we call it a solvable interval profile for short.

We have introduced O-blocks and fully flexible agents, less general notions of flexible
agents, since these are easier to identify and make the iterated block procedure more
intuitive, and can also speed up the procedure at the same time. These weaker notions
may suffice to identify some solvable interval profiles, however we need the full strength of
flexible agents to determine whether some interval profiles are solvable.

Example 5 A solvable interval profile.

Here is a solvable interval profile with seven agents and seven objects:

A1 A2 A3 A4 A5 A6 A7
a a
b b b

c c
d d d
e e e e

f f
g g

Step 1: Agents 2 is a fully flexible agent, since she has three acceptable objects and two
competitors. Agents 6 and 7 together with objects f and g form an O-block. Remove
agents 2, 6 and 7.

A1 A3 A4 A5
a
b b

c
d d d
e e e

Step 2: Agent 1 forms an O-block with object a. Agent 3 is now a fully flexible agent,
since she has four acceptable objects and three competitors left (in fact, only four
agents are left and she has four acceptable objects). Remove agents 1 and 3.

Step 3: Agents 4 and 5 remain only, who together with objects d and e form an O-block.
Remove these two remaining agents.

The interval profile is solvable since we could remove each agent following the iterated
block structure procedure. In this example we could remove all agents either as fully flexible
or block agents. ▲

An example of an interval profile which is not solvable can be found in the proof of
Theorem 5. Using this interval profile, we demonstrate next that having a larger acceptance
interval for agents is not necessarily better in terms of the acceptance interval being solvable.
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Example 6 A solvable interval profile may become not solvable when some of the acceptance
intervals become larger.

A1 A2 A3 A4 A1 A2 A3 A4
a a a a
b b b b b
c c c c c c c c

d d d d

The first interval profile is solvable. Agents 1 and 2 form an O-block together with
objects a and b. After removing agents 1 and 2, agents 3 and 4 together with objects c and
d form an O-block, and thus we can remove all agents using the iterated block procedure.

The second interval profile is the one used in the proof of Theorem 5 and is not solvable.
This interval profile doesn’t have any flexible agents. It is interesting to note that the
change is minimal between the two interval profiles: only agent 3 has one more acceptable
object, b, which turns a solvable interval profile into a not solvable one. ▲

We state next our main result, which is on the existence of maximal serial dictatorships.
It provides a characterization based on the iterated block structure of interval profiles.

Theorem 6 There exists a serial dictatorship which is maximal if and only if the interval
profile is solvable.

Theorem 6 is proved in Appendix C.

Now we define serial dictatorships which are maximal for solvable interval profiles,
following the proof of Theorem 6. The class of Block Serial Dictatorships is specific to
the interval profile and is not defined unless the interval profile is solvable.

Block Serial Dictatorships

Block Serial Dictatorships are serial dictatorships for solvable interval profiles with the
following agent permutations π ∈ Π. Fix a solvable interval profile A ∈ A. Apply
the iterated block procedure to A and keep track of when the agents were removed as
flexible agents. Use the reverse ordering of when agents were removed during the iterated
block procedure. Thus, flexible agents removed in step t are subsequent in π to flexible
agents removed in step t′, where t < t′. Flexible agents who were removed in the same
step of the iterated block procedure are interchangeable in π. In particular, block agents
within the same O-block are interchangeable in π, and agents in different O-blocks are also
interchangeable if they were removed in the same step of the iterated block procedure.

In order to find all agent permutations π ∈ Π for Block Serial Dictatorships for an
interval profile A, we need to identify each flexible agent in each step of the procedure
and remove them simultaneously. The resulting collection of all agent permutations for a
specific solvable interval profile constitutes the class of Block Serial Dictatorships for the
fixed interval profile A. Note that the agent permutations are independent of the preferences
and only depend on the interval profile.
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Next we illustrate Block Serial Dictatorships using previous examples of solvable interval
profiles. We indicate interchangeable agents in brackets.

Example 7 Agent permutations for Block Serial Dictatorships.

For the solvable interval profile in Example 6 the Block Serial Dictatorships are given
by the set of permutations ([3, 4], [1, 2]). This means the four permutations of (3, 4, 1, 2),
(3, 4, 2, 1), (4, 3, 1, 2), and (4, 3, 2, 1), since 3 and 4 are interchangeable, and so are 1 and 2.
Note that agents 3 and 4 always have to precede agents 1 and 2, otherwise agent 1 or 2
might be assigned object c which would not lead to a maximum assignment.

For the interval profile in Example 5, the Block Serial Dictatorships are serial
dictatorships with agent permutations ([4, 5], [1, 3], [2, 6, 7]). ▲

We show next that for solvable interval profiles only Block Serial Dictatorships lead to
a maximum assignment at each preference profile. We remark that two agents who have no
common acceptable object can clearly go in an arbitrary order, such as agent 1 versus agents
4, 5, 6 and 7 in Example 5, but we don’t need to include these additional permutations in
the class of Block Serial Dictatorships since they lead to equivalent outcomes. By contrast,
the interchangeability of agents indicated in brackets need to be included in the class of
permutations in general because they can lead to different assignments.

Two matching rules are outcome equivalent if they assign the same matching to each
preference profile.

Theorem 7 Given a solvable interval profile A ∈ A, a serial dictatorship is maximal if
and only if it is outcome equivalent to a Block Serial Dictatorship for A.

Theorem 7 is proved in appendix D.

Our last theorem below is stated for completeness.

Theorem 8 Given a solvable interval profile, Block Serial Dictatorships are maximal,
Pareto-optimal and group strategy-proof.

Theorem 8 requires no proof, since the maximality property of Block Serial Dictatorships
follows from Theorem 7, and it is well-known that serial dictatorships are Pareto-optimal
and group strategy-proof (see, e.g., Svensson, 1999 [70]).

3.8 Conclusion
In this paper we introduced a novel matching model in which one side of the market has
consecutive acceptance intervals according to a given commonly known ranking of the
objects on the other side of the market. We presented the Common-Ranking Successive
Rules which provide a straightforward method to find a maximum matching in this model.
We extended this set of rules to Successive Rules, which find all maximum matchings, for
the general case where we no longer assume the consecutiveness of acceptance intervals.
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We proposed two classes of matching rules which are maximal, Pareto-optimal and group
strategy-proof. One carries out top trading cycles starting from a maximum endowment,
while the other one is a sequential dictatorship which allows agents to choose their favorite
objects in a given order, but assuring maximality requires a complex way to identify who
is going to be next to choose.

Both of these are complex classes of algorithms, and thus we turned next to studying
serial dictatorships, which are simple greedy algorithms. Since not all interval profiles allow
for the existence of a maximal serial dictatorship, we characterize the set of interval profiles
for which a maximal serial dictatorship exists, and we identify all such serial dictatorships.
Each class of matching rules that we introduce and study are group strategy-proof, since we
assume that the acceptance intervals are common knowledge and cannot be manipulated.

The model with consecutive acceptance intervals describes realistic scenarios of matching
markets where agents may not be familiar with all items on the other side of the market, and
information acquisition about all items is either too costly or not feasible. Our assumption
that we study those consecutive interval profiles for which it is feasible to assign an object
to each agent is also plausible in applications, and it has the advantage that it allowed
us to present clean and intuitive results in this first study of maximal matching rules for
problems with consecutive acceptance intervals. While this assumption can be relaxed by
modifying some of our definitions to add more scope and generality, we believe that our
analysis provides a good theoretical foundation for market designers who are interested
in reaching maximal and Pareto-optimal matchings via algorithms with strong incentive
properties.

For future research, this model can be extended to the two-sided case where both sides
of the market have agents, and thus both sides rank each other. In this case the core
stability of this two-sided matching model would also be interesting to study, and the
compatibility of maximum Pareto-optimal matchings and core stability could be analyzed
with the aim of designing simple and efficient algorithms that provide desirable matching
outcomes. Furthermore, both one-sided and two-sided models can be studied when one
side of the market has multiple capacity, such as when employers are looking for more than
one employee, and thus all previous questions could be addressed in the framework of a
many-to-one matching model with consecutive acceptance intervals.

3.9 Appendices: Omitted Proofs

3.9.1 Appendix A

Theorem 1 The Common-Ranking Successive Rules are maximal.

Proof: Fix the tie-breaker agent permutation π ∈ Π. Suppose that the Common-
Ranking Successive Rule fπ does not yield a maximum matching, given the fixed interval
profile A. Let fπ(A) = µ. Since µ is not a maximum matching, there exists a matching µ̃
such that |µ̃| > |µ|. Without loss of generality, let µ̃ be such that for all i, j ∈ I and ox ∈ O,
if µi = ∅, µ̃(i) = ox and µ(j) = ox, then µ̃j ̸= ∅. Order agents according to when they
receive their assignment when fπ is applied to A, ranking the agents who are not assigned

33



an object in µ last. Denote this permutation of I by π̃.

Then there exists agent i ∈ I and object ox ∈ Ai such that µ(i) = ∅ and µ̃(i) = ox.
Given that µ = fπ(A), there is no agent-object pair that could be matched in addition to
the assignments made in µ, and thus there exists j ∈ I such that µ(j) = ox. Without loss
of generality, choose i such that j is the first agent with µ(j) ̸= µ̃(j) according to π̃.

Since ox ∈ Ai∩Aj and µ(j) = ox, it follows that the last object according to the common
ranking in Aj either precedes the last object in Ai, or the last object is the same in Ai and
Aj (in the latter case π(j) < π(i)). If Aj ⊆ Ai, then giving object ox to agent i instead of
agent j does not allow for a higher cardinality matching than µ, contrary to our assumption.
Therefore, since the last object in Aj is either the same as the last object in Ai or precedes
it, there exists at least one object oy ∈ Aj which precedes ox in the common ranking and
µ̃(j) = oy. Then, given that µ = fπ(A) and oy ∈ Aj , it must be the case that oy is assigned
to an agent in µ, otherwise it would have been assigned to j, since y precedes x in the
common ranking. Thus, there exists h ∈ I such that µ(h) = oy. Since oy precedes ox in the
common ranking, π̃h < π̃j . Given that µ(h) ̸= µ̃(h), this contradicts our assumption on the
choice of j. Therefore, µ is a maximum matching.

3.9.2 Appendix B

Theorem 2 The Successive Rules are maximal. Moreover, a matching µ is a maximum
matching for interval profile A, given the tie-breaker agent permutation π ∈ Π, if and only
if there exists an object ordering σ ∈ Σ such that the Successive Rule f̂σπ yields µ at A,
that is, f̂σπ(A) = µ.

Proof: We first show that the Successive Rules (f̂σπ)σ∈Σ,π∈Π are maximal. Suppose
by contradiction that this is not the case. Then there exist an interval profile A ∈ A, an
agent permutation π ∈ Π and an object ordering σ ∈ Σ such that f̂σπ(A) is not a maximum
matching. Let f̂σπ(A) = µ, for ease of notation. Let object o ∈ O be the first object in
σ such that if the assignment of all previous objects before o in σ remained the same but
agent j was not assigned o, given that µ(j) = o, then it would still be possible to have a
maximum matching. Let Ij be the set of agents who receive their assignments after j when
f̂σπ is applied to A. Let Ōj ⊂ O denote the set of objects assigned to agents in I \ Ij by
µ. Then there exists Ĩ ⊆ Ij such that | ∪i∈Ĩ Ai ∩ Ōj | = |Ĩ|, that is, there exists a subset Ĩ
of the agents who receive their assignment after j such that the total number of remaining
acceptable objects to agents in Ĩ, after all the agents before j got their assignments is the
same as the number of agents in Ĩ. Moreover, since a maximum matching is possible if o is
not assigned to j, while assigning o to j guarantees that the matching won’t be a maximum
matching, there is a feasible way to match each agent in Ĩ to a remaining object (i.e., an
object that is not in Ōj), and o ∈ Ai for some i ∈ Ĩ. This means that Ĩ and the objects
assigned to the agents in Ĩ in this feasible matching form in I-block when all the agents
before j have been assigned, and since o is assigned to one of these agents, the minimal
I-block for o exists and is a subset of this I-block. Since agent j is not in the I-block, j
is not in the minimal I-block for o either, and thus the Successive Rule f̂σπ cannot assign
object o to j at interval profile A. This is a contradiction and thus the Successive Rules
(f̂σπ)σ∈Σ,π∈Π are maximal.
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To show the second statement in the theorem, fix an interval profile A ∈ A, an agent
permutation π ∈ Π and a maximum matching µ at A. We will show that we can construct
an object ordering σ ∈ Σ such that f̂σπ(A) = µ. First identify agent i ∈ I who has the
shortest acceptance interval (i.e., among all agents, i has the fewest objects in Ai). If this
agent is not unique, break ties according to π. Let the first object in σ be agent i’s object
in µ: σ1 = µ(i). Remove i ∈ I and σ1 ∈ O and repeat the same step in the reduced problem
to find σ2. And so on, we can construct the entire object ordering σ ∈ Σ by repeating this
step iteratively. Given this construction of σ, and noting that there is no minimal I-block
for any object such that when an agent is assigned to this object by f̂σπ that agent is not
in the minimal I-block for the object, since µ is a maximum matching, it is easy to check
that fσπ(A) = µ.

3.9.3 Appendix C

Theorem 6 There exists a serial dictatorship which is maximal if and only if the interval
profile is solvable.

Proof:

1. If the interval profile is solvable then there exists a serial dictatorship which is
maximal.
Fix a solvable interval profile A ∈ A. Construct an agent permutation π ∈ Π following
the iterated block procedure applied to A by letting removed flexible agents in the
first step be last in π. If several flexible agents are removed in the first step they can
be ordered arbitrarily. Continue iteratively in the reduced problem, making sure that
flexible agents are ordered following the reversed order of the steps in which they were
removed. This way we get a particular permutation π of the set of agents I, since the
solvable interval profile A has an iterated block structure, which means that we can
remove and hence order all agents in this manner.
Now we show that the serial dictatorship based on π leads to a maximum matching.
By the definition of a flexible agent, regardless of how agents choose objects before
the next agent chooses, there is always at least one object still available to a flexible
agent, hence a reverse ordering of the flexible agents compared to the order in which
they appear in the iterative block procedure guarantees a maximum matching. The
ordering of flexible agents that are removed in the same step doesn’t matter, since
regardless of their ordering there is always at least one acceptable object remaining
for each agent when it is her turn to receive an object. In particular, it is clear that
each agent who is in an O-block gets an object no matter how the block agents in it
are ordered, and if there are multiple O-blocks in the same step of the iterative block
procedure then the definition of an O-block implies that there is no overlap regarding
the objects in different O-blocks, so any arbitrary ordering of block agents in π works,
as long as the block agents were removed in the same step. This proves that the
constructed π leads to a maximum matching.

2. If there exists a serial dictatorship which is maximal then the interval profile is
solvable.
Suppose, by contradiction, that there exists a serial dictatorship with agent
permutation π which is maximal for an interval profile A ∈ A, but the interval profile is
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not solvable. First apply the iterative block procedure to A and remove iteratively all
the flexible agents. Since A is not solvable, there is an iteration such that the reduced
problem with the remaining agents does not have any flexible agents (which may be
the entire problem). Let the interval profile for the remaining problem be denoted by
Ã and let the remaining set of agents be denoted by Ĩ. Ã is not solvable since there
are no flexible agents remaining. We will show that there is no agent permutation
for Ã that leads to a maximum matching at every preference profile, which will then
imply that there is no agent permutation for A that leads to a maximum matching at
every preference profile.
Fix an agent i ∈ Ĩ, and let this agent be the last one in π̃, which is a permutation of Ĩ.
Since i is not a (fully) flexible agent, |Ãi| ≤ |{j ∈ Ĩ \{i} : Ai ∩Aj ̸= ∅}|. Now consider
only the objects in Ãi together with the agents in Î ≡ {j ∈ Ĩ \{i} : Ãi ∩Aj ̸= ∅}. Note
that this even further reduced profile with agents Î and objects Ãi is a consecutive
interval profile, since removing agents does not change the consecutiveness of the
acceptance intervals for the remaining objects.
Given the common ranking (o1, . . . , om̃) of objects in Ãi, consider first No1 ∩ Î, the
set of agents in Î who have object o1 in their acceptance interval. Let an agent in No1

with the shortest acceptance interval rank o1 first, breaking ties arbitrarily. Remove
object o1 together with the agent who ranks it first, and repeat the procedure in the
reduced problem iteratively for o2, o3, and so on, until om̃ is reached. If for some
object ot there is no agent remaining who has the object in her acceptance interval
then the object remains unassigned, and the procedure moves on to the next object
in the common ranking. Note that agents with their removed objects that they rank
first, respectively, form a maximum matching for Ã when we remove agent i, given
that the Common-Ranking Successive Rule is maximal by Theorem 1.
We now show that each object Ãi is matched to an agent in Î this way (but it is
possible that not all agents in Î are matched). Note first that for all o ∈ Ãi, No∩Î ̸= ∅,
since otherwise agent i and o would form an O-block in Ã, which is a contradiction.
Suppose that some object o ∈ Ãi is unmatched. Since at least one agent j ∈ Î has
o in her acceptance interval and the matching is a maximum matching, j is matched
to another object o′ ∈ Ãi. Then o and o′ together are in at least two different agents’
acceptance interval among agents in Î, otherwise agent i would be a flexible agent
for Ã since objects o and o′ in Ãi would only have one competing agent (j) in Ã,
which is a contradiction. Therefore, there exists agent j′ ∈ Î \ {j} who has o′ in her
acceptance interval but is matched to a different object, o′′ ∈ Ãi, given that we have
a maximum matching. Since the sets of agents and objects keep expanding in each
iteration, while Ĩ and Ãi are finite, the iterative repetition of this argument leads to
a contradiction. Therefore, it is possible to match each object Ãi to an agent in Î.
Given that each matched agent in Î ranks her assigned object first, applying a serial
dictatorship to such a preference profile where agent i is last in π̃ (a permutation of
Ĩ) would not leave any object unassigned in i’s acceptance interval and agent i would
remain unmatched.
The above argument holds for an arbitrary agent i ∈ Ĩ, and thus no matter which
agent is last in π̃ among the agents in Ĩ, we can find preferences for the remaining
agents in the reduced problem for which the serial dictatorships based on π̃ does not
lead to a maximum matching within the reduced problem. This proves that the serial
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dictatorship based on π cannot be maximal when the interval profile is unsolvable.

3.9.4 Appendix D

Theorem 7 Given a solvable interval profile A ∈ A, a serial dictatorship is maximal if
and only if it is outcome equivalent to a Block Serial Dictatorship for A.

Proof: Given the definition of Block Serial Dictatorships, Part 1 of the proof of
Theorem 6 proves that a serial dictatorship applied to a solvable interval is maximal if
it is a Block Serial Dictatorship. We need to prove the converse, that is, we need to show
that if a serial dictatorship is maximal then it is outcome equivalent to a Block Serial
Dictatorship.

Let A ∈ A be a solvable interval profile. Fix a maximal serial dictatorship π ∈ Π.
Suppose that π is not a Block Serial Dictatorship for A. Then there exist some pairs
of agents i, j ∈ I such that agent i is a flexible agent for the first time in step t of the
iterated block procedure at A, agent j is a flexible agent for the first time in step t′ of the
iterated block procedure at A, t < t′ and i precedes j in π. Then, if Ai ∩ Aj = ∅ for all
such reversed agent pairs i and j, then there exists a Block Serial Dictatorship π′ which is
outcome equivalent to the maximal serial dictatorship π. If there exists a reversed pair i, j
such that Ai ∩ Aj ̸= ∅ then agent j is not a flexible agent when all the agents preceding
j in π, including agent i, are still in the problem. This means that for all Āj ⊆ Aj ,
|Āj | ≤ |{l ∈ I \ {j} : Āj ∩ Al ̸= ∅}|. Thus, there is a way for the preceding agents to choose
their favorite objects, following the agent permutation π, such that j does not have any
acceptable objects left unassigned when it is j’s turn to receive an assignment. This means
that the serial dictatorship π is not maximal, which is a contradiction.
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Chapter 4

Matching with Minimum Quotas

4.1 Introduction
The purpose of this study is defining a set of matching rules for the situations where the
agents on both sides of the market have preferences/priorities over the other side agents
and one side has minimum quotas. For instance, some places need at least a minimum
number of participants to be able to run a business or open a course, such as professional
workshop which needs a minimum number of registered people to be held or projects within
companies which cannot be run unless a minimum number of employees are assigned to
that project.

Standard matching rules and classic matching theory results do not apply in settings
with minimum quotas (see Fragiadakis et al., 2015 [24]). When minimum quotas are binding,
which is quite common in college admissions, course allocations, school choice, medical
residency allocation, etc., regular matching institutions cannot be easily adopted without
making serious compromises in terms of other important criteria, such as efficiency and
stability of the matching outcomes. Typically, artificially low maximum quotas are exposed
by designers to deal with such problems and this can significantly harm the efficiency, with
some of the desired resources (such as school seats and internships) remaining unused.
Such designs are far from being optimal, and the proposed algorithms satisfying minimum
quotas either result in substantially limited fairness and efficiency given the priorities over
agents or depend upon some predefined artificial priority ordering of agents which makes
the allocation severely unfair and lopsided in many settings. I will use more sophisticated
and innovative designs to suggest optimal ways of making practical allocation decisions.
Although compromises are necessary to a certain extent, trade-offs can only be exactly
described and hence minimized by thinking outside the box, as has been demonstrated by
some of the preliminary findings of Fragiadakis and Troyan (2017, [23]) in a similar setting.

Ehlers et al. (2014, [20]) show that a fair and nonwasteful matching may not exist when
we have the minimum quotas. Therefore, most of the existing literature have tried to deal
with fairness and nonwastefulness separately. Up to now, all the algorithms proposed by
papers working on minimum quotas work on some kind of weakened version of restricted
fairness which not only looks at fairness beyond the minimum restrictions (they accept
unfairness if making it fair violates the minimum constraints), but also adds some other
constraints to consider a matching rule, fair. Besides, they do not use a unified framework
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to find fair or nonwasteful matchings. For example, Fragiadakis et al. (2015, [24]) provided
two different classes of mechanism: 1) ESDA (Extended Seat DA) to find strategy-proof
fair matchings. 2) MSDA (Multistage DA) to find strategy-proof nonwasteful matchings.
They used a Precedence List (PL) of students and showed that MSDA is PL-fair (fair
with respect to PL). Both ESDA and MSDA algorithms may not find a matching which
is simultaneously fair and nonwasteful even if such a matching exist.

Fragiadakis and Troyan (2017, [23]) introduced another algorithm, DQDA (Dynamic
Quotas DA) which reduces the capacity of schools to ensure that the minimum quotas
for specific types will be satisfied after considering the preferences. Tomoeda (2017, [72])
showed that there always exists a fair and non-wasteful assignment if for each type of
students, schools have common priority rankings over a certain number of bottom students.

I will propose innovative new matching rules that minimize the negative features and
allow for constrained optimal matching outcomes, aiming for the best possible algorithm
which compromises to achieve efficiency and fairness. Moreover, I will introduce a unified
framework, based on the novel idea of constructing a representative directed graph that
summarizes all pertinent information on preferences, in order to compare and contrast
different matching rules, both already known and new ones that I will propose. The
objectives are twofold: 1) provide a unified framework in which to analyze and compare
all the relevant algorithms, 2) propose alternative new algorithms which are better in some
ways. All this allows market designers to choose from an array of matching rules according
to the unique criteria and objectives that apply in their specific real-life settings.

Using a unified framework, I identify algorithms which find a fair and nonwasteful
matching whenever it exists, unlike ESDA and MSDA (Fragiadakis et al., 2015 [24]).
Furthermore, my algorithms are more intuitive than the existing algorithms such as ESDA
and MSDA. In my method, I start by finding the range of possible assignments with and
without the minimum quotas. Based on these assignments I construct a representative
directed graph with feasible matched pairs as vertices. This will serve as a tool to find a
sequence of matched pairs which does not violate the preferences of the agents on one side
or the other side’s priorities and, if possible, both. This graph contains two types of arcs,
one pertaining to the preferences of one side of the market, and the other to the other side’s
priorities. The graph provides the basis for selecting a feasible matching which satisfies
minimum quotas and allows to select either a fair or a nonwasteful matching. In addition,
both criteria will be automatically satisfied whenever possible.

While existing applicable algorithms only partially deal with the issue of fairness versus
nonwastefulness, I am able to find intuitive solutions, taking advantage of the clear structure
of the graph, which exactly summarizes the information needed for making matching
decisions in the presence of binding minimum quotas. This will provide an ideal framework
to explore the trade-offs and the general compatibility of the nonwastefulness and fairness
notions.

I study the structure of the graph regarding different preferences of agents and minimum
quotas in order to gain a thorough understanding of the structure of the problem, which
will allow me to create new mechanisms for matching in the presence of minimum quotas.
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Based on my findings I prove that the graph can find fair and nonwasteful matchings,
if such matchings exist. Furthermore, I characterize the specifics of the model and the
preferences in terms of its representative graph, for which a fair and nonwasteful rule exists.
This will constitute a substantial improvement over current results and will integrate and
unify the existing algorithms.

Furthermore, in multicultural countries like Canada, respecting diversity is a crucial
aim in many situations. Diversity is very important to keep the country as a united whole,
bringing tons of benefits regarding different aspects. Therefore, to uphold diversity in terms
of gender, race, etc. at educational institutions, many impose maximum and minimum
quotas separately for different groups of students. Quotas that need to be filled minimally
with specific types of agents who need protection (e.g. students from minority communities)
are aimed at providing help and guaranteeing the balance of different types of agents at
the same time. However, fulfilling these objectives may not be fair for all agents, such
as for majority students, and may introduce inefficiencies even for those who are to be
protected. Nevertheless, having minimum quotas is one of the most common constraints
which matching models face in real life.

This project investigates how the normative principle of diversity and distributional
constraints may shape institutions in matching allocation problems. It deals with the design
of institutions whose outcomes meet desirable normative principles such as efficiency, equity,
and stability, in addition to diversity, the focus of my study. Specifically, I will investigate
the existence and capacity of matching rules to realize a diversity goal with the introduction
of minimum quotas for different types of agents, where the diversified matching outcome is
measured in terms of its type composition with respect to gender balance, the participation
of religious or ethnic minorities, age equality, disability, etc. The main objective is to
apply fundamentals of the matching literature framework to a diversity setting and analyze
the implications of diversity requirements for the design and functioning of the matching
allocation rules in practical applications, where the use of minimum quotas is both necessary
and desirable to achieve the distributional goals. The diversity objectives will be considered
together with efficiency, and fairness, and I will study and analyze algorithms that I propose
in a unified setting.

Therefore, I also generalize my results to settings with multiple agent types, for which
I will use a family of representative directed graphs, and all this will give us a new set
of algorithms to choose from and a much better intuitive idea of what is possible for
practical matching designers whose objective is to increase diversity and satisfy type-specific
distributional constraints.

This study will hopefully serve as a foundation for future research which will generalize
the newly designed algorithms to extend my findings to more complex matching models
with minimum quotas.

I review the existing literature in Section 2. In Section 3 I introduce the main ideas and
the model and its properties, with the aim of properly defining the model and its structure.
In Section 4 I define the properties of the matching rules. Section 5 discusses the properties
of graphs. In Section 6 I continue with defining my algorithms, CNWF and FCNW . In
Section 7 I introduce the theorems and results of my study. In Section 8 I show the relation
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between ESDA algorithm and my algorithms. In Section 9 I show the extension of the
algorithm to different types of the agents. Finally in Section 10 I conclude my research and
results.

4.2 Literature Review
There exist lots of real-life matching situations which need to consider minimum quotas.
However, there do not exist much work done in this field. On the other hand, a lot of work
has been done on matching under constraints or having maximum constraints.

The first paper on this is Roth (1986, [60]), introducing the rural hospitals theorem.
Abdulkadiroǧlu et al. (2005, [1]) studied New York City school admission system. In order
to keep the diversity of ability levels, New York City schools require Educational Option
(Ed Opt) through accepting students from different ranges of test scores.

In the presence of minimum quotas, some algorithms have used an imposed artificial
cap on the maximum capacities with an DA algorithm (Artificial Cap DA (ACDA)). For
example, the JRMP algorithm was used first by the Japanese government (2008), which
reduces the capacity of hospitals to make sure a feasible matching with respect to the
minimum quotas exists. The main limitation is that since the reduction does not consider
the preferences, lots of seats will be left empty. Consequently, ACDA is strongly wasteful.
Kojima (2012, [42]) illustrated this problem that some types of affirmative action quotas
not only do not help minorities who are supposed to be helped but also may actually
hurt them. That is why, Hafalir et al. (2013, [26]) tried to address the issue by using the
minority reserves. Some studies can be considered as a generalized version of Hafalir et
al. (2013, [26]). For instance, Kominers and Sönmez (2016, [43]) whose work allows for
slot-specific priorities and Ehlers et al. (2014, [20]) model which can be used if there are
more than two types of students. Ehlers et al. (2014, [20]) studied diversity constraints
in school choice and introduced a trading cycles-style mechanism similar in spirit to Erdil
and Ergin (2008, [21]). Although their mechanism is not strategy-proof, they proved that
there is no feasible mechanism that is strategy-proof, fair for same types and constrained
nonwasteful. In addition, there is no feasible mechanism that is strategy-proof and fair
across types. They introduced the impossibility theorem which is mentioned earlier. Based
on this theorem a fair and nonwasteful matching may not exist when we have minimum
quotas. Therefore, most of the existing literature have tried to deal with fairness and
nonwastefulness separately.

Fragiadakis et al. (2015, [24]) considered a model similar to the diversity constraints
model of Ehlers et al. (2014, [20]) but provided two different classes of mechanisms:

• ESDA (Extended Seat DA) which divides each school with total capacity Q into
two schools, one with the minimum quotas (l) as the total capacity and the other
(extended school) with Q − l as the total capacity. They rank each extended school
just after the original one and do not assign more than n−

∑︁
lc students to all extended

schools, letting the standard DA assign students to schools (n here is the number of
students). They fix an ordering of the schools and let the schools accept students one
by one in this order until Q − l students have been accepted across all of the extended
schools. They show that ESDA is strategy-proof and fair.
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• MSDA (Multistage DA) which uses a pre-defined ranking of students (Precedence
List (PL)). At each stage of DA they reserve the ∑︁

lc of students who have the lowest
rank according to PL and let the others be assigned to schools using a DA algorithm.
They prove MSDA is strategy-proof, nonwasteful and PL − fair (fair with respect
to PL).

Fragiadakis and Troyan (2017, [23]) introduced another algorithm, Dynamic Quotas
DA (DQDA), which reduces the capacity of schools to ensure that the minimum quotas
for specific types will be satisfied after considering the preferences. They showed DQDA
eliminates justified envies among same types and it is strategy-proof. Clearly because it
considers the preferences probably it is nonwasteful or at least less wasteful than ACDA.
Furthermore, Tomoeda (2017, [72]) studied matching with minimum quotas when there is
more than one type of agents. He investigated the structure of schools’ priority rankings
which guarantees stability and shows that there always exists a fair and nonwasteful
assignment if for each type of students, schools have common priority rankings over a
certain number of bottom students. Type-specific minimum quotas have been studied in
the matching problems between students and supervisors by Kawagoe and Matsubae (2017,
[36]). Kamada and Kojima (2018, [35]) focused on feasible, individually rational, and fair
matchings and characterized the class of constraints on individual schools under which
there exists a student-optimal fair matching. Yahiro, et al. (2018, [75]) introduced a new
type of distributional constraints called ratio constraints and developed a novel mechanism
called Quota Reduction Deferred Acceptance, which repeatedly applies the standard DA
by sequentially reducing artificially introduced maximum quotas. Westkamp (2013, [74])
studied complex (maximum) quota constraints in the German university admissions system.
An experimental analysis of the same system was conducted by Braun et al. (2014, [12]).

Furthermore, there are other studies carried out on matching with minimum quotas,
including some in computer science. First of all, the medical residency market was studied by
Roth (1984, [59]) followed by Martinez et al. (2000, [49]), Hatfield and Milgrom (2005, [29])
and Biró et al. (2010, [10]). Although Biró et al. have not introduced any explicit mechanism,
they studied the difficulty of finding stable matchings in the presence of minimum quotas
of the Hungarian college admission system. In addition, Kamada and Kojima (2015, [34])
analyzed the method used in Japan: capping the number of residents who can be assigned
to a given region. Hamada et al. (2016, [28]) studied matching with minimum quotas in
the hospital residency problem.

Li (2017, [47]) defined obvious strategy-proofness. He looked for a strategy such that
every outcome under this strategy is (weakly) better than every outcome under other
strategies. Given this definition, very few mechanisms will be obviously strategy-proof.
Therefore, Troyan and Morrill (2020, [73]) introduced a new approach to define obvious
manipulations which relax strategy-proofness instead of strengthening it.

4.3 The Model
I consider a many-to-one matching model which matches students to schools when both sides
of the market have preferences/priorities. Schools have minimum quotas and all agents on
one side are acceptable to the agents on the other side. I consider the minimum quotas as
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one of the feasibility constraints.

A market is given by (S, C, p, q, ≻S , ≻C).

It consists of:

• n students; S = {s1, s2, . . . , sn} and m schools; C = {c1, c2, . . . , cm}.

• q = {qc1 , qc2 , . . . , qcm} is the list of maximum capacities for each school.

• cj can be assigned to maximum qcj students where j ∈ {1, 2, . . . , m}.

• si can only be assigned to one school where i ∈ {1, 2, . . . , n}.

• p = {pc1 , pc2 , . . . , pcm} is the list of minimum quotas for each school.

• pc ≥ 0, qc > 0, pc ≤ qc and n ≥ qc + ∑︁
c′ ̸=c pc′ for all c ∈ C.

• ∑︁
c∈C pc < n <

∑︁
c∈C qc.

• ≻S (Students’ preferences): Each student s has a strict preference relation ≻s over C.

• ≻C (Schools’ priorities): Each school c has a strict priority ordering ≻c over S.

4.4 Properties of Matching Rules
The properties of matching rules which will be used in this chapter are introduced in this
section. All these properties are standard properties that have been studied extensively in
various models.

Definition: A matching is a mapping µ : S → C that satisfies;

1. µ(s) ∈ C for all s ∈ S,

2. µ(c) ⊆ S for all c ∈ C,

3. for any s ∈ S and c ∈ C, if student s has been assigned to school c in µ, we have
µ(s) = c if and only if s ∈ µ(c).

Definition: A matching µ is feasible if pc ≤ |µ(c)| ≤ qc for all c ∈ C under µ.

In other words, a feasible matching is a matching which respects schools’ capacities and
minimum quotas.

Definition: A matching rule is a function that assigns a matching to each preference
profile. Formally, a matching rule is f : R → M

Property 1: Student s justifiably claims an empty seat at school c under a matching µ
if c ≻s µ(s) and |µ(c)| < qc.

Property 2: A matching µ is nonwasteful if there is no student with a justifiable
claim for an empty seat under µ.
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• A feasible matching is nonwasteful if no student prefers a school with one or more
empty seats to her assignment and whenever a student s justifiably claims an empty
seat at school c, we have |µ(µ(s))| = pµ(s). This means that in a feasible nonwasteful
matching justifiable claims are allowed only if the student is needed to satisfy a
minimum quota.

• A feasible nonwasteful matching is called a Constrained Nonwasteful (CNW )
matching.

Property 3: Student s justifiably envies student s′ at school c under matching µ if
c ≻s µ(s) and s ≻c s′ for some s′ ∈ µ(c).

Property 4: A matching µ is fair (F ) if there is no student who justifiably envies
another student.

Definition 1: F&CNW matching
I call a matching which is both fair and constrained nonwasteful an F&CNW matching.

Property 5: A matching rule f is strategy-proof (SP ) if there do not exist i, ≻ and
≻̂i such that fi(≻̂i, ≻−i) ≻i fi(≻).

I present the impossibility theorem which shows that a feasible, fair and nonwasteful
assignment does not exist for some preferences when there are minimum quota restrictions.

Impossibility Theorem (Ehlers et al., 2014 [20]): In the presence of minimum
quotas, the set of feasible assignments that are both fair and nonwasteful may be empty.

This can be seen from the following simple example:

Example 1

Students’ preferences: Schools’ priorities and capacities:

s1 s2
c2 c3
c3 c2
c1 c1

c1 c2 c3
s2 s2 s1
s1 s1 s2

p 1 0 0
q 1 1 1

School c1 has a minimum quota which needs to be filled. Therefore, there are only 4
feasible matchings:

1. µ: If student s1 is assigned to c1 then s2 can be assigned to her top choice, c3. µ is
constrained nonwasteful but it is not fair since c3 ≻s1 c1 and s1 ≻c3 s2.

2. µ′: If student s2 is assigned to c1 then s1 can be assigned to her top choice, c2. µ′ is
constrained nonwasteful but it is not fair since c2 ≻s2 c1 and s2 ≻c2 s1.

3. ν: If student s2 is assigned to c1 then s1 can be assigned to c3. ν is fair but it is not
constrained nonwasteful since c2 ≻s1 c3 and there is an empty seat at c2. Although
s1 could be assigned the empty seat at c2 without violating the minimum quota
requirements, this would make the assignment unfair.
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4. ν ′: If student s1 is assigned to c1 then s2 can be assigned to c2. ν ′ is fair but it
is not constrained nonwasteful since c3 ≻s2 c2 and there is an empty seat at c3.
Although s2 could be assigned the empty seat at c3 without violating the minimum
quota requirements, this would make the assignment unfair.

It can be seen that in this case there is no matching which is F&CNW . ▲

4.5 Properties of Graphs
In this section I review some definitions related to graph theory and introduce some new
definitions that will be used later.

Definition: Directed graph
A digraph or a directed graph, is a graph which has a non-empty set of vertices and a

set of directed arcs or edges which is a set of ordered pairs of distinct vertices.

Definition: In-degree and Out-degree
The in-degree of a vertex is the number of arcs aimed to it and out-degree is the number

of directed edges (arcs) which leave this vertex.

Definition: Planar graph
Planar graph is a graph that can be drawn on the plane in such a way that its edges

(arcs) intersect only at their end or start points.

Definition: Chromatic number
The Chromatic number of a graph is the smallest number of colors needed to color its

vertices so that no two adjacent vertices (vertices sharing one arc) share the same color.

Definition: Topological order
Topological sort or topological ordering of a directed graph is a linear ordering of its

vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in
the ordering.

Definition: Directed acyclic graph
A directed acyclic graph (DAG) is a directed graph with no directed cycles. A directed

graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as
a linear ordering that is consistent with all edges directions1.

Definition: Dangling vertex
A dangling vertex is a vertex with the out-degree of zero.

Based on the dangling vertex definition, I introduce two new concepts:

1There are algorithms which in linear time find a topological ordering of a given DAG. Kahn’s algorithm
(1962, [33]) is one of them.
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Definition 2: Two-connected dangling vertex

A two-connected dangling vertex is a vertex with out-degree zero and in-degree two.

Definition 3: One-connected dangling vertex

A one-connected dangling vertex is a vertex with out-degree zero and in-degree one

4.6 Two New Mechanisms: CNWF and FCNW

Based on Ehlers et al. (2014, [20]), we know that there is no feasible mechanism that is
strategy-proof, fair and nonwasteful.

Extended Seats Deferred Acceptance (ESDA) and Multi Stage Deferred Acceptance
(MSDA), proposed by Fragiadakis et al. (2015, [24]), are SP algorithms that provide
fair and efficient (nonwasteful) matchings, respectively, but not both. That is, even if an
F&CNW matching exists, ESDA and MSDA may not choose it. A further shortcoming
of these two rules is that there is no clear relationship between them. In addition, MSDA
uses a predefined list of students which indeed weakens the fairness.

The main focus of my work is to fill this gap by providing an innovative and unified design
framework which allows for pinpointing the trade-offs and lets the designer prioritize over
the criteria of fairness and nonwastefulness, while also automatically selecting a fair and
nonwasteful solution when it exists. My algorithms, CNWF (Constrained Nonwasteful
Fair) and FCNW (Fair Constrained Nonwasteful) are not SP but find the matchings
which are both fair and CNW whenever they exist and if such a matching does not exist,
they select the constrained nonwasteful or fair matchings respectively, depending on the
designer’s objectives. We can even find a matching which compromises between fairness
and nonwastefulness (with different degrees of CNW and fairness).

4.6.1 CNWF and FCNW Algorithm

Let π be a permutation of S which I use as a tie-breaker.

• Step 1:

Start from using the schools maximum capacities with a standard DA to find a
matching µ regardless of the minimum quotas.

• Step 2:

Let um1 be the number of seats that need to be filled in order to satisfy the
minimum quotas in µ found in Step 1.2 If um1 = 0, µ satisfies the minimum quotas,
and the standard DA matching µ becomes the final matching. If um1 > 0, use

2um1 is the number of unsatisfied minimum quotas after Step 1.
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q′
cj

= max{pcj , |µ(cj)|1 − um1} as the schools’ capacities and find the matching µ′

using a standard DA. Here, q′
cj

is the max of pcj which is school cj ’s minimum quota
and |µ(cj)|1 which is the number of students matched to school cj in Step 1.

• Step 3:

Let student si be assigned to school cj under µ and cj′ under µ′. Then, student
si can be matched to one of the schools in the range of (cj . . . cj′) according to her
preferences. Therefore, we will have a set of potential matched pairs where each pair
consists of a student and one of the schools in her range of (cj . . . cj′).
If a student has only one school in her range assign that student to the school and
remove her from the game provided that the match is feasible. Furthermore, if only
one student has a school in her range, assign the student to this school and remove
both of them from the market only if either the school has an unsatisfied minimum
quota or it is the best remaining choice for the student provided that the match is
feasible. Update the unsatisfied minimum quotas and maximum capacities.

• Step 4:

Draw the following directed graph of all possible matches (I call this graph a CNWF
and FCNW representative graph or simply a CNWF and FCNW graph):

– Vertices: the school-student pairs found in Step 3 are the vertices.3

– Arcs: We have two sets of directed arcs:
1. NW -chain: One set of arcs which shows the student’s preferences. For each

student si there is an arc which goes from vertex (si, cj) to vertex (si, cj′) if
cj′ ≻si cj and cj is c′

j ’s immediate neighbor in si’s preference rankings.
2. F -chain: The other set of arcs which indicates the schools’ priorities. For

each school cj there is an arc which goes from vertex (si, cj) to vertex (si′ , cj)
if si′ ≻cj si and si is s′

i ’s immediate neighbor in cj ’s preference rankings

• Step 5:
Check the graph:

– Round k:

∗ Case 1: When we consider arcs in both NW-chains and F-chains4, if there is
no cycle then there is an F&CNW matching. If there are some cycles but

3Write down all the possible matches for each student si according to her preferences (if student si prefers
cj to c′

j , cj comes before c′
j). This list must indicate schools’ ranking according to the students’ preferences.

For example; s2 : c2, c3 means c2 and c3 are two possible matches for student s2 while s2 prefers c2 to c3.
4Note that just one set cannot have a cycle due to transitivity
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there is at least one vertex with out-degree zero (a dangling vertex), there
may be an F&CNW matching.
Start from the end points (top vertices) of the F -chains. Choose a vertex
with out-degree zero and assign the student in the pair to the school in the
pair (if the match is feasible).

∗ Case 2: If all vertices are in some cycles so that there is no vertex with out-
degree zero then there is no F&CNW matching. Then the two algorithms
are as follows.

1. FCNW : Start from the end points (top vertices) of the F -chains. If
taking the student-school pairs of the endpoints as final assignments
satisfies the minimum quotas, assign all students in the pairs to the
schools in the pairs. Otherwise, choose a vertex with the smallest out-
degree and make the corresponding assignment.

2. CNWF : Start from the end points (top vertices) of the NW -chains.
If taking the student-school pairs of the endpoints as final assignments
satisfies the minimum quotas, assign all students in the pairs to the
schools in the pairs. Otherwise, choose a vertex with the smallest out-
degree and make the corresponding assignment.

∗ If there is more than one vertex with the same out-degree assign all of the
students in the vertices to the schools in them as long as feasibility is not
violated. If you need to choose between them, then choose the one with
the highest in-degree5. In the case of having the same in-degree, the vertex
which includes a school with the highest minimum quota has the higher rank.
Otherwise, choose a vertex based on π.

∗ All the vertices which include the already matched students will be removed
from the market as well as the schools which have reached their maximum
capacity.

∗ Update the remaining unsatisfied minimum quotas and the maximum
capacities after each round.

– Iterate round k.

• The procedure terminates when all students are assigned, or all capacities are filled.

To further clarify how the algorithms work, here is a simple example.

5Except in the case of same zero out-degree. In this case one-connected dangling vertex is prioritized
over a two-connected dangling vertex since it is the only choice for the school in the pair (provided that the
match is feasible).
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Example 2

Schools’ priorities: Students’ preferences:
c1 c2 c3
s5 s3 s3
s3 s4 s4
s1 s1 s2
s2 s2 s5
s4 s5 s1

p 1 1 1
q 2 3 1

s1 s2 s3 s4 s5
c2 c2 c1 c2 c1
c1 c1 c2 c3 c2
c3 c3 c3 c1 c3
∅ ∅ ∅ ∅ ∅

CNWF and FCNW :

• Step 1:

Rounds\Schools c1 c2 c3
1 s5, s3 s1, s2, s4
q 2 3 1

• Step 2: um1 = 1 > 0

Rounds\Schools c1 c2 c3
1 s5, s3 s1, s2, s4
2 s5, s2, s1 s3, s4
3 s5 s3 s2, s1, s4
q′ 1 1 1

• Step 3:

s5 only has one school in her range of possible matches. Therefore, (s5, c1) is the first
assignment. We can assign them to each other and remove s5 from the market.
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• Step 4:

The CNWF and FCNW graph:

• Step 5:

– Round 1: (s3, c1) has out-degree zero. Assign s3 to c1 and remove s3 from the
market.

– Round 2: (s4, c2) has out-degree zero. Assign s4 to c2 and remove s4 from the
market.

– Round 3: (s1, c2) has out-degree zero. Assign s1 to c2. Finally, assign s2 to c3.
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– The final matching using CNWF and FCNW is µ =
(︁ c1 c2 c3

s3, s5 s1, s4 s2

)︁
,

which is F&CNW.▲

4.6.2 Methods to Speed up the Algorithms

There are some steps which can help increase the speed of the algorithms.

Let π be a permutation of students which I use as a tie-breaker and rsi
cj

be the rank of
si for cj ;

1. Minimum quotas restrictions may decrease the maximum capacity of schools. Then,
before running the algorithms we can modify the maximum capacities by replacing
them with real capacities.

Definition 4: Real capacity (req)

The real capacity of a school cj is:

reqcj = min{qcj , n −
∑︂
j ̸=j′

pcj′ }

2. At the beginning of Step 1, we can remove certain matches.

Definition 5: Certain Match

For any student si and school cj such that cj ≻si cj′ , ∀cj′ ∈ C, j′ ̸= j;

• If rsi
cj

≤ pcj then (si, cj) is a certain match.

• If rsi
cj

≤ reqcj and rsi
cj

≤ n −
∑︁

j ̸=j′ pcj′ then (si, cj) is a certain match.6

6If there is more than one student with the same situation, we choose students based on π as long as
the feasibility condition is satisfied (use n′ instead of n which shows the number of students remaining after
each assignment).
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• One-connected dangling vertex of an F -chain is a certain match (a student who
only has one possible school to match).

3. After each step, we can eliminate the forbidden matches, which are implied by fairness.

Definition 6: Forbidden match

If a student si is matched to school cj, the following matches are forbidden:

• ∀cj′ , j′ ̸= j and ∀si′ , i′ ̸= i such that cj′ ≻si cj and si ≻cj′ si′, (si′ , cj′) is a
forbidden match.

• ∀si′ such that si′ ≻cj si, si′ cannot be matched to any school which she ranks
lower than cj (∀si′ , cj′ : si′ ≻cj si if r

cj′
si′ < r

cj
si′ , (si′ , cj′) is a forbidden match

where r
cj
si′ is rank of cj for si).

4. After each step, we can eliminate the infeasible matches.

CNWF and FCNW find the range of the possible matchings based on DA algorithm.
That means, students propose according to their preferences and schools accept them
based on their priorities provided that the minimum quotas and real capacities are
not violated. Therefore, when we want to find an F&CNW , CNW or F matching,
CNWF and FCNW are not just assigning students to schools with respect to
students’ preferences and schools’ priorities with the aim of finding the F or CNW
matchings. Minimum quotas are imposing some restrictions on the matching problem,
making some matchings infeasible.

Definition 7: Infeasible Match

There are some fair, CNW or F&CNW matchings which can be selected if using a
standard DA algorithm; however, they are not feasible due to the minimum quotas
and school capacities.

• Let umt be the sum of unsatisfied minimum quotas and nt be the number of
unassigned students at Step t. If assigning si to cj makes umt > nt then (si, cj)
is an infeasible match.

• Let |µ(cj)t| be the number of assigned students to cj in Step t and |µ(cj)t| = reqcj
.

Assigning another student, si, to cj is not feasible. Then, (si, cj) is an infeasible
match.

The following is an alternative way of describing fair assignments in terms of the CNWF
and FCNW graph.
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Definition 8: Superiors’ priority

A matching µ satisfies the Superiors’ priority if in all NW -chains which include one of
the vertices in µ, none of the vertices superior to each of the µ vertices (assignments) is
superior to another vertex of µ in an F -chain.

A matching which satisfies the superior’s priority is fair. Therefore, if we are looking for
fair matchings by going backward through the F -chains (backward trips starting from the
top vertex of the chains and moving toward the vertices at the bottom of the chains), the
found feasible matching µ is fair if the superiors’ priority is not violated. This means that
even if the end points (top vertices) of the graphs’ chains satisfy the minimum quotas, we
may have more than one fair matching by conducting the backward trips through F -chains
provided that the superior’s priority is satisfied. Removing forbidden matches satisfies the
superiors’ priority. We can simply show that there is always a fair matching.

In the case of CNW matchings, moving backward through the NW -chains may lead us
to more CNW matchings as long as the matching is feasible (minimum quotas and school
capacities are respected).

4.6.3 Observations

1. A one-connected dangling vertex is part of an NW -chain. It cannot be part of a
F -chain because with out-degree zero and in-degree one, the vertex includes a student
which has only one possible school to match which is a certain match and cannot be
part of the graph.

2. The maximum out-degree of each vertex is two. The maximum in-degree of each
vertex is two. These are due to the fact that each vertex can be on at most one F -
chain and at most one NW -chain which result from the students’ preference ordering
and the schools’ priority orderings.

3. The graph shows the existence of a fair and CNW matching (Theorem 2 will prove
that if there is at least one vertex with out-degree zero at each round of Step 5 then,
there exists at least one F&CNW matching).

4. There may exist more than one F&CNW matching if there is more than one vertex
with out-degree zero in some rounds.

5. Removing infeasible matches satisfies constrained nonwastefulness.
The only reasons why we cannot have an NW match are the minimum quotas or
maximum capacities, therefore if we respect the feasibility constraints we can always
find a CNW match. I defined infeasible match as a match that violates schools
capacities or minimum quotas. Therefore, if we remove such a vertex7 from the graph
after each round (after each assignment), the final matching will be CNW .

6. Removing forbidden matches satisfies fairness. I defined a forbidden match as a match
that causes justify envies. Therefore, removing the vertices which include forbidden
matches from the graph will eliminate justify envies and satisfies fairness.

7The vertex that includes the infeasible match.
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7. In the case of ties (having more than one vertex with the same out-degree and in-
degree which includes schools with the same amount of unsatisfied minimum quotas),
if we use different tie-breakers (a permutation of students which is used to select the
assignments in case of ties), we can reach all F&CNW , fair or CNW matchings
whenever they exist.

4.7 Theorems and Results
Theorem 1 CNWF and FCNW select a feasible matching at each profile.

Proof: A feasible matching is a matching which satisfies the minimum quotas and total
capacities of schools. Therefore, based on the construction of the CNWF and FCNW ,
the algorithms select possible matchings separately for maximum and minimum capacities
of schools, allowing to choose the feasible matchings. In the basic algorithms we update
the schools’ capacities and unsatisfied minimum quotas after each round to make sure that
the feasibility constraints are not violated while in the speedy version of the algorithms
eliminating the infeasible matches at each round guarantees selecting only the feasible
matchings. ■

Theorem 2 If there is at least one vertex with out-degree zero after the assignment in each
round then there is at least one matching which is F&CNW .

Proof: Each vertex includes a matched school-student pair. Out-degree zero for the
vertex means that the student has the highest priority for the school among the remaining
students and also she prefers this school over the remaining schools. Such a matching is
clearly F&CNW . ■

Corollary to Theorem 2 CNWF and FCNW always select an F&CNW matching
whenever such a matching exists.

Proof: The procedure of the algorithms carries on by selecting the vertices with the
lowest out-degree. This means the vertices which have the out-degree zero will be the first
ones to be selected. If there is at least one vertex with out-degree zero at each step then
there is at least one F&CNW matching which the algorithms will select. ■

Theorem 3 CNWF and FCNW select a CNW or fair matchings respectively whenever
there is no F&CNW matching.

Proof: Based on the construction of the algorithms, if there is no F&CNW matching,
FCNW and CNWF find fair and CNW matchings using the end points (top vertices)
of F -chains or NW -chains or through the backward trips respecting the superiors’ priority
and feasibility constrains. ■

CNWF and FCNW eliminate some fair or CNW matchings because they use a range
of possible matches which may not include some feasible matches. Theorem 4 proves that
the matching selected by my algorithms maximizes the property that it cannot satisfy.
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Thus, the ranges do not eliminate the feasible matchings that are of interest.

I define the maximum degree of nonwastefulness as the minimum number of feasible
claims for empty seats and the maximum degree of fairness as the minimum number of
students with justified envy.

Theorem 4 FCNW selects fair matchings with the maximum degree of nonwastefulness.
CNWF selects CNW matchings with the maximum degree of fairness.

Theorem 4 is proved in Appendix A.

4.7.1 Properties of the CNWF and FCNW Graph

The CNWF and FCNW graph has some interesting properties. The following theorems
focus on these properties.

Theorem 5 The maximum chromatic number of the CNWF and FCNW graph is three.

Theorem 4 is proved in Appendix B.

Theorem 6 The CNWF and FCNW graph is planar.

Theorem 5 is proved in Appendix C.

Therefore, the CNWF and FCNW graph is planar with chromatic number three.
Moreover, if there is an F&CNW matching then the CNWF and FCNW graph has
some extra properties. Before dealing with these unique properties let me define some new
concepts.

Recall that if there is at least one vertex with out-degree zero at each round, then
there exists at least one F&CNW matching. However, as already mentioned, an F&CNW
matching may exist even if the CNWF and FCNW graph contains some cycles. To cover
such cases and clarify them, I introduce some new definitions.

Definition 9: Removable vertex

A vertex is called removable if it includes a student who has been already assigned or a
school with full capacity. A vertex including a pair whose matching is not possible due to
the unsatisfied minimum quotas is also removable.

55



Definition 10: Cycle breaker vertex

A removable vertex is called cycle breaker if it is part of a cycle such that its incoming
edge in the cycle is in an F -chain and its outgoing edge in the cycle is in an NW -chain or
vice versa8. Therefore, removing this vertex and consequently the corresponding edges will
break the cycle.

If the incoming and outgoing edge of a removable vertex are both from the same chain,9
removing this vertex cannot break the cycle, it just makes the cycle shorter since it does
not change the ordering of the vertices in the chain to which it belongs. In the following
example, removing vertex B from cycle (a) only transforms the cycle to a shorter one, cycle
(b), while removing any other vertex will break the cycle.

Definition 11: Breakable cycle

A cycle is called breakable if it contains at least one cycle breaker vertex.

Note that not all the cycles are breakable since they may not contain a removable vertex
which is also a cycle breaker and we know that a cycle breaker vertex is needed to break a
cycle while a cycle breaker vertex itself needs to be a removable vertex in the first place.

Definition 12: Semi-topological order

A semi-topological sort or semi-topological ordering of a directed graph is a linear ordering
of its vertices such that for each directed edge uv from vertex u to vertex v, u comes before
v in the ordering. If there is any breakable cycle, all vertices in this cycle will appear in
the ordering as a whole. Let us call this subset of vertices a cyclic clique. Therefore, all
vertices outside this cycle which are the starting point of a directed arc aiming to one of the
vertices in the breakable cycle will come before the cyclic clique and all vertices outside the
cycle which are the end point of a directed arc leaving one of the vertices in the breakable
cycle will come after the cyclic clique.

8(for example; 99K ◦ →)
9(for example; → ◦ →)
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Definition 13: Directed semi-acyclic graph (DSAG)

A directed graph is a DSAG if and only if it can be semi-topologically ordered.

I conclude all general and specific properties of the CNWF and FCNW graph when
there is an F&CNW matching in the next theorem.

Theorem 7 A matching is F&CNW if and only if the CNWF and FCNW representative
graph of its corresponding matching problem is:

-planar directed semi-acyclic graph,
-the maximum chromatic number of the graph is three,10

-there is at least one vertex with out-degree zero.11

Theorem 6 is proved in Appendix D.

4.8 ESDA and the FCNW and CNWF Graph
In this section I discuss the relation between my algorithms and ESDA algorithm and show
how we can get the ESDA results using the FCNW and CNWF graph.

Recall that ESDA divides each school into two schools. The first one with its minimum
quota as the capacity and the second one (the extended school) with the difference between
the school’s capacity and its minimum quota as total capacity. It ranks each extended school
just under the original one and then assigns students to schools using a DA algorithm but
does not let more than n −

∑︁
pcj be assigned to extended schools (n is the total number of

students and pcj is cj ’s minimum quota). They fix an ordering of the schools and let the
schools accept students one by one in this order until n−

∑︁
pcj students have been accepted

across all of the extended schools. We also know that ESDA finds fair matchings.

FCNW starts from the top vertices of F -chains and finds F&CNW matchings when
they exist, otherwise it finds fair matchings. If there is a unique fair matching then FCNW
gives us the ESDA result. In case of more than one fair matching, I proved that FCNW
algorithm always chooses the F&CNW matchings whenever they exist and if not, then it
chooses a fair matching with the maximum degree of nonwastefulness but ESDA may not
do that (it depends on the fixed ordering of the schools). Therefore, to get the ESDA
results, we need to change the way FCNW selects the matches after the FCNW and
CNWF graph is drawn (the first 4 steps stay the same). Then, starting from the end
points (top vertices) of F -chains, FCNW assigns students to school in these top vertices
based on the ESDA fixed ordering of schools until n′ = ∑︁

p′
cj

where n′ is the number of
remaining students and ∑︁

p′
cj

is the total number of unsatisfied minimum quotas. To do
this, after each assignment, n′ −

∑︁
p′

cj
must be updated to make sure there are enough

students to satisfy the remaining minimum quotas. When n′ = ∑︁
p′

cj
, FCNW selects the

10It can be two in easily recognizable cases such as when there are a small number of students and schools
involved in the matching problem.

11If there is more than one vertex with out-degree zero in some rounds, there may be more than one
F &CNW matching.

57



next top vertex of the F -chains which includes the first next school in the schools’ ordering
which has an unsatisfied minimum quota and assigns the student in this vertex to the school
and it keeps going on in the same way until all students are assigned. This will give us the
ESDA results.

4.9 Minimum Quotas with Different Types
As explained earlier, respecting diversity is a very important issue arising in many societies.
Diversity is crucial to unite a country. It also provides significant socio-economic benefits.
That is why increasing diversity is one of the main focuses of this study. My algorithms,
FCNW and CNWF , generally deal with the diversity issue through imposed minimum
quotas by finding matchings which are F&CNW , fair or CNW . Furthermore, the
framework of my algorithms, make it possible to define these minimum quotas separately
for different groups of agents (students) such as minority and majority students. The
ultimate goal in this case is providing help and fair chance for minority students, while
simultaneously guaranteeing the balance of different groups of students. I make it possible
by defining quotas that need to be filled minimally with specific groups of agents (students
who need protection such as minority communities) and introducing algorithms which select
fair and nonwasteful matchings. The different groups of agents are formally called different
types.

In this section I show that my algorithms, FCNW and CNWF , will also find F&CNW ,
fair and CNW matchings when one side of the market (the student side) includes different
types of agents. First, let us review an algorithm proposed in the literature which deals
with minimum quotas when there are different types.

Dynamic quotas deferred acceptance (DQDA) (Fragiadakis and Troyan, 2017, [23]):
decreases the schools’ capacities one by one through steps until the minimum quotas are
satisfied. It chooses a school-type pair (s; θ) and lowers the type ceiling at c and the capacity
of c by exactly one seat; the ceilings and capacities of the remaining schools are unchanged.
DQDA Pareto dominates ACDA, is SP and is fair among the same type.

4.9.1 The Model of Minimum Quotas with Different Types

Let me first add the definition of type to my model with minimum quotas:

The finite set of types for students is θ = {θ1, . . . , θr}, and each student is of exactly one
type. The function ρ : S → θ gives the type of each student, and Sθ is the set of students
of type θ. Types are fixed and common knowledge (i.e., types cannot be misreported).
In addition to a capacity, each school cj ∈ C, has a maximum capacity for each type
θ; {qθ1

c1 , . . . , qθr
c1 , . . . , qθ1

cm
, . . . , qθr

cm
} and a type-specific minimum quota for the number of

students of each type θ who must be assigned to it, {pθ1
c1 , . . . , pθr

c1 , . . . , pθ1
cm

, . . . , pθr
cm

}, where
pθr

cm
is the minimum number of students of type θr that must be assigned to school cm.

The easiest case is when the maximum capacities of a school for different types add up
to the school’s total capacity. In this case, each school can be simply divided into type-
specific schools, i.e., into r schools and everything else remains the same. It is like having
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r different markets with one type of students in each. Then all my results will easily apply.
In next section I show that even if it is not the case, my algorithms still apply to models
with type-specific minimum quotas.

4.9.2 FCNW and CNWF Algorithms:

Each student despite her type will be considered as an independent agent and will be
assigned based on the FCNW and CNWF algorithms’ procedure. The thing to note is
that the minimum number of each type which are needed to be filled must be considered as
another feasibility constraint. In Step 1 the schools’ maximum capacities for different types
are considered as the schools’ capacities separately. For example, if there are two types of
students, θ1 and θ2 and school cj has one capacity q for each type, qθ1

cj
= 1 and qθ2

cj
= 1,

then in Step 1, one student of type θ1 and one student of type θ2 will be assigned to cj . In
Step 2 we need to define the number of unsatisfied minimum quotas for each type at the
end of Step 1 and use it to define the schools capacities in this step. In Step 3 the range of
possible matches will be defined for each student of each type individually based on the two
previous steps and the rest of the procedure is the same as the case without types. Appendix
E presents an example which shows how the algorithms work with different types.

Theorem 8 In the presence of minimum quotas with different types, FCNW and CNWF
select a feasible F&CNW matching if it exists and if not then FCNW selects fair matchings
with a maximum degree of nonwastefulness and CNWF selects CNW matchings with a
maximum degree of fairness at each profile.

Proof: A feasible matching is a matching which satisfies the minimum quotas and
total capacities of schools for different types. Therefore, based on the construction of the
CNWF and FCNW , the algorithms select possible matchings separately for maximum
and minimum capacities of schools, allowing to choose the feasible matchings. Eliminating
the infeasible matches at each round guarantees selecting only the feasible matchings. Also,
if there is no F&CNW matchings, FCNW and CNWF , find fair and CNW matchings
respectively using the top vertices of F or NW -chains or through the backward trips as
long as the superiors’ priority is not violated. CNWF and FCNW eliminate some fair or
CNW matchings because they use a range of possible matches which may not include some
feasible matches. The proof of Theorem 4 in Appendix A shows that the matching selected
by my algorithms maximizes the property that it cannot satisfy. ■

Theorem 9 In the presence of minimum quotas with different types, if there is at least one
vertex with out-degree zero at each round (after the assignment in each round), there is at
least one matching which is F&CNW .

The proof is similar to the proof of Theorem 2.

4.10 Conclusion
In this chapter I introduced a matching model where one side of the market has minimum
quotas and strict priority over the other side, while the agents on the other side have
strict preferences. I have studied the models with minimum quotas in-depth, without and
with type-specific quotas, to provide a fundamental understanding of relevant cases and to

59



aid practical market designers. I elaborated the idea, defined the model and studied the
properties of the model.

Furthermore, I introduced two algorithms, CNWF and FCNW , which find F&CNW
(whenever they exist), CNW (with the maximum degree of fairness) or fair (with the
maximum degree of nonwastefulness) matchings.

I also discussed very useful and promising properties of the representative graph of my
algorithms. Chromatic number, planar graph and acyclic directed graph have interesting
properties with great potential for further research. These properties can be used to make it
easier to recognize the existence of a F&CNW matching by analyzing the graph or getting
the outcomes of other proposed algorithms.

This research addresses an important issue of real-world matching problems, namely,
respecting minimum quotas. Within the same framework, I introduced algorithms which
always select F&CNW matchings when they exist and otherwise select fair or CNW
matchings. My algorithms also work with different types of agents. I have introduced
the CNWF and FCNW algorithms in a single framework which provide alternatives to
three different and unrelated algorithms, ESDA, MSDA and DQDA.

My overall aim is to lay down an integrated theoretical foundation for building a more
prosperous society by ensuring that resources (including human resources) are used fairly
and efficiently.

4.11 Appendices

4.11.1 Appendix A

Theorem 3 FCNW selects fair matchings with the maximum degree of nonwastefulness.
CNWF selects CNWmatchings with the maximum degree of fairness.

Proof: Using unsatisfied minimum quotas to define the capacity of schools for the
second step of the algorithm eliminates some fair or CNW matchings. This may prevent
some students from being matched in the second step. Therefore, all schools below the one
she has been matched to in the first step will be included in her range of possible matches.
This means the top possible choice for the student does not change (the top vertex of NW -
chain does not change for any student). Step 2 shortens the range of possible matches for
each student but only less preferred schools from the bottom of her preference ordering
will be eliminated since in this step each student will be assigned to her best choice which
still lets the minimum quotas be filled. Therefore, all the remaining possible matches for
students are better options than the eliminated ones. In other words, the assignments by
CNWF and FCNW are as good as the removed matchings. Consequently, there would be
fewer claims and fewer justified envy instances.

When no F&CNW matching exists, we can find fair or CNW matchings. Consider
the FCNW algorithm. Since we start from the top vertices of F -chains, all schools are
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assigned to their top choices unless that match has been infeasible. Obviously, the number
of justified envy instances will be zero and the matching is fair.

I show that not only it is fair but also it has the highest degree of constrained
nonwastefulness. When we start from the top points of the F -chains, we chose vertices
with the minimum out-degree and in the case of a tie, the ones with the highest in-degree
are prioritized over others. This means that we chose vertices which are as high as possible
on the NW -chains too, provided that feasibility is not violated. Therefore, the number of
justifiable claims for empty seats will be minimized. It works for both the basic algorithm
and the speedy version. The same logic works for the CNWF algorithm.

Eliminating the forbidden and infeasible matches maximizes the degree of fairness and
nonwastefulness, respectively.

4.11.2 Appendix B

Theorem 4 The maximum chromatic number of CNWF and FCNW graph is three.

Proof: Each vertex in a CNWF and FCNW graph includes a student-school pair. The
maximum degree of each vertex is four (the maximum out-degree and in-degree are both
two) which means any vertex and its immediate neighbors can be independently colored 12

with two different colors. Each vertex is part of an NW and/or an F -chain. First, consider
only F -chains which are based on schools’ preferences. These chains are separated from each
other; therefore, they can easily be colored with two colors (for example we can color the
first vertex in each chain blue and continue coloring the next vertices alternately red, blue,
red and so forth). Now, we add the NW -chains which are based on students’ preferences
and connect the F -chains. NW -chains can be independently colored by two colors in the
same way as F -chains but when we put all of them together, two colors may not be enough
to color the whole graph. I show that only one more color is enough to properly color the
entire graph.

Consider an arbitrary NW -chain. If its vertices are already colored properly, we are
done. If an edge on this NW -chain connects two vertices with the same color, we simply
can change the color of either of them to the third color. Let us call the vertex which needs
the third color a conflicting vertex and color it green13. The only problem remains when we
are not able to color the conflicting vertex with the third color because one of its immediate
neighbors have been already changed to green.

Assume vertex (si, cj) is red while its two adjacent vertices on F -chain are blue and
green. Now we put this vertex also in an NW -chain where it has only one adjacent neighbor
which is red. We cannot color (si, cj) with any of our three colors since in that case it will
have the same color with one of its immediate neighbors. Remember we started coloring
F -chains with two original colors, blue and red. Then we added green to avoid neighbors

12Use the minimum number of colors to color the vertices of a graph in such a way that no immediate
neighbors have the same color.

13If the chain is connecting more than two vertices with the same color, we only need to alternately change
the color of the vertices to green.
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from having the same color when they became the end points of NW -chains’ arcs. That
means the green neighbor of (si, cj) in the F -chain, let us call it (si′ , cj), was originally
blue14 and it has been forced to turn green because of the color of its adjacent neighbors
including (si, cj). Now that (si, cj) itself has to change color, we can simply make it green
and turn its green neighbor (si′ , cj) to red. Note that we cannot turn (si′ , cj) back to blue,
since it has originally been blue and has turned to green because of the two adjacent blue
neighbors in an NW -chain and a red adjacent neighbor (si, cj) in the F chain. Now, if
(si′ , cj) has another adjacent neighbor in the F -chain which is red, we can make that one
blue and alternately change the next ones in the F -chain to red, blue, red and so forth. Even
in the worst case scenario, with recoloring of some parts, we will have a proper 3-colored
graph.

4.11.3 Appendix C

Theorem 5 The CNWF and FCNW graph is planar.

There are plenty of theorems regarding the planar graphs which can be used to check
the planarity of CNWF and FCNW graph15.

1. A corollary of Euler’s formula: If G is a connected planar simple graph with e edges
and v vertices, with v ≥ 3, and if G has no circuits of length 3, then e ≤ 2v − 4.

2. Five Color Theorem (Heawood Theorem): Every planar graph can be colored with at
most 5 colors.

3. Kuratowski’s and Wagner’s theorem: A finite graph is planar if and only if it does not
contain a subgraph that is a subdivision 16 of the complete graph K5 or the complete
bipartite graph K3,3.

A corollary of Euler’s formula provides a way to check the planarity of graphs and five color
theorem sets an upper bond for chromatic number of a planar graph. I use Kuratowski’s
and Wagner’s theorem to easily prove that CNWF and FCNW graph is planar. First, let
us officially define the K5 and K3,3 graphs.

Definition: k5
A complete K5 graph is a simple undirected graph with five vertices in which every pair

of the distinct vertices is connected by a unique edge.

Definition: K3,3
A bipartite (3, 3) graph is a graph whose vertices can be divided into two disjoint and

independent sets U and V such that every edge connects a vertex in U to one in V . A
complete bipartite graph K3,3 is a bipartite graph with three vertices in each set of its

14We alternately colored F -chains red, blue and so forth. Therefore if (si, cj) is red, its adjacent neighbors
in F -chain (si′ , cj) both must have originally been blue.

15There exist fast algorithms like Planarity testing which for a graph with n vertices, determine in time
O(n) (linear time) whether the graph may be planar or not.

16A subdivision of a graph results from inserting vertices into edges (for example, changing an edge •——•
to •—•—•) zero or more times.
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vertices where every vertex of the first set is connected to every vertex of the second set.

Proof:

1. No subgraph of the CNWF and FCNW graph can be a subdivision of K5.
For any K5 graph we need five vertices which are connected to each other. That means
that the degree of each of them should be four. Let us take an arbitrary vertex (si, cj)
with degree four and assume it is in a subgraph of CNWF and FCNW which is a
subdivision of K5. Two of the other vertices in this subdivision should be the neighbors
of (si, cj) in its F -chain and the other two are in its NW -chain with different F -chains.
There is no way for these two vertices to be connected to each other since the only way
for this to happen is having a cycle in a student’s preferences which is impossible since
preferences are transitive. With the same logic, for (si, cj)’s immediate neighbors in
its F -chain to be connected there must be a cycle in the school’s priorities which never
happens due to the strict priorities.

2. No subgraph of the CNWF and FCNW graph can be a subdivision of K3,3.
We know any complete bipartite graph needs two sets of vertices where the vertices
inside each set are not connected to each other but each of them is connected to all
the vertices in the other set. Therefore, for a CNWF and FCNW graph to be a
subdivision of a K3,3 graph, we need two disjoint sets of vertices. This means the
three vertices in each of these sets should belong to different F/NW -chains. We also
need all of them to be connected to all the three vertices in the other set. Let us take
two disjoint sets of vertices in a subgraph of our CNWF and FCNW graph. We call
one set V and the other U . Each of the sets V and U has three disjoint vertices.
Consider an arbitrary vertex, v ∈ V . Vertex v should be connected to three vertices in
U and based on the properties of our graph, we know that a vertex can be connected
to another vertex only if both of them belong to the same F or NW -chain. Assume
u, y, w are three disjoint vertices in U which are connected to v. Therefore, they
should belong to the same F -chain or NW -chain as v. There is no way that the three
of them could be connected to v without contradicting the disjointness constraint for
the vertices in each set. For instance, if u is in the same F -chain as v, then y can be
in v’s NW -chain. w is either on v’s F -chain or NW -chain which means it belongs to
the same chain as u or y since each vertex can belong at most to one F -chain and at
most to one NW -chain. This contradicts disjointness of u, y and w.

4.11.4 Appendix D

Theorem 6 A matching is F&CNW if and only if the CNWF and FCNW representative
graph of its corresponding matching problem is:

-planar directed semi-acyclic graph,
-the maximum chromatic number of the graph is three,
-there is at least one vertex with out-degree zero.

Proof: I have already proved that a CNWF and FCNW graph is planar and its
chromatic number is three. In addition, we know if all vertices are part of a cycle then
there is no F&CNW matching. That means whenever there is an F&CNW matching,
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there is at least one vertex with out-degree zero at each step. Therefore, to prove this
theorem we only need to prove:

1. If a matching is F&CNW then the CNWF and FCNW representative graph of its
corresponding matching problem is directed semi-acyclic.

Whenever a matching is F&CNW , there is at least one vertex with out-degree zero
at each step which goes to the top of the topological ordering of vertices. If no vertex
is in a cycle and since always in next steps there are new vertices with out-degree
zero, then it is possible to topologically order all vertices of the graph. If there are
some cycles, still there should be at least one vertex with out-degree zero which could
appear at the top of the ordering (the vertices which are the starting point of the arcs
aiming to this vertex come before it if their out-degree is one). When the algorithm
is working after assigning the student in this vertex to the school in it, there should
be at least one new vertex with out-degree zero; otherwise, there is no F&CNW
matching. If there is a new vertex with out-degree zero, it simply goes before the
vertex already on the top of the topological ordering. If there is no new vertex with
out-degree zero, the only way for having an F&CNW matching is that the remaining
cycle must be breakable. In that case we can write the vertices in the cycle as a whole
on the topological ordering, so the graph is directed semi-acyclic.

2. If the planar, 3-colorable CNWF and FCNW representative graph of a matching
problem is directed semi-acyclic and there is at least one vertex with out-degree zero,
then the corresponding matching selected by the CNWF and FCNW algorithms is
F&CNW .

When a graph is directed semi-acyclic then the graph is either acyclic (if there is no
cycle then the matching is F&CNW ) or if it contains a cycle, that cycle includes at
least one cycle breaker vertex and at least one vertex including the student of the cycle
breaker vertex is ranked higher than the other vertices of the cycle. That means when
we start assigning students to schools from the top of the chains, we have already
assigned the student of the cycle breaker vertex or the capacity of its school has been
filled. Either way the cycle has been broken, providing new vertices with out-degree
zero to go on with the algorithm. This procedure is iterated until all students are
assigned. We also know based on Theorem 2 that CNWF and FCNW always select
an F&CNW matching whenever such a matching exists.

4.11.5 Appendix E

Example 3 FCNW and CNWF algorithms with different types.

There are four schools, C = {c1, c2, c3, c4}, and three students, S = {s1
l, s1

h, s2
h} of two

types, θ = {l, h}.
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Schools’ priorities: Students’ preferences:

c1 c2 c3 c4
s1

h s1
l s1

l s1
h

s2
h s1

h s2
h s2

h

s1
l s2

h s1
h s1

l

pl 0 0 0 0
ph 0 0 0 1
ql 1 1 1 1
qh 1 1 1 2
Q 1 1 1 2

s1
l s1

h s2
h

c2 c2 c3
c3 c1 c4
c1 c4 c1
c4 c3 c2
∅ ∅ ∅

Using DQDA the final matching is ν =
(︁ c1 c2 c3 c4

− s1
l s2

h s1
h

)︁
.

FCNW and CNWF :

• Step 1:

Rounds\Schools c1 c2 c3 c4
1 − s1

h, s1
l s2

h −
2 s1

h s1
l s2

h −
ql 1 1 1 1
qh 1 1 1 2
Q 1 1 1 2

• Step 2:

uml = 0 ⇒ ql
c1 = ql

c2 = ql
c3 = ql

c4 = 0. Then we do not need to include type l quotas
in Step 2.

umh = 1 > 0 :

Rounds\Schools c1 c2 c3 c4
2 − − − s1

h, s2
h

q′h 0 0 0 1

• Step 3:
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• Step 4:

• Step 5:

There are two vertices with out degree zero. If we start with assigning s1
h to c1, and

then s1
l to c2, the next vertex with out degree zero is (s2

h, c3) which is not a feasible
assignment, due to the minimum quotas restrictions, s2

h must be matched to c4. The

final matching is µ =
(︁ c1 c2 c3 c4

s1
h s1

l − s2
h

)︁
.

If we start with assigning s1
l to c2 then in the next round there are two vertices with

out degree zero, (s2
h, c3) and (s1

h, c1).
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If we continue with selecting (s1
h, c1) and then (s2

h, c3), we will end up with the same
matching µ. On the other hand, if we first select (s2

h, c3), then (s1
h, c1) is not feasible

and the final matching is µ′ =
(︁ c1 c2 c3 c4

− s1
l s2

h s1
h

)︁
.

both matchings µ and µ′ are FCNW . ▲
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Chapter 5

Dynamic Marriage Markets

5.1 Introduction
While the majority of the matching literature deals with the static matching problems,
there are lots of situations where the matching markets are actually operating in a dynamic
environment. For instance, in a kidney exchange market, at any time, there are new patients
entering the patients’ list on one side of the market. On the other side, new kidneys may
be available while the matched patients and kidneys leave the market. There is a similar
situation in matching teachers (a new period begins at the beginning of a school year) or
medical staff to positions. Another ongoing situation is the refugee problem which also
can be considered a dynamic matching problem. Furthermore, dynamic matching could be
easily applied to marriage markets. New men and women enter the matching market at
the beginning of each period and they leave after finding their match. The purpose of this
paper is to define a matching rule with desirable properties when the agents on both sides
of the market have preferences over the other side in a dynamic environment.

Furthermore, it considers how each agent can select some of the agents on the other
side as her special options by giving them extra waiting time. While the agent’s preferences
only shows the ranking of the other side agents for an agent, my model defines a way to
reflect the fact that some options are much more preferred to others. This aspect rarely, if
ever, has been discussed in the literature while it is highly realistic especially in a marriage
market. Assume one agent is so important for another agent that not only has he ranked
her as his top choice but also he is willing to risk being unmatched for a while and wait
for her. In marriage market and many other similar matching problems, people want to be
able to wait if they think somebody or something is worth it. The structure of my model
and the dynamic environment of having more than one period make the waiting possible.
It is also realistic to assume that each agent only accepts a subset of available agents. In
addition, we cannot assume that an agent stays in the market forever after entering it if she
does not find her match. Since new agents enter the market in each period and the situation
changes over time, especially in a marriage market, agents must be able to update their
status at the beginning of the new period if they are unmatched. They need to have some
flexibility to change their mind over time about some of the previously declared statuses,
such as staying in or out of the market or expanding the acceptance sets, as it definitely
happens in real cases.
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I propose an innovative new matching rule which finds a stable matching in a dynamic
environment with realistic features of the model. This stable matching at the same time
is more fair for both genders (two sides of the market) since it does not favour either side,
minimizes the unrealistic assumptions and allows for both sides optimal matching outcomes.
If a two-sided optimal matching does not exist, it aims for the best compromises possible
to increase fairness in the sense of fair opportunities1. I also study the strategy-proofness
of my algorithm and address the issue of maximum cardinality.

My intention is to make the model as realistic as possible which makes it somewhat
complicated. However, for preserving the real aspects of the model, some complications
are inevitable. I characterize the dynamic specifics of the model, and study real life
considerations in marriage markets. This constitutes a substantial improvement over current
results in the sense that my model leads to a realistic matching in marriage markets and
avoids some constraints or unrealistic assumptions. Some already existing algorithms take
the set of available agents on one side (Pereyra, 2013 [54] and Liu, 2020 [48]) or both sides
(Kurino, 2020 [45]) fixed and only define multiple periods as the dynamic aspect of their
model. Others fix the number of periods (Du and Livne, 2014 [17]) or agents’ preferences
(Pereyra, 2013 [54]). There are models which assume that everybody knows who will join
the market in the future (Doval, 2020 [16]) or all agents can change their match in each
period (Kurino, 2020 [45], Kotowski, 2019 [44] and Damiano and Lam, 2005 [15]). None of
these assumptions are realistic for a marriage market and my model makes more realistic
assumptions. Regarding the two-sided offering algorithms, my algorithm avoids complicated
aspects of some existing algorithms such as making many offers by one agent at the same
time (Kuvalekar, 2014 [46]). It also modifies some issues of other algorithms, since it lets the
two sides make offers at the same time instead of only one side (Gale and Shapley, 1962 [25])
or one-by-one offering algorithms which are based on a pre-defined list of agents (Romero-
Medina, 2005 [56] and Dworczak, 2021 [19]). If there is no two-sided optimal matching, my
model does not favour one side nor uses other methods such as allowing men and women
to propose alternatively or finding a median stable matching (Teo and Sethuraman, 1998
[71]). Instead it provides the possibility to compromise and choose a matching which is not
optimal for either side and thus it is more fair because it gives both sides a fair chance.
I also provide some ways to increase the number of matched pairs in each period. These
methods make it possible for practical matching designers whose objective is maximizing
the number of matches to get matchings with higher number of matches.

I introduce new dynamic concepts and prove that my matching rule is dynamically
strategy-proof and stable. I also discuss dynamic optimality and show that my algorithm
is dynamically Pareto-optimal.

This paper aims to provide a foundation for future research which will generalize the
newly designed algorithm to other matching markets and extend my findings to more
complex cases.

The structure of this chapter is as follows: In Section 3 I discuss the related literature.
In Section 4 I introduce the model and its properties. In Section 5 I review some matching

1The meaning of fairness in this study is more like the common day to day meaning rather than fairness
in matching theory.
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properties related to this study. Section 6 is dedicated to my new algorithm, Dynamic
Marriage (DM) algorithm and new definitions related to it. In Section 7 I discuss the
findings of my study and present theorems. In Section 8 I provide some ways to increase
the number of matches in each period. Finally I conclude my study in Section 9.

5.2 Literature Review
In real life markets we can easily find lots of situations with multiple periods or repeated
matching problems. Nevertheless, these kinds of markets have only started to receive some
attention recently. Dynamic matching is generally a new topic in the matching literature
and there are only a few papers on it. Furthermore, although the characteristics of these
markets are different, all of them must have a main common feature; the next or previous
periods have influence on the present period’s matches. Otherwise they could be modeled
as separate single period matchings.

One of the most recent papers on dynamic matching is “Stability in Repeated Matching
Markets” by Liu (2020, [48]). He considers a fixed set of agents (hospitals) and calls them
long-lived players. Hospitals are matched to a new generation of agents, short-lived players
(medical students), in every period. In his setting, to make more students available for
rural hospitals, urban hospitals need to decrease their hiring capacity. In this case, if a
hospital does not respect the recommendation from the matching clearing house, it will be
prohibited from future participation in the market. Therefore, the dynamic feature of the
model has been used as a motivation or punishment tool to enforce more stable outcomes.

In another work, Arnosti and Shi (2020, [8]) consider a continuum of agents and a
new object which must be immediately assigned after entering the market. They defined
different types of lotteries and compared the results using different types of waiting lists in
term of welfare and some other properties.

Kurino (2020, [45]) studies a dynamic marriage model. In his model there is no entry
and exit of agents (women and men) who can change their partners at each period. In each
period t, each agent has a utility function which defines the preferred outcome for her. He
defines dynamic group stability for a matching µ when there is no group deviation: there is
no group of agents who are better off by deviating from µ and choosing another matching
µ′. He also assumes that when a group of agents deviate from a matching µ, the agents
inside this group can only be matched with each other and the ones outside the group whose
ex-partner is inside the group became unmatched.

There are three other recent studies on the dynamic context. The first one is “A Perfectly
Robust Approach to Multiperiod Matching Problems” by Kotowski (2019, [44]). Kotowski’s
model lets agent change their assignment over multiple periods. Each agent has preferences
over a sequence of assignments over time. The history and future of assignments can
affect the current period preferences. The second one is “Static versus dynamic deferred
acceptance in school choice: Theory and experiment” by Klijn, Pais and Vorsatz (2019,
[41]). Their work compares the static and a dynamic student proposing DA by using an
experiment. The last one is “Dynamically Stable Matching” by Doval (2019, [16]). She
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defines a dynamic stability concept based on the assumption that only agents available
in the same period are allowed to form a blocking pair. Furthermore, she assumes that
preferences are common knowledge and that every agent knows who will be available in the
market in future periods.

Andersson et al. (2018, [6]) studies dynamic refugee matching markets. They propose
a specific matching mechanism, Dynamic Order Mechanisms and show that any matching
selected by this mechanism is Pareto-efficient and satisfies envy bounded by a single asylum
seeker. In other words, envy between localities (such as states) is bounded by a single asylum
seeker, i.e., whenever some locality m envies some locality m′, the envy can be “eliminated”
by removing a single asylum seeker either from the set of asylum seekers matched to locality
m or from the ones matched to locality m′.

Bloch and Cantala (2017, [11]) worked on assigning objects to queuing agents in a
dynamic context. They considered a constant size waiting list of agents while the objects
arrive over time. Whenever a new object is available it is offered to the agents in the
waiting list starting with the agent at the top of the list. If she rejects the object, it is
offered to the next agent in the fixed sequence and if the object is rejected by all the agents,
it will be wasted. They showed that using a lottery to offer the object decreases and even
minimizes the waste while with both private and common values all agents prefer first-come
first-served to lottery.

Du and Livne (2014, [17]) studies a two-period matching market. In their model, agents
can decide to be matched in period 1 and leave the market or wait until period 2 when new
agents enter the market. They showed that there is a stable matching for agents who are
present in period 2. They also proved under some restrictive assumptions (such as a large
number of agents in period 1 and a small number of new arrivals), that on average at least
one quarter of all agents present in period 1 prefer to be matched before period 2, provided
that they anticipate others are going to wait until the next period.

Pereyra (2013, [54]) studies “A dynamic school choice model”. In his model the DA
algorithm matches teachers to schools. From one period to another, they can remain in
their current positions or apply for a more preferred one. In order to overcome the issue of
respecting the teachers’ improvement, he has moved each teacher who has been assigned to
a school in the previous period to the top of the schools’ priority list (which was originally
based on teachers’ grades from an evaluating test). This made the process manipulable.
Therefore, he assumes that teachers cannot change their preferences from one period to
another. He also assumes that the school positions are fixed, so actually one side of the
market is not changing.

Damiano and Lam (2005, [15]) have presented “Stability in Dynamic Matching Markets”.
In their paper, they assume that each agent can be rematched at the end of each period
and the payoff of the first period for each agent is equal to the sum of that period’s payoff
and the discounted payoffs of the next periods.

In addition, there are some studies that concentrate on two-sided offering. One of the
early ones is Teo and Sethuraman (1998, [71]). They showed that when the total number
of distinct stable marriage solutions, l, is odd, there is a stable marriage solution in which
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every person is assigned to a partner who is the “median” partner among all their possible
mates. Their study shows a way to find a matching which compromises between the men-
optimal and women-optimal matchings. It is neither men-optimal nor women-optimal, but
more fair since it does not favour any side.

Romero-Medina (2005, [56]) introduced an algorithm, called the Equitable Algorithm
which uses a fixed ordering of agents to compromise between both sides’ ideal matchings.
In his algorithm, agents propose based on a fixed ordering. At step k each person who
receives the proposal accepts it if the offer is among her k best choices and/or is better than
the proposal she has accepted in previous steps. In case of a rejection, the rejected agent
proposes to his second most preferred choice among her k first choices.

Dworczak (2021, [19]) presents a class of algorithms, called DACC (Deferred Acceptance
with Compensation Chains) in which both sides of the market are allowed to make offers
in an arbitrary order. Agents make their offers one at a time according to a pre-defined
arbitrary order. Based on his work, when all agents are allowed to propose, it is possible
that an agent rejects an offer from another agent from the opposite side but proposes to her
later on. As a consequence, the agent might withdraw an offer he made to another agent.
He uses a compensative system in a way that whenever some i deceives j, he compensates
agent j by letting her make an offer in the current round irrespective of the pre-defined
order.

Kuvalekar (2014, [46]) introduces an algorithm where both sides make proposals in each
round to a set of their top agents. In each round k, agents expand their acceptable sets
according to their preferences to their k top-ranked agents. The agents can only be matched
when they both list each other as mutually acceptable. If the agent is matched, she proposes
to only those agents that are better than her current match. Romero-Medina and Kuvalekar
later completed this study (2021, [57]).

5.3 The Model
It is a model to match agents to each other on two sides of a dynamic market. In my model,
the market runs for unlimited periods and at the beginning of each period new agents enter
the market while the matched agents leave the market at the end of each period. Only
the list of available agents on both sides of the market at the beginning of each period is
public knowledge. Each agent accepts a subset of available agents on the other side and has
preferences over the agents in her acceptance set. However, if one agent stays unmatched at
the end of one period, her acceptance set may expand in the next period. It is realistic to
assume that agents expand their acceptance set in fear of staying unmatched. Nevertheless,
no agent can kick out of her acceptance set an unmatched agent from the previous period.
Although the agents’ preferences change at the beginning of each period, given arriving new
agents on the other side or their expanding of the acceptance set, the preference ordering
over the unmatched agents from the previous period is the same. Furthermore, if any agent
adds other agents already present in the previous period to her acceptance set, she should
rank them lower than the agents who were acceptable in the previous period. Each agent
can only be assigned to one agent. These assumptions are all realistic in marriage markets.
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Formally, the marriage market is given by (M, W, T, L, ≻M , ≻W , POr).

It consists of:

• M t = {m1, m2, . . . , mnt} is a set of nt men on side 1 2 at the beginning of period t.

• W t = {w1, w2, . . . , wmt} is a set of mt women on the other side at the beginning of
period t.

• Mi
t = {wj ∈ W t: wj ≻mi ø} is the set of acceptable women for man mi in period t,

where i ∈ {1, 2, . . . , nt} and j ∈ {1, 2, . . . , mt}.

• Wj
t = {mi ∈ M t: mi ≻wj ø} is the set of acceptable men for woman wj in period t,

where i ∈ {1, 2, . . . , nt} and j ∈ {1, 2, . . . , mt}.

• T discrete periods of running time.

– t ∈ T is a number assigned to each period, i.e., t = 1 is the first period of the
market operation.

– Tmi ∈ T is the total number of consecutive periods that agent mi is present in
the market.

– tmi ∈ Tmi is the number of each period for agent mi after joining the market;
tmi = 1 is the first period that mi enters the market and it increases as he moves
unmatched to the next periods.

• L is the loyalty set.

– Lmi
t = {{wj : wj ∈ Mi

t} ⊂ Mi
t} is the loyalty set of man mi at the beginning

of period t.
– Lwj

t = {{mi : mi ∈ Wj
t} ⊂ Wj

t} is the loyalty set of woman wj at the beginning
of period t..

A loyalty set consists of subsets of consecutive top members of an agent’s preference
ordering whom she/he is loyal to. That means the agent is ready to wait for them
until the next period, provided that they are unmatched too.

• Each agent mi has a strict preference relation ≻mi over Mi
t.

• Each agent wj has a strict preference relation ≻wj over Wj
t.

• POrt (Proposing Order3) is a dynamic ordering of all agents at the beginning of
period t which will be used in case of a dead end4. It changes from one period to the
other and also will be updated whenever it is going to be used based on the current
situation of agents.5

2Through this chapter, I consider side 1 as men and refer to a member of this side (a man) as a he and
side 2 as women and refer to its members (women) as a she.

3I use P Or as an abbreviation for proposing order instead of P O to avoid the confusion with Pareto-
Optimal (P O).

4No rejection, no possible match.
5I explain in detail how P Or is updated in Section 6.
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Agents’ preferences, acceptance and loyalty sets are private knowledge. Nobody knows
who will enter the market in the future. At the beginning of each period, only the list of
available agents on both sides of the market is public knowledge.

The main dynamic aspects of my model are:

1. Time: The market runs for an infinite number of periods.

2. Agents: At the beginning of each period new agents enter the market and matched
ones leave it.

3. Preferences/Acceptance sets: The preferences/acceptance sets of agents can
change/expand at each period due to arriving new agents and due to the fear of
remaining unmatched.

4. Loyalty sets: Agents have the possibility to wait for the agents on the other side whom
they value much higher than others.

5. POrt: Not only will POrt change at the beginning of each period but also it will be
updated at any time based on the current situation of the agents.

5.4 Properties of Matching Rules
The properties of matching rules that will be used in this chapter are introduced in this
section. All of these properties are standard properties that have been studied extensively
in various models.

Property 1: A matching µ is individually rational if all agents prefer their current
mate under µ to being unmatched.

An agent mi is individually rational if he prefers his current mate under µ to being
unmatched.

Property 2: A matching µ is stable if there is no blocking pair, (mi, wj) who prefer
each other to their current mate under µ, and each agent is individually rational.

Property 3: Agent mi ∈ M t justifiably envies agent mi′ ∈ M t who is matched to agent
wj ∈ W t under an assignment µ if wj ≻mi µ(mi) and mi ≻wj mi′ . Therefore, (mi, wj) is a
blocking pair in period t.

Property 4: A matching µ is fair if there is no agent who justifiably envies another
agent.

Property 5: A matching µ is men/women-optimal if it is the best matching for all
men/women among all stable matchings.

Property 6: A matching rule f is strategy-proof if there do not exist mi, ≻ and ≻̂mi

such that fmi(≻̂mi , ≻−mi) ≻mi fmi(≻).
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Property 7: A matching µ is Pareto-optimal if it is not Pareto-dominated in the
sense that there is another matching which makes none of the agents worse off and at least
makes one agent better off.

A matching rule f is Pareto-optimal if it specifies a Pareto-optimal matching for
each preference profile.

Property 8: A matching µ is maximum (cardinality) if there is no other matching
µ′ such that |µ′| > |µ|.

5.5 Dynamic Marriage (DM) Algorithm
The agents’ preferences, loyalty and acceptance sets are private information. Only the list
of available agents at the beginning of each period is common knowledge.

Before introducing my algorithm, I provide some new definitions which will be needed
in the algorithm’s process:

Definition 1: Loyalty Set (L)

Lmi = {{wj , . . .} ⊂ Mi
t} is called the loyalty set of agent mi if it includes subsets of

consecutive top members of mi’s preference ordering whom mi is loyal to and is ready to
wait for until the next period, provided that they are unmatched too.

Each member of mi’s loyalty set is a subset of his acceptance set. The first member
should start from the top agent in his preference ordering and it is not possible to skip
agents.

Definition 2: Loyalty Loop (LL)

If a member of Lmi consists of more than one agent, I call it a loyalty loop (LLmi).

LLmi ∈ Lmi = {wj , wj′ , wj′′ , . . .} means that mi is willing to wait for the most preferred
member of this loop (let’s say wj) until the next period if wj is also unmatched and mi is
not matched to the next agents in the loop (wj′ , wj′′ , · · · ).

Therefore, loyalty loops are non-singleton members of loyalty sets.

Definition 3: Loyalty Loop Agents

For every LLmi = {wj , w′
j , · · · }, the agents wj , w′

j , · · · are called Loyalty Loop Agents.

If Lmi = {{wj}}, the loyalty set of mi includes only one subset of his acceptance set,
Mi. This subset itself includes only one agent, wj . The meaning of this loyalty set is that
whenever mi proposes to wj , if wj does not accept him, he will wait for her until the next
period in the hope that she will include him in her acceptance set in the coming period
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(provided that wj remains unmatched too).

If Lmi = {{wj , w′
j , · · · }}, the loyalty set of mi includes only one subset of his acceptance

set, Mi. This subset itself includes more than one agent and should start from the top of mi’s
preference ordering. This means that wj is the top-ranked agent for mi and wj , wj′ , · · · are
consecutive agents on mi’s preference ordering. Such a member of the loyalty set is called
a loyalty loop. LLmi ∈Lmi

= {wj , w′
j , · · · } means whenever mi offers to wj and wj does not

accept him, he will not wait for her but offers to the next agent in the loop, w′
j . If she

rejects or does not accept him, then he goes to the next in the loop without waiting for
w′

j until he gets rejected or not being accepted by all the agents in the loop, then he goes
back to the top of the loop and reoffers (one offer per round) to the first agent who has not
rejected him (the agent who does not accept him and he prefers her to all the other loop
agents who have not rejected him) and waits for her until the next period. An agent may
have more than one LL.

Let me clarify the definition of the loyalty set and loyalty loop and their difference with
a simple example:

Example -1

Assume that mi has the following preference ordering over a set of five available women
all of whom he accepts:

w2 ≻mi w4 ≻mi w5 ≻mi w1 ≻mi w3

Let us assume that Lmi = {{w2}, {w4, w5, w1}} is the loyalty set of mi. First of all,
agents w2, w4, w5 and w1 are consecutive top members of mi’s preference ordering. So, as
mentioned, all agents in mi’s loyalty set must be top consecutive members of his acceptance
set starting with the top one who is w2 in this case. mi’s loyalty set consists of two members,
{w2} and {w4, w5, w1}, which are subsets of her acceptance set. Furthermore, {w4, w5, w1}
is a loyalty loop since it consists of more than one agent; LLmi = {w4, w5, w1}.

When the algorithm starts, mi proposes to his top-ranked woman, w2. If w2 rejects him
in favour of a more preferred man, he will propose to his next most preferred woman, w4.
But if w2 does not accept him simply because he is not in her acceptance set, then he will
wait for her until the next period, hoping that w2 will include him in her acceptance set in
the next period. Admittedly, if w2 does not include mi in her acceptance set in period 1,
he will wait for her until the next period provided that w2 is unmatched too (she has not
received any offer from her acceptable men) in hope of finding his way to her acceptance
set. However, if w2 receives offers from her acceptable men, she will reject mi. Now let us
say w2 has mi in her acceptance set but she receives a better offer in period 1. Then she
rejects mi in favour of the more preferred man. Then mi will propose to his next preferred
woman, w4. If w4 rejects him, he will propose to w5. He also will propose to w5 if he is not
acceptable to w4 (he does not wait for w4). If he is not in w5’s acceptance set or w5 rejects
him in favour of a more preferred man, then he will not wait for her either and will propose
to w1 who is the last member of his loyalty loop. If w1 does not accept him or rejects him
then he will go back to the top of her loyalty loop, w4. If w4 has not rejected him before
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(otherwise he goes to the next one in the loop who has not rejected him yet) and will wait
for her until the next period, provided that w4 is still unmatched. The difference between
{w2} and {w4, w5, w1} is that mi moves to the next subset (here from {w2} to {w4, w5, w1})
only if he has been rejected by all members of the subset, but inside the loyalty loop he
moves between agents w4, w5 and w1 if he is rejected or not acceptable. If w4 rejects him, he
is not in w5’s acceptance set, and w1 rejects him too, then he will wait for the top member
of the loop who has not rejected him, w5. ▲

Remark: As mentioned before, if one agent stays unmatched at the end of one period,
her acceptance set may expand in the next period (she cannot exclude any unmatched agents
who were in her acceptable set in the previous period). The agents’ preferences change at
the beginning of each period, given arriving new agents on the other side or expanding the
acceptance set. But their preferences over unmatched agents from the previous period do
not change. If any agent adds other agents already present in the previous period to her
acceptance set, she should rank them lower than the other agents in the previous period
who were acceptable.

The next four definitions, 4 to 7, are needed to define the POr list, which is given in
Definition 8.

Definition 4: Super Loyal Agent

An agent mi is called super loyal to agent wj in step t if wj ∈ Lmi for all the periods that:

1. wj has been in the market such that Twj > 1 and;

2. mi has been in the market such that Tmi > 1.

Agent mi is super loyal to agent wj if he includes her in his loyalty set in every period
in which they are both in the market, provided that both of them are in the market for
more than one period.

Definition 5: TD
tmi
mi (Tolerance Degree)

At period t, TD
tmi
mi is the number of agents in L

tmi
mi .

In any period t, the Tolerance Degree of agent mi is the number of agents from the
other side of the market that he includes in his loyalty set and is willing to wait for until
the next period if they are unmatched too.

Definition 6: TTD
tmi
mi (Total Tolerance Degree)

TTD
tmi
mi = ∑︁tmi

1 TD
tmi
mi .
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The Total Tolerance Degree for agent mi is the sum of all TDs for all the periods he
has been in the market.

Definition 7: Waiting agent

Agent mi is called a waiting agent if he has made an offer to one of the agents in his loyalty
set and has been waiting for her to accept him or reject him in favour of a more preferred
agent in subsequent periods.

Definition 8: POrt (Proposing Order)

POrt is a dynamic ordering of all available agents at the beginning of period t based on
the number of periods they have been in the market and their TTD and TD, but it will be
updated whenever it is going to be used.

• Original POrt: Generally at the beginning of period t, in the original POr6:

– The most present agent in the market (agent mi who has the highest tmi) goes
to the top of the list and the more recent agents go after her/him from the older
to the new comers.

– In case of a tie, the one with the highest TTD comes first, if they have the same
TTD, the one with the highest TD for that period goes first.

– If there is still a tie then we need to use an arbitrary tie-breaker.

• Updated POrt: Since the nature of my model is dynamic, POr is dynamic too. That
means that not only does POr change at the beginning of each period but also whenever
we want to use it we need to update it based on the current situation of all remaining
agents:

– If the top agent of POr is a waiting agent, then the agent who has proposed to
her jumps before her on the list.

– If there is no such an agent then the agent who is after the waiting agent, will
go first.

– The new waiting agents go before the ones transferred from previous periods.
– An agent who is waiting on a super loyal offer which is an offer made by a super

loyal agent to the one she/he is super loyal to, goes after agents who are waiting
on a loyal offer which is an offer made by a loyal agent to the one she/he is loyal
to.

Remark: In case of a dead end at period t (no rejection, new offer or matching is
possible), we take the original POrt as a reference. The agent at the top of the POrt is the
first one who has to change her/his proposal and make a new offer to her/his next preferred
agent unless she/he is waiting on a reactivated offer from the previous period or waiting

6Original P Ort is the P Or defined at the beginning of each period t based on the seniority, T T D and
T D.
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on a new offer she/he has made to one of the agents in her/his loyalty set. In this case
the POr will be updated and the agent who has made an offer to the waiting agent will
jump in front of her/him. If there is no such an agent then simply the one who is after
the waiting agent in the original POr will jump before her/him. Note that as mentioned
in the POr definition, the new waiting agents go before the ones transferred from previous
periods. That is because if an agent has been waiting for the other one until the next period
specially for more than one period, it is not fair to make her/him deviate from that offer.
In addition, an agent who is waiting on a super loyal offer goes after agents who are waiting
on a loyal offer.

At the beginning of each period, agents report their loyalty set, based on their acceptable
agents in the same way that they report their preferences. The loyalty sets are private
knowledge and could be completely different from the previous period. Agents have the
flexibility to change their mind regarding whether they want to wait for somebody any
more. This is a realistic assumption since people naturally become inpatient when period
after period they remain unmatched, and also because of new arrivals who might be more
interesting. That is the way a human mind normally works.

5.5.1 Dynamic Marriage (DM) Algorithm

1. Agents on both sides of the market propose at the same time to their most preferred
agent.

2. Agents receiving more than one offer keep the most preferred one and reject others.

3. If wj ∈ Mi
t and mi ∈ Wj

t, when wj rejects mi, the rejected agent makes an offer to
his next preferred agent based on his preference ordering, since he has been rejected
in favour of a more preferred agent and he has no chance with wj .

4. If wj ∈ Mi
t but mi /∈ Wj

t, whenever mi proposes to wj ;

(a) If wj /∈ Lmi then mi will be automatically rejected by wj and he will propose to
his next preferred agent on his preference ordering.

(b) If wj ∈ Lmi then mi’s offer will stay active until wj rejects him in favour of
another agent. Then mi will propose to his next preferred agent.

(c) If wj ∈ Lmi and wj does not reject mi in favour of another agent, it means that
wj has not received any offer from one of her acceptable agents and she will
remain unmatched at the end of this period together with mi who wants to wait
for her until the next period, hoping that she will include him in her acceptance
set in the next period. So, mi will not make an offer to his next preferred agent
at this period and his offer to wj will stay valid until the next period.

(d) If wj ∈ LLmi ∈Lmi
and wj does not reject mi in favour of another agent, it means

wj has not received any offer from one of her acceptable agents and she will
remain unmatched at the end of this period. But mi will not wait for her unless
he gets rejected or is unacceptable by other members of the loop. In that case
mi will be unmatched too and waits for her until the next period provided that
wj is the most preferred mate in mi’s loyalty loop who has not rejected him.
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5. If mi enters a new period with a passive offer to wj , all new arrivals and new added
agents to mi’s acceptance set must be ranked under wj , since she is an important
agent who is worth waiting for. Agents can update their loyalty set at each period.
As mentioned before, all members of loyalty set must be the top consecutive agents of
mi’s acceptance set. Here there is a special case which must be considered carefully.

Let us consider a case when mi has been waiting on a passive offer to wj moved to
period t + 1 from period t. This means mi was not acceptable to wj at period t but
wj was in loyalty set of mi, then mi waited for her until t + 1. Now at t + 1 he does
not want to include her in his loyalty set again simply because if wj does not include
him in her acceptance set in t + 1 or if does and then rejects him in favour of a more
preferred man, then mi will not want to wait for her for another period and will want
to propose to his next preferred woman. Then assume some new agents enter the
market and mi wants to add them to his acceptance set. As mentioned before, they
must be ranked under wj because mi is waiting on a passive offer to wj , actually, wj

is the top agent in mi preference ordering. While mi does not want to wait for wj any
more (if wj does not accept him or if she rejects him), he wants to put other women of
his acceptance set in his loyalty set without including wj , the rule that says a loyalty
set must start with the top member of preference ordering (which is wj here) will be
violated. To cover this case, I add a condition to the loyalty set definition as follows:

The agents in mi’s loyalty set are the top consecutive members of his preference
ordering. This means that mi’s loyalty set must start from his most preferred women
based on his preference ordering unless he is waiting on a passive offer to this woman.
In this case, if he does not want to include her in his loyalty set for another period, then
the loyalty set will start from his second preferred woman according to his preference
ordering.

6. Agent mi will be matched to wj whenever they both have a proposal from the other
one.

7. In case of a dead end (there are no mutual proposals and no rejection or new offer),
based on the POrt list, agents change their offers and propose to their next preferred
agent. If the agent at the top of POr who needs to withdraw her current proposal
and propose to her next preferred mate does not have any agent remained in her
acceptance set and she is not waiting on any loyal proposal, she has to withdraw her
current proposal and stay unmatched until the next period.

Important remarks:

1. Each agent who is matched is out of the market for good so they do not risk to end up
with a less preferred match. If an agent comes back to the market she is considered
a new agent.

2. Using DM algorithm we will automatically have the matching which is optimal for
both sides if such a matching exists. But this two-sided optimal matching is different
from the outcome of the DA algorithm. The difference comes from the fact that DM
algorithm operates in a dynamic environment and allows agents to wait for other
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agents through the periods. It also allows both sides to propose at the same time.

3. In case of a dead end, each side which the top agent of POr belongs to will lose its
optimality. If after the top agent in POr has changed her/his offer, still there is a
dead end and the next agent in POr is from the other side, we will end up with mixed
agents of both sides who lose their optimality unlike men-optimal and women-optimal
matchings where all agents of the opposite side lose their optimal matches.

5.5.2 Example 2

I provide this example to clarify the procedure of the DM algorithm. For the sake of
simplicity, I only show a two-period matching market. Furthermore, to show all details, I
explain the example in separate rounds, although all the rounds could be done in one table.

Period 1:

Lm1
1 = {{w2}, {w1, w3}}, Lm4

1 = {{w4}}

tmi = twj = 1 for all mi ∈ M1 and wj ∈ W 1 but, TD1
M1 = 3 while TD1

M4 = 1.
Therefore, based on the POr definition, m1 comes before m4 in the POr list. The ordering
of the remaining agents in POr is arbitrary:

POr1 = m1, m4, · · ·

Men preferences: Women preferences:
m1 m2 m3 m4
w2 w2 w2 w4
w1 w4 w3 w1
w3 w3
w4 w1

w1 w2 w3 w4
m2 m2 m4 m1
m4 m3 m3 m2
m3 m1 m1
m1 m4 m2

DM Algorithm:

Round 1:

Two sides propose at the same time to their most preferred agent. Agents receiving
more than one offer, reject the less preferred ones. At the end of this round, agents m2 and
w2 are matched since they both have proposed to each other. As a result, w2 rejects m1
and m3. Also, m2 rejects w1.
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Round 2:

Agent m4 has proposed to w4 which is in his loyalty set. Since m4 /∈ W4
1, and w4

has not received any more preferred proposal, this offer will stay active which means m4
is waiting for w4. Rejected agents, m1, m3 and w1 propose to their next agent in their
preference ordering. Although {w2} ∈ Lm1 but since w2 has rejected m1 in favour of a more
preferred one, he will propose to his next preferred agent. Agents receiving more than one
offer reject the less preferred ones. Since m4 is waiting for w4 and m4 /∈ Lw3 then w3 does
not wait for m4 and withdraws her offer to m4. She proposes to m3. At the end of this
round, m3 and w3 are matched and will leave the market while m1 is waiting for w1 and
m4 is waiting for w4.

Round 3:

m1 /∈ Lw4 and m1 himself is waiting for w1, so w4 withdraws her proposal to m1 and
since her next preferred agent, m2, is already matched she cannot make a new proposal.
This means w4 will leave this period unmatched. m4 /∈ Lw1 and m4 himself is waiting for
w4, so w1 withdraws her proposal to m4 and proposes to m1 (m3 is already matched). At
the end of this round, m1 is matched to w1.

This is the end of period 1.

Matched pairs: (m2, w2), (m3, w3), (m1, w1).
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Unmatched agents: w4 and m4 (waiting for w4).

Period 2:

New agents, m5, m6, w5, w6 enter the market.
There is no Lmi or LLmi . Technically all Lmi and LLmi sets are the empty sets.

Although m4 and w4 have been present in the market for the same number of periods,
tm4 = tw4 = 2, m4 comes before w4 in POr since TTD2

m4 = 1 while TTD2
w4 = 0. The

ordering of the rest agents in POr is arbitrary:

POr2 = m4, w4, · · ·

Men preferences: Women preferences:
m4 m5 m6
w4 w5 w5
w6 w4 w4
w5 w6

w4 w5 w6
m6 m4 m6
m4 m6 m5
m5

Round 1:

Two sides propose at the same time to their most preferred agent. Agents receiving
more than one offer, reject the less preferred agents. At the end of this round there is no
possible match.

Round 2:

Rejected agents, m5 and w6 propose to their next preferred mates. Agents receiving
more than one offer keep the most preferred one and reject others.

Round 3:

Rejected agent, m5 proposes to his next preferred agent, w6. At the end of this round,
m5 is matched to w6.
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Round 4:

There is no possible match. We have a dead end and the POr list is required. As
explained before, the POr list is dynamic and whenever it is going to be used, it will be
updated based on the current situation of the market. Although m4 was at the top of the
POr list at the beginning of period 2 but because he is waiting on a reactivated offer from
period 1 so he will not be the first agent in the list after updating POr. Based on the POr
definition, w5 who has proposed to waiting agent w4 (the one waiting on a reactivated offer)
moves to the top of the POr list:

Updated POr2 = w5, m4, w4, · · ·

Therefore, w5 has to withdraw her offer to m4 and propose to her next preferred agent,
m6.

At the end of this round, agent m6 is matched to w5.

Round 5:

Rejected agent w4 will propose to the last remaining agent in her preference ordering,
m4. Agent m4 is matched to w4.

This is the end of period 2 and the end of this matching problem.

Matched pairs: (m2, w2), (m3, w3), (m1, w1), (m4, w4), (m5, w6), (m6, w5). ▲
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5.6 Theorems and Results
In order to be able to state the results of this study, I will first introduce some new concepts:

Definition 9: Inter-periods blocking pair

An inter-periods blocking pair consists of a pair of agents mi and wj which prefer each
other to their current match under µ but they have left the market in different periods,
provided that there were both in the market at least in period t when one of them who is
matched first leaves the market. Furthermore, in one of the periods when they were both in
the market, at least the one who leaves the market first, starts to include the other one in
her/his acceptance set.

Since in my model no agent knows who will join the market in the future and every agent
who gets matched leaves the market, it is not possible for mi and wj to form a blocking
pair if they have never met in the market. Furthermore, it is not logical that an agent mi

forms a blocking pair with another agent, wj , whom he has never considered an acceptable
mate while she was present in the market when he got matched. Also, let us recall that if
mi ∈ Wj

t, then mi ∈ Wj
t′ ∀ t′ > t as long as mi is in the market since no agent can kick

out another agent from her/his acceptance set. Therefore, if mi is the agent who leaves
the market first, he should include the other agent, wj , in his acceptance set at least in the
last period that they are both in the market which is the period that mi gets matched and
leaves the market, i.e., there exists tmi ∈ Tmi : wj ∈ Mi

t′
mi ∀ t′

mi ≥ tmi or/and there exists
twj ∈ Twj : mi ∈ Wj

t′
wj ∀ t′

wj ≥ twj .

Definition 10: Dynamic Individual Rationality

A matching µ is Dynamically Individual Rational if all agents prefer their match under µ
in period t to staying unmatched until the next period, t + 1.

Definition 11: Dynamic Stability

A matching µ is dynamically stable if:

1. It is dynamically individual rational.

2. There is no blocking pair of agents (mi, wj) who leave the market at the same period
t and prefer each other to their current match under µ.

3. There is no inter-periods blocking pair (mi, wj) who leave the market in different
periods and prefer each other to their current match under µ unless one of them has
been waiting on a passive offer to a more preferred agent outside the pair or did not
include the other one in her/his acceptance set when the other one has been matched
and the other one also has not waited for her/him.

Theorem -1 DM is dynamically stable.
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Theorem -1 is proved in Appendix A.

Definition 12: Dynamic two-sided optimality

A matching µ is dynamically two-sided optimal if it is the best dynamically stable matching
for both sides.

The following simple example is a well known example which shows that matchings
which are optimal for both sides may not exist.

Example 1

Men preferences: Women preferences:
m1 m2
w1 w2
w2 w1

w1 w2
m2 m1
m1 m2

Optimal matchings:

1. Men-optimal (men proposing): (m1, w1), (m2, w2).

2. Women-optimal (women proposing): (m2, w1), (m1, w2). ▲

Theorem 0 DM finds dynamically two-sided optimal matchings if such a matching exist.

Theorem 0 is proved in Appendix B.

We know that a matching which is optimal for both sides only exists if there is only
one stable matching, in which case the unique stable matching is both men-optimal and
women-optimal.

If there is no two-sided optimal matching, based on POr, DM finds matchings which
are fair for both sides since it does not favour either side.

Definition 13: Dynamic Strategy-proofness

A matching rule is Dynamically Strategy-proof if no agent by misreporting her preferences
at some period can get better results than what she could get using the dynamic features of
the mechanism.

Theorem 1 DM is dynamically strategy-proof.

Theorem 1 is proved in Appendix C.
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Definition 14: Dynamic Pareto-optimality

In a dynamic market a matching µ is Pareto-optimal if no agent can be made better off in
period t without making somebody else worse off in some period t′′ : t′′ ≥ t.

Theorem 2 DM is dynamically Pareto-optimal.

Theorem 2 is proved in Appendix D.

Let me recall the dynamic aspects of my model which are referred in Theorem 1 and
Theorem 2.

1. Time which includes infinite number of periods.

2. Agents whose new comers enter the market at the beginning of each period and
matched ones leave it.

3. Preferences/acceptance sets of agents which can change/expand at each period due
to arriving new agents and due to the fear of remaining unmatched.

4. Loyalty sets which give agents the possibility of waiting for other agents on the other
side whom they value much higher than others.

5. POrt which changes at the beginning of each period and also is updated at any time
based on the current situation of the agents.

5.7 Increasing the Matching Size in each Period
In case of marriage, maximizing the number of matched pairs in each period does not
make sense since it deals with major life decisions. Therefore, taking some measures to put
pressure on people for accepting mates whom they do not really want to does not seem
right. If we use the algorithm for other cases, maximizing the number of matched pairs
may be desirable.

Generally there are three reasons for staying unmatched in the DM algorithm:

1. Small acceptance set.

2. Being less preferred by others.

3. High TD and TTD (agents are waiting for others for long).

Since DM respects the agents’ preferences on both sides of the market, it could be
possible to increase the number of matches by motivating the agents to be less restricted
when they are reporting their acceptance and loyalty sets.

There are restrictions which can be set up to motivate agents to become more generous
about their acceptance set. These restrictions help to increase the number of matched pairs
based on the preferences:
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1. Agents remaining from previous period, go to the top of the POr. In case of ties,
the ones with highest TTD and TD go first even if they are waiting on a reactivated
offer. Therefore, in case of a dead end, they are the ones who have to change their
offer and propose to their next preferred agent.

2. Time limit:

• We can put a time limit for each agent to attend the market. When time is
limited for each agent, they would expand their acceptance set in fear of being
unmatched at the end of their time limit. For example each agent can only
attend the market 3 times but the market runs forever. We can also motivate
agents more to report generous acceptance sets by adding some conditions to the
time limits. For example, if an agent is still unmatched after her time limit, she
will leave the market forever, unless she has included all available agents in her
acceptance set at least for half of her periods in the market, and an empty L set
for the same amount of periods. The number of allowed periods for each of these
restriction can vary based on the market situation and the designers goals. For
example, when making as many matches as possible is a crucial goal, time limits
will be tight.

• The number of periods that the market operates is limited and at the last period,
all agents are acceptable to each other.

These restrictions can be set up in a way to increase or even maximize the number of
matchings.

5.8 Conclusion
In this project I introduced a matching model when both sides of the market have preferences
over the other side and the market runs over multiple time periods. I have studied the
different aspects of the model in-depth, to provide a fundamental understanding of relevant
situations and to aid practical market designers. I have elaborated the idea, defined a novel
model and studied its properties.

Furthermore, I introduced an algorithm, DM , which finds a matching which is
dynamically optimal for both sides whenever it exists. Otherwise it selects a matching
which is fair since it does not favour either side. In addition, I provided some restrictions
to increase the number of matches at each period and I showed that the DM algorithm is
fair in the sense of not favouring either side, dynamically stable, strategy-proof and Pareto-
optimal.

My study addresses an important and overlooked issue of real-life matching situation in
a dynamic environment. My goal is to provide a strong theoretical foundation for building
a more prosperous society by ensuring that the human capital have been treated fairly and
the mechanism of matching resources is stable and efficient.
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5.9 Appendices

5.9.1 Appendix A

Theorem -1 DM is dynamically stable.

Proof:

• DM is dynamically individual rational:

Each agent will be matched to one of her acceptable agents. Therefore, whoever
she has been matched to is better than being unmatched. Furthermore, if she had
somebody who is worth to wait for (although he did not accept her at the current
period), she could put him in her loyalty set an take her chance to be matched to him
in the next periods. If she has not done, then she prefers to be matched in the current
period rather than waiting unmatched until the next periods.

• There is no blocking pair of agents (mi, wj) who leave the market in the same period
t and prefer each other to their current match under µ:

Assume (mi, wj) is a blocking pair of agents who has left the market in the same
period and prefer each other to their match under µ. This simply means that they
both have been acceptable to each other but they have not been matched to each
other. Therefore:

– There is a wj′ whom mi has been matched to while wj ≻mi wj′ .
– DM matches a man to a woman when both propose to each other at the same

time.
– While mi ∈ Wj

t and wj ≻mi wj′ , then he has proposed to wj before proposing
to wj′ .

– If he has not been matched to wj that means wj has rejected him in favor of a
more preferred agent.

These contradict (mi, wj) being a blocking pair.

• There is no inter-periods blocking pair (mi; wj) who leave the market in different
periods and prefer each other to their match under µ unless one of them has been
waiting on a passive offer to a more preferred agent outside the pair or did not include
the other one in her/his acceptance set when the other one has been matched and the
other one also has not waited for her/him:

Assume (mi, wj) is an inter-period blocking pair of agents who prefer each other to
their match under µ and mi is the agent who leaves the market first7 in period t.

– DM matches a man to a woman when both propose to each other at the same
time.

– There is a wj′ whom mi has been matched to while wj ≻mi wj′ .
7This means mi is the one who has been matched first.
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– Based on the definition of inter-periods blocking pair, at least in the mi’s last
period, period t, both mi and wj were present in the market and wj was
acceptable by mi.

– mi has left the market in period t. That means mi has been matched to wj′

in that period. Therefore, wj and wj′ have been both in his acceptance set in
period t.

– If wj ≻mi wj′ , he has proposed to wj before proposing to wj′ .
– Therefore, if he has not been matched to wj that means:

∗ mi ∈ Wj
t but wj has rejected him in favor of a more preferred agent. In

this case they both leave the market in the same period and it is covered in
blocking pair definition.

∗ wj did not include mi in her acceptance set in period t when mi has been
matched and mi has not waited for her (did not include her in his loyalty
set).

∗ wj has included mi in her acceptance set but she was waiting on a passive
offer when mi got matched and mi itself did not wait for her.

These contradict (mi, wj) being an inter-period blocking pair.

5.9.2 Appendix B

Theorem 0 DM finds dynamically two-sided optimal matchings if such a matching exists.

Proof: DM matches a man to a woman when both of them propose to each other at
the same time. Furthermore, we know a two-sided optimal only exist if there is a unique
stable matching. Therefore, automatically if there is a two-sided optimal, DM will find it.

5.9.3 Appendix C

Theorem 1 DM is dynamically strategy-proof.

Proof: We know that DA is strategy-proof for the proposing side. DM is based on both
sides proposing at the same time, therefore its results is different from the DA outcome even
if it is used in one-period matching problem. On the other hand, since DM is a dynamic
matching algorithm and static strategy-proofness does not apply to it, I show that DM is
dynamically strategy-proof.

In static models, DA is not strategy-proof for both sides. The agents on non-proposing
side can make themselves better off by manipulating the mechanism through shortening
their acceptance set. However, in the dynamic setup of my model it is not possible for any
agent to manipulate the algorithm and get better results than what she could get using the
options that the model and corresponding algorithm provide her.

Generally, if any agent wj gets rejected by mi because mi has received a proposal from
a more preferred mate, no matter how wj reports her preferences, she will not be matched
to mi. In other cases, shortening the acceptance set may improve the outcomes for wj

since it causes the automatic rejection of unacceptable agents. These rejected agents make
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new proposals and as a result the mate that wj wanted more may get rejected from his
more preferred choice and he will propose to wj . The same goal can be achieved easily
by defining a loyalty set including mi. If mi rejects wj in favor of a preferred agent, as
mentioned before no manipulation can help wj . Otherwise, as long as wj has not been
rejected by mi, she is not accepting any other proposals (receiving proposals from others is
automatically rejected) and she is not forced to change her proposal. ■

Let me recall Example 3 for further clarification. In a static men-optimal matching,
both women w1 and w2 can manipulate the mechanism by reporting their second choice
unacceptable. Men can do the same manipulation in the static women-optimal matching.
Now, let me solve this matching problem using the DM algorithm:

Example 2

If all agents report their true preferences then the results depend on the POr since
we will have a dead end in Round 1. If either w1 or w2 is at the top of the POr8 then
women will end up with their second choice. The same happens for men if either of them
is the first one who has to change his proposal based on the POr. Therefore, even without
misreporting, there is an equal chance for both sides to have their optimal matching due to
this fact that both sides are allowed to propose at the same time. Now, assume w1 wants
to increase her chance of getting m2 by misreporting her preferences as follows:

w1
′ w2

m2 m1
m2

The men’s preference ordering is the same as in Example 3.

DM algorithm:

Period 1: m1 and m2 propose to their first choices, w1 and w2 respectively. At the
same time, w1 and w2 propose to m2 and m1 respectively. The offer received by w1 came
from an unacceptable man but since she has not received any preferred proposal, she can
not reject this proposal. Nevertheless, since m1 has not included w1 in his loyalty set, then
his proposal to w1 will be rejected automatically. Rejected m1 proposes to w2. Now w2
who has received two proposals accepts the preferred one, m1 and rejects m2. Rejected m2
proposes to w1 and gets matched to her.

The fact is that she did not need to manipulate. She could easily have the same result
only by including m2 in her loyalty set. The manipulation is unnecessary especially since
based on POr rule if an agent is at the top of this list and has to change her proposal but
does not have any other agent left in her acceptance set, then she has to leave the period
unmatched. Therefore, misreporting her preferences by shortening her acceptance set may
even cause her staying unmatched while this situation will not happen if she includes m2 in
her loyalty set. That is because if w1 includes m2 in her loyalty set, although w1 is at the
top of the POr9, since she is waiting on a loyal offer, then the agent proposing to her, m1,

8P Or here is a random ordering of all agents since there is no seniority, T T D or T D.
9T Dwj = 1 while it is zero for all other agents.
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jumps before her in the updated POr list. Therefore, m1 should withdraw his proposal to
w1 and propose to w2. Then, w2 who now has two offers accepts the preferred one, m1, and
rejects m2. Rejected m2 proposes to his next preferred woman, w1 and gets matched to
her. Therefore, w1 gets her best choice in period 1 which is the same result as misreporting
the preferences. ▲

The structure of the DM algorithm which allows simultaneous proposals and possibility
of waiting, makes manipulating unnecessary for agents.

5.9.4 Appendix D

Theorem 2 DM is dynamically Pareto-optimal.

Proof: DM matches agents to each other when both propose to each other at the same
time. An agent proposes to her next preferred agent if she has been rejected in favor of a
more preferred agent or she is not acceptable by the other one and she did not want to wait
for him. Therefore, when an agent gets matched, she has be assigned to her best possible
option regarding her preferences and loyalty set.

Two agents can be matched to each other only if they have met in the market and at
least in period t when they are matched to each other they both should be included in each
other’s acceptance sets. Assume wj has been assigned to mi in period t under µ and there
exists another agent mi′ : mi′ ≻wj mi. If mi′ has left the market before period t then:

• mi′ ∈ Wj
t′ for some t′ < t, then either he has rejected wj in favour of a more preferred

agent or did not accept wj in t′.

• wj did not accept mi′ in t′ or has been waiting on an offer to a more preferred agent
and mi′ has not waited for her. This means that mi′ did not want to wait for her
until period t.

Anyway, changing the assignment of wj in period t and assigning mi′ to wj does not make
sense since mi′ is already matched and whoever is matched is out of the market. Moreover,
no body knows who will join the market in the future, then changing the assignment of wj

and assigning her to an agent who has not joined the market in period t is not possible too.
Therefore, if wj has been matched to mi in period t and there is an agent mi′ : mi′ ≻wj mi

then mi′ should be in Wj
t. In this case, if we assign mi′ to wj , we have made her better

off. On the other hand, since mi′ ≻wj mi, based on DM procedure, wj has proposed to mi′

before proposing to mi. Therefore, if wj has not been matched to mi′ that means one of
the following scenarios applies:

• mi′ has rejected wj in favor of a more preferred agent in period t, then assigning mi′

to wj makes mi′ worse off.

• wj /∈ Mi′ t and mi′ has not been matched in period t but wj did not want to wait for
him. Thus, wj prefers to be matched to mi in period t instead of waiting for mi′ .
It means for being matched to mi′ she needs to stay unmatched in period t and this
makes her worse off.
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• wj ∈ Mi′ t but mi′ is waiting on an offer to a more preferred agent in period t while
wj does not want to wait for him. If mi′ leaves period t unmatched but does not
get matched to the mate that he was waiting for and instead gets matched in period
t′′ : t′′ > t to wj′ while wj ≻mi′ wj′ then assigning mi′ to wj in t makes both of them
better off but mi′ is the best possible mate for wj′ in period t′′. Therefore, assigning
wj to mi′ in period t makes wj′ worse off in period t′′ : t′′ > t.

• wj ∈ Mi′ t but mi′ is waiting on an offer to a more preferred agent in period t while
wj does not want to wait for him. If mi′ leaves period t unmatched and gets matched
in period t′′ : t′′ > t to an agent wj′ whom he prefers to wj , then assigning mi′ to wj

in period t makes both mi′ and wj′ worse off.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
In the first study, Chapter 3, we introduced a novel matching model when one side of
the market has consecutive acceptance intervals according to a given commonly known
ranking of the objects on the other side of the market. We presented the Common-Ranking
Successive Rules which find a maximum matching and extended this set of rules to Successive
Rules, which find all maximum matchings. We proposed two classes of matching rules which
are maximal, Pareto-optimal and group strategy-proof. One carries out trades in top trading
cycles starting from a maximum endowment, while the other one is a sequential dictatorship
which allows agents to choose their favorite objects in a given order.

Both of these are complex algorithms, and thus we also studied serial dictatorships
which are simple greedy algorithms. Since not all interval profiles allow for the existence
of a maximal serial dictatorship, we characterize the set of interval profiles for which a
maximal serial dictatorship exists, and we identify all such serial dictatorships. Each class
of matching rules that we introduce and study are group strategy-proof, since the acceptance
intervals are common knowledge and cannot be manipulated.

The model with consecutive acceptance intervals describes realistic scenarios of matching
markets where agents may not be familiar with all items on the other side of the market, and
information acquisition about all items is either too costly or not feasible. Our assumption
that we study those consecutive interval profiles for which it is feasible to assign an object
to each agent is also plausible in applications, and it has the advantage that it allowed us
to present clean results in this first study of maximal matching rules for problems with
consecutive acceptance intervals. While this assumption can be relaxed by modifying some
of our definitions, we believe that our analysis provides a good theoretical foundation for
market designers who are interested in reaching maximum and Pareto-optimal matchings
via algorithms with strong incentive properties.

In the second study, Chapter 4, I introduced a matching model with minimum quotas.
In this model one side of the market has minimum quota requirements which need to be
filled, and agents on both sides have strict priorities/preferences over the agents on the
other side.
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To find the desired outcome in matching problems with minimum quotas, I introduced
two algorithms, CNWF and FCNW , which select matchings that are both fair and
nonwasteful (whenever they exist), CNW (with the maximum degree of fairness) or fair
(with the maximum degree of nonwastefulness) matchings.

In addition, I represented the matching problems with minimum quotas using a novel
graph, the FCNW and CNWF graph, and I studied the properties of this representative
graph, such as its chromatic number and whether it is a planar graph or an acyclic directed
graph. These properties can be used as a starting point for further research on the graph
and its corresponding model with minimum quotas.

Furthermore, I studied models with minimum quotas when there are different types of
agents on one side of the market (the students’ side) and I showed that my algorithms also
apply to these cases.

My research in Chapter 4 is focused on matching when respecting minimum quotas
which is an important issue of real-life matching problems. Within the same framework,
I introduced algorithms which select F&CNW , fair or CNW matchings with or without
type-specific quotas. Overall, I have introduced two new algorithms, FCNW and CNWF ,
in a unified framework which serve as an alternative for three different unrelated algorithms,
ESDA, MSDA and DQDA. I studied the models of matching with minimum quotas in-
depth to provide a fundamental understanding of relevant matching problems and to provide
useful tools for practical market designers.

In third study, Chapter 5, I introduced a matching model when both sides of the market
have preferences over the other side and the market runs for more than one period. I added
other realistic dynamic aspects to the model and studied these different aspects of the model
in-depth to provide a fundamental realistic framework for relevant cases and to aid practical
market designers who work on dynamic markets. As a first step, I elaborated the idea of a
dynamic matching model. Then I defined my new model in detail, considered the required
realistic assumptions and studied the properties of my model.

Furthermore, I introduced an algorithm, Dynamic Marriage (DM), which selects a
matching which is dynamically optimal for both sides of the market whenever it exists.
Otherwise, based on the POr list it selects a matching which is fair for both sides since
it does not favour either side and I showed that my algorithm is also dynamically stable,
dynamically strategy-proof and dynamically Pareto-optimal. In addition, I provided some
tips which can be used to increase the number of matches in each period.

My study in chapter 5 is focused on the match-making problem in a dynamic
environment which is an important but rarely considered issue of real-life matching cases.
My goal is to provide a strong theoretical foundation in order to make sure that the agents
involved in matching problems are treated equitably and the matching models reflect the
real-world matching problems as much as possible.

My overall aim with these studies is to analyze real-life matching problems which have
not been addressed yet or not in depth, to enrich our knowledge of different matching
markets, and as a result to lay down an integrated theoretical foundation for building a
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more prosperous society by ensuring that all resources are used fairly and efficiently.

6.2 Extensions and Further Questions
Chapter 3:

1. Instead of objects on one side of the market we have agents on both sides who have
preferences over each other. Here the two-sided stability notion applies.

2. Objects have strict or weak priorities over agents. Can stability and efficiency be
reconciled?

3. Objects have capacities (or quotas), i.e., many-to-one matching. All previous
questions regarding maximum, Pareto optimal, and stable matching rules can be
considered.

4. Weighted two-sided matching with weights on the edges (weighted connections). How
can we maximize the weight (instead of the cardinality) of a matching using a simple
matching rule?

5. What if we relax the assumption that a maximum matching assigns an object to each
agent? How much more complicated would our results become?

Chapter 4

1. What if there are some overlaps? Some agents belong to more than one type.

2. What if not all of the agents are acceptable by the other side? Each student/school
or both have an acceptance set.

Chapter 5:

1. Make it possible for an agent to weight the agents in her loyalty set.

2. Make it possible for an agent to withdraw from a loyal offer if she changes her mind.
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