

An
Introduction
to Database

Systems

An
Introduction
to Database

Systems

Bipin C.
Desai

Concordia University

Montreal, Canada

West Publishing Company

St. Paul New York Los Angeles San Francisco

In memory of my parents

Preface xv

Chapter 1
Basic Concepts 1

1.1 Data Modeling for a Database 2

1.1.1 Entities and Their Attributes 3

1.1.2 Relationships 7

1.2 Records and Files 7

1.3 Abstraction and Data
Integration 9

1.4 The Three-Level Architecture
Proposal for a DBMS 14

1.4.1 Mapping between Views 15

1.4.2 Data Independence 17

1.5 Components of a DBMS 20

1.5.1 Classification of DBMS Users 20

1.5.2 DBMS Facilities 21

1.5.3 Structure of a DBMS 23

1.5.4 Database Access 27

1.6 Advantages and Disadvantages
of a DBMS 27

1.6.1 Advantages of a DBMS 27

1.6.2 Disadvantages of a DBMS 29

1.7 Summary 30
Key Terms 31

Exercises 32
Bibliographic Notes 33

Bibliography 33

Chapter 2
Data Models 34

2.1 Introduction 35

2.2 Data Associations 35

2.2.1 Entities, Attributes, and Associations

36

2.2.2 Relationships among Entities 41

2.2.3 Representation of Associations and

Relationships 44

2.3 Data Models Classification 45

2.4 Entity-Relationship Model 46

2.4.1 Entities 47

2.4.2 Relationships 49

2.4.3 Representation of Entities 51

2.4.4 Representation of Relationship Set

52

2.4.5 Generalization and Aggregation 53

2.5 A Comparative Example 57

2.6 Relational Data Model 59

2.7 Network Data Model 63

2.8 Hierarchical Model 67

2.9 A Comparison 69

2.10 Summary 72
Key Terms 72

Exercises 72

viii Contents

Bibliographic Notes 74

Bibliography 74

Chapter 3
File Organization1 77
3.1 Introduction 78

3.1.1 Storage Device Characteristics 79
3.1.2 The Constituents of a File 82
3.1.3 Formal Specification of Storage of a

File 84
3.1.4 Operations on Files: Logical Access

86
3.1.5 Primary Key Retrieval 90

3.2 Serial Files 91

3.3 Sequential Files 92

3.4 Index-Sequential Files 93

3.4.1 Implicit Index 94
3.4.2 Limit Indexing 94
3.4.3 Multilevel Indexing Schemes: Basic

Technique 98
3.4.4 Structure of Index Sequential Files

100
3.4.5 VS AM 104

3.5 Direct File 105

3.5.1 Extendable Hashing 110

3.6 Secondary Key Retrieval 113

3.6.1 Inverted Index Files 115
3.6.2 Multilist Files 118
3.6.3 Cellular Lists 122
3.6.4 Ring Files 123

3.7 Indexing Using Tree Structures
124

3.7.1 Introduction 124
3.7.2 Tree Schemes 125
3.7.3 Operations 127
3.7.4 Capacity 132
3.7.5 B-trees 132

3.8 Logical and Physical Pointers
133

'May be skipped without loss of continuity.

3.9 Record Placement 134

3.10 Concluding Remarks 135

3.11 Summary 136
Key Terms 137

Exercises 138

Bibliographic Notes 143

Bibliography 143

Chapter 4
The Relational Model 145
4.1 Introduction 146

4.1.1 A Brief Review of Set Theory 151

4.2 Relational Database 153

4.2.1 Attributes and Domains 153
4.2.2 Tuples 155
4.2.3 Relations and Their Schemes 157
4.2.4 Relation Representation 158
4.2.5 Keys 159
4.2.6 Relationship 160
4.2.7 Relational Operations 161
4.2.8 Integrity Rules 162

4.3 Relational Algebra 165

4.3.1 Basic Operations 165
4.3.2 Additional Relational Algebraic

Operations 170
4.3.3 Some Relational Algebra Queries

179

4.4 Relational Calculus 184

4.4.1 Tuple Calculus 187
4.4.2 Domain Calculus 193

4.5 Concluding Remarks on Data
Manipulation 198

4.6 Physical Implementation Issues
199

4.7 Summary 201
Key Terms 202

Exercises 202

Bibliographic Notes 206
Bibliography 206

Contents ix

Chapter 5
Relational Database
Manipulation 208
5.1 Introduction 209

5.2 SQL 212

5.2.1 Data Definition: SQL 212

5.3 Data Manipulation: SQL 214

5.3.1 Basic Data Retrieval 217
5.3.2 Condition Specification 218
5.3.3 Arithmetic and Aggregate Operators

219
5.3.4 SQL Join: Multiple Tables Queries

221

5.3.5 Set Manipulation 225
5.3.6 Categorization 233
5.3.7 Updates 235

5.4 Views: SQL 237

5.4.1 Views and Update 239

5.5 Remarks 242

5.6 QUEL 242

5.6.1 Data Definition 243

5.7 Data Manipulation: QUEL 24<

5.7.1 Condition Specification 246
5.7.2 Renaming 247

5.7.3 Arithmetic Operators 247
5.7.4 Multiple Variable Queries 248
5.7.5 Set Operations in QUEL 250

5.7.6 Aggregation Operators in QUEL
250

5.7.7 Retrieve into Temporary Relation
255

5.7.8 Updates 256

5.7.9 Views 259

5.7.10 Remarks 260

5.8 Embedded Data Manipulation
Language 260

5.9 A Critique: SQL, QUEL 263

5.10 QBE 269

5.10.1 Basic Data Retrieval in QBE 270

5.10.2 Aggregation in QBE 275

5.10.3 Categorization in QBE 276

5.10.4 Updates 277

5.11 Concluding Remarks 280

5.12 Summary 280
Key Terms 281

Exercises 281

Bibliographic Notes 283

Bibliography 283

Chapter 6
Relational Database Design 285

6.1 Relation Scheme and Relational
Design 2 86

6.2 Anomalies in a Database: A
Consequence of Bad Design
287

6.3 Universal Relation 290

6.4 Functional Dependency 293

6.4.1 Dependencies and Logical
Implications 295

6.4.2 Closure of a Set of Functional
Dependencies 297

6.4.3 Testing if F N X —» Y: Algorithm to
Compute a Closure 298

6.4.4 Testing if an FD is in a Closure 300

6.4.5 Covers 300

6.4.6 Nonredundant and Minimum Covers
301

6.4.7 Canonical Cover 302

6.4.8 Functional Dependencies and Keys
303

6.5 Relational Database Design 306

6.5.1 Recharacterizing Relational Database
Schemes 307

6.5.2 Normal Forms—Anomalies and Data
Redundancies 307

6.5.3 Lossless Join and Dependency-
Preserving Decomposition 315

6.5.4 Algorithms to Check if a
Decomposition is Lossless and
Dependency-Preserving 320

6.5.5 Decomposition into Third Normal
Form 324

6.5.6 Boyce Codd Normal Form 328

X Contents

6.6 Concluding Remarks 333

6.7 Summary 335
Key Terms 335

Exercises 336

Bibliographic Notes 338

Bibliography 338

Chapter 7
Synthesis Approach
and Higher Order
Normal Form 340

7.1 Problems in the Decomposition
Approach 341

7.2 Normalization through
Synthesis 342

7.2.1 Functional Dependencies and
Semantics 342

7.2.2 Semantics of Nonfunctional
Relationships 343

7.2.3 Synthesis Approach 343
7.2.4 Synthesis Algorithm 345

7.3 Multivalued Dependency 348

7.3.1 MVD and Normalization 352
7.3.2 Axioms for Functional and

Multivalued Dependencies 353
7.3.3 Closure under MVDS 354
7.3.4 Fourth Normal Form 357
7.3.5 Lossless Join Decomposition into

Fourth Normal Form 357
7.3.6 Enforceability of Dependencies in the

Fourth Normal Form 360

7.4 Normalization Using Join
Dependency: Fifth Normal
Form 361

7.4.1 Join Dependencies 364
7.4.2 Project-Join Normal Form 366

7.5 Domain Key Normal Form 368

7.6 Summary 372
Key Terms 373

Exercises 373

Bibliographic Notes 373
Bibliography 374

Chapter 8
The Network Model 376

8.1 The Network Data Model 377

8.1.1 Expressing Relationship: The DBTG
Set 378

8.1.2 Multiple Level Set Construct 380

8.1.3 Complex Multilevel Set Construct
382

8.2 DBTG Set Construct and
Restrictions 384

8.2.1 Implementation of the DBTG Set
Construct 385

8.3 Expressing an M: N
Relationship in DBTG 386

8.4 Cycles in DBTG 391

8.4.1 Set Involving Only One Type of
Record 391

8.4.2 Sets Involving Different Record
Types in a Cycle 395

8.5 Data Description in the
Network Model 395

8.5.1 Record 395

8.5.2 Set 397

8.5.3 Order of Members in a Set 398
8.5.4 Set Membership 399

8.5.5 Structural Constraint 402
8.5.6 Set Selection 402

8.5.7 Singular Sets 403
8.5.8 Area 403

8.6 Schema and Subschema 403

8.7 DBTG Data Manipulation
Facility 405

8.7.1 Run Unit 405

8.7.2 Currency Indicators 406

8.7.3 Database Status Registers 406

8.7.4 Record Templates 407

8.7.5 DML Commands 407

8.8 Database Manipulation 407

8.8.1 Operations on Records 410
8.8.2 Operations on Sets 413

8.9 Concluding Remarks 421

8.10 Summary 421

Contents xi

Key Terms 422

Exercises 422

Bibliographic Notes 425

Bibliography 426

Chapter 9
The Hierarchical Data Model 427

9.1 The Tree Concept 428

9.2 Hierarchical Data Model 430

9.2.1 Replication vs. Virtual Record 435

9.2.2 Expressing a Many-to-Many
Relationship 436

9.2.3 Another Example of a Many-to-Many
Relationship 438

9.3 Data Definition 441

9.4 Data Manipulation 443

9.4.1 User Work Area in the HDM 443

9.4.2 Basic Data Manipulation 444

9.4.3 Sequential Retrieval 444

9.4.4 Sequential Retrieval within a
Hierarchy 446

9.5 Updates 447

9.5.1 Insert 448
9.5.2 Modification and Deletion 449
9.5.3 Updates of Virtual Records 450

9.6 Implementation of the
Hierarchical Database 451

10.3 General Strategies for Query
Processing 467

10.3.1 Query Representation 467
10.3.2 General Processing Strategies 469

10.4 Transformation into an
Equivalent Expression 470

10.5 Expected Size of Relations in
the Response 475

10.5.1 Selections 476

10.5.2 Projection 477

10.5.3 Join 478

10.6 Statistics in Estimation 480

10.7 Query Improvement 480

10.8 Query Evaluation 486

10.8.1 One-Variable Expressions 486

10.8.2 Two-Variable Expressions 488

10.8.3 N-Variable Expressions 496

10.8.4 Access Plan 501

10.9 Evaluation of Calculus
Expressions 502

10.10 View Processing 503

10.11 A Typical Query Processor 51

10.12 Summary 507
Key Terms 507

Exercises 507

Bibliographic Notes, 508

Bibliography 509

9.7 Additional Features of the
Hierarchical DML 453

9.8 Concluding Remarks 455

9.9 Summary 456
Key Terms 457

Exercises 457
Bibliographic Notes 459

Bibliography 459

Chapter 10
Query Processing 460

10.1 Introduction 461

10.2 An Example 463

Chapter 11
Recovery 510

11.1 Reliability 511

11.1.1 Types of Failures 513

11.1.2 Types of Errors in Database Systems
and Possible Detection Schemes
515

11.1.3 Audit Trails 516

11.1.4 Recovery Schemes 516

11.2 Transactions 517

11.2.1 States of a Transaction 521

11.2.2 Properties of a Transaction 523

xii Contents

11.2.3 Failure Anticipation and Recovery
523

11.3 Recovery in a Centralized
DBMS 524

11.3.1 Logs 524

11.3.2 Checkpoints 526

11.3.3 Archival Database and
Implementation of the Storage
Hierarchy of a Database System
529

11.3.4 Do, Undo, and Redo 530

11.4 Reflecting Updates to the
Database and Recovery 532

11.4.1 Update in Place 533

11.4.2 Indirect Update and Careful
Replacement 538

11.5 Buffer Management, Virtual
Memory, and Recovery 544

11.6 Other Logging Schemes 546

11.7 Cost Comparison 547

11.8 Disaster Recovery 548

11.9 Summary 549
Key Terms 550

Exercises 551

Bibliographic Notes 552

Bibliography 552

Chapter 12
Concurrency Management 554

12.1 Introduction 555

12.1.1 Lost Update Problem 557

12.1.2 Inconsistent Read Problem 558

12.1.3 The Phantom Phenomenon 560

12.1.4 Semantics of Concurrent Transactions
561

12.2 Serializability 562

12.2.1 Precedence Graph 565

12.2.2 Serializability Algorithm: Read-
before-Write Protocol 567

12.2.3 Serializability Algorithm: Read-Only
and Write-Only Protocols 569

12.3 Concurrency Control 569

12.4 Locking Scheme 570

12.4.1 Two-Phase Locking 574.

12.4.2 Granularity of Locking 576

12.4.3 Hierarchy of Locks and Intention-
Mode Locking 576

12.4.4 Tree-Locking Protocol 581

12.4.5 DAG Database Storage Structure
582

12.5 Timestamp-Based Order 583

12.6 Optimistic Scheduling 588

12.7 Multiversion Techniques 591

12.8 Deadlock and Its Resolution
594

12.8.1 Deadlock Detection and Recovery
594

12.8.2 Deadlock Avoidance 599

12.9 Atomicity, Concurrency, and
Recovery 603

12.10 Summary 603
Key Terms 605

Exercises 605

Bibliographic Notes 607

Bibliography 608

Chapter 13
Database Security, Integrity,
and Control 610

13.1 Introduction 611

13.2 Security and Integrity Threats
612 ‘

13.3 Defense Mechanisms 614

13.3.1 Security Policies 615

13.3.2 Authorization 619

13.3.3 Identification and Authentication
625

13.3.4 Views/Subschemes in Security
Enforcement 626

13.3.5 Distributed Systems 626

13.3.6 Cryptography and Encryption 627

Contents xiii

13.4 Integrity 629

13.4.1 Domain or Data-Item Value Integrity
Rules 630

13.4.2 Implicit and Data Dependency
Constraints 632

13.4.3 Violation of Integrity Constraints and
Corrective Action 634

13.4.4 A General Model of Integrity 634

13.4.5 Expressing Integrity Constraints 635

13.5 Statistical Databases 636

13.6 Auditing and Control 639

13.7 Summary 640
Key Terms 641

Exercises 641
Bibliographic Notes 642

Bibliography 643

Chapter 14
Database Design 644

14.1 The Organization and Its
Information System 645

14.2 Phase I: Definition of the
Problem 645

14.3 Phase II: Analysis of Existing
System and Procedures 646

14.4 Phase III: Preliminary Design
648

14.5 Phase IV: Computing System
Decision 649

14.6 Phase V: Final Design 650

14.6.1 Designing the Conceptual Database—
Relational DBMS 650

14.6.2 Designing the Conceptual Database—
Network DBMS 652

14.6.3 Designing the Conceptual Database—
Hierarchical DBMS 652

14.6.4 Designing the Physical Database
652

14.7 Phase VI: Implementation and
Testing 654

14.8 Phase VII: Operation and
Tuning 655

14.9 Summary 655
Key Terms 656

Exercises 656
Bibliographic Notes 658

Bibliography 658

Chapter 15
Distributed Databases 660

15.1 Introduction 661

15.1.1 Advantages and Disadvantages of the
DDBMS 662

15.2 Networks 663

15.2.1 Failures and Distributed Databases
668

15.3 Data Distribution 669

15.3.1 Fragmentation 672

15.3.2 Replication 676

15.3.3 Transparency 676

15.3.4 System Catalogs 677

15.4 Object Naming 678

15.5 Distributed Query Processing
679

15.5.1 Parallelism in Distributed Query
Processing 681

15.5.2 Semijoin 681
15.5.3 Semi join and Reduction of Relations

684

15.5.4 Concluding Remarks 686

15.6 Consistency 686

15.7 Concurrency Control 688

15.7.1 Distributed Locking 688

15.7.2 Timestamp-Based Concurrency
Control 692

15.8 Distributed Commitment and
Recovery 694

15.8.1 Two-Phase Commit 695

15.8.2 Recovery with Two-Phase Commit
698

15.9 Deadlocks in Distributed
Systems 700

15.9.1 Deadloack Detection by Probe
Computation 702

xiv Contents

15.9.2 Deadlock Prevention 705

15.10 Security and Protection 705

15.11 Homogeneous and
Heterogeneous Systems 705

15.11.1 The Homogeneous DDBMS 707

15.11.2 The Heterogeneous DDBMS 710

15.12 Summary 715
Key Terms 716

Exercises 716

Bibliographic Notes 718

Bibliography 719

Chapter 16
Current Topics in Database
Research 721

16.1 What Is a Knowledge Base
System? 722

16.2 Knowledge Base and Database
Systems: A Comparison 723

16.8 Object Databases 755

16.8.1 Pros and Cons of the Object
Approach in Databases 757

16.9 Summary 758
Key Terms 759

Exercises 759

Bibliographic Notes

Bibliography 761

761

Chapter 17
Database Machines 766

17.1 Introduction 767

17.2 Database Machine Taxonomy
767

17.2.1 Backend Software Approach 768

17.2.2 Processor Associated with Memory
or Intelligent Memory Approach
770

17.2.3 Special Hardware Approach 772

17.3 DBC/1012 Overview and
Features 774

16.3 Knowledge and Its 17 3

Representation 724 17 3

16.3.1 Semantic Networks 726

16.3.2 First-Order Logic (Predicate Logic) 17.4
729

16.3.3 Frames 732

16.3.4 Rule-Based Systems (Production
Systems) 733

16.3.5 Procedural Representation 736

16.4 Deductive Databases 737

16.5 Expert Systems 742
Appendix 3.1 Sequence 785

Appendix 3.2 Average Seek Distance Computation

16.6 Expert Database Systems: 789

Integration of Expert Systems Appendix 3.3 Rotational Delay (Latency) 791

in Database Applications 746 Appendix 3.4 Probabilities of Access 793

16.7 Object Approach 747 Appendix 4.1 Formal Definitions of Some

16.7.1

16.7.2
Concept of the Object 749

Names and Identity 750
Appendix 4.2

Relational Algebraic Operations
795

16.7.3 Database and Identity 752 Recursive Queries: Transitive

16.7.4 Implementation of Object Identifiers
Closure 799

752 Appendix 5.1 Syntax of SQL 801

16.7.5 Object Class and Instantiation 753 Appendix 5.2 Syntax of QUEL 803

16.7.6 Inheritance 753 Index 805

Operation of the DBC/1012 780

System Facilities of the DBC/1012
781

Summary 781
Key Terms 782

Bibliographic Notes 782
Bibliography 782

Preface

This textbook introduces the basic concepts of database systems. These concepts are

presented through numerous examples in modeling and design. The material in this

book is geared to an introductory course in database systems offered at the junior or

senior level of Computer Science. It could also be used in a first year graduate course

in database systems, focusing on a selection of the advanced topics in the latter

chapters.

The Textbook Organization

The text is organized in a manner suitable for use in an undergraduate database
course. The format of each chapter is as follows: introduction, concepts (illustrated

with abundant examples), summary, key terms, exercises, bibliographic notes, and

bibliographic references.
The key features of the text are its indepth coverage of the relational, network

and hierarchical models as well as the extensive use of the E-R model. All these

models are introduced and compared early in the text in Chapter 2 to provide the

student with their essential features. Another aspect of the text is the self-contained

nature of the material covered in each chapter. Coverage of the recent trends in

database research with sections on knowledge representation, expert systems, deduc¬

tive databases, the object approach and the object database is included. The text has

been classroom tested in manuscript form and has incorporated the suggestions of

expert reviewers.

Supplements

The following ancillary material is available, on request, from the publisher: instruc¬

tor’s manual, transparency masters and a floppy disk containing the implementation

details of a sample data base application.

Objectives of the Text

The book’s objective is to provide a conceptual understanding of the principles of

database systems in a tutorial manner. Formal definitions are preceded by informal

xv

xvi Preface

discussion allowing readers to gain an intuitive understanding of the concepts. Each

chapter generally offers self-contained illustrative examples and can be studied inde¬

pendently. Since the intent is to present the concepts of the various database models,

the details of the syntax of a particular implementation of a model are replaced by a

uniform Pascal-like language wherever possible. Each chapter is summarized and
offers numerous exercises of varying complexity.

In Chapter 1, the basic concepts of the database systems are introduced. The

structure of a Database Management System and its components are presented. The

interaction of the different classes of users with the database, and the database with

the operating system are explained. Chapter 2 introduces the concepts of data mod¬

eling and association of data. The entity-relationship model is introduced; this model

will be used throughout the text to present the various database design examples. An

introduction to the relational, network and hierarchical models is also given. An

implementation of the same database application example using these models along
with a comparison is presented.

Chapter 3 deals with file organization and for most database courses it is op¬

tional and could be skipped without loss of continuity. Here the various file structures

used in a database environment and their relative merits for retrieval and update

operations are presented. The serial, sequential, indexed sequential and direct file

structures to support primary key retrieval are focused on. The topic of retrieval

based on secondary keys is presented using the inverted, multilist, and ring files. The

use of the tree structured files using B + -tree and B-tree is also considered.

Chapters 4 and 5 encompass the relational model, the relational operators of

relational algebra, and relational calculus. The query languages based on these ap¬

proaches (SQL, QUEL and QBE) are introduced. Chapter 6 focuses on the theory of

relational database design. The basic normal forms and the process of normalization

are demystified. The synthesis approach to relational database design and higher or¬
der normal forms are discussed in Chapter 7.

The CODASYL and hierarchical approaches are considered in a conceptual

frame in Chapters 8 and 9. These two chapters could be skipped for a single semester

course. If it is included, the material could easily be handled by a teaching assistant/

tutor. The subject of query processing in a relational database system is addressed in

Chapter 10. Methods for the estimation of the query processing costs and their min¬
imization are examined.

The topics of recovery, concurrency, and database security and integrity are

addressed in Chapters 11 through 13. The concepts of transactions and concurrency

are introduced. The problems associated with the concurrent execution of transactions

and the various schemes used to resolve them are presented in Chapter 11. Various

methods of recovery from the loss of data are examined in Chapter 12. Methods of
protecting the database are elaborated in Chatper 13.

Chapter 14 outlines the step by step approach used in designing a database

application. Issues involved in the three level design are discussed. A number of

suggested database design projects are given. The special problems that arise when a

database is distributed over a number of sites connected via a communication net¬

work are elaborated in Chapter 15. Chapter 16 treats the advanced topics and may

be omitted from a junior level course. Concepts of database machines are briefly
examined in the final chapter.

The diagram on the following page is a suggested plan for a single semester
course.

Preface xvii

14 Database Design
and project

1 Basic Concepts

2 Data Models

5 Relational Data
Manipulation

6 Rek
Desig

itional
n

7 Higher Order
Normal Form

File Organization, Network Model and Hierarchical Model chapters are optional

and could be skipped without loss of continuity. Alternatively, as is the practice at

Concordia, the Network and Hierarchical Models are covered by a teaching assistant/

tutor. It is suggested that the students be assigned a database design and implemen¬

tation project and the chapter on Database Design and Query Processing could be

covered concurrently. In a single term course, the instructor may choose to omit the

database design project, Chapters 7 and 10.
When used in a second level or graduate course the latter chapters which deal

with design and implementation issues such as concurrency, recovery, and security

may be included. It is also the usual practice to discuss distributed database systems

and recent trends in database systems in a second level course. Higher order normal

forms and query processing techniques may be brought in at this level.

Acknowledgements

It is with great pleasure that the author acknowledges the contributions of a large

number of people. The manuscript for the text, in its various stages, had been used

by a large number of students over several terms in an introductory database course

at Concordia. The author wishes to thank these students for their comments and

xviii Preface

questions. The author also wishes to acknowledge the initial contributions of Dr. P.

Goyal in the formulation of chapters 3, 4, 5, 10, and 15. The informal discussions

with P. Goyal, T. Narayanan, R. Kohli, Richard Pollock, and F. Sadri throughout

this project were helpful. Special thanks are also due to Richard Pollock who spent

endless hours reviewing this text in its various stages of completion and the very
constructive comments provided.

The author gratefully acknowledges the contribution of these reviewers and their
helpful suggestions:

John Atkins Anil K. Garg
West Virginia University Southern Illinois University

William Baker Guy Johnson
Jamestown College Rochester Institute of Technology

Mark Barnard V. S. Lakshmanan
Marquette University University of Toronto

Anthony Q. Baxter John B. Lane
University of Kentucky Edinboro State College

Helen Casey Chung Lee
Sam Houston State University California State Polytecnic University

Maxine Cohen John Lowther
SUNY—Binghamton Michigan Technological University

Lee D. Cornell A. Dale Magoun
Mankato State University Northeast Louisiana University

Steven A. Demurjian Ronald A. Mann
University of Connecticut University of Louisville

Herbert L. Dershem Michael Mannino
Hope College University of Texas at Austin

Kathleen Desmet Fatma Mili
Marist College Oakland University

James Diederich Evelyn Rozanski
University of California—Davis Rochester Institute of Technology

Nelson Dinerstein Sharon Salveter
Utah State University Boston University

David A. Eichmann Peter Smith
University of Iowa California State University, Northridge
Alan L. Eliason Arie Tzvieli
University of Oregon Louisiana State University

Richard Epstein

George Washington University

The author also wishes to express his sincerest appreciation and gratitude to the

very helpful people at West. Among these are Jerry Westby, Liz Lee, Nancy Roth,
and Patrick Fitzgerald.

Finally, there are some special people without whose support this project would

have never come to fruition. The author wishes to thank. S.E.D. for the innumerable

hours spent with the early editing of the manuscript and the continuing moral support

provided. Special thanks to P.E.D. who contributed in the design of the UHL teams

and invented its main characters. Last, but not least, thanks to L.M.D. and

D.R.A.D. who helped keep the spirits up with their inquiries about the state of the
‘book’.

Contents

1.1 Data Modeling for a Database

1.1.1 Entities and Their Attributes

Attribute Values and Domains

Keys

1.1.2 Relationships

1.2 Records and Files

1.3 Abstraction and Data Integration

1.4 The Three-Level Architecture Proposal

for a DBMS

External or User View

Conceptual or Global View

Internal View

1.4.1 Mapping between Views

1.4.2 Data Independence

1.5 Components of a DBMS

1.5.1 Classification of DBMS Users

Naive Users

Online Users

Application Programmers

Database Administrator

1.5.2 DBMS Facilities

Data Definition Language

Data Manipulation Language

1.5.3 Structure of a DBMS
Data Definition Language Compiler

Data Manager

File Manager

Disk Manager

Query Processor

Telecommunication System

Data Files

Data Dictionary

Access Aids

1.5.4 Database Access

1.6 Advantages and Disadvantages of a DBMS

1.6.1 Advantages of a DBMS
Reduction of Redundancies

Shared Data

Integrity

Security

Conflict Resolution

Data Independence

1.6.2 Disadvantages of a DBMS

Chapter

1
Basic

Concepts

2 Chapter 1 Basic Concepts

An organization must have accurate and reliable data for effective decision mak¬

ing. To this end, the organization maintains records on the various facets of its op¬

erations by building appropriate models of the diverse classes of objects of interest.

These models capture the essential properties of the objects and record relationships

among them. Such related data is called a database. A database system is an inte¬

grated collection of related files, along with details of the interpretation of the data
contained therein.

A database management system (DBMS) is a software system that allows

access to data contained in a database. The objective of the DBMS is to provide a

convenient and effective method of defining, storing, and retrieving the information

contained in the database. The DBMS interfaces with application programs, so that

the data contained in the database can be used by multiple applications and users. In

this chapter we look at the structure of a database management system, its main

components and their interactions, and the different classes of users. The database

system allows these users to access and manipulate the data contained in the database

in a convenient and effective manner. In addition the DBMS exerts centralized con¬

trol of the database, prevents fraudulent or unauthorized users from accessing the
data, and ensures the privacy of the data.

Data Modeling for a Database

An organization is established to undertake one or several operations or projects.

Typically, it is an environment with a single administrative control. Examples of an

organization are a bank, conglomerate, government, hospital, manufacturer, or uni¬

versity. An organization may be a single venture such as a university located on a

single campus under a single board of governors, or it may consist of a number of

units, each of which could be considered a separate organization. An instance of the

latter is a conglomerate, which is made up of various quasi-independent enterprises.

All organizations have some basic, common functions. Typically an organiza¬

tion needs to collect, process, store, and disseminate data for its human, financial,

and material resources and functions. The functions performed by an organization

depend on its nature and purpose and could include some of the following: payroll,

accounts receivable and payable, sales reports and forecasts, design and manufactur¬

ing, course offerings, course enrollment, student transcripts, medical histories. The

database system is an attempt to consolidate under a single administration the collec¬
tion, storage, and dissemination of the data required for these operations.

The database is used to store information useful to an organization. To represent

this information, some means of modeling is used. The components used in modeling

are limited to the objects of interest to the organization and the relationships among

these objects. One category of objects of concern to any organization is its personnel,

and one relationship that exists within this category of objects is that of supervisor to

employees. Another area in which the definition, management, and manipulation of

a considerable amount of data is required is in computer-aided design (CAD) and

computer-aided manufacturing (CAM). The objects in these applications consist of
the specifications of various components and their interrelationships.

Each category of objects has certain characteristics or properties, called its attri¬

butes. Relationships have certain properties as well, represented as the attributes of

1.1 Data Modeling for a Database 3

the relationship. We briefly look at these components of modeling in this chapter and
defer detailed discussion of data modeling to the next chapter.

1.1.1 Entities and Their Attributes

Entities are the basic units used in modeling classes of concrete or abstract objects.
Entities can have concrete existence or constitute ideas or concepts. Each of the
following is an entity: building, room, chair, transaction, course, machine, em¬
ployee. An entity type or entity set is a group of similar objects of concern to an
organization for which it maintains data. Examples of entity sets are transactions,
concepts, job positions, courses, employees, inventories of raw and finished prod¬
ucts, inventories of plants and machinery, students, academic staff, nonacademic

staff, managers, flight crews, flights and reservations.
Identifying and classifying objects into entity sets can be difficult, because an

object can belong to different entity sets simultaneously. A person can be a student
as well as a part-time employee. Consider the modeling of a flight crew. It consists
of a group of individuals employed by an organization who belong to the entity sets
EMPLOYEE and PERSON. These individual members of the flight crew have dif¬
ferent skills and functions. Some are assigned to the flight deck, others make up the
cabin crew. In modeling we may decide simply to use the entity set EMPLOYEE
and add the attribute Skill with possible values such as pilot, first officer, navigator,
engineer, steward, purser, and stewardess. A FLIGHT-CREW can then be considered
as a relationship among the instances of the entity set EMPLOYEE with appropriate
value of Skill. Or we could consider creating entity sets PILOT, FLIGHT_ENGI-
NEER, NAVIGATOR, and so forth for each distinct group of employees required in
a flight crew. We can then set up a relationship, let us call it FLIGHT-CREW, among

these entity sets.
One of the first steps in data modeling is to identify and select the entity sets

that will best organize useful information for the database application (see Figure
11) Problems to be resolved include delimiting an entity and distinguishing and
identifying occurrences of entities of the same type. In effect, entities such as bolts,
electrons, trees, or cattle cannot be uniquely identified. However, with these types
of entities, their number, density, weight, or other such attributes may be sufficient
for modeling. For instance, we want to distinguish a #8-24 bolt that is two inches
long from a #10-24 bolt of the same length. However, an instance of the former
need not be distinguished from another instance of the same. Another problem to be
resolved is the method of handling the changes that occur in an entity over time. An
instance of the entity EMPLOYEE could successively be a junior engineer, an engi¬

neer, a senior engineer, and a manager.
To store data on an entity set, we have to create a model for it. For example,

employees of an organization are modeled by the entity set EMPLOYEE. We must
include in the model the properties or characteristics of employees that may be useful
to the organization. Some of these properties are EMPLOYEE.Name, EMPLOYEE
SocSec-No (Social Security number), EMPLOYEE .Address, EMPLOYEE.Skill,

EMPLOYEE.Annual-Salary. Other properties, which are not deemed useful to the
organization and not recorded, could be the color of the employees’ hair or the size
of the shoes they wear. The properties that characterize an entity set are called its

4 Chapter 1 Basic Concepts

Figure 1.1 Identifying the requirements for database applications.

attributes (see Figure 1.2). An attribute is also referred to by the terms data item,

data element, data field, item, elementary item, or object property. Figure 1.2

gives examples of entities relevant to a database application for an organization such

as a hotel. In the figure an entity set is represented as a rectangle and each of its
attributes is represented by an oval connected to the rectangle.

Attribute Values and Domains

The entity set EMPLOYEE is a classification whereby we view a set of persons

employed by an organization. We record the details of each such person by recording

the value of each attribute used in the classification. Therefore, we record facts about

the person George Hall, who is an employee, by giving the values for the attributes

used in modeling the entity set EMPLOYEE as shown in Figure 1.3. Having defined

an entity set for the employees, we can represent the data for all the employees of

the organization HOTEL PLEIN AIR by using the entity type EMPLOYEE. For each

person employed by the hotel, we give the value for each of the attributes. In Figure

1.3, we associate the value George Hall with the attribute EMPLOYEE .Name, the

value 787394510 with the attribute EMPLOYEE.SocSec-No, the value 110 Wool-
sey Drive with the attribute EMPLOYEE.Address, and so forth.

1.1 Data Modeling for a Database 5

Figure 1.2 Entity sets and their attributes.

Each attribute of an entity set has a particular value. The set of possible values

that a given attribute can have is called its domain. For example, the set of values

that the attribute EMPLOYEE.Soc_Sec_Ari can assume is a positive integer of nine

digits; similarly, the set of values that the attribute EMPLOYEE .Annual-Salary may

take is a positive number ranging between 0.00 and 9,999,999.00. It is possible for

different attributes to share a domain, as in the case of the attribute GUEST.S<?c_

Sec-No, which shares its domain with the attribute EMPLOYEE.SocSec^No. If the

EMPLOYEE .Annual-Salary were recorded in cents, then both the attributes EMPLOY-

Figure 1.3 An entity set, its attributes, and their values.

Entity set Attribute Value

EMPLOYEE EMPLOYEE. Name George Hall

EMPLOYEE. SocSec-No 787394510

EMPLOYEE .Address 110 Woolsey Dr.

EMPLOYEE. Skill cook

EMPLOYEE .Annual-Salary 42650.00

6 Chapter 1 Basic Concepts

EE. Annual-Salary and EMPLOYEE.SocSec-No would have a domain consisting

of positive nine-digit integers. Although the set of values for the two attributes are

identical, their domains are treated differently because we interpret the salary as a

monetary unit and the Social Security number as an identifying number.

Keys

A key is a single attribute or combination of two or more attributes of an entity set

that is used to identify one or more instances of the set. The attribute EMPLOYEE.

SocSec-No uniquely identifies an instance of the entity set EMPLOYEE. The value

787394510 for the attribute EMPLOYEE.SocSec-No uniquely identifies the em¬

ployee George Hall. A key would not be unique if an attribute such as EM¬

PLOYEE. Skill were used. Such attributes identify more than one instance of the

entity set EMPLOYEE. The value of cook for EMPLOYEE. SA/// identifies all em¬
ployees with this skill.

Two instances of an entity set could have the same values for all its attributes.

In the case of the entity set GUEST, it is likely that the two guests Don Smith and

David Smith, who are identical twins living at 123 New Brunswick Drive, are both

registered as D. Smith. To distinguish such instances, we introduced the attribute

GUEST.SocSec-No. This attribute is unique and will identify an instance of the

entity set GUEST. Such a unique entity identifier as GUEST.SocSec-No is referred
to as a primary key.

If we add additional attributes to a primary key, the resulting combination would

still uniquely identify an instance of the entity set. Such augmented keys are called

superkeys: a primary key is, therefore, a minimum superkey. It is possible that some

existing attribute or combination of attributes of an entity set uniquely identifies an

instance of the set. In this case, additional attributes need not be introduced. How¬

ever, if no such attribute or combination of attributes exists, then in order to identify

the object uniquely, an additional attribute needs to be introduced. Examples of such

additional attributes are found in the introduction of identifiers such as car serial

numbers, part numbers, customer and account numbers to uniquely identify cars,

parts, customers and accounts, respectively. Instances of these entities would be

harder to distinguish by their other attributes. Suppose that George Hall banks with

the First National Bank. Even though each customer has a unique SocSec-No, the

bank uses a unique identifier called the Account-Number to identify each account.

The fact that George Hall may have more than one account of the same type, for

example, two current accounts, three savings accounts, and a mortgage account,

necessitates such identification. The attribute Account—Number is a better choice for

the primary key of the entity set ACCOUNT than the attribute SocSec-No.

There may be two or more attributes or combinations of attributes that uniquely

identify an instance of an entity set. These attributes or combinations of attributes

are called candidate keys. In such a case we must decide which of the candidate

keys will be used as the primary key. The remaining candidate keys would be con¬
sidered alternate keys.

A secondary key is an attribute or combination of attributes that may not be a

candidate key but that classifies the entity set on a particular characteristic. A case in

point is the entity set EMPLOYEE having the attribute Department, which identifies

by its value all instances of EMPLOYEE who belong to a given department. More

1.2 Records and Files 7

Figure 1.4 Relationships between entity sets.

than one employee may belong to a department, so the Department attribute is not a

candidate key for the entity set EMPLOYEE, since it cannot uniquely identify an

individual employee. However, the Department attribute does identify all employees

belonging to a given department.

1.1.2 Relationships

The relationship set is used in data modeling to represent an association between

entity sets. This association could have certain properties represented by the attributes

of the relationship set. A Grade is an attribute of the ENROLLMENT relationship

set between the entity sets COURSE and STUDENT.
Each relationship set is named. The fact that an employee is assigned to a given

department is indicated by the named relationship set WORKS-FOR between the

entity sets EMPLOYEE and DEPARTMENT. Compare this with using the attribute

Department as an attribute of EMPLOYEE. Figure 1.4 shows this relationship set as

a diamond connected to the entity sets involved in the relationship. There could be a

number of entity sets involved in a relationship and the same entity set could be

involved in a number of different relationship sets. The relationship set REPORTS-

TO in Figure 1.4 involves the same entity set EMPLOYEE and indicates that an

employee reports to another employee, the supervisor. The same entity set EM¬

PLOYEE is involved in both these relationship sets. We discuss the concept of rela¬

tionships further in the next chapter.

1 m2 Records and Files

The physical representation of an entity set is made by aggregating the attributes

used to model the entity set. Such a representation is called a record type. An

instance of a record type is a record occurrence. The usual practice is to group

together in predetermined order the values of the attributes of an instance of an entity

set and store them in an appropriate storage medium. Therefore,

[George Hall, 787394510, 110 Woolsey Drive, cook, 42650.00]

8 Chapter 1 Basic Concepts

Figure 1.5 Storing records in a file.

! George Hall ! 787394510 ! 110 Woolsey Dr. ! cook ! 42650.00 !

! Denise Benoit ! 632749291 ! 357 Joseph Blvd. ! busboy \ 19700.00 !

is an example of a physical representation of an instance of the entity set EM¬

PLOYEE. It represents an occurrence of the record type to which we refer by using

the same name as the corresponding entity set, EMPLOYEE. The stored value of the

attribute is referred to as an attribute value, stored field, or simply field. A file is

a collection of identical record type occurrences pertaining to an entity set and is
labeled to identify the entity set.

Two occurrences of the record type for the entity set EMPLOYEE may be stored

in a file as shown in Figure 1.5. Only the values for the attributes of the record are

stored and the interpretation of these values is left to the user or program using the

file. Each record of Figure 1.5 represents a collection of data fields and could be

interpreted as the attribute values for the attributes EMPLOYEE.Name, EMPLOYEE.

SocSec-No, EMPLOYEE. A(/<:/rc.s.?, EMPLOYEE. Skill, and EMPLOYEE .Annual-

Salary, respectively. All occurrences of such records are grouped together and stored

in a file. The storage medium could be manual (a file folder or a ledger) or computer
oriented (magnetic tape, disk, drum, or optical disk).

Data for a record and its interpretation may also be stored together. This may

be done by preceding each data value with the name of its attribute as shown in

Figure 1.6. In this method of storage, the relative positions of the various attribute

names and attribute value pairs within the record are not significant. However, where

the data is stored as in Figure 1.5, the relative positions of the value for each of the

attributes of the record must conform to the relative positions of the corresponding
attribute used in the interpretation of the data.

The disadvantage of storing the name of the attribute along with the value, as

shown in Figure 1.6, is the waste of storage space. The advantage is that the inter¬

pretation of the value is stored with the value in the file. However, the program using

Figure 1.6 Storing attribute names with values.

Attribute

EMPLOYEE./Vame

EMPLOYEE. SocSec-No

EMPLOYEE .Address

EMPLOYEE .Skill

EMPLOYEE. Annual-Salary
cook

42650.00

Value

George Hall

787394510

110 Woolsey Dr.

EMPLOYEE. Name

EMPLOYEE. 5k///

EMPLOYEE. A Jr/rcis

EMPLOYEE. Annual-Salary

EMPLOYEE. SocSec-No

Denise Benoit

busboy

357 Joseph Blvd.

19700.00

632749291

1.3 Abstraction and Data Integration 9

this data still requires information on the size of the descriptors used to store the

attribute names and the size and type of the attribute values unless they, too, are

stored. In addition, the program has to be aware of the file access method and the

type of storage device employed. The volume of description required to interpret the

data when it is stored using the method of Figure 1.5 is correspondingly greater.
Such descriptors, being data about data, are called metadata.

Physical representation of a relationship is not quite as straightforward as the

representation of the entity set. The representation of a relationship depends on the

data model used by the database system. We discuss relationships further in the next
chapter, where we introduce the various data models.

1.3 Abstraction and Data Integration

A user’s program (the application program) interprets the world portrayed by the

data, and this data represents a portion of the real world with which the program is

concerned. Each program needs data relevant to its task. It is usual for a program to

use some portion of data that is also used by other programs, and the simplest method

of sharing common data is by duplicating it. In the early days of computerization,

when each application was independently implemented (computerized), the practice

was for each application programmer to design the file structure and for the applica¬

tion program to contain the metadata about the file organization and the access

method to be used. Thus, each application program used its own data; the details

concerning the structure of the data as well as the method of accessing and interpret¬

ing it were all embodied in the application program. Users’ programs were also

responsible for devising structures for data storage on secondary storage devices so

that the data could be accessed efficiently. Consequently, users were required to

choose an appropriate file access method. (We discuss files and access methods in

Chapter 3.) A change in storage media required changes to these structures and ac¬

cess methods. Because the files were structured for one application, it was difficult

to use the data in these files in new applications requiring data from several files

belonging to different existing applications.
It might be necessary to duplicate data because of a different interpretation of

the data or for the protection of some portion of the data from the general class of

users. An employee’s telephone number, for instance, could be made available to all

users but not the employee’s salary. Large-scale storage of redundant data is a waste

of resources and results in inconsistency when some copies of the data are changed

and others are not. A database system remedies these problems by centralizing the

storage and management of data. The database management system has access to

metadata, relieving users (or their application programs) of its maintenance and ma¬

nipulation. The database system also provides the application programs or users with

data in the form they require, with the database performing the appropriate translation

of the actual data.
Consider a nondatabase operating environment consisting of a number of appli¬

cation programs as shown in Figure 1.7. Each such application has its own need of

viewing the real world and the necessary data is stored in private files. Sharing is

achieved in this environment by duplicating common data.

10 Chapter 1 Basic Concepts

Figure 1.7 Nondatabase environment without any shared data.

Consider two applications that require data on the entity set EMPLOYEE. The

first application involves the public relations department sending each employee a

newsletter and related material. This material is mailed to employees’ homes, neces¬

sitating printing mailing labels. The application, therefore, is interested in the record

type EMPLOYEE, which contains the values for the attributes EMPLOYEE.vVame

and EMPLOYEE .Address. This record type is the view of the real world as far as

this application is concerned and can be described in pseudocode as shown in Fig¬
ure 1.8.

The second application involves the payroll application for paycheck prepara¬

tion. It requires the record type EMPLOYEE, which contains the values for the

attributes EMPLOYEE.Name, EMPLOYEE.SocSec-No, EMPLOYEE.Address, and
EMPLOYEE.Annual-Salary. This record type is shown in Figure 1.9.

In a nondatabase environment, each application program is responsible for main¬
taining the currency of the data and a change in a data item must be effected in each

copy of the data. Therefore, if an employee changes her or his address, each appli¬

cation program using the EMPLOYEE entity set with the attribute EM-

PLOYEE.Address would be required to update the address of that employee.

As shown in Figure 1.10, in a database environment data can be shared by these

two applications. Their requirements can be integrated by the person (or a group of

persons) who has the responsibility of centralized control. Such a person is referred

to as the database administrator or DBA. The integrated version could appear as a

record containing the following attributes: EMPLOYEE.Name, EMPLOYEE.5oc_

Sec-No, EMPLOYEE .Address, EMPLOYEE.Skill, and EMPLOYEE.Annual-Sal¬
ary. This integrated record type is shown in Figure 1.11. Note the inclusion of the

Figure 1.8 The view for the public relations application.

type EMPLOYEE = record

EMPLOYEE.Name: string;

EMPLOYEE .Address: string;
end

1.3 Abstraction and Data Integration 11

Figure 1.9 The view for the payroll application.

type EMPLOYEE = record

EMPLOYEE.Aame: string;

EMPLOYEE.SocSec-No: integer;

EMPLOYEE.Address: string;

EMPLOYEE.Annual-Salary: integer;

end

attribute EMPLOYEE.Skill, which is not being used by either of the above described

applications.
The integrated record EMPLOYEE described above can be considered a con¬

ceptual record. The views of the two applications it supports can be derived from it

by using appropriate mapping, which in this case is done by simply hiding (i.e.,

masking out) the unnecessary attributes. The two views of this record as seen by the

two applications are shown in Figure 1.12. Each application views only a portion of

the conceptual record. The record each application is concerned with is called a

logical record.
In addition to masking out the irrelevant attributes, it is possible to have a view

that contains one or more attributes obtained by computation from the conceptual

record. For instance, a new application that requires the monthly salary for each

employee can be supported by the conceptual record of Figure 1.11. The monthly

salary is derived by a simple computation on the data in the database for the attribute

EMPLOYEE .Annual-Salary.
The application programs discussed above can continue to view the employee

record in the same manner as before; however, they no longer are required to contain

information about the file structure. Any change in the storage structure, storage

Figure 1.10 Database environment with shared data.

12 Chapter 1 Basic Concepts

Figure 1.11 Integrated record definition.

type EMPLOYEE = record

EMPLOYEE.yVarae: string;

EMPLOYEE.Soc~Sec-No: integer;

EMPLOYEE.Address: string;

EMPLOYEE.SAf//: string;

EMPLOYEE.Annual-Salary: integer;

end

device type, or access method is absorbed by the DBMS. Alteration of the applica¬

tion program is not required for such changes because data accessed by the applica¬
tion program is done via the DBMS.

Changes in the conceptual record do not affect the application programs. If a

field such as EMPLOYEE.Department were added to the EMPLOYEE record and

stored, the application programs discussed earlier would not require modifications.

The database management system would simply be instructed to mask out this addi¬

tional field from existing application programs. Similarly, the DBMS would insulate

Figure 1.12 Conceptual record and two views of it.

Employee name

Employee address

* Logical record 1

Employee name

Employee Soc Sec No

Employee address

Employee annual salary

Logical record 2

User 1

Employee name

Employee social security number

Employee address

Employee skill

Employee annual salary

Conceptual record

1.3 Abstraction and Data Integration 13

Figure 1.13

Logical view

Conceptual view

Internal view

the application programs from any changes in the file structure or physical storage

device storing the data.

Thus, in a nondatabase environment the logical record as viewed by the appli¬

cation program is identical to the conceptual record, and the physical record is deter¬

mined and controlled by the application program. In a database environment, the

logical record as viewed by the application program need not be the same as the

conceptual record. In the above example, the logical record in each case is a simple

subset of the conceptual record.

We have abstracted the data in three levels corresponding to three views as

shown in Figure 1.13. The highest level, seen by the application program or user, is

called the external view, user view, or simply view. The next level of abstraction

is the sum total of users’ views, called the global view or conceptual view. The

Three views of the data.

Employee name

Employee address

Logical record 1

Employee name

Employee Soc_Sec_No

Employee address

Employee annual salary

Logical record 2

Employee name: string

Employee Social Security number: key

Employee address: string

Employee skill: string

Employee annual salary: integer

Conceptual record

EMPLOYEE
record
length

120

Name: string length 25 offset 0

Soc__Sec_No: 9 dec offset 25 unique

Department: string length 6 offset 34

Address: string length 51 offset 40

Skill: string length 20 offset 91

Salary: 9, 2 dec offset 111

Internal record

14 Chapter 1 Basic Concepts

lowest level, a description of the actual method of storing the data, is the internal

view. The database system can be designed using these levels of abstractions as

described in the following section.

The Three-Level Architecture Proposal

for a DBMS

In this section we describe the generalized architecture of a database system called

the ANSI/SPARC1 model. A large number of commercial systems and research da¬

tabase models fit this framework. The architecture, shown in Figure 1.14, is divided

into three levels: the external level, the conceptual level, and the internal level.

The view at each of these levels is described by a scheme. A scheme is an

outline or a plan that describes the records and relationships existing in the view.

The word scheme, which means a systematic plan for attaining some goal, is used

interchangeably in the database literature with the word schema. The word schemas

is used in the database literature for the plural instead of schemata, the grammatically

correct word. The scheme also describes the way in which entities at one level of

abstraction can be mapped to the next level.

External or User View

The external or user view is at the highest level of database abstraction where only

those portions of the database of concern to a user or application program are in¬

cluded. Any number of user views (some of which may be identical) may exist for a

given global or conceptual view.

Each external view is described by means of a scheme called an external

schema. The external schema consists of the definition of the logical records and the

relationships in the external view. The external schema also contains the method of

deriving the objects in the external view from the objects in the conceptual view.

The objects includes entities, attributes, and relationships. (The terms view, scheme,

and schema are sometimes used interchangeably when there is no confusion as to
what is implied.)

Conceptual or Global View

At this level of database abstraction all the database entities and the relationships

among them are included. One conceptual view represents the entire database. This

conceptual view is defined by the conceptual schema. It describes all the records

and relationships included in the conceptual view and, therefore, in the database.

There is only one conceptual schema per database. This schema also contains the

'ANSI/SPARC: American National Standards Institute/Standards Planning and Requirements Committee

1.4 The Three-Level Architecture Proposal for a DBMS 15

Figure 1.14 The three levels of architecture of a DBMS.

External level

User/application view
Defined by user or
application programmer

in consultation with DBA

Conceptual level
Defined by DBA

Internal level
DBA defined for

optimization

method of deriving the objects in the conceptual view from the objects in the internal
view.

The description of data at this level is in a format independent of its physical

representation. It also includes features that specify the checks to retain data consis¬

tency and integrity.

Internal View

We find this view at the lowest level of abstraction, closest to the physical storage

method used. It indicates how the data will be stored and describes the data structures

and access methods to be used by the database. The internal view is expressed by

the internal schema, which contains the definition of the stored record, the method

of representing the data fields, and the access aids used.

1.4.1 Mapping between Views

The conceptual database is the model or abstraction of the objects of concern to the

database. Thus, the conceptual record of Figure 1.13 is the conceptual database and

represents the abstraction of all the applications involving the entity set EMPLOYEE,

for the present discussions. The view is the subset of the objects modeled in the

conceptual database that is used by an application. There could be any number of

views of a conceptual database. A view can be used to limit the portion of the

database that is known and accessible to a given application.
Two mappings are required in a database system with three different views as

shown in Figure 1.14. A mapping between the external and conceptual views gives

the correspondence among the records and the relationships of the external and con-

16 Chapter 1 Basic Concepts

ceptual views. The external view is an abstraction of the conceptual view, which in

its turn is an abstraction of the internal view. It describes the contents of the database

as perceived by the user or application program of that view. The user of the external

view sees and manipulates a record corresponding to the external view. There is a

mapping from a particular logical record in the external view to one (or more) con¬

ceptual record(s) in the conceptual view. A number of differences could exist be¬

tween the two. Names of the fields and records, for instance, may be different. A

number of conceptual fields can be combined into a single logical field, for example,

Last-Name and First-Name at the conceptual level but Name at the logical level. A

given logical record could be derived from a number of conceptual records.

Similarly, there is a mapping from a conceptual record to an internal one. An

internal record is a record at the internal level, not necessarily a stored record on a

physical storage device. The internal record of Figure 1.14 may be split up into two

or more physical records. The physical database is the data that is stored on second¬

ary storage devices. It is made up of records with certain data structures and orga¬

nized in files. Consequently, there is an additional mapping from the internal record

to one or more stored records on secondary storage devices. This may have been

implemented using some form of nonlinear addressing. The internal record is as¬

sumed to be linearly addressed. However, this complexity is managed by the DBMS

and the user need not be aware of its presence nor be concerned with it.

Mapping between the conceptual and the internal levels specifies the method of

deriving the conceptual record from the physical database. Again, differences similar

to those that exist between external and conceptual views could exist between the

conceptual and internal views. Such differences are indicated and resolved in the
mapping.

Differences that could exist, besides the difference in names, include the fol¬
lowing:

• Representation of numeric values could be different in the two views. One view

could consider a field to be decimal, whereas the other view may regard the

field as binary. A two-way transformation between such values can be easily

incorporated in the mapping. If, however, the values are stored in a binary

format, the range of values may be limited by the underlying hardware.

• Representation of string data can be considered by the two views to be coded

differently. One view may perceive the string data to be in ASCII code, the

other view may consider the data to be in EBCDIC code. Again, two-way
transformation can be provided.

• The value for a field in one view could be computed from the values in one or

more fields of the other view. For example, the external view may use a field

containing a person’s age, whereas the conceptual view contains the date of

birth. The age value could be derived from the date of birth by using a date

function available from the operating system. Another example of a computed

field would be where an external view requires the value of the hours worked

during a week in a field, whereas the conceptual view contains fields

representing the hours worked each day of the week. The former can be derived

from the latter by simple addition. These two examples of transformation

between the external and conceptual views are not bidirectional. One cannot

uniquely reflect a change in the total hours worked during a week to hours

worked during each day of the week. Therefore, a user’s attempt to modify the
corresponding external fields will not be allowed by the DBMS.

1.4 The Three-Level Architecture Proposal for a DBMS 17

Such mapping between the conceptual and internal levels is a correspondence

that indicates how each conceptual record is to be stored and the characteristics and

size of each field of the record. Changing the storage structure of the record involves

changing the conceptual view to internal view mapping so that the conceptual view
does not require any alteration.

The conceptual view can assume that the database contains a sequence of rec¬

ords for each conceptual record type. These records could be accessed sequentially

or randomly. The actual storage could have been done to optimize performance. A

conceptual record may be split into two records, with the less frequently used record

(part of the original record) on a slower storage device and the more frequently used,

record, on a faster device. The stored record could be in a physical sequence, or one

or more indices may be implemented for faster access to record occurrences by the

index fields. Pointers may exist in the physical records to access the next record

occurrence in various orders. These structures are hidden from the conceptual view

by the mapping between the two.

1.4.2 Data Independence

Three levels of abstraction, along with the mappings from internal to conceptual and

from conceptual to external, provide two distinct levels of data independence: logical

data independence and physical data independence.
Logical data independence indicates that the conceptual schema can be changed

without affecting the existing external schemas. The change would be absorbed by

the mapping between the external and conceptual levels. Logical data independence

also insulates application programs from operations such as combining two records

into one or splitting an existing record into two or more records.
Physical data independence indicates that the physical storage structures or de¬

vices used for storing the data could be changed without necessitating a change in

the conceptual view or any of the external views. The change would be absorbed by

the mapping between the conceptual and internal levels.
Logical data independence is achieved by providing the external level or user

view of the database. The application programs or users see the database as described

by their respective external views. The DBMS provides a mapping from this view to

the conceptual view. The view at the conceptual level of the database is the sum

total of the community view (current and anticipated) of the database There will be

many external views, but only one conceptual view of a database. The users are only

interested in that portion of the database that is described by their external view. It

is an abstraction of the physically stored data and the user manipulates this abstrac¬

tion.
Figure 1.15 gives the external views of the users from the public relations and

payroll departments. Each of these external views is represented in a high-level lan¬

guage declaration in accordance with the normal rules of such languages. Figure 1.16

represents the conceptual level definition, using a similar facility for data definition.

For simplicity, we have used the same names for both the external records and their

components and the conceptual records and their components. However, the names

used in each external view could be different and a correspondence is indicated be¬

tween the names used in the external level and those in the conceptual level. Con¬

sequently, the way to derive the external view of the application program for the

18 Chapter 1 Basic Concepts

Figure 1.15 External schemes of (a) user in public relations department and (b) user in payroll
department.

type EMPLOYEE = record

EMPLOYEE.Name: string;

EMPLOYEE.Address: string;

end

(a)

type EMPLOYEE = record

EMPLOYEE.Name: string;

EMPLOYEE.SocSec-No: integer unique;

EMPLOYEE.Address: string;

EMPLOYEE.Salary: integer;

end

(b)

public relations department given in Figure 1.15a from the conceptual view given in

Figure 1.16 is to map the first and fourth fields of the record EMPLOYEE in the

conceptual scheme into the first and second field of the record EMPLOYEE of the

external scheme.

Figure 1.17 presents the internal level definition corresponding to the conceptual

record type defined in Figure 1.16. The scheme indicates that the record EM¬

PLOYEE is a record of length 120 bytes. There are six fields in this record and the

scheme gives their sizes, types, and relative position from the beginning of the rec¬

ord. It also indicates that for faster access in random order, an index is to be built

using the values from the primary key field EMPLOYEE.SocSec-No.
Consider a change in the conceptual view such as merging two records into one

or adding fields to an existing record. This would require a change in the mapping

(for external views that are based on the records undergoing changes) from the ex¬

ternal view to the conceptual view so as to leave the external view unchanged. How¬

ever, not all changes in the conceptual schema can be absorbed by the adjustment of

the mapping. Some changes, such as the deletion of a conceptual view field or rec-

Figure 1.16 Conceptual schema portion of database corresponding to Figure 1.15.

type EMPLOYEE = record

EMPLOYEE.Name: string;

EMPLOYEE.SocSec-No: integer primary key;

EMPLOYEE .Department: string;

EMPLOYEE.Address: string;

EMPLOYEE.Skill: string;

EMPLOYEE .Annual-Salary: integer;

end

The Three-Level Architecture Proposal for a DBMS 19

Figure 1.17 Internal schema of the portion of database corresponding to Figure 1.16.

type EMPLOYEE = record length 120

EMPLOYEE.Name: string length 25 offset 0;

EMPLOYEE.SocSec-No: integer positive

9 dec digits offset 2.5

unique

use for index;

EMPLOYEE.Department: string length 6 offset 34;

EMPLOYEE.Address: string length 51 offset 40;

EMPLOYEE.Skill: string length 20 offset 91;

EMPLOYEE.Salary: integer positive 9,2 dec

digits offset 111;

end

ord, may require changes in the external view and application programs using this

external view.

Physical data independence is achieved by the presence of the internal level of

the database and the mapping or transformation from the conceptual level of the

database to the internal level. Conceptual level to internal level mapping, therefore,

provides a means to go from the conceptual view (conceptual records) to the internal

view and thence to the stored data in the database (physical records). If there is a

need to change the file organization or the type of physical device used as a result of

growth in the database or new technology, a change is required in the transformation

functions between the physical and conceptual levels. This change is necessary to

maintain the conceptual level invariant. Altering the physical database organization,

however, can affect the response and efficiency of existing application programs.

This may mean that while some application programs run faster, others may be

slowed down. Regardless, no changes are required in the application programs them¬

selves and they will run correctly with the new physical data organization.

The physical data independence criterion requires that the conceptual level does

not specify storage structures or the access methods (indexing, hashing method, etc.)

used to retrieve the data from the physical storage medium. Making the conceptual

schema physically dataindependent means that the external schema, which is defined

on the conceptual schema, is in turn physically dataindependent.
Another aspect of data independence allows different interpretations of the same

data. The storage of data is in bits and may change from EBCDIC to ASCII coding,

SI (metric) to imperial units of measure, or the data may be compressed to save

storage space without affecting the application programs. In addition, a data field

required by an application may be derived from one or several fields from one or

more records of the database. As mentioned earlier, a field such as EMPLOYEE.Ag^

may be derived from the stored field EMPLOYEE.Birthdate and from the calendar

function DATE usually provided by the operating system. This is an example of a

virtual field. Another such virtual field could be Total-HoursJWorked-ForJWeek,

which is derived from the total of the seven entries for Hours-Worked-During_

Week (record of hours worked on each day of the week). Note that unlike a real

field, a virtual field may not be directly modified by a user.

20 Chapter 1 Basic Concepts

1 a5 Components off a DBMS

Let us now examine the components and structure of a database management system.

A DBMS is a complex software system that is used to manage, store, and manipulate

data and the metadata used to describe the data. It is utilized by a large variety of

users, from the very naive to the most sophisticated, to retrieve and manipulate data

under its control. The users could be utilizing the database concurrently from online

terminals and/or in a batch environment via application programs written in a high-

level language. Before looking at the various components of the DBMS, let us clas¬

sify its users and examine the facilities it provides for the definition and manipulation

of data.

1.5.1 Classification of DBMS Users

The users of a database system can be classified in the following groups, depending

on their degree of expertise or the mode of their interactions with the DBMS.

Naive Users

Users who need not be aware of the presence of the database system or any other

system supporting their usage are considered naive users. A user of an automatic

teller machine falls in this category. The user is instructed through each step of a

transaction; he or she responds by pressing a coded key or entering a numeric value.

The operations that can be performed by this class of users are very limited and

affect a precise portion of the database; in the case of the user of the automatic teller

machine, only one or more of her or his own accounts. Other such naive users are

end users of the database who work through a menu-oriented application program

where the type and range of response is always indicated to the user. Thus, a very

competent database designer could be allowed to use a particular database system
only as a naive user.

Online Users

These are users who may communicate with the database directly via an online ter¬

minal or indirectly via a user interface and application program. These users are

aware of the presence of the database system and may have acquired a certain amount

of expertise in the limited interaction they are permitted with the database through

the intermediary of the application program. The more sophisticated of these users

may also use a data manipulation language to manipulate the database directly. On¬

line users can also be naive users requiring additional help, such as menus.

1.5 Components of a DBMS 21

Application Programmers

Professional programmers who are responsible for developing application programs

or user interfaces utilized by the naive and online users fall into this category. The

application programs could be written in a general-purpose programming language

such as Assembler, C, COBOL, FORTRAN, Pascal, or PL/I and include the com¬
mands required to manipulate the database.

Database Administrator

Centralized control of the database is exerted by a person or group of persons under

the supervision of a high-level administrator. This person or group is referred to as

the database administrator (DBA). They are the users who are most familiar with

the database and are responsible for creating, modifying, and maintaining its three
levels.

The DBA is the custodian of the data and controls the database structure. The

DBA administers the three levels of the database and, in consultation with the overall

user community, sets up the definition of the global view or conceptual level of the

database. The DBA further specifies the external view of the various users and ap¬

plications and is responsible for the definition and implementation of the internal

level, including the storage structure and access methods to be used for the optimum

performance of the DBMS. Changes to any of the three levels necessitated by

changes or growth in the organization and/or emerging technology are under the

control of the DBA. Mappings between the internal and the conceptual levels, as

well as between the conceptual and external levels, are also defined by the DBA.

Ensuring that appropriate measures are in place to maintain the integrity of the data¬

base and that the database is not accessible to unauthorized users is another respon¬

sibility. The DBA is responsible for granting permission to the users of the database

and stores the profile of each user in the database. This profile describes the permis¬

sible activities of a user on that portion of the database accessible to the user via one

or more user views. The user profile can be used by the database system to verify

that a particular user can perform a given operation on the database.

The DBA is also responsible for defining procedures to recover the database

from failures due to human, natural, or hardware causes with minimal loss of data.

This recovery procedure should enable the organization to continue to function and

the intact portion of the database should continue to be available.

1.5.2 DBMS Facilities

Two main types of facilities are provided by a DBMS:

• The data definition facility or data definition language (DDL).

• The data manipulation facility or data manipulation language (DML).

22 Chapter 1 Basic Concepts

Data Definition Language

Database management systems provide a facility known as data definition language

(DDL), which can be used to define the conceptual scheme and also.give some

details about how to implement this scheme in the physical devices used to store the

data. This definition includes all the entity sets and their associated attributes as well

as the relationships among the entity sets. The definition also includes any constraints

that have to be maintained, including the constraints on the value that can be assigned

to a given attribute and the constraints on the values assigned to different attributes

in the same or different records. These definitions, which can be described as meta¬

data about the data in the database, are expressed in the DDL of the DBMS and

maintained in a compiled form (usually as a set of tables). The compiled form of the

definitions is known as a data dictionary, directory, or system catalog. The data

dictionary contains information on the data stored in the database and is consulted

by the DBMS before any data manipulation operation.

The database management system maintains the information on the file struc¬

ture, the method used to efficiently access the relevant data (i.e., the access method).

It also provides a method whereby the application programs indicate their data re¬

quirements. The application program could use a subset of the conceptual data defi¬

nition language or a separate language. The database system also contains mapping

functions that allow it to interpret the stored data for the application program. (Thus,

the stored data is transformed into a form compatible with the application program.)

The internal schema is specified in a somewhat similar data definition language

called data storage definition language. The definition of the internal view is com¬

piled and maintained by the DBMS. The compiled internal schema specifies the im¬

plementation details of the internal database, including the access methods employed.

This information is handled by the DBMS; the user need not be aware of these

details.

Data Manipulation Language

The language used to manipulate data in the database is called data manipulation

language (DML). Data manipulation involves retrieval of data from the database,

insertion of new data into the database, and deletion or modification of existing data.

The first of these data manipulation operations is called a query. A query is a state¬

ment in the DML that requests the retrieval of data from the database. The subset of

the DML used to pose a query is known as a query language; however, we use the
terms DML and query language synonymously.

The DML provides commands to select and retrieve data from the database.

Commands are also provided to insert, update, and delete records. They could be

used in an interactive mode or embedded in conventional programming languages

such as Assembler, COBOL, FORTRAN, Pascal, or PL/I. The data manipulation

functions provided by the DBMS can be invoked in application programs directly by

procedure calls or by preprocessor statements. The latter would be replaced by ap¬

propriate procedure calls by either a preprocessor or the compiler. An example of a

procedure call and a preprocessor statement is given below:

1.5 Components of a DBMS 23

Procedure call: Call Retrieve (EMPLOYEE. Name, EMPLOYEE .Address)

Preprocessor statement: %select EMPLOYEE. Name, EMPLOYEE .Address

from EMPLOYEE;

These preprocessor statements, indicated by the presence of the leading % sym¬

bol, would be replaced by data manipulation language statements in the compiled

version of the application program. Commands in the conventional languages allow

permissible operations on the database such as data retrieval, addition, modification,

or deletion.
The DML can be procedural; the user indicates not only what to retrieve but

how to go about retrieving it. If the DML is nonprocedural, the user has to indicate

only what is to be retrieved. The DBMS in this case tries to optimize the exact order

of retrieving the various components to make up the required response.
Data definition of the external view in most current DBMSs is done outside the

application program or interactive session. Data manipulation is done by procedure

calls to subroutines provided by a DBMS or via preprocessor statements. In an inte¬

grated environment, data definition and manipulation are achieved using a uniform

set of constructs that forms part of the user’s programming environment.

1.5.3 Structure of a DBMS

For our purposes, we may assume that the database management system is structured

and interfaces with various users as shown in Figure 1.18. The major components of

this system are described below.

Data Definition Language Compiler

The DDL compiler converts the data definition statements into a set of tables. These

tables contain the metadata concerning the database and are in a form that can be

used by other components of the DBMS.

Data Manager

The data manager is the central software component of the DBMS. It is sometimes

referred to as the database control system. One of the functions of the data manager

is to convert operations in the user’s queries coming directly via the query processor

or indirectly via an application program from the user’s logical view to a physical

file system. The data manager is responsible for interfacing with the file system. In

addition, the tasks of enforcing constraints to maintain the consistency and integrity

of the data, as well as its security, are also performed by the data manager. Synchro¬

nizing the simultaneous operations performed by concurrent users is under the control

of the data manager. It is also entrusted with backup and recovery operations. We

discuss backup and recovery, concurrency control, and security and integrity in

Chapters 11, 12, and 13, respectively.

24 Chapter 1 Basic Concepts

Figure 1.18 Structure of a database management system.

Naive user

File Manager

Responsibility for the structure of the files and managing the file space rests with the

file manager. It is also responsible for locating the block containing the required

record, requesting this block from the disk manager, and transmitting the required

record to the data manager. The file manager can be implemented using an interface

to the existing file subsystem provided by the operating system of the host computer
or it can include a file subsystem written especially for the DBMS.

Disk Manager

The disk manager is part of the operating system of the host computer and all

physical input and output operations are performed by it. The disk manager transfers

the block or page requested by the file manager so that the latter need not be con¬

cerned with the physical characteristics of the underlying storage media.

1.5 Components of a DBMS 25

Query Processor

The database user retrieves data by formulating a query in the data manipulation

language provided with the database. The query processor is used to interpret the

online user’s query and convert it into an efficient series of operations in a form

capable of being sent to the data manager for execution. The query processor uses

the data dictionary to find the structure of the relevant portion of the database and

uses this information in modifying the query and preparing an optimal plan to access

the database.
We now focus on the common method of using the database in an application

program written in a high-level language (HLL) as illustrated in Figure 1.19. The

data manipulation statements in the application program are replaced during a pre¬

compilation stage by a subroutine call to invoke the run-time system. The data ma¬

nipulation statements are subsequently compiled separately into a sequence of optim¬

ized operations on the database that can be performed by the data manager. Many of

the same optimization functions used by the query processors are also used in the

compilation of the data manipulation statements. During execution, when a subrou¬

tine call inserted in place of the data manipulation statements is encountered, control

transfers to the run-time system. This system in turn transfers control to the compiled

Figure 1.19 Processing database applications in HLL.

Main
memory

26 Chapter 1 Basic Concepts

version of the original data manipulation statements. These data manipulation oper¬

ations are executed by the data manager. The data manager transfers data to or from

a work area indicated in the subroutine call and control returns to the application

program.

For online users who manipulate the database through the intermediary of a user

interface (such as a form-based or menu-driven system) and a supporting application

program written in a high-level language, the interaction is indirect. A user action

that requires a database operation causes the application program to request the ser¬

vice via its run-time system and the data manager.

Batch users of the database also interact with the database via their application

program, its run-time system, and the data manager.

Telecommunication System

Online users of a computer system, whether remote or local, communicate with it by

sending and receiving messages over communication lines. These messages are

routed via an independent software system called a telecommunication system or a

communication control program. Examples of these programs are CICS, IDMS-DC,

TALKMASTER, and IERCOMM. The telecommunication system is not part of the

DBMS but the DBMS works closely with the system; the subject is covered exten¬

sively in (Cyps 78). The online user may communicate with the database directly or

indirectly via a user interface (menudriven or formbased) and an application program.

Messages from the user are routed by the telecommunication system to the appropri¬

ate target and responses are sent back to the user.

Data Files

Data files contain the data portion of the database.

Data Dictionary

Information pertaining to the structure and usage of data contained in the database,

the metadata, is maintained in a data dictionary. The term system catalog also

describes this metadata. The data dictionary, which is a database itself, documents

the data. Each database user can consult the data dictionary to learn what each piece
of data and the various synonyms of the data fields mean.

In an integrated system (i.e., in a system where the data dictionary is part of

the DBMS) the data dictionary stores information concerning the external, concep¬

tual, and internal levels of the database. It contains the source of each data-field

value, the frequency of its use, and an audit trail concerning updates, including the
who and when of each update.

Currently data dictionary systems are available as add-ons to the DBMS. Stan¬

dards have yet to be evolved for integrating the data dictionary facility with the

DBMS so that the two databases, one for metadata and the other for data, can be
manipulated using an unified DDL/DML.

1.6 Advantages and Disadvantages of a DBMS 27

Figure 1.20 Steps in data access.

User's
query

user

Request specific
record

Request specific
block(s)

Input/output block(s)

DBMS-user Data File Disk
interface manager manager manager

Requested
record

Requested
block(s) Block(s) from secondary

storage

Access Aids

To improve the performance of a DBMS, a set of access aids in the form of indexes

are usually provided in a database system. Commands are provided to build and

destroy additional temporary indexes.

1.5.4 Database Access

Any access to the stored data is done by the data manager. The steps involved in

database access can be summarized as shown in Figure 1.20.
A user’s request for data is received by the data manager, which determines the

physical record required. The decision as to which physical record is needed may

require some preliminary consultation of the database and/or the data dictionary prior

to the access of the actual data itself.
The data manager sends the request for a specific physical record to the file

manager. The file manager decides which physical block of secondary storage de¬

vices contains the required record and sends the request for the appropriate block to

the disk manager. A block is a unit of physical input/output operations between

primary and secondary storage. The disk manager retrieves the block and sends it to

the file manager, which sends the required record to the data manager.

1.6 Advantages and Disadvantages of a DBMS

Let us consider the pros and cons of using a DBMS.

1.6.1 Advantages of a DBMS

One of the main advantages of using a database system is that the organization can

exert, via the DBA, centralized management and control over the data. The database

administrator is the focus of the centralized control. Any application requiring a

28 Chapter 1 Basic Concepts

change in the structure of a data record requires an arrangement with the DBA, who

makes the necessary modifications. Such modifications do not affect other applica¬

tions or users of the record in question. Therefore, these changes meet another re¬

quirement of the DBMS: data independence, the advantages of which werfe discussed
in section 1.4.2.

Reduction of Redundancies

Centralized control of data by the DBA avoids unnecessary duplication of data and

effectively reduces the total amount of data storage required. It also eliminates the

extra processing necessary to trace the required data in a large mass of data. Another

advantage of avoiding duplication is the elimination of the inconsistencies that tend

to be present in redundant data files. Any redundancies that exist in the DBMS are

controlled and the system ensures that these multiple copies are consistent.

Shared Data

A database allows the sharing of data under its control by any number of application

programs or users. In the example discussed earlier, the applications for the public

relations and payroll departments could share the data contained for the record type
EMPLOYEE described in Figure 1.11.

Integrity

Centralized control can also ensure that adequate checks are incorporated in the

DBMS to provide data integrity. Data integrity means that the data contained in the

database is both accurate and consistent. Therefore, data values being entered for

storage could be checked to ensure that they fall within a specified range and are of

the correct format. For example, the value for the age of an employee may be in the

range of 16 and 75. Another integrity check that should be incorporated in the data¬

base is to ensure that if there is a reference to certain object, that object must exist.

In the case of an automatic teller machine, for example, a user is not allowed to
transfer funds from a nonexistent savings account to a checking account.

Security

Data is of vital importance to an organization and may be confidential. Such confi¬

dential data must not be accessed by unauthorized persons. The DBA who has the

ultimate responsibility for the data in the DBMS can ensure that proper access pro¬

cedures are followed, including proper authentication schemes for access to the

DBMS and additional checks before permitting access to sensitive data. Different

levels of security could be implemented for various types of data and operations. The

enforcement of security could be datavalue dependent (e.g., a manager has access to

the salary details of employees in his or her department only), as well as data-type

1.6 Advantages and Disadvantages of a DBMS 29

dependent (but the manager cannot access the medical history of any employees,
including those in his or her department).

Conflict Resolution

Since the database is under the control of the DBA, she or he should resolve the

conflicting requirements of various users and applications. In essence, the DBA

chooses the best file structure and access method to get optimal performance for the

response-critical applications, while permitting less critical applications to continue
to use the database, albeit with a relatively slower response.

Data Independence

Data independence, as discussed in section 1.4.2, is usually considered from two

points of view: physical data independence and logical data independence. Physical

data independence allows changes in the physical storage devices or organization of

the files to be made without requiring changes in the conceptual view or any of the

external views and hence in the application programs using the database. Thus, the

files may migrate from one type of physical media to another or the file structure

may change without any need for changes in the application programs. Logical data

independence implies that application programs need not be changed if fields are

added to an existing record; nor do they have to be changed if fields not used by

application programs are deleted. Logical data independence indicates that the con¬

ceptual schema can be changed without affecting the existing external schemas. Data

independence is advantageous in the database environment since it allows for changes

at one level of the database without affecting other levels. These changes are ab¬

sorbed by the mappings between the levels.

1.6.2 Disadvantages of a DBMS

A significant disadvantage of the DBMS system is cost.2 In addition to the cost of

purchasing or developing the software, the hardware has to be upgraded to allow for

the extensive programs and the work spaces required for their execution and storage.

The processing overhead introduced by the DBMS to implement security, integrity,

and sharing of the data causes a degradation of the response and through-put times.

An additional cost is that of migration from a traditionally separate application envi¬

ronment to an integrated one.
While centralization reduces duplication, the lack of duplication requires that

the database be adequately backedup so that in the case of failure the data can be

recovered. Backup and recovery operations are fairly complex in a DBMS environ-

^The costs of acquiring and using a database system are considerably lower for database systems on microprocessor-based

personal workstations.

30 Chapter 1 Basic Concepts

Figure 1.21 Pros and cons of a DBMS.

EH

Advantages

Centralized control

Data independence allows dynamic changes and growth potential

Data duplication eliminated with controlled redundancy

Data quality enhanced

Security enforcement possible

Disadvantages

Problems associated with centralization

Cost of software/hardware and migration

Complexity of backup and recovery

ment, and this is exacerbated in a concurrent multiuser database system. Further¬

more, a database system requires a certain amount of controlled redundancies and

duplication to enable access to related data items.

Centralization also means that the data is accessible from a single source,

namely the database. This increases the potential severity of security breaches and

disruption of the operation of the organization because of downtimes and failures.

The replacement of a monolithic centralized database by a federation of independent

and cooperating distributed databases resolves some of the problems resulting from

failures and downtimes.

The pros and cons of a DBMS system are summarized in Figure 1.21.

Summary

Data are facts from which a conclusion can be drawn; for this reason, humans record

data. Data is required in the operation of any organization, and the same or similar

data may be required in various facets of its functioning.

Entity sets are the categories of objects of interest to an organization for which

the organization maintains data. To store the data about an entity set, a reasonable

model of the entity is made by listing the characteristics or attributes that are of

relevance to the database application. In order to uniquely identify a single instance

of an entity set, a primary key is devised either from the attributes that are used to

model the entity set or by adding such an attribute. The values for each attribute of

an instance of an entity set are grouped together and this collection is called a record

type. A file is a collection of identical record type occurrences pertaining to an en¬
tity set.

A database system is an integrated collection of related files along with the

details about their definition, interpretation, manipulation, and maintenance. It is an

attempt to satisfy the data needs of the various applications in an organization without

unnecessary duplication. The DBMS not only makes the integrated collection of re¬

liable and accurate data available to multiple applications and users, but also exerts

centralized control, prevents fraudulent or unauthorized users from accessing the
data, and ensures privacy.

1.7 Summary 31

The DBMS provides users with a method of abstracting their data requirements

and removes the drudgery of specifying the details of the storage and maintenance of

data. The DBMS insulates users from changes that occur in the database. Two levels

of data independence are provided by the system. Physical independence allows

changes in the physical level of data storage without affecting the conceptual view.

Logical independence allows the conceptual view to be changed without affecting the
external view.

A DBMS is a complex software system consisting of a number of components.

It provides the user with a data definition language and a data manipulation language.

The user defines the external and conceptual views by using the DDL and manipu¬

lates the data contained in the database by using the DML.

The data manager is the component of the DBMS that provides an interface

between the user (via the query processor or the compiled application program) and

the file system. It is also responsible for controlling the simultaneous use of the

database and maintaining its integrity and security. Responsibility for recovery of the

database after any failure lies with the data manager.

The database administrator defines and maintains the three levels of the database

as well as the mapping between levels to insulate the higher levels from changes that

occur in the lower levels. The DBA is responsible for implementing measures for

ensuring the security, integrity, and recovery of the database.

entity type

entity set

relationship

attributes .

domain/

key

primary key /

superkey

candidate key

alternate key

secondary key

relationship set

record type
record occurrence

field

(DBMS)

entities /

database

database system

database management system

/

file

metadata

view

conceptual record

mapping ^

logical record

external view

user view

global view

conceptual view

internal view

external level

conceptual level

internal level

schema

external schema

conceptual schema

internal schema

conceptual database

physical database

logical data independence

physical data independence

virtual field
database administrator (DBA)

data definition language (DDL)

data dictionary

directory

system catalog
data manipulation language

(DML)

query

query language

compiler

data manager

file manager

disk manager

query processor

data files

block

32 Chapter 1 Basic Concepts

Exercises

1.1 Explain the differences between a file-oriented system and a database-oriented system.

1.2 Consider the application program for the support of an automatic teller machine. How does

such a program communicate with the user and the database?

1.3 Define the following terms:

metadata

data independence

database administrator

query processor

data manager

external view

1.4 Give the mappings required to derive (a) the conceptual record of Figure 1.16 from the

internal record of Figure 1.17, and (b) the external records of Figure 1.15 from the

conceptual record of Figure 1.16.

1.5 Suppose the field EMPLOYEE.Address of the internal record of Figure 1.17 is replaced by

the following fields:

EMPLOYEE.Street-Number: string length 7 offset 40;

EMPLOYEE.Street: string length 20 offset 47;

EMPLOYEE.City: string length 16 offset 67;

EMPLOYEE.State: string length 2 offset 83;

EMPLOYEE.Zip: string length 5 offset 85;

What changes are required in the mappings of Exercise 1.4?

1.6 Consider an airline reservation database system in which travel agents are allowed online

access to make reservations on any flight. Is it possible for two travel agents located in

different cities to book their respective clients the last seat on the same flight? Explain your

answer.

1.7 What problems are caused by data redundancies? Can data redundancies be completely

eliminated when the database approach is used? Why or why not?

1.8 Why is data important to an enterprise? How does an enterprise that has better control of its

data have a competitive edge over other organizations?

1.9 Choose from the following list an enterprise you are most familiar with: college or

university, public library, hospital, fast-food restaurant, department store. What are the

entities of interest to this enterprise? For each such entity set, list the attributes that could be

used to model each of the entities. Are there any attributes (or collections of attributes) in

each entity set that would uniquely identify an instance of the entity set? What are some of

the applications that may be automated using the DBMS? Design the views of these

applications and the conceptual view.

1.10 Softcraft Ltd. is a corporation involved in the design, development, and marketing of

software products for a family of advanced personal computers. What entities are of interest

to such an enterprise? Give a list of these entities and the relationships among them.

1.7 Summary 33

Bibliographic Notes

Bush (Bush 45) recognized the use of the computer in the analysis of large collections of data.

Fry and Sibley (Fry 76) give the historic perspectives of the evolution of DBMS systems.

The Standards Planning and Requirements Committee (SPARC) of the American National

Standards Institute (ANSI) via its Committee on Computers and Information Processing

(ANSI/X3) established a Study Group on Database Management Systems in 1972. Its objec¬

tives were to determine if standardization was required in database systems. An interim report

(ANSI 75, ANSI 76) proposed a framework for a database management system and its inter¬

faces. The final report (ANSI 78) gave a description in greater detail of the generalized data¬

base system architecture and identified the interfaces.

Bibliography

(ANSI 75) ANSPX3/SPARC Study Group on DBMS, Interim Report, vol. 7, no. 2. ACM SIGMOD, 1975.

(ANSI 76) The ANSBSPARC DBMS Model: Proc. of 2nd SHARE Working Conf. on DBMS, Montreal, 1976.
D. A. Jardine (ed.). New York. North-Holland, 1977.

(ANSI 78) “The ANSI/X3/SPARC DBMS Framework: Report of the Study Group on DBMS,” D. C.
Tscichritzis and A. Kings (eds.). Information Systems, 1978.

(Bush 45) V. Bush, “As We May Think,” Atlantic Monthly, July 1945, pp. 101-108.

(Cyps 78) R. J. Cypser, “Communication Architecture for Distributed Systems,” Reading, MA: Addison-
Wesley, 1978.

(Fry 76) J. P. Fry & E. H. Sibley, “Evolution of Data-Base Management Systems,” Computing Surveys 8(1),
March 1976, pp. 7-42.

Data Models

Contents

2.1 Introduction

2.2 Data Associations

2.2.1 Entities, Attributes, and Associations

2.2.2 Relationship among Entities

2.2.3 Representation of Associations and Relationships

2.3 Data Models Classification

File-Based Systems or Primitive Models

Traditional Data Models

Semantic Data Models

2.4 Entity-Relationship Model

2.4.1 Entities

2.4.2 Relationships

2.4.3 Representation of Entities

2.4.4 Representation of Relationship Set

2.4.5 Generalization and Aggregation

2.5 A Comparative Example

E-R Model for the Universal Hockey League (UHL)

2.6 Relational Data Model

Relational Model for the UHL

2.7 Network Data Model

Network Model for the UHL

2.8 Hierarchical Model

Hierarchical Model for the UHL

2.9 A Comparison

2.2 Data Associations 35

In this chapter we look at the method of representing or modeling concrete and

abstract entities. We introduce the concept of association among various attributes of

an entity and the relationships among these entities. We also briefly look at the data

models used in database applications. They differ in the method used to represent
the relationships among entities.

2.1 Introduction

A model is an abstraction process that hides superfluous details while highlighting

details pertinent to the applications at hand. A data model is a mechanism that

provides this abstraction for database applications. Data modeling is used for repre¬

senting entities of interest and their relationships in the database. It allows the con¬

ceptualization of the association between various entities and their attributes. A num¬

ber of models for data representation have been developed. As with programming

languages, there is no one “best” choice for all applications. Most data representa¬

tion models provide mechanisms to structure data for the entities being modeled and

allow a set of operations to be defined on them. The models can also enforce a set

of constraints to maintain the integrity of the data. These models differ in their

method of representing the associations amongst entities and attributes. The main

models that we will study are the hierarchical, network, and relational models. Da¬

tabase management systems based on these models or variations thereof, are avail¬

able from various software houses and are used to maintain corporate databases. In

addition to these widely used models, others, such as the entity-relationship model,

have been developed by researchers.

2.2 Data Associations

Information is obtained from raw data by using the context in which the data is

obtained and made available, and the applicable conventions for its usage. For ex¬

ample, if we want to record the phone numbers of our friends, we usually keep a list

as shown in Figure 2.1a. If we had simply written the list of the phone numbers as

in Figure 2.1b, we might not be able to associate a number with a given friend. The

only time we sometimes note only the phone number is when it is the only one on

the list and is to be used within a very short time.
The association between Bill’s name and his phone number is obtained by writ¬

ing the name and number on the same line, and this mechanism, a simple data

structure, is used to retrieve the corresponding information. It can also be used to

modify the information if Bill changes his phone number.

When a large amount of data is stored in a database, we have to formalize the

storage mechanism that will be used to obtain the correct information from the data.

We have to establish a means of showing the relationship among various sets of data

represented in the database. A relationship between two sets, X and Y, is a corre¬

spondence or mapping between members of the sets. A possible relationship that

may exist between any two sets may be one-to-one, one-to-many, or many-to-many

as shown in Figure 2.2.

36 Chapter 2 Data Models

Figure 2.1 Examples of telephone lists.

Bill 377-9219 371-5933

Jill 371-5933 377-9219

(a) (b)

2.2.1 Entities, Attributes, and Associations

Entities are distinguishable objects of concern and are modeled using their character¬

istics or attributes. Associations exist between different attributes of an entity. An

association between two attributes indicates that the values of the associated attri¬

butes are interdependent. This correspondence between attributes of an entity is a

property of the information that is used in modeling the object. It indicates that there

is a constraint regarding the value that can be assigned to one of these attributes

when a given value is assigned to the other.

We distinguish between the association that exists among the attributes of an

entity, called an attribute association, and that which exists between entities, called

a relationship.

Consider the employees of an organization. The organization maintains certain

information about each employee, such as name, date of birth, a unique identifier

such as an employee identification number and/or Social Security number, address,

name and relationship the employee’s dependents, and employment history, consist¬
ing of the positions held and the corresponding salary.

If we consider the association between an employee identification number and

his or her Social Security number, we find that for a given employee identification

Figure 2.2 Different types of relationships between sets.

2.2 Data Associations 37

Figure 2.3 One-to-one association between attributes.

EmployeeJd Social ^Security_Number

Social Security Number

Social Security_Number) -<

>- (Employee Jd

>- (Employee Id

number there can exist only one Social Security number. Consequently, the associa¬

tion from the employee identification number to the Social Security number is

unique. Similarly, the association from the Social Security number to the employee

identification number is unique. The association between these attributes is therefore

one to one. We can show this one-to-one association pictorially as in Figure 2.3.

Here the attributes are shown as ovals and the association between the attributes is

represented by a direct line. The arrow points to the dependent attribute in the attrib¬

ute association.

Now consider the association between the attributes Social-Security-Number

and Employee-Name. There can be only one Employee-Name associated with a

given Social-Security-Number. Names are typically not unique. (This was demon¬

strated when the Nobel prize committee reached the wrong person while trying to

contact the winner of the 1987 Nobel prize in chemistry. There were two persons

with the same name in Los Angeles.) In a large organization, more than one em¬

ployee could have the same name. A given Employee-Name has associated with it

one or more Social-Security-Numbers; however, a given Social-Security-Number

has only one corresponding name. These associations are shown in Figure 2.4. Here

the double arrow indicates that for a given value of the attribute on the left side,

Figure 2.4 One-to-many association between attributes.

Social Security Number Employee_Name

Employee Name >-*- SocialJSecurityJl umber

Social Security_Number ■* ■< - Employee _Name

38 Chapter 2 Data Models

Figure 2.5

there could be one or more values for the attribute on the right side. The association

between these attributes is one-to-many.

Consider the entity part with the attributes Part# and Color. Part# is a unique

part number and Color represents the colors in which that part is available, there

being a choice of one or more. In this instance the association from the attribute

Part# to attribute Color is one-to-many. There could be many parts with a given

color, thereby making the association between the attributes Part# and Color many-

to-many. We show these associations in Figure 2.5.

Let us return to the employee entity and its attributes: Employee-Id, Employee-

Name, Address, Phone, Skill, Dependent-Name, Kinship-tO-Employee, Position-

Held, PositionStart-Date, Salary, Salary-Start-Date.

There is one value for the attribute Employee-Id for a given instance of the

entity type EMPLOYEE. It corresponds to the property that one employee is assigned

a unique identifier. Similarly, there is one value for the attribute Employee-Name for

one instance of the entity type EMPLOYEE. The value of the attribute Employee-

Name depends on the value of the attribute Employee-Id. We show this dependence

by the following notation:

Employee-Id —» Employee-Name

to indicate that the (value of the) attribute Employee-Name is uniquely determined

by the (value of the) attribute Employee-Id.

There could be many values of the attribute pair Dependent-Name, Kinship-

to-Employee for a given instance of the entity EMPLOYEE to indicate that each

employee could have many dependents. The multiple values of these attribute pairs

depend on the value of the attribute Employee-Id. We show this dependence by the
following notation:

Employee-Id -■»--> (Dependent-Name, Kinship-tO-Employee)

Similarly, an employee could have held different positions with the organization

and would have received increments in salary giving rise to the following associa¬

tions from Employee-Id:

Employee-Id ■■■■■> > (Position-Held, PositionStart-Date)

Employee-Id ■>■■■■> (Salary, Salary-Start-Date)

An employee could have had many salaries for a given position and in the event

been promoted without a salary increase, could have had many positions for a given

Many-to-many association.

Part# >-► (Color

Color Part#

Part#) ► (Color

2.2 Data Associations 39

salary. Consequently, the association between Position-Held and Salary is many to

many. We show this dependence by the following notation:

Position-Held <—•<—» Salary

The association of these attributes is shown in Figure 2.6.

In Figure 2.7, we show the associations among the attributes of an instance of

the EMPLOYEE entity. The number 12345678 identifies the employee Jill Jones,

who lives at 50 Main. She has a single phone number (371-5933) and two depen¬

dents, Bill Jones, her spouse, and her son Bob Jones. She has the skills of an elec¬

trical engineer and an administrator. She was a junior engineer from December 15,

1984 and an engineer as of January 20, 1986. Her starting salary was $38,000.00

with an increment on December 15, 1985 to $39,200.00 and again on May 15, 1986

to $42,000.00.

So far, we have considered only the associations between attributes belonging

to the same entity type. The definition of a given entity, however, is relative to the

point of view used. [One case is illustrated with respect to the EMPLOYEE entity in

Section 2.2.3 and Figure 2.16, where the attributes (Dependent-Name, Kinship-to_

Employee) are removed from the EMPLOYEE entity and a one-to-many relationship

is established.] Consequently, there could be associations between any two attributes

regardless of their entities. We can approach the design of a database by considering

the attributes of interest without concerning ourselves with the associated entities.

We look at the associations among these attributes and design the database, grouping

Figure 2.6 Association between attributes.

40 Chapter 2 Data Models

Figure 2.7 An instance of the entity set EMPLOYEE.

-► Jill Jones

2.2 Data Associations 41

together those attributes that have a desirable association. Such an approach, called
the synthesis approach, is discussed in Chapter 7.

Formally, the association or interdependence between attributes is called func¬
tional dependency, defined below.

Definition: Functional Dependency:

Given two sets of attributes X and Y, Y is said to be functionally dependent on

X if a given value for each attribute in X uniquely determines the value of the

attributes in Y. X is called the determinant of the functional dependency (FD)
and the FD is denoted as X —» Y.

The process of identifying functional dependencies and selecting those attributes

that should be grouped together in a given record is central to the process of database
design. We deal with this topic in Chapter 6.

The primary key concept can be explained using the concept of functional de¬

pendency between attributes. Let X and Y be two sets of attributes of an entity type.

If X —» Y and if this dependency holds for all attributes Y in the entity and for all

instances of the entity type, then X is a candidate key. For the entity type EM¬

PLOYEE, the attribute Employee-Id is an example of a candidate key. Another can¬

didate key for EMPLOYEE is the attribute Social-Security-Number. One of these

candidate keys can be chosen as the primary key.

2.2.2 Relationships among Entities

In addition to the associations that exist between the attributes of an entity, relation¬

ships exist among different entities. Relationships are used to model the interactions

that exist among entities and the constraint that specifies the number of instances of

one entity that is associated with the others. Even though a relationship may involve

more than two entities, we concentrate on the relationship between two entities be¬

cause it is the most common type encountered in database applications. Such a rela¬

tionship is known as a binary relationship. It may be one-to-one (1:1), one-to-many

(1 :M), or many-to-many (M:N). The 1:1 relationship between entity sets E| and E2

indicates that for each entity in either set there is at most one entity in the second set

that is associated with it. The 1 :M relationship from entity set E, to E2 indicates that

for an occurrence of the entity from the set Ei, there could be zero, one, or more

entities from the entity set E2 associated with it. Each entity in E2 is associated with

at most one entity in the entity set E(. In the M:N relationship between entity sets

Ej and E2, there is no restriction as to the number of entities in one set associated

with an entity in the other set.
To illustrate these different types of relationships, consider the following entity

sets: DEPARTMENT, MANAGER, EMPLOYEE, and PROJECT.

The relationship between a DEPARTMENT and a MANAGER is usually one-

to-one; there is only one manager per department and a manager manages only one

department. This relationship between entities is shown in Figure 2.8. Each entity is

42 Chapter 2 Data Models

Figure 2.8 One-to-one relationship.

DEPARTMENT ■<-► MANAGER

represented by a rectangle and the relationship between them is indicated by a direct

line. The relationship from MANAGER to DEPARTMENT and from DEPART¬

MENT to MANAGER is both 1:1. Note that a one-to-one relationship between two

entity sets does not imply that for an occurrence of an entity from one set at any

time there must be an occurrence of an entity in the other set. In the case of an

organization, there could be times when a department is without a manager or when

an employee who is classified as a manager may be without a department to manage.

Figure 2.9 shows some instances of one-to-one relationships between the entities

DEPARTMENT and MANAGER. The sets of all instances of the entities are repre¬

sented by the ovals.

A one-to-many relationship exists from the entity MANAGER to the entity EM¬

PLOYEE because there are several employees reporting to the manager. As we just

pointed out, there could be an occurrence of the entity type MANAGER having zero

occurrences of the entity type EMPLOYEE reporting to him or her. A reverse rela¬

tionship, from EMPLOYEE to MANAGER, would be many to one, since many

employees may be supervised by a single manager. However, given an instance of

the entity set EMPLOYEE, there could be only one instance of the entity set MAN¬

AGER to whom that employee reports (assuming that no employee reports to more

than one manager). These relationships between entities are illustrated in Figure

2.10. Figure 2.11 shows some instances of these relationships.

The relationship between the entity EMPLOYEE and the entity PROJECT can

be derived as follows: Each employee could be involved in a number of different

projects, and a number of employees could be working on a given project. This

relationship between EMPLOYEE and PROJECT is many-to-many. It is illustrated

in Figure 2.12. Figure 2.13 shows some instances of such a relationship.

Figure 2.9 One-to-one relationships.

DEPARTMENT set MANAGER set

2.2 Data Associations 43

Figure 2.10 One-to-many relationship.

MANAGER -<- EMPLOYEE

Figure 2.11 One-to-many relationships from MANAGER to EMPLOYEE and many-to-one reverse
relationships.

MANAGER set EMPLOYEE set

Figure 2.12 Many-to-many relationship.

EMPLOYEE -< -<-► ► PROJECT

Figure 2.13 Many-to-many relationships between EMPLOYEE and PROJECT.

EMPLOYEE set PROJECT set

44 Chapter 2 Data Models

Figure 2.14 A one-to-many association between attributes of EMPLOYEE.

Employeeld >• >■ (Dependent Name, Kinship to Employee)

2.2.3 Representation of Associations and Relationships

In database modeling we have to represent both the attribute associations and the

entity relationships. These representations are determined by the database manage¬

ment system’s underlying data model.

One common way of representing the attribute associations is by grouping the

attributes together. Such a grouping is a record and a representation of an entity. We

look at this briefly below. The relationship between entities is represented in a variety

of ways by the different data models.

When the association between sets of attributes is one-to-many, we can repre¬

sent it by storing the attributes in a variable-size record. One case is the entity EM¬

PLOYEE of Figure 2.6 and the one-to-many association between the attribute Employ¬

ee-Id and (Dependent-Name, Kinship- to-Employee) as shown in Figure 2.14. Fig¬

ure 2.15 is an example showing the record of Figure 2.7 with the multiple values of

the attributes Dependent-Name, Kinship-tO-Employee, and so on, repeated a num¬

ber of times. The multiple sets of values for a set of attributes is known as a repeat¬

ing group. Each repeating group is associated with a single value of the attribute Employ¬

ee-Id.

The distinction between attribute association and entity relationship is difficult

to make, especially when the perception of the object being modeled is modified.

This observation leads to another method of representing a one-to-many association

between sets of attributes. In this approach we separate each set of the entity’s attri¬

butes having a one-to-many association into another entity. We then establish a one-

Figure2.15 Representing a record.

repeating group

12345678 ; Jill Jones 1 50 Main 1371-5933 IF
3ill Jones | spouse | ^

repeating group repeating group

^ Bob Jones 1 son Electrical Engineer 1 Administration Junior - S

repeating group

) Engineer ; 12/15/84 ; Engineer ; 01/20/86 38000.00 ; \

^ 12/15/84 39200.00 j 12/15/85 V 42000.00 1 05/15/86

2.3 Data Models Classification 45

Figure 2.16 Converting an association to a relationship.

EMPLOYEE* ► DEPENDENTS

to-many relationship between the newly created entity and the original one (minus

the attributes contained in the newly created entity). Therefore, in the entity EM¬

PLOYEE, the attributes for the dependents can either be viewed as attributes of the

entity or, as illustrated in Figure 2.16, as a distinct entity DEPENDENTS having a

relationship to the modified entity denoted as EMPLOYEE*. Here entity EM¬

PLOYEE* does not contain the attributes Dependent-Name or Kinship-to-Em¬

ployee, which are the attributes of DEPENDENTS.

2.3 Data Models Classification

Data models can be classified as file-based systems, traditional data models, or se¬

mantic data models.

File-Based Systems or Primitive Models

Entities or objects of interest are represented by records that are stored together in

files. Relationships between objects are represented by using directories of various

kinds. We will not discuss file-based models here since there is no accepted standard

for this method. The subject of files and different access aids, however, is discussed

in Chapter 3.

Traditional Data Models

Traditional data models are the hierarchical, network, and relational models. The

hierarchical model evolved from the file-based system and the network model is a

superset of the hierarchical model. The relational data model is based on the math¬

ematical concept of relation. The concept of data models evolved about the same

time as the proposal of the relational model. A brief introduction of these data models

is given in Sections 2.6, 2.7, and 2.8. We implement an example using these models

and compare the implementations in Section 2.9. We return to an in-depth study of

these models in Chapters 4 (relational model), 8 (network model), and 9 (hierarchical

model).

Semantic Data Models

This class of data models was influenced by the semantic networks developed by

artificial intelligence researchers. Semantic networks were developed to organize and

46 Chapter 2 Data Models

represent general knowledge. Semantic data models are able to express greater in¬

terdependencies among entities of interest. These interdependencies consist of both

inclusion and exclusion, enabling the models to represent the semantics of the data

in the database.
In Section 2.4 we encounter the entity-relationship data model. It provides

a means for representing relationships among entities and is popular in high-level

database design. Other data models in this class are beyond the scope of this text.

2.4 Entity-Relationship Model

The entity-relationship (E-R) data model grew out of the exercise of using com¬

mercially available DBMSs to model application databases. Earlier commercial sys¬

tems were based on the hierarchical and network approach. The entity-relationship

model is a generalization of these models. It allows the representation of explicit

constraints as well as relationships. Even though the E-R model has some means of

describing the physical database model, it is basically useful in the design and com¬

munication of the logical database model. In this model, objects of similar structures

are collected into an entity set. The relationship between entity sets is represented by

a named E-R relationship and is 1:1, 1 :M, or M:N, mapping from one entity set to

another. The database structure, employing the E-R model is usually shown pictori-

ally using entity-relationship (E-R) diagrams. The entities and the relationships

between them are shown in Figure 2.17 using the following conventions:

• An entity set is shown as a rectangle.

• A diamond represents the relationship among a number of entities, which are

connected to the diamond by lines.

• The attributes, shown as ovals, are connected to the entities or relationships by

lines.

• Diamonds, ovals, and rectangles are labeled. The type of relationship existing

between the entities is represented by giving the cardinality of the relationship
on the line joining the relationship to the entity.

Figures 2.17, 2.21, and 2.22 depict a number of entity-relationship diagrams.

In Figure 2.17, the E-R diagram shows a many-to-many relationship between entities

Figure 2.17 Entity-relationship diagram.

2.4 Entity-Relationship Model 47

ENTITY! and ENTITY2 having the attributes (Atr.Atrl{) and (Atr2i.

respectively. The attributes of the relationship are (AtrRl.ArrRj). The

relationship ENROLLMENT in Figure 2.21 is many to many. In Figure 2.22, the

relationship MARRIAGE is one-to-one and REPORTS-TO is one-to-many.

Before discussing the E-R model in more detail, we reexamine the two compo¬
nents of the E-R model: entities and relationships.

2.4.1 Entities

As discussed in Chapter 1, an entity is an object that is of interest to an organization.

Objects of similar types are characterized by the same set of attributes or properties.

Such similar objects form an entity set or entity type. Two objects are mutually

distinguishable and this fact is represented in the entity set by giving them unique
identifiers.

Consider an organization such as a hotel. Some of the objects of concern to it

are its employees, rooms, guests, restaurants, and menus. These collections of simi¬

lar entities form the entity sets, EMPLOYEE, ROOM, GUEST_LIST, RESTAU¬
RANT, MENUS.

Given an entity set, we can determine whether or not an object belongs to it.

An object may belong to more than one entity set. For example, an individual may

be part of the entity set STUDENT, the entity set PART_TIME_EMPLOYEE, and

the entity set PERSON. Entities interact with each other to establish relationships of

various kinds.

Objects are represented by their attributes and, as objects are interdistinguish-

able, a subset of these attributes forms a primary key or key for uniquely identifying

an instance of an entity. Entity types that have primary keys are called strong enti¬

ties. The entity set EMPLOYEE discussed in Section 2.2 would qualify as a strong

entity because it has an attribute Employee-Id that uniquely identifies an instance of

the entity EMPLOYEE; no two instances of the entity have the same value for the

attribute Employee-Id. Figure 2.18 shows some examples of strong entities. Only

the attributes that form the primary keys are shown.

Entities may not be distinguished by their attributes but by their relationship to

another entity. Recall the representation of the entity EMPLOYEE wherein the 1 :M

association involving the attributes (Dependent-Name, Kinship-tO-Employee) is re¬

moved as a separate entity, DEPENDENTS. We then establish a relationship, DE¬

DUCTIONS, between the modified entity EMPLOYEE* and DEPENDENTS as

Figure 2.18 Strong entities.

48 Chapter 2 Data Models

Figure 2.19 Converting an attribute association to a relationship.

shown in Figure 2.19. In this case, the instances of the entity from the set DEPEN¬

DENTS are distinguishable only by their relationship with an instance of an entity

from the entity set EMPLOYEE. The relationship set DEDUCTIONS is an example

of an identifying relationship and the entity set DEPENDENTS is an example of a

weak entity.

Instances of weak entity sets associated with the same instance of the strong

entity must be distinguishable from each other by a subset of the attributes of the

weak entity (the subset may be the entire weak entity). This subset of attributes is

called the discriminator of the weak entity set. For instance, the EMPLOYEE

12345678 (Jill Jones) in Figure 2.7 has two DEPENDENTS, Bill Jones, spouse and

Bob Jones, son. These are distinct and can be distinguished from each other. The

organization could have another Jones in its employ (with given name Jim and Employ¬

ee-Id = 12345679), who has dependents Lydia Jones, spouse and Bob Jones, son.

This is illustrated in Figure 2.20. Note also that by adding attributes such as Social-

Security-Number of the dependent to the weak entity it can be converted into a

strong entity set. However, there may be no need to do so in a given application if
there is an identifying relationship.

The two instances (Bob Jones, son) of the weak entity set DEPENDENTS as¬

sociated with different instances of the strong entity set EMPLOYEE are not distin¬

guishable from each other. They are nonetheless distinct because they are associated

with different instances of the strong entity set EMPLOYEE. The primary key of a

weak entity set is thus formed by using the primary key of the strong entity set to

which it is related, along with the discriminator of the weak entity. We rule out the

case where a dependent such as Bob Jones is the son of two different employees,

namely his mother and father, since only one of them will claim him as a deduction!

Figure 2.20 Instances of a 1: M converted relationship.

2.4 Entity-Relationship Model 49

Figure 2.21 A binary relationship between different entity sets.

However, if we allow this possibility, the relationship between EMPLOYEE* and

DEPENDENTS becomes many to many.

2.4.2 Relationships

An association among entities is called a relationship. We looked at a relationship

indirectly when we converted a 1 :M association into a strong entity, a weak entity,

and a relationship. A collection of relationships of the same type is called a relation¬

ship set. A relationship is a binary relationship if the number of entity sets involved

in the relationship is two. In Figure 2.21, ENROLLMENT is an example of a binary

relationship involving two distinct entity sets. However, the entities need not be from

distinct entity sets. Figure 2.22 illustrates binary relationships that involve the same

entity sets. A marriage, for example, is a relation between a man and woman that is

modeled by a relationship set MARRIAGE between two instances of entities derived

from the entity set PERSON.
A relationship that involves N entities is called an N-ary relationship. In Figure

2.23, COMPUTING is an example of a ternary relationship involving three entity

sets. COMPUTING represents the relationship involving a student using a particular

computing system to do the computations for a given course.

Figure 2.22 Binary relationships involving the same entity sets.

50 Chapter 2 Data Models

Figure 2.23 A ternary relationship.

A relationship set or simply a relationship is formally defined as follows:

A relationship can be characterized by a number of attributes. In the case of

the relationship MARRIAGE, we can identify the attributes Date-of-Marriage and

Place-of-Marriage. Similarly, in the many-to-many relationship ENROLLMENT of

Figure 2.21, the attributes of the relationship are Year, Semester, and Grade. The

attributes of the ternary relationship COMPUTING of Figure 2.23 are Account-Code

and Limits to indicate the accounting code and the computing limits assigned to a

specific student for a given course on a particular computing system.

In a relationship the roles of the entities are important. This is particularly sig¬

nificant when some of the entities in the relationship are not distinct. Consequently,

in an occurrence of a relationship from the relationship set MARRIAGE involving

two members from the entity set PERSON, the role of one of the entities is that of a

husband and the role of the other is that of a wife. Another role that can be assigned

in a more symmetrical manner in this relationship is that of spouse, as shown in

Figure 2.22. In some relationships the roles are implied and need not be specified.

For example, in the binary relationship ASSIGN ED-TO between the entity sets EM¬

PLOYEE and DEPARTMENT, the roles of the two entities are implicit.

Identification of a relationship is done by using the primary keys of the entities

involved in it. Therefore, in the relationship R involving entity sets E[, E2, . . . ,

Ek, having primary keys pu p2, . . . , pk respectively, the unique identifier of an

instance of the relationship R is given by the composite attribute (pu p2, . . . , pk).

2.4 Entity-Relationship Model 51

The composite attribute (p\, p2, . . . , pk) forms the primary key of the relationship

R. An instance of the relationship R is represented by concatenating its attributes

(ru r2, . . . , rm) with the primary keys of the instances of the entities involved in

the relationship. Figure 2.27 represents such a relationship.

2.4.3 Representation of Entities

Consider an application such as a hotel and its restaurants. Here we use a simplified

version of the strong entity set EMPLOYEE with the following attributes: Empl-No,

Name, Skill. The primary key for this entity is Empl-No.

The entity set EMPLOYEE can be described as follows:

entity set EMPLOYEE

Empl-No: numeric; (* primary key*)

Name: string;

Skill: string;

We represent the entity set EMPLOYEE by a table that can, for the sake of

simplicity, be named EMPLOYEE. This table contains a column for each of its

attributes and a row for each instance of the entity. We add a new instance of the

entity EMPLOYEE by adding a row to this table. We also delete or modify rows to

reflect changes that occur when employees leave or upgrade their skills. Figure 2.24

depicts an EMPLOYEE table. (We assume that each employee has but one skill.)

The weak entity DEPENDENTS, having as before the attributes Depend¬

ent-Name and Kinship-to-Employee, is dependent on the strong entity EM¬

PLOYEE. We represent the weak entity by the table DEPENDENTS, which contains

a column for the primary key of the strong entity EMPLOYEE. The DEPENDENTS

table in Figure 2.25 includes instances of the weak entities (Rick, spouse) and

(Chloe, daughter), which are dependent on EMPLOYEE 123459.

In general, to represent a weak entity such as W with the attributes wlt w2, vv3,

. . . , wn such that the weak entity is dependent on strong entity S with the primary

key 5), s2, . . . , sp, we use a table with a column for each of the above attributes.

Figure 2.24 The EMPLOYEE table.

EMPLOYEE

Empl-No Name Skill

123456 Ron waiter

123457 Jon bartender

123458 Don busboy

123459 Pam hostess

123460 Pat bellboy

123461 Ian maitre d’

52 Chapter 2 Data Models

Figure 2.25 The DEPENDENTS table.

DEPENDENTS

Empl-No Name Kinship-to-Employee

123459 Rick spouse

123459 Chloe daughter

123458 Cathy spouse

2.4.4 Representation of Relationship Set

The entity-relationship diagrams are useful in representing the relationships among

entities. They show the logical model of the database. In Figure 2.26, an E-R dia¬

gram shows the relationship between the entity sets EMPLOYEE and POSITION.

The relationship set is called DUTY-ALLOCATION and its attributes are Date and

Shift.

A relationship set involving entity sets E,, E2, . . . , En can be represented via

a record containing the primary key of each of the entities Es and the attributes of

the relationship. Where the relationship has no attributes, only the primary keys of

the entity involved are used to represent the relationship set.

Data for an E-R relationship could be represented by a number of tables. Each

of the entities involved in the relationship is represented by a table, as is the relation¬

ship among these entities. The relationship DUTY-ALLOCATION between the enti¬

ties EMPLOYEE and POSITION, shown in Figure 2.26, is represented by three

tables displayed in Figure 2.27.

The table EMPLOYEE contains data about the entities representing the hotel

employees. POSITION contains data on the duties to be performed by the hotel’s

employees in the restaurants run by the hotel. A relationship set is also represented

by a table. DUTY-ALLOCATION is represented by the table DUTY_ALLOCA-

TION, which contains the primary keys of the entities EMPLOYEE and POSITION

along with the attributes of the relationship Date and Shift.

Figure 2.26 E-R diagram showing DUTY-ALLOCATION relationship between entity sets EM¬
PLOYEE and POSITION.

2.4 Entity-Relationship Model 53

Figure 2.27 Representation of a relationship.

EMPLOYEE

Empl-No Name Skill

pi 23456 Ron waiter

123457 Jon bartender

123458 Don busboy

123459 Pam hostess

123460 Pat bellboy

123461 lan waiter

POSITION

Posting-No Skill

— 321 waiter

322 bartender

323 busboy

324 hostess

325 maitre d’

326 waiter

DUTY-ALLOCATION

Posting-No Empl-No Date Shift

■>321 1- -> 123456 19/04/86 1
323 123458 19/04/86 1
321 123461 20/04/86 2

2.4.5 Generalization and Aggregation

Abstraction is the simplification mechanism used to hide superfluous details of a set

of objects, it allows one to concentrate on the properties that are of interest to the

application. As such, car is an abstraction of a personal transportation vehicle but

does not reveal details about model, year, color, and so on. Vehicle itself is an

abstraction that includes the types car, truck, and bus.

There are two main abstraction mechanisms used to model information: gener¬

alization and aggregation. Generalization is the abstracting process of viewing sets

of objects as a single general class by concentrating on the general characteristics of

the constituent sets while suppressing or ignoring their differences. It is the union of

a number of lower-level entity types for the purpose of producing a higher-level

entity type. For instance, student is a generalization of graduate or undergraduate,

full-time or part-time students. Similarly, employee is a generalization of the classes

of objects cook, waiter, cashier, maitre d’. Generalization is an IS-A relationship;

therefore, manager IS-An employee, cook JS-An employee, waiter IS-An employee,

and so forth. Specialization is the abstracting process of introducing new character¬

istics to an existing class of objects to create one or more new classes of objects.

This involves taking a higher-level entity and, using additional characteristics, gen¬

erating lower-level entities. The lower-level entities also inherit the characteristics of

the higher-level entity. In applying the characteristic size to car we can create a full-

size, mid-size, compact, or subcompact car. Specialization may be seen as the re¬

verse process of generalization: additional specific properties are introduced at a

lower level in a hierarchy of objects. Both processes are illustrated in Figure 2.28

wherein the lower levels of the hierarchy are disjoint.

54 Chapter 2 Data Models

Figure 2.28 Generalization and specialization.

| GENERALIZATION | | SPECIALIZATION {

The entity set EMPLOYEE is a generalization of the entity sets FULL_TIME_

EMPLOYEE and PART_TIME_EMPLOYEE. The former is a generalization of the

entity sets faculty and staff; the latter, that of the entity sets TEACHING and CAS¬

UAL. FACULTY and STAFF inherit the attribute Salary of the entity set FULL_

TIME_EMPLOYEE and the latter, in turn, inherits the attributes of EMPLOYEE.

FULL_TIME_EMPLOYEE is a specialization of the entity set EMPLOYEE and is

differentiated by the additional attribute Salary. Similarly, PART TTMF. F.M-

PLOYEE is a specialization differentiated by the presence of the attribute Type.

In designing a database to model a segment of the real world, the data modeling

scheme must be able to represent generalization. It allows the model to represent

generic entities and treat a class of objects uniformly by assigning attributes common

to the class of objects and specifying relationships in which the generic objects par¬

ticipate.

Generalization forms a hierarchy of entities and can be represented by a hierar¬

chy of tables as shown in Figure 2.29. Here the primary key of each entity corre¬

sponds to entries in different tables and directs one to the appropriate row of related
tables.

Another method of representing a generalization hierarchy is to have the lowest-

level entities inherit the attributes of the entities of higher levels. The top and inter¬

mediate-level entities are not included as only those of the lowest level are repre-

2.4 Entity-Relationship Model 55

Figure 2.29

Figure 2.30

Tabular representation of a generalization hierarchy.

EMPLOYEE

EmpENo Name Date—of—Hire

23456 Sheila 81/04/27

23457 Jerry 85/07/16

23458 Pavan 86/02/27

23459 Rajen 87/03/16

23460 Lettie 88/01/31

23461 Drew 88/09/20

FULL_TIME

EmpENo Salary

23456 57000

23457 48000

23458 24500

PART_TIME

EmplJNo Type

23459 permanent

23460 sessional

23461 sessional

FACULTY STAFF

EmpENo Degree Interest

23456 MSc ecology

23457 PhD physics

EmpENo Classification

23458 secretary 6

TEACHING CASUAL

EmpENo Stipend

23460 5000

23461 5000

EmpENo Hour-Rate

23459 14.25

sented in tabular form. For instance, the attributes of the entity set FACULTY would

be [EmpENo, Name, Date-of-Hire, Salary, Degree, Interest). A sample table rep¬

resentation for this entity set is given in Figure 2.30. A separate table would be

required for each lowest-level entity in the hierarchy. The number of different tables

required to represent these entities would be equal to the number of entities at the

lowest level of the generalization hierarchy.

Tabular representation of entity set FACULTY with inherited attributes.

FACULTY

EmpENo Name D ate-of-Hire Salary Degree Interest

23456 Sheila 81/04/27 57000 MSc ecology

23457 Jerry 85/07/16 48000 PhD physics

56 Chapter 2 Data Models

Aggregation is the process of compiling information on an object, thereby ab¬

stracting a higher-level object. In this manner, the entity person is derived by aggre¬

gating the characteristics name, address, and Social Security number. Another form

of aggregation is abstracting a relationship between objects and viewing the relation¬

ship as an object. As such, the ENROLLMENT relationship between entities student

and course could be viewed as entity REGISTRATION. Examples of aggregations

are shown in Figure 2.31.
Consider the ternary relationship COMPUTING of Figure 2.23. Here we have a

relationship among the entities STUDENT, COURSE, and COMPUTING SYSTEM.

Figure 2.31 Examples of aggregation.

(a)

REGISTRATION

(b)

BILL

(c)

2.5 A Comparative Example 57

A student registered in a given course uses one of several computing systems to

complete assignments and projects. The relationship between the entities STUDENT

and COURSE could be the aggregated entity REGISTRATION (Figure 2.31b), as

discussed above. In this case, we could view the ternary relationship of Figure 2.23

as one between registration and the entity computing system. Another method of

aggregating is to consider a relationship consisting of the entity COMPUTING SYS¬

TEMS being assigned to COURSES. This relationship can be aggregated as a new

entity and a relationship established between it and STUDENT. Note that the differ¬

ence between a relationship involving an aggregation and one with the three entities

lies in the number of relationships. In the former case we have two relationships; in

the latter, only one exists. The approach to be taken depends on what we want to

express. We would use the ternary relationship to express the fact that a STUDENT

or COURSE cannot be independently related to a COMPUTING SYSTEM.

Let us investigate the relationship among the entities WAITER, TABLE, and

GUEST shown in Figure 2.31c. These entities are of concern to a restaurant. There

is a relationship, SERVE, among these entities; i.e., a waiter is assigned to serve

guests at a given table. The waiters could be assigned unique identifiers. For exam¬

ple, a waiter is an employee and the employee number uniquely identifies an em¬

ployee and hence a waiter. A table could be assigned a number; however, this may

be more informal, since on occasion two or more tables are put together to accom¬

modate a group of guests. The guests, even though identifiable by their features and

other unique identifiers such as Social-Security-Number or driver’s license number,

are not distinguishable for this application. Thus the SERVE relationship can best be

handled by an aggregation. The aggregation can be called a BILL (Figure 2.31c),

and requires an introduction of an unique bill number for identification. In addition,

the following attributes from the SERVE relationship and the entities involved in the

relationship can be used for the aggregated entity: unique bill number, waiter identi¬

fier, table identifier, date, number of guests in party, total, tip.

2m5 A Comparative Example

In this section we describe a small database modeling problem and provide a E-R

model for it. We give its implementation in each of the other three modeling schemes

in Sections 2.6, 2.7, and 2.8.

Consider a database for the Universal Hockey League (UHL), a professional ice

hockey league with teams worldwide. It consists of a number of divisions and nu¬

merous franchises under each division. The database records statistics on teams,

players, and divisions of the league.
A franchise may relocate to another city and may become part of a different

division. Players are under contract to a franchise and are obliged to move with it.

This relationship between a franchise and a division is called a team. We use the

word team synonymously with franchise. Consequently, we can view a franchise as

consisting of a collection of players, coaches, and a general manager. Players are

required to play for a given franchise for the entire season.

First we present the entity relationship diagram. We convert the E-R diagram to

relational, network, and hierarchical models in Sections 2.6, 2.7, and 2.8.

58 Chapter 2 Data Models

E-R Model for the Universal Hockey League (UHL)

We limit ourselves to the entities DIVISION, FRANCHISE, and PLAYERS. The

attributes of interest for each of these are as follows:

entity set DIVISION

Division^Name: string; (* unique identifier *)

entity set FRANCHISE

Franchise-Name: string; (* unique identifier *)

Year-Established: integer; (* yyyy *)

entity set PLAYERS

Name: string; (* assumed to be an unique identifier *)

Birth-Place: string;

Birth-Date: string; (*in yyyymmdd format: year,month,date*)

In addition to the above entities we have the following relationships. A player

plays during a season (which we assume is a calendar year) for a given team. We dis¬

tinguish the player’s involvement as being a goalie or one of the forwards. (Here we

are making a simplifying assumption: All players on the team who are not goalies are

called forwards. Thus players who play defense are considered forwards in our model.)

Since goalie is a specialized position, a player plays either in the goalie position or a

forward position, but never in both. The entity PLAYER is in fact a generalization of

the entities GOALIE and FORWARD. However, for this example we are not using any

distinguishing attributes, so we will not consider such specialization (see Exercise

2.11). Consequently we have two relationships between a player and a team, FOR¬

WARD and GOAL. These relationships are many-to-many since a number of players

play during a given season for a franchise and a given player over his lifetime plays for

different franchises. We assume that a player plays the entire season for a single fran¬

chise and is not traded during the season. As a franchise may relocate and change di¬

visions, the relationship between a franchise and division is also many-to-many.

The attributes of these relationships are:

relationship set FORWARD

Year: integer;

Goals: integer; (* number of goals scored by the player *)

Assists: integer; (* number of assists made by the player *)

relationship set GOAL

Year: integer;

Goals-Against-Avg: integer; (* average number of goals scored*)

Shutouts: integer; (* games where no goals were allowed*)

A TEAM is a relationship between a DIVISION and a FRANCHISE and for a

given season may be in only one city. The attributes of the relationship are:

relationship set TEAM

Year: integer;

City: string;

Points: integer; (* cumulative value: 2 points for a win, 1 point for a tie,
0 point for a loss*)

The E-R diagram to model this database application is shown in Figure 2.32.

2.6 Relational Data Model 59

Figure 2.32 E-R diagram for the UHL database.

2.6 Relational Data Model

The relational data model, after more than a decade, has emerged from the research,

development, test and trial stages as a commercial product. Software systems using

this approach are available for all sizes of computer systems. This model has the

advantage of being simple in principle; users can express their queries in a powerful

query language. It is expected that many existing database applications will be ret¬

rofitted to use this approach.

In this model, the relation is the only construct required to represent the asso¬

ciations among the attributes of an entity as well as the relationships among different

entities. One of the main reasons for introducing this model was to increase the

productivity of the application programmer by eliminating the need to change appli¬

cation programs when a change is made to the database. Users need not know the

exact physical structures to use the database and are protected from any changes

made to these structures. They are, however, still required to know how the data has

60 Chapter 2 Data Models

Figure 2.33 A tabular representation of relations.

EMPLOYEE POSITION

Posting-No Skill

321 waiter

322 bartender

323 busboy

324 hostess

325 maitre d’

326 waiter

Empl-No Name Skill

123456 Ron waiter

123457 Jon bartender

123458 Don busboy

123459 Pam hostess

123460 Pat bellboy

123461 Ian waiter

been partitioned into the various relations. While it is possible to infer access paths

from the relational model, as we will see later, the relational approach does require

the user to provide logical navigation through the database for the query.

The relation is the only data structure used in the relational data model to rep¬

resent both entities and the relationships between them. A relation may be visualized

as a named table. Figure 2.33 shows the two relations EMPLOYEE and POSITION

using a tabular structure. Each column of the table corresponds to an attribute of the
relation and is named.

Rows of the relation are referred to as tuples of the relation and the columns

are its attributes. Each attribute of a relation has a distinct name. The values for an

attribute or a column are drawn from a set of values known as a domain. The domain

of an attribute contains the set of values that the attribute may assume. In the rela¬

tional model, note that no two rows of a relation are identical and the ordering of the

rows is not significant.

A relation represented by a table having n columns, defined on the domains D,,

D2, . . . , Dn is a subset of the cartesian product D, x D2 x . . . Dn.

A relationship is represented, as in the E-R model, by combining the primary

keys of the entities involved in a relation and its attributes, if any.

A correspondence between two relations is implied by the data values of attri¬

butes in the relation defined on common domains. Such correspondence is used in

navigating through the relational database. In the example in Figure 2.33 both the

EMPLOYEE and POSITION relations contain the identically named attribute1 Skill

defined on a common domain. Consequently we can join these two relations to form

the relation, POSITION_ELIGIBILITY (Figure 2.34) using the common values of

the attribute Skill. Joining the two relations involves taking two rows, one from each

table, such that the value of Skill in the two rows is identical, and then concatenating

these rows. Note that in Figure 2.34 the first attribute Skill is from the EMPLOYEE

relation and the second is from the POSITION relation. Qualifying these attributes

in POSITION_ELIGIBILITY by their respective relation names would allow us to

more strictly adhere to the relational model where names of attributes in the same
relation are distinct.

'The names of these attributes are identical in this instance to remind us that they have a common domain.

2.6 Relational Data Model 61

Figure 2.34 The relation obtained after joining the two relations of Figure 2.33

POSITION_ELIGIBILITY

Empl-No Name
EMPLOYEE.

Skill Posting-No

POSITION.

Skill

123456 Ron waiter 321 waiter
123456 Ron waiter 326 waiter
123457 Jon bartender 322 bartender
123458 Don busboy 323 busboy
123459 Pam hostess 324 hostess
123461 Ian waiter 321 waiter
123461 Ian waiter 326 waiter

Relational Model for the UHL

Using the relational model, each of the entities in the UHL can be represented by a

relation. The description of the relation is given by a relation scheme. A relation

scheme is like a type declaration in a programming language. It indicates the attri¬

butes included in the scheme, their order, and their domain. However, we will ignore

the domain for the present.

Each relation scheme is named and we indicate this name by boldface capital

letters. We have a relation scheme for each of the PLAYER, FRANCHISE, and

DIVISION relations. These relation schemes are similar to the corresponding entities

in the E-R model:

PLAYER {Name, Birth-Place, Birth-Date)

FRANCHISE {Franchise-Name, Year-Established)

DIVISION (Division-Name)

Relationships between entities are also represented by relations.

The relationship GOAL is represented by a relation whose scheme includes the

primary keys Name and Franchise-Name, respectively, of the entities PLAYER and

FRANCHISE. In addition, it contains the attributes corresponding to those of the

relationship, namely Year, Goals-Against-Avg, and Shutouts. Therefore, the relation

scheme for GOAL is:

GOAL {Name, Franchise-Name, Year, Goals-Against-Avg, Shutouts)

FORWARD is also represented by a relation scheme with attributes that consist

of the same primary keys Name and Franchise-Name. It contains, as well the attri¬

butes Year, Goals and Assists. Accordingly, the relation scheme for FORWARD is:

FORWARD {Name, Franchise-Name, Year, goals, Assists)

TEAM is represented by a relation scheme with attributes consisting of the pri¬

mary keys Franchise-Name and Division-Name, respectively, of the entities FRAN¬

CHISE and DIVISION. It also contains the attributes corresponding to those of the

relationship, namely Year, City, and Points. The relation scheme for TEAM is:

TEAM {Franchise-Name, Division-Name, Year, City, Points)

62 Chapter 2 Data Models

Figure 2.35 Parts of relations from the UHL relation database.

PLAYER

Name Birth-Place Birth-Date

Zax Viviteer Prague, Czec 1962-04-29

Bam Kurri Detroit, Mich 1964-07-17

Todd Smith Roseau, Minn 1963-05-09

Dave Fisher Edmonton, Canada 1959-10-28

Ozzy Xavier Kiruna, Sweden 1965-02-19

Gaston Vabr Montreal, Canada 1958-05-12

Ken Dorky Chicago, Ill 1958-05-13

Brian Lafontaine Paris, France 1960-07-03

Bruce McTavish Rio, Brazil 1966-10-27

Dave O’Connell Dublin, Ireland 1967-03-16

Johnny Brent Boston, Mass 1964-12-23

FRANCHISE

Franchise-Name Year-Established

Bullets 1975

Rodeos 1921

Zippers 1917

Blades 1982

Flashers 1967

DIVISION

Division-Name

Northern

Southern

European

World

FORWARD

Name Franchise-Name Year Goals Assists

Bam Kurri Bullets 1986 40 67

Bruce McTavish Bullets 1986 30 37
Todd Smith Rodeos 1986 17 24
Ozzy Xavier Blades 1986 56 119
Ozzy Xavier Flashers 1985 36 49
Gaston Vabr Flashers 1986 16 22
Zax Viviteer Blades 1986 80 162
Dave O’Connell Zippers 1986 12 59
Brian Lafontaine Zippers 1985 10 40
Brian Lafontaine Zippers 1986 22 73

Sample tuples from these relations, which have the same names as the corre¬
sponding schemes, are shown in the tables of Figure 2.35.

We return to in-depth discussions of the relational data model in Chapter 4.

2.7 Network Data Model 63

Figure 2.35 Continued

GOAL

Name Franchise-Name Year Goals-Against-A vg Shutouts

Ken Dorky Blades 1986 1.21 1

Dave Fisher Zippers 1986 4.02 4

Johnny Brent Flashers 1986 7.61 0

Dave Fisher Flashers 1985 3.05 5

TEAM

Franchise-Name Division-Name Year City Points

Flashers Northern 1986 St. Louis 93

Blades Northern 1986 Edmonton 97

Zippers European 1985 Paris 82

Zippers Northern 1986 Montreal 99

Rodeos Southern 1986 Rio 65

Bullets World 1986 Tokyo 79

2.7 Network Data Model

The network data model was formalized in the late 1960s by the Database Task

Group of the Conference on Data System Languages (DBTG/CODASYL). Their first

report (CODA 71), which has been revised a number of times, contained detailed

specifications for the network data model (a model conforming to these specifications

is also known as the DBTG data model). The specifications contained in the report

and its subsequent revisions have been subjected to much debate and criticism. Many

of the current database applications have been built on commercial DBMS systems

using the DBTG model.
The DBTG model uses two different data structures to represent the database

entities and relationships between the entities, namely record type and set type. A

record type is used to represent an entity type. It is made up of a number of data

items that represent the attributes of the entity.
A set type is used to represent a directed relationship between two record types,

the so-called owner record type, and the member record type. The set type, like

the record type, is named and specifies that there is a one-to-many relationship (1 :M)

between the owner and member record types. The set type can have more than one

record type as its member, but only one record type is allowed to be the owner in a

given set type. A database could have one or more occurrences of each of its record

and set types. An occurrence of a set type consists of an occurrence of the owner

record type and any number of occurrences of each of its member record types. A

record type cannot be a member of two distinct occurrences of the same set type.

64 Chapter 2 Data Models

Figure 2.36

To avoid the confusion inherent in the use of the word “set” to describe the

mechanism for showing relationships in the DBTG-network model, a more precise

terminology has been suggested. Such terms as co-set, fan set, owner-coupled set,

CODASYL set, and DBTG set are used to refer to a set.
Bachman (Bach 69) introduced a graphical means called a data structure dia¬

gram to denote the logical relationship implied by the set. Here a labeled rectangle

represents the corresponding entity or record type. An arrow that connects two la¬

beled rectangles represents a set type. The arrow direction is from the owner record

type to the member record type. Figure 2.36 shows two record types (DEPART¬

MENT and EMPLOYEE) and the set type DEPT-EMP, with DEPARTMENT as the

owner record type and EMPLOYEE as the member record type.
The data structure diagrams have been extended to include field names in the

record type rectangle, and the arrow is used to clearly identify the data fields in¬

volved in the set association. A one-to-many (1:M) relationship is shown by a set

type arrow that starts from the owner field in the owner record type. The arrow points

to the member field within the member record type. The fields that support the rela¬

tionship are clearly identified.

Each entity type in an E-R diagram is represented by a logical record type with

the same name. The attributes of the entity are represented by data fields of the

record. We use the term logical record to indicate that the actual implementation

may be quite different.

The conversion of the E-R diagram into a network database consists of convert¬

ing each 1: M binary relationship into a set (a 1:1 binary relationship being a special

case of a 1 :M relationship). If there is a 1 :M binary relationship R, from entity type

E, to entity type E2, then the binary relationship is represented by a set. An instance

of this would be S, with with an instance of the record type corresponding to entity

E! as the owner and one or more instances of the record type corresponding to entity

E2 as the member. If a relationship has attributes, unless the attributes can be as¬

signed to the member record type, they have to be maintained in a separate logical

record type created for this purpose. The introduction of this additional record type

requires that the original set be converted into two symmetrical sets, with the record

corresponding to the attributes of the relationship as the member in both the sets and

the records corresponding to the entities as the owners.

Each many-to-many relationship is handled by introducing a new record type to

represent the relationship wherein the attributes, if any, of the relationship are stored.

We then create two symmetrical 1: M sets with the member in each of the sets being

the newly introduced record type. The conversion of a many-to-many relationship

into two one-to-many sets using a common member record type is shown in Figure
2.37.

A DBTG set.

2.7 Network Data Model 65

Figure 2.37 Conversion of an M: N relationship into two 1: M DBTG sets.

In the network model, the relationships as well as the navigation through the

database are predefined at database creation time.

When a relationship involving a weak entity set is converted to a network set,

it is possible that several identical occurrences of the logical record type correspond¬

ing to a weak entity could exist. These identical occurrences are distinguished by

their membership in different occurrences of the sets (similar to the method of distin¬

guishing identical weak entities by their relationship with unique strong entities).

Network Model for the UHL

Each entity type in the E-R diagram of Figure 2.32 is represented by a logical record

type with the same name. The attributes of the entity are represented by data fields

of the record. The logical record types corresponding to the entities PLAYER,

FRANCHISE, and DIVISION are given by:

PLAYER (Name, Birth-Place, Birth-Date)

FRANCHISE (Franchise-Name, Year-Established)

DIVISION (Division-Name)

Furthermore, for the E-R diagram of Figure 2.32, we create logical record types

for the attributes of each relationship and these record types are named for the cor¬

responding relationship, i.e., GOAL, FORWARD, and TEAM. These logical record

types are expressed as:

GOAL (Year, Goals-Against-Avg, Shutouts)

FORWARD (Year, Goals, Assists)

TEAM (Year, City, Points)

Since the relationships in the E-R diagram of Figure 2.32 are many to many,

we handle this by creating two symmetrical 1 :M sets with the attribute, if any, being

66 Chapter 2 Data Models

the member record type of each of these symmetrical sets. Corresponding to the

relationship GOAL, we create the logical record type GOAL, and the sets Fr_G and

P_G. The record types FRANCHISE and PLAYER are owners and the record type

GOAL is the common member in these sets.

The data structure diagram for the database for the UHL is shown in Figure

2.38. The sets included are:

• P-G and Fr_G, corresponding to the many-to-many relationship GOAL between

the entities PLAYERS and FRANCHISE. GOAL is the common member record

type, the owner record types being PLAYER (of the set P_G) and FRANCHISE

(of the set Fr_G). The attributes of the relationship are the fields of the record

type GOAL.

• F_F and Fr_F, corresponding to the many-to-many relationship FORWARD

between the entities PLAYERS and FRANCHISE. The member record type

is FORWARD, with PLAYER (of the set F_F) and FRANCHISE (of the set

Fr_F) being the owner record types. The fields of the common member record

type FORWARD are the attributes of the relationship.

• FrJT and DJT, corresponding to the many-to-many relationship TEAM between

the entities FRANCHISE and DIVISION. TEAM is the member record type;

the owner record types are FRANCHISE (of the set FrJT) and DIVISION (of

the set DJT). The attributes of the relationship are the fields of the record type

TEAM, the common member of FrJT and DJT.

Figure 2.39 features a sample of the data contained in some of these logical

record types and some of the sets in which these records are involved as member or

owner. The common records, which are shaded, are the links in establishing a many-

to-many relationship. The connecting lines between two records indicate the exis-

Figure 2.38 Network model for the UHL database.

PLAYER FRANCHISE

P F->■ FORWARD <-Fr F- -Fr T->- TEAM

■P G->■

Year I Goals) (Assists

GOAL <-Fr G

DIVISION

-D T-i

City Year Points

Year
Goals_

Against_Avg
Shutouts

2.8 Hierarchical Model 67

Figure 2.39 Part of the data in the network database of the UHL.

— Brian Lafontaine Paris, France 1960/07/03

PLAYER

Gaston Vabr Montreal, Canada 1958/05/12

FORWARD

to 40
-^-

1986 22 73
-^-

1986 16 22

FRANCHISE

Zippers 1917 Flashers 1967

tence of an owner/member relationship between the record occurrences and some

mechanism to go from one to the other. For instance, the occurrence (Brian Lafon¬

taine, Paris, France, 1960-07-03) of the logical record type PLAYER is the owner

in the set occurrence P-F. The members of this set occurrence owned by him are

the FORWARD logical record occurrences (1985, 10, 40) and (1986, 22, 73). These

are also owned by the franchise Zippers and establish the relationship between the

player and the franchise.
We return to detailed discussions of the network model in Chapter 8.

2.8 Hierarchical Model

A tree may be defined as a set of nodes such that there is one specially designated

node called the root (node) and the remaining nodes are partitioned into disjoint sets,

each of which in turn is a tree, the subtrees of the root. If the relative order of the

subtrees is significant, the tree is an ordered tree.
Like an organization chart or a family tree, a hierarchy is an ordered tree and is

easy to understand. At the root of the tree is the single parent; the parent can have

none, one, or more children. (Note that in comparing the hierarchical tree with a

family tree, we are ignoring one of the parents; in other words, both the parents are

represented implicitly by the single parent.)

68 Chapter 2 Data Models

In a hierarchical database, the data is organized in a hierarchical or ordered tree

structure and the database is a collection of such disjoint trees (sometimes referred

to as a forest or spanning trees). The nodes of the tree represent record types. Each

tree effectively represents a root record type and all of its dependent record types. If

we define the root record type to be at level 0, then the level of its dependent record

types can be defined as being at level 1. The dependents of the record types at level

1 are said to be at level 2, and so on.

An occurrence of a hierarchical tree type consists of one occurrence of the root

record type along with zero or more occurrences of its dependent subtree types. Each

dependent subtree is, in turn, hierarchical and consists of a record type as its root

node. In a hierarchical model, no dependent record can occur without its parent

record occurrence. Furthermore, no dependent record occurrence may be connected

to more than one parent record occurrence.

A hierarchical model can represent a one-to-many relationship between two en¬

tities where the two are respectively parent and child. However, to represent a many-

to-many relationship requires duplication of one of the record types corresponding to

one of the entities involved in this relationship. Note that such duplications could

lead to inconsistencies when only one copy of a duplicated record is updated.

Another method of representing a many-to-many relationship by the use of a

virtual record is presented in Chapter 9. For the present, we implement the database

for the UHL using duplication.

Hierarchical Model for the UHL

Each entity in the E-R model for the UHL can be represented by a record type. The

UHL database can be represented in the hierarchical model by a number of hierar¬

chies. The first one used is the normal organizational hierarchy of the league and is

displayed in Figure 2.40a, The record type YEAR_CITY_POINTS is created with

Figure 2.40 Hierarchical model for the UHL database.

(a)

PLAYER

FRAN CHISE

YEAR_CITY_POINTS

(b)

2.9 A Comparison 69

the attributes of the relationship TEAM. The record types GOAL and FORWARD

represent all the attributes of the relationship GOAL and FORWARD, respectively,

except the attribute year, which is inherited from the ancestor YEAR_CITY_

POINTS. Note that a given occurrence of the PLAYER record type will have a single

dependent record in either the GOAL hierarchy or the FORWARD hierarchy. Since

we need to quickly locate the franchise of which a player is a member, we use a

second hierarchy rooted with the record type PLAYER, shown in Figure 2.40b.

As we see in Figure 2.40, representing the many-to-many relationship between

the players and the franchise requires the introduction of certain redundancies and

inefficiencies. Furthermore, we cannot follow the player hierarchy to find out the

player’s score in a given year. This involves, first, finding the franchises to which a

player belonged from the PLAYER hierarchy. Second, we have to refer to the DI¬

VISION hierarchy to find this FRANCHISE and, for the required year, find the
player and his score.

In the hierarchical model, we can have duplications of certain record occur¬

rences as well. For example, if a franchise was in two different divisions, we would

have two identical records for the same franchise. The parent record (DIVISION)

would distinguish the fact that the franchise was in different divisions in different

years. The TEAM relationship is represented only indirectly in the hierarchical model

shown in Figure 2.40.

Part of the hierarchical database for the UHL is given in Figure 2.41. It shows

that the Zipper franchise was in the European division and was located in Paris in

1985. In 1986 the franchise was in the the Northern division and was relocated to

Montreal. This information is represented by duplication of the record for the fran¬

chise. For the year 1986 the players in the Blades franchise were Ozzy Xavier, Zax

Viviteer, and Ken Dorky.
Since the late 1960s and early 1970s, the hierarchical model has been widely

used in database applications. The most prominent commercial implementations are

the IMS system from IBM (IBM 75) and the SYSTEM 2000 from MRI Systems

Corporation (MRI 74). We return to detailed discussions of the hierarchical model in

Chapter 9.

2.9 A Comparison

Having designed an E-R diagram for a database application, the relational represen¬

tation of the model is relatively straightforward. Each entity type in the E-R diagram

is represented by a relation wherein each attribute of the entity becomes an attribute

of the relation. Each instance of the entity is represented by a tuple of the relation.

A weak entity can also be represented by a relation but must include the primary key

of the identifying strong entity. Each relationship in the E-R diagram is also repre¬

sented by a relation, the attributes of this relation being the primary keys of the

entities involved in the relationship plus the attributes of the relationship. Each in¬

stance of the relationship set among the entities is represented by a tuple of this

relation.
Converting an E-R diagram to a network model can be accomplished as follows.

Each entity type in the E-R diagram is represented by a record type and each instance

70 Chapter 2 Data Models

Figure 2.41 Part of the data in the hierarchical database of the UHL.

of the entity is represented by a record occurrence. A weak entity can be represented

as a separate record type. In this case, the identifying relationship is represented as

a set type wherein the record type corresponding to the weak entity type forms the

member and the record type corresponding to the strong entity is the owner. A 1:1

or 1 :N relationship is represented as a set type. An M:N relationship requires intro¬

ducing an intermediate record type. This record type is a common member in two

set types, one of which is owned by each of the record types involved in the M:N

relationship.

Converting an E-R diagram to a hierarchical model can be accomplished as

follows. Each entity type in the E-R diagram is represented by a record type. A 1 :N

relationship is represented as a hierarchy type where the record type corresponding

to the one side of the relationship is the parent (a 1:1 relationship is a special case

of the 1 :N relationship). A weak entity can be represented as a separate record type.

This record type becomes a dependent in a hierarchy where the record type, corre¬

sponding to the strong entity in the identifying relationship, is the parent. An M:N

relationship requires introducing duplicate record types or using multiple hierarchies

and introducing virtual records.

2.9 A Comparison 71

In the network model, it is possible that several identical occurrences of the

same logical record type could exist. These multiple identical occurrences are distin¬

guished by their membership in different occurrences of the sets. Similarly, in the

hierarchical model, identical occurrences of a record type are distinguished by their

associations with different ancestor record type occurrences. The tuples of a relation

are, however, unique because if the relation represents a relationship between enti¬

ties, the relationships between occurrences of the entities are explicitly recorded in
the tuples by inclusion of the corresponding primary keys.

The relational model allows for a fairly straightforward method of selecting

certain entities or relationships. This is done by selecting those tuples of the relation

corresponding to the entity or relationship that meet certain selection conditions. For

instance, all franchises for which the player Ozzy Xavier played could be derived by

choosing tuples from the relation FORWARD (Figure 2.35) with Name = Ozzy

Xavier. Similarly, all players who scored more than 50 goals in 1986 could be se¬

lected from the FORWARD relation. Likewise, finding all cities in which Ozzy Xav¬

ier played can be done by first selecting the tuples from FORWARD with the value

of Name = Ozzy Xavier. These selected tuples are then joined (concatenated) with

those in the table TEAM such that the values of Franchise-Name and Year in both
is the same.

In the network model, the selection operation on a record type is similar to that

in the relational model. However, the operation corresponding to the join operation

of the relational model is handled differently. This involves following the owner-to-

member or the member-to-owner pointers. Therefore, in order to identify all fran¬

chises for which Ozzy Xavier played, we would first find the record for Ozzy Xavier

in the player record type. We would then follow the pointers in the set P-F to

the occurrences of the member record type FORWARD for his score, and last,

follow the pointers to the owner of each such occurrence in the set Fr-F to find the

FRANCHISE. Since the player Ozzy Xavier is not a goalie, the set P-G for the

occurrence of his record in record type PLAYER would be empty. Consequently,

following the set P-G and then the owner in the set Fr-G for this player would not

be possible.

Selection operations for the record type corresponding to the root of a hierarchi¬

cal tree are similar to operations for its counterpart in the relational and network

models. As in the case of the network model, we have to traverse pointers from

parent to child since there is no method of traveling from descendant to parent.

However, a virtual scheme using a virtual record concept (to be discussed in chapter

9) introduces this reverse-navigation facility.
The process of joining relations in the case of the relational model or following

the pointers from owner to member, from member to owner, or from parent to child

is known as navigating through the database. Navigation through relations that rep¬

resent an M:N relationship is just as simple as through a 1:M relationship. This

leads us to conclude that it is easier to specify how to manipulate a relational data¬

base than a network or hierarchical one. This in turn leads to a query language for

the relational model that is correct, clear, and effective in specifying the required

operations. Unfortunately, the join operation is inherently inefficient and demands a

considerable amount of processing and retrieval of unnecessary data. The structure

for the network and hierarchical models can be implemented efficiently. Such an

implementation would mean that navigating through these databases, though awk¬

ward, requires the retrieval of relatively little unnecessary data.

72 Chapter 2 Data Models

Summary

In this chapter we previewed the major data modeling concepts and thfe data models

used in current DBMSs. The E-R model is used increasingly as a tool for database

applications modeling.

A number of data representation models have been developed over the years.

As in the case of programming languages, one concludes that there is no one “best”

choice for all applications. These models differ in their method of representing the

associations between entities and attributes.

Traditional data models are hierarchical, network, or relational models. The hi¬

erarchical model evolved from the file-based system; the network model is a superset

of the hierarchical model. The relational data model is based on the mathematical

relational concept. The data model concept evolved at about the same time as the

relational data model.

The entity-relationship data model, which is popular for high-level database de¬

sign, provides a means of representing relationships between entities. The entity re¬

lationship data model was developed using commercially available DBMSs to model

application databases.

The DBTG proposal was the first data model to be formalized in the late 1960s.

Many current database applications have been built on commercial DBMSs using this
approach.

Key Terms

data model

association

attribute association

relationship

functional dependency

determinant

candidate key

primary key

binary relationship

repeating group

file-based model

hierarchical model

network model

relational data model

semantic data model

entity-relationship (E-R) data
model

entity-relationship (E-R)
diagram

strong entity

identifying relationship

weak entity

discriminator

relationship set

N-ary relationship

ternary relationship

abstraction

generalization

specialization

aggregation

tuple

attribute

domain

relation scheme

record type

set type

owner record type

member record type

logical record

forest

spanning trees

selecting

intermediate record type

navigating

Exercises

2.1 Define the following terms:

(a) association

(b) relationship

2.10 Summary 73

(c) aggregation

(d) specialization

(e) generalization

2.2 Choose from the following list an organization you are most familiar with: college or

university, public library, hospital, fast-food restaurant, department store. Determine, as in

Exercise 1.9, the entities of interest and the relationships that exist between these entities.

Draw the E-R diagram for the organization. Construct a tabular representation of the entities

and relationships.

2.3 Are weak entities necessary? What is the distinction between a weak entity and a strong one?

Can a weak entity be converted to a strong entity?

2.4 Using the EMPLOYEE entity of Figure 2.6, convert each of the one-to-many associations

into a weak entity and a relationship. Identify the discriminator of each weak entity and the

attributes of each relationship.

2.5 Convert the E-R diagram that you prepared for Exercise 2.2 into a network database model.

List the record types and the set types in your model. Indicate for each set type the owner

and member record types.

2.6 Convert the E-R diagram that you prepared for Exercise 2.2 into a hierarchical database

model. List the record types and the hierarchy. Indicate how you can handle the situation

where a record type occurs in more than one hierarchy or occurs more than once in the same

hierarchy.

2.7 Explain the distinction between the representation of association and relationship in the

network and hierarchical models.

2.8 The People’s Bank offer five types of accounts: loan, checking, premium savings, daily

interest saving, and money market. It operates a number of branches and a client of the bank

can have any number of accounts. Accounts can be joint, i.e., more than one client may be

able to operate a given account. Identify the entities of interest and show their attributes.

What relationships exist among these entities? Draw the corresponding E-R diagram.

2.9 Give a sample of each of the tables that would be required for the E-R diagram of Exer¬

cise 2.8.

2.10 Complete the network sets and the hierarchical trees for the portion of the data for the

Universal Hockey League given in the tables of Figure 2.35. Comment on the relative merits

of the three models from the point of view of data duplication and ease of retrieval.

2.11 Suppose that in the database design for the UHL of Section 2.5, we wished to maintain the

career statistics for each player. (The total goals and assists over the lifetime—career—of a

player are to be maintained in addition to the season statistics.) Draw the modified E-R

diagram and give the corresponding database design using the relational, network, or

hierarchical model.

2.12 In each of the database designs given in Section 2.8, how would you find out if a certain

player played as a forward or as a goalie? Introduce two IS-A relationships between players

and entities FORWARD_POSITION and GOAL-POSITION and draw an E-R diagram for a

database application that requires keeping the player’s career statistics as well as the statistics

indicated in the text.

2.13 Explain why navigation is simpler in the relational data model than in the hierarchical data

model.

74 Chapter 2 Data Models

Bibliographic Notes

Senko (Senk 77), in a survey article, gave details of some of the models discussed in this

chapter. The entity-relationship data model (Chen 76) grew out of the exercise of using com¬

mercially available DBMS to model application databases. Recently the E-R model has been

enriched and used in conceptual view design (Buss 83).

The DBTG proposal was the first data model to be formalized. The first report (which

has been revised a number of times), issued by the Database Task Group of the Conference

on Data System Languages (DBTG/CODASYL) (CODA 71) contained detailed specifications

for the network data model (a model conforming to these specifications is also known as the

DBTG data model). The specifications contained in the first report and subsequent revisions

have been subjected to much debate and criticism (Tayl 76). Many of the current database

applications have been built on commercial DBMSs using this approach.

Bachman (Bach 69) introduced a graphical means called the data structure diagram to

denote the logical relationship implied by the DBTG set. The data structure diagrams have

been extended to include field names in the record type rectangle and the arrow is used to

clearly identify the data fields involved in the set association (Brad 78).

In the network model, the relationships are predefined at database creation time; however,

dynamic relationships as in the relational model have been proposed (Brad 78).

The hierarchical model has been widely used in many existing database systems since the

late 1960s and early 1970s, due to the promotion of the IMS system by IBM (IBM 75) and

SYSTEM 2000 by MRI Systems Corporation (MRI 74).

The relational data model (Codd 70) is a model for representing the association between

the attributes of an entity and the association between different entities using the relation as a

construct. One of the main reasons for the introduction of this model was to increase the

productivity of the application programmer (Codd 82).

The relational model had its roots in the binary relations for data storage, namely the

relational data file of Levien and Maron (Levi 67) and the TRAMP system of Ash and Sibley

(Ash 68). The generalization of the binary relation to an n-ary relation was proposed by Codd

(Codd 70). He gave a definition of the n-ary relation for use in large shared data banks and

outlined the advantages of this approach.

Codd’s paper was instrumental in setting the direction of research in relational database

systems. After more than a decade of development and trials, relational data management

systems are on the market. Examples of these are SYSTEM R, DB2, SQL/DS, ORACLE,

INGRES, RAPPORT, QBE, and Knowledgeman.

The universal relational model aims at relieving the user of providing even the logical

navigation through the database (Maie 84). Another concept missing from the relational model

was that of specifying constraints between some relations; this problem has been addressed in

(Codd 79).

Textbook-level discussions of data models can be found in (Tsic 82), (Kort 86), (Maie

83), (Ullm 82), (Date 86) and (Brod 84a).

(ANSI 75) ANSI/X3/SPARC Study Group on Database Management Systems, Interim Report, FDT (ACM
SIGMOD bulletin), vol. 7(2), 1975.

2.10 Summary 75

(Ash 68) W. L. Ash & E. H. Sibley, “TRAMP: A Relational Memory with Deductive Capabilities,” Proc.

ACM 23rd National Conf. August 1968. Princeton, N.K.: Brandon Systems Press, 1968, pp
143-156. FF

(Bach 69) C. W. Bachman, “Data Structure Diagrams,” Data Base (ACM) 1(2), 1969, pp. 4-10.

(Brad 78) J. Bradley, “An Extended Owner-Coupled Set Data Model in Predicate Calculus for Database
Management,” ACM TODS 3(4), 1978, pp. 385-416.

(Brod 84a) M. J. Brodie, J. Mylopoulos, & J. W. Schmidt, On Conceptual Modelline, New York' Springer-
Verlag, 1984. 6

(Brod 84b) M. J. Brodie, “On the Development of Data Models,” in (Brod 84a), pp. 19-47.

(Buss 83) U. Bussolati, S. Ceri, V. De Antonellis, & B. Zonta, “Views: Conceptual Design,” in Methodology
and Tools for Data Base Design ed. S. Ceri, Amsterdam: North Holland, 1983, pp. 25-55.

(Cahe 83) R. G. G. Cahell, “Design and Implementation of a Relational-Entity-Datum Data Model,” Technical
Report CSL-83-4, XEROX PARC, Palo Alto, CA: May 1983.

(Chen 76) P. P. Chen, “The ER Model Toward a Unified View of Data,’ ACM TODS 1(1), 1976, pp. 9-36.

(Chen 80) P. P. Chen, ed., “Entity-Relationship Approach to System Analysis and Design,” North Holland,
Mass., 1980.

(CODA 71) CODASYL Database Task Group Report, April 1971, ACM, New York, 1971.

(Codd 70) E. F. Codd, “A Relational Mode of Data for Large Shared Data Banks,’ CACM, 13(2), 1970 pp
377-387.

(Codd 79) E. F. Codd, “Extending the Database Relation Model to Capture More Meaning,” ACM TODS 4,
1979, pp. 392-434.

(Codd 82) E. F. Codd, “Relational Database: A Practical Foundation For Productivity,” The 1981 ACM Turing
Award Lecture, in CACM, 25(2), 1982, pp. 109-117.

(Date 86) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading, MA: Addison-Wesley,
1986.

(Feld 69) J. A. Feldman & P. D. Rovner, “An Algol-Based Associative Language,” CACM 12(8), August
1969, pp. 439-447.

(Find 79) N. V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computer,” New
York: Academic Press, 1979.

(Grif 82) R. L. Griffith, “Three Principles of Representation for Semantic Networks,” ACM TODS 7(3), 1982,
pp. 417-442.

(Hamm 81) M. Hammer & D. McLeod, “Database Description with SDM: A Semantic Database Model,”
ACM TODS 6(3), 1981, pp. 351-386.

(IBM 75) Information Management System Publications, GH70-1260, White Plains, NY: IBM, 1975.

(Jard 77) D. A. Jardine, ed, “The ANSI/SPARC DBMS Model,” Proceedings of the Second SHARE Working
Conference on Database Management Systems, Montreal, Canada, 1976. Amsterdam: North-
Holland, 1977.

(Kers 67) L. Kerschberg, A. Klug, & D. C. Tsichritzis, “A Taxonomy of Data Models,” in Systems for Large
Databases, ed. (P. C. Lockermann & E. J. Neuhold.) Amsterdam: North-Holland, 1967, pp.
43-64.

(Knut 68) D. E. Knuth, “The Art of Computer Programming,” vol. 1. Reading, MA: Addison-Wesley, 1968.

(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts, New York: McGraw-Hill, 1986.

(Levi 67) R. E. Levien M. E. Maron, “A Computer System for Inference Execution and Data Retrieval,”
CACM 10(11), Nov. 1967, pp. 715-721.

(Maie 83) D. Maier, The Theory of Relational Databases, Rockville, MD: Computer Science Press, 1983.

(Maie 84) D. Maier, J. D. Ullman, & M. Y. Vardi, “On the Foundation of the Universal Relation Model,”
ACM TODS 9(2), 1984, pp. 283-308.

76 Chapter 2 Data Models

(MR 174) Systems 2000 Publications, A-l, C-l, F-l, G-l, 1-1, P-1, R-l. Austin, TX: MRI Systems Corp.,
1974.

(Mylo 80) J. Mylopoulos, P. A. Bernstein, & H. K. T. Eong, “A Language Facility for Database Intensive
Applications,” ACM TODS 5(2), 1980, pp. 185-207.

(Senk 77) M. E. Senko, ‘‘Data Structures and Data Accessing in Database Systems, Past, Present and Future,”
IBM Systems Journal, vol. 16, 1977, pp. 16, 208-257.

(Smit 77) J. M. Smith, D. C. P. Smith, ‘‘Database Abstractions: Aggregation and Generalization,” ACM TODS
2(2), 1977, pp. 105-133.

(Su 79) S. Y. W. Su & D. H. Lo, ‘‘A Semantic Association Model for Conceptual Database Design,” Proc. of
Int. Conf. on Entity-Relationship Approach to System Analysis and Design, Los Angeles,
CA, December 1979, pp. 147-171.

(Tayl 76), R. W. Taylor, R. L. Frank, ‘‘CODASYL Database Management System,” ACM Computing Surveys
8(1), 1976, pp. 67-104.

(Teic 77) D. Teichroew & E. A. Hershey III, “PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing System,” IEEE Trans, on Software
Eng. 3(1), 1977, pp. 41-48.

(Teor 86) T. J. Teory, D. Yang, & J. P. Fry, ‘‘A Logical Design Methodology for Relational Databases Using
the Extended Entity-Relationship Model,” ACM Computing Survey 18(2), June 1986, pp.
197-222.

(Tsic 78) D. C. Tsichritzis & A. Klug, eds, ‘‘The ANSEX3/SPARC DBMS Framework Report of the Study
Group on Database Management Systems,” Information Systems 3, 1978, pp. 173-191.

(Tsic 82) D. C. Tsichritzis & F. H. Lochovsky, Data Models, Englewood Cliffs, NJ: Prentice-Hall, 1982.

(Ullm 82) J. D. Ullman, Principles of Database Systems, Rockville, MD: Computer Science Press, 1982.

Contents

3.1 Introduction

3.1.1 Storage Device Characteristics

3.1.2 The Constituents ot a File

3.1.3 Formal Specification of Storage of a File

3.1.4 Operations on Files: Logical Access

3.1.5 Primary Key Retrieval

3.2 Serial Files

3.3 Sequential Files

3.4 Index-Sequential Files

3.4.1 Implicit Index

3.4.2 Limit Indexing

Number of Comparisons

3.4.3 Multilevel Indexing Schemes: Basic Technique

3.4.4 Structure of Index-Sequential Files

Number of Disk Accesses

3.4.5 VSAM

3.5 Direct File

3.5.1 Extendable Hashing

Insertion

Deletion

Secondary Key Retrieval

Query and Update Types

3.6.1 Inverted Files

3.6.2 Multilist Files

Search in Multilist Files

Maintenance of Multilist Files

3.6.3 Cellular Lists

3.6.4 Ring Files

Indexing Using Tree Structures

3.7.1 Introduction

3.7.2 Tree Schemes

3.7.3 Operations

Search

Insertion and Deletion

Insertion

Deletion

3.7.4 Capacity

3.7.5 B-trees

3.8 Logical and Physical Pointers

3.9 Record Placement

Chapter

File
Organization

77

78 Chapter 3 File Organization

In this chapter we focus on a number of methods used to organize files and the

issues involved in the choice of a method. File organization deals with the structure

of data in secondary storage devices. In designing the structure the designer is con¬

cerned with the access time involved in the retrieval of records based on primary or

secondary keys, as well as the techniques involved in updating data. We discuss the

following file organization schemes: sequential, index sequential, multilist, direct,

extendable hashing, and tree structured. The general principles involved in these

schemes are presented, although we do not discuss the implementation issues under

a specific operating system.

3.1 Introduction

Just as lists, arrays, trees, and other data structures are used to implement data or¬

ganization in main memory, a number of strategies are used to support the organi¬

zation of data in secondary memory. We can expect, as in main memory data orga¬

nization, that there is no universal secondary data organization strategy suitable under

all usage conditions. As discussed earlier, certain attribute (or field) values can

uniquely identify a record, i.e., these attributes makeup the primary key of the rec¬

ord. Other attribute values identify not one but a set of records. These attributes are

called secondary or nonprimary keys. In this chapter we consider both primary key

and nonprimary key retrieval and updates, bearing in mind that there are space/time

trade-offs for all structures.

Traditionally the term file has been used to refer to the folder that holds related

material in ordered storage for quick reference. We use the same word, file, to de¬

scribe the object as well as its contents. The order of the file is an arrangement of its

contents according to one’s expected needs for future reference. For example, if we

have a file of birth dates of persons we know, we may wish to arrange them by date.

We could also arrange them alphabetically by family or first name. The choice of

arrangement depends on the reason for the file. If we wish to consult the file peri¬

odically to discover upcoming birthdays, chronological order would be chosen. If,

however, we wish to know the date of Bill’s birthday, we would opt for the alpha¬

betical ordering on first names. What are we to do when we have both types of

requirements? We could, for example, maintain a copy of the file in chronological

order and another in lexical order. In this case, the contents would be the same but

the order would be different. We would rarely remove (or delete) a person’s birth

date from the file; rather, we would add new names and dates to the file. We may

need to change someone’s name. In all of these cases both copies of the file would

be changed. It is impossible to change both files at the same instance, i.e., we first

alter one copy and then the other. Can we, while the changes are being made, make

use of either file? Imagine what would happen when a number of copies and a large

number of users exist. The method of creating a copy for each application is replete

with problems. A possible solution is to maintain the file in some physical order and

allow access in some other order, i.e., the logical access order is different from the

physical access order. This concept is very important because the same file could
then be used to support different access orders.

To further classify the contents, a file should be labeled. We can label the file

described above as a file of Birth_Dates. Similarly, we can create suitably named

3.1 Introduction 79

files for other things such as Recipes, Bills, and so on. We could keep all these files

in a box. The box, by definition, is also a file—it is a file of files. We could treat

the secondary storage medium as this box (a file of files). In this chapter we look at

techniques for managing files. The same techniques are applicable to the file of files.

3.1.1 Storage Device Characteristics

Presently, the common secondary storage media used to store data are disk and tape.

Tape is generally used for archival data. The storage medium used in a disk is a disk

pack. A disk pack, shown in Figure 3.1, is made up of a number of surfaces. Data

is read and written from the disk pack by means of transducers called read/write

heads. The number of read/write heads depends on the type of disk drive. If we trace

the projection of one head on the surface associated with it as the disk rotates, we

would create a circular figure called a track. The tracks at the same position on

every surface of the disk form the surface of an imaginary cylinder. In disk termi¬

nology, therefore, a cylinder consists of the tracks under the heads on each of its

surfaces.

In one type of disk drive each track on each surface has a dedicated stationary

head, which does not move. Such a disk drive is called a fixed head drive. The

other type of disk drive is a moving head drive, wherein a single head is used for

each surface. When data from a given track is to be read, the head is moved to the

track. Figure 3.2 shows the cross section of a fixed head drive and Figure 3.3 shows

that of a moving head drive.

The disk stores data along concentric tracks. It takes some time for the read/

write head of a moving head disk drive to move from track (or cylinder) i to track

(or cylinder) j. This is called the seek time. (For a fixed head disk, the seek time is

0.) In the case of a moving head drive, the seek time depends on the distance be¬

tween the current head and the target head positions. Typical values are from 10 to

50 msec (msec = 1/1000 sec). If a file consists of c consecutive cylinders and we

assume uniform and random distribution of requests for the different cylinders, we

can show that the average distance (in cylinders) the head moves is c/3 (proof for

this is given in Appendix 3.2 at the end of the text). Before data can be read or

written the disk has to rotate so that the head is positioned at some point relative to

Figure 3.1 Structure of a disk pack with read/write heads.

Track

Surface_0

Read/write
heads

Cylinder

Surface —*^n

80 Chapter 3 File Organization

Figure 3.2 Fixed head disk with read/write head per track.

Arm

n-1

Read/write heads

Arm

0

Arm

A
r

m

¥ ¥
track H- L
TTTT T
1111 1

Surface 0

Surface 1

Surface 2

Surface 2i-2

Surface 2i—1

Surface 2i

Surface 2n-2

Surface 2n-l

a marked start point. The time needed for the reading or writing to start depends on

the rotational delay. On the average, the rotational delay is half the rotation time,

that is, the time for the disk to rotate once. The rotational delay is called latency

time. For a drive that rotates at 3600 revolutions per minute, the average latency

time is 8.33 msec. The access time, therefore, depends on the seek time and the
latency time.

On magnetic tapes, data blocks are separated by interblock gaps (IBG). The

IBG can be attributed to the deceleration/ acceleration (stop/start) that takes place

between successive block reads. This only happens when, after a single access, time

is needed to process the data before a second read. When continuously scanning over

the data, there is no need to stop/start after reading each block. The IBG is also

scanned at the faster rate. The typical value for the IBG is 0.6 inch. The access time,

i.e., the time required to locate the target block on a magnetic tape, depends on the
distance between the current and target blocks.

As we see from the above, the access time depends on the distance between the

current and target positions for both types of storage devices. This time can be optim¬

ized by suitably placing records. It can also be affected by the file organization
employed.

We car. abstract the disk storage medium in terms of a two-dimensional array

and the tape as a one-dimensional array of data blocks (see Figure 3.4). Note that in

both cases we can specify a unique address for a block (or physical record). We will

3.1 Introduction 81

Figure 3.3 Moving head disk with a single read/write head per surface.

Arm

A
0 r

m

m

o

Arm v
e
m

i
e
n
t

m
e
c
h

Arm a
n

n-1 i
s
m

Track
0123. . .

Track 1
0123... m-lj [
•<-►
Track
0123. . . J I
-<-►
Track
0123... J

n
i

Surface 0

Surface 1

Surface 2

Surface 2i-2

Surface 2i—1

Surface 2i

Surface 2n-2

Surface 2n-l

omit details of these physical mediums on which the files are stored. These details

can be found in most elementary texts in computer organization. It is sufficient to

say that some file organizations may be unsuitable for some mediums.

A block of data may contain one or more logical records (henceforth, unless

otherwise stated, a record denotes a logical record), or a single record may be split

across more than one block (Figure 3.5). Therefore, in addition to the block address,

we require data on the start position, length, and pointer to continuation block for

Figure 3.4 Abstraction of secondary storage medium.

Disk-type device Tape-type device

82 Chapter 3 File Organization

Figure 3.5 Organization of records on blocks (shaded area marks unused space).

R3 I-R4

Blocks

every record. As different blocks may be assigned to different files, a mapping must

be maintained to record the particular files to which the blocks are assigned.

The importance of the study of file organization methods is that different meth¬

ods have different properties and hence efficiencies for different applications. A ma¬

jor factor that determines the overall system performance is response time for data

on secondary storage. This time depends not only on physical device characteristics,

but also on the data arrangement and request sequencing. In general, the response

cost has two components: access time and data transfer time. Data transfer time is

the time needed to move data from the secondary storage device to processor mem¬

ory; access time is the time needed to position the read/write head at the required

position. The data transfer time depends on physical device characteristics and cannot

be optimized. In the case of reading a 1KB (kilobyte = 1024 bytes) block of data

from a device that can transfer it at lOOKB/sec (KB/sec = kilobyte/second), the data

transfer time is 10 msec. The response time, while influenced by physical character¬

istics, depends on the distance between current and target positions and, therefore,

on data organization.

i

Blocks Block

3.1.2 The Constituents of a File

Data is organized on a secondary storage medium in the context of a logical unit,

the file. Some areas on the storage medium are designated by the file manager (FM)

subsystem of the operating system (OS) for a specific file. The FM designates areas

on the storage medium for every file, records information concerning the particular

area each file occupies, and uses it whenever access to a file is required. Note that

on the storage medium there is no distinction among the files. Although a file is

mapped onto some physical areas of a storage medium, we consider a file to be made

up of some logical units known as records. A record is used to store data about some

entity of interest.

Example 3.1 We want to store birth date information. Obviously we shall use a record

for every person whose data we store; that is, if there are 10 persons, we

shall create 10 records. Although we are primarily interested in the birth

date, it would not be of much use unless we could associate the date with a

person. We shall therefore store data about a person’s name (first and last)

and date of birth. First-Name, Last-Name, and Birth-Date are the fields

that constitute a record. Note that when we speak of a record we use the

term field instead of attribute. We will use these terms interchangeably. ■

3.1 Introduction 83

Before we go on to more formal material, let us examine the attribute Birth-

Date in greater detail. We are all well aware that every date is not a legal date, eg,

January 33, 1959. Furthermore, a future date could not be a valid value for this file.

If we want to restrict the values that can be assigned to some attribute for a given

record, we must define the set of legal values for that attribute. We refer to this set
of legal values as the domain of an attribute.

Until now, we have been informally discussing certain concepts related to data

organization on secondary storage. We shall now set these concepts in more formal
terms.

A file F is a collection or “bag” of records, that is, F = {r,, r2, . . . , rn},

where the r/s are used to represent the records in a file F containing n records. File

F, in general, is not a set of records because duplicate records may be permitted. A

“bag” permits duplicate occurrences although it may be difficult to visualize many
situations where this would occur.

As discussed earlier, an attribute is used to capture some characteristic or prop¬

erty of an entity. A record q is a set of <attribute (or field), value> pairs defined on

the set of attributes A = {Atl, . . . , Ajm} over the set of corresponding domains

D = {Dj|, . . . , D,m}. It is not necessary that Djj and Djk, j + k, be distinct

domains, as different attributes can be defined on the same domain.

The record q can be represented as the set q = {(An, Vn), . . . , (Aim, vim)},

where each Vy e Dy, for j = 1, . . . , m. If every record of a file contains attrib¬

ute,value> pairs for the same set of attributes, the file is said to contain homoge¬

neous records. If the attribute-value pairs are similarly ordered in all the records of

the file, i.e., for all ri; (An = A21 = . . . = Anl), (A12 = A22 = . . . An2),

. . . , (A,m = A2m = . . . = Anm), then the fact that the attribute order is known

can be used to achieve efficiency in record representation. It is in fact usual to rep¬

resent a record using positional notation, i.e., r, = (vu, . . . , vim), where the

attributes are discerned from the position of the associated value. This is how we

represented a record in Figure 2.15. The order of the attributes has no semantic

importance. For a data record using positional notation to make sense, the mapping

between position and attribute names must be known. Although the attribute name

may not be specifically incorporated in the record, we can logically associate the

appropriate attribute name with the values stored.

Example 3.2 In the above example, the attribute order in each record of the file is given

as Birth-Date, followed by Last-Name and then First-Name. On an access

to a record we are presented with a sequence of bytes that we map, logi¬

cally, to our three attributes. The first k bytes represent the Birth-Date, the

succeeding k' bytes the Last-Name, and the remaining k” bytes the First-

Name. Given the sequence of bytes, their decoding mechanism, and the

values k, k', and k”, we can interpret the sequence of bytes that constitutes

the record. H

A file that contains nonhomogeneous records needs to store the attribute names

(or identification codes) within the records.

84 Chapter 3 File Organization

3.1.3 Formal Specification of Storage of a File

All storage organizations are ultimately constituted from bytes. Let us call the set of

all possible bytes BYTES. We can define an attribute value, a record, and a file in

terms of a sequence of bytes. The length of a sequence, s, is written as #s. An

informal treatment of sequences is given in Appendix 3.1 at the end of the text.

An attribute value or simply an attribute is some sequence of bytes':

ATTRIBUTE :: = sequence of BYTES

The values for different attributes and also the different values for some attri¬

butes would not all be encoded using equal-length sequences. We have to specify

the length of the sequence. For attributes that can accept variable-length sequences

as values, we specify the minimum (#min) and maximum (#max) sequence lengths.

Fixed-length values have #min = #max. Thus we have:

ATTRIBUTE :: = sequence of BYTES of length (#min . . #max)

A record is defined in terms of some bag of attribute values. Physically a record

is defined as:

RECORD :: = sequence of BYTES

However, logically we think of a record as:

RECORD :: = sequence of ATTRIBUTES

Records are stored on the physical medium in blocks. For simplicity we assume

fixed-length blocks. Then we have:

FL_BLOCK :: = array [1 . . BLOCK_SIZE] of BYTES

FL_BLOCK :: = sequence of RECORD

The first definition pertains to physical blocks and the second to logical blocks. The
first definition allows a logical record to span over physical blocks.

Similarly, we define the file:

FILE :: = sequence of FL_BLOCK

(Note that from the definition of FL_BLOCK, we may physically consider a file to
be just a sequence of BYTES, or logically as a sequence of RECORD.)

The emphasis on “sequence of BYTES” is deliberate, for this precisely repre¬

sents the fact that all data is stored in the form of bytes (or bits). This is important,

too, for if we have a sequence and we wish to map it into a given logical structure,

we should know (1) the beginning point of the sequence and (2) a definition of the

logical structure into sequences of bytes. This has implications for searching without

transferring data between the secondary medium and main memory. A processing

element associated with the read/write head of a storage device can decide that it has

located some desired sequence only if it knows the starting point. These are encoded
or physically embedded in actual storage devices.

Note that some attributes are Boolean and need less than one byte; however, many implementations use an entire byte to
store a single Boolean valued attribute.

3.1 Introduction 85

A number of initialization operations must be performed by the file manager

before the initial access is made to a file. This is usually done by issuing an open

file (or in Pascal, a reset/rewrite command). This initiates some internal housekeep¬

ing by the file manager. The creation of a number of buffers of appropriate size and

initializing pointers (one each for blocks and records within blocks) would be nec¬

essary. We shall name these pointers BLOCK_PTR and RECORD_PTR, respec¬

tively.

Assume that we have issued an open command for some file; then we can as¬

sume that BLOCK_PTR= 1 and RECORD_PTR= 1. The number of blocks in the

file is given by #file_block and the number of records in the block BLOCK_PTR is

given by #record(BLOCK_PTR). Algorithm 3.1 for get_record follows. Here we

ensure that we do not attempt to access a record past the last record of a block or

access a block past the last block in the file. Provided that the pointers are correctly

set, the next record is made available. If we had already accessed the last record in

the block, the block pointer is incremented and the record pointer within the block is

reset to 1. (Note that this algorithm is much more simple than what happens in

reality. First, it is implicit that somehow the data from the secondary storage is

already available. In practice, the blocks would have to be read off the secondary

storage. Second, the sizes (# . . .) are made available from some system record

Algorithm

3.1 Algorithm to Get a Record

Input: initialized values for BLOCK_PTR, RECORD-PTR, #file_block(number of

blocks in the file) and #record(BLOCK_PTR) (number of records in the

block)

Output: next record in file or end_of_file error condition

retum_flag : = true

while return-flag do
if BLOCK-PTR > #file_block then begin

error end-of-file (“reading after end”)

return-flag : = false

end
else if RECORD-FI R < #record(BLOCK_PTR) then begin

record : = file(BLOCK_PTR,RECORD_PTR)

RECORD-PTR : - RECORD_PTR + 1

return-flag : = false

end

else begin
BLOCK-PTR : = BLOCK-PTR + 1

RECORD_PTR ; = 1

end

86 Chapter 3 File Organization

area. Thus, the algorithm should be taken as giving the general picture.) The suc¬

cessful execution of get_record logically (not physically) alters the file:

file' : — file — record

The above expression specifies that the record is no longer available from the logical

file. A sequence of get records would not fetch the already obtained record unless

we reposition BLOCK_PTR and RECORD-PTR, for instance, by issuing an open

or rewind command.

We can specify similar algorithms for insertion, deletion, and modification. Let

us consider insertion. Suppose we have already identified the block into which the

new record is to be inserted. In the simple scheme of things, the BLOCK_PTR and

RECORD_PTR have been correctly set. We can specify the insertion as:

file(BLOCK_PTR,RECORD_PTR) : = file(BLOCK_PTR,RECORD_PTR) +

record,

where record is the record to be inserted. The operation + indicates the insertion of

the record in the block specified by BLOCK_PTR at the position specified by

RECORD_PTR. This would be perfectly correct if the block could accept any num¬

ber of records. However, this is not so. If the block cannot accept the record, we

must either reject the insertion or devise some scheme to make believe that the block

is larger than it really is. In the latter scheme we implicitly or explicitly chain to¬

gether blocks to logically extend a given block. The implicit method inserts the rec¬

ord in the next block with sufficient free space; this method is the same as that used

in some of the hashing schemes to handle collision. Explicitly, we can either prede¬

signate a block (or set of blocks) or point to a block that would accept the overflow

record(s). In this scheme the original block is called the primary block and the block

for the overflow record is the overflow block. Another possibility would be to ask

the file manager to allocate a new block in which the overflow record(s) would be

accepted.

In the above discussion, we have conveniently forgotten to look into our rec¬

ords. How is the sequence of bytes that constitutes the record interpreted? It is usual

to specify the structure of the record within a program. This allows the physical

sequence of bytes to be mapped into the logical sequence of attributes that we have

defined. In Example 3.2, we defined a file that stored birth dates as Birth-Date,

Last-Name, First-Name, or was it specified as Birth-Date, First-Name, Last-

Name, or some other sequence? Two programs with the above different record struc¬

tures would still be able to read the same data file. Remember that in the physical

sense, we just stored a sequence of bytes. The results from one of the programs

would be very interesting. For example, if the size for the two name attributes was

the same, one program would have interchanged the first with the last name of every

person. In this simple case we might be able to identify the malfunctioning program,

but can we be sure that this would be the situation in all cases? The moral of the

discussion is that for every file created, a repository of its structure is necessary.

3.1.4 Operations on Files: Logical Access

Having looked at the storage structure of a file and operations on it, we now consider

both physical and logical sequencing or ordering of its records. Assume that we are

3.1 Introduction 87

Figure 3.6 Physical and logical file.

Name GPA

Abe 2.00
Anne 3.85

first record retrieved

Mary 3.95
David 3.55 next record retrieved

Marc 3.90

last record retrieved
John 3.70 Abe 2.00
Marc 3.90 (b) Logical access
Mary 3.95

Zeon

(a) Physical file

3.65

given a file containing data on student names and grade point averages (GPA). The

records in the file are stored in lexicographic order. A subset of the records of the

file is shown in Figure 3.6a. We can access the records in their physical (stored)

order or we can do so in some other order, such as in decreasing GPA order. We

assume that a logical access method is available that allows us to retrieve records in

decreasing GPA order. For data in our file, the first record fetched will be that of

Mary with a GPA of 3.95, as shown in the first entry in Figure 3.6b. The next record

obtained will be that of Marc. The records are being fetched in their logical sequence

(that of decreasing GPA) and not in their stored (or physical) sequence. After we

access the last record in the file, a call for the next record in the file causes the end-

of_file exception.
To reiterate, the records q of a file F may be accessed in some given logical

sequence while being stored on the physical storage medium in another (physical)

sequence. Access can be considered to be a mapping from file F and a pointer i to a

record:

ACCESS : (F,i) q

The record, r, may be allocated space on the physical medium and stored as follows:

STORE : (F,j,r) —> location

The ACCESS mapping function needs to know where record r, is stored to allow

access to the record. Ideally, the STORE mapping function should not have to know

how the records are accessed. The fact is, however, that in order to allow efficient

access in a desired logical sequence, the store function needs additional information.

In addition to the ACCESS function, we need the following functions to access

records relative to the current record accessed and the first and the last record of the

file. These functions may be termed FIRST, LAST, NEXT, and PREVIOUS. If we

assume that the logical sequence of the file F is {q, r2, . . . , rn} (the physical

sequence may be same as the logical sequence), then

88 Chapter 3 File Organization

FIRST: F —> r, NEXT: (F,rj) -> ri + I if i * n

LAST: F -> rn NEXT: (F,rn) -»• ERROR (end_of_file)

PREVIOUS: (F,rj) -> r, _, if i > 1

PREVIOUS: (F,r,) -> ERROR (beginning_of_file)

We sometimes do not require access to every attribute of a record, simply to a

subset. Similarly, we may access only those records that satisfy some given condi¬

tion. In general, we can specify access or retrieve operations on a file as:

<target_list | qualification>

where the target_list is the list of attributes for which the values of records satisfying

the specified qualification clause are to be retrieved. The qualification clause is a

Boolean expression, a sequence of terms connected with Boolean operators as de¬

fined below:

<qualification> :: = <term> [<Boolean_operator> <qualification>]

<term> : : = [<negation>] <attribute> <relational operator> <constant>

< relational opera tor > ::= ' — '|' =£ '|'>T—T<T—'

<Boolean operator> :: = AND|OR

<negation> :: = NOT

In principle, we can retrieve records from a file based on the value of any

attribute. However, it is common to retrieve records based on some subset of the

attributes, designated as key attributes. The file is organized so that retrievals based

on these key attributes will be efficient. Remember that certain attributes, primary

keys, may be used to uniquely identify records in a file, while other attributes, sec¬

ondary or nonprimary keys, can identify a set of records.

Example 3.3 In Figure 3.6, assume that the names are unique, i.e., the name can be used

to identify a record. As such, name would be the primary key for the GPA

file.

In the Birth_Date file we recorded information about the birth dates of

persons we know. We can assume that the combination of First-Name and

Last-Name uniquely identifies a record, i.e., that every person we know has

a unique name. Suppose that a person’s First-Name and Birth-Date also

uniquely identify a record. In other words, some persons have a common

birth date and a few of the persons have the same first name, but no two

persons with the same first name have the same birth date (at least for

this example). Thus we can assume that either one of the two combinations

<First-Name, Last-Name> or <First-Name, Birth-Date> can be used
as a primary key.

Let us choose the <First-Name, Last-Name> combination as our pri¬

mary key. We can choose any or all of the attributes First-Name, Last-

Name, and Birth-Date as secondary keys. For simplicity, we choose Birth-

Date. Now, since we allow the possibility of more than one person with the

same birth date, we expect to retrieve zero, one, or several records when

we use Birth-Date to access this file. Accessing the file using the <First_

Name, Last-Name> combination would retrieve at most one record. ■

3.1 Introduction 89

The data contained within the file may have to be changed. The changes could

be the addition (or insertion) of new records, the removal (or deletion) of an existing

one, or the changing (or modifying) of some of the contents of an existing one. The

insertion, deletion, and modification operations are collectively known as update

opei ations. Update operations can also be expressed in terms of target—list and

qualification-list. The target-list permits assignment statements in the form of attrib¬
ute : = expression. Insert operations have an empty qualification clause.

An update is a mapping from one (old) version of a file to another (new) version

of it, i.e., F —> F . Assume that #F_record represents the number of records in the

file F. An update may include any of the following four possible procedures:

U,. Insert records in their proper logical sequence. Let F = {r,, . . . , rk_,,rk + 1, . . .}

and #F_record = n, then

INSERT: (F, rk) -> F'

where F' = {r,, . . . , rk_,, rk, rk+), . . .} and #F'_record = n+1.

The operation is accomplished logically by copying records r,, . . . , rk_, into file

F', then storing record rk and copying the remaining records, rk, rk+1, . . . into F'.

U2. Delete one or more existing records from the file. Let F = {r,, . . . , rk_,, rk,
rk + l, . . .} and #F_record = n, then

DELETE : (F, rk) -*• F'

where F' = {r,, . . . , rk_i, rk+1, . . .} and #F'_record = n — 1.

The operation is accomplished logically by copying records r(. . . , rk_| into file

F', ignoring record rk, and then copying the remaining records, rk, rk + 1, . . .
into F'.

U3. Modify the data values in some existing record. This is akin to deleting record r,
and inserting r,', where r,' is the modified record.

MODIFY: (F, r;) -> F'

Let F = {r,, . . . , rif . . . , rk_,, rk, rk+1, . . .} and

F {u* • • • , Tj > • • • > he— i, rk, rk +1, . . .}

The operation is accomplished logically by copying records r,, . . . , rj _) into

the file F', modifying record r, to r/ and copying it to file F', and then copying the

remaining records, ri + i, . . . into F\ Note that the relative positions of the records

remain unchanged.

U4. Modify the data values in existing records (it is common to assume that the record

length remains the same).

MODIFY: (F, Ai; v;, v/) F'

This modifies data values in all records that have value v, for the attribute Aj.

The operation is accomplished logically as follows: Copy a record rp such that the

value of attribute A, + Vj, into the file F'; or modify a record rk, such that the value

of attribute Aj = vs, to rk' where the value of attribute Aj is modified to v/ and copy

the modified record to file F'.

Remember that update operations may also cause exceptions, such as when we

try to delete or modify a nonexistent record. In most applications insertion of a

90 Chapter 3 File Organization

duplicate record creates an exception condition. Updates to primary key attributes of

a record are either disallowed or handled by a deletion followed by an insertion. The

reason for this two-step operation is to ensure that the change was intended.

We mentioned earlier that access is usually required only on certain attributes.

Our logical record may then be considered as composed of two distinct parts; KEYS

and ATTS, where both are sequences of ATTRIBUTES:

RECORD ::= <KEYS> <ATTS>

KEYS :: = sequence of ATTRIBUTE

ATTS :: = sequence of ATTRIBUTE

This is more than just some whimsical rearrangement. It is a deliberate splitting of

the key from the nonkey attributes. Now when a search is performed using some key

attribute, we need only search the area where the key attributes are stored. We can,

if we wish, store the key attributes and nonkey attributes in physically separate areas.

The advantage will come when the size of the storage required by the key attributes

is significantly smaller then the storage required for the complete record. We could

store the key attributes and nonkey attributes in different, marked areas on the same

block and use the read head, as it scans the surface, to locate records with certain

key values. This is what is done on some disk storage technologies, wherein only a

single key attribute is used.

3.1.5 Primary Key Retrieval

In this section we present an overview of the logical (or access mappings) and phys¬

ical (or store mappings) file organizations commonly supported by the file manage¬

ment systems of operating systems. We consider here the sequential, indexed-

sequential, and direct file organizations. We are not concerned with their implemen¬

tations under individual operating systems, only with general principles.

In a sequential file, records are stored in ascending or descending primary key

order. The logical sequence is the same as the physical sequence. The difference

between a serial and a sequential file is that in a serial file, records are stored in no

particular order. No logical sequence of records applies; the physical order is merely

the order in which the records were added to the file.

The advent of disks made it possible to move randomly through a file. To access

a given record, however, we must know its physical location. In a sequential file the

records are stored in a physical sequence depending on the primary key value. Ad¬

ditional information giving the physical location for a given key value is needed to

move directly to a random record. For example, at the beginning of a book, the

contents section indicates the starting page number (physical location) for each chap¬

ter or section (key values). A similar concept can be used with a sequential file. In

an index-sequential file the physical location of a record in the sequential file is

maintained in a set of indexes. These indexes provide fast and random access to the
records in the file.

In direct file organizations the physical location of a record is based on some

relationship with its primary key value. The physical location is given directly or

indirectly by a hash address. In the next sections, we shall look at each of the above
file organizations.

3.2 Serial Files 91

3*2 Serial Files

We stated earlier that in a serial file records are stored in no particular logical order;

therefore, the serial file is equivalent to an unordered sequence. Let us take, for

instance, a deck of shuffled playing cards and spread some of the cards facedown

from left to right on a tabletop. We shall call these cards on the table a cardfile. We

are allowed to pick one card at a time from the cardfile, starting from the left. The

card picked (the record just read) is placed faceup. We can assume that we have

some pointer that points to the next card to be picked; the last faceup card acts as a

pointer. If we pick a card and then another, the first and second cards picked bear

no logical relationship with each other. For instance, if we treat all cards belonging

to a given suit as logically related, it is not always the case that the two cards picked

belong to the same suit. The cards can only be picked in their physical sequence. A

card on the table may be referred to as the last card of the cardfile. The next card is

placed to the immediate right of it, i.e., appended after the last card. Our layout of
the cards simulates a serial file (see Figure 3.7)

A serial file is generated by appending records at the end, and if the records are

randomly appended as in the case of a shuffled deck of cards, the logical ordering of

the file with respect to a given key bears no correspondence to the physical sequence.

The updates of type U3 (updating an individual record) and U4 (updating a group of

records meeting certain criteria) can be done in place if we assume that the records

are of fixed length and modifications do not change their size. The retrieval of a

particular record entails searching the file from the beginning to end, if necessary.

On average, the search requires the examination of half the records in the file.

The deletion of a record can be handled in a number of ways. All records

following the deleted record can be moved forward or the last record in the file can

be brought in to replace the deleted record. Both of these options require many

additional accesses up to the end of file. A more practical alternative is to logically

delete a record, that is, mark the record as having been deleted. In future insertions

or file reorganizations, the space occupied by a deleted record can be reclaimed. In

the case of insertions, this requires that every record of the file be checked until we

find one that has been deleted and marked as such. A new record could be inserted

in the space occupied by the first such deleted record.

A serial file is also referred to as a nonkeyed sequential file. In a serial file,

The entire file has to be processed in searching for a nonexisting record, whereas in

a sequential file, on average, only half the file has to be searched. A serial file is

Figure 3.7 Example of a serial file.

f--
A* 2*

♦ V
*

♦V aZ

4* 7?

V V
! i v

¥ V

92 Chapter 3 File Organization

typically used to maintain records chronologically; one such application is to record

transactions.

3.3 Sequential Files

In a sequential file, records are maintained in the logical sequence of their primary

key values. The processing of a sequential file is conceptually simple but inefficient

for random access. However, if access to the file is strictly sequential, a sequential

file is suitable. A sequential file could be stored on a sequential storage device such

as a magnetic tape.

Search for a given record in a sequential file requires, on average, access to half

the records in the file. Consider a system where the file is stored on a direct access

device such as a disk. Suppose the key value is separated from the rest of the record

and a pointer is used to indicate the location of the record. In such a system, the

device may scan over the key values at rotation speeds and only read in the desired

record. A binary2 or logarithmic search technique may also be used to search for a

record. In this method, the cylinder on which the required record is stored is located

by a series of decreasing head movements. The search, having been localized to a

cylinder, may require the reading of half the tracks, on average, in the case where

keys are embedded in the physical records, or require only a scan over the tracks in

the case where keys are also stored separately.

Updating usually requires the creation of a new file. To maintain file sequence,

records are copied to the point where amendment is required. The changes are then

made and copied into the new file. Following this, the remaining records in the

original file are copied to the new file. This method of updating a sequential file

creates an automatic backup copy. It permits updates of the type U, through U4.

Addition can be handled in a manner similar to updating. Adding a record ne¬

cessitates the shifting of all records from the appropriate point to the end of file to

create space for the new record. Inversely, deletion of a record requires a compres¬

sion of the file space, achieved by the shifting of records. Changes to an existing

record may also require shifting if the record size expands or shrinks.

The basic advantage offered by a sequential file is the ease of access to the next

record, the simplicity of organization, and the absence of auxiliary data structures.

However, replies to simple queries are time consuming for large files. Updates, as

seen above, usually require the creation of a new file. A single update is an expensive

proposition if a new file must be created. To reduce the cost per update, all such

requests are batched, sorted in the order of the sequential file, and then used to

update the sequential file in a single pass. Such a file, containing the updates to be

made to a sequential file, is sometimes referred to as a transaction file.

In the batched mode of updating, a transaction file of update records is made

and then sorted in the sequence of the sequential file. The update process requires

the examination of each individual record in the original sequential file (the old mas¬

ter file). Records requiring no changes are copied directly to a new file (the new

2Factors such as seek and latency time rule out the use of binary search in favor of some form of indexing scheme for disk-
based files.

3.4 Index-Sequential Film 93

Figure 3.8 A file with empty spaces for record insertions (the figure shows some fixed-length
records and unused space).

R1 R3 R5 R9

Blocki Block2 Block3

master file); records requiring one or more changes are written into the new master

file only after all necessary changes have been made. Insertions of new records are

made in the proper sequence: They are written into the new master file at the appro¬

priate place. Records to be deleted are not copied to the new master file. A big

advantage of this method of update is the creation of an automatic backup copy. The

new master file can always be recreated by processing the old master file and the
transaction file.

A possible method of reducing the creation of a new file at each update run is

to create the original file with “holes” (space left for the addition of new records,

as shown in Figure 3.8). As such, if a block could hold k records, then at initial

creation it is made to contain only L * k records, where 0 < L < 1 is known as the

loading factor. Additional space may also be earmarked for records that may “over¬

flow” their blocks, e.g.. If the record r, logically belongs to block Bj but the physical

block Bt does not contain the requisite free space. This additional free space is known

as the overflow area. A similar technique is employed in index-sequential files.

3.4 Index-Sequential Files

The retrieval of a record from a sequential file, on average, requires access to half

the records in the file, making such enquiries not only inefficient but very time con¬

suming for large files. To improve the query response time of a sequential file, a

type of indexing technique can be added.

An index is a set of <key, address> pairs. Indexing associates a set of objects

to a set of orderable quantities, which are usually smaller in number or their proper¬

ties provide a mechanism for faster search. The purpose of indexing is to expedite

the search process. Indexes created from a sequential (or sorted) set of primary keys

are referred to as index sequential. Although the indices and the data blocks are held

together physically, we distinguish between them logically. We shall use the term

index file to describe the indexes and data file to refer to the data records. The index

is usually small enough to be read into the processor memory.

A sequential (or sorted on primary keys) file that is indexed is called an index-

sequential file. The index provides for random access to records, while the sequential

nature of the file provides easy access to the subsequent records as well as sequential

processing. An additional feature of this file system is the overflow area. This feature

provides additional space for record addition without necessitating the creation of a

new file.

94 Chapter 3 File Organization

Figure 3.9 Implicit index for starting page numbers of words in a dictionary.

Words starting

with letter Page# Index Entries

A 3 3

B 43 43

C 85 85

E 159 -1000

159

X 807 807

Y 808 808

Z 811 811

(a) <Key, address > pairs (b) Implicit index

3.4.1 Implicit Index

The index file can be simplified or its storage requirements reduced if only the ad¬

dress part of the <key, address> pair is held in the index. This, however, necessi¬

tates holding the address of every possible key in the key range, including addresses

of records not in the file. The addresses of nonexistent records can be set to an

impossibly high or low value to indicate their absence from the file. If the number

of such missing records in the range of stored key values is small, the saving ob¬

tained by not storing the key is considerable. Figure 3.9b is an example of an im¬

plicit index corresponding to the explicit index given in Figure 3.9a. Note that the

record with a key of D is not in the file. This fact is indicated with a negative pointer

value. This scheme requires that the value of the key be implicit in the position of

the entry in the index. In this example, the first key is A, the second, B, and so on.

In such a scheme, the maintenance of the index becomes simpler. The space require¬

ment depends on the proportion of existent records to the key range.

3.4.2 Limit Indexing

Because data on a direct access storage device is stored as a block of records on

tracks and the entire contents of each track3 are read into main memory for process¬

ing, it is not necessary to use full indexing. In a limit indexing or partial indexing

scheme, a single entry per track is maintained in the index. It is possible to group

together a number of storage locations and identify these by a single address. In this

manner, the storage on a track, a group of tracks, a cylinder, a group of cylinders,

3In the case of a sector-oriented direct access storage device, the track is divided into a number of sectors and the basic unit of
transfer is a sector. Limit indexing may be either with respect to a track or with respect to a sector within a track.

3.4 Index-Sequential Film 95

Figure 3.10 Group formations for limit indexing.

Group

Group

Size Keys in Group

Sequential

Index

G, Sl K„ K2, . . • , Ksl Ksl

g2 S2 Ksi + i. • • > K-sl -f s2 Ksl +s2

Gm IS
lvn — sm + I» • . . , Kn Kn

and so on can be grouped together and referred to by a single address. Certain op¬

erating systems permit such logical grouping to form what is referred to as a block

or a bucket. The index may then have one entry per block.

Consider a set of sorted keys <Kl5 K2, . . . , Kn>, with K] < K2 < . . .

< Kn, divided into m groups of sizes <S|, s2, . . . , sm> with the sorted order of

the keys being maintained within each group. Each group is identified by the key

with the largest value in that group and called the sequential index key. Figure 3.10

illustrates the keys in the groups, their sizes, and the index key. In an index-sequen¬

tial file the groups correspond to blocks.

Example 3.4 Consider a file with records having keys of 037, 039, 048, 052, 057, 065,

073, 081, 090, 103, 141, 157, 235, 241, 267, 299. We can create, for

instance, six groups as shown in the Figure. The addition of a record that

lies between 090 and 141, let us say with the key of 095, will be appended

in group 3.

Example of limit indexing.

Group

Group

Size Keys in Group

Sequential

Index

1 3 037, 039, 048 048

2 6 052,057,065,073,081,090 090

3 2 103, 141 141

4 1 157 157

5 2 235, 241 241

6 2 267, 299 299

Within a sequential index the sequential index keys are maintained in sorted order.

Let us assume an ascending order, as shown in Example 3.4. In the search for a record,

its key Kr is first compared with the sequential index keys. If Kr is greater than a sequen¬

tial index key, it is compared with the next sequential index key. The process is contin¬

ued until a sequential index key greater or equal to Kr is found.

96 Chapter 3 File Organization

If the group corresponding to the first index key greater than Kr is, let us say,

Gs, then the logical position of record corresponding to the key Kr is in group Gs.

This is because Kr is greater than the largest key in group GS_| but smaller than or

equal to the largest key in group Gs. The key Kr is then compared to the keys in the

group Gs to find a match.
This search procedure based on a set of ordered indexes, (the largest keys of

different groups of sorted keys) is called an index-sequential search. It is shown in

Algorithm 3.2.
In Algorithm 3.2 we assume that the index is available in memory and the

entries are INDEXKEY and ADDRESS. This first entry in the index gives us the

first sequential index key value and the location address of the associated block. We

compare the given search key value with that of successive index key value entries

until we get to the desired entry. This would be a block suitable for holding a record

with the search key value. LOCATION returns the address of the block to which the

record corresponding to SEARCHKEY belongs (logically).

In some systems, instead of the largest keys of the different groups being main¬

tained in the sequential index, the smallest keys are kept. This requires that the key

Kr be compared with the group keys until the group with the key Gj > Kr is located.

Then Kr may be contained in the preceding group, G;_].

Number of Comparisons

Assume that the groups are of the same size, i.e., s, — s2 = - . . = sm = s. Then

the number of records n = m*s where there are m groups. In every group, more

than one key value may exist; therefore, when searching for a record with a given

key value, we have to check this key value against those of the records in the group.

The number of comparisons associated with index-sequential search for different keys

is presented in Figure 3.11. Part a of the figure shows the index and the number of

Algorithm

3.2 Index-Sequential Search Algorithm

Input: Index table, and SEARCHKEY the key of record to be retrieved

Output: The address of block for the record with key equal to SEARCHKEY

{Assumption: The last index entry has a key value that cannot be exceeded}

get first index entry, <INDEXKEY, ADDRESS>

while INDEXKEY < SEARCHKEY do

get next index entry

LOCATION : = ADDRESS

{the record associated with the SEARCHKEY logically belongs in the block

with the address LOCATION, and this address can be used to lookup, insert,
delete, or modify the record.}

3.4 Index-Sequential Film 97

Figure 3.11 Index key comparisons.

Address Number of
Index of Block Comparisons

Ks A| 1

k2s a2 2

Kn Am m

(a)

Block at Record Number of

Address Key Comparisons

A, K,
K2

1 (2)

2 (3)

A2

Ks s (s+1)

Ks+i 1 (3)

Ks+2 2 (4)

Kn s (s + m)

(b)

comparisons required to sequentially search for a key in the index. Part b indicates

the block structure and the number of comparisons required for the sequential search

for a record with a given key. The total number of comparisons made in searching

for a key is the sum of the comparisons for the index and the block, given within

parentheses in Figure 3.11b.
For key K; the total number of comparisons is given by:

fi/sl + (i — 1) mod s + 1

and the average number of comparisons is given by

1 + (m + s)/2

Example 3.5 Assume a file of 10,000 records distributed over 100 blocks, i.e., every

block has 100 records. Also assume that every record is equally likely to be

accessed. In trying to locate a particular record, we first examine the index,

which is assumed to be within a single block. To locate the block containing

the required record, we have to examine each index entry. The number of

comparisons required are:

Search for # Comparisons

First entry 1

Second entry 2

Third entry 3

99th entry

100th entry

99

100

98 Chapter 3 File Organization

The total number of comparisons made is 100 * (101)/2 = 5050 and the

average number of comparisons per access is 50.5. By similar reasoning,

we know that the average number of comparisons required for the actual

record from the data block (it also contains 100 entries) is also 50.5.

Therefore, the average number of comparisons required is lO'l. This value

agrees with the value calculated using the expression 1 + (m + s)/2,

since in our example the block size, s, is 100 and the number of blocks,

m, is 100. ■

It is normal to organize a file with several logical records per track (we can even

consider a lower division of a track into a number of sectors and assign several

logical records per sector). If the records are held in key sequence, it is sufficient to

index only the highest record key within each track (or sector). The index entries,

then, consist of <track number, highest key in track> pairs. A record (with a given

search key) is located by reading the index into main memory and comparing its key

with the index entries to locate the track. The record is then searched for within the
track.

At the beginning of this chapter we abstracted a disk as a two dimensional array

with tracks and blocks (sectors). Instead of labeling all the tracks uniquely, we can

group them in sets. One such grouping is formed around cylinders. Let c be the

number of cylinders on which n records are organized in an indexed sequential or¬

ganization. Each cylinder contains m tracks for storing records and each track con¬

tains s records. Let us also assume that n = cms. Assuming that access to all records

is equally likely, the average number of comparisons is given by (c -I- m + s

+ 3)/2.

Example 3.6 Assume that a file occupies 100 cylinders of 20 tracks each. Each track

holds 20 records. Then the average number of comparisons to locate a given
record is (100 + 20 + 20 + 3)/2 = 71.5. ■

The above expressions are for average number of comparisons. They do not

indicate the number of disk accesses made in the retrieval of a record. Expressions
for disk accesses are given in Section 3.4.4.

3.4.3 Multilevel Indexing Schemes: Basic Technique

In a full indexing scheme, the address of every record is maintained in the index.

For a small file, this index would be small and can be processed very efficiently in

main memory. For a large file, the index’s size would pose problems. It is possible

to create a hierarchy of indexes with the lowest level index pointing to the records,

while the higher level indexes point to the indexes below them (Figure 3.12). The

higher level indices are small and can be moved to main memory, allowing the
search to be localized to one of the larger lower level indices.

3.4 Index-Sequential Film 99

Figure 3.12 Hierarchy of indexes.

Key

Key

Ill
►

Pointer
to next
level
index

200 121

450 122

780 123

1000 124

Key

121

Pointer
to next
level
index

60 131

99 132

150

200

131

Pointer
Key to

record

10 pll

29 pl2

50

60

Pointer
to next
level index

1000 Ill

2100 112

1100

2100

9999 Iln

Highest level
index

9999 I2m

Intermediate
level indexes

9999 plq

Lowest
level index

The lowest level index consists of the <key, address> pair for each record in

the file; this is costly in terms of space. Updates of records require changes to the

index file as well as the data file. Insertion of a record requires that its <key, ad-

dress> pair be inserted in the index at the correct point, while deletion of a record

requires that the <key, address> pair be removed from the index. Therefore, main¬

tenance of the index is also expensive. In the simplest case, updates of variable

length records require that changes be made to the address field of the record entry.

In a variation of this scheme, the address value in the lowest level index entry points

to a block of records and the key value represents the highest key value of records

in this block. Another variation of this scheme is described in the next section.

100 Chapter 3 File Organization

3.4.4 Structure of Index Sequential Files

An index-sequential file consists of the data plus one or more levels of indexes.

When inserting a record, we have to maintain the sequence of records ■and this may

necessitate shifting subsequent records. For a large file this is a costly and inefficient

process. Instead, the records that overflow their logical area are shifted into a desig¬

nated overflow area and a pointer is provided in the logical area or associated index

entry points to the overflow location. This is illustrated below. Record 615 is inserted

in the original logical block causing a record to be moved to an overflow block.

Multiple records belonging to the same logical area may be chained to maintain

logical sequencing. When records are forced into the overflow areas as a result of

insertion, the insertion process is simplified, but the search time is increased. Dele¬

tion of records from index-sequential files creates logical gaps; the records are not

physically removed but only flagged as having been deleted. If there were a number
of deletions, we may have a great amount of unused space.

An index-sequential file is therefore made up of the following components:

1. A primary data storage area. In certain systems this area may have unused

spaces embedded within it to permit addition of records. It may also include
records that have been marked as having been deleted.

2. Overflow area(s). This permits the addition of records to the files. A number of

schemes exist for the incorporation of records in these areas into the expected
logical sequence.

3. A hierarchy of indices. In a random enquiry or update, the physical location of
the desired record is obtained by accessing these indices.

The primary data area contains the records written by the users’ programs. The

records are written in data blocks in ascending key sequence. These data blocks are

in turn stored in ascending sequence in the primary data area. The data blocks are

sequenced by the highest key of the logical records contained in them.

When using a disk device to store the index-sequential files, the data is stored

on the cylinders, each of which is made up of a number of tracks. Some of these

tracks are reserved for a prime data area and others are used for an overflow area
associated with the prime data area on the cylinder.

A track index is written and maintained by the file system. Each cylinder of

the index-sequential file has its own track index. The track index contains an entry

for each prime data track in the cylinder as well as an entry to indicate if any records

have overflowed from the track. Each prime track may be considered as a logical
block.

Each track index entry is made up of the following items:

3.4 Index-Sequential Film 101

Figure 3.13

1. The address of the prime data track to which the entry refers.

2. .,The highest key of a record in the prime data track.

3. The highest key of a logical record in that data track, including records in the

overflow areas (i.e., it is the highest key of an overflow record, if there were
one or more, associated with that track).

4. The address of a record with the lowest key in the overflow area associated

with that track (the address of the first record in the overflow chain).

Items 1 and 2 make up the normal track index entry and items 3 and 4 make up the

overflow track index entry. If there were no overflow from a given track, items 2

and 3 would contain the same key value and item 4 would be set to a null value. If

more than one record were required to be stored in an overflow area, these records

will be chained so they can be reached from the first track overflow record. The

structure of these track index entries for the cylinder is shown in Figure 3.13.

The address of the prime track entry in the normal track index does not change,

nor does the highest key value of the logical block. The highest key value entry in

the prime data track and the address of the first overflow record changes when a new

record inserted in the prime data track causes an existing record to be bumped into

the overflow area. (This is illustrated in Figure 3.14b). The last digit in the pointer
refers to the record number on the track.

Typical cylinder organization.

Normal track index entry_ Overflow track index entry

Highest key value Address
on the prime date of the
track (changes as track
more records are (T)
inserted)

Highest key value Address
of this logical of the
block (changes only first
when the file is overflow
reorganized) record

Tq index Ti index Tn_2 index

Ti

Tn_i index T0 data • • •

Tj data • • •

•
•

Tj data • • •

•
•

Tn_j data • • •

P
r
i
m
e

d
a
t
a

Overflow
track for
cylinder

Track
index

On
track T0

102 Chapter 3 File Organization

Figure 3.14 Structure of an index-sequential file.

Master
index

Cylinder
index

555 00020

00000 •
•
•

591 01000

00030 •

797 00030

694 02000 797 09000

Normal

Track
index

Prime
data
area

Overflow
data
area

02000

611

02020

02100

data

Overflow Normal Overflow

610 02010 610

612 data

i—► 615 02020

Highest key
-of data in

prime area

614 data

(a)

624 02100

Highest key of
— record in the

same logical
area

615 data

Master
index

Cylinder
index

555 00020

00000 •
•
•

591 01000

00030 •

797 00030

694 02000 797 09000

Track
index

Prime
data
area

Overflow
data
area

Normal Overflow

610

611

02020

618

02100

02010

02000

610

data 612 data

Normal

data xxx data

p> 614 02020

Hig hest key
data in
me area pri

613 data

624

Overflow

624 02103

Highest key of
— record in the

same logical
area

614

data 615

(b)

data

data

103 3.4 Index-Sequential Film

The track index entries are used by the file system to determine the track address

of a given logical record. The cylinder’s overflow area is used to store records that

are forced off the prime data track when new records are inserted. The records in the

overflow area are unblocked and stored in the order of their insertions or placement

rather than, in key sequence. The logical sequence of records is maintained by pre¬

fixing a sequence link to each logical record. The access to records in an overflow
area is via these links and therefore inefficient.

A file with records in overflow areas and with deleted records needs reorgani¬

zation. (It has to be recreated.) Deleted records are not physically deleted, but

marked as having been deleted. The space and the contents are physically undis¬

turbed. Such marked records are retrieved by the file manager, and it is up to the

application program to ascertain their status. Normally, on subsequent insertions, a

marked record is not forced off the prime area to the overflow area. The only excep¬

tion is when a record having the highest key value in a cylinder is marked as deleted.

When such a record is forced off the prime data track due to subsequent insertions,

it is written in the overflow area. Additional independent overflow areas are used
when a cylinder overflow area becomes full.

The structure of an index-sequential file, including the index, prime data, and

overflow areas is shown in Figure 3.14. The address is given as the cylinder address

followed by the track address, both being two digits in this example. The final digit

represents a record number. The index area of the file contains a cylinder index

(shown in the figure as being stored in record 0 of cylinder 00, track 03) and may

contain a master index (shown on cylinder 00, track 00). It does not contain the track

index (which is stored on the cylinders themselves). Each cylinder in the prime data

area has an entry in the cylinder index. The entry contains the address of the track

index in that cylinder and the highest key stored on that cylinder. The cylinder index

is used by the file system to determine the cylinder on which a record might or should

be and the address of the track index for the cylinder.

An index-sequential file may be updated in sequential or random mode. In se¬

quential mode, the insertion of new records in their proper sequence (update type

U]) requires the creation of a new file, so it is performed only if a very large number

of new records are being added. Under certain file managers new records may be

added to the end of the file in sequential mode only if there is enough space in the

prime data areas, not the overflow areas. In random mode all types of updates can

be performed on an existing file.

Retrieval from an index-sequential file may be sequential or random. In sequen¬

tial mode, it may be possible to specify both a start and an end point. This is very

useful for processing grouped data. The records, including those in the overflow area,

are available in their logical sequence. All pointers between the overflow records in

a sequence are handled automatically by the FM to retain the logical sequence. In

random processing mode any arbitrary record may be accessed. Skip-sequential pro¬

cessing, wherein the records not needed for processing are skipped over, is also made

very easy and efficient. For low hit rates, whole tracks and cylinders may be skipped.

In a sequential file in which keys are stored separately from data, it is possible to

skip records but every key must be read.

Number of Disk Accesses

Let us now consider the number of disk accesses required when searching for a given

record. We again assume uniform distribution of records within blocks, tracks, and

104 Chapter 3 File Organization

cylinders. Let there be L levels of indexing and the size of the index at a level, for

instance j, be Ij blocks. Assume that each block is on a different track and access to

a block consequently requires one disk access. Then, at each level, as we have as¬

sumed uniform distribution, we expect on average that half the number of index

blocks will be accessed (in a sequential search). Therefore, the average total number

of index blocks accessed is:

]i
2 2

; = i

In addition, we need to access the block on which the actual record resides. If the

record is in a prime area, only one block has to be accessed; otherwise number O

(>0) overflow blocks are also accessed. As such, the total number of blocks accessed

on average is:

L

2
i = I

1 if data on prime area

0 if data not on prime area

3.4.5 vsam

The major disadvantage of the index-sequential organization is that as the file grows,

performance deteriorates rapidly because of overflows and consequently there arises

the need for periodic reorganization. Reorganization is an expensive process and the

file becomes unavailable during reorganization. The virtual storage access method

(VSAM) is IBM’s advanced version of the index-sequential organization that avoids

these disadvantages. The system is immune to the characteristics of the storage me-

Figure 3.15 Index and data blocks of a VSAM control interval.

04844,

1574.D4 241|D5

073JX>2

299iD6

144D3
Index
blocks

D
a
t
a

b
1
o
c
k
s

3.5 Direct File 105

dium, which could be considered as a pool of blocks. The VSAM files are made up

of two components, the index and data. However, unlike index-sequential organiza¬

tion, overflows are handled in a different manner. The VSAM index and data are

assigned to distinct blocks of virtual storage called a control interval. To allow for

growth, each time a data block overflows it is divided into two blocks and appropri¬
ate changes are made to the indexes to reflect this division.

Figure 3.15 shows the structure of a control interval of a VSAM file. The index

block and the data blocks are included in a control interval. We can consider the

control interval to serve the same purpose that the track does in the index-sequential

organization. Higher level indices also exist in VSAM; however, these are not shown

in Figure 3.15. The control interval contains a number of empty index and data

blocks, which are used when a data block overflows. The index entry I, indicates

that the highest key value of a record in data block D2 is 73; the pointer to data block

D2 is indicated by j D2. The method of handling overflow is illustrated in Example
3.7.

Example 3.7 Suppose the records to be added have the key values of 55 and 60. These

records will logically be added into data block D2. However, since D2 has

a block size of 4, only one record can be added without an overflow. The

solution used in VSAM is to split the logical block D2 into two blocks, let

us say D2 and D7. The records are inserted in the correct logical sequence.

Furthermore, the index entry It is divided into two index entries as shown
below:

d2

d7

057 060 073

052 055

h 055iD7 073f D2

In VSAM, a number of control intervals are grouped together into a control

area. An index exists for each control area. A control interval can be viewed as a

track and a control area as a cylinder of the index-sequential organization.

Each control interval also contains control information that can be used in con¬

junction with routines provided in VSAM to allow retrieval of records, using either

the key value or the relative position of a record. The relative position can either be

the relative position in bytes from the start of the file or, in the case of fixed-length

records, the relative number of the record.

3.5 Direct File

In the index-sequential file organization considered in the previous sections, the map¬

ping from the search-key value to the storage location is via index entries. In direct

106 Chapter 3 File Organization

Figure 3.16 Mapping from a key value to an address value.

Key value Hash function -► Address

file organizations, the key value is mapped directly to the storage location. The usual

method of direct mapping is by performing some arithmetic manipulation of the key

value. This process is called hashing.

Let us consider a hash function h that maps the key value k to the value h{k).

The value h(k) is used as an address and for our application we require that this value

be in some range. If our address area for the records lies between S, and S2, the

requirement for the hash function /z(k) is that for all values of k it should generate

values between S| and S2 (see Figure 3.16).

It is obvious that a hash function that maps many different key values to a single

address or one that does not map the key values uniformly is a bad hash function. A

collision is said to occur when two distinct key values are mapped to the same

storage location. Collision is handled in a number of ways. The colliding records

may be assigned to the next available space, or they may be assigned to an overflow

area. We can immediately see that with hashing schemes there are no indexes to

traverse. With well-designed hashing functions where collisions are few, this is a

great advantage.

Another problem that we have to resolve is to decide what address is represented

by /z(k). Let the addresses generated by the hash function be addresses of buckets in

which the <key, address> pair values of records are stored. Figure 3.17 shows the

buckets containing the <key, address> pairs that allow a reorganization of the actual

data file and actual record address without affecting the hash functions. A limited

number of collisions could be handled automatically by the use of a bucket of suffi¬

cient capacity. Obviously the space required for the buckets will be, in general, much

smaller than the actual data file. Consequently, its reorganization will not be that

expensive. Once the bucket address is generated from the key by the hash function,

a search in the bucket is also required to locate the address of the required record.
However, since the bucket size is small, this overhead is small.

The use of the bucket reduces the problem associated with collisions. In spite

of this, a bucket may become full and the resulting overflow could be handled by

providing overflow buckets and using a pointer from the normal bucket to an entry

in the overflow bucket. All such overflow entries are linked. Multiple overflow from

the same bucket results in a long list and slows down the retrieval of these records.

In an alternate scheme, the address generated by the hash function is a bucket address

and the bucket is used to store the records directly instead of using a pointer to the
block containing the record.

Let s represent the value:

s = upper bucket address value - lower bucket address value + 1

Here, s gives the number of buckets. Assume that we have some mechanism to

convert key values to numeric ones. Then a simple hashing function is:

h(k) = k mod s

where k is the numeric representation of the key and h(k) produces a bucket address.

A moment’s thought tells us that this method would perform well in some cases and

3.5 Direct File 107

Figure 3.17 Bucket and block organization for hashing.

Bucket)

key address

496

610

920

176

Buckets

177

Bucketn

209

Blocks of records

Overflow
buckets

331

496..

177.

176.

610.

362.

331

920...

209

362 X

not in others. It has been shown, however, that the choice of a prime number for s

is usually satisfactory. A combination of multiplicative and divisive methods can be

used to advantage in many practical situations.
There are innumerable ways of converting a key to a numeric value. Most keys

are numeric, others may be either alphabetic or alphanumeric. In the latter two cases,

we can use the bit representation of the alphabet to generate the numeric equivalent

key. A number of simple hashing methods are given below. Many hashing functions

can be devised from these and other ways.

1. Use the low order part of the key. For keys that are consecutive integers with

few gaps, this method can be used to map the keys to the available range.

End folding. For long keys, we identify start, middle, and end regions, such

that the sum of the lengths of the start and end regions equals the length of the
2.

108 Chapter 3 File Organization

middle region. The start and end digits are concatenated and the concatenated

string of digits is added to the middle region digits. This new number, mod s,

where s is the upper limit of the hash function, gives the bucket address:

-1-1

123456 123456789012 654321

For the above key (converted to integer value if required) the end folding gives

the two values to be added as: 123456654321 and 123456789012.

3. Square all or part of the key and take a part from the result. The whole or

some defined part of the key is squared and a number of digits are selected

from the square as being part of the hash result. A variation is the

multiplicative scheme where one part of the key is multiplied by the remaining

part and a number of digits are selected from the result.

4. Division. As stated in the beginning of this section, the key can be divided by

a number, usually a prime, and the remainder is taken as the bucket address. A

simple check with, for instance, a divisor of 100 tells us that the last two digits

of any key will remain unchanged. In applications where keys may be in some

multiples, this would produce a poor result. Therefore, division by a prime

number is recommended. For many applications, division by odd numbers that

have no divisors less than about 19 gives satisfactory results.

We can conclude from the above discussion that a number of possible methods

for generating a hash function exist. In general it has been found that hash functions

using division or multiplication perform quite well under most conditions.

Let us now consider the retrieve, insert, and delete operations using hashing to

locate our records. Let K be the set of keys and A be the set of bucket addresses so

that the hashing function h is a function from K to A. The hash value h(k) is the

address of the bucket that contains the <key, address> pair for the record with key

k. Here we assume the size of the bucket is chosen such that overflow would not

occur. A special dummy record is always assumed to be the last record in each

bucket and it is used in the search to indicate a failure. The bucket with address h{k)

is examined for the <k, address> pair. If there is no match, the record with key k

does not exist. If the operation was either a simple retrieval or a deletion, this results

in a notfound message (or error condition). For insertions, the <k, address> pair is

inserted in this bucket. The record is, of course, inserted in the file at the location

given by the address. If the <k, address> pair exists, then for an insertion this would

be an attempt to insert a duplicate record (which may or may not be permitted in the

application). In the case of a deletion, we would delete the actual record as well as

the bucket entry. Algorithm 3.3 specifies the sequence of steps.

As mentioned earlier, we require that the hash function uniformly distribute the

keys in the buckets. This seems to be a reasonable approach until we examine certain

details more closely. Although we may know the range of key values, do we also

know their distribution characteristics? Note that not all key values are likely to

occur. Different distributions require different hash functions to satisfy the uniformity

requirement. The hash value is also required to lie within the range of addresses for

the buckets, i.e., this range is prespecified. These considerations preclude any

changes to the hash function once it has been implemented. Over a volatile file we

can choose our range of addresses, A, to be large, but we waste valuable space. If

3.5 Direct File 109

Algorithm for Search, Delete, Insert Using Hashing

{To find, delete, or insert a record with key labeled SEARCHKEY; the

operation types (OPTYPE) are FIND, DELETE or INSERT. If a record has to

be inserted, we assume that the address of the block (INSERTADDR) in

which the record will be inserted is specified by the file manager.}

i : = h (SEARCHKEY)

{The hash function h will convert nonnumeric keys too. The hash value is
numeric and lies in the bucket address range.}

read bucket with address i into memory.

{Bucket entries are <key, address> pairs. The last key in each bucket is a

dummy and cannot be exceeded. It is used for detecting the last entry.}

get first <key,address> pair

while key =£ SEARCHKEY and key i= DUMMY do

get next <key,address> pair

found : = key = SEARCHKEY {found is Boolean}
case (OPTYPE) of

'INSERT' : if found then error ('Record Already Exists')

else

begin {insert record}

insert record in data block at INSERTADDR

insert <SEARCHKEY, INSERTADDR> pair in bucket

end{ insert}

'FIND': if not found then error ('Record Does Not Exist')

else

begin

a : = address

get data from block a

search for record within block

<?n<r/{find}

'DELETE' : if not found then error ('Record Does Not Exist')

else

begin

a : = address

delete <SEARCHKEY,address> entry from bucket

get data from block a

delete the appropriate record from block

end {delete}

end{case)

110 Chapter 3 File Organization

A is too small, the buckets will be large, containing a larger proportion of key val¬

ues, and the performance will degrade. File reorganization is an expensive proposi¬

tion. What we want is to be able to modify the hash function as and when required.

There are a number of techniques to do this, referred to as dynamic-hashing. We

look at a simple technique called extendable hashing.

3.5.1 Extendable Hashing

Extendable hashing handles file growth and shrinkage by splitting or coalescing

buckets, i.e., the number of buckets or the bucket address range changes with the

file. Since the hash function, once implemented, can only generate values in some

predefined range, the extendable hashing scheme requires that the hash function gen¬

erates values over a very large range. Instead of using these values as addresses to

buckets, some variable number of bits from these values are used as a key for entries

in a bucket address table (Figure 3.18). In other words, another level of indirection

is introduced. The entries in the bucket address table (BAT) are <length (of key),

key, bucket address> triplets.

Let the hash function generate an a bit long value, b]b2 . . . ba. A number of

high order bits are used as a pseudosearch key into the bucket address table. The

number of bits to be used for each match is determined from the entries in the BAT

table. Each key in the BAT table is of different length and the length is specified by

the corresponding entry in the length field. For a given entry in the BAT table, if the

value of the length field is pip < a), the p high order bit sequence b,b2 . . . bp of

the hash function generated value becomes the search key and is matched against the

key entry in the BAT table. A match gives the bucket address where the required

search key can be found.

Insertion

When a record is inserted, we follow the same procedure as in the simple hashing

scheme. The only difference is when a bucket is full. We refer to it as the original

bucket (with bucket address given by original-address). A new bucket is created; let

us call it the new bucket (with bucket address given by new_address). Let us assume

that the key was p bits long. Now since we have two buckets where there was one

before, the length value has to be increased by one. Thus, the old key b[b2 - . . bp

is replaced by the new keys b,b2 . . . bpbp+1 with the bit bp+1 being either 0 or 1.

The key for the old bucket becomes b,b2 . . . bp0 and for the new bucket bib2 . . .

b^l. We divide the entries from the original bucket into the original and new buck¬

ets. In this manner, all keys with their high order bits equal to b]b2 . . . bp0 are

placed in the original bucket and all keys with their high order bits equal to b,b2

. . . b^l are placed in the new bucket. We modify the BAT entry <p, b,b2 . . . bp,

original-address> for original bucket to become <p -I- 1, bib2 . . . bp0, original_

Figure 3.18 Using extendable hashing.

Key
value

Hash a bit Search Bucket] Search
function value BAT *” address Bucket;

Record
address

3.5 Direct File 111

address and insert a new entry <p + 1, b|b2 . . . bpl, new~address> in the bucket
address table.

An example of insertion is illustrated in Example 3.8. Note that in this version

of extendable hashing we allow multiple pointers to the same bucket, thus economiz¬
ing on the number of buckets.

Example 3.8 Consider a numerical key and a division-based hash function. Suppose the

hash function consists of dividing the key value by 31 and using high order

bits of the remainder as a pseudosearch key in the BAT. Figure A gives the

successive steps in generating the entries in the BAT and the buckets as

records with following key values are inserted, in the given order:

176, 227, 371, 741, 629, 913, 345, 547, 806

After inserting 176, 227, 371, 741 the bucket b, becomes full (see part i)

causing the bucket to split when 629 is inserted. This requires the entries in

the bucket bl to be redistributed and the address value in the BAT to be

modified as shown in part ii. Insertion of 806 causes the bucket b2 and an
entry in the BAT to split as shown in part iii. ■

Figure A Structure and usage of BAT in extendable hashing.

Bucket
Length Key address

1 1 bl

1 0 bi

Bucket address
table

(i)

Bucket
Length Key address

1 1 bi

1 0 b2

Bucket address
table

(ii)

Bucket
Length Key address

1 1 bi

2 00 b2

2 00 b3

Bucket address
table

Bucket b

Key
Record
address

176 Pl76

227 P227

371 P371

741 P741

Bucket bj

Record
Key address

176 Pl76

371 P371

741 P741

547 P547

Bucket bj

Record
Key address

176 Pl76

371 P371

741 P741

547 P547

Bucket b2

Record
Key address

227 P227

629 P629

913 P913

345 P345

Bucket b2

Record
Key address

345 P345

806 P806

X

X

Bucket bj

Record
Key address

227 P227

629 P629

913 P913

X

(iii)

112 Chapter 3 File Organization

Deletion

When a bucket becomes empty after a deletion, it can be deleted together with its

corresponding entry from the bucket address table. An alternate scheme,-wherein two

paired buckets are merged into a single bucket when the amount of entries in these

buckets falls below some small number, can also be used. However, in the current

discussion we only delete a bucket when it becomes empty. Let the entry in the

bucket address table be:

<g, b,b2 . • • bg_,0, Az>

Then we also modify the entry <g, b]b2 . . . bg_ 11, Ay> in the table to become:

<'B 1, bib2 . . . bg_i, Ay>

If no such entry exists in the BAT, the first entry is simply deleted. An example

of deletion is illustrated in Example 3.9. Note that in this version of extendable

hashing we avoid multiple pointers to the same bucket.

Example 3.9 Consider a numerical key of seven decimal digits with a multiplicative hash

function that generates a product of the four high order digits by the three

lower order digits. The key, the hash function generated values, and the

corresponding binary equivalent of these values are given below:

Key H(key)

1544542 836848

1329632 839928

1022821 839062

0892941 839372

1458576 839808

H(key) in binary

iioo iioo oioo mi oooo;
noo noi oooo mi iooo
1100 1100 1101 1001 0110;

1100 1100 1110 1100 1100;

1100 1101 0000 1000 oooo

Consider a bucket capacity of 4 and assume that the records are inserted in

the order shown above with a minimum key length of 7 bits. Thus, after

the first four records are inserted, an entry in the BAT and the

corresponding bucket are as shown in part i of the Figure B.

When the record 145876 is to be inserted its key gives the hash value,

which for a length of 7 high order bits matches an entry in the BAT. This

entry, however, points to bucket bj which is already full. This means that

the bucket is split and the key length is increased to 8 bits. The entries in

b, are redistributed between bj and a new bucket, bj as shown in part ii of

Figure B.

Subsequent deletion of the records with keys 1544542, 0892941, and

1022821 causes bucket bj to become empty. This leads to the deletion of

the BAT entry 11001100, compression of the entry 11001101 to 1100110,

and a change in the length field to 7, as shown in part iii of Figure B.

3.6 Secondary Key Retrieval 113

Figure B

Example of
extendable
hashing.

. 7 1100110 bi

Bucket address table

(i)

8 11001100 bi

8 11001101 bj

Bucket address table

(ii)

7 1100110 bj

Bucket address table

Bucket

1544542 Pi

1329632 P2

1022821 P3

0892941 P4

Bucket

1544542 Pi

1022821 P3

0892941 P4

1329632 P2

1458576 P5

Bucket

1329632 P2

1458576 P5

(ill)

3.6 Secondary Key Retrieval

In the previous sections we have considered the retrieval and update of data based

on the primary key. In the following sections we consider file organizations that

facilitate secondary key retrieval. Secondary key retrieval is characterized by the

multiplicity of records satisfying a given key value. As such, there is no longer a

114 Chapter 3 File Organization

one-to-one correspondence between key values and records. File organizations for

secondary key retrieval are used in conjunction with methods for primary key re¬

trieval.

Query and Update Types

Queries are in general formulated to retrieve records based on one or multiple key

values. In the latter case, the retrieval expression contains key values punctuated with

Boolean operators.

Query Types:

1. Find all employees working in the computer science department.

2. Find all employees working in the computer science department who are

analysts.

3. Find all students who are taking the files and database course, but not the

artificial intelligence course.

Update types:

1. Add records in proper sequence.

2. Delete records satisfying some condition.

3. Modify attribute values of records, satisfying some condition.

The above queries and updates can be simply but inefficiently handled by scan¬

ning every record in the file. A number of file organizations permit faster and more

efficient retrieval. The choice between them, just as in the case of primary key re¬

trieval, is solely dependent on the application. Faster access to the records is pro¬

vided by the use of indexes and/or the linking together in lists or some other suitable

structure of logically related records. It is usual to relate records based on <attribute,

value> pairs.

The secondary key structures support access to all records that satisfy some

<attribute, value> pair. Logically, as shown in Figure 3.19a, the secondary key

access file is made up of a set of records containing (attribute, value, record-list).

Here record-list is a list of records that contain the <attribute, value> pair. For

example, in the following secondary key access file entry, the records Ry , . . . ,

RiJn contain the value Vy for the attribute A,\

{<Ai, vij>,(Rij|, . . . , Rjjn)}

The R,jk’s are used to represent the associated records and may be either the primary

key values, some unique system assigned identifiers, or unique physical addresses.

In general, the record-list (Ry,, . . . , Rijn) may be maintained as a number of
separate stored lists, for instance, hy, such that we have

<'Aj, Itij> hjj> (Pjj|, . . . , P

where n^ is the number of records with value Vy for the attribute A, (i.e., n^ is the

number of records in the record-list Ry,, . . . , RiJn) and Pijk is the pointer to

the kth stored list, for all k = 1, . . . , hy. The average length of each stored list
is ny/hy.

Physically, as shown in Figure 3.19b, the names of the attributes may be sepa¬

rated from the values and record-list and kept in a directory. Each entry in the

3.6 Secondary Key Retrieval 115

Figure 3.19 Structure of the directory and index.

INDEX for A,
Attribute Value Record-list

Aj vn R]» R3. • •
A) v12 R2. R-5> • •

INDEX for A2

A2 v2, R2, R3, . . .

A2 v22 R5, R6, . . .

(a) Logical structure

DIRECTORY INDEX for A,

Pointer

Attribute to Index

A, -►

Attribute Number of Pointers to

Value Records Lists Stored List

V|| nn h„ P"|- • - P'S,

V12 nl2 h|2 P'V • • P>v

VU nu h,j p‘Ji • • • P'Jhjj

INDEX FOR A2

-► • ■ •

(b) Physical structure

directory is associated with a given attribute and points to a structure containing the

set of associated (value, record_list) pairs. For the moment, we can think of the

structure containing the (value, record-list) pairs as a sequential file, referring to it

as the value-access file or as the attribute index. There are two common methods of

organizing the value-access file: the inverted index method and the multilist. We

discuss these organizations in the following sections.

3.6.1 Inverted Index Files

The inverted index file (or simply the inverted file) contains the list of all records

satisfying the particular <attribute, value> pair in the index, wherein hy (the number

of separate stored lists) is equal to n4i (the number of records with the given attribute

value) and each points to a list of records of length one (Pjkm is in effect Ry, a

pointer to the record instead of to a record list). In other words, a pointer for every

record with the given value Vy for the attribute A, is kept in the index. This pointer

116 Chapter 3 File Organization

could be in the form of an address, the primary key value, or a unique record

number.
Query processing does not require access to the primary data areas until some

of the records satisfying the query need to be furnished. For Boolean queries, the

retrieved lists of record pointers may be manipulated to minimize the number of

primary data area accesses. Also, the user can be made aware of the number of

records satisfying a query before the data records are accessed. This gives us an

opportunity to modify the query if our expectation of the number is different.

Example 3.10 Consider an automobile dealership that records the interior and exterior color

and engine size availability of the models it sells. The inverted list for each

value of the attribute is given in Figure C. Here we use the model name to

identify the corresponding automobile model record.

Figure C Inverted index for Example 3.10.

DIRECTORY .-►INDEX for Interior-Color

Attribute Record-list

brown Cutlass, Pontiac6000

cream Audi4000, Audi5000,

Cutlass, Jaguar, Malibu

gray Audi4000, Audi5000,

Malibu, Pontiac6000

Interior-Color

Exterior-Color

Engine-Size

INDEX for EngineSize ▼

Attribute Record-list

4 Audi4000

5 Audi5000

6 Cutlass,

Pontiac6000

8 Malibu

12 Jaguar

INDEX for Exterior-Color

Attribute Record-list

black Jaguar

maroon Audi4000, Malibu,

Pontiac6000

metallic Audi5000,

gray Cutlass, Malibu

Complete inversion requires that every attribute of a record be treated as a key

and the record addresses associated with every attribute value be stored in inverted

lists. Partially inverted files store record addresses associated with all values of only
certain attributes.

Logically, the inverted index structure can be visualized as tabular with a vari¬

able number of entries in each row. This variable number of entries makes the index

difficult to maintain. Inverted files thus have a built-in advantage when the query

volume is much greater than the update volume or when the updates can be batched.

Inverted organizations are used mostly in document/reference retrieval systems and
less frequently in general purpose database management systems.

3.6 Secondary Key Retrieval 117

Query processing involves searching the directory for the attribute entry and

then through the associated value access file to the associated attribute value en¬

tries. For Boolean queries, this results in the retrieval of a number of reeorcLlists.

For conjunctive clauses, an intersection, and for disjunctive clauses a union of the
record_lists is made.

Example 3.11 Return to the automobile dealership example above. A customer requires a

car with metallic gray exterior and gray interior. This query can be ex¬
pressed as:

Find car models where Interior-Color = 'gray' and

Exterior-Color — 'metallic gray'.

We first search the directory (see Figure C) to locate the attribute entry for In¬

terior ^.Colors, and then search the Interior-Color index for the attribute

value gray. We obtain the list <Audi4000, Audi5000, Malibu, Pontiac600>

of models that come with gray interior trim. We repeat the search process

for the Exterior_Color attribute, obtaining the list of models with metallic

gray exteriors: <Audi5000, Cutlass, Malibu>. An intersection of the two

lists gives <Audi5000, Malibu> as the list of models that satisfy the
query. ■

Insertion of a record requires that its identifiers be inserted in the record lists,

associated with the values of its attributes. Deletion of a record entails the removal

of the record identifier entry from every record list in which its entry exists. Modi¬

fying the attribute value of a record necessitates changes to the affected index.

Clearly, index maintenance is a computationally expensive process.

Example 3.12 The dealership has been informed that the Pontiac6000 will from now on be

available with only five cylinders instead of six. The update is performed by

searching the directory for the index for the attribute Engine-Size. In the En-

gineSize index, the entry corresponding to the attribute value six cylinders

is retrieved and Pontiac6000 is deleted from the recorcLlist. The entry for

five cylinder models is then retrieved and Pontiac6000 is inserted into the record

list. The old and updated indexes for the attribute Engine-Size are shown in

Figure D.

Figure D

Update of
inverted index.

Old

Engine-Size Index

Attribute Record_list

4 Audi4000

5 Audi5000

6 Cutlass, Pontiac6000

8 Malibu

12 Jaguar

New

Engine-Size Index

Attribute RecorcLlist

4 Audi4000

5 Audi5000, Pontiac6000

6 Cutlass

8 Malibu

12 Jaguar

118 Chapter 3 File Organization

Figure 3.20 A simple implementation of an inverted index.

DIRECTORY

A|

A2

INDEX for A,

(attribute

value)

>

v

V||

V |2

V|3

>

-►

■>

Sequential

file

A simple implementation of an inverted list to maintain the record_list for each

value for a given attribute as a sequential file is shown in Figure 3.20. The index

contains a <value, pointer> pair, where the pointer points to the starting position of

the associated record_list in the sequential file.

3.6.2 Multilist Files

In a multilist file there is only one stored list for every <attribute, value> pair.

Therefore, the index of a multilist file contains only the single address Pjj for the

<attribute,value> pair <Al, Vy>; hjj = 1. There is only one stored list of length n^.

The records in the stored list are linked together in the form of a list. Thus, the

record list of a multilist file is implemented as a list of records. One exists for every

<attribute, value> pair (as the name suggests), with each stored record containing a

pointer indicating the succeeding member of every list to which it belongs. A pointer

to the first member of every list is maintained in the index. The length of each list

can also be maintained in the index (this is illustrated in Figure 3.22a).

Figure 3.21 gives, in pseudo-Pascal, the definition of a record, all of whose

attributes participate in multilists. The pointer field associated with each attribute can

Figure 3.21 Pseudo-Pascal definition of a stored record in a multilist file.

attribute-rec-type-i — record

value : attribute_type_i;

next : pointer {pointer to next record}

end;

stored-record = record

attribute_1 : attribute-rec-type- 1;

attribute^ : array[l..m] of attribute-rec-type-i;

attribute^n : attribute-rec-type-n;
end;

3.6 Secondary Key Retrieval 119

Figure 3.22 Multilist file.

DIRECTORY

Interior_Color

Exterior_Color

Engine_Size

INDEX for Interior_Color

brown 2 Cutlass

cream 5 Audi4000

gray 4 Audi4000

INDEX for Engine_Size -► INDEX for Exterior Colors

4 1 Audi4000

5 1 Audi5000

6 2 Cutlass

8 1 Malibu

12 1 Jaguar

black 1 Jaguar

maroon 3 Audi4000

metallic
gray

3 Audi5000

(a)

Pointers from Index for
Interior Colors Exterior Colors Engine Size

brown cream gray black maroon metallic gray 4 5 6 8 12

(b)

store the pointer to the next record with the same value. If an attribute has multiple

values (e.g., the same model car in the automobile dealership example comes in

many interior and exterior colors and engine sizes), the attribute may be stored as an

array of size m, as indicated for the attribute_/' in Figure 3.21.
A simple method of creating multilist files is to insert new records at the front

of the list. Searching for a specific record with a given value for an attribute requires

120 Chapter 3 File Organization

traversal through that list. On average half the list has to be scanned. The advantage

of such a scheme is that maintenance is simple. The list can also be maintained in a

particular order, increasing the insertion costs but reducing the search costs. If a

multilist index is created for every attribute, then every record will be part of a

multitude of lists. It is not always necessary, however, to retrieve information based

on every attribute value; lists need only be created for a few of the attributes.

For the automobile dealership example, the multilist file for interior and exterior

colors and engine sizes is shown in Figure 3.22. The directory and the index entries

are given in part a and the actual records showing the multilists are shown in part b.

As before, we use the model as symbolic pointers. Note that within the record for

Cutlass corresponding to the attribute value for Interior-Color = brown, there is a

pointer to the record for Pontiac6000. Similarly, for the value cream there is a pointer

to the record for Jaguar.

Search in Multilist Files

For conjunctive queries (e.g., attribute, = value, A attribute2 = value2 A . . .),
a search over the shortest list is made, every record accessed being examined to see

if it satisfies the conjuncts. Those records satisfying all the conjuncts are included in

the response. We illustrate this in Example 3.13a.

For disjunctive queries (e.g., attribute, = value, V attribute2 = value2 V
. . .), all of the lists associated with the attributes in the condition have to be trav¬

ersed. If we are not concerned with duplicate record retrieval, then all records are

accessed, some of them possibly more than once.

Efficiency considerations demand that a record that has already been accessed

should not be accessed again. This may suggest that a list of accessed records be

maintained, possibly in a DO_NoT_Access_a Gain (DONTAG) list. This DONTAG

list could become very large. Actually, we need only maintain a DONTAG list of

those records that would be accessed again, because they are also members of the

other lists to be traversed in response to the query. Having retrieved a record, it is

easy to check if the record also satisfies any of the other conjuncts in the query. If

so, then for every conjunct it satisfies, it is added to the DONTAG list. A moment

of thought should tell us that just adding the record address to the DONTAG list is
not sufficient. Consider the query

Get records where A V B V C

where A, B and C are some simple clauses of the form attribute = constant. Assume

that we have already retrieved all the records satisfying the clause A. We have also

created a DONTAG list. Next we traverse the list of records satisfying B and the

next record, R,, to be retrieved is in the DONTAG list. Having accessed R, before,

we would not need to do so again if and only if we knew the next member in B’s

list following R,. Therefore in the DONTAG list we have to maintain the following
information for each attribute appearing in the query:

<accessed-record, attribute, value, next-record-in-list>

Let us satisfy ourselves as to why we need the attribute and value information.

Consider the above query. When a record has satisfied all the terms A, B, and C,

then it would be entered onto the DONTAG list. The address of the next record for

3.6 Secondary Key Retrieval 121

the lists, corresponding to B as well as C, will be added to the DONTAG list. Now,

when processing for B, which of the records in the DONTAG list is the next record

for B and which is for C? This justifies the inclusion of the attribute. Consider the

situation where a record can possess multiple values for the same attribute, and we

have the query: Get records where A| = v, V A| = v2. We can see that the value

also needs to be stored in such situations. We illustrate the use of the DONTAG list
in Example 3.13b.

Example 3.13 (a) Consider the conjunctive query: Find cars with Interior-Color =

cream A Exterior-Color = metallic gray.

For this conjunctive query, we consult the index entries for Interior-Color

- cream and Exterior-Color = metallic gray and note that the first entry

is of length 5, whereas the second one is of length 3. Therefore, we use the

second list to retrieve the records for Audi5000, Cutlass, and Malibu to find

that only two of these satisfy both the conjuncts.

(b) Consider the disjunctive query: Find cars with Interior-Color — cream

V Interior-Color = gray.

We process this query by using the Interior-Color index for the color cream

and retrieve the first record for Audi4000. We examine the record and find

that it also comes with gray Interior-Color. The next record in this list is

Audi5000. We enter the following in the DONTAG list: <Audi4000, Interior

Color, gray, Audi5000>. We retrieve the next record in the Interior-Color

— cream list, namely Audi5000, and find that it also comes with gray Interior

Color. The next record for the list for Interior-Color = gray is Malibu.

We enter <Audi5000, Interior_Color, gray, Malibu> in the DONTAG list.

We next process the records for Cutlass and, as it does not come in the Interior

Color gray, we do not make any entry in the DONTAG list. The record for

Cutlass does not satisfy the second query predicate; consequently we will

not be reaccessing it. We process Jaguar and again make no entry in the

DONTAG list. Finally we get the last record in the Interior-Color = cream

list, namely Malibu, and find that it also comes with gray Interior-Color.

The next record in the list for Interior-Color = gray is Pontiac6000 so we

make the following entry in the DONTAG list: <Malibu, Interior-Color,

gray, Pontiac6000>. Since Malibu is the last entry in the list for Interior-

Color = cream, we have retrieved all records satisfying the first term in the

query.

Contents of DONTAG List After Processing

First Term of the Disjunctive Query

of Example 3.14b

<Audi4000, Interior-Color, gray, Audi5000>

<Audi5000, Interior-Color, gray, Malibu>

<Malibu, Interior-Color, gray, Pontiac6000>

Now we start the list for the second query predicate. We consult the

directory for Interior-Color = gray and find that the first record in the list

is Audi4000. Before we retrieve this record, we consult the DONTAG list

122 Chapter 3 File Organization

and discover that we already retrieved the record for Audi4000. We do not

retrieve that record and find from the entry for Audi4000 that the next record

in the list for Interior-Color — gray is Audi5000. Before actually retrieving

this record we consult the DONTAG list again and discover, that the re¬

cord for Audi5000 has been processed and the next record in the list for Inte¬

rior-Color = gray is Malibu. However, since there is an entry for Malibu

in the DONTAG list, it was already retrieved. From this entry for Malibu

in the DONTAG list we find the next record in the list for Interior-Color

= gray to be Pontiac6000. There being no entry for Pontiac6000 in the

DONTAG list, we retrieve and process it. Since there are no more records

in the list for Interior-Color = gray, we have accessed all records. In this

way we ensure that each record satisfying more than one term in the disjunct

will be retrieved only once. ■

Maintenance of Multilist Files

The deletion of records entails the removal of the record from the various lists. In

some implementations of the multilist where the record is not physically removed but

only flagged to indicate its deletion, no change is involved. While the record is still

physically part of the lists, it is not so logically. If a record is both deleted and

physically removed, all the lists of which the record forms a part have to be altered

as well. In any case, the length of each of the lists in which the record was involved

is decremented.
A record must first be located before a change can be made to its data values.

If the value to be changed belongs to a secondary key field, we would have to alter

the relevant list. This entails that the list be traversed with the old value, the record

removed from the list, the value changed, and the record added to the list for the

new value. If data values in a number of fields are changed, this may require the

traversal and update of many lists. The process is simpler if records are double-

chained with pointers to both successor and predecessor records.

The performance of a multilist file is satisfactory when the individual lists are

short. Regarding conjunctive queries, if the length of the lists are included in the

index, the shortest list is used for record retrieval. However, the number of records

actually satisfying all terms of the query may be a very small fraction of those re¬

trieved. The use of the DONTAG list avoids reaccessing the same records in the case

of disjunctive queries. When the lists become lengthy, it is desirable to break each

list up into a number of sublists as in the case of the cellular lists discussed in the

next section.

3.6.3 Cellular Lists

Lists in a multilist file can become lengthy. The fact that the stored records may

be distributed among many physical (disk) storage units, or within the same storage

unit in some manageable cluster of cylinders (the cluster may be a single cylinder),

or some other manageable storage area, could be used to advantage by partitioning

3.6 Secondary Key Retrieval 123

Figure 3.23 Cellular list.

-Cylinder (cell)

logical list (ell, cl2,...
c21,..., c2n,... }

View of cell
(all pointers are local to cell i)

the lists along these boundaries (or cells). Thus, in a cellular list organization the

lists are limited to be within a physical area of storage, referred to as a cell. Figure

3.23 is an example of a cellular list. The lists are limited to a single cylinder of a

movable-head-disk-type storage device. The number of stored lists, hy, for a given

<attribute, value> pair <Ai? Vy>, may be more than 1, 1 < hy < ny.
The number of stored lists still does not approach the inverted file case, except

where there is only a single record in every cell. However, there are more stored

lists than in the multilist case. The processing complexity lies between the inverted

and multilist cases. Such an organization is particularly useful if the cell size is

chosen so that the lists may be traversed in internal memory. In the case of paged

systems, this may equal the page size. In multiprocessor systems, different proces¬

sors may traverse lists within different cells in parallel to improve response times.
Let us reconsider the index structure of Figure 3.19 to explain the three file

structures examined so far. In an inverted index the number of groups chosen is equal

to the number of records, i.e., hy = ny. Each group is of length one and each pointer

points to a single record. In a multilist file, hy = 1 and only one list of length ny

exists for value Vy of attribute A;. With a cellular multilist, there are hy lists for value

Vjj of attribute A*, each list being limited to a convenient size to maximize the re¬

sponse time. The size of the list may be determined by the characteristics of the

physical storage device. In the case of a disk-type device, the list may be limited to

a single cylinder.

3.6.4 Ring Files

The last records of the lists in a multilist file points to a null record. In ring files the

last record entry in each list points back to the index entry. Therefore, from any

point within the list a forward traversal of the Jinks would bring us to the index

entry. The index entries contain the value for the attribute, making it unnecessary to

store the attribute-value in the physical records. This makes for a smaller record.

Figure 3.24 shows a number of rings for the car dealership data, shown in Figure C

of example 3.10.
In DBMSs using the network data model, a set is implemented as a ring by

linking the member record occurrences in a ring that starts at the owner record oc-

124 Chapter 3 File Organization

Figure 3.24 Ring file.

Engine size InteriorjColor

Pontiac6000

gray
interior

Audi 5000
color
ring

gray

currence. The owner record occurrence points to the first member record occurrence.

The members are linked together and the last member occurrence points back to the

owner record occurrence.

3.7 Indexing Using Tree Structures

In the previous sections we considered some primary and secondary key indexing

schemes. Here we consider two tree-based indexing schemes that are widely used in

practical systems as the basis for both primary and secondary key indexing.

3.7.1 Introduction

In a tree-based indexing scheme the search generally starts at the root node. Depend¬

ing on the conditions that are satisfied at the node under examination, a branch is

made to one of several nodes, and the procedure is repeated until we find a match or

encounter a leaf node (i.e., there are no more nodes beyond this node). There are

several kinds of trees: binary, m-way, height-balanced, and so on. In this section we

concern ourselves principally with the B + -tree and for informational purposes, its

ancestor the B-tree. The VSAM file discussed earlier is a version of the B + -tree. For

more detailed coverage of trees, consult a text on data structures.

Let us consider a file of records R,, R2,, Rn. Each record R„ is identified

by a key k|. The record Rj contains other data in addition to the key k, that does not
affect the indexing in any way.

A multilevel index file featuring some pertinent details is shown in Figure 3.25.

The indices at various levels are shown as ovals and the address to the next index

level is represented as a pointer. The index is similar to a tree. The leaf nodes are

the blocks containing the actual records and are shown as rectangles in the figure.

(Instead of the actual records, the leaf nodes may contain pointers to storage areas

3.7 Indexing Using Tree Structures 125

Figure 3.25 Multilevel index shown as a tree.

containing the actual records, or pointers directly to the actual records.) The similar¬

ity between the indexing schemes considered in the previous sections and the tree

schemes ends here. The major disadvantage of index-sequential organization is that

as the database grows, performance deteriorates rapidly due to overflows and conse¬

quently there arises the need for periodic reorganization. Reorganization is not only

an expensive process but makes the file unavailable while it takes place. The tree

structure overcomes this problem by splitting a node whenever it overflows. We

illustrate this scheme in Section 3.7.3.

3.7.2 Tree Schemes

Each node of the tree except the leaf nodes, can be considered to consist of the

following information:

Til, l^il> T i2> kj2* * • • • ? Tin, kjn, Tj(n-t-1)]

where the kij’s are key values and the Tjj’s are pointers. For an m-order tree the

following conditions are true:

• n < m

• k;i < ki2 ^ ^ kin (we assume that kj0 = — °°, ki(n + 1) = +°°)

• each of the pointers, T,j, 1 < j < (n+ 1), points to a subtree containing values

less than ky and greater than or equal to ki(j_i)

It is clear from the node structure and the condition n < m that for an m-order

tree, the maximum number of pointers in a node is m (or the maximum number of

keys contained in a node is m - 1). The minimum number of pointers that may

exist in a node is fm/21 (or the minimum number of keys contained in a node is

fm/21 — 1 keys). This minimum condition is enforced to avoid the situation in which

a large number of nodes exist and each has very few keys. Such a situation not only

increases the storage space for the index nodes but also the height of the tree. The

minimum criterion is not enforced, for obvious reasons, for the root node.

The leaf nodes of the B+-tree are quite similar to the nonleaf (or internal)

nodes, except that the pointers in the leaf nodes do not point to subtrees. (They

126 Chapter 3 File Organization

cannot, because they are the leaf nodes.) The pointers TLj, 1 < j < n (note, not n

+ 1), in the leaf nodes point to storage areas containing either records having a key

value ky, or pointers to records, each of which has a key value k|r The number of

key values in each leaf node is at least [(m - l)/2] and at most m — 1.

Note that unlike the index-sequential file, the B + -tree need not be a clustering

index. That is, records may or may not be arranged in storage according to their key

values.

The pointer TL(n+|) is used to chain the leaf nodes in a sequential order. This

allows for sequential processing of the underlying file of records.

The following conditions are satisfied by the nodes of a B + -tree (and also by

the nodes of the older B-tree scheme):

1. The height of the tree is > 1.

2. The root has at least two children.

3. All nodes other than the root node and the leaf nodes have at least fm/21

children, where m is the order of the tree.

4. All leaf nodes are at the same level.

Example 3.14 Assume that we are given a file containing the following records:

Book# Subject Area

2 Files

3 Database

4 Artificial intelligence

5 Files

7 Discrete structures

8 Software engineering

9 Programming methodology

40 Operating systems

50 Graphics

51 Database

52 Data structures

A B + -tree of order 4 on Book# is shown in Figure E.

3.7 Indexing Using Tree Structures 127

Figure E A B+-tree (showing only some of the leaf nodes). Each Pj
is a pointer to the storage area containing records (or point¬
ers) for the key Book# = i; 1 represents a null pointer.

3.7.3 Operations

The nonleaf nodes of the B + -tree act as a traversal map with the leaf nodes contain¬

ing the actual records or the key values with pointers to the storage location contain¬

ing the records. Therefore, all operations require access to the leaf nodes.

Search

The search algorithm for the B + -tree is given in below. The number of nodes ac¬

cessed is equal to the height of the tree. Once the required leaf node is reached, we

can retrieve the pointer for the storage location containing the records; knowing the

storage location, we can retrieve the required record(s).

Insertion and Deletion

The insertion and deletion of records with a given key first requires a search of the

tree. Below, we discuss the insertion (or deletion) of record keys from the trees. We

assume that the records themselves would be inserted in (or deleted from) the perti¬

nent storage locations. Insertion and deletion that violates the conditions on the num¬

ber of keys in a node requires the redistribution of keys among a node, its sibling,

and their parent.

128 Chapter 3 File Organization

Algorithm

3.4 Searching B+>tree.

Input: Ks, the search key

Output: found, (a Boolean value), and

A, the address of record if found

{nodes content: [n, T,, k,, T2, k2, . . . , Tn, kn, Tn+1] kn+, = °°
is assumed}

get root_node

while not leaf_node do

begin

i : = 1

while not (i>n or Ks<kj) do

i : = i + 1

{Tj points to the sub-tree that may contain Kj
get sub-tree Tj

end {while not leaf_node}

{search leaf node for key Ks}

{content of leaf node: [n, P,, k,, P2, k2, . . . , Pn, kn, Pn + 1]}
i : = 1

found : = false

while not (found or i>n) do

begin

found : = Ks = kj

t/found then

A : = Pj

else i : = i + 1

end {while not (found or i>n)}

Insertion

If, after insertion of the key, the node has more than m-1 keys, the node is said to

overflow. Overflow can be handled by redistribution if the number of entries in the

left or right sibling of the node is less than the maximum. Such redistribution in¬

cludes the key from the parent node and hence, the key value in the parent node may

change. If there are no sibling nodes with space to receive the overflow keys, the

node is split into two nodes, with the middle key inserted in the parent of the node

being split. Such insertion into the parent node may in turn require redistribution or

splitting and an increase in the height of the tree. Example 3.15 illustrates the inser¬
tion scheme.

The search for the key value, K,, to be inserted locates the leaf node in which

the key belongs. This node may be full or have space for the key. In the latter case,

129 3.7 Indexing Using Tree Structures

the key is inserted in its rightful place, maintaining the key order. In the former case,

we would now have a node, let us say TL, with m (instead of m-1) key values,

assuming an m-order tree. The set of m values is split into two sets. The set of keys:

|k|, k2, . . . , k|m/2i-i}

is written in the existing node TL, and the remaining set of keys:

{k|m/2]> k|m/2)+|, . . . , km}

in a new node, let us say TN. The new node is inserted into the leaf node chain.

The key k(m/2| (the smallest key in the new node) and a pointer to the node TN

are passed to the parent node for insertion. Let us represent the key k[m/2i by k'. Let
the contents of the parent node before the insertion of k' be

[n, T,, k,, . . . , Tl, kL, . . . , Tn, kn, Tn + I]

where TL is the pointer to the child node that split; that child node originally con¬

tained keys smaller than kL. The node pointed to by TL now contains keys smaller

than k', while the node TN contains keys greater than or equal to k' but smaller than

kL. The logical place for the insertion of the pair <TN, k'> is between the pair <TL,

kL>. The parent node contents after the insertion of <k',TN> are:

[n, Ti, kj, . . . , Tl, k', Tn, kL, . . . , Tn, kn, Tn+)]

The insertion of <k',TN > may itself cause a redistribution or a node split. The

values would be distributed between the old and new node and a key value sent to

its parent node for insertion, as before.

Example 3.15 In the B + -tree of Example 3.14, let us insert an entry for Book# 1. The

original contents of the leaf node (with the label PT0) in which the key

would be inserted are:

PT„

P, 2 P, 3 P4 4 -*■ PTV

This node does not have a left sibling and the right sibling is already full.

Hence, insertion of the key 1 would cause a split. Let the new node be PTN.

The contents of these nodes are shown below:

PT0 PTn

Pi 1 f2 1

The pair <3, PTN> are passed to the parent node (reproduced below) for

insertion as indicated:

PT0 3 PTN 5 T, 9 T2 15 T3

130 Chapter 3 File Organization

The insertion causes a split of this node into the following two nodes with

the key value 5, along with a pointer passed to the parent of the node:

Py_ _ .
(PTp 3 PTn) 5 (T} 9 T2 15 T3 ^

Let the address of the new node be PY. Then the pair <5, PY> is passed to

the parent node (in this case the root) for insertion. The relevant portion of

the resultant B + -tree is shown in Figure F.

Figure F The B + -tree of Example 3.14 after insertion of the key for
Book# 1.

(5 20 40 J

' f 1 1 ' r

(j 3 (9 15)(x 25 x 30 x 35 0 (x 51 x

' I '

-► • • •

'

P) 1 P2 2 —► P3 3 P4 4 - P 5 5 P7 7 P8 8 — P9 9 P14 14

Deletion

When a key is deleted, the leaf node may end up with less than f(m— 1)/21 keys.

This situation may also be handled by moving a key to the node from one of its left

or right sibling nodes, and redistributing the keys in the parent node. However, if

the siblings have no keys that could be spared, such redistribution is not possible. In

this case, the node is merged with a sibling along with the deletion of a key from

the parent node. The loss of the key from the parent node may in turn cause further

redistribution or merging at this higher level of the tree.

The leaf node containing the key to be deleted is found and the key entry in the

node deleted. If the resultant node (let us refer to it as TD) is empty or has fewer

than !(m— l)/2] keys,

1. The data from the sibling node could be redistributed, i.e., the sibling has

more than the minimum number of keys and one of these keys is enough to

bring the number of keys in node TD to be equal to f(m— 1)/21.

2. Or, the node TD is merged with the sibling to become a single node. This is

possible if the sibling has only the minimum number of keys. The merger of

the two nodes would still make the number of keys in the new node less than

the maximum.

3.7 Indexing Using Tree Structures 131

In the former case the key entry in the parent node will be changed to reflect the

redistribution, and in the latter case the associated entry in the parent node would

also be deleted.

Example 3.16 Let us delete the entry for Book# 5 from the tree shown in Example 3.14.

The resultant tree is shown in part i of Figure G. Note that the key value 5

is maintained in the internal node.

Figure G (i) The B+-tree that results after the deletion of key 5 from
the tree of Example 3.14. (ii) The B+-tree after the deletion
of key 7.

(i)

(ii)

132 Chapter 3 File Organization

If we now delete key 7 from the B + -tree of Figure G, the leaf node

containing key 7 would have less than the minimum number of keys. The

left sibling of this node contains P2 2 P3 3 P4 4 x and can spare a key.

This key and the appropriate pointers are moved to the about-to-be-under-

flow node. The resultant tree is shown in part ii of Figure G. Note that the

index entry of the parent node reflects the redistribution. ■

3.7.4 Capacity

The upper and lower limits of the capacity of a B + -tree of order m may be calculated

by considering each node of the tree to be maximally (m — 1 keys) or minimally full

(fm/21— 1 keys). We assume that the height of the tree is h. The two situations are

depicted in Figure 3.26. As every key must occur in the leaf node and the leaf nodes

may also contain a minimum of l(m— 1)/21 and a maximum of (m— 1) keys, we

have

2*f(m — 1)/21 * fm/21h~2 < N < (m- 1) * mh_1

3.7.5 B-trees

In the previous sections we looked at the B + -tree, a descendant of the B-tree. The

B + -tree differs from the B-tree in the organization of the nodes. In the B-tree, the

leaf nodes do not contain any information. During lookup, if the leaf node is reached

without a match, the key does not exist (thus the leaf nodes are called failure nodes).

Note that because the leaf nodes do not contain any information, they may be imple¬

mented in the parent node as null pointers. Because the leaf nodes do not contain

pointers to the storage areas where the records reside, the pointers are included with

the keys in the internal nodes. We may consider each kj to represent a <key-value,

address> pair. The advantage of the B-tree over the B + -tree is that the key values

appear only once in the tree, with consequent savings in space. We therefore require

fewer nodes than in a corresponding B + -tree. Another advantage is that it is no

longer necessary to traverse up to the leaf nodes during lookup operations. Searches,
on average, require fewer node accesses.

Whereas retrieval of the next record is relatively easy in the B + -tree, this is not

the case in the B-tree unless the internal nodes of the B-tree are linked in a sequential

order. The deletions in a B + -tree are always made in the leaf nodes. In a B-tree,

however, a value can be deleted from any node, making deletions more complicated
than in a B + -tree.

Insertions in a B + -tree are always made in the leaf nodes. In the B-tree, how¬

ever, insertions are made at the lowest nonleaf node. Insertions (or deletions) may

cause node splits (coalescing or key redistribution) and thereby affect the height of
the tree in both cases.

The capacity of the B-tree can be calculated in a manner similar to that used for

the B + -tree. Note that the order of the tree is dictated by physical storage (buffer)

3.8 Logical and Physical Pointers 133

Figure 3.26 Capacity of a B+-tree.

Number
Level of nodes

at level

1 1

2

h m h-l

(a)

Number
Level of nodes

at level

1 1

h 2 * |m/21h~2

(b)

availability, among other factors. For the same buffer size, the order of the B-tree

would be less than that of the B + -tree.

3.8 Logical and Physical Pointers

Some of the file organizations considered in the previous sections required the use of

pointers in their implementations. In many situations the use of pointers in file design

arises. So far, we have not addressed the issue in any detail. What are these pointers

and how are they implemented? We know, for example, that in the multilist file the

pointers give us the address of the succeeding record. Are all pointers physical ad¬

dresses? If they are, then any movement of the records or the file itself on the disks

134 Chapter 3 File Organization

Figure 3.27 Deriving address for clustered storage.

Pointer using Page# and
offset or displacement

Physical block#

would necessitate changes to their values. Then should all pointers be implemented

as logical addresses (i.e., by some key of the record)? This requires that there exist

a mapping scheme from the key to the physical address. If this mapping is provided

by an index, it entails additional accesses for each logical pointer access. Similarly,

this applies for the hashing of the key values, except in unlikely hash functions that

produce no collisions.
It is possible to use addresses based on page or bucket numbers and displace¬

ment within page where each page or bucket contains a set of blocks, i.e., a page

contains a large number of records. The physical location of each of these file pages

can be stored in a small table; this table can be brought into main memory when the

file is in use. The displacement is used as a modifier, and the logical to physical

address mapping can be done as shown in Figure 3.27 without additional secondary

storage accesses. When the file is moved around on the disks, the only requirement

is that the cluster of records in the page are moved together so that their displace¬

ments are not altered.

3.9 Record Placement

We began this chapter by stating that the time needed to access data on secondary

storage could be optimized by minimizing the component of response time that we

called the access time. In the sections above, we considered how access is facilitated

by employing certain file organizations. The primary consideration in all organiza¬

tions is access to the next or some particular logical record. Our main concern has

been with access methods. We stated that the response time could also be optimized

by suitable record placement.

A suitable placement strategy necessitates the knowledge or estimation of access

frequencies or probabilities. We want the records to be placed in such a manner that

the average head movement is minimal. It has been proven that the cost is minimal

when the most frequent (or likely) records are grouped together in blocks and the

blocks arranged such that the block access probabilities form an organ pipe arrange¬

ment. This type of arrangement results when we sequence block placement in non-

3.10 Concluding Remarks 135

Figure 3.28 Organ pipe arrangement.

P6 P4 P2 Pi P3 P5 P7

increasing access probability order. We first place the block with the highest access

probability at some point and the other blocks in nonincreasing access probability

order, alternately to the left or to the right of the already-placed blocks. Let us

consider, for instance, n blocks and let the access probability of the <th block be ph

where p, > p2 > . . . > pn. The resultant optimal placement of blocks is hown in

Figure 3.28. The optimal record placement strategy is applicable, even to the file
organizations considered earlier in this chapter.

Concluding Remarks

In this chapter we looked at some common file organizations. They occur quite often

in systems and applications work. As we have seen, no one organization can effi¬

ciently support all applications and types of access. It may be necessary to design a

file that supports different organizations for different key fields, depending on the

application requirements. However, it is not wise to design elaborate organizations

for rare types of access. In file design, particular emphasis is placed on usage and

factors of growth. We should also be aware of the space/time tradeoff in file design.

Speeding up some accesses is always accompanied by increased storage demands.

The simplest serial file has minimal wastage of storage space or overheads. However,

as we have seen, access and updates are expensive. The other file organizations

improve performance of certain operations, but require additional storage space.

In the index-sequential file the records are ordered with respect to the primary

key. In this way it is possible to allow random and sequential access to any record.

An index-sequential scheme, however, becomes inefficient if there are a large num¬

ber of insertions and consequent overflows, and it requires periodic maintenance. For

a file that is growing rapidly, index-sequential organization may be inappropriate.

B + -tree indexing, with its built-in maintenance, allows growth without the penalty

of performance degradation. Both types of indexing allow random search followed

by sequential search. However, the records in the case of the B + -tree file may not

be clustered and therefore it is possible that a disk access may be required to retrieve

each record. Range queries, wherein records have a range of key values, can be

handled by these file organizations.

With direct access supported by hashing, random access to any record is ob¬

tained in a fixed time but if the records are not clustered on the key used for hashing,

sequential or range queries can only be handled as a series of independent requests.

The hashing function maps a key value into a bucket address. With a good hashing

function sequential keys need not be mapped to the same or consecutive buckets.

However, having obtained the first bucket address, we have no way of knowing

which bucket will contain the next key.

136 Chapter 3 File Organization

The steps involved in designing a file system for secondary key retrieval to

reduce search time can be summarized as follows:

1. Determine the most likely secondary search keys.

2. Make an appropriate index for each such secondary key and generate the

entries for each value of the key.

Consider the index structure of Figure 3.19b, an inverted index. The number of

groups chosen is equal to the number of records hy = n,, and each pointer is directed

to a single record. In a multilist file, hy = 1 and only one list of length ny exists for

value Vy of attribute A;. With a cellular multilist, there are hy lists for value Vy of

attribute A„ each list being limited to a convenient size, such as the cylinder of a

disk drive, to maximize the response time.
Remember that with a multitude of indexes, the space occupied by them could

exceed the space occupied by the actual data file.

When the same file is required for different applications or when a set of files

are required by these applications, it becomes impossible to fully satisfy the require¬

ments of every application. While it is not impossible to support secondary structures

that can meet all requirements, any updates would require changes to all of them.

These updates would be prohibitively expensive. Furthermore, different applications

entail different logical relationships between data. Earlier in this book we introduced

database systems. Just as file management systems remove the programmer/user from

the knotty details of bits, bytes, and blocks, database management systems provide

independence from details of data organization and access strategies.

With large random access memories available on the smallest of microcompu¬

ters, we hope that the file organizations considered in this chapter would only be the

concern of system designers when dealing with very large files.

Summary

A file is a collection or bag of records. Having stored the records in a file, it is

necessary to access these records using either a primary or secondary key. The type

and frequency of access required determines the type of file organization to be used

for a given set of records. In this chapter we looked at some common file organiza¬

tions, examining the following: serial, sequential, index sequential, multilist, ring

list, cellular list, direct, and tree-structured.

In a serial file, records are stored in no particular order and therefore the serial

file is equivalent to an unordered sequence. Such a file is generated by appending

records at the end of the file. The search for a record in a sequential file entails

examining each record until it is found. Updates to records can be done in place if

the records are of fixed length and the updates do not change the size of the records.

Deletion of a record can be performed either by compressing the file or marking the

record as deleted, and logically ignoring such records.

In a sequential file, records are maintained in the logical sequence of their pri¬

mary key value. The search for a given record requires, on average, access to half

the records in the file. Update operations, including the appending of a new record,

require the creation of a new file. Updates could be batched and a transaction file of

updates used to create a new master file from the existing one. This scheme auto¬

matically creates a backup copy of the file.

3.11 Summary 137

Access to a sequential file can be enhanced by creating an index. The index

provides random access to records and the sequential nature of the file provides easy

access to the next record. To avoid frequent reorganization, an index-sequential file

uses overflow areas. This scheme provides space for the addition of records without

the need for the creation of a new file. In index-sequential organization, it is the

usual practice to have a hierarchy of indexes with the lowest level index pointing to

the records while the higher level ones point to the index below them. Updates to an

index-sequential file may entail modifications to the index in addition to the file. In

VS AM the solution to the update overhead is found by providing free blocks for the
indexes and records.

In direct file organization the key value is mapped directly or indirectly to a

storage location, avoiding the use of indices. The usual method of direct mapping is

by some arithmetical manipulation of the key value; the process is called hashing.

However, hashing schemes usually give rise to collisions when two or more distinct

key values are mapped to the same value. Collisions are handled in a number of

ways. The colliding records may be assigned to the next available free space, or they

may be assigned to an overflow area. In using the hash function to generate a value,

which is the address of a bucket where the <key, address> pair values of records

are stored, we can handle limited collisions as well as reorganization of the file

without affecting the hash function. In extendable hashing, the database size changes
are handled by splitting or coalescing buckets.

Secondary key retrieval is characterized by the multiplicity of records satisfying

a given key value. Fast access to records is provided by the use of indexes and/or

linking together logically related records in some suitable structure.

An inverted file contains the list of all records, satisfying the particular attrib¬

ute, value> pair in the index. The list contains a pointer to every record with a given

value for the attribute.

In a multilist file the logically related records are linked together in the form of

a list. A pointer to the first member of every list is maintained in the index. In a

cellular list organization, lists are limited to a physical area of storage, referred to as

a cell. In a ring file the last record of a linked list of records points back to the index

entry.

Tree-based data organization schemes are used both for primary and secondary

key retrieval. We considered the B + -tree scheme, wherein each node of the tree

except the leaf node contains a set of keys and pointers pointing to subtrees. The leaf

nodes of the B+ -tree are similar to the nonleaf or internal nodes, except that the

pointers in the leaf node point directly or indirectly to storage areas containing the

required records. We also examined the method of performing the search and update

operations using the B + -tree and compared the B+-tree with the B-tree.

Finally, we considered the implementation of pointers and the placement of

records based on their probability of access.

disk pack

read/write heads

track

file cylinder

fixed head drive

moving head drive

seek time

latency time

access time

interblock gaps (IBG)

data transfer time

138 Chapter 3 File Organization

homogeneous records explicit index extendable hashing

primary block limit indexing inverted index file

overflow block block inverted file

update operations bucket multilist file

sequential file sequential index key cellular list

serial file index-sequential search cell

index-sequential file track index ring file

direct file skip-sequential processing leaf node

nonkeyed sequential file virtual storage access m-order tree

transaction file method (VSAM) B + -tree

old master file control interval overflow

new master file control area redistribution

index file hashing B-tree

data file collision failure nodes

implicit index dynamic hashing record placement

msm
3.1 Access methods are measured by access and storage efficiencies. Define each term and its

major objectives. Which is the most important consideration in a batch environment? In an

online environment? Give reasons.

3.2 Discuss the differences between the following file organizations:

(a) serial

(b) index-sequential

(c) hashed

(d) inverted

Compare their storage and access efficiencies. To what type of application is each of the

organizations suited?

3.3 We are given a file of 1 million records, each record being 200 bytes long, of which 10

bytes are for the key field. A physical block is 1000 bytes long and block addresses are 5

bytes long.

(a) Using a hashed file organization with 1000 buckets, calculate the bucket size in

blocks. Assume all blocks contain the average number of records. What is the average

number of accesses needed to search for a record that exists in the file?

(b) Using an index-sequential file with one level of indexing and assuming that all

file blocks are as full as possible (with no overflow), how many blocks are needed for

the index? If we employ a binary search on the index, how many accesses are required

on average to find a record?

(c) If we use a B+-tree and assume that all blocks are as full as possible, how many

index blocks are needed? What is the height of the tree?

(d) Repeat part (c) if all blocks are half full.

3.4 We are given a file of 10 million records, each record being 100 bytes long, of which 5

bytes are for the key field. A physical block is 10000 bytes long and block addresses are 5

bytes long.

(a) Using a hashed file organization with 10,000 buckets, calculate the bucket size in

blocks; assume all buckets are half full. What is the average number of accesses

needed to search for a record that exists in the file?

3.11 Summary 139

(b) Using an index-sequential file with two levels of indexing and assuming that all

data blocks are half full, how many blocks are needed for the index? If we employ a

binary search on the index, how many accesses are required on average to find a

record?

(c) If we use a B + -tree of order 500, how many index blocks are needed? What is

the height of the tree? How many disk accesses are required to find a record?

3.5 A file of 1,000,000 fixed-length records, each 200 bytes long, is stored on a magnetic tape.

The tape handler characteristics are a lOOKB/sec transfer rate and a start/stop time of 25

msec. Compare the time required to read all the records if the block size is chosen as (a)

5000 bytes, (b) 50,000 bytes and the tape has to be stopped after reading a block. Ignore the

time used for processing after a block is read.

3.6 Records of 250 bytes are stored in blocks with a blocking factor of 20. A drive using a

3600-foot tape having a recording density of 6400 bpi (bytes per inch), an interblock gap

size of 0.5 inch, a read/write speed of 200 kilobytes per second, and a start-stop time of

0.010 seconds is being used. How many records can the tape hold? What percentage of the

tape is wasted? How long will it take to read the file from the tape without stopping? How

much time is spent in reading the file if only one block is read at a time?

3.7 Given a record length of 32 bytes, a recording density of 1600 bpi, and an interblock gap

size of 0.6 inch, calculate the blocking factor to have 80% of a 1600-foot tape holding data.

3.8 A file of 100,000 fixed-length records, each 100 bytes long, is stored on a magnetic tape.

The tape handler characteristics are a 40KB/sec transfer rate and a start/stop time of 20 msec.

The file is recorded at 1600 bpi and the interblock gap is 1/2 inch. Find the length of the

tape required and compare the times required to read all the records if the block size is

chosen as (a) 100 bytes, and (b) 10,000 bytes.

3.9 Consider a hash function h(k) = k mod 17 for a direct access file using extendable hashing.

Assume that the bucket capacity is four records. Show the structure of the file including the

bucket address table after the insertion of the following records: 87,13, 53, 82, 48, 921, 872,

284, 36, 128, 172.

3.10 In a multilist organization, give efficient algorithms to process the following queries:

(a) get all records with Key, = x and Key2 = y

(b) get all records with Key, = x or Key2 = y

If a ring organization is used instead, what complications are introduced into the processing

of the above queries?

3.11 The following file contains student records. The Rec# is the address used to retrieve the

record using a direct access function on the primary key (Id).

(a) Generate a directory for a multilist that has indexes for Dept, Advisor, and

Status. Fill in the appropriate record number values in the Ptr field provided

within the file.

(b) Using this multilist directory and the data file, indicate how you will answer the

query to retrieve all records for students who are in the COMP department, or

who have SMITH F. as an advisor, or whose status is F2, without accessing

redundant records.

(c) Using the above data and assuming that there are three records per cell, generate

a directory for a cellular multilist file with entries for Dept, Advisor, and Status.

140 Chapter 3 File Organization

Rec# Name Id Dept Ptr Advisor Ptr Status Ptr

1 MICROSLAW Kalik 3634592 COMP * SMITH F. F2

2 PASSASLO Joseph 3894336 PHYS JONES A. F3

3 PRONOVOST Pierre 6888954 ELEC WAGNER B. 11

4 LOANNIDES Lambi 3518445 CHEM ACIAN R. F3

5 MACIOCIA Charles 7564019 ENGL BROST A. P2

6 CHO BYUNG Chu 2566984 CHEM JONES A. F2

7 CANNON Joe 7868286 PHYS JONES A. F3

8 BERGERON Daniel 2736849 COMP JONES A. 12

9 ABOND Daniel 7382943 ELEC WEGNER B. 13

10 HAMMERBELL Abraham 6792839 COMP SMITH F. P2

11 LANGEVIN Joseph 2768736 ENGL NEWELL J. P3

12 PELLERIN George 6689184 COMP WEGNER B. F2

13 ROBERT Louis 3707939 COMP MARTIN R. PI

14 SHARPE George 9877546 CHEM SMITH F. 12

15 PETIT Guy 2742619 ELEC SMITH F. 13

3.12 What are the advantages and disadvantages of the index-sequential file?

3.13 Consider a cylinder of an index-sequential file as shown below. Only the key values are

shown. The following changes are made to this cylinder:

add ID, add FW, add KP, delete FV, add FU, delete IQ, add JK, add IS, add IT, add JR

Here add indicates that a record is to be inserted into the file and delete indicates that the

record is to be deleted from the file. Only the key values are given. The changes occur in the

order specified. 1 indicates null pointers.

HA Block1 Block2 Block3 Block4 Blocks Block6

2900 Tr. Index FP FR FT FV FZ

P 2901 GB GE GH GK GM GR

r 2902 GV GY HB HC HF HI

i A 2903 HL HO HQ HT HX IA

m r 2904 IC IG IJ IM IQ IY

e e 2905 IZ JB JF JJ JN JQ
a 2906 KA KD KG KL KO KS

L_2907 KT KV KY KZ LB LF

Overflow 2908 1 1 1 1 _L 1

Area 2909 1 1 1 1 1 1

Show the initial and final values of the track index. Also show the contents of the cylinder

after all of the above changes have been made.

3.11 Summary 141

3*14 A software development company’s employee records contain the following information:

ID (10), Name (25), Position (10), Age (2), Qualifications (9), Projects (10 repeated)

The value in the parentheses is the size of each entry in bytes. An employee can be involved

in a number of projects at the same time; thus, this field is repeated. An internal coding

mechanism groups qualifications into three types, each requiring 3 bytes to encode. The age

of employees is divided into 10 groups. The total number of employees is 500 and, at any

given time, up to 100 projects are handled. The file is to be maintained on disk with a

physical block size of 4096 bytes. The pointer size for addresses is 4 bytes.

(a) Design file organizations for each of the access methods listed below that at least

satisfy the retrieval/query transactions, also specified below, as efficiently as

possible. Diagram the organization and discuss how your file organization

satisfies the retrieval requirements.

Access methods: Index-sequential, inverted, and B + -tree.

Retrieval requirements (specified in %):

1. List employees by name in alphabetical order (10%).

2. Print data for employees in some age group and with certain qualifications (50%).

3. Print names and current projects of employees with certain qualifications and

holding certain positions (40%).

(b) Compare your design with organizations based on a single type of access method

with respect to space and access time. In the derivation of the access time, use the

following terms:

Block access time (random): tR

Block Access time (next in sequence): ts

Method Space Total Access Time

A B C

Your Design

Index-sequential

Inverted

B + -tree

(c) Which access method minimizes total access time for all three application types?

(Be sure to take transaction frequencies into account.) If accesses for application B

also required the changing of age and qualifications, would this method still be the

most efficient? Justify your answer.

3.15 The manufacturer’s specifications for a disk drive are:

Number of surfaces 20

Number of tracks/surface 800

Number of sectors/track 20

Number of bytes/sector 512

Rotational speed 6000 rpm

Time to move arm to adjacent cylinder 5 msec

Average time to move arm to any cylinder 20 msec

(a) How many cylinders will be required to store 100,000 records each 100 bytes

long if no logical record is split across sector boundaries?

142 Chapter 3 File Organization

(b) If the key plus cylinder-cum-track addresses require 8 bytes, when the above file

is created as an indexed-sequential file with cylinder and track indexing, estimate the

average time to locate a record. Assume that there are no overflow records and that the

search of an index or sector, after having been transferred to main memory, is

negligible.

3.16 Consider the cylinder of an index-sequential file as shown below. Each cylinder has six

surfaces and a surface has four sectors. Each sector can hold three records. Surface 05 is

used for the overflow records. (1 indicates null pointers)

Cyl. Surface Sectors

1 2 3 4

00 Tr.Index A|,A4 A5,A6,A9 Aio>A13

01 A)7,A|8 A20 A28»A29 A3o»A3i ,A36

02 A42,A43 A45, A4g, A48 A5i,A52,A56 A39, Ag]

03 A75,A76,A7g A79,A80 a83 Ag9,A9]

04 A93,A94 A96,A9g A100 Ai20»Aj25

05 1 1 1 1

Give a track index that captures the current state of the cylinder. Also give the status of the

cylinder and track index after the following operations have been performed:

I A34, I A4|, I A95, D A83, I A3, I Ag2, I Ag4, I A33, D A36, I A2, D A4, I Ai22> D A|25, I

Ai24' I A54, D A6|, I Ago

where I represents the insert, and D the delete, operation.

3.17 Create an index-sequential file using three cylinders, each of which has eight tracks. Up to

four records can be stored in each track. Make appropriate provisions for overflow. The file

is created initially with the following records in the order given:

132, 38, 87, 64, 88, 40, 759, 12, 459, 45, 362, 85, 835, 638, 414, 820, 41, 91, 29, 194,

517, 491, 524, 294, 43, 185, 791, 139, 59, 44, 11, 414, 37, 184, 472, 39, 88, 42, 758,

460, 412, 48, 415

Indicate the reorganization of the file if the following records are subsequently deleted and

added. D preceding the key indicates that the record is to be deleted; A indicates that it has

to be added:

D91, A92, D44, A43, A47, A46

3.18 Comment on the differences between index-sequential files and B + -tree file organizations.

Compare them for use wherever an indexed access may be required.

3.19 Give algorithms for the insertion and deletion of records in a B + -tree.

3.20 In a B-tree file, pointers to the blocks containing the records exist even in the index level

nodes. How does this alter the algorithms for insertion and deletion that you wrote for

Exercise 3.19? Comment on the relative advantages and disadvantages of B-trees and B + -

trees.

3.21 The accompanying figure shows the B + -tree index and the leaf nodes of a B + -tree of order

3. The blocks containing the leaf nodes hold the actual records. (Only the key values are

shown in the figure.) Each block must hold at least three and at most five records. Show the

structure of the index after the following records are inserted or deleted. D preceding the key

indicates that the record is to be deleted; A indicates that it has to be added:

D91, A98, D44, A43, A47, A46

3.11 Summary 143

Discussion of storage devices and data organization methods is found in computer manufac¬

turers manuals. A discussion on blocking and buffering techniques appears in (Wate 76). The

handling of sequential files is the subject of many a textbook on programming; see also (Dwye

81). (Lum 71) presents hashing techniques as does (Litw 80). Index sequential files are the

subject of a number of IBM manuals (IBM 1, IBM 2). Extendable hashing is discussed in

(Fagi 79). B-tree indexes are presented in (Baye 72). A number of textbooks cover the areas

of files and data structures, including (Ghos 86), (Harb 88), (Hans 82), (Horo 82), and (Knut

73). The discussion in this chapter is based to a great extent on (Goya 87).

(Baye 72) R. Bayer, “Symmetric Binary B-trees: Data Structure and Maintenance Algorithms,” Acta
Informatica, 1(4), 1972, pp. 290-306.

(Come 79) D. Comer, “The Ubiquitous B-tree”, ACM Computing Surveys” 11 -(2), June 1979, pp. 121-137.
(Desa 89) B. C. Desai, “Performance of a Composite Attribute and Join Index,” IEEE Trans, on Software

Engineering 15-(2), February 1989, pp. 142-152.
(Dwye 81) B. Dwyer, “One More Time—How to Update a Master File,” Communications of the ACM 24 (1),

1981, pp. 3-8.
(Fagi 79) R. Fagin, J. Nievergelt, N. Pippenger, & H. R. Strong, “Extendible Hashing—A Fast Access Method

for Dynamic Files,” ACM Trans, on Database Systems, 4-(3), September 1979, pp.315-
344.

(Ghos 86) S. P. Ghosh, Data Base Organization for Data Management, 2nd ed. Orlando, FL: Academic Press,
1986.

(Goya 87) P. Goya!, “File Organization,” Computer Science Report, Concordia University, Montreal, 1987.
(Hans 82) O. Hanson, Design of Computer Data Files, Rockville, MD: Computer Science Press, 1982.
(Harb 88) T. R. Harbon, File Systems Structures and Algorithms. Englewood Cliffs, NJ. Prentice-Hall, 1988.
(Horo 82) E. Horowitz & S. Sahni, Fundamentals of Data Structures, 2nd ed. Rockville, MD: Computer

Science Press, 1982.
(IBM 1) “Introduction to IBM Direct Access Storage Devices and Organization Methods,” IBM Manual GC

20164910.

144 Chapter 3 File Organization

(IBM 2) “OS/VS1 and VS2 Access Method Services,” IBM Manuals GC 263840 and GC 263841.
(Knut 73a) D. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Reading, MA:

Addison Wesley, 1973.
(Knut 73b) D. Knuth, The Art of Computer Programming: Searching and Sorting, Reading, MA:

Addison Wesley, 1973.
(Litw 80) W. Litwin, ‘‘Linear Hashing: A New Tool for File and Table Addressing,” Proceedings of the

International Conference on Very Large Data Bases, 1980, pp. 212-223.
(Lum 71) V. Y. Lum, P. S. T. Yuen, & M. Dodd, “Key to Address Transform Techniques: A Fundamental

Performance Study on Large Existing Formatted Files,” Communications of the ACM, 14,
pp. 228-239.

(Wate 76) S. J. Waters, “Hit Ratios,” Computer Journal 19, 1976, pp. 21-24.

Contents

4.1 Introduction
4.1.1 A Brief Review of Set Theory

4.2 Relational Database
4.2.1 Attributes and Domains

4.2.2 Tuples

4.2.3 Relations and Their Schemes

4.2.4 Relation Representation

4.2.5 Keys

4.2.6 Relationship

4.2.7 Relational Operations

4.2.8 Integrity Rules

Integrity Rule 1 (Entity Integrity)

Integrity Rule 2 (Referential Integrity)

4.3 Relational Algebra
4.3.1 Basic Operations

Union (U)

Difference (-)

Intersection (D)

Cartesian Product (x)

4.3.2 Additional Relational Algebraic Operations

Projection (n)

Selection (<j)

Join (1X3)

Division (+)

4.3.3 Some Relational Algebra Queries

4.4 Relational Calculus
4.4.1 Tupl^ Calculus

Tuple Calculus Formulas

4.4.2 Domain Calculus

Domain Calculus Formulas

4.5 Concluding Remarks on Data Manipulation
Relational Algebra vs. Relational Calculus

4.6 Physical Implementation Issues

The
Relational

Model

145

146 Chapter 4 The Relational Model

The data models introduced in Chapter 2 differed only in the manner in which rela¬

tionships among data are represented. In this chapter we concentrate on the relational

data model (RDM), which was formally introduced in 1970. Since that time, it has

undergone extensive study. The relational model frees the user from details of storage

structures and access methods. It is also conceptually simple and, more'importantly,

based on sound theoretical principles that provide formal tools to tackle problems

arising in database design and maintenance.

Numerous different formulations of the RDM have been presented and recently

interest has been shown in its formalization. We shall, however, take a semiformal

approach.

Introduction

In practice we can distinguish between entities and the relationships that exist be¬

tween them. In modeling, we represent an entity set in the database by a set of its

properties. However, only those properties of the entity type of interest to the appli¬

cation are used in the model. A data model allows the capturing of these properties

using its data structures. Note that the association between the properties is only

implicitly captured, i.e., we do not state what kind of association exists between the

properties.

Furthermore, we may wish to retrieve or update the stored data and for this

purpose a data model supports certain operations. The data may also need to conform

to certain consistency and integrity rules, as in the case of a bank’s rule that a cus¬

tomer’s account balance remain nonnegative (i.e., > 0). These constraints are spec¬

ified as integrity rules.

The relational data model, like all data models, consists of three basic compo¬
nents:

• a set of domains and a set of relations

• operations on relations

• integrity rules

Each of these components is illustrated in the following examples.

Example 4.1 In this simple example we model certain properties of a number of database

management systems (DBMSs). Let us assume that we want to maintain a

database of these DBMSs. This database will register their names, the par¬

ticular data models employed, and the company that developed and markets

the DBMSs. Some of these DBMSs are shown in the table SOME_DBMS
in Figure A. ■

4.1 Introduction 147

Figure A Sample relation SOME _DBMS (Name, Data-Model,
Company)

SOME_DBMS

Name Data—Model Company

Data Network WXY Inc.

Data-R Relational WXY Inc.

ISS Hierarchical BCD Systems

ISS/R Relational BCD Systems

ISS/R-PC Relational BCD Systems

Tables Relational ABC Relational Systems Inc.

From our knowledge of the relational model gained in Chapter 2, we can iden¬

tify SOMELDBMS as a relation with the attributes Name, Data-Model, and Com¬

pany. The fact that a relation has certain attributes is specified by its scheme, usually

written as RELATION_SCHEME_NAME(7Utr//?«tc_/VamC|, Attribute-Name2,

. . .). Each attribute is defined over a set of values known as its domain. For our

sample relation, the scheme can be specified as SOME_DBMS(Aa/ne, Data-Model,

Company). The relation SOMELDBMS shown in Figure A in Example 4.1 consists

of six tuples, i.e., the cardinality of the relation SOME_DBMS is six. The number

of attributes in the relation scheme is called its degree or arity. The degree of the

scheme SOME_DBMS is three. Each tuple captures the association among the prop¬

erties name, data model, and company of a DBMS package. Here the attribute Name

can be used to uniquely identify a given DBMS and the corresponding tuple in the

relation.

Just as we are able to model an entity and its properties by a relation, we can

model relationships between entities using a relation. This is illustrated in Example

4.2. In Section 4.2 we shall study the relational database structures in a more formal

manner.

Example 4.2 Certain DBMSs of Example 4.1 are used in particular applications. The

application can be modeled using the budget code of the application as an

identifying attribute or key and the name of the application. Some tuples for

the relation APPLICATION(Ap/>_/Vame, Budget-Code) are shown in part i

of Figure B. The E-R diagram of the relationship between APPLICATION

and SOME-DBMS, named WHERE-USEf), is shown in part ii of the fig¬

ure. We can record the information abou/ this relationship in the relation

WHERE_USED by pairing the keys from the entities SOME_DBMS and

APPLICATION. This relationship can be expressed as a relation, some tu¬

ples of which are shown in part iii of Figure B. ■

148 Chapter 4 The Relational Model

Figure B Relationship between entities.

APPLICATION WHERE_USED

Budget Code Name

X06-250 ISS
X21-250 Tables
Y77-300 ISS/R

App Name Budget Code

Payroll X06-250
Public Rel. X21-250
Personnel Y77-300

(ii)

The relational operations define a set of data manipulation operations. The in¬

formation recorded in the relation SOMELDBMS is of limited value by itself. Nor¬

mally, we want to operate on the relation so that we can find, for example, the name

of the DBMSs produced by a particular company. Another query that requires oper¬

ation on more than one relation is illustrated in Example 4.3.

Example 4.3 Software packages are continually being modified. The modification may be

performed to improve the product or remove errors that may have been

encountered during its use. The modified package retains its name, but a

new version or release number is assigned to it.

Let us record the name, release number, and year of release of the

version for the DBMSs in the relation VERSION. Some tuples of the rela¬

tion VERSION are shown in Figure C with the attributes given as Name,

Release, and Year.

Figure C VERSION relation.

Name Release Year

ISS 1.0 1975

ISS 2.0 1979

ISS/R 1.0 1984

ISS/R-PC 1.0 1985

Data 1.0 1976

Data 2.0 1980

Data-R 2.0 1981

Data 3.0 1985

Data-R 3.0 1986

Tables 1.0 1987

4.1 Introduction 149

Figure D Join of relations SOME_DBMS and VERSION.

VERSION.

Name Release Year

SOME_DBMS.

Name Data-Model Company

ISS 1.0 1975 ISS Hierarchical BCD Systems

ISS 2.0 1979 ISS Hierarchical BCD Systems

ISS/R 1.0 1984 ISS/R Relational BCD Systems

1SS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems

Data 1.0 1976 Data Network WXY Inc.

Data 2.0 1980 Data Network WXY Inc.

Data-R 2.0 1981 Data-R Relational WXY Inc.

Data 3.0 1985 Data Network WXY Inc.

Data-R 3.0 1986 Data-R Relational WXY Inc.

Tables 1.0 1987 Tables Relational ABC

Figure E (i) Join of selected tuples of relation SOME_DBMS with re¬
lation VERSION and (ii) Join of relation SOME_DBMS with
selected tuples of relation VERSION.

VERSION.

Name Release Year

SOME-DBMS.

Name Data—Model Company

ISS/R 1.0 1984 ISS/R Relational BCD Systems

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems

Data-R 2.0 1981 Data-R Relational WXY Inc.

Data-R 3.0 1986 Data-R Relational WXY Inc.

Tables 1.0 1987 Tables Relational ABC

(i)

VERSION.

Name Release Year

SOME-DBMS.

Name Data-Model Company

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems

Data 3.0 1985 Data Network WXY Inc.

Data-R 3.0 1986 Data-R Relational WXY Inc.

Tables 1.0 1987 Tables Relational ABC

(ii)

Now consider the query “Find the names of the companies that re¬

leased relational DBMSs versions after 1984.” This particular query re¬

quires that we join the two relations SOME_DBMS and VERSION on the

common attribute Name. The result of the join is shown in Figure D. The

150 Chapter 4 The Relational Model

required rows of the table of Figure D are then identified to respond to the

above query. Note that in joining the rows of the two tables, we only join

those rows or tuples that have the same value for the attribute Name that is

common to both these relations. As we will see in Section 4.3.2, the rela¬

tions shown in Figures D and E, are the result of the so-called equi-join

operations. ■

The number of tuples in the join of SOME_DBMS and VERSION is the same

as those in VERSION because a tuple in SOME_DBMS has the same value of the

Name attribute as a tuple in VERSION. Note that the two occurrences of the attribute

Name in the join can be distinguished by preceding each with the corresponding

relation name. The first attribute is labeled VERSION.Name and the second similarly

named attribute is called SOME_DBMS./Vame.

Figure D in Example 4.3 demonstrates that many of the tuples in the resulting

tables are not required for answering the query. We could have approached the se¬

lection on the table of Figure A in Example 4.1, choosing only relational DBMSs

and thereby giving a joined table as shown in Figure Ei in Example 4.3. But if we

had selected only those rows or tuples from Figure B in Example 4.2, released after

1984, and joined this reduced set of tuples with the table SOME-DBMS, we would

get a smaller table as illustrated in Figure Eii in Example 4.3. The response to the

query is obtained by selecting only those tuples from one of the tables in Figure E

that satisfy the two conditions of the query (in other words, taking a “horizontal

subset” of the tables of Figure E). The resulting tuples are given in Figure 4. la. The

names of the companies are obtained by taking a “vertical subset” of the table on

the column Company (in other words, projecting the table of Figure 4.1a on the

column Company). The result is shown in Figure 4.1b. The method of determining

which operation to perform first is the topic of query optimization, which we discuss

in Chapter 10.

The join is just one way in which data in a relational database can be manipu¬

lated. Several kinds of data manipulation languages have been defined for the rela¬

tional model. Most relational data manipulation languages are more assertional than

procedural. In a purely assertional data manipulation language the target data are

specified by stating their properties instead of describing how they can be retrieved.

The majority of languages are based on a combination of relational algebra and re-

Figure 4.1 (a) Selecting only some tuples from the join of relation SOME_DBMS relation VER¬
SION and (b) projecting on the column Company.

VERSION.

Name Release Year

SOME_DBMS.

Name Data—Model Company

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems
Data-R 3.0 1986 Data-R Relational WXY Inc.

Tables 1.0 1987 Tables Relational ABC

Company

BCD Systems

WXY Inc.

ABC

(a) (b)

4.1 Introduction 151

lational calculus. We look at these in more depth in Sections 4.3 and 4.4, respec¬
tively.

Example 4.4 looks at the relational rules that define certain properties that the
database must satisfy.

Example 4.4 If we intend to keep only information on currently available DBMS pack¬

ages in our database, we could specify that in our VERSION relation the

release year of a version not go beyond the current year. We could also

specify that the DBMS name be unique. With the unique name and tuple

properties, it is apparent that the name determines the company that pro¬

duces the DBMS and its data model. We may conclude that Name uniquely

determines Company and Name uniquely determines Data_Model. ■

This unique identification is an integrity constraint, which ensures that each

instance of an entity is distinguishable. Functional dependency is also a form of

constraint, as it specifies which combination of values is legal. Certain constraints

are defined in terms of functional dependencies between the attributes and form the

basis of the normalization theory (see Chapters 6 and 7). The entity and referential

integrity rules are two general rules that all relational databases are expected to sat¬

isfy. Both rules will be studied in Section 4.2.8. Additional rules may also be defined
for the application in hand.

Relational database theory borrows heavily from set algebra; therefore a brief

review of set concepts is given in the following section. Some data manipulation

languages make use of first-order predicate calculus and the relevant material is

briefly covered in Section 4.4. The material presented here is not exhaustive but

should be sufficient to understand the relational model.

4.1.1 A Brief Review of Set Theory

A set is well-defined collection of objects. It is commonly represented by a list of its

elements (called members) or by the specification of some membership condition.

The intension of a set defines the permissible occurrences by specifying a member¬

ship condition. The extension of the set specifies one of numerous possible occur¬

rences by explicitly listing the set members. These two methods of defining a set are

illustrated in the following example.

Example 4.5 Intension of set G: {g|g is an odd positive integer less than 20}

Extension of set G: {1,3,5,7,9,11,13,15,17,19} H

A set is determined by its members. The number 3 is a member of the set G

and this is denoted by 3 e G. Given an object g and the set G exactly one of the

152 Chapter 4 The Relational Model

statements “g is a member of G” (written as g e G) or “g is not a member of G”

(written as g i G) is true.

Operations on sets include the union, intersection, cartesian product, and differ¬

ence operations. The union of two sets G and H (written G U H) is the set that

contains all elements belonging either to set G or to set H. If sets G and H have any

elements in common, the union will not duplicate those members. The intersection

of the sets G and H (written G fl H) is the set composed of all elements belonging

to both G and H. If G and H are two sets, then G is included in H, written as G C

H, if and only if each member of G is also a member of H. Should there be an

element h such that h e H but h ^ G, then G is a proper subset of H, written as
G C H.

Example 4.6 If we let set G represent the companies that produce a hierarchical database

and set H represent those that produce a relational database then, from the

SOME_DBMS relation of Figure A in example 4.1 we have:

G = {BCD}

H = {WXY Inc., BCD, ABC}

G U H = {WXY Inc., BCD, ABC}

G D H = {BCD}

Note that G Cl H C G and G fl H C H and in the above example G C
H. ■

The cartesian product of two sets G and H (denoted by G x H) is defined in

terms of ordered pairs or 2-tuples. An ordered pair is conventionally denoted by

enclosing it in parentheses, e.g., (g,h). The product G x His the set consisting of

all ordered pairs (g,h) for which g e G and h e H. (Note that here the symbols g and

h are being used as variables.) Example 4.7 shows the cartesian product of the sets
J and K.

Example 4.7 Let J = {BCD, ABC}, and

K = {Hierarchical, Relational}

J x K = {(BCD,Hierarchical), (BCD,Relational),

(ABC,Hierarchical), (ABC, Relational)}

K x J = {(Hierarchical,BCD), (Relational,BCD),

(Hierarchical,ABC), (Relational,ABC)} ■

Note that the individual n-tuples in the cartesian product are ordered. Therefore,

J x K and K X J are entirely different sets, as illustrated in Example 4.7.

The difference of two sets G and H (denoted G - H) is the set that contains
all elements that are members of G but not of H.

Example 4.8 If G = {BCD}, and

H = {WXY Inc., BCD, ABC} then the sets G - H and H - G are

4.2 Relational Database 153

G — H = <j> (the null set)

^ ' H - G = {WXY Inc., ABC} ■

In set theory, relations between sets can be of many kinds, such as a subset of

(C), complement of (—i), and so on. Pairing relations can also be defined in terms

of some specific criterion. We can, for instance, pair the application name and the

budget code for the application. In fact, this is what we did in the example relation

APPLICATION of Figure Bi of Example 4.2. Pairing relations in general can be

defined on sets of the same or different kinds. If G and H are sets of objects, g e G
and h e H, then the possible pairing relations of degree 2 are:

(g,g) (g,h) (h,g) (h,h)

Each is a relation. We can see that a pairing relation must be a subset of the cartesian

product of the sets involved in the relationship. In the four relationships above, these

cartesian products areG x G,G x H, H x G, and H x H, respectively.

Example 4.9 The pairs of DBMSs produced by one company:

{(Data, Data-R), (ISS, ISS/R), (ISS,ISS/R-PC), (ISS/R,ISS/R-PC), (ISS/R,

ISS), (Data-R, Data), (ISS/R-PC,ISS), (ISS/R-PC,ISS/R)}

We can see that this is a subset of Name x Name. ■

4.2 Relational Database

In this section we cover the terminology, notation, and structural aspects of relational

databases. We first look at the basic building blocks of relational systems: the attri¬

butes and the domains on which they are defined. Later we specify the meaning of

tuples and then look at relations and their schemes.

4.2.1 Attributes and Domains

An object or entity is characterized by its properties (or attributes). In conventional

file systems the term field refers to the smallest item of data with some practical

meaning, i.e., a field is used to capture some specific property of the object. In

relational database systems, attributes correspond to fields. For a given application,

an attribute may only be allowed to take a value from a set of the permissible values.

This set of allowable values for the attribute is the domain of the attribute. In Ex¬

amples 4.10 and 4.11 we illustrate the definition of domains.

Example 4.10 If persons can only be between 0 and 255 years of age, then the attribute

Age will be defined over the domain P_Age where

P_Age: {x | x a positive integer A 0 < x < 255} ■

154 Chapter 4 The Relational Model

Note that the value of 255 in Example 4.10 may appear to have been arbitrarily

chosen. The range in fact neatly fits into a 8-bit byte. In practical database design,

as in this example, the choices are never arbitrary but depend on the system require¬

ments.

Example 4.11 In the development of a software package, an estimate of the number of

lines of code is made and this can only be a positive integer greater than

zero. We can therefore define a domain consisting of only positive integers

for this application. ■

Definition: Domain:

We define a domain, Di; as a set of values of the same data type.

The domain D;, a set having “homogeneous” members, is conceptually similar

to the data type concept in programming languages. A domain, like a data type, may

be unstructured (atomic) or structured. Domain Dj is said to be simple if all its

elements are nondecomposable (i.e., atomic). (When we use the term decomposable,

we mean in terms of the DBMS.) In typical DBMSs, atomic domains are general

sets, such as the sets of integers, real numbers, character strings, and so on. Atomic

domains are sometimes referred to as application-independent domains because

these general sets are not dependent on a particular application. We can also define

application-dependent domains by specifying the values permitted in the particular

database. Structured or composite domains can be specified as consisting of nona-

tomic values. The domain for the attribute Address, for instance, which specifies

street number, street name, city, state, and zip or postal code is considered a com¬
posite domain.

It is unfortunate that many of the currently available commercial relational da¬

tabase systems do not support the concept of domains. Such support of both appli¬

cation-independent and user-defined domains specified as types in programming lan¬

guages allows for the validation of the value assigned to an attribute.

Attributes are defined on some underlying domain. That is, they can assume

values from the set of values in the domain. Attributes defined on the same domain

are comparable, as these attributes draw their values from the same set. It is mean¬

ingless to compare attributes defined on different domains, as exemplified below.

Example 4.12 Assume that in a given city house numbers are between 0 and 255. The

domain HLNumber for the attribute House-Numbers can be defined to be

the set of values from 0 to 255. The attribute House-Numbers is defined

over the same domain as Age (Example 4.10) and without any additional

constraints, they are comparable. Semantically, we say that the domain of

Age represents a value that is a measure of a number of years and the do¬

main HLNumber represents a part of an address. Therefore, comparing the

age in years of persons with the house number part of an address is mean-

4.2 Relational Database 155

ingless. Consequently, we have to consider the domain of House-Numbers

- as distinct from the domain of Age, and these domains are not com¬
patible. ■

It is possible, however, to relax the above rule for two semantically compatible

domains Dj and Dj where D(D Dj j= <f>. Then attribute A, defined on domain Dj and

attribute A} defined on Dj can be compared if a(€ Dj n D> and a,- e Dj D Dr Here,
a, and aj are the values of attributes A, and Aj, respectively.

It has become traditional to denote attributes by uppercase letters from the be¬

ginning of the alphabet. Thus, 4, B, C, . . . , with or without subscripts denote

attributes. In applications, however, attributes are given meaningful names. Sets of

attributes are denoted by uppercase letters from the end of the alphabets such as
. . . , X, Y, Z.

Using the concept of attributes and domains, we can now define a tuple.

4.2.2 Tuples

An entity type having n attributes can be represented by an ordered set of these

attributes called an n-tuple. Assume that these n attributes take values from the

domains D,, . . . , Dn. The representation of the entity must then be a member of

the set Dj x D2 x . . . x Dn, as the resulting set of this cartesian product contains
all the possible ordered n-tuples.

Example 4.13 A job applicant may be characterized for a particular application by her or

his name, age, and profession. An applicant, John Doe, who is 55 years old

and is an analyst, may be represented as a 3-tuple: “John Doe, 55, analyst”

(Figure F). This is a possible ordered triple obtained from the cartesian prod¬

uct of the domain for attributes Name, Age, and Profession. The implication

of this 3-tuple is that an instance of the entity type has the value John Doe

for its attribute Name, the value 55 for Age, and the value analyst for

Profession. ■

Figure F Representation of a association among attributes.

Applicant

Name is

John Doe

NAME

Age is

55

Profession is

analyst

AGE PROFESSION

APPLICANT

156 Chapter 4 The Relational Model

A tuple is comparable to a record in conventional file systems and is used for

handling entities and relationships between entities. Tuples are generally denoted by

lowercase letters r, s, t, . . . of the alphabet. An n-tuple t can be specified as

t = (a,, . . . , an)

where each a; for 1 < i < n is a value in the domain Dj, and is the value of the

attribute A, in the tuple t. While it is required that the attribute names be different

for unambiguous identification, no such restriction exists for domains. We may have

the same domain for different attributes.

In the tuple representation above, the order of the attributes is significant, im¬

plicitly understood, and fixed (i.e., time invariant). If, however, we associate the

attribute names with the corresponding values, we can relax the ordering require¬

ment. Although the ordered set (a1; a2) is not equal to (a2, a^, we shall treat the sets

{(A^a,), (A2:a2)} and {(A2:a2), (A^a,)} as the same. Formally, we view a tuple as

a mapping from attribute names to values in the domains of the attributes.

Thus, a tuple can be represented in a number of ways, some of which are shown
below:

t =

t =

t =

t =

t =

(ai, . . .

(ai, • • •

(|A„ . .

((Ai: a^, .

(04| I 3l)>

an) attribute value order must be constant

> ^n)— attribute value can be

deduced from relative

ordering of the names

of the attribute

n | |^1> • • • » ^n|)

, (An.an))

> O^n I ^n))

In the above formulations the aj’s are values drawn from D„ the domain of Aj.

It is usual to denote the value of a tuple t over an attribute A, as t[A,], i.e., t[AJ =

a,. It is known as the projection of the tuple t over Aj.

We can define a simple projection (or attribute restriction) operation on a given

tuple. Let us represent the set of attributes of the tuple t by X, i.e., X = {Aj, . . . ,

AJ. Let Y = {Ak, . . . , Am} be a nonempty proper subset of X. Then the projec¬
tion of the tuple t over Y, denoted t[Y], is given by:

t[Y] = ((Aga;) | a; = t[A;], k < i < m, A;eX)

(We assume that the set of attributes and the tuple values can be rearranged such that
the attributes in set Y are consecutively ordered within X.)

Example 4.14 For the applicant tuple of Example 4.13, let t = (John Doe, 55, analyst).
We then have the following projections:

t[Name, Profession] = (John Doe, analyst)

t[Name, Age] = (John Doe, 55)

t[Age, Profession] = (55, analyst)

t[Name] = (John Doe)

t [Age] = (55)

t [Profession] = (analyst)

In addition, we could use a projection to reorder the attrubutes as follows:

t[Name, Profession, Age] = (John Doe, analyst, 55) H

4.2 Relational Database 157

4.2.3 Relations and Their Schemes

A relation consists of a homogeneous set of tuples. In the case of the SOMELDBMS

relation of Figure A, Example 4.1, all the tuples have a similar structure and contain

the same set of attributes. From another point of view, a relation is a subset of the
cartesian product of the domains.

Example 4.15 Let the set of job applicant names be S(= {Smith, Doe}, the set of job

applicant ages be S2 = {32,47,55}, and S the set of applicants, which ex¬

presses a correspondence between name and age, be {(Smith, 32),

(Doe,55)}. Now S is a subset of the cartesian product of the sets S| and S2,

where St x S2 = {(Smith,32), (Smith,47), (Smith, 55), (Doe,32),

(Doe,47), (Doe,55)}. ■

Since each tuple in a relation represents an identifiable instance of an object type,

duplicate tuples are not allowed. (This also follows from the definition of a relation

in terms of sets.) Note that the set of tuples in the relation are not static but can vary

with time. In our discussion of tuples, the set of attributes on which the tuples are

defined is the invariant. This is called the scheme of the relation or the relation

scheme.

The relation has two parts: a relation scheme (or header), and a time-varying

set of tuples (or body). The semantics of the specific relationships among the attri¬

butes, as we have seen, are not represented in the relation. The attribute names are

specified in a relation scheme, i.e., the syntax is specified. The ordering of the attri¬

butes in the scheme is immaterial; however, the tuple layout matches this ordering.

The entity job applicant of Example 4.13 can be represented by a relation such as

APPLICANT(Name, Age, Profession). Examples of relation schemes used so far in

this chapter are given below in Example 4.16.

Example 4.16 Examples of relation schemes:

SOME-DBMS (Name, Data-Model, Company)

VERSION (Name, Version#, Year)

WHERE_USED (DBMS-Name, Application-Name)

APPLICANT (Name, Age, Profession) ■

We can formally define a relation in terms of set concepts. A mathematical relation

is a set that expresses a correspondence between two or more sets and is a subset of

the cartesian product of the sets. For example, a binary relation expresses a corre¬

spondence between two sets. This is illustrated below.

On a more formal basis we represent the relation scheme as R(A,, . . . , An),

the domain of each attribute Aj by D, for 1 < i < n, and define the relation R over

the set of attributes R, denoted R(R), as a set of n-tuples such that:

R(R) C D, x D2 . . . x D„

158 Chapter 4 The Relational Model

The value n (the number of attributes in the relation) is known as the degree or

arity of the relation. A relation of degree one is called an unary relation, of degree

two a binary relation, and of degree n an n-ary relation.1 Attribute names could be

considered a convenience rather than a formal requirement. However, when a num¬

ber of attributes of a relation are defined on the same domain, the importance of

unique attribute names becomes evident. Codd (Codd 70) originally described the

relational model referring only to domains.

We formally represent a relation R as a 4-tuple:

R(Tr, ANr, n, m)

where TR represents the set of tuples, m = |Tr| is the cardinality of the relation (i.e.,

the number of tuples in the relation), ANR represents the set of attribute names, and

n = |ANr| is the cardinality of the set of attribute names (the degree or arity of the

relation).

In the above definition of a relation, we have specified the relation having these

constituents: a set of tuples, a scheme (or set of attribute names), the degree, and the

cardinality of the relation. The last two are conceptual values as they can be obtained

from the set of attributes and tuples, respectively.

It is therefore more usual to represent the relation R defined on a relation scheme

R in terms of just the scheme and set of tuples. The set of tuples of a relation, unless

there is confusion, can be expressed by the name of the relation. We shall use an

uppercase letter to represent both the relation name and its set of tuples and a bold

uppercase letter for the relation’s scheme and its set of attributes. This gives us a

shorter form of the representation of a relation as simply R(R). The degree (or arity)

of the relation is given by the number of attributes in scheme R, i.e., |R|, while the

cardinality of the relation is given by the number of tuples in R and is indicated by

|R|. As such, R(R) represents the relation R defined on scheme R having the set of
tuples R.

We discuss other methods of representing a relation in the following section.

4.2.4 Relation Representation

Conceptually, a relation can be represented as a table. Remember that the contents

of a relation are positionally independent, while a table gives the impression of po¬

sitional addressing. Each column of the table represents an attribute and each row

represents a tuple of the relation. Figure 4.2 shows the tabular representation of the
APPLICANT relation of Example 4.13.

It is a myth that a relation is just a flat file. A table is just one of the conceptual

representations of a relation. It is possible to store the relations using, for instance,
inverted files.

As seen in Section 4.2.2, a tuple may be represented either as a labeled n-tuple

or as an ordered n-tuple. The labeled n-tuples are represented using distinct attribute

names Au . . . , An and the values a1; . . . , an from the corresponding domains.

The labeled n-tuples consist of unordered attribute value pairs: (Ax:ax,

'A domain can be thought of as a unary relation.

4.2 Relational Database 159

Figure 4.2 Example representation of a relation as a table.

APPLICANT:

Name Age Profession

John Doe 55 Analyst

Mirian Taylor 31 Programmer

Abe Malcolm 28 Receptionist

Adrian Cook 33 Programmer

Liz Smith 32 Manager

An:an). Ordered n-tuples are represented simply as (ai, . . . , an), where the values

appear in the same order as their domains in the cartesian product of which the

relation is a subset.

4.2.5 Keys

In the relational model, we represent the entity by a relation and use a tuple to

represent an instance of the entity. Different instances of an entity type are distin¬

guishable and this fact is established in a relation by the requirement that no two

tuples of the same relation can be the same. It is possible that only a subset of the

attributes of the entity, and therefore the relation, may be sufficient to distinguish

between the tuples. However, for certain relations, such a subset may be the com¬

plete set of attributes. In the instance of an EMPLOYEE relation, values of an attrib¬

ute such as Emp# may be sufficient to distinguish between employee tuples. Such a

subset of attributes, let us say X of a relation R(R), XCR, with the following time-

independent properties is called the key of the relation:

• Unique identification: In each tuple of R, the values of X uniquely identify

that tuple. To elaborate, if s and t represent any two tuples of a relation and if

the values s[X] and t[X] for the attributes in X in the tuples s and t are the

same, then s and t must be the same tuple. Therefore, s[X] = t[X] => s = t.

Here the symbol is used to indicate that the left-hand side logically implies

the right-hand side.

® Nonredundancy: No proper subset of X has the unique identification property,

i.e., no attribute KeX can be discarded without violating the unique

identification property.

Since duplicate tuples are not permitted in a relation, the combination of all

attributes of the relation would always uniquely identify its tuples. There may be

more than one key in a relation; all such keys are known as candidate keys. One of

the candidate keys is chosen as the primary key; the others are known as alternate

keys. An attribute that forms part of a candidate key of a relation is called a prime

attribute.

160 Chapter 4 The Relational Model

Example 4.17 In many applications, arbitrary attributes are assigned to the objects and

these attributes play the role of keys. Emp# is such a key (the domain for

the attribute Emp# is application specific and unique for a given applica¬

tion). A Social Security number in the U.S. and a Social Insurance number

in Canada also identify a person uniquely in these countries. Both numbers

are of nine digits and are assigned to individuals without any coordination

between these countries. It is likely that the same number may identify two

different individuals. Furthermore, there are many individuals who, having

lived and worked in both countries, have been assigned different values for

their Social Security numbers and Social Insurance numbers. ■

4.2.6 Relationship

The key property and the fact that every tuple must have a key are used to capture

relationships between entities.

Example 4.18 An employee may perform different roles in the software development teams

working on different products. John Doe may be an analyst in the develop¬

ment team for product “Super File System” and manager of the team for

product “B+ + l”. The different job requirements are given in the relation
JOB-FUNCTION. ■

ASSIGNMENT is a relationship in Figure 4.3a between the entities Employee,

Product and Job-Function. A possible representation of this relationship is by using
the entities involved in the relationship:

ASSIGNMENT (Employee, Product, Job-Function)

Using the unique identification properties of keys we can replace the Employee,

Product, and Job-Function entities in ASSIGNMENT by their keys. The keys act as

surrogates for their respective entities. We can represent, let us say, the scheduled
duties of an employee by the relation scheme:

ASSIGNMENT {Emp#, Prod#, Job#)

ASSIGNMENT is a relation that establishes a relationship among three “owner”

relations. Such a relation may be thought of as an associative relation. The key of

the associative relation is always the union of the key attributes of the owner rela¬

tions. Thus the key of the relation ASSIGNMENT is the combination of the attri¬
butes Emp#, Prod#, Job#.

The attributes Emp#, Prod#, and Job# in the relation ASSIGNMENT are

known as foreign keys. A foreign key is an attribute or set of attributes of a relation,

let us say R(R), such that the value of each attribute in this set is that of a primary

key of relation S(S) (R and S need not be distinct). For instance, we could not have

a tuple in the ASSIGNMENT relation of Figure 3 with the value 127 for the attribute

Emp# unless there were a tuple in the EMPLOYEE relation with that value for

Emp#. We look at rules applicable to primary and foreign keys in Section 4.2.8.

4.2 Relational Database 161

Figure 4.3 (a) E-R diagram for employee role in development teams; (b)
schemes; and (c) sample relations.

corresponding relation

(a)

EMPLOYEE (Emp#, Emp_Name, Profession)

PRODUCT (Prod#, ProdName, Prod Details)

JOB FUNCTION (Job#. Title)

ASSIGNMENT (Emp#, Prod#, Job#)

(b)

EMPLOYEE: PRODUCT:

Prod# Prod Name Prod Details

HEAP1
BINS9
FM6
B++1
B++2

HEAP_SORT
B IN ARY_SE ARCH
FILE_MANAGER
B++_TREE
B++TREF.

ISS module
ISS/R module
ISS/R-PC subsys
ISS/R turbo sys
ISS/R-PC turbo

Emp# Name Profession

101 Jones Analyst
103 Smith Programmer
104 Lalonde Receptionist
106 Byron Receptionist

107 Evan VPR&D

110 Drew VP Operations

112 Smith Manager

JOB_FUNCTION:

Job# Title

1000 CEO

900 President

800 Manager

700 Chief Programmer

600 Analyst

ASSIGNMENT:

Emp# Prod# Job#

107 HE API 800
101 HEAP1 600
110 BINS9 800

103 HEAP1 700
101 BINS9 700

110 FM6 800

107 B++1 800

(c)

4.2.7 Relational Operations

Codd (Codd 72) defined a “relationally complete” set of operations and the collec¬

tion of these, which take one or more relations as their operand(s), forms the basis

of relational algebra (to be discussed in Section 4.3). In the same paper Codd in¬

cluded the formal definition of relational calculus (now known as tuple calculus). An

162 Chapter 4 The Relational Model

alternative relational calculus called the domain calculus has also been proposed. (We

study tuple and domain calculus in Section 4.4).

A number of operations are defined in these approaches to manipulate the rela¬

tions. Relations can be derived from other relations (by taking a subset of the set of

attributes) or a number of relations can be combined to define a new relation (by

joining the relations). The transformation of relations is useful in obtaining results

from the database.

Relational algebra, tuple calculus, and domain calculus form the underlying

structure of the special-purpose languages provided by commercial database systems

for data manipulation. A sampling of the commercially used data manipulation (or

query) languages will be studied in Chapter 5.

4.2.8 Integrity Rules

The relational model includes two general integrity rules. These integrity rules im¬

plicitly or explicitly define the set of consistent database states, or changes of state,

or both. Other integrity constraints can be specified, for example, in terms of de¬

pendencies during database design (see Chapter 6). In this section we restrict our¬

selves to the integrity rules formulated by Codd (Codd 70).

Integrity Rule 1 (Entity Integrity)

Earlier in this section we defined two properties for keys: unique identification and

nonredundancy. Integrity rule 1 is concerned with primary key values. Before we

formally state the rule, let us look at the effect of null values in prime attributes. A

null value for an attribute is a value that is either not known at the time or does not

apply to a given instance of the object. It may also be possible that a particular tuple

does not have a value for an attribute; this fact could be represented by a null value.

If any attribute of a primary key (prime attribute) were permitted to have null

values, then, because the attributes in the key must be nonredundant, the key cannot

be used for unique identification of tuples. This contradicts the requirements for a

primary key. Consider the relation P(P) in Figure 4.4a. The attribute Id is the pri-

Figure 4.4 (a) Relation without null values and (b) relation with null values.

P: P:

Id Name

101 Jones

103 Smith

104 Lalonde

107 Evan

110 Drew

112 Smith

Id Name

101 Jones

@ Smith

104 Lalonde

107 Evan

110 Drew

@ Lalonde

@ Smith

(b)

4.2 Relational Database 163

mary key for P(P). If null values (represented as @) were permitted, as in Figure

4.4b, then the two tuples <@,Smith> are indistinguishable, even though they may

represent two different instances of the entity type employee. Similarly, the tuples

<@,Lalonde> and <104,Lalonde>, for all intents and purposes, are also indistin¬

guishable and may be referring to the same person. As instances of entities are dis¬

tinguishable, so must be their surrogates in the model.

Integrity rule 1 specifies that instances of the entities are distinguishable and

thus no prime attribute (component of a primary key) value may be null. This rule is

also referred to as the entity rule. We could state this rule formally as:

Definition: Integrity Rule 1 (Entity Integrity):

If attribute A of relation R(R) is a prime attribute of R(R), then A cannot accept

null values.

Integrity Rule 2 (Referential Integrity)

Integrity rule 2 is concerned with foreign keys, i.e., with attributes of a relation

having domains that are those of the primary key of another relation.

Relation (R) may contain references to another relation (S). Relations R and S

need not be distinct. Suppose the reference in R is via a set of attributes that forms

a primary key of the relation S. This set of attributes in R is a foreign key. A valid

relationship between a tuple in R to one in S requires that the values of the attributes

in the foreign key of R correspond to the primary key of a tuple in S. This ensures

that the reference from a tuple of the relation R is made unambiguously to an existing

tuple in the S relation. The referencing attribute(s) in the R relation can have null

value(s); in this case, it is not referencing any tuple in the S relation. However, if

the value is not null, it must exist as the primary attribute of a tuple of the S relation.

If the referencing attribute in R has a value that is nonexistent in S, R is attempting

to refer a nonexistent tuple and hence a nonexistent instance of the corresponding

entity. This cannot be allowed. We illustrate this point in Example 4.19.

Example 4.19 Consider the example of employees and their managers. Every employee

has a manager and as managers are also employees, we may represent man¬

agers by their employee numbers, if the employee number is a key of the

relation employee. Figure G illustrates an example of such an employee

relation. The Manager attribute represents the employee number of the man¬

ager. Manager is a foreign key; note that it is referring to the primary key

of the same relation. An employee can only have a manager who is also an

employee. The chief executive officer (CEO) of the company can have him¬

self or herself as the manager or may take null values. Some employees may

also be temporarily without managers, and this can be represented by the

Manager taking null values.

164 Chapter 4 The Relational Model

Figure G Foreign keys.

Emp# Name Manager

101 Jones @

103 Smith 110

104 Lalonde 107

107 Evan 110

110 Drew 112

112 Smith 112

(We can see that using a single null value for all cases can cause problems.

Such problems are a topic of research and beyond the scope of this text.)

Definition: Integrity Rule 2 (Referential Integrity):

Given two relations R and S, suppose R refers to the relation S via a set of

attributes that forms the primary key of S and this set of attributes forms a

foreign key in R. Then the value of the foreign key in a tuple in R must either

be equal to the primary key of a tuple of S or be entirely null.

If we have the attribute A of relation R(R) defined on domain D and the primary

key of relation S(S) also defined on domain D, then the values of A in tuples of R(R)

must be either null or equal to the value, let us say v, where v is the primary key

value for a tuple in S(S). Note that R(R) and S(S) may be the same relation. The

tuple in S(S) is called the target of the foreign key. The primary key of the refer¬

enced relation and the attributes in the foreign key of the referencing relation could

be composite.

Referential integrity is very important. Because the foreign key is used as a

surrogate for another entity, the rule enforces the existence of a tuple for the relation

corresponding to the instance of the referred entity. In Example 4.19, we do not

want a nonexisting employee to be manager. The integrity rule also implicitly defines

the possible actions that could be taken whenever updates, insertions, and deletions
are made.

If we delete a tuple that is a target of a foreign key reference, then three explicit
possibilities exist to maintain database integrity:

• All tuples that contain references to the deleted tuple should also be deleted.

This may cause, in turn, the deletion of other tuples. This option is referred to

as a domino or cascading deletion, since one deletion leads to another.

• Only tuples that are not referenced by any other tuple can be deleted. A tuple

referred by other tuples in the database cannot be deleted.

• The tuple is deleted. However, to avoid the domino effect, the pertinent foreign
key attributes of all referencing tuples are set to null.

4.3 Relational Algebra 165

4.3

Similar actions are required when the primary key of a referenced relation is

updated. An update of a primary key can be considered as a deletion followed by an
insertion.

The choice of the option to use during a tuple deletion depends on the applica¬

tion. For example, in most cases it would be inappropriate to delete all employees

under a given manager on the manager’s departure; it would be more appropriate to

replace it by null. Another example is when a department is closed. If employees

were assigned to departments, then the employee tuples would contain the depart¬

ment key too. Deletion of department tuples should be disallowed until the employ¬

ees have either been reassigned or their appropriate attribute values have been set to

null. The insertion of a tuple with a foreign key reference or the update of the foreign

key attributes of a relation require a check that the referenced relation exists.

Although the definition of the relational model specifies the two integrity rules,

it is unfortunate that these concepts are not fully implemented in all commercial

relational DBMSs. The concept of referential integrity enforcement would require an

explicit statement as to what should be done when the primary key of a target tuple
is updated or the target tuple is deleted.

Relational Algebra

4.3.1

Relational algebra is a collection of operations to manipulate relations. We have

informally introduced some of these operations such as join (to combine related tu¬

ples from two relations), selection (to select particular tuples of a relation) and pro¬

jection (to select particular attributes of a relation). The result of each of these oper¬
ations is also a relation.

Relational algebra is a procedural language. It specifies the operations to be

performed on existing relations to derive result relations. Furthermore, it defines the

complete scheme for each of the result relations. The relational algebraic operations

can be divided into basic set-oriented operations and relational-oriented operations.

The former are the traditional set operations, the latter, those for performing joins,

selection, projection, and division.

Basic Operations

Basic operations are the traditional set operations: union, difference, intersection, and

cartesian product. Three of these four basic operations—union, intersection, and dif¬

ference—require that operand relations be union compatible.2 Two relations are

union compatible if they have the same arity and one-to-one correspondence of the

attributes with the corresponding attributes defined over the same domain. The carte¬

sian product can be defined on any two relations. Two relations P(P) and Q(Q) are

2We assume that in the case of the union, difference, and intersection operations, the names of the attributes of the operand
relations are the same and that the result relation inherits these names. If these names are not identical, some convention, for
instance, using the names from the first operand relation, must be provided to assign names to the attributes of the result

relation.

166 Chapter 4 The Relational Model

said to be union compatible if both P and Q are of the same degree n and the

domains of the corresponding n attributes are identical, i.e., if P = {P,, . . . , Pn}
and Q = {Qu . . . , Qj then

Dom(Pi) = Dom((2i) for i = {1,2, . . . , n}

where Dom(Pj) represents the domain of the attribute P,.

Example 4.20 In the examples to follow, we utilize two relations P(P) and Q(Q) given in

Figure H. R(R) is a computed result relation. We assume that the relations

P(P) and Q(Q) in Figure H represent employees working on the develop¬

ment of software application packages J] and J2, respectively.

Figure H Union Compatible Relations

P: Q:

Id Name

101 Jones

103 Smith

104 Lalonde

107 Evan

110 Drew

112 Smith

Id Name

103 Smith

104 Lalonde

106 Byron

110 Drew

UNION (U)

If we assume that P(P) and Q(Q) are two union-compatible relations, then the union

of P(P) and Q(Q) is the set-theoretic union of P(P) and Q(Q). The resultant relation,
R = P U Q, has tuples drawn from P and Q such that

R = {t | t e P V t e Q} and
max(|P|,|Q|) < |R| < |P| + |Q|

The result relation R contains tuples that are in either P or Q or in both of them.
The duplicate tuples are eliminated.

Remember that from our definition of union compatibility the degree of the

relations P(P), Q(Q), and R(R) is the same. The cardinality of the resultant relation

depends on the duplication of tuples in P and Q. From the above expression, we can

see that if all the tuples in Q were contained in P, then R = P and |R| = |P|, while
if the tuples in P and Q were disjoint, then |R| = |P| + |Q|.

Example 4.21 R, the union of P and Q given in Figure H in Example 4.20, is shown in

Figure Ii. R represents employees working on the packages J, or J2, or both

of these packages. Since a relation does not have duplicate tuples, an em-

4.3 Relational Algebra 167

Figure I Results of (i) union, (ii) difference, and (iii) intersection
operations.

ployee working on both J! and J2 will appear in the relation R only

once. ■

R:

Id Name

101 Jones

107 Evan

112 Smith

(ii) P -

R:

Id Name

103 Smith

104 Lalonde

110 Drew

(iii) P fl Q

R:

Id Name

101 Jones

103 Smith

104 Lalonde

106 Byron

107 Evan

110 Drew

112 Smith

(i)PUQ

Difference (-)

The difference operation removes common tuples from the first relation.

R = P - Q such that

R = {t | t e P A t 4. Q} and

0 < |R| < |P|

Example 4.22 R, the result of P — Q, gives employees working only on package J, (Fig¬

ure Iii in Example 4.21). Employees working on both packages J! and J2

have been removed. ■

Intersection (n)

The intersection operation selects the common tuples from the two relations.

R = P D Q where

R = {t | t e P A t e Q} and

0 < |R| < min(|P|,|Q|)

Example 4.23 The resultant relation of P D Q is the set of all employees working on both

the packages (Figure Iiii of Example 4.21). ■

168 Chapter 4 The Relational Model

The intersection operation is really unnecessary. It can be very simply expressed

as:

p n q = p - (P - Q)

It is, however, more convenient to write an expression with a single intersection

operation than one involving a pair of difference operations.

Note that in these examples the operand and the result relation schemes, includ¬

ing the attribute names, are identical i.e., P = Q = R. If the attribute names of

compatible relations are not identical, the naming of the attributes of the result rela¬

tion will have to be resolved.

Cartesian Product (x)

The extended cartesian or simply the cartesian product of two relations is the conca¬

tenation of tuples belonging to the two relations. A new resultant relation scheme is

created consisting of all possible combinations of the tuples.

R = PxQ

where a tuple r e R is given by {t, || t2 | t] e P A t2 e Q}, i.e., the result relation is

obtained by concatenating each tuple in relation P with each tuple in relation Q.
Here, || represents the concatenation operation.

The scheme of the result relation is given by:

R = P || Q

The degree of the result relation is given by:

1*1 = |P| + IQI

The cardinality of the result relation is given by:

|R| = |P| * |Q|

Example 4.24 The cartesian product of the PERSONNEL relation and SOFTWARE

PACKAGE relations of Figure Ji is shown in Figure Jii. Note that the rela¬

tions P and Q from Figure H of Example 4.20 are a subset of the PERSON¬
NEL relation. ■

4.3 Relational Algebra 169

Figure J (i) PERSONNEL(Emp#,Name) and SOFTWARE_PACK-
AGES(S) represent employees and software packages re¬
spectively; (ii) the Cartesian product of PERSONNEL and
SOFTWARE_PACKAGES.

PERSONNEL: SOFTWARE_PACKAGES:

Id Name

101 Jones

103 Smith

104 Lalonde

106 Byron

107 Evan

110 Drew

112 Smith

0)

P .Id P .Name S

101 Jones Ji
101 Jones J2
103 Smith J,

103 Smith h
104 Lalonde J.
104 Lalonde h
106 Byron J.
106 Byron h
107 Evan J,
107 Evan h
110 Drew J.
110 Drew J2

112 Smith J,
112 Smith h

(ii) ■

The union and intersection operations are associative and commutative; there¬

fore, given relations R(R), S(S), T(T):

R U (S U T) = (R U S) U T = (S U R) U T = T U (S U R) = . . .

r n (S n T) = (R n s) n t = . . .

The difference operation, in general, is noncommutative and nonassociative.

R — S ifc S — R noncommutative

R — (S — T) =£ (R — S) — T nonassociative

170 Chapter 4 The Relational Model

4.3.2 Additional Relational Algebraic Operations

The basic set operations, which provide a very limited data manipulation facility,

have been supplemented by the definition of the following operations: projection,

selection, join, and division. These operations are represented by the symbols tt, cr,

[XI, and -r-, respectively. Projection and selection are unary operations; join and

division are binary.

Projection (tt)

In Section 4.2.2 we defined the projection of a tuple. The projection of a relation is

defined as a projection of all its tuples over some set of attributes, i.e., it yields a

“vertical subset” of the relation. The projection operation is used to either reduce

the number of attributes in the resultant relation or to reorder attributes. In the first

case, the arity (or degree) of the relation is reduced. The projection operation is

shown graphically in Figure 4.5. In Figure 4.5a we illustrate the possibility that when

the number of attributes in the relation is reduced, the cardinality may also be re¬

duced; this is due to the deletion of duplicate tuples in the projected relation. In

Figure 4.5b we illustrate the rearrangment of the attributes of a relation. Figure 4.5c

shows the projection of the relation PERSONNEL on the attribute Name. The cardi¬

nality of the result relation is also reduced due to the deletion of duplicate tuples.

We defined the projection of a tuple t; over the attribute A, denoted tj[A] or

TT^Ctj), as (a), where a is the value of tuple tj over the attribute A. Similarly, we

Figure 4.5 Projection: (a) graphical representation of reduction of degree or a relation; (b) graph¬
ical representation of re-ordering of attributes; (c) projection of relation PERSONNEL
over attribute Name.

PERSONNEL:

Id Name

101 Jones
103 Smith
104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith

V

Name

Jones
Smith
Lalonde
Byron
Evan
Drew

(a) (b) (c)

4.3 Relational Algebra 171

define the projection of a relation T(T), denoted by T[A] or tt^(T), on the attribute

A. This is defined in terms of the projection for each tuple in tj e T on the attribute
A as:

T[A] = {aj | tj [A] = a, A tj e T}

where T[A] is a single attribute relation and |T[A]| < |T|. The cardinality |T[A]| may

be less than the cardinality |T| because of the deletion of any duplicates in the result.
A case in point is illustrated in Figure 4.5c.

Similarly, we can define the projection of a relation on a set of attribute names,

X, as a concatenation of the projections for each attribute A in X for every tuple in
the relation.

T[X] = { || tj[A] | t, e T}
A eX

where || tj[A] represents the concatenation of all tj[A] for all A e X.

A e X

Simply stated, the projection of a relation P(P) on the set of attribute names Y

e P is the projection of each tuple of the relation P on the set of attribute names Y.

Note that the projection operation reduces the arity if the number of attributes

in X is less than the arity of the relation. The projection operation may also reduce

the cardinality of the result relation since duplicate tuples are removed. (Note that

the projection operation produces a relation as the result. By definition, a relation

cannot have duplicate tuples. In most commercial implementations of the relational

model, however, the duplicates would still be present in the result.)

Selection (ct)

Suppose we want to find those employees in the relation PERSONNEL of Figure Ji

of Example 4.24 with an Id less than 105. This is an operation that selects only some

of the tuples of the relation. Such an operation is known as a selection operation.

The selection operation is represented graphically in Figure 4.6a.

The projection operation yields a vertical subset of a relation. The action is

defined over a subset of the attribute names but over all the tuples in the relation.

The selection operation, however, yields a horizontal subset of a given relation, i.e.,

the action is defined over the complete set of attribute names but only a subset of the

tuples are included in the result. To have a tuple included in the result relation, the

specified selection conditions or predicates must be satisfied by it. The selection

operation, represented by the symbol u in this text, is sometimes known as the re¬

striction operation.

Example 4.25 Consider the selection operation

(jid < l05 (PERSONNEL)

over the relation PERSONNEL of Figure J of Example 4.24. The selection

is over the relation PERSONNEL and the predicate specifies that only those

tuples in PERSONNEL are to be selected in which the value of the attribute

Id is less than 105. Figure 4.6b presents PERSONNEL and the resulting

relation. ■

172 Chapter 4 The Relational Model

Figure 4.6

Join (XI)

(a) Graphical representation of selection that selects a subset of the tuples; (b) result
of selection over PERSONNEL for Id < 105.

1

(a)

PERSONNEL:

Id Name

101 Jones
103 Smith
104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith

Result of selection

Id Name

101 Jones
103 Smith
104 Lalonde

(b)

Any finite number of predicates connected by Boolean operators may be speci¬

fied in the selection operation. The predicates may define a comparison between two

domain-compatible attributes or between an attribute and a constant value; if the

comparison is between attribute Ax and constant c,, then c, e Dom(AJ.

Given a relation P and a predicate expression B, the selections of those tuples

of relation P that satisfy the predicate B is a relation R written as:

R = orB(P)

The above expression could be read as “select those tuples t from P in which the

predicate B(t) is true.” The set of tuples in relation R are in this case defined as
follows:

R = {t | t e P A B (t)}

The join operator, as the name suggests, allows the combining of two relations to

form a single new relation. The tuples from the operand relations that participate in

the operation and contribute to the result are related. The join operation allows the

processing of relationships existing between the operand relations.

4.3 Relational Algebra 173

In Figure D of Example 4.3 we illustrated an example of a join of the relations

SOME_DBMS and VERSION. We joined those tuples of the two relations that had

the same value for the common attribute Name defined on a common domain. In this

case, this common value was used to establish a relationship between these relations.

Note that referential integrity dictates that a tuple in VERSION could not exist with¬

out a tuple in SOME_DBMS with the same value for the Name attribute. Join is

basically the cartesian product of the relations followed by a selection operation.

Example 4.26 In Figure 4.3 we encountered the following relations:

ASSIGNMENT (Emp#, Prod#, Job#)

JOB_FUNCTION (Job#, Title)

Suppose we want to respond to the query “Get product number of assign¬

ments whose development teams have a chief programmer.” This requires

first computing the cartesian product of the ASSIGNMENT and JOB_

FUNCTION relations. Let us name this product relation TEMP. This is

followed by selecting those tuples of TEMP where the attribute Title has the

value chief programmer and the value of the attribute Job# in ASSIGN¬

MENT and JOB_FUNCTION are the same. The required result, shown be¬

low, is obtained by projecting these tuples on the attribute Prod#. The

operations are specified below:

TEMP = (ASSIGNMENT x JOB_FUNCTION)

TtProdviv Title = ‘chief programmer’ A ASSIGNMENT. Job = JOBJFUNCTION.Vcb#

(TEMP))

Prod#

HEAP1

BINS9

In another method of responding to this query, we can first select those

tuples from the JOB_FUNCTION relation so that the value of the attribute

Title is chief programmer. Let us call this set of tuples the relation TEMPI.

We then compute the cartesian product of TEMPI and ASSIGNMENT, call¬

ing the product TEMP2. This is followed by a projection on Prod# over

TEMP2 to give us the required response. These operations are specified

below:

TEMPI = (crTitle = vfe/programnier'(JOB_FUNCTION))

TEMP2 = (o'ASSIGNMENT.yofc# = JOB_FUNCTION../ofc#(ASSIGNMENT x

TEMPI))
n>r^#(TEMP2) gives the required result. H

Notice that in the selection operation that follows the cartesian product we take

only those tuples where the value of the attributes ASSIGNMENT./ob# and JOB_

FUNCTION.Job# are the same. These combined operations of cartesian product

followed by selection are the join operation. Note that we have qualified the identi¬

cally named attributes by the name of the corresponding relation to distinguish them.

174 Chapter 4 The Relational Model

In case of the join of a relation with itself, we would need to rename either the

attributes of one of the copies of the relation or the relation name itself. We illustrate

this in Example 4.27.
In general the join condition may have more than one term, necessitating the

use of the subscript in the comparison operator. Now we shall define the different

types of join operations.

Definition: Theta join:

The theta join of two relations P(P) and Q(Q) is defined as

R = PMQ
B V

such that

R = {t | tj || t2 A t, e P A t2 e Q A B}

where B is a selection predicate consisting of terms of the form:

(ti[AJ 0J t2[BJ) for i = 1,2, . . . ,n

where 0; is some comparison operator (0; e {= , =£ <,<,>, >}) and and Bt

are some domain-compatible attributes of the relation schemes P and Q

respectively:

0 S |R| s |P|*|Q|

M = |P| + IQI

In the these discussions we use P, Q, R, and so on to represent both the relation

scheme and the collection or bag of underlying domains of the attributes. We call it

a bag of domains because more than one attribute may be defined on the same do¬

main.

Typically, P IT Q may be null and this guarantees the uniqueness of attribute

names in the result relation. When the same attribute name occurs in the two schemes

we use qualified names.

Two common and very useful variants of the join are the equi-join and the

natural join. In the equi-join the comparison operator 0i(i = 1,2, . . . , n) is

always the equality operator (=). Similarly, in the natural join the comparison op¬

erator is always the equality operator. However, only one of the two sets of domain-

compatible attributes is retained in the result relation of the natural join. It follows

that if the attributes involved in the natural join are from P and B{ from Q, for

i = 1, . . . , n, the natural join predicate is a conjunction of terms of the following
form:

(tfiA,] = t2[fli]) for i = 1,2,. . . , n

Domain compatibility requires that the domains of and B, be compatible, and

for this reason relation schemes P and Q have attributes defined on common do¬

mains, i.e., P IT Q ¥= <J>. Therefore, join attributes have common domains in the

relation schemes P and Q. Consequently, only one set of the join attributes on these

common domains needs to be preserved in the result relation. This is achieved by

4.3 Relational Algebra 175

taking a projection after the join operation, thereby eliminating the duplicate attri¬

butes. If the relations P and Q have attributes with the same domains but different
attribute names, then renaming or projection may be specified.

Example 4.27 In Figures D and E of Example 4.3 we encountered examples of the equi-

join operation. Given the EMPLOYEE and SALARY relations of Figure

Ki, if we have to find the salary of employees by name, we join the tuples

in the relation EMPLOYEE with those in SALARY such that the value of

the attribute Id in EMPLOYEE is the same as that in SALARY. The natural

join takes the predicate expression to be EMPLOYEE./d = SALARY./d

The result of the natural join is shown in Figure Ki. When using the natural

join, we do not need to specify this predicate. The expression to specify the

operation of finding the salary of employees by name is given as follows.

Here we project the result of the natural join operation on the attributes
Name and Salary:

V(Name,Salary) (EMPLOYEE SALARY)

Figure K (i) The natural join of EMPLOYEE and SALARY relations;
(ii) the joint of ASSIGNMENT with its renamed copy.

EMPLOYEE: SALARY: EMPLOYEE IX SALARY

Id Name

101 Jones

103 Smith

104 Lalonde

107 Evan

Id Name Salary

101 Jones 67

103 Smith 55

104 Lalonde 75

107 Evan 80

Id Salary

101 67

103 55

104 75

107 80

(i)

ASSIGNMENT.£mp# COASSIGN .Emp#

107 107

107 101

107 103

101 107

101 101

101 103

110 110

110 101

103 107

103 101

103 103

101 110

(ii)

176 Chapter 4 The Relational Model

Consider the ASSIGNMENT relation of Figure 4.3c. If we want to find the

coworkers in all projects (but not necessarily doing the same job) we can

join ASSIGNMENT with itself on the Prod# attribute. However, to have

unique attribute names in the result relation, we can proceed as follows.

Copy ASSIGNMENT into COASSIGN(£/n/;#, Prod#, Job#) and then

perform the operation given below, using qualified attribute names. The re¬

sult of the operation is shown in Figure Kb. Note that a simple join of

ASSIGNMENT with itself, using the definition of natural join, gives the

original relation:

TT(ASSIGNMENT.£^#,COASSIGN.£mp#)(ASSIGNMENTIX]COASSIGN)
ASSIGNMENT.= COASSIGN. Prod# ■

Formally, the natural join of P(P) and Q(Q) is performed on the attributes of P
and Q defined on common domains, i.e., P fl Q. The resultant relation consists of

the attributes PUQ.
In the cartesian product of two relations, we take a tuple from each relation and

concatenate them to obtain a tuple in the result relation. Any duplication of attributes

in the tuples, as well as duplicate tuples, remains. (Note that duplicate tuples are not

generated in a cartesian product of two proper relations.) In a relational join, we

select the subset of the product tuples that satisfy the join predicates. In an equi-join,

the predicate involves equality constraints. In a natural join, which also involves

equality constraints, the common attributes are not duplicated. In the majority of

cases when we speak of a join, we are actually speaking about the natural join.

If two relations that are to be joined have no domain-compatible attributes, the

natural join operation is equivalent to a simple cartesian product. If they have iden¬

tical relation schemes, the natural join operation is an intersection operation.

We can summarize the above discussion on the various types of join operations

using the cartesian product as follows:

• The equi-join and the theta join are horizontal subsets of the cartesian product.

This is equivalent to applying a selection to the resulting tuple of the cartesian

product. The selection is explicitly specified in the theta join and implicitly
specified in the equi-join.

• The natural join is equivalent to an equi-join with a subsequent projection to

eliminate the duplicate attributes. In this sense, a natural join is both a

horizontal and vertical subset of the cartesian product.

Division { +)

Before we define the division operation, let us consider an example.

Given the relations P(P) and Q(Q) as shown in Figure Li, the result of

dividing P by Q is the relation R and it has two tuples. For each tuple in R,

its product with the tuples of Q must be in P. In our example (a,,b,) and

(a,,b2) must both be tuples in P; the same is true for (a5,b,) and (a5,b2).

Example 4.28

4.3 Relational Algebra 177

Figure L Examples of the division operation, (i) R = P - Q; (ii) R =
P -h Q (P is the same as in part i); (iii) R = P -h Q (P is
the same as in part i); (iv) R = P h- Q (P is the same as in
part i).

P(P):

A B

ai b,
a. b2

a2 b,

a3 b,

b2

a5 b,

a5

Q(Q): R(R) (result):

B A

b, ai
b2 a5

(i)

Q(Q):

B

b,

(ii)

Q(Q):

B

b,

b2

^3

(iii)

Q(Q):

B

(iv)

then R(R) is:

A

al

a2

a3

a5

then R(R) is:

A

then R(R) is:

A

ai

a2

a3

a4

a5

Simply stated, the cartesian product of Q and R is a subset of P.

In Figure Lii, the result relation R has four tuples; the cartesian product

of R and Q gives a resulting relation which is again a subset of P.

In Figure Liii, since there are no tuples in P with a value b3 for the

178 Chapter 4 The Relational Model

attribute B (i.e., |crs = b3(P)| = 0), we have an empty relation R, which has

a cardinality of zero.

In Figure Liv, the relation Q is empty. The result relation can be de¬

fined as the projection of P on the attributes in P — Q. However, it is usual

to disallow division by an empty relation.

Finally, if relation P is an empty relation, then relation R is also an

empty relation. ■

Let us treat the relation Q as representing one set of properties (the properties

are defined on the scheme Q, each tuple in Q representing an instance of these

properties) and the relation P as representing entities with these properties (entities

are defined on P — Q, and the properties are, as before, defined on Q); note that P
U Q must be equal to P. Each tuple in P represents an object with some given

property. (In Figure Li of Example 4.28, the relation P has 7 tuples. A tuple, for

instance, (a^b,) of P, represents the object a! with the property b|.) The resultant

relation R, then, is the set of entities that possesses all the properties specified in Q.

The two entities a, and a5 possess all the properties, i.e., b, and b2. The other entities

in P, a2, a3, and a4, only possess one, not both, of the properties. The division

operation is useful when a query involves the phrase ‘ for all objects having all the

specified propertiesNote that both P — Q and Q in general represent a set of
attributes. It should be clear that Q C P.

Example 4.29 Consider the relations of Figure M:

PRODUCT {Prod#, Prod-Name, Prod-Details)
DEVELOPED_BY {Prod#, Emp#)

The following method is used to find all employees who developed both the

HEAPSORT and BINARY-SEARCH modules. We first find an intermedi¬

ate relation, let us say TEMP, that contains the product numbers of these

two modules. TEMP is obtained, as shown in the following equation, by a

selection on these product names followed by a projection of the resulting
relation on the attribute Prod#:

TEMP — ITprod#{v(Prod-Name = ‘HEAPSORT’ V Prod-Name = ‘BINARY-SEARCH’)

(PRODUCT))

The product and TEMP relations are shown in Figure Mi. We can then

obtain the Emp# of employees involved in the development of these two

modules by dividing the DEVELOPED-BY relation by TEMP:

RESULT = DEVELOPED_BY - TEMP

These operands and the result of the division are shown in Figure Mii. The
overall operations can be written as shown below:

DEVELOPED_BY -r (tT'Prod# {&{Prod-Name — ‘HEAPSORT’ V Prod—Name =

‘BINARY-SEARCH’) (PRODUCT))

The result of the selection and projection is the set of tuples with the Prod#

of the two modules HEAPSORT and BINARY-SEARCH. These tuples are

4.3 Relational Algebra 179

4.3.3

Figure M Finding employees who developed both HEAPSORT and
BINARY-SEARCH, (i) *PrM . ,HEAPSOBT. v
Name = BINARY-SEARCH) (PRODUCT)); (ii) DEVELOPED-BY
h- TEMP

PRODUCT:

Prod# Prod-Name Prod-Details

HEAP1

BINS9

FM6

B+ + l

B + +2

HEAP-SORT

BINARY-SEARCH
FILE-MANAGER

B++_TREE

B++_TREE

ISS module

ISS/R module

ISS/R-PC subsys

ISS/R turbo sys

ISSR-PC turbo

(i)

TEMP:

Prod#

HEAP1

BINS9

DEVELOPED_BY: TEMP RESULT:

Prod# Emp#

HEAP1 103
HEAP1 107

FM6 103
B + + l 109

BINS9 105

BINS9 107

BINS9 103

Prod# Emp#

HEAP1 — 103

BINS9 107

(ii)

then used as a divisor; the result of the division is all employees involved in

the development of both modules. This result is presented in Figure Mii.

If we had incorrectly formulated our query expression as:

DEVELOPED_BY 1X1 (tT'prod# (CT{Prod-Name = 'HEAPSORT’ V Prod-Name =

‘BINARY-SEARCH’) (PRODUCT))

then we would find the (Emp#, Prod#) tuples for employees involved in

the development of the HEAPSORT or BINARY_SEARCH modules, rather

than employees involved in the development of both the modules. ■

Some Relational Algebra Queries

Let us illustrate the use of relational algebra to express a number of queries. For the

examples in this section, we will consider a part of our database consisting of the

following relations corresponding to the entities EMPLOYEE and PROJECT and the

180 Chapter 4 The Relational Model

Figure 4.7 Sample database

EMPLOYEE: ASSIGNED_TO

Emp# Name

101 Jones
103 Smith
104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith

Project# Emp#

COMP453 101
COMP354 103
COMP343 104
COMP354 104
COMP231 106
COMP278 106
COMP353 106
COMP354 106
COMP453 106
COMP231 107
COMP353 107
COMP278 110
COMP353 112
COMP354 112

PROJECT:

Project# Project Name Chief Architect

COMP231 Pascal 107
COMP278 Pascal/Object 110
COMP353 Database 107
COMP354 Operating Sys 104
COMP453 Database 101

relationship ASSIGNED-TO between them. Some sample tuples from these relations
are shown in Figure 4.7.

PROJECT (Project#, Project-Name, Chief-Architect)
EMPLOYEE (Emp#, EmpName)

ASSIGNED_TO (Project#, Emp#)

Example 4.30 “Get Emp# of employees working on project COMP353.” To evaluate this

query, we select those tuples of relation ASSIGNED_TO such that the value

of the Project# attribute is COMP353. We then project the result on the

attribute Emp# to get the response relation. The query and the response
relation are shown below:

17Emp#(®Project* = 'COMP353' (ASSIGNED_TO))

4.3 Relational Algebra 181

Emp#

106

107

112

The following example entails a join of two relations.

Example 4.31 “Get details of employees (both number and name) working on project

COMP353.” The first part of the evaluation of this query is the same as in

the query in Example 4.30. It is, however, followed by a natural join of the

result with EMPLOYEE relation to gather the complete details about the

employees working on project COMP353. The result and the the query are
shown below:

EMPLOYEE IX 'nEmp#{<jProject# = comp353'(ASSIGNED-TO))

Emp# Name

106 Byron

107 Evan

112 Smith

Example 4.32 requires using three relations to generate the required response.

Example 4.32 “Obtain details of employees working on the Database project.” This query

requires two joins. The first step is to find the number(s) of the project(s)

named Database. This involves a selection of the relation PROJECT, fol¬

lowed by a projection on the attribute Project#. The result of this projection

is joined with the ASSIGNED-TO relation to give tuples of the ASSIGNED

_TO involving Database. This is projected on Emp# and subsequently

joined with EMPLOYEE to get the required employee details. The query in

relational algebra and the result are shown below:

EMPLOYEE X ^^(ASSIGNED-TO X (TTProject# (<xProject-Name =

Database’ (PROJECT))))

Emp# Name

101 Jones

106 Byron

107 Evan

112 Smith

182 Chapter 4 The Relational Model

The use of the division operation is illustrated in the following examples.

Example 4.33 “Gather details of employees working on both COMP353 and'COMP354.”

In evaluating this query, we first create an unary relation with two tuples

with the required project numbers. We select those tuples of ASSIGNED-

TO where the project numbers are either COMP353 or COMP354 and then

project the result on Project#. Next, we divide ASSIGNED-TO by the

unary relation from the previous step to get another unary relation whose

tuples correspond to those employees who are working on both projects. To

collect the complete details about these employees, we join this last relation

with EMPLOYEE. The query in relational algebra and the resulting relation
are shown below:

EMPLOYEE [XI (ASSIGNED_TO 4- n'pr0ject# {&(project# = comp353' v

Project# = 'COMP354') (ASSIGNED_TO)))

Emp# Name

106

112
Byron

Smith

Example 4.34 “Find the employee numbers of employees who work on at least all of the

projects that employee 107 works on.” Here, we first find all of employee

107’s project numbers. Having found this, we divide the relation ASSIGNED

_TO by this unary relation to get a result that includes employee 107. To

remove the tuple for 107, we find the difference. In the following expres¬

sion, 107 is a shorthand method of writing a single tuple unary relation,

obtained by 'nEmp#(o'Emp# = 107 (ASSIGNED_TO)). The query in relational
algebra and the resulting relation are shown below:

(ASSIGNED_TO - TtProject#(<JEmp# = 107 (ASSIGNED_TO))) - 107

Emp#

106

The use of the difference operation is illustrated in Example 4.35.

Example 4.35 “Find the employee numbers of employees who do not work on project

C0MP453.” The evaluation here was done by first determining those em¬

ployees who are working on project C0MP453 (and other projects as well).

We also find all employees assigned to projects. Both of these are obtained

4.3 Relational Algebra 183

used

Example 4.36

Example 4.37

by projections on relation ASSIGNED_TO and will have no duplicate tu¬

ples. From the result of these projections we find the difference to arrive at

the Emp# of employees not working on C0MP453. The query expressed in
relational algebra and the response to it are shown below:

/Tr£mp#(ASSIGNED_TO) - TTEmp#^Project# = COMP453'(ASSIGNED_TO))

Emp#

103

104

107

110

112

The division operation which finds objects having all specified properties can be
to advantage in the following example.

“Get the employee number of employees who work on all projects.” The

sequence to follow in evaluating this query is to first compile a list of all

projects from the PROJECT relation by a simple projection on Project#;

then divide the ASSIGNED_TO relation by it to derive a unary relation

containing the required employee numbers:

ASSIGNED_TO - -tt^,c;#(PROJECT)

Emp#

106

A join involving a relation with itself is illustrated below.

“List the employee numbers of employees other than employee 107 who

work on at least one project that employee 107 works on.” This is similar

to the query in Example 4.36, except the list of projects is now comprised

of those that include at least one project in which employee 107 is involved.

This can be obtained by a selection and projection on the relation ASSIGNED

_TO. Joining ASSIGNED_TO with the result relation gives us a relation

that includes tuples for employee 107. Projecting this latest result relation

on Emp# gives an unary relation, which includes a tuple for 107. This tuple

is eliminated as in the query in Example 4.34 to give all employees who are

involved in at least one project with employee 107.

184 Chapter 4 The Relational Model

(TT£mp#(ASSIGNED_TOtXlTTpr^c,#(a£mp#= 107(ASSIGNED_TO)))) - 107

Emp#

106

112

4.4 Relational Calculus

Tuple and domain calculi are collectively referred to as relational calculus. As we

have seen, queries in relational algebra are procedural. In general, a user should not

have to be concerned with the details of how to obtain information. In relational

calculus, a query is expressed as a formula consisting of a number of variables and

an expression involving these variables. The formula describes the properties of the

result relation to be obtained. There is no mechanism to specify how the formula

should be evaluated. It is up to the DBMS to transform these nonprocedural queries

into equivalent, efficient, procedural queries. In relational tuple calculus, the vari¬

ables represent the tuples from specified relations; in relational domain calculus, the

variables represent values drawn from specified domains.

Relational calculus is a query system wherein queries are expressed as variables

and formulas on these variables. Such formulas describe the properties of the re¬

quired result relation without specifying the method of evaluating it.

Relation calculus, which in effect means calculating with relations, is based

on predicate calculus, which is calculating with predicates. The latter is a formal

language used to symbolize logical arguments in mathematics. In the following

paragraphs we briefly introduce predicate calculus; additional details are given in
Chapter 16.

In formal logic the main subject matter is propositions. If, for instance, p and q

are propositions, we can build other propositions “not p,” “p or q,” “p and q,”

and so on. In predicate calculus, propositions may be built not only out of other

propositions but also out of elements that are not themselves propositions. In this

manner we can build a proposition that specifies a certain property or characteristic
of an object.

Propositions specifying a property consist of an expression that names an indi¬

vidual object (it may also be used to designate an object), and another expression,

called the predicate, that stands for the property that the individual object possesses.

Example 4.38 Consider these statements:

BCD is a company

WXY is a company

Jill is an analyst

John is an analyst

Canada is a country

U.S.A. is a country

4.4 Relational Calculus 185

Each of these is a statement about an object having a certain feature or

property. In these examples, the parts “is a company,” “is an analyst,”

is a country are instances of predicates. Each describes some property or
characteristic of an object, fl

A convenient method of writing the statements of Example 4.38 is to place the

predicate first and follow it with the object enclosed in parentheses. Therefore, the

statement “BCD is a company” can be written as “is a company(BCD).” Now we

drop the “is a” part and write the first statement as “company(BCD).” Finally, if

we use symbols for both the predicate and the object, we can rewrite the statements

of Example 4.38 as P(x). The lowercase letters from the end of the alphabet (.

x, y, z) denote variables, the beginning letters (a, b, c, . . .) denote constants, and

uppercase letters denote predicates. P(x), where x is the argument, is a one-place or

monadic predicate. DBMS(x) and COMPANY(y) are examples of monadic predi¬

cates. The variables x and y are replaceable by constants (or names of individual
objects) such as DBMS(ISS).

The use of constants and variables is similar to that in some high-level lan¬

guages. A constant specifies a particular value or object; a variable is used as a place
holder for the values in an expression or procedure.

Example 4.39 Consider these statements:

Jill is taller than John

WXY is bigger than BCD

Canada is north of the U.S.A.

In these statements, the predicates “is taller than,” “is bigger than,”

“is north of” require two objects and are called two-place predicates. ■

In general, we have predicates of degree n, where the predicate takes n argu¬

ments. In the case of bigger_than(WXY, BCD), the predicate BIGGER_THAN spec¬
ifies the relation between WXY and BCD.

Example 4.40 Let DBMS_TYPE(x,y) specify the relation between DBMSs and their data

model. The predicate DBMS_TYPE takes two arguments. ■

A predicate followed by its arguments is called an atomic formula. Examples

of these are DBMS(x), COMPANY(y), and DBMS_TYPE(x,y).

We stated earlier that predicate calculus is a formal language. A language con¬

sists of symbols. We have already seen some of the primitive symbols, i.e., vari¬

ables, constants, and predicates. We can also specify logical connectors such as

“not” or negation, denoted by —i, “or” (V), “and” (A), and “implication” (—»).

Atomic formulas may be combined using the logical connectors to generate for¬

mulas such as P(x) A Q(y), P(x) V Q(y)> and so on. DBMS(ISS) A COM-

PANY(BCD), for instance, can represent “ISS is a DBMS and BCD is a company.”

186 Chapter 4 The Relational Model

Other interesting formulas are formed with the use of quantifiers: universal or

“for all,” denoted by V and existential or “for some,” denoted by 3. The notions

expressed by the quantifiers assert that “everything has a certain property” (or deny

that something lacks it) and that “something has a certain property”, (or deny that

everything lacks it). Therefore, (\/x)P(x) and (3x)P(x) are used to specify that “for

all x, x is P” (or simply that “everything is P”) and “for some x, x is P” (or simply

that “something is P”).

“x is a DBMS” is an example of a formula. If the symbol x in the formula is

replaced by the name of a DBMS, we have a declarative sentence that is either true

or false. The phrase “x is a DBMS produced by company y” is a formula with two

variables. If the occurrences of the variables x and y are replaced by the appropriate

specific objects, the result is again a declarative sentence that is either true or false.

For example, the declarative sentence “ISS is a DBMS produced by ABC” is false.

The sentence “ISS is a DBMS produced by BCD” is true.

Example 4.41 (3x)DBMS(x) is a formula that states that there is something that is a

DBMS. We can also say that there exists something that possesses the prop¬
erty of being a DBMS. ■

It can be shown that the following are equivalent:

P(x) A Q(x) = i(iP(x) V —iQ(x))

P(x) V Q(x) = —1(—iP(x) A -iQ(x))

This pair of transformations is called De Morgan’s law. A generalization of

these transformations involving the quantifiers is obtained as follows:

V*(P(x)) = ~i(3x)(—iP(x))
3x(P(x)) = —i(\/x)(—iP(x))

Consequently, the quantifiers and the operations A and V are connected and
only one of these need be taken as the primitive.

In any formal system, it is necessary to specify which sentences (sequence of

symbols) are acceptable. In the case of the English alphabet, not every sequence

generated from it can be considered an English language sentence. In formal systems,

the acceptable sentences (or formulas) are usually called well-formed formulas

(wffs). The wff s should be those sequences of symbols that are unambiguous and

make sense. This can be ensured by stating some rules for the construction of wffs.

We will see rules in relational calculus used to ensure that only wffs are used.

Let x be any variable and W be a wff. Every occurrence of x in W is said

to be bound by the quantifiers when occurring in the wffs (\/x)W and (3x)W.

Any occurrence of a variable that is not bound is said to be free. For example, in
(3x)(P(x) A Q(y)), x is bound and y is free.

Free and bound variables may be compared with the global and local variables

of programming languages. A bound variable is local to the quantified expression

and dissimilar from the variable with the same name that is not within the quantified
expression. In the following example,

3x(P,) A (P2)

4.4 Relational Calculus 187

the variable x is bound in the expression P,; however, any occurrence of x in P2 is
free and not the same variable as x in P,.

A wff containing no free variables is said to be closed (otherwise open).

Given a wff in which we only have free variables, we can replace the variables

by names of individual objects and, in so doing, obtain a proposition. DBMS(x) is

such a wff, in which by replacing the variable x by some constant (or individual

name) we obtain a proposition; e.g., DBMS(ISS), DBMS(Relational). When the var¬

iable is bound, for example, in (3x)DBMS(x), we already have a proposition that
states “something is a DBMS.”

Variables in relational calculus are like variables in programming languages in

that they are restricted by their types. The declaration, for instance, that tuple vari¬

able t is defined on relation R signifies that t can only take a tuple value from the

relation R. We may say that the relation R is the domain of the tuple variable t. Here

a tuple variable can be equated to a record variable in Pascal (or similar high-level

language). A record variable in Pascal takes on the value of a single record from

among many records of its type. Similarly, in domain calculus, a domain variable d

defined over a given domain Dj implies that the values associated with the variable

d can only be elements from the domain D(.

4.4.1 Tuple Calculus

Queries in tuple calculus are expressed by a tuple calculus expression. A tuple cal¬

culus expression is of the form

{X | F(X)}

where F is a formula involving X and X represents a set of tuple variables. The

expression characterizes a set of tuples of X such that the formula F(X) is true. For

the present we will assume that the formula involves predicates; however, we will

examine the method of constructing and identifying valid formulae a little later.

For the examples in this section, we will continue to use the same database that

we used for relational algebra. It consists of the following relations, some tuples of

which are shown in Figure 4.7:

PROJECT 0Project#, Project-Name, Chief-Architect)

EMPLOYEE (Emp#, EmpName)

ASSIGNED_TO {Project#, Emp#)

Example 4.42 Consider the following query: “Obtain the employee numbers of employees

working on project COMP353.”
The result of this query is the set of tuples t such that there exists a

tuple u in ASSIGNED-TO with value COMP353 for the Project#, and the

same value for the Emp# attribute in both u and t. We can formulate this

in the manner of the calculus expression above as:

{t{Emp#) | 3u(u e ASSIGNED_TO A u[Project#] = 'COMP353'

A t[Emp#] = u [Emp#])} ■

188 Chapter 4 The Relational Model

In this formulation, we specify the set of tuples t(Emp#) such that the predicate

is true for each element of that set. The predicate specifies that there exists some

tuple, u, in the relation ASSIGNED_TO such that it has the value COMP353 for the

Project# attribute. Also, the value for the Emp# attributes of the result tuple t is

the same as that for the tuple u.

Free variables appear to the left of the | (bar) symbol. The variable t is a free

tuple variable in the above formula and assumes whatever attributes and correspond¬

ing values, assigned to it by the formula. The formula restricts t to the relation

scheme {Emp#).

Example 4.43 Consider this query: “Obtain a list of employees (both numbers and names)

working on the project COMP353,” which can be rephrased as: “Obtain

employee details for those employees assigned to the project COMP353.’’

To verify whether or not an employee is working on COMP353, we

can compare the employee’s Emp# with Emp# values of tuples in the re¬

lation ASSIGNED_TO. What we are really specifying is that “for the em¬

ployee whose details we want, there exists a tuple in the relation ASSIGNED

_TO for that employee with the value of the attribute Project# in that tuple

being COMP353.” This is a calculuslike formulation for our query. In the

database we use surrogates to represent entities. For example, Emp# is used

to represent an employee in the ASSIGNED-TO relation {Project# is used

to represent a project). To check if an employee is working on some project,

we would need to compare the employee’s surrogate, Emp#, from EM¬

PLOYEE, with the tuples of the ASSIGNED_TO relation containing the

project’s surrogate, Project#. Thus, the query can be reformulated as: “Get

those tuples in employee relation such that there exists an ASSIGNED_TO

tuple with ASSIGNED-TO.Emp# = EMPLOYEE.Emp# and ASSIGNED-
TO .Project# = COMP353.”

In tuple calculus this can be specified as:

{t | 3e(e e EMPLOYEE A e[Emp#] = t[Emp#]

A e[EmpName] = t [EmpName]

A 3u(u e ASSIGNED_TO A u[Emp#] = e[Emp#]

A u[Project#] = 'COMP353'))}

The above may be simplified to the following form where the domain of the
free variable t is the relation EMPLOYEE.

{t | t e EMPLOYEE

A 3u(u e ASSIGNED_TO A u[Emp#] = t[Emp#]

A u[Project#] = 'COMP353'))} D

In the tuple calculus query formulations given above, we have only specified

the characteristics of the desired result. The system is free to decide the operations

and their execution order to satisfy the request. For comparison, a relational algebra

like query would have to be stated as, “Select tuples from ASSIGNED_TO such

that Project# = 'COMP353' and perform their join with the employee relation,

projecting the results of the join over Emp# and EmpName.” It is obvious that a

calculus query is much simpler because it is devoid of procedural details.

4.4 Relational Calculus 189

Tuple Calculus Formulas

At this point it is useful to see how tuple calculus formulas are derived. A variable

appearing in a formula is said to be free unless it is quantified by the existential (for

some) quantifier, 3 or the universal (for all) quantifier, V- Variables quantified by
or are said to be bound.

In tuple calculus we define a qualified variable as t[A], where t is a tuple vari¬

able of some relation and A is an attribute of that relation. Two qualified variables,

s[A] and t[fi], are domain compatible if attributes A and B are domain compatible.

Tuple calculus formulas are built from atoms. An atom is either of the forms
given below:

x € R, where R is a relation and x is a tuple variable.

A2. x 0 y or x 0 c, where 0 is one of the comparison operators { =, =£,<,<,>, >},

x and y are domain-compatible qualified variables, and c is a domain compatible-con¬

stant.

For example, s[A] = t[B] is an atom in tuple calculus, where s and t are tuple

variables.

Formulas (wffs) are built from atoms using the following rules:

Bi. An atom is a formula.

B2. If f and g are formulas, then “if, (0, f V g> f A g. f g are also formulas.

B3. If f(x) is a formula where x is free, then 3x(f(x)) and \/x(f(x)) are also formulas;

however, x is now bound.

The logical implication expression f —» g, meaning if f then g, is equivalent to —if

V g- Some well-formed formulas in tuple calculus are given below:

u e ASSIGNED_TO (declares u as a tuple variable; the domain of u is the rela¬

tion ASSIGNED-TO)

u [Project#] = 'COMP353'

u e ASSIGNED_TO A u[Project#} = 'COMP353'

3u(u e ASSIGNED_TO A s e EMPLOYEE

A u[Project#] = 'COMP353'

A s[Emp#] = u[Emp#])

(here u is a bound variable, and s is a free variable)

3u,t (u e ASSIGNED_TO A s e EMPLOYEE A t e PROJECT

A t[Project-Name] = ‘Database’

A u[Project#] = t[Project#\

A s[Emp#] = u[Emp#])

In the following examples we give some sample queries in tuple calculus using

the relations shown in Figure 4.7.

190 Chapter 4 The Relational Model

Example 4.44 “Get complete details of employees working on a Database project,” The

query can be stated as given below. In this case, the tuple variable s is

defined on the relation EMPLOYEE and it appears by itself to signify that

we are interested in all attributes of its domain relation. We are saying that

there exist tuples u and t on the domain relations ASSIGNED_TO and PRO¬

JECT, respectively, such that the conditions indicated below are true. The

tuple t has for the Project-Name attribute a value of ‘Database,’ and the

Project# in u and t are the same. The Emp# value of s and u are the same,

as well. Note that 3u,t(F(u,t)) is a shorthand notation for 3u(3t(F(u,t))).

{s | s e EMPLOYEE

A 3u, fit e PROJECT A t[Project-Name] = 'Database'

A u e ASSIGNED_TO A u[Project#] = {[Project#]
A s[£>np#] = u[Emp#])}

The query “Get complete details of employees working on all Database

projects” can be expressed as follows:

{s j s e EMPLOYEE

A \/fit e PROJECT A t[Project-Name] = 'Database'

—> 3u(u e ASSIGNED_TO A u[Project#] = t[Project#]
A s[Emp#] = u[Emp#])}

An alternate method of writing this query without the logical implication is

to replace f —> g by its equivalent form —if V g as follows:

{s | s e EMPLOYEE

A \/(t <£ PROJECT V t[Project-Name] # 'Database'

V 3u(u e ASSIGNED_TO A u[Project#] = t[Project#]
A s [Emp#] = u[Emp#])} ■

Any number of tuple variables can have the same relation as their domain as illus¬
trated in the following example.

Example 4.45 “List the complete details about employees working on both COMP353 and

COMP354.” In this instance, we require that there exist two tuples u1? u2

of the relation ASSIGNED_TO with the values COMP353 and COMP354

for the attribute Project#. The Emp# attributes of s, u1; and u2 are equal.

{s | s € EMPLOYEE A 3u,,u2 (uj e ASSIGNED_TO

A u2 e ASSIGNED_TO A ux[Emp#] = u2[Emp #]

As [Emp#] = \i\[Emp#[A Project#] = 'COMP353'
A u^Project#] = 'COMP354')}

We modify the above query to read “List the complete details about em¬

ployees working on either COMP353 or COMP354 or both.” Here we re¬

quire that there exist tuples u, of the relation ASSIGNED_TO with the value

COMP353 or u2 of the same relation with the value COMP354 for the at¬

tribute Project#. The two “there exist” clauses are connected by the V

operator. The Emp# attribute of s and either u, or u2, are equal.

4.4 Relational Calculus 191

{s | s e EMPLOYEE A 3u,(u, e ASSIGNED_TO

A s[Emp#] = ux[Emp#] A u^[Project#] = 'COMP353'

V 3u2(u2 e ASSIGNED_TO

A s[Emp#] = u2[Emp#] A u2[Project#] = 'COMP354')}

This query can be simplified to the following form:

{s | s e EMPLOYEE A 3u,(u, e ASSIGNED_TO

A s [Emp#] = ux[Emp#] A

(u,[Project#] = 'COMP353'\/u ^Project#] = 'COMP354'))} ■

The following example illustrates the use of the universal quantifier.

Example 4.46 “Get the employee numbers of employees other than employee 107 who

work on at least all those projects that employee 107 works on.” Here a

qualified variable, t[Emp#], is used to indicate that we are interested in

finding the projection of tuple t on the attribute Emp#. The tuple t is from

the relation ASSIGNED_TO, such that for all tuples Uj from ASSIGNED-

TO with u\[Emp#] — 107, there exists a tuple u2 e ASSIGNED_TO with

u2[Emp#] # 107. The value of the attribute Project# in u2 is the same as

in U! with identical values in the attribute Emp# of tuples t and u2. The

tuple expression for this query is given below:

{t[Emp#]\ t e ASSIGNED_TO A

\/u,(Ui e ASSIGNED-TO A ux[Emp#] = 107

-» 3u2(u2 e ASSIGNED_TO A u2[Emp#] + 107

A \ix[Project#} = u2[Project#]/\ t[Emp#] = u2[Emp#]))}

Alternatively we can write this query without the logical implication by sub¬

stituting its equivalent form —if V g as follows:

{t[Emp#]\ t e ASSIGNED_TO A

Vu,(u! * ASSIGNED_TO V u,[Emp#] # 107
V 3u2(u2 e ASSIGNED_TO A u2[Emp#] # 107

A u\[Project#] = u2[Project#\A t[Emp#] = \x2[Emp#]j)]

To avoid a procedural operation such as projection in a calculus query, we

could define t to be on the relation scheme {Emp#) and rewrite this query

expression as:

{t(Emp#)\ \/ui(ui £ ASSIGNED_TO V ui [Emp#] # 107
V 3u2(u2 e ASSIGNED_TO A u2[Emp#] # 107

Au,[Project#] = u2[Project#]/\ t[Emp#] = u2[Emp#]))} ■

Negation and its transformation is illustrated in Example 4.47.

Example 4.47 “Get employee numbers of employees who do not work on project

COMP453.” In this query we are interested in a qualified tuple variable,

192 Chapter 4 The Relational Model

{[Emp#], t € ASSIGNED_TO, to satisfy the following condition: There

does not exist a tuple u in the same relation such that the Project# attribute

of u has the value COMP453 with identical values in the attribute Emp# of

tuples t and u. The tuple calculus expression for this query is given below:

{{[[Emp#]\ t e ASSIGNED_TO A

—i3(u e ASSIGNED_TO A u[[Project#] = 'COMP453'

A t[Emp#] = u[Emp#])}

Alternatively, we can express this query in the following equivalent

form:

{{[Emp#]\ t e ASSIGNED_TO A

\/u(u t ASSIGNED_TO V t[Emp#] # u[Emp#]

V u[Project#] # 'COMP453')} ■

To find employees who work on all projects we use the universal quantifier and

logical implication.

Example 4.48 “Compile a list of employee numbers of employees who work on all proj¬

ects.” The qualified tuple variable t[Emp#] satisfies the following

predicates: For all tuples p from PROJECT, there exists a tuple u in

ASSIGNED_TO such that the value of Project# in u and p are the same,

and furthermore, the value of the qualified tuple variables t[Emp#] and

u\Emp#] are the same.

{t[Emp#]\ t e ASSIGNED_TO A
\/p(p e PROJECT -* 3u(u e ASSIGNED_TO
A p[Project#] = u[Project#]

A t[Emp#] = u[Emp#]))}

The above can be rewritten as:

{t[Emp#]| t e ASSIGNED_TO A
\/P(P * PROJECT V 3u(u e ASSIGNED_TO
A p[Project#] = u[Project#]

A {[Emp#] = u[Emp#]))} ■

The following example illustrates a method of finding employees who work at
least one of a selected group of projects.

Example 4.49 “Get employee numbers of employees, not including employee 107, who

work on at least one project that employee 107 works on.” We are con¬

cerned here with a tuple t such that there exist tuples s and u in the relation

ASSIGNED_TO, such that for the tuples s and u, the value of Project# is

identical with the value of the attribute Emp#; in s, 107 and in t, not 107.

The value of the attribute Emp# in t and u is the same. This query can be
expressed in tuple calculus as follows:

4.4 Relational Calculus 193

{i[Emp#}\ t e ASSIGNED_TO A

3s, u (s e ASSIGNED_TO A u e ASSIGNED_TO
A s[Project#] = u[Project#]
A s[Emp#] = 107

A t[Emp#] # 107

A t[Emp#] = u[Emp#])} U

We can use tuple calculus to define the division operation on the two relations
P(P) and Q(Q), where QCP:

R = P v Q

The tuples in R are those projections of P on the set of attributes P-Q such

that each tuple in the relation Q, when concatenated with all the tuples in R, gives

the tuples in P. We can express this conditions for tuples in R as follows:

R = {t | teP[P —Q] A \/s(seQA(t||s e P)}

To simplify the above, we can say that the tuples in R are those projection of

tuples in P such that for all tuples s in Q there is a tuple u in P, which when projected

on Q gives s and when projected on P-Q gives the tuples in R. In other words, the

tuples in R are elements of the projection of P, on P — Q, each of which when

concatenated with all tuples s of Q is an element of P. We can express this modifi¬
cation to conditions for tuples in R as follows:

R = {t | teP[P —Q] A \/s(seQ —» 3u(ueP A u[Q] = s A u[P — Q] = t[P — Q]))}

From this second specification, we can express the division operation in terms
of the other relational algebraic operations as:

R = P Q = 7tp_q(P) - ttp_q((ttp_q(P) x Q) - P)

We illustrate the above using the relations P(P) and Q(Q) shown in Figure Li

of Example 4.28. The term ttp_q(P) gives all objects in the relation P. Some of

these objects do not have all the properties given in Q. The term ttp_q(P) x Q -

P gives those tuples of P that will not participate in the result of the division. To find

the objects that do not have all the properties in Q, we project these nonparticipating

tuples on the attributes P — Q. The result is obtained by subtracting these nonpar¬

ticipating objects from all objects. These steps are illustrated in Figure 4.8.

4.4.2 Domain Calculus

As in tuple calculus, a domain calculus expression is of the form

{X | F(X)}

where F is a formula on X and X represents a set of domain variables. The expres¬

sion characterizes X such that F(X) is true.

For the examples in this section, we continue to use the same database that we

194 Chapter 4 The Relational Model

Figure 4.8 Division operation is in terms of other relational algebraic operations.

ttp-q(P) Q ttp-q(P) * Q ttp_q(P) X Q - P

A B A B

al b, ai b,

a2 b2 a2 b,

a3 a3 b,

a4 a4 b,

a5 a5 b,
a. b2

TTp-qI'H' p-q(P) x Q P)
a2

a3

b2
b2

A a4 t>2
a5 b2

34

a2

a3

A B

a» b.

a2 t>2

a3 b2

TTp_q(P) - Up —Q(lTp —Q(P) X Q - P)

A

a,

a5

used for relational algebra and tuple calculus. It consists of the following relations,

some tuples of which are shown in Figure 4.7:

PROJECT (Project#, Project-Name, Chief-Architect)

EMPLOYEE (Emp#, EmpName)

ASSIGNED-TO (Project#, Emp#)

Example 4.50 Consider the following query: “Get employee numbers for employees work¬

ing on project COMP353.” The method of converting this query into a

domain calculus expression is by conjecturing the existence of p, a Pro¬

ject#. This Project# is such that the current value of the domain variables

e (the domain of e being the domain of Emp#) and p (the domain of p

being the domain of Project#) are in a tuple of the relation ASSIGNED-

TO and the value of p is COMP353. We can formulate this in the manner

of a domain calculus expression as follows:

{e | 3 p (<e, p>e ASSIGNED_TO A p = 'COMP353')}

In the above formulation, we are specifying the set of domain values

for the domain variable e such that the predicate is true. The predicate spec¬

ifies that there exists a value of the domain variable p such that its current

value along with the value of the domain variable e is in (the same tuple of)

the relation ASSIGNED_TO. The specific value of p is the value
COMP353.

Since we are interested in a particular known value of p, the quantifier

can be dropped and the query simplified further to:

{e | <e, p> e ASSIGNED_TO A p = 'COMP353'} ■

4.4 Relational Calculus 195

We use two domain variables to retreive both the employee number and name
as illustrated in the following example.

Example 4.51 Consider the query: “Get list of employees (both number and name) work¬

ing on the project COMP353,’’ which can be rephrased as: “Get employee

details such that the employee is assigned to the project COMP353.”

Here we are really specifying that “for the employee whose details we

want, there exists a tuple in the relation ASSIGNED_TO for that employee

for the COMP353 project.” Now the value e that is associated with the

value COMP353 in the ASSIGNED_TO tuple must also appear along with

a value for m in a tuple of the employee relation. In domain calculus this
can be specified as:

{e,, m | <e,, m> e EMPLOYEE) A 3e2 (<p, e2> (ASSIGNED_TO A
p = 'COMP353' A e, = e2)} ■

As in the case of tuple calculus, we have only specified the characteristics of

the desired result; the system is free to decide the operations and their execution

order to satisfy the request. Furthermore, a variable appearing in a formula is said to

be free unless it is quantified by the existential quantifier 3 or the universal quanti¬

fier V-

Domain Calculus Formulas

Domain calculus formulas are also built from atoms. As in tuple calculus, an atom

is either of the form given below in A) or of the form in A2. Here R(R) is a relation

and X is the set of domain variables {x,, x2, . . . , xn} in domain calculus, defined

on a subset of the relation’s attributes.

A, X C R

A2. x 0 y or x 0 c, where € is one of the comparison operators { =, =£, <, <, >, >},

x and y are domain-compatible variables, and c is a domain-compatible constant.

For example, A = B is an atom in domain calculus.

Formulas (wffs) are built from atoms using the following rules:

B|. An atom is a formula.

B2. If f and g are formulas, then “if, (f), f V f A g, f —» gare also formulas.

B3. If f(X) is a formula where X is free, then 3X(f(X)) and \/X(f(X)) are also for¬

mulas.

The expression f —> g, meaning if f then g, is equivalent to —if V g. Domain

calculus expressions use the same operators as those in tuple calculus. The difference

is that in domain calculus, instead of using tuple variables, we use domain variables

to represent components of tuples. A tuple calculus expression can be converted to a

domain calculus expression by replacing each tuple variable by n domain variables;

here n is the arity of the tuple variable. Some well-formed domain calculus formula

examples are given on the next page.

196 Chapter 4 The Relational Model

<a,b> e ASSIGNED_TO (declares a and b as domain variables defined on the

domain of the attributes of the ASSIGNED_TO relation)

a = 'COMP353'

<a,b> e ASSIGNED_TO Aa = 'COMP353'

3a,b (<a,b> e ASSIGNED_TO A <c,d> e EMPLOYEE A a = 'COMP353' A

b = c)

3a,b,e,f (<a,b> e ASSIGNED_TO A <c,d> e EMPLOYEE

A <e,f,g> e PROJECT

Ab = c Aa = e Af = 'Database')

(Note that g is used as a placeholder, so that we know what domain the variable

belongs to.)

Here we give some sample queries in domain calculus. We continue to use the

relations given below and shown in Figure 4.7 for these queries:

PROJECT (Project#, Project-Name, Chief-Architect)

EMPLOYEE (Emp#, EmpName)

ASSIGNED-TO (Project#, Emp#)

Furthermore, we use the domain variables p, e Dom(Project#), nj e Dom(Project-

Name), Cj e Dom(Chief-Architect), e, e Dom (Emp#), m, e Dom (EmpName), where

Dom (Project#), etc. are the domains of the corresponding attributes. The expression

<Pi,e i > e ASSIGNED_TO evaluates as true if and only if there exists a tuple in

relation ASSIGNED_TO with the current value of the corresponding domain vari¬

ables. As before we use the notation Bp^edP) as shorthand for 3p|3ei(P).

Example 4.52 The query “Compile the details of employees working on a Database pro¬
ject” can be stated as:

{e,m | 3pi,e,,p2,n2 (<p,,e,> e ASSIGNED_TO

A <e,m> e EMPLOYEE

A <p2,n2,c2> e PROJECT

A e, = eA p, = p2 A n2 = 'Database')} ■

Any number of domain variables can be defined on the domains of the attributes
of a relation as illustrated below.

Example 4.53 Compile the details of employees working on both COMP353 and
COMP354.

{e,m | 3p1,e1,p2,e2 (<e,m> e EMPLOYEE

A <Pl,e,> e ASSIGNED_TO

A <p2,e2> e ASSIGNED_TO

A e = e, A e = e2

A p, = 'COMP353' A p2 = 'COMP354')} ■

4.4 Relational Calculus 197

The use of the universal quantifier and logical implication is demonstrated in
Example. 4.54.

Example 4.54 “Obtain the employee numbers of employees, other than employee 107,

who work on at least all those projects that employee 107 works on.”

{e | <p,e> € ASSIGNED_TO V Pi,e,
(<p,,e,> e ASSIGNED_TO A e, = 107

(3p2,e2(<p2,e2> e ASSIGNED_TO
A e2 + 107 A pi = p2 A e = e2))}

An equivalent form of this query where the implication is replaced by the
V operator is given below:

{e | <p,e> € ASSIGNED_TO A

V Pi,e,(<pi,e,> <£ASSIGNED_TO V e, ^ 107

V (3p2,e2(<p2,e2> e ASSIGNED_TO
A e2 + 107 A p, = p2 A e = e2))} ■

Negation is illustrated in Example 4.55.

Example 4.55 “Get employee numbers of employees who do not work on the COMP453
project.”

{e | 3p (<p,e> e ASSIGNED_TO

A V pi,e, (<p,,e,> <£ ASSIGNED_TO

V Pi ^ COMP453 V ei ^ e))} ■

Another example of the use of the universal qualifier and logical implication is
given below.

Example 4.56 “What are the employee numbers of employees who work on all projects?”

{e | 3 p(<p,e> e ASSIGNED_TO

A V Pi(<Pi ,ni ,Cj > e PROJECT
<pi,e> e ASSIGNED_TO))} ■

The domain calculus formula to find employees who are assigned to at least one

of a selected group of projects is given in Example 4.57.

Example 4.57 “Get the employee numbers of employees, other than employee 107, who

work on at least one project that employee 107 works on.”

198 Chapter 4 The Relational Model

{e | 3 p,pl,ei,p2,e2(<p,e> e ASSIGNED_TO

A <p„e,> e ASSIGNED_TO

A <p2,e2> e ASSIGNED_TO

A e2 + 107 A pi = p2 A ei = 107 A e = e2)} ■ ;

4.5 Concluding Remarks on Data Manipulation

Consider tuple calculus expression:

{x | x ^ R}

Evaluating this expression generates tuples that are not in the relation R and entails

generating an infinite number of tuples. If the domain of the tuple variable x were a

relation scheme X, the tuples generated would be an indeterminate number of such

tuples on the relation scheme X. However, in spite of this limitation, the number of

tuples generated will be immense and the majority of these tuples are not likely to

be in the actual database. In a database application an additional limitation is im¬

posed: that all evaluating is done with respect to the content of the database at the

time of the evaluation of the query. This further limitation generates, for the above

expression, only those tuples that are in the database and not in the relation R.

However, this evaluation is also prohibitively expensive in terms of computing re¬

sources used.

For relational calculus, by definition, infinite relations might be generated. In

practice, this might be limited to finite relations because of condition imposed in the

formula. It is therefore clear that the tuple relation calculus formulas are not only

wffs, but they do not generate infinite relations. This in turn requires that the domain

of the formula be clearly defined. The domain of a formula F(X), where X is a set

of tuple variables, is the set of values either appearing explicitly in the formula or

being referenced in it. The values that appear explicitly are constants and the values

being referenced are from the relations appearing in the formula. Each such relation

is assumed to be of finite cardinality. The purpose of defining the domain of a for¬

mula is to ensure that the result relation generated by evaluating the formula is also

in the domain of the formula. This ensures that the result relation is finite and only

tuples from the domain of the formula have to be examined in evaluating the expres¬

sion. Such a tuple relational calculus expression is said to be safe.

The concept of safety can be applied to domain calculus expressions by defining

a domain of a domain calculus expression and by ensuring that the result relation is

within this domain. If we limit the relational calculus expressions to safe expressions,

then tuple calculus and domain calculus are equivalent. Furthermore, both are equiv¬

alent to relational algebra. This means that for every safe relational calculus expres¬

sion there exists a relational algebraic expression and vice versa. Also, we can write

an equivalent domain calculus expression for a tuple calculus expression and vice
versa.

Even though the final calculus expression for a query is more compact than an

algebraic expression, it does not mean that calculus is a better interface, particularly

with complex queries. It is natural to break such queries down into smaller steps (as

in the case of the algebraic formulation; we presented a few examples of this in

Section 4.3.3) and then compose the steps into a neat calculus formula. This may be

4.6 Physical Implementation Issues 199

the reason behind the success of SQL as a relational query language. SQL is clearly

not assertional and includes intersection, union, and difference operations.

In Sections 4.3 and 4.4 we considered the features of relational data manipula¬

tion operations using relational algebra and relational calculus, respectively. The data

manipulation language for the DBMS must supplement them with additional capabil¬

ities, such as relation creation, deletion, and modifications. Facilities are also pro¬

vided for the insertion, deletion, and modification of tuples. These additional opera¬

tions enables users to manipulate and update the data contained in the database. In

the derivation operations, the attributes of one tuple are compared with attributes of

another tuple or constants. In the alteration operations, the attribute values are altered

or tuples are removed or inserted. As in the case of other relational operations, com¬
patibility is also required in derivation and alteration operations.

A number of query languages based on the concepts of these sections have been

developed. Three of these query languages (SQL, QUEL, and QBE) have gained

wider acceptance than the others. SQL is in widespread use and, with an ANSI

standard definition, has become the de facto query language for relational database

systems. This in no way detracts from the elegance of QUEL. We consider all three
languages in Chapter 5.

Relational Algebra vs. Relational Calculus

The relational algebra operations described in Section 4.3 allow the manipulation of

relations and provide a means of formally expressing queries. The sequence of op¬

erations necessary to answer the query is also inherent in the relational algebraic

expression. In other words, relational algebra is a procedural language. In Section

4.4 we considered two nonprocedural relational calculus query systems: tuple and

domain calculus. In calculus queries we specify only the information required, not

how it is obtained.

It can be proved that the expressive power of relational algebra and relational

calculus are equivalent (Ullm 82). This means that any query that could be expressed

in relational algebra could be expressed by formulas in relational calculus. Further¬

more, any safe formula of relational calculus may be translated into a relational

algebraic query.

There have been a number of proposed changes and additions to both relational

algebra and calculus; for instance, the need for aggregation (average, count, and

other such functions) and update operations in these query systems. Many researchers

recognize this as omissions from the original formulation of relational algebra and

calculus.

4.6 Physical Implementation Issues

So far, we have considered the relational model and the operations defined in the

model. We have refrained from mentioning any implementation issues because, to

the end user, these are of little concern. The relational algebra operations in some

respects define what is to be done, but even then the DBMS can optimize the actual

processing of the query and perform the operations in a different order (see Chapter

200 Chapter 4 The Relational Model

10 on query processing). In relational calculi we do not even specify the operations.

To the users, the DBMS is a black box that insulates them from the details of file

definitions and file management software as supported by the operating system. As

we mentioned in Chapter 1, one function of the DBMS is to provide physical data

independence.
The DBA cannot optimize the database for all possible query formulations.

Thus, for every relation the anticipated volume of different types of queries, updates,

and so on is estimated to come up with an anticipated usage pattern. Based on these

statistics, decisions on physical organization are made. For example, it would be

inappropriate to provide an access structure (say a B + -tree) for every attribute of

every relation; these secondary access structures have storage and search overheads.

The DBMS can make use of all the features of the file management system. As

most DBMSs have versions that run on different machines and under different oper¬

ating system environments, the DBMS may support file systems not available under

the host machine environment. Thus, every DBMS defines the file and index struc¬

tures it supports. The DBA chooses the most appropriate file organization. In the

event of changes to usage patterns or to expedite the processing of certain queries, a

reorganization can take place.

A large number of queries requires the joining of two relations. It may be ap¬

propriate to keep the joining tuples of the two relations either as linked records or

physically grouped into a single record.

We may consider a relation to be implemented in terms of a single (or multiple)

file(s) and a tuple of the relation to be a record (or collection of records). For the

file, we may define a storage strategy, for example, sequential, indexed, or random,

and for each attribute we can define additional access structures.

The more powerful DBMSs allow a great deal of implementation detail to be

defined for the relations. The more common but less powerful DBMSs (mostly on

microcomputers) allow very simple definitions, for example, indexing on certain at¬

tributes (this is usually a B + -tree index). Some systems require the index to be

regenerated after any modification to the indexing attribute values. Additional com¬

mands for sorting and other such operations are also supported. The typical file or¬

ganization is plain sequential. (In fact, many micro-based DBMSs confuse a relation

or table with a flat sequential file.)

A single relation may be stored in more than one file, i.e., some attributes in

one, the rest in others. This is known as fragmentation. This may be done to im¬

prove the retrieval of certain attribute values; by reducing the size of the tuple in a

given file more tuples can be fetched in a single physical access. The system asso¬

ciates the same internally generated identifier, called the tuple identifier, to the dif¬

ferent fragments of each tuple. Based on these tuple identifiers a complete tuple is
easy to reconstruct.

In addition to making use of the file system,3 the DBMS must keep track of the

details of each relation and its attribute defined in the database. All such information

is kept in the directory. The directory can be implemented using a number of system-

defined and -maintained relations. For each relation, the system may maintain a tuple

in some system relation, recording the relation name, creator, date, size, storage

3To achieve satisfactory performance, many DBMSs develop their own file management systems and use disk input/output
routines that directly access the secondary storage devices.

4.7 Summary 201

structure, and so on. For each attribute of the relation, the system may maintain a

tuple recording the relation identifier, attribute name, type, size, and so forth. Dif¬

ferent DBMSs keep different amounts of information in the directory relations. How¬

ever, because the implementation is usually as relations, the same data manipulation

language that the DBMS supports can be used to query these relations.

In this section we briefly examined some implementation issues. Implementors

of databases and DBMSs must be aware that there exists much more detail than that
contained in the model.

Summary

In this chapter we studied the relational data model, consisting of the relational data

structure, relational operations, and the relational integrity rules. This model borrows

heavily from set theory and is based on sound fundamental principles. Relational

operations are applied to relations, and the result is a relation.

Conceptually, a relation can be represented as a table; each column of the table

represents an attribute of the relation and each row represents a tuple of the relation.

Mathematically a relation is a correspondence between a number of sets and is a

subset of the cartesian product of these sets. The sets are the domains of the attributes

of the relation.

Duplicate tuples are not permitted in a relation. Each tuple can be identified

uniquely using a subset of the attributes of the relation. Such a minimum subset is

called a key (primary) of the relation. The unique identification property of the key

is used to capture relationships between entities. Such a relationship is represented

by a relation that contains a key for each entity involved in the relationship.

Relational algebra is a procedural manipulation language. It specifies the oper¬

ations and the order in which they are to be performed on tuples of relations. The

result of these operations is also a relation. The relational algebraic operations are

union, difference, cartesian product, intersection, projection, selection, join, and di¬

vision.
Relational calculus consists of two distinct calculi, tuple calculus and domain

calculus. In relational calculus queries are expressed using variables, a formula in¬

volving these variables, and compatible constants. The query expression specifies the

result relation to be obtained without specifying the mechanism and the order used

to evaluate the formula. It is up to the underlying database system to transform these

nonprocedural queries into equivalent, efficient, procedural queries. In relational tu¬

ple calculus the variables represent tuples from specific relations; in domain calculus

the variables represent values from specific domains.

Since relational calculus specifies queries as formulas, it is important that these

formulas generate result relations of finite cardinality in an acceptable period of time.

This in turn requires that the formulas be defined on a finite domain and the result

be within that domain. The domain consists of relations and constants appearing in

the formulas. Such formulas are called safe. With a safe formula, it is possible to

convert a query expression from one representation to another.

In the next chapter we consider a number of commercial query languages based

on relational algebra and calculus.

202 Chapter 4 The Relational Model

Key Terms

cardinality n-tuple predicate calculus

degree projection predicate

arity relation scheme one-place predicate

projecting unique identification monadic predicate

join nonredundancy two-place predicate

set prime attribute atomic formula

members associative relation well-formed formula (wff)

intension foreign key bound variable

extension target free variable

union domino deletion closed

intersection cascading deletion open

cartesian product union compatible tuple calculus

difference set-theoretic union atom

atomic domain restriction operation domain calculus

application-independent domain theta join safe

application-dependent domain equi-join fragmentation

structured domain natural join tuple identifier

composite domain relational calculus

Exercises

4.1 For the relations P and Q shown in Figure N, perform the following operations and show the

resulting relations.

(a) Find the projection of Q on the attributes (B,C).

(b) Find the natural join of P and Q on the common attributes.

(c) Divide P by the relation that is obtained by first selecting those tuples of Q where

the value of B is either b, or b2 and then projecting Q on the attributes (C,D).

Figure N For Exercise 4.1.

P

A B C D

a> b2 c2 ^2

a2 b, C) d2

ai b, c2 d,

a2 b, C2 d2

a. t>2 Cl d2

a3 b, c2 d,

a. b2 C2 ^2

a2 b, Cl d2

a. b3 C2 ^2

Q

B C D

b, Cl

tb Cl

t>2 C2 d,

b. Cl d2

b3 C2 d2

4.7 Summary 203

4.2 Given the E-R diagram in Figure O, give the most suitable relational database scheme to

implement this database. For each relation, choose a suitable name and list corresponding

attributes, underlining the primary key. For each relation, also identify the foreign keys.

Could any problems result as a consequence of tuple additions, deletions, or updates?

Figure O For Exercise 4.2.

4.3 For the database of Figure O, write relational algebra and calculus expressions to pose the

following queries:

(a) Get the supplier details and the price of bolts for all suppliers who supply ’bolts’.

(b) Find details of parts that suppliers who supply ‘bolts’ costing less than $0.01 are

capable of supplying, with the parts being of a quality better than ‘x’.

4.4 Given the relational schemes:

ENROLL (S#, C#, Section)—S# represents student number

TEACH (Prof, C#, Section)—C# represents course number

ADVISE (Prof, S#)—Prof is thesis advisor of S#

PRE-REQ (C#, Pre-C#)—Pre-C# is prerequisite course

GRADES (5#, C#, Grade, Year)

STUDENT (S#, Sname)—Sname is student name

Give queries expressed in relational algebra, tuple calculus, and domain calculus for the

following queries:

(a) List all students taking courses with Smith or Jones.

(b) List all students taking at least one course that their advisor teaches.

(c) List those professors who teach more than one section of the same course.

(d) List the courses that student “John Doe” can enroll in, i.e., has passed the

necessary prerequisite courses but not the course itself.

204 Chapter 4 The Relational Model

4.5 An orchestra database consists of the following relations:

CONDUCTS (Conductor, Composition)

REQUIRES (Composition, Instrument)

PLAYS (Player, Instrument)

LIKES (Player, Composition)

Give relational algebra, tuple calculus, and domain calculus queries for the following

queries?

(a) List the players and their instruments who can be part of the orchestra when

Letitia Melody conducts.

(b) From the above list of players, identify those who would like the composition

they are to play.

4.6 Give the equivalent

(a) English statement,

(b) domain calculus, and

(c) algebra

expressions for the following tuple calculus query:

{t|t e rel, A 3s(s € rel2 A (s.c = t.b))}

given the relations reli(A,B) and rel2(C,D).

4.7 Convert the following domain calculus query

{<A,B> | <A,B> e rel, A B = 'B,' V B = 'B2'}

into

(a) an English statement

(b) relational algebra

(c) tuple calculus.

4.8 Investigate the physical implementation details of a relational DBMS with which you are

familiar. Under what circumstances would any file organization not supported by the system

be beneficial?

4.9 An inverted file management system allows for the definition of inverted files and supports

queries of the form “List records (or tuples) where the attribute_name has value x,” and a

Boolean combination of such queries. Discuss how the relational algebra operations can be

handled using such a system.

4.10 Consider the queries in Examples 4.44 through 4.49. Rewrite the queries in tuple calculus;

however, use the quantifier \y instead of 3 and vice versa.

4.11 Consider the queries in Examples 4.52 through 4.57. Rewrite the queries in domain calculus;

however, use the quantifier V instead of 3 and vice versa.

4.12 Using the relations ASSIGNED_TO, EMPLOYEE, and PROJECT given in the text, generate

the following queries in relational algebra.

(a) Acquire details of the projects for each employee by name.

(b) Compile the names of projects to which employee 107 is assigned.

(c) Access all employees assigned to projects whose chief architect is employee 109.

(d) Derive the list of employees who are assigned to all projects on which employee

109 is the chief architect.

(e) Get all project names to which employee 107 is not assigned.

(f) Get complete details of employees who are assigned to projects not assigned to

employee 107.

4.7 Summary 205

4.13 Repeat Exercise 4.12 using tuple calculus.

4.14 Repeat Exercise 4.12 using domain calculus.

4.15 Give the tuple calculus expressions for the relational algebraic operation of (a) the union of

two relations P and Q, (b) the difference P —Q, (c) the projection of relation P on the

attribute X, (d) the selection aB(P), (e) the division of relation P by Q, i.e., P 4- Q.

4.16 Consider the following relations concerning a driving school. The primary key of each

relation is in boldface.

STUDENT : (St-Name, Class#, Th-Mark, Dr-Mark)

STUDENT_DRIVING_TEACHER : (St-Name, Dr_T-Name)

TEACHER_THEORY_CLASS : (Class#, Th-T-Name)

TEACHER-VEHICLE : (Dr-T-Name, License#)

VEHICLE : (License#, Make, Model, Year)

A student takes one theory class as well as driving lessons and at the end of the session

receives marks for theory and driving. A teacher may teach theory, driving, or both. Write

the following queries in relational algebra, domain calculus, and tuple calculus.

(a) Find the list of teachers who teach theory and give driving lessons on all the

vehicles.

(b) Find the pairs of students satisfying the following conditions.

They have the same theory mark and

They have different theory teachers and

They have the same driving mark and

They have different driving teachers

(c) Find the list of students who are taught neither theory lessons nor driving lessons

by “Johnson” (teacher).

(d) Find the list of students who have better marks than “John” in both theory and

driving.

(f) Find the list of students who have more marks than the average theory mark of

class 8 (Class#).

(g) Find the list of teachers who can drive all the vehicles.

4.17 Comment on the correctness of the following relational calculus solutions to the query: “Get

employee numbers of employees who do not work on project COMP453.”

(a) {t[Emp#] | t e ASSIGNED-TO A
\/u(u € ASSIGNED_TO A t [Emp#] = u[Emp#]

A u[Project#] # 'COMP453')}

(b) {e |3p (<p,e> e ASSIGNED_TO

A \/ p,,e! (<p,,e,> e ASSIGNED_TO

A p, = 'COMP453' A e # e,)))}

4.18 Comment on the correctness of the following relational calculus solutions to the query:

“Compile a list of employee numbers of employees who work on all projects.”

(a) {t[Emp#]\ t e ASSIGNED_TO A
3p,u (p e PROJECT Aue ASSIGNED_TO

A p[Project#] = u [Project#]

A t [Emp#] = u[Emp#]

(b) {e | V P2(<P2,n2,c2> e PROJECT

A <p,e> € ASSIGNED_TO

206 Chapter 4 The Relational Model

—> 3 pi ,e, (<p1,e1> e ASSIGNED_TO

A p, = p2 A e = e,))}

(c) {e | 3p (<p,e> e ASSIGNED_TO

A \/ p,,e, (<p,,e!> £ ASSIGNED_TO

v P. * COMP453 V e, * e))}

(d) {e | 3p (<p,e> e ASSIGNED-TO

A \/ Pi(<Pi,n1,c1> e PROJECT

-> <p,,e> e ASSIGNED_TO))}

4.19 Comment on the correctness of the following relational calculus solution to the query:

“Acquire the employee numbers of employees, other than employee 107, who work on at

least one project that employee 107 works on.”

{e |3p,p,,ei (<p,e> e ASSIGNED_TO

A <p,,e,> e ASSIGNED_TO

A p, = p A e # e, A e, = 107)}

Bibliographic Notes

The original concept of the use of relations to represent data was presented by Levien and

Maron (Levi 67). The formal relational model as we know it today, however, was first pro¬

posed by E. F. Codd (Codd 70). Relational algebra was defined by Codd in his original paper

and relational calculi in a subsequent paper (Codd 72). Since Codd’s original article, the

relational model has been extensively studied and is covered in most database texts, including

Date (Date 86), Korth and Silberschatz (Kort 86), Maier (Maie 83), and Ullman (Ullm 82).

Maier’s text gives a comprehensive theoretical treatment of the relational model.

(Beer 77) C. Beeri, R. Fagin, & J. H. Howard, “A Complete Axiomisation for Functional and Multivalued
Dependencies,” Proc. ACM SIGMOD Record Conference, Toronto, Aug. 1977, pp. 47-61.

(Beer 78) C. Beeri, P. A. Bernstein, & N. Goodman, “A Sophisticate’s Introduction to Database Normalization
Theory,” Proc. 4th International Conference on Very Large Data Bases, Berlin, 1978, pp
113-123.

(Bern 76) P. A. Bernstein, “Synthesizing Third Normal Form Relations from Functional Dependencies,” ACM
Transactions on Database Systems 1(4), 1976, pp. 277-298.

(Brod 82) M. L. Brodie, & J. W. Schmidt, eds., “Final Report of the ANSFX3/SPARC DBS-SG Relational
Database Task Group,” SPARC-81-690, ACM SIGMOD Record 12(4), 1982, pp. 1-62.

(Buss 83) V. Bussolati, S. Ceri, V. De Antenollis, & B. Zonta, “Views Conceptual Design,” in S. Ceri, ed..
Methodology and Tools for Data Base Design. North Holland, Amsterdam 1983, pp. 25-55.

(Codd 70) E. F. Codd, “A Relational Model for Large Shared Data Banks,” Communications of the ACM
13(6), 1970, 377-387.

(Codd 72) E. F. Codd, “Relational Completeness of Data Base Sublanguages,” in R. Randall, ed.. Data Base
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 65-98.

(Codd 81) E. F. Codd, “Data Models in Database Management,” ACM SIGMOD Record 11(2), 1981.

(Codd 82) E. F. Codd, “Relational Database: A Practical Foundation for Productivity,” 1981 ACM Turing
Award Lecture, Communications of the ACM 25(2), 1982, pp. 109-117.

(Date 86) C. J. Date, “An Introduction to Database Systems,” 4th ed. Reading, Mass: Addison Wesley, 1986.

4.7 Summary 207

(Fagi 77) R. Fagin, “Multivalued Dependencies and a New Normal Form for Relational Databases ” ACM
Transactions of Database Systems 2(3), 1977, pp. 262-278.

(Gall 78) H. Gallaire & J. Minker, Logic and Databases. New York: Plenum Press, 1978.

(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts, New York: McGraw-Hill, 1986.

(Kowa 79) R. Kowalski, Logic for Problem Solving, New York: North-Holland, 1979.

(Lacr 77> M. Lacroix & A. Pirotte, “Domain-Oriented Relational Languages,” Proc. 3rd International
Conference on Very Large Data Bases, October 6-8, 1977. Tokyo, IEEE, New York, pp.
370—378.

(Levi 67) R. Levien, & M. E. Maron, “A Computer System for Inference Execution and Data Retrieval
Communications of the ACM 10(11), 1967, pp. 715-721.

(Lum 79) V. Lum et al., 1978 New Orleans Data Base Design Workshop Report, IBM Yorktown Heights (RJ
2554), 1979.

(Maie 83) D. Maier, The Theory of Relational Databases,” Rockville, MD: Computer Science Press, 1983.

(Niem 84) T. Niemi & K. Jarvelin, “A Straightforward Formalization of the Relational Model ” ACM
SIGMOD Record 14(1), 1984, pp. 15-38.

(Pir° 82) A- Pirotte, “A Precise Definition of Basic Relational Notions and of the Relational Algebra ” ACM
SIGMOD Record 13(1), 1982, pp. 30-45.

(Ullmn 82) J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, Md: Computer Science Press
1982.

(Yang 86) C. C. Yang, Relational Databases. Englewood Cliffs, NJ: Prentice-Hall, 1986.

Contents

Relational
Database

Manipulation

5.1 Introduction

5.2 SQL
5.2.1 Data Definition: SQL

5.3 Data Manipulation: SQL
Select Statement

Update Statement

Delete Statement

Insert Statement

5.3.1 Basic Data Retrieval

5.3.2 Condition Specification

5.3.3 Arithmetic and Aggregate Operators
5.3.4 SQL Join: Multiple Tables Queries
5.3.5 Set Manipulation

Any

In

Contains

All

Not In

Not Contains

Exists

Not Exists

Union

Minus

Intersect

5.3.6 Categorization
5.3.7 Updates

5.4 Views: SQL
5.4.1 Views and Update

5.5 Remarks

5.6 QUEL
5.6.1 Data Definition

Create Statement

Range Statement

Index Statement

Destroy Statement

Modify Statement

5.7 Data Manipulation: QUEL
5.7.1 Condition Specification
5.7.2 Renaming

5.7.3 Arithmetic Operators
5.7.4 Multiple Variable Queries
5.7.5 Set Operations in QUEL
5.7.6 Aggregation Operators in QUEL
5.7.7 Retrieve into Temporary Relation
5.7.8 Updates
5.7.9 Views

5.7.10 Remarks

5.8 Embedded Data Manipulation Language

5.9 A Critique: SQL, QUEL

5.10 QBE
5.10.1 Basic Data Retrieval in QBE
5.10.2 Aggregation in QBE

5.10.3 Categorization in QBE
5.10.4 Updates

208

5.1 Introduction 209

In this chapter we focus on a number of commercial data manipulation languages.
We look at their main features and illustrate their usage.

Introduction

In the preceding chapter we looked at query languages for the relational model based

on relational algebra or calculus. Data manipulation languages for commercial data¬

base systems, however, do not conform precisely to any of these languages. The

commercial implementation of the query languages have some restrictions and omis¬

sions, as well as extensions. Most of the commercial languages, for example, support

arithmetic, string and aggregate operators (such as average, maximum, etc.).

Relational algebra or relational calculi provide a powerful set of operations or

means to specify queries, as we saw in Chapter 4. These operations form the basis

for the data manipulation language component of a DBMS. The DBMS must also

support data definition capabilities, with commands for the creation, deletion, and

modification of relations, the insertion, deletion, and modification of tuples, and fea¬
tures to make it easier or more convenient to use.

In this chapter, although we do not provide detailed syntax or semantics, we

demonstrate some of the features of Structured Query Language (SQL), Query Lan¬

guage (QUEL), and Query-By-Example (QBE). SQL is not truly non-procedural and

uses features of relational algebra as well as relational calculus. QUEL is based on

tuple calculus. QBE is a two-dimensional language based on domain calculus. None

of these languages are purely procedural and consequently none of them quite follows

the relational algebraic philosophy. Individual implementation of these languages, as

with programming languages, has its own flavor.

In the examples of this chapter we use the relations discussed below, referring

to the hotel and restaurants example presented in Chapter 2.

As we saw in Chapter 2, the aggregation BILL represents the SERVE relation¬

ship among the entities GUEST, TABLE, and WAITER. The aggregation BILL re¬

quires The introduction of a unique bill number for identification'. In addition, the

following attributes from the SERVE relationship and the entities involved in the

relationship can be used for the aggregated entity: unique bill number, waiter identi¬

fier, table identifier, day, number of guests in party, total, tip. We have used day

here as the name of one of the attributes instead of date, which is a reserved keyword

in some commercial DMLs.

Now let us consider the relationship ORDR, shown in Figure 5.1, between the

entities bill and menu. (Because ORDER is a reserved keyword in most query lan¬

guages we use the name ORDR for this relationship.) A menu has a number of dishes

with a price and description for each item. The guests order a number of dishes (more

than one of the same dish may be consumed). The structure of the tables for the

relations and the data type declarations are given below. Some tuples of these rela¬

tions are shown in Figure 5.2.

MENU (Dish#, Dish-Description, Price)

Dish#: integer—unique identifier

Dish-Description: text—name and other details of dish

Price: real—price of the dish

210 Chapter 5 Relational Database Manipulation

Figure 5.1 The ORDR relationship.

BILL (Bill#, Day, Table#, Waiter#, Total, Tip)

Bill#: integer—unique bill identifier

Day. date—in yyyymmdd unsigned decimal digits format

Table#: integer—table number

Waiter#: integer—employee identifier

Total: real—total amount

Tip: real

ORDR (Bill#, Dish#, Qty)

Bill#: integer—bill identifier

Dish#: integer—dish identifier

Qty: integer—number of dish ordered by client

The DUTY-ALLOCATION relationship (Figure 5.3) between various positions

(POSITION) and employees (EMPLOYEE) in a restaurant can be described by the

attributes Day and Shift. Each position in the restaurant is defined by a unique Posting

-No and requires a (minimum) skill specified by Skill. The structure of the tables for

these entities and the relationship is given below. Some tuples from these relations

are given in Figure 5.4.

Figure 5.2 Some tuples from the MENU, BILL, and ORDR relations.

MENU ORDR

Dish# Dish—Description Price

50 Coffee 2.50

100 Scrambled eggs 7.50

200 Special du jour 19.50

250 Club sandwich 10.50

300 Pizza 14.50

Bill# Dish# Qty

9234 50 2

9234 250 2

9235 300 1

BILL

Bill# Table# Day Waiter# Total Tip

9234 12 19860419 123456 26.00 3.90
9235 17 19860420 123461 14.50 2.20

5.1 Introduction 211

Figure 5.3 The DUTY-ALLOCATION relationship.

EMPLOYEE (Empl-No, Name, Skill, Pay-Rate)

Empl-No: integer—unique identifier

Name: string—employee’s name

Skill: string—employee’s skill

Pay-Rate: real—hourly pay rate

POSITION (Posting-No, Skill)

Posting-No: integer—unique position identifier

Skill: string—skill required for the position

Figure 5.4 Some Tuples from EMPLOYEE, POSITION, DUTY-ALLOCATION relations.

EMPLOYEE POSITION

Empl-No Name Skill Pay-Rate

123456 Ron waiter 7.50

123457 Jon bartender 8.79

123458 Don busboy 4.70

123459 Pam hostess 4.90

123460 Pat bellboy 4.70

123461 Ian maitre d’ 9.00

123471 Pierre chef 14.00

123472 Julie chef 14.50

Posting-No Skill

321 waiter

322 bartender

323 busboy

324 hostess

325 maitre d’

326 waiter

350 chef

351 chef

DUTY-ALLOCATION

Posting-No Empl-No Day Shift

321 123456 19860419 1

322 123457 19860418 2

323 123458 19860418 1

321 123461 19860420 2

321 123461 19860419 2

350 123471 19860418 1

323 123458 19860420 3

351 123471 19860419 1

212 Chapter 5 Relational Database Manipulation

DUTY-ALLOCATION (Posting-No, Empl-No, Day, Shift)

Posting-No\ integer—indicates the position assigned

Empl-No: integer—employee identifier

Day : date—in yyyymmdd format

Shift: integer—work day divided into shifts

5.2 SQL

Structured Query Language (SQL) originated with the System R project in 1974

at IBM’s San Jose Research Center. The purpose of this project was to validate the

feasibility of the relational model and to implement a DBMS based on this model.

The results of this project are well documented in the database literature. In addition

to contributing to the concept of query compilation and optimization and concurrency

control mechanisms, the most salient result of this research project was the develop¬

ment of SQL. The System R project, concluded in 1979, was followed by the release

of a number of commercial relational DBMS products from IBM. The first of these

was SQL/DS for IBM’s mid-range computers. Subsequently, DB2 was released for

IBM’s mainframe systems.

SQL (the original version was called SEQUEL and a predecessor of SEQUEL

was named SQUARE) was the data definition and manipulation language for System

R. SQL has emerged as the standard query language for relational DBMSs, and

most of the commercial relational database management systems use SQL or a

variant of SQL.

Response times and throughput in relational database applications have tradition¬

ally been slow, when compared to a similar application using network or hierarchical

systems. This necessitated generating the best method for evaluating a query. A re¬

cent release of DB2 (version 2) promises a performance, measured in terms of

throughput in real-time transaction processing, comparable to those available with

the application using DBMSs based on other data models. This throughput, on IBM’s

3090 600S six-processor running under the MVS/ESA operating system, is reported

to be over 400 simple transactions per second and over 200 complex transactions per

second. In addition, the new release of DB2 provides entity integrity, although full

referential integrity is still not supported.

SQL is both the data definition and data manipulation language of a number of

relational database systems (the IBM prototype System R, IBM’s DB2 and SQL/DS,

ORACLE, and many other commercial systems, including its recent introduction for

INGRES), just as QUEL is for the INGRES RDBMS. SQL is based on tuple calcu¬

lus, though not as closely as QUEL. SQL resembles relational algebra in some places
and tuple calculus in others.

5.2.1 Data Definition: SQL

Data definition in SQL is via the create statement. The statement can be used to

create a table, index, or view (i.e., a virtual table based on existing tables). To create

5.2 SQL 213

a table, the create statement specifies the name of the table and the names and data
types of each column of the table. Its format is:

create table <relation> (<attribute list>)

where the <attribute list> is specified as:

<attribute list> :: = <attribute name> (<data type>)[not null]

[,<attribute list>]

The data types supported by SQL depend on the particular implementation.

However, the following data types are generally included: integer, decimal, real (i.e.,

floating point values), and character strings, both of fixed size and varying length. A

number of ranges of values for the integer data type are generally supported, for

example, integer and smallint. The decimal value declaration requires the specifica¬

tion of the total number of decimal digits for the value and (optionally), the number

of digits to the right of the decimal point. The number of fractional decimal digits is

assumed to be zero if only the total number of digits is specified.

<data type> :: = <integer>|<smallint>|<char(n)>|<varchar(n)>|
<float>|<decimal(p[,q])>

In addition, some implementations can support additional data types such as bit

strings, graphical strings, logical, date, and time. Some DBMSs support the concept

of date. One possible implementation of date could be as eight unsigned decimal

digits representing the date in the yyyymmdd format. Here yyyy represents the year,

mm represents the month and dd represents the day. Two dates can be compared to

find the one that is larger and hence occurring later. The system ensures that only

legal date values are inserted (19860536 for the date would be illegal) and functions

are provided to perform operations such as adding a number of days to a date to

come up with another date or subtracting a date from the current date to find the

number of days, months, or years. Date constants are provided in either the format

given above or as a character string in one of the following formats: mm/dd/yy; mm/

dd/yyyy; dd-mmm-yy; dd-mmm-yyyy. In this text we represent a date constant as

eight unsigned decimal digits in the format yyyymmdd.
The employee relation for the hotel database can be defined using the create

table statement given below. Here, the Empl-No is specified to be not null to disal¬

low this unique identifier from having a null value. SQL supports the concept of null

values and, unless a column is declared with the not null option, it could be assigned

a null value.

create table EMPLOYEE

(Empl-No integer not null,

Name char(25),

Skill char(20),

Pay-Rate decimal(10,2))

The definition of an existing relation can be altered by using the alter statement.

This statement allows a new column to be added to an existing relation. The existing

tuples of the altered relation are logically considered to be assigned the null value

for the added column. The physical alteration occurs to a tuple only during an update

of the record. The syntax of the alter statement and an example showing the attribute

phone number added to the EMPLOYEE relation is given on the next page.

214 Chapter 5 Relational Database Manipulation

alter table existing-table-name

add column-name data-type [, . . .]

alter table EMPLOYEE

add Phone-Number decimal (10)

The create index statement allows the creation of an index for an already exist¬

ing relation. The columns to be used in the generation of the index are also specified.

The index is named and the ordering for each column used in the index can be

specified as either ascending or descending. The cluster option could be specified to

indicate that the records are to be placed in physical proximity to each other. The

unique option specifies that only one record could exist at any time with a given

value for the column(s) specified in the statement to create the index. (Even though

this is just an access aid and a wrong place to declare the primary key.) Such col¬

umns, for instance, could form the primary key of the relation and hence duplicate

tuples are not allowed. One case is the ORDR relation where the key is the combination

of the attribute Bill#, Dish#. In the case of an existing relation, an attempt to create an

index with the unique option will not succeed if the relation does not satisfy this unique¬

ness criterion. The syntax of the create index statement is shown below:

create [unique] index name-of-index

on existing-table-name

(column-name [ascending or descending]

[, column-name [order] . . .])

[cluster]

The following statement causes an index called empindex to be built on the

columns Name and Pay-Rate. The entries in the index are ascending by Name value

and descending by Pay-Rate. In this example there are no restrictions on the number
of records with the same Name and Pay-Rate.

create index empindex

on EMPLOYEE {Name asc, Pay-Rate desc);

An existing relation or index could be deleted from the database by the drop

SQL statement. The syntax of the drop statement is as follows:

drop table existing-table-name;

drop index existing-index-name;

5.3 Data Manipulation: SQL

In this section we present the data manipulation statements supported in SQL. Ex¬

amples of their usage are given in subsequent sections. SQL provides the following
basic data manipulation statements: select, update, delete, and insert.

Select Statement

The select statement, the only data retrieval statement in SQL, specifies the method

of selecting the tuples of the relation(s). The tuples processed are from one or more

5.3 Data Manipulation: SQL 215

relations specified by the from clause of the select statement; the selection predicates

are specified by the where clause. The select statement could also specify the projec¬

tion of the target tuples. Do not confuse the select verb of SQL with ct, the select

operation of relational algebra. The difference is that the select statement entails
selection, joins, and projection, whereas a is a simple selection.

The syntax of the select statement is as follows:

select [distinct] Ctarget list>

from Crelation list>

[where <predicate>]

The distinct option is used in the select statement to eliminate duplicate tuples

in the result. Without the distinct option duplicate tuples may appear in the result.

The Ctarget list> is a method of specifying a projection operation of the result
relation. It takes the form:

Ctarget list> :: = Cattribute name> [,Ctarget list>]

The from clause specifies the relations to be used in the evaluation of the state¬
ment. It includes a relation list:

Crelation list> : : = Crelation name> [Ctuple variable>]

[.Crelation list>]

A tuple variable is an identifier; the domain of the tuple variable is the relation
preceding it.

The where clause is used to specify the predicates involving the attributes of
the relation appearing in the from clause.

An example of the use of a simple form of select to find the values for the

attribute Name in the employee relation is given below:

select Name

from EMPLOYEE

The result of this select operation is a projection of the EMPLOYEE relation on

the attribute Name. Unlike the theoretical version of projection, this projection con¬

tains duplicate tuples. The reason for not eliminating these duplicates is the large

amount of processing time required to do so. If the theoretical equivalent is desired,

however, the distinct clause is added to the select statement, as shown below:

select distinct Name

from EMPLOYEE

The predicates used to specify selection are added to a select statement by the

use of the where clause. Additional features and examples of the select statement

will be discussed in following sections.

Update Statement

The update statement is used to modify one or more records in a specified relation.

The records to be modified are specified by a predicate in a where clause and the

new value of the column(s) to be modified is specified by a set clause. The syntax

of the update statement is shown on the next page.

216 Chapter 5 Relational Database Manipulation

update <relation> set <target_value_list>

[where < predicate >]

where the <target value list> is of the form:

<target value list> :: = <attribute name> = <value expression>

[,<target value list>]

The following statement changes the Pay-Rate of the employee Ron in the EM¬

PLOYEE relation of Figure 5.4:

update EMPLOYEE

set Pay-Rate = 7.85

where Name -- 'Ron'

Delete Statement

The delete statement is used to delete one or more records from a relation. The

records to be deleted are specified by the predicate in the where clause. The syntax

of the delete statement is given below:

delete <relation> [where <predicate>]

The following statement deletes the tuple for employee Ron in the EMPLOYEE

relation of Figure 5.4.

delete EMPLOYEE

where Name = 'Ron'

If the where clause is left out, all the tuples in the relation are deleted. In this

case, the relation is still known to the database although it is an empty relation. A

relation along with its tuples could be deleted by the drop statement.

Insert Statement

The insert statement is used to insert a new tuple into a specified relation. The value

of each field of the record to be inserted is either specified by an expression or could

come from selected records of existing relations. The format of the insert statement
is given below:

insert into <relation>

values (<value list>)

where the <value list> takes the form:

<value list> :: = Cvalue expression> [,<value list>]

In another form of the insert statement, a list of attribute names whose values
are included in the <value list> are specified:

insert into <relation> (<target list>)

values (<value list>)

5.3 Data Manipulation: SQL 217

and the Ctarget list> takes the form:

Ctarget !ist> :: = <attribute name> [,<target list>]

The value clause can be replaced by a select statement, which is evaluated, and

the result is inserted into the relation specified in the insert statement.

The following statement reinserts a tuple for the employee Ron in the EM¬
PLOYEE relation of Figure 5.4:

insert into EMPLOEE

values (123456, 'Ron', 'waiter', 7.50)

5.3.1 Basic Data Retrieval

The SQL mapping operation basically consists of a selection and join followed by a

projection. The select verb of SQL is used to represent this mapping operation.

Example 5.1 Here we give two simple examples of the data retrieval operation.

(a) The Posting-No and Empl-No values from the DUTY-ALLOCA-

TION relation can be retrieved by the SQL statement shown below. For the

DUTY_ALLOCATION table of Figure 5.4, the statement produces the re¬

sult shown in part i of Figure A.

select Posting-No, Empl-No

from DUTY-ALLOCATION

The above query resembles the relational algebra projection operation.

This is not strictly a projection because duplicates are not removed, as

shown in part i of Figure A. Duplicates may be removed by using the dis¬

tinct option in the select statement, as indicated on page 218. The distinct

option is applied to the entire result relation (Posting-No, Empl-No). The

result of this statement is shown in part ii of Figure A.

Figure A (i) A simple projection via select with duplicates tuples; (ii)
Eliminating duplicate tuple by the distinct clause in the se¬
lect statement.

Posting-No Empl-No

321 123456

322 123457

323 123458

321 123461

321 123461

350 123471

351 123471

(i)

Posting-No Empl-No

321 123456

322 123457

323 123458

321 123461

350 123471

351 123471

218 Chapter 5 Relational Database Manipulation

select distinct Posting-No, Empl-No

from DUTY_ALLOCATION

(b) “Get complete details from DUTY-ALLOCATION.”

select *

from DUTY-ALLOCATION

The asterisk character is used as shorthand for the full attribute list.

The result of this statement is the entire DUTY-ALLOCATION relation

shown in Figure 5.4. ■

5.3.2 Condition Specification

SQL supports the following Boolean and comparison operators: and, or, not, =, A

(not equal), >, >, >, <. These operators allow the formulation of more complex

predicates, which are attached to the select statement by the where clause. Such

predicates in the where clause specify the selection of specific tuples and/or a join of

tuples from two relations (i.e., they provide the capability of the selection and join

operations of relational algebra). If more than one of the Boolean operators appear

together, not has the highest priority while or has the lowest. Parentheses may be

used to indicate the desired order of evaluation.

Example 5.2 “Get DUTY-ALLOCATION details for Empl-No 123461 for the month of

April 1986.” This query is given on page 219. The result of the query is
shown in part i of Figure B.

Figure B (i) Selecting specified tuples followed by projection; (ii) Or¬
dering the result; (iii) Selecting tuples specified by disjunc¬
tive predicates.

Posting_ Shift Day

No

321 2 19860420

321 2 19860419

Posting_ Shift Day

No

321 2 19860419

321 2 19860420

(') (ii)

Posting-No Empl-No Day Shift

321 123461 19860420 2

321 123461 19860419 2

323 123458 19860420 3

(iii)

5.3 Data Manipulation: SQL 219

select Posting-No, Shift, Day

from DUTY_ALLOCATION

where Empl_No = 123461 and

Day >19860401 and

Day <19860430

If the result had to be rearranged, the order clause could be specified as

shown below. The result of this statement on our sample database is shown
in part ii of Figure B.

select Posting-No, Shift, Day

from DUTY_ALLOCATION

where EmplJNo = 123461

order by Day asc

The following statement selects the posting information about employee

123461 for the month of April 1986, as well as for all employees for shift

3 regardless of dates. The result of this statement on our sample database is
shown in part iii of Figure B.

select *

from DUTY_ALLOCATION

where (Empl_No = 123461 and

Day >19860401 and

Day <9860430) or

(Shift =3) ■

5.3.3 Arithmetic and Aggregate Operators

SQL provides a full complement of arithmetic operators and functions. This includes

functions to find the average, minimum, maximum, sum, and to count the number
of occurrences.

Let us first consider the SQL facility to specify arithmetic operations on attribute
values.

Example 5.3 Consider the relation SALARY(£>n/?/_/Vo, Pay-Rate, Hours), used for com¬

puting the weekly salary in our sample database. Part of this relation is

shown in part i of Figure C. Consider the evaluation of the weekly salary

(gross). This operation can be expressed in SQL as shown below. The result

of this statement is shown in part Hr of Figure C.

select Empl-No, Pay-Rate*Hours

from SALARY

where Hours >0.0

220 Chapter 5 Relational Database Manipulation

Figure C (i) The SALARY relation; (ii) Result of computing the weekly
salary.

SALARY: result:

Empl—No Pay-Rate*

Hours

123456 303.50

123457 373.58

123458 223.25

123460 225.60

123461 432.00

123471 597.80

123472 659.75

Empl—No Pay-Rate Hours

123456 7.50 40.5

123457 8.79 42.5

123458 4.70 47.5

123459 4.90 0.0

123460 4.70 48.0

123461 9.00 48.0

123471 14.00 42.7

123472 14.50 45.5

(i) (ii)

SQL also provides the following set of built-in functions. The operand of each

of these functions is a column of an existing relation. Null values are ignored except

in the case of count(*). The functions are described below; examples are given in

Example 5.4.

• count: This function must be used either with the distinct option of the select

statement or as count(*). When used with the distinct option, it counts the

number of distinct values in the column. If the total number of rows in a

relation is to be determined, count(*) must be used.

• sum: The operand of this function must have a numeric value. It finds the sum

of these values. If the distinct option is specified, the duplicate values are
ignored in computing the result.

• avg: The operand of this function must have a numeric value. It finds the

average of these values. If the distinct option is specified, the duplicate values
are not used for computing the average.

• min: This function finds the minimum of the values in the column. The distinct

option has no effect on this function.

• max: This function finds the maximum of the values in the column. The

distinct option has no effect on this function.

In some of the following examples, the predicate has been omitted and the

aggregate operations are carried out on the complete relation, except tuples that have

null values in the argument. The distinct option may be specified with the argument

to eliminate duplicates. Distinct must be specified with the arguments for count;

count(*) is provided to count all rows without null or duplicate elimination.

Example 5.4 (a) “Get Average Dish-Price.”

select avg (Price)

from MENU

5.3 Data Manipulation: SQL 221

For the menu relation shown in Figure 5.2, the result of this statement is
10.90.

(b) “Get minimum and maximum dish prices.”

select min (Price), max (Price)
from MENU

For the menu relation shown in Figure 5.2, the result of this statement is
2.50 and 19.50.

(c) The average pay rate for employees can be derived using the following
SQL statement.

select avg (Pay-rate)

from EMPLOYEE

For the EMPLOYEE relation shown in Figure 5.4 the result of this state¬
ment, as shown below, is a relation of arity and cardinality one:

result

avg (Pay-Rate)

8.51

(d) “Find the average pay rate for employees working as a chef.

select avg (Pay-Rate)

from EMPLOYEE

where Skill = 'chef'

For the employee relation shown in Figure 5.4, the result of this statement
is 14.25.

(e) “Get the number of distinct pay rates from the EMPLOYEE relation.”

select countfdistinct Pay-Rate)

from EMPLOYEE

For the Employee relation shown in Figure 5.4, the result of this statement
is 7. ■

5.3.4 SQL Join: Multiple Tables Queries

SQL does not have a direct representation of the join operation. However, the type

of join can be specified by an appropriate predicate in the where clause of a select

statement, wherein the relations to be joined are specified in the from clause. The

join is performed by using the appropriate tuples of the participating relations, fol¬

lowed by selection and projection. Consider the following SQL statement. The rela¬

tion name precedes the attribute name, the two being separated by a period. This

method of qualifying is used to distinguish identical attribute names.

select Ti.an, . . . Ti.aln, T2.a2i, . . . , T2.a2m

from Ti, T2,

where Tj.a,j = T2.a2k . . .

222 Chapter 5 Relational Database Manipulation

This statement is evaluated1 by performing a cartesian product of the tables T,,

T2, and thence the tuples satisfying the where clause are selected. These tuples are

then projected on the attributes T,.a,,, . . . T,.a,n, T2.a2i, . . . T2.a2m. The rela¬

tional algebraic form of this statement is

'"’a 11.aln’ a21 ’ • • • •a2m<'lj! ^ T2)
alj — a2k • • •

In general the select statement represents the following relational algebraic op¬

erations where X is the cartesian product of the relations represented by the from

list.

^(represented by the target list,^(represented by the where clause)!-^))

Joins involving more than two relations can be similarly encoded in SQL. Quer¬

ies of this form need data from more than one relation. In the case where the join

involves a relation with itself, the query needs data from more than one record of

the same relation.

Example 5.5 The following SQL query is used to retrieve the shift details for employee

Ron:

select Posting-No, Day, Shift

from DUTY-ALLOCATION, EMPLOYEE

where DUTY- ALLOC ATION. Empl-No = EMPLOYEE. Empl-no

and Name ='Ron'

Note that attributes Empl-No have been qualified, since the names of these

attributes are identical. The result of the query on the DUTY-ALLOCA¬

TION, EMPLOYEE tables of Figure 5.4 is the triple (321, 19860419,

1). ■

SQL uses the concept of tuple variable from relational calculus. In SQL a tuple

variable is defined in the from clause of the select statement. The syntax of the

declaration requires that the name of the tuple variable be declared after the relation
name in the from clause, as shown below:

from relation-name, tv, [,relation_name2 tv2 , . . .]

We use tuple variables in Example 5.6 to compare two tuples of the relation

EMPLOYEE. The two tuple variables e,, and e2 are defined on the same relation.

Example 5.6 “Get employees whose rate of pay is more than or equal to the rate of pay
of employee Pierre.”

select o{.Name, e,.Pay_Rate

from EMPLOYEE e,, EMPLOYEE e2

'This is a conceptual explanation. The actual evaluation of the query may be optimized.

5.3 Data Manipulation: SQL 223

where e,. Pay-Rate > e2. Pay-Rate

and z2.Name = ‘Pierre’

The result of this query for the EMPLOYEE table shown in Figure 5.4 is
the tuple (Julie, 14.50). ■

Now we turn to an example of a join involving one relation.

Example 5.7 “Compile all pairs of Posting-Nos requiring the same Skill.”

select p1.Pastmg.JV0, p2.Posting-No

from POSITION p, POSITION p2

where px. Skill = p2.Skill

and pi.Posting-No < p2.Posting-No

Pi- P2-
Posting-No Posting-No

321 326

350 351

For the POSITION table of Figure 5.4, this SQL statement generates the

result shown above. Posting-Nos 321 and 326 require a skill of waiter and

Posting-Nos 350 and 351 require a skill of chef. The predicate px.Posting-

No < p2.Posting—No is used to avoid including tuples such as (326, 321),

(350,350), (351,350), etc., in the result. ■

The following is an example that requires joining two relations.

Example 5.8 Consider the requirement to generate the eligibility of employees to fill a

given position. Each position (Posting-No) requires a skill and only those

employees who have this skill are eligible to fill that position. Thus to gen¬

erate the position eligibility relation, we are required to join the relations

EMPLOYEE and POSITION for equal values of the common attribute Skill.

The following SQL statement implements the join. The result of the join is

shown on the next page.

select EMPLOYEE. Empl-No, POSITION. Posting -No, POSITION. Skill

from EMPLOYEE, POSITION

where EMPLOYEE.S'/:/// = POSITION.Skill

224 Chapter 5 Relational Database Manipulation

EMPLOYEE.

Empl-No

POSITION.

Posting-No

POSITION.

Skill

123456 321 waiter

123456 326 waiter

123457 322 bartender

123458 323 busboy

123459 324 hostess

123461 325 maitre d’

123471 350 chef

123471 351 chef

123472 350 chef

123472 351 chef

The following is an example of joining three relations.

Example 5.9 Consider the requirement to generate the itemized bill for table 12 for the

date 19860419. This requires details from three relations, BILL, ORDR,

and MENU. The itemized bill can be generated using the following query.
The result is shown in Figure D.

Figure D Itemized bill

result

Bill# Dish-Description Price Qty Price*Q ty

9234 Coffee 2.50 2 5.00
9234 Club sandwich 10.50 2 21.00

select BILL.5///#, MENU .Dish-Description, MENU. Price,

ORDR.Qty, MENU.Price*ORDR.(2/y
from BILL, MENU, ORDR

where BILL.Bill# = ORDR.Bill#

and ORDR.Dish# = MENU .Dish

and BILL.Table# = 12

and BILL.Day = 19860419

A select statement can be nested in another select statement. The result of

the nested select statement is a relation that can be used by the outer select

statement. An alternate method of generating this itemized bill is by using

the nested select statement (which forms a sub-query) as shown below:

select ORDR.Pi//#, MENU .Dish-Description, MENU. Price,

ORDR.Qty, MENU.Price*ORDR.Qty

5.3 Data Manipulation: SQL 225

from MENU, ORDR

where ORDR.Dish# = MENU.Dish#
and ORDR.Bill# =

(select BILL .Bill#

from BILL

where BILLTaWc# = 12

and BILL.Day = 19860419) ■

5.3.5 Set Manipulation

SQL provides a number of set operators: any, in, all, exists, not exists, union, minus,

intersect, and contains. These constructs, based on the operations used in relational

calculus and relational algebra, are used for testing the membership of a value in a

set of values, or the membership of a tuple in a set of tuples, or the membership of

one set of values in another set of values. When using these operators, remember

that the SQL statement “select . . returns a set of tuples (which is a set of values

in cases where the target list is a single attribute). We describe these set manipulation

operators below and illustrate them with a number of examples.

Any

The operator any allows the testing of a value against a set of values. The compari¬

sons can be one of {<,<,>, >, = , #=}, and are specified in SQL as the operators,

<any, <any, >any, >any, =any, and ^any (not equal to any). We refer to any

one of these operators by the notation Oany.

In general, the condition

c Oany (select X from . . .)

evaluates to true if and only if the comparison “c Oany {at least one value from the

result of the select X from . . . }”is true.2 Let us illustrate this condition with the

following example:

Example 5.10 Let the result of

select X

from rel

where P

be the set of values {'30', '40', '60', '70'}. Then the following statements,

which compare the two sets on both sides of the Oany operators, are valid

and give the result indicated on the next page.

2The implementation of any and all leads to some confusion since =£ any actually is implemented, in some systems, to be
not equal to some (any one of the set of values). For example {’50'} i= any ({'30', 40 , 50 , 70 }) is evaluated to true since
50 + 30. To justify this implementation, some is used as an alias for any in these systems! Such an implementation tends to

give results that do not agree with the interpretation given here.

226 Chapter 5 Relational Database Manipulation

Example 5.11

ies.

'50' = any ({'30', '40', '60', '70'}) is false

'50' = any ({'30', '40', '50', '70'}) is true

'69' <any ({'30', '40', '60', '70'}) is true

'29' >any ({'30', '40', '60', '70'}) is false

'31' >any ({'30', '40;', '60', '70'}) is true

'50' =£any ({'30', '40', '60', '70'}) is true

'50' ^any ({'30', '40', '50', '70'}) is false

Example 5.11 illustrates the use of 0any operator.

“Get the names and pay rates of employees with Empl-No less than 123460

whose rate of pay is more than the rate of pay of at least one employee with

Empl-No greater than or equal to 123460.” This query can be expressed

as given below. Here we are using a nested form of the SQL query.

The expression in the parentheses is evaluated first to give a set containing the

Pay-Rates for employees with Empl-No greater than or equal to 123460.

For the EMPLOYEE relation shown in Figure 5.4, this gives the set {4.70,

9.00, 14.00, 14.50} for the right-hand side of the >any test. For the EM¬

PLOYEE relation shown in Figure 5.4, the result relation is shown below.

Employee 123458 does not appear in the result since his pay rate of 4.70 is

not greater than any value in the above set.

Result

Name Pay-Rate

Ron 7.50

Jon 8.79

Pam 4.90

select Name, Pay-Rate

from EMPLOYEE

where Empl-No < 123460 and

Pay-Rate >any

(select Pay-Rate

from EMPLOYEE

where Empl-No > 123460) ■

In the SQL query formulation used in Example 5.11, we used the nested quer-
This is a powerful query formulation tool.

In

The operator in, equivalent to = any, tests for the membership of a value within a
set. An example of its use is given in Example 5.12.

5.3 Data Manipulation: SQL 227

Example 5.12 “Get employees who are working either on the date 19860419 or
-19860420.”

select Empl_No

from DUTY_ALLOCATION

where Day in (19860419,19860420)

This query is equivalent to the following query involving two predicates
connected with an or operator:

select Empl-No

from DUTY_ALLOCATION

where Day = 19860419

or Day = 19860420

The same query can be expressed in another, albeit convoluted, way:

select Empl-No

from DUTY_ALLOCATION

where Day in

(select Day

from DUTY_ALLOCATION

where Day = 19860419 or Day = 19860420)

The in test could also be replaced by = any. H

Contains

The set operator in tests the membership of a single value within a set of values, but

the operator contains is used to test for the containment of one set in another. For

instance, the expression X contains Y tests whether or not set X is a superset of set

Y and, consequently, X contains at least all those elements contained in Y. If set X

contains set Y, the expression evaluates to true. An example of the use of contains

is given below in Example 5.13.

This set operator is not always available in all implementations of SQL. How¬

ever, it can be simulated using the not exists operator as shown below in Example

5.18b.

Example 5.13 “Find the names of employees who are assigned to all positions that require

a chefs skill.”

select e.Name

from EMPLOYEE e

where

(select Posting-No

from DUTY_ALLOCATION d

where e.Empl-No = d.Empl-No)

contains

228 Chapter 5 Relational Database Manipulation

(select p.Posting-No

from POSITION p

where p.Skill = 'chef')

Here the first nested subquery finds the positions where an employee is as¬

signed. The second nested subquery finds the set of positions requiring a

chefs skill. The main select statement considers each employee and for that

employee finds all the positions and tests if this is a superset of the positions

requiring a chefs skill. If this test evaluates to a true value, the attribute

Name is output. For our sample database, the result of this query is

(Pierre). ■

All

The set operator all is used, in general, to show that the condition

c Sail (select X from . . .)

evaluates to true. This is so, if and only if the comparison “c 0 all the values from

the result of (select X from . . .)” is true. We illustrate the various format of this
condition in the following example:

Example 5.14 Let the result of:

select X

from rel

where P

be the set of values {'30', '40', '60', '70'}. Then each of the following

statements is valid and produces the results indicated:

'50' = all ({'30', '40', '60', '70'}) is false

'29' <all ({'30', '40', '60', '70'}) is true

'50' *all ({'30', '40', '60', '70'}) is true

'70' >all ({'30', '40', '60', '70'}) is false

'70' >all ({'30', '40', '60', '70'}) is true ■

Example 5.15 below uses the all condition to find the employee with the lowest

pay rate from the EMPLOYEE relation.

Example 5.15 “Find the employees with the lowest pay rate.”

select Empl-No, Name, Pay-Rate

from EMPLOYEE

where Pay-Rate - all

(select Pay-Rate

from EMPLOYEE)

5.3 Data Manipulation: SQL 229

Empl-No Name Pay-Rate

123458 Don 4.70

123460 Pat 4.70

Here we use a nested version of the select statement. The second select

statement produces the set of values {7.50, 8.79, 4.70, 4.90, 4.70, 9.0,

14.00, 14.50}. The first select uses this to compare the Pay-Rate of each

record of EMPLOYEE to determine if it is <all of this set. The result of

the query is shown above. ■

A variation of the above example is given below.

Example 5.16 “Get the names of chefs paid at the minimum Pay-Rate.” We first find the

pay rates for all chefs:

select Pay-Rate

from EMPLOYEE

where Skill = 'chef'

This query returns a set of values and if we compare it with the pay rates of

all chefs we get the desired result: (Pierre):

select Name

from EMPLOYEE

where Skill = 'chef' and

Pay-Rate *?all

(select Pay-Rate
from EMPLOYEE

where Skill = 'chef') ■

Not In

The set operator not in is equivalent to + all.

Not Contains

The set operator not contains, the complement of contains, is true if one set of

values is not a superset of another set of values.

Exists

The set operator exists is the SQL version of the existential quantifier. The expres¬

sion

230 Chapter 5 Relational Database Manipulation

exists (select X from . . .)

evaluates to true if and only if the result of “select X from ... is not empty.

Example 5.17 “Find the names and the rate of pay of all employees who are allocated a

duty.’’ This query can be expressed in SQL using the exists set operator.

select Name, Pay-Rate
from EMPLOYEE

where exists

(select *
from DUTY_ALLOCATION

where EMPLOYEE.Empl-No =

DUTY ALLOCATION .EmpLNo)

Name Pay-Rate

Ron 7.50

Jon 8.79

Don 4.70

Ian 9.00

Pierre 14.00

In this example, for each employee tuple from the EMPLOYEE relation,

the exists clause is evaluated. If there is at least one tuple in DUTY-AL¬

LOCATION for that employee, the second select statement will produce a

nonempty result whereby the exists expression evaluates to the true value.

There is a reference to the relation of the first from clause in the second

select statement. This reference is made through the use of qualified column

names. The result of this query for the relations shown in Figure 5.4 is given

above. Notice that this query could be easily handled using a join. ■

Not Exists

The set operator not exists is the complement form of exists. The expression

not exists (select X from . . .)

evaluates to true if and only if the result of “select X from . . . ” is empty.

The universal quantifier, \y is not directly implemented in SQL but can be in¬
directly implemented using the identity:

\/x(f(x)) = —i3x(—if(x))

In other words, we implement the predicate, \/x(f(x)), by not exist x(~if(x)). An

example of the use of not exists to implement the universal quantifier is given in
Example 5.18b.

5.3 Data Manipulation: SQL 231

Example 5.18 (a) “Find the names and the rate of pay of all employees who are not allo¬

cated a duty.” This query can be expressed in SQL using the not exists set
operator.

select Name, Pay-Rate

from EMPLOYEE

where not exists

(select *

from DUTY-ALLOCATION

where EMPLOYEE.Empl-No =

DUTY-ALLOC ATION .Empl-No)

In this example, for each employee tuple from the EMPLOYEE relation,

the not exists clause is evaluated. If there is at least one tuple in DUTY-

ALLOCATION for that employee, the second select statement produces a

nonempty result whereby the not exists expression evaluates to the false

value. The tuple is not included in the result, which is shown above.

The query can also be expressed using not in, as illustrated below:

Name Pay-Rate

Pam 4.90

Pat 4.70

Julie 14.50

select EMPLOYEE.Name, EMPLOYEE.Pay-Rate

from EMPLOYEE

where EMPLOYEE.Empl-No not in

(select DUTY-ALLOCATION.Empl-No

from DUTY-ALLOCATION)

(b) “Find the names of employees who are assigned to all positions that

require a chefs skill.” The tuple calculus expression for this query can be

written as:

{e[Name]|e e EMPLOYEE A
V p(p e POSITION A p[Skill] = 'chef'
-* 3d (d e DUTY-ALLOCATION A
d[Posting-No] — p [Posting-No] A
e[Empl-No] = d [Empl-No]))}

Using \/x(f) = —i3x(—if), we can rewrite the tuple calculus expression as:

{e[Aamc]|e e EMPLOYEE A
—i3p(—i(p e POSITION A p[Skill] = 'chef'

-»• 3d (d e DUTY-ALLOCATION A
d [Posting-No] = p [Posting-No] A
e[Empl-No] d[Empl-No])))}

An alternate method of writing this query without the logical implication is

to replace f —»g by its equivalent form —if V g to give the following expres¬

sion:

{e[Name]\e e EMPLOYEE A
—13p(—i(—i(p e POSITION A p[Skill] =

'chef')
V 3d (d e DUTY-ALLOCATION A
d [Posting-No] = p [Posting-No] A
e[Empl-No] = d[Empl-No])))}

232 Chapter 5 Relational Database Manipulation

which is equivalent to:

{e[Name]\e e EMPLOYEE A
-i3p(p e POSITION A p[Skill] = 'chef'

A -i3d (d e DUTY_ALLOCATION A
d [Posting-No] = p [Posting-No] A
e[Empl-No] = d [Empl-No]))}

This expression can be converted to SQL using not exists:

select e.Name

from EMPLOYEE e

where not exists

(select p. Posting-No

from POSITION p

where p.Skill = 'chef'

and not exists

(select A.Empl-No

from DUTY_ALLOCATION d

where d. Posting-No = p. Posting-No

and e.Empl-No = A.Empl-No))

Here the first (outer) nested subquery finds the positions requiring a chefs

skill. For each such position, the second (inner) nested subquery finds if the

employee whose name is to be output is assigned to that position. If the

result of the second nested subquery is empty (i.e., the employee being

considered is not assigned to a position requiring the skill of a chef), the

second not exists evaluates to true, causing the first not exists to evaluate to

false, and the employee is not selected. In effect, we are saying that for

those employees whose names are to be output, if there exists a position

requiring a skill of chef, then there exists a tuple in DUTY-ALLOCATION

where this position is assigned to that employee. If these combined tests

evaluate to a true value, the attribute Name of the employee is output. For

our sample database, the result of this query is (Pierre). We will get identi¬

cal results even if a tuple such as (350, 123472, 19860420,1) were inserted

in the DUTY-ALLOCATION relation. ■

Union

The traditional set theory union operator is union. Duplicates are removed from the
result of a union.

Example 5.19 “Get employees who are waiters or work at Posting-No 321.”

(select Empl-No

from EMPLOYEE

where Skill = 'waiter')

union

(select Empl-No

from DUTY-ALLOCATION

where Posting-No = 321 ■

Empl-No

123456

123461

233 5.3 Data Manipulation: SQL

Minus

The traditional set theory difference operator is minus.

Example 5.20 (a) “Get employee numbers of persons who work at Posting-No 321, but

don t have the skill of waiter”. This query, which uses the minus operator,

and its results are shown below:

(select distinct Empl-No

from DUTY_ALLOCATION
where Posting-No = 321)

minus

(select Empl-No

from EMPLOYEE

where Skill = 'waiter')

(b) “Get a list of employees not assigned a duty.”

(select Empl-No

from EMPLOYEE)

minus

(select Empl-No

from DUTY_ALLOCATION) ■

Empl-No

123459

123460

123472

Empl-No

123461

Intersect

The traditional set theory set intersection operator is intersect.

Example 5.21 “Get a list of the names of employees with the skill of chef who are as¬

signed a duty.”

select Name

from EMPLOYEE

where Empl-No in

((select Empl-No

from EMPLOYEE

where Skill = 'chef')

intersect

(select Empl-No

from DUTY_ALLOCATION))

The result for the sample database of Figure 5.4 is given above. ■

Name

Pierre

5.3.6 Categorization

It is sometimes necessary to classify a relation into a number of groups. Each such

group of tuples has a certain common property. Aggregation functions such as aver-

234 Chapter 5 Relational Database Manipulation

age, sum, and so on can be applied to each group instead of to the entire relation.

SQL provides the group by function to allow data to be classified into categories.

The aggregation functions are performed separately for each category or group. Each

element in the list attached to the select clause of the select statement with the group

by function must have a single value per group. The having option can be added to

the group by function to specify a predicate to eliminate those elements that do not

satisfy the predicate. The having option must have only one value for each group.

The where clause could be used to specify predicates that would select those tuples

of the relation to be considered in the categorization.

The having option usually appears with the group by function. If the having

option appears without the group by function, the entire relation is treated as a single

group.

Example 5.22 Consider the sample database given in Figures 5.2 and 5.4.

(a) The following SQL query generates the total charge for table 12 for the

date 19860419. The result of this query for our database is the tuple (9234,

19860419, 26.00).

select BILL.Bill#, BILL.Day, sum(MENU.P/7ce*ORDR.<2o0
from BILL, MENU, ORDR

where BILL.#///# ORDR.Bill#

and ORDR.Dish# = MENU .Dish#

and BILL.Table# = 12

and BILL.Day = 19860419

group by BILL.Bill#, BILL.Day

We illustrate the group by function and the having option using the follow¬

ing queries requiring the categorization of a relation or selected tuples of the
relation.

(b) “Get a count of different employees on each shift.”

select Shift, count (distinct Empl-No)

from DUTY_ALLOCATION

group by Shift

Shift count

1 4
2 3
3 1

For the DUTY_ALLOCATION relation of Figure 5.4, the result of this
statement is as shown above.

(c) “Get employee numbers of all employees working on at least two
dates.”

select Empl-No

from DUTY_ALLOCATION
group by EmplJSo

having count (*) > 1

Empl^No

123458

123461

123471

5.3 Data Manipulation: SQL 235

For the DUTY-ALLOCATION relation of Figure 5.4, the result of this
statement is as shown above.

(d) “Get employee numbers and dates for all employees working on
19860418 and at least one other date.”

select Empl-No, Day

from DUTY-ALLOCATION

where Empl-No in

(select Empl-No

from DUTY-ALLOCATION

where Empl-No in

(select Empl-No

from DUTY-ALLOCATION
where Day = 19860418)

group by Empl-No

having count (*) > 1)

For the DUTY-ALLOCATION relation of Figure 5.4, the result of this

statement is as shown above. Here, the inner nested select statement is used

to find those employees who are working on 19860418. For our sample

relation it gives the set {123457, 123458, 123471}. The where clause of the

second select statement is used to eliminate tuples of DUTY-ALLOCA¬

TION where the Empl-No is not in the set. Only the tuples not so eliminated

are considered for the grouping. The having count(*) > 1 eliminates the

group of employees working only on 19860418. The result of the second

select statement is the set {123458, 123471}. The outer select statement is

used to provide multiple Day values per group ■

Empl-no Day

123458

123458

123471

123471

19860418

19860420

19860418

19860419

5.3.7 Updates

SQL includes three update statements to modify the data. These are the insert, up¬

date, and delete statements. In Section 5.3, we saw the syntax of these statements.

Here we give some examples of their usage.

Example 5.23 (a) “Insert a tuple in the BILL relation with Bill# 9234 for Table# 12 on

Day 19860419, where the waiter is 123456.”

insert into BILL {Bill#, Day, Waiter#, Table#)

values (9234, 19860419, 123456, 12)

The attributes given in the statement above are ordered differently from

those in the relation scheme. The values for these attributes are given in the

value clause. The remaining attributes are set to null.

(b) “Insert a DUTY-ALLOCATION tuple for Posting-No 321,

Empl-No 123456, Shift 2, and Day 86/04/22.”

insert into DUTY-ALLOCATION

values(321, 123456, 19860422, 2)

236 Chapter 5 Relational Database Manipulation

The same insertion can also be specified as:

insert into DUTY-ALLOCATION (EmpLNo, Shift, Day,

Posting-No)

values (123456, 2, 19860422, 321) ■

Note that in the second format of the insert statement, the attribute names may

appear in a different order than in the relation. The latter format of the insert state¬

ment is used where data values for all the attributes are not being specified. The

attributes whose values are not explicitly specified are assigned the NULL value.

Example 5.24 (a) “Copy all tuples from DUTY-ALLOCATION into NEW_DUTY-AL¬

LOCATION,” is specified as shown below. Here the attributes of NEW_

DUTY-ALLOCATION are those specified in a create statement for it. In

this example these attributes are compatible to those in DUTY-ALLOCA¬
TION.

insert into NEW_DUTY-ALLOCATION:

select *

from DUTY-ALLOCATION

(b) “Create a relation of duty records for shift 1.”

insert into SHIFT 1_DUTY_ALLOCATION:
select *

from DUTY-ALLOCATION

where Shift = 1

(c) “Increase the rate of pay of all employees by 10%.”

update EMPLOYEE

set Pay-Rate =1.1* Pay-Rate

(d) “Increase the rate of pay of waiters by 10%.”

update EMPLOYEE

set Pay-Rate =1.1* Pay-Rate

where Skill = 'waiter'

(e) “Remove employee record for Empl_No 123457.”

delete EMPLOYEE

where Empl-No = 123457

(f) “Remove all EMPLOYEE records and retain the relation.”

delete EMPLOYEE

(g) “Remove all EMPLOYEE records and drop the relation.”

drop EMPLOYEE B

5.4 Views: SQL 237

Views: SQL

We have seen how users can manipulate the relations stored in the database. In

examples presented so far, we have been manipulating the conceptual or “physical”3

relations. Such conceptual relations are sometimes referred to as base relations. Cor¬

responding to each of these base relations there exists one (or more) physical rec¬

ord^) in one (or more) data file(s). Sometimes, for security and other concerns, it is

undesirable to have all users see the entire relation. It would also be beneficial if we

could create useful relations for different groups of users, rather than have them all

manipulate the base relations. Any relation that is not a part of the physical database,

i.e., a virtual relation, is made available to the users as a view. It is possible to

create views in SQL. A relation in a view is virtual since no corresponding physical

relation exists. A view represents a different perspective of a base relation or rela¬

tions.

The result of a query operation on one or more base relations is a relation.

Therefore, if a user needs a particular view based on the base relations, it can be

defined using a query expression. To be useful, we assign the view a name and relate

it to the query expression:

create view <view name> as <query expression>

A view is a relation (virtual rather than base) and can be used in query expres¬

sions, that is, queries can be written using the view as a relation. Views generally

are not stored, since the data in the base relations may change. The base relations on

which a view is based are sometimes called the existing relations. The definition

of a view in a create view statement is stored in the system catalog. Having

been defined, it can be used as if the view really represented a real relation. How¬

ever, such a virtual relation defined by a view is recomputed whenever a query refers

to it.

Example 5.25 (a) For reasons of confidentiality, not all users are permitted to see the

Pay-Rate of an employee. For such users the DBA can create a view, for

example, EMP-VIEW defined as:

create view EMP_VIEW as

(select Empl-No, Name, Skill

from EMPLOYEE)

(b) A view can be created for a subset of the tuples of a relation, as in this

example. For assigning employees to particular jobs, the manager requires

a list of the employees who have not been assigned to any jobs:

create view FREE as

(select Empl-No

from EMPLOYEE)

3By physical we mean that the relation corresponds to some stored data. This data may not be stored as a table and may

actually be split horizontally or vertically and reside on one or more storage devices (at one or more sites).

238 Chapter 5 Relational Database Manipulation

minus

(select Empl-No
from DUTY-ALLOCATION)

(c) The view in part b above can also be created using the following state¬

ments:

create view FREE as

(select Empl-No

from EMPLOYEE)

where Empl-No + any

(select Empl-No

from DUTY-ALLOCATION) H

In the above examples, the names of the attributes in the views are implicitly

taken from the base relation. The data types of the attribute of the view are inherited

from the corresponding attributes in the base relation. We can, however, give new

names to the attributes of the view. This is illustrated in the syntax of the create view

statement given below:

create view VIEW-NAME

(Namel, Name2, . . .)

as (select . . .)

Here the attributes in the view are given as Namel, Name2, . . . and these

names are associated with the existing relation by order correspondence. The defini¬

tion of a view is accomplished by means of a subquery involving a select statement

as given in the syntax above. Since a view can be used in a select statement, a view

can be defined on another existing view.

We could use French names for the relation and some of its attributes for the

view defined in Example 5.24(a) above by modifying the view definition as follows:

create view EMPLOYE

(Nom-de-Emp, Nom, Habilete)

as (select Empl-No, Name, Skill

from EMPLOYEE)

A view can be deleted by means of a drop view statement as shown below.

When a view is deleted, all views defined on that view are dropped as well.

drop view FREE

The addition of a new attribute such as Phone-Number to the EMPLOYEE

relation will not affect users, who view this relation through, let us say, EMP_

VIEW. The definition of this view remains unchanged. Views allow a certain degree
of logical data independence.

The addition of a new relation or restructuring the EMPLOYEE relation will not

affect users either, although in the latter case the definition of the view will change

but what the users manipulate will remain unchanged. In terms of ANSESPARC

nomenclature, the view definition gives the external schema and the conceptual to

external schema mapping. A change of the conceptual schema requires a change in

this mapping, so that the external schema remains invariant. We illustrate this by the
following example.

5.4 Views: SQL 239

Suppose, as a result of changes in the needs of the user community of the

database, the EMPLOYEE relation is split into two relations as shown below:

create table EMPLOYEE_INFO

(Empl-No integer not null,

Name char (25),

Skill char (20),

Phone-Number decimal(lO))

create table EMPLOYEE_PAY_RATE

(Empl# integer not null,

Hourly-Rate decimal(10,2))

The users of the relation EMPLOYEE are now provided with the following
view, which insulates them from this split:

create view EMPLOYEE Empl-No,Name,Skill,Pay-Rate as

(select Empl-No, Name, Skill, Hourly-Rate

from EMPLOYE_INFO, EMPLOYEE_PAY_RATE
where Empl-No = Empl#)

The users of the views EMP_VIEW, FREE, and QUALIFICATIONS (defined

in Section 5.4.1) also continue to use the database exactly as before. However, the

relations they are now using are views of a view, instead of views of a base relation.

This change is transparent to the users. In this way views provide for both security
and logical data independence.

5.4.1 Views and Update

The DBMS must be able to unambiguously determine the target tuples of an update

operation. When a tuple in a view can be mapped to a tuple in a base relation, the

update may be made. However, when the tuple in a view does not map to a single

tuple, the update operation may not be determined unambiguously.

A tuple in a view can be theoretically updated, under the following constraints:

• Any update operation through a view requires that the user has appropriate

authorization.

• If the definition of the view involves a simple query on a single base relation

and includes the primary key, the following update operations are possible: a

new tuple could be inserted into the database via a view, an existing tuple could

be deleted via a view, and the value of a nonprime attribute could be modified.

The simple query proviso rules out the possibility that the attributes in the view

are derived using an aggregate function or a nonreversible operation. The

definition of the reverse operation has to be stored with the view. For example,

if the view uses the value of weight in pounds and the value in the base relation

is stored in grams, the view attribute Weight is obtained by dividing the base

value by 453.6 and the stored value, inserted via the view, is multiplied by the

same amount.

• The insertion of a new record using a view requires that the primary attributes

are included in the view, and the values for these are specified for the insertion

(i.e., they are not null).

240 Chapter 5 Relational Database Manipulation

Views that involve a join may or may not be updatable. Such views are not

updatable if they do not include the primary keys of the base relations. When the

view includes the primary keys of the base relations, the target base tuples may be

identifiable and hence updatable, provided the attributes included in the views are

derived using reversible operations and both the forward (from the attribute in the

base relation to the view) and reverse (from the attribute in the view to the base

relation) operations are known to the DBMS.
The need for allowing a view to update a relation derived from the join of two

relations can be illustrated by the following example.
Consider our EMPLOYEE! Empl-No, Name, Skill, Pay-Rate) relation. Suppose

as a result of a reorganization of the database this relation is replaced by two relations

EMPL(Empl-No, Name, Skill) and PAYRATE(Empl#, Pay Rate), defined as fol¬

lows:

create table EMPL
(Empl-No integer not null,

Name char(25),

Skill char(20))

create table PAYRATE

(Empl# integer not null,

Pay-Rate decimal! 10,2))

Applications and users of the original relation EMPLOYEE continue using the

database as before since they are now provided with the following view:

create view EMPLOYEE Empl-No, Name, Skill, Pay-Rate as

(select Empl-No, Name, Skill, Hourly-Rate

from EMPL, PAYRATE

where Empl-No = Empl#)

The user of the EMPLOYEE relation should be insulated from this split and

allowed to continue to use the database as they were accustomed to before the data¬

base reorganization. This would include making appropriate updates. If this view

derived from a join could not be used to insert a tuple or make changes, then the

users of the relation EMPLOYEE are not insulated from the database reorganization.

Some problems could arise when a new record is inserted in the database using

a view instead of the base relation. One problem is that of assigning data values to

attributes not included in the view. A method of resolving this is to insert null values

for these attributes. However, this can be done only if the attributes in the base

relation are defined without the not null option. If a value of a nonprimary attribute

included in the view is not specified for insertion, then a null value is assigned to the

corresponding attribute in the base relation. Such insertion into the base relation via

the view can succeed provided the base attributes can accept a null value.

The other problem is the possibility of a record inserted by a view disappearing

from that view. This is illustrated by the following example:

create view SOME-EMPLOYEE as

(select (*)

from EMPLOYEE

where Empl-No < 123470)

5.4 Views: SQL 241

The user of the view, SOME_EMPLOYEE, can insert the tuple (123481, 'Pa-

van.,z Developments , 50.00) in this relation. However, once inserted, this rec¬
ord will be inaccessible. Such anomalies could be avoided if the DBMS verifies that

any record that is allowed to be inserted in the database satisfies the predicates of the
view.

The view to be used in updates must include the primary attributes of the base

relation, and these must have a nonnull value for insertion. If these conditions are

not satisfied, the record to be inserted will have null values for the primary attributes.
This cannot be allowed; in such cases the insertion will fail.

Any attribute in the view can be updated as long as the attribute is simple and

not derived from a computation involving two or more base relation attributes. The

view must, of course, include the primary attributes (or the attributes of a candidate

key), otherwise the record to be updated cannot be determined and the update will
fail.

The view EMP_VIEW of Example 5.25a can be used to insert a new record in

the database. It is easy to see that no updates can be allowed through the following
view, since it does not include the primary attribute:

create view QUALIFICATIONS as
(select Name, Skill

from EMPLOYEE)

When a view is defined on the natural join of a number of relations, the view,

if used for updates, is required to include the primary keys of all base relations.

Consider the view ELIGIBILITY(£’mp/_JVo, Posting—No, Skill), obtained as in Ex¬

ample 5.8 by a join of EMPLOYEE and POSITION. It contains the primary attri¬

butes of the two relations. A tuple such as (123481, 331, cashier) inserted using this

view could succeed provided no tuples with Empl-No = 123481 or Posting-No =

331 exist in the EMPLOYEE and POSITION relations. The result of the insertion

would be the tuples (1234581, null, cashier, null) and (331, cashier) in the two
relations.

On the other hand, consider the view ITEMIZED_BILL(5/7/#, Dish-Descrip¬

tion, Price, Qty, Price*Qty) created by a query such as the one given in Example

5.9 and involving the relations BILL, MENU, and ORDR. This view does not con¬

tain the primary attributes of all its underlying relations. Consider the tuple (9234,

Club sandwich, 10.50, 2, 21.00) of ITEMIZED_BILL. An attempt to update Dish-

Description will fail because the Dish# cannot be determined uniquely. (The club

sandwich may be offered as Dish# 100 on the lunch menu and as Dish# 400 on the

room service menu with different prices and both items may be included on the same

bill.) An attempt to update Price*Qty of the club sandwich from 21.00 to 27.00

cannot be unambiguously translated into a change in the base relations. Suppose a

change in Price*Qty is given along with a change in Price and Qty to be 27.00,

9.00, 3, respectively. It is then possible to determine, in the current state of the

example database, the actual tuples to be updated by examining all the tuples of

ORDR, MENU and the previous values of the tuple of ITEMIZED_BILL. Even

though this update is possible in this particular example, attempts to make such an

update will fail in most DBMSs. Finally, updating Bill# can succeed, although it is

debatable if such a change should be made through a view rather than the base

relation BILL.
There remains a grey area in determining if an update to a view is theoretically

sound under the following conditions: the view is derived from (a) a relation that is

242 Chapter 5 Relational Database Manipulation

not in the proper normal form, or (b) the join of a number of relations. This is a

current topic of research and most DBMSs treat updates via a view in an ad hoc

manner, allowing updates to views that are either a proper horizontal subset (a selec¬

tion) or a proper vertical subset (a projection) of a base relation. Many commercial

DBMSs disallow updates through a view unless the view is based on a single relation

and includes the primary attributes of the relation.

We summarize below the conditions under which most DBMSs determine

whether an update is allowed through a view:

• Updates are allowed through a view defined using a simple query involving a

single base relation and containing either the primary key or a candidate key of

the base relation.

• Updates are not allowed through views involving multiple relations.

• Updates are not allowed through views involving aggregation or grouping

operations.

5.5 Remarks

SQL supports the basic relational algebraic operations of union (union), difference

(minus), cartesian product (from), and intersection (intersect). The select statement

along with the where clause are used for selection. Projection is included in the

select statement by specifying the attributes. Join is implemented by a cartesian prod¬

uct with the where clause indicating the joining attributes and the type of join.

SQL also provides for a wide variety of set operators to allow the expression of

relational calculus types of predicates and the testing of the membership of a tuple in

a set. In addition, the use of aggregate operators and categorization provide SQL

with additional data manipulation features not included in relational algebra or cal¬
culus.

Unlike the theoretical languages, SQL provides statements for the definition and
modification of data and indexes, and includes views.

Most commercial relational DBMSs support some form of the SQL data manip¬

ulation language, and this creates different dialects of SQL. SQL has been standard¬

ized; that is, a minimum compatible subset is specified as a standard. In addition,

embedded versions of SQL are supported by many commercial DBMSs. This allows

application programs written in a high-level language such as BASIC, C, COBOL,

FORTRAN, Pascal, or PL/I to use the database accessing SQL by means of appro¬
priate preprocessors (refer to Section 5.8).

5.6 QUEL

INGRES (INteractive GRaphics and REtrieval System) is a relational database sys¬

tem developed at the University of California at Berkeley. This project ran almost

concurrently with the System R project at IBM’s San Jose Research Center.

QUEL (QUEry Language), the data manipulation language for INGRES, is

based on relational tuple calculus. Unlike SQL, it does not support relational alge-

5.6 QUEL 243

braic operations such as intersection, minus, or union. QUEL does not support nested

queries, i.e., the where clause is not allowed to use a subquery. However, equivalent
queries could be formulated easily in QUEL.

The original version of INGRES is used extensively in the academic milieu and

runs under UNIX on VAX systems, as well as workstations based on the MC68000

family of microprocessors. A commercial product, also named INGRES, is currently

marketed by Relational Technology Inc., and runs on a variety of machines and
operating systems.

The basic data retrieval statement in QUEL is the retrieve statement, used in

conjunction with the range statement and the where clause. The range statement is

used to define tuple variables and their domain. (The domain of a tuple variable is

the relation from which the variable takes on values.) The where clause is used to
specify the predicates as in SQL.

We will use the same relations for the restaurant database as in the previous
sections to illustrate the features of QUEL.

5.6.1 Data Definition

The basic statements used to define relations and access aids in QUEL are create,

range, index, destroy, and modify.

Create Statement

The create statement is used to create a new relation. Its syntax is:

create Crelation name> (<attribute list>)

where <attribute list> is defined as:

<attribute list> :: = <attribute name> = <format>[,<attribute list>]

Example 5.26 The statement

create NEW_DUTY_ALLOCATION (Posting-No = i, Empl-No = i,

Shift — i, Day = i)

will create a new relation called NEW_DUTY_ALLOCATION with attri¬

butes Posting-No, Empl-No, Shift, and Day, with all the attributes defined

as integers. ■

Range Statement

Tuple variables (known as range variables in QUEL, although we will continue to

refer to these by the familiar term) are defined using the range declaration statement.

Its usage is:

range of <tuple variable> is Crelation name>

244 Chapter 5 Relational Database Manipulation

This allows us to declare a tuple variable and restrict it to assume values that

are tuples from the relation following the keyword is. This relation is the domain

(the set of tuple values) of the tuple variable. A reference to the tuple variable is a

reference to a tuple of the relation. The use of a tuple variable is similar to that in

tuple calculus wherein a tuple variable is defined by writing

<tuple variable> e <relation>

The use of a tuple variable is similar to the variable declaration in programming

languages where a variable is allowed to have, at a given time, a value from a set of

declared values (specified by the type). The tuple variable can thus be visualized as

a place marker in our relation.

Example 5.27 range of d is DUTY-ALLOCATION

range of e is EMPLOYEE

The tuple variables d and e, at any given time, refer to a tuple in the DUTY

ALLOCATION and EMPLOYEE relations, respectively. ■

In Chapter 4, we used RELATION_NAME[Attr/6«^_Aam^] to refer to the val¬

ues of an attribute of a relation. In QUEL this requires the use of qualified names:

RELATION_NAME.Attn7?Mte_/Vamc, or

T uple_ V ariable .Attribute-Name

The period is used to qualify the attribute by the relation. Note that in the convention

followed in Chapter 4, a group of attribute names could be specified within brackets.

There is no such simple grouping technique in QUEL.

Example 5.28 We assume that the tuple variable d has been declared as in Example 5.27.
Then,

d .Posting-No

refers to the value of the Posting-No attrbitue of a tuple in the DUTY_
ALLOCATION relation. H

Index Statement

The indexes are defined for an existing relation using the index statement. It specifies

the name of the secondary index to be built and the attributes from the relation that

are used for indexing. The purpose of creating a secondary index is to increase the

efficiency of secondary key retrieval. A relation could have any number of secondary

indexes created for it in addition to the index created on the primary key. All indexes

are destroyed when the relation is destroyed. Once created, an index is maintained

and used automatically by the DBMS. The syntax of the index statement is as fol¬
lows:

5.6 QUEL 245

index on Crelation name> is index_name

(attribute_name [,attribute_name, . . .])

Example 5.29 The following statement creates an additional index named nameindex for
the EMPLOYEE relation using the Name attribute:

index on EMPLOYEE is nameindex (Name) ■

Destroy Statement

The destroy statement is used in QUEL to eliminate a relation, index, or view (dis¬

cussed in Section 5.7.9). The syntax of the destroy statement is:

destroy <name[,name, . . .]>

where each name is the name of an existing relation, index, or view.

Example 5.30 The following statement destroys the index named nameindex:

destroy nameindex ■

Modify Statement

The modify statement is used to modify the storage structure of a relation from the

current one to that specified in the statement. The storage structures supported in

INGRES are B-tree, hash, ISAM, and heap. The compressed versions of these stor¬

age structures are also supported; the compression is on the physical storage medium.

One example of a compression scheme is to suppress the trailing blanks of a char¬

acter string. The syntax of the modify statement is as follows:

modify relation_name to storage-structure [on attribute 1 [order ascend-

ing|descending] [, . . ,]]

Here the name of the relation is specified by relation-name and the new storage

structure by storage-structure. The on clause indicates the attribute(s) to be used for

ordering the relation. The order can be specified optionally as ascending or descend¬

ing; ascending being the default. If the on clause is not specified, ascending order of

the relation by the first attribute is assumed.

Example 5.31 The following statement modifies the storage structure of the EMPLOYEE

relation to a compressed hash (chash) structure with Empl-No as the

hash key:

modify EMPLOYEE to chash on Empl-No ■

246 Chapter 5 Relational Database Manipulation

5.7 Data Manipulation: QUEL

The basic data retrieval statement in QUEL is retrieve. It is used for both projection

and selection.

retrieve [unique] (<target list>)

[where <condition>]

In <target list> we specify the data items to be retrieved. The target list can be used

to specify the attributes on which the result should be projected. If the unique option

is specified, the relation is sorted on the first attribute in the target list and duplicate

tuples are removed.
The retrieve unique command, except for the ordering, is equivalent to the

calculus expression:

{X | P(X)}

where X represents the “target list” and the predicate(s) specify the “conditions”

that must hold true. In fact, we can read the retrieve command as “get tuples with

attributes specified in target list such that the tuples make the condition(s) true.”

Example 5.32 Project the DUTY_ALLOCATION relation on the Posting-No and Empl_

No attributes.”

5.7.1

range of d is DUTY_ALLOCATION

retrieve (d.Posting-No, d.Empl-No)

Remember that according to the syntax of QUEL, the target list must be

enclosed within parentheses. ■

The need to specify every attribute of the result relation can sometimes be te¬

dious. The all keyword is used to represent all of the attributes of a tuple variable.

Condition Specification

Now let us see how we can specify conditions in QUEL. QUEL supports.the follow¬

ing Boolean and comparison operators: and, or, not, = , + (not equal)4, >, >, <,

<. Evaluation occurs in left-to-right order. When more than one Boolean operators

are together, the evaluation order is based on the priority of the operators: not has

the highest priority and or has the lowest. Parentheses may be used to change the

order of evaluation.

INGRES and SQL use ! = , < =, > = instead of ^s

5.7 Data Manipulation: QUEL 247

Example 5.34 The query

range of d is DUTY_ALLOCATION

retrieve (d.all) where d.Empl-No = 123471

and (d.Day = 19860418 or

d .Day = 19860419)

restricts the tuples in the result to only those DUTY-ALLOCATION tuples

with the Empl_No attribute value of 123471, and Day is either 19860418 or

19860419. (This is equivalent to the use of the selection operation in rela¬
tional algebra.) ■

We can specify complex qualification using the Boolean operators.

5.7.2 Renaming

The attribute names in the result relation can be changed from those in the base

relation. This becomes necessary if the attribute name in the resulting relation would

occur more than once or where a computation was performed. All attributes must

have names, and remember that the result of a query is also a relation. In general,

this attribute name assignment takes the form newname = <expression> and is
included in the <target list>.

Example 5.35 “Get employee names and pay rates, renaming them as EmpSame and

Hourly-Pay.”

range of e is EMPLOYEE

retrieve (Emp-Name = t.Name, Hourly-Pay = e. Pay -Rate) ■

5.7.3 Arithmetic Operators

The following arithmetic operators are supported in QUEL: -I-, —,*,/,** (expo¬

nentiation), abs (absolute value), and mod (modular division). These operators to¬

gether with the large library of computational functions (SIN, COS, SQRT, etc.)

available to the users of INGRES make the system useful for performing arithmetic

operations. Numeric data can thus be manipulated to derive additional information.

Consider the weekly salary relation, part of which is shown in part i of

figure E (this figure is a modified version of Figure C from Example 5.3).

Consider the evaluation of the weekly salary (gross). This operation can be

expressed in QUEL as on p. 248 and the result of this statement is shown

Example 5.36

248 Chapter 5 Relational Database Manipulation

Figure E Modified form of Figure C.

SALARY: result:

Empl-No Pay-Rate Hours

123456 7.50 40.5

123457 8.79 42.5

123458 4.70 47.5

123459 4.90 0.0

123460 4.70 48.0

123461 9.00 48.0

123471 14.00 42.7

123472 14.50 45.5

Empl-No Gross-Pay

123456 303.50

123457 373.58

123458 223.25

123460 225.60

123461 432.00

123471 597.80

123472 659.75

in part ii of Figure E (the second column heading has been renamed Gross_

Pay instead of Pay-Rate* Hours)-.

range of s is SALARY

retrieve (s.Empl-No, Gross-Pay = s.Pay-Rate*s.Hours)
where s.Hours >0.0 ■

5.7.4 Multiple Variable Queries

So far we have expressed queries using a single tuple variable and these queries

required information from a single relation. However, when we are required to re¬

trieve information stored in multiple relations we need to use multiple variables—

one tuple variable for each relation. In this section we give examples of queries that
require the use of multiple variables.

Example 5.37 “Get the name of the waiter for table 17, identified as Waiter-Name.”

range of e is EMPLOYEE

range of b is BILL

retrieve (Waiter-Name = t.Name)

where e.Empl-No = b.Waiter# and b.Table# = 17 ■

In this query we get the identifier for waiter assigned to table 17 and compare

it with the employee identifier of employee tuples (the attribute Waiter# in BILL

refers to the same instance of the entity set employee as attribute Empl-No in EM¬

PLOYEE). For the relations MENU and EMPLOYEE of Figures 5 2 and 5.4, the
result of this query is the name Ian.

5.7 Data Manipulation: QUEL 249

Example 5.38 “Get shift details of the employee named Pierre.”

range of d is DUTY_ALLOCATION

range of e is EMPLOYEE

retrieve (d.Posting-No,d.Shift,d.Day)

where d.Empl-No = e.Empl-No and e.Emp-Name - 'Pierre' ■

The use of multiple variables is not restricted to different relations. Sometimes

it becomes necessary to declare multiple tuple variables over the same relation. Thus

if we want to compare the tuples of the same relation, we can have several tuple

variables ranging over the relation. We demonstrate this in the following example.

Example 5.39 “Find employees whose rate of pay is more than that of employee Jon.”

In this query, at any given time, we need data on two employees: one

is fixed (the data for employee Jon) and the other will be another employee.

Thus, we need one tuple variable that can be used to refer to the tuple for

employee Jon, and another tuple variable for the other employee. (Imagine

that this second tuple variable will be used to scan the complete relation,
one tuple at a time.)

range of e is EMPLOYEE

range of e, is EMPLOYEE

retrieve (e.Name,e.Pay-Rate)

where e. Pay -Rate > e, .Pay-Rate

and &\.Name = 'Jon'

The tuple variable e] has the data for employee Jon while at any given

instance the tuple variable e has data for another employee. The result of
this query is shown in the example. H

Name Pay-Rate

Ian 9.00

Pierre 14.00

Julie 14.50

Example 5.40 “Get all pairs of Empl-No with the same Posting-No.”

range of d is DUTY_ALLOCATION

range of d, is DUTY_ALLOCATION

retrieve (d.Empl-No, d,.Empl-No)

where d.Posting-No = dx.Posting-No

and (d.Empl-No < di.Empl-No)

Empl—No Empl-No

123456

123456

123461

123461

In this query we need to compare two tuples of the DUTY_ALLOCATION

relation. The condition (d.Empl-No < d(.Empl-No) guarantees that only unique em¬

ployee pairs are retrieved. Employee 123458, who is posted twice to Posting-No

323, is not in the result since the Empl-Nos are the same. Also, by using this con¬

dition we avoid including symmetrical tuples in the result. Thus the tuple (123461,

123456) is excluded from the result. (In Example 5.39 we did not need to specify

such a condition). Note, however, that the result shown above does have duplicate

tuples because Posting-No 321 is associated with Empl-No 123456 twice in the

250 Chapter 5 Relational Database Manipulation

relation DUTY_ALLOCATION. We could use the unique option in the retrieve

statement to remove such duplicate tuples.
We next illustrate a query requiring the join of three relations:

Example 5.41 Consider the requirement to generate the itemized bill for table 12 for the

date 19860419. This requires details from three relations, BILL, ORDR,

and MENU. The itemized bill can be generated using the statements given

below. The result of the query on the relations given in Figure 5.2 is also

shown.

range of b is BILL

range of m is MENU

range of o is ORDR
retrieve (b.Bill#,m.Dish-Description,m.Price, o.Qty,

Dish-Total = m.Price* o.Qty)

where b.B/7/# = o.Bill#

and o.Dish# = m.Dish#

and b.Table# = 12

and b.Day = 19860419

Bill# Dish-Description Price Qty Dish-Total

9234 Coffee 2.50 2 5.00

9234 Club sandwich 10.50 2 21.00

QUEL does not allow nested retrieve statements (similar to the nested select

statement) and hence unlike SQL this method cannot be used to generate the itemized

bill.

5.7.5 Set Operations in QUEL

The set operations, for example union and intersection, are not supported by QUEL.

A number of queries require us to use some of these operators. In relational calculus

a tuple variable can be declared independent of the relation and thus can accept

values from different relations. In QUEL a qualified tuple variable appears in the

target list and since the tuple variable ranges over a single relation, we need some

explicit mechanism for creating unions. The same holds true for the other operations.

In Section 5.7.8 we introduce some of the data modification commands, and show

how they can be used to encode the set operations indirectly.

5.7.6 Aggregation Operators in QUEL

QUEL provides a number of aggregation operators to be used in expressions. These

allow a user to perform computations on the values of the relation’s attributes.

5.7 Data Manipulation: QUEL 251

The aggregation operators supported are any, avg, min, max, count, and sum,

similar to the corresponding functions available in SQL. The operators avg, count,

and sum have versions that eliminate duplicates before applying the operator. These

“unique” versions are distinguished by the suffix u. The any aggregate operator can

be used to check if any tuple satisfies a given qualification. The value returned by

the any operator is 1 if the qualification is satisfied and 0 otherwise. The advantage

of using the any operator as opposed to using the count operator is that if the quali¬

fication is satisfied, the processing of additional tuples is discontinued, resulting in a

faster evaluation of the query. The format for using these operators is:

aggregation operator (<expression>)

The tuple variables appearing as arguments of an aggregate operator are always local

to it and distinct from any tuple variable with the same name appearing external to

the arguments of the aggregate operator. The aggregate operator could logically be

considered to be processed separately, and a computed single value replaces it. We

illustrate the use of some of these operators in the following examples.

Example 5.42 (a) “Obtain the average dish price.”

range of r is MENU

retrieve (Ave-Price = avg(r.Price))

The term avg(r.Price) returns the average of the r.Price values. For our

sample database the Ave-Price is 10.90.

(b) “Get minimum and maximum dish prices.”

range of r is MENU

retrieve (Minprice = minfr. Price),
Maxprice = max (r. Price))

(c) “Get the average rate of pay for all employees and list it against each

employees’ names and rates of pay.”

range of e is EMPLOYEE
retrieve (e.Name, e.Pay-Rate, Avg-Pay = avg (e.Pay-Rate))

The result of this query for our sample database is shown below:

Name Pay-Rate Avg-Pay

Ron 7.50 8.51

Jon 8.79 8.51

Don 4.70 8.51

Pam 4.90 8.51

Pat 4.70 8.51

Ian 9.00 8.51

Pierre 14.00 8.51

Julie 14.50 8.51

252 Chapter 5 Relational Database Manipulation

Note that in the query in Example 5.42c the aggregation operation is independent of

the current tuple values. The average rate of pay from all employee tuples is returned

by the avg operator. We see this important difference in the next few queries where

the aggregates are themselves qualified.

Example 5.43 “Find the average rate of pay for employees with the skill of chef.”

First attempt:

range of e is EMPLOYEE

retrieve (e.Empl-No, e.Skill, AvgchefJPay —

avg(e.Pay-Rate where e.Skill = 'chef'))

The result relation includes tuples with the above details for all em¬

ployees including those who are not chefs. In the above query the qualifi¬

cation “e.Skill = 'chef'” applies only to the aggregate, not to the query.

The aggregate qualification is local; it is not affected by and does not affect

the rest of the query. Thus, the scheme of the result is (Empl-No, Skill,

Avgchef-Pay), and each tuple of the result relation contains the same value

for the Avgchef-Pay attribute.

Second attempt: The query

range of e is EMPLOYEE

retrieve (e.Empl-No, e.Skill,

Avgchef-Pay = avg {t.Pay-Rate))

where e.Skill = 'chef'

gets employee number and skill for all employees who are chefs and the

average rate of pay of all employees (not just chefs).

The correct query (to get the employee number, skill, and average sal¬

aries of employees who are chefs) should be formulated as given below in

the third attempt. Here we are using two qualification clauses; one is for the

computation of the average salary of employees with a skill of chef and the

other is to ensure that the result contains only tuples for chefs.

Third attempt:

range of e is EMPLOYEE

retrieve (e.Empl-No, e.Skill, Avgchef-Pay =

avg(e.Pay-Rate where e.Skill = 'chef'))

where e.Skill = 'chef' ■

The use of count operator is illustrated in Example 5.44.

Example 5.44 “Get the total number of employees.”

range of e is EMPLOYEE

retrieve (cnt = count(e.Empl_No))

Because we defined Empl-No as the key for the relation EMPLOYEE we

expect no duplicate employee records and the unique version of count is
unnecessary. ■

5.7 Data Manipulation: QUEL 253

Another aggregation facility supported in QUEL is called the aggregate func¬

tion. This facility allows data to be grouped into categories and aggregations to be

performed separately on each group. The aggregate function is invoked by including
the by clause in the expression for the aggregate operator:

by <by-list>

Unlike simple aggregates, aggregate functions are not local; the by-list links the

function to the rest of the query. The tuple variable appearing in by-list is global to

the query and is therefore restricted by the qualification of the entire query as well

as by any aggregate qualification. The value of an aggregate function is a set of
values.

The aggregate function any can be used as an existential quantifier. The use of

it in any(. . .) = 1 or any(. . .) = 0 makes the quantification explicit, as illustrated

in Example 5.45e.

Example 5.45 (a) “Obtain a count of employees on each shift.”

range of e is DUTY_ALLOCATION

retrieveicnt = count(e.£7n/?/_JVo by e.Shift))

(b) “Find the number of employees on shift number 1.”

range of e is DUTY_ALLOCATION

retrieve (cnt = count (e.Empl-No by e.Shift))

where e.Shift = 1

The tuple variable e is global and the by clause links it to the where clause,

limiting the count to those for shift number 1. The result of this query for

the sample database given in Figure 5.4 is as shown above.

A simpler formulation of this query, where the use of a local tuple

variable is acceptable, is given below:

range of e is DUTY_ALLOCATION

retrieve (cnt = count (e.Empl-No where e.Shift = 1))

(c) “Determine the average Pay-Rate by skill.”

range of e is EMPLOYEE

retrieve (e.Skill, Avg-Rate = avg(e.Pay-Rate

by e.Skill))

cnt

4

Skill Avg-Rate

waiter 7.50

bartender 8.79

busboy 4.70

hostess 4.90

bellboy 4.70

maltre d’ 9.00

chef 14.25

254 Chapter 5 Relational Database Manipulation

The query shows the global scope of the tuple variable used in the by clause.

Here the use of the by clause causes the tuple variable associated with it to

be global; it is the same as the one used outside the aggregate function. The

tuple variable associated with e.Pay-Rate is strictly local. The avg function

generates a number of values of average pay rate, namely one for each skill.

However, a skill and its corresponding value is displayed only once, as

shown above for the sample EMPLOYEE relation in Figure 5.4.

(d) “Obtain the average of the total pay rate for each skill.”

range of e is EMPLOYEE

retrieve (Avg-of-Total = avg(sum (e.Pay-Rate

by e. Skill)))

The above query demonstrates the aggregate function nested in an aggregate

operator. The sum aggregate function generates the sum of Pay-Rates by

Skill giving the set {7.50, 8.79, 4.70, 4.90, 4.70, 9.00, 28.50} as its result

for the sample EMPLOYEE relation of Figure 5.4.

The avg operator is applied to this set to get a single value, indicated
below:

Avg-of-Total

9.73

Note that this query is not the same as the following, which generates

the value 8.51, being the overall average value of the Pay-Rate for all
employees:

retrie\e(Overall^\vgJRate = avg(EMPLOYEE.Pay_/?ate))

(e) “Get the names of employees who are assigned to Posting-No 321.”

range of e is EMPLOYEE

range of d is DUTY_ALLOCATION

retrieve unique (e.Name)

where any (d.Empl-No by e.Empl-No

where d. Posting-No = 321

and d. Empl-No = e. Empl-No) = 1

In this example, the any aggregate function is evaluated over the argument

attribute Empl-No, which is grouped using the by clause. The predicates

specified by the where clause must be satisfied by each value of the argu¬

ment. For our sample database, the result of the query is the employee
names Ian and Ron.

The following can be used to find the names of employees who are not
assigned to Posting-No 321:

range of e is EMPLOYEE

range of d is DUTY_ALLOCATION

retrieve unique (t.Name)

5.7 Data Manipulation: QUEL 255

where any (d.Empl-No by e.Empl-No

where d.PostingJ^o = 321

and d.Empl-No = e.Empl-No) = 0

For our sample database, the result of the query is the employee names

Don, Jon, Julie, Pam, Pat, Pierre. Note that the function count could have

been used here instead of any giving the same result.

(f) “Get the Empl-No of the employees who are assigned a duty on at

least one date in addition to 19860419.” The first version for this query uses

the count operator and accesses each tuple of the relation. The second ver¬

sion, which uses the any operator, will terminate the evaluation of the where

clause when it accesses the first tuple satisfying the qualification. The result

in each case is the employee numbers 123461 and 123471.

First version:

range of d is DUTY_ALLOCATION

retrieve (d.Empl-No)

where d.Day = 19860419

and count(d.Day by d.Empl-No) > 1

Second version:

range of d is DUTY_ALLOCATION

retrieve (d.Empl-No)

where d.Day — 19860419

and any(d.Day by d.Empl-No where d.Day =£ 19860419) = 1 ■

5.7.7 Retrieve into Temporary Relation

So far we have not considered what happens to the retrieved data; in an interactive

environment the results would have been listed on the user’s output device. It is also

possible to assign the result of the retrieval to a relation. The format of such a

retrieve command is:

retrieve into <new-relation > (Ctarget list>)

[where <condition>]

The new relation will be created with the correct attribute names and the result of

the query put into this relation. The content of the new relation will be similar to a

simple retrieve statement.
This scheme of using a relation to accept the result of a retrieve statement can

be used in places where SQL uses a nested subquery, as illustrated in the next ex¬

ample.

Example 5.46 “Get total amount for Bill table 12 for the date 19860419.” Here we create

a temporary relation ITEMIZED_BILL and subsequently use it to find the

total amount for the bill.

256 Chapter 5 Relational Database Manipulation

range of b is BILL

range of m is MENU

range of o is ORDR

retrieve into ITEMIZED_BILL(b.fl///#,m.Description,m.Price,

o.Qty, Dish-Total = m.Price*o.Qty)

where b.Table# = 12

and b.Day = 19860419

and o.Dish# = m .Dish#

and b.Bill# — o.Bill#

range of i is ITEMIZED_BILL

retrieve unique(i.fl///#, Total-Amount = sum(i.Dish-Total)) ■

5.7.8 Updates

So far we have seen the QUEL data retrieval commands. Data in relations can also

be changed using the three update commands append, replace, and delete. The for¬

mat of the append command is:

append to Crelation name> (<value list>)

[where <condition>]

and the value list takes the form

<value list> :: = <attribute name> = <value expression> [,<value list>]

Append is used to insert new tuples into a relation. The replace and delete

commands are used to replace or delete existing tuples. Thus the append requires the

use of a relation name and the replace and delete commands should use a tuple

variable. The format of the replace and delete commands is:

replace <tuple variable> (Cvalue list>)

[where <condition>]

delete Ctuple variable>

[where <condition>]

Example 5.47 (a) “Append a tuple to DUTY_ALLOCATION for Posting-No = 322,
Empl-No = 123457, Shift = 2, Day = 19860421.”

append to DUTY_ALLOCATION

(Posting-No = 322, Empl-No = 123457, Shift = 2,
Day = 19860421)

(b) “Copy the DUTY_ALLOCATION relation into NEW_DUTY_ALLO-
CATION.”

range of d is DUTY_ALLOCATION

append to NEW_DUTY_ALLOCATION (d.all)

In this example, all tuples from the DUTY_ALLOCATION relation are cop¬
ied into NEW_DUTY_ALLOCATION.

5.7 Data Manipulation: Quel 257

(c) “Copy only the tuples for shift 1 into the NEW DUTY Al l.Of A-
TION.”

range of d is DUTY_ALLOCATION

append to NEW_DUTY_ALLOCATION (d.all)
where d.Shift = 1 ■

Example 5.48 illustrates the use of the replace command.

Example 5.48 (a) “Increase the pay rate of all employees by 10%. ”

range of e is EMPLOYEE

replace e (Pay-Rate = 1.1 * e. Pay-Rate)

The value for the attribute Pay-Rate in each tuple is increased by 10%.
The other attributes are unchanged.

(b) “Increase the pay rate of all waiters by 10%.”

range of e is EMPLOYEE

replace e (Pay-Rate = 1.1 * e.Pay-Rate)

where e.Skill = 'waiter'

(c) To insert the total amount and the suggested tip into BILL with Bill#

= 9234 from the relation ITEMIZED_BILL, we can use the following

statements:

range of i is ITEMIZED-BILL

range of b is BILL

replace b
(Total = sum(i.Dish-Total where i.Bill# = 9234),

Tip = 0.\5*sum(i.Dish-Total where [.Bill# = 9234))

where b.5/7/# = 9234 ■

Example 5.49 illustrates the delete command.

Example 5.49 “Remove the record for employee with Empl-No 123457.”

range of e is EMPLOYEE

delete e
where e.Empl-No = 123457

and to delete all tuples from a relation:

range of e is EMPLOYEE

delete e

The result of the last command is an empty relation. ■

258 Chapter 5 Relational Database Manipulation

Now let us look at examples that illustrate the method of performing set unions

and difference in QUEL.

Example 5.50 “Get all employees (employee numbers only) who are either waiters or

work on Posting-No 321.” This query requires that we obtain the union of

the employee numbers obtained from the DUTY_ALLOCATION and EM¬

PLOYEE relations As discussed in Section 5.7.5, QUEL does not support

set operations. QUEL is based on relational calculus, so let us first write a

calculus expression to help us formulate this query in QUEL:

{t | 3d(d e DUTY_ALLOCATION

A t[Empl-No] = d[Empl-No]

A d [Posting-No] = 321) V
3r(r e EMPLOYEE

A t [Empl-No] = r[Empl-No]

A r[Skill] = 'waiter')}

An examination of this query shows that we create a relation over which we

define the tuple variable t. We append to this relation the relevant Empl-No

from the DUTY_ALLOCATION relation and the Empl-No from the EM¬

PLOYEE relation. This is our clue for writing the QUEL query. The crea¬

tion of a new relation and the appending of the appropriate Empl-No from

the DUTY_ALLOCATION relation can be expressed as:

range of d is DUTY_ALLOCATION

retrieve into TEMP (d.Empl-No)

where d. Posting-No = 321

Now we append to our TEMP relation the employee numbers of all waiters:

range of r is EMPLOYEE

append to TEMP (Empl-No = r.Empl-No)

where r.Skill = 'waiter'

The TEMP relation contains all employees (via the surrogate employee num¬

bers) who work at Posting-No 321 or have the skill of waiter. If some

persons work both at Posting-No 321 and have the skill of a waiter, their

numbers will appear more than once in the relation TEMP. So as a final

step we need to remove these duplicates by the following statements:

range of t is TEMP

retrieve unique (t.EmplJNo) ■

Example 5.51 illustrates a method of implementing the difference operation.

Example 5.51 “Get employee numbers of persons who work at Posting-No 321 but who

do not have the skill of waiter.” We create a TEMP relation with the em¬

ployee numbers of persons working at Posting-No 321 (as in Example
5.50):

5.7 Data Manipulation: QUEL 259

range of d is DUTY_ALLOCATION

retrieve into TEMP (d.Empl^No)

where d.Posting-No = 321

Now we need to delete all tuples in TEMP corresponding to employees
with the skill of waiter:

range of r is EMPLOYEE

range of t is TEMP

delete t

where t.Empl-No = r.Empl_No and r.Skill = 'waiter'

Now the temp relation consists of the desired tuples and can be retrieved as:

range of t is TEMP

retrieve unique (t.Empl-No) ■

5.7.9 Views

QUEL supports views in a manner similar to SQL. A view can be defined on an

existing (or a base) relation. The syntax of a define view definition is as follows:

define view VIEW_NAME <target_list>

[where < predicates >]

The target list specifies the attributes to be included in the virtual relation

VIEW_NAME and must specify the names by which the virtual attributes will be

referred.
As in the case of SQL, the data corresponding to a view are retrieved whenever

a query refers to a view. Data retrieval is via a query modification as illustrated in

the following example.

Example 5.52 range of e is EMPLOYEE

define view EMP_VIEW

(Emp-No = Q.Empl-No

Emp-Name — t.Name
Emp-Profession = e. Skill)

where e.Empl-No < 123460

A subsequent query to the view, for instance the one given below, is

modified to refer to the existing base relation:

range of e is EMP-VIEW

retrieve (e.Emp-no, e.Emp-Profession)

where e.Emp-No > 123300

This query is converted to the following form, which refers to the base

relation EMPLOYEE before any retrieval:

range of e is EMPLOYEE

260 Chapter 5 Relational Database Manipulation

retrieve (Emp-No = e.Empl-No,

Emp-Profession = e. Skill)

where t.Empl-No > 123300

and e.Empl-No < 123460 ■

Such query modifications produce an appropriate external scheme to conceptual

scheme mapping in a orderly manner. Updates via view, create problems similar to

the ones we discussed under SQL.
Once defined, a view can be used until it is destroyed by means of a destroy

statement as follows:

destroy EMP_VIEW

5.7.10 Remarks

Other QUEL commands deal with database creation, database removal, interface to

the file system, index organization, and index modification. These do not deal spe¬

cifically with data manipulation, so we have not emphasized them here.

The commercial version of INGRES provides a form-based interface, a report

writer, interactive as well as embedded SQL and QUEL with HLL interface to

BASIC, C, COBOL, Pascal, and PL/I. The database response has been much im¬

proved (about one order) over the INGRES used in the academic milieu.

5.8 Embedded Data Manipulation Language

SQL and QUEL only provide facilities to define and retrieve data interactively. To

extend the data manipulation operations of these languages, for example to separately

process each tuple of a relation, these languages have to be used with a traditional

high-level language (HLL). Such a language is called a host language and the pro¬

gram is called the host program. The use of a database system in applications writ¬

ten in an HLL requires that the DML statements be embedded in the host programs.

All the statements and features that are available to an interactive user must be avail¬

able to the application programmer using the HLL. The DML statements are distin¬

guished by means of a special symbol or are invoked by means of a subroutine call.

One approach that is commonly used is to mark the DML statements and par¬

tially parse them during a precompilation step to look for statements and variables

from the host HLL appearing in DML statements. Such variables are appropriately

identified by looking for a variable declaration in the host program or by appropri¬

ately marking such variables (e.g., with a colon). In this way, it is possible to use

identical names for both the HLL variables and the objects in the database.

The need for domain compatibility between host language variables and con¬

stants and database attributes has to be observed in the design and writing of HLL

programs with embedded DML statements. Any data type mismatch between HLL

variables and DML attributes must be resolved. One way to handle type mismatch is

to do type conversion at run time. Such type conversions must either be established

5.8 Embedded Data Manipulation Language 261

(e.g., converting temperatures given in Celsius to Fahrenheit) or provided by the user

(e.g., the current rate of exchange between U.S. and Canadian currency).

In addition to executable DML statements, there is a need for declarative state¬

ments. Such declarative statements are used to declare names of relations, their attri¬

butes, and currency indicators (or cursors). Also, the program is informed of the

status of the execution of a DML statement by appropriate status indicators, which

have to be declared as well. We will not discuss status indicators here, but we rec¬

ognize their importance in the HLL program to verify the status of the execution of

the DML statement and take appropriate actions under various error conditions.

Let us illustrate the use of embedded DML statements by the following exam¬

ple. Note that the syntax and convention we are using are simply for illustration; they

do not necessarily correspond to those used in any system known to the author. The

SQL statements are indicated by the presence of the leading % symbol. The HLL

variables Emp_Name, Emp_Skill, Emp_Id, Emp_Pay_Rate are declared to be com¬

patible with the attributes of the EMPLOYEE relation. The EMPLOYEE relation is

also declared in the HLL program and allows the precompiler to verify the data types

of corresponding attributes and HLL variables match. The HLL variables in the SQL
statements are indicated by preceding them with a colon.

We want to update the pay rate of selected employees in our database; each

employees increase may be different. To implement this application in a high-level

language, we read in the employee number and the percent pay rate of the employee.

We retrieve the tuple for this employee and update the pay rate. Subsequently, we

select each updated tuple of the EMPLOYEE relation and assign the value of the

attributes to the HLL program variables using the %into statement. Finally, the val¬
ues of these HLL variables are written out.

var {HLL variables}

input_file: text;

numb: integer;

raise_pct: real;

var Emp_Name char(25), Emp_Skill char{25);

var Emp_Id decimal(6), Emp_Pay_Rate decimaK 10,2);
record EMPLOYEE relation

(Empl-No decimal(6).

Name char(25).

Skill char(25),

Pay-Rate decimal(10,2));

ra/d/«(input_file, numb, raise_pct);

while not <?o/(input_file) do

begin

% update EMPLOYEE

set Pay—Rate = Pay-Rate * : raise_pct

where Empl-No — : numb

readln(\np\it-f\\z, numb, raise_pct);

end;

r£ser(input_file);

razd/n(input_file, numb, raise_pct);

while not £o/(input_file) do

begin

262 Chapter 5 Relational Database Manipulation

%select Empl-No, Name, Pay-Rate

into :Emp_Id :Emp_Name : Emp_Pay_Rate

from EMPLOYEE

where Empl-No = : numb

writelnfEmployee Number = ' Emp_Id,

'Employee Name = ', Emp_Name,

'Employee New Pay Rate =', Emp_Pay_Rate);

reading input-file, numb, raise_pct);

end;

The need for currency indicators is illustrated by the following example. The

select statement will generally retrieve a set of tuples. The elements of this set will

be processed one at a time in the do-while loop. We can associate a currency indi¬

cator ptrl with the relation EMPLOYEE by a declare statement. This currency indi¬

cator is used to step through elements of the set retrieved by the select statement.

The do-while loop will terminate when the last element is processed.

var Emp_Name char{25), Emp_Skill char(25);

var Emp_Id decimal(6), Emp_Pay_Rate decimal(10,2);

record EMPLOYEE relation

(Empl-No decimal(6).

Name char(25),

Skill char(25),

Pay-Rate decimal{ 10,2));

%var ptrl currency-indicator for EMPLOYEE

%select *

from EMPLOYEE

where Skill = 'chef'

%do while ptrl =£ end of set

%assign using ptrl to :Emp_Name :Emp_Skill :Emp_Id

: Emp_Pay_Rate
. . . other statements to process : Emp_Name : Skill

:Emp-Id : Pay -Rate

end while

Some DML statements do not require currency indicators. Examples of these

are where a single tuple is retrieved, inserted, or updated. Deletion or updating of all

tuples meeting certain predicates needs no currency indicators either. The following

example shows the embedded SQL statements for adjusting the pay rates of employ¬

ees with the skill of chef by the adjustment factor Adj-Chef. The latter is a host
language variable indicated by the leading colon.

% update EMPLOYEE

% set Pay-Rate = Pay-Rate *:Adj_Chef

% where Skill = 'chef'

As in the case of SQL, QUEL can be used in a form called EQUEL (embedded

QUEL) in a high-level language. EQUEL allows application programs to access an

INGRES database. The EQUEL statements are not precompiled nor optimized as in

the case of embedded SQL. Rather, they are processed and optimized dynamically
at runtime by INGRES.

5.9 A Critique: SQL, QUEL 263

A Critique: SQL, QUEL

SQL and QUEL are easier to use and more powerful as data sublanguages than the

ones used in DBMSs based on the network and hierarchical models. However, these

languages do not fully support some of the basic features of the relational data model:

the concept of domains, entity and referential integrity and hence the concept of

primary and foreign keys. Furthermore, these languages are redundant in the sense
that the same query may be expressed in more than one way.

Redundancy is not a sin as long as different ways of expressing the same query

yield the same results in approximately the same period of time. However, tests with

a number of implementations of SQL, the most widely available query language for

relational DBMSs, indicate a wide variation in response time. Furthermore, some

forms of the query generate duplicate tuples whereas others do not.

Proponents of QUEL claim that it is more orthogonal and powerful than SQL.

The term orthogonal is used in programming languages to mean that concepts and

constructs are designed independently and can be used consistently in a uniform

manner. In an orthogonal language, there are no special cases and few restrictions

imposed on the use of the components of the language. The current SQL standard is

viewed as one that tried to reconcile the various commercial implementations and

came up with one that is, in effect, the lowest common denominator. An attempt is
currently underway to upgrade the SQL standard.

The following illustrates the nonorthogonality of SQL. The first version is valid

while the second, though symmetrical, is invalid. This is so because the nested select

operand is required to be on the right-hand side of the 0 operator.

First version:

select Name

from EMPLOYEE

where Pay-Rate >

(select avg (Pay-Rate)

from EMPLOYEE)

Second version:

select Name

from EMPLOYEE

where (select avg (Pay-Rate)

from EMPLOYEE) < Pay-Rate

As mentioned earlier, the select statement of SQL represents the following re¬

lational algebraic operations:

projeCtion(represented ()v (|lc target list) (selection (represented by the where clause) (cartesian product
of the relations represented by the from list))

It is not possible to change the order of these operations in SQL. Consequently, the

user has to express a query in this format, making the query less like a natural

language query.
The treatment of nested select statements in various set operators such as exists,

0any, 0all, in, and contains is also nonuniform. Whereas a nested select statement

264 Chapter 5 Relational Database Manipulation

producing a relation as the result is required in the case of exists, nested select is

only permitted if the value produced in the case of one of the operators {= , + , >,

>, <, <} is a relation of cardinality and degree one (a single value). On the other

hand, the result of the nested select in the case of one of the set operators {0any,

Ball, in, contains} is required to be a relation of degree one and arbitrary cardinality.

Suppose we want to create a table that contains the names of employees, their

pay rate, and, for comparison, the average pay rate. This can be expressed in QUEL

as shown in Example 5.42c. However, an attempt to create such a table using the

following SQL statement, though intuitively valid, will fail because such usage is

illegal in SQL. The reason is that the select is a projection and the cardinality of

Name, Pay-Rate, is not the same as the cardinality of avg(Pay-Rate).

select Name, Pay-Rate, avg (Pay-Rate)

from EMPLOYEE

However, the following is legal and produces a table of skill and the average
pay rate for each skill:

select Skill, avg (Pay-Rate)

from EMPLOYEE

group by Skill

QUEL allows updates to involve values from two relations. As such, the pay

rates of employee in the relation EMPLOYEE can be adjusted according to the values
in a relation ADJUSTMENT shown below:

range of a is ADJUSTMENT

range of e is EMPLOYEE

replace (e.Pay-Rate — a.Raise * e.Pay-Rate)

where e.Skill = a.Skill

ADJUSTMENT

Skill Raise

waiter 1.08

bartender 1.07

busboy 1.12

hostess 1.09

maitre d’ 1.08

chef 1.09

A similar attempt to use a value from another relation, as illustrated below, is
invalid in SQL:

update EMPLOYEE

set Pay-Rate = Pay-Rate ^(select a.Raise

from ADJUSTMENT a

where EMPLOYEE.Skill = a.Skill)

However, in some implementations of SQL the following statement would pro¬

duce the required adjustment in Pay-Rates. It should be obvious that for this state-

5.9 A Critique: SQL, QUEL 265

ment to work correctly, the relation ADJUSTMENT must have a tuple corresponding
to each value of Skill in EMPLOYEE.

update EMPLOYEE

set Pay_Rate = (select Pay-Rate * a Raise

from ADJUSTMENT a

where EMPLOYEE.Skill = a.Skill)

The nonorthogonality of SQL in allowing nested query in some places and not

in others is illustrated below. Whereas the select statement on the left is legal in SQL

a similar form in the update statement on the right is not valid in all implementations
of SQL.

select Name update EMPLOYEE

from EMPLOYEE set Pay-Rate = 1.3 * Pay-Rate

where Empl-No = where Empl-No in

(select Empl-No (select Empl-No

from DUTY_ALLOCATION from DUTY_ALLOCATION
where Shift = 3) where Shift = 3)

QUEL, on the other hand, has required the use of tuple variables in its query to
date. This restriction has been modified and QUEL now allows the use of a relation

name as the tuple variable. This was implemented by a query modification introduc¬

ing the relation name as a tuple variable. However, as illustrated in the following

query, using both a tuple variable and a relation name could produce an incorrect
result:

range of e is EMPLOYEE

replace EMPLOYEE (Pay-Rate = 10.50)

where e.Empl-No = 123456

This query is modified by the introduction of a range statement:

range of e is EMPLOYEE

range of EMPLOYEE is EMPLOYEE

replace ENVPEOYEE(Pay-Rate = 10.50)

where e.Empl-No = 123456

The result is unexpected since the query sets the pay rate of all employees to 10.50

if there exists an employee with the number 123456.

One of the more mystifying features of QUEL is the scope rule of tuple vari¬

ables in aggregation operators and aggregate functions. In aggregation operators tuple

variables are strictly local, whereas in aggregate functions the presence of the by

clause requires that the tuple variable used in that clause has a global scope. Consider

the query “Find the average Pay-Rate by Skill." The QUEL version of this query

is shown in Example 5.45c. However, it may be expressed by a novice user using

an additional tuple variable as follows:

range of e is EMPLOYEE

range of el is EMPLOYEE

retrieve (e.Skill, Avg-Rate = avg(el.Pay-Rate by e.Skill))

This query shows the global scope of the tuple variable used in the by clause, which

is the same as that used outside the aggregate function. The tuple variable el is

266 Chapter 5 Relational Database Manipulation

Figure 5.5 *

strictly local, causing the result to be computed on the cartesian product of EM¬

PLOYEE with itself. This average value, as shown in Figure 5.5, is the same for all

skills for our sample EMPLOYEE relation of Figure 5.4.

The correct result for the average pay rate by skill, when using an additional

tuple variable, is obtained by adding a predicate in the aggregate function to select

appropriate tuples of the cartesian product. This is illustrated in the following modi¬

fied query:

range of e is EMPLOYEE

range of el is EMPLOYEE

retrieve (e.Skill, Avg-Rate = avg(el.Pay-Rate by e.Skill

where e.Skill — el.Skill))

The same result could have been obtained using the following query wherein

only one tuple variable is used. Here the by clause causes the tuple variable e to be

global and distinct from the local tuple variable in e.Pay-Rate.

range of e is EMPLOYEE

retrieve (e.Skill, Avg-Rate = avg(e. Pay-Rate by e.Skill))

The following is another example that illustrates the confusion in novice QUEL

users due to a mixture of scope of tuple variables. Consider the query of finding, for

each skill, the average pay rate of those employees whose pay rate is less than the

average pay rate for their skill. Assume that the MORE_EMPLOYEE relation con¬

tains the tuples shown in Figure 5.6. Consider the following QUEL implementation

of this query:

range of e is MORE_EMPLOYEE

range of el is MORE_EMPLOYEE

retrieve (e.Skill, Low-Avg-Rate =

avg(e.Pay-Rate by e.Skill where e.Pay-Rate <

avg(el .Pay-Rate where el .Skill = e. Skill)))

The result of this QUEL query for our sample relation MORE_EMPLOYEE is shown

in Figure 5.7. Here the use of the by clause in the first avg aggregate function causes

the tuple variable e associated with it to be global and the same as one used outside

the aggregate function in e.Empl-No and e.Skill. The identically named tuple vari¬

able e associated with the two occurrences of e. Pay -Rate in the first avg aggre¬

gate function are, on the other hand, local. The tuple variable el appearing in the

An attempt to compute average Pay-Rate by Skill.

Skill Avg-Rate

waiter 8.51

bartender 8.51

busboy 8.51

hostess 8.51

bellboy 8.51

maitre d’ 8.51

chef 8.51

267 5.9 A Critique: SQL, QUEL

Figure 5.6 Tuples from MORE EMPLOYEE relation.

MORE_EMPLOYEE

Empl-No Name Skill Pay-Rate

123446 Art waiter 7.75
123456 Ron waiter 7.50
123466 Sam waiter 7.25
123476 Ram waiter 7.00
123486 Hon waiter 6.75
123477 Tom bartender 8.99
123457 Jon bartender 8.79
123467 Mario bartender 8.59
123448 Dan busboy 4.60
123458 Don busboy 4.70
123468 Dave busboy 4.50
123459 Pam hostess 4.90
123449 Mary hostess 4.80
123460 Pat bellboy 4.70
123450 Steve bellboy 4.50
123461 Ian maitre d’ 9.00
123451 Andre maitre d’ 8.00
123471 Pierre chef 14.00
123472 Julie chef 14.50

avg aggregation operator is also local and the average is computed on the join of

MORE_EMPLOYEE with itself. This average value, as seen earlier, will be the

same for all skills and in this case equal to 7.41. Hence the query gives us the nonzero

Low-Avg-Rate for those employees whose Pay-Rate is lower than the average pay

rate of all employees. For skills wherein all employees’ pay rates are higher than this

Figure 5.7 Attempt at computing the average Pay-Rate by Skill of employees whose Pay-Rate is
below the average for their skills.

Skill Low Avg-Rate

bartender 0.00

bellboy 4.60

busboy 4.60

chef 0.00

hostess 4.85

maitre d’ 0.00

waiter 7.00

chef 0.00

268 Chapter 5 Relational Database Manipulation

Figure 5.8

average pay rate, the result is derived as 0.0. The result relation produced by this

query is evidently wrong. This would be not apparent to the user unless he or she

had known the contents of the MORE_EMPLOYEE relation and had computed some

sample results.

Let us modify the query as shown below. Here the by clause forces the tuple

variable in both the aggregate functions to be global.

range of e is MORE_EMPLOYEE

range of el is MORE_EMPLOYEE

retrieve (e.Skill, Low—AvgJRate =

avg {z.Pay-Rate by e. Skill where e. Pay -Rate <

avg(el.Pay-Rate by e.Skill where el.Skill = z.Skill)))

The second average is now computed using only those tuples of the join of

MORE_EMPLOYEE with itself where the skill is the same as one outside the func¬

tion. This indicates the correct tuples to choose for computing the low average pay

rate. The result is shown in Figure 5.8.

We can simplify the last query as shown below. This simplified query gives the

same result as shown in Figure 5.8.

range of e is MORE_EMPLOYEE

retrieve (e.Skill, Low_Avg-Rate =

avg {z. Pay-Rate by e. Skill where z.Pay-Rate <

avg(z.Pay-Rate by e.Skill)))

As illustrated above, a mixture of local and global scope of tuple variables in QUEL

tends to create confusion and retrieve incorrect data.

The SQL version of this query is relatively simple as shown below:

select e.Skill, avg(z.Pay-Rate)

from MORE_EMPLOYEE e

where e. Pay -Rate < (select a\g(z\.Pay-Rate)

from MORE_EMPLOYEE el

where el.Skill = e.Skill)

group by z.Skill

Correct values by Skill of average Pay-Rate of employees below the average for their
skills.

Skill Low Avg-Rate

bartender 8.59
bellboy 4.50
busboy 4.50
chef 14.00
hostess 4.80
maitre d’ 8.00
waiter 6.88
chef 14.00

5.10 QBE 269

The above discussion illustrates that neither SQL nor QUEL are perfect for
expressing all queries. A user has to know the “correct” versions without which the

information gleaned from the DBMS may be incorrect. The user may have no way
of ascertaining the correctness of the response.

The SQL standard is under review and as with all such standards will go through

a number of versions. It is hoped that future standards will address some of the
criticisms leveled at SQL.

5.10 QBE

Query-By-Example (QBE) was originally developed by M. M. Zloof at IBM’s

Yorktown Heights Research Laboratory and has now been marketed for various re¬

lational systems from IBM as part of their QMF (Query Management Facility). In

QMF, QBE is implemented not as in the system developed by Zloof, but rather by

translating the QBE queries into equivalent SQL queries. Other relational DBMSs

such as DBASE IV, INGRES, and ORACLE have some form of example or form-
based query system.

QBE is based on domain calculus and has a two-dimensional syntax. The quer¬

ies are written in the horizontal and vertical dimensions of a table. Queries are

formed by entering an example of a possible answer in a skeleton (empty) table, as

shown in Figure 5.9. This example contains variables as in domain calculus and

specifies the conditions that have to be satisfied by the response. Conditions specified

on a single row of the table are generally considered to be conjunctive (i.e.,

“omfed”); conditions entered on separate rows are disjunctive (i.e., “ored”). An
empty skeleton is displayed by pressing a function key.

The skeleton table does not have column headings. The first column is used for
the relation name.

To get a list of relations, we enter P. for the PRINT command in the first
column of the column heading:

p.

To get the attribute names for a given relation we enter the relation name fol¬
lowed by a P.

DUTY_ALLOCATION P.

270 Chapter 5 Relational Database Manipulation

Figure 5.9 QBE skeleton table for writing QBE example query.

Attribute Names

Relation

name

' '

Tuple

operations

t \ t \

Domain variables, domain constants, and predicates

Having obtained a skeleton table, we specify queries by filling in the table with

appropriate variables and constants. Variables are called example elements. Variable

names are represented in QBE by preceding the name with an underscore. However,

in this text, for ease in reading, the variables are denoted by underlined strings and

in no way affect the interpretation of a query. It is usual to use example values from

an attribute’s domain as free variable names. The example value, chosen as a vari¬

able name, need not be in the database. Constants are nonunderlined strings. There¬

fore, Waiter# is a variable; Waiter# is a constant. 123456 is a variable; 123456 is a

constant.

5.10.1 Basic Data Retrieval in QBE

The basic data retrieval command in QBE is the PRINT command indicated by P.

with an optional variable name as shown below and in the following examples:

P.[<variable>]

Example 5.53 “Get employee position assignment.” We first obtain the DUTY_ALLO-

CATION skeleton table. Next we enter variables or the example query.

DUTY-ALLOCATION Posting-No Empl-No Shift Day

P.P1 P.E1

This is the domain calculus query

{p,e | <p,e,s,d> e DUTY_ALLOCATION} ■

Duplicates in QBE are automatically eliminated. To suppress such elimination

the variable name must include the ALL. keyword prefix. (In the above query it
would be P.ALL.PL)

5.10 QBE 271

Two alternative forms of expressing the same query are given below. In the first

the domain values are used as variables and in the second we only specify the col¬
umns to be printed.

DUTY_ALLOCATION Posting-No Empl-No Shift Day

P.325 P.123456

DUTY_ALLOCATION Posting-No Empl-No Shift Day

P. P.

Example 5.54 “Get full details of duty assignment.” This query can be expressed in QBE

by entering on a skeleton table for the DUTY_ALLOCATION relation the

present or print directive followed by a variable name for all attributes of
the relation. Such a sample is illustrated below:

DUTY_ALLOCATION Posting-No Empl-No Shift Day

P.P1 P.E1 P.S1 P.D1

A simpler method of representing the same query is to enter a P. under

the relation name as indicated below:

DUTY_ALLOCATION Posting-No Empl-No Shift Day

P.

Predicates are introduced in queries by means of constants in appropriate columns as

illustrated in the following example.

Consider the query that requires all duty assignments for Empl-No 123456.

The domain calculus version of this query, given below, can be translated

readily into an example on the skeleton table. The condition Empl-No =

123456 is expressed by entering the value under the column for Empl-No.

Example 5.55

272 Chapter 5 Relational Database Manipulation

The fact that all details are required is indicated by the P. under the relation

name.

{p,e,s,d | <p,e,s,d> e DUTY_ALLOCATION A e = 123456}

DUTY_ALLOCATION Posting-No Empl-No Shift Day

P. 123456

QBE supports the usual comparison operators: =, ^(not equal), <, <, >, >;

= is normally omitted as seen in the previous example. The Boolean operators and,

or, not are also supported. Conditions specified within a single row are andtd. For

multiple conditions on the same column, k, to be anded, QBE requires multiple rows

with the same example element in the /rth column of each row. To specify conditions

to be ored we use different rows with different example elements.

Example 5.56 “Get names of employees with the skill of chef earning more than $14.00

per hour.” The above query reads “Get employee names where Skill =

'chef' and Pay-Rate > 14.00“ and is the domain calculus query:

{n | <e,n,s,p> e EMPLOYEE A s = 'chef' A p > 14.00}

This query requires two conditions to be true for the tuples that are

retrieved. It can be expressed on the skeleton table as illustrated below:

EMPLOYEE Name Skill Pay-Rate

P.EX ‘chef >14.00

In the above example not all attribute names of the employee relation were

listed. It is possible in QBE to eliminate columns from the display if they are irrele¬
vant to the query.

Example 5.57 “Get names of chefs who earn more than $10 per hour but less than $20

per hour.” To specify a conjunctive predicate of the form P,(attrf A
P2(attri) A . . . PJattrJ, QBE allows multiple columns for the same attrib¬

ute in the skeleton table. Hence this query can be expressed as shown below:

EMPLOYEE Empl-No Name Skill Pay-Rate Pay-Rate

P.EX chef >10.00 <20.00

5.10 QBE 273

An alternate scheme with multiple rows with the same domain vari¬

able to express the conjunctive predicate can also be used. The query could

be reexpressed as “Get employee names whose Skill = 'chef' with

Pay—Rate> 10 AND (the same) employee names whose Skill is also 'chef' with

Pay-Rate<20.’ This is expressed in QBE by two rows with the same var¬
iable in the Name column as indicated below:

EMPLOYEE Empl_No Name Skill PayJKate

P.EX chef >10.00
EX chef <20.00

The following example illustrates a disjunctive predicate.

Example 5.58 “Get names of employees who are either chefs or earn more than $8 per

hour.’ In this query, the conditions to be ored are indicated by using

two rows in the skeleton table with different variable names for the Name
column.

EMPLOYEE Empl-No Name Skill Pay-Rate

P.EX chef
P.EY >8.00

Data from multiple tables can be manipulated as shown in Example 5.59.

Example 5.59 “Get shift details for the employee named Ian.” This query is “Print Posting

No, Shift and Day (e.g., P1_,SJ_,D1_ respectively) for employee number EX

where EX is the Empl-No for employee Ian. The response to the query

involves a join of relations EMPLOYEE and DUTY_ALLOCATION. In

QBE the join is implemented by utilizing the example element EX as a link

between these relations. The link in QBE is used whenever a join would be

used in relational algebra.

DUTY_ALLOCATION Posting-No Empl—No Shift Day

P. P.P1 EX P.S1 P.D1

274 Chapter 5 Relational Database Manipulation

EMPLOYEE Empl-No Name Skill Pay-Rate

P.EX Ian

QBE also provides a “conditions” box to specify additional constraints. This is

particularly helpful as it sometimes becomes impossible to specify all the constraints

within the skeleton table. We illustrate the use of a condition box in the following

example.

A number of variables can be defined over the same attribute of a relation. This

is used in Example 5.60.

Example 5.60 “Get Empl-No of all pairs of chefs working on the same shift.” The do¬

main calculus version of this query is given below. Here f and s are domain

variables on the domain of Emp# and x and y are domain variables on the

domain of Shift:

{f,s | <f,x> e DUTY_ALLOCATION A <s,y> e DUTY_ALLOCATION

A <ef,nf,sf,pf> e EMPLOYEE

A <es,ns,ss,ps> e EMPLOYEE

Ax = yAf<sAf=efAs = es
A ps = 'chef' A pf = 'chef'}

This calculus query states “Get employee numbers of chefs working

on the same shift (x = y).” The conditions f = pf and s = es guarantee

that we have the same employees from the two relations. Finally, to elimi¬

nate redundant pairs of the form (123471, 123472) and (123472, 123471)

we impose the condition, f < s on the employee numbers. This calculus
form of the query is converted into QBE as shown below:

DUTY_ALLOCATION Posting-No Empl-No Shift Day

EX SI

EY SI

EMPLOYEE Empl_No Name Skill Pay-Rate

EF chef

ES chef

5.10 QBE 275

RESULT First Second CONDITIONS

P.EX P.EY EX < EY and

EF = EX and

ES = EY

We could have used EX and EY instead of EF and ES respectively in

the skeleton table for EMPLOYEE, eliminating the conditions EF = EX

and ES = EY in the condition box to indicate that the skill of the employees

are those of chefs. ■

5.1 0.2 Aggregation in QBE

QBE also provides min, max, cnt (count), sum, and avg aggregation functions. The

latter three may be qualified by the UNQ. operator to eliminate duplicates. The ALL.

qualifier must always be specified. We illustrate the use of these functions in Exam¬

ple 5.61.

MIN.ALL.

MAX.ALL.

CNT. [UNQ.] ALL.

SUM. [UNQ.] ALL.

AVG.[UNQ.]ALL.

Example 5.61 (a) “Get average dish price.”

MENU Dish# Dish-Description Price

P. AVG. UNQ. ALL.CX

(b) “Get minimum and maximum dish prices.”

MENU Dish# Dish-Description Price

P.MIN.ALL.CX

P.MAX. ALL.CY

(c) “Get names and rate of pay compared with average rate of pay.”

276 Chapter 5 Relational Database Manipulation

EMPLOYEE Empl-No Name Skill Pay-Rate

P.EX P.RX

P.AVG.ALL.RY

(d) “Find names of employees with Pay-Rate less than the average Pay-

Rate.”

CONDITIONS

P.EX P.RX

AVG.ALL.RY

RX < AVG.ALL.RY

5.10.3 Categorization in QBE

The equivalent of the SQL group by operator is obtained in QBE by preceding the

variable with G.

Example 5.62 (a) “Get count of employees on each shift.”

DUTY-ALLOCATION Empl-No Shift Day

P.CNT.ALL.EX G.SX

(b) “Get employee numbers of all employees assigned a duty on dates in

addition to the date 19860419.”

DUTY-ALLOCATION Empl-No Day CONDITIONS

EX

P.G.EX
19860419 CNT.ALL.EX > 1

5.10 QBE 277

5.10.4 Updates

QBE includes the three update operations for inserting, modifying, and deleting.

These are indicated on the skeleton table in the relation name column by I. (insert),

U. (modify/replace), and D. (delete). For the U. update operation based on an old

value, the user first specifies the old version and next the new version. We illustrate
the syntax for specifying these operations in the following examples.

Example 5.63 (a) “Insert a record into DUTY-ALLOCATION at Posting-No 321 for Empl
No 123458, Shift 2, and Day 19860421.”

DUTY-ALLOCATION Posting-No Empl-No Shift Day

I. 321 123458 2 19860421

Here the I. in the relation name column indicates the insertion opera¬

tion. The values for the columns are indicated on the skeleton of the table.

(b) “Copy DUTY_ALLOCATION into NEW_DUTY_ ALLOCATION.”

DUTY-ALLOCATION Posting-No Empl-No Shift Day

PX EX SX DX

NEW-DUTY-ALLOCATION Posting-No Empl-No Shift Day

I. PX EX SX DX

Here the I. in the relation name column for the NEW_DUTY_ALLO¬

CATION table indicates the insertion operation. The similarly named vari¬

ables in DUTY-ALLOCATION and NEW_DUTY_ALLOCATION indi¬
cate the source of the values to be used for the insertion.

(c) “Copy into NEW_DUTY_ALLOCATION records for Shift 1 in DUTY
-ALLOCATION.”

278 Chapter 5 Relational Database Manipulation

DUTY_ALLOCATION Posting-No Empl-No Shift Day

PX EX SX DX
*

NEW_DUTY_ALLOCATION Posting-No Empl-No Day

I. PX EX DX

(d) “Increase Pay-Rate of all employees by 10%.’’

EMPLOYEE Empl-No Pay-Rate

EX PX
U. EX 1.1 * PX

Here U. in the relation name column indicates the update operation,

(e) “Increase Pay-Rate of employees with the skill of waiter by 10%.”

EMPLOYEE Empl-No Name Skill Pay-Rate

EX waiter PX
U. EX 1.1 * PX

(0 Assign all bellboys with a Pay—Rate of less than 5.00 and not working

on third shift of 19860419 to Posting-No 327 for the third shift of
19860419.”

EMPLOYEE Empl-No Name Skill Pay-Rate

EX bellboy < 5.00

5.10 QBE 279

DUTY_ALLOCATION Posting-No Empl-No Shift Day

EX =£ 3 * 19860419
U. 327 EX 3 19860419

Another method of specifying the second table, which says that there

does not exist a tuple in DUTY_ALLOCATION for the Empl-No EX such

that the Shift is 3 and the Day is 19860419, is indicated below. Here we

show that the tuple does not exist by using the not (—i) symbol in the relation

name column with the same variable as in the EMPLOYEE relation and the

other conditions specified in the Shift and the Day columns.

DUTY_ALLOCATION Posting-No Empl-No Shift Day

“i EX 3 19860419
U. 327 EX 3 19860419

(g) “Delete employee record for Emp# 123459.”

EMPLOYEE Empl-No Name Skill Pay-Rate

D. 123459

Here the D. in the relation name column indicates the deletion opera¬
tion.

(h) “Delete employee records for all employees.”

EMPLOYEE Empl-No Name Skill Pay-Rate

D.

(i) “Delete employee Ian and remove him from DUTY_ALLOCATION.”

EMPLOYEE Empl-No Name Skill Pay-Rate

EX Ian

D. EX Ian

280 Chapter 5 Relational Database Manipulation

DUTY_ALLOCATION Posting-No Empl—No Shift Day

D. EX

In the first line of the EMPLOYEE skeleton we indicate that we are

interested in the employee with the name of Ian and hence select these tu¬

ples. On the second line we indicate that these tuples are to be deleted. The

use of the EX with D. in the DUTY_ALLOCATION skeleton indicates that

tuples satisfying this predicate are to be deleted as well. ■

5.11 Concluding Remarks

In this chapter we considered some of the salient features of the more popular com¬

mercial data manipulation languages. We can see how they borrow heavily from

relational algebra and calculus concepts. In query design, relatively little attention

needs to be paid to evaluation. Users benefit greatly from this philosophy. In some

ways data manipulation resembles programming and, like good programming, comes

from practice. The requirement is that we be able to express exactly what we desire.

We can reflect on the complexity of what is achieved by some very simple

queries. As is normal in most database systems, suppose that every relation is sup¬

ported by an underlying file of records. Let us consider the SQL query

select R.A, S.D

from R, S

where R.B = S.C

Let the tuples of relations R and S be stored as records in the files FR and FS,

respectively. The above query requires that starting with the first record of FR (tuple

of R), we compare its field, B, with field C of every record of file FS, outputting

field A value from FR and field D value from FS whenever the comparands are

equal. For n records in file FR and m in file FS, this would require some m * n

combinations. Even for moderate-sized relations this signifies a large number. In

Chapter 10 we consider how we can optimize this query. More immediately, how¬

ever, we should reflect on how to program this task in a file environment. In this

case, the task of translating the query into a file processing program is easy. For

more complex queries, the programming task is much more difficult. We can there¬

fore appreciate the productivity improvements, among other benefits, of using a re¬
lational database system.

Summary

In this chapter we examined the commercial versions of languages used for relational

database systems. These languages, unlike their theoretical counterparts, include fa¬
cilities to define data as well as manipulate it.

5.11 Summary 281

SQL borrows both from relational algebra and tuple calculus. It is easy to use

and contains only four data manipulation statements: select, update, insert, and de¬

lete. The data definition part of SQL consists of three statements: create, alter, and
drop. Views can be created by using the create view statement.

QUEL is mainly based on tuple calculus and supports set operations only indi¬

rectly. Consequently, some queries that could be formulated easily using set opera¬
tions require the use of temporary relations in QUEL.

QBE is a graphical query language based on domain calculus. Queries are for¬

mulated in QBE by generating on a skeleton table an example of what the user
wishes to retrieve.

SQL has become the most popular and widely supported data manipulation lan¬

guage for relational database systems. Because of this force of the marketplace, SQL
has emerged as the de facto standard for relational DBMSs.

Key Terms

Structured Query Language
(SQL)

create

not null

alter

create index

cluster

unique

drop

select

distinct

from

where

update

set

delete

insert

value

and

or

not

count

sum

Exercises

avg

min

max

any

in

contains

all

not in

not contains

exists

not exists

union

minus

intersect

group by

having

base relation

view

existing relation

create view

drop view

Query Language (QUEL)

range

is

index

destroy

modify

on

retrieve

retrieve unique

aggregate function
by

append

replace

define view

host language

host program

orthogonal

Query-By-Example (QBE)

skeleton table

conjunctive

disjunctive

example element

5.1 For the queries of Exercise 4.4 in Chapter 4, give SQL, QUEL, and QBE query expressions.

5.2 For the queries of Exercise 4.5 in Chapter 4, give SQL and QUEL query expressions.

5.3 For the queries of Exercise 4.12 in Chapter 4, give SQL, QBE, and QUEL query

expressions.

282 Chapter 5 Relational Database Manipulation

5.4 Express the following tuple calculus query in SQL and QUEL:

{t|t e rel| A 3s(s e rel2 A (s.c = t.b))}

given the relations rel,(A,B) and rel2(C,D).

5.5 Convert the following domain calculus query into SQL, QUEL and QBE:

{<a,b> | <a,b> e rell A b = b,' V b = 'b2'}

5.6 Given the following relations

CONSISTS_OF (Module, Sub-Module)

DEVELOPED-BY (Module, Employee)

give SQL and QUEL queries for the following:

(a) List all modules that use the HEAPSORT and BINARY_SEARCH modules.

(b) List employees who were involved in the development of all modules that use the

HEAPSORT and BINARY_SEARCH modules.

If a module uses another module that uses either the HEAPSORT or BINARY-SEARCH

modules, would your query list the employees who were involved? How should you express

such a query?

5.7 Consider the relationship REGISTERED_GUEST_CHARGE between the entity

REGISTERED_GUEST(7?0£Wf#, Name, Address) and the view TOTAL-BILL as shown

below with some tuples from this relation. Write the definition for TOTAL-BILL as a view

of BILL in (a)SQL and (b)QUEL.

REGISTERED_GUEST_CHARGE

Use these relations to express a query in SQL and QUEL that gives the total charges

attributable to a REGISTERED-GUEST.

5.8 Express the query, in SQL and QUEL to increase the pay rate of employees who work on

the third shift at Posting-No 1 by 5% (use the relations defined in the chapter).

5.9 Create a view (in both SQL and QUEL) for employees assigned to a given table as a waiter.

The user needs the table number, day (date), shift, and the waiter’s name. The base relations

BILL, DUTY-ALLOCATION, and EMPLOYEE given in Figures 5.2 and 5.4 should be

used in the definition.

5.10 For the PROJECT, EMPLOYEE, and ASSIGNED-TO relations given in Chapter 4, express

the following queries in SQL:

(a) Get Emp# of employees working on project numbered COMP353.

(b) Get details of employees (name and number) working on project COMP353.

(c) Get details of employees working on all database projects.

(d) Get details of employees working on both COMP353 and COMP354.

(e) Get employee numbers of employees who work on at least all those projects that

employee 107 works on.

Room# Bill#

1267

1492

9234

9235

TOTALBILL

Bill# Day Total

9234

9235

19860419

19860420

29.90

16.70

5.11 Summary 283

(f) Get employee numbers of employees who do not work on project COMP453.

(g) Get employee numbers of employees who work on all projects.

(h) Get employee numbers of employees who work on at least one project that

employee 107 works on.

5.11

5.12

5.13

5.14

5.15

5.16

5.17

(a) Give the names of the players who played as forwards in 1987 in the franchise

Blades.

(b) Find the names of all the goalies who played with the forward Ozzy Xavier over

the span of his hockey career.

(c) List forwards and their franchises for those forwards who had at least 50 goals in

the years 1985 and 1986. A player must have at least 50 goals in both the years

but may have been with two different franchises.

(d) Give the complete details of players who played in the same franchises as Ozzy

Xavier did over his career, but not necessarily in the same year or as a forward.

(e) Compile the list of goalies who played during their career for franchises in St.

Louis, Edmonton, and Paris. A goalie should be listed if and only if he played in

all three cities.

Repeat Exercise 5.10 using QUEL.

Repeat Exercise 5.10 using QBE.

Express the queries of Exercise 4.16 of Chapter 4 using SQL or QUEL.

Using SQL, get the Empl-No, Skill, and average chef’s pay rate for the EMPLOYEE

relation shown in Figure 5.4.

For the sample tuples given in Figures 5.2 and 5.4, evaluate the QBE queries given in

Examples 5.53 through 5.59.

Repeat Exercise 5.15 for Examples 5.60 through 5.63.

Consider a database for the Universal Hockey League (UHL), discussed in Chapter 2, which

records statistics on teams, players, and divisions of the league. Write the following queries

in SQL and QUEL:

Bibliographic Notes

The query language QUEL was defined by Stonebraker et al. (Ston 76). It was also described

in the paper by Wong and Youssefi (Wong 76) that described a method for the decomposition

of the queries for query processing. The precursor of SQL, SEQUEL, was described by Cham¬

berlin et al. (Cham 76). Commercial versions are described in manufacturers’ reference man¬

uals. QBE was proposed by Zloof (Zloo 77). The three languages are also described in varying

detail in textbooks by Date (Date 86a), Korth and Silberschatz (Kort 86), Maier (Maie 83),

and Ullman (Ullm 82). Semantics of updates and their application to relational databases are

discussed in Desai et al. (Desa 87).

Bibliography

(Astr 75) M. M. Astrahan & D. D. Chamberlin, “Implementation of a Structured English Query Language,”
CACM 18(10), 1975, pp. 580-587.

284 Chapter 5 Relational Database Manipulation

(Astr 76) M. M. Astrahan, et al., “System R: A Relational Approach to Database Management,” ACM TODS
1(2), 1976, pp. 97-137.

(Boyc 75) R. F. Boyce, D. D. Chamberlin, W. F. King, & M. M. Hammer, “Specifying Queries as Relational
Expressions: The SQUARE Data Sublanguage,” CACM 18(11), 1975, pp. 621-628.

(Cham 76) D. D. Chamberlin, et al., “SEQUEL 2: A Unified Approach to Data Definition, Manipulation and
Control,” IBM J. of Res. and Dev. 20(6), 1976, pp. 560-575.

(Codd 86) E. F. Codd, “An Evaluation Scheme for Database Management Systems That Are Claimed To Be
Relational,” Data Engineering Conf., 1986, pp. 720-729.

(Codd 88) E. F. Codd, “Fatal Flaws in SQL,” Datamation, August 15, 1988, pp. 45-48, September 1, 1988,
pp. 71-74.

(Date 86a) C. J. Date, “A Critique of the SQL Database Language,” ACM SIGMOD Record, November, 1984,
Vol 14-3, pp. 8-54.

(Date 86b) C. J. Date, An Introduction to Database Systems 4th ed. Reading, MA. Addison-Wesley, 1986.

(Date 87a) C. J. Date, A Guide to the SQL Standard. Reading, MA: Addison-Wesley, 1987.

(Date 87b) C. J. Date, “Where SQL Falls Short,” Datamation, May 1, 1987, pp. 83-86.

(Desa 87) B. C. Desai, P. Goyal, F. Sadri, “Fact Structures and its Application to Updates in Relational
Databases,” Information Systems 12(2), 1987, pp. 215-221.

(Epst 77) R., Epstein, R., “A Tutorial on INGRES,” ERL-M77-25, University of California, December 1977.
Berkeley, CA:

(Held 75) C. D. Held, M. Stonebraker, & E. Wong, “INGRES: A Relational Database System,” Proc. ACM
Pacific 1975 Regional Conf., 1975, pp. 409-416.

(Kala 85) I. Kalash, et al., “INGRES Version 8 Reference Manual,” in UNIX 4.3. Berkley, CA: University of
California, December 1985.

(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts,” New York: McGraw-Hill, 1986.

(Lawr 88) A. Lawrence, “Living Up to the Hype,” Computing, May 5, 1988, pp. 22-23.

(Maie 83) D. Maier, The Theory of Relational Databases, Rockville, MD: Computer Science Press, 1983.

(Moad 88) J. Moad, “DB2 Performance Gets Kick with Closer Ties to 3090S, ESA,” Datamation, September
1988, pp. 19-20.

(ORAC 87) SQL*Plus Reference Guide. Belmont, CA: Oracle Corp., July 1987.

(Pasc 88) F. Pascal, “SQL Redundancy and DBMS Performance,” Database Programming and Design,
December 1988, pp. 22-28.

(RTI 88) INGRES Reference Guide. Alameda, CA: Relational Technology Inc., August 1988.

(Ston 76) M. Stonebraker, E. Wong, P. Kreps, & C. D. Held, “The Design and Implementation of INGRES ”
ACM TODS 1(3), 1976, pp. 189-222.

(Ullm 82) J. D. Ullman, Principles of Database Systems 2nd ed. Rockville, Md: Computer Science Press, 1982.

(Wong 76) E. Wong & K. Youssefi, “Decomposition—A Strategy for Query Processing,” ACM Transactions
on Database Systems 1, pp. 223-241.

(Wood 79) J. Woodfill, et al., “INGRES Version 6.2 Reference Manual,” ERL Technical Memorandum M79-
43. Berkeley, CA: University of California, 1979.

(Zloo 75) M. M. Zloof, “Query-By-Example: Operations on the Transitive Closure.” Yorktown Heights, NY:
IBM Research Report RC5526, 1975.

(Zloo 77) M. M. Zloof, “Query-By-Example: A Database Language,” IBM Systems Journal 16(4) 1977 dd
324-343.

Contents

6.1 Relation Scheme and Relational Design

6.2 Anomalies in a Database: A Consequence of
Bad Design

6.3 Universal Relation

6.4 Functional Dependency

6.4.1 Dependencies and Logical Implications

Inference Axioms

6.4.2 Closure of a Set of Functional Dependencies

6.4.3 Testing if F t= X —> Y: Algorithm to Compute a Closure
6.4.4 Testing if an FD is in a Closure

6.4.5 Covers

6.4.6 Nonredundant and Minimum Covers
6.4.7 Canonical Cover

6.4.8 Functional Dependencies and Keys

Full Functional Dependency

Prime Attribute and Nonprime Attribute
Partial Dependency

Transitive Dependency

6.5 Relational Database Design

6.5.1 Recharacterizing Relational Database Schemes

6.5.2 Normal Forms—Anomalies and Data Redundancies
Unnormalized Relation

First Normal Form

Second Normal Form

Third Normal Form

Normalization through Decomposition (Based on FDs)

6.5.3 Lossless Join and Dependency-Preserving
Decomposition

6.5.4 Algorithms to check if a Decomposition is Lossless and
Dependency-Preserving

6.5.5 Decomposition into Third Normal Form

Algorithm for Lossless and Dependency-Preserving
Third Normal Form Decomposition

6.5.6 Boyce Codd Normal Form

Lossless Join Decomposition into Boyce Codd
Normal Form

Chapter

Relational
Database

Design

285

286 Chapter 6 Relational Database Design

A relation in a relational database is based on a relation scheme, which consists

of a number of attributes. A relational database is made up of a number of relations

and the relational database scheme, in turn, consists of a number of relation schemes.

In this chapter, we focus on the issues involved in the design of a database scheme

using the relational model. Section 6.2 discusses the importance of having a consis¬

tent database without repetition of data and points out the anomalies that could be

introduced in a database with an undesirable design. Section 6.3 presents the univer¬

sal relation assumption. In Section 6.4 we look at some of the theoretical results

from the functional dependency theory and present basic algorithms for the design

process. In Section 6.5 we present the relational database design process. This pro¬

cess uses the functional dependencies among attributes to arrive at their desirable

groupings. We discuss the first, second, third, and Boyce Codd normal forms and

give algorithms for converting a relation in the first normal form into higher order

normal forms. The next chapter introduces the synthesis approach to relational data¬

base design and higher order normal forms.

6.1 Relation Scheme and Relational Design

A relation scheme R is a plan that indicates the attributes involved in one or more

relations. The scheme consists of a set S of attributes {A{, A2, . . ., An}, where

attribute A, is defined on domain D(for 1 < i < n. We will use R(S), or R if there

is no confusion, to indicate both the logical construction of the relation (its scheme)

as well the name of this set S of attributes. Relation R on the relation scheme R is a

finite set of mappings or tuples {t,, t2, . . ., tp} such that for each tj 6 R, each of

the attribute value tj(A,) must be in the corresponding domain Dj.

Example 6.1 Consider the relation SCHEDULE shown in Figure A. It contains the attri¬

butes Prof, Course, Room, Max-Enrollment (enrollment limit). Day, Time.

Thus, the relation scheme for the relation SCHEDULE, say SCHEDULE,

Figure A The SCHEDULE relation.

Prof Course Room Max-Enrollment Day Time

Smith 353 A532 40 mon 1145

Smith 353 A532 40 wed 1145

Smith 351 C320 60 tue 115

Smith 351 C320 60 thu 115

Clark 355 H940 300 tue 115

Clark 355 H940 300 thu 115

Turner 456 B278 45 mon 845
Turner 456 B278 45 wed 845
Jamieson 459 D110 45 tue 1015
Jamieson 459 D110 45 thu 1015

287 6.2 Anomalies in a Database: A Consequence of Bad Design

is (Prof, Course, Room, Max-Enrollment, Day, Time). The domain of the

attribute Prof (professors) is all the faculty members of the university; the

domain of the attribute Course is the courses offered by the university; that

of Room is all the rooms in the buildings of the university; that of Max_

Enrollment is an integer value and indicates the maximum enrollment in the

course (which is related to the capacity of the room, i.e., it should be less

than or equal to the capacity of the room in which the course is scheduled).

The domain of Day is {MON, TUE, WED, THU, FRI, SAT, SUN} and

that of Time is the possible times of day. ■

The relation SCHEDULE of Figure A has ten tuples, the first one being Prof =

Smith, Course = 353, Room = A532, Max-Enrollment = 40, Day = mon, Time

= 1145. As mentioned earlier, the tabular representation of a relation is only for the

purpose of illustration. Explicitly naming the columns of the table to show the map¬

ping or association of an attribute and its value for a particular tuple avoids the

requirement of a particular ordering of the attributes in the relation scheme and hence

in the representation of the time-varying tuples of the relation. We will continue to

represent relations as tables. We will also write the attributes of the relation in a

particular order and show the tuples of the relation with the list of values for the

corresponding attributes in the same order. The attribute names will be attached to

the columns of the table when the tuples of a relation are shown in a table.

Since a relation is an abstraction of some portion of the real world that is being

modeled in the database, and since the real world changes with time, the tuples of a

relation also vary over time. Thus, tuples may be added, deleted, or updated over a

period of time. However, the relation scheme itself does not change, (at least until

the database is reorganized).

6.2 Anomalies in a Database:
A Consequence of Bad Design

Consider the following relation scheme pertaining to the information about a student

maintained by an university:

STDINF(Aa/we, Course, Phone-No, Major, Prof, Grade)

Figure 6.1 shows some tuples of a relation on the relation scheme STDINF

(Name, Course, Phone-No, Major, Prof, Grade). The functional dependencies'

among its attributes are shown in Figure 6.2. The key of the relation is Name Course

and the relation has, in addition, the following functional dependencies {Name —»

Phone-No, Name —> Major, Name Course —> Grade, Course —> Prof).

Here the attribute Phone-No, which is not in any key of the relation scheme

STDINF, is not functionally dependent on the whole key but only on part of the

‘Recall the definition of functional dependency from Chapter 2, repeated here: Given attributes X and Y (each of which may
contain one or more attributes), Y is said to be functionally dependent on X if a given value for each attribute in X uniquely
determines the value of the attributes in Y. X is called the determinant of the functional dependency (FD) and the FD is

denoted as X —*■ Y.

288 Chapter 6 Relational Database Design

Figure 6.1 Student data represented in relation STDINF.

Name Course Phone-No Major Prof ; Grade

Jones 353 237-4539 Comp Sci Smith A

Ng 329 427-7390 Chemistry Turner B

Jones 328 237-4539 Comp Sci Clark B

Martin 456 388-5183 Physics James A

Dulles 293 371-6259 Decision Sci Cook C

Duke 491 823-7293 Mathematics Lamb B

Duke 356 823-7293 Mathematics Bond in prog

Jones 492 237-4539 Comp Sci Cross in prog

Baxter 379 839-0827 English Broes C

key, namely, the attribute Name. Similarly, the attributes Major and Prof, which are

not in any key of the relation scheme STDINF either, are fully functionally depen¬

dent on the attributes Name and Course, respectively. Thus the determinants of these

functional dependencies are again not the entire key but only part of the key of the

relation. Only the attribute Grade is fully functionally dependent on the key Name

Course.

The relation scheme STDINF can lead to several undesirable problems:

• Redundancy: The aim of the database system is to reduce redundancy,

meaning that information is to be stored only once. Storing information several

times leads to the waste of storage space and an increase in the total size of the

data stored. Updates to the database with such redundancies have the potential

of becoming inconsistent, as explained below. In the relation of Figure 6.1, the

Major and Phone-No of a student are stored several times in the database: once

for each course that is or was taken by a student.

• Update Anomalies: Multiple copies of the same fact may lead to update

anomalies or inconsistencies when an update is made and only some of the

multiple copies are updated. Thus, a change in the Phone-No of Jones must be

made, for consistency, in all tuples pertaining to the student Jones. If one of the

Figure 6.2 Function dependencies in STDINF.

t "

Name Course Phone No. Major Prof Grade

t t k

6.2 Anomalies in a Database: A Consequence of Bad Design 289

three tuples of Figure 6.2 is not changed to reflect the new Phone^No of Jones,
there will be an inconsistency in the data.

• Insertion Anomalies: If this is the only relation in the database showing the

association between a faculty member and the course he or she teaches, the fact

that a given professor is teaching a given course cannot be entered in the

database unless a student is registered in the course. Also, if another relation

also establishes a relationship between a course and a professor who teaches

that course (for example, the SCHEDULE relation of Figure A), the

information stored in these relations has to be consistent.

• Deletion Anomalies: If the only student registered in a given course

discontinues the course, the information as to which professor is offering the

course will be lost if this is the only relation in the database showing the

association between a faculty member and the course she or he teaches. If

another relation in the database also establishes the relationship between a

course and a professor who teaches that course, the deletion of the last tuple in

STDINF for a given course will not cause the information about the course’s
teacher to be lost.

The problems of database inconsistency and redundancy of data are similar to

the problems that exist in the hierarchical and network models. These problems are

addressed in the network model by the introduction of virtual fields and in the hier¬

archical model by the introduction of virtual records. In the relational model, the

above problems can be remedied by decomposition. We define decomposition as
follows:

Definition: Decomposition:

The decomposition of a relation scheme R = (A/, A2, . . AJ is its

replacement by a set of relation schemes {Rx, R2, . . Rm}, such that Rj C R
for 1 < i < m and Rj U R2 U . . . U Rm = R.

A relation scheme R can be decomposed into a collection of relation schemes

{Ri, R2, R3, . . Rm} to eliminate some of the anomalies contained in the original

relation R. Here the relation schemes R((1 < i < m) are subsets of R and the

intersection of R; IT Rj for \i= j need not be empty. Furthermore, the union of Rj
(1 < i < m) is equal to R, i.e., R = Rj U R2 U . . . U Rm.

The problems in the relation scheme STDINF can be resolved if we replace it

with the following relation schemes:

STUDENT_INFO (Name, Phone-No, Major)

TRANSCRIPT (Name, Course, Grade)

TEACHER (Course, Proof)

The first relation scheme gives the phone number and the major of each student

and such information will be stored only once for each student. Any change in the

phone number will thus require a change in only one tuple of this relation.

The second relation scheme stores the grade of each student in each course that

the student is or was enrolled in. (Note: In our database we assume that either the

290 Chapter 6 Relational Database Design

student takes the course only once, or if he or she has to repeat it to improve the

grade, the TRANSCRIPT relation stores only the highest grade.)

The third relation scheme records the teacher of each course.

One of the disadvantages of replacing the original relation scheme STDINF with

the three relation schemes is that the retrieval of certain information requires a natural

join operation to be performed. For instance, to find the majors of student who ob¬

tained a grade of A in course 353 requires a join to be performed: (STUDENT_INFO

tX] TRANSCRIPT). The same information could be derived from the original rela¬

tion STDINF by selection and projection.
When we replace the original relation scheme STDINF with the relation

schemes STUDENT_INFO, TRANSCRIPT, and TEACHER, the consistency and

referential integrity constraints have to be enforced. The referential integrity enforce¬

ment implies that if a tuple in the relation TRANSCRIPT exists, such as (Jones, 353,

in prog), a tuple must exist in STUDENT_INFO with Name = Jones and, further¬

more, a tuple must exist in TEACHER with Course = 353. The attribute Name,

which forms part of the key of the relation TRANSCRIPT, is a key of the relation

STUDENT_INFO. Such an attribute (or a group of attributes), which establishes a

relationship between specific tuples (of the same or two distinct relations), is called

a foreign key. Notice that the attribute Course in relation TRANSCRIPT is also a

foreign key, since it is a key of the relation TEACHER.

Note that the decomposition of STDINF into the relation schemes STU-
DENT(7Vamc, Phone-No, Major, Grade) and COURSEfCourse, Prof) is a bad de¬

composition for the following reasons:

1. Redundancy and update anomaly, because the data for the attributes Phone-No

and Major are repeated.

2. Loss of information, because we lose the fact that a student has a given grade

in a particular course.

The rest of this chapter examines the problem of the design of the relational data¬

base and how to decide whether a given set of relations is better than another set.

6.3 Universal Relation

Let us consider the problem of designing a database. Such a design will be required

to represent a finite number of entity sets. Each entity set will be represented by a

number of its attributes. If we refer to the set of all attributes as the universal scheme

U then a relation R(U) is called the universal relation. The universal relation is a

single relation made up of all the attributes in the database. The term universal
relation assumption is the assumption that all relations in a database are derived

from the universal relation by appropriate projection. The attribute names in the uni¬

versal relation scheme U have to be distinct to avoid obvious confusion. One reason

for using the universal relation assumption is to allow the user to view the database

using such a relation. Consequently, the user does not have to remember the relation

schemes and which attributes are grouped together in each such scheme.

Consider the relation R| (Course, Department) in Figure 6.3: The attribute De¬

partment is used to indicate the department responsible for the course. For instance,

6.3 Universal Relation 291

Figure 6.3 Relation Rv

Course Department

353 Comp Sci

355 Mathematics

456 Mathematics

221 Decision Sci

course 353 is offered by and is under the jurisdiction of the Comp(uter) Sci(ence)

department.

The relation R2(Professor, Department) of Figure 6.4 shows another role or

interpretation of the attribute Department; here it is used to signify that a given

professor is assigned to a given department. Thus, Smith is a member of the Comp

Sci department. Note from Figures A, 6.3, and 6.4 that we are allowing for the

incidence of a professor teaching a course in a outside department. Professor Clark

of the Comp Sci department is teaching course 355 of the Mathematics department,

and Professor Turner of the Chemistry department is teaching course 456, also of the

Mathematics department.

The domain of the attribute Department in the relations R] and R2 is the same,

that is, all the departments in the university. Let us consider the representation of the

data in the limited database indicated in Figures 6.3 and 6.4 as a universal relation

U,, where Ui is defined as Ui(Course, Department, Professor). The problem of

using the universal relation U! becomes obvious when we try to represent the data

from the relations R| and R2 as shown in Figures 6.3 and 6.4. Here we have to

decide whether or not data from different relations could appear in the same tuple of

the universal relation. In Figure 6.5 we do not allow the data from different relations

to appear in the same tuple of U|, giving rise to a large number of empty or null

values (±). These null values could signify one of three things: (1) the values, are

not known, but they exist, (2) the values do not exist, or (3) the attribute does not

apply. In case (1) we have to distinguish the null values by indicating them as _Li5

and thus the two null values _Lj and lj (for i 4= j) are not equal and indicate that the

values are not known to be the same.

In Figure 6.6, we have combined the data from the relations R! and R2 in the

same tuple of the universal relation U2 with the scheme (Course, Department, Pro-

Figure 6.4 Relation R2.

Professor Department

Smith

Clark

Turner

Jamieson

Comp Sci

Comp Sci

Chemistry

Mathematics

292 Chapter 6 Relational Database Design

Figure 6.5 Relation

Course Department Professor

353 Comp Sci 1

456 Mathematics 1

355 Mathematics 1

221 Decision Sci 1

1 Comp Sci Smith

1 Comp Sci Clark

1 Chemistry Turner

1 Mathematics Jamieson

fessor). Now the number of null values has been reduced at the expense of a certain

amount of duplication. For instance, course 353 appears in two tuples of R2 as being

offered by the Comp Sci department.

When the roles that the attribute Department play in the relation R| and R2 are

explicitly expressed, we get the universal relation U3 with the scheme (Course, Crs-

Dept, Fac-Dept, Professor). Here, Crs^Dept is the attribute Department in the re¬

lation Ri renamed to indicate the department responsible for a given course and

Fac-Dept is the attribute Department in the relation R2 renamed to indicate the de¬

partment of a professor. In Figure 6.7 we have allowed tuples from different relations

to appear in a tuple of the universal relation. For symmetry, we express the cross

product of the tuple of relations R] and R2 in the universal relation U3. This gives a

representation that does not involve any null values but leads to an extensive amount

of duplication of data and the associated problems of maintaining data consistency.

A tuple in U3 represents two independent facts. For example, the fourth tuple of U3

represents the facts “221 is a course in Decision Sci’’ and “Smith is a professor in

Comp Sci.”

We can retrieve the original relations R| and R2 by a projection operation as

follows:

^ I ^{Course, Department}(\-^ l)

^2 ^{Professor, Department}(\^ l)

Figure 6.6 Relation U2.

Course Department Professor

353 Comp Sci Smith

353 Comp Sci Clark

456 Mathematics Jamieson

355 Mathematics Jamieson

221 Decision Sci J_

1 Chemistry Turner

293 6.4 Functional Dependency

Figure 6.7 Relation U3.

Course Crs-Dept Fac-Dept Professor

353 Comp Sci Comp Sci Smith

456 Mathematics Comp Sci Smith

355 Mathematics Comp Sci Smith

221 Decision Sci Comp Sci Smith

353 Comp Sci Comp Sci Clark

456 Mathematics Comp Sci Clark

355 Mathematics Comp Sci Clark

221 Decision Sci Comp Sci Clark

353 Comp Sci Chemistry Turner

456 Mathematics Chemistry Turner

355 Mathematics Chemistry Turner

221 Decision Sci Chemistry Turner

353 Comp Sci Mathematics Jamieson

456 Mathematics Mathematics Jamieson

355 Mathematics Mathematics Jamieson

221 Decision Sci Mathematics Jamieson

However, we will get some tuples with null values that did not exist in the

original R, and R2 relations. These tuples are called spurious tuples and they have

to be ignored! The above example of representing data by the universal relation

shows some of the problems of this assumption.

The universal relation is obtained by including all database attributes in a single

relation. There is controversy in the database community as to the validity of the

universal assumption. However, it is helpful in encouraging some consistency in the

use of attribute names in the database. A given attribute name appearing in the da¬

tabase must have the same meaning to make meaningful interpretation of the natural

join operation. Without such universal meaning of an attribute, we will be forced to

assume that multiple occurrences of an attribute in multiple relation schemes have

different meanings and hence the interrelation connection cannot be made.

We will refer to the universal relation assumption in the synthesis approach to

relational database design in the following chapter.

6.4 Functional Dependency

As we discussed in Chapter 2, functional dependencies are the consequence of the

interrelationship among attributes of an entity represented by a relation or due to the

relationship between entities that is also represented by a relation. Thus, if R repre¬

sents an entity and the set X of attributes represents the key of R, then for any other

set of attribute Y of R, X —> Y. This is because the key of a relation identifies a

tuple and hence a particular instance of the corresponding entity. Two tuples of a

relation having the same key must represent the same instance of the corresponding

entity and since duplicate tuples are not allowed, these two tuples must indeed be the

294 Chapter 6 Relational Database Design

same tuple and the value of the attributes in Y must be determined by the key value.

Similarly, if R represents a many-to-one relationship between two entities, say from

E, to E2, and if X contains attributes that form a key of E, and Y contains attributes

that contain a key of E2, again the FD X —> Y will hold. But if R’ represents a one-

to-one relationship between entity E, and E2, the FD Y —> X will hold in addition to

the FD X Y.
Let R be a relation scheme where each of its attribute A, is defined on some

domain Dj for 1 < i < n. Let X, Y, Z, etc. be subsets of {A,, A2, . . •, A„}. We

will write X U Y as simply XY.

Let R be a relation on the relation scheme R. Then R satisfies the functional

dependency X —> Y if a given set of values for each attribute in X uniquely deter¬

mines each of the values of the attributes in Y. Y is said to be functionally dependent

on X. The functional dependency (FD) is denoted as X —* Y, where X is the left-

hand side or the determinant of the FD and Y is the right-hand side of the FD. We

can say that the FD X Y is satisfied on the relation R if the cardinality of

tty(ctx=x(R)) is at most one- In other words> if two tuples t, and t, of R have the

same X value, the corresponding value of Y will be identical.

A functional dependency X —» Y is said to be trivial if Y C X.

Example 6.2 In the relation SCHEDULE(Pra/, Course, Room, Max-Enrollment, Day,

Time) of Figure A, the FD Course —> Prof is satisfied. However, the FD

Prof —» Course is not satisfied. ■

In order to verify if a given FD X —> Y is satisfied by a relation R on a relation

scheme R, we find any two tuples with the same X value; if the FD X —* Y is

satisfied in R, then the Y values in these tuples must be the same. We repeat this

procedure until we have examined all such pairs of tuples with the same X value. A

simpler approach involves ordering the tuples of R on the X values so that all tuples

with the same X values are together. Then it is easy to verify if the corresponding Y

values are also the same and verify if R satisfies the FD X —> Y.

Figure 6.8 The SCHEDULE relation.

Prof Course Room Max-Enrollment Day Time

Smith 353 A532 40 mon 1145

Smith 353 A532 40 wed 1145

Clark 355 H940 300 tue 115

Clark 355 H940 300 thu 115

Turner 456 B278 45 mon 845

Turner 456 B278 45 wed 845

Jamieson 459 duo 45 tue 1015

Jamieson 459 duo 45 thu 1015

6.4 Functional Dependency 295

The FD X ^ Y on a relation scheme must hold for all possible relations defined

on the relation scheme R. Thus, we cannot look at a table representing a relation on

the scheme R at a point in time and say, simply by inspection, that some FD X —»

Y holds. For example, if the relation SCHEDULE at some point in time contained

the tuples as shown in Figure 6.8, we might erroneously conclude that the FD {Prof

Course} holds. The examination of the real world situation corresponding to the

relation scheme SCHEDULE tells us that a particular professor may be teaching
more than one course.

Example 6.3 In the relation scheme STDINF (Name, Course, Phone-No, Major, Prof,

Grade), the following functional dependencies are satisfied: {Name —> Phone

-No, Name —> Major, Name Course —» Grade, Course —> Prof}. ■

6.4.1 Dependencies and Logical Implications

Given a relation scheme R and a set of functional dependencies F, let us consider a

functional dependency X —» Y, which is not in F. F can be said to logically imply

X —> Y if for every relation R on the relation scheme R that satisfies the functional

dependencies in F, R also satisfies X —* Y.

F logically implies X —» Y is written as F Y X —> Y.

Example 6.4 R = (A, B, C, D) and F = {A -> B, A -> C, BC -> D}, then F ¥A -> D.

Inference Axioms

Suppose we have F, a set of functional dependencies. To determine whether a func¬

tional dependency X —> Y is logically implied by F (i.e., F X —> Y), we use a

set of rules or axioms. The axioms are numbered FI through F6 to indicate that they

pertain to functional dependencies (as opposed to multivalued dependencies, which

we examine in Chapter 7).
In the following discussions, we assume that we have a relation scheme R(A/;

A2, A3, . . ., An); R is a relation on the relation scheme R and W, X, Y, Z are

subsets of R. The symbol 1= used below is read as “logically implies.”

• FI: Reflexivity: (X —» X and NJC Z)

• F2: Augmentation: (X —> Y) |= (XZ —» Y, and XZ —» YZ)

• F3: Transitivity: (X —» Y and Y —» Z) (= (X —» Z)

• F4: Additivity: (X —» Y and X —» Z) f= (X —* YZ)

• F5: Projectivity: (X -» YZ) |= (X —» Y and X—>Z)

• F6: Pseudotransitivity: (X —» Y and YZ —> W) (= (XZ —» W)

296 Chapter 6 Relational Database Design

Example 6.5 We use the relation R of Figure B to illustrate the above inference axioms.

Reflexivity: This is obvious since any set of attributes implies the same set

of attributes. The consequence of this axiom, along with F5, is that for any

Figure B Relation R on the scheme R(A, B, C, D, E).

A B C D E

»i b, c2 d, e,

a2 Cl ^2 e2

a3 b, C2 d, e3

a3 t>3 C3 d3 e4

at t>2 C, d2 e5

a4 b4 c4 d4 e6

a3 t>2 Cl e7

a5 b4 C4 d4 e8

Y C X, X —» Y. A FD X —> Y is said to be a trivial functional depen¬
dency if Y C X.

Augmentation: This axiom indicates that the left-hand side alone or both

sides of an FD can be augmented.

If the relation R satisfies the FD X —■» Y, then for a given X value that

appears in R, the number of tuples having some Y value that will be exactly

1. In other words, the cardinality of ity(o'X = x(R)), written as |tty(o’x=x(R))|»
is equal to 1.

If Z C R, then axz=xz(R) Ccrx=x(R), i.e., the set of tuples selected
with a given value of XZ is a subset of the set of tuples selected for a given

value of X alone. Now the number of tuples having a given Y value in

°xz=xz(R) will be a subset of the tuples having the same Y value in

ax = x(R); since the latter is at most 1, the number of tuples having a given
Y value in XZ will be at most 1. hence XZ —» Y.

It follows that XZ —» Y |= XZ —» YZ and X —» Y (= XZ —> YV for
VCZ.

In Figure B, the FD B —> C is satisfied and by augmentation we find

that the FDs AB C, BC ->• C, BD -> C, BE -> C and ABC C, BCD

—> C, etc. are also satisfied.

Additivity: The axiom indicates that if there are two FDs with the same

left-hand side, the right-hand side of these FDs can be added to give an FD

where the left-hand side is the original one and the right-hand side is the

union of the right-hand sides of the two FDs. Thus, if X -» Y, then

tty(ox = x(R)) has at most one tuple and similarly, if X Z, then

^z(°x=x(R)) has at most one tuple. Hence, ttZy(ctX=x(R)) cannot have more
than one tuple. The additivity axiom follows from these observations.

We note from Figure B that the FDs B -> C, B -» D, and consequently
B —> CD are all satisfied.

6.4 Functional Dependency 297

Projectivity: This axiom is the inverse of the additivity axiom; it splits up

or projects an FD whose right-hand side is a union of attributes into a num¬

ber of FDs. Each projected FD has the same left-hand side as the original

FD and each contains a subset of the original right-hand side.

For the relation R of Figure B, the FD B —> CD is satisfied and hence,

by projectivity, B —> C and B —> D.

Transitivity: For the relation R of Figure B, the FDs B -> C and C -> D

are satisfied and hence, by transitivity, B —*■ D. Thus, when the value for B

is b[in R, the value of C is c2. Similarly, when the value of C is c2, the

value of D is d|. When the value of B is b(, the value of D is dp

Pseudotransitivity: This axiom follows from axioms F2 and F3. Given

X —» Y, by F2, XZ —> YZ and since YZ —> W is given, then by F3,

xz w.
The relation R of Figure B satisfies the FDs C —> B and AB —* E, so

by pseudotransitivity, the FD CA -» E is also satisfied. ■

Inference rules FI through F3 are variations of the Armstrong axioms, so called

after W. W. Armstrong, who first proposed them (Arms 74). Example 6.5 gave

informal arguments showing that each of the inference axioms FI through F6 is

sound (i.e., correct). This means that whenever an FD X —> Y can be derived from

a set of FDs F using these axioms, then F (= X —» Y. It has been shown that the

converse also holds, even for the subset FI through F3. Whenever F (= X —» Y,

X —» Y can be derived from F using these inference axioms. These axioms form a

complete axiom system for FDs. Rules F4 through F6 in particular can be derived

from rules FI through F3.

6.4.2 Closure of a Set of Functional Dependencies

The set of functional dependencies that is logically implied by F is called the closure
of F and is written as F + .

Definition: If F is a set of FDs on a relation scheme R, then F+, the closure of F, is the

smallest set of FDs such that2 F+ D F and no FD can be derived from F by

using the inference axioms that are not contained in F+. If R is not specified, it

is assumed to contain all the attributes that appear in F.

F+ is the set of FDs that are implied by the FDs in F, i.e., F+ = {X —» Y | F

H X - Y}.

An FD / in F+ is logically implied by F since any relation R on the relation

scheme R that satisfies the FDs in F also satisfies the FD in F+ and, hence,/.

2F+ D F denotes that F+ contains F.

298 Chapter 6 Relational Database Design

Example 6.6 Let R = (A, B, C, D) and F = {A -> B, A -> C, BC -> £>}. Since A -» B

and A —> C, then by F4 A —» fiC. Now since flC —» D, then by F3 A —>

D, i.e., F f= A —> D and thus A —» D is in F 1 . ■

An example of an FD not implied by a given set of FDs is illustrated below.

Example 6.7 Let F = {W -> X, X Y, W -» XY}. Then F+ includes the set {W ->

W, X -> X, Y -> Y, W -> X, X -> Y, W -* XY, W —Y}. The first

three FDs follow from axiom FI; the next three FDs are in F and hence in

F + . Since W —> XY, then by axiom F5, W —» X and W —» Y. However,

F+ does not contain an FD, e.g., W —> Z, because Z is not contained in

the set of attributes that appear in F. ■

6.4.3 Testing if F (= X Y: Algorithm to Compute a Closure

To compute the closure F+ for a set of FD F is a lengthy process because the number

of dependencies in F+, though finite, can be very large. The reason for computing

F+ is to determine if the set of FDs F f= X —» Y; this would be the case if and only

if X —> Y € F + . However, there is an alternative method to test if F \= X —» Y

without generating F+. The method depends on generating X + , the closure of X

under F.

Definition: The closure of X under a set of functional dependencies F, written as X + , is the

set of attributes {Ah A2, Am} such that the FD X -» A, for A, € X+

follows from F by the inference axioms for functional dependencies.

X + , the closure of X with respect to the set of functional dependencies F, is

the set of attributes {A,, A2, AJt . . Am} such that each of the FDs X -> A,-, 1 < i

< m can be derived from F by the inference axioms. Also, by the additivity axiom

for functional dependency, F f= X -> Y if Y C X+. (By the completeness of the

axiom system, if F^X^Y, then Y C X+—see lemma below.)

Having found X + , we can test if F (= X -» Y by checking if Y C X+: X —>

Y is logically implied by F if and only if Y C X + .

We now present the algorithm to compute the closure X+ given a set of FDs F

and a set of attributes X. The importance of computing the closure X+ is that it can

be used to decide if any FD X -> Y can be deduced from F. The following lemma

establishes that if Y C X+ then F |= X —» Y.

Lemma: F)= X —» Y if and only if Y C X+.

Proof: Suppose that YC X+. Then by the definition of X+, X -> A can be derived from

F using the inference rules for each A £ Y. By the soundness of these rules, F |= X —»

A for each A € Y and by the additivity rule, F |= X -> Y. Now suppose that F |= X -»■

299 6.4 Functional Dependency

Algorithm

6.1 Algorithm to Compute X+

Input: A set of functional dependencies F and a set of attributes X.

Output: The closure X+ of X under the FDs in F.

X+ : = X; (* initialize X+ to X *)

change : = true;

while change do

begin

change : = false;

for each FD W —» Z in F do

begin

if W C X+ then do

begin

X+ := X+ U Z;

change : = true;

end

end

end

(* X+ now contains the closure of X under F *)

Y. Then by completeness of the inference rules, X —» Y can be derived from F using

them. By projectivity, X —» A can be derived for each A (Y. This clearly implies that

Y C X+ by the definition of X+.

Algorithm 6.1 to compute X+ follows. It starts with the set X+ initialized to X,

the left-hand side of the FD X -» Y, which is to be tested for logical implication

under F. For each FD W —» Z in F, if W C X + , the algorithm modifies X+ by

forming a union of X+ and Z. The algorithm terminates when there is no change

in X + .

Example 6.8 Let X = BCD and F = {A -* BC, CD -*■ E, E -» C, D -> AEH, ABH ->

BD, DH BC}. We want to compute the closure X+ of X under F.

We initialize X+ to X, i.e., X+ := BCD. Now since the left-hand side of

the FD CD -» E is a subset of X+, i.e., CD C X + , X+ is augmented by

the right-hand side of the FD, i.e., E; thus X+ now becomes equal to

BCDE. Similarly, since D C X + , the right-hand side of the FD D —> AEH

is added to X + , which now becomes ABCDEH. X+ cannot be augmented

any further and Algorithm 6.1 ends with X+ equal to ABCDEH. ■

The time complexity of the closure algorithm can be derived as follows. Sup¬

pose the number of attributes in F is a and the number of FDs in F is f where each

FD in F involves only one attribute on the right-hand side. Then the inner for loop

will be executed at most f times, one for each FD in F, and each such execution can

300 Chapter 6 Relational Database Design

take the time proportional to a to check if one set is contained in another set. Thus

the order of execution of the for loop is O(af). In the worst case each execution of

the while loop can increase the closure by one element and since there are f FDs, the

while loop can be repeated at most f times. Hence the time complexity of the algo¬

rithm is Ofaf2). The algorithm can be modified to run in time proportional to the

number of symbols needed to represent the FDs in F. The modification takes into

account the fact that the FDs whose right-hand sides are already added to X+ need

not be reconsidered in the for loop. Furthermore, the FDs whose left-hand side

lengths are greater than the current length of X+ need not be tested in the for loop.

See the bibliographic notes for reference to a closure algorithm with these modifica¬

tions.

6.4.4 Testing if an FD is in a Closure

As mentioned earlier, to find out whether F f= X —> Y without computing F re¬

quires the computation of X+ under the set of FDs F, and if Y C X+ then F

logically implies the functional dependency X —* Y, otherwise it does not. Algorithm

6.2 tests the membership of X —> Y in F+ by this indirect scheme. It uses Algorithm

6.1 to compute the closure of X under F.

Example 6.9 Let F = {A -> BC, CD -> E, E -> C, D -> AEH, ABH BD, DH -*

BC}. We want to find if F 1= BCD —> H.

Having computed BCD + as being ABCDEH we can clearly see that the FD

BCD —> H is implied by the FD F since H C BCD +. ■

The time complexity of the membership algorithm is similar to the closure al¬

gorithm because the membership algorithm uses the closure algorithm.

6.4.5 Covers

Given a set of FDs F, F+ is the closure of F and contains all FDs that can be derived

from F. As mentioned earlier, F+ can be very large; hence, we will look for a

smaller set of FDs that are representative of the closure of F. Suppose we have

another set of FDs G. We say that F and G are equivalent if the closure of F is

identically equal to the closure of G, i.e., F+ = G + . If the sets of FDs F and G
are equivalent, we can consider one to be representative of the other or one covers
the other. Thus F covers G and G covers F.

Definition: Given two sets of FDs F and G over a relation scheme R, F and G are

equivalent (i.e., F = G) if the closure of F is identically equal to the closure of

G (i.e., F+ = G +). If F and G are equivalent, then F covers G and G covers
F.

6.4 Functional Dependency 301

Algorithm

6.2 Membership Algorithm

Input: A set of functional dependencies F and the functional dependency X —» Y.

Output: Is X -* Y 6 F+ or not?

Compute X+ using Algorithm 6.1.

if Y C X+ then X -> Y 6 F+ : = true;

else X > Y £ F+ : = false.

If G covers F and if no proper subset G'(G' C G) covers F, G is called a
nonredundant cover.

Definition: Given a set of FDs F, we say that it is nonredundant if no proper subset F' of F

is equivalent to F, i.e., no F' exists such that F,+ = F+.

Given a functional dependency X —» Y, where Y = A,A2A3 . . . An, the func¬

tional dependency X —> Y can be replaced by an equivalent set of FDs {X —> A], X

A2, X —> A3, . . X —» An} by using the inference axioms F4 and F5 (additivity

and projectivity). A nontrivial FD of the form X —> A, where the right-hand side has

only one attribute is called a simple FD. Thus every set of FDs F can be replaced

by an equivalent set of FDs G where G contains only simple FDs.

6.4.6 Nonredundant and Minimum Covers

Given F, a set of FDs, if a proper subset F' of F covers F (i.e., F' C F and F'+ =

F +), then F is redundant and we can remove some FD, say X —» Y, from F to find

a nonredundant cover of F. Algorithm 6.3 finds a nonredundant cover of F. It does

so by removing one FD X —» Y from F and then checking if this FD is implied by

the FD set {F — (X —» Y)} by using Algorithms 6.1 and 6.2—finding the cover X +

under the set of FDs {F — (X —» Y)}. If {F — (X —*• Y)} f= X —» Y, then X -» Y

can be removed from F. Algorithm 6.3 repeats this procedure for each FD that re¬

mains in F. Note that the nonredundant cover so obtained depends on the order in

which the functional dependencies are considered. Thus, starting with a set F of

functional dependencies we can derive more than one nonredundant cover. (See Ex¬

ercise 6.7.)

302 Chapter 6 Relational Database Design

Algorithm

6.3 Nonredundant Cover

Input: A set of FDs F.

s-

Output: A nonredundant cover of F.

G : = F; (* initialize G to F *)

for each FDX^YinGrfo

if X-* Y € {F -(X-> Y)}+

then F := {F - (X ->

G : = F; (* G is the nonredundant

end;

(* i.e., {F - (X-» Y)} (= X^ Y *)
Y)};
cover of F *)

Example 6.10 If F = {A -> BC, CD -> E, E -» C, D AEH, ABH BD, DH fiC}

then the FDs CD —> E and DH -» AC are redundant. We find that (CDJ +

under {F - (CD -»• £)} is equal to ABCDEH, and since the right-hand side

of the FD (CD -» E) C (CD) + under {F - (CD -» £)}, {F - (CD -*• £)}

|= CD —> F. We now remove this redundant FD from F and then find that

for the FD (DH BC), (DH)+ under {F - (DH -» BC)} is ABCDEH.

Since the right-hand side of the FD (DH -* 50 C (D//) + , the FD (DD

BC) is also redundant. No remaining FDs can be removed from the modified

F. Thus a nonredundant cover for F is {A —> BC, E —> C, D —> AEH, ABH

-> BD}. m

If F is a set of FDs and if G is a nonredundant cover of F, then it is not true

that G has the minimum number of FDs. In fact, there may exist a cover G' of F

that has fewer FDs than G. Thus, a minimum cover G' of F has as small a number

of FDs as any other cover of F. It is needless to add that a minimum cover G' of F

has no redundant FDs; however, a nonredundant cover of F need not be minimal, as

we see in Example 6.11. We will not discuss an algorithm to derive a minimum

cover in this text. The interested reader is referred to the bibliographic notes at the

end of the chapter.

6.4.7 Canonical Cover

A set of functional dependencies Fc is a canonical cover if every FD in Fc satisfies

the following:

1. Each FD in Fc is simple. Recall that in a simple FD the right-hand side has a
single attribute, i.e., each FD is of the form X —> A.

6.4 Functional Dependency 303

2. For no FD X —» A with Z C X is {(Fc - (X A)) U (Z A)} (= Fc. In

other words, the left-hand side of each FD does not have any extraneous
attributes, or the FDs in Fc are left reduced.

3. No FD X —» A is redundant, i.e., {Fc - (X -> A)} does not logically im¬
ply Fc.

A canonical cover is sometimes called minimal.
Given a set F of functional dependencies we can find a canonical set Fc; ob¬

viously Fc covers F.

Example 6.11 If F = {A —> BC, CD -> E, E -> C, D -> AEH, ABH -> BD, DH -*■ BC},

then a nonredundant cover for F is {A —» BC, E —> C, D —> A£7/, A5// —>

fiD}. The FD ABH —> BD can be decomposed into the FDs ABH —> B and

ABH —» D. Now, since the FD A —» B is in F, we can left reduce these

decomposed FDs into AH —> B and AH —» D. We also notice that AH —> B

is redundant since the FD A —> B is already in F. This gives us the canonical

cover as {A —» 5, A —> C, £ —> C, D A, D —» £, Z) -* //, AH —> D). U

Note that if Fc is a canonical cover and if we form G using the additivity axiom

(such that the FDs with the same left-hand sides are merged into a single FD with

the right-hand sides combined), then Fc and G are equivalent. However, G will

contain nonsimple FDs.

6.4.8 Functional Dependencies and Keys

Earlier we discussed the concept of uniquely identifying an entity within an entity

set by a key, the key being a set of attributes of the entity. A relation scheme R has

a similar concept, which can be explained using functional dependencies.

Definition: Given a relation scheme R {A/A2A? . . . A„} and a set of functional dependencies

F, a key of R is a subset of R such that K —> AjA2A3 . . . An is in F+ and for

any Y C K, Y —» AjA2A3 . . . A„ is not in F+.

The first requirement indicates that the dependency of all attributes of R on K
is given explicitly in F or can be logically implied from F. The second requirement

indicates that no proper subset of K can determine all the attributes of R. Thus, the

key used here is minimal with respect to this property and the FD K —» R is left

reduced. A superset of K can then be called a superkey.

If there are two or more subsets of R such that the above conditions are satis¬

fied, such subsets are called candidate keys. In such a case one of the candidate keys

is designated as the primary key or simply as the key.

We do not allow any attribute in the key of a relation to have a null value.

304 Chapter 6 Relational Database Design

Example 6.12 If R (ABCDEH) and F = {A BC, CD -> E, E -> C, D -> AEH, ABH

BD, DH —> BC}, then CD is a key of R because CD -> ABCDEH is in

F+ (since (CD)+ under F is equal to ABCDEH and ABCDEH C ABCDEH).

Other candidate keys of R are AD and ED. ■

Full Functional Dependency

The concept of left-reduced FDs and fully functionally dependency is defined below

and illustrated in Example 6.13.

Definition: Given a relational scheme R and an FD X —* Y, Y is fully functionally

dependent on X if there is no Z, where Z is a proper subset of X such that Z

Y. The dependency X —» Y is left reduced, there being no extraneous attributes in

the left-hand side of the dependency.

Example 6.13 In the relation scheme R (ABCDEH) with the FDs F = {A -* BC, CD —>

E, E C, CD —» AH, ABH -* BD, DH -> BC}, the dependency A —» BC

is left reduced and BC is fully functionally dependent on A. However, the

functional dependency ABH —> D is not left reduced, the attribute B being

extraneous in this dependency. ^

Prime Attribute and Nonprime Attribute

We defined the key of a relation scheme earlier. We distinguish the attributes that

participate in any such key as indicated by the following definition.

Definition: An attribute A in a relation scheme R is a prime attribute or simply prime if A is

part of any candidate key of the relation. If A is not a part of any candidate key of

R, A is called a nonprime attribute or simply nonprime.

Example 6.14 If R (ABCDEH) and F = {A BC, CD -> E, E -» C, AH D}, then

AH is the only candidate key of R. The attributes A and H are prime and
the attributes B, C, D, and E are nonprime. H

Partial Dependency

Let us introduce the concept of partial dependency below. We illustrate partial de¬
pendencies in Example 6.15.

6.4 Functional Dependency 305

Definition: Given a relation scheme R with the functional dependencies F defined on the

attributes of R and K as a candidate key, if X is a proper subset of K and if F }=
X A, then A is said to be partially dependent on K.

Example 6.15

Name Course Grade Phone No. Major Course Dept.

t k k / k

(a) In the relation scheme STUDENT_COURSE_INFO(Aame, Course,

Grade, Phone-No, Major, Course-Dept) with the FDs F = {Name —» Phone

-NoMajor, Course —» Course—Dept, NameCourse —> Grade}, NameCourse

is a candidate key. Name and Course are prime attributes. Grade is fully

functionally dependent on the candidate key. Phone-No, Course-Dept, and

Major are partially dependent on the candidate key.

(b) Given R (A, B, C, D) and F = {AB —> C, B —» D), the key of this

relation is AB and D is partially dependent on the key. ■

Transitive Dependency

Another type of dependency which we have to recognize in database design is intro¬

duced below and illustrated in Example 6.16.

Definition: Given a relation scheme R with the functional dependencies F defined on the

attributes of R, let X and Y be subsets of R and let A be an attribute of R such

that X (t Y, A (t XY. If the set of functional dependencies {X —> Y, Y —» A} is

implied by F (i.e., F f= X —» Y —> A and F —1|= Y —> X), then A is transitively

dependent on X.

Example 6.16 ▼ V
Prof Name Department Chairperson

, k

(a) In the relation scheme PROF_INFO(Pro/lAcwj<?, Department, Chair¬

person) and the function dependencies F = {Prof-Name —» Department,

306 Chapter 6 Relational Database Design

Department —> Chairperson}, Prof—Name is the key and Chairperson is

transitively dependent on the key since Prof-Name —» Department

Chairperson.

(b) Given R (A, B, C, D, E) and the function dependencies F = [AB —>

C, B —> D, C —^ E), AB is the key and E is transitively dependent on the

key since AB —» C —» E. B

6.5 Relational Database Design

Relational database design, like database design using any other data model, is far

from being a completely automated process3 in the current state of database technol¬

ogy. It is an activity that requires the close attention of the database designer, who

may be one individual, for example the DBA, or a team working with the DBA.

This activity consists of identifying that portion of the enterprise for which the data¬

base application is being designed: the entity sets, their attributes, the domains on

which the attributes are defined, and the constraints that these attributes have to

satisfy. Then the design of the relational schemes can begin.

Two approaches are generally used in designing a relational database: the de¬

composition approach and the synthesis approach. The decomposition approach

starts with one (the universal) relation and the associated set of constraints in the

form of functional dependencies, multivalued dependencies, and join dependencies.

A relation that has any undesirable properties in the form of insertion, deletion, or

update anomalies is replaced by its projections. A number of desirable forms of

projections have been identified, which we examine in the following sections. A

number of algorithms for decomposing the input relation have been developed and

reported in the database literature. We will examine some of these. These algorithms

produce relations that are desirable from the point of view of some of the criteria

described below. We discuss the synthesis approach, multivalued dependencies, and
joint dependencies in Chapter 7.

The synthesis approach starts with a set of functional dependencies on a set of

attributes. It then synthesizes relations of the third normal form.

Regardless of the approach used, the criteria for the design are the following:

• The design is content preserving if the original relation can be derived from

the relations resulting from the design process. Since the join operation is used

in deriving the original relation from its decomposed relations, this criterion is

also called a lossless join decomposition. The design is minimally content

preserving if there are no relations in addition to those included in the design
which are required in recovering the original relation R.

• The relation design is dependency preserving if the original set of constraints

can be derived from the dependencies in the output of the design process. The

3However, design aid tools do exist.

6.5 Relational Database Design 307

design is minimally dependency preserving if there are no extraneous

dependencies in the output of the design process and the original dependencies

cannot be derived from a subset of the dependencies in the output of the design
process.

• The relation design is free from interrelation join constraints if there are no

dependencies that can only be derived from the join of two or more relations in

the output of the design process. This criterion is significant. If the design

produces a database scheme in which some dependencies are only enforceable

in a relation that is derived from the join of two or more relations, then in order

to enforce these dependencies, joins will have to be produced. Consider for

instance an FD X —» Y. Suppose the decomposition doesn’t contain any relation

Ri such that XY 6 Rj, but it contains Rj and Rk such that X € Rj and Y £ Rk.
Then the FD X —> Y can only be enforced by joining Rj and Rk. Since the join

operation is a computationally expensive process, it is desirable that the

database design be free of such interrelational joint constraints.

6.5.1 Recharacterizing Relational Database Schemes

Let us extend the relation scheme to include not only the set of attributes but also

the set of functional dependencies among these attributes. We therefore indicate a

relation scheme as Rj<Sj, F,>. Here Sj is a set of attributes {Au, Ai2, . . ., Aim} and

Fj is a set of constraints on these attributes. Given U, a set of attributes each of

which is defined over some designated domain, a relational database scheme is a

collection of relation schemes R = {R|, R2, . . ., Rp} where each Rj = <Sj =
{Aji, Ajj, . . Ajm\, Fj>.

A relational database D on a relational database scheme R is a collection of

relations {R,, R2, . . ., Rp} such that the relation Rj is defined on the relation scheme

Ri<Si, F;>.
As indicated, a relation scheme R<S, F> consists of two components: a set S

of attributes and a set of constraints F. However, we will continue to use R to also

denote S, the set of attributes. Thus, to define a subset of attributes, we may use X

C R to mean X C S. Also, unless there is confusion, we will simply use the term

relation to denote a relation scheme as well as a relation on a relation scheme.

6.5.2 Normal Forms—Anomalies and Data Redundancies

A number of normal forms have been defined for classifying relations. Each normal

form has associated with it a number of constraints on the kind of functional depend¬

encies that could be associated with the relation. The normal forms are used to ensure

that various types of anomalies and inconsistencies are not introduced into the data¬

base. Here we describe these normal forms, which are related either to the form of

the relations or based on the type of functional dependencies that are allowed to exist

among the attributes of the relations or among different relations.

308 Chapter 6 Relational Database Design

Unnormalized Relation

Consider the table of Figure 6.9, which shows the preferences that faculty members

have for teaching courses. As before, we allow the possibility of cross-departmental

teaching. For instance, a faculty member in the Computer Science department may

have a preference for a course in the Mathematics department, and so bn. The table

of Figure 6.9 is said to be unnormalized. Each row may contain multiple set of

values for some of the columns; these multiple values in a single row are also called

nonatomic values. In Figure 6.9 the row corresponding to the preferences of faculty

in the Computer Science department has two professors. Professor Smith of the Com¬

puter Science department prefers to teach three different courses, and Professor Clark

prefers four.

Definition: An unnormalized relation contains nonatomic values.

First Normal Form

The data of Figure 6.9 can be normalized into a relation, say CRS_PREF(7Ve>/,

Course, Fac-Dept, Crs-Dept), as shown in Figure 6.10. Note that we have shown

Figure 6.9 Course preferences.

Fac-Dept Prof Courst

Course

Preferences

Course-Dept

Comp Sci Smith 353 Comp Sci

379 Comp Sci

221 Decision Sci

Clark 353 Comp Sci

351 Comp Sci

379 Comp Sci

456 Mathematics

Chemistry Turner 353 Comp Sci

456 Mathematics

272 Chemistry

Mathematics Jamieson 353 Comp Sci

379 Comp Sci

221 Decision Sci

456 Mathematics

_ 469 Mathematics

6.5 Relational Database Design 309

Figure 6.10 The relation CRS_PREF.

Prof Course Fac-Dept Crs-Dept

Smith 353 Comp Sci Comp Sci

Smith 379 Comp Sci Comp Sci

Smith 221 Comp Sci Decision Sci

Clark 353 Comp Sci Comp Sci

Clark 351 Comp Sci Comp Sci

Clark 379 Comp Sci Comp Sci

Clark 456 Comp Sci Mathematics

Turner 353 Chemistry Comp Sci

Turner 456 Chemistry Mathematics

Turner 272 Chemistry Chemistry

Jamieson 353 Mathematics Comp Sci

Jamieson 379 Mathematics Comp Sci

Jamieson 221 Mathematics Decision Sci

Jamieson 456 Mathematics Mathematics

Jamieson 469 Mathematics Mathematics

the attributes in Figure 6.10 in a different order from those in Figure 6.9; however,

as mentioned earlier, as long as the columns are labeled there is no significance in

the order of the columns of a relation. Now, suppose the set of FDs that have to be

satisfied is given by {Prof —» FacS)ept, Course, —» Crs-Dept}; then the only key

of the relation CRS_PREF is (Prof, Course).

Definition: A relation scheme is said to be in first normal form (INF) if the values in the

domain of each attribute of the relation are atomic. In other words, only one value

is associated with each attribute and the value is not a set of values or a list of

values. A database scheme is in first normal form if every relation scheme included

in the database scheme is in INF.

The first normal form pertains to the tabular format of the relation as shown in

Figure 6.10.
The representation of the data for the courses that a faculty member would like

to teach by the relation CRS-PREF has the following drawbacks. The fact that a

given professor is assigned to a given department is repeated a number of times. The

fact that a given course is offered by a given department is also repeated a number

of times. These replications lead to some anomalies. For example, if a professor

changes department, unless all the rows of Figure 6.10 where that professor appears

are changed, we could have inconsistencies in the database. If the association be¬

tween a course and its department is only kept in this relation, a new course cannot

be entered (without null values) unless someone would like to teach it. Deletion of

310 Chapter 6 Relational Database Design

the only professor who teaches a given course will cause the loss of the information

about the department to which the course belonged.

Second Normal Form

A second normal form does not permit partial dependency between a nonprime at¬

tribute and the relation key(s). The STDINF relation given in Section 6.2 involves

partial dependency and hence it is not in the second normal form.

Definition: A relation scheme R<S, F> is in second normal form (2NF) if it is in the INF

and if all nonprime attributes are fully functionally dependent on the relation

key(s). A database scheme is in second normal form if every relation scheme

included in the database scheme is in second normal form.

Even though second normal form does not permit partial dependency between a

nonprime attribute and the relation key(s), it does not rule out the possibility that a

nonprime attribute may also be functionally dependent on another nonprime attribute.

This latter type of dependency between nonprime attributes also causes anomalies,

as we see below.

Consider the TEACHES relation of Figure 6.11. It contains the attributes

Processor), Course, Room, Room-Cap (capacity of room), Enrol—Lmt (enrollment

limit). The relation scheme for the relation TEACHES is (Prof, Course, Room, Room

Cap, EnrolJLmt). The domain of the attribute Prof is all the faculty members of the

university. The domain of the attribute Course is the courses offered by the univer¬

sity. The domain of Room is the rooms in the buildings of the university. The domain

of Room-Cap is an integer value indicating the seating capacity of the room. The

Figure 6.11 The TEACHES relation.

Course Prof Room Room-Cap EnrolJLmt

Course Prof Room Room-Cap Enrol-Lmt

353 Smith A532 45 40
351 Smith C320 100 60
355 Clark H940 400 300
456 Turner B278 50 45
459 Jamieson DUO 50 45

6.5 Relational Database Design 311

Figure 6.12 Decomposition of TEACHES relation: (a) COURSE-DETAILS; (b) ROOM-DETAILS;
and (c) Decomposition of COURSE_DETAILS to eliminate transitive dependency.

Course Prof Room Enrol-Lmt

353 Smith A532 40

351 Smith C320 60

355 Clark H940 300

456 Turner B278 45

459 Jamieson duo 45

Room Room-Cap

A532 45

C320 100

H940 400

B278 50

duo 50

(a) (b)

Course Room

353 A532

351 C320

355 H940

456 B278

459 duo

Course Prof Enrol-Lmt

353 Smith 40

351 Smith 60

355 Clark 300

456 Turner 45

459 Jamieson 45

(c)

domain of Enrol-Lmt is also an integer value and should be less than or equal to the

corresponding value for Room-Cap.
The TEACHES relation is in first normal form since it contains only atomic

values. However, as mentioned earlier, since the course is scheduled in a given room

and since the room has the given maximum number of available seats, there is a

functional dependency Room —» Room-Cap, and hence by transitivity. Course —»

Room —> Room-Cap. Thus, the functional dependencies in this relation are {Course

—» (Prof, Room, Room-Cap, Enrol-Lmt), Room —» Room-Cap}. Also, there is an¬

other transitive dependency4 Room —» Room-Cap —> Enrol-Lmt. The presence of

these transitive dependencies in TEACHES will cause the following problems. The

capacity of a room cannot be entered in the database unless a course is scheduled in

that room; and the capacity of a room in which only one course is scheduled will be

deleted if the only course scheduled in that room is deleted. Because the same room

can appear more than once in the database, there could be inconsistencies between

the multiple occurrences of the attribute pair Room and Room-Cap.
Consider the decomposition of the TEACHES relation into the relations COURSE

_DETAILS (Course, Prof, Room, Enrol-Lmt) of Figure 6.12a and ROOM-DETAILS

(Room, Room-Cap) of Figure 6.12b. The set of functional dependencies in COURSE

DETAILS is given by {Course —> Prof, Course -* Room, Course -> Enrol

—Lmt} and the functional dependency in ROOM—DETAILS is {Room —> Room—Size}.

These relations do not have any partial dependencies: each of the attributes is fully

4Here we assume that Enrol-Lmt is the upper limit on registration for a course and is based solely on the room capacity.

312 Chapter 6 Relational Database Design

functionally dependent on the key attribute, namely Course and Room, respectively.

Hence, these relations are in second normal form. However, the relation COURSE-

DETAILS has a transitive dependency since Course —» Room Enrol-Lmt. In

addition there is an interrelation join dependency between the relation COURSE-

DETAILS and ROOM-DETAILS to enforce the constraint that the Enrol-Lmt be

less than or equal to the Room-Cap.

Third Normal Form

A relation scheme in third normal form does not allow partial or transitive depend¬

encies. The decomposition of STDINF into STUDENT_INFO TRANSCRIPT and

TEACHER gives third normal form relations.

Definition: A relation scheme R<S, F> is in third normal form (3NF) if for all nontrivial

functional dependencies in F+ of the form X —> A, either X contains a key (i.e.,

X is a superkey) or A is a prime attribute. A database scheme is in third normal

form if every relation scheme included in the database scheme is in third normal

form.

In a third normal form relation, every nonprime attribute is nontransitively and

fully dependent on the every candidate key. A relation scheme R is not in third

normal form if any functional dependency such as X —> Y implied by F is in conflict

with the above definition of third normal form. In this case one of the following must
be true:

• X is a subset of a key of R and in this case X —» A is a partial dependency.

• X is not a subset of any key of R and in this case there is a transitive

dependency in F+. Since for a key Z of RZ —» X with X not in Z, and X —> A

with A not in X, Z —> X —» A is a nontrivial chain of dependencies.

The problems with a relation scheme that is not in 3NF are discussed below.

If a relation scheme R contains a transitive dependency, Z —> X —» A, we

cannot insert an X value in the relation along with an A value unless we have a Z

value to go along with the X value. This means that we cannot independently record

the fact that for each value of X there is one value of A. This is the insertion anom¬

aly. Similarly, the deletion of a Z -> X association also requires the deletion of an

X —* *• A association leading to the deletion anomaly. If a relation R contains a partial

dependency, i.e., an attribute A depends on a subset X of the key K of R, then the

association between X and A cannot be expressed unless the remaining parts of K
are present in a tuple. Since K is a key, these parts cannot be null.

The 3NF scheme, like the 2NF scheme, does not allow partial dependencies.

Furthermore, unlike the 2NF scheme, it does not allow any transitive dependencies.

The relation COURSE—DETAILS of Figure 6.12a has a transitive dependency

because Course —> Room —> Enrol-Lmt. We can eliminate this transitive dependency

by decomposing COURSE-DETAILS into the relations (Course, Prof, Enrol-Lmt)

and (Course, Room). These decomposed relations are shown in Figure 6.12c. Note

that enforcing the constraint that Enrol-Lmt be less than the Room-Cap now requires
a join of three relations!

6.5 Relational Database Design 313

Normalization through Decomposition (Based on FDs)

We noted above the presence of insertion and deletion anomalies when R contains a

partial or transitive dependency. The insertion of values for Z and X without an A

value may be handled by using a null value, provided the attribute A allows null

values. If null values are not allowed for A, the Z to X association cannot be repre¬

sented without a corresponding A value.

In this section we will examine how to start with a relation scheme R and a set

of functional dependencies F such that R is not in third normal form with respect to

the set F, and arrive at a resultant set of relation schemes that are a lossless join 3NF

decomposition of R. The relation scheme R can be decomposed into a number of

relation schemes by projection (the intent of the decomposition being to produce
simpler schemes in 3NF).

Example 6.17 Consider the relation of Figure C, ENROLLMENT(SfM<fe/if_JVa/ne, Course,

Phone-No, Department, Grade). In this relation the key is Student-Name,

Course and it has the following dependencies: {Student-Name —> Phone-

No, Student-Name —> Department, Student-Name Course —> Grade). Here

the nonprime attribute Phone-No is not fully functionally dependent on the

key but only on part of the key, namely the^ttribute Student-Name. Simi¬

larly, the nonprime attribute Department is/^ully functionally dependent on

the attribute Student-Name. These are examples of partial dependen¬

cies.

Figure C The ENROLLMENT relation.

Student-Name Course Phone—No Department Grade

Jones 353 237-4539 Comp Sci A

Ng 329 427-7390 Chemistry A

Jones 328 237-4539 Comp Sci B

Martin 456 388-5183 Physics C

Dulles 293 371-6259 Decision Sci B

Duke 491 823-7293 Mathematics C

Duke 353 823-7293 Mathematics B

Jones 491 237-4539 Comp Sci C

Evan 353 842-1729 Comp Sci A +

Baxter 379 839-0827 English B

The problem with the relation ENROLLMENT is that unless the student takes

at least one course, we cannot enter data for the student. Note that we cannot enter

a null value for the Course portion of a tuple since Course is part of the primary key

314 Chapter 6 Relational Database Design

Figure 6.13 Decomposition of ENROLLMENT: (a) The STUDENT relation; (b) The ENROL relation.

Student-Name Course Grade

, Jones 353 A

Ng 329 A

Jones 328 B

Martin 456 C

Dulles 293 B

Duke 491 C

Duke 353 B

Jones 491 C

Evan 353 A +

Baxter 379 B

(b)

Student—Name Phone-No Department

Jones 237-4539 Comp Sci

Ng 427-7390 Chemistry

Martin 388-5183 Physics

Dulles 371-6259 Decision Sci

Duke 823-7293 Mathematics

Evan 842-1729 Comp Sci

Baxter 830-0827 English

of the relation. The other problem with this relation is that the changes in the Phone

No or Department of a student can lead to inconsistencies in the database.

We can rectify these problems in the ENROLLMENT relation by decomposing

it into the following relations: STUDENT (Student-Name, Phone-No, Department)

with the FDs {Student—Name —* Phone-No, Student—Name —> Department), and EN¬

ROL (Student-Name, Course, Grade) with the FDs {Student-Name Course —»

Grade). The relations STUDENT and ENROL are shown in Figure 6.13.

Example 6.18 Consider the relation MAJOR (Student—Name, Major, Department) of Figure

D with the functional dependencies {Student-Name —*■ Major, Student-

Name —> Department, Major —» Department). Since the attribute Major is

not in the key, and because of the functional dependency of Department on
Major, we have a transitive dependency in this relation.

Figure D The MAJOR relation.

Student-Name Major Department

Jones Information Systems Comp Sci
Ng Biochemistry Chemistry
Martin Honors Physics Physics
Dulles Quantitative Methods Decision Sci
Duke Statistics Mathematics
James Systems Architecture Comp Sci
Evan Information Systems Comp Sci
Baxter Creative Writing English

6.5 Relational Database Design 315

Figure 6.14 A decomposition MAJOR: (a) The STUDENT_MAJOR relation and (b)The MAJOR.
DEPARTMENT relation.

Student-Name Major

Jones Information Systems

Ng Biochemistry

Martin Honors Physics

Dulles Quantitative Methods

Duke Statistics

James Systems Architecture

Evan Information Systems

Baxter Creative Writing

(a)

Major Department

Information Systems Comp Sci

Biochemistry Chemistry

Honors Physics Physics

Quantitative Methods Decision Sci

Statistics Mathematics

Systems Architecture Comp Sci

Creative Writing English

(b)

The problem with the relation MAJOR is that unless a student is registered in

one of the majors offered by a department, that major cannot be shown to be offered

by the given department. Similarly, deleting the only student in a major loses the

information of that major being offered by a given department.

This problem can be overcome by decomposing the relation MAJOR into the

relations STUDENT_MAJOR(Sfi«fe/tf_JVame, Major) with the functional depen¬

dency {Student—Name —> Major), and MAJOR-DEPT (Major, Department) with the

functional dependency {Major —» Department). These relations are shown in Figure
6.14.

The relations of Figures 6.13 and 6.14 do not exhibit the anomaly and inconsis¬

tency problems that were present in the relations of Figures C and D, respectively.

Elimination of some of these anomalies is the motivation behind the decomposition

of a scheme R<S, F> (which suffers from anomalies and inconsistency problems)

into relation schemes Rl5 R2, etc., each of which is not necessarily a disjoint subset

of R so that the resulting relation schemes contain the same data as the original

scheme.

6.5.3 Lossless Join and Dependency-Preserving Decomposition

A relation scheme R can be decomposed into a collection of relation schemes to

eliminate some of the anomalies contained in the original relation scheme R. How¬

ever, any such decomposition requires that the information contained in the original

relation be maintained. This in turn require^ that the decomposition be such that a

join of the decomposed relations gives the sqme set of tuples as the original relation

and that the dependencies of the original relation be preserved. Let us illustrate, with

an example, a decomposition that violates these requirements.

Example 6.19 Consider the relation STUDENT_ADVISOR(Aame, Department, Advisor)

of Figure Ei with the functional dependencies F{Name —» Department,

Name —> Advisor, Advisor —> Department). The decomposition of STUDENT

316 Chapter 6 Relational Database Design

Figure E Example of a lossy decomposition: (i) The STUDENT-
ADVISOR relation; (ii) STUDENT-DEPARTMENT; (iii) DE¬
PARTMENT-ADVISOR; and (iv) Join of STUDENT-DE¬
PARTMENT and DEPARTMENT-ADVISOR.

Name Department Advisor

Jones Comp Sci Smith

Ng Chemistry Turner

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Clark

Evan Comp Sci Smith

Baxter English Bronte

Name Department

Jones Comp Sci

Ng Chemistry

Martin Physics

Dulles Decision Sci

Duke Mathematics

James Comp Sci

Evan Comp Sci

Baxter English

(i) (ii)

Department Advisor

Comp Sci Smith

Chemistry Turner

Physics Bosky

Decision Sci Hall

Mathematics James

Comp Sci Clark

English Bronte

Name Department Advisor

Jones Comp Sci Smith

Jones Comp Sci Clark

Ng Chemistry Turner

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Smith

James Comp Sci Clark

Evan Comp Sci Smith

Evan Comp Sci Clark

Baxter English Bronte

(iv)

ADVISOR into STUDENT— DEPARTMENTfAam^, Department) and

DEPARTMENT_ADVISOR (Department, Advisor) is given in Figures Eii
and Eiii. The join of these decomposed relations is given in Figure Eiv and

contains tuples that did not exist in the original relation of part i. The de¬
composition is called lossy. ■

6.5 Relational Database Design 317

The terms lossless and dependency preserving are defined below.

Definition: A decomposition of a relation scheme R <S, F> into the relation schemes Rj

(1 < i < n) is said to be a lossless join decomposition or simply lossless if for

every relation R(R) that satisfies the FDs in F, the natural join of the projections
of R gives the original relation R; i.e.,

R = itri(R) 1X1 ^lutR) XI ... IX ttRi)(R)

If R C irR1(R) X ttr2(R) IX . . . XI ttRii(R) then the decomposition is
called lossy.5

The lossless join decomposition enables any relation to be recovered from its

projections or decompositions by a series of natural joins. Such decomposed relations

contain the same data as the original relation. Another property that the decomposi¬

tion of a relation into smaller relations must preserve is that the set of functional

dependencies of the original relation must be implied by the dependencies in the

decompositions.

Definition: Given a relation scheme R<S, F> where F is the associated set of functional

dependencies on the attributes in S, R is decomposed into the relation schemes

^1) ^2) • • •) Rn with the functional dependencies Fj^ F2^ • • .9 FR. Then this
decomposition of R is dependency-preserving if the closure of F' (where F' =

Fj U F2 U . . . U F„) is the identical to F+ (i.e., F'+ = F +).

If we decompose a relation into relation schemes that do not preserve depend¬

encies, the enforcement of the original FDs can only be accomplished by joining the

decomposed relation. This operation has to be done for each update for verifying

consistency. Note that the dependencies in the decomposition are always implied by

the original set of FDs.
These observations are summarized in the following theorem; we will not give

a formal proof of this theorem but illustrate it with examples. Formal proofs can be

found in the references given in the bibliographic notes at the end of the chapter.

Theorem 6.1: A decomposition of relation scheme R <(X, Y, Z), F> into R,<(X, Y),

F,> and R2<(X, Z), F2 R2 < (X,Z), F2 > is:

(a) dependency preserving if every functional dependency in R can be logically derived

from the functional dependencies of R| and R2, i.e., (F, UF2)+ = F+, and

(b) is lossless if the common attributes X of R, and R2 form a superkey of at least one

of these, i.e., X —» Y or X —» Z.

5R C ttr,(R) XI TTittfR) X ... X TTRn(R) is always true.

318 Chapter 6 Relational Database Design

Example 6.19 illustrated a decomposition that is both lossy and doesn’t preserve

the dependencies in the original relation. It is lossy because the common attribute

Department is not a key of either of the resulting relations and consequently, the join

of these projected relations produces tuples that are not in the original relation. The

decomposition is not dependency-preserving because the FD Name —> Advisor is not

implied by the FDs of the decomposed relation.

Example 6.20 illustrates a lossless decomposition.

Example 6.20 Let R(A, B, C) and F = {A —> B}. Then the decomposition of R into Rj(A,

B) and R2(A, C) is lossless because the FD {A —» B} is contained in Ri and

the common attribute A is a key of Rj. ■

A decomposition which is lossy is given below.

Example 6.21 Let R(A, B, C) and F = {A —> B). Then the decomposition of R into Rj(A,

B) and R2(fi, C) is not lossless because the common attribute B does not

functionally determine either A or C, i.e. it is not a key of R, or R2 ■

A decomposition which is both lossless and dependence preserving is given in
Example 6.22.

Example 6.22 Given R(A, B, C, D) with the functional dependencies F = {A B, A —>

C, C —> D}, consider the decomposition of R into Ri(A, B, C) with the

function dependencies Fi = {A -> B, A C} and R2(C, D) with the func¬

tional dependencies F2 = {C —-> D}. In this decomposition all the original

FDs can be logically derived from Fj and F2, hence the decomposition is

dependency-preserving. Also, the common attribute C forms a key of R2.
The decomposition of R into R, and R2 is lossless. ■

Example 6.23 gives a lossy decomposition which also is not dependency pre¬
serving.

Example 6.23 Given R(A,B,C,D) with the functional dependencies F = {A —* B, A —> C,

A -»• D), the decomposition of R into R,(A,flfD) with the functional de¬

pendencies F! = {A -> B, A -> D} and R2(fi,C) with the functional de¬

pendencies F2 = {} is lossy because the common attribute B is not a candi¬

date key of either Rj or R2. In addition, the FD A —> C is not implied by

any FDs in Rj or R2. Thus, the decomposition is not dependency-preserv¬
ing. ■

6.5 Relational Database Design 319

Now let us consider an example involving the decomposition of relations from

the familiar university-related database. This decomposition, while lossless, is not
dependency-preserving.

Example 6.24 Consider the relation scheme CONCENTRATION {Student(S), Major_or_

Minor(Mm), Field-of-Study(Fs), Advisor{A)} with the functional dependen¬

cies F = {(S, Mm, Fs) —» A, A —» Fs}. Figure Fi illustrates some instances

of tuples of a relations on this relation scheme. This relation can be decom¬

posed by projection into the relation schemes SMmA(S, Mm, A) and FSA(Fs,

A). The decomposition of the relation of part i into these two relations is

shown in parts ii and iii. This decomposition is lossless because the common

attribute A determines Fs. However, the decomposition does not preserve

the dependencies; the only nontrivial dependency in the decomposition is A

—*• Fs, but it does not imply the dependency (S, Mm, Fs) —» A. This is an

example of a decomposition that is lossless but not dependency-preserving.

Figure F Example of a lossless decomposition that is not depen¬
dency preserving: (i) The CONCENTRATION relation; (ii)
The SMmA relation; and (iii) The FSA relation.

Student Major-or-Minor F ield-of-Study Advisor

Jones Major Comp Sci Smith

Jones Minor Mathematics Jamieson

Ng Major Chemistry Turner

Ng Minor Comp Sci Clark

Ng Minor Physics Bosky

Martin Major Physics Bosky

Martin Minor Chemistry Turner

James Major Physics Newton

James Minor Comp Sci Clark

(i)

Field-ofStudy Advisor

Comp Sci

Mathematics

Chemistry

Comp Sci

Physics

Physics

Smith

Jamieson

Turner

Clark

Bosky

Newton

Student Mm Advisor

Jones Major Smith

Jones Minor Jamieson

Ng Major Turner

Ng Minor Clark

Ng Minor Bosky

Martin Major Bosky

Martin Minor Turner

James Major Newton

James Minor Clark

(ii)

320 Chapter 6 Relational Database Design

Note that the dependency (5, Mm, Fs) —» A can be recovered from the join

of the projected relations. ■

6.5.4 Algorithms to Check if a Decomposition is Lossless and .
Dependency-Preserving

We are given a relation scheme R and a set of functional dependencies F. Suppose

R is decomposed into the relations Rj, R2, . . ., R„ with the functional dependen¬

cies Fj, F2, . . ., Fn respectively. We want to ascertain (a) if the decomposition is

lossless and (b) if it is dependency-preserving. The following algorithms can be used

to check for these requirements. Algorithm 6.4 can determine if a decomposition is

lossless; Algorithm 6.5 can determine if the decomposition is dependency-preserving.

Note that if the decomposition is into only two relations, it would be easier to test

for lossless decomposition using Theorem 6.1. However, if the decomposition is into

a number of relations, Algorithm 6.4 could be used. A decomposition could have

one of these properties without having the other.

In Algorithm 6.4, we initialize the table element (i, j) with aAj if the attribute

A, is included in the decomposed relation Rg otherwise we place the symbol piAj.

The table is then used to verify if an arbitrary tuple with all as, which is in the join

of the decomposed relation, is also in the relation R. If this is the case, the decom¬

position is lossless; otherwise it is lossy. See the bibliographic notes for a reference
to the proof of this algorithm.

We use algorithm 6.4 to verify that the decomposition in Example 6.25 is loss¬
less.

Example 6.25 Given R(A,B,C,D) with the functional dependencies F {A —» B, A —» C, C

—> D}, consider the dependency-preserving decomposition of R into

Ri(A,i?,C) and R2(C,D). Let us verify whether it is lossless as well using
Algorithm 6.4.

A B c D

<*A «B ac PlD

<*c

A B c D

“A <*B ac «D

P2A P2B OLc <*D

We initialize the TABLE_LOSSY as shown on the left. Then we consider

the FD C * D and find that the symbols in the C columns are the same.

Because one of the symbols in the D column is an a, we make the other

element (1, 4) in the D column the same. For the other FDs we are unable

to find two rows with identical entries for the columns of the determinant,

so there are no further changes and the final version of TABLE_LOSSY is

as shown on the right. Finally we find a row in the table with as in all

columns, indicating that the decomposition is lossless. Because the common

attribute, C, is a key of one of the projection, we could have used Theorem
6.1 to come to the same conclusion. ■

6.5 Relational Database Design 321

Algorithm

6.4 Algorithm to Check if a Decomposition is Lossless

Input: A relation scheme R(A,, A2, A3, . . Ak), decomposed into the relation
schemes R„ R2, R3, . . Rb . . Rn.

Output: Whether the decomposition is lossless or lossy.

(*A table, TABLE-LOSSY(l:n, l:k) is used to test for the type of

decomposition. Row i is for relation scheme Rj of the decomposed relation

and column j is for attribute A] in the original relation.*)
for each decomposed relation R, do

if an attribute A} is included in R,,

then TABLE_LOSSY(i, j) : = aAj (*place a symbol aAj in row i, column j

of *)

else TABLE_LOSSY(i, j) := piAj (* place a symbol piAj *)
change : = true

while (change) do

for each FD X -» Y in F do

if rows i and j exist such that the same symbol appears in each column

corresponding to the attributes of X

then if one of the symbols in the Y column is ar

then make the other ar

else (/"the symbols are 3pm and (3qm

then make both of them, say, f3pm;

else change ; = false

i := 1

lossy : = true

while (lossy and i < n) do

for each row i of TABLE-LOSSY

if all symbols are as

then lossy : = false

else i : = i + 1;

Algorithm 6.4 is used in Example 6.26 to conclude that the given decomposition

is lossy.

Example 6.26 Given R(A, B, C, D, E) with the functional dependencies F {AB —» CD, A

—» E, C —> D}, the decomposition of R into R^A.Zf.C), R2(5,C,D) and

R3(C,D,E) is lossy.
We initialize the TABLE-LOSSY as shown on the left. Now we con¬

sider the FDs AB —> CD, A —» E in turn but since we find that there are no

two rows with identical entries in the A columns, we are unable to make

322 Chapter 6 Relational Database Design

A B c D E

R. <*A <*B ac PlD Pie

R2 P2A <*B ac “d Pie

r3 P.3A p3B «c <*d “e

>4 B c D E

R, <*A OtB <*c a D Pie

r2 P2A «B <*c «D Pie

r3 P3A P3B <*c aD aE

any changes to the table. When we consider the FD C —» D, we find that

all rows of the column C, the determinant of the FD, are identical and this

allows us to change the entries in the column D to aD. No further changes

are possible and the final version of the table is the same as the table on the

right. Finally we find no rows in the table with all as and conclude that the

decomposition is lossy. ■

As we discussed earlier, a decomposition is dependency-preserving if the clo¬

sure of F' (where F' = F] U F2 U . . . U Fn) is identical to F + . However, the

task of computing the closure is time consuming and we would like to avoid it. With

this in mind, we provide below an alternate method of checking for the preservation

of the dependencies. This method takes each functional dependency X —» Y in F and

computes the closure X'+ of X with respect to F'. If Y C X' + , then F' f= X —> Y.
If we can show that all functional dependencies in F are logically implied by F', we

can conclude that the decomposition is dependency-preserving. Obviously, if even a

single dependency in F is not covered by F', the decomposition is not dependency¬

preserving. Algorithm 6.5 checks if a decomposition is dependency-preserving.

If the union of dependencies of the decomposed relations is the same as the

original set of dependencies, then the decomposition is dependency-preserving. This
is illustrated in the following example.

Example 6.27 Consider R(A,B,C,D) with the functional dependencies F {A —» B, A —> C,

C —> D} and its decomposition into Ri(A,B,C) with the functional depend¬

encies F2 = {A —» B, A —» C} and R2(C,D) with the functional dependencies

F2 = {C —» D}. This decomposition is dependency-preserving because all

the original FDs can be logically derived from F, and F2. (In this case each
FD in F is included in F' (where F' = Fj U F2).) ■

The following example illustrates a decomposition which is not dependency¬
preserving.

6.5 Relational Database Design 323

Algorithm

6.5
Algorithm to Check if a Decomposition
is Dependency Preserving

Input: A relation scheme and a set F of functional dependencies; a projection (R,,

R2, . . R„) of R with the functional dependencies (Fx, F2, . . Fn).

Output: Whether the decomposition is dependency-preserving or not.

F,+_ = _F+ := true; (*Assume F'+_ = _F+, used as a variable, is true *)
F' := 4>;

for i : = 1 to n do

F' : = F' U Fi;

for each FD X Y 6 F and while (F'+_ = _F+) do

(* compute X' + , the closure of X under F', using Algorithm 6.1))

if Y (£ X'+ then F'+_ = _F+ = false; (* i.e., the decomposition is not

dependency-preserving *);

Example 6.28 R(A,B,C,D) with the functional dependencies F {A —» B, A —» C, A —» D}

is decomposed into RX(A,B,D) with the functional dependencies Fx = {A

—» B, A —> D] and R2(5,C) with the functional dependencies F2 = {}. This

is not dependency-preserving because the FD A —> C is not implied by any

FDs in Rj or R2. H

Now let us consider the decomposition of a relation from the university data¬

base.

Example 6.29 Consider the relation STUDENT_ADVISOR(7Vam<?, Department, Advisor)

of Figure Ei with the functional dependencies F = {Name —> Department,

Name -> Advisor, Advisor —> Department}. Here, the decomposition of
STUDENT-ADVISOR into STUDENT_PROFESSOR(7Vame, Advisor) with

the functional dependency {Name —» Advisor}, and DEPARTMENT-AD-

VISOR(Department, Advisor) with the functional dependency {Advisor ->

Department is dependency-preserving, because the dependency Name —>

Department is implied by (Name —> Advisor) U (Advisor —> Department);

in addition, the decomposition is lossless. ■

On the other hand, the following decomposition is not dependency-preserving.

Example 6.30 The decomposition of the relation CONCENTRATION of Figure F into the

relations SMmA and FSA is not dependency-preserving because F' = A ->

Fs and the FD SMmFs A is not implied by F'. II

324 Chapter 6 Relational Database Design

6.5.5 Decomposition into Third Normal Form

Let us start from a normalized relation scheme R<S, F>, where S is a set of attri¬

butes with atomic domains and F is a set of functional dependencies sjuch that R is

not in the 3NF. Since R is normalized, we know that it is in the INF (note: here we

do not insist that R be in the 2NF). The reason why R is not in the 3NF is that it

has at least one FD Y -» A, where A is a nonprime attribute that violates the 3NF

requirements.
If Y —» A is a partial dependency (i.e., Y is a subset of a key of R), then R is

not in the second normal form and these partial dependencies have to be removed by

decomposition. To ensure that this decomposition is lossless and dependency¬

preserving, we decompose R into two relation schemes, say Rj<Si, Fj> and

R2<S2, here Sj is S — A, Fi is (F — (Y —* A)), S2 is YA, and F2 is Y —» A.
This decomposition is lossless because Y is the common attribute in Rj and R2 and

it forms a key of R2; it is dependency-preserving because the union of Fj and F2 is

equal to F. The decomposition process can be hastened by removing from R any

other nonprime attribute A,, A2, . . . such that Y —» AA,A2A3 . . . Thus R could

be decomposed into Ri<(S —AA,A2A3 . . .), {F — (Y —> AA,A2A3 . . .)}> and

R2<(TAA/A2AJ . . .), Y —» AA,A2A3 . . .>.

Now consider how we can handle the situation where Y —» A is a transitive

dependency in R (if this type is the only offending form of dependency in the set F,

then R is not only in the INF but it is also in the 2NF). If K is a key of R, then K

C S. Now let Y C S with Y Ct K be a set of attributes so that for some nonprime

attribute A 6 S the FD K —» Y —» A holds under F and Y is not a key of R. As

before, the decomposition of R into R| and R2 is done by removing from R the

attribute A and forming a new relation Ri<(S — A), {F — (Y —> A)}> and R2<YA,
Y -» A>.

The decomposition process, in the case of a transitive dependency, can be has¬

tened by removing from the set of attributes (R - KY) any other nonprime attribute,

e.g., Ait such that Y —» A,-. These other attributes will also be transitively dependent

on the key K of R. Such further attributes A, are also placed in the relation scheme

R2 and removed from R. Thus we get the decomposition of R as R,<(S - AA,A2A3

. . . Ak), {F — (Y —» AA,A2A3 . . . A*)}>, and R2<(YAA/A2Ai . . . A*), Y

AA]A2A3 . . . Ak>. As before, this decomposition is lossless because Y is the com¬

mon attribute in Rj and R2 and it forms a key of R2. The decomposition is depen¬
dency-preserving because the union of F! and F2 is equal to F.

If either Rt or R2 with the functional dependencies F! and F2 is not in 3NF, we

can continue the decomposition process until we get a database scheme, say Rj<Sj,
Fi>, Rj<Sj, Fj>, Rk<Sk, Fk>, . . . Rm<Sm, Fm>.

Algorithm 6.6 below is the formal method to decompose a normalized relation

scheme R<S, F> into a number of 3NF relation schemes. The decomposition is

lossless and dependency-preserving. The algorithm uses the canonical cover of the

set of FDs F (see Section 6.4.7). The algorithm preserves dependency by building a

relation scheme for each FD in the set of the canonical cover of F. The lossless join

decomposition is assured in the algorithm by including in the decomposition a rela¬

tion scheme that contains a candidate key of R. The algorithm also includes a relation

scheme tha' contains all the attributes of R that are not involved in any FD in the

6.5 Relational Database Design 325

Algorithm

6.6
Lossless and Dependency-Preserving Third Normal
Form Decomposition

Input: A relation scheme R, a set of canonical (minimal) functional dependencies Fc,

and K, a candidate key of R.

Output: A collection of third normal form relation schemes (Rj, R2, . . Rn) that

are dependency-preserving and lossless.

i := 0

Find all the attributes in R that are not involved in any FDs in Fc either on the

left or right side. If any such attributes {A} are found then

begin

i := i+ I;
form a relation R{A}; (involving attributes not in any FDs*)

R : = R — {A}; (*remove the attributes {A} from R*)

if there is a dependency X —» Y in Fc such that all the attributes that remain

in R are included in it

then

begin

i : = i+ 1;

output R as Rj{X, Y};

end

else

begin

for each FD X —> A in Fc do

begin

i := i + 1;
form R!<{X, A}, F{X A}>

end;
combine all relation schemes corresponding to FDs with the same LHS

(*i.e„ <(X, A), {X -> A}> and <(X,B), {X -» B}>

could be replaced by <(X, AB), {X —» AB}>*)

if none of left side of FD in

Fj for 1 < j < i satisfies K C X

then begin

i : = i + 1;
form Rj<{K}>; (*make sure that a relation contains

the candidate key of R*)

end;

end;

326 Chapter 6 Relational Database Design

canonical cover; this caters to any possible many-to-many association between these

attributes.

Algorithm for Lossless and Dependency-Preserving
Third Normal Form Decomposition

For this algorithm we assume that we have a canonical cover Fc for the set of FDs

F for the relation scheme R and that K is a candidate key of R. Algorithm 6.6
produces a decomposition of R into a collection of relation schemes Rt, R2, . .
R„. Each relation scheme Rs is in third normal form with respect to the projection of

Fc onto the scheme of R
In Example 6.31 below, we give a decomposition into 3NF relation schemes

which is both lossless and also dependency-preserving.

Example 6.31 Find a lossless join and dependency-preserving decomposition of the follow¬

ing relation scheme with the given set of functional dependencies:

SHIPPING (Ship, Capacity, Date, Cargo, Value)

Ship —* Capacity,

ShipDate —» Cargo,

CargoCapacity —» Value

First find the canonical cover of the given set of FDs. The FDs are simple

since each has a single attribute on the right-hand side. There are no redun¬

dant FDs in the set and none of the FDs contains extraneous attributes on

the left-hand side. Hence the given set of FDs is in canonical form. A can¬

didate key of the relation is ShipDate.

Now use Algorithm 6.6 to find a lossless and dependency-preserving

decomposition of SHIPPING. Since all attributes appear in the canonical

cover we need not form a relation for attributes not appearing in any FD.

There is no single FD in the canonical cover that contains all remaining

attributes in SHIPPING, so we proceed to form a relation for each FD in
the canonical cover.

Ri (Ship, Capacity) with the FD Ship —> Capacity

R2(Ship, Date, Cargo) with the FD ShipDate —> Cargo

R3(Cargo, Capacity, Value) with the FD CargoCapacity —» Value

As a candidate key is included in the determinant of the FD of the decom¬

posed relation scheme R2, we need not include another relation scheme with

only a candidate key. The decomposition of SHIPPING into R„ R2, and
R3 is both lossless and dependency-preserving. ■

In Example 6.32 we find a 3NF decomposition of a relation from the university
database.

6.5 Relational Database Design 327

Example 6.32 Consider the relation scheme STUDENT_INFO(Srw(/enr(S), Major(M), Stu-

dent-Department{Sd), Advisor(A), Course(C), Course-Department(Cd),

Grade(G), Professor(P), Prof-Department(Pd), Room(R), Day(D), Time{T))

with the following functional dependencies:

5 —> M

S A

M^Sd
S^Sd
A^Sd
C-»Cd

C-> P

p->pd
RTD -> C

RTD -* P

TPD R

TSD -»> R

TDC —*■ R
TPD —> C

7SD -> C

SC —> G

each student is in an unique major

each student has an unique advisor

each major is offered in an unique department

each student is in one department

each advisor is in an unique department

each course is offered by a single department

each course is taught by one professor

each professor is in an unique department

each room has on a given day and time only one course sched¬

uled in it

each room has on a given day and time one professor teaching

it it

a given professor on a given day and time is in one room

a given student on a given day and time is in one room

a course can be in only one room on a given day and time

on a given day and time a professor can be teaching only one

course

on a given day and time a student can be attending only one

course

each student in a given course has a unique grade

A canonical cover of this set of functional dependencies will not contain the

dependencies {S Sd, RTD -» P,TDC R, TPD -* C, TSD -> R}. The

key of this relation scheme is TSD. The decomposition of this relation

scheme into third normal form gives the following relation schemes:

Ri(SMA) with the FD 5 —* MA

R2(MSd) with the FD M —» Sd

R3(A5rf) with the FD A —> Sd

R4(CCdP) with the FD C —*■ CdP

Rs(PPd) with the FD P -» Pd
R6(RTDC) with the FD RTD C

R7(TPDR) with the FD TPD -* R

Rs(TSDR) with the FD TSD -* R

R9(SCG) with the FD SC ^ G

(Note: Since all the attributes in the original relation scheme are involved

with some FD we do not have to create a relation scheme with attributes not

so involved. Also, the relation scheme R8 includes a candidate key; conse¬

quently we don’t need to create an explicit relation scheme for the key.)

Rt through R9 form a lossless and dependency-preserving decomposition of

STUDENT_INFO ■

Derivation of other canonical covers of this set of FDs and the corresponding

relational schemes in 3NF is left as an exercise.

328 Chapter 6 Relational Database Design

6.5.6 Boyce Codd Norma! Form

Consider a relation scheme in third normal form that has a number of overlapping

composite candidate keys. In particular consider the relation GRADEfAame, Stu¬

dent#, Course, Grade) of Figure 6.15. Here the functional dependencies are {Name

Course —> Grade, Student#Course —> Grade, Name —» Student#, Student# —>

Name}. Thus, each student has a unique name and a unique student number. The

relation has two candidate keys, {Name, Course) and {Student#, Course). Each of

these keys is a composite key and contains a common attribute Course. The relation

scheme satisfies the criterion of the third normal form relation, i.e., for all functional

dependencies X —> A in GRADE, when A X, either X is a superkey or A is prime.

However, this relation has a disadvantage in the form of repetition of data. The

association between a name and the corresponding student number is repeated; any

change in one of these (for example, the change in the name to a compound name

because of marriage) has to be reflected in all tuples, otherwise there will be incon¬

sistency in the database. Furthermore, the student number cannot be associated with

a student name unless the student has registered in a course, and this association is
lost if the student drops all the courses he or she is registered in.

The problem in the relation GRADE is that it had two overlapping candidate

keys. In the Boyce Codd normal form (BCNF), which is stronger than the third

normal form, the intent is to avoid the above anomalies. This is done by ensuring

that for all nontrivial FDs implied by the relation, the determinants of the FDs in¬
volve a candidate key.

Definition: A normalized relation scheme R<S, F> is in Boyce Codd normal form if for

every nontrivial FD in F+ of the form X—> A where X C S and A £ S, X is a
superkey of R.

Figure 6.15 The GRADE relation.

Name Student# Course Grade

Jones 23714539 353 A

Ng 42717390 329 A
Jones 23714539 328 in prog
Martin 38815183 456 C
Dulles 37116259 293 B
Duke 82317293 491 C
Duke 82317293 353 in prog
Jones 23714539 491 C
Evan 11011978 353 A +
Baxter 83910827 379 in prog

6.5 Relational Database Design 329

A database scheme is in BCNF if every relation scheme in the database scheme

is in BCNF. In other words, for a relation scheme R<S, F> to be in BCNF, for

every FD in F+ of the form X —> A where X C S and A £ S, at least one of the

follbwing conditions hold:

• X —> A is a trivial FD and hence A 6 X, or

• X —» R, i.e., X is a superkey of R.

The above definition of the BCNF relation indicates that a relation in BCNF is

also in 3NF. The BCNF imposes a stronger constraint on the types of FDs allowed

in a relation. The only nontrival FDs allowed in the BCNF are those FDs whose

determinants are candidate superkeys of the relation. In other words, even if A is a

prime attribute, X must be a superkey to attain BCNF. In 3NF, X does not have to

be a superkey, but in this case A must be a prime attribute. Effectively, 3NF allows

nontrivial FDs whose determinant is not a superkey if the right-hand side is contained

in a candidate key.

Example 6.33 The relation GRADE of Figure 6.15 is not in BCNF because the depend¬

encies Student# —» Name and Name —> Student# are nontrivial and their

determinants are not superkeys of GRADE. ■

The following is an example of a BCNF relation.

Example 6.34 Consider the relation scheme STUDENT('S/D, Name, Phone-No, Major),

where SID is an unique student identification number and where Name, and

Phone-No are assumed to be unique for this example. The functional de¬

pendencies satisfied on the STUDENT relation scheme are {5/D —> Major,

Name —» Major, Phone-No —> Major, SID —> Name, SID —* Phone-No,

Name —» SID, Name —> Phone-No, Phone-No —> SID, Phone-No —>

Name}. The relation STUDENT is in BCNF since each FD involves a can¬

didate key as the determinant. ■

Lossless Join Decomposition into Boyce Codd Normal Form

We now give an algorithm that decomposes a relation scheme into a number of

relation schemes, each of which is in Boyce Codd normal form. In Algorithm 6.7,

S is a set of relation schemes. It is initialized with the original relation scheme, which

may not be in the BCNF. At the end of the algorithm, S will contain a number of

BCNF relation schemes. We start by finding a nonredundant cover F' of F. Then we

look at the relation schemes in S and find a scheme, let us say Rj, which is not in

BCNF for a nontrivial FD X —> Y in F'. Since Rj is not in BCNF, the conditions

XY C Rj and X -b Rj will hold. We decompose Rj into two relations XY and Rj -

Y. The algorithm terminates with all relations in the set being in BCNF.
The decomposition is lossless and the join of the resulting relations gives, the

original relation. However, some of the dependencies in the original relation scheme

330 Chapter 6 Relational Database Design

Algorithm

6.7
Lossless Boyce Codd Normal Form

Decomposition Algorithm

Input: A relation scheme R<U, F> not in BCNF where F is a set of FD.

Output: Decomposition of R(U) into relation schemes Rj(Uj), 1 — i — n such that

each Ri(Uj) is in BCNF and the decomposition is lossless.

begin

i := 0;

S := {R(U)};
alLBCNF : = false;
Find F' from F; (* here F' is a nonredundant cover of F *)

while (-i alLBCNF) do
if there exists a nontrivial FD (X —» Y) in F'+ such that

XY C Rj and X -b Rj (* Rj? a relation scheme in S, is not in BCNF,

i.e., X —> Rj is not in F'+ *)

then

begin

i : = i + 1;
form relation Rf{X, Y} with the FD X —> Y and add

it to S

Rj := Rj - Y;
end;
else alLBCNF := true;

end;

may be lost. Also, the relation schemes so produced are not unique. The resulting

set of decomposed schemes depends on the order in which the functional dependen¬

cies in the original relation is used.

We use Algorithm 6.7 to find BCNF decomposition of a number of relations in
Examples 6.35 through 6.37.

Example 6.35 Find a BCNF decomposition of the relation scheme SHIPPING with the
following set of functional dependencies:

SHIPPINGfiS/n/;, Capacity, Date, Cargo, Value)
Ship —> Capacity

ShipDate —» Cargo

CargoCapacity —> Value

First find the nonredundant cover of the given set of FDs. There are no

redundant FDs in the set, hence the given set of FDs is a nonredundant
cover.

6.5 Relational Database Design 331

Now use Algorithm 6.7 to find a lossless decomposition of SHIP¬

PING. Since there is an FD Ship —> Capacity and since Ship -/> SHIPPING

we replace SHIPPING with the relation R| (Ship, Capacity) formed with

the FD in question and R2(S/jip, Date, Cargo, Value). Consider the relation

R2: the FD ShipDate —> Cargo is a nontrivial FD in the nonredundant cover.

However, since ShipDate —> ShipDateCargoValue, the relation R2 is in

BCNF and we have completed the decomposition.

Ri(Ship, Capacity) with the FD Ship —» Capacity

R i(Ship, Date, Cargo, Value) with the FD ShipDate —> Cargo

The decomposition of SHIPPING into R, and R2 is lossless but not depen¬

dency preserving because the FD CargoCapacity —> Value is not implied by

the set of FDs {Ship Capacity, ShipDate —> Cargo}.

Another BCNF decomposition of SHIPPING is obtained when we con¬

sider the FD CargoCapacity —* Value first. This gives us the following
decompositions:

Ri (Cargo, Capacity, Value) with the FD CargoCapacity —> Value

R2(Ship, Capacity) with the FD Ship —> Capacity

R^(Ship, Date, Cargo) with the FD ShipDate —» Cargo

This decomposition is also dependency-preserving. ■

An example of a BCNF decomposition which is not dependency preserving is

given below.

Example 6.36 Consider the relation scheme <(ABCD), [AB —> C, C —» A}>. None of the

FDs are redundant, so the given set is a nonredundant cover. Using the FD

AB —> C we decompose this into the relation schemes: <(ABC), {AB —> C,

C —* A}> and <(ABD), { }>. The scheme <(ABC), {AB —> C, C —» A}>

can be further decomposed into the schemes <(AC), {C —» A}> and <(BC),

{ }>• ■

In Example 6.37, we demonstrate the non-uniqueness of the BCNF decomposi¬

tion.

Example 6.37 Consider the relation scheme STUDENT_INFO{5, M, Sd, A, C, Cd, G, P,

Pd, R, D, T} with the following functional dependencies (S —*■ MA, M —>

Sd, A Sd, C —> CJ*, P —» Pd, RDT -> C, TPD -* R, TSD -> R, SC ->

G). The key of this relation is TSD. The decomposition of this relation into

a number of BCNF relation schemes using Algorithm 6.7 gives the decom¬

position tree shown in Figure G. The left tree is obtained by considering the

FDs in the order S —» MA, S —* Sd, C —» Cd, C —» P, and RDT —> C. This

order gives the following set of BCNF relation schemes: (SMA), (SSd),

(CCd), (CP), (RDTC), and (SGPJiDT). The right decomposition is obtained

by considering the FD SC G first.

332 Chapter 6 Relational Database Design

Figure G Two Different Decomposition Trees.

(SMSdACCdGPPdRDT)

S AM I

(SMA), (SSdCCdGPP dRDT)

S +sd

(SSd), (SCCdGPPdRDT)

c -*~cd

r i
(CCd), (SCGPPdRDT)

C -►/>

r n
tCP), (SCCPdRDT)

RDT -► C

(RDTC), (SGP dRDT)

RDT -► Pd

r n
(RDTPd), (SGRDT)

(SMSdACCdGPPdRDT)

SC G | ■

(SCG), (SMSdACCdPPdRDT)

TSD -► R

(TSDR), (SMSdACCdPPdDT)

P + Pd_I
(PPd), (SMSdACCdPDT)

C -»►/>I

(CP), (SMSdACCdDT)

C -+cd

(CCd), (SMSdACDT)

A “► Sd

(ASd), (SMACDT)

S —► A

I ~1
(SA), (SMCDT)

S -► M

(SM), (SCDT)

We see from the above example that for different orders of considering the FDs,

we get different decomposition trees and hence different sets of resulting relation

schemes. For Example 6.37, we illustrate in Figure G two different decomposition

trees giving the following sets of relations: {(SMA), (SSd), (CCd), (CP), (RDTC),

(PjRDT), (SGRDT)} and {(SCG), (TSDR), (PPd), (CP), (CCd), (ASd), (SA), (SM),

(SCDT)}.

One other point we notice is that some of the original dependencies are no

longer preserved in the decompositions given above. For instance, in both sets of

relation schemes, the FD M —> Sd is no longer represented. This means that we

cannot ascertain, without one or more joins, that the corresponding fact is correctly

represented in the database. At each step of the algorithm we are decomposing a

relation into two relations, such that the common attribute is a key of one of these

relations. Consequently, the decomposition algorithm produces a set of lossless
BCNF relations.

6.6 Concluding Remarks 333

We conclude with the observation that there are relation schemes R<S, F>
such that no decomposition of R under F is dependency-preserving. This is a worse

situation than one where some decompositions are dependency-preserving while oth¬
ers aire not.

6.6 Concluding Remarks

Let us return to the relation STUDENT_ADVISOR(7Vame, Department, Advisor) of

Figure Ei with the functional dependencies F = {Name —> Department, Name —»
Advisor, Advisor -» Department}. When we decomposed STUDENT-ADVISOR

into STUDENT_DEPARTMENT(7Vame, Department), and DEPARTMENT-ADVI-

SOR {Department, Advisor), giving the relations shown in Figures Eii and Eiii, we

found that the decomposition was lossy. The common attribute. Department, is not

a key of either of the decomposed relations. The join of these decomposed relations,

given in Figure Eiv, contains tuples that did not exist in the original relation of Figure

Ei. In addition the decomposition is not dependency-preserving. The FD Name —>

Advisor is not implied by the FDs of the decomposed relation nor could it be derived
from their join.

We notice, however, that there are three independent relationships in the

STUDENT_ADVISOR relation, and the only key is NameAdvisor. We can decom¬

pose it into three relations, ADVISOR_STUDENT(7Vtf/??e, Advisor). STUDENT-DE-

P ARTMENT (Name, Department), and ADVISOR-DEPARTMENT (Advisor, De¬

partment). This decomposition is useful in storing the independent relationships

autonomously. The original relation can be obtained by joining these decomposed

relations. The decomposition is lossless since the common attribute in these relations

is a key of one of them. Furthermore, the decomposition is dependency preserving

since each of the FDs is preserved in one of the relations.

Note that some of these independent relationships that are not involved with

each other will be eliminated from the final result. For instance, a new student,

Letitia, may join the Physics department without having an advisor. Similarly, a new

professor, Jaffe, may join the Chemistry department and may not yet be advising

students. The resulting relations are shown in parts a, b, and c of Figure 6.16. In the

original relation, this data could only have been entered with null values for the

unknown attribute.

The join of these relations to obtain the STUDENT-ADVISOR relation gives

us the tuples shown in Figure E. The new tuples added in the decomposed relation

participate in one of the joins, as shown in Figure Ed. However, these and other

extraneous tuples are eliminated when the second join is performed. The tuples (Le¬

titia, Physics) of STUDENT-DEPARTMENT and (Jaffe, Chemistry) of ADVISOR.

DEPARTMENT are eliminated for this sequence of joins. Such tuples, which do not

contribute to the result of the join operations, are called dangling tuples.
When we refer to the attributes Name, Advisor, and Department in a database

containing the above three relations, we need to distinguish the various applications

of the same symbol. A simple method of doing this is by preceding the attribute with

the name of the relation. Another approach would be to use unique identifiers for

each role that the attribute plays in the model.

334 Chapter 6 Relational Database Design

Figure 6.16 Join of the decomposition of STUDENT-ADVISOR: (a) ADVISOR-STUDENT;
(b) STUDENT-DEPARTMENT; (c) ADVISOR-DEPARTMENT; and (d) X = STUDENT
DEPARTMENT X ADVISOR-DEPARTMENT. Note: The marked tuples are elimi¬
nated when this result relation, X, is joined with ADVISOR-STUDENT, i.e., STUDENT
ADVISOR = ADVISOR-STUDENT IX X.

Name,Advisor.

Name Advisor

Jones Smith

Ng Turner

Martin Bosky

Dulles Hall

Duke James

James Clark

Evan Smith

Baxter Bronte

(a)

Name Department

Jones Comp Si

Ng Chemistry

Martin Physics

Dulles Decision Sci

Duke Mathematics

James Comp Sci

Evan Comp Sci

Letitia Physics

Baxter English

(b)

Advisor Department

Smith Comp Sci

Turner Chemistry

Bosky Physics

Hall Decision Sci

James Mathematics

Clark Comp Sci

Bronte English

Jaffe Chemistry

(c)

Name Department Advisor

Jones Comp Sci Smith

Jones Comp Sci Clark

Ng Chemistry Turner

Ng Chemistry Jaffe

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Smith

James Comp Sci Clark

Evan Comp Sci Smith

Evan Comp Sci Clark

Letitia Physics Brosky

Baxter English Bronte

(d)

The goal of database design is to ensure that the data is represented in such a

way that there is no redundancy and no extraneous data is generated. This means

that we would generate relations in as high an order as possible. Since we cannot

always guarantee that the BCNF relations will be dependency preserving when both

lossless and dependency-preserving relations are required, we have to settle for the
third normal form.

6.7 Summary 335

Summary

In this chapter we studied the issues involved in the design of a database application

using the relational model. We discussed the importance of having a consistent da¬

tabase without repetition of data and pointed out the anomalies that could be intro¬

duced in a database with an undesirable design. The criteria to be addressed by the

design process are redundancy, insertion anomalies, deletion anomalies, and update
anomalies.

A relation scheme R is a method of indicating the attribute names involved in a

relation. In addition the relation scheme R has a number of constraints that have to

be satisfied to reflect the real world being modeled by the relation. These constraints

are in the form of FDs. The approach we have used is to replace R by a set of more

desirable relation schemes. In this chapter we considered the decomposition ap¬

proach. The synthesis approach is discussed in Chapter 7.

The decomposition approach starts with one relation (the universal relation) and

the associated set of constraints in the form of functional dependencies. The relation

has a certain number of undesirable properties (in the form of insertion, deletion, or

update anomalies) and it is replaced by its projections. A number of desirable forms

of projections have been identified. In this chapter we discussed the following normal

forms: INF, 2NF, 3NF, BCNF.

Any relation having constraints in the form of FDs only can be decomposed into

relations in the third normal form; such a decomposition is lossless and preserves the

dependencies. Any relation can also be decomposed losslessly into relations in the

Boyce Codd normal form (and hence into the third normal form). However, such

decomposition into the Boyce Codd normal form may not be dependency-preserving.

The goal of the decomposition approach to the relational database design using FDs

is to come up with a database scheme that is in BCNF, is lossless, and preserves the

original set of FDs. If this goal is not possible, an alternate goal is to derive a

database scheme that is in 3NF and is lossless and dependency-preserving.

Key Terms

decomposition

universal relation

universal relation assumption

spurious tuple

trivial functional dependency

closure

cover

nonredundant cover

simple

canonical cover

minimal

full functional dependency

prime attribute

nonprime attribute

partial dependency

transitive dependency

synthesis

content preserving

dependency-preserving

interrelation join constraints

unnormalized

nonatomic value

normalized

first normal form (INF)

second normal form (2NF)

third normal form (3NF)

lossless join decomposition

lossless

lossy

Boyce Codd normal form
(BCNF)

dangling tuple

336 Chapter 6 Relational Database Design

Exercises

6.1 Given R{ABCDE} and F = {A -> B, BC -* D, D -» BC, DE -> <j>}- are there any redundant

FDs in F? If so, remove them and decompose the relation R into 3NF relations.

6.2 Given R{ABCDE} and the set of FDs on R given by F = {AS —» CD, ABC —>'e, C —> A},

what is X + , where X = {A8C}? What are the candidate keys of R? In what normal

form is R?

6.3 Given R{ABCDEF} and the set of FDs on R given by F = {ABC -*• DE, AB —> D, DE —»

ABCF, E C}, in what normal form is R? If it is not in 3NF, decompose R and find a set

of 3NF projections of R. Is this set lossless and dependency-preserving?

6.4 Given the relation scheme R{Truck(T), Capacity (C), Date (Y), Cargo(G), Destination (D),

Value(V)} with the following FDs {T —» C, TY —*■ G, TY —» D, CG —» V}, is the

decomposition of R into Rl{rCD} and R2{TGDVY) dependency-preserving? Justify. Is this

decomposition lossless? Justify. Find a lossless join and dependency-preserving

decomposition of R into 3NF. If the 3NF decomposition is not in BCNF, find a BCNF

decomposition of R.

6.5 Consider a relation scheme R with the following set of attributes and FDs: {SID, Name,

Date-of-Birth, Advisor, Department, Term, Year, Course, Grade}, {SID —> NameDate-of-

BirthAdvisorDepartment, Advisor —> Department, SIDTermYearCourse —> Grade}. Find the

candidate keys of R. Does a dependency-preserving and lossless join decomposition of R

into a number of BCNF schemes exist? If so, find one such decomposition. Suppose R is

decomposed into the relation schemes {SID, Name, Date-of-Birth}, {SID, Advisor,

Department}, and {SID, Term, Year, Course, Grade}. Does this decomposition exhibit any

redundancies or anomalies?

6.6 Prove that every set of functional dependencies F is covered by a set of simple functional

dependencies G, wherein each functional dependency has no more than one attribute on the

right-hand side.

6.7 Given the set of functional dependencies {A —» BCD, CD —> E, E —> CD, D -* AH, ABH

BD, DH —> BC}, find a nonredundant cover. Is this the only nonredundant cover?

6.8 Given R{ABCDEFGH} with the FDs {A -» BCDEFGH, BCD -* AEFGH, BCE

ADEFGH, CE —> H, CD —>■ H}, find a BCNF decomposition of R. Is it dependency¬

preserving?

6.9 Given R <{A, B, C, D, E, F, G, H, I, J, K}, {I -» K, AI -> BFG, IC -> ADE, BIG -» CJ,

K —* HA}, find a canonical cover of this set of FDs. Find a dependency-preserving and

lossless join 3NF decomposition of R. Is there a BCNF decomposition of R that is both

dependency-preserving and also lossless? If so, find one such decomposition.

6.10 Given the relation R {ABCDE} with the FDs {A -»■ BCDE, B —> ACDE, C -> ABDE}, give

the lossless decomposition of R.

©.11 Give an efficient algorithm to compute the closure of X under a set of FDs, using the scheme

outlined in the text.

6.12 Does another canonical cover of the set of FDs of Example 6.32 exist? If so, derive it and

show the corresponding relation schemes.

6.13 Given the relation R {ABCDEF} with the set H = {A -* CE, B -» D, C -» ADE, BD -> F},

find the closure of BCD.

6.7 Summary 337

6.14 Explain why there is renewed interest in unnormalized relations (called the non_lNF or

NFNF). What are its advantages compared to normalized relations?

6.15 Discuss the advantages and disadvantages of representing hierarchical structured data from

the real world as an unnormalized relation.

6.16 The Sky-High-Retums Mutual Fund (SMF) Corp. offers a number of different no-load

mutual funds (F) for investment. It sells directly to the public through a number of branches

(B). Each customer (C) is assigned to an agent (A) who is an employee of SMF and works

out of only one branch. Any customer is allowed to buy any number of units (U) of any of

the funds. Each fund is managed out of one of the branches and the portfolio (P) of the fund

is directed by a board of managers (M). The board is made up of agents of SMF; however,

agents from different branches may be involved in any number of boards at any branch. The

unit value of each fund is decided at the end of the last business day of the month and all

purchases and redemptions are done only after the unit price is determined at that time. The

funds are charged a 5% per year management fee; the agents get 1% of this fee in addition to

their regular salaries. Determine the entities and their attributes that have to be maintained if

SMF is to design a database system to support its operations. What are the dependencies that

have to be enforced? Make any additional assumptions that you may require.

6.17 Consider the TEACHES relation. Assume that Room-Cap -A Enrol-Lmt. This means that

two different courses allocated to the same room at different day and time could have

different Enrol-Lmts. In what normal form is TEACHES under this modified assumption? If

it is not in 3NF form, find a lossless and dependency-preserving decomposition.

6.18 Consider the relation scheme R(ABCDE) and the FDs {A B, C —> D, A —> E). Is the

decomposition of R into (ABC), (BCD), (CDE) lossless?

6.19 Find a 3NF decomposition of the following relation scheme: (Faculty, Dean, Department,

Chairperson, Professor, Rank, Student). The relation satisfies the following functional

dependencies (and any others that are logically implied by these):

Faculty —> Dean

Dean —* Faculty

Department —> Chairperson

Professor —* RankChairperson

Department —* Faculty

Student —> DepartmentFacultyDean

ProfessorRank —» DepartmentFaculty

6.20 What are the design goals of a good relational database design? Is it always possible to

achieve these goals? If some of these goals are not achievable, what alternate goals should

you aim for and why?

6.21 Use Algorithm 6.4 to determine if the decomposition of STUDENT_ADVISOR(Na/nc,

Department, Advisor) with the functional dependencies F{Name —* Department, Name —*

Advisor, Advisor —» Department} into ADVISOR_STUDENT((Vame, Advisor), STUDENT_

DEPARTMENT (Name, Department), and ADVISOR_DEPARTMENT(/WvAor,

Department) is lossless.

6.22 Consider the relation scheme R(A, B). With no information about the FDs involved, can you

determine its normal form? Justify your answer.

6.23 Consider the relation scheme R(A, B, C, D) where A is a candidate key. With no

information about the FDs involved, can you determine its normal form? Justify your

answer.

338 Chapter 6 Relational Database Design

6.24 Prove that the Armstrong axioms FI through F3 are sound. (Hint: if X —> Y is derived from

F using the Armstrong axioms, then the dependency X —> Y is satisfied in any relation that

satisfies the dependencies in F.)

6.25 Prove that Algorithm 6.1 correctly computes X + .

6.26 Prove that X —» Y follows from the inference axioms FI through F3 if and only if Y C X + .

Bibliographic Notes

Codd (Codd 70) studied functional dependencies and the third normal form. The 2NF, 3NF,

and BCNF were introduced in (Codd 72) and (Codd 74), and the axioms for functional de¬

pendencies were developed by Armstrong (Arms 74). (Beer 77) gives a set of axioms for FDs

and MVDs and proves the completeness and soundness of this set. The linear membership

algorithm for functional dependencies was presented in (Beer 79). An algorithm to derive a

minimum cover was given in (Maie 80).

The universal relation concept and associated problems were first discussed in (Kent 81).

The formal proof of theorem on lossless join and dependency-preserving third normal form

decomposition is given in (Bisk 79). The algorithm for testing for lossless join is based on

(Aho 79). A more efficient algorithm is given in (Liu 80). An algorithm for testing the pres¬

ervation of dependency is presented in (Beer 81). The complexity of finding whether a relation

is in the BCNF is discussed in (Beer 79). Recent results from the NFNF (non_lNF) relations

are presented in (Ozso 87) and (Roth 88).

Textbook discussions of the relational database design are included in (Date 85), (Lien

85), (Kort 86), and (Ullm 82). (Maie 83) gives a very detailed theoretical discussion of the

relational database theory including relational database design.

(Aho 79) A. V. Aho, C. Beeri & J. D. Ullman, “The theory of Joins in Relational Databases,” ACM TODS
9(2), June 1979, pp. 297-314. Corrigendum: ACM TODS 9(2), June 1979, p. 287.

(Arms 74) W. W. Armstrong, “Dependency Structures of Database Relationships,” Proc. of the IFIP, 1974,
pp. 580-583.

(Beer 77) C. Beeri, R. Fagin, & J. H. Howard, “A Complete Axiomatization for Functional and Multivalued
Dependencies,” Prov. of ACM SIGMOD International Symposium on Management of Data,
1977, pp. 47-61.

(Beer 79) C. Beeri, & P. A. Bernstein, “Computational problems Related to the Design of Normal Form
Relational Schemes,” ACM TODS 4(1), March 1979, pp. 113-124.

(Beer 80) C. Beeri, “On the Membership Problem for Functional and Multivalued Dependencies in Relational
Databases,” ACM TODS 5(3), September 1980, pp. 241-259.

(Beer 81) C. Beeri & P. Honeyman, “Preserving Functional Dependencies,” SIAM Journal of Computing
10(3), pp. 647-656.

(Bisk 79) J. Biskup, U. Dayal, & P. A. Bernstein, “Synthesizing Independent Database Schemas,” Prov. ACM
SIGMOD International Symposium on Management of Data, 1979, pp. 143-152.

(Bros 88) V. Brosda, & G. Vossen, “Update and Retrieval in a Relational Database Through a Universal
Schema interface,” ACM TODS 13(4), December 1988, pp. 449-485.

(Codd 70) E. F. Codd, A Relational Model for Large Shared Data Banks,” Communications of the ACM
13(6), June 1970, pp. 377-387.

6.7 Summary 339

(Codd 72) E. F. Codd, “Further Normalization of the Data Base Relational Modd,” in R. Rustin, ed., Data

Base Systems. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 33-64.

(Codd 74) E. F. Codd, “Recent Investigation in Relational Data Base Systems,” Proc IFIP 74, 1974, pp
10-17-1021.

(Date 85) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading, MA: Addison-Wesley,
1985.

(Delo 78) C. Delobel, “Normalization and Hierarchical Dependencies in the Relational Data Model,” ACM

TODS 3(3), September 1978, pp. 201-22.

(Fagi 77) R. Fagin, “Multivalued Dependencies and a New Normal Form for Relational Databases,” ACM

TODS 2(3), September 1977, pp. 262-278.

(Fagi 79) R. Fagin, “Normal Forms and Relational Database Operators,” ACM SIGMOD International
Symposium on Management of Data, 1979, pp. 153-160.

(Fagi 81) R. Fagin “A Normal Form for Relational Databases that is Based on Domains and Keys,” ACM

TODS 6(3), September 1982, pp. 387-415.

(Kent 81) W., Kent, “Consequences of Assuming a Universal Relation,” ACM TODS 6(4), December 1981,
pp. 539-556.

(Kort 86) H. F. Korth & A. Silberschatz, Database Systems Concepts. New York: McGraw-Hill, 1986.

(Lien 81) Y. E. Lien, “Hierarchical Schemata for RElational Databases,” ACM TODS 6(1), March 1981, pp.
48-69.

(Lien 85) Y. E. Lien, “Relational Database Design,” in S. Bing Yao, ed., Principles of Database Design.

Cliffs, NJ: Prentice-Hall 1985.

(Liu 80) L. Liu & A. Dembers, “An Algorithm for Testing Lossless Joins in Relational Databases,”
Information Processing Letters 11(1), pp. 73-76.

(Maie 80) D. Maier, “Minimum Covers in the Relational Database Model,” Journal of the ACM 27(4), October
1980, pp. 664-674.

(Maie 83) D. Maier, The Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.

(Ozso 87) Z. M. Ozsoyoglu & Li-Yan Yuan, “A New Normal Form for Nested Relations,” ACM TODS 12(1),
March 1987, pp. 111-136.

(Riss 79) J. Rissanen, “Theory of Joins for Relational Databases—A Tutorial Survey,” Prov. Seventh
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 64, New York: Springer-Verlag, pp. 537-551.

(Roth 88) M. A. Roth, H. F. Korth & A. Silberschatz, “Extended Algebra and Calculus for Nested Relational
Databases,” ACM TODS 13(4), December 1988, pp. 389-417.

(Ullm 82) Jeffrey D. Ullman, Principles of Database Systems, 2nd Rockville M: Computer Science Press, 1982.

(Zani 81) C. Zaniolo & M. A. Melkanoff, “On the Design of Relational Database Schemata,” ACM TODS

6(1), March 1981, pp. 1-47.

Synthesis
Approach

and Higher
Order Normal

Form

Contents

7.1 Problems in the Decomposition Approach

7.2 Normalization through Synthesis

7.2.1 Functional Dependencies and Semantics

7.2.2 Semantics of Nonfunctional Relationships

7.2.3 Synthesis Approach

7.2.4 Synthesis Algorithm

7.3 Multivalued Dependency

7.3.1 MVD and Normalization

Property of the MVD

7.3.2 Axioms for Functional and Multivalued

7.3.3 Closure under MVDs

The Dependency Basis

7.3.4 Fourth Normal Form

7.3.5 Lossless Join Decomposition into Fourth Normal Form

7.3.6 Enforceability of Dependencies in Fourth Normal Form

7.4 Normalization Using Join Dependency: Fifth
Normal Form

7.4.1 Join Dependencies

7.4.2 Project-Join Normal Form

7.5 Domain Key Normal Form

340

7.1 Problems in the Decomposition Approach 341

The first, second, third, and Boyce Codd normal forms and algorithms for converting

a relation in first normal form into higher order normal forms were discussed in

Chapter 6. In this chapter we continue our discussions of the issues involved in the

design of a database application using the relational model. In Section 7.1, we ex¬

amine the problems in the decomposition approach and present the synthesis ap¬

proach to database design in Section 7.2. We then turn our attention to the higher

order normal forms, examining the concept of multivalued dependency and axioms

that involve both functional dependencies and multivalued dependencies. We discuss

fourth normal form and a lossless decomposition algorithm for it. Next we introduce

the concept of join dependency and a normal form for it. Finally, we introduce a

scheme whereby all general constraints can be enforced via domain and key con¬

straints and the associated normal form, called domain key normal form.

7.1 Problems in the Decomposition Approach

Any relation can be decomposed into a number of relations that are in third normal

form. Such a decomposition is lossless and preserves the dependencies. Any relation

can also be decomposed losslessly into relations in Boyce Codd normal form (and

hence in third normal form). However, decomposition into Boyce Codd normal form

may not be dependency preserving. A case was illustrated in Example 6.37 in Chap¬

ter 6, where among others, the FD M -» Sd is no longer represented in any of the

decomposed relation schemes. It is not always possible to find a BCNF decomposi¬

tion that is both lossless and dependency preserving. In addition, the decomposition

into BCNF is not unique. Many different BCNF relation schemes exist, as illustrated

in Example 6.37.
The decomposition approach using the BCNF decomposition algorithm may pro¬

duce interrelational join constraints. This happens when the attributes XY corre¬

sponding to one of the functional dependencies X —» Y do not appear in any of the

decomposed relation schemes. In the decomposed relation schemes of Example 6.37,

to determine if the FD M —> Sd is satisfied, we have to join the relations (SMA),

(SSd) for the left decomposition of Figure G in Example 6.37. In general, to find out

if a functional dependency X —> Y is maintained in the decomposed schemes requires

joining several of the decomposed relations. Since join operations are computation¬

ally expensive, interrelational join constraints are undesirable.
However, a lossless and dependency preserving decomposition of a relation

scheme into third normal form does not always give the minimum number of relation

schemes. Furthermore, many different possible decompositions with the lossless and

dependency preserving properties may be possible.
The goal of the decomposition approach to relational database design using FDs

is to come up with a database scheme that is in BCNF, is lossless, and preserves the

original set of FDs. If this goal is not achieved the alternate goal is to derive a

database scheme that is in 3NF and is lossless and dependency preserving.

342 Chapter 7 Synthesis Approach and Higher Order Normal Form

7.2 Normalization through Synthesis

In the decomposition approach to relational database design, we start with a relation

(a universal relation) with undesirable properties and decompose it into a number of

smaller relations to avoid these anomalies. Decomposition into third normal form

using Algorithm 6.6 will be both lossless and dependency preserving. Decomposition

into BCNF using Algorithm 6.7 will be lossless but may not be dependency preserv¬

ing. Furthermore, decomposition into BCNF form is not unique.

The synthesis approach is an alternate approach to relational database design.

Here we start with an universal relation scheme U that is not in third normal

form and a set of functional dependencies F over U, and we create a database

scheme R = {R1(R2, • . . , Rk}. The scheme R is dependency preserving,

i.e., all the dependencies in F are preserved and, in particular, if there is functional

dependency Fj € F, there is a relation Rj € R such that the determinant of the FD Fj

is a key of Rj. Every relation Rj is in third normal form and there are no extraneous

relations in the relation scheme R and hence no data duplications. In addition R is a

lossless relation scheme if we ensure that at least one of the relations in R contains
a key of U.

7.2.1 Functional Dependencies and Semantics

Functional dependencies are representations of the semantics of real world data in a

model. We have to be careful that the semantics of the functional dependencies are

preserved. We saw the importance of distinct names for attributes to indicate their
semantic usage in the universal relation approach earlier.

Consider the attribute price of the entity set PART. Each part could have two

prices associated with it, the wholesale or cost price and the retail or sale price.

These price attributes are defined on the same domain. However, the wholesale and

retail prices are not synonymous and are distinguished by using distinct names such
as Price-Wholesale and Price-Retail.

Consider another example where different meanings are attached to an attribute

defined on a given domain. The following example of functional dependencies in¬

volves the attribute Department defined on the domain consisting of all the depart¬

ments of a university. The attribute Department appears a number of times: Student

Department, Course -+ Department, Professor —> Department. However, the

semantics of the use of this domain for the attribute Department is to indicate the

department to which the student, course, or professor belongs and this could be

distinct. This distinction is carried into the model by giving distinct names, let us

say S-Department, C-Department, and P-Department to these distinct meanings
assigned to the attribute. We write the above mentioned FDs as follows:

Student —» S-Department

Course —> C-Department
Professor —> P-Department

7.2 Normalization through Synthesis 343

7.2.2 Semantics of Nonfunctional Relationships

A nonfunctional relationship among attributes exists in a relation when some attri¬

butes are grouped together without any apparent dependencies existing between

them. However, there is a relationship between these attributes that may become

obvious if additional attributes are introduced. The FDs may not be apparent because

the values for one set of attributes do not define unique values for another set of

attributes. There may be no real functional dependency between these attributes but

the database designer may want these attributes together. For example, the attributes

Professor, Interest, and Course could be grouped together in the absence of apparent

functional dependencies. However, this may be done to reflect the reality that a given

professor has expertise and interest in a given area and that he or she can teach a

given course requiring knowledge in that area. Such nonfunctional dependencies can

be introduced by using the following scheme:

Professor Interest Course —> 0

Here 0 is a nonexistent attribute used only to show the nonfunctional relation¬

ship among the attributes of its determinant. To indicate additional nonfunctional

relationships we can introduce additional nonexistent attributes 0t, 02, . . . , 0n.

These nonexistent attributes can be used to define the nonfunctional relationship

during the database design process. Once a satisfactory database scheme is obtained

these attributes can be discarded.

7.2.3 Synthesis Approach

Because the FDs determine whether or not a relation scheme is in third normal form,

it would be easy to obtain a relation scheme in 3NF if the FDs are used to design

the scheme. The synthesis approach uses the assumption that there is at least one

functional relationship between two sets of attributes. If no such relationship in fact

exists, the synthesis design approach introduces appropriate nonfunctional relation¬

ships. In the synthesis approach, the starting point of the relational database design

process is a set of attributes (universal relation) and the set of functional (and non¬

functional) dependencies that have to be enforced among the attributes of this uni¬

versal relation. The synthesis procedure then synthesizes a set of third normal form

relation schemes, which preserves the required dependencies.

If the set of FDs used in the synthesis design process is a nonredundant cover,

the number of relations synthesized will be minimum. In fact, it has been shown that

the synthesis approach will produce the same set of relations regardless of the mini¬

mal cover used. (Recall that for a given set of FDs, it is possible to derive a number

of covers.)

Consider the universal relation U(A, B, C, D, E, H) and the set of FDs

F = {A -> BC, CD -> E, E -> C, D -» AEH, ABH -> BD, DH -» BC}. If

a relation is synthesized for each FD in F, it will result in the following

design:

Example 7.1

344 Chapter 7 Synthesis Approach and Higher Order Normal Form

Ri(ABC) with key A
R2(CDE) with key CD
R3(EC) with key E
R4(DAEH) with key D
R5(ABDH) with key ABH
R6(DHBC) with key BC

However, F contains redundant FDs CD —» E and DH —» BC. This means

that the relations R2 and R6 are redundant and can be eliminated from the

design. ■

If the FDs used in the synthesis approach are left reduced, i.e., there are no

extraneous attributes on the left-hand side of the FDs, then we will not introduce any

partial dependencies in the relations synthesized using such FDs.

Example 7.2 Consider U{A,B,C,D} with the set of FDs F = {ABC —» D, A —> C}. The

approach of using each FD in F to synthesize a relation gives the following

relations:

Ri(ABCD) with key ABC
R2(AC) with key A.

However, the relation Rj is not in 3NF since there is a partial depen¬

dency AB —» D. If the FD A —*■ C were used to left reduce ABC —> D, we

replace the latter by AB —> D and hence obtain a synthesized design in the
3NF. ■

If two or more FDs have determinants that are functionally dependent on each

other they are said to be equivalent. For instance, if we have set of attributes X and

Y and if X —» Y and Y —» X then X and Y are equivalent, written as X 4—» Y. In

this case, instead of building two or more relations, one for each such FD, we can

build only a single relation for each such group of FDs. Such a strategy produces an
economic relational design.

Example 7.3 Let us return to the universal relation U{A, B, C, D, E, H} and the set of

FDs F = {A -> BC, CD -> E, E -> C, D -» AEH, ABH -» BD, DH ->

BC}. We saw that the FDs CD —> E and DH -» BC are redundant and we

can eliminate these. In addition, the FD ABH -> BD is not left reduced, the

attribute B being extraneous. This gives us, after reduction, the FDs AH —>

D. Now, since D —> AH, we get the one-to-one dependency AH <—» D.
Thus, AH and D are equivalent. We can combine these equivalent keys into
one relation to give the following synthesized relational design:

Ri{AZ?C} with key A
R2{£C} with key E
Ri{ADEH) with keys AH, D

7.2 Normalization through Synthesis 345

Having determined the equivalent groups of FDs, we should eliminate any

transitive dependencies that may exist. This will ensure that the relations
produced will be in 3NF. ■

7.2.4 Synthesis Algorithm

The best known synthesis algorithm was proposed by Bernstein (Bern 76) and is

sometimes called the Bernstein Synthesis algorithm. The algorithm starts with a uni¬

versal relation and the functional dependencies to be enforced on it and produces a

third normal form database scheme that is lossless and dependency preserving. The

algorithm is called a synthesis algorithm because it constructs relation schemes from

the FDs rather than decomposing a relation scheme into simpler relation schemes.

The synthesis algorithm uses a canonical cover of a set of (left-reduced) func¬

tional dependencies and groups the functional dependencies such that the determinant

of the FDs in each group is the same. Recall that an FD is left reduced if the left-

hand side does not contain any extraneous attributes. The algorithm then finds com¬

pound functional dependencies (X1?X2, . . . , Xk) —> Y by using the equivalent

determinant Xj <■—> Xj for 1 < i < k and 1 < j < k. The characteristic of the

compound functional dependency (X1? X2, . . . , Xk) —» Y is that Xj —» Xj and

Xj—> Y for 1 < i < k and 1 < j < k.

Let us illustrate the synthesis algorithm via the following example.

Example 7.4 Consider the universal relation U(A, B, C, D, E, F, G) with the functional

dependencies:

BC —» A
FG -> BC
B —» D
C -» E
F —» A
G —» A
ABE G
ACD F

In step 1 we find that the canonical cover of F includes the above FDs.

In step 2 we find that the groups contain one FD each.

In step 3 we discover that BC —» FG and FG —> BC are in the

cover, hence we can combine these two groups into a single group (BC,

FG) —> A.
G now becomes (BC —» A, B —> D, . . . ACD —> F).
J is BC -» FG, FG -* BC.
In step 4 we find that the minimum cover of G U J does not contain

BC —» A.

(BCFG) with keys (BC,FG)
(BD) with key (B)
(CE) with key (C)

346 Chapter 7 Synthesis Approach and Higher Order Normal Form

(FA) with key (F)
(GA) with key (G)
(ABE) with key (ABE)
(ACD) with key (ACD).

Because the keys of U are BC or FG, contained in one of the relations

above, the synthesis algorithm gives the final set of relations. ■

We now synthesize a set of 3NF relation for the STUDENT_INFO relation

scheme discussed in Example 6.32.

Example 7.5 Consider the set of attributes in the relation scheme STUDENT-
INFOiSMSjACCdGPPJtDT} with the following functional dependencies: (5

—» MA, M —» Sd, A Sd, C —> CdP, P -» Pd, RTD -+ C, TPD R, TSD
—» R, SC —> G). The key of this relation is TSD.

In step 1 we find that the given set of FDs is minimal, i.e., G is the

given set of FDs.

In step 2 the groups created are (S M, S —* A), (C —> Cd, C —» P),
(M Sd), (A -+ Sd), (P Pd), (SC -> G), (RTD -* C), (TPD R),
(TSD -> R).

In step 3 we find that G + RTD <■—* TPD and hence we get J as being

RTD —> TPD, TPD —» RTD. G reduces to (S —» M, S —» A), (C —> Cd,
C -> P), (M -> Sd), (A -> So), (P PJ, (SC -* G), (RTD -> Cj, (PPD
-»• <1>>, (PSD ->

In step 4 we eliminate TPD —» 4> to obtain G, as being S —> M, S —>

A, C -> C* C -> P, M -> Srf> A -> Srf> P -»• Pd, SC -> G, PPD -» C, PSD
-> P.

In step 5 we regroup (S M, S A), (C -> Cd, C -> P), (M SJ,

(A -> SJ, (P -> PJ, (SC -* G), (RTD -> C, PPD TPD, TPD PPD),
(PSD -> P).

In step 6 we get the following relation schemes:

Relation Key

(SMA) (S)
(CCdP) (C)
(MSd) (M)

(ASd) (A)

(PPd) (P)
(SCG) (SC)

(RTD PC) (RTD, TPD)

(TSDR) (TSD)

Because the relation contains the key PSD the final relation scheme is as

above. ■

7.2 Normalization through Synthesis 347

Algorithm

7.1 Synthesis Algorithm for Third Normal Form

Input:

Output:

A universal database scheme U, a key K of U, and a set of simple left-
reduced FDs F.

A third normal form database scheme {R,F'}

1. (* Find a canonical cover *)

Find a canonical cover G of F. (* Use Algorithm 6.3 to first compute the

nonredundant cover *)

Set F' to G.

2. (* Form groups with same determinant *)

Partition G into groups Hi, H2, . . . such that all functional dependencies in
each group have the same determinant.

3. (* Find and merge equivalent determinants *)

J : — 4>; ;(* J will contain the FDs between equivalent keys *)

Examine each pair of groups Hj, Hj with the determinant Xj and Xj. If Xj
<—> Xj, i.e., if Xj—* Xj and Xj—» X; are in G + , then

J : = J U {Xj -* Xj, Xj -> XJ;
Hj : = H; - {Xj A | A € Xj};
Hj : = Hj - {Xj -» B | B € Xj};

merge Hs and Hj into a single group

(* Remove those FDs in Hj, Hj that pertain to the FDs Xj —> Xj and

Xj —* Xi, respectively; thus we modify G as follows:

G : = G - (X,.—»Xj) - (Xj—* Xj);

i.e., remove from G the FDs Xj-* Xj and/or Xj—> Xj if they are in G *)

4. (* Eliminate transitive dependencies *)

Find a minimum set of FDs Gj of G such that

(G, U J)+ = (G U J) +

Here G| Cl G.

G2 : = Gj U J;

5. Partition G2 into groups H,', H2', . . . where each group has the same or

equivalent determinant (* here use J to find equivalent pairs Xj <—* Xj *).

6. For each group Hj' with attributes (Xj, Xj, . . . , Y) corresponding to the

FDs Xj —* Xj —* . . . —* Xj —* Y form a relation {XjXj . . . Y} with key

(Xj or Xj or . . .) and add it to the relation scheme R.

7. (* Ensure that the relation scheme is lossless *)

If K Xi; i.e., if a candidate key of U is not in one of the keys of the

relations constructed, add the relation {X} to the relation scheme R.

348 Chapter 7 Synthesis Approach and Higher Order Normal Form

If we compare the relation schemes obtained with this approach with the ones

obtained in Example 6.32 using Algorithm 6.6 for the third normal form decompo¬

sition, we find that the synthesis approach gives one less scheme. Basically we have

combined the FDs RTD -> C and TPD -* R into one relation scheme (RTDPC). This

particular relation scheme is not in BCNF since for the FD C —» P in this relation,

the determinant C of the FD is not a key of the relation. However, the relation

(RTDPC) is in 3NF.

7.3 Multivalued Dependency

We discussed multivalued dependency (MVD) earlier with respect to the employee

entity and the dependents, positions, and salary history of the employee. Figure 7.1

is an unnormalized relation showing the relation EMPLOYEE {Employee-Name, De-
pendent(Name, Relationship), Position(Title, Date), Home-City, Home-Phone#}

and containing the information about employees. Each employee can have a number

of dependents and would have occupied various positions in the organization. The

relation has nonatomic values and hence, is not in normal form. We can normalize

this relation as shown in in Figure 7.2. We see in Figure 7.2 that for a given value

for Employee-Name, there are multiple values for the attributes (Dependent-Name,
Dependent-Relationship) and (Position-Title, Position-Date). The set of values for

the attributes of (Dependent-Name, Dependent-Relationship) is not connected in any

way to the values of the attributes in {EMPLOYEE — Employee—Name — Depen-

Figure 7.1 Unnormalized EMPLOYEE relation.

Employee-

Name

Depe

Name

ndent

Relationship

Positic

Title

ms

Date

Home-

City

Home-

Phone

Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356

Engineer 10/06/86

Bob Jones son J. Engineer 05/12/84

Engineer 10/06/86

Mark

Smith

Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729

Analyst 06/06/86

Chloe daughter Programmer 09/15/83

Smith-

Briggs Analyst 09/06/86

Mark son Programmer 09/15/83
Bnggs-

Smith
Analyst 09/06/86

7.3 Multivalued Dependency 349

Figure 7.2 Normalized EMPLOYEE relation.

Employee-

Name

Dependent-

Name

Dependent-

Relationship

Position-

Title

Position-

Date

Home-

City

Home-

Phone#

Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356
Jill Jones Bill Jones spouse Engineer 10/06/86 Lynn, MA 794-2356
Jill Jones Bob Jones son J. Engineer 05/12/84 Lynn, MA 794-2356
Jill Jones Bob Jones son Engineer 19/06/86 Lynn, MA 794-2356
Mark Smith Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729
Mark Smith Ann Briggs spouse Analyst 06/06/86 Revere, MA 45204729
Mark Smith Chloe Smith-Briggs daughter Programmer 09/15/83 Revere, MA 452-4729
Mark Smith Chloe Smith-Briggs daughter Analyst 06/06/86 Revere, MA 452-4729

Mark Smith Mark Briggs-Smith son Programmer 09/15/83 Revere, MA 452-4729

Mark Smith Mark Briggs-Smith son Analyst 06/06/86 Revere, MA 452-4729

dent}. Similarly, the set of values for the attributes of (Position-Title, Position-Date)
is not connected in any way to the values of the attributes in {EMPLOYEE - Employee
Name — Positions}.

For a second example of an MVD, look at the SCHEDULE relation described

in Chapter 6 and shown, with some slight modifications in Figure 7.3. Notice that a

course is scheduled a number of times during the week, and on each such meeting

the room in which it meets may be different (not a frequent occurrence but nonethe¬

less possible). Thus, the dependency between a course and a day is not simply func¬

tional but multivalued. Similarly, the dependency between a course and the room in

which it meets is multivalued.

These multivalued dependencies can be indicated as follows:

Course —RoomDayTime

Figure 7.3 The SCHEDULE relation.

Prof Course Room Max-Enrollment Day Time

Smith 353 A532 40 mon 1145

Smith 353 A534 40 wed 1245

Clark 355 H942 300 tue 115

Clark 355 H940 300 thu 115

Turner 456 B278 45 mon 845

Turner 456 B279 45 wed 845

Jamieson 459 Dill 45 tue 1015

Jamieson 459 D110 45 thu 1015

350 Chapter 7 Synthesis Approach and Higher Order Normal Form

However, a given course meets on a given day and time in but one room, i.e.,

there is a functional dependency:

CourseDayTime —> Room

Multivalued dependencies arise when a relation R having a nonatomic attribute

is converted to a normalized form. For each X value in such a relation, there will be

a set of Y values associated with it. This association between the X and Y values

does not depend on the values of the other attributes in the relation. Suppose we have

two tuples ti, t2 in relation R defined on relation scheme R with the same X value.

We exchange the Y values of these tuples and call the tuples so obtained t3 and t4.

Then tuples t3 and t4 must also be in R.
In the SCHEDULE relation of Figure 7.3, there is a multivalued dependency

between Course —*—> RoomDayTime. Thus, if we exchange the {Room, Day, Time}
value in tuples tj and t2 with the same Course value (353) where

t, = |Smith | 353 |A532 | 40 | mon | 1145 |

t2 = |Smith j 353 |A534 j 40 | wed | 1245 |

we get tuples t3 and t4 as follows:

t3 = |Smith | 353 |A532 | 40 | mon | 1145 |
t4 = jsmith | 353 |A534 | 40 j wed | 1245 |

Tuples t3 and t4 are in the database. (In fact, in this example tuple t3 is the

original tuple t, and tuple t4 is the original tuple t2!)

The multivalued dependency Course —{Room, Day, Time} does not mean

that the multivalued dependencies Course —»-> Room, Course —>—> Day, and Course
—»-» Time will hold. Thus, corresponding to tuples t, and t2 above, if we exchange

just the Room values we get t3' and t4' which are not in the database.

t3' = |Smith | 353 |A534 | 40 | mon | 1145 |

t4' - |Smith | 353 |A532 j 40 | wed | 1245 |

Using Figure 7.2 we can verify that such an exchange of the Y values for a

multivalued dependency X —»-»■ Y in two tuples t[and t2 with the same X value will

always give tuples t3 and t4 which are in the database, even if the relation has mul¬

tiple multivalued dependencies. However, tuples t3 and t4 need not be the original

tuples ti and t2. Exchanging the values of the attributes {Dependent-Name,
Dependent-Relationship} in any two tuples tj and t2 of Figure 7.2, gives us tuples t3

and t4 as shown below. Tuples t3 and t4 are in the database, but these tuples are not
the original ti and t2 tuples.

t, = |J J|Bill J|spouse|J. Eng(05/12/841Lynn, MA|794-2356|

t2 = |J j|Bob jjson |Eng 110/06/861Lynn, MA|794-2356|

t3 = |J J|Bill J |spouse|Eng 110/06/861Lynn, MA|794-2356|

t4 = |J J|Bob jjson jj. Eng jo5/12/84 j Lynn, MAj795-2356|

7.3 Multivalued Dependency 351

This property of multivalued dependency can be expressed formally by the def¬

inition given below.

Definition: Given a relation scheme R, let X and Y be subsets of attributes of R (X and Y

need not be distinct). Then the multivalued dependency X —»-»• Y holds in a

relation R defined on R if given two tuples t, and t2 in R with t,(X) = t2(X); R

contains two tuples t3 and t4 with the following characteristics:

•t, t2, t3, t4 have the same X value, i.e.,

t,(X) = t2(X) = t3(X) = t4(X)

•the Y values of tj and t3 are the same and the Y values of t2 and t4 are the

same, i.e.,

t,(Y) = t3(Y) and t2(Y) = t4(Y)

•the R — X — Y values of t, and t4 are the same and the R — X — Y values

of t2 and t3 are the same, i.e.,

t,(R — X — Y) = t4(R - X - Y)

t2(R - X - Y) = t3(R - X - Y)

Let us examine the problems that are created as a result of multivalued depend¬

encies. Consider Figure 7.2 for the EMPLOYEE relation. It has two multivalued

dependencies:

Employee-Name Dependent-NameDependent-Relationship

Employee—Name —» Position—TitlePosition—Date

Suppose employee Jill Jones gets a promotion on 12/15/86 to the position of

manager. This involves adding two tuples to the database, one for each of her two

dependents, to correctly register her employment history. A change in the value of

an FD in a relation involving an MVD requires the change to be reflected in all

tuples corresponding to that entity. In the EMPLOYEE relation of Figure 7.2 a

change of the home address of an employee would have to be reflected in all tuples

pertaining to that employee. Thus, if Jill Jones moves to Boston and her home phone

number changes to 368-4384, a change is required in not one tuple but six tuples

(after the addition of the two tuples for an additional position). Deletion requires that

more than one tuple be deleted. For example, in the SCHEDULE relation, if course

355 is canceled, two tuples must be deleted from the table shown in Figure 7.3.
Summarizing, note that in multivalued dependencies the requirement is that if

there is a certain tuple in a relation, then for consistency the relation must have

additional tuple(s) with similar values. Updates to the database affect these sets of

tuples or entail the insertion of more than one tuple. Failure to perform these multiple

updates leads to inconsistencies in the database. To avoid these multiple updates, it

is preferable to replace a relation having undesirable MVDs with a number of more

“desirable” relation schemes. We illustrate more desirable schemes in Figure 7.4

352 Chapter 7 Synthesis Approach and Higher Order Normal Form

Figure 7.4 Replacing the EMPLOYEE relation with three relations.

Employee-Name Dependent-Name Dependent-Relationship

Jill Jones Bill Jones spouse

Jill Jones Bob Jones son

Mark Smith Ann Briggs spouse

Mark Smith Chloe Smith-Briggs daughter

Mark Smith Mark Briggs-Smith son

Employee-

Name

Position-

Title

Position-

Date

Jill Jones J. Engineer 05/12/84

Jill Jones Engineer 10/06/86

Mark Smith Programmer 09/15/83

Mark Smith Analyst 06/06/86

Employee-

Name

Home-

City

Home-

Phone#

Jill Jones

Mark Smith

Lynn, MA

Revere, MA

794-2356

452-4729

for the EMPLOYEE relation of Figure 1.2.' Such a scheme avoids the necessity of
multiple storage of the same information.

7.3.1 MVD and Normalization

In the normalization approach of a relation scheme with deletion, insertion, and up¬

date anomalies we have considered only functional dependencies so far. When the

relation scheme to be normalized exhibits multivalued dependencies, we have to en¬

sure that the resulting relation schemes do not exhibit any of these undesirable dele¬

tion, insertion, and update anomalies. A normal form called fourth normal form has

been defined for relation schemes that have FDs as well as MVDs. The fourth normal

form imposes constraints on the type of multivalued dependencies allowed in the
relation scheme and is more restrictive than the BCNF.

The normalization of a relation scheme with MVDs requires, as in the case of
normalization of relations with only FDs, that the decomposed relation schemes are

both lossless and dependency preserving. The following property of the MVD will
be used in the normalization approach.

'Recall our discussions on separating a repeating group from the representation of an entity set and replacing each such ,roun
by an .dent.fy.ng relationsh.p and a weak entity. These were then represented by a relation conta,nine the kL of thT^f
entity along with the attributes of the weak entity (See Chapter 2). 8 k y th trong

7.3 Multivalued Dependency 353

Property of MVD

The following theorem for multivalued dependency is from Fagin (Fagi 77). We

simply state it here. For the proof, see the bibliographic notes at the end of the

chapter for the reference.

Theorem 7.1: If there is a multivalued dependency X —»-» Y in a relation R, it also has

an MVD X —»-»R — XY and R can be decomposed losslessly into two relations R,(X,Y)

and R2(X,Z) where Z = R — XY.

As a consequence of the above, a relation scheme with an MVD must be able

to be decomposed losslessly. Consider a relation scheme R. Let X, Y, Z be subsets

of R, not necessarily disjoint, such that Z = R — XY. Let R be a relation on the

relation scheme R. Relation R satisfies the MVD X —Y if and only if

R = 1tR1(XY)(R) 1X1 'nR2(XZ)(R)

In other words, R decomposes losslessly into the relation scheme Rj and R2.

Definition: A trivial multivalued dependency is one that is satisfied by all relations R on a

relation scheme R with XY C R. Thus, a MVD X —» Y is trivial if Y C X or

XY = R. Obviously if Y = cj>, then the MVD X -»-> Y is trivial.

Example 7.6 (a) In the normalized EMPLOYEE relation of Figure 7.2 with the following

dependencies:

Employee-Name —» Home-CityHome—Phone#,

Employee-Name —>-» Dependent-NameDependent-Relationship,

Employee-Name —»-» Position-TitlePosition-Date.

the following MVDs are also satisfied:

Employee-Name —»-»• Home-CityHome-Phone#Dependent-Name

Dependent-Relationship,

Employee-Name —>—> Home-CityHome-Phone# Position-Title

Position-Date.

(b) In Figure 7.4 the following MVDs are trivial:

Employee-Name —>—» Dependent-NameDependent-Relationship

Employee-Name —Position-TitlePosition-Date ■

7.3.2 Axioms for Functional and Multivalued Dependencies

To design a relational database, given a relation scheme R with functional and mul¬

tivalued dependencies, we need a set of rules or axioms that will allow us to deter-

354 Chapter 7 Synthesis Approach and Higher Order Normal Form

mine all the dependencies implied by a given set of known dependencies. We need

these axioms to verify whether a given relation scheme is legal (from the point of

view of being lossless and dependency preserving) under a set of functional and

multivalued dependencies. The first three of these axioms are the same as those we

discussed for functional dependencies. As before, W, X, Y, Z are subsets of R.

FI: Reflexivity: X —> X.

F2: Augmentation: (X —> Y and VCZ)(= (XZ Y and XZ VY)

F4: Additivity: (X —»• Y and X -» Z) f= X-> YZ.

Ml: Replication: X —*■ Y j= X —»-» Y,

The replication axiom leads to the following versions of axioms FI through F3

for multivalued dependencies:

M2: Reflexivity: X —>-> X.

M3: Augmentation: X -*-> Y f= XZ —Y. If (X -*-*■ Y and V C W) then

WX -►* VY.

M4: Additivity or Union: (X Y and X —»-* Z) (= X —»-*■ YZ.

M5: Complementation: X —Y j= X —*-> (R - X - Y).

M6: Transitivity: (X -+-> Y and Y —»-* Z) (= X —»-»• (Z-Y).

Note that unlike the transitivity rule for functional dependency, if X Y and

Y ->-» Z, it does not always imply that X —>-» Z (i.e., X -*-+ Z could be false).

M7: Coalescence: Given that W C Y and Y D Z = <j>, and if X —»-» Y and Z —> W,

then X —► W.

In addition to the above axioms, which have been shown to be sound and com¬

plete (refer to the bibliographic notes for reference to the formal proofs), the follow¬
ing rules are useful.

M8: Decomposition or Projectivity for the MVD: If X Y and X Z, then

x —»-» (Y n Z), X-*-> (Y-Z), and X —»-> (Z-Y).

The decomposition rule for functional dependencies is much stronger than the

corresponding one for the MVD; in the former, if X —» Y, then X -> A, for A, e Y.

However, if X -»-> Y, we can only say that X -»-»• A, if we can find a Z such that

X >Z and Y - Z = A or Z - Y = A or Y D Z = A.

M9: Mixed (Pseudo)Transitivity: If X -»-> Y and XY Z then X -»-> (Z - Y).

7.3.3 Closure under MVDs

Given D, a set of FDs and MVDs, we can find a set of all functional and multivalued

dependencies that can be derived from D. This set is the closure of D; to be consis¬

tent with the nomenclature for indicating the closure of a set of FDs it is indicated

by D . Computing the closure of D, like computing the closure of a set of FDs is

time consuming. However, instead of computing D + , we can use axioms Ml
through M9 to ascertain if a given MVD is implied by a set of FDs and MVDs.
With this goal in mind, we develop a method to determine if D (= X > > Y

7.3 Multivalued Dependency 355

The Dependency Basis

Let T be a collection of sets closed under union, difference, and intersection. Given

t] and t2 are in T and ti0t2 is also in T, then T is said to be closed (with respect to

0). Here 0 is one of the union, difference, or intersection operations for sets. Each

member of T is made up of a subcollection S of nonempty, pairwise disjoint sets.
The collection S is called the basis of T.

Given U a set of attributes X C U and a set of dependencies D, we want to find

all subsets of U — X that are dependent on X by some MVD in D + . The comple¬

mentation rule (M5), the union rule (M4), and the decomposition rule (M8) for

multivalued dependencies imply that if the left-hand side of a set of MVDs is the

same, then right-hand side is closed under Boolean operation (i.e., for MVDs of the

form X —Yj, 1 < i < n, the YjS are closed under Boolean operation).

Algorithm

7.2 Computing the Dependency Basis of X

Input: U, a set of attributes; X C U and D, a set of FDs and MVDs.

Output: The dependency basis {Yi, Y2, . . . Y„} of X under D.

1. Convert each FD W —» A to an MVD W —»-* A using rule Ml.

2. (* Initialize the set S to the null set *) S = <}>;

3. (* Apply rules M3 and M5 *)
For each MVD W —>-> Z in D such that WCX add Z — X and U — Z —

X to the set S as per rules M3 and M5.

4. (* Now apply the decomposition rule M8 to each pair of sets of attributes

in set S such that they are not disjoint *)

For each pair of sets of attributes Yj and Y2 in S such that Yi fl Y2 =£ <j>:

replace Yj and Y2by the nonempty sets Yj fl Y2, Y2 - Y2, and Y2 - Yj

(* i.e., discard the sets Yt - Y2 and Y2 - Yl if they are empty *).

5. (* Now look for MVD W -»-» Z in D and Y in S such that Y fl W = <}>

but Y fl Z =£ and Y — Z =£ <}> and for such an MVD replace Y by Y — Z

and Y n Z *)

For each MVD W —*-» Z € D and (Y € S)
and (Y D W = 4>)

and (Y fl Z =£ <J>)

and (Y — Z =£ <J>)

replace Y in S by Y Pi Z and Y — Z;

6. (* S now contains the dependency basis of X *)

Output S{Y,, Y2, . . . , Y„}, the dependency basis of X under D.

356 Chapter 7 Synthesis Approach and Higher Order Normal Form

Thus, given X C U and a set D of dependencies, we can derive a set Yj,

1 < i < n, such that

• u - X = Y,Y2. . . Y„,

• Yj,Y2, . . . Y„ are pairwise disjoint, i.e., Yj D Yj = <J> for i + j, and

• For any MVD X —Z in D + , Z is the union of some of the YjS.'

Definition: The set {Y,, Y2, . . . Y„}, with the properties given above is referred to as the

dependency basis of X with respect to D and is indicated by the nomenclature
DEP(X).

An MVD X —Z is in D+ if and only if Z is a union of some of the sets

from DEP(X), the dependency basis of X relative to the set D of FDs and MVDs. It

follows that for each set Yj i DEP(X), X —Yj is in D + .

The MVD X —»-» Yj where Yj € DEP(X) is called a simple MVD.

We see that DEP(X), the dependency basis of X, serves a similar function in

determining if any MVD X —»-»• Y is implied by a set D of FDs and MVDs, as X +

was used to determine if any FD X —» Y was implied by a set of FDs F.

Algorithm 7.2 computes the dependency basis of X. It simply converts each FD

into an MVD and then applies the rules of the MVD to decompose the MVDs into

simpler MVDs. Careful implementation of the algorithm can be shown to take time

proportional to n3m to complete, where n is the number of attributes in U and m is
the number of dependencies in D.

The following example illustrates the use of Algorithm 7.2

Example 7.7 Consider a database to store student information that contains the following

attributes: students’ names (S), their majors (M), the department they are

registered in (Sd), their advisers’ name (A), the courses they are taking (C),

the departments responsible for the course (Cd), the final grades of the stu¬

dents in a course (G), the teacher of the course (P), the department of the

teacher of the course (Pd), and the room, day, and time (RDT) where the

course is taught. Assume that the students’ names and the advisers’ names

are unique. The database must satisfy the following set H of functional and
multivalued dependencies:

S —» MA

M Sd

A -► Sd

c -* CjP

p -» pd
RTD -> C

TPD -» R

TSD -* R

SC —> G

C RTD

C -»-> SMG

7.3 Multivalued Dependency 357

We want to compute DEPfC) using Algorithm 7.2. The first step will con¬

vert all FDs into MVDs.

Step 3 will give us the set S with the following sets of attributes:

{<CdP}, {RTD}, {SMG}, {SMASjPJtTDG}, {SMASdPjG},

{ASjCjPPjRTD}.

Step 4 will split the sets in S to give the following sets in S:

{CdP}, {RTD}, {SMG}, {ASdPd}.

Step 5 will complete the intersections and splitting to give S with the

following sets, DEP(C), the dependency basis of C under the above set of

FDs and MVDs:

{CdP}, {RTD}, {SMG}, {5,}, {A}, {Pd}

The dependency basis allows us to conclude that the MVDs C —»-»•

SSjAMG, C PPdCd, etc., are in H + , since the right-hand side of each

MVD is a union of sets from DEPfC). ■

7.3.4 Fourth Normal Form

A generalization of the Boyce Codd normal form to relation schemes which includes

the multivalued dependencies is called fourth normal form and is defined as follows:

Definition: Given a relation scheme R such that the set D of FDs and MVDs are satisfied,

consider a set of attributes X and Y where X C R, Y C R. The relation scheme

R is in fourth normal form (4NF) if for all multivalued dependencies of the

form X -»->Y € D+, either X Y is a trivial MVD or X is a superkey of R.
A database scheme is in 4NF if all relation schemes included in the database

scheme are in 4NF.

If a relation scheme R with the set D of FDs and MVDs is in fourth normal

form, it is also in BCNF. If this were not so, R would satisfy a functional depen¬

dency not involving the superkey as a determinant of the form X —» Y. However, by

the rule Ml X -» Y \= X -*-»Y. Again X here is not a superkey, but this contradicts

the assertion that R is in fourth normal form.

7.3.5 Lossless Join Decomposition into Fourth Normal Form

Given a relation scheme that is not in fourth normal form, we would like to decom¬

pose it into a set of relations that are in fourth normal form and at the same time we

want to preserve all the dependencies. Furthermore, we want the decomposition to

be lossless. The latter requirement in the decomposition can be obtained using the

358 Chapter 7 Synthesis Approach and Higher Order Normal Form

property of a MVD given in Section 7.3.1 and restated in a different form in the next

paragraph. However, the first requirement, that of dependency preservation, is not as

simple to satisfy (as in the case of having only FDs) when we have both functional

and multivalued dependencies.
The following property of a MVD can be used to perform a lossless decompo¬

sition of a relation R with both functional and multivalued dependencies. We are

given a relation scheme R where D is a set of FDs and MVDs on the attributes of

R. If R is decomposed into R! and R2, the decomposition is a lossless join decom¬

position if and only if D+ contains one of the following MVDs:

(Ri n R2) —>-> Ri or (R! R2) —»->• R2.

Recall that the requirement of a lossless join decomposition, when only FDs are

involved, was (R! n R2) —» Rt or (Rj H R2) —» R2.
The similarity between the Boyce Codd normal form and the fourth normal form

extends to the decomposition algorithm of a relation scheme not in fourth normal

form into a set of relations that are in fourth normal form. The adaptation of the

decomposition algorithm for relation schemes with MVDs is given in Algorithm 7.3

Let us return to the normalized EMPLOYEE relation of Figure 7.2. It has the

following set of FDs and MVDs: {Employee-Name —*-> Dependent-NameDependent

Relationship, Employee-Name —»-»• Position-TitlePosition-Date, Employee-Name

—» Home-CityHome-Phone}. Is this relation in fourth normal form? It will be if the

attribute Employee-Name is a superkey of the EMPLOYEE relation. We have used

relations where the name, for convenience, was taken as an unique identifier for a

person, the relation about student and faculty members being other such examples.

If Employee-Name were the key of the EMPLOYEE relation, then according to the

Algorithm

7.3 Lossless Join Decomposition into Fourth Normal Form

Input: A relation scheme R not in 4NF and a set of FDs and MVDs D.

Output: Decomposition of R into a set S of relation schemes Rj, R;C S for 1 < i < n

such that each Rj is in 4NF and the decomposition is lossless.

i : = 0;
S : = Ro (* initialize S to R0 = R *)

for each nontrivial MVD (X Y) that holds on some scheme Rj in S such

that X is not a superkey of Rj (* i.e., X -> Rj is not in D+; we can further
assume that X (1 Y = <{>*) do

begin

i : = i + 1;

Rj : ~ Rj Y
(* remove the attributes Y from Rj *)

S : = S U Rj{X, Y};

(* form relation Rj{X, Y} and add it to S *)
end

7.3 Multivalued Dependency 359

Figure 7.5

definition of fourth normal form, the EMPLOYEE relation is in fourth normal form.

However, recall the definitions for candidate key and superkey. A superkey of a

relation R defined on a relation scheme R was defined as being a set of attributes X

C R such that, for two tuples tj and t2 in R, t|(X) ± t2(X). Thus, the values of the

set of attributes in X uniquely identify a tuple in R. A key is a set K such that no

proper subset K' of K can uniquely identify a tuple of R, i.e., t,(K') may or may

not be equal to t2(K').

With the above definitions of superkey and key we see that the attribute

Employee-Name is not a superkey of the relation EMPLOYEE and hence the relation

is not in fourth normal form. As a matter of fact the candidate key of the EM¬

PLOYEE relation is the entire relation! Note that even though Employee-Name is

not a candidate key of the relation, it still uniquely identifies an instance of the entity

EMPLOYEE. All characteristics of an instance of the entity are found by locating

all tuples with this value for the Employee-Name attribute.

We noted the disadvantage in the form of anomalies in insertions, deletions, and

updates for the EMPLOYEE relation as given in Figure 7.2. We can use Algorithm

7.3 to decompose the EMPLOYEE relation losslessly into a set of fourth normal

form relations. The resulting relations are given in Figure 7.5. (Note that these rela-

Decomposition of the EMPLOYEE relation.

Employee-Name Dependent—Name Dependent-Relationship

Jill Jones Bill Jones spouse

Jill Jones Bob Jones son

Mark Smith Ann Briggs spouse

Mark Smith Chloe Smith-Briggs daughter

Mark Smith Mark Briggs-Smith son

(a)

Employee-Name Position-Title Position-Date

Jill Jones J. Engineer 05/12/84

Jill Jones Engineer 10/06/86

Mark Smith Programmer 09/15/86

Mark Smith Analyst 06/06/86

(b)

Employee-Name Home-City Home-Phone#

Jill Jones

Mark Smith

Lynn, MA

Revere, MA

794-2356

452-4729

(c)

360 Chapter 7 Synthesis Approach and Higher Order Normal Form

tions are the same as the ones shown in Figure 7.4.) The relations of Figure 7.5a

and b have the trivial multivalued dependency X —>-* Y with R = XY. In addition,

they are all key relations. A nontrivial MVD can be said to exist only if the relation

has at least one attribute in addition to the two sets of attributes involved in the

MVD.

7.3.6 Enforceability of Dependencies in the Fourth Normal Form

The fourth normal form decomposition algorithm produces a lossless relation scheme;

however, it may not preserve all the dependencies in the original non-4NF relation

scheme. In Example 7.8, we use one MVD at a time to decompose a non-4NF

relation scheme into two relation schemes. Then we determine if each of these

schemes is in 4NF. The following properties are used to find the dependencies that
apply to the decomposed schemes.

Given R and the set of FDs and MVDs D, let Rj be a projection of R, i.e.,

Ri C R. The projection of D on Rj is derived as follows:

For each FD X —» Y such that D (= X —» Y, and if X C Rt, then X^(Yfl
Ri) holds in Rj.

For each MVD X —Y such that D f= X —>->■ Y, and if X C Rj, then X -*-*
(Y D Rx) holds in R^

Example 7.8 illustrates this method.

Example 7.8 Consider R(A, B, C, D, E, F, G) with the set H of FDs and MVDs given
by H{A -»-» B, B G, B -»-» EF, CD E}.

R is not in 4NF since for the nontrivial MVD A ->-> B, A is not a

superkey of R. We can take this MVD and decompose R into R,(A, B) and

R(A, C, D, E, F, G). R! is in 4NF; however, the reduced relation R is not
in 4NF.

Now the MVDs A —»-» B and B ->-> G give by axiom M6 A

G — B, which is equivalent to A > > G. Using this MVD, we decompose

R into RjfA, G) and R(A, C, D, E, F). R2 is in 4NF; however, the reduced
relation R is still not in 4NF.

We now take the MVD CD —»-» E (after converting the FD into an
MVD) and decompose R into R3(C, D, E) and R(A, C, D, F).

The MVDs A —»-» B, B —»-» EF by axiom M6 give A —»->• EF — B,

which reduces to A > > EF and when restricted to the current relation R
gives A -»-» F. Decomposing R now gives R4(A, F) and R(A, C, D).

R(A, C, D) is in 4NF since A —»-> B (= A ->-> CDEFG and its restric¬
tion to current relation R gives A —>-» CD.

However, we notice that the dependency B ->-» G is not preserved. ■

Example 7.8 illustrates that the 4NF decomposition is not dependency preserv¬

ing. Thus if lossless as well as dependency preserving decomposition is required, we

may have to settle for simple 3NF relation schemes, unless the BCNF decomposition

is lossless as well as dependency preserving. An approach that could be used to

7.4 Normalization Using Join Dependency: Fifth Normal Form 361

derive a dependency preserving decomposition is to eliminate each redundant depen¬

dency in D2. This process can be repeated until only nonredundant dependencies

remain in D. However, the order in which the dependencies are checked for redun¬

dancy determines the resulting nonredundant cover of D. In this process, the MVDs

should be eliminated before trying to eliminate FDs. The intuitive reason for this is

that the FDs convey more semantics about the data than the MVDs.

Dependency preserving decomposition involving D, a set of FDs and MVDs,

requires the derivation of the so-called 4NF cover of D. No efficient algorithms exist

to date to compute such a cover. The algorithm to decompose a relation into a loss¬

less and dependency-preserving 4NF relation is beyond the scope of this text. Inter¬

ested readers should consult the references in the bibliographic notes. Attempts have

been made to find a synthesis algorithm to construct a relation scheme from a set of

FDs and MVDs. Here again, no satisfactory algorithm has emerged.

7.4 Normalization Using Join Dependency: Fifth

Normal Form

A criterion of good database design is to reduce the data redundancy as much as

possible. One way of doing this in a relational database design is to decompose one

relation into multiple relations. However, the decomposition should be lossless and

should maintain the dependencies of the original scheme. A relational database de¬

sign is, as such, a compromise between the universal relation and a set of relations

with desirable properties. The relational database design thus tries to find relations

satisfying as high a normal form as possible. For instance, 3NF is preferable to 2NF,

BCNF is preferable to 3NF, and so on.

However, recent research in relational database design theory has discovered

higher and higher, hence more desirable normal forms. Fifth normal form (5NF) is

a case in point. It is related to join dependency, which is the term used to indicate

the property of a relation scheme that cannot be decomposed losslessly into two

simpler relation schemes, but can be decomposed losslessly into three or more sim¬

pler relation schemes.
To understand join dependency, let us use the following dependencies from the

database for an enterprise involved in developing computing products. It employs a

number of workers and has a variety of projects.

Project Expertise

(i.e., expertise needed for a given project)

Employee —Expertise

(i.e., expertise of the employee)

Employee —Project
(i.e., preferences of the employees to match their expertise)

Elimination of redundant dependencies doesn’t guarantee dependency-preserving decomposition, in general. However, with
conflict-free MVDs, the lossless decomposition is also dependency preserving. Conflict-free MVD sets are equivalent to

acyclic join dependencies (Lien 85, Scio 81).

362 Chapter 7 Synthesis Approach and Higher Order Normal Form

Figure 7.6 PROJECT_ASSIGNMENT relation.

Employee Project Expertise

Smith Query Systems Database Systems

Smith File systems Operating Systems

Lalonde Database Machine Computer Architecture

Lalonde Database Machine VLSI Technology

Evan Database Machine VLSI Technology

Evan Database Machine Computer Architecture

Drew SQL+ + Relational Calculus

Drew QUEL++ Relational Calculus

Shah SQL+ + Relational Calculus

Shah QUEL + ; + Relational Calculus

These dependencies are the translation of the enterprise’s need that the employ¬

ees involved in a given project must have certain expertise. Because of the expertise

of employees, they want to be involved in a given set of projects whose requirements

match their interests. Let us look at the relation scheme PROJECT_ASSIGN-

MENT(Employee, Project, Expertise). A relation defined on this scheme is given in

Figure 7.6. The relation scheme stores the employee’s assignments based on the

needs of the project, as well as the qualifications and preferences of the employee

who can contribute to the project. A project may demand more than one type of

expertise, and an employee may be an expert in more than one area. The project

Query Systems needs only the expertise of Database Systems, while a project Data¬

base Machine needs the expertise of VLSI Technology as well as Computer Archi¬

tecture. Further expertise of an employee, not needed for any project to which he or

she is assigned, is not shown in this relation. Figure 7.6 illustrates the sample con¬

tents of a database defined on this relation scheme. Employees Lalonde and Evan are

assigned to the project Database Machine; Employees Drew and Shah are assigned

to projects SQL+ + and QUEL+ +. The relation exhibits the following nontrivial

multivalued dependencies: Project Expertise and Project —Employee. Note

that the MVD Employee —*->Project and, hence, Employee > Expertise are not

exhibited in this relation. This can be verified by exchanging the Project value for

Smith, whereby we find that the resulting tuples are not in the database.

The relation PROJECT-ASS IGNMENTjLmp/oyec, Project, Expertise} having

the MVD Project Expertise (and by axiom M5 Project —*-» Employee) can be

decomposed losslessly into relations PROJECT_REQUIREMENT{Prq/ect, Exper¬

tise} and PROJECT_REFERENCE{£mp/oyce, Project}. Figure 7.7 shows the

decomposition of the relation of Figure 7.6. The join of PROJECT-REQUIREMENT

and PROJECT-PREFERENCE gives the same data as in Figure 7.6.

Notice from Figure 7.7b that the relation PROJECT-PREFERENCE exhibits the

(trivial) multivalued dependency Employee Project. Such a multivalued depen¬

dency that is not exhibited in a relation but becomes evident in a projection of the

relation is called an embedded multivalued dependency. Unlike multivalued de¬

pendencies, functional dependencies are never embedded. A functional dependency

Normalization Using Join Dependency: Fifth Normal Form 363

Figure 7.7 Lossless decomposition of relation of Figure 7.6: (a) PROJECT_REQUIREMENT and
(b) PROJECT PREFERENCE.

Project Expertise

Query Systems

File Systems

Database Machine

Database Machine

SQL + +

QUEL ++

Database Systems

Operating Systems

Computer Architecture

VLSI Technology

Relational Calculus

Relational Calculus

Employee Project

Smith

Smith

Evan

Lalonde

Drew

Shah

Drew

Shah

Query Systems

File systems

Database Machine

Database Machine

SQL+ +

QUEL + +

SQL+ +

QUEL++

(b)

X —» Y that is evident in a projection of relation R is also evident in the relation R.

Consider a relation scheme R and let X, Y, and Z be sets of attributes of R.
Here X, Y, Z need not be disjoint. A relation R over the relation scheme R satisfies

the embedded multivalued dependency X —^ Y|Z (i.e., R satisfies X —»-» Y and

hence, by axiom M5, X —>~>Z), if the projection of the relation R over X, Y, Z

(i.e., 7rXUYuz(R)) satisfies the MVDs X Y and X —»-»Z.

Now consider the relation scheme NEW_PROJECT_ASSIGNMENT. Perhaps

after some modifications in the enterprise involved, there has been a turnover in

employees and the expertise of new employees requires some changes in the assign¬

ment of projects. Figure 7.8 gives a sample table for a relation defined on the scheme

NEW_PROJECT_ASSIGNMENT. As the figure indicates, we are assigning more

than one employee to a given project. Each employee is assigned a specific role in

this project, requiring knowledge that lies within her or his field of expertise. Thus,

project Work Station, which requires expertise in User Interface, Artificial Intelli¬

gence, VLSI Technology, and Operating Systems, can be carried out by Brent,

Figure 7.8 NEW_PROJECT_ASSIGNMENT relation.

Employee Project Expertise

Brent Work Station User Interface

Brent Work Station Artificial Intelligence

Mann Work Station VLSI Technology

Smith Work Station Operating Systems

King SQL 2 Relational Calculus

Ito SQL 2 Relational Algebra

Ito QBE+ + Relational Calculus

Smith Query Systems Database Systems

Smith File Systems Operating Systems

364 Chapter 7 Synthesis Approach and Higher Order Normal Form

Figure 7.9 Decomposition of relation of Figure 7.8.

Project Expertise

Work Station

Work Station

Work Station

Work Station

SQL 2

SQL 2

QBE + +

Query Systems

File Systems

User interface

Artificial Intelligence

VLSI Technology

Operating Systems

Relational Calculus

Relational Algebra

Relational Calculus

'Database Systems

Operating Systems

(a)

Employee Project

Brent Work Station

Mann Work Station

King SQL 2

Ito SQL 2

Ito QBE + +

Smith File Systems

Smith Query Systems

Smith Work Station

Employee Expertise

Brent User Interface

Brent Artificial Intelligence

Mann VLSI Technology

King Relational Calculus

Ito Relational Algebra

Ito Relational Calculus

Smith Database Systems

Smith Operating Systems

(b) (c)

Mann, and Smith combined. Brent is assigned the User Interface and Artificial Intel¬

ligence related role, Mann is assigned the VLSI Technology related role, and Smith

is assigned the Operating Systems role. This flexibility was not exhibited in the data

of Figure 7.6.

The relation of Figure 7.8 does not show any functional or multivalued depend¬

encies; it is an all-key relation and therefore in fourth normal form. Unlike the rela¬

tion PROJECT-ASSIGNMENT, the relation NEW_PROJECT_ASSIGNMENT
cannot be decomposed losslessly into two relations. However, it can be decomposed

losslessly into three relations. This decomposition is shown in Figure 7.9. Two of

these relations, when joined, create a relation that contains extraneous tuples; thus

the corresponding decomposition is not lossless. These superfluous tuples are re¬

moved when the resulting relation is joined with the third relation. Note that the

MVDs, similar to those exhibited in Figure 7.6, are embedded in this example.

7.4.1 Join Dependencies

So far we have focused on the decomposition of a relation scheme with undesirable

properties into two relation schemes (at each step of a multistep process) such that

7.4 Normalization Using Join Dependency: Fifth Normal Form 365

the decomposition is lossless. A join of these decomposed relation schemes will give

the original scheme and, hence, the data. However, as we saw in the previous section,

although it may not be possible to find a lossless decomposition of a relation scheme

into two relation schemes, the same relation scheme can be decomposed losslessly

into three relation schemes. This property is referred to as the join dependency (JD).

Definition: Given a relation scheme R, consider the following set of its projections: {Ri, R2,

. . . RJ. A relation R(R) satisfies the join dependency * *[Rj, R2, • • • R„L if
and only if the join of the projection of R on Rh 1 < i < n, is equal to R.

R = itr1(R) tX! ttr2(R) tX . . . tXirRn(R)

In other words, join dependency is the assertion that the decomposition of R

onto Ri(. . . , R„ is a lossless decomposition. A join dependency is trivial if

one of the projections of R is R itself.

A necessary condition for a relation scheme R to satisfy a join dependency *[Rj,
R2, . . . Rn] is that R = R,UR2U. . .URn.

The relation scheme PROJECT_ASSIGNMENT satisfies the join dependency

*[PROJECT_REQUIREMENT, PROJECT_PREFERENCE], since the join of

PROJECT_REQUIREMENT and PROJECT_PREFERENCE gives the relation

PROJECT_ASSIGNMENT losslessly. However, the relation NEW_PROJECT_

ASSIGNMENT does not satisfy any of the following join dependencies:

* [(Project,Expertise), (Employee, Expertise)]
* [(Project,Expertise),(Employee, Project)]
*[(Employee, Expertise),(Employee, Project)]

Relation NEW_PROJECT_ASSIGNMENT, however, satisfies the join depen¬

dency:

^((Project,Expertise), (Employee,Expertise), (Employee, Project)]

Since the relation scheme NEW_PROJECT_ASSIGNMENT does not satisfy

any nontrivial MVD, then by Fagin’s theorem (Theorem 7.1) it cannot be decom¬

posed losslessly into two relations.
It is worthwhile pointing out that every MVD is equivalent to a join dependency;

however, the converse is not true, i.e., there are join dependencies that are not equiv¬

alent to any nontrivial MVDs. The first part of this statement can be confirmed as

follows: The relation R(R) satisfies the MVD X -»-> Y if and only if the decompo¬

sition of R into XY and R - Y is lossless. This is equivalent to saying that R(R)
satisfies the JD *[XY, R - Y]. Conversely, R satisfies the JD *[R1? R2] if R, H
R2^-* r,? or Rj n R2^-^ R2. However, not all JDs are equivalent to MVD, as

seen in Figures 7.8 and 7.9.
A join dependency on the relation scheme R, in addition to those for MVDs,

could also be a result of key dependencies. This can occur when the decomposition

of a relation involves a superkey and the relation can be reconstructed by joins, every

join involving a superkey. Thus, if R(Xi, X2, . . . , Xm) and if XjS are the super¬

keys of R, then the join dependency *[Xj, X2, . . . , Xm], is due to the keys of R.

366 Chapter 7 Synthesis Approach and Higher Order Normal Form

Join dependency expresses the fact that a set of relationships is independent, just

as MVD indicates that a pair of relationships is independent. These independent

relationships can be separated in different relations and their join will be lossless.

The join dependency in a relation scheme gives rise to another normal form,

project-join normal form, discussed in the following section.

7.4.2 Project-Join Normal Form

Consider a relation scheme R(U) and a set of FDs {Sj —»• U, S2 —»• U, . . . Sp —>

U}. We name these FDs key dependencies or KDs since the determinant Sj in each

FD is a superkey. The JD membership algorithm given below, determines if a JD is

implied by a set of KDs. The algorithm terminates successfully if and only if the

KDs JD.
Example 7.9 determines the JDs implied by a given set of KDs.

Example 7.9 Let R(ABCDE) with the FDs F = {A -* BCDE, C ABDE and D -*

ABCE}. Let R satisfy the join dependencies *[ABE, CD, ABCD], The FDs

are KDs and we see that for the superkey (key) A, A C ABE D ABCD.

We replace the set {ABE, CD, ABCD} with the set {ABCDE, CD}. Again

we find that for the superkey (key) C, C C ABCDE fl CD. We replace the

set {ABCDE, CD} with the set {ABCDE}. Since this is the set of attributes

in R we have shown that KD |= JD. Similarly, we can show the KD implies
the following JD: *[ABC,BCD, CDE], ■

We can now define project-join normal form.

Definition: Consider a relation scheme R and a set D of dependencies (functional,

multivalued, and join). The relation R is in project-join normal form (PJ/NF)
with respect to D if for every join dependency *[Rj, R2, . . . , R„] that is

applicable to R and is implied by D, either of the following holds: the join

dependency is trivial, or every Rj is a superkey of R. A database is in project-

join normal form if all relation schemes are in project-join normal form.

Project-join normal form is also referred to as fifth normal form (5NF) or as
PJ/NF in the database literature.

Every fifth normal form relation scheme is also in fourth normal form and,
hence, in BCNF and consequently in 3NF.

If a relation is in project-join normal form, then every functional dependency is

determined by a key. Every multivalued dependency is also determined by a key.

Furthermore, every JD is determined by one or more candidate keys. As a result,

since all FDs, MVDs, and JDs are implied by keys, all that must be specified is the

relation scheme and the set of keys. A database having all relations in PJ/NF and

7.4 Normalization Using Join Dependency: Fifth Normal Form 367

Algorithm

7.4 JD Membership Algorithm

Input: JD[X„ X2, X3, . . . Xq] and

KD{S, —> U, S2^ U, . . . Sp-^ U}

Output: Success or failure. Success indicates KD |= JD.

H = {Xj, X2, X3, . . . Xq} (* initialize set H to be the JD

to be checked *)

change : = true

while (change or number of members q in H > 1) do
begin

if Si C Xj H Xk for 1 < i < p and Xj and Xk € H and j + k

then begin

delete Xj and Xk from H
insert Xj U Xk into H
decrease q by 1

else change : = false
end

if U € H
then KD f= JD is proven successfully

else KD [= JD is not proven

supporting the concept of key need no other consistency support mechanism, if there

are no interrelational dependencies. However, when we convert a relation that is not

in PJ/NF into a set of relations in PJ/NF, we could introduce interrelational depend¬

encies.
Our example relation schemes PROJECT-ASSIGNMENT and NEW_

PROJECT-ASSIGNMENT were not in fifth normal form, since each of them had

nontrivial join dependencies. Their decompositions (respectively into {PROJECT-

REQUIREMENT, PROJECT-PREFERENCE, and {(Project, Expertise), (Em¬

ployee, Expertise), (Employee, Project)}) are in fifth normal form nonetheless.
Let us return to the NEW_PROJECT_ASSIGNMENT relation scheme. Here,

we have three independent relationships:

Project —»-» Expertise

Employee —*-»■ Expertise

Employee -*-> Project

There are other MVD relationships, for instance Project —>-»• Employee, that

can be derived from the MVD Employee —»-*■ Project.
It is not possible to insert, without null values, a project and the expertise

needed for it unless we know the employees who could be assigned to the project.

Similarly, it is not possible to record all types of expertise of an employee unless

368 Chapter 7 Synthesis Approach and Higher Order Normal Form

each type is called for in a project where that employee is required to use such

expertise. The decomposition of the relation into {(Project, Expertise), (Employee,

Expertise), (Employee, Project)} allows these independent relationships to be sepa¬

rated. It is then possible to independently maintain each separate relation. However,

in the relation NEW_PROJECT_ASSIGNMENT, it is necessary to insert additional

tuples when a tuple is inserted and the deletion of a tuple requires the deletion of

other tuples.
Consider the relation STUDENT_INFO(7Va/ne, Address, Department, Phone#)

with the FDs {Name —> Address, Name —> Department, Name —> Phone#). The

decomposition of STUDENT_INFO into the following relation is lossless and depen¬

dency preserving: (Name, Address), (Name, Department), (Name, Phone#). The

original relation is in PJ/NF. However, since the only key of the original relation is

Name and if the remaining attributes could have null values assigned to them, there

is no advantage to decomposing the relation.

7.5 Domain Key NormaS Form

Before discussing domain key normal form let us define two additional type of de¬

pendencies, domain constraints (DC) and key constraints (KC).

Definition: Domain Constraint (DC): Each attribute A, of a relation scheme R(A,, A2, A„

. . . is assigned a domain constraint of the form IN(A„ SAl). This means that

the attribute A, of relation R, defined on the relation scheme R, must have a

value from the set SAi.

We have implicitly used domain constraint as part of integrity constraints.

Definition: Key Constraint (KC): For the relation scheme R(A1; A2, Ax, . . .), the key

constraint, KEY(K), where K is a subset of R, is the restriction that no two

tuples of relation R defined on the relation scheme R have the same values for

the attributes in K.

We also define the concept of general constraints:

Definition: General Constraints (GC): A general constraint is expressed as a simple

statement or predicate and specifies some special requirement. Each tuple of a

relation must satisfy this predicate for it to be a valid tuple.

The domain key normal form (DK/NF), just like the previously discussed nor¬

mal forms, requires that relations do not exhibit insertion and deletion anomalies.

369 7.5 Domain Key Normal Form

However, unlike the other normal forms, DK/NF is not defined in terms of FDs,

MVDs, or JDs. The central requirements of DK/NF are the basic concepts of do¬

mains, keys, and general constraints. We elaborate on each of these requirements in

the following discussions. A relation scheme is in DK/NF if every general constraint

can be inferred from the knowledge of the attributes involved in the scheme, their

underlying domains, and the sets of attributes that form the keys. An insertion anom¬

aly in the case of DK/NF occurs when a tuple is inserted in a relation and the result¬

ing relation violates one or more general constraints. Similarly, a deletion anomaly

occurs when a tuple from a relation is deleted and the remaining relation violates one

or more general constraints. We illustrate these dependencies and general constraints

in Example 7.10

Example 7.10 Consider the relation scheme TRANSCRIPT (Student#, Course, Grade).

Suppose the attributes Student# and Course are numeric, 8 and 3 digits

long, respectively. The attribute Grade is a letter grade and could be A, B,

C, D, P, F. The general constraint is that for Courses numbered 900 through

999, the Grade assigned is only P or F. For Courses 000 through 899, the

Grade can only be A, B, C, D, F. The domain constraints for this relation

are the following: Student# is required to be 8 digits long, Course is 3

digits long, and Grade has to be from the set {A, B, C, D, P, F}. The key

constraint for the relation is that no two tuples can exist with the same

values for the key attributes, which are Student# and Course. Obviously,

Student# Course —> Grade. Finally, the general constraint can be expressed

by the following:

if Course > 900

then Grade € {P, F}

else Grade 6 {A, B, C, D, F}

The problem with this relation is that a tuple such as (12345678, 991, A),

which satisfies all the DCs and KCs, can be inserted in the relation TRAN¬

SCRIPT of Figure A. However, since the tuple does not satisfy the general

Figure A The TRANSCRIPT relation.

Student# Course Grade

23714539 353 A

42717390 329 A

23714539 928 P

38815183 456 F

37116259 293 B

82317293 491 C

82317293 953 F

23714539 491 C

11011978 353 A

83910827 979 P

370 Chapter 7 Synthesis Approach and Higher Order Normal Form

constraint, the relation TRANSCRIPT becomes illegal after the inser¬

tion. H

We now give the formal definition of DK/NF.

Definition: A normalized relation scheme R {S, T, <r}, where S is the set of attributes, T is

the set of DCs and KCs, and a is the set of general constraints, is in domain
key normal form (DK/NF) if f |= cr for every constraint in a.

A normalized relation is in DK/NF if the DCs and KCs imply the general con¬

straints. The DK/NF is considered to be the highest form of normalization, since all

insertion and deletion anomalies are eliminated and all general constraints can be

verified by using only the DCs and KCs. For the TRANSCRIPT relation of Example

7.10, we can use the following decomposition to get two relations in DK/NF.

Example 7.11 The TRANSCRIPT relation of Example 7.10 can be decomposed into the
following relations:

TRANSCRIPTS_REGULAR(S/M</en/#, Course, Grade) with the domain

constraints (Student# being 8 digit, Course being 3 digit in the range 000

through 899, and Grade in the set {A, B, C, D, F}). The key as before is
Student#Course.

TRANSCRIPTS_SPECIAL(Sta(/e«/#, Course, Grade) with the domain

constraints {Student# being 8 digit, Course being 3 digit in the range 900

through 999, and Grade in the set {P, F}). The key as before is Student#
Course. 91

An MVD can be expressed as a general constraint. To examine the insertion

and deletion anomalies in such a situation, let us look at Example 7.12 using a
software company.

Example 7.12 The work of the company is organized as projects and the employees are

grouped as teams. A number of projects are assigned to each group and it

is assumed that all employees in the group are involved with each project

assigned to it. This is the general constraint for the relation TEAM-

WORK/Growp, Employee, Project) as shown in Figure Bi. Assume that the
domain of the attributes are a character string of length 20. The only key of
the relation is the entire relation.

The insertion of a legal tuple, (B, Su, FILE_MANAGER), causes the

relation TEAMWORK to become invalid. This is because the general con¬

straint is no longer satisfied and requires the insertion of additional tuples.

7.5 Domain Key Normal Form 371

Figure B The TEAMWORK relation and its DK/NF decompositions.

Group Employee Project

A Jones HEAP-SORT

A Smith HEAP-SORT

A Lalonde HEAP-SORT

A Jones BINARY-SEARCH

A Smith BINARY-SEARCH

A Lalonde BINARY-SEARCH

B Evan B+ + -TREE

B Lalonde B + +-TREE

B Smith B ++-TREE

B Evan FILE-MANAGER

B Lalonde FILE-MANAGER

B Smith FILE-MANAGER

(i)

Group Employee

A Jones

A Smith

A Lalonde

B Evan

B Lalonde

B Smith

Group Project

A HEAP-SORT

A BINARY-SEARCH

B B ++-TREE

B FILE-MANAGER

(ii)

Similarly, the deletion of the tuple (A, Lalonde, FILE-MANAGER) makes

the relation TEAMWORK violate the general constraint and requires the

deletion of additional tuples.

In order to convert the relation into DK/NF, we can decompose it into

the two relations TEAM/Grow/?, Employee) and WORK/Grow/?, Project).

This is shown in Figure Bii. ■

It has been shown that a relation in DK/NF is also in PJ/NF and, therefore, in

4NF and BCNF. The proof, found in (Fagi 81), is beyond the scope of this text.

The advantage of DK/NF relations is that all constraints could be satisfied by

ensuring that tuples of the relations satisfy the corresponding domain and key con¬

straints. Since this is easy to implement in a database system, relations in DK/NF

are preferable. However, no simple algorithms exist to help in the design of DK/NF.

Moreover, it appears unlikely that relation schemes with complex constraints could

be converted to DK/NF.

The theory for join dependency is well developed; unfortunately, the results are

negative. It has been concluded that JDs don’t have a finite axiom system. Conse¬

quently, we have to be content with relations in 3NF or BCNF. Since we cannot

372 Chapter 7 Synthesis Approach and Higher Order Normal Form

always guarantee that BCNF relations will be dependency preserving when both loss¬

less arid dependency-preserving relations are required, we have to settle for third

normal form.5

Summary

The decomposition approach we examined in Chapter 6 starts with a relation and the

associated set of constraints in the form of functional dependencies. The relation has

a certain number of undesirable properties (in the form of insertion, deletion, or

update anomalies) and it is replaced by its projections. A number of desirable forms

of projections have been identified. In Chapter 6 we discussed the following normal

forms: INF, 2NF, 3NF, BCNF. Any relation having constraints in the form of FDs

only can be decomposed into relations in third normal form; such a decomposition is

lossless and preserves the dependencies. Any relation can also be decomposed loss-

lessly into relations in Boyce Codd normal form (and hence into third normal form).

In this chapter we examined the synthesis approach to designing a 3NF database
and the higher normal forms, 4NF, 5NF or PJ/NF, and DK/NF.

In the synthesis approach, the starting point of the relational database design

process is a universal relation and the set of functional (and nonfunctional) depend¬

encies that have to be enforced between the attributes of this universal relation. The

synthesis procedure then synthesizes a set of third normal form relation schemes,
which preserves the required dependencies.

Multivalued dependencies arise when R, having a nonatomic attribute, is con¬
verted to a normalized form. Thus, for each X value in such a relation, there will be

a set of Y values associated with it. This association between the X and Y values

does not depend on the values of the other attributes in the relation. A normal form

called fourth normal form has been defined for relations that have FDs as well as

MVDs. We discussed an algorithm for decomposing a relation into 4NF; however,

like the BCNF decomposition algorithm, this algorithm does not always produce

relation schemes that are dependency preserving. If dependency-preserving schemes
are essential, in general, we will have to settle for 3NF.

The 5NF is related to what is called join dependency. This is the term used to

indicate the property of a relation that can be decomposed losslessly into n simpler

relations but cannot be decomposed losslessly into fewer relations. A relation in
PJ/NF is also in 4NF.

In a DK/NF relation scheme, it is possible to enforce all general constraints

from knowledge of the domains of the attributes and the key constraints. This is the

highest and most desirable normal form, although it is not always possible to gener¬

ate relation schemes in this form. Consequently, the database designer settles for a
lower normal form that better meets the needs of the user community.

5When MVDs are conflict free, a unique 4NF decomposition can be obtained. It has been observed that conflict-free MVDs
are natural enough to cover the “real world” situation.

7.6 Summary 373

Key Terms

equivalent

multivalued dependency
(MVD)

trivial multivalued dependency
basis

pairwise disjoint

dependency basis

simple MVD

fourth normal form (4NF)

fifth normal form (5NF)

join dependency (JD)

embedded multivalued
dependency

key dependency (KD)

project-joint normal form
(PJ/NF)

domain constraint (DC)

key constraint (KC)

general constraint (GC)

domain key normal form
(DK/NF)

Exercises

7.1 Given U{ABCDE} and F — {A —» B, BC —> D, D —> BC, DE —» cf>}, synthesize a set of 3NF
relation schemes.

7.2 Given U{ABCDEFGH} with the FDs given by {4 —> BCDEFGH, BCD —> AEFGH, BCE —*■

ADEFGH, CE —> H, CD -* H), synthesize a set of lossless join relation schemes.

7.3 Given the relation R {ABCDE} with the FDs {A -> BCDE, B -> ACDE, C -* ABDE}, what

are the join dependencies of R? Give the lossless decomposition of R.

7.4 Given the relation R {ABCDEF} with the set H = {A -> CE, B -> D, C -> ADE, BD

F}, find the dependency basis of BCD.

7.5 Design a 3NF relation scheme for the database of Exercise 6.16 using the synthesis

algorithm. Is the resulting database in BCNF?

7.6 Is it possible to decompose the relation STUDENT_ADVISOR(/Vam<?, Department, Advisor)

with the functional dependencies ¥{Name —> Department, Name -» Advisor, Advisor —»

Department} illustrated in Figure E: of Example 6.19 into PJ/NF relation schemes? If so,

give the projected relation schemes.

7.7 What are the difficulties in generating a relational design wherein all relations are in DK/NF?

7.8 Why is 4NF preferable to BCNF?

7.9 Show that axiom M7 is sound.

Bibliographic Notes

The universal relation concept and associated problems were first discussed in (Kent 81). The

algorithm for synthesizing relation schemes from a given set of attributes and FDs was pro¬

posed and studied in (Bern 76).

MVDs were introduced by Fagin (Fagi 77) and independently by Delobel (Delo 78) and

Zaniolo (Zani 81). Embedded MVDs were noted in (Fagi 77) and (Delo 78). Join dependencies

were introduced formally by Rissanen (Riss 79) and examined further in (Aho 79). The

project-join normal (Fagin 79) and the domain key normal (Fagi 81) forms were conceived by

Fagin. The axioms for JD were proposed by Beeri and Vardi (Beer 79b) and also in (Scio 82).

The algorithm for the dependency basis and its correctness and complexity issues were pre¬

sented in (Beer 80). The DK/NF was proposed by Fagin in (Fagi 81), wherein he proves the

374 Chapter 7 Synthesis Approach and Higher Order Normal Form

theorem that states that a DK/NF is also in the PJ/NF, 4NF, and BCNF. Axiom systems for

generalized and template constraints can be found in (Beer 84) and (Sadr 81).

Textbook discussions of the relational database design are included in (Date 85), (Lien

85), (Kort 86), and (Ullm 82). (Maie 83) gives a very detailed theoretical discussion of the

relational database theory including relational database design.

Bibliography

(Aho 79) A. V. Aho, C. Beeri, & J. D. Ullman, “The Theory of Joins in Relational Databases,” ACM TODS
4(3), September 1979, pp. 297-314.

(Arms 74) W. W. Armstrong, “Dependency Structures of Database Relationships.” Proc. of the IFIP, 1974,
pp. 580-583.

(Beer 77) C. Beeri, R. Fagin, & J. H. Howard, “A Complete Axiomatization for Functional and Multivalued
Dependencies,” Proc. of ACM SIGMOD International Symposium on Management of Data,
1977, pp. 47-61.

(Beer 79a) C. Beeri, & P. A. Bernstein, “Computational Problems Related to the Design of Normal Form
Relational Schemes,” ACM TODS 4(1), March 1979, pp. 113-124.

(Beer 79b) C. Beeri, & M. Y. Vardi, “On the Properties of Join Dependencies,” in H. Gallaire et al., ed.,
Advances in Database Theory, vol. 1. New York: Plenum Press, 1979.

(Beer 80) C. Beeri, “On the Membership Problem for Functional and Multivalued Dependencies in Relational
Databases,” ACM TODS 5(3), September 1980, pp. 241-259.

(Beer 84) C. Beeri, & M. Y. Vardi, “Formal Systems for Tuple and Equality Generating Dependencies,” SIAM
Journal of Computing 13(1), pp. 76-98.

(Bern 76) P. A. Bernstein, “Synthesizing Third Normal Form Relations from Functional Dependencies,” ACM
TODS 1(4), March 1976, pp. 277-298.

(Bisk 79) J. Biskup, U. Dayal, & P. A. Bernstein, “Synthesizing Independent Database Schemas,” Proc. ACM
SIGMOD International Symposium on Management of Data, 1979, pp. 143-152.

(Codd 70) E. F., Codd, A Relational Model for Large Shared Data Banks,” Communications of the ACM
13(6), June 1970, pp. 377-387.

(Codd 72) E. F. Codd, E.F “Further Normalization of the Data Base Relational Model,” in R. Rustin, ed..
Data Base Systems. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 33-64.

(Date 85) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading MA' Addison-Weslev
1985.

(Delo 78) C., Delobe 1, “Normalization and Hierarchical Dependencies in the Relational Data Model,” ACM
TODS 3(3), September 1978, pp. 201—22.

(Fagi 77) R. Fagin, “Multivalued Dependencies and a New Normal Form for Relational Databases,” ACM
TODS 2(3), September 1977, pp. 262-278.

(Fagi 79) R. Fagin, “Normal Forms and Relational Database Operators,” ACM SIGMOD International
Symposium on Management of Data, 1979, pp. 153-160.

(Fagi 81) R. Fagin, “A Normal Form for Relational Databases that is Based on Domains and Keys ” ACM
TODS 6(3), September 1982, pp. 387-415.

(Kent 81) W. Kent, “Consequences of Assuming a Universal Relation,” ACM TODS, 6(4), December 1981
pp. 539-556.

(Kort 86) H. F. Korth, & A. Silberschatz, Database Systems Concepts. New York: McGraw-Hill, 1986.

(Lien 81) Y. E. Lien, Hierarchical Schemata for Relational Databases,” ACM TODS 6(1) March 1981 nn
48-69. ’ ’ FF'

(Lien 85) Y. E. Lien, “Relational Database Design,” in S. Bing Yao, ed., Principles of Database Design
Englewood Cliffs, NJ: Prentice-Hall, 1985.

7.6 Summary 375

(Maie 80) D. Maier, “Minimum Covers in the Relational Database Model,” Journal of the ACM. 27(4),
October 1980, pp. 664-674.

(Maie 83) D. Maier, The Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.

(Riss 79) J. Rissanen, “Theory of Joins for Relational Databases—A Tutorial survey,” Proc. Seventh
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 64. Springer-Verlag, New York pp. 537-551.

(Sadr 81) F. Sadri, & J. D. Ullman, “Template Dependencies: A Large Class of Dependencies in Relational
Databases and Their Complete Axiomatization,” Journal of the ACM. 29(2), April 1981, pp.
363-372.

(Scio 81) E. Sciore, “Real World MVDs,” Proc. of the ACM SIGMOD Conf., 1981, pp. 121-132.

(Scio 82) E. Sciore, “A Complete Axiomatization of Full Join Dependencies,” Journal of the ACM. 29(2),
April 1982, pp. 373-393.

(Ullm 82) J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, MD: Computer Science Press,
1982.

(Zani 81) C. Zaniolo, & M. A. Melkanoff, “On the Design of Relational Database Schemata,” ACM TODS.
6(1), March 1981, pp. 1-47.

Contents

Chapter

The
Network

Model

8.1 The Network Data Model

8.1.1 Expressing Relationship: The DBTG Set

8.1.2 Multiple Level Set Construct

8.1.3 Complex Multilevel Set Construct

8.2 DBTG Set Construct and Restrictions

8.2.1 Implementation of the DBTG Set Construct

8.3 Expressing an M:N Relationship in DBTG

8.4 Cycles in DBTG

8.4.1 Set Involving Only One Type of Record

8.4.2 Sets Involving Different Record Types in a Cycle

8.5 Data Description in the Network Model

8.5.1 Record

Data-ltem

Data Aggregates

Vectors

Repeating Groups

Keys

8.5.2 Set

8.5.3 Order of Members in a Set

8.5.4 Set Membership

8.5.5 Structural Constraint

8.5.6 Set Selection

8.5.7 Singular Sets

8.5.8 Area

8.6 Schema and Subschema

8.7 DBTG Data Manipulation Facility
8.7.1 Run Unit

8.7.2 Currency Indicators

8.7.3 Database Status Registers

8.7.4 Record Templates

8.7.5 DML Commands

8.8 Database Manipulation

8.8.1 Operations on Records

Locating a Record and Setting the Currency
Indicators

Retrieving a Record

Locating and Retrieving Duplicate Records
Updating a Record

Adding a Record Occurrence

Deleting a Record Occurrence
8.8.2 Operations on Sets

Locating Records via Sets

Set Manipulation

Manual Set Manipulation

Automatic Set Manipulations

Deletion of an Owner Record Occurrence

8.1 The Network Data Model 377

The Database Task Group (DBTG), a special group within the Conference on Data

Systems Languages (CODASYL), issued a final report in 1971. The report was the

first standard specification for a database system. A number of commercial database

management systems were based on this report. The discussion of the network model

in this text is, for the most part, based on the original DBTG draft; reference is made

to the revised proposal when required.

8.1 The Network Data Model

The network data model (NDM) represents data for an entity set by a logical record

type. The data for an instance of the entity set is represented by a record occurrence

of the record type. Consider the entity set CLIENT which is of relevance to a public

library. It is modeled by its attributes, Client-No, Name, and Address. (We use the

word client instead of member to avoid confusion with the use of the word member

in the network data model. We will use the word record synonymously with logical

record unless we need to be explicit.)

CLIENT Client-No Name Address

This record type can be defined as follows:

type CLIENT = record

Client-No: string;

Name: string;

Address: string;

end

Some occurrences of the record type CLIENT are shown in Figure 8.1a. The

figure shows, for example, a client Smith with Client-No 234 and Address as Lynn.

The data for the entity set BOOK may be represented by the record type BOOK,

which consists of the fields Author, Title, Call-No:

BOOK Author Title Call-No

This record can be defined as:

type BOOK = record
Author: string;

Title: string;

Call-No: string;

end

Some occurrences of the record type BOOK are shown in Figure 8.1b. Note

that in practice, a library maintains additional details about each title, including name

of the publisher, place of publication, year of publication, size of the volume, date

acquired, cost of acquisition, and so on. For simplicity we have ignored these details.

378 Chapter 8 The Network Model

Figure 8.1 Occurrences of CLIENT and BOOK record types.

234 Smith Lynn

235 Klaf Revere

236 Allard Salem

(a)

James Munich 1231

Dickens Hard Times 1232

Haley Roots 1233

Hugo Les Miserables 1234

(b)

8.1.1 Expressing Relationship: The DBTG Set

The relationship of a client borrowing a book from the library may be represented by

the entity relationship diagram of Figure 8.2a. The corresponding data structure dia¬

gram is shown in Figure 8.2b. In part a, we have the entity set CLIENT, which is

related to the entity set BOOK in a one-to-many relationship; a client may have

borrowed several books. Later we look at the possibility of a many-to-many relation¬

ship, where we show that a client has borrowed several books, as shown in part b,

and also that a book (or a copy of the book) may have been borrowed by many
clients, as shown in part c.

To express the relationship between the client and the borrowed book, the net¬

work model uses the set construct. The word set used here does not imply the math¬

ematical meaning but indicates that there is a relationship between two record types.

A set type represents a one-to-many relationship from the E-R model. An instance

of the relationship is expressed by an instance or occurrence of the set type. A set

consists of an owner record type and one or more member record type(s). The DBTG

proposal of ’971 did not allow a record type to be both an owner and a member

within the same set type. However, in the 1978 version of the proposal this restric-

8.1 The Network Data Model 379

Figure 8.2 Relationship between CLIENT and BOOK.

(a)

tion was eliminated. In the revised version, the records participating in a set type

may be of the same type or of different types (We examine this aspect of the set

construct in Section 8.4.) An occurrence of a set type consists of one occurrence of

the owner record type and zero or more occurrences of the member record type(s).
The data structure diagram of Figure 8.2b represents the set BORROWED; the

owner record type is CLIENT and the member record type is BOOK. The relation¬

ship between them is represented by the directed arc labeled with the name of the

set; it is a functional link. The direction of the arc is from the owner to the member

record type. The direction of the functionality is opposite to the direction of the arc.

Each occurrence of the set BORROWED represents a relationship between a client

and the books he or she borrows. If we want to represent the fact that a given book

could have been borrowed by many clients, we must have, in addition to the set of

Figure 8.2b, another set BORROWED^BY, as shown by the data structure diagram

of Figure 8.2c. In the set BORROWED-BY, BOOK is the owner record type and

CLIENT is the member record type.
Even though we can show a many-to-many relationship between two entities by

data structure diagrams as in Figure 8.2b and c, its direct implementation is not

allowed in the NDM. (We examine the reasons for this in Section 8.3 and show how

a many-to-many relationship is implemented in the NDM.)

The set BORROWED can be defined as follows:

set is BORROWED

owner is CLIENT

member is BOOK

end

Figure 8.3a gives some occurrences of the set type BORROWED. As we can

see there is a one-to-many relationship expressed in this set; a CLIENT could borrow

more than one book. If we allow the possibility that there could be more than one

copy of the same book, then the relationship between CLIENT and BOOK becomes

many-to-many; this is shown in Figure 8.3b.

380 Chapter 8 The Network Model

Figure 8.3 Possible relationships between CLIENT and BOOK: (a) one-to-many relationship and
(b) many-to-many relationship.

CLIENT BOOK

(a)

CLIENT BOOK

(b)

8.1.2 Multiple Level Set Construct

The set BORROWED, defined above, is an example of a single level set construct.

The NDM does not impose any restrictions on the number of set types in which a

given record type is involved as an owner or member. The only restriction is that a

given occurrence of a record can participate in only one occurrence of a given set

type. A multilevel set can be constructed as shown in the data structure diagram of

Figure 8.4. Here we have the entity sets LIBRARY, BRANCH, DEPT_SECTION,

and EMPLOYEE. The data for these entity sets can be represented by similarly
named logical record types defined as follows:

type LIBRARY = record

Lib-Name: string;

Address: string;

Phone-No: string;
end

type BRANCH = record

Br-Name: string;

Address: string;

Phone-No: string;
end

8.1 The Network Data Model 381

Figure 8.4 Multilevel set construct.

(b)

type DEPT-SECTION = record

Ds-Name: string;

Room^No: string;

Phone-No: string;

end

type EMPLOYEE = record

Emp-Name: string;
Home-Address: string;

Phone-No: string;

end

The LIBRARY has a number of BRANCHes, each BRANCH has a number of

DEPT_SECTIONs, and each DEPT_SECTION has a number of EMPLOYEES.

There are therefore three levels in the data structure diagram shown in Figure 8.4b.

The set HAS is owned by the LIBRARY record type and contains as members the

record occurrences corresponding to all the BRANCHes of the library. On the next

level we have the set type CONTAINS. An occurrence of the set type CONTAINS

has as its owner an occurrence of the record type BRANCH, and the members are

382 Chapter 8 The Network Model

the record occurrences corresponding to DEPT_SECTIONs of that BRANCH. On

the next level we find the set type WORKS-IN; here the owner is the record type DEPT

SECTION and the member is the record type EMPLOYEE.
A simple database corresponding to the diagram of Figure 8.4 is shown in Fig¬

ure 8.5. Here an occurrence of the record type LIBRARY, the MUC Public Library

System, is the owner of the set HAS. The members of this set occurrence are the two

occurrences of the record type BRANCH, Lynn and Revere. The record occurrence

Lynn of the record type BRANCH is the owner of one of the occurrences of the set

type CONTAIN and this set has as its members the record occurrences Adult_Sec

(adult section), Childm_Sec (children’s section), Acqstn_Dept (acquisition depart¬

ment), Crcln_Dept (circulation department), and Ref_Dept (reference department) of

the record type DEPT_SECTION. The record occurrence AdulLSec, in its turn, is

the owner in the set type WORKS-IN occurrence and has the record occurrence of

the record type EMPLOYEE, for instance Barry, as its member.

8.1.3 Complex Multilevel Set Construct

Figure 8.6 is a portion of the library database example of Figure 8.4. However, here

we have split the original record type DEPT_SECTION into two separate record
types DEPT and SECTION.

We illustrate in this example that the DBTG proposal allows a set to have more

than one record type as its member record type. For instance, the set CONTAINS has

two record types as its members. This is not the same as replacing the set CONTAINS

with two sets, for example, CONT-SEC and CONT—DEPT. The data structure dia¬
gram for this modification is shown in Figure 8.7.

At this point we might ask the following questions:

• Can the EMPLOYEE record occurrence Carrie in Figure 8.5 be a member of

the two occurrences of the type set WORKS-IN where the owner records are the
occurrences AdulLSec and Childm_Sec?

Figure 8.5 Sample database corresponding to Figure 8.4.

8.1 The Network Data Model 383

Figure 8.6 Complex multilevel set construct.

• Can the EMPLOYEE record occurrence Jerry be a member of the set WORKS-

IN where the owner records are the occurrences Childm_Sec of record type

SECTION and Acqstn-Dept of record type DEPT?

• Can the set type WORKS-IN have as its owner record a record from two

different record types, SECTION and DEPT?

From Figure 8.6 we also notice that the set type WORKS—IN, as it is shown,

has two different record types as it owner record type. The DBTG proposal allows a

given set type to include member records from more than one record type, but does

not allow a set type to have the owner record coming from two different record types.

Thus the set WORKS-IN, as indicated in Figure 8.6, is not allowed, The DBTG

model requires that the intent of the design must be represented as two sets, for

instance, WORKS-IN-DEPT and WORKS-IN-SECT. This modification is shown in

the modified data structure diagram of Figure 8.7.
The network data model as proposed in the DBTG proposal has certain restric¬

tions, which we discuss in the following section. These restrictions mean that the

answer to each of the above questions is in the negative.
The data structure diagrams of Figures 8.7 and 8.8 illustrate the difference be¬

tween a set type that can have records from two record types as its member record

Figure 8.7 One record type owner of two set types.

384 Chapter 8 The Network Model

Figure 8.8 Complex multilevel set construct.

(in Figure 8.8 the set type CONTAINS) and a record from a given type as the owner

of two or more set types (In Figure 8.7 the record type BRANCH is the owner in set

types CONTAINS-DEPT and CONTAINS-SEC). Nevertheless, the restriction that a

given record occurrence may be an owner or member of only one occurrence of a
set type still must be observed in the DBTG proposal.

An example of a portion of database corresponding to the data structure diagram

of Figure 8.7 is given in Figure 8.5. From this figure, we note that the record types

DEFT and SECTION are owner record types in the sets WORKS-IN-DEPT and

WORKS—IN—SECTN respectively. The record type EMPLOYEE is a member record

type in both these set types. The instance of the record type corresponding to the

employee Carrie is still not allowed to be a member of two occurrences of the set

type WORKS-IN-SECTN. However, an instance of the record type Jerry can be a

member in one occurrence of the set type WORKS-IN_DEPT and a member in one
occurrence of another set type WORKS-INSECTN.

DBTG Set Construct and Restrictions

The DBTG network data model is based on the set construct. The set construct,

among other things, defines the owner record type and the member record type(s).

The set construct allows a one-to-many relationship to be expressed. The example in

the previous section uses the set WORKS-IN-DEPT to represent the relation between
a department of a library and the employees assigned to that department.

However, there are a number of restrictions in the DBTG proposals. We list
these below:

• A set type is named and must have one owner record type and one or more
member record types.

• A record occurrence of a given record type can be owner of only one
occurrence of a set type where the record type is the owner.

8.2 DBTG Set Construct and Restrictions 385

• A record occurrence of a given record type can be a member of only one

occurrence of a set type where the record is the member.

• A set type can have only one type of record as owner; however, one or more

record types can be members of the set.

• A record type can be the owner record type in any number of set types.

• A record type can be the member record type in any number of set types.

• A given record type cannot be used as an owner and a member in the same set

type.

The last restriction in the original DBTG proposal has been eliminated from the

revised proposal. Under the revised proposal, the same record type can participate as

both owner and member in the same set type. A given occurrence of the record type

can therefore be both owner and member in the same set occurrence, or the owner

in one set occurrence and a member in a different set occurrence. We examine the

ramification of this change in the set construct in Section 8.4.

8.2.1 Implementation of the DBTG Set Construct

The record is a basic unit to represent data in the DBTG network database model.

The implementation of the one-to-many relationships of a set is represented by link¬

ing the members of a given occurrence of a set to the owner record occurrence. The

actual method of linking the member record occurrence to the owner is immaterial

to the user of the database; however, for our discussion, we can assume that the set

is implemented using a linked list. The list starts at the owner record occurrence and

links all the member record occurrences with the pointer in the last member record

occurrence leading back to the owner record. Figure 8.9 shows the implementation

of the set occurrence BORROWED where the owner record is Klaf and the member

records are the instances Dickens and Hugo. Note that for simplicity we have shown

only one of the record fields of each record. This method of implementation assigns

one pointer (link) in each record for each set type in which the record participates

and, therefore, allows a record occurrence to participate in only one occurrence of a

given set type. Any other method of implementing the set construct in a database

management system based on the DBTG proposal is, in effect, equivalent to the

linked list method.

Figure 8.9 Implementation of the DBTG SET.

386 Chapter 8 The Network Model

8.3 Expressing an M:N Relationship in DBTG

Let us now see how we can express the following relationship in the DBTG model.

We would like to model a situation where an employee is able to help out in different

departments depending on the workload. For example, during the evening, when

there are more people in the library, it is common to increase the number of clerks

at the circulation desk. An employee assigned to the acquisition department could

also be designated to work in the circulation department. To allow for the possibility

of an employee being assigned to work in more than one department, we need to

express a many-to-many relationship. In this many-to-many relationship, a depart¬

ment has many employees and the employees are assigned to more than one depart¬

ment. This could be implemented indirectly by expressing two one-to-many relation¬

ships and using an intermediate record, the so-called intersection or common

information-bearing record type. Such common information between the two original
record types could, however, be null.

In the DBTG model we can express this M:N relationship by two set types. In

one set type, the DEPT is the owner record type and the members are the record

occurrences of the EMPLOYEE record type. In the second set type, the owner is an

EMPLOYEE record occurrence and the members are the DEPT record occurrences.

These sets are shown by the data structure diagram of Figure 8.10. However, the

DBTG set construct does not allow the implementation of these sets. Suppose we

allow an employee to work in more than one department. Then the record occurrence

for that employee will appear as a member record in more than one occurrence of

the set WORKS-IN-DEPT. This violates the DBTG restriction that a record occur¬

rence can be a member of only one occurrence of a given set type. Similarly, for the

set ASSIGNED-TO we find that since there are many EMPLOYEES in a given DEPT

a given occurrence of a record for that DEPT will be a member of more than one
occurrence of this set type.

The above reasoning can be used to explain why we could not directly show

the many-to-many relationship between a CLIENT and a BOOK as in Figures 8.2b
and c.

The method for resolving this problem in the DBTG model is to introduce an

intermediate record type between the two entity sets involved in the many-to-many

relationship. This intermediate record type is sometimes called the intersection rec¬

ord or the connection record. This new record holds data common to the many-to-

many relationship of the original entities represented by their respective record types.

Figure 8.10 Incorrect method of expression an M:N relationship in DBTG.

Figure 8.11

8.3 Expressing an M:N Relationship in DDTG 387

Therefore, to express the above M:N relationship we introduce the record type

HOURS_ASSGND, which may be defined as follows:

.■type HOURS_ASSGND = record

Dept: string;

Employee: string;

Hours: integer;

end

A correct representation of the many-to-many relationship of Figure 8.10 is now

expressed by introducing the sets EMP-ASSGND and DEPT-ASSGND with the

record types DEPT and EMPLOYEE as owner and the intermediate record type

HOURS_ASSGND as member in both the sets. A data structure diagram for this

correct representation of the relationship is shown in Figure 8.11.

Figure 8.12 shows a possible method of implementing the M:N relationship

using the intermediate record containing .space for the common data and two pointers,

one for each of the sets it is involved in. The common data here is the number of

hours the employee is assigned to a given department. Sometimes the intermediate

record contains duplicated information, e.g., department name and employee

name, to facilitate the recovery and verification operations. The list of employees

assigned to the Acqstn_Dept can be determined by the set EMP-ASSGND, where

the owner is the record occurrence Acqstn_Dept (AD) and following the list contain¬

ing the intermediate records AD J 40 and AD J 30. The record AD J 40 is owned

by Jerry and the record AD L 30 is owned by Larry in the set type DEPT-ASSGND,

indicating that employees Jerry and Larry work in the Acqstn_Dept. Similarly, we

can see that employee Larry'is assigned to the Acqstn_Dept for 30 hours and the

CrclnJDept for 10 hours. Since Larry is assigned to two departments, there are two

occurrences of the intermediate record type containing the intersection data pertaining

to Larry. Similarly, the circulation department has three employees assigned to it

and, hence, the set occurrence of the set type EMP-ASSGND with the circulation

department as the owner has three member record occurrences of the intermediate

record type HOURS_ASSGND.
Suppose there is a need to express another M:N relationship, let us say between

the employees and their participation in a number of activity clubs run by the library.

This can be implemented by introducing another intermediate record type, let us say

EMP_AFFILIATION, and two set types to establish this many-to-many relationship,

as shown in Figure 8.13a. The corresponding sample database is shown in Figure

8.13b.

A correct representation of M:N relationship in DBTG.

388 Chapter 8 The Network Model

Figure 8.12 Sample database showing an M:N relationship.

HOURS_ASSGND EMPLOYEE

To express the fact that some books in the library may have several copies, we

introduce a new record type, BOOK-COPY. This record contains information about

the copy number of a particular book and indicates the branch it is assigned to and

its current status. We establish a relationship between the record BOOK and

BOOK—COPY using a set COPY-STATUS. The data structure diagram for this rela¬

tionship is shown in Figure 8.14a. Figure 8.14b gives some examples.

type BOOK-COPY = record

Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

end

set is COPY-STATUS

owner is BOOK

member is BOOK—COPY

end

We now return to the many-to-many relationship we mentioned earlier in the

E-R diagram of Figure 8.2a and which we implemented erroneously in Figures 8.2b

and c. Some occurrences of this many-to-many relationship between a client and the

books he or she may borrow is given in Figure 8.3b. To correctly implement this

8.3 Expressing an M:N Relationship in DDTG 389

Figure 8.13 Another example of an M: N relationship.

(a)

EMPLOYEE EMP_AFFILIATION CLUB

(b)

relationship, we introduce in addition to the CLIENT and the BOOK_COPY record

an intermediate connector record BOOK-DUE defined as follows:

type BOOK-DUE = record
Call-No: integer;

Copy-No: integer;

Client-No: string;

Due-Date: string;

end;

We also introduce two sets BORROWED and BOOK-COPY-LENT defined as

follows:

set is BORROWED
owner is CLIENT

member is BOOK—DUE

end

set is BOOK-COPY-LENT
owner is BOOK—COPY

member is BOOK—DUE

end

390 Chapter 8 The Network Model

Figure 8.14 Multiple copies of BOOKs.

BOOK

COPYSTATUS

*■ BOOK_COPY

(a)

(b)

The many-to-many relationship of Figure 8.3b is expressed indirectly by using

the one-to-many relationships between BOOK and BOOK_COPY, and CLIENT and

BOOK_DUE; and a one-to-one relationship between BOOK_DUE and BOOK_

COPY. These sets are shown in Figure 8.15. Each book could have a number of

copies, which is shown by the set COPY-STATUS with owner record type being

BOOK and member record type being BOOK_COPY. The BOOK_COPY taken out

by a CLIENT is shown by the set BORROWED.

Figure 8.15 Many-to-many relationship of CLIENT and BOOKs.

8.4 Cycles in DBTG 391

8.4 Cycles in DBTG

The original DBTG set construct prohibited the same type of record to be both an

owner and a member in a given set type. However, relationships of this type, some¬

times called intrarecord relationships, are required to model, for example, the orga¬

nizational structure of an enterprise or the part explosion of a subassembly or an

assembly, as shown in Figure 8.16. The DBTG set to express this relationship con¬

tains the same type of records as the owner and member record types: EMPLOYEES

for the former relationship and PARTs for the latter.

The 1978 modification of the DBTG proposal removed this restriction and al¬

lowed a set type to have the same record type as both a member and an owner.

However, a given occurrence of a record could only be involved in one set occur¬

rence as an owner and in one set occurrence as a member. This modification to the

original DBTG set construct allows for the presence of cycles in the database.

A cycle is a path in a single-level or multilevel hierarchy of DBTG sets such

that the path starting from a given record type leads back to the same record type

while traversing the sets from an owner to a member. However, the return need not

be to the same record occurrence.
When the same record type is declared to be both the owner record type and the

member record type in the same set type, a cycle called the single-level cycle occurs.

We illustrate this type of cycle in Figure 8.16 and discuss it in Section 8.4.1.

When a sequence of set types exists in the database such that the member record

type in one set is the owner record type in the next set, a cycle called the multilevel

cycle is said to be present. If we start with one record type, which is the owner

record type in this sequence of set types, the final member record type reached as

we go through this sequence of owner-member record types is the starting owner

record type. (We illustrate the multilevel cycle in Figure 8.22 and focus on it in

Section 8.4.2.)

8.4.1 Set Involving Only One Type of Record

Consider the set type TEAM (a work group or a play group) wherein the owner and

member record types are EMPLOYEE. The owner of a set occurrence of this set

Figure 8.16 Single-level cycles.

PART

i

CONTAINS

EMPLOYEE

; k

TEAM

392 Chapter 8 The Network Model

Figure 8.17

represents the team leader and the members of the set occurrence are the teammates.

This set can be defined as follows:

set is TEAM
owner is EMPLOYEE

member is EMPLOYEE

end

Similarly, the set CONTAINS, defined below, forms a cycle involving the same

record type.

set is CONTAINS
owner is PART

member is PART

end

Figure 8.17 shows the organizational structure of the work teams of a library

branch. Barry is the team leader of one team. His TEAM consists of the EMPLOY¬

EES Carrie, Jerry, Larry, and Barry himself. We can modify the team organization

of Figure 8.17 so that a team leader does not appear as a member of his or her own

team. The modified database is shown in Figure 8.18.

However, this modification allows for the presence of loops in the database,

which not only involves the same record type but also the same record occurrence.

A loop is a path that starts with a given record occurrence as, let us say, an owner

record type in a set occurrence. The path then winds through a number of member

record occurrences. When it reaches a given member record occurrence, it establishes

that member as an owner of another set occurrence of the same set type. The path

continues through its member record occurrences. This procedure is repeated a num¬

ber of times until the path returns to the starting record occurrence as a member

record occurrence. Figure 8.19 shows a loop that starts with the EMPLOYEE record

occurrence Barry and returns to the same record occurrence as a member in another

occurrence of the set type TEAM. (Note: With the structure of TEAM as in Figure

8.17, we have a loop within a single set occurrence!)

Loops can be avoided in the NDM by the introduction of an intermediate record

type to store the intersection or common data in the set involved. (It is likely that the

intersection record type may be null, i.e., there are no data fields in this intermediate

record type.) This intermediate record type can then be used to define two symmet¬

rical sets; it is the member in each of the sets, as shown in Figure 8.20. Furthermore,

such an intermediate record gives the flexibility of a many-to-many relationship being

Set with same type of record as owner and member.

8.4 Cycles in DBTG 393

Figure 8.18 Modified organizational chart.

established between occurrences of records of the same record type, as discussed
below.

The assignment of an employee to more than one occurrence of the set type

TEAM is handled by the introduction of an intermediate record type to express the

many-to-many relationship. The data structure diagram to represent this relationship

is given in Figure 8.20. The intermediate record type is a member of the two sets,

both owned by the EMPLOYEE type record. Compare this with the M:N relation¬

ship of Figure 8.11, where the owners of the sets involving the intersection record

were of different types.

We can define the intersection record type as follows;

type TEAM_ASSG = record
Team-Leader: string;
Team-Mate: string;
Hours: integer;
end

Here the data items Team-Leader and Team-Mate, which are aliases for the

data item Emp-Name in the record EMPLOYEE, are redundant and could have been

introduced for verification and recovery as mentioned above.

Figure 8.19 Loops in database.

394 Chapter 8 The Network Model

Figure 8.20 One record type with intersection record.

EMPLOYEE

TEAMEMP ,
f '

f EMP TEAM

TEAM_ASSG

The sets TEAM-EMP and EMP-TEAM can be defined as follows:

sets TEAMJEMP

owner is EMPLOYEE

member is TEAM_ASSG

end

set is EMP-TEAM

owner is EMPLOYEE

member is TEAM_ASSG

end

A sample database involving this many-to-many relationship between occur¬

rences of the record type EMPLOYEE is given in Figure 8.21. Here the owner of

the two set occurrences of the set type TEAM-EM P are the records Barry and Harry

of the record type EMPLOYEE. The members in the sets are the record occurrences

{Barry Jerry 10, Barry Larry 15}, and {Harry Jerry 30, Harry Larry 25, Harry Mary

40} respectively. There are three occurrences of the set type EMP-ASSG with owners

Jerry, Larry, and Mary. The corresponding members are the record occurrences

{Barry Jerry 10, Harry Jerry 30}, {Barry Larry 15, Harry Larry 25}, and {Harry Mary
40}, respectively.

Figure 8.21 M:N relationship involving single record type.

395 8.5 Data Description in the Network Model

Figure 8.22 A cycle involving different record types.

MADE IN

8.4.2 Sets Involving Different Record Types in a Cycle

Figure 8.22 is an example of a data structure diagram showing a cycle involving

different record types. In this figure we indicate that a plant assembles a number of

products. Each product is made from a number of parts and these parts are made in
some plants.

With the automatic set insertion rule (described below in Section 8.5.4) it is

obvious that no data can be inserted in a database with the above type of cycle. (See
exercise 8.9.)

The designer of the database, using the NDM, can decide whether to include

cycles in the database, provided the DBMS software correctly handles such cycles.

As in the case of loops, the cycle can be eliminated with the introduction of one or
more intermediate record types.

8.5 Data Description in the Network Model

Our discussion of the data description facility of a network database model closely

follows the CODASYL model.

8.5.1 Record

A DBTG record is made up of smaller units of data called data-items, vectors, and

repeating groups. Records of one type or several types are related via a set, and

provide the basic unit of access in the database. In previous discussions we have

used a number of records, such as CLIENT, EMPLOYEE, and so on.

396 Chapter 8 The Network Model

Data-Item

Data-item is the DBTG term for field and is the smallest unit of named data. An

occurrence of a data-item is a representation of a value. A data-item has a name and

a type or format; the format could be arithmetic, string, or one specified by the

implementer via a TYPE clause. In our discussions of the CLIENT record, we de¬

fined the data-item Client-No to be of integer type.

Data Aggregates

A record could also contain a named collection of data-items, called data aggre¬

gates. There are two kinds of data aggregates: vectors and repeating groups.

Vectors

The DBTG record is made up of basic units of data representation called data-items.

It also allows a data-item to be repeated; this is called a vector in DBTG terminol¬

ogy. Suppose that the record type CLIENT contained an additional data-item for

storing the phone number. However, two or more phone numbers, for instance, the

home and business phone numbers, may be required to be stored for some clients.

The phone number could then be described as a one-dimension array of data-items

all of which have identical characteristics. Another example of using a vector can be

in storing the positions in which an employee can work. For instance, in the logical

record for the employee entity, we include a vector for position and each of its

component contains the position in which he or she can work.

Repeating Groups

In the employee entity and the corresponding record illustrated in Figures 2.6 and

2.15, we need to store in the record for each employee, a number of dependents and

the kinship of the dependent to the employee. This is an example of a repeating

group. The repeating group is a collection of two or more data items, vectors, or

repeating groups that occurs more than once within a record; a repeating group, thus,

is nested. A repeating group can be considered to be a vector of records. We can

represent the books borrowed by a client using a repeating group that contains the

data-item Call-No and Due-Date defined below. The CLIENT record containing

both a vector and a repeating group is defined as follows and shown in Figure 8.23:

type BKS-BRWD — record

Call-No: string;

Due-Date: string;

end;

type CLIENT = record

Name: string;

Phone-No: array [1..2] of integer;

Rptg-Grpl: array [1..15] o/BKS_BRWD;
end;

8.5 Data Description in the Network Model 397

Figure 8.23 Example of vector and repeating group.

VECTOR-1 i-REPEATING GROUP

236 | Allard j Salem | 487-3265 486-4100 || 1235 : Dec 8 ! ; 1236 Dec 11 j 1234 Dec 11

DATA
ITEM

DATA
ITEM

DATA
ITEM

DATA
ITEM

In the above example, the vector Phone-No may be used to store two phone

numbers, which could be the home and business phone numbers. An alternate

method of representing the data of the vector is by explicitly defining two data-items,

HomeJPhoneJNo and Bus-Phone-No. However, if the number of elements of the

vectors is large, then this solution, even though more explicit as to the meaning of

each component, is a bit awkward. Another method of representing the information

contained in a repeating group is by means of a one-to-many set. For instance, the

repeating group Rptg-Grpl can be replaced by a record and a set as follows. Note

that in this case, the Rptg-Grpl is eliminated from the record type CLIENT.

type BOOK—BRWD = record

Call-No: string;

Due-Date: string;

end;

set is BOOKS-BORROWED

owner is CLIENT

member is BOOK_BRWD

end

Keys

The DBTG data description language allows keys to be declared in the declaration

of a record type. A record key is a group of data-items or a single data-item used to

identify a record or a group of records. A record type can have more than one record

key declared for it. The record key can be used for direct retrieval of records by the

database management system. A record key has an unique name associated with it.

A record type could also be declared to be ordered sequentially, the ordering

options being ASCENDING or DESCENDING with respect to a record order key.

A record could have more than one record order key declared for it and could be

logically sorted in two or more different orders. The order can be used for sequential

retrieval of the record type. The record order key is also a record key.

8.5.2 Set

The DBTG set is a named relationship between records of the same or different

types. Each set has one owner record type and one or more member record types.

Any record type may be declared as the owner of one or more set types. Any record

398 Chapter 8 The Network Model

type may be declared as a member of one or more set types. Therefore, a record type

can be both an owner and a member in one or more set types. A record may be both

owner and member in the same set type. However, a record cannot be a member or

an owner of more than one occurrence of a given set type. If a record type is declared

as the owner type as well as the member type in the declaration of the. set type, then

the same record can be both an owner and a member in the same occurrence of a set

type, or it can be the owner in one occurrence and a member in another.

A set contains precisely one occurrence of the owner record and any number of

occurrences of each of its member record types. A set containing only an occurrence

of its owner record type is an empty set. This contradicts the definition of the math¬

ematical set which, when empty, does not contain any element. The DBTG set oc¬

currence always has an owner record occurrence even when empty. An empty DBTG

set cannot exist without the owner record occurrence.

8.5.3 Order of Members in a Set

Each set type declared in the schema must have an ordering specified for it. This

ordering indicates the logical ordering for the insertion of member records into the

set. The ordering specified could be ascending or descending and is based on data

items in each of the member record types. The ordering could also be given as the

order of insertion, in the reverse order of insertion, or before or after a selected
record.

The DBTG allows the user to specify the insertion point where a member record

will be connected into an occurrence of a set type. The possible order that could be
defined is first, last, next, prior, system default, sorted.

If we consider the set to be implemented via a doubly linked list, starting with

the owner record occurrence, then the order can be explained as follows:

• order first indicates that the member records are to be inserted immediately

following the owner record, thus giving a reverse chronological order. The

member record most recently inserted into a set occurrence will be the first
member in the set.

• order last indicates that the member records are to be inserted immediately

before the owner record occurrence, thus giving a chronological order. The

member record most recently inserted into the set will be the last member in
the set.

• order next and order prior indicates that the member records are to be inserted

relative to the currency indicator (discussed in Section 8.7.2) of the run unit for

the set type. If the currency indicator is pointing to the owner record, order next

is equivalent to order first and order prior is equivalent to order last.

• sorted indicates that the member records are to be maintained in a sorted

sequence. If the sorting is based on the value of key items of the member
record types, this is specified by the user.

• system default indicates that the DBMS maintains the member records in an
order most convenient to it.

8.5 Data Description in the Network Model 399

8.5.4 Set Membership

The set membership criteria consist of the insertion and retention status of a member

record type with respect to a set. The insertion status indicates how the membership

of a record occurrence, within a set occurrence of a set type of which it is a member,

is established. If the status is automatic, the insertion of the record as a member in

the appropriate occurrence of the set type is performed by the DBMS when a new

occurrence of the record type is stored in the database. In the following example, we

declare the set BORROWED to be owned by the record type CLIENT and to contain

the record type BOOK_DUE as its member, the membership being defined as auto¬

matic. This ensures that the library will know exactly which client has borrowed a
given volume.

type CLIENT = record

Client-No: string;

Name: string;

Address: string;

end

type BOOK_DUE = record

Call-No: integer;

Copy-No: integer;

Client-No: string;

Due-Date: string;

end;

set is BORROWED

owner is CLIENT

member is BOOK_DUE automatic

end

A manual membership status indicates that the membership is not automatic. In

effect, with a manual membership, the selection of the appropriate occurrence of the

set and the insertion of the record to become its member has to be done using appro¬

priate data manipulation facilities. In the following example, the set COLLECTION

owned by the record type BRANCH is declared to have the record type BOOK_

COPY as member record, the membership being manual. Therefore, the application

program is responsible for inserting an occurrence of the record type BOOK-COPY

in the appropriate occurrence of the set type.

type BRANCH = record

Br-Name: string;

Address: string;

Phone-No: string;

end

type BOOK-COPY = record

Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

end

400 Chapter 8 The Network Model

set is COLLECTION

owner is BRANCH
member is BOOK_COPY manual

end

The retention or removal status of a record indicates the continuance of the

relationship of a member record occurrence with the set type once it becomes a

member of an occurrence of the set type. The retention status could be defined as

fixed, mandatory, or optional.
Fixed status indicates that once a record becomes a member of an occurrence

of a set type, it will continue that relationship with that particular set occurrence until

the record if deleted, (’til death do us part!) When the owner of the record in a set

is deleted, if the membership retention status had been defined as fixed, all member

record occurrences are deleted along with the owner. In the following example, the

set CONTAINS owned by the BRANCH record type has DEPT and SECTION as

member record types; the membership insertion status is manual and the retention

status is declared to be fixed. Thus, once a department or section is assigned to a

given branch, it remains in that branch and, if the branch is closed, the department

and the branch is deleted as well.

set is CONTAINS
owner is BRANCH

member is DEPT manual fixed

member is SECTION manual fixed

end

Mandatory status indicates that once a record becomes a member of an occur¬

rence of a set type, it continues that relationship with an occurrence of that set type.

The particular set occurrence of which the record occurrence is a member may

change but the relationship in the set type must continue. When the membership

status is defined as mandatory, an attempt to delete the owner record occurrence with

a nonempty set will fail until all the members are moved to another set occurrence.

In the following example, the set WORKS-IN^DEPT is owned by the record type

dept and has as its members occurrences of the record type EMPLOYEE, the inser¬

tion and retention statuses being manual and mandatory, respectively. Thus, an oc¬

currence of the employee record type is to be inserted in the appropriate set occur¬

rence of the set type WORKS-IN-DEPT. Employees could, however, be moved from

one department to another. Also, once a number of employees are assigned to a

department, we cannot delete that department until we move all the employees to
another department.

set is WORKS-IN-DEPT

owner is DEPT

member is employee manual mandatory
end

Optional status allows a member record occurrence to discontinue a relationship

in a set type. When the membership status is defined as optional, an attempt to delete

the owner record occurrence will cause the members of the set occurrence owned by

the owner record to be disconnected and the owner record occurrence to be deleted;

the member record occurrence will continue to exist in the database. In the following

8.5 Data Description in the Network Model 401

example, the set type COLLECTION is owned by the record type BRANCH; the

member record type is BOOK_COPY and the membership criteria of this record type

is manual insertion and optional retention. Therefore, an application program will

haVe to insert an occurrence of the member record type in the appropriate set occur¬

rence. The retention is optional, which means that if a BRANCH type record occur¬

rence were to be deleted from the database, all member record occurrences in the set

occurrence of the set type COLLECTION owned by the branch record occurrence

will be removed from the set before the owner record occurrence is deleted. The

member record occurrence continues to exist in the database.

set is COLLECTION

owner is BRANCH

member is BOOK_COPY manual optional
end

Figure 8.24 shows the meaning of the combination of the two membership sta¬
tuses for a member record type in a set type.

We can add the status information for insertion and retention of the member BOOK
DUE in the set borrowed as follows:

set is BORROWED

owner is CLIENT

member is BOOK_DUE automatic mandatory
end

The insertion status is specified as automatic because a BOOK being borrowed

must become the responsibility of a client. The retention status is specified as man-

Figure 8.24 Significance of membership status.

FIXED MANDATORY OPTIONAL

A

U

T

0

M

A

T

I

C

When a record is created, the

DBMS places it in a set. The

record stays there until it is de¬

leted.

When a record is created, the

DBMS places it in a set. The

record can move from one oc¬

currence of the set to another.

When a record is created, the

DBMS places it in a set. The

record can be moved to another

occurrence of the set or re¬

moved and later reconnected.

M The record has to be connected The record has to be connected The record has to be connected

A by appropriate data manipula- by appropriate data manipula- by appropriate data manipula-

N tion operations. Once it is con- tion operations. The record can tion operations. The record can

U nected it stays in the set occur- move from one set occurrence be moved to another set occur-

A rence until deleted. to another. rence or be removed and later

L reconnected.

402 Chapter 8 The Network Model

8.5.5

datory because the library has to know which client has borrowed the book until it is

returned. Also, the library does not allow clients to be deleted until they have re¬

turned the books they borrowed.

Structural Constraint

8.5.6

The data definition of a set could include a requirement that the value of a data-item

in the member record occurrence be equal to a data-item in the owner record occur¬

rence. An example of a member record type to allow such a constraint to be specified

is shown in the declaration of the record type BOOK_DUE. BOOK_DUE partici¬

pates in sets involving record types CLIENT and BOOK_COPY. The structural con¬

straint that the value of the data-item BOOK-COPY. Client-No be equal to CLIENT.

Client-No can be specified in the definition of the set BORROWED by the check

statement as illustrated below.

set is BORROWED

owner is CLIENT

member is BOOK-DUE automatic mandatory

check CLIENT .Client-No = BOOK-DUE. Client-No

end

This requirement, called structural constraint, was added to the original

DBTG proposal to provide a method of maintaining the integrity of data in the da¬
tabase.

Set Selection

For each set type specified in the database schema, the database contains several set

occurrences. There must be a way to select the appropriate set occurrence when

member record occurrences are to be added to or retrieved from a set. The set selec¬

tion clause specified in the definition of the set defines the rules to be used by the

DBMS for the purpose of selecting the appropriate set occurrence for inserting or

accessing a member record. A separate set selection clause is required for each mem¬

ber record type in the set type. Set selection could be by structural constraint, key,

application program, a procedure to be invoked for the selection, or by the DBMS.

We show below set selection by structural constraint, which incorporates the feature

of the check statement given above. With the following definition of the set BOR¬

ROWED, the set occurrence to be selected will be the one where the Client-No of

the owner record is equal to the Client-No in the record type BOOK-DUE.

set is BORROWED

owner is CLIENT

member is BOOK-DUE automatic mandatory

set selection is structural CLIENT .Client-No =

BOOK- DUE. Client-No
end

8.6 Schema and Subschema 403

8.5.7

To simplify the discussions of the data manipulation facility of the network data

model, we will use the application program to select the appropriate set occurrence.

Singular Sets

8.5.8

The singular set is a special type of set with precisely one occurrence. The system

is named as the owner of this type of set and is a convenient method of grouping

together all occurrences of the member record type. For each such grouping of a

record type we can declare a singular set. All clients to the public library, regardless

of the branch they normally use, can be considered as being a member of the singular
set ALL-CLIENTS.

set is ALL-CLIENTS

owner is SYSTEM

member is CLIENT

end

Similarly, all employees and all books can be declared members of singular sets

ALL-EMPLOYEES and ALL-BOOKS, respectively.

Area

8.6

In the original DBTG proposal the subdivision of a database was called the area.

This construct was deleted in the revised version of the proposal since the concept is

associated with the physical organization of the data. It would be inappropriate to

specify physical details in the schema, which is a logical organization corresponding

to the conceptual level.

Schema and Subschema

The schema is the logical description of the entire database. It includes the names

and descriptions of all record types including all the associated data-items and aggre¬

gates and all set types including the singular sets. A portion of the schema for the

database for the public library is shown below. The data structure diagram for this

schema is shown in Figure 8.25. The schema is expressed in a simplified Pascal-like

language; some of the details required by the DBTG proposals and its revisions have

been omitted for simplicity.

Schema name is MUC_Pub!ic_Library

type BRANCH = record

Br-Name: string;

Address: string;

Phone-No: string;

end

404 Chapter 8 The Network Model

Figure 8.25 Data structure diagram for the library schema.

type BOOK = record

Author: string;

Title; string;

Call—No: integer;

end

type BOOK_COPY = record

Call—No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

end

type CLIENT = record

Client-No: string;

Name: string;

Address: string;

end

type BOOK_DUE = record

Call-No: string;

Copy-No: integer;

Client-No: string;

Due-Date: string;

end;

set is BORROWED

owner is CLIENT

member is BOOK_DUE automatic mandatory
end

set is BOOK-COPY-LENT

owner is BOOK_COPY

member is BOOK_DUE automatic optional

end

8.7 DBTG Data Manipulation Facility 405

set is COPY-STATUS

owner is BOOKS

member is BOOK_COPY optional manual

end

set is ALL-BOOKS

owner is SYSTEM

member is BOOK

end

set is COLLECTION

owner is BRANCH

member is BOOK_COPY manual optional

end

The subschema is a subset of the schema and corresponds to the ANSI/SPARC

external schema. The subsetting of the schema is achieved by omitting from the

subschema one or more data-items in a record, one or more record types, or one or

more set types. In addition, aliases could be used for data-items, records, or sets.

Furthermore, the data-items in the subschema may be given different data types from

those defined for the corresponding data-items in the schema.

8b7 DBTG Data Manipulation Facility

The DBTG proposal included a data manipulation facility or language (DML). The

facility included procedural statements, status and currency indicators, special regis¬

ters, and conditions. The intent was to provide a number of operations or commands

that could be embedded in a host language; the proposed host language was COBOL.

For discussion here, we use a Pascal-like language as the host language. Before

giving the details of the commands we consider some of the concepts used in the

DBTG proposals to facilitate the understanding of the operations performed by the

DBMS.

8.7.1 Run Unit

Run unit is a DBTG term that refers to each process or task (a program in execution

is a process) that is running under the control of the DBMS. The process may be a
user’s application program containing DML commands or an interactive session with

a user. Two or more users’ processes may be concurrently executing the same appli¬

cation program or may be in an interactive session via on online terminal under the

control of a teleprocessing monitor. The DBMS maintains separate records of the

environment of each such run unit. An area of storage is set aside to provide an

independent work space for each run unit. This work space is called the user work

area (UWA). The UWA contains the processing environment of the run unit; the

program being executed may be shared.

406 Chapter 8 The Network Model

8.7.2 Currency Indicators

Each run unit must be allowed to access records that are part of the logical structure

known to the run unit via its subschema. For each record type known to the run unit,

the DBMS maintains a marker to indicate the current record position during the

execution of the run unit. These record position markers or pointers are called cur¬

rency indicators.
The DBMS maintains a number of currency indicators for each run unit. For

each record type known to the run unit, there is a currency indicator called the

current record of a record type. The currency indicator for a record type points to

the record occurrence of the record type that was most recently referred by the most

recent successfully executed DML command. For each set type known to a run unit

there is an additional currency indicator called the current record of a set type. The

currency indicator for the set type points to the record in the set type that was last

referred by a successfully completed DML command. The currency indicator for the

set type may be pointing to the owner record occurrence or member record occur¬

rence, depending on the operation last performed. In case of a singular set, the null

currency indicator for the set implies that the system is the owner. The most recently

referred record by the last DML command executed successfully is also indicated by

the current of the run unit.

The number of currency indicators associated with each run unit is, thus, one

more than the number of record types and set types known to the run unit. The

currency indicator for a particular set type or record type changes after a successful

completion of the DML command that referred it, unless the command specified that
one or more indicators remain unchanged.

Any currency indicator may have a null value if no reference to the correspond¬
ing record type or set type has been made.

8.7.3 Database Status Registers

In addition to the currency indicators, the DBMS maintains, for each run unit, a

number of status indicators for the user’s application program. The term used by the

DBTG for these indicators is special registers; however, in reality these are not

hardware registers. These status indicators, being part of the environment of the run
unit, are maintained in the work area for the run unit (i.e., the UWA).

• DB-Status: This is the special register used by the DBMS to store the

appropriate database status indicator during the execution of any DML

command that refers to the database. The user program can access the DB-

Status, but only the DBMS can change it. For our purposes here, we will

assume that the DBMS places the value 0 into this register after the successful

completion of a DML command. Thus, when the end-of-data condition is

encountered during the sequential retrieval of a record type, the value returned
in the DB-Status register will be nonzero.

• DB-Set-Name: When an error is detected during the execution of a DML

command that refers to the database, the DBMS uses this register to store the
name of the set type involved in the command.

8.8 Database Manipulation 407

• DB-Record-Name: This register is used by the DBMS to store the name of the

current record type after the unsuccessful execution of a DML command that

refers to the database.

8.7.4 Record Templates

The work area for a run unit, in addition to the above, contains storage space for

each record type known to the run unit. Thus, for the record type CLIENT known

to a run unit, a storage space is reserved in the work area; the name of this storage

space is CLIENT. This storage for CLIENT is made up of the space for each data-

item declared for the record type in the subschema used by the run unit. The names

of the data-items in this space are the corresponding ones in the record type. The

application program can use this space as a record template for data manipulation.

8.7.5 DML Commands

Here we give a list of DML commands and the operations performed by them. These

commands, or a variation of them, are usually available in the DML of many DB¬

MSs based on the DBTG model. We examine the usage of these commands in Sec¬

tion 8.8.

• Find: Locates the required occurrence of an existing record.

• Get: Accesses a record occurrence specified by the currency indicator of the

record and places it into the template area for the record type in the UWA of

the run unit.

• Modify: Changes or updates the value of one or more data-items in the current

record of the run unit.

• Store: Causes a record to be stored from the template into the database.

• Erase: Destroys or removes one or more records from the database.

• Connect: Causes the current record stored in the database to become a member

of one or more sets, wherein the record type of the record is defined as a

member in the subschema.

• Disconnect: Removes the current record of the run unit from one or more sets,

resulting in the discontinuance of one or more memberships.

• Reconnect: Removes the current record of the specified type from its existing

set occurrence of the specified set type and connects it to the current set type.

8.8 Database Manipulation

To illustrate these DML statements we will consider and application program for a

clerk at a library circulation desk. He or she is involved in the day-to-day work with

only a portion of the database. The application program contains a subschema for

408 Chapter 8 The Network Model

Figure 8.26 Data structure diagram for the subschema.

that portion of the database relevant to this user. We give the data structure diagram

for this application in Figure 8.26 and the corresponding subschema below.

Subschema name is Circulation

type BOOK-COPY = record

CallJSIo: string;

Copy^No: integer;

Branch-Id: string;

Current-Status: string;
end

type CLIENT = record

Client—No: string;

Name: string;

Address: string;
end

type BOOK_DUE = record

Call—No: string;

Copy-No: integer;

Client-No: string;

DueJDate: string;
end;

set is BORROWED

owner is CLIENT

member is BOOK-DUE automatic mandatory
end

set is BOOK-COPY-LENT

owner is BOOK-COPY

member is BOOK-DUE automatic optional
end

The DBTG proposal allows certain differences in the description of data be¬

tween the schema and subschema, the DBMS performing the required transforma¬
tion. For our purpose here, we used the same data descriptions as the schema

8.8 Database Manipulation 409

Figure 8.27 Database contents.

234 Smith Lynn

234 Klaf Revere

236 Allard Salem

CLIENT

1234 1 234 DEC 1

1237 1 234 DEC 1

1235 1 236 DEC 8

1236 1 236 DEC 11

1234 2 236 DEC 11

BOOK_COPY_LENT

1234 1 Lynn LENT

1234 2 Revere LENT

1235 1 Salem LENT

1236 1 Salem LENT

1237 2 Lynn LENT

1237 1 Salem LENT

1238 1 Lynn IN

1238 2 Revere IN

1238 3 Salem IN

BOOK_COPY

The database contains the information for the records CLIENT, BOOK_COPY,

and BOOK-DUE as shown in Figure 8.27
The DBMS maintains a currency indicator for each of the record types and set

types and one for the run unit. We give these indicators in the form of a table in

Figure 8.28. The initial values of the currency indicators for a run unit that uses the

subschema shown above is given in the table. In this case there is one currency

indicator for each of the record types BOOK-COPY, CLIENT, and BOOK—DUE; a

currency indicator for each of the set types BORROWED and BOOK-COPY-LENT;

in addition, there is an indicator for the run unit. The null values indicate that the

database has not been accessed.

Figure 8.28 Initial values for the currency indicator for run unit using subscheme Circulation.

Indicator Current Value

Run unit null

BOOK-COPY null

CLIENT null

BOOK-DUE null

BORROWED null

BOOK-COPY-LENT null

410 Chapter 8 The Network Model

8.8.1 Operations on Records

Locating a Record and Setting the Currency Indicators

The find command is used to set the currency indicators and establish the specific

occurrence of a record type for subsequent operations on the database. The DBTG

proposal offered seven formats for specifying the record selection in the find com¬

mand; we will use only a few of these. When a find command is successfully exe¬

cuted, the currency indicators for the run unit, the record type of the record, and the

set type in which the record is either an owner or a member are updated. Conse¬

quently, the execution of the following statements will change the currency indicators

as shown in Figure 8.29. The first statement sets the Client-No field of the UWA

record template to the value 234 and the second statement locates the record type

CLIENT occurrence in the database such that the value of that record occurrence for
the data field Client-No is 234.

Client-No := 234;

find any CLIENT using Client-No

Retrieving a Record

Once a record has been located with the find command it could be retrieved using

the get command. Therefore, the find command sets the currency indicators; the get

command retrieves the data from the database and moves it into the record template

in the UWA. To retrieve the address of a client with a Client-No of 234, we first

locate the record occurrence and then move the data for that record occurrence into

the template area for the record type CLIENT by using the get command. The fol¬
lowing statements illustrate these operations:

Figure 8.29 Find Client-No = 234.

Indicator Current Value

Run unit 234 Smith

BOOK-COPY null

CLIENT 234 Smith

BOOK-DUE null

BORROWED 234 Smith

BOOK-COPY-LENT null

8.8 Database Manipulation 411

Client-No := 234;

find any CLIENT using Client-No

get CLIENT; (* move values into the scratch area for

the record type CLIENT in UWA *)

Locating and Retrieving Duplicate Records

There could be many records having a given value in a specified data field. These
could be located using another format or the find command as shown below.:

find duplicate < record name> using < record data-item>

The duplicate here indicates that the required record is to have the same value for
the specified data-item as the current record of that type for the run unit.

To retrieve all BOOK_COPY at the Lynn branch of the library we could use

the following sequence of statements. Here we use the DB_Status register provided

by the DBMS in the while loop. As long as the find duplicate command completes

itself successfully we execute the statements in the while loop.

BOOK_COPY.Branch-Id : = Lynn;

find any BOOK_COPY using BOOK_COPY.Branch-Id;
while DB_Status = 0 do

begin

get BOOK_COPY;

(* process the record *)

find duplicate BOOK-COPY using BOOK-COPY .Branch-Id;
end;

The order in which the records are retrieved in the above example depends on
the order in which the records were stored in the database.

Updating a Record

The modify statement is used to update the value of one or more fields of a record.

However, the record occurrence to be updated has to be located before the updating

operation is performed. To update the value of a data-item in an existing database

record, we first locate it using the find command with the clause for update to

indicate to the DBMS that the record may be modified. It is not necessary to modify

a record located with this clause. However, a record located without this clause may

not be altered. Once the record occurrence is located, the new values for the fields

to be modified are assigned to the corresponding fields in the record template. When

this is done, the modify statement is executed to reflect the modification in the stored

database.

To extend the loan period of the book with Call-No = 1234 borrowed by Smith

with a Client-No = 234 from 12/1 to 12/11, we could use the following statements:

done : = false;

Client-No : = 234;

find for update any BOOK_DUE using Client-No

412 Chapter 8 The Network Model

while DB_Status = 0 and not done do

if Call-No = 1234 then

begin

Due-Date : = 12/12;

modify BOOK_DUE;

done : = true;

end

else find for update duplicate
BOOK_DUE using CLIENT-No;

Adding a Record Occurrence

The store command is used to store a new occurrence of a record type in the data¬

base. The new occurrence is first created in the template space for the record type in

the UWA and then we execute the command:

store < record type>

This method allows a single record occurrence to be created and stored at one

time. The following statements add the new CLIENT Gold to the database:

CLIENT.Client-No := 237;

CLIENT.Name := ‘Gold’;

CLIENT .Address : = ‘Lynn’;

store CLIENT;

If the new record occurrence belongs to a record type associated with a set type,

there must be a mechanism to place the record occurrence in the appropriate set
occurrence. We discuss this in Section 8.8.2.

Deleting a Record Occurrence

An existing record occurrence may be deleted from the data base by use of the erase

command. However, before the record is deleted, we have to locate it using the find

command with the for update clause. As before, this informs the DBMS that the

record may be updated, which in this case means deletion. The following statements
delete the CLIENT Gold added in the previous example:

CLIENT.Client-No := 237;

find for update any CLIENT using CLIENT. Client-No;
if DB_Status = 0 then

erase CLIENT

else error_routine;

In this example, we use the DB_Status register to verify that the find operation
was successfully completed before executing the next statement.

In the case where a record occurrence to be deleted is associated with one or

more set occurrences (obviously of different types) as an owner, appropriate opera¬

tions must be carried out on the members of these sets before the record is deleted.

One of the actions could be to move the member record occurrences to other set

8.8 Database Manipulation 413

occurrences of the same set types (if the membership retention status for the member

record type is mandatory or optional), or to remove the member record occurrences

(if retention status is optional). If these operations are not performed, the DBMS will

delete the record and the members of the sets of which the record is an owner would

also be deleted or removed from the sets before the actual deletion. The erase state¬

ment has options that can be included to indicate the extent of deletion to be per¬
formed by the DBMS.

8.8.2 Operations on Sets

The DBTG set construct allows related records to be stored as a set. This construct

also allows records to be retrieved via their association in one or more set types. A

format of the find command can be used to locate the members in a set once we have

located the owner record occurrence. Conversely, another format of the find com¬

mand can be used to locate the owner record occurrence once the member record

occurrence has been located.

Locating Records via Sets

To locate a member record occurrence of a member record type in a set, we first

locate the appropriate set occurrence by locating the owner record occurrence. Once

the owner record occurrence is located, we can locate the first member record occur¬

rence of a given member type by the following format of the find statement:

find first <member record type> within <set type>

The following statements locate the first BOOK_DUE by CLIENT 234 in the

set occurrence of set type BORROWED owned by 234. The first find statement lo¬

cates the owner record occurrence and also sets the currency indicator for the set type

BORROWED. The second find statement locates the first member occurrence of the

record type BOOK_DUE.

CLIENT. Client-No : = 234;
find any CLIENT using CLIENT.Client-No;

find first BOOK-DUE within BORROWED;

To locate all the books borrowed by the CLIENT 234 we could use the follow¬

ing program segment:

CLIENT.CLIENTJ\!o : = 234;

find any CLIENT using CLIENT .Client-No;

find first BOOK-DUE within BORROWED;

while DB_Status = 0 do

begin

(* process the current member record *)

find next BOOK-DUE within BORROWED;

end

414 Chapter 8 The Network Model

In this example we located the first member record occurrence by the find first

within statement and the subsequent member record occurrences using the find next

within statement. The order in which the members are located depends on the order

specified for the insertion of the members in the set definition.

The clerk at the circulation desk, in addition to checking out the books that have

been borrowed by a client, can identify the branch from which a particular copy of

a book was borrowed. The following program segment locates and retrieves the name

of the branch from which client 234 borrowed the first book.

CLIENT .Client-No := 234;
find any CLIENT using CLIENT.Client-No;

find first BOOK_DUE within BORROWED;

find owner within BOOK-COPY-LENT;

get BOOK_COPY;
display (‘Branch_Id is’, BOOK-COPY .Branch-Id);

In this example, we located the first BOOK_DUE, representing the first book

borrowed by 234 as before. After locating this book we located its owner in the set

BOOK-COPY-LENT. The latter owner is an occurrence of the record type BOOK_

COPY containing the branch information.

The find first within and the find next within commands for locating members

of a set could be used with a singular set in exactly the same manner. However,

since there is only one occurrence of a singular set of a given set type and it is

owned by the system, there is no need to locate the owner record occurrence before

issuing the find first command.

Set Manipulation

The DBTG data manipulation facility proposed a number of operations for manipu¬

lating sets. For instance, if a member record type is defined to have manual optional

membership in a set type, the user could place a record occurrence of the record

record type in a set occurrence. The user could also remove it from a set occurrence

and then place it, if required, in another set occurrence at some later time.

For discussion purposes in this section, consider the subschema below, used by

a clerk in the acquisition department of the library. The acquisition section of a

library procures copies of new or existing books and assigns them to one or more

branches; it may also transfer a copy of a book from one branch to another and
remove a copy of a book from circulation.

Subschema name is Acquisition

type BOOK = record

Author: string;

Title: string;

Call-No: integer;

end

type BOOK_COPY = record

Call-No: integer;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

end

8.8 Database Manipulation 415

set is COPY-STATUS

owner is BOOK

member is BOOK_COPY optional manual
end

type BRANCH = record

Br-Name: string;

Address: string;

Phone-No: string;
end

set is COLLECTION

owner is BRANCH

member is BOOK_COPY manual optional
end

Manual Set Manipulation

Let us see how to add a new title, Anne of Green Gables by Montgomery, to the

collection. The steps involved are the following:

1. Add a record occurrence for the new title to the record type BOOK.

2. Add a record occurrence to the record type BOOK_COPY for every copy that

is acquired.

3. Insert the newly created occurrences of BOOK_COPY into the COPY-STATUS

set occurrence, where the newly inserted occurrence of BOOK is the owner.

The first step is performed using the following statements:

BOOK.Author : = ‘Montgomery’;

BOOK .Title := ‘Anne of Green Gables’;

BOOK.Ca/LJVo : = 1238;

store BOOK;

Assuming that three copies are acquired and that one copy is to be assigned to

each of the three branches of the library, the following statements perform this step.

BOOK-COPY .Call-No : = 1238;

for i : = 1 to 3 do

begin
BOOK_COPY.Copy-No := i;

case i of
l:BOOK_COPY.Branch-Id := ‘Lynn’;

2:BOOK_COPY.Branch-Id := ‘Revere’;

3:BOOK_COPY.Branch-Id \= ‘Salem’

end
BOOK_COPY.Current-Status := ‘in transit’;

store BOOK_COPY;

end

Note: In the above example, we have embedded the DML statements in an

application program in a high level language.

416 Chapter 8 The Network Model

At this point the database contains one record occurrence for the new book and

three record occurrences, one for each copy of the book. Now we have to place each

of these three occurrences of the record type BOOK-COPY in the set type COPY-

STATUS wherein the owner is BOOK = 1238. The DBTG command to insert a new

member into a set occurrence is the connect command, which specifies the record

type that has to be inserted into the set type. The currency indicators have been

appropriately initialized to point to the correct member record type occurrence and

the correct owner record type occurrence.
The following statements insert the members of the record type BOOK-COPY

in the set occurrence of the set type COPY-STATUS wherein the owner is BOOK =

1238:

BOOK.Call-No : = 1238;
find any BOOK using BOOK.Call-No;

(* establish the pointer for the set type
COPY-STATUS *)

BOOK-COPY .Call-No := 1238;

find any BOOK-COPY using BOOK-COPY.Callao
retaining currency for COPY-STATUS;

while DB_Status = 0 do

begin
connect BOOK-COPY to COPY-STATUS;

find duplicate BOOK-COPY using
BOOK-COPY .Call-No

retaining currency for COPY-STATUS;

end

In the above program segment implementation we used the format of the find

statement, which suppresses the updating of the currency indicator for the set type

COPY-STATUS. Without the retaining currency clause, for example, the second

find statement would have updated the currency indicator for the set type COPY-

STATUS to point to the record occurrence of the record type BOOK-COPY. The

reason for this is that the record type BOOK-COPY appears as a member of the set
type BOOK-COPY-STATUS in the subschema.

An alternate method of connecting the record occurrences of the record type,
wherein we locate the owner for each insertion, is given below:

BOOK.Call-No := 1238;

BOOK-COPY .Call-No := 1238;

find any BOOK-COPY using BOOK-COPY.Call-No;

(* establish the currency indicator for the

record type BOOK-COPY *)
while DB-Status = 0 do

begin

find any BOOK using BOOK.Call-No;

(* establish the currency indicator for the

set type COPY-STATUS *)

connect BOOK-COPY to COPY-STATUS;

find duplicate BOOK-COPY using

BOOK-COPY. Callao;
end

417 8.8 Database Manipulation

The reason we do not use the retaining clause in this case is that the find state¬

ment for the record type BOOK will set the currency indicator of the record type

BOOK as well as the set type COPY-STATUS and run unit. However, it will not

update the currency indicator for the record type BOOK_COPY.

We can combine the operation of storing the record occurrence for BOOK_

COPY with connecting the occurrence in the appropriate set occurrence in the set

type COLLECTION, as illustrated by the following program segment:

BOOK.Call-No : = 1238;

BOOK_COPY.Call-No := 1238;

for i : = 1 to 3 Jo

begin
BOOK_COPY.Copy-No : = i;

case i of

1 .BOOK-COPY.Branch-Id : = ‘Lynn’;

2:BOOK_COPY.Branch_Id : = ‘Revere’;

3:BOOK_COPY.Branch-Id \= ‘Salem’

end
BOOK-COPY .Current-Status ‘in transit’;

store BOOK_COPY;

BRANCH.fir_JVame := BOOK_COPY.Branch-Id;

find any BRANCH using BRANCH.Br-Name;

(* establish the pointer for the set type

COLLECTION *)

connect BOOK_COPY to COLLECTION;

end

An occurrence of a record type declared in the set definition to be an optional

member of a set could be removed using the disconnect statement. However, before

this statement is issued the currency indicator for the record type must be updated to

point to the specific occurrence of the record type that is to be removed from the set

occurrence. The currency indicator of the set type must also be updated to point to

the owner record occurrence of the set type wherein the record is a member.

To remove the Copy—No — 3 of the book with Call—No = 1238 from the set

occurrence of the set type COPY-STATUS, we could use the following statements:

done : = false;
BOOK .Call-No\= 1238;
find for update any BOOK using BOOK .Call-No;

(* establish the currency indicator for the set type

COPY-STATUS *)

find first BOOK_COPY within COPY-STATUS;

(* now find its member until Copy-No = 3 is found then

disconnect it *)

while DB_Status = 0 and not done do

if BOOK-COPY.Copy-No = 3 then

begin
disconnect BOOK_COPY from COPY-STATUS;

done : = true;

end

418 Chapter 8 The Network Model

else
find for update next BOOK_COPY within

COPY-STATUS;

The above program segment removes the record occurrence from the set occur¬

rence, although the record occurrence remains in the database. If we want to delete

this record occurrence from the database, we have to issue the erase command after

the record is disconnected from the set.

The following example illustrates the disconnection of a record from one set

occurrence, followed by its reconnection in another set occurrence; both set occur¬

rences are of the same set type. The program segment enables the acquisition clerk

to transfer the Copy-No = 3 of the BOOK 1238 from the Salem to the Lynn branch.

BOOK .Call-No\= 1238;

find any BOOK using BOOK .Call-No;
done : = false;

find for update first BOOK_COPY within COPY-STATUS;

while DB_Status = 0 and not done do

if BOOK-COPY .Copy-No = 3 then
begin

done : = true;

BOOK-COPY .Branch-Id : — ‘Lynn’;
end

else

find for update next

BOOK_COPY within COPY-STATUS;
if done then

begin

BRANCH.Br-Name ‘Lynn’;

find any BRANCH using BRANCH.fir Name;
//DB_Status = 0 then

reconnect BOOK_COPY to COLLECTION
else

error routine 1;
end

else

error routine 2

In this example, we first find the correct copy of the book via the set COPY-

STATUS which has as its owner the occurrence of the record type BOOK with BOOK.

Call-No = 1238. We locate the member of this set with the for update clause, since

we will change the BOOK-COPY.BRANCH-Id. Once this member is located, we

locate the appropriate owner in the set COLLECTION, which in this case is the

record occurrence with BRANCH.Br_Name = ‘Lynn’. The successful find any

BRANCH operation will set the currency indicators for the set type COLLECTION

as well for the record type BRANCH to point to the BRANCH.fir-Name = ‘Lynn’.

The reconnect operation then removes the BOOK_COPY occurrence from its current

owner (Salem branch) and reconnects it to the Lynn branch. We illustrate the need

for an error routine to handle the situation in which the DBMS could not locate the

appropriate record occurrence, such error routines, when the appropriate data base

8.8 Database Manipulation 419

status registers are not set to their successful values, should be used in any applica¬

tion programs. For simplicity, we have omitted these tests in our discussion.

Automatic Set Manipulations

The sets BORROWED and BOOK-COPY-LENT have been defined in the schema

and subschema with the automatic insertion clause. The retention clause is mandatory

for the former set and fixed for the latter one. Thus, a new record occurrence of the

record type BOOK—DUE is inserted automatically into the sets BORROWED and

BOOK-COPY-LENT when the occurrence is created using the store operation. To

ensure that the newly created record about to be stored is inserted in the correct

occurrence(s) of the owner type record(s), the currency indicator(s) for the set type(s)

must point to the appropriate owner record occurrence(s).

Suppose CLIENT 234 wants to borrow the newly acquired copy of the book

Anne of Green Gables. The circulation clerk application program will create a new

occurrence of the record type BOOK_DUE in the UWA; locate the record occurrence

for the CLIENT and the BOOK_COPY; and then issue the store operation, which

will cause the DBMS to automatically connect the new record occurrence of type

BOQK_DUE to the two sets. The portion of the application program that performs

these operations is given below. Here we first locate the record occurrence of the

record type CLIENT with a Client-No — 234. Subsequently, the record occurrence

of the record type BOOK-COPY is located with the update clause. These two record

occurrences will be the owner in the two set occurrences in which a new occurrence

of BOOK—DUE will be inserted. We create this new occurrence of the BOOK—DUE

in the corresponding record template (assume that DUE_DATE is a predefined func¬

tion that returns the due date). Finally, the new record is inserted in the database

with the store statement, which also inserts it in the two sets indicated by the cur¬

rency indicators.

CLIENT.Client-No : = 234;

find any CLIENT using CLIENT.Client-No;

BOOK_COPY.Ca/L2Vo : = 1238;

BOOK-COPY.Branch-Id : = ‘Lynn’;

find for update any BOOK—COPY using

BOOK-COP Y.Ca//_/Vo,

BOOK-COPY. Branch-Id;

BOOK— COPY.Current-Status := ‘lent’;

BOOK-DUE.Ca/LjVo : = BOOK-COPY.Call-No;

BOOK—DUE.Co/?y_yVo := BOOK-COPY.Copy-No;

BOOK— DUE.Client-No := CLIENT.Client-No;

BOOK—DUE.Dare : = DUE-DATE;

store BOOK-DUE;

The mandatory retention clause for the sets BORROWED means that an occur¬

rence of the owner record type CLIENT for the set could not be deleted from the

database when it owns a nonempty set occurrence. Translating this into our library

example, it means that a client may not discontinue her or his borrowing arrangement

(membership) from the library until after returning all the items that were borrowed.

420 Chapter 8 The Network Model

The CLIENT 234 returning the BOOK 1237 would require the circulation clerk

to delete the appropriate BOOK_DUE record. The deletion of the record would de¬

tach the record from the two set occurrences. In the following application program

section, we illustrate the location of the member record occurrence of the record type

BOOK_DUE via the set occurrence of the set type BORROWED owned by CLIENT

234. We use this member record occurrence of BOOK_DUE in locating the owner

record occurrence in the set BOOK-COPY-LENT and modify the data-item Cur¬

rent-Status of the record type BOOK-COPY. Before issuing the erase instruction

we reestablish the currency indicator of the run unit to the record occurrence of

BOOK_DUE by locating it as a member in BOOK-COPY—LENT.

done : — false;

CLIENT.Client-No : = 234;

find any CLIENT using CLIENT.Client-No;

find first BOOK-DUE within BORROWED;

while DB Status = 0 and not done do

if BOOK-DUE.Call-No = 1237 then
done : = true

else find next BOOK-DUE within BORROWED;
if done then

begin

find for update owner within BOOK COPY LENT;

BOOK-COPY. CURRENT-Status : = in;

modify BOOK-COPY;

find for update first BOOK-DUE within BOOK COPY TENT;

disconnect BOOK-DUE from BOOK COPY LENT;
erase BOOK—DUE;
end

else

error routine

Deletion of an Owner Record Occurrence

The retention status for the sets BORROWED has been defined as mandatory. An

attempt, as shown below, to delete the occurrence of the CLIENT 234, which is the

owner of a nonempty set, will fail until all the members in the set are deleted.

CLIENT.CLIENT-No : = 234;

find for update any Client using CLIENT.Client-No;
erase CLIENT;

However, if the retention status for the member record type in the set BOOK-

COPY—LENT had been defined as fixed, an attempt to delete the occurrence of the

owner record type BOOK-COPY (i.e., the record 1237 2 Lynn LENT) would have

been successful. When the owner record occurrence is deleted in a set having mem¬

ber record types with the fixed retention status, the member record occurrences will

be deleted as well. Furthermore, if the member records are themselves owner of set

types with membership retention status fixed, the deletion will be done recursively

The deletion of the member records would have some very undesirable effects if the

421 8.10 Summary

member record occurrences were members of other set types. In such a case, the

preferable action for the DBMS would be to disconnect these member records from
the owner record being deleted.

The retention status for the members of the set BOOK-COPY-LENT has been

defined as optional. An attempt to delete a record occurrence of BOOK_COPY with

a nonempty set would be successful. The member record occurrences in the set

BOOK-COPY-LENT owned by the occurrence of BOOK_COPY are detached from

the set occurrence prior to the deletion of the owner. These member record occur¬
rences would continue to exist in the database.

8.9 Concluding Remarks

The NDM as defined in the DBTG was the first formally defined database model and

led to the implementation of a large number of DBMSs from commercial software

houses. These systems were designed to run on mainframe and midsize computers.

The advantage of the model is that the data structure diagrams give the user a

clear pictorial means of understanding the database structure. The sets and the rela¬

tionships between record types involved in the sets are predefined. These predefined

relationships are usually implemented at the physical level with the use of link struc¬

ture. This results in faster access to related records than is possible in the relational

case using a simple join operation to navigate dynamically through the various rela¬

tions.

The NDM builds indexes on user (DBA) specified key data-items for direct

access to records or groups of records. Once one of the owner record occurrences is

located by the use of a selection criterion based on a key, the record occurrences of

the member record type(s) can be retrieved relatively quickly.

On the minus side, the query language is procedural and requires the user to

navigate through the database by specifying sets, owners, and members. This in tum

means that the user has to be cognizant of the structure of the database.

Notwithstanding the above, the model continues to be used extensively for cor¬

porate databases in many organizations.

With the current interest in the relational approach, a large number of network-

based DBMSs are redesigned to offer the user an optional relational interface, thus

combining convenience for the user and at the same time avoiding some of the inef¬

ficiencies of the relational approach.

Summary

The network data model represents entities by records and expresses relationships

between entities by means of sets implemented by the use of pointers or links. The

model allows the representation of an arbitrary relationship. The DBTG proposal

places a number of restrictions on the use of the links.

The basic data definition structure of the DBTG proposal includes records and

sets. Record types are representations of entity types and are made up of data-items,

vectors, and repeating groups.

422 Chapter 8 The Network Model

A set is a means of representing a one-to-many relationship between record

types. A set is declared to have one record as the owner record type and one or more

records as the member record type. One of the constraints imposed by the DBTG

proposal, for ease of implementation, is that a given record occurrence could be an

owner or a member in only one occurrence of a set type. This restriction means that

a many-to-many relationship can only be represented by introducing an intermediate

record type and representing the many-to-many relationships by two one-to-many

relationships.
A set type can have an arbitrary number of occurrences. The order of insertions

of the members in a set occurrence can be specified. The method of insertion of

members can be automatic or manual. The fate of the member record occurrences in

the database, when the owner is being deleted, can be specified by the retention

clause in the set definition as fixed, mandatory, or optional.

The data manipulation facility of the DBTG proposal uses the concept of cur¬

rency indicators to keep track of the records involved in the operations. The basic

method of initializing the currency indicators and identifying records and sets is by

means of the find command. Having initialized the currency indicator, other opera¬

tions like connect, disconnect, erase, get, modify, reconnect, and store can be exe¬

cuted to manipulate the data.

network data model (NDM) sorted current of the run unit
intersection record system default special register
connection record automatic record template
cycle manual find
single-level cycle fixed get
multilevel cycle mandatory modify
loop optional store
data-item structural constraint erase
data aggregate set selection connect
vector singular set disconnect
repeating group system reconnect
DBTG set run unit duplicate
order first user work area (UWA) for update
order last currency indicator find first within
order next current record of a record type find next within
order prior current record of a set type retaining currency

Exercises

8.1 A school board or district has a number of schools under its jurisdiction. Each school has

students and teachers. Teachers have certain qualifications and may have taught in other

schools. Some teachers can teach in more than one school; however, a student attends only

one school. Show how you would model the school system using the network model.

8.10 Summary 423

8.2 A school board has a number of committees. The members of the committees are the

teachers and the parents of the students in the school system. Teachers are parents too, and

their children attend school. Add parents and committees to the school system you modeled

in Exercise 8.1.

8.3 Could you have cycles in the network implementation of the school system discussed in

Exercises 8.1 and 8.2? Give examples if there are any.

8.4 Consider the ENROLLMENT relationship of Figure A between student and course, where

grade is the grade of a student in a particular course. Model this relationship using the

network model.

Figure A A relationship between STUDENT and COURSE.

8.5 Write the schema for the school system described in Exercise 8.1.

8.6 Write the following queries for the school system of Exercise 8.1:

(a) Find all the teachers who teach in Riverdale High School.

(b) Find all schools where teacher Joe Doe teaches.

8.7 Consider the relations defined below:

SUPPLUiR(Supplier#,Company_Name,City)

PARTS! Part#, Weight)

SUPPLY_PARTS(Supplier# .Part#)

PROJECTSfPro/'ec/#, Part#, Quantity)

ORDERS! Part#, Supplier# ,Date^of-Delivery)

Construct the corresponding network model and write the schema for the model. Use the

schema description to write the following queries using the DML described in this chapter:

(a) Find all parts supplied by supplier!.

(b) Find the cities where supplier, is located.

(c) Find another supplier who supplies at least one part supplied by supplier,.

(d) Find all the projects for which supplier, might supply.

(e) Find all suppliers who can supply part,.

(f) Find all projects where part, is used.

8.8 Which of the following statements are true for the network model?

(a) A record type can be both an owner and member in the same set type.

(b) A record type can be both an owner and member in the same set occurrence.

(c) A record type cannot be an owner in more than one set type.

424 Chapter 8 The Network Model

(d) A set occurrence is empty when it has no member record occurrences.

(e) A set type can have only one record type as its member.

(f) A set can represent only a certain relationship between entities; however, not all

possible relationships between entities can be conveyed through a set.

(g) Data independence and data integrity suffer due to the set concept-.

8.9 Consider a network database with a schema corresponding to the data structure diagram of

Figure 8.22, where all the sets have an automatic fixed membership status. Can data ever be

inserted in such a database? Amplify your answer with adequate explanations.

8.10 Draw the data structure diagram of the complete library database system discussed in this

chapter and comment on the statement that it is a purely hierarchical structure.

8.11 Consider the database for the UHL that we discussed in Chapter 2. Let us add to the

database the requirement of keeping the statistics on the performance of the various lineups

during a season. This extension is illustrated in Figure B. A lineup is the group of players

from a franchise that plays together for certain shifts during a game. There can be a number

of different lineups used during a game and lineups may change from game to game during a

season. Here we have added the intersection record LINEUP and the sets P_L and Fr_L.

Thus, the relationship between a player and lineup is one to many; similarly the relationship

between a lineup and the franchise is also one to many. Give the modified schema for the

database and write a pseudocode program to find the best lineup for each player.

Figure B Extended network model for UHL database.

8.10 Summary 425

8.12 The following is an incomplete list of DBMSs marketed by various software houses. The

names are registered trademarks of the respective companies. Choose one of these DBMSs

and describe it in terms of the generalized features described in this chapter.

DBMS Digital Equipment Coip

DMS-11 Unisys

DMS-90 Unisys

DMS-1100 Unisys

IDMS Cullinet

IDS II Honeywell

IMAGE Hewlett-Packard

TOTAL Cincom

Bibliographic Notes

Several commercial database management systems based on what was to be the network ap¬

proach were implemented in the late 1960s. The DBTG proposal evolved from these systems.

The system that had the most influence on the proposal was the Integrated Data Store (IDS)

system at General Electric (Bach 64). The IDS was the result of Bachman’s early work and

was developed under his supervision. Bachman is also credited with developing the data struc¬

ture diagram for representing records and links used in the network data model (Bach 69). The

data structure diagram, like the more recent E-R diagram, is an aid in the logical design of a

database system.

The Database Task Group (DBTG) was set up as a special group within CODASYL. The

DBTG group issued a final report in 1971 and this was the first standard specification for a

database system. A number of commercial database management systems were based on this

report. However, it has not been accepted as a standard by ANSI (American National Stan¬

dards Institute). The DBTG was reconstituted as the Data Description Language Committee

(DDLC), which produced a revised version of the scheme data description language (DDL).

The ANSI-X3H2 committee received this report, modified it to some extent, and issued the

1981 DDL draft. This, too, has not been accepted to date because the draft lacks a data

manipulation language to go with the DDL. In 1984, the X3H2 committee proposed NDL, a

standard network database language based on the original DBTG specification. This too has

yet to be standardized.

The DBTG proposal is discussed in the CODASYL DBTG 1971 report (CODA 71)

and by Olle (Olle 78). Modifications to the original proposal and the DDL are presented in

(Coda 78).

Since the DBTG proposal of 1971 there have been various modifications, not only by

standards committees but also by software houses offering commercial DBMSs based on this

model. Some examples are the DMS-1100 from Unisys (previously called Sperry Univac and

which recently has merged with Burroughs) (Sper), TOTAL froni Cincom (Cine), and IDS II

from Honeywell (Hone). Some of these systems are discussed in textbooks by Cardenas (Card

85), Date (Date 86), Kroenke (Kroe 83), Tsichritzis and Lochovsky (Tsic 77), and Ullman

(Ullm 82).

426 Chapter 8 The Network Model

Bibliography

(Bach 64) C. W. Bachman & S. S. Williams, “A General Purpose Programming System for Random Access
Memories,” Proc. of the Fall Joint Computer Conference, vol 26. AFIPS Press, 1964, pp.

411-422.

(Back 69) C. W. Bachman, “Data Structure Diagrams,” Journal of the ACM SIGBDP 1(2), March 1969, pp.

4-10.

(Bach 73) C. W. Bachman, “The Programmer as a Navigator,” CACM 16(11), November 1973, pp. 653-658.

(Card 85) A. F. Cardenas, Data Base Management Systems, 2nd ed. Boston, MA: Allen and Bacon, 1985.

(Cine) Reference manuals on TOTAL data base management systems available from Cincom Systems,
Cincinnati, Ohio.

(Coda 71) CODASYL Date Base Task Group, April 1971 Report, ACM. New York: 1971.

(Coda 71) CODASYL Data Description Language Journal of Development, Dept, of Supply and Services,
Ottawa, Ontario, 1978.

(Date 86) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading, MA: Addison-Wesley,
1986.

(Hone) Reference manuals on IDS II available from Honeywell Information Systems, Waltham, MA.

(Kroe 83) D. Kroenke, Database Processing, 2nd ed. Science Research Associates, Chicago, IL., 1983.

(Olle 78) T. W. Olle, The Codasyl Approach to Data Base Management. Chichester, England: Wiley
Interscience, 1978.

(Sper) Reference manuals on Data Management System (DMS) 1100 for the Univac 1100 available from Sperry
Univac, Blue Bell, PA.

(Tsic 77) D. C. Tsichritzis & F. H. Lochovsky, Data Base Management Systems. New York: Academic Press,
1977.

(Ulla 82) J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, MD: Computer Science Press,
1982.

Contents

9.1 The Tree Concept

9.2 Hierarchical Data Model
9.2.1 Replication vs. Virtual Record

9.2.2 Expressing a Many-to-Many Relationship

9.2.3 Another Example of a Many-to-Many Relationship

9.3 Data Definition

9.4 Data Manipulation
9.4.1 User Work Area in the HDM

9.4.2 Basic Data Manipulation

9.4.3 Sequential Retrieval

9.4.4 Sequential Retrieval within a Hierarchy

9.5 Updates
9.5.1 Insert

9.5.2 Modification and Deletion

9.5.3 Updates of Virtual Records

9.6 Implementation of the Hierarchical Database

9.7 Additional Features of the Hierarchical DML

Chapter

The

Hierarchical
Data Model

427

428 Chapter 9 The Hierarchical Data Model

Like the network data model, the hierarchical data model uses records and pointers

or links to represent entities and the relationships among them. However, unlike the

network data model, the data structure used is a rooted tree with a strict parent-to-

child ordering. We are not going to concentrate on any one of the commercially

available DBMSs based on the hierarchical model, although the discussion is some¬

what oriented toward features included in IBM’s IMS database management system,

the most prominent system of this type.

9.1 The Tree Concept

Trees in the form of a family tree or genealogical tree trace the ancestry of an indi¬

vidual and show the relationships among the parents, children, cousins, uncles,

aunts, and siblings. A tree is thus a collection of nodes. One node is designated as

the root node; the remaining nodes form trees or subtrees.

An ordered tree is a tree in which the relative order of the subtrees is signifi¬

cant. This relative order not only signifies the vertical placement or level of the

subtrees but also the left to right ordering. Figures 9.1a and b give two examples of

ordered trees with R as the root node and A, B, and C as its children nodes. Each

of the nodes A, B, and C, in turn, are root nodes of subtrees with children nodes

(D, E), (F), and (G, H, J), respectively. The significance in the ordering of the
subtrees in these diagrams is discussed below.

Traversing an ordered tree can be done in a number of ways. The order of

processing the nodes of the tree depends on whether or not one processes the node

before the node’s subtree and the order of processing the subtrees (left to right or

right to left). The usual practice is the so-called preorder traversal in which the

node is processed first, followed by the leftmost subtree not yet processed, as shown
below:

Procedure Preorder (node);

process node

left_child : = leftmost child node not processed yet
while left_child + null do

begin

Preorder (left_child)

lefLchild : = leftmost child node not

processed yet
end

end

The preorder processing of the ordered tree of Figure 9.1a will process the nodes
in the sequence R, A, D, E, B, F, C, G, H, J,

The significance of the ordered tree becomes evident when we consider the

sequence in which the nodes could be reached when using a given tree traversing

strategy. For instance, the order in which the nodes of the hierarchical tree of Figure

9.1b are processed using the preorder processing strategy is not the same as the order

for Figure 9.1a, even though the tree of part b contains the same nodes as the tree
of part a.

9.1 The Tree Concept 429

Figure 9.1 Ordered tree where (c) illustrates hierarchical pointers and (d) illustrates child/sibling
pointers.

R

Child pointer

Sibling

pointer

D- F

(d)

Root of tree

► C

f
G- - >-H- J

Two distinct methods can be used to implement the preorder sequence in the

ordered tree. The first method, shown in Figure 9.1c uses hierarchical pointers to

implement the ordered tree of part a. Here the pointer in each record points to the

next record in the preorder sequence. The second method, shown in part d uses two

types of pointers, the child and the sibling pointers. The child pointer is used to

point to the leftmost child and the sibling pointer is used to point to the right sibling.

The siblings are nodes that have the same parent and the right sibling of a node is

the sibling that is immediately to the right of the node in question.

430 Chapter 9 The Hierarchical Data Model

9.2 Hierarchical Data Model

The hierarchical data model (HDM) uses the tree concept to represent data and the

relationship among data. The nodes of the tree are the record types representing the

entity sets and are connected by pointers or links. The relationship between the en¬

tities is represented by the structure of the resulting ordered tree. A pointer or link

as in the network data model represents a relationship between exactly two records.

However, in the hierarchical model this relationship, as in the genealogical tree, is

that of a parent and child. Furthermore, the hierarchical data model restricts each

record type to only one parent record type. A parent record type can have any num¬

ber of children record types. Two record types in a hierarchical tree can have at most

one relationship between them and this relationship is that of one-to-one or one-to-
many.

The hierarchical data model has the following constraints:

• Each hierarchical tree can have only one root record type and this record type

does not have a parent record type.

• The root can have any number of child record types, each of which can itself be

a root of a hierarchical (sub-) tree.

• Each child record type can have only one parent record type; thus a many-to-

many relationship cannot be directly expressed between two record types.

• Data in a parent record applies to all its children records.

• Each occurrence of a record type can have any number of occurrences of each
of its child record types.

• A child record occurrence must have a parent record occurrence; deleting a

parent record occurrence requires deleting all its children record occurrences.

• A hierarchical tree can have any number of record occurrences for each record
type at each level of the hierarchical tree.

In the implementation of the hierarchical data model the pointers are normally
from a parent record to a child record only.

The hierarchical database can be represented using a structure similar to the data

structure diagram used in the network data model. The records are represented by

rectangular boxes and the relationships between records are represented by arcs point-

ing from a root toward the leaf. The arcs are not labeled, since the relationship is

always that of a parent and a child. Such structure diagrams are called tree structure
diagrams, definition trees, or hierarchical definition trees.

Figure 9.2 gives the E-R diagram of a part of the library example discussed

earlier in Chapter 8. Figure 9.3 represents the hierarchical definition tree for the

library database organized as a rooted tree with the root node being the record type

LIBRARY. The relationship that can be represented by the tree is either one to one

or one-to-many. In Figure 9.3 the parent record type BOOK of the hierarchical tree

type BOOK-TREE has the child record type BOOK_COPY. The parent record type

CLIENT of the hierarchical tree type CLIENT-TREE has BOOK_DUE as its child

record type. The parent record type BRANCH of the hierarchical tree type

BRANCH-TREE has the children record types DEPT_SECTION and EMPLOYEE.

9.2 Hierarchical Data Model 431

Figure 9.2 E-R diagram for the library example.

Figure 9.3 Library database using the hierarchical model.

432 Chapter 9 The Hierarchical Data Model

The record types DEPT_SECTION and EMPLOYEE in turn are the parents of the

record types EMPL-ASSGNMNT (employee assignment) and DS-ASSGND (depart¬

ment or section assigned to), respectively. (Some instances of these hierarchical trees

are given in Figures 9.4, 9.5 and 9.6.)
A many-to-many relationship can only be represented in the hierarchical data

model by replication of the record concerned or by the use of virtual records. For

instance, the many-to-many relationships between a BOOK and CLIENT or between

DEPT_SECTION and EMPLOYEE, which were represented in the network model

by introducing an intermediate record type and two sets, are represented in the hier¬

archical model by replication of the records or by the use of virtual records. Virtual

records are basically pointers that point to the actual physical records in the database.

We discuss virtual records in Section 9.2.1.
In Figure 9.3, LIBRARY is a dummy parent that holds together the three hier¬

archical trees BOOK-TREE, CLIENT-TREE, and BRANCH-TREE. A DBMS on a

given computer system belonging to a library is supporting that library system, so

there is no need to actually store a single occurrence of the record type LIBRARY.

However, these disjointed trees can be considered to be connected to a single occur¬

rence of the dummy LIBRARY node, and therefore the database contains a single

hierarchical tree with this dummy LIBRARY node as the root node. Traversing this

tree becomes equivalent to going through the entire database.

If the DBMS were to support the data for more than one library system, the

LIBRARY node would actually exist and would form the root node of the subtrees BOOK

TREE, CLIENT-TREE, and BRANCH-TREE. In this case, we would have a forest

of trees and for each library system supported by the DBMS, there would exist in

the database a tree with the corresponding library node as the root node.

Consider the following definitions for the record types BOOK and BOOK_

COPY for the records in the first hierarchical tree, BOOK-TREE:

type BOOK = record

Author: string;

Title: string;

Call-No: string;
end

type BOOK_COPY = record

Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;
end

In Figure 9.4, we give some instances of the hierarchical trees for BOOK-

TREE. One instance of the tree corresponds to the parent (James Munich 1231) of

the record type BOOK; it has its child, the record type BOOK_COPY occurrence

(1231 Copy 1 Lynn Lent). Another instance of this hierarchical tree consists of the

parent record occurrence (Hugo Les Miserables 1234) and its two children record
occurrences of the record type BOOK_COPY.

The record types in the second hierarchy with the root node CLIENT can be
defined as follows:

9.2 Hierarchical Data Model 433

Figure 9.4 Occurrences of BOOK-TREE hierarchical tree.

Dickens Hard Times 1232

1232 Copy 2 Revere Lent

type CLIENT = record

Client-No: string;

Name: string;

Address: string;

end

type BOOK_DUE = record

Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

Due-Date : string;

end;

Figure 9.5 gives two occurrences of this hierarchy. The first tree corresponds to

the CLIENT Smith who has borrowed two BOOKs with Call-Nos 1231 and 1234

with the DueJDates of 12/06 and 12/15, respectively.

Figure 9.5 Occurrences of CLIENT-TREE hierarchical tree.

434 Chapter 9 The Hierarchical Data Model

Consider the following definitions for the record types BRANCH, DEPT_

SECTION, and EMPLOYEE in the hierarchical definition tree having BRANCH as

the parent record type:

type BRANCH = record

Br-Name: string;

Address: string;

Phone^No: string;

end

type DEPT-SECTION = record

Ds-Name: string;

Room-No: string;

Phone-No: string;

end

type EMPLOYEE = record

Emp-Name: string;

Home—Address: string;

Phone-No: string;

end

Some instances of this hierarchical tree are given in Figure 9.6. For example,

the Lynn branch has the following departments and sections: (DEPT_SECTION)

Adult Sec (Adult Section), Child Sec (Children’s Section), Acqstn Dept (Acquisition

Figure 9.6 Occurrences of BRANCH_TREE hierarchical tree.

9.2 Hierarchical Data Model 435

Department), Crcln Dept (Circulation Department), Ref Dept (Reference Depart¬

ment) and its employees (EMPLOYEE) are Barry, Harry, Jerry, Larry, and Mary.

In Figure 9.6 we also show that the Lynn branch has Child Sec as one of its DEPT_

SECTION. The Employee Harry is the instance of the record type EMPL_

ASSGNMNT assigned to the Child_Sec. Similarly, employee Mary works in the

Crcln Dept (CD) and Ref Dept (RD). We discuss the method of implementing the

hierarchical subtrees DSJTREE and EMPLOYEE-TREE and the record types
EMPL_ASSGNMNT and DS_ASSGND in Section 9.2.3.

9.2.1 Replication vs. Virtual Record

The hierarchical model, like the network model, cannot support a many-to-many

relationship directly. In the network model the many-to-many relationship is imple¬

mented by introducing an intermediate record and two one-to-many relationships.

The fact that a given employee may be assigned to more than one department during

a work week is one instance of a many-to-many relationship in our library database.

In the hierarchical model, the many-to-many relationship can be expressed using one

of the following methods: replication or virtual record. When more than one em¬

ployee works in a given department, then for the hierarchical tree with EMPLOYEE

as the root node we have to replicate the record for the department and have this

replicated record attached as a child to the corresponding occurrence of the

EMPLOYEE record type. For example, in Figure 9.6 the Non_print Sec, shown as

NS, is replicated and each of the replicated record occurrences becomes a child of

the EMPLOYEE record occurrence for employees Curt, Pat, and Pam working in

that DEPT_SECTION of the Salem branch. Similarly, if employee Mary is assigned

to work in the Circulation department as well as the Reference department of the

Lynn branch, the replication method would require that the record occurrence for the

employee Mary is duplicated and one of these duplicate copies is included in the

hierarchical tree occurrence of each of the departments mentioned above.
Replication of data would mean a waste of storage space and could lead to data

inconsistencies when some copies of replicated data are not updated. The other

method of representing the many-to-many relationship in the hierarchical data model

is to use an indirect scheme similar to the network approach. In the hierarchical

model the solution is to use the so-called virtual record. A virtual record is essentially

a record containing a pointer to an occurrence of an actual physical record type. This

physical record type is called the logical parent and the virtual record is the logical

child. Each virtual record type has exactly one physical record type as its physical

parent and one physical record type as its logical parent. In some cases, the virtual

record is used to contain some information common to the relationship between the

virtual record’s logical and physical parents. This information is called the intersec¬

tion data. The intersection data is concatenated with the information from the logical

parent, which is an actual physical record indicated by the pointer in the virtual

record. This concatenated information is made available to the user of the hierarchi¬

cal database system. The virtual record scheme provides the hierarchical model with

limited network capabilities; however, the data retrieval operations are basically of a

hierarchical nature. For retrieval operations the user or the application program treats

the database as though the virtual records are actual replications of the relevant log¬

ical parents.

436 Chapter 9 The Hierarchical Data Model

9.2.2 Expressing a Many-to-Many Relationship

Let us consider the method that we can use to express the relationship between

BOOK and CLIENT. As we discussed in Section 8.1.1 this is a many-to-many re¬

lationship because the library may have more than one copy (BOOK-COPY) of a

given title. However, since only one client can borrow a given copy at a given time,

the relationship between a CLIENT and a BOOK_COPY is one-to-one.

In the network model we converted the many-to-many relationship between

BOOK and CLIENT into a one-to-many set between BOOK and BOOK_COPY. We

then introduced an intermediate record BOOK_DUE to hold the common data be¬

tween CLIENT and BOOK_COPY and the two one-to-one sets between CLIENT

and BOOK-DUE and BOOK-COPY and BOOK-DUE.

In the hierarchical model we can easily express the one-to-many relationship

between BOOK and BOOK-COPY as a hierarchy that can be represented by a tree
as follows:

tree is BOOK-TREE

BOOK is parent

BOOK-COPY is child

end

Examples of this hierarchical tree are shown in Figure 9.4.

Similarly, we can express the one-to-many relationship between a client and the
items she or he borrows by a hierarchical tree CLIENT-TREE as follows:

tree is CLIENT-TREE

CLIENT is parent

BOOK-DUE is child

end

Examples of this hierarchical tree are shown in Figure 9.5.

Suppose the relationship between a BOOK-COPY and a CLIENT who borrows
it is expressed by replication as shown in Figures 9.4 and 9.5. The data in BOOK-

DUE, except for Due-Date, is a duplication of the corresponding data in BOOK-

COPY. If a virtual record is used for BOOK-DUE, we could indicate this by the
following definition:

type BOOK—DUE = record

{Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;}

virtual of logical parent

BOOK-COPY in BOOK-TREE;

Due-Date: string;

end

This indicates that the data items enclosed in the brackets of the record BOOK_

DUE are virtual and are derived from the physical record BOOK-COPY, which is

defined as the logical parent of the record BOOK-DUE, BOOK-DUE being its log¬

ical child. Ihe data item Due-Date in this case is the intersection data in the rela-

9.2 Hierarchical Data Model 437

Figure 9.7 Using virtual records.

tionship between CLIENT and BOOK-COPY. Note that in the above example, the

virtual record type BOOK-DUE in the hierarchical tree CLIENT-TREE contains data

that is derived from a separate physical hierarchical tree, namely BOOK-TREE.

Similarly, to keep track of which CLIENT has borrowed a given BOOK-

COPY, we can introduce a virtual record type VIR-CLIENT and a one-to-one rela¬

tionship BOOK-COPY-TREE between BOOK-COPY and VIR_CLIENT as follows:

tree is BOOK-COPY-TREE

BOOK-COPY is parent

VIR_CLIENT is child

end

type VIR_CLIENT - record

{ Client-No: string;

Name: string;

Address: string;}

virtual of logical parent CLIENT in CLIENT-TREE;

end

Figure 9.7 now includes the modified section of the hierarchical structure dia¬

gram of Figure 9.3, showing the many-to-many relationship between BOOK and

CLIENT.
The problem with this hierarchy is that to determine the author and title, etc.,

of the volumes borrowed by client Smith, we have to go through the following in¬

efficient series of operations:

• Go from the required occurrence of the record type CLIENT to the first

occurrence of its child record type BOOK-DUE.

• Follow the pointer to the logical parent of BOOK-DUE to an occurrence of BOOK

COPY and note the Call-No.

• Search the occurrences of BOOK with the same Call-No and retrieve the details

pertaining to the Author, etc.

• Repeat for each child occurrence of BOOK-DUE belonging to Smith.

Such queries can be handled more efficiently if we add another dependent record

to CLIENT-TREE, such as VIR-BOOK, defined to be virtual of the logical parent

BOOK as follows on the next page.

438 Chapter 9 The Hierarchical Data Model

tree is CLIENT-TREE

CLIENT is parent

BOOK_DUE is child

VIR_BOOK is child

end

type VIR_BOOK = record

{Author: string;

Title: string;

Call-No: string;}

virtual of logical parent BOOK in BOOK-TREE

end

We thus establish a logical relationship directly to the BOOK physical record

and the details about the volumes could be directly accessible from the logical parent

occurrence of the record type. The final modified hierarchical structure diagram for

the relationship between BOOK and CLIENT is shown in Figure 9.8

9.2.3 Another Example of a Many-to-Many Relationship

Consider the E-R diagram of Figure 9.9 which shows a many-to-many relationship

between DEPT_SECTION and EMPLOYEE. Suppose that the database is required

to respond efficiently to queries of the type:

FIND ALL EMPLOYEES IN DEPARTMENT A.

FIND ALL DEPARTMENTS WHERE EMPLOYEE X WORKS.

To respond to symmetrical queries of the above type efficiently, we express the

many-to-many relationship between DEPT_SECTION and EMPLOYEE in the hier¬

archical model using virtual records. The hierarchical structure diagram correspond¬

ing to the E-R diagram of Figure 9.9 is shown in Figure 9.10, where F.MPI.

ASSGNMNT and DS-ASSGND are virtual records with logical parents EM¬
PLOYEE and DEPT_SECT10N respectively.

The tree DSJTREE has as its root node the record type DEPT_SECTION

and has as its child record a virtual record EMPL_ASSGNMNT. The virtual record

Figure 9.8 Relationships between BOOK and CLIENT.

9.2 Hierarchical Data Model 439

Figure 9.9 Relationship between DEPT_SECTION and EMPLOYEE.

EMPL_ASSGNMNT is a logical child of the record type EMPLOYEE, which is its

logical parent. This virtual record contains the intersection data Hours, which repre¬

sents the hours worked during a work week by the employee for a given DEPT_

SECTION. The tree DS-TREE and its parent and child record types are defined
below.

tree is DS-TREE

DEPT_SECTION is parent

EMPL_ASSGNMNT is child

end

type DEPT_SECTION = record

Ds-Name: string

Room-No: string:

Phone-No: string

end

type EMPL_ASSGNMNT = record

{Emp-Name: string;

Phone-No: string;}

virtual of logical parent

EMPLOYEE in BRANCH-TREE

Hours: integer;

end

The tree EMPLOYEE-TREE has as its root node the record type EMPLOYEE

and has as its child record a virtual record DS-ASSGND. The virtual record DS_

Figure 9.10 Hierarchical structure diagram corresponding to Figure 9.9.

DSTREE EMPLOYEE TREE

440

Figure 9.11

Chapter 9 The Hierarchical Data Model

ASSGND is a logical child of the record type DEPT_SECTION. This virtual record

contains the intersection data Hours, which represents the hours worked by the em¬

ployee during a work week for a given DEPT_SECTION. The intersection data is a

replication of that in the virtual record EMPL-ASSGNMNT. Unlike the examples of

the virtual record discussed in Section 9.2.2, the virtual records EMPL_ASSGNMNT

and DS-ASSGND have as their logical parent a record in the same physical hierar¬

chical tree, namely, the BRANCH-TREE of Figure 9.3.

tree is EMPLOYEE-TREE
EMPLOYEE is parent

DS-ASSGND is child

end

type EMPLOYEE = record
Emp-Name: string;

Home-Address: string;

Phone-No: string;

end

type DS-ASSGND = record

{Ds-Name: string;

Room-No: string;

Phone-No: string;}

virtual of logical parent
DEPT-SECTION in BRANCH-TREE

Hours: integer;

end

Figure 9.11 gives some occurrences of the hierarchical trees DS-TREE and

EMPLOYEE-TREE. The instance of DS-TREE rooted by the Acqstn Dept is shown

Sample occurrences of DS-TREE AND EMPLOYEE-TREE.

9.3 Data Definition 441

to have two occurrences of the dependent record type EMPL_ASSGNMNT. One of

these contains the intersection data corresponding to employee Jerry and the other is

for employee Larry. A pointer in each of these records, point to the logical parent.

The above example is an illustration of a paired bidirectional logical relation¬

ship of the hierarchical model. In such a relationship a many-to-many correspon¬

dence between two record types is resolved by introducing two virtual records with

these record types as the logical parents. In the above example, the record types are

DEPT_SECTION and EMPLOYEE. EMPL_ASSGNMNT is a virtual record that is

a physical child of DEPT_SECTION and a logical child of EMPLOYEE; DS_

ASSGND is a physical child of EMPLOYEE and a logical child of DEPT_

SECTION. Each of these virtual record types contains appropriate pointers to the

logical parents and the intersection data, Hours, may be replicated as we have done.

The replicated data is stored in the two virtual record types and could lead to incon¬

sistencies. Since the DBMS is aware of this controlled redundancy it has the respon¬

sibility for ensuring that whenever one of the replicated values in the intersection

data is changed, its twin value is also changed.

9.3 Data Definition

The hierarchical database consists of a collection of hierarchical trees (or set of span¬

ning trees) which are described using a database description facility. Figure 9.12

gives part of the hierarchical definition tree for our library database example. The

corresponding data definition is given below. The trees described could be actual

physically stored trees or logical trees derived from the physically stored trees. In

the latter case, the logical trees can be considered to be user or external views. The

logical trees are also hierarchical and derived from one or more physical trees and

could contain virtual records. Defining a new logical tree thus may involve imple¬

menting pointers for the virtual records and as such is a reorganization of the physical

database. Such a reorganization is performed by the DBA. A virtual record in a

hierarchical tree can be materialized from its logical parent record. The latter may or

may not be in the same physical hierarchical tree.

We used a Pascal-like convention to define the database, wherein we introduced

the tree structure by listing the root of the tree and all its children record types. For

the sake of clarity and simplicity, we avoided the introduction of implementation-

related details such as specifying the number and types of pointers. In the commer¬

cially available database management products based on the hierarchical data model,

the data definition requires the specification of these details.

Figure 9.12 Logical database as viewed by circulation clerk.

442 Chapter 9 The Hierarchical Data Model

The ordering of the tree is according to the hierarchical structure diagram. This

order is represented in the data definition by giving the leftmost child record type

first.

Consider the logical database as viewed by the clerk at the circulation desk of

the library. The hierarchical structure diagram of this view is given in.Figure 9.12.

The logical database could be described using the description (subschema) given

below. In this description the fact that some portions of information in the virtual

record are derived from the logical parent record type is not really required because

the schema descriptor contains the relevant information; however, we leave this in as

comments in our descriptors.

tree is BOOK-COPY-TREE

BOOK_COPY is parent

VIR_CLIENT is child

end

type BOOK_COPY = record

Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;

end

type VIR_CLIENT = record

{Client-No: string;

Name: string;

Address: string;}

(* virtual of logical parent

CLIENT in CLIENT-TREE;*)
end

tree is CLIENT-TREE

CLIENT is parent

BOOK_DUE is child

VIR_BOOK is child
end

type CLIENT = record

Client-No: string;

Name: string;

Address: string;
end

type BOOK_DUE = record

[Call-No: string;

Copy-No: integer;

Branch-Id: string;

Current-Status: string;}

(*virtual of logical parent

BOOK_COPY in BOOK-TREE;*)
Due-Date: string;
end

9.4 Data Manipulation 443

type VIR_BOOK = record

{Author: string;

Title: string;

Call-No: string;}

(* *virtual of logical parent

BOOK in BOOK-COPY-TREE;*)
end

9.4 Data Manipulation

To illustrate the data manipulation operations in the HDM, we use the logical data¬

base as viewed by the clerk at the circulation desk of the library. The hierarchical

structure diagram of this view is given in Figure 9.12. The logical database is de¬
scribed in Section 9.3.

9.4.1 User Work Area in the HDM

For discussion of the data manipulation facility of the hierarchical data model, we

assume that each user or application program (corresponding to the run unit of the

DBTG proposal) has associated with it an area of memory. We refer to this area as

the user work area (UWA). The UWA contains the processing environment of the

run unit, which includes the following items:

• Currency indicators: In the case of the HDM we assume that the DBMS will

maintain, for each hierarchical tree known to the run unit, via its logical

database description, a set of pointers that indicate the records that have been

last accessed by the run unit. We further assume that there is an indicator or

pointer that points to the current record accessed by the run unit. In addition,

we assume that the database management system maintains the current parent

record of the current record. We assume that the hierarchical tree is traversed

using the left-to-right preorder strategy, the ordering of the tree being that in the

hierarchical structure diagram. Thus, once a record has been selected, the

subsequent sequential retrieval will use the preorder strategy.

• Record template: For each record type known to the run unit, the UWA is

assumed to contain the storage space that can be used as a template for data

manipulation.

• Status registers: These are a set of indicators used to store the status of the run

unit after the execution of a database operation. The run unit can examine these

registers to determine whether an operation was completed successfully or not.

For our purposes, we assume that there is a register called DB-Status, which

will contain at the end of a DBMS operation a value of 0 if the operation was

completed successfully or an error code if the command was not successful.

444 Chapter 9 The Hierarchical Data Model

9.4.2 Basic Data Manipulation

The basic data retrieval command in the hierarchical data model is the get command,

which unlike in the network data model need not be preceded by a find command.

The command retrieves the appropriate occurrence of the record type, places it in the

corresponding record type template in the UWA, and sets the currency indicators for

the relevant hierarchical tree. In this instance, the currency indicators will be the

current record of the run unit and the parent of the current record retrieved. The

record occurrence to be retrieved is specified by indicating the condition to be met

by the retrieved record. The hierarchical path to be used for the retrieval may also

be given to retrieve a record. For instance, the condition specified in the get com¬

mand may involve the parent (or one of the grandparents) of the record being re¬
trieved.

The first format of the get command that we will discuss is the get first. This

format is sometimes called get unique or get leftmost. Note that the hierarchical

tree is traversed using the preorder scheme. Consequently, the get first command will

retrieve the first record that meets this condition. The syntax of this format of the get
command is as follows:

get first Crecord type> where <condition>

The where <condition> clause is optional and if it is omitted, the first record

of the specified record type is retrieved and placed in the corresponding record tem¬

plate within the UWA. Once the command is successfully executed, the DB-Status

register contains a value of 0 and the currency indicators are set. If the command is

not executed successfully, i.e., if no record exists in the database that satisfies the
specified condition, the the DB-Status will contain an error code.

For the sample database given in Figure 9.13b the following statements will

locate the first record type BOOK_DUE for CLIENT Smith, and if the record is

successfully located then the values for the data items Call-No and Due-Date are
displayed:

get first BOOK_DUE where CLIENT.Name = 'Smith';
if DB-Status = 0 then

display (BOOK_DUE.Ca//_/Vo, BOOK-DUE.Due-Date);

The above statements for the sample database will display 1231 12/06.

9.4.3 Sequential Retrieval

The get next statement is used in the hierarchical database to do sequential process¬

ing in preorder. Once the position for a run unit is established in the database with a

get first statement, the get next statement performs the retrieval in the forward sense.

If the database contains disjoint hierarchical trees, we assume that the DBMS pro¬

vides a dummy record and these disjoint trees are considered the children of the

DBMS supplied unique dummy root record occurrence. The order of these disjoint
hierarchical trees is their order in the data definition. For our example, we assume

that there is a dummy record LIBRARY, which is the root of the hierarchical trees BOOK

9.4 Data Manipulation 445

Figure 9.13 (a) Sample database: BOOK-COPY-TREE; (b) sample database: CLIENT-TREE.

(a)

(b)

TREE, CLIENTJTREE, and BRANCH-TREE. The format of the get next state¬

ment is:

get next <record type> where <condition>

As in the get first statement, the where clause is optional; the <record type>

specification is also optional. In case the get first statement appears without any

options, the retrieval is of the next record in the database in preorder. If the <record

type> is specified, the retrieval is of the next record of the specified type in the

preorder. If both the Crecord type> and the where <condition> are included, the

retrieval is the next record of the specified type that satisfies the <condition>.

Once we have located the first occurrence of the BOOK_DUE child of Smith,

we can retrieve and display the subsequent occurrences using the following on the

next page.

446 Chapter 9 The Hierarchical Data Model

get first BOOK_DUE where CLIENT.Marne = 'Smith';

while DB-Status = 0 do

begin
display (BOOK_DUE.Call-No, BOOK-DUE.Dwe_Z)a/e);

get next BOOK-DUE

end;

Repeated execution of the get next statement in the while loop retrieves all

occurrence of the specified record type from the database in the forward preorder

direction from the current location regardless of the ancestry of the record. These

statements will display, for the sample database given in Figure 9.13b the following

(note that the parent of BOOK_DUE.Ca//_M« 1232 and 1234 in the following list

is the CLIENT Klaf):

1231 12/06

1234 12/15

1232 12/17

1234 12/27

The record CLIENT in the logical database can be assumed to belong to a

dummy root node LIBRARY as mentioned above. After retrieving the two record

occurrences in the hierarchical tree for Smith, the search continues for the record

type BOOK-DUE in the hierarchical tree belonging to Klaf, which is a sibling of

Smith.

9.4.4 Sequential Retrieval within a Hierarchy

The get next statement performs sequential processing of the records of a database

in the forward direction. However, if the retrieval is to be limited to a single occur¬

rence of a hierarchical tree we use the following format of the get statement:

get next within parent <record type> where <condition>

As in the get next statement the where clause and the <record type> specifi¬

cation are optional. In case the get next within parent statement appears without

any options, the retrieval is of the next record in the hierarchical tree or subtree

belonging to the current parent as indicated by the currency indicator. If the <record

type> is specified, the retrieval is of the next record of the specified type in preorder

within the current parent. If both the Crecord type> and the where <condition>

are included, the retrieval is of the next record of the specified type that satisfies the
<condition> within the current parent.

Once we have located the root node of a hierarchical tree or subtree, we may

need to retrieve all its dependent records. The following statements locate the hier¬

archical tree for the CLIENT Smith and then traverse it in preorder to retrieve the
author and titles of all books borrowed by him:

get first CLIENT where CLIENT.Name = 'Smith';
if DB-Status = 0 then

get next within parent (VIR-BOOK);

9.5 Updates 447

while DB-Status = 0 do

begin

display (VIR_BOOK./iwr/i0/-, VIR_BOOK.77t/<?)

get next within parent (VIR_BOOK);

end;

The above statements will display, for the sample database given in Figure 9.13,
the following:

James Munich

Hugo Les Miserables

9.5 Updates

Update operations on a hierarchical database are done using commands to insert new

records in the database, delete existing records, or change the values of certain fields

in existing records.

Before discussing these commands let us consider the view of the database as

seen by a clerk in the acquisition department of the library. The logical portion of

the database, as seen by this employee, is given in Figure 9.14 and the logical data¬

base definition is given below. The sample database contents are given in Figure

9.15. Note that there are no virtual records in this logical view.

tree is BOOK-TREE

BOOK is parent

BOOK_COPY is child

end

type BOOK = record

Author: string;

Title: string;

Call-No: string;

end

type BOOK_COPY = record

Call-No: string;

CopyJNo: integer;

Branch-Id: string;

Current-Status: string;

end

Figure 9.14 Database view of acquisition clerk.

BOOK

BOOK _COPY

448 Chapter 9 The Hierarchical Data Model

Figure 9.15 Sample database contents.

9.5.1 Insert

The format of the command to insert a new occurrence of a record type is given by:

insert <record type> where <condition>

When a new record is to be inserted in the database, the parentage of the record,

unless it is at the root of a hierarchical tree, is specified with the where clause.

Without the parentage information the DBMS will insert the record in the first pos¬

sible position where the specified record type appears in the data definition. When

the new record to be inserted is a child record type, we assume that it will be inserted

in the first position in the preorder traversal, which will be to the left of the current

leftmost child. The record to be inserted is first created in the record template in the
UWA before the insert statement is executed.

The following statements create a new occurrence of the record type BOOK in
the database:

BOOK.Author : = 'Montgomery';

BOOK .Title : = 'Anne of Green Gables';
BOOK .Call-No : = 1235;

insert (BOOK);

Here we did not specify the parentage of the record type to be inserted because
it is at the root of the hierarchical BOOK-TREE.

The following statements insert a copy of this new title into the database tree

occurrence, corresponding to the new root record occurrence just inserted in the
database. The parent record is specified in the where clause.

BOOK_COPY.Call-No : = 1235;

BOOK_COPY. Copy-No : = 1;

9.5 Updates 449

BOOY^-COPY .Branch-Id : = 'Lynn';

BOOK-COPY.Statws : = 'transit';

insert (BOOK_COPY)

where (BOOK.Call-No = 1235);

Without the where <condition> clause, the record will be inserted in the data¬

base, but since a child record cannot exist in a hierarchical database without a parent

record, it is connected to the first possible position where such a record could exist.

For our sample database, assuming that Figure 9.15 is the preorder of the BOOK-

TREE hierarchy, the new BOOK-COPY will be inserted in the tree with the (James

Munich 1231) root node if the insert statement did not have the where clause.

9.5.2 Modification and Deletion

A record that is to be modified or deleted from the database must first be retrieved

using a locking form of the get statement as follows:

get hold first < record type>

The need to hold the record arises when there are a number of concurrent run units

using the database. A run unit issuing the get hold locks out the other programs from

the record occurrence and thus avoids the anomalies associated with concurrent up¬

dates (see Chapter 12).
The following statements modify the BOOK— COPY.Branch-Id of the second

copy of the BOOK (James Munich 1231) from Lynn to Salem.

get first (BOOK)
where BOOK.Call-No = 1231;

get hold first BOOK-COPY

where BOOK-COPY.Copy-No = 2;

BOOK^-COPY.Branch-Id : = 'Salem';

BOOK-COPY .Status : = 'transit';

replace;

The first statement locates the root node of the hierarchical tree occurrence

where the required BOOK is the parent. The next statement retrieves and locks the

child record occurrence of BOOK—COPY where the BOOK—COPY.Copy—No is 2.

The fields to be modified are changed in the next two statements within the record

template. The last statement replaces the record occurrence of BOOK-COPY with

the modified record. After execution of the replace statement, the lock on the record

occurrence of BOOK—COPY is removed.
The following statements delete the BOOK-COPY record occurrence of the

second copy of the BOOK (Dickens Hard Times 1232).

get first (BOOK)
where BOOK.Call—No = 1232;

get hold first BOOK—COPY
where BOOK-COPY.Copy-No = 2;

delete;

450 Chapter 9 The Hierarchical Data Model

The first statement locates the root node of the hierarchy tree occurrence, where

the required BOOK is the parent. The next statement retrieves and locks the child

record occurrence of BOOK_COPY, where the BOOK-COPY.Copy-No is 2. The

last statement deletes the record occurrence of BOOK_COPY.

When a record to be deleted is a parent record occurrence of a hierarchical tree

or subtree, all the children (and grand children) record occurrences are also deleted.

This action is similar to the deletion of the owner record occurrence of a set in DBTG

with fixed membership, wherein all occurrences of the member records are also de¬

leted.

9.5.3 Updates of Virtual Records

Let us return to the logical database as viewed by the clerk at the circulation desk,

given in Figure 9.12. The logical database contains a number of virtual records.

Some parts of these records (excluding the intersection data portion) are derived from

their logical parent records, which are actual physical records. For the data retrieval

operations, the logical database can be processed exactly as if the virtual record were

really a physical one. In other words, the virtual records are materialized from their

logical parent records. An update operation, however, could have an effect on the

underlying physical records. Some of these operations are disallowed, while other

operations could cause these logical parent records to be inserted, modified, or de¬

leted. The operations that are allowed and their effects are determined by the rules

for the insert, delete, and replace operations on the record type related to a virtual

record. IMS uses options and associated rules that could be called physical, logical,

or virtual for each of these update operations. The effects of these are, in a way,

similar to the effects of the DBTG membership insertion and retention options we

discussed in Chapter 8. We summarize some of the possibilities below. Details of

these rules can be found in the application manuals of the commercially available
DBMs based on the hierarchical approach.

Inserting a new occurrence of a CLIENT record is allowed because it is a phys¬

ical record in the logical view. The following statements create a new occurrence of
the record type CLIENT in the database.

CLIENT.C//em_jVo : = '237';
CLIENT.Name : = 'Cook';

CLIENT.Address : = 'Peabody';

insert (CLIENT);

Here we need not specify the parentage of CLIENT because it is the root node
of a hierarchical tree.

Inserting an instance of BOOK_DUE for a nonexistent CLIENT will not be

allowed, since in the hierarchical data model a child record cannot exist without the
parent record and such operations will fail.

Inserting an instance of BOOK_DUE for a nonexistent BOOK_COPY, depend¬

ing on the rule specified for the logical parent BOOK_COPY, would fail or succeed.

It will fail if the insert rule for BOOK_COPY is specified as physical. However, if

the insert rule for BOOK_COPY is logical or virtual, then on insertion of BOOK_

9.6 Implementation of the Hierarchical Database 451

DUE an occurrence of its logical parent is inserted in the physical database (assume
that BOOK_COPY is a root node of a physical tree).

Consider the following statements to insert in the database information to indi¬

cate that Cook has borrowed copy 3 of a book with Call-No 1235 (entitled Anne of
Green Gables by Montgomery) from the Lynn branch:

BOOK_DUE.Ca//_Afo - '123';

BOOK_DUE.Co/?v_/Vo = 3;
BOOK_DUE .Branch-Id = 'Lynn';

BOOK—DUE.Stafws = 'Lent';

BOOK_DUE .Due-Date = 12/28;
insert (BOOK_DUE)

where (CLIENT.Client-No = '237');

The last statement will succeed if an occurrence of the BOOK_COPY exists,

and in this case the BOOK_COPY.S/ar«5 is updated to lent. If no occurrence of the

record BOOK_COPY exists, then depending on the rules specified for BOOK_

COPY, the operation will succeed or fail. In the former case, an occurrence for

BOOK_COPY will be inserted in the database. The information for this occurrence
is available in the record BOOK_DUE.

Deleting a CLIENT may or may not succeed depending on the rules specified

for CLIENT and whether there are any volumes outstanding with the CLIENT. If

the rule specified for CLIENT is physical and if the client has a number of books on

loan, the attempt to delete a client will fail. If the rule specified is either logical or

virtual, the occurrence is made inaccessible as a CLIENT record occurrence. How¬
ever, it remains accessible via VIR_CLIENT.

Finally, modification of certain fields in the records are not allowed. For exam¬

ple, the Call-No and the Client-No fields, which are used to establish the logical
parent/child record occurrence association, cannot be modified.

Replacement of the other fields of CLIENT can always be done. However, re¬

placement of a field of BOOK_DUE could affect the logical parent BOOK_COPY

and would succeed if the option specified for BOOK_COPY is virtual.

9.6 Implementation of the Hierarchical Database

Each occurrence of a hierarchical tree can be stored as a variable length physical

record, the nodes of the hierarchy being stored in preorder. In addition, the stored

record contains a prefix field. This field contains control information including point¬

ers, flags, locks, and counters, which are used by the DBMS to allow concurrent

usage and enforce data integrity.

A number of methods could be used to store the hierarchical database system.

The storage of the hierarchical trees in the physical medium affects not only the

performance of the system but also the operations that can be performed on the

database. For example, if each occurrence of the hierarchical tree is stored as a

variable length record on a magnetic tape like device, the DBMS will allow only

sequential retrieval and insertion or modification may be disallowed or performed

only by recreating the entire database with the insertion and modification. Storage of

452 Chapter 9 The Hierarchical Data Model

Figure 9.16 Hierarchical definition tree.

A

E

the database on a direct access device allows an index structure to be supported for

the root nodes and allows direct access to an occurrence of a hierarchical tree.
The storage of one occurrence of the hierarchical definition tree of Figure 9.16

using the variable length record approach is given in Figure 9.17.
The hierarchy can also be represented using pointers of either preorder hierar¬

chical type or child/sibling type. In the hierarchical type of pointer, each record

occurrence has a pointer that points to the next record in the preorder sequence. In

the child/sibling scheme each record has two types of pointers. The sibling pointer

points to its right sibling (or twin). The child pointer points to its leftmost child

record occurrence. A record has one sibling pointer and as many child pointers as

the number of child types associated with the node corresponding to the record.

Figure 9.16 gives the hierarchical definition tree and the one occurrence of this hi¬

erarchical definition tree is given in Figures 9.18 and 9.19. In Figure 9.18 the preor¬

der hierarchical pointers are shown, whereas in Figure 9.19 we present the same

database using the child/sibling pointers.

Figure 9.17 Sequential storage of hierarchical database.

1 3| bl ell e12 f, e21 e22 h ci Si h. d. jl kl d2 .hi j22 k21

Figure 9.18 Preorder hierarchical pointers.

▼
bl -► hi **c,

g|-► h.

e2l-► e22->-f2

—►di

jl-►

-► d2

ki

r“\
J2I-► J22 -► k2

▼
ell e12

9.7 Additional Features of the Hierarchical DML 453

Figure 9.19 Child/sibling pointers.

ai

b| — ►bo C| d| —► d2

_1 L
V ' ' ' ' y ' ' t ' f
el 1-► el2 f g, h ji 9

' f ' < ' r f

e21-► e22 ^2 J21-► j22 ^2

9.7 Additional Features of the Hierarchical DML

Consider the hierarchical definition tree of Figure 9.20. Access to a dependent record

type is via a path beginning at the root node and after traversing through intermediate

nodes, ending at the required record type. Such paths are called hierarchical paths.

Access to record type E, in the hierarchical definition tree of Figure 9.20, requires a

traversal through nodes A and B.

In addition to the data manipulation statement discussed earlier, the hierarchical

data manipulation language needs a number of functions for better control of navi¬

gating through the database. This saves both processing and program development

time.
One such feature is the use of control codes associated with the get statements.

We will not give the exact syntax of these statements or describe them in detail, but

we will highlight their usefulness. Control codes are associated with the get state¬

ment to perform additional functions. These include retrieving all records in a hier¬

archical path, locating first occurrence, locating last occurrence, and maintaining the

currency indicators at a given level of the hierarchy or for the hierarchical path to

this level.

Figure 9.20 A sample hierarchical definition tree.

454 Chapter 9 The Hierarchical Data Model

Figure 9.21

The need to retrieve all records in a hierarchical path can be illustrated by the

following example. Suppose we need to find an occurrence of a record type E and

also list its parentage. Instead of successively retrieving the correct occurrence of

record type A, then record type B, and subsequently record type E, we can combine

these operations in one statement as given below:

get next *D where A = A,, *D where B = Bn, where E = E|12

Here the control code is specified by *D and it indicates that the corresponding

occurrence of the record types in the hierarchical path are also to be retrieved and

placed in the UWA in the appropriate record template.

If we wanted the last occurrence of record type D in a hierarchical path, the

following version of the get statement could be used. Here the last sibling in the D

record type is indicated by the *L control code.

get unique *L D within parent A = A, and B = Bu

A similar command to back up to the first sibling in a record type, while per¬

forming a sequential retrieval using the get next within parent statement, is pro¬
vided by the *F command code.

Another feature of the hierarchical DML is the possibility of maintaining and

navigating through multiple dependent record types at each level of a hierarchical

path. To understand this facility, consider the database shown in Figure 9.21. Sup¬

pose we want to list the dependent record types of BM in the order of Dni, Em,

D| 12, E112, and so on. The following statements would cause a problem:

get next where A = A), where B = Bn

get next within parent D

get next within parent E

get next within parent D

Data corresponding to the hierarchical definition tree of Figure 9.20.

_
1_

<

A2

D m

D

B
11 —i

*12

112

D 113

-'ll!

i112

fil3

-114

'11

fill

112

113

D12t

D122

D123

D124

E121

E122 -i

E123

9.8 Concluding Remarks 455

This is so because the database uses hierarchical pointers and for the second get

request for record type D, it would access either the record occurrence D12| or return

an error condition indicating that there are no more record types.

If we use multiple positioning, the position within the record type D would be

maintained. Consequently, this would give us the correct occurrence, Dn2, of the
record type D.

9.8 Concluding Remarks

In the hierarchical model, we have to select the order of entities involved in the

application into a hierarchy. This involves choosing the root node at each level. The

ordering of the nodes at each level is also significant. Because we are unaware, at

database design time, of the users’ intent and range of needs, the number of different

possible hierarchies with a sizable number of record types is enormous. Choosing

among these hierarchies would be a formidable task. As a case in point, with two

record types, the number of different hierarchies is two; with three record types, the

number of different hierarchies is 12, and so on. Only some of these hierachies are

suitable and the optimum for one application could turn out to be far from satisfac¬

tory for another application.

We face another problem in converting cyclic relationships into hierarchies. A

cycle of relationship, for example,

BRANCH DEPT_SECTION EMPLOYEE BRANCH

in the E-R diagram of Figure 9.2 cannot be expressed directly in the form of an

ordered tree. However, we have resolved this cycle by the hierarchies:

BRANCH DEPT_SECTION -* EMPLOYEE

and

BRANCH -> EMPLOYEE -> DEPT_SECTION.

This resolution requires the use of replication or virtual records for the record types

DEPT_SECTION and EMPLOYEE at the lowest level of the above hierarchies. In

general, any set of relationships in E-R diagrams that forms a cycle can be converted

to a number of rooted trees, using either replication or virtual records.

The hierarchical model inherently requires that the data in the database be struc¬

tured in the form of a tree. However, some records in the database represent entities

involved in more than one relationship. Furthermore, some of these relationships are

of the many-to-many type. The implementation of these relationships using the hier¬

archical data model leads to a number of hierarchical trees that are unconnected

except via a DBMS-supplied dummy root record. Such a collection of hierarchical

trees is sometimes called a set of spanning trees. Hierarchical data manipulation

facilities do not provide an easy means of accessing several hierarchical trees simul¬

taneously. The virtual record facility allows the hierarchical data manipulation lan¬

guage to access data belonging to separate hierarchical trees. The virtual record fa¬

cility also allow a record type to be included in several hierarchies without actual

replication.
The paired bidirectional logical relationship, with its associated symmetrical vir¬

tual records, is one way to implement a many-to-many relationship. The database

456 Chapter 9 The Hierarchical Data Model

system is aware of the replication of the common data in such virtual records and

the need to maintain consistency.
However, the virtual record scheme, even without any intersection data fields,

requires physical support in the form of related pointers to and from the logical

parent. Virtual records cannot be defined dynamically but require some database re¬

organization to be defined and implemented in conjunction with the DBA.

Performance considerations may require the hierarchical database to have an

index not only on the key field of the root node of the hierarchical tree but also on

other fields of the root node of a hierarchical tree or subtree. This type of index,

called a secondary index, is particularly useful for logical parent records.
The hierarchical model is considered to have a built-in bias that is physically

implemented. This bias may not be good for all applications. Consequently, a logical

structure using secondary indexes is useful. The use of virtual records avoids repli¬

cation, and provides a logical view of the database. Unfortunately, the implementa¬

tion of this is not as straight forward as a view in the relation data model. The virtual

record facility requires support of the underlying physical database and hence pre¬

planning and involvement of the DBA at database design time. Consequently, new

virtual records may not be defined. The update operations on the database and the

records that are associated with a virtual record are much more complex than the

operations on DBTG sets.
The hierarchical model, through one of its major implementations in the IMS

system from IBM, has the lion’s share of the current corporate databases. IMS has

matured over the years and the applications have been tuned to an optimum level of

performance. The results of attempts to move some of these applications to a rela¬

tional model have been mixed. However, a number of companies are marketing prod¬

ucts to provide a relational user front end, that interfaces with the existing hierarchi¬

cal DBMS.

9.9 Summary

The hierarchical data model consists of a set of record types. The relationship be¬

tween two record types is of the parent/child form, expressed using links or pointers.

The records thus connected form an ordered tree, the so-called hierarchical definition
tree.

The hierarchical model provides a straightforward and natural method of imple¬

menting a one-to-many relationship. However, a many-to-many relationship between

record types cannot be expressed directly in the hierarchical model. Such a relation¬

ship can be expressed by using data replication or virtual records.

The disadvantages of data replication are waste of storage space and the problem

of maintaining data consistencies. A virtual record is a mechanism to point to an

occurrence of a physical record. Thus, instead of replicating a record occurrence, a

single record occurrence is stored and a virtual record points to this record wherever

the record is required. The virtual record can contain some data that is common to a

relationship; such data is called the intersection data. The virtual record is the logical

child of the physical record that it points to, which is its logical parent.

The database using the hierarchical model results in a number of hierarchical

9.9 Summary 457

structure diagrams, each of which represents a hierarchical tree. These trees can be

interrelated via the logical parent/child relationship to form a set of spanning trees.

However, one can assume that the DBMS provides a single occurrence of a dummy

record type and all the hierarchical trees can then be attached to this single dummy

parent record. The roots of these trees can be treated as children of this dummy
record.

The data manipulation facility of the hierarchical model provides functions sim¬

ilar to the network approach; however, the navigation to be provided is based on the

hierarchical model. The get command is used to retrieve an occurrence of a specified

record type that satisfies the specified conditions. The get next command is used for

sequential processing and the get next within parent is used for sequential processing
within a preselected hierarchy.

The database can be modified using the insert, replace, and delete operations.

When records to be modified are virtual records, detailed rules have to be specified

so that the modification, if allowed, leaves the database in a consistent state.

ordered tree

preorder traversal

child pointer

sibling pointer

hierarchical data model (HDM)

tree structure diagram

definition tree

hierarchical definition tree

virtual record

replication

logical parent

logical child

intersection data

paired bidirectional logical
relationship

DB-Status

get

get first

get unique

get leftmost

where

get next

get next within parent

insert

get hold

replace

delete

hierarchical path

control codes

secondary index

9.1 Write an algorithm to convert a network diagram into a hierarchical diagram.

9.2 Write an algorithm to convert a hierarchical diagram into a network diagram.

9.3 Consider the record types BOOK and CLIENT. Implement the relationship to model the

waiting list of clients waiting to borrow a given BOOK.

9.4 Consider the record types BOOK_COPY and CLIENT. Implement the relationship to model

the waiting list of clients waiting to borrow a given BOOK_COPY.

9.5 Comment on the statement that the HDM has limited network capabilities. Give an example

of a network that cannot be represented in an HDM.

9.6 Why does the association between parent and child record type in the hierarchical data model

not need the foreign key concept of the relational data model?

9.7 Figure A represents a hierarchical tree structure diagram for the hospitals in a certain area.

Write the data description statements to define the structure.

458 Chapter 9 The Hierarchical Data Model

Figure A Hospital database.

9.8 For the hierarchical data model of Figure A, write the data manipulation statements to

perform the following operations:

(a) Display all hospitals that have a hematology lab.

(b) Display all wards that have a capacity in excess of 4.

(c) For a given patient, display all the doctors that the patient has consulted.

(d) Display all the doctors who have a specialty of pediatrics.

(e) Display the number of doctors consulted by a given patient.

(f) Add a doctor to the database belonging to a given hospital.

9.9 What modifications to the hierarchical tree structure diagram of Figure A will enable the

query of Exercise 9.8d above to be handled efficiently?

9.10 What modification would you make to the diagram of Figure A if you were to allow a doctor

to practice at more than one hospital?

9.11 In the HDM a record type is limited to only one physical parent and one logical parent.

Would it be possible to represent a number many-to-many relationships between three record

types? For example, can the E-R diagrams given in Figure 2.23 or Figure B be

implemented?

Figure 8 E-R diagram for Exercise 9.11.

9.12 Consider the record types in a hierarchical definition tree as being relations, with the data

items (or fields) being their attributes. Are these relations so derived in INF, 2NF, or 3NF?

Do these relations have any update anomalies?

9.9 Summary 459

Bibliographic Notes

The hierarchical data model, like the DBTG data model, was proposed as a database manage¬

ment system and was not studied extensively as a data model per se. The most prominent

commercially available DBMS using the hierarchical data models are the Information Manage¬

ment System (IMS) from IBM Corporation and MRI’s System 2000. These are discussed

extensively in the manuals available from these companies (IMS, MRI) and in a number of

survey articles (Tsic 76) and textbooks (Card 85, Date 86, Kapp 86, Tsic 77, Tsic 82).

Bibliography

(Card 85) A. F. Cardenas, Data Base Management Systems, 2nd ed. Boston, MA: Allen and Bacon, 1985.

(Date 86) C. J. Date, An Introduction to Database Systems, 4th ed. Reading, MA: Addison-Wesley, 1986.

(IMS) Information Management System documentation, IBM Corp., White Plains, NY.

(Kapp 86) D. Kapp, & J. F. Leben, IMS Programming Techniques: A Guide to Using DLU, 2nd ed. New York:
Van Nostrand Reinhold, 1986.

(MRI) System 2000 documentation, MRI Systems Corporation, Austin, TX., 1974.

(Tsic 76) D. C. Tsichritzis, & F. H. Lochovsky,“Hierarchical Data Base Management: A Survey,” ACM
Computing Survey 8(1), March 1976, pp. 105-124.

(Tsic 77) D. C. Tsichritzis, & F. H. Lochovsky, Data Base Management Systems. New York: Academic Press,
1977.

(Tsic 82) D. C. Tsichritzis, & F. H. Lochovsky, Data Models. Englewood Cliffs, NJ: Prentice-Hall, 1982.

Contents

10.1

10.2

10.3

10.4

10.5

10.6

Query
Processing 108

10.9

10.10

10.11

Introduction

An Example

General Strategies for Query Processing
10.3.1 Query Representation

Operator Graphs

Steps in Query Processing

10.3.2 General Processing Strategies

Transformation into an Equivalent Expression

Expected Size of Relations in the Response
10.5.1 Selection

10.5.2 Projection

10.5.3 Join

Statistics in Estimation

Query Improvement

Query Evaluation
10.8.1 One-Variable Expressions

Sequential Access

Access Aid

10.8.2 Two-Variable Expressions

Nested Loop Method

Sort and Merge Method

Join Selectivity and Use of Indexes
Hash Method

Join Indexes

10.8.3 N-Variable Expressions

Tuple Substitution

Decomposition

Access Aids in N-Variable Expressions
10.8.4 Access Plan

Evaluation of Calculus Expressions

View Processing

A Typical Query Processor

460

10.1 Introduction 461

In this chapter we focus on different aspects of converting a user’s query into a

standard form and thence into a plan to be executed to generate a response.

Introduction

Query processing is the procedure of selecting the best plan or strategy to be used

in responding to a database request. The plan is then executed to generate a response.

The component of the DBMS responsible for generating this strategy is called a
query processor.

Query processing is also referred to in database literature as query optimiza¬

tion. However, bear in mind that optimization here is mostly in the form of improve¬

ment in light of the inexact knowledge of the status of the database. The optimization

done in practical systems is not necessarily the best. The optimal strategy may be

too difficult to evaluate and could require much more computing to improve on it,

which on average may not be dramatically different from the one afforded through a
heuristic strategy.

Query processing is a stepwise process. The first step is to transform the query

into a standard form. For instance, a query expressed in QBE is translated into SQL

and subsequently into a relational algebraic expression. During this transformation

process, the parser portion of the query processor checks the syntax and verifies if

the relations and attributes used in the query are defined in the database. Having

translated the query into a given form such as a relational algebraic expression, the

optimization is performed by substituting equivalent expressions for those in the

query. Such equivalent expressions, which we focus on in Section 10.4, are more

efficiently evaluated than the ones in the transformed query. Substitution of such

expressions also depends on factors such as the existence of certain database struc¬

tures, whether or not a given file is sorted, the presence of different indexes, and so

on. In the next step a number of strategies called access plans are generated for

evaluating the transformed query. The physical characteristics of the data and any

supporting access methods are taken into account in generating the alternate access

plans. The cost of each access plan is estimated and the optimal one is chosen and

executed.

We concentrate in this chapter on query processing for interactive usage on a

relational database management system (RDBMS). A compiler would process data¬

base requests from batch programs. Techniques similar to the one to be discussed

here could also be applied to compiled queries. The overhead involved in the query

processing of an interactive query that is unlikely to be repeated should not be too

high. Contrast this with the compilation of a batch query. A batch program is likely

to be executed many times. Thus, a more intensive search for an optimal plan could

be justified. However, the optimization of compiled queries is not guaranteed to

remain optimal since the status of the database changes over time.

In the hierarchical and network models, the user specifies navigation though the

database by indicating the low-level path to be followed through records. This path,

for instance, leads from the parents to the children record types in a hierarchical

database, or from the owners to the members record types (or from the members to

the owners) of sets in the network database. Since these paths are already indicated,

the onus of optimization is on the user. Nonetheless, even in these systems some

462 Chapter 10 Query Processing

form of query processing is possible. Such is the case when a query processor has

information that the user does not have with respect to the current content of the

database, the index present on various records, and the past statistics of the various

operations.
The user interacts with a DBMS by submitting queries or update requests. These

requests are expressed by the user in a simple language. The query language usually

allows the same query to be expressed in a number of different ways, some of which

may be more efficient than others. Regardless of this difference, the user expects the

system to generate the response to the query in a reasonable period of time. In rela¬

tional systems, for both types of requests, the required data for the response is de¬

scribed by their properties rather than their locations. The relational DBMS must

select some optimal evaluation strategy and then execute it. This process of selecting

an access plan (also known as a strategy) and executing it is query processing. In

this chapter we shall see how query processing is handled in centralized database

systems. We defer the discussion of query processing in distributed database systems

until Chapter 15.

In centralized DBMSs an efficient query processor would try to minimize the

utilization of computing resources by the DBMS. These resources are the storage

space and processor time. The storage space consists of secondary stage as well as

main memory. The secondary storage used is not only for the primary data, but also

for storing indexes. The primary storage is used for storing the data and provides

space used by the buffers. The processor time used includes the time spent by the

input/output processor as well as the CPU. In a distributed environment, the com¬

munication channel is another resource and the costs of communication delays, set¬
ups, and transmission have to be considered.

Query processing strategies (see Figure 10.1), use general techniques for query

modification. This includes expressing the query in an equivalent but more efficient

form, substituting a query involving n-relations by a group of simpler queries (query

decomposition), replacing a query involving views to one expressed on the base

relations, or adding additional predicates to the query to enforce security. In addition,

query processing strategies take into account the characteristics of the data and the

expected sizes of both the intermediate and final results. Strategies are also included

Figure 10.1 Query processing strategy.

Query processing strategy

Query modification Response time
considerations

Data characteristic
considerations

Equivalent
form

Query
substitution

Size of Presence of Size of

records access aids intermediate

results

Query

decomposition
Query on
view to base
relations

Enforce
security

10.2 An Example 463

to enhance the query response time or reduce the cost of evaluating the query. It is

unlikely that details of the precise sizes of relations and the distribution of data values

in each attribute of every relation can be economically maintained. However, the

query processing procedures estimate these values and use them in preparing a strat¬

egy for optimizing the query evaluation. The estimation cannot be exact and the

optimization of costs may be computationally infeasible. Therefore, it is usual to

employ a heuristic selection of evaluation strategies. The following are examples of

such heuristic strategies: to reduce the size of relations participating in a query as

early as possible by selection and projection, to use indices whenever possible, and

to sort the intermediate relations to improve the efficiency of subsequent operations.
As we saw in Chapter 4, relational queries can be expressed in either relational

algebra or calculus. It is possible to evaluate safe calculus expressions directly, al¬

though, under certain quantifiers, at high computational costs. The alternate approach

involves translating the calculus expression into an equivalent relational algebraic

expression. The algebraic expression can be executed directly. We first look at meth¬

ods for evaluating relational algebraic expressions. At the end of the chapter we

discuss processing relational calculus queries.

Another aspect of query processing is query modification. This is called for

when the query is based on a view. Such queries have to be replaced by appropriate

queries on the base relations. Examples of these were illustrated in Section 5.7.9.

Additional modification may be necessary to impose restrictions enforcing data se¬

curity and confidentiality. Thus a manager who is allowed access to the salary attri¬

butes of employees in her department would have queries involving the EMPLOYEE

relation modified by a selection as shown below:

°DEPT = manager’ sdepartment(EMPLOYEE)

10.2 An Example

In the examples illustrated in this chapter, we consider part of a university database.

We concentrate on that portion of the database consisting of the following four rela¬

tions:

STUDENT (Std#, Std-Name)

REGISTRATION (Std#, Course#)

GRADE (Std#, Course#, Grade)

COURSE (Course#, Course-

Name, Instructor)

student details
courses the students are currently reg¬

istered in
grade obtained in courses already com¬

pleted by a student

course details

We make the following assumptions regarding the size of the database. The

STUDENT relation contains 40,000 tuples. The REGISTRATION relation represents

the current courses in which a student is registered but has not completed. If we

assume 10 courses per student for the academic year, we arrive at a total of 400,000

tuples in this relation. The GRADE relation represents the grade obtained by the

student in completed courses. Using an average of 15 completed courses per student

gives the number of tuples for this relation to be 600,000. The relation COURSE

464 Chapter 10 Query Processing

represents course offered and, ignoring the multiple sections of certain courses, rep¬

resents 5,000 courses.

A given request can be expressed in a number of different ways in any language.

Consider the query: “List the names of courses higher than COMP300 and all stu¬

dents registered in them.”

The following are some different ways of stating this query in SQL and rela¬

tional algebra. In SQL:

select Std-Name,Course-Name

from STUDENT, REGISTRATION, COURSE

where STUDENT.SW# = REGISTRATION.Std# and

COURSE.Course# = REGISTRATION.Course# and

REGISTRATION.Course# > COMP300

or

select Std—Name, cl .Course -Name

from STUDENT, REGISTRATION, COURSE cl

where STUDENT.Srd# = REGISTRATION.Srd# and
REGISTRATION.Course# in

(select Cl.Course#

from COURSE c2

where cl.Course# > COMP300 and

cl .Course# = cl.Course#)

or

select Std-Name,c\.Course-Name

from STUDENT, COURSE cl

where STUDENT.SrJ# in

(select REGISTRATION. Std#

from REGISTRATION

where REGISTRATION.Course# in

(select cl.Course#

from COURSE c2

where cl.Course# > COMP300 and

cl.Course# = cl.Course#))

In relational algebra:

^Std—Name.Course—Name((JCourse#>COMP300 (STUDENT [XI REGISTRATION
Std#

tx COURSE))
qj. Course#

^a_Vame.C0«r,e^Vam,(STUDENT CX ((TCourse#>COMP300 (REGISTRATION
Std#

CX COURSE))
Course#

or

^Std—Name,Course—/Vame(STUDENT [X {vCourse#>COMP300 REGISTRATION)
Std#

[X
Course#

Course# >COMP300 COURSE)

10.2 An Example 465

Some of these illustrated forms may be better than others as far as the use of

computing resources is concerned. The DBMS must perform a transformation to

convert a query from an undesirable form into an equivalent one that uses less re¬
sources and is therefore deemed better.

For the sample database, we get the following query processing costs for the

different relational algebraic forms of the same query. Here, to simplify discussion,

we compare costs in terms of the number of tuples processed. In an actual system,

the cost would be given in terms of the processing cost and the I/O cost measured in

terms of the number of block accesses required. This I/O cost depends, too, on the

size of the relation and block.

Let us examine the cost for the first relational algebraic expression tabulated in

Figure 10.2a. It involves a join of the relation STUDENT, containing 40,000 tuples,

with REGISTRATION, having 400,000 tuples. In this case, the referential integrity

constraint indicates that a tuple in REGISTRATION cannot exist unless there is a

tuple in STUDENT with the same Std#. Therefore, the result would be equal to the

number of tuples in REGISTRATION. If we use the brute force method of compar¬

ing each tuple of STUDENT with each tuple of REGISTRATION, this join is ob¬

tained by processing 40,000 * 400,000 tuples.

If the STUDENT and REGISTRATION relations are sorted on the joining at¬

tribute Std#, then the join can be obtained by processing 40,000 + 400,000 tuples.

If indexes exist on the joining attribute, one per relation, then access to the tuples is

not required unless the indexes indicate that there is a tuple in both relations with a

common value for the joining attribute. We discuss these aspects in Section 9.8.

The second join is between the result of the first join and the tuples of COURSE

involving a processing of 5,000 * 400,000 tuples. The result of this, again, would

be 400,000 tuples. This is followed by a selection for Course > COMP300. If we

assume that there are 500 courses whose course number is higher than COMP300,

the result would involve, let us say, 40,000 tuples. The final result of the query is

obtained by projecting these tuples on the attributes Std-Name and Course-Name

and involves processing 40,000 tuples.
For the second relational algebraic form of the same query, the first join is

between the relations REGISTRATION and COURSE. This entails the processing of

5,000 * 400,000 tuples for unsorted relations. If both these relations were sorted the

join would involve processing 5,000 + 400,000 tuples. The result of this join is

400,000 tuples. We then select from the joined tuples those wherein the Course# is

greater than COMP300, requiring the processing of 400,000 tuples to produce a

result consisting of 40,000 tuples. This is subsequently joined with the tuples of the

STUDENT relation, requiring processing 40,000 * 40,000 tuples or 40,000 +

40,000 tuples for unsorted and sorted cases, respectively. The final projection oper¬

ation involves 40,000 tuples. These costs are tabulated in Figure 10.2b.
Let us now consider the third form of the relational algebraic query. The selec¬

tion is done before each of the joins. The selection on COURSE entails the process¬

ing of 5,000 tuples to generate 500 tuples with Course# > COMP300. Similarly,

the selection on REGISTRATION involves processing 400,000 tuples to select

40,000 tuples. The join of the STUDENT with the selected tuples of REGISTRA¬

TION involves processing 40,000 * 40,000 tuples to arrive at 40,000 resulting tu¬

ples. This result is joined with 500 tuples selected from COURSE and entails a

processing of 500 * 40,000 tuples. The result is, as before, 40,000 tuples. We notice,

however, that the amount of processing is considerably reduced. These costs are

tabulated in Figure 10.2c.

466 Chapter 10 Query Processing

Figure 10.2 Evaluating relational algebraic expressions, (a) Cost for evaluating the query in the first
relational algebraic form; (b) Cost for evaluating the query in the second relational
algebraic form; (c) Cost for evaluating the query in the third relational algebraic form.

^StiL-Name.Course-Name^^Course#>COMP300 (STUDENT IXI REGISTRATION tXI COURSE))
Std# Course#

Operation Processing cost if relations Estimated size of

not sorted sorted result

Join of STUDENT and 40,000 * 40,000 + 400,000 tuples

REGISTRATION 400,000 400,000

Join of this result 5,000 * 5,000 + 400,000 tuples

with COURSE 400,000 400,000

Selection from result

of Course# > COMP300 400,000 400,000 40,000 tuples

Projection on

Std-Name, Course-Name 40,000 40,000 40,000 tuples

(a)

^Std—Name,Courye_JVame(STUDENT IX] (OCourse#>COMP30o(REGISTRATION [X] COURSE)))
Std# Course#

Operation Processing cost if relations Estimated size of

not sorted sorted result

Join of REGISTRATION 5,000 * 5,000 + 400,000 tuples

and COURSE 400,000 400,000

Selection from result

of COURSE# > COMP300 400,000 400,000 40,000 tuples

Join of STUDENT and 40,000 * 40,000 + 40,000 tuples

result above 40,000 40,000

Projection on

Std-Name, Course-Name 40,000 40,000 40,000 tuples

(b)

The above illustrates a considerable processing (and I/O cost) reduction when

one form of the query is used as opposed to another equivalent one. This indicates

that some form of query processing is necessary if the DBMS is to provide an ac¬

ceptable response. The intent of the query processor is to find a more efficient form

of a user-supplied query expression. A query can be improved in a number of ways

before its evaluation is performed. The improvements are basically concerned with

minimizing, if not altogether removing, redundancy from expressions and results.

This in turn involves simplifying and transforming the query, taking into account the

characteristics of the data contained in the database. For example, relations may be

supported by some access aid on certain attributes. Such access aids could be in the

form of an index using a B + -tree, ISAM, or a hash. Furthermore, the tuples of the

10.3 General Strategies for Query Processing 467

Figure 10.2 Continued

'ITS«UVamf.Courjf_^am<"(SJUDENT IXI (O’co«rs?#>COMP300 (REGISTRATION) XI {Vcourse#>COMP300 COURSE)
S,d* Course#

Operation Processing cost if relations Estimated size of
not sorted sorted result

Selection from COURSE

Course# > COMP300

Selection from

5,000 5,000 500 tuples

REGISTRATION

Course# > COMP300 400,000 400,000 40,000 tuples
Join of selected

tuples from COURSE

and REGISTRATION

500 * 400,000 500 + 40,000 40,000 tuples

Join of STUDENT with 40,000 * 40,000 + 40,000 tuples
result above 40,000 40,000

Projection on

Std-Name, Course-Name 40,000 40,000 40,000 tuples

(c)

relation may be stored in some particular order to aid their retrieval. The system

must exploit these access aids and storage schemes to come up with an optimal
access plan.

This system-performed optimization should be contrasted with the optimization

performed by application programs. While the former is general, the latter is appli¬

cable only to certain queries known at application program implementation time. This

chapter is concerned with some of the techniques adopted by the system in such

optimizations.

General Strategies for Query Processing

10.3.1 Query Representation

Queries posed by users, while suited to people, are not in a form convenient for

internal system use. The query processor represents the user query, transforming it

from some query language supported by the DBMS into a standard internal form that

it can manipulate. This form would be relational calculus, relational algebra, object

graph, operator graph, or tableau.

The process of translating a query into internal form is similar to high-level

programming language compilation. In compilation, the checking of variable decla¬

rations is done once at compile time, while in query processing of interactive queries,

468 Chapter 10 Query Processing

the verification of the existence of a relation (or attribute) has to be performed at the

time of the initial analysis of the query. For internal use, it is convenient to represent

queries using a procedural format. This rules out relational calculus and algebra for

internal representation, even though these formats have been used in a number of

query processors. We use operator graphs for internal representation of queries in

this text.

Operator Graphs

An operator graph depicts how a sequence of operations can be performed. In

operator graphs, operations are represented by nodes and the flow of data is shown

by directed edges. The graph visually represents the query and is easily understood.

Consider the query: “List the names of students registered in the Database course.”

One possible algebraic formulation is:

'^Std-Namei®Course—Name = -Database'(STUDENT XI REGISTRATION DX COURSE)

An operator graph for the above sample query is shown in Figure 10.3.

Equivalence transformations such as the earlier application of the selection op¬

eration can be used to modify the graph. The graph clearly shows what the effect of

such a transformation would be. For most simple queries, the graph resembles a tree.

Later on we demonstrate how the graph can be used to discover redundancies in
query expressions.

Steps in Query Processing

The steps involved in query processing are as follows:

1. Convert to a standard starting point. We would use a relational algebraic

form and the operator graph as the starting point. We would also assume that

the query expression is in conjunctive normal form, that is, the query is of

the form Pi V P2 V • • •> where each disjunct pi is a conjunction of terms
t) 1 A t)2 A

Figure 10.3 Example of an operator graph.

^Sid Name

®Course Name=Database

tx
Std#

STUDENT N
Course#

REGISTRATION COURSE

10.3 General Strategies for Query Processing 469

2. Transform the query. The query is transformed by replacing expressions in

the query with those that are likely to enhance performance. Note that the

choice of an equivalent form may be influenced by the existence of an index or
the fact that a relation is sorted.

3. Simplify the query. The query is simplified by removing redundant and

useless operations. We discuss query improvement in Section 10.7.

4. Prepare alternate access plans. The alternate access plans indicates the order

in which the various operations will be performed and the cost of each such

plan. The cost depends on whether or not the relations are sorted and the

presence or absence of indexes. The optimal access plan is chosen.

Steps 2, 3, and 4 are usually done in conjunction with each other and use statis¬

tical information to derive the best possible form of the query and the associated

access plan. The query transformations are carried out by applying standard process¬

ing strategies. We discuss some of these strategies for processing a query below and

discuss some equivalent forms in Section 10.4.

10.3.2 General Processing Strategies

Recall Example 4.3, in which we illustrated the decrease in the size of join when a

selection operation on one of the relations participating in the join was performed

before the actual join. Since selection reduces the cardinality of a relation, the join

would involve a relation with a smaller number of tuples and could be executed

faster. There are a number of similar general strategies used in query processing to

reduce the size of the intermediate and final results as well as processing costs. They

are described below.

1. Perform selection as early as possible. Selection reduces the cardinality of the

relation and, as a result, reduces the subsequent processing time.

2. Combine a number of unary operations. Consider the evaluation of

itx(o-y(R)), where X, Y C R. Both the selection and projection operations can

be done on the tuples of R simultaneously, requiring a single pass over these

tuples and singular access to them. Similarly,

(TCl(crC2(R)) = 0C1AC2(R)> TTx('ity(R)) = TTxnv(R)

If X C Y, then ttx(tty(R)) = irx(R)

3. Convert the cartesian product with a certain subsequent selection into a

join. Consider the evaluation of aY(R * S), where Y is, let us say, A 0 B and

A £ R, B 6 S. In this case, the cartesian product can be replaced by a theta

join as follows:

R tXI S
AtiB

4. Compute common expressions once. A common expression that appears more

than once in a query may be computed once, stored, and then reused. This is

advantageous only if the size of the relation resulting from the common

expression is small enough to be either stored in main memory or accessed

from secondary storage at a total cost less than that of recomputing it. Bear in

470 Chapter 10 Query Processing

mind that when a number of operations are combined into a single one, as

outlined above, common expressions could be masked.

5. Preprocess the relations. Before performing an operation such as a join, we

can preprocess the relations. The preprocessing includes sorting and index

creation on the join attributes. This step is particularly useful when the number

of tuples in the operand relations is large.

Transformation into an Equivalent Expression

Earlier in this chapter we gave an example of a single query being formulated in

different ways. This illustrated that the query specified by the user may not be in the

best possible form. We saw in the previous section that a selection may reduce the

size of a relation, while the size of the resulting join depends on that of the two

relations taking part in it and the distribution of the values of the attributes involved

in the join. The effort of performing the join can be as high as the product of the

cardinality of the participating relations. We also noted that a possible query im¬

provement strategy is to perform selections as early as possible. In this section we

offer some of the possible equivalent transformations that could be applied in de¬

creasing the cost of evaluating a query. Two expressions are considered to be equiv¬

alent if they produce the same result.

First, we consider the transformations that can be made without the benefit of

any information on the relations and their schemes. They are based on the associative

and commutative laws of relational algebra. We can use the commutative law in

query transformation for a join, since the resulting relation has associated with it the

names of the columns. Therefore, the order of columns in the resulting relation is

insignificant. We state these general transformation rules below. R, S, T, . . .are

relations on the relation schemes R, S, T, . . . and C, Cl, C2, ... are arbitrary

conditions. Also, 0 is an empty relation, that is, a relation with cardinality of zero,
defined on an appropriate relation scheme.

RUS^SUR
RflS = SnR

R X R = R

RUR^R
R Cl R = R

R - R = 0
R U 0 = R
R n 0 = 0
R IX] 0 = 0
R — 0 = R

0 - R = 0
RNS = SIX1R

commutative law

commutative law

idempotent law

idempotent law

commutative law

commutative law

associative law

associative law

R * S = S * R

R \X\ (S IXI T) = (R tX] S) IXI T

R * (S * T) = (R * S) * T

We incorporate the above equivalences in the form of rules and illustrate them
in the examples given below.

1. Combine a cascade of selections.

10.4 Transformation into an Equivalent Expression 471

crCl(<JC2 (e)) — crC2(crCl (e)) — <JClAC2 (e))

wherein e is an expression and Cl and C2 are predicates. If e is a single variable

expression, then the conjunction of selection conditions can be evaluated at the same

time.

Example 10.1 Consider the query: “Get the full details of courses with course number

COMP353 where the instructor is Smith.” This query can be expressed in

relational algebra as:

®Course# = COMP353(*^/ni/rucror= 'Smith'(COURSE))

or equivalently by:

® Course# = COMP353 A lnstructor= ‘Smith’(^-'OUR.SE))

The latter expression can be evaluated by testing for the predicate

Course# = COMP353 A Instructor = ‘Smith’

against each tuple of relation COURSE. B

If e is a multivariable expression, say, of the form el [XI e2, then the conditions

Cl and C2 may be more appropriately evaluated against the subexpressions el and

e2 (rule 5 below).

2. Combine a cascade of projection into a single projection.

ttx^yW) — ttx(R) where X C Y

Example 10.2 Consider the query:

tt Course_Namei^Course—Name, Instructor (COURSE))

This query can be stated as:

tt Co«r.se_Atomf (COURS E) B

3. Commute selection and projection.

ctc(itx(R)) = Trx(o-c(R))

and

ttx(o-c(R)) = <Tc(TTx(R))

However, if C involves attributes Y l X, then when commuting projection with

selection we have to use the following equivalence:

Trx(oc(R)) = ^x(°'c(ttxuy(R)))1

'From an implementation point of view, one wonders at the usefulness of this transformation. If projection and selection are

done in separate steps, then the relation is accessed three times in the transformed version instead of twice. Admittedly, the

selection operation deals with a smaller number of tuples, but its significance depends on the first projection. If projection and

selection are combined in one access of the relation, the advantage of this transformation is doubtful.

472 Chapter 10 Query Processing

4. Use associative and commutative rules for joins and cartesian products.

RtXI S = S EX R
R XI S tXI T = R XI (S 1X1 T) = (R IXI S) XI T = (T IXI S) X! R =

R * S = S * R
R*S*T = R*(S*T) = (R*S)*T = (R*T)*S = . . .

The order of the join and product is very important as it can substantially affect

the size of the intermediate relations and, therefore, the total cost of generating the

result relation.

Example 10.3 In Example 10.1, the expression

<Tc„.„,#»comp3oo (STUDENT CXI REGISTRATION) CX COURSE)
Std# Course#

can be replaced by the more efficient expression:

(STUDENT XI(aCoM„e#>coMP30oREGISTRATION) X
Std# Course#

(^Course#>COMP300 COURSE)

The above expression is equivalent to the following:

((<JCo«rjc#>COMP300 REGISTRATION) [XI (<X Course # > COMP300 COURSE)
Course#

[XI STUDENT) ■
Std#

5. Perform selection before a join or cartesian product. Consider crc(R CXI

S). If the attributes involved in the condition C are in the scheme of R and not in S,

that is, attr(C) i R and attr(C) l S, then

crc(R [XI S) = crc(R) X S

If the attributes involved in the condition C are in the scheme of S but not in R, i.e.,

attr(C) £ S and attr(C), l R, then

<rc(R X S) = R X o-c(S)

If the attributes involved in the condition C are in the scheme of R and S, i.e.,

attr(C) i R and attr(C) £ S, then

ctc(R X S) = <tc(R) X ac(S)

If C = Cl A C2 and the attributes involved in the condition Cl are from R, i.e.,

attr(Cl) € R, and the attributes involved in the condition C2 are from S, i.e.,
attr(C2) i S, then

ctc(R IXI S) = crCi(R) IXI crC2(S)

If C = Cl A C2 A C3 and the attributes involved in the condition C2 are only in

R, i.e., attr(C2) 6 R A attr(C2) l S, the attributes involved in the condition C3 are

only in S, i.e., attr(C3) (S A attr(C3), (. R, and the attributes involved in the
condition Cl are in R and S, then

<tc(R X S) = <TC,(aC2(R) X crC3(S))

10.4 Transformation into an Equivalent Expression 473

The above equivalences also apply when the cartesian product operation is substituted
for the join.

Example 10.4 Consider the expression:

(JStd#> 1234567ACourse# = COMP153ACourse—Name = ‘Database’(GRADE XI COURSE)

It is equivalent to:

^Course# =COMP353((OSk/#>1234567(GRADE)) X] (<TCourse-Name = ‘Database’

(COURSE))) ■

It is possible to combine projections with a binary operation that precedes or

follows it. Only the attribute values specified in the projection need to be retained.

The remaining ones can be eliminated as we evaluate the binary operation.

6. Perform a modified projection before a join. Note that when a projection

operation is preceded by a join, it is possible to push the projection down before the

join, but the projection acquires new attributes. This necessitates performing the orig¬

inal projection after the join. However, unless the cardinalites of intermediate rela¬

tions are reduced, which would reduce the cost of the join operation and the subse¬

quent size of the joined relation, the usefulness of pushing a projection before a join

is questionable.

TTX(R XI S) 3= 'TTxIlTR'IR) X 7TS<(S))

where R' = R fl (X U S) and S' = S Cl (X U R), and R, S represent the set of

attributes in these relation schemes. When X = R U S — R fl S, there is no

improvement because R' = R and S' = S.

Example 10.5 Consider the relations GRADE (Std#, Course#, Grade) and COURSE

(Course#, Course—Name, Instructor). The expression

TTStd#,Course—NameiGRADE X] COURSE)

is equivalent to:

IT Std#. Course_Name^.^ Std# .Course #(GRADE) 1AA1 IT Course# .Course—Vame(GOURSE))

However, consider the relations STUDENT (Std#, Std—Name) and

REGISTRATION (Std#,Course#). The expression

^^m,.couw#(STUDENT XI REGISTRATION)

is equivalent to:

TTSid—Name,Course#^Std#,Std /Vamcf STUDENT) TI Std# .Course#

(REGISTRATION))

which is equivalent to the original query:

^a_jvam,,c0«^#(STUDENT X3 REGISTRATION)) ■

7. Commuting projection with a cartesian product. Consider the expression

ttx(R * S). This expression can be replaced by the following equivalent one under

474 Chapter 10 Query Processing

these conditions: XI is the set of attributes in X that is in the scheme of R, and X2

is the set of attributes in X that is in the scheme of S.

irx(R * S) = -ttxi(R) * itx2(S)

Example 10.6 Consider the relations STUDENT (Std#, Std-Name) and REGISTRATION

(Std#, Course#). The expression

^cou™#.s,^m,(STUDENT * REGISTRATION)

is equivalent to:

'trs^USTUDENT) * ^^(REGISTRATION) ■

8. Commuting projection with a union. Consider the expression ttx(R U S).

It can be substituted by the equivalent one given below provided the relations R and

S are compatible. In other words, they are defined on similar relation schemes. Dis¬

similarities in the names of the attributes could be handled by appropriate renaming.

ttx(R U S) = irx(R) U ttx(S)

Example 10.7 Consider the relations STUDENT (Std#, Std-Name) and REGISTRATION
(Std#, Course#). The expression

tts^#(STUDENT U REGISTRATION)

is equivalent to:

tt^#(STUDENT) U TT5,rf#(REGISTRATION) ■

9. Commute selection with a union. Again, the relations R and S must be

compatible and any difference in names of the attributes could be handled by appro¬
priate renaming.

<xc(R U S) = orc(R) U CTC(S)

10. Commute selection with a difference. As in rules 8 and 9 above, relations

R and S must be compatible and renaming would resolve any differences in the
names of the attributes.

<xc(R - S) = <tc(R) - ctc(S)

We could replace the relations R, S, etc. in each of the above rules by a rela¬
tional expression. Note that the difference operation is not commutative.

In addition to the above rules, the semantics of the data may be used to generate a

query that is more economical than the original query. We illustrate this in Example 10.8.

Example 10.8 Consider the university database. Suppose we want to find the list of active
students (only the Std#). This can be expressed by the query:

10.5 Expected Size of Relations in the Response 475

tWSTUDENT X REGISTRATION)

However, knowing that Sid# is the foreign key corresponding to the pri¬

mary key of STUDENT, we can replace the above query by the following,
without involving a join:

ttSi ^REGISTRATION ■

Finally, the query processor can use the knowledge of the relation schemes and

functional dependencies to find additional equivalent forms for a query expression.
Example 10.9 illustrates this.

Example 10.9 Given R(A,5,C) and S(C,D,E . . C —> D), the query a/4 = a)(R CXI S)

can be replaced by (aA = a, R) XI S and the query ttcd(S) X ttde(S) is

equivalent to ttCd£(S). ■

Having determined the rules for deriving different equivalence transformations,

the question remains, “What can we do with the different equivalent forms of a

query?” Also, which of these forms should the system choose to evaluate? These

different forms could have varying sizes of intermediate and final results, which

would affect input/output and processing costs and consequently response time. In

the following section we discuss the methods used in estimating the size of the rela¬

tions in the response.

10.5 Expected Size of Relations in the Response

The aim in centralized databases is to minimize disk (or secondary storage device)

accesses, while in distributed databases, the goal has been communication cost re¬

duction where long-haul communication links are used. Thus, the system would pre¬

fer the query form that meets the system’s optimization goals.

In general, query processing involves the costs of processing, input/output, and

communication in distributed systems. The goal could be to optimize one, a pair, or

all of these costs. The costs are not known before the evaluation, but an estimate

based on past statistics could be made to compare the different evaluations.

If access is required to all tuples of relation R with tuple size szR, then the

number of bytes accessed are |R| * szR, which can be used as a cost estimate. It is,

however, normal to access data from secondary storage in blocks (or pages). Let the

blocking factor, which indicates the number of logical records per block, be bfR.

Then the number of blocks accessed to retrieve the tuples of relation R is given by

number of block accesses = [jR|/bfRl blocks

Communication cost is given in terms of setup cost and the number of bytes

transmitted. Assuming that the setup cost is c0 and the per byte transmission cost is

cl5 and these costs are the same for all communication links, then

communication cost = c0 + C] * |R| * szR

476 Chapter 10 Query Processing

In this chapter we restrict ourselves to centralized database systems, for which

the communication cost would be zero. We return to distributed query processing in

Chapter 15.
Selection, projections, and joins affect the sizes of the resulting relations. The

effect of projection is simple to calculate if the sizes of the attribute values are

known. The effect of selections and joins is more involved.

We are interested in the size of the result relation for several reasons. First, the

result relations could be intermediate relations and their size would be required to

determine the cost of the succeeding part of the query expression. Second, the result

relation may be too large to be stored in primary memory and would have to be

written to secondary storage. We may want to compare the cost of this access with

alternate equivalent query expressions.

Let us assume that the values of an attribute are uniformly distributed over its

domain and that the distribution is independent of values in the other attributes.

These assumptions are usually made for simplifying cost calculations, and it should

be noted that these assumptions cannot be justified on any other grounds. In practice

both uniform distribution and independence are unlikely to occur. In that case, the

expressions become complicated and are beyond the scope of this text.

10.5.1 Selection

Let T = ac (R) represent the selection of relation R on condition C, and let C be a

simple clause of the form R[A] = constant. Before we can estimate the size of the

resultant relation we must possess some knowledge about the value distributions, that

is, the number of times an attribute takes a particular value. We can simply assume

that each value occurs with equal probability. Then the expected number of tuples in
relation T is given by

|T| =
1 * |R|

\m)\

where |R[/1]| is the number of distinct values for attribute A of relation R. The factor

1/|R[A]| is known as the selectivity factor and is usually represented by the symbol

p (rho). As illustrated in Example 10.10, the nature of the data may allow an esti¬
mation of some selectivity factors.

Example 10.10 Recall that in the university database example, the assumption that each

student is registered in 10 courses is a reasonable assumption. Therefore,
we expect that

°S,d#= 1234567(REGISTRATION)

will have ten tuples and

^Course# = COMP453(REGISTRATION)

will have 80 tuples if there are 5000 courses. We recognize that in reality,

there will be considerable variations on these values. However, we can use
them as estimates. ■

10.5 Expected Size of Relations in the Response 477

As discussed in Chapter 3, it is unfortunately not reasonable to assume uniform

distribution of values in all cases. Uniform distribution assumption is widely used

nonetheless for estimating costs in choosing a query processing strategy. We should

therefore bear in mind that this is just an estimate.

Having generated the relation T (consisting of the tuples of relation R, satisfying

the predicate C, involving the attribute A), suppose we need to estimate the number

of distinct values for the attribute B in T. Note that B + A and the number of distinct

values for B in the relation T is given by |T[#]|.

We assume that the occurrence of a value in attribute B is unaffected by the

values in A. In other words, the distributions are independent. Under these assump¬

tions, it can be shown that this problem is equivalent to the so-called colored balls

problem. In this problem we have n balls of m different colors. (Apart from color,

all balls are identical.) Each color is represented by the same number of balls. We

must determine the expected number of different colors represented by a random

selection of t of these n balls.

It can be shown that the expected number of colors in these t balls is given by

the following expression:

expected number of colors = m *
^ n((m — l)/m - i -I- 1

= i n — i -I- 1

We can estimate |T[fi]|, the expected number of different values for the attribute

B in T, by the following substitution in the above expression: n = |R|, m = |R[fi]|,

and t = |T|.
However, the computation involved in evaluating this expression is consider¬

able. As a result, a number of different approximations to the above expression have

been proposed. We present below one of the more widely used approximations. This

approximation is given by the following formula for different sizes of the relation T:

|T[B]| =

|T| if |T) <
|R[B]|

cm HRM>if«S|T|S2»|R[B||

|R(B]| if |T| > 2 * |R[B]|

The size of each tuple in relation T is the same as in relation R.

10.5.2 Projection

The cardinality of the resulting relation could be affected by a projection because

duplicates would be deleted; however, most commercial database systems only delete

duplicates as a result of explicit commands.

T = ttx (R)

where X is a set of attributes, XCR,
When X is a single attribute, or contains the key attribute of R, and we represent

the single or key attribute by A, then

|T| = |R[A]|

478 Chapter 10 Query Processing

If A is a key attribute of R then |T| = |R|.

When X is a set of attributes, then

|T| = n |R[A,]|
/IjeX

In the above estimation of the result we are assuming that the relation is a

cartesian product of the values of its attributes. Such an assumption is rarely justified.

We can take this as the worse case estimate. The upper limit in the above expression

is given as:

|T| s |R|

The size of the tuples of T is the sum of the size of the attributes in X.

10.5.3 Join

The join operation is very common in relational database systems. The size estima¬

tion for the result of a join is somewhat more complicated than that of selection

because the cardinality of the result relation depends on the distribution of values in

the joining attribute. Furthermore, the cost of evaluating a join is not reflected in the

size of the result. The cost depends on the size of the relations being joined. We are,

however, interested in estimating the size of the result, since it could be used in

subsequent operations in evaluating a query.

Since the size of the result depends on the values of the joining attributes and

the distribution of these values, we shall consider a number of special cases.
Let

T = R tXI S
R.A = SB

Estimating the cardinality of T is complex because it is difficult to estimate

correctly the number of tuples of each relation that join with tuples of the other

relation. In the worse case the join is equivalent to a cartesian product; this occurs

when the operand relations do not share attributes defined on common domains. In
such cases, the cardinality of the result relation is given by:

|T| < |R| * |S|

This value of cardinality is much too large for most practical databases. We

consider a number of special cases below, assuming a uniform distribution of values.

1. Let {A} represent the set of values that the attribute A takes in the relation R.

The number of distinct values for attribute A is given by |R[A]|. We assume uniform

distribution of these values and further assume that these values will also be in rela¬

tion S. In this case, we could conclude that there are |S|/|R[A]| tuples in S for each

value for attribute A. Therefore, each tuple in R joins with |S|/|R[A]| tuples in S and
the number of tuples in T is given by:

■ I = |R| * |S|

|R[A]|

479 10.5 Expected Size of Relations in the Response

Let {B} represent the set of values that attribute B takes in relation S. The num¬

ber of distinct values for attribute B is given by |S[R]|. Again, using uniform distri¬

bution and further assuming that these values would also be in relation R, we could

conclude that there are |R|/|S[fi]| tuples in R for each value for attribute B. This

means that each tuple in S joins with |R|/|S[fl]| tuples in R, and it follows that the
number of tuples in T is given by:

,T| = |R| * |S|
|S[B]|

If {A} + {B}, then |R[A]| + |S[fl]| and the values for |T|, obtained by the

expressions (|R| * |S|)/|R[A]| and (|R| * |S|)/|S[fl]|, would be different. This indicates

that there are tuples in R and S that do not participate in the join. Such tuples are
called dangling tuples.

The greater, average, or the lesser of (|R| * |S|)/|R[A]| and (|R| * |S|)/|S[fi]| could
be taken as the estimate of the size of T.

2. If A is the key of R, then every tuple of S can only join with one tuple of

R, i.e., the cardinality of the resultant relation cannot be greater than the cardinality
of S:

|T| s |S|

3. Another possible derivation of an estimate, which takes into account the size

of the domain and which estimates a much smaller value for the cardinality of the

join, is as follows. The number of distinct values of A in R and B in S is |R[A]| and

|S[fi]|, respectively. Assuming uniform distribution as before, each value of A in R

(B in S) is associated with |R|/|R[A]| tuples (|S|/|S[fi]|). Thus, for each value of A (or

B) in the join, we could derive the upper limit on the number of tuples in the join as

given below:

[R| * |S| ,

IR[A]| * |S[fl]| tUpeS

The above will hold if the same set of values are in both R and S. Since the

same set of values is unlikely to be in the two relations, the expected number of

common domain values is much lower. This expected number depends on the prob¬

ability of any value appearing in both the relations. The expected number of distinct

values of A in R (or B in S) that takes part in the join is given by:

|R[A][* |S[fl]|

|D|

where |D| is the cardinality of the domain of A and B. Therefore, the expected actual

size of the join is given by:

= |R[A]| * |S[fll| * |R| ♦ |S|

1 1 |D| |R(A]| • |S(B]|

|R| * |S[

|D|

The size of tuples of T equals the sum of the sizes of tuples of R and S, minus

the size of the joining attribute A (or B).

480 Chapter 10 Query Processing

10.6 Statistics in Estimation

In the above discussions, we have estimated the size of the result. The cost of each

of these operations depends on the storage organization and the indexes that may be

present in the database. Additional indexes may be created, or the relation may be

sorted to perform one of the above operations.
Estimation of the size of results could also be generated from statistics main¬

tained by the DBMS. These statistics include the cardinality of the relations, the

number of distinct values for each attribute, and the cardinality of joins with different

relations. Such statistics could be recorded once a query is executed. For instance,

having decided on the basis of the above estimates that the join of R and S be made,

the database system generates this join. It can then determine the cardinality of the

result and store this as an estimate.2 Such an estimate will give a better indication of

the costs and sizes than the estimate discussed in Section 10.5. However, if the

database is modified in the interim, the result would be different than this recorded

statistic. In such a case, the database could modify these statistics and record the

amount of change in the statistics. The recording of such incremental changes would

be useful in subsequent estimating to generate better results.

The overhead involved in generating and modifying such statistics dictates that

those statistics be generated only during low load on the computing systems or by

execution of specific utility programs. Examples of such utilities are RUNSTATS in
DB2 and UPDATE STATISTICS in SQL/DS.

As a consequence of changes in the database, the result obtained by using out¬

dated statistics may not be accurate. However, since these are only estimates, they

are still useful in selecting a better query processing strategy.

10.7 Query Improvement

A query can be improved in a number of ways before its evaluation is performed.

The improvements are basically concerned with minimizing, if not altogether remov¬

ing, redundancy from expressions and results. Elimination of redundant expression

is equivalent to pruning the query operator tree. The rules discussed in Section 10.4

are used in finding equivalent query expressions and the cost of each expression is

evaluated. We illustrate the application of a few of these rules in a number of ex¬
amples in this section.

Let us first consider the general strategy of performing selections and projections
as early as possible.

Example 10.11 Consider the query: “List the names of students registered in the Database

course.” The algebraic formulation of this query is given below and the
corresponding query tree is given in Figure 10.3.

2The argument against recording such an estimate after each query is the additional locking required to update the statistics
and concommitant locking overhead. It would also cause the serialization of queries modifying independent relations in the
database.

10.7 Query Improvement 481

^Std_Name(®Course_Name = Database'(STU DENT tXI REGISTRATION
[X COURSE))

Referring to Figure 10.3, we can see that if the operations were per¬

formed as stated, the selections and projections would be applied during the

last stage of query evaluation. If the selection were to be applied to the

COURSE relation, it would reduce the number of tuples of the COURSE

relation that would take part in the joins. We therefore “push down the

tree” any selection and projection operators. At the intermediate nodes, the

operators are pushed into the appropriate branches. For example, if we push

down the selection operator, because the relation STUDENT does not con¬

tain the Course-Name attribute, the selection is only applicable to the inter¬

mediate results from the other branch, as shown in Figure Ai. The selection

can be pushed further down to the leaf nodes as shown in Figure Aii.

Figure A Example of pushing down the selection in an operator graph.

^Std Name

STUDENT
®Course Name=Database

M
Course#

REGISTRATION COURSE

(i)

rrStd Name

STUDENT

N
Std#

M
Course#

REGISTRATION 6Course Name=Database

COURSE

482 Chapter 10 Query Processing

As we discussed under rule 6 in Section 10.4, a projection cannot be simply

moved down. Given relations R and S defined on the relation schemes R(X,Y,Z)

and S(X,Y,W), where W, X, Y, Z are sets of attributes, then

7tx(R IX] S) = 'n,x(Trx,Y(R) XI ttx,y(S))
Y Y

In other words, as the projection is pushed down, it acquires additional attri¬

butes. These additional attributes finally have to be eliminated by the original projec¬

tion. This is illustrated in the following example.

Example 10.12 Consider the query: “Compile a list of instructors and the grades they as¬

sign.” The relational algebraic expression for this query is given below:

^Instructor,GradedRADE X3 COURSE)

The corresponding query tree is given in Figure Bi. To push the pro¬

jection down the tree, we would have to include the common attribute

Course# of GRADE and COURSE in both branches of the join operation
as indicated in Figure Bii.

Figure B Pushing projection down the query tree.

^Instructor, Grade

- M -
Course#

grade course

(i)

^Instructor,Grade

- M -
Course#

nCourse#,Grade (GRADE) ^Course#,Instructor (COURSE)

(ii)

Example 10.13 illustrates the effect of pushing the projection operation down the
query tree.

Example 10.13 Consider the query: “List the names of the students in the Database

course. The relational algebraic expression for this query is given below:

'nSr<L_A'ame(STUDENT tX TTSt(l# cw«#(REG ISTR ATION
Sid#

Course.—Name = ‘Database’(COURSE)))

10.7 Query Improvement 483

This expression can be simplified by moving the second projection fur¬

ther to the right in the expression, before the join on Course#. In the case

of the relation REGISTRATION the projection is the entire relation and for

COURSE the projection is on the attribute Course#. The modified expres¬
sion is shown below:

'Trs/aiJVam<?(STUDENT IX (REGISTRATION
Std#

^ X ^ HCourse#(®Course_Name — ‘Database’(COURSE)))
Course#

The effect of pushing the projection operation down the query tree is

illustrated in Figures Ci and Cii. Since the projection on the attributes Std#

and Course# of the relation REGISTRATION is the entire relation, the

operation is redundant and dropped. Course# is the only attribute appearing

Figure C Effect of pushing down projection operator.

ftStd Name

M
Std#

STUDENT ^ Std#,Course#

M
Course#

REGISTRATION ® Course _Name=Database

COURSE

(i)

ftStd_Name

- x-
Std#

STUDENT M
Course#

REGISTRATION ft Course#

®Course A/om^=Database

(ii)

COURSE

484 Chapter 10 Query Processing

in the relation COURSE. Therefore in pushing the operation Ttstd#,course#

down, we drop the attribute Std#. Note that the projection and selection

operations on the relation COURSE could be combined during a single pass

over its tuples. H

The other form of query improvement is the transformation of a redundant

expression into a nonredundant one. Redundant expressions may have been entered

by the user or may result during query transformation, as illustrated in Example
10.14.

Example 10.14 Consider the query: “Compile a list of the names of students who have not

obtained a grade of C or higher in the Database course.” A possible rela¬

tional algebraic query is given in Figure Di and the corresponding operator
graph is shown in Figure Dii.

The two subtrees of the difference operators are similar, the difference

being that in the right subtree there is a selection on the GRADE relation.

Moving the selection to be performed after the join on Std# (or just before

the difference operation), we get the modified relational algebraic expression
given below and the graph of Figure E.

'KStd—Name(STUDENTIX(GRADEX(aCou„e_^ame = .Database.(COURSE))) -

<W^STUDENT X (GRADE X (<I Course-Name = Database’(COURSE)))))

Figure D (i) Relational algebraic query and (ii) corresponding query
graph.

Ks,d_Name (STUDENT M (GRADE M (oCourse Name=Datab!iSe (COURSE)))-

(STUDENT N (oGrade>C GRADE M (oCourseJJame=Dmabase (COURSE)))))

(i)

^Std Name

N-

STUDENT N

N-

STUDENT

GRADE

N

aCourse_Name=Database °Giade>C aCourse Name-- Database

COURSE GRADE COURSE

(ii)

10.7 Query Improvement 485

Figure E Graph showing two identical subtrees.

^Sld Name

■M

STUDENT M

GRADE
®Course A,onif=Database

COURSE

°Grade>C

M-

STUDENT N

GRADE OCourse Name=Database

COURSE

We can see that there are two identical subtress in the graph of Figure

E, indicating a redundancy. We can remove the redundancy as shown in

figure Fi and replace the difference operation by a selection. These changes

are reflected in Figure Fii. Note that R - ac(R) = o_,c(R), where —iC is

the negation of the predicate C.

Figure F Removing redundancy from the graph of Figure E.

^Std Name

°Grade>C

^Std Name

°Grade<C

STUDENT XT

■IX-

STUDENT

GRADE cCourse Name=Database

M

GRADE Of,

COURSE

(i)

ourse Name—Database

COURSE

(ii)

486 Chapter 10 Query Processing

Figure G Final optimization for Example 10.14.

^StdName

-M-

STUDENT ns,d#

-M-

^•Course# ,Std# ^Course#

®Grade<C ®Course Name=Database

GRADE COURSE

Finally, we can push down the selections and projections to give us the

tree of Figure G. ■

10.8 Query Evaluation

We have presented a sampling of the many different query improvement strategies.

Having found the best equivalent form of a query, the next step is to evaluate it. We

classify the query evaluation approaches according to the number of relations in¬

volved in the query expression. Thus, we distinguish between the approach to be

used when the query expression involves one, two, or many relations. These are

known as one-variable, two-variable, and N-variable expressions, respectively. The

last stage of query processing deals with the execution of access plans. A number of

different query evaluation strategies have been proposed. Here we look at some com¬
monly implemented techniques.

10.8.1 One-Variable Expressions

A one-variable expression involves the selection of tuples from a single relation.
Let us consider the SQL query:

select al, . . ., ak
from R

where p

The simplest approach would involve reading in each tuple of the relation and

testing it to ascertain if it satisfies the required predicates. This is illustrated below.

10.8 Query Evaluation 487

Sequential Access

Use sequential access to read in every tuple of the relation. If the tuple satisfies the

qualification conditions, include the projection of the tuple on the target list attributes
in the result relation. The algorithm is given below:

result : = 0 {empty}

for every r in R do

if satisfies (p, r)

then result := result + <r.al . . . r.ak>

where Cr.al . . . r.ak> represents the tuple obtained by concatenating the projec¬
tions of r onto the attributes in the target list.

If the relation has n tuples that are blocked as b tuples/block, then for sequential

access to the tuples, the number of block accesses is [n/b]. In dealing with large

relations, this is an inefficient approach, as illustrated in Example 10.15.

Example 10.15 Consider the REGISTRATION relation to evaluate the query: “Generate the

list of students {Std# only) enrolled in COMP353.” The SQL version of
this query is:

select Std#

from REGISTRATION

where Course# = COMP353

We use sequential access to the tuples of REGISTRATION. Suppose

there are 400 tuples per block of secondary storage devices. Reading in all

tuples of REGISTRATION would involve access to 400,000/400 = 1,000

block accesses. ■

Access Aid

The number of tuples needing to be accessed could be reduced if the relation is sorted

with respect to one or more attributes. In such cases, if the predicates involve one or

more attributes on which the relation is sorted, then only some of the tuples need be

accessed. Use of indexes can provide faster access to the required tuples.

Example 10.16 Let us reconsider the previous example of generating the list of students

enrolled in COMP353. If the tuples of REGISTRATION are sorted in order

based on Course# and the records are clustered with 400 tuples per block,

we could do a binary search on these blocks. Locating the block containing

the required course would limit access to about 10 blocks. This will be

followed by access to at most one additional block. The last block accessed

would be needed only if some 80 tuples with the required course number

were not in the same block. This gives us a total of approximately 11 block

accesses. ■

488 Chapter 10 Query Processing

If the relation has an index, it may be used to improve evaluation performance

when access is required to a subset of the tuples. Such indices could be on one

attribute or they may involve a combination of attributes.

Example 10.17 Let us reconsider the previous example of generating the list of students

enrolled in COMP353. If an index exists on the Course#, then access to

the different levels of the index would involve (at most) two block accesses,

followed by one to the appropriate tuples. If the tuples are clustered by

Course#, then a maximum of two additional block accesses are required to

generate the response. ■

10.8.2 Two-Variable Expressions

A two-variable expression involves either two distinct tuples from the same relation

or two distinct relations. Here we concentrate on the latter case. One of the most

common (and expensive) binary operations is the join operation. In this section we

consider how the join, for instance R CXI S, can be evaluated.

Nested Loop Method

The nested loop method is a simple method in which every pair of tuples from the

participating relations are accessed and tested for the join condition. The algorithm
in the form of pseudocode is sketched below.

for i : = 1 to |R| do (* outer loop *)
begin

get ith tuple of R

for j : = 1 to |S| do (* inner loop *)
begin

get jth tuple of S

if join condition is satisfied then

perform join of the ith tuple

of R with the jth tuple of S
end (* inner loop*)

end (* outer loop *)

It should be clear that every tuple of the outer relation is matched with all of
those of the inner relation.

The total number of secondary storage accesses required, assuming that each

tuple requires an access, is given as |R| + |R| * |S|. The first term indicates the

access to the tuple of the outer relation and for each such tuple, all the tuples of the

inner relation must be accessed. It is preferable to have the smaller relation in the
outer loop. We illustrate this in Example 10.18.

10.8 Query Evaluation 489

Example 10.18 Consider the problem of generating the class list, consisting of Std#, Std_

Name, Course#, in the university database. This involves joining the STU¬

DENT and REGISTRATION relations. The nested loop method would in¬

volve a total of 40,000 + 40,000 * 400,000 disk accesses, assuming a disk

access for each tuple. Obviously, if the larger relation were in the outer

loop, the number of disk accesses would have been 400,000 + 400,000 *
40,000. ■

Even in the case of small relations, the value |R| + |R| * |S| is quite large. The
order of the algorithm is 0(n2).

We can substantially improve the performance of the nested loop method by

considering physical device characteristics. Data is accessed from secondary storage

in chunks called blocks or pages. So our first improvement to the algorithm would

be to move away from comparing a single tuple of the outer relation with a single

tuple of the inner, to comparing all tuples in a block of the outer relation with those

from a block of the inner one. This strategy requires that there be space in the main

memory for these blocks. The modified algorithm for a blocked nested loop is given
below.

for each B blocks of R do (* outer loop *)

begin

read B blocks of R

for each block of S do (* inner loop *)

begin

read block of S

for each tuple of the B blocks of R do

for each tuple in the block of S do

if join condition is satisfied

then

join the tuple of R with the tuple of S;

end (* inner loop *)

end (* outer loop *)

Suppose we use blocked (or paged) accesses with the blocking factors of rela¬

tions R and S represented by bfR and bfs, respectively. B blocks of memory are

available to store the blocks of relation R (the outer relation). Then the outer loop

involves reading B blocks of R at a time. Each tuple in the block of the inner relation

can be compared with tuples from these B blocks of the outer relation. This results

in the total number of secondary memory accesses given by the following expression:

||R|/bfRl + f(l/B) * [|R|/bfRH * r|S|/bfsl

If one of the relations (let us say R, the smaller of the two) can be kept entirely

in memory, then the number of disk accesses required is [|R|/bfRl + f|S|/bfsl.

Example 10.19 Let us reconsider the problem of generating the class lists, consisting of

Std#, Std-Name, Course#, in the university database. This involves join¬

ing the STUDENT and REGISTRATION relations. Let us suppose that the

490 Chapter 10 Query Processing

number of tuples per block, bf$, for the STUDENT relation is 200, the bfR

for REGISTRATION is 400, and up to 5 blocks of the STUDENT relation

can be kept in main memory. The nested loop using block access with STU¬

DENT, the smaller relation in the outer loop, would involve a total of

40,200 disk accesses. If the smaller relation in the outer loop could be kept

entirely in memory, then the number of disk accesses would be 1200. Note

that this method requires sorting the result relation on the attribute Course#

to obtain class lists. H

Sort and Merge Method

Relations are assumed to be sorted in the sort and merge method. If they are not

sorted, a preprocessing step in the query evaluation sorts them. These sorted relations

can be scanned in ascending or descending order of the values of the join attributes.

Tuples that satisfy the join predicate are merged. The process can be terminated as

indicated in Algorithm 10.1 on page 491.
In the algorithm, we join the relation R with relation S and the join predicate is

R.A = S.B. We assume that the relations have been sorted in ascending order with

respect to the attributes A and B and that sufficient space for an appropriate number

of buffers in available. The tuples are placed in the buffers by the file manager and

the algorithm reads the tuples from these buffers. R | and S \ are pointers that point

to the corresponding tuples in the buffers. We assume that once the last tuple in a

buffer has been read, the buffer is refilled. If the joining attributes are not the primary

key of the relations, a many-to-many relationship could exist via the joining attri¬

butes. We use an array U where pointers to tuples of relation S that have the same

attribute value as the current tuple of R are stored. These tuples join with the current

tuple of the relation R and allow a single pass over the tuples of both the relations.

A tuple whose pointer has been stored in this array locks the tuple so that the buffer

containing it is not released. An attempt to read past the last tuple in the relation

would raise the eof (end-of-file) condition. The algorithm could be easily modified
to include cases where the join involves more than one attribute.

The number of accesses for Algorithm 10.1 is given by:

r|R|/bfRl + f|S|/bfsl + Rcs + Scs

where Rcs and Scs are the costs of sorting the relations, assumed to be equal to the

number of accesses required during the sorting of the relations R and S, respectively.

The sort costs depend on memory availability and the number of runs produced in

the initial sort stage. For example, if we have enough memory to perform a

max(N,M)-way merge, where the number of runs produced for R and S are N and

M, respectively, then the number of accesses required for the join is as follows:

Initial read: [|R|/bfRl + [|S|/bfsl blocks

Writes of the sorted runs: [|R|/bfRl + [|S|/bfsl blocks

Read in merge phase: [|R|/bfRj + [|S|/bfsl blocks

Writes of the join: f|T|/bfTj blocks

Note that T is the result relation and bfT is the blocking factor for it. Similar
calculations can be done for other memory sizes.

10.8 Query Evaluation 491

Algorithm

10.1 Sort-Merge to Include a Many-to-Many Relationship

Input: R, S, the two relations to be joined on attributes A and B, respectively.

Output: T, the relation that is the join of R and S (concatenation of the attributes of R
and S, including the attributes A and B).

begin {sort-merge}

T := empty

sort R by A values and S by B values in ascending order
read (R)

read (S)

while not (eo/(R) or eof(S)) do (* main while loop *)
begin

while not(eofiR) or eofS) or R f .A S f .B) do

(* find a join value *)

if R | -A < S f B
then read(R)

else read(S)

if not (eof(R) or eofiS))

then

begin (*join a R tuple with one or more S tuples*)
n : = 0

Rcurrent-^ • R { .A
while S | .B = RCUrrent A and not (eof(S)) do

begin

n : = n+ 1

U[n] := S|

read (S)

end

while R t A = Rcurrem-A and not (eo/(R)) do

begin

for i = 1 to n do

T := T + Rf || U[i] t
read{R) (*does another tuple of R join with

the tuples whose pointers are in

array U?*)

end

end

end (*main while loop*)

end (*sort-merge*)

492 Chapter 10 Query Processing

If the relations are already sorted on the joining attributes, the merge-sort

method is an efficient method for evaluating a join.

Join Selectivity and Use of Indexes

Consider the join:

R N S
R.A = S-B

Join selectivity of a relation R in a natural join with a relation S denoted by

pRS is the ratio of the distinct attribute values for attribute A participating in the join

to the total number of distinct values for the same attribute in R, that is, |R[A]|. Sim¬

ilarly, pSR is the join selectivity of the relation S in a natural join with the relation R.

Under the uniform distribution assumption, pRs*|R| tuples of R and Psr*|S| tuples

of S would be involved in a natural join of relation R with S. The use of join selectivity

statistics is an alternate and practical method of estimating the size of the join.

If the relation S has an index on the join attribute and if we assume uniform

distribution, then the number of accesses required is given by |R| + pSR*|S|, where

pSR is the join selectivity. The method of performing the join is as follows. We read

in the tuples of R and for each attribute value of R.A we consult the index for S to

determine if any tuples from S are involved in the join. If so, these tuples of S are

retrieved and joined with the corresponding tuples of R. The tuples of S required to
be retrieved would be pSR*|S|.

Should the records of relations R be blocked, the number of block accesses is

given by |R|/bfR. If the records of relation S are stored in blocks, the number of

block accesses required to access k records of S (where k = pSR*|S|) is given by a

formula that is derived from the colored balls problem. The optimal number of block

accesses required to access k records randomly distributed in a file of n records

(n = |S|) and stored as m blocks (m = |S|/bfs) is given by the following expression:

y(k,m,n) = m *
k

n
i = I

n — n/m — i -I- 1

n - i + 1

However, if indexes exist on the joining attributes for both relations, the use of

these indexes provides a more efficient method of evaluating the join. In this case,

we can determine if a given value that exists in one of the relations is also present

in the other. If so, then the required tuples could be read and joined to produce the
result tuples.

Only those tuples that are involved in the join are required, and therefore only

Prs*|R| tuples of R and pSR*|S| tuples of S are retrieved. The total cost of the join,

however, includes the cost of retrieving the indexes. The use of hash and join indexes
to implement the join operation is discussed below.

Hash Method

Since we are using the hash method for evaluating a natural join, we can assume

that the same hash function is applied to the attributes R.A and S B. The buckets

contain the pointers to the appropriate tuple of the relation. The pointers, sometimes

called tuple identifiers (or TID), contain, in addition to a pointer indicating the

10.8 Query Evaluation 493

storage location of the tuple, an identifier for the relation. Therefore, the structure of
the TID is:

relation identifier || pointer to the tuple

Let us represent the hash values generated for the attribute values Ax and Bs of

the relations R and S by h(Ar) and h(Bs), respectively. Now, if Ax = Bs, then h(Ar)

= h(fis). In other words, the hash function generates the same “bucket address’’ for

the tuples of R and S that take part in the join. Ideally, if the hash function does not

cause “collisions” we only need to take these tuples of R and S and generate a join.

In reality collision would occur and we would need to compare the tuples before

joining. We have, however, reduced the number of tuples that need to be compared.

An alternate method of handling collision is to store the attribute value with the TIDs

in the bucket. We assume this scheme in our discussions.

In performing the join using such a hash index, we read into main memory those

hash buckets containing the attribute values and corresponding TIDs for the relations

R and S. The joining values of the attributes are those that have TIDs for both the

relations. These tuples are retrieved and the resulting joined tuple generated. Exam¬

ple 10.20 illustrates this method.

Example 10.20 Consider the problem of generating the list of courses (Course#) in which

a student is currently registered. It involves joining the STUDENT relation

with the REGISTRATION relation on the Std# attribute. Suppose the same

hash function h(attribute) = attribute mod 97 is used to generate the bucket

address for the common Std# attribute in these relations. The pointer values

in the buckets in Figure H indicate the TIDs of the STUDENT and REG¬

ISTRATION relations.

Figure H Hash index for use in join operations.

STUDENT REGISTRATION

TIDSTUdent Std# Std-Name TIDREGiST Std# Course#

1000001 1234567 Jim 2000001 1234567 COMP353

1000002 7654321 Jane 2000002 1234567 COMP443

1000003 2345678 San 2000003 2345678 COMP201

1000004 8765432 Ram 2000004 8765432 COMP353

2000005 8765432 COMP441

2000006 7654321 COMP441

bucket

24 ... 26 ... 48

Attribute TID

1234567 1000001

1234567 2000001

1234567 2000001

7654318 2000006

Attribute TID

8765432

8765432

8765432

1000004

2000004

2000005

Attribute TID

2345678

2345678

1000001

2000003

494 Chapter 10 Query Processing

To determine the courses in which student 1234567 is registered, we

generate the bucket address using 1234567 as the argument for the hash

function and derive the address 48. Consulting bucket 48, we find that the

values of the TIDs in REGISTRATION for this student are 2000001 and

2000002. Retrieving the tuples corresponding to these TIDs gives us the list

of courses for the student as COMP353 and COMP443. H

To determine the courses (Course# only) for all students necessitates a natural

join of the STUDENT and REGISTRATION relations. This involves reading the

hash buckets sequentially. For each attribute value, we read in the tuples participating

in the join. For the attribute value 8765432, we need the tuples with the TIDS

1000004, 2000004, and 2000005. The first one is from the STUDENT relation and

the last two are from the REGISTRATION relation.
The number of accesses to secondary storage required with such a hash index,

with the relations being stored in blocks of size bfR and bfs, is given by yR + ys +

cost of accessing the hash index. Here, yR and ys are given as follows:

YR(kR>mR>nR) -

kR
nR — nR / mR — i + 1

= mR * 1 - n
i = nR - i + 1

ys(ks,ms,ns) =
kS

nS — ns / ms — i + 1
= ms * 1 - n

i= 1 ns - i + 1

where kR = - pRS*|R|, nR = R|. mR = r|R|/bfRl, and

ks = Psr*|S|, ns = |S|, and ms = [|S|/bfsl

The size of the hash index is approximately equal to (szA + szTID) *(|R| + |S|),

where szA is the size in bytes of the attribute being joined and szXID is the size in

bytes of the TID. The number of secondary storage accesses required to read in the

hash index for a block size of szbl is f((szA + szTID) *(|R| + |S|))/sz5|j

If a hash index does not exist, the use of this method requires that such an index

be generated to determine the tuples that would be involved in the join. We then

need only to access the tuples of R and S once and write out the result. If the memory

is not sufficiently large, we would need to store the hashed values on secondary

storage and would require additional accesses.

Join Indexes

To provide more efficient join operations, join indexes have been proposed. A join

index is a relation of arity two and conceptually can be thought to be obtained as

follows: The TIDs of the tuples of the relations participating in a join are concaten¬

ated with the tuples. These augmented relations are joined and the resulting relation

is then projected on the TIDs. For instance, the join index for:

R [XI S
R.A = SB

will only consist of tuples with the TID of R and S that participate in this natural
join.

A join index is useful for joins that have to be performed often. The number of

tuples in the join index for R XI S is equal to the cardinality of the join, namely |R

(XI S|. The size of the tuples in a join index depends on the size of the TIDs.

10.8 Query Evaluation 495

Example 10.21 We return to the problem of generating the list of courses in which students

are registered. Generating such a list involves joining the STUDENT rela¬

tion with the REGISTRATION relation on the Std# attribute. Since this is

assumed to be a frequently required operation, we can create a join index.

We illustrate the join index on sample tuples in Figure I.

To find all courses (Course#) in which student 1234567 is registered,

we note that the TIDsxudenx for the tuple corresponding to this Std# has

the value 100001. Now, consulting the join index STUDENT-REGISTRA¬

TION, we discover that the tuples with the TIDs 2000001 and 2000002 in

the relation REGISTRATION will join with the tuple 100001. These TIDs

lead us directly to the tuples in REGISTRATION involving student 1234567

and we find that this student is registered in courses COMP353 and
COMP443.

Figure I Join index.

Join Index:

STUDENT STUDENT-REGISTRATION

TIDstudent Std# Std-Name TIDstudent T1Dre0|ST

1000001 1234567 Jim 1000001 2000001

1000002 7654321 Jane 1000001 2000002

1000003 2345678 San 1000002 2000006

1000004 8765432 Ram 1000003 2000003

1000004 2000004

1000004 2000005

REGISTRATION

tidregist Std# Course#

2000001 1234567 COMP353

2000002 1234567 COMP443

2000003 2345678 COMP20I

2000004 8765432 COMP353

2000005 8765432 COMP44I

2000006 7654321 COMP44I

The join index contains the TIDs for tuples of R and S that participate in the

join and only these tuples have to be retrieved. If bfji is the blocking factor for the

join index, the cost of accessing the join index is given by |R IX S|/bfjj. The cost

of performing a join using join indexes is given by |R IX S|/bfn + yR + ys, where

yR + ys are the optimal number of block accesses required to retrieve the tuples of

R and S participating in the join.

496 Chapter 10 Query Processing

10.8.3 N-Variable Expressions

An n-variable expression involves more than two variables. The strategy used here

is to try to avoid accessing the same data more than once. One method of imple¬

menting such expressions is to simultaneously evaluate all terms of the query. There¬

fore, if a number of terms in the query require unary operations on the data accessed,

these could be done in parallel. If the data accessed participates in binary operations,

these binary operations are partially evaluated.

General n-variable queries can be reduced for evaluation by either tuple substi¬

tution or decomposition.

Tuple Substitution

In the tuple substitution method we substitute the tuples for one of the variables.

Consequently, we reduce the query to K| * (n-1)-variable queries, where K) is the

cardinality of the substituted variable. The process is repeated until we get a set of

one-variable queries. This process is an extension of the nested loop approach and

requires the processing of tuples equal to the cartesian product of all relations par¬
ticipating in the query.

Example 10.22 Consider the query: “Compile a list giving the Std#s and Std_Names of

students who, having failed the Database course, are taking it again.” Note

that we assume that the GRADE relation contains the best grade a student

received in a given course. For a student who failed a course and subse¬

quently passed it, the only tuple in the GRADE relation would be the one
involving the second attempt!

The SQL and relational algebraic forms of this query are:

select Std#, Std-Name

from STUDENT s, REGISTRATION r, GRADE g, COURSE c
where s.Std# = r.Std# and

c.Course-Name — ‘Database’ and
g.Std# = s.Std# and

g.Course# = c.Course# and
g. Grade = F and

r.Std# = g.Std# and

r. Course# = c .Course#

'n,Sft/#.SfcDvome(STUDENT IX ^^(REGISTRATION IX

^ Std#,Course# (^Grade = FACourse-Name = Database’(GRADE IXI COURSE))))

This query can be evaluated by substituting the value of each tuple of the

four relations involved in the query. The number of tuples to be processed

is approximately equal to 40,000 * 400,000 * 600,000 * 1,000. ■

Even though the substitution method will always work, it should be avoided

because of the exponential increase in the number of tuples to be processed.

10.8 Query Evaluation 497

Figure 10.4 Moving selection and projection down the query tree.

^Sldtt,Sld Name

M

STUDENT
KSid#

De¬

registration ^Sld#, Course#

Or.,: Grade = F Course_Name=Database

j i_:_

^Srdtt, Course#

-M

^Course#

GRADE COURSE

Note that we could use the optimization strategies discussed earlier to reduce

the cost. One such operation involves moving the selection operations, as indicated

in the query tree of Figure 10.4. This optimization scheme leads us to modify the

tuple substitution scheme. In this modified scheme, the cardinality of one or more of

the participating relations is reduced by selection or projection. For instance, instead

of substituting all tuples of GRADE and COURSE, these relations could be scanned

once and their cardinality restricted to those tuples that satisfy the query predicates.

Similar query modifications could be achieved in SQL or QUEL by a nested

select statement or by using temporary relations, as illustrated below.

Using nested select in SQL:

select Std#, Std-Name

from STUDENT s

where s.Std# in

(select r.Std#
from REGISTRATION r

where r. Course# =

(select c. Course#

from COURSE c

where c.Course-Name = ‘Database’) and

r.Std# =

(select g.Std#

from GRADE g

where g. Grade — F and

g.Course# =

498 Chapter 10 Query Processing

(select cl .Course#

from COURSE cl
where c\.Course-Name = ‘Database’)))

Using temporary relations in QUEL:

range of c is COURSE

retrieve into COURSE_TEMP (c.Course#)

where c.Course-Name = ‘Database’

range of g is GRADE

retrieve into GRADE-TEMPI (g.S/d#, g.Course#)

where g. Grade = F

range of gl is GRADE_TEMP1

range of cl is COURSE_TEMP
retrieve into GRADE_TEMP2(g.SW#, g.Course#)

where gl .Course# = cl. Course#

range of g2 is GRADE_TEMP2

range of r is REGISTRATION

retrieve into REGISTRATION_TEMP (x.Std#)

where x.Std# = %2.Std# and

x.Course# = g2.Course#

range of rl is REGISTRATION-TEMP

range of s is STUDENT

retrieve s.Std#, s.Stud-Name

where s.Std# = xl.Std#

Decomposition

Consider the SQL query:

select Al, A2, . . .

from X,, X2, X3, . . . Xm, Xm+I, . . . Xn

where C,(X,, X2, . . . XJ and

C2(Xm, Xm+1, . . . X„)

Here C, and C2 are predicates that involve the relations X,, X2, X3, . . . Xm

and Xm, Xm+1, . . . Xn, respectively. One method of evaluating this query is to

evaluate a query with predicate C2 seperately and assign the result into a temporary

relation TEMP with the same relation scheme as Xm. This query is shown below:

insert into TEMP

from Xm, Xm + I, . . . Xn

where C2(Xm, Xm+1, . . . Xn)

Now the original query can be evaluated using the relation TEMP instead of Xm
as indicated below:

select Al, A2, . . .

from X,, X2, X3, . . TEMP

where C,(X,, X2, . . ., TEMP)

10.8 Query Evaluation 499

This modified query is simpler than the original query and would involve a
smaller relation TEMP instead of Xm.

In the decomposition method, we can consider the following special cases:

select Al, A2, . . .

from X,, X2, X3, . . . Xm, Xm + I, . . . Xn
where C,(X,, X2, . . . XJ and

C2(Xm+1, . . . Xn)

This is a case of a disjoint predicate, which can be separately evaluated as
shown below:

select *

from Xm+I, . . . Xn

where C2(Xm+1, . . . Xn)

If the above query produces an empty relation, then the original query would

also produce an empty relation as a response. If the above query produces a non¬

empty relation, then the following query would provide the required response:

select Al, A2, . . .

from X,, X2, X3, . . . Xm

where C,(X,, X2, . . . XJ

Now consider the query of the following form:

select Al, A2, . . .

from X,, X2, X3, . . . Xn

where C|(X,, X2, . . . Xn) and

C2(Xn)

In such cases, we can detach a one-variable query from the original one. This

one-variable query could be independently evaluated to give us a result containing,

let us say, k tuples. Now the original n-variable query can be replaced by k (n— 1)-

variable queries wherein the nth variable is replaced by its tuple values.

Let the predicate C2(Xn) applied to the variable Xn produce a set of tuples {tnl,

tn2, . . ., tnk}. The original n-variable query could then be replaced by k (n — 1)-
variable queries of the following form:

select Al, A2, . . .

from X,, X2, X3, . . . Xn_,

where CJX,, X2, . . . Xn_,, tj

This is the tuple substitution operation of decomposition. Since the number of

tuples in the relation Xn is much larger than k, the processing cost does not grow

exponentially. The optimization strategy in this case is to select the variable to be

detached and the sequencing of such detachment.

In the QUEL version of the query of Example 10.22, we have reduced the query

into a number of single-variable subqueries, as shown in Figure 10.5. These subquer¬

ies could be evaluated independently or, if resources are available, in parallel. The

results of the evaluation of these queries are the smaller relations GRAD_TEMP1

and COURSE_TEMP. The queries involving GRADE_TEMP1 and COURSE-

TEMP can then be evaluated to yield GRADE_TEMP2. This is followed by using

500 Chapter 10 Query Processing

Figure 10.5 Decomposition of query of Example 10.22.

Q

REGISTRATION_TEMP STUDENT

GRADE_TEMP2 REGISTRATION

GRADE_TEMP1 COURSE_TEMP

i I
GRADE COURSE

GRADE_TEMP2 and REGISTRATION to evaluate REGISTRATION_TEMP. The

latter is used in the final stage of the query to compile the required list. In this

decomposition, evaluation of GRADE_TEMP1 and COURSE_TEMP involves a

one-variable query. GRADE_TEMP2 is a two-variable query, as are REGISTRATION

TEMP and Q. Suppose there are 60,000 tuples in GRADE_TEMP1 with a grade of

F (obtained after processing the 600,000 tuples of GRADE) and one tuple with the

course name of Database (obtained after processing 5,000 tuples of COURSE). The

number of tuples in GRADE_TEMP2 would be, let us say, 6. If only two of these

students are reregistered, the tuple substitution at the point of evaluating Q involves

finding only the names of these two students who have failed the Database course

and are reregistered in the course. This tuple substitution results in the following:

retrieve Std#, Stud-Name where Std# = 1234567

retrieve Std#, Stud-Name where Std# = 7654321

In the decomposition approach, an n-variable query is replaced by a sequence

of single variable queries. If this is impossible or undesirable, the query is split into

two subqueries with a single common variable between them. Such subqueries could

be recursively decomposed until they become single variable queries or irreducible.

A query is reducible if it can be separated into two subqueries with a common vari¬

able, each of the subqueries having at least two variables. An irreducible subquery
cannot be reduced and must be evaluated.

Some of the relations involved in the subqueries obtained by the reduction pro¬

cess can be reduced in cardinality by projection or selection. In this manner, the

original query is replaced by a sequence of smaller queries. Figure 10.6 illustrates
the decomposition of a query in the form of a tree.

The decomposition algorithm (Wong 76) consists of four subalgorithms refered

to as reduction, subquery sequencing, tuple substitution, and variable selection. In

the reduction subalgorithm, the query is separated into irreducible components. These

are evaluated in an order determined by the subsequency subalgorithm. Each

subquery is evaluated in order and the result of the evaluation is used in tuple sub¬

stitution. Optimization is attempted by determining the sequence in which the

subqueries are to be evaluated and selecting the variables for which the tuple substi-

10.8 Query Evaluation 501

Figure 10.6 Decomposition of a query in the form of a tree.

Q

Qi Q8

Q2 Q7 Q9 Q10

Q3 Q6 Qll Q12

Q4 Q5

tution is to be performed. The objective of the optimization is to minimize the esti¬
mated costs.

Access Aids in N-Variable Expressions

The presence of access aids and the commonality of attributes can be used to advan¬

tage in the evaluations of multiple variable queries. Let us consider, for instance, the

three-variable query, U = R 1X3 S 1X3 T. We can create indexes on the joining

attributes in the join R IX] S for R and S 1X3 T for T, if they do not already exist.

If these indexes have to be created, access to the relations R and T is involved, plus

the cost of writing the indexes to secondary storage if insufficient space exists in

main memory. Subsequently, the tuples of S are accessed. For each tuple of S, the

required tuples from R and T are determined by using the values of the joining

attribute and the indexes for R and T. In this manner, the three-way join could be
evaluated.

The cost of this method is that of access to tuples of relation S and the required

tuples of R and T, plus the cost of accessing the indexes. If the index must be

created, the cost also entails the overhead of creating the indexes, plus access to each

of the three relations followed by the selected tuples from the relations R and T.

10.8.4 Access Plan

Once the method of evaluating various operations is determined, the steps involved

in combining the query components to deduce the final results have to be planned.

Generating an optimal access plan is a stepwise process done in conjunction with the

query transformation operation. In generating an access plan a decision has to be

made regarding which indexes should be generated and which of the existing data

structures should be used.

502 Chapter 10 Query Processing

The database statistics also influence the selection of the sequence of operations

to generate the intermediate and final result of the query and, hence, the optimal

access plan. The optimal sequence of operations in evaluating the query minimizes

access to secondary storage devices in the case of a centralized database system and

minimizes communication costs in the case of a distributed system.

10.9 Evaiuation of Calculus Expressions

A relational calculus query is nonprocedural; the result is described by specifying its

properties. Calculus expressions can be interpreted using nested loop procedures.

This method, however, is inefficient, requiring the processing of a number of tuples

equal to the cartesian product of the participating relations.

The alternative is to first transform the relational calculus query into relational

algebra and then evaluate the relational algebraic expression. The methods of evalu¬

ation discussed in the preceding sections can be applied to the transformed calculus

queries.

The nonprocedural relational calculus query can be considered to consist of two

parts: a target list and a qualification. The qualification, as we saw in Chapter 4, is

a first-order predicate expression, and the target list is some list of free variables

occurring in the predicate. The target list also specifies the structure of the result
relation.

In this section we present a widely used method to translate a calculus query

given in the disjunctive prenex normal form to an algebra query. A query is in

prenex normal form if its qualification is of the form:

V [or 3] r^R, . . . v [or 3] rneRn (P)

where P is a quantifier-free predicate. Thus, in the prenex normal form, all the quan¬

tifiers are moved to the front of the expression. Note that either the universal or

existential quantifier binds a variable in the above expression. A disjunctive prenex
normal form query has the predicate P of the form:

P :: = Pi V P2 V • • • V Pk

where each disjunct Pj is a conjunction of terms:

P .._ t a At

where Ty are terms. 1 " 11 ' ’ im

Let us consider the qualification clause of a query of the form:

3 r,eR, . . . 3 rne Rn (P)

This can be transformed into the relational algebraic query:

ctp (R, tXl R2 tXI . . .1X1 Rn)

preceded by a projection on the attributes specified in the target list of the query,
plus the attribute required for the join.

Having converted the query into the relational algebraic form, we can apply the

different simplification and improvement procedures considered in the previous sec¬

tions. Example 10.23 illustrates the conversion of a tuple calculus query into a rela¬
tional algebraic form.

10.10 View Processing 503

Example 10.23 Consider the query: “Compile a list containing the names of students who

have obtained a grade lower than C in the Database course.” The tuple

calculus expression for this query is given below:

{t[Std-Name] | t e STUDENT A 3g,c(g e GRADE Ace COURSE

A g[Std#] = t[Staf#] A g[Course#] = c[Course#} A
c[Course—Name] = ‘Database’ A g[Grade] < C)}

This could be converted into the following equivalent algebraic form query:

^Std_Namei^ Course_Name = Database/\Grade<C/\Course_Name = ‘Database’! STUDENT L"A
GRADE XI COURSE)) H

10.10 View Processing

In Section 10.1 we discussed the need for query modification when a query is ex¬

pressed on a view. Such queries have to be replaced by appropriate queries on base

relations. In the discussion so far we have considered the processing of queries as¬

suming that the query is posed on base relations. In this section we briefly consider

ways of transforming a query posed on views to an equivalent query on base rela¬

tions.
Consider a SQL query based on a view, such as USERS_VIEW, as given be¬

low:

select <target_list(Q)>

from <from_list(Q)>

where <where_clause(Q)>

Here we have used <from_list(Q)>, <target_list(Q)>, and <where_

clause(Q)> to indicate the names of the tuple variables used in the query. Since a

view is defined by a SQL query, the query defining the view USERS_VIEW can be

written as:

create view USERS-VIEW as

select <target_list(V)>

from <from_list(V)>
where <where_clause(V)>

Here we have used <target_list(V)>, <from_list(V)>, and <where_

clause(V)> to indicate the names of the attributes, tuple variables, and predicates

used to generate the USERS_VIEW.
To process the user’s query, we have to modify it to refer to the base relations.

It is possible that the same tuple variable could be used in both the user’s query and

the definition of the view. Such multiple use of variable names should be replaced to

differentiate them. Thus if the user’s query and the view definition both use the tuple

variable r, it is preferable to replace the tuple variable r in the view definition with a

different tuple variable, for instance, r'.
Algorithm 10.2 transforms a query that involves views as well as base relations

into one involving only base relations (given on page 504). The use of this algorithm

in transforming a query based on views is illustrated in Example 10.24.

A relation V defined in the view need not be preserved in the modified user’s

504 Chapter 10 Query Processing

Algorithm

10.2 Transform a Query on a View to the Base Relations

Input: Query on a view

Output: > Query on the base relations
Let X be the set of common tuple variable names

<from_list (V)> and <from_list (Q)>. For all names r in X, replace r in <target

list (V)>, <from_list (V)>, and <where_clause (V)> by r'.

Delete V from <from_list (Q)> and append <from_list (V) to <from_list

(Q)>.
Replace each attribute V.A in Q by its corresponding entry from <target-list

(V)>.
Replace <where_clause (Q)> by <where_clause (Q)> and <where_clause

(V)>, i.e., the new <where_clause> is a conjunction of the conditions of the

view and query.

query provided all the relations and tuple variables appearing in the <from_list(V)>

of the create view statement are appended to the user’s query. The next stage in the

query modification of the user’s query is step 2 of the algorithm. In the subsequent

steps of the query, all references to attributes of such deleted relations are replaced

by the corresponding base relation attributes. Finally, the predicate in the view defi¬
nition must be appended to the predicates in the user’s query.

Example 10.24 Consider a database consisting of the following base relations:

EMPLOYEE(Emp-Name, Salary, Dept, Position)
PHONE#(Emp_Name, Extension#)

Consider a view defined as follows:

create view DEPT-EMP as

select e.Emp_Name,e. Salary, e.Position

from EMPLOYEE e EMPLOYEE el

where e.Dept = el .Dept and

el .EmpJSame = ‘Smith’

A query using this view is given below:

select t.EmpJName, e.Salary, p.Extension#

from DEPT-EMP e PHONE# p

where e. Position = engineer and

DEPT_EMP. Emp-Name = p .Emp_Name

The user s query uses the tuple variable e, which is also used in the state¬

ments to define the view. Therefore, the view variable e would be changed

to, let us say, e . We would also delete DEPT-EMP in the from clause of

10.11 A Typical Query Processor 505

the user’s query and append the from list from the view definition to the

user’s query. Next, we would replace DEPT_EMP.£>n/?_Aarae by e'.£mp_

Name and e.Position by e'.Position. Finally, we would append the predi¬

cates from the definition of the view to the user’s query. The modified user’s
query is given below:

select z'.Emp-Name, e' .Salary, p.Extension#

from PHONE# p EMPLOYEE e' EMPLOYEE el

where .Position = engineer and

e'.Emp-Name = p. Emp-Name and

e' .Dept ~ t\.Dept and

el.Emp-Name = ‘Smith’

This modified query can now be optimized and evaluated using the tech¬
niques discussed earlier in this chapter. ■

10.11 A Typical Query Processor

We have presented a sampling of possible query optimization strategies. A query

expression during the modification stage may be decomposed into several subqueries.

Once the method of efficiently evaluating these components is determined, the steps

involved in combining these components to deduce the final results have to be

planned. An access plan, as represented in a query tree, describes the sequence of

operations that are involved to generate the intermediate and final result of the query.

It includes strategies such as determining what indexes should be generated and

which of the existing data structures should be used.

A query may be embedded within an application program that may be executed

repetitively. Should such a query be compiled, i.e., should the access plans be bound

to it? Interactive queries tend to be ad hoc and cannot be expected to be repeated.

DB2, for instance, compiles all queries, including the interactive queries. For the

latter, DB2 discards the access plan after execution of the query.

Early binding (i.e., binding of the access plan at first invocation) is not rec¬

ommended for compiled queries because there can be a significant hiatus between

the binding and the query’s eventual execution. During this hiatus, the original exe¬

cution strategy may have become inefficient because of changes to data organization.

Binding at execution allows the latest information to be utilized in the optimization

process. This process is, however, not cheap, and for frequently run queries it may

be beneficial to bind early and avoid the optimization overhead for each execution.

A trade-off is made wherein the access plan is bound at compile time with a provi¬

sion made to recompile such queries periodically and use the modified data struc¬

tures.
An ad hoc query is submitted by a user using the direct interface (or monitor)

to the DBMS. Queries can also be submitted by embedding them in high-level lan¬

guage programs. To facilitate this, it is usual to extend the high-level language or

supplement it with additional features. For example, EQUEL is the version of QUEL

that can be used in C programs on the INGRES relational database management

system.

506 Chapter 10 Query Processing

No matter how the query is entered into the system, a parser first converts the

input stream of characters into tokens (internal code representation). The optimizer

accepts this coded version of the query and performs query optimization. As we have

seen in this chapter, this involves improving the query (removing redundancy) and

generating a schedule or access plan. In the generation of the schedule, the optimizer

would consider a large number of possible execution strategies based on available

access aids and expected sizes of results. To assist in the selection of an appropriate

strategy, some of the following statistical information is maintained in the data dic¬

tionary:

For each relation: number of tuples, number of blocks used to store these tuples, percent

of total number of relevant database blocks used by the relation.

For each index: number of distinct data values and number of blocks used.

The optimization uses some of the strategies discussed earlier. However, to keep

the overhead within limits, some shortcuts are commonly used, such as not consid¬

ering a change in the order of evaluations of joins specified by the user’s query. Joins

are evaluated using either nested loop or sort-merge techniques. The sort-merge is

normally preferred for large relations while the nested loop method is reserved for

the smallest relations. Academic INGRES, for instance, uses the query decomposi¬

tion strategy. It developes an access plan for one step, executes it, and uses the result

of the execution to determine the subsequent access plans. Commercial INGRES, on

the other hand, develops a complete access plan.

The access plan is submitted to the data manager, which retrieves the data and

manipulates it to derive the result. The structure of a typical query processor is shown

in Figure 10.7.

Figure 10.7 Structure of a query processor.

Query

Query
processor

10.12 Summary 507

Summary

Query processing is the procedure of converting a user’s query into an internal stan¬

dard representation. The query is subsequently modified to an equivalent but more

efficient to evaluate form. An access plan for evaluating the query is determined and

executed. Converting queries using views into queries on base relations is also a

responsibility of query processing.

The general strategy used in query modification is to try to execute the selection

and projection operations as early as possible. Attempts are made to combine a num¬

ber of unary operations, thereby avoiding the necessity of accessing the same data

more than once. Common subexpressions are detected and attempts are made to

evaluate such subexpressions only once. When the query involves more than two

variables, attempts are made to break it down into a number of simpler, connected

queries.

Joins, one of the most common operations used in relational databases, are eval¬

uated using either the nested loop method or the sort-merge technique. Using indexes

and sorting the relations also improves the execution of these operations. In deriving

an access plan, an attempt is made to use existing indexes. In the absence of an

index or if the relations are unsorted, the overhead of creating indexes and/or sorting

the relations may be justified.
The query processor has access to the following statistical information main¬

tained in the data dictionary: number of tuples in the relations, number of blocks

used to store relations, number of distinct data values. These statistics are used in

estimating the cost of alternate access plans, the best of which is chosen.

tuple identifier (TID)

join index

n-variable expression

tuple substitution method

decomposition method

prenex normal form

disjunctive prenex normal form

binding

selectivity factor

one-variable expression

sequential access

two-variable expression

nested loop method

sort and merge method

join selectivity

hash method

query processing

query processor

query optimization

parser

access plan

query modification

operator graph

conjunctive normal form

10.1 Consider each of following relational operators: projection, selection, join. Suppose it is

required to implement them so that duplicate tuples are removed. Prepare a pseudocode

program to implement these using (a) sort-merge, (b) hashing.

10.2 Repeat Exercise 4.3 from Chapter 4, giving both an efficient relational algebra expression

and the corresponding query tree.

10.3 Repeat Exercise 4.4 from Chapter 4, presenting both an efficient relational algebra expression

and the corresponding query tree.

508 Chapter 10 Query Processing

10.4 Repeat Exercise 4.12 from Chapter 4, giving both an optimal relational algebra expression

and the corresponding query tree.

10.5 Consider the computation of the join R<A,B,C) and S(B,C,D,). Suppose R has 1,000 tuples

stored 30 tuples per disk block and S has 10,000 tuples stored 40 tuples per disk block.

There is space in the main memory for 3 buffers for relation R and 5 buffers for relation S.

What is the number of disk accesses made if the relations are joined using the nested loop

method?

10.6 Indicate if each of the following equivalences are valid, without any knowledge about the

relation schemes of R and S. If valid, how could they be used in query modification to

improve its evaluation?

(a) crP(R — S) = o>R - OpS

(b) TTP(R —S) = = TTpR — TTpS

10.7 Given R(A,B,C), S{B,C,D), and T(C,D,E), draw the query tree for each of the following

queries and apply optimization procedures to it.

(a) crfi = b(TWR CX S) D tWR X T))

(b) TTABC(as = b(TrABR) DX ttabS) - 'rrABC(<U> = d(R X T)))

10.8 Consider the following query on the database discussed in this chapter:

select S.Std#, S.Std-Name

from STUDENT s,Grade g,Registration r,COURSE c,COURSE cl

where s.Std# = g.Std# and

g. Course# = c. Course# and

c.Course-Name = ‘Database’ and

g. Grade = A and

S .Std# = r.Std# and

cl.Course# = r.Course# and

cl.Cowrsc-Name = ‘Database Design’

Assuming that the size of the relations are as indicated in the text, find the best strategy to

evaluate this query.

10.9 Generate an optimal query tree for each query of Exercise 5.10 of Chapter 5.

10.10 Is it possible to use algebraic modification to convert the first relational algebraic version of

the query in Section 10.2 to the third version? If so, depict a sequence of query trees

showing each step of the modification process.

10.11 Consider the different access strategies (indexing and hashing). State how the availability of

such access aids influences query processing.

10.12 Modify the algorithm for nested joins using block access wherein the join condition involves

more than one attribute from each relation.

Bibliographic Notes

Wong and Youssefi (Wong 76) introduced the decomposition technique, Selinger et al. (Seli

79) describe access path selection, and Kim (Kim 82) describes join evaluation strategies.

Techniques for query improvement are presented in Hall (Hall 76). Some join minimization

techniques are presented in the textbooks by Maier (Maie 83) and Ullman (UUm 82). Query

evaluation algorithms are presented in Blasgen and Eswaren (Bias 77) and Yao (Yao 79). Join

indexes for a two-variable join are presented in Valduriez (Vald 87). When two or more

509 10.12 Summary

relations are to be joined, the use of a composite B-tree-based index has been shown to be

advantageous (Desa, in press, Desa 89). A survey of query processing techniques is given by

Jarke and Kock (Jark 84). The distributed query processing survey by Yu and Chang (Yu 84)

also considers techniques useful in centralized database systems.

Bibliography

(Bias 77) M. W. Blasgen & K. P. Eswaren, “Storage and Access in Relational Databases,” IBM Systems
Journal 16, 1977.

(Desa 89) B. C. Desai, “Performance of a Composite Attribute and Join Index,” IEEE Trans, on Software
Engineering 15(2), February 1989, pp. 142-152.

(Desa) B. C. Desai, F. Sadri, & P. Goyal, “Composite B-tree: An Access Aid for Query Processing and
Integrity Enforcement,” Computer Journal (in press).

(Hall 76) P. A. Hall, “Optimization of a Single Relational Expression in a Relational Database System,” IBM
Journal of Research and Development 20, pp. 244-257.

(Jark 84) M. Jarke & J. Koch, “Query Optimization in Database Systems,” ACM Computing Surveys (162),
1984, pp. 111-152.

(Kim 82) W. Kim, “On Optimizing SQL-Like Nested Query,” ACM Transactions on Database Systems 3, pp.
443-469.

(Maie 83) D. Maier, Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.

(Seli 79) P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, & T. G. Price, “Access Path
Selection in a Relational Database Management System,” Proceedings ACM SIGMOD Inti.
Conf. on Management of Data, 1979, pp. 23-34.

(Ullm 82) J. D. Ullman, Principles of Database Systems. Rockville, MD: Computer Science Press, 1982.

(Vald 87) P. Valduriez, “Join Indices,” ACM Transactions on Database Systems 12(2), June 1987, pp. 218—
246.

(Wong 76) E. Wong, & K. Youssefi, “Decomposition—A Strategy for Query Processing,” ACM Transactions
on Database Systems 1(3), 1976, pp. 223-241.

(Yao 79) S. B. Yao, “Optimization of Query Evaluation Algorithms,” ACM Transactions on Database Systems
4(2), 1979, pp. 133-155.

(Yu 84) C. T. Yu & C. C. Chang, “Distributed Query Processing,” ACM Computing Surveys 16(4), December
1984.

Contents

Chapter

Recovery

11.1 Reliability
11.1.1 Types of Failures

Hardware Failure

Software Failure

Storage Medium Failure

Implementation of Stable Storage

11.1.2 Types of Errors in Database Systems and Possible
Detection Schemes

11.1.3 Audit Trails

11.1.4 Recovery Schemes

11.2 Transactions

11.2.1 States of a Transaction

11.2.2 Properties of a Transaction

11.2.3 Failure Anticipation and Recovery

11.3 Recovery in a Centralized DBMS

11.3.1 Logs

11.3.2 Checkpoints

11.3.3 Archival Database and Implementation of the Storage
Hierarchy of a Database System

11.3.4 Do, Undo, and Redo

Transaction Undo

Transaction Redo

Global Undo

Global Redo

11.4 Reflecting Updates onto the Database and

Recovery

11.4.1 Update in Place

11.4.2 Indirect Update and Careful Replacement

Reflecting Updates to the Database via Shadow
Page Scheme and Recovery

Reflecting Updates to the Database via Logs and
Recovery

11.5 Buffer Management, Virtual Memory, and
Recovery

11.6 Other Logging Schemes

11.7 Cost Comparison

11.8 Disaster Recovery

510

11.1 Reliability 511

A computer system is an electromechanical device subject to failures of various

types. The reliability of the database system is linked to the reliability of the com¬

puter system on which it runs. In this chapter we discuss recovery of the data con¬

tained in a database system following failures of various types and present the differ¬

ent approaches to database recovery. The types of failures that the computer system

is likely to be subjected to include failures of components or subsystems, software

failures, power outages, accidents, unforeseen situations, and natural or man-made

disasters. Database recovery techniques are methods of making the database fault

tolerant. The aim of the recovery scheme is to allow database operations to be re¬

sumed after a failure with minimum loss of information at an economically justifiable

cost. We concentrate on the recovery of centralized database systems in this chapter;
recovery issues of a distributed system are presented in chapter 15.

11.1 Reliability

A system is considered reliable if it functions as per its specifications and produces

a correct set of output values for a given set of input values. For a computer system,

reliable operation is attained when all components of the system work according to

specifications. The failure of a system occurs when the system does not function

according to its specifications and fails to deliver the service for which it was in¬

tended. An error in the system occurs when a component of the system assumes a

state that is not desirable; the fact that the state is undesirable is a subjective judg¬

ment. The component in question is said to be in an erroneous state and further use

of the component will lead to a failure that cannot be attributed to any other factor.

A fault is detected either when an error is propagated from one component to another

or the failure of the component is observed. Sometimes it may not be possible to

attribute a fault to a specific cause. Furthermore, errors such as logical errors in a

program are latent as long as they do not manifest themselves as faults at some

unspecified time. A fault is, in effect, the identified or assumed cause of an error. If

an error is not propagated or perceived by another component of a system or by an

user, it may not be considered as a failure.

Consider a bank teller who requests the balance of an account from the database

system. If there is an unrecoverable parity error in trying to read the specific infor¬

mation, the system returns the response that it was unable to retrieve the required

information; furthermore, the system reports to a system error log that the error oc¬

curred and that it was a parity error. The cause of the parity error could be a fault in

the disk drive or memory location containing the required information; or the prob¬

lem could be traced to poor interconnection or noise on the communication lines. We

cannot rule out the fact that the parity checking unit itself may be defective.
For a database system (or for that matter, any other system) to work correctly,

we need correct data, correct algorithms to manipulate the data, correct programs

that implement these algorithms, and of course a computer system that functions

correctly. Any source of errors in each of these components has to be identified and

a method of correcting and recovering from these errors has to be designed in the

system. To ensure that data is correct, validation checks have to be incorporated for

data entry functions. For example, if the age of an employee is entered as too low

512 Chapter 11 Recovery

or too high, the validation routine should ask for a confirmation of the data that was

entered.
Fault-detection schemes of appropriate types have to be built into a reliable

system. In addition, a reliable system has built into it appropriate recovery schemes

that will correct the errors that have been detected, or eliminate a portion of the

permanently failed system. Such elimination, however, may mean that the system

may not be available until it is repaired.
A fault-tolerant system, in addition to the fault-detection scheme, has redun¬

dant components and subsystems built in. On detection of a fault, these redundant

components are used to replace the faulty components. Such replacement makes it

possible to keep the system available without any interruption of service, albeit, at a

reduced level of performance and reliability.
We will not consider the aspects of correct algorithms or correct implementation

of these algorithms in this text. However, we stress their paramount importance in

the correct functioning of any system, including a database system.

Another aspect that has to be considered in database application is that of data

consistency. Having correct data is important; however, the data must be consistent.

This requires checks in the database system to ensure that any redundant data is

consistent. For example, if the age of an employee is entered in the database, it must

be consistent with the employee’s date of birth and the current date.

Let us now try to informally define the concept of reliability of a system. Reli¬

ability is a measure used to indicate how successful a system is in providing the

service it was intended for. Reliability is an important consideration in all systems

designed for critical operations. It is considered during all stages of computer system

design and implementation. To take into account the fact that physical devices have

an inherent failure rate, these systems have built into them include various mecha¬

nisms to detect errors and correct many of them. A number of measures are used to

define the reliability of a system. These include the mean time between failures

(MTBF), the mean time to repair (MTTR), and the system availability, which is

the fraction of time that a system performs according to its specifications.

There are two basic methods of increasing the reliability of a system. The first

method uses fault avoidance and the second method tolerates faults and corrects

them. In the fault-avoidance method, reliability is achieved by using reliable com¬

ponents and careful assembling techniques with comprehensive testing at each stage

of design and assembly to eliminate all sources of hardware and software errors. In

the fault-tolerance approach, the system incorporates protective redundancies, which

can cater to faults occurring within the system and its components. These redundan¬

cies allow the system to perform according to its specifications (or within an accept¬

able level of degradation from these specifications). However, the use of redundancy

in components and subsystems to make a system fault tolerant increases the number

of components. A greater number of components in a system decreases its reliability

unless the components are modular and the redundant components do not get in the

way of the operation of the system s normal components. Modular construction ef¬

fectively reduces the complexity of the system and the redundant components come
into play only in case of an error.

Memory systems can have a simple parity check bit that can detect a single bit

error correctly, but multiple bit errors can go undetected (or be detected incorrectly

as a single bit error). However, memory systems can be made fault tolerant by ad¬

ditional parity bits to detect and correct errors in one or more bits. The degree to

11.1 Reliability 513

which such detection and correction schemes are used depends on the expected num¬

ber of errors and the costs that can be economically justified.

Absolute reliability is hard to achieve at an economically acceptable cost (or at

anycost), hence systems are designed with a level of reliability that is compatible

with the use of the system and is economically justifiable.

In database systems, reliability of the system is achieved by using redundancy

of data, including control data. In addition, failures are tolerated by using additional

redundant data that can be used in recovery operations to return the database to an
usable state after a failure.

11.1.1 Types of Failures

Hardware Failure

Failures that can occur in the hardware can be attributed to one of the following

sources: design errors, inadequate quality control, overloading, and wearout.

Design errors: These could include a design that did not meet the required

specifications of performance and/or reliability; the use of components that are of

poor quality or insufficient capacity; poor error detection and correction schemes; and

failure to take into account the errors that can occur in the error detection and cor¬

rection subsystems.

Poor quality control (during fabrication): This could include poor connections,

defective subsystems, and electrical and mechanical misalignments.

Overutilization and overloading: Using a component or subsystem beyond its

capacity. This could be a design error or utilization error where mismatching sub¬

components may be used, or due to unforeseen circumstances a system is simply

used beyond its capacity.
Wearout: The system, especially its mechanical parts, tends to wear with usage

causing it to divert from its design performance. Solid-state electrical parts do not

wear out, but insulation on wire could undergo chemical changes with age and crack,

leading to eventual failure.

Software Failure

The errors that can lead to a software failure are similar to those that lead to hardware

failure, the only exception being wearout.
Design errors: Not all possible situations can be accounted for in the design

process. This is particularly so in software design where it is hard to foresee all

possible modes of operation, including the combinations and the sequence of usage

of various components of a software system. However, the design should allow for

the most serious types of errors to be detected and appropriate corrective action to

be incorporated. In situations that could result in loss of life or property, the design

must be fail-safe. An alternate approach to design in such a situation is to assign

multiple design teams for the same project and an independent verification team to

validate the design.

514 Chapter 11 Recovery

Poor quality control: This could include undetected errors in entering the pro¬

gram code. Incompatibility of various modules and conflict of conventions between

versions of the operating system are other possible causes of failure in software.

Overutilization and overloading: A system designed to handle a certain load

may be swamped when loading on it is exceeded. Buffers and stacks may overrun

their boundaries or be shared erroneously.
Wearout: There are no known errors caused by wearout of software: software

does not wear out. However, the usefulness of a software system may become ob¬

solete due to the introduction of new versions with additional features.

Storage Medium Failure

Storage media can be classified as volatile, nonvolatile, and permanent or stable.

Volatile storage: An example of this type of storage is the semiconductor mem¬

ory requiring an uninterruptable power source for correct operation. A volatile stor¬

age failure can occur due to the spontaneous shutdown of the computer system,

sometimes referred to as a system crash. The cause of the shutdown could be a

failure in the power supply unit or a loss of power. A system crash will result in the

loss of the information stored in the volatile storage medium. One method of avoid¬

ing loss of data due to power outages is to provide for an uninterruptable power

source (using batteries and/or standby electrical generators). Another source of data

loss from volatile storage can be due to parity errors in more bits than could be

corrected by the parity checking unit; such errors will cause partial loss of data.
Nonvolatile storage: Examples of this type of storage are magnetic tape and

magnetic disk systems. These types of storage devices do not require power for

maintaining the stored information. A power failure or system shutdown will not

result in the loss of information stored on such devices. However, nonvolatile storage

devices such as magnetic disks can experience a mechanical failure in the form of a

read/write head crash (i.e., the read/write head comes in contact with the recording

surface instead of being a small distance from it), which could result in some loss of

information. It is vital that failures that cause the loss of ordinary data should not

also cause the loss of the redundant data that is to be used for recovery of the ordi¬

nary data. One method of avoiding this double loss is to store the recovery data on

separate storage devices. To avoid the loss of recovery data (primary recovery data),

one can provide for a further set of recovery data (secondary recovery data), and so

on. However, this multiple level of redundancy can only be carried to an economi¬
cally justifiable level.

Permanent or Stable storage: Permanency of storage, in view of the possibility

of failure of the storage medium, is achieved by redundancy. Thus, instead of having

a single copy of the data on a nonvolatile storage medium, multiple copies of the

data are stored. Each such copy is made on a separate nonvolatile storage device.

Since these independent storage devices have independent failure modes, it is as¬

sumed that at least one of these multiple copies will survive any failure and be

usable. The amount and type of data stored in stable storage depends on the recovery

scheme used in the particular DBMS. The status of the database at a given point in

time is called the archive database and such archive data is usually stored in stable

storage. Recovery data that would be used to recover from the loss of volatile as

well as nonvolatile storage is also stored on stable storage. Failure of permanent

515 11.1 Reliability

storage could be due to natural or man-made disasters. A manually assisted database

regeneration is the only possible remedy to permanent storage failure. However, if

multiple generations of archival database are kept, loss of the most recent generation,

along with the loss of the nonvolatile storage, can be recovered from by reverting to

the most recent previous generation and, if possible, manually regenerating the more
recent data.

Implementation of Stable Storage

Stable storage is implemented by replicating the data on a number of separate non¬

volatile storage devices and using a careful writing scheme (described below). Errors

and failures occurring during transfer of information and leading to inconsistencies

in the copies of data on stable storage can be arbitrated.

A write to the stable storage consists of writing the same block of data from

volatile storage to distinct nonvolatile storage devices two or more times. If the writ¬

ing of the block is done successfully, all copies of data will be identical and there

will be no problems. If one or more errors are introduced in one or more copies, the

correct data is assumed to be the copy that has no errors. If two or more sets of

copies are found to be error free but the contents do not agree, the correct data is

assumed to be the set that has the largest number of error-free copies. If there are

the same number of copies in two or more such identical sets, then one of these sets

is arbitrarily assumed to contain the correct data.

11.1.2 Types of Errors in Database Systems and
Possible Detection Schemes

Errors in the use of the database can be traced to one of the following causes: user

error, consistency error, system error, hardware failure, or external environmental

conditions.

User error: This includes errors in application programs as well as errors made

by online users of the database. One remedy is to allow online users limited access

rights to the database, for example, read only. Any insertion or update operations

require that appropriate validation check routines be built into the application pro¬

grams and that these routines perform appropriate checks on the data entered. The

routines will flag any values that are not valid and prompt the user to correct these

errors.
Consistency error: The database system should include routines that check for

consistency of data entered in the database. Due to oversight on the part of the DBA,

some of the required consistency specifications may be left out, which could lead to

inconsistency in the stored data. A simple distinction between validity and consis¬

tency errors should be made here. Validity establishes that the data is of the correct

type and within the specified range; consistency establishes that it is reasonable with

respect to itself or to the current values of other data-items in the database.

System error: This encompasses errors in the database system or the operating

system, including situations such as deadlocks (see Section 12.8). Such errors are

fairly hard to detect and require reprogramming the erroneous components of the

516 Chapter 11 Recovery

system software or working with the DBMS vendor. Situations such as deadlocks are

catered for in the DBMS by allowing appropriate locking facilities. Deadlocks are

also catered to in the operating system by deadlock avoidance, prevention, or detec¬

tion schemes.
Hardware failure: This refers to hardware malfunctions including storage sys¬

tem failures.
External environmental failure: Power failure is one possible type. Others are

fire, flood, and other natural disasters, or malicious acts.
In addition to validity checks built into the application programs using a data¬

base, the database system usually contains a number of routines to recover from some

of the above errors. These routines enforce consistency of the data entered in the

database. The required consistencies that are to be enforced are indicated by the

DBA.

11.1.3 Audit Trails

The concept of an audit trail is not new; recall the Greek myth about Theseus, who

marked his trail into the labyrinth, where the monster Minotaur lived, with a ball of

string. After killing Minotaur, Theseus used the trail marked by the string to find his

way out of the labyrinth. The need for the reliability and relative permanency of such

a trail is also illustrated in the children’s story of Hansel and Gretel. They left a trail

marked by bread crumbs, which were eaten by birds, and the pair were unable to

find their way back home!
In accounting practice, each transaction is recorded in chronological order in a

log called a journal before being entered to the appropriate accounts. Recording of

the transactions is done in the form of double entry. For each transaction, there are

debits to one or more accounts and credits to one or more accounts, and the sum of

these debits and credits must be equal. Double entry helps in detecting errors and

ensures the reliability of the accounting records.

The DBMS also has routines that maintain an audit trail or a journal. An audit

trail or a journal is a record of an update operation made on the database. The audit

trail records who (user or the application program and a transaction number), when

(time and date), (from) where (location of the user and/or the terminal), and what

(identification of the data affected, as well as a before-and-after image of that portion

of the database that was affected by the update operation). In addition, a DBMS

contains routines that make a backup copy of the data that is modified. This is done

by taking a “snapshot” of the before-and-after image of that portion of the database

that is modified. For obvious reasons, the backups are produced on a separate storage
medium.

11.1.4 Recovery Schemes

Recovery schemes can be classified as forward or backward recovery. Database sys¬
tems use the latter schemes to recover from errors.

11.2 Transactions 517

Forward error recovery: In this scheme, when a particular error in the system

is detected, the recovery system makes an accurate assessment of the state of the

system and then makes appropriate adjustments based on the anticipated result had

the system been error free. The adjustments obviously depend on the error, conse¬

quently the error types have to be anticipated by the designers of the recovery sys¬

tem. The aim of the adjustment is to restore the system so that the effects of the

error are canceled and the system can continue to operate. This scheme is not appli¬
cable to unanticipated errors.

Backward error recovery: In this scheme no attempt is made to extrapolate

what the state of the system would have been had the error not occurred. Instead,

the system is reset to some previous correct state that is known to be free of any

errors. The backward error recovery is a simulated reversal of time and does not try
to anticipate the possible future state of a system.

11.2 Transactions

A single DBMS operation as viewed by an user, for example, to update the grade of

a student in the relation ENROL (Student-Name, Course, Grade), involves more

than one task. Since the data resides on a secondary nonvolatile storage medium, it

will have to be brought into the volatile primary memory for manipulation. This

requires that the data be transferred between secondary storage and primary storage.

The transfer is usually performed in blocks of the implementation-specified size. The

transfer task consists of locating the block in the secondary storage device containing

the required tuple (which may be preceded by searching an index), obtaining the

necessary locks on the block or the tuple involved in the update, and reading in this

block. This task is followed by making the update to the tuple in memory, which in

turn is followed by another transfer task, writing the tuple back to secondary device,

and releasing the locks.
In order to reduce the number of accesses to disk, the blocks are read into blocks

of main memory called buffers. We can thus assume that a program performs input/

output using, for example, the get and put operations, and the system transfers the

required block from secondary memory to main memory using the read and write

operations. The block read (write) tasks need not be performed in case the system

uses buffered input (output) and the required data (space) is already in the primary

memory buffer. In such a case the get (put) operation of the program can input

(output) the required data from (to) the appropriate buffer. If the required data is not

in the buffer, the buffer manager does a read operation and obtains the required data,

after which the data is input from the buffer to the program executing the get state¬

ment. If there is no more space left in the buffer, the put operation causes the buffer

to be written to the secondary storage (with a write) and then the put operation

transfers the data from main memory to the space made available in the buffer.

The above DBMS operation of changing the grade of a student in a given course

initiated by a user and appearing to her or him as a single operation actually requires

a number of distinct tasks or steps to be performed by the DBMS. This is illustrated

by the skeleton program given on the next page.

518 Chapter 11 Recovery

Procedure Modify_Enrol (Student_Name, Course, New_Grade);

define action update LNROL(Student—Name, Course, Grade)as

{* action update ENROL is defined as the next two

statements *}

begin

get for update ENROL where
ENROL.Student-Name = Student_Name and

ENROL. Course = Course;

ENROL.Grade : = New_Grade;

end

if error

then

rollback action update ENROL;{* do not output ENROL *}

else
commit action update ENRQL;{* output ENROL *}

end Modify_Enrol;

In this program the comment indicates the definition of the action update EN¬

ROL of the record for a given student in a given course; this action is being refer¬

enced later with the keywords commit and rollback. The statements defined for the

update operation are assumed to modify a temporary copy of the selected portion of

the database (the main memory copy of the block of nonvolatile storage containing

the tuple for the relation ENROL). Here we are using error to indicate whether there

are any errors during the execution of the statements defined for the action update

ENROL. If there were any errors, we want to undo any changes made to the database

by the statements defined for the update action. This involves simply discarding the

temporary copy of the affected portion of the database. The database itself is not

changed if a temporary copy of the database is being used. If there were no errors,

we want the changes made by the update operations to become permanent by being

reflected in the actual database.
Figure 11.1 shows the successive states of the database system at different

points of the execution of this program, with the change of student Jones’s grade in

course Comp353 from in progress to A, as shown in part d of the figure. In case

there are any errors by the program, it ignores any modifications and the record for

Jones remains unchanged as shown in part e.

The program unit Modify_Enrol given above consists of a number of state¬

ments, each of which is executed one at a time (each of the statements is compiled

into a number of machine instructions, which are executed one at a time, sequen¬

tially). Such sequential execution can be interrupted due to errors. (Interrupts to ex¬

ecute the statements of other concurrent programs can also occur, but we will ignore

this type of interruption for the time being.) In case of errors, the program may be

only partially executed. However, to preserve the consistency of the database we

want to ensure that the program is executed as a single unit, the execution of which

will not change the consistency of the database. Thus an interruption of a transaction

following a system detected error will return the database to its state before the start

of the transaction. Such a program unit, which operates on the database to perform

a read operation or an update operation (which includes modification, insertion, and
deletion), is called a transaction.

11.2 Transactions 519

Figure 11.1 Database states for program of Section 11.2.

Main memory

Jones Comp 353 inprog

Main memory

Jones Comp 353 A

Main memory

Jones Comp 353 A

Main memory

Jones Comp 353 A

Jones Comp 353 inprog

Jones Comp 353 A

Secondary storage

Jones Comp 353 inprog

(a) Initial state of the database before
the execution of the Get Enrol statement

(b) After the execution of the
Get Enrol statement

(c) The temporary copy is modified

(d) After the commit statement the database
is permanently changed

(e) In case of errors the rollback restores
the database to the original state by
ignoring the temporary copy

Main memory
Secondary storage

520 Chapter 11 Recovery

Definition: A transaction is a program unit whose execution may change the contents of a

database. If the database was in a consistent state before a transaction, then on

the completion of the execution of the program unit corresponding to the

transaction, the database will be in a consistent state. This requires that the

transaction be considered atomic: it is executed successfully or in case of errors,

the user can view the transaction as not having been executed at all.

The relationship between an application program and a transaction is shown in

Figure 11.2. The application program can be made up of a number of transactions,

Tj, T2, . . . , Tn. Each such transaction Tj starts at the time Tistart. It commits (or

rolls back) at time Ticommit (Tironback) and terminates at time Tiend.

The commit and rollback operations included at the end of a transaction ensure

that the user can view a transaction as an atomic operation, which preserves database

consistency. The commit operation executed at the completion of the modifying

phase of the transaction allows the modifications made on the temporary copy of the

database items to be reflected in the permanent copy of the database (later in this

chapter we present recovery-related operations which are executed prior to making

changes in the permanent copy of the database). The rollback operation (which is

also called the undo operation) is executed if there was an error of some type during

the modification phase of the transaction. It indicates that any modifications made by

the transaction are ignored; consequently, none of these modifications is allowed to

change the contents of the database. If transaction Tj is rolled back, the logic of the

application program is responsible for deciding whether or not to execute transaction

Tj (for i < j < n). Once committed, a transaction cannot be rolled back.

From the definition of a transaction, we see that the status of a transaction and

the observation of its actions must not be visible from outside the transaction until

the transaction terminates. Any notification of what a transaction is doing must not

be communicated, for instance via a message to a terminal, until the transaction

commits. Once a transaction terminates, the user may be notified of its success or
failure.

There could be other DBMS operations viewed by the user as a single action
but involve multiple changes. Consider the operation of changing the name of a

student from Jones to Smith-Jones. For consistency, the DBMS application program

that interfaces with the user must change the name in the relations

STUDENT_INFO(Stw<icnr_jVflmc, Phone-No, Major) corresponding to the student

Figure 11.2 Application program and transactions.

| T start ^ Tend ^ ^ j^end Tistart Tnend

^ai1 T1 commit T2start T2roIlback Tncommit End
of

program
K & program

11.2 Transactions 521

Jones and all tuples pertaining to this student in the relation ENROL (Student-Name,

Course, Grade). A skeleton program to support this is given below.

Procedure Multiple_Modify Student_Name(Current_name, New_Name);

define action update STUDENT_INFO(Current_Name, New_Name) as

begin

get STUDENT_INFO where StudentJSame = CurrenLname;

STUDENT_INFO.St«Je/i/_vVa/ne : = New_Name;
end;

define action update ENROL(Current_Name, New_Name) as
begin

while no-more-tuples-in ENROL do;

begin

get ENROL where ENROL.Student-Name = Current_Name;
ENROL.Student-Name : = New_Name;
end;

end;

if error

then

rollback (update STUDENT_INFO, update ENROL);
else

commit (update STUDENT_INFO, update ENROL);
end Multiple_Modify;

We see from the above skeleton program that modifying the student name in¬

volves a number of database accesses and changes. Because these changes can only

occur one at a time, there is a period of time between the start of execution of this

program and its termination during which the database is in an inconsistent state. For

example, after the appropriate tuple in STUDENT_INFO is changed, we do not have

referential integrity, there being no tuple in STUDENT_INFO corresponding to the

tuples in ENROL for the student Jones (whose name has just been modified in

STUDENT_INFO). Similarly, between the start of the update for the relation EN¬

ROL and its completion, some tuples have Smith-Jones as the value for the Student-

Name attribute and others have Jones.

The point is that a database operation viewed by a user as a single operation in

fact involves a number of database tasks, and there is no guarantee that the database

is in a consistent state between these tasks. However, the user can view these tasks

as a single operation (the so-called atomic operation), which will complete success¬

fully or not at all. In the former case the changes are made and in the latter case the

database remains unchanged. In either case, after the completion of the transaction,

the database is in a consistent state.

11.2.1 States of a Transaction

A transaction can be considered to be an atomic operation by the user; in reality,

however, it goes through a number of states during its lifetime. Figure 11.3 gives

these states of the transaction, as well as the cause of a transition between these

states.

522 Chapter 11 Recovery

Figure 11.3 Transaction states.

Consistent
state

A transaction can end in three possible ways. It can end after a commit opera¬

tion (a successful termination). It can detect an error during its processing and

decide to abort itself by performing a rollback operation (a suicidal termination).

The DBMS or the operating system can force it to be aborted for one reason or

another (a murderous termination).

We assume that the database is in a consistent state before a transaction starts.

A transaction starts when the first statement of the transaction is executed; it becomes

active and we assume that it is in the modify state, when it modifies the database.

At the end of the modify state, there is a transition into one of the following states:

start to commit, abort, or error. If the transaction completes the modification state

satisfactorily, it enters the start-to-commit state where it instructs the DBMS to reflect

the changes made by it into the database. Once all the changes made by the trans¬

action are propagated to the database, the transaction is said to be in the commit state

and from there the transaction is terminated, the database once again being in a

consistent state. In the interval of time between the start-to-commit state and the

commit state, some of the data changed by the transaction in the buffers may or may

not have been propagated to the database on the nonvolatile storage.

There is a possibility that all the modifications made by the transaction cannot

be propagated to the database due to conflicts or hardware failures. In this case the

system forces the transaction to the abort state. The abort state could also be entered

from the modify state if there are system errors, for example, division by zero or an

unrecoverable parity error. In case the transaction detects an error while in the mod¬

ify state, it decides to terminate itself (suicide) and enters the error state and then,

the rollback state. If the system aborts a transaction, it may have to initiate a rollback

to undo partial changes made by the transaction. An aborted transaction that made

no changes to the database is terminated without the need for a rollback, hence there

are two paths in Figure 11.3 from the abort state to the end of the transaction. A

transaction that, on the execution of its last statement, enters the start to commit state

and from there the commit state is guaranteed that the modifications made by it are
propagated to the database.

11.2 Transactions 523

The transaction outcome can be either successful (if the transaction goes through

the commit state), suicidal (if the transaction goes through the rollback state), or

murdered (if the transaction goes through the abort state), as shown in Figure 11.3.

In the last two cases, there is no trace of the transaction left in the database, and

only the log indicates that the transaction was ever run.

Any messages given to the user by the transaction must be delayed till the end

of the transaction, at which point the user can be notified as to the success or failure

of the transaction and in the latter case, the reasons for the failure.

11.2.2 Properties of a Transaction

From the definition of a transaction, we see that the status of a transaction and the

observation of its actions is not visible from outside until the transaction terminates.

Any notification of what a transaction is doing must not be communicated, for in¬

stance via a message to a terminal, until the transaction is terminated. Nor should

any partial changes made by an active transaction be visible from outside the trans¬

action. Once a transaction ends, the user may be notified of its success or failure and

the changes made by the transaction are accessible. In order for a transaction to

achieve these characteristics, it should have the properties of atomicity, consistency,

isolation, and durability. These properties, referred to as the ACID test, represent the

transaction paradigm.
The atomicity property of a transaction implies that it will run to completion as

an indivisible unit, at the end of which either no changes have occurred to the data¬

base or the database has been changed in a consistent manner. At the end of a

transaction the updates made by the transaction will be accessible to other trans¬

actions and the processes outside the transaction.
The consistency property of a transaction implies that if the database was in a

consistent state before the start of a transaction, then on termination of a transaction

the database will also be in a consistent state.
The isolation property of a transaction indicates that actions performed by a

transaction will be isolated or hidden from outside the transaction until the transaction

terminates. This property gives the transaction a measure of relative independence.

The durability property of a transaction ensures that the commit action of a

transaction, on its termination, will be reflected in the database. The permanence of

the commit action of a transaction requires that any failures after the commit opera¬

tion will not cause loss of the updates made by the transaction.

11.2.3 Failure Anticipation and Recovery

In designing a reliable system we try to anticipate different types of failures and

provide for the means to recover without loss of information. Some very rare failures

may not be catered to for economic reasons. Recovery from failures that are not

thought of, overlooked, or ignored may not be possible. In common practice, the

524 Chapter 11 Recovery

recovery system of a DBMS is designed to anticipate and recover from the following

types of failure:

Failures without loss of data: This type of failure is due to errors that the

transaction discovers before it reaches the start to commit state. It can also be due to

the action of the system, which resets its state to that which existed before the start

of the transaction. No loss of data is involved in this type of failure, especially in

the case where the transactions are run in a batch mode; these transactions can be

rerun later in the same sequence.
Failure with loss of volatile storage: Such a failure can occur as a result of

software or hardware errors. The processing of an active transaction is terminated in

an unpredictable manner before it reaches its commit or rollback state and the con¬

tents of the volatile memory are lost.
Failure with loss of nonvolatile storage: This is the sort of failure that can

occur after the failure of a nonvolatile storage system; for example, a head crash on

a disk drive or errors in writing to a nonvolatile device.
Failure with a loss of stable storage: This type involves loss of data stored on

stable storage. The cause of the loss could be due to natural or man-made disasters.

Recovery from this type of failure requires manual regeneration of the database. The

probability of such a failure is reduced to a very small value by having multiple

copies of data in stable storage, stored in physically secure environments in geo¬

graphically dispersed locations.

11.3 Recovery in a Centralized DBMS

The basic technique to implement the database transaction paradigm in the presence

of failures of various kinds is by using data redundancy in the form of logs, check¬
points and archival copies of the database.

11.3.1 Logs

The log, which is usually written to stable storage, contains the redundant data re¬

quired to recover from volatile storage failures and also from errors discovered by

the transaction or the database system. For each transaction the following data is
recorded on the log:

• A start-of-transaction marker.

• The transaction identifier, which could include the who and where information
referred to in Section 11.1.3.

• The record identifiers, which include the identifiers for the record occurrences.

• The operation(s) performed on the records (insert, delete, modify).

• The previous value(s) of the modified data. This information is required for

undoing the changes made by a partially completed transaction; it is called the

undo log. Where the modification made by the transaction is the insertion of a
new record, the previous values can be assumed to be null.

11-3 Recovery in a Centralized DBMS 525

• The updated value(s) of the modified record(s). This information is required for

making sure that the changes made by a committed transaction are in fact

reflected in the database and can be used to redo these modifications. This

information is called the redo part of the log. In case the modification made by

the transaction is the deletion of a record, the updated values can be assumed to
be null.

• A commit transaction marker if the transaction is committed; otherwise an abort
or rollback transaction marker.

The log is written before any updates are made to the database. This is called

the write-ahead log strategy. In this strategy a transaction is not allowed to modify

the physical database until the undo portion of the log (i.e. the portion of the log that

contains the previous value(s) of the modified data) is written to stable storage. Fur¬

thermore, the log write-ahead strategy requires that a transaction is allowed to com¬

mit only after the redo portion of the log and the commit transaction marker are

written to the log. In effect, both the undo and redo portion of the log will be written

to stable storage before a transaction commit. Using this strategy, the partial updates

made by an uncommitted transaction can be undone using the undo portion of the

log, and a failure occurring between the writing of the log and the completion of

updating the database corresponding to the actions implied by the log can be redone.

Let us see how the log information can be used in the case of a system crash

with the loss of volatile information. Consider a number of transactions, as shown in

Figure 11.4. The figure shows the system start-up at time to and a number of con¬

current transactions T0, T,, . . . , Ti + 6 are made on the database. Suppose a system
crash occurs at time tx.

We have stored the log information for transactions T0 through Ti + 2 on stable

storage, and we assume that this will be available when the system comes up after

Figure 11.4 DBMS operation to a system crash.

To

T2

t3

Tj+5

Ti+2

I

I
I

I
I
I
I

1 i+1

System
start-up

I

Ti+6 |

I

System
crash Time —►

526 Chapter 11 Recovery

the crash. Furthermore, we assume that the database existing on the nonvolatile stor¬

age will also be available. It is clear that the transactions that were not committed at

the time of the system crash will have to be undone. The changes made by these

uncommitted transactions will have to be rolled back. The transactions that have not

been committed can be found by examining the log, and those transactions that have

a start of transaction marker but no commit or abort transaction marker are consid¬

ered to have been active at the time of the crash. These transactions have to be rolled

back to restore the database to a consistent state. In Figure 11.4 the transactions Tj

and Ti + 6 started before the crash, but they had not been committed and, hence, are

undone.
However, it is not clear from the log to what extent the changes made by com¬

mitted transactions have actually been propagated to the database on the nonvolatile

storage. The reason for this uncertainty is the fact that buffers (implemented in vol¬

atile storage) are used by the system to hold the modified data. Some of the changed

data in these buffers may or may not have been propagated to the database on the

nonvolatile storage. In the absence of any method of finding out the extent of the

loss, we will be forced to redo the effects of all committed transactions. For Figure

11.4, this involves redoing the changes made by all transactions from time to- Under

such a scenario, the longer the system operates without a crash, the longer it will

take to recover from the crash.
In the above, we have assumed that the log information is available up to the

time of the system crash in nonvolatile storage. However, the log information is also

collected in buffers. In case of a system crash with loss of volatile information, the

log information collected in buffers will also be lost and transactions that had been

completed for some period prior to the system crash may be missing their respective

end-of-transaction markers in the log. Such transactions, if rolled back, will likely

be partially undone. The write-ahead log strategy avoids this type of recovery prob¬

lem, since the log information is forced to be copied to stable storage before the

transaction commits.

These problems point to the conclusion that some means must be devised to

propagate to stable storage at regular intervals all the log information, as well as

modifications to the database existing at a given time. Then the recovery operation

after a system crash will not have to reprocess all transactions from the time of start¬

up of the system.

11.3.2 Checkpoints

In an on-line database system, for example an airline reservation system, there could

be hundreds of transactions handled per minute. The log for this type of database

contains a very large volume of information. A scheme called checkpoint is used to

limit the volume of log information that has to be handled and processed in the event

of a system failure involving the loss of volatile information. The checkpoint scheme

is an additional component of the logging scheme described above.

In the case of a system crash, the log information being collected in buffers will

be lost. A checkpoint operation, performed periodically, copies log information onto

stable storage. The information and operations performed at each checkpoint consist
of the following:

11.3 Recovery in a Centralized DBMS 527

• A start-of-checkpoint record giving the identification that it is a checkpoint

along with the time and date of the checkpoint is written to the log on a stable
storage device.

• All log information from the buffers in the volatile storage is copied to the log

on stable storage.

• All database updates from the buffers in the volatile storage are propagated to

the physical database.

• An end-of-checkpoint record is written and the address of the checkpoint record

is saved on a file accessible to the recovery routine on start-up after a system
crash.

For all transactions active at checkpoint, their identifiers and their database mod¬

ification actions, which at that time are reflected only in the database buffers, will be

propagated to the appropriate storage.

The frequency of checkpointing is a design consideration of the recovery sys¬

tem. A checkpoint can be taken at fixed intervals of time (say, every 15 minutes). If

this approach is used, a choice has to be made regarding what to do with the trans¬

actions that are active when the checkpoint signal is generated by a system timer. In

one alternative, called transaction-consistent checkpoint, the transactions that are

active when the system timer signals a checkpoint are allowed to complete, but no

new transactions (requiring modifications to the database) are allowed to be started

until the checkpoint is completed. This scheme, though attractive, makes the data¬

base unavailable at regular intervals and may not be acceptable for certain online

applications. In addition, this approach is not appropriate for long transactions. In

the second variation, called action consistent checkpoint, active transactions are

allowed to complete the current step before the checkpoint and no new actions can

be started on the database until the checkpoint is completed; during the checkpoint

no actions are permitted on the database. Another alternative, called transaction-

oriented checkpoint, is to take a checkpoint at the end of each transaction by forcing

the log of the transaction onto stable storage. In effect, each commit transaction is a

checkpoint.
How does the checkpoint information help in recovery? To answer this question,

reconsider the set of transactions of Figure 11.4, shown in Figure 11.5, with the

addition of a checkpoint being taken at time tc.
Suppose, as before, the crash occurs at time tx. Now the fact that a checkpoint

was taken at time tc indicates that at that time all log and data buffers were propa¬

gated to storage. Transactions T0, . . . , Tj_ i as well as transactions Ti + 1 and Ti + 3

were committed, and their modifications are reflected in the database. With the

checkpoint scheme these transactions are not required to be redone during the recov¬

ery operation following a system crash occurring after time tc. A transaction such as

Tj (which started before checkpoint time tc), as well as transaction Ti+6 (which

started after checkpoint time tc), were not committed at the time of the crash and

have to be rolled back. Transactions such as Ti+4 and Tj + 5 which started after check¬

point time tc and were committed before the system crash, have to be redone. Simi¬

larly, transactions such as Ti+2, which started before the checkpoint time and were

committed before the system crash, will have to be redone. However, if the commit-

transaction information is missing for any of the transactions Tj + 2, T1+4, orTi+5,

then they have to be undone.

528 Chapter 11 Recovery

Figure 11.5 Checkpointing.

T,

l0

Time —► -

h
Ti

T; i+1

L
Checkpoint

l
I

T: i+6

I
I
I
I
I
I

I
I
I

Ti+4

System
crash

Let us now see how the system can perform a recovery at time tx. Suppose all

transactions that started before the checkpoint time but were not committed at that

time, as well as the transactions started after the checkpoint time, are placed in an

undo list, which is a list of transactions to be undone. The undo list for the trans¬

actions of Figure 11.5 is given below:

UNDO List: (T;, Ti+2, Tj+4, Ti+5, Ti + 6)

Now the recovery system scans the log in a backward direction from the time tx

of system crash. If it finds that a transaction in the undo list has committed, that

transaction is removed from the undo list and placed in the redo list. The redo list

contains all the transactions that have to be redone. The reduced undo list and the

redo list for the transactions of Figure 11.5 are given below:

REDO List: (Ti+4, T1+5, Ti + 2)

UNDO List: (T„ Ti+6)

Obviously, all transactions that were committed before the checkpoint time need

not be considered for the recovery operation In this way the amount of work re¬

quired to be done for recovery from a system crash is reduced. Without the check¬

point scheme, the redo list will contain all transactions except Tj and Ti+6. A system

crash occurring during the checkpoint operation, requires recovery to be done using
the most recent previous checkpoint.

The recovery scheme described above takes a pessimistic view about what has

been propagated to the database at the time of a system crash with loss of volatile

information. Such pessimism is adopted both for transactions committed after a

checkpoint and transactions not committed since a checkpoint. It assumes that the

transactions committed since the checkpoint have not been able to propagate their

modifications to the database and the transactions still in progress have done so.

11.3 Recovery in a Centralized DBMS 529

Note that in some systems, the term checkpoint is used to denote the correct

state of system files recorded explicitly in a backup file and the term checkpointing

is used to denote a mechanism used to restore the system files to a previous consistent

state. However, in a system that uses the transaction paradigm, checkpoint is a strat¬

egy to minimize the search of the log and the amount of undo and redo required to

recover from a system failure with loss of volatile storage.

11.3.3 Archival Database and Implementation of the
Storage Hierarchy of a Database System

Figure 11.6 gives the different categories of data used in a database system. These

storage types are sometimes called the storage hierarchy. It consists of the archival

database, physical database, archival log, and current log.

Physical database: This is the online copy of the database that is stored in

nonvolatile storage and used by all active transactions.

Current database: The current version of the database is made up of the phys¬

ical database plus modifications implied by buffers in the volatile storage.

Figure 11.6 Database storage hierarchy.

Database users

Current log,
checkpoint
on stable
storage

Archive copy
of database
on stable
storage

Archive log
on stable
storage

530 Chapter 11 Recovery

Archival database in stable storage: This is the copy of the database at a given

time, stored on stable storage. It contains the entire database in a quiescent mode

(i.e., no transactions were active when the database was copied to the stable storage)

and could have been made by simple dump routines to dump the physical database

(which in quiescent state would be the same as the current or online database) onto

stable storage. The purpose of the archival database is to recover from failures that

involve loss of nonvolatile storage. The archiving process is a relatively time-

consuming operation and during this period the database is not accessible. Conse¬

quently, archiving is done at infrequent intervals. The frequency of archiving is a

trade-off between the cost of archiving and that of recovery with the probability of a

loss of nonvolatile data being the arbitrator. All transactions that have been executed

on the database from the time of archiving have to be redone in a global recovery

operation. No undoing is required in the global recovery operation since the archival

database is a copy of the database in a quiescent state, and only the committed

transactions since the time of archiving are applied to this database.
Current log: This contains the log information (including the checkpoint) re¬

quired for recovery from system failures involving loss of volatile information.

Archival log: This log is used for failures involving loss of nonvolatile infor¬

mation. The log contains information on all transactions made on the database from

the time of the archival copy. This log is written in chronological order. The recovery

from loss of nonvolatile storage uses the archival copy of the database and the archi¬

val log to reconstruct the physical database to the time of the nonvolatile storage

failure.
With the above storage hierarchy of a database, we can use the following terms

to denote different combinations of this hierarchy.

The on-line or current database is made up of all the records (and the auxiliary

structures such as indexes) that are accessible to the DBMS during its operation. The

current database consists of the data stored in nonvolatile storage (physical database)

as well as the data stored in buffers (in the volatile storage) and not yet propagated

to the nonvolatile storage.

The materialized database is that portion of the database that is still intact after

a failure. All the data stored in the buffers would have been lost and some portion

of the database would be in an inconsistent state. The log information is to be applied

to the materialized database by the recovery system to restore the database to as close

a state as possible to the online database prior to the crash. Obviously, it will not be

possible in all cases to return to exactly the same state as the precrash online data¬

base. The intent is to limit the amount of lost data and the loss of completed trans¬
actions.

11.3.4 Do, Undo, and Redo

A transaction on the current database transforms it from the current state to a new

state. This is the so-called do operation. The undo and redo operations are functions

of the recovery subsystem of the database system used in the recovery process. The

undo operation undoes or reverses the actions (possibly partially executed) of a trans¬

action and restores the database to the state that existed before the start of the trans¬

action. The redo operation redoes the action of a transaction and restores the database

11.3 Recovery in a Centralized DBMS 531

to the state it would be in at the end of the transaction. The undo operation is also

called into play when a transaction decides to terminate itself (suicidal termination).

Figure 11.7 shows the transformation of the database as a result of a transaction do,
redo, and undo.

The undo and redo operations for a given transaction are required to be idem-

potent; that is, for any transaction, performing one of these operations once is equiv¬
alent to performing it any number of times. Thus:

undo(any action) = undo!undo! .. undo(any action) ..))

Redo(any action) = redo(redo(.. redo(any action) ..))

The reason for the requirement that undo and redo be idempotent is that the

recovery process, while in the process of undoing or redoing the actions of a trans¬

action, may fail without a trace, and this type of failure can occur any number of

times before the recovery is completed successfully.

Transaction Undo

A transaction that discovers an error while it is in progress and consequently needs

to abort itself and roll back any changes made by it uses the transaction undo

feature. A transaction also has to be undone when the DBMS forces the transaction

to abort. A transaction undo removes all database changes, partial or otherwise, made

by the transaction.

Figure 11.7 Do, undo, and redo operations.

? suspect database state

* crash occuring after commit

crash occuring before commit

532 Chapter 11 Recovery

Transaction Redo

Transaction redo involves performing the changes made by a transaction that com¬

mitted before a system crash. With the write-ahead log strategy, a committed trans¬

action implies that the log for the transaction would have been written to nonvolatile

storage, but the physical database may or may not have been modified before the

system failure. A transaction redo modifies the physical database to the new values

for a committed transaction. Since the redo operation is idempotent, redoing the

partial or complete modifications made by a transaction to the physical database will

not pose a problem for recovery.

Global Undo

Transactions that are partially complete at the time of a system crash with loss of

volatile storage need to be undone by undoing any changes made by the transaction.

The global undo operation, initiated by the recovery system, involves undoing the

partial or otherwise updates made by all uncommitted transactions at the time of a

system failure.

Global Redo

The global redo operation is required for recovery from failures involving nonvola¬

tile storage loss. The archival copy of the database is used and all transactions com¬

mitted since the time of the archival copy are redone to obtain a database updated to

a point as close as possible to the time of the nonvolatile storage loss. The effects of

the transaction in progress at the time of the nonvolatile loss will not be reflected in

the recovered database. The archival copy of the database could be anywhere from

months to days old and the number of transactions that have to be redone could be

large. The log for the committed transactions needed for performing a global redo

operation has to be stored on stable storage so that they are not lost with the loss of

nonvolatile storage containing the physical database.

11a4 Reflecting Updates to the Database and
Recovery

Let us assume that the physical database at the start of a transaction is equivalent to

the current database, i.e., all modifications have been reflected in the database on

the nonvolatile storage. Under this assumption, whenever a transaction is run against

a database, we have a number of options as to the strategy that will be followed in

reflecting the modifications made by the transaction as it is executed. The strategies
we will explore are the following:

Update in place: In this approach the modifications appear in the database in

the original locations and, in the case of a simple update, the new values will replace
the old values.

11.4 Reflecting Updates to the Database and Recovery 533

Indirect update with careful replacement: In this approach the modifications

are not made directly on the physical database. Two possibilities can be considered.

The first scheme, called the shadow page scheme, makes the changes on a copy of

that portion of the database being modified. The other scheme is called update via

log. In this strategy of indirect update, the update operations of a transaction are

logged and the log of a committed transaction is used to modify the physical data¬
base.

In the following sections we examine these update schemes in greater detail.

11.4.1 Update in Place

In this scheme (see Figure 11.8) the transaction updates the physical database and

the modified record replaces the old record in the database on nonvolatile storage.

The write-ahead log strategy is used and the log information about the transaction

modifications are written before the corresponding put(x) operation, initiated by the

transaction, is performed. Recall that the write-ahead log strategy has the following

requirements:

1. Before a transaction is allowed to modify the database, at least the undo

portion of the transaction log record is written to the stable storage.

2. A transaction is committed only after both the undo and the redo portion of the

log are written to stable storage.

The sequence of operations for transaction T and the actions performed by the

database are shown in Figure 11.9. The initiation of a transaction causes the start of

the log of its activities; a start transaction along with the identification of the trans¬

action is written out to the log. During the execution of the transaction, any output

(in the form of a put by the transaction) is preceded by a log output to indicate the

modification being made to the database. This output to the log consists of the rec¬

ord^) being modified, old values of the data items in the case of an update, and the

values of the data items. The old values will be used by the recovery system to undo

the modifications made by a transaction in case a system crash occurs before the

Figure 11.8 Update in place scheme.

534 Chapter 11 Recovery

Figure 11.9 Direct update (write-ahead log).

Transaction

Time Step

to Start of T

t, get(X)

t2 modify (X)

t3 put(X)

C
t5 get(Y)
^ modifyi Y)

17 pwr(Y)

t8

tg Start Commit

t|0 End of T

Database

Log Operation Operation

Write(start Transaction T)
Read(X)

Write(record X modified,

old value of X,

new value of X)
Write(X)

Read(Y)

Write(record Y modified,

old value of X,

new value of X)
Write(Y)

Write(Commit transaction T);

completion of the transaction. When a system crash occurs after a transaction com¬

mits, the new values will be used by the recovery system to redo the changes made

by the transaction and thus ensure that the modifications made by a committed trans¬

action are correctly reflected in the database.

The transaction shown in Figure 11.9 consists of reading in the value of some

data item X and modifying it by a certain amount. The transaction then reads in the

value of another data item Y and modifies it by an equal but opposite amount. The

transaction may subtract, let us say, a quantity n from the inventory for part Px and

add this amount to quantities of that item shipped to customer Cy. For consistency

this transaction must be completed atomically. A system crash occurring at any time

before time tg will require that the transaction be undone. A system crash occurring

after t9, when the commit transaction marker is written to the log, requires that we

redo the transaction to ensure that all of the changes made by this transaction are
propagated to the physical database.

According to the write-ahead log strategy, the redo portion of the log need not

be written to the log until the commit transaction is issued by the program performing

the transaction. However, to simplify the log, we are combining the undo and redo

portions of each modification made by a transaction in one log entry.

Consider another example where a program executes a number of transactions

involving a number of distinct records. In this case, the transaction atomicity require¬

ment is critical. The example involves projects, parts used by the projects, and an

inventory of the parts. Suppose we have a number of parts Part), Part2, . . and

a number of projects Proj,, Proj2, Each project Projj uses parts {....,

Partk, ...,}. Suppose the database contains the following relations:

11.4 Reflecting Updates to the Database and Recovery 535

PART('/’art#, Quantity-inStock)

PROJECTf Project#, Part#, Quantities-tO-Date)

Consider the execution of the program below which transfers 100 units of parts

Part4 to project Proj5 and 10 units of parts Part, to project Proj2. Here, each such

transfer is considered as a separate transaction. If the quantity in stock of a part is

less than the required quantities to be transferred, an error condition is said to exist

and such a transaction is aborted (a suicidal end). The transfer of x quantity of Parf

from inventory to project Projj is considered to be a single atomic operation that

either succeeds and performs the appropriate transfer or fails, in which case it does

not leave a trace of partial execution (except in the log).

Program: Transfer_parts(input,output);

var (* declarations are not given but should include

all variables as well as database records to be used and

the corresponding local declarations *)

Procedure many_transactions

begin

while not eof do

error : = false;

readlniprojno, partno, quant);

start_transaction(modifymode)

get PART where Part-Number — partno;

Quantity-inStock: = Quantity -inStock — quant;

if Quantity-inStock < 0

then error : = true

else begin

put PART;

get Project where Project-Number = projno

and Part-Number = partno;

Quantity-to-Date: — Quantity-to-Date + quant;

put PROJECT;

end;

if error
then abort_transaction

else commit_transaction;

end_transaction;

end (* while *)

end (* procedure *)

end.

With the update-in-place scheme, the new value of a record field overwrites the

old value as shown in Figure 11.10 If a transaction involves multiple changes, a

system crash causes the database to end up in an inconsistent state.
The update-in-place method goes against the well-established accounting prac¬

tice of recording each and every transaction and never overwriting data. In account¬

ing practice, a compensating transaction is used to make corrections when an error

is discovered, and the fact that an error was made is also recorded.
Let us now see how the log information can be used in the recovery process if

a system crash occurs before all the modifications made by a transaction are propa-

536 Chapter 11 Recovery

Figure 11.10 Modifications with update-in-place scheme.

Proj2: Part4: 60

Proj5: Part!: Mft200

gated to the database. Suppose that before the program was run the inventory for

parts Part! and Part4 were 400 and 600 respectively; the quantity used by project

Proj5 of part Part! was 100 and the quantity used by project Proj2 of part Part4 was

10. The program above was run to transfer 100 units of Part| from inventory for use

in Proj5, followed by the transfer of 10 units of part Part4 from inventory to Proj2.

The operations performed by the program are shown in Figure 11.11. The first op¬

eration is called transaction T0; the second operation, Tj. Quantity-inStock is ab¬

breviated as Q-inS and Quantity-toJDate as Q-tO-D.

Now suppose that while the program above was executing, there was a system

crash with loss of volatile storage. Let us consider the various possibilities as to the

progress made by the program and the sequence of recovery operations required

using the information from the write-ahead log.

If the crash occurs just during or after step s4, the log would have the following

information for the transaction T0:

Start of T0

record Part# = Parti,

old value of Q-inS: 400

new value of Q_inS: 300

The recovery process, when it examines the log, finds that the commit trans¬

action marker for T0 is missing and, hence, will undo the partially completed trans¬

action T0. To do this it will use the old value for the modified field of the part record

identified by Part, to restore the Quantity_in_Stock field of the part record for Parti

to the value 400 and restore the database to the consistent state that existed before
the crash and before transaction T0 was started.

If the crash occurs after step s9 is completed, the recovery system will find an

end-of-transaction marker for transaction T0 in the log. The log entry will be as given
below:

Start of T0

record Part# = Parti,

old value of Q^inS: 400

new value of Q_inS: 300

record Project# = Proj5

old value of Q_to~D: 100,

new value of Q-to_D: 200

Commit T0

11.4 Reflecting Updates to the Database and Recovery 537

Figure 11.11 The steps for two transactions.

Transaction Database
Step Action Log Operation Operation

s0 Start of T0 Write(start Transaction T0)

Si ^(Part,) Read(Parti)

s2 modify((2_m_S
from 400

to 300)

s3 put(Parti) Write(record for Part# = Part!,

old value of Q-inS: 400,

new value of Q-inS: 300)
s4 Write) Part,)

s5 ger(Projs) Read(Proj5)

s6 modiiy(Q_tO-D

from 100

to 200)

s7 /?ur(Proj5) Write(record for Project# = Proj5,

old value of Q-tO-D: 100,

new value of Q-to_D: 200)

s8 Write(Proj5)
S9 Start Commit Write(Commit transaction T0);

s10 End of T0

s10' Start of T, Write(start Transaction T,)

S11 get{ Part4) Read(Part4)

s 12 modify((2_m_S

from 600

to 590)

s13 put (Part4) Write(record Part# = Part4,

old value of Q-inS: 600,

new value of Q-inS: 590)

s14 Write(Part4)

S15 get(Proj2) Read(Proj2)

s16 modify((2-to_D

from 50

to 60)

S17 /?wr(Proj2) Write(record Project# = Proj2,

old value of Q_toJD: 50,

new value of Q-to-D: 60)

s18 Write(Proj2)

s19 Start Commit Write(Commit transaction T[);

s20 End of T]

538 Chapter 11 Recovery

However, since the log was written before the database, all modifications to the

database may not have been propagated to the database. Thus to ensure that all

modifications made by transaction T0 are propagated to the database, the recovery

system will redo the committed transaction. To do this it uses the new values of the

appropriate fields of the records identified by Part# = Part, and Project# = Proj5.

This will restore the database to an up-to-date state, with the modifications of the

committed transactions propagated to the database.
It is obvious that if the system crash occurs after step S|0' but before step sl9,

the recovery operation will require the undoing of modifications made by transaction

T! and redoing those made by transaction T0. Similarly, a crash occurring any time

after step s19 will require the redoing of the modifications made by both transactions

T0 and T x.
It is important to point out that the key to the recovery operation is the log,

which is written to stable storage ahead of the update in place of the database; thus

the log information survives any crash. However, the writing of the log may itself

be interrupted by a system crash and log information may be incomplete. If the crash

occurs sometime during step s9, the commit transaction marker for transaction T0

may not be safely written to the log, and this implies that the recovery system will

undo the transaction even if all the modifications made by transaction T0 have been

propagated to the database.

In the above example, we have assumed that the DBMS propagates the modifi¬

cations to the database as soon as the log entry for the modifications are written to

stable storage. However, if the database system defers the propagations to the data¬

base until the commit step for the transaction, then in the event of a system crash the

recovery tasks are modified slightly (see Exercise 11.17). If the transaction is rolled

back by the user program, the rolling back operation involves writing a rollback

marker to the log and inhibiting the propagation of the changes to the database. The

propagation to the database will also be inhibited if the transaction is aborted by the

system before it commits; the last log entry in that case would be an abort transaction
marker.

In either of the two possible choices of propagating the changes to the database,

the consistency criterion of the database requires that that portion of the database

being modified by a transaction be accessible exclusively to the transaction, for the
duration of the transaction.

11.4.2 Indirect Update and Careful Replacement

In the indirect update and careful replacement scheme, the database is not directly

modified, but a copy is made of that portion of the database to be modified and all

modifications are made on this copy. Once the transaction commits, the modified
copy replaces the original.

In the most common scheme used, the indirect page allocation scheme, modi¬

fications to the database are directed to new blocks (pages) on nonvolatile storage

(Figure 11.12). Each new block is a copy of the database block containing the rec¬

ords being modified. The old block of the database remains intact. When the trans¬

action commits, the new blocks can be used to replace the old blocks in an atomic

11.4 Reflecting Updates to the Database and Recovery 539

Figure 11.12 Indirect page allocation scheme.

manner. In the case of a system crash, the old blocks are still available and the

recovery operation is simplified.

In another form of indirect update, no changes are made to the database during

a transaction. However, the modified values are written to a log on stable storage

(recall the journal concept of accounting). When the transaction commits, the log is

used to write the modifications onto the database. In this case, the rollback of a

transaction entails discarding the log entries for the transaction. The recovery opera¬

tion of a transaction is limited to redoing the modifications made by a transaction

that are recorded in the log entry for that transaction. The undo recovery operation

for the transaction does not need to undo any changes as far as the database on the

nonvolatile storage is concerned since no changes were made for an uncommitted

transaction.

Reflecting Updates to the Database via Shadow Page Scheme and Recovery

The shadow page scheme is one possible form of the indirect page allocation. Before

we discuss this scheme, let us briefly review the paging scheme as used in the oper¬

ating system for virtual memory management. The memory that is addressed by a

process (a program in execution is a process) is called virtual memory. It is divided

into pages that are assumed to be of a certain size, let us say 1024 (IK) bytes or

more commonly 4096 (or 4K) bytes. The virtual or logical pages are mapped onto

physical memory blocks of the same size as the pages, and the mapping is provided

by means of a table known as a page table. The page table, shown in Figure 11.13,

contains one entry for each logical page of the process’s virtual address space. With

this scheme, the consecutive logical pages need not be mapped onto consecutive

physical blocks.
In the shadow page scheme, the database is considered to be made up of logical

units of storage called pages. The pages are mapped into physical blocks of storage

(of the same size as the logical pages) by means of a page table, with one entry for

each logical page of the database. This entry contains the block number of the phys¬

ical storage where this page is stored.
The shadow page scheme shown in Figure 11.14 uses two page tables for a

transaction that is going to modify the database. The original page table is called the

540 Chapter 11 Recovery

Figure 11.13 Paging scheme.

shadow page table and the transaction addresses the database using another page

table known as the current page table. Initially, both page tables point to the same

blocks of physical storage. The current page table entries may change during the life

of the transaction. The changes are made whenever the transaction modifies the da¬

tabase by means of a write operation. The pages that are affected by a transaction

are copied to new blocks of physical storage and these blocks, along with the blocks

not modified, are accessible to the transaction via the current page table, as shown

in Figure 11.14. The old version of the changes pages remains unchanged and these

pages continue to be accessible via the shadow page table.
The shadow page table contains the entries that existed in the page table before

the start of the transaction and points to blocks that were never changed by the

transaction. The shadow page table remains unaltered by the transaction and is used

for undoing the transaction.

Now let us see how the transaction accesses data during the time it is active.

The transaction uses the current page table to access the database blocks for retrieval.

Any modification made by the transaction involves a write operation to the database.

The shadow page scheme handles the first write operation to a given page as follows:

Figure 11.14 Shadow page scheme.

Changed pages

Unchanged pages

Shadow pages
(original version of
changed pages)

11.4 Reflecting Updates to the Database and Recovery 541

• A free block of nonvolatile storage is located from the pool of free blocks
accessible by the database system.

• The block to be modified is copied onto this block.

• The original entry in the current page table is changed to point to this new
block.

• The updates are propagated to the block pointed to by the current page table,

which in this case would be the newly created block.

Subsequent write operations to a page already duplicated are handled via the

current page table. Any changes made to the database are propagated to the blocks

pointed to by the current page table. Once a transaction commits, all modifications

made by the transaction and still in buffers are propagated to the physical database

(i.e., the changes are written to the blocks pointed to by the current page table). The

propagation is confirmed by adopting the current page table as the table containing

the consistent database. The current page table or the active portion of it could be in

volatile storage. In this case a commit transaction causes the current page table to be
written to nonvolatile storage.

In the case of a system crash, before the transaction commits, the shadow page

table and the corresponding blocks containing the old database, which was assumed

to be in a consistent state, will continue to be accessible.

To recover from system crashes during the life of a transaction, all we have to

do is revert to the shadow page table so that the database remains accessible after

the crash. The only precaution to be taken is to store the shadow page table on stable

storage and have a pointer that points to the address where the shadow page table is

stored and that is accessible to the database through any system crash.

Committing a transaction in the shadow page scheme requires that all the mod¬

ifications made by the transaction be propagated to physical storage and the current

page table be copied to stable storage. Then the shadow page scheme reduces the

problem of propagating a set of modified blocks to the database to that of changing

a single pointer value contained in the page table address from the shadow page table

address to the current page table address. This can be done in an atomic manner and

is not interrupted by a system crash.
In the case of a system crash occurring any time between the start of a trans¬

action and the last atomic step of modifying a single pointer from the shadow page

to the current page, the old consistent database is accessible via the shadow page

table and there is no need to undo a transaction. A system crash occurring after the

last atomic operation will have no effect on the propagation of the changes made by

the transaction; these changes will be preserved and there is no need for a redo

operation.
The shadow blocks (i.e., the old version of the changed blocks) can be returned

to the pool of available nonvolatile storage blocks to be used for further transactions.

The undo operation in the shadow page scheme consists of discarding the cur¬

rent page table and returning the changed blocks to a pool of available blocks.

The advantage of the shadow page scheme is that the recovery from system

crash is relatively inexpensive and this is achieved without the overhead of logging.

Before we go on to another method of indirect update it is worth mentioning

some of the drawbacks of the shadow page scheme. One of the main disadvantages

of the shadow scheme is the problem of scattering. This problem is critical in data-

542 Chapter 11 Recovery

base systems because over a period of time the database will be scattered over the

physical memory and related records may require a very long access time. For ex¬

ample, two records that are required together and originally placed in blocks on the

same cylinder of a disk may end up on the extreme cylinders on that same disk.

Accessing these records together now involves moving the read/write head over the

entire surface of the disk and, hence, a long access time.
The other problem with the shadow page scheme was already mentioned. When

a transaction commits, the original version of the changed blocks pointed to by the

shadow page table have to be returned to the pool of free blocks, otherwise such

pages will become inaccessible. If this is not done successfully, when a transaction

commits (perhaps due to a system crash), such blocks become inaccessible. A gar¬

bage collection operation to be performed periodically must reclaim such lost blocks.

Shadow paging for concurrent transactions requires additional bookkeeping and

in such an environment some logging scheme is used as well.

Reflecting Updates to the Database via Logs and Recovery

In the update-via-log scheme, the transaction is generally not allowed to modify the

database. All changes to the database are deferred until the transaction commits.

However, as in the update-in-place scheme, all modifications made by the transaction

are logged. Furthermore, since the database is not modified directly by the trans¬

action, the old values do not have to be saved in the log. Once the transaction

commits, the log is used to propagate the modifications to the database.
During the life of a transaction, all output operations to the database are inter¬

cepted, causing an entry to be made in the log for the transaction. This entry contains

the identification of the items being updated along with the new values. When the

transaction starts a commit operation, a commit transaction mark is written to the

log. After this step, the log is used to modify the database.

A system crash occurring during the time when a transaction is active does not

require an undo operation since the database was not directly changed by the trans¬

action. A system crash occurring after the transaction commits can be recovered from
the log maintained for the transaction.

Let us return to the example of transferring a part from inventory to a project,

given in the program in section 11.4.1 on page 535. Figure 11.15 gives the log for

the transactions corresponding to the transfer of 100 units of part Part, from inventory

to project Proj5, followed by a transaction corresponding to the transfer of 10 units

of part Part4 from inventory to project Proj2. The log contains only redo information

and the only operations performed during the life of a transaction on the physical
database are reads.

Now let us assume various scenarios for a system crash. First, consider a system

crash that occurs any time before step s7; this step corresponds to the writing of the

commit transactions Tq. This system crash will require the recovery system to undo

the effect of transaction T0, which in this case involves discarding the log for trans¬

action T0, which lacks the commit transaction marker. The values for the record
corresponding to Part, and Proj5 have not been propagated to the database.

If the system crash occurs after the completion of step Sg, when the system is

restarted the recovery system will find the commit transaction marker for transaction

Tq- It will redo the transaction to ensure that the effects of transaction T0 are cor-

11.4 Reflecting Updates to the Database and Recovery 543

Figure 11.15 Entries for Indirect Update Log.

Step Transaction

Action Log Operation
Database

Operation

So Start of T0

Si get(Part,)

S2 modify(<2_m_S
from 400

to 300)

s3 put{ Part,)

S4 g<?f(Proj5)

s5 modify(g_to_D

from 100

to 200)

s6 pwr(Proj5)

S7 Start Commit

S8 Commit/End of T0
s9 Start of T!

S10 ger(Part4)

S11 modify((9_m_S

from 600

to 590)

SI2 put (Part4)

s13 get(Proj2)
s14 modify (Q-to-D

from 50

to 60)

s15 put(Proj2)

s 16 Start Commit

s17 Commit/End of T

Write(start Transaction T0)

Read(Parti)

Write(record for Part# = Part,,

new value of Q_in_S: 300)

Read(Proj5)

Write(record for Project# = Proj5,

new value of Q_to_D: 200)

Write(Commit transaction T0);

Write(start Transaction T,)
Write(Part!, Proj5);

Read(Part4)

Write(record Part# = Part4,

new value of Q-inS: 590)

Read(Proj2)

Write(record Project# = Proj2,

new value of Q_to_D: 60)

Write (Commit transaction T|);

Write(Part4, Proj2)

rectly propagated to the database. The redo operation needs only the new values for

the fields modified by the transaction in the records for Part) and Proj5. After the

redo operation, the database is restored to the state existing at the end of the trans¬

action T0.

A crash occurring during the recovery operation will not affect the subsequent

recovery operation, since the redo operation is idempotent.

A crash occurring after step s17 requires the recovery system to redo both trans¬

actions T0 and T,.
The recovery system checks the log after a system crash. For those transactions

that contain both a start transaction marker and an end transaction marker, it will

initiate a redo transaction operation. A partially complete transaction in the system

544 Chapter 11 Recovery

log is indicated by a start transaction marker without a corresponding end transaction

marker. Such partially complete transactions are ignored by the recovery system

since they will not have modified the database.
However, we must distinguish an update made by a partially complete trans¬

action from a partial update made from the log of a committed transaction in the

deferred update from the log phase. A partially completed update (updated during

the end of transaction processing after a commit transaction is executed by the pro¬

gram controlling the transaction) cannot be undone with the deferred update using

the log scheme; it can only be completed or redone. The only way it can be undone

is by a compensating transaction to undo its effects (as is the case in standard ac¬

counting practice).

11.5 Buffer Management, Virtual Memory, and
Recovery

The input and output operations required by a program, including a DBMS applica¬

tion program, are usually performed by a component of the operating system. These

operations normally use buffers (reserved blocks of primary memory) to match the

speed of the processor and the relatively fast primary memories with the slower

secondary memories and to minimize, whenever possible, the number of input and

output operations between the secondary and primary memories. The assignment and

management of memory blocks is called buffer management and the component of

the operating system that performs this task is usually called the buffer manager.

The goal of the buffer manager is to ensure that as many data requests made by

programs as possible are satisfied from data copied from secondary storage devices

into the buffers. In effect, a program performs an input or an output operation using

get or put statements; the buffer manager will be called on to respond to these input

or output requests. It will check to see if the request for the data can be satisfied by

reading from or writing to the existing buffers. If so, the input or output operation

occurs between the program work area and buffers. If an input request cannot be

satisfied, the buffer manager will have to do a physical transfer between the second¬

ary memory and a free buffer and then make the data so placed in the buffer available

to the program requesting the original input operation. A similar scenario will take

place in the reverse order for an output. The buffer manager makes a new buffer

available to the program performing a put operation. The buffer manager performs

the physical transfer between the buffer and the secondary memory by means of read

and write operations whenever there is an anticipated need for new buffers and none

are available in a pool of free buffers for the current program. For sequential pro¬

cessing, the buffer manager can provide higher performance by prefetching the next

block of data and by batching write operations into the commit phase of a trans¬
action.

We have assumed so far that the buffer manager uses buffers in physical mem¬

ory. However, in a computer system that uses a virtual memory management

scheme, the buffers are in effect virtual memory buffers, there being an additional

mapping between a virtual memory buffer and the physical memory, as shown in

Figure 11.16. Since the physical memory is managed by the memory management

component of the operating system, a virtual buffer input by the buffer manager may

545 11-5 Buffer Management, Virtual Memory, and Recovery

Figure 11.16 DBMS buffers in virtual memory.

have been paged out by the memory manager in case there is insufficient space in
the physical memory.

In a virtual memory management scheme, the buffers containing pages of the

database undergoing modification by a transaction could be written out to secondary

storage. The timing of this premature writing back of a buffer is independent of the

state of the transaction and will be decided by the replacement policy used by the

memory manager, which again is a component of the operating system. Thus, the

page replacement scheme is entirely independent of the database requirements; these

requirements being that records undergoing modifications by a partially completed

transaction not be written back and records for a committed transaction be rewritten,

especially in the case of the update in place scheme.

It has been found that the locality of reference property is applicable to database

buffers. To decrease the number of buffer faults, the least recently used (LRU)

algorithm is used for buffer replacement. However, the normal LRU algorithm is

modified slightly and each transaction is allowed to maintain a certain number of

pages in the buffer.

The buffering scheme can be used in the recovery system, since it effectively

provides a temporary copy of a database page to which modifications can be directed

and the original page can remain unchanged in the nonvolatile storage medium. Both

the log and the data pages will be written to the buffer pages in virtual memory. The

commit transaction operation can be considered a two-phase operation called a two-

phase commit. The first phase is when the log buffers are written out (write-ahead

log) and the second phase is when the data buffers are written. In case the data page

is being used by another transaction, the writing of that page can be delayed. This

will not cause a problem because the log is always forced during the first phase of

the commit. With this scheme the undo log is not required, since no uncommitted

modifications are reflected in the database.
In sequential processing of the database, the buffer manager prefetches the da¬

tabase pages. However, pages of data once used need not follow the locality prop¬

erty. A page once accessed is less likely to be accessed again. Hence, the buffer

546 Chapter 11 Recovery

manager can use a modified LRU replacement algorithm, using not one but two LRU

lists. One is for randomly accessed pages and the second one is for sequentially

accessed pages. Buffers needed for sequential processing are obtained from the se¬

quential LRU list (i.e., one of the sequential LRU pages is replaced to make room

for the incoming page of data) if this list is longer than some established length;

otherwise, the buffer is obtained from the LRU list.
Take the example of the program given in section 11.4.1 on p. 535 for transfer¬

ring specified quantities of parts from inventory to projects. If the memory manager

is using an LRU page replacement scheme, a committed transaction may not have

its page written back long after it commits. The reason for this is that the program

has many transactions, each needing different records, but these records may be

clustered on the same physical block of secondary memory. A committing transaction

may have used the same page as the page required by the next transaction. However,

such a page will not be written back by the memory manager using the simple LRU

page replacement scheme. This means that an update made by a committed trans¬

action would not be reflected in the physical database, which would create havoc in

the recovery scheme.
The write-ahead log protocol assumes that the undo log information for a

transaction will be written to stable storage before the modifications made by a trans¬

action are reflected in the database, and the redo portion of the log is written before

the transaction commits. Under the memory and buffer managers of the operating

system, we cannot assume that the buffers containing the log information are written

ahead of the changes made to the database.
What this means is that the buffer manager, at least for those buffers used by

the DBMS and its application programs, be under the control of the DBMS and the

DBMS enforces the correct writing of the buffers assigned for the log and the data

at an appropriate time. The terms steal and force are used to indicate the buffer

control mechanism. Steal indicates that the modified pages of data in the buffers may

be written to the database at any time (as in the case of the update-in-place scheme)

and not steal means that the modified pages are kept in the buffer until the trans¬

action commits. In the case of the not steal buffer control (wherein no changes are

propagated to the database during the life of a transaction), we have to decide what

is to be done when a transaction starts to commit. If during this end of transaction

processing all modifications are actually propagated to the database, we are assuming

that the buffers are being forced. If no such forced writing of the buffers can be

assumed during the end of transaction processing, the updates cannot be presumed

to have been propagated to the database. This requires that with the no force strat¬

egy, committed transactions have to be redone in the case of a system crash. With

forcing no redone is required for committed transactions; the modifications made by

the committed transactions can be safely assumed to have been propagated to the
database.

11.6 Other Logging Schemes

In our discussion so far we have assumed that the logging scheme writes the follow¬

ing details in the log: the identification of the records being modified, the modified

values of each record, and in some cases the old values of each record modified.

This is the record-level logging. However, schemes can be used as described below.

11.7 Cost Comparison 547

Record-level logging: Instead of recording the entire page whenever a modifi¬

cation is done anywhere on a page, the log is kept of the before and the after image

of the record that undergoes modification. Insertion of a new record can be handled

by using null values for the before image and deletion of an existing record is indi¬

cated by using null values for the after image. The advantage of this scheme is the

obvious; the amount of space needed for the log is much less.

Page-level logging: In this scheme the entire page is recorded in the log when¬

ever a record within the page is modified; for the undo operation, the entire page

before any modification is written to the log; and for the redo operation, the entire
page after the modification is written to the log.

If a number of changes are made on the same page, a design decision has to be

made regarding the number of page images that will be stored in the log. One choice

is to have only one before image and one after image, the former being the image at

the start of the transaction and the latter that at the end of the transaction. Another

alternative is to have one before and one after image for each change, (if there are n

changes made on a page, there will be 2n page images, the page image number 2i

and 2i + 1, for 1 < i < n — 1, being the same! The order of i here is a chronological
order.)

In a modification of the page-level logging scheme, instead of writing the before

image of the page and the after image of the page to the log, a difference of these

two in the form of an exclusive or is written in a compressed form to the log. Since

only a few bytes of a page will be changed as a result of an update transaction on a

record contained on the page, the exclusive or of the before and after images of the

page will give a large number of zeros, which can be compressed using an appropri¬
ate data compression method.

Query language logging: In this approach the log entry of the data manipula¬

tion statements modifying the database, along with the parameters used by the state¬

ments, are recorded in the log. The parameters include the record identifiers and

values of attributes of the record being modified. As in the case of record-level

logging, appropriate null values can be used for the records being deleted. In case

the update is made by a high level language program, these updates can be reduced

to statements that operate on a single record; the latter would be recorded along with

the parameters in the log. The redo recovery function requires reexecuting the logged

data manipulation statements with their parameters. The undo recovery function re¬

quires generating reverse data manipulation statements corresponding to the logged

statements and executing these reverse statements. To undo the effect of a delete

statement requires the generation of an insert statement, and the parameter would be

the identifier of the record to be inserted along with the before image of the record.

1 1.7 Cost Comparison

In this section we briefly compare the cost of the various recovery schemes we dis¬

cussed, namely the update in place, the deferred update with shadow page scheme,

and the deferred update using a log.

If an update-in-place scheme is used along with a buffer scheme where partially

modified pages can be written at any time and all modified pages are written prior to

a commit transaction, the cost of an undo operation is relatively high and the cost of

a redo is very low. In this case each end of the transaction is a checkpoint because

548 Chapter 11 Recovery

all modifications are forced to be written to nonvolatile storage. However, if all the

modified pages are not forced to be written during the end of transaction processing,

the costs of an undo and a redo are relatively higher. Furthermore, the end of a

transaction is not a checkpoint in this scheme.
If an update-in-place scheme is used along with a not steal and force buffer

scheme where partially modified pages are not allowed to be written at any time (the

writing of such modified pages is delayed till the end of the transaction processing

when all pages are written), then the costs of undo and redo are very low. Again

each end of a transaction represents a checkpoint.
With an indirect update scheme where the end of the transaction forces all mod¬

ified pages to be processed, the cost of the undo and redo are relatively lower.
If the database system defers the propagation of changes to the database until

the commit operation, then in case the transaction is rolled back by the program

controlling it, the changes made by the transaction need not be rolled back. The

rollback operation in this case consists of not propagating the modifications made by

the transaction to the database. The same procedure will apply if the system aborts

the transaction.

11.8 Disaster Recovery

Disaster refers to circumstances that result in the loss of the physical database stored

on the nonvolatile storage medium. This implies that there will also be a loss of the

volatile storage, and the only reliable data are the data stored in stable storage. The

data stored in stable storage consist of the archival copy of the database and the

archival log of the transactions on the database represented in the archival copy.

The disaster recovery process requires a global redo. In a global redo the

changes made by every transaction in the archival log are redone using the archival

database as the initial version of the current database. The order of redoing the op¬

erations must be the same as the original order, hence the archival log must be

chronologically ordered.

Since the archival database should be consistent, it must be a copy of the current

database in a quiescent stage (i.e., no transaction can be allowed to run during the

archiving process). The quiescent requirement dictates that the frequency of archiving

be very low. The time required to archive a large database and the remote probability

of a loss of nonvolatile storage result in performing archiving at quarterly or monthly

intervals. The low frequency of archiving the database means that the number of

transactions in the archival log will be large and this in turn leads to a lengthy

recovery operation (of the order of days).

A method of reconciling the reluctance to archive and the heavy cost of infre¬

quent archiving is to archive more often in an incremental manner. In effect, the

database is archived in a quiescent mode very infrequently, but what is archived at

more regular intervals is that portion of the database that was modified since the last

incremental archiving. The archived copy can then be updated to the time of the

incremental archiving without disrupting the online access of the database. This up¬
dating can be performed on a different computer system.

The recovery operation consists of redoing the changes made by committed

transactions from the archive log on the archive database. A new consistent archive

database copy can be generated during this recovery process.

11.9 Summary 549

Summary

In this chapter we discussed the recovery of the data contained in a database system

after failures of various types. The reliability problem of the database system is

linked to the reliability of the computer system on which it runs. The types of failures

that the computer system is likely to be subject to include that of components or

subsystems, software failures, power outages, accidents, unforeseen situations, and

natural or man-made disasters. Database recovery techniques are methods of making

the database fault tolerant. The aim of the recovery scheme is to allow database

operations to be resumed after a failure with a minimum loss of information and at
an economically justifiable cost.

In order for a database system to work correctly, we need correct data, correct

algorithms to manipulate the data, correct programs that implement these algorithms,

and of course a computer system that functions accurately. Any source of errors in

each of these components has to be identified and a method of correcting and recov¬

ering from these errors has to be designed in the system.

A transaction is a program unit whose execution may change the contents of the

database. If the database was in a consistent state before a transaction, then on com¬

pletion of the execution of the program unit corresponding to the transaction the

database will be in a consistent state. This requires that the transaction be considered

atomic: it is executed successfully or, in case of errors, the user views the transaction

as not having been executed at all.

A database recovery system is designed to recover from the following types of

failures: failure without loss of data; failure with loss of volatile storage; failure with

loss of nonvolatile storage; and failure with a loss of stable storage.

The basic technique to implement database recovery is by using data redundancy

in the form of logs, checkpoints, and archival copies of the database.

The log contains the redundant data required to recover from volatile storage

failures and also from errors discovered by the transaction or database system. For

each transaction the following data is recorded on the log: the start of transaction

marker, transaction identifier, record identifiers, the previous value(s) of the modified

data, the updated values; and if the transaction is committed, a commit transaction

marker, otherwise an abort or rollback transaction marker.
The checkpoint information is used to limit the amount of recovery operations

to be done following a system crash resulting in the loss of volatile storage.

The archival database is the copy of the database at a given time stored to stable

storage. It contains the entire database in a quiescent mode and is made by simple

dump routines to dump the physical database to stable storage. The purpose of the

archival database is to recover from failures that involve loss of nonvolatile storage.

The archive log is used for recovery from failures involving loss of nonvolatile in¬

formation. The log contains information on all transactions made on the database

from the time of the archival copy, written in chronological order. Recovery from

loss of nonvolatile storage uses the archival copy of the database and the archival log

to reconstruct the physical database to the time of the nonvolatile storage failure.

Whenever a transaction is run against a database, a number of options can be

used in reflecting the modifications made by the transactions. The options we

have examined are update in place and indirect update with careful replacement:

the shadow page scheme and the update via log scheme are two versions of the

latter.

550 Chapter 11 Recovery

In the update-in-place scheme, the transaction updates the physical database and

the modified record replaces the old record in the database. The wnte-ahead log

strategy is used. The log information about the transaction modifications is written

before update operations initiated by the transactions are performed.
The shadow page scheme uses two page tables for a transaction that is going to

modify the database. The onginal page table is called the shadow page table; the

transaction addresses the database using another table called the current page table.

In the shadow page scheme, propagating a set of modified blocks to the data ase is

achieved by changing a single pointer value contained in the page table address from

the shadow page table address to the current page table address. This can be done in

an atomic manner and is not interruptable by a system crash.
In the update via log scheme, the transaction is not allowed to modify the da¬

tabase. All changes to the database are deferred until the transaction commits. As in

the update-in-place scheme, all modifications made by the transaction are logged.

Since the database is not modified directly by the transaction, the old values do not

have to be saved in the log. Once the transaction commits, the log is used to propa¬

gate the modifications to the database.
The recovery process from a failure resulting in the loss of nonvolatile storage

requires a global redo, i.e., redoing the effect of every transaction in the archival

log, the archival database being used as the initial version of the current database.

The order of performing redo operations must be the same as the original order,

hence the archival log file must be chronologically ordered.

reliable system error undo

failure validity redo

error deadlock quiescent

fault audit trail current database

fault-tolerant system journal materialized database

reliability forward error recovery do

mean time between failures backward error recovery idempotent

(MTBF) buffer transaction undo

mean time to repair (MTTR) atomic operation transaction redo

system availability successful termination global undo

design error suicidal termination global redo

poor quality control murderous termination update in place

overutilization atomicity indirect update

overloading consistency shadow page scheme

wearout isolation update via log

volatile storage durability indirect page allocation

nonvolatile storage log page table

system crash write-ahead log strategy shadow page table

permanent or stable storage checkpoint current page table

read/write head crash transaction-consistent buffer management

archive database checkpoint buffer manager

user error action-consistent checkpoint virtual memory

consistency error transaction-oriented checkpoint memory manager

11.9 Summary 551

least recently used (LRU)

two-phase commit
steal

not steal

force

no force

record-level logging

page-level logging

query language logging

disaster recovery

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.11

11.11

11.12

What if anything can be done to recover the modifications made by partially completed

transactions that are running at the time of a system crash? Can online transactions be

recovered?

In a database system that uses an update-in-place scheme, how can the recovery system

recover from a system crash if the write ahead protocol is used for the log information?

What modifications have to be made to a recovery scheme if the transactions are nested? (In

a nested transaction one transaction is contained within another transaction.)

In the recovery technique known as forward error recovery, on the detection of a particular

error in a system, the recovery procedure consists of adjusting the state of the system to

recover from the error (without suffering the loss that could have occurred because of the

error). Can such a technique be used in a DBMS to recover from system crashes with the

loss of volatile storage?

Show how the backward error recovery technique is applied to a DBMS that uses the update-

in-place scheme to recover from a system crash with a minimum loss of processing.

If the checkpoint frequency is too low, a system crash will lead to the loss of a large number

of transactions and a long recovery operation; if the checkpoint frequency is too high, the

cost of checkpointing is very high. Can you suggest a method of reducing the frequency of

checkpointing without incurring a heavy recovery operation and at the same time reducing

the number of lost transactions?

How can a recovery system deal with recovery of interactive transactions on online systems

such as banking or airline reservations? Suggest a method to be used in such systems to

restart active transactions after a system crash.

For a logging scheme based on a DML, give the kind of log entry required and indicate the

undo and the redo part of the log.

If the write-ahead log scheme is being used, compare the strategy of writing the partial

update made by a transaction to the database to the strategy of delaying all writes to the

database till the commit.

How is the checkpoint information used in the recovery operation following a system crash?

Define the following terms:

Write-ahead log strategy

Transaction-consistent checkpoint

Action-consistent checkpoint

Transaction oriented checkpoint

Two-phase commit

From the point of view of recovery, compare the shadow page scheme with the update in

place with forced and no steal buffering.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.11

11.11

11.12

552 Chapter 11 Recovery

11.13 Explain why no undo operations need be done for recovery from loss of nonvolatile storage

loss.

11.14 What type of software errors can cause a failure with loss of volatile storage?

11.15 What is the difference between transaction oriented checkpointing and the write-ahead log

strategy?

11.16 What are the advantages and disadvantages of each of the methods of logging discussed in

Section 11.6?

11.17 Consider the update-in-place scheme, where the database system defers the propagation of

updates to the database until the transaction commits (see Section 11.4.1). Describe the

recovery operations that have to be undertaken following a system crash with loss of volatile

storage.

Bibliographic Notes

Some of the earliest work in recovery was reported in (Oppe 68), (Chan 72), (Bjor 73), and

(Davi 73). Analytical models for recovery and rollback and discussions are presented in (Chan

75). The concept of transaction and its management is presented in (Gray 78). The recovery

system for System R is presented in (Gray 81a); the shadow page scheme used in System R

is described in an earlier paper (Lori 77). (Verh 78) is an early survey article on database

recovery; (Haer 83) and (Kohl 81) are more recent survey articles based on the transaction

paradigm. An efficient logging scheme for the undo operation is discussed in (Reut 80). (Teng

84) discusses the buffer management function to optimize database performance for the DB2

relational database system.

The concept of nested transaction was discussed by (Gray 81a); more recent discussions

are presented in (Moss 85).

Textbooks discussing the recovery operation are (Bern 88), (Date 83), (Date 86), and

(Kort 86). Reliability concepts are presented in (Wied 83).

Bibliography

(Bern 88) P. Bernstein, V. Hadzilacos, & N. Goodman, Concurrency Control and Recovery in Database

Systems. Reading, MA: Addison-Wesley, 1988.

(Bjor 73) L. A. Bjork, “Recovery Scenario for a DB/DC System,” Proc. of the ACM Annual Conference,
1973, pp. 142-146.

(Chan 72) K. M. Chandy, & C. V. Ramamoorthy, “Rollback and Recovery Strategies for Computer
Programs,” IEEE . C-21(6), June 1972, pp. 546-555.

(Chan 75) K. M. Chandy, J. C. Browne, C. W. Dissly, & W. R. Uhrig, “Analytic Models for Rollback and
Recovery Strategies in Data Base Systems,” IEEE SB-1(1), March 1975, pp. 100-110.

(Date 83) C. J. Date, An Introduction to Database Systems, vol. 2, Reading, MA: Addison-Wesley, 1983.

(Date 86) C. J. Date, An Introduction to Database Systems, vol. 1,. 4th ed. Reading, MA: Addison-Wesley,
1986.

(Davi 73) J. C. Davies Jr., “Recovery Semantics for a DB/DC System,” Proc. of the ACM Annual
Conference, 1973, pp. 136-141.

(Gior 76) N. J. Giordano, & M. S. Schwartz. “Database Recovery at CMIC,” Proc. ACM SIGMOD Conf. on
Management of Data, June 1976, pp. 33-42.

11.9 Summary 553

(Gray 78) J. N. Gray, “Notes on Database Operating Systems,” in R. Bayer et al., ed., Operating Systems: An
Advanced Course. Berlin: Springer-Verlag, 1978.

(Gray 81) J. N. Gray, “The Transaction Concept: Virtues and Limitations,” Proc. of the Intnl. Conf. on
VLDB, 1981, pp. 144-154.

(Gray 81b) J. N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, & I. Traiger,
“The Recovery Manager of the System R Database Manager,” ACM Computing Surveys
13(2), June 1981, pp. 223-242.

(Haer 83) T. Haerder, & A. Reuter, “Principles of Transaction(ruO, 1 n)Oriented Database Recovery,” ACM
Computing Surveys 15(4), December 1983, pp. 287-317.

(Kohl 81) K. H. Kohler, “A Survey of Techniques for Synchronization and Recovery in Decentralized
Computer Systems,” ACM Computing Surveys 13(2), June 1981, pp. 148-183.

(Kort 86) H. F. Korth, & A. Silberschatz, Database System Concepts. New York: McGraw-Hill, 1986.

(Lori 77) R. Lorie, “Physical Integrity in a Large Segmented Database,” ACM TODS 2(1), March 1977, pp
91-104.

(Lync 83) N. A. Lynch, “Multilevel Atomicity—A New Correctness Criterion for Database Concurrency
Control,” ACM TODS 8(4), December 1983, pp. 484-502.

(Moss 85) J. Moss, J. & B. Eliot, Nested Transactions: An Approach to Reliable Distributed Computing.
Cambridge, MA: MIT Press, 1985.

(Oppe 68) G. Oppenheimer, K. P. Clancy, Considerations of Software Protection and Recovery from Hardware
Failures. Washington, D.C.: FJCC, 1968.

(Reut 80) A. Reuter, “A Fast Transaction-Oriented Logging Scheme For UNDO Recovery,” IEEE SE 6(4),
July 1980, pp. 348-356.

(Seve 76) D. G. Severance, & G. M. Lohman, “Differential Files: Their Application to the Maintenance of
Large Databases,” ACM TODS 1(3), September 1976, pp. 256-267.

(Teng 84) J. Z. Teng, & R. A. Gumaer, “Managing IBM Database 2 Buffers to Maximize Performance,” IBM
Systems Journal 23(2), 1984, pp. 211-218.

(Verh 78) J. S. M. Verhofstad, “Recovery Techniques for Database Systems,” ACM Computing Surveys 10(2),
June 1978, pp. 167-195.

(Wied 83) Gio Wiederhold, Database Design, 2nd ed. New York: McGraw-Hill, 1983.

Concurrency
Management

Contents

12.1 Introduction
Concurrency and Possible Problems

12.1.1 Lost Update Problem

12.1.2 Inconsistent Read Problem

12.1.3 The Phantom Phenomenon
12.1.4 Semantics of Concurrent Transactions

12.2 Serializability
12.2.1 Precedence Graph
12.2.2 Serializability Algorithm: Read-before-Write Protocol

12.2.3 Serializability Algorithm: Read-Only, and Write-Only
Protocols

12.3 Concurrency Control

12.4 Locking Scheme

12.4.1 Two-Phase Locking
12.4.2 Granularity of Locking
12.4.3 Hierarchy of Locks and Intention-Mode Locking

Relative Privilege of the Various Locking Modes

Compatibility Matrix

Locking Principle

12.4.4 Tree-Locking Protocol

12.4.5 DAG Database Storage Structure

12.5 Timestamp-Based Order

12.6 Optimistic Scheduling

12.7 Multiversion Techniques

12.8 Deadlock and Its Resolution

12.8.1 Deadlock Detection and Recovery

Deadlock Detection

Recovery from Deadlock

12.8.2 Deadlock Avoidance

Wait-Die

Wound-Wait

12.9 Atomicity, Concurrency, and Recovery

554

12.1 Introduction 555

Concurrent execution of a number of transactions implies that the operations

from these transactions may be interleaved. This is not the same as serial execution

of the transactions where each transaction is run to completion before the next trans¬

action is started. Concurrent access to a database by a number of transactions requires

some type of concurrency control to preserve the consistency of the database, to

ensure that the modifications made by the transactions are not lost, and to guard

against transactions reading data that is inconsistent. The serializability criterion is

used to test whether or not an interleaved execution of the operations from a number

of concurrent transactions is correct. The serializability test consists of generating a

precedence graph from a interleaved execution schedule. If the precedence graph is

acyclic, the schedule is serializable, which means that the database will have the

same state at the end of the schedule as some serial execution of the transactions. In

this chapter, we introduce a number of concurrency control schemes.

12.1 Introduction

Larger computer systems are typically used by many users in a multiprogramming

mode; programs are executed concurrently. One reason for the use of multiprogram¬

ming is to exploit the different characteristics of the various programs to maximize

the utilization of the equipment; thus, while one program awaits the completion of

an input/output operation, the processor can be used to do the computation of another

program. Another reason for choosing multiprogramming is the need to share a re¬

source by these different programs: a database is such a shared resource. The primary

objective of the database system (at least on a large mainframe) is to allow many

users and application programs to access data from the database in a concurrent

manner.
One such shared database that is used in an online manner is the database for

an airline reservations system, which is used by many agents accessing the database

from their terminals. A database could also be accessed in a batch mode, exclusively

or concurrently with the online access. The database for an airline reservations sys¬

tem, in addition to providing online access, could also be used by batch application

programs that gather statistics and perform accounting operations.

The sharing of the database for read-only access does not cause any problem,

but if one of the transactions running concurrently tries to modify some data-item, it

could lead to inconsistencies. Furthermore, if more than one transaction is allowed

to simultaneously modify a data-item in the database, it could lead to incorrect values

for the data-item and an inconsistent database. Such would be the result even if each

of the transactions were correct and a consistent database would remain so if each of

these transactions were run one at a time. For example, suppose that two ticket

agents access the airline reservations system simultaneously to see if a seat is avail¬

able on a given flight; if both agents make a reservation against the last available seat

on that flight, overbooking of the flight would result. This potential problem of leav¬

ing the database in an inconsistent state with concurrent usage requires that some

kind of mutual exclusion be enforced so that the concurrently running transactions

would be able to access only disjoint data for modifications.
We defined the concept of a transaction in the previous chapter as being a set

of actions on the database that can be considered atomic from the point of view of

556 Chapter 12 Concurrency Management

the user. One method of enforcing mutual exclusion is by some type ot locking

mechanism that locks a shared resource (for example a data-item) used by a trans¬

action for the duration of its usage by the transaction. The locked data-item can only

be used by the transaction that locked it. The other concurrent transactions are locked

out and have to wait their turn at using the data-item. However, a locking scheme

must be fair. This requires that the lock manager, which is the DBMS subsystem

managing the locks, must not cause some concurrent transaction to be permanently

blocked from using the shared resource. This is referred to as avoiding the starvation

or livelock situation. The other danger to be avoided is that of deadlock, wherein a

number of transactions are waiting in a circular chain, each waiting for the release

of resources held by the next transaction in the chain.
In other methods of concurrency control, some form of a priori ordering with a

single or many versions of data is used. These methods are called timestamp ordering

and multiversion schemes. The optimistic approach, on the other hand, assumes that

the data-items used by concurrent transactions are most likely be disjoint.

Concurrency and Possible Problems

In the last chapter we stressed that a correct transaction, when completed, leaves the

database in a consistent state provided that the database was in a consistent state at

the start of the transaction. Nevertheless, during the life of a transaction, the database

could be inconsistent, although if the inconsistencies are not accessible to other trans¬

actions, they would not cause a problem.
In the case of concurrent operations, where a number of transactions are running

and using the database, we cannot make any assumptions about the order in which

the statements belonging to different transactions will be executed. The order in

which these statements are executed is called a schedule. Consider the two trans¬

actions in Figure 12.1. Each transaction reads some data-item, performs some oper¬

ations on the data-item that could change its value, and then writes out the modified

data-item.
In Figure 12.1 and in subsequent examples in this chapter, we assume that the

read operation reads in the database value of the named variable to a local variable

with an identical name. Any modifications by a transaction are made on this local

copy. The modifications made by the transactions are indicated by the operators/!

and/2 in Figure 12.1. These modifications are not reflected in the database until the

write operation is executed, at which point the modifications in the value of the

Figure 12.1 Two concurrent transactions.

Transaction T!

ReadfA vgSacuity Salary)

AvgSacultySalary : =

f\(Avg-Faculty Salary)

Writ e(AvgSacultySalary)

Transaction T2

Readf A vgStaffSalary)

AvgStajfSalary : =

f2(AvgS taffSalary)

WritefA vgS taffSa lary)

12.1 Introduction 557

Figure 12.2 Possible interleaving of concurrent transactions of Figure 12.1.

Schedule 1 Schedule 2

T

i

m

e

ReadfAvg-FacultySalary)

Avg-FacultySalary : —

f\(Avg-FacultySalary) T

Writ e(Avg-FacultySalary) i

Readf A vgStaffSalary) m

AvgStaffSalary : = e

h(A vg-S taffSalary)

Writef AvgStaff Salary)

ReadfA vgStaffSalary)

Avg_Staff-Salary : =

f2(AvgStaffSalary)

Read (Avg-Faculty-Salary)

Avg_Faculty_Salary : =

/if A vg_FacultySalary)

W ritef A vg_FacultySalaty)

Writef A vgStaff-Salary)

named variable are said to be committed. In effect the write operation is a signal for

committing the modifications and reflecting the changes to the physical database.

Figure 12.2 gives two possible schedules for executing the transactions of Figure

12.1 in an interleaved manner. Since the transactions of Figure 12.1 are accessing

and modifying distinct data-items, (Avg-Facuity-Salary, AvgStaff-Salary), there is

no problem in executing these transactions concurrently. In other words, regardless

of the order of interleaving of the statements of these transactions, we will get a

consistent database on the termination of these transactions.

12.1.1 Lost Update Problem

Consider the transactions of Figure 12.3. These transactions are accessing the same

data-item A. Each of the transactions modifies the data-item and writes it back. Again

let us consider a number of possible interleavings of the execution of the statements

of these transactions. These schedules are given in Figure 12.4.

Starting with 200 as the initial value of A, let us see what the value of A would

be if the transactions are run without any interleaving. In other words, the trans¬

actions are nan to completion, without any interruptions, one at a time in a serial

manner. If transaction T3 is run first, then at the end of the transaction the value of

A will have changed from 200 to 210. Running transaction T4 after the completion

of T3 will change the value of A from 210 to 231. Running the transactions in the

Figure 12.3 Two transactions modifying the same data-item.

Transaction T3

ReadfA)

A : = A + 10

Writef A)

Transaction T4

ReadfAj

A := A * 1.1

Writef A)

558 Chapter 12 Concurrency Management

Figure 12.4 Two schedules for transactions of Figure 12.3.

Schedule 1 Transaction T3 Transaction T4 Value of A

ReadfA) ReadfA) ' 200

T A := A * 1.1 A : = A * 1.1

i ReadfA) ReadfA)

m A : = A + 10 A := A + 10

e WritefA) WritefA) 210

r WritefA)

(a)

WritefA) 220

Schedule 2 Transaction T3 Transaction T4 Value of A

ReadfA) ReadfA) 200

T A : = A + 10 A := A + 10

i ReadfA) ReadfA)

m A := A * 1.1 A := A * 1.1

e WritefA) WritefA) 220

r Write(A) WritefA) 210

(b)

order T4 followed by T3 result in a final value for A of 230. The result obtained with

neither of the two interleaved execution schedules of Figure 12.4 agrees with either

of the results of executing these same transactions serially. Obviously something is

wrong!
In each of the schedules given in Figure 12.4, we have lost the update made by

one of the transactions. In schedule 1, the update made by transaction T3 is lost; in

schedule 2, the update made by transaction T4 is lost. Each schedule exhibits an

example of the so-called lost update problem of the concurrent execution of a num¬

ber of transactions.

It is obvious that the reason for the lost update problem is that even though we

have been able to enforce that the changes made by one concurrent transaction are

not accessible by the other transactions until it commits, we have not enforced the

atomicity requirement. This demands that only one transaction can modify a given

data-item at a given time and other transactions should be locked out from even

viewing the unmodified value (in the database) until the modifications (being made

to a local copy of the data) are committed to the database.

12.1.2 Inconsistent Read Problem

The lost update problem was caused by concurrent modifications of the same data-

item. However, concurrency can also cause problems when only one transaction

modifies a given set of data while that set of data is being used by other transactions.

12.1 Introduction 559

Figure 12.5 Two transactions; one modified while the other reads.

Transaction T5 Transaction T(

Read(A) Sum : = 0
A := A — 100 Read(A)
WritefA) Sum : = Sum
Read(fi) Read (B)
B := B + 100 Sum : = Sum
Write(fi) Write(Sum)

Consider the transactions of Figure 12.5. Suppose A and B represent some data-

items containing integer valued data, for example, two accounts in a bank (or a

quantity of some part X in two different locations, etc.). Let us assume that trans¬

action T5 transfers 100 units from A to B. Transaction T6 is concurrently running and

it wants to find the total of the current values of data-items A and B (the sum of the

balance in case A and B represent two accounts, or the total quantity of part X in the
two different locations, etc.).

Figure 12.6 gives a possible schedule for the concurrent execution of the trans¬

actions of Figure 12.5 with the initial value of A and B being 500 and 1000, respec¬

tively. We notice from the schedule that transaction T6 uses the value of A before

the transfer was made, but it uses the modified value of B after the transfer. The

result is that transaction T6 erroneously determines the total of A and B as being 1600

instead of 1500. We can also come up with another schedule of the concurrent exe-

Figure 12.6 Example of inconsistent reads.

Schedule Transaction T5 Transaction T6 Value of Database items

A B Sum

Read(A) Read(A) 500 1100 —

Sum : = 0 Sum : = 0 0

T Read (A) Read (A)

i A : = A - 100 A := A - 100

m WritefA) WritefA) 400

e Sum : = Sum + A Sum : = Sum + A 500

Read(fi) Read(fi)

B := B + 100 B := B + 100

Write(fl) Write(fi) 1100

Read(fl) Read(fl)

Sum : = Sum + B Sum : = Sum -1- B

r Write(Sum) Write(Sum) 1600

560 Chapter 12 Concurrency Management

cution of these transactions that will give the total of A and B as 1400, and of course

other schedules that will give the correct answer.
The reason we got an incorrect answer in the schedule of Figure 12.6 was be¬

cause that transaction T6 was using values of data-items A and B while they were

being modified by transaction Ts. Locking out transaction T6 from these data-items

individually would not have solved the problem of this inconsistent read. The prob¬

lem would have been resolved in this example only if transaction T5 had not released

the exclusive usage of the data-item A after locking data-item B. We discuss this

scheme, called two-phase locking, in Section 12.4.1

12.1.3 The Phantom Phenomenon

The previous examples were deliberately simple to illustrate the points of the lost

update and the inconsistent read problems. To illustrate the phantom phenomenon let

us consider an organization where parts are purchased and kept in stock. The parts

are withdrawn from stock and used by a number of projects. To check the extent of

loss, for example due to pilferage, we want to see if the current quantity of some

part purchased and received is equal to the current sum of the quantity of that part

in stock, plus the current quantities in use by various projects. Let us assume that

we have record types (relations in the case of a relational database system) called

INVENTORY, RECEIVED, and USAGE. The fields of these records are as shown

below. The record type INVENTORY keeps track of the quantity of a given part in

stock at a given point in time. The record type RECEIVED contains, for a given

part, the total units of that part that has been received to date. The record USAGE

keeps track of the project for which a given part was used.

INVENTORY(Part#, Quantity-inStock)

RECEIVED(Part#, Quantity—Received-tO-Date)

USAGE (Project-No, Part#, Quantity-Used-tO-Date)

Consider transaction T7 that will perform this auditing operation. It will, for

example, proceed by locking each item in an exclusive mode before each step, as

follows:

1. Lock the records of INVENTORY and for Part# = Part) find the Quantity-in.

Stock.

2. Lock all existing records of USAGE and add the Quantity-Used-to-Date for

Part, in any project that uses this part to Quantity-in-Stock found in step 1.

3. Lock the RECEIVED records and compare the value of the sum found with the
Received-toJDate value for Part,.

4. Release all locks.

Problems will be encountered if there is another transaction, T8, which is run to

reflect the receipt of additional quantities of Part,. Transaction T8 adds this quantity

to the record corresponding to Part, of the record type RECEIVED and assigns these

parts directly to a new project for which a new record of the record type USAGE is

created. If transaction T8 is scheduled to run between steps 2 and 3 above, then

transaction T7 will come up with an incorrect result (T7 will show the loss in Part,).

12.1 Introduction 561

Here we see that the locking of records did not prevent the creation of a new

record, which was created after the existing records had been locked. This new rec¬

ord for USAGE created by transaction T8 is a phantom as far as transaction T7 is

concerned. It did not exist when transaction T7 locked the records of USAGE.

However, the problem could be prevented if the locking of a set of records also

prevents the addition of such phantom records. The locking of a record belonging to

a record type must guarantee that no new record occurrences of the record type can

be added until the lock is released. The other necessary precaution for the schedule

above is to lock the record RECEIVED before releasing the lock on USAGE.

12.1.4 Semantics of Concurrent Transactions

In concurrent operations, where a number of transactions are running and modifying

parts of the database, we not only have to hide the changes made by a transaction

from other transactions, but we also have to make sure that only one transaction has

exclusive access to these data-items for at least the duration of the original trans¬

action’s usage of the data-items. This requires that an appropriate locking mechanism

be used to allow exclusive access of these data-items to the transaction requiring

them. In the case of the transactions of Figure 12.3, no such locking was used with

the consequence that the result is not the same as the result we would have obtained
had these transactions run consequently.

Now let us see why the results obtained when we run two transactions, one after

the other, need not be the same for different orderings. The modification operations

performed by two transactions are not necessarily commutative. The operations

A : = (A + 10) + 20 give the same result as A : = (A -I- 20) + 10 for the same

initial value for A (which is assumed to be an integer valued data-item); this is so

because the addition operation is commutative. Similarly, (A * 10) * 20 = (A * 20)
* 10.

However, commuting the order of operations, as illustrated by the following

expressions, does not always give the same result:

Salary : = (Salary -I- 1000) * 1.1

Salary : = (Salary * 1.1) + 1000

In the above example we have two transformations. In the first the Salary is

initially modified by adding 1000 to it and then the result is augmented by 10% to

give the revised Salary. In the second the Salary is first augmented by 10% and then

1000 is added to the result, which becomes the revised Salary. The reasonable ap¬

proach, to make sure that the intended result is obtained in all cases (i.e. to make

sure that transaction Tj is completed before transaction Tj is run), would be to code

the operations in a single transaction and not to divide the operations into two or

more transactions. Thus, if the above set of operations on Salary were written as two

transactions as given below, we cannot be sure which of the above two results would

be obtained with their concurrent execution.

Transaction T, Transaction Tj

Read Salary Read Salary

Salary : = Salary *1.1 Salary : = Salary + 1000

Write Salary Write Salary

Chapter 12 Concurrency Management 562

In effect, the division of a transaction into interdependent transactions run seri¬

ally in the wrong order would give erroneous results. Furthermore, these interdepen¬

dent transactions must not be run concurrently, otherwise the concurrent execution

will lead to results that could be incorrect again and not agree with the result obtained

by any serial execution of the same transactions. It is a logical error to divide a

single set of operations into two or more transactions. We assume hereafter that

transactions are semantically correct.

12m2 Serializability

Let us reconsider the transactions of Figure 12.3. We assume that these transactions

are independent. An execution schedule of these transactions as shown in Figure 12.7

is called a serial execution. In a serial execution, each transaction runs to completion

before any statements from any other transaction are executed. In Schedule A given

in Figure 12.7a, transaction T3 is run to completion before transaction T4 is executed.

In Schedule B, transaction T4 is run to completion before transaction T3 is started. If

the initial value of A in the database were 200, Schedule A would result in the value

of A being changed to 231. Similarly, Schedule B with the same initial value of A

would give a result of 230.
This may seem odd, but in a shared environment, the result obtained by inde¬

pendent transactions that modify the same data-item always depends on the order in

which these transactions are run; and any of these results is considered to be correct.

Figure 12.7 Two serial schedules.

Schedule A Transaction T3 Transaction T4

ReadfA) ReadfA)

T A := A + 10 A := A + 10

i WritefA) WritefA)

m ReadfA) ReadfA)

e A := A * 1.1 A ;= A * 1.1

r WritefA)

(a)

WritefA)

Schedule B Transaction T3 Transaction T4

ReadfA) ReadfA)
T A := A * 1.1 A \ — A * 1.1
i WritefA) WritefA)

m ReadfA) ReadfA)

e A := A + 10 A := A + 10

r WritefA) WritefA)

(b)

12.2 Serializability 563

If there are two transactions and if they refer to and use distinct data-items, the

result obtained by the interleaved execution of the statements of these transactions

would be the same regardless of the order in which these statements are executed

(provided there are no other concurrent transactions that refer to any of these data-

items). In this chapter, we assume that the concurrent transactions share some data-

items, hence we are interested in a correct ordering of execution of the statements of
these transactions.

A nonserial schedule wherein the operations from a set of concurrent trans¬

actions are interleaved is considered to be serializable if the execution of the opera¬

tions in the schedule leaves the database in the same state as some serial execution

of these transactions. With two transactions, we can have at most two distinct serial

schedules, and starting with the same state of the database, each of these serial sched¬

ules could give a different final state of the database. Starting with an initial value of

200 for A, the serial schedule illustrated in Figure 12.7a would give the final value

of A as 231, and for the serial schedule illustrated in part b the final value of A would

be 230. If we have n concurrent transactions, it is possible to have n!, where n! =

n*(n— 1) * (n — 2) * . . .*3*2*1 distinct serial schedules, and possibly that

many distinct resulting modifications to the database. For a serializable schedule, all

we require is that the schedule gives a result that is the same as any one of these

possibly distinct results.

When n transactions are run concurrently and in an interleaved manner, the

number of possible schedules is much larger than n!. We would like to find out if a

given interleaved schedule produces the same result as one of the serial schedules. If

the answer is positive, then the given interleaved schedule is said to be serializable.

Definition: Serializable Schedule:

Given an interleaved execution of a set of n transactions; the following

conditions hold for each transaction in the set:

• All transactions are correct in the sense that if any one of the transactions is

executed by itself on a consistent database, the resulting database will be

consistent.
• Any serial execution of the transactions is also correct and preserves the

consistency of the database; the results obtained are correct. (This implies that

the transactions are logically correct and that no two transactions are

interdependent).

The given interleaved execution of these transactions is said to be serializable if

it produces the same result as some serial execution of the transactions.

Since a serializable schedule gives the same result as some serial schedule and

since that serial schedule is correct, then the serializable schedule is also correct.

Thus, given any schedule, we can say it is correct if we can show that it is serializ¬

able.
Algorithm 12.1 given in Section 12.2.2 establishes the serializability of an ar¬

bitrarily interleaved execution of a set of transactions on a database. The algorithm

does not consider the nature of the computations performed by a transaction nor the

564 Chapter 12 Concurrency Management

exact effect of each such computational operation on the database. In effect, the

algorithm ignores the semantics of the operations performed by the transactions in¬

cluding the commuting property of algebraic or logical computations of the trans¬

actions. We may conclude from the algorithm that a given schedule is not serializa¬

ble, when in effect it is, if some of the semantics and the algebraic commutability

were not ignored. However, the algorithm will never lead us to conclude that a

schedule is serializable, when it does not produce the same result as some serial

schedule. The computation involved in analyzing each transaction and seeing if its

operations could be safely interleaved with those of other concurrent transactions is

not justified by the greater degree of concurrency of the resulting “better” serializa¬

ble schedule.
In Algorithm 12.1 (p. 566) we make the following assumptions:

• Each transaction is a modifying transaction, i.e., it would change the value of

at least one database item.

• For each such item A that a transaction modifies, it would first read the value a

of the item from the database (this is the read-before-write protocol).

• Having read the value it would transform a to /(a), where /is some transaction-

dependent computation or transformation.

• It would then write this new value to the database.

Before presenting the algorithm we present the notion of a precedence graph.

Figure 12.8 (a) A schedule and (b) an acyclic precedence graph.

Schedule Transaction T9 Transaction T10 Transaction Tu

ReadfA) ReadfA)

A : = f\(A) A:=/,(A)
T WritefA) WritefA)

i ReadfA)

m A:=f2(A)
e Write(A)

ReadfA)

A : = fi(A)
WritefA)

Readffi)

B:=ffB)

Writeffi)

Readffi)

A :=/3ffl)
Writeffi)

Read(fi)

A :=MB)

Readffi)

B —MB)
Write(fi) + Writeffi)

(a)

(b)

12.2 Serializability 565

12.2.1 Precedence Graph

Precedence graph G(V, E) consists of a set of nodes or vertices V and a set of

directed arcs or edges E. Figure 12.8 gives an example of a schedule and the corre¬

sponding precedence graph. The schedule is for three transactions T9, T,0 and Tn

and the corresponding precedence graph has the vertices T9, T,0 and Tu. There is an

edge from T9 to T,0 and another edge from T10 to T,,. If T9, T,0 and T11 represent

three transactions, the precedence graph represents the serial execution of these trans¬
actions.

In a precedence graph, a directed edge from a node Tj to a node Tr i + j,

indicates one of the following conditions regarding the read and write operations in

transactions Tj and Tj with respect to some database item A:

• Tj performs the operation ReadfA) to read the value written by T; performing
the operation Write(A).

• Tj performs the operation WritefA,) after Tj performs the operation ReadfAj.

If we limit ourselves to the read-before-write protocol only, we have to look for
an edge corresponding to these conditions only.

In Figure 12.8a, all the statements in transaction T9 are executed before trans¬

action T|0 is started. Similarly, all the operations of T|0 are completed before starting

Tu. The precedence graph corresponding to the schedule of part a is given in part b.

Figure 12.9a gives a schedule and Figure 12.9b gives the precedence graph for

Figure 12.9 (a) A schedule and (b) a cyclic precedence graph.

Schedule Transaction T]2 Transaction

ReadfAj ReadfAJ

^ :=f\(A) A :=f\(A)
T ReadfA) ReadfAj
i A : = f2(A) A : = f2(A)

m WritefA) WritefAj

e ^ r WritefA) WritefA)

(a)

(b)

566 Chapter 12 Concurrency Management

transactions T12 and T13. In the precedence graph there is an edge from T12 to T13 as

well as an edge from T13 to T12. The edge T13 to Tl2 is included because T12 executes

a write operation after T13 executes a write operation for the same database item A.

The edge T)2 to Tl3 is included because T)3 executes a write operation after T,2

executes a read operation for the same database item A. We see that the precedence

graph has a cycle, since we can start from one of the nodes of the graph and, follow¬

ing the directed edges, return to the starting node.
A precedence graph is said to be acyclic if there are no cycles in the graph. The

graph of Figure 12.8b has no cycles. The graph of Figure 12.9b is cyclic, since it

has a cycle.
The precedence graph for serializable schedule S must be acyclic, hence it can

be converted to a serial schedule. To test for the serializability of the arbitrary sched¬

ule S for transactions Tj, . . . , Tk we convert the schedule into a precedence graph

and then test the precedence graph for cycles. If no cycles are detected, the schedule

is serializable; otherwise it is not. If there are n nodes in the graph for schedule S,

the number of operations required to check if there is a cycle in the graph is propor¬

tional to n2.

Algorithm

12.1 Serializibity Test

Input: Schedule S for the concurrent execution of transactions T), . . . , Tk.

Output: A serial schedule for S if one exists.

Step 1: Create precedence graph G as follows. Transactions Tj, . . . , Tk are

the nodes and each edge of the graph is inserted as follows: For a database

item X used in the schedule find an operation Write(X) for some transaction

T^ if there is a subsequent (earliest) operation Read(X) in transaction Tj,

i + j, insert an edge from Tj to Tj in the precedence graph, since Tj must be

executed before Tj. For a database item X, if T, executes a Write(X) after T,,

i i= j, executes a Read(X) or a Write(X) operation, insert an edge from Tj to

Tj in the precedence graph.

Step 2: If the graph G has a cycle (see Exercise 12.6), schedule S is

nonserializable. If G is acyclic, then find, using the topological sort given

below, a linear ordering of the transactions so that if there is an arc from Tj to
Tj in G, Tj precedes Tj. Find a serial schedule as follows:

(a) Initialize the serial schedule as empty.

(b) Find a transaction Ts, such that there are no arcs entering Tj. Tj is the
next transaction in the serial schedule.

(c) Remove Tj and all edges emitting from Tj: If the remaining set is

nonempty, return to (b), otherwise the serial schedule is complete.

12.2 Serializability 567

12.2.2 Serializability Algorithm: Read-before-Write Protocol

In the read-before-write protocol we assume that a transaction will read the data-

item before it modifies it and after modifications, the modified value is written back

to the database. In Algorithm 12.1, we give the method of testing whether a schedule

is serializable. We create a precedence graph and test for a cycle in the graph. If we

find a cycle, the schedule is nonserializable; otherwise we find a linear ordering of
the transactions.

In Examples 12.1 and 12.2 we illustrate the application of this algorithm.

Example 12.1 Consider the schedule of Figure A. The precedence graph for this schedule

is given in Figure B. The graph has three nodes corresponding to the three

transactions T14, T15, and T16. There is an arc from T]4 to T|5 because T,4

writes data-item A before T15 reads it. Similarly, there is an arc from Tl5 to

Ti6 because T15 writes data-item B before T16 reads it. Finally, there is an

arc from T16 to T14 because T)6 writes data-item C before T14 reads it. The

precedence graph of Figure B has a cycle formed by the directed edges from

T|4 to T|5, from Tl5 to T16 and from T,6 back to T)4. Hence, the schedule

of Figure A is not serializable. We cannot execute the three transactions

serially to get the same result as the given schedule.

Figure A An execution schedule involving three transactions.

T

i

m

e

Schedule Transaction T

ReadfAj

Read (B)
ReadfAJ

A : = f\(A)
ReadfCJ

B : = f2(B)
Writeffij

C:=h(C)
WritefCj

^4 := f\(A)

Write(A)

Read(fi)

ReadfAj

A :=U(A)

WritefAJ

ReadfCj

WritefA)

Read(C)

C:=f5(C) C:=MC)
WritefCJ

B := MB)
Writeffij

Write(C)

Transaction T|5 Transaction T16

Readffi)

Readf C)

B:=f2(B)
Writ e(B)

C :=h(C)
Write(C)

Read (B)
ReadfA)

A :=UA)

Write(A)

B :=U(B)
Writeffij

568 Chapter 12 Concurrency Management

Figure B A precedence graph with a cycle.

Example 12.2 presents a serializable schedule.

Example 12.2 Consider the schedule given in Figure C. The execution schedule of the

figure is serializable because the precedence graph for this schedule given in

Figure D, does not contain any cycles. The serial schedule is T17, followed

by T|g, followed by Tl9.

Figure C An execution schedule involving three transactions.

Schedule Transaction T,7 Transaction Tl8 Transaction T]9

ReadfAj ReadfAJ

A : — f\(A) A : — f\(A)
Readf C) ReadfCj
WritefA) WritefAj

A :=f2(C) A :=f2(C)

Read (B)

WritefCj Write(C)
Read(A)

ReadfQ

B : = MB)

Write(B)

C : = f\(C)

Readffij

Write(C)

^ : = h(A)

WritefA)

B:=f6(B)

Writeffl)

Readffij

ReadfAJ

Read(C)

B : = h(B)

Writeffij

C:=UC)

Read (B)

WritefC)

A :=f5(A)

WritefAJ

B :=f6(B)

Writ e(B)

12.3 Concurrency Control 569

Figure D Precedence graph for schedule of Figure C.

12.2.3 Serializability Algorithm: Read-Only and Write-Only Protocols

Algorithm 12.1 is for a set of transactions that follow the read-before-write protocol.

Some transactions, in addition to having a set of data-items that are read before

rewritten, have another set of data-items that are only read and a further set of data-

items that are only written. In such a case some additional edges must be added to

the graph. We will not treat this generalization in this text; refer to the bibliographic

notes for further reading.

12.3

If all schedules in a concurrent environment are restricted to serializable schedules,

the result obtained will be consistent with some serial execution of the transactions

and will be considered correct. However, using only serial schedules unnecessarily

limits the degree of concurrency. Furthermore, testing for serializability of a schedule

is not only computationally expensive but it is an after-the-fact technique and im¬

practical. Thus, one of the following concurrency control schemes is applied in a

concurrent database environment to ensure that the schedules produced by concurrent

transactions are serializable. The schemes we discuss are locking, timestamp-based

order, optimistic scheduling, and the multi version technique.

The intent of locking is to ensure serializability by ensuring mutual exclusion in

accessing data-items. In the timestamp-based ordering scheme, the order of execution

of the transactions is selected a priori by assigning each transaction an unique value.

This value, usually based on the system clock, is called a timestamp. The values of

the timestamp of the transactions determine the sequence in which transactions con¬

testing for a given data-item will be executed. Conflicts in the timestamp scheme are

resolved by abort and rollback. In the optimistic scheme it is recognized that the

conflict between transactions, though possible, is in reality very rare, and it avoids

all forms of locking. The price paid in the optimistic scheme is in verifying the

validity of the assumptions that data used by a transaction has not changed and the

abort and restart of a transaction for which it is ascertained that the data-items have

Concurrency Control

570 Chapter 12 Concurrency Management

changed between the time of reading and of writing. In the multiversion technique,

a data-item is never written over; each write operation creates a new version of a

data-item. Many versions of a data-item exist and these represent the historical evo¬

lution of the data-item. A transaction sees the data-item of its own epoch. Conflicts

are resolved by rollback of a transaction that is too late to write out all values from

its epoch. We examine each of these concurrency control schemes in the following

sections. The problem of deadlock, which is possible in some of these schemes and/

or their modifications, is discussed in Section 12.8.

12.4
From the point of view of locking, a database can be considered as being made up

of a set of data-items. A lock is a variable associated with each such data-item.

Manipulating the value of a lock is called locking. The value of a lock variable is

used in the locking scheme to control the concurrent access and manipulation of the

associated data-item. Locking the items being used by a transaction can prevent other

concurrently running transactions from using these locked items. The locking is done

by a subsystem of the database management system usually called the lock manager.
So that concurrency is not restricted unnecessarily, at least two types of locks

are defined: exclusive lock and shared lock.
Exclusive lock: The exclusive lock is also called an update or a write lock. The

intention of this mode of locking is to provide exclusive use of the data-item to one

transaction. If a transaction T locks a data-item Q in an exclusive mode, no other

transaction can access Q, not even to read Q, until the lock is released by trans¬

action T.

Shared lock: The shared lock is also called a read lock. The intention of this

mode of locking is to ensure that the data-item does not undergo any modifications

while it is locked in this mode. Any number of transactions can concurrently lock

and access a data-item in the shared mode, but none of these transactions can modify

the data-item. A data-item locked in a shared mode cannot be locked in the exclusive

mode until the shared lock is released by all transactions holding the lock. A data-

item locked in the exclusive mode cannot be locked in the shared mode until the
exclusive lock on the data-item is released.

The protocol of sharing is as follows. Each transaction, before accessing a data-

item, requests that the data-item be locked in the appropriate mode. If the data-item

is not locked, the lock request is honored by the lock manager. If the data-item is

already locked, the request may or may not be granted, depending on the mode of

locking requested and the current mode in which the data-item is locked. If the mode

of locking requested is shared and if the data-item is already locked in the shared

mode, the lock request can be granted. If the data-item is locked in an exclusive

mode, then the lock request cannot be granted, regardless of the mode of the request.

In this case the requesting transaction has to wait till the lock is released.

The compatibility of a lock request for a data-item with respect to its current

state of locking is given in Figure 12.10. Here we are assuming that the request for

locking is made by a transaction not already holding a lock on the data-item.

If transaction Tx makes a request to lock data item A in the shared mode and if

A is not locked or if it is already locked in the shared mode, the lock request is

granted. This means that a subsequent request from another transaction, Ty, to lock

Locking Scheme

12.4 Locking Scheme 571

Figure 12.10 Compatibility of locking.

Current state of locking of data-item

Lock mode of
request

Unlocked Shared Exclusive

Unlock - yes yes

Shared yes yes no

Exclusive yes no no

data-item A in the exclusive mode would not be granted and transaction Ty will have

to wait until A is unlocked. While A is locked in the shared mode, if transaction Tz

makes a request to lock it in the shared mode, this request can be granted. Both Tx
and Tz can concurrently use data-item A.

If transaction Tx makes a request to lock data-item A in the shared mode and if

A is locked in the exclusive mode, the request made by transaction Tx cannot be

granted. Similarly, a request by transaction Tz to lock A in the exclusive mode while

it is already locked in the exclusive mode would also result in the request not being

granted, and Tz would have to wait until the lock on A is released.

From the above we see that any lock request for a data-item can only be granted

if it is compatible with the current mode of locking of the data-item. If the request

is not compatible, the requesting transaction has to wait until the mode becomes

compatible.

The releasing of a lock on a data-item changes its lock status. If the data-item

was locked in an exclusive mode, the release of lock request by the transaction

holding the exclusive lock on the data-item would result in the data-item being un¬

locked. Any transaction waiting for a release of the exclusive lock would have a

chance of being granted its request for locking the data-item. If more than one trans¬

action is waiting, it is assumed that the lock manager would use some fair scheduling

technique to choose one of these waiting transactions.

If the data-item was locked in a shared mode, the release of lock request by the

transaction holding the shared lock on the data-item may not result in the data-item

being unlocked. This is because more than one transaction may be holding a shared

lock on the data-item. Only when the transaction releasing the lock is the only trans¬

action having the shared lock does the data-item become unlocked. The lock manager

may keep a count of the number of transactions holding a shared lock on a data-

item. It would increase this value by one when an additional transaction is granted a

shared lock and decrease the value by one when a transaction holding a shared lock

releases the lock. The data-item would then become unlocked when the number of

transactions holding a shared lock on it becomes zero. This count could be stored in

an appropriate data structure along with the data-item but it would be accessible only

to the lock manager.
The lock manager must have a priority scheme whereby it decides whether to

allow additional transactions to lock a data-item in the share-mode in the following

situation:

• The data-item is already locked in the shared mode.

• There is at least one transaction waiting to lock the data-item in the exclusive

mode.

572 Chapter 12 Concurrency Management

Allowing a higher priority to share lock requests could result in possible star¬

vation of the transactions waiting for an exclusive lock. Similarly, the lock manager

has to deal with a situation where a data-item is locked in an exclusive mode and

there are transactions waiting to lock the data-item in the shared mode and the exclu¬

sive mode.
In the following discussions we assume that a transaction makes a request to

lock data-item A by executing the statement LocksfA) or Lockx(A). The former is

for requesting a shared lock; the latter, an exclusive lock. A lock is released by

simply executing an UnlockfA) statement. We assume that the transactions are cor¬

rect. In other words, a transaction would not request a lock on a data-item for which

it already holds a lock, nor would a transaction unlock a data-item if it does not hold

a lock for it.
A transaction may have to hold onto the lock on a data-item beyond the point

when it last needs it to preserve consistency and avoid the inconsistent read problems

discussed in Section 12.1.2. We illustrate this point by reworking the example of

Figure 12.5. Here each transaction request locks for the data-items A and B: trans¬

action T5 in exclusive mode and transaction T6 in shared mode. The transactions with

the lock requests are given in Figure 12.11. As shown there, the transactions attempt

to release the locks on the data-items as soon as possible.
Now consider Figure 12.12, which gives a possible schedule of execution of the

transactions of Figure 12.11. The locking scheme did not resolve the inconsistent

read problem; the reason is that transactions T5 and T6 are performing an operation

made up of many steps and all these have to be executed in an atomic manner. The

database is in an inconsistent state after transaction T5 has taken 100 units from A
but not added it to B. Allowing transaction T6 to read the values of A and B before

transaction T5 is complete leads to the inconsistent read problem.

A possible solution to the inconsistent read problem is shown in Figure 12.13.

Here transactions T5 and T6 are rewritten as transactions T20 and T2i . The possible

schedules of concurrent executions of these transactions are shown in Figures 12.14

and 12.15. Both of these solutions extend the period of time for which they keep

Figure 12.11 Two transactions of Figure 12.5 with lock requests.

Transaction T5 Transaction T6

LockxfA)

ReadfA) Sum : = 0

LocksfA)

Read(A)

Lockx(Swm)

A := A - 100
WritefA)

UnlockfA)

LockxffiJ

Readffij

Sum : = Sum + A
UnlockfAj

Locks(fl)

Read(fi) B : = B + 100

WritefZ?)

UnlockffiJ
Sum : = Sum + B
Writ e(Sum)
UnlockffiJ

UnlockfSwm,)

12.4 Locking Scheme 573

Figure 12.12 A possible schedule causing an inconsistent read.

Schedule Transaction T5 Transaction T6

LockxfSwm) Lock\(Sum)
Sum : = 0 Sum : = 0
LocksfA) LocksfA)
ReadfA) ReadfA J
Sum : = Sum + A Sum : — Sum + A
Unlock(A) UnlockfA)
LockxfA) LockxfA)

ReadfA) ReadfA)

A : = A — 100 A : — A — 100
Write(A) WritefAj
UnlockfA) UnlockfA,)
Lockxffij LockxfflJ
Read(7?,) Readffi,)
B := B + 100 B : = B + 100
WritefflJ Writeffij
Unlockffij UnlockffiJ
Locks(fi) Locks (B)

ReadfZ?) Read (B)

Sum : = Sum + B Sum : = Sum + B

Writ e(Sum) Writ e(Sum)
Unlock(fi) Unlockffij
UnlockfSwm) UnlockfSwwj

Figure 12.13 Transactions locking all items before unlocking.

Transaction T20 Transaction T2i

LockxfA) LockxfSwm)

ReadfA) Sum : = 0

A : — A — 100 LocksfA)

WritefA) ReadfA)

LockxfZ?) Sum : — Sum + A

UnlockfA) Locks (B)

Readffl) Read (B)

B := B + 100 Sum : = Sum + B

WritefZ?) Writef Sum)

Unlockffi) Unlockffi)

UnlockfA)

UnlockfSMm)

574 Chapter 12 Concurrency Management

Figure 12.14 A possible solution to the inconsistent read problem.

T

i

m

e

Schedule

LockxfSwmj

Sum : = 0

LocksfAj

ReadfAj

Sum : = Sum + A

Locksffij

Readffi)
Sum : = Sum + B
Writ e(Sum)
Unlock^

UnlockfAj
UnlockfSwmj

Lockx(A)

ReadfAj

A : = A - 100
WritefAj

Lockxffij

UnlockfAJ

Read(B)

B := B + 100

Writeffij

UnlockfBj

Transaction T2o

LockxfA)

ReadfAj

A := A - 100

WritefAj

Lockxffl)

UnlockfA)

Readffij

B : = B + 100

WriteffiJ

Unlockffij

Transaction T2!

Lock x(Sum)
Sum : = 0
Locks(A)

ReadfAj

Sum : = Sum + A

Locks(fi)

ReadffiJ

Sum : = Sum + B

Writ e(Sum)
Unlock(fi)
UnlockfAj

UnlockfSwmj

some data-items locked even though the transactions no longer need these items. This

extended locking forces a serialization of the two transactions and gives correct re¬

sults.

12.4.1 Two-Phase Locking

The correctness of the schedules of Figures 12.14 and 12.15 and of the transactions

in Figure 12.13 lead us to the observation that both these solutions involve trans¬

actions whose locking and unlocking operations are monotonic, in the sense that all

locks are first acquired before any of the locks are released. Once a lock is released,

no additional locks are requested. In other words, the release of the locks is delayed

until all locks on all data-items required by the transaction have been acquired.

This method of locking is called two-phase locking. It has two phases, a grow¬

ing phase wherein the number of locks increase from zero to the maximum for the

transaction, and a contracting phase wherein the number of locks held decreases

from the maximum to zero. Both of these phases are monotonic; the number of locks

are only increasing in the first phase and decreasing in the second phase. Once a

12.4 Locking Scheme 575

Figure 12.15 Another solution to the inconsistent read problem.

' Schedule Transaction T20 Transaction T2,

Lockx(A) LockxfA)

ReadfAj ReadfAj
A := A - 100 A : = A — 100
WritefA) Writ e(A)

T Lockx(fi) Lock\(B)
i UnlockfAJ UnlockfAj

m Read(fl) Readf5^
e B := B + 100 B := B + 100

Writef#) Writ e(B)
Unlock(fi)

LockxfS’wm)
Unlock(fi)

Lockx5wm)
Sum : = 0 Sum : = 0
LocksfAj LocksfAj
ReadfAj ReadfA)
Sum : = Sum + A Sum : = Sum + A
Locks (B) Lock s(B)
Read(fi) Read (B)
Sum : = Sum + B Sum : = Sum + B
WritefSwm,) Writ e(Sum)
Unlock^#) LfnlockffiJ
UnlockfA) UnlockfA)

r UnlockfSwm,) UnlockfSMm)

transaction starts releasing locks, it is not allowed to request any further locks. In
this way a transaction is obliged to request all locks it may need during its life before

it releases any. This leads to a possible lower degree of concurrency.

The two-phase locking protocol ensures that the schedules involving transactions

using this protocol will always be serializable. For instance, if S is a schedule con¬

taining the interleaved operations from a number of transactions, Tj, T2, . . . , Tk

and all the transactions are using the two-phase locking protocol, schedule S is seri¬

alizable. This is because if the schedule is not serializable, the precedence graph for

S will have a cycle made up of a subset of {T,, T2, . . . , Tk}. Assume the cycle

consists of Ta —> Tb —> Tc —> . . . Tx —> Ta. This means that a lock operation by Tb

is followed by an unlock operation by Ta; a lock operation by Tc is followed by an

unlock operation by Tb, . . . , and finally a lock operation by Ta is followed by an

unlock operation by Tx. However, this is a contradiction of the assertion that Ta is

using the two phase protocol. Thus the assumption that there was a cycle in the

precedence graph is incorrect and hence S is serializable.

The transactions of Figure 12.13 use the two-phase locking protocol, and the

schedules derived from the concurrent execution of these transactions given in Fig¬

ures 12.14 and 12.15 are serializable. However, the transactions of Figure 12.11 do

not follow the two-phase locking protocol and the schedule of Figure 12.12 is not

serializable.

576 Chapter 12 Concurrency Management

The observant reader will notice that the danger of deadlock exists in the two-

phase locking protocol. We examine this problem in greater detail in Section 12.8.

12.4.2 Granularity of Locking

So far we have assumed that a data-item can be locked. However, we have not

defined explicitly what the data-item is. If the size or granularity of the data-item is

very large, for instance the entire database, then of course the overhead of locking is

very small. The lock manager manages only one item. The drawback here is obvious.

The concurrency is very low since only one transaction can run in an exclusive mode

at a given time, even though it may need a very small portion of the database. On

the other hand, if the granularity of the data-item is very small (for example, a data-

item could be the field of a record), then the degree of concurrency can be fairly

high, although the overhead of locking in this case can be considerable. A transaction

that needs many records and fields will have to request many locks, all of which

have to be managed by the lock manager. For the highest degree of flexibility, the

locking scheme should allow multiple granularity of locking from a data field to the

entire database.
When the data-item that is locked is, for example, a record type, then to avoid

the phantom read problem, locking a record type requires not only that the existing

record occurrences be locked but also implies that nonexisting records are also

locked. In this manner it is possible to preclude the insertion of phantom records by

other concurrent transactions.
To avoid locking too early and in situations where the transaction itself has to

determine which data-items to lock, locks are requested dynamically by the trans¬

actions. This creates an additional overhead for the lock manager, which in addition

to the locking overhead has to determine if there is a situation of deadlock. The

methods of handling deadlocks are discussed in Section 12.8.

12.4.3 Hierarchy of Locks and Intention-Mode Locking

Some data structures used in the database are structured in the form of a tree. For

example, the nodes of a B-tree index are hierarchically structured. A transaction may

need to lock the entire B-tree or only a portion of it, i.e., a proper subtree. Similarly,

the database may be considered to be a hierarchy consisting of the following nodes:

• the entire database

• some designated portion of the database

• a record type (or in the case of the relational database, a relation)

• an occurrence of a record (a tuple)

• a field of the record (an attribute)

The nodes of the hierarchy could depend on the data model being used by the

DBMS. In the case of the hierarchical model, the hierarchies represent a tree and

each node of the tree can be locked. In the case of the network model, locking could

12.4 Locking Scheme 577

be based on sets. In the hierarchy shown in Figure 12.16, we generalize the nodes

to be independent of the data model. The usual practice is to limit the locking gran¬

ularity to the record occurrence level.

Having structured the database objects in a hierarchy, the corresponding locking

scheme becomes a hierarchy; the lock manager allows each node of the hierarchy to

be locked. A hierarchy of locks provides greater flexibility and efficiency in locking.

Such a scheme allows multiple granularity of locking from a data field to the entire

database. The descendants of a locked node are implicitly locked in the same mode

(shared or exclusive) as the node. However, if a subtree is locked, the ancestor of

the subtree is not allowed to be locked; this is because locking an ancestor of the

subtree implicitly locks the subtree. An implicit lock on a node signifies that no other

transaction is allowed to lock that node (either implicitly or explicitly) in an exclusive

mode (and implicitly, any of the descendants).

Hierarchical organization of the database, however, increases the overhead in

determining whether or not a request for a lock from a transaction can be accepted.

Consider a portion of the database that is under the hierarchy specified by the node

N. Suppose the transaction T0 needs a share lock on this portion of the database.

How can the lock manager know efficiently if any other transaction has locked some

portion of the database rooted by node N, and if so, whether the mode is compatible

with the request of transaction T0? Checking each data-item under N is inefficient.
In the case of hierarchical structured locking, a new mode of locking, the inten¬

tion mode is introduced. A transaction can lock a hierarchically structured data-item

in the intention mode. This implies that the transaction intends to explicitly lock a

lower portion of the hierarchy. In effect, intention locks are placed on all ancestors

of a node until the node that is to be locked explicitly is reached.

To allow a higher degree of concurrency, the intention mode of locking is re¬

fined to intention share and intention exclusive modes. The intention mode simply

indicates that the transaction intends to lock the lower level in some mode. If trans¬

action Ta intends to lock the lower level in the share mode, the ancestor is locked in

Figure 12.16 Hierarchical structure of the database.

578 Chapter 12 Concurrency Management

the intention share mode to indicate that the lower level is being locked in a share

mode. Other transactions can access the node and all its lower levels, including the

subtree being accessed by Ta; no transaction, however, can modify any portion of

the database rooted at the node that was locked by Ta in the intention share mode. If

transaction Ta intends to lock the lower level in the exclusive or share mode, then

the ancestor is locked in the intention exclusive mode to indicate that the lower

level is being locked in an exclusive or share mode. Another concurrent transaction,

say Tb, needing to access any portion of this hierarchy in the exclusive or share mode

can also lock this node in the intention exclusive mode. If Tb needs exclusive or

share access to that portion of the subtree not being used by transaction Ta, it will

place appropriate locks on it and can run concurrently with Ta. However, if Tb needs

access to any portion of the subtree locked in the exclusive mode by Ta, then the

explicit exclusive locks on these nodes will cause Tb to wait until Ta releases these

explicit exclusive locks.

The intention lock locks a node to indicate that the lower level nodes are being

locked either in the share or the exclusive mode, but it does no implicit locking of

lower levels. Each lower level has to be locked explicitly in whichever mode required

by the transaction. This adds a fairly large overhead if a transaction needs to access

a subtree of the database and modify only a small portion of the subtree rooted at the

intentionally locked node. The share and intention exclusive mode of locking is

thus introduced. The share and intention exclusive mode differs from the other form

of intention locking in so far as it implicitly locks all lower level nodes as well as

the node in question. This mode allows access by other transactions to share that

portion of the subtree not exclusively locked and gives higher concurrency than

achievable with a simple exclusive lock. This avoids the overhead of locking the root

node and all nodes in the path leading to the subtree to be modified in the intention

exclusive mode, followed by locking the subtree to be modified in the exclusive

mode. It is replaced by locking the root node in the share and intention exclusive

mode (which will lock all descendants implicitly in the same mode), followed by

locking the root node of the subtree to be modified in the exclusive mode.

We summarize below the possible modes in which a node of the database hier¬

archy could be locked and the effect of the locking on the descendants of the node.

Figure 12.17 gives the relative privilege of these modes of locking. The exclusive

mode has the highest privilege and the intention share mode has the lowest privilege.

S or shared lock: The node in question and implicitly all its descendants are

locked in the share mode; all these nodes, locked explicitly or implicitly, are acces¬

sible for read-only access. No transaction can update the node or any of its descen¬
dants when the node is locked in the shared mode.

X or exclusive lock: The node in question and implicitly all its descendants are

exclusively locked by a single transaction. No other transaction can concurrently
access these nodes.

IS or intention share: The node is locked in the intention share mode, which

means that it or its descendants cannot be exclusively locked. The descendant of the

node may be individually locked in a shared or intention shared mode. The descen¬
dants of the node that is locked in the IS mode are not locked implicitly.

IX or intention exclusive: The node is locked in an intention exclusive mode.

This means that the node itself cannot be exclusively locked; however, any of the

descendants, if not already locked, can be locked in any of the locking modes. The

descendants of the node that is locked in the IX mode are not locked implicitly.

12.4 Locking Scheme 579

Figure 12.17 Relative privilege of the locking modes.

SIX or shared and intention exclusive: The node is locked in the shared and

intention exclusive mode and all the descendants are implicitly locked in the shared

mode. However, any of the descendants can be explicitly locked in the exclusive,

intention exclusive, or shared and intention exclusive modes.

Relative Privilege of the Various Locking Modes

Figure 12.17 gives the relative privilege of the various modes of locking. The exclu¬

sive mode has the highest privilege: it locks out all other transactions from the por¬

tion of the database that is rooted at the node locked in the exclusive mode. All

descendants of the node are implicitly locked in the exclusive mode. The intention

share mode has the lowest privilege. The share mode is not comparable with the

intention exclusive mode.

The advantage of the intention mode locking is that the lock manager knows

that the lower level nodes of a node that is intentionally locked are or are being

locked without having to examine all the lower level nodes. Furthermore, using the

compatibility matrix shown in Figure 12.18 and discussed below, the lock manager

can ascertain if a request for a lock can be granted.

Compatibility Matrix

Considering all the modes of locking described above, the compatibility between the

current mode of locking for a node and the request of another transaction for locking

the node in a given mode are given in Figure 12.18. The entry yes indicates that the

request will be granted and the transaction can continue. The entry no indicates that

the request cannot be granted and the requesting transaction will have to wait.

580 Chapter 12 Concurrency Management

Figure 12.18 Access mode compatibility.

Request
for
locking

Current state of lock of the node

IS IX s SIX X unlocked

IS yes yes yes yes no yes

IX yes yes no no no yes

s yes no yes no no yes

SIX yes no no no no yes

X no no no no no yes

UNLOCK yes yes yes yes yes yes

Locking Principle

With the above locking modes, the procedure to be followed in locking can be sum¬

marized as follows:

• A transaction is not allowed to request additional locks if it has released a lock

(this is the two-phase locking protocol requirement).

• The access mode compatibility matrix determines if a lock request can be

granted or if the requesting transaction has to wait.

• A transaction is required to request a lock in a root-to-leaf direction and to

release locks in the leaf-to-root direction. Consequently, a transaction cannot

unlock a node if it currently holds a lock on one of the descendants of the node.

Similarly, a transaction cannot lock a node unless it already has a compatible
lock on the ancestor of the node.

• A transaction can lock a node in the IS or S modes only if the transaction has

successfully locked the ancestors of the node in the IX or IS modes.

• A transaction can lock a node in the IX, SIX, or X modes only if the

transaction has successfully locked the ancestors of the node in the IX or SIX
modes.

• The lock manager can lock a larger portion of the database than requested by a

transaction and the duration of this lock could be for a period longer than
needed by the transaction.

The above locking protocol ensures serializability. Let us consider a few exam¬

ples to illustrate the locking procedures to be followed on a database stored in a
hierarchical structure, as shown in Figure 12.19.

Example 12.3 To lock record occurrence R13 of Record Type, for retrieval only, the se¬

quence of locking is as follows: (1) lock database in the IS mode, (2) lock

Partition, in the IS mode, (3) lock Record Type, in the IS mode, (4) lock
record R,3 in the S mode. ■

12.4 Locking Scheme 581

Figure 12.19 Sample database storage structure.

Exclusive locking can proceed as illustrated below.

Example 12.4 To lock the record occurrence R22 of Record Type2, in the exclusive mode,

the sequence of locking is as follows: (1) lock database in the IX mode, (2)

lock Partition, in the IX mode, (3) lock Record Type2 in the IX mode, (4)
lock record R22 in the X mode. ■

Note that if two transactions are accessing records Rik and Rn, for k + 1, in the

share and exclusive modes respectively, then both these transactions can be executed

concurrently if the sequence of locking for the first transaction is IS, IS, IS, and S

and for the second transaction IX, IX, IX, and X.

12.4.4 Tree-Locking Protocol

Let us assume that the storage structure of the database is in the form of a tree of

data-items, as shown in Figure 12.19 Then a locking protocol called a tree locking

protocol can be defined as follows:

• All locks are exclusive locks.

• Locking a node does not automatically lock any descendant of the locked node.

• The first item locked by a transaction can be any data-item including the root

node.

• Except for the first data-item locked by a transaction, a node cannot be locked

by a transaction unless the transaction has already successfully locked its parent.

• No items are locked twice by a transaction; thus, releasing a lock on a data-item

implies that the transaction will not attempt another lock on the data-item.

A schedule for a set of transactions such that each transaction in the set uses the

tree locking protocol can be shown to be serializable. Note that the transactions need

Chapter 12 Concurrency Management 582

not be two phase and they are allowed to unlock an item before locking another item.

The only requirement is that the transaction must have a lock on the parent of the

node being locked and that the item was not previously locked by the transaction.
Consider the database of Figure 12.19. A transaction, for instance Ta, can start

off by locking the entire database. Then it proceeds to lock Portion,„ Record Type,

and Record Type2. At this point it unlocks the database and then locks record occur¬

rences R,, and R2„ followed by unlocking Portion,, and Record Type2. Another

transaction, Tb, can then proceed by first locking Record Type2 followed by locking

record occurrences R22. The first transaction can now lock record occurrence R12.

The advantage of the tree-locking protocol over the two-phase locking protocol

is that a data-item can be released earlier by a transaction if the data-item (and of

course, any of its yet unlocked descendants in the subtree rooted at the data-item) is

not required by the transaction. In this way a greater amount of concurrency is fea¬

sible. However, since a descendant is not locked by the lock on a parent, the number

of locks and associated locking overhead, including the resulting waits, is increased.

1 2.4.5 DAG Database Storage Structure

The use of indexes to obtain direct access to the records of the database causes the

hierarchical storage structure to be converted into a directed acyclic graph (DAG)

as shown in Figure 12.20. The locking protocol can be extended to a DAG structure;

the only additional rule is that to lock a node in the IX, SIX, or X modes, all the

parents of the node have to be locked in a compatible mode that is at least an IX

mode. Thus, no other transaction can get a lock to any of the parents in the S, SIX,

or X modes. This is illustrated in Example 12.5.

Example 12.5 To add a record occurrence to the Record Type,, which uses an index, for

direct access to the records, the sequence of locking is as follows; (1) lock

the database in the IX mode, (2) lock Portion, in the IX mode, (3) lock

Record Type, and index, in the X mode. With this method of locking, the

phantom phenomenon is avoided at the expense of lower concurrency. ■

Figure 12.20 Sample DAG database storage structure.

12.5 Timestamp-Based Order 583

As in the case of two-phase locking, deadlock is possible in the locking scheme

using hierarchical granularity of locking. Additional details regarding references

to techniques to reduce and eliminate such deadlock are cited in the bibliographic
notes:

12.5 Timestamp-Based Order

In the timestamp-based method, a serial order is created among the concurrent trans¬

action by assigning to each transaction a unique nondecreasing number. The usual

value assigned to each transaction is the system clock value at the start of the trans¬

action, hence the name timestamp ordering. A variation of this scheme that is used

in a distributed environment includes the site of a transaction appended to the system-

wide clock value. This value can then be used in deciding the order in which the

conflict between two transactions is resolved. A transaction with a smaller timestamp

value is considered to be an “older” transaction than another transaction with a
larger timestamp value.

The serializability that the system enforces is the chronological order of the

timestamps of the concurrent transactions. If two transaction Tj and Tj with the time

stamp values tj and tj respectively, such that tj < tj, are to run concurrently, then the

schedule produced by the system is equivalent to running the older transaction Tj

first, followed by the younger one, Tj.

The contention problem between two transactions in the timestamp ordering sys¬

tem is resolved by rolling back one of the conflicting transactions. A conflict is said

to occur when an older transaction tries to read a value that is written by a younger

transaction or when an older transaction tries to modify a value already read or writ- \

ten by a younger transaction. Both of these attempts signify that the older transaction

was “too late” in performing the required read/write operations and it could be using

values from different “generations” for different data-items.

In order for the system to determine if an older transaction is processing a value

already read by or written by a younger transaction, each data-item has, in addition

to the value of the item, two timestamps: a write timestamp and a read timestamp.

Data-item X is thus represented by a triple X: {x, Wx, Rj where each component of

the triple is interpreted as given below:

x, the value of the data-item X

Wx, the write timestamp value, the largest timestamp value of any transaction that was

allowed to write a value of X.

Rx, the read timestamp value, the largest timestamp value of any transaction that was

allowed to read the current value X.

Now let us see how these timestamp values find their way into the data structure

of a data-item and how all these values are modified. A transaction Ta with the

timesteamp value of ta issues a read operation for the data-item X with the values

{x, Wx, Rx}.

• This request will succeed if ta > Wx, since transaction Ta is younger than the

transaction that last wrote (or modified) the value of X. Transaction Ta is

584

Figure 12.21

Chapter 12 Concurrency Management

allowed to read the value x of X and if the value ta is larger than Rx, then ta

becomes the new value of Rx.

• This request will fail if ta < Wx, i.e., transaction Ta is an older transaction than

the last transaction that wrote the value of X.

The failure of the read request is due to the fact that the older transaction was

trying to read a value that had been overwritten by a younger transaction. Transaction

T is too late to read the previous outdated value and any other values it has acquired

are likely to be inconsistent with the updated value of X. It is thus safe to abort and

roll back Ta. Ta is assigned a new timestamp and restarted.
A transaction Ta with the timestamp value of ta issues a write operation for the

data-item X with the values {x, Wx, Rj.

• If ta > Wx and ta > Rx, i.e. both the last transaction that updated the value of

X and the last transaction that read the value of X are older than transaction Ta,

then Ta is allowed to write the value of X and ta becomes the current value of

Wx, the write timestamp.

• If ta < Rx, it means that a younger transaction is already using the current value

of X and it would be an error to update the value of X. Transaction Ta is not

allowed to modify the value of X. Ta is rolled back and its timestamp is reset to

the current system-generated timestamp value and restarted.

• If Rx < ta < Wx, this means that a younger transaction has already updated the

value of X, and the value that Ta is writing must be based on an obsolete value

of X and is obsolete. Transaction Ta is not allowed to modify the value of X;

its write operation is ignored.

The reason for ignoring the write operation in the last alternative is as follows.

In the serial order of transaction processing, transaction Ta with the timestamp of ta

wrote the value for the data-item X. This was followed by another write operation to

the same data-item by a younger transaction with a timestamp of Wx. No transaction

read the data-item between the writing by Ta and the time Wx. Hence, ignoring the

Transactions for Examples 12.6, 12.7, 12.9.

Transaction T22 Transaction T23

Sum : = 0

Read(A)

Sum : = Sum + A

Read (B)

Sum : = Sum + B

Show (Sum)

Sum : = 0

Read(A)

A := A - 100

Write(A)

Sum : = Sum + A

Read (B)

B := B + 100

Write!#)

Sum : = Sum + B

Show(Sum)

12.5 Timestamp-Based Order 585

writing by Ta indicates that the value written by Ta was immediately overwritten by
a younger transaction at time Wx.

Let us illustrate the timestamp ordering by considering transactions T22 and T23

given below in Figure 12.21. Each of these transactions has a local variable Sum and

the intent is to show a user the sum of two data-items A and B. However, transaction

T23 not only reads these values, it also transfers 100 units from A to B and writes the

modified values to the database. Now let us suppose that t23 > t22. This means that

transaction T23 is younger than transaction T22. Also, let the data-items A and B be

stored as follows (here the Wj’s and R;’s have some values assumed to be less than
t22 and t23):

A: 400, Wa, Ra B: 500, Wb, Rb

Example 12.6 Consider the transactions of Figure 12.21. In the schedule given in Figure

E transactions T22 (t22) and T23 (t23) run concurrently and produce the correct

result. A similar serializable schedule could have been obtained using the

two phase locking protocol. (See Exercise 12.5.)

Serializable schedule based on timestamp scheme.

Step Schedule Transaction T22 Transaction T23

1 Sum : = 0 Sum : = 0

2 ReadfA) Read(A)
3 Sum : = Sum + A Sum : = Sum -1- A

4 Sum : = 0 Sum : — 0

5 Read(A) ReadfA)

6 A := A - 100 A : = A - 100

7 Write(A) Write(A).^

8 Read (B) Read(fi)
9 Sum : = Sum + B Sum : = Sum + B

10 Show (Sum) Show(Sum)

11 Sum : = Sum + A Sum : = Sum + A

12 Read(5) Read (B)

13 B : = B + 100 B := B + 100

14 Write(fi) Write(fi)

15 Sum : = Sum -1- B Sum : = Sum + B

16 Show (Sum) Show (Sum)

The steps of the schedule of Figure E cause the following modifications

to the triple for A and B:

B: 500, Wb, Rb

B: 500, Wb, Rb

Initially

After step 2

A- 400, W„ Ra

A.' 400, Wa, t22

586 Chapter 12 Concurrency Management

After step 5

After step 7

After step 8

After step 10

After step 12

After step 14

A: 400, W„ t23 B: 500, Wb, Rb

A: 300, t23, t23 B: 500, Wb, Rb

A: 300, t23, t23 B: 500, Wb, t22

the value displayed will be 900

A: 300, t23, t23 B: 500, Wb, t23

A: 300, t23, t23 ^ B. 600, t23, t23

After step 14 the value displayed will be 900

In the following example we illustrate a schedule where the older transaction is

rolled back.

Example 12.7 Figure F Serializable schedule produced after a rollback.

Step Schedule Transaction T22 Transaction T23

1 Sum : — 0 Sum : = 0

2 Sum : = 0 Sum : = 0

3 ReadfA) ReadfA)

4 A := A - 100 A : = A — 100

5 WritefA) WritefA)

6 ReadfA) ReadfA)* causes a rollback of T22

7 Sum : = Sum + A Sum : = Sum + A

8 ReadfB) Readf5)

9 B := B + 100 B := B + 100

10 WritefR) WritefS)

11 Sum : = Sum + B Sum : = Sum + B

12 Show (Sum) Show (Sum)

13 Sum : — 0 Sum := 0 with a timestamp t22'(> t23)

14 ReadfA) ReadfA)

15 Sum : = Sum + A Sum : = Sum + A

16 Readffi) Readffi)

17 Sum : = Sum + B Sum : = Sum + B

18 ShowfSnm) Show (Sum)

Consider the schedule shown in Figure F. Transaction T22 is rolled back and

rerun after step 6. When it is rolled back, a new timestamp value t22' which

would be greater than t23, is assigned to it. The sequence of changes is given
below:

Initially A: 400, Wa, Ra B: 500,Wb,Rb

After step 3 A: 400, Wa, t23 B: 500,Wb,Rb

After step 5 A: 300, t23, t23 B: 500,Wb,Rb

After step 6 A: 300, t23, t23 B: 500, Wb,Rb*

(*causes a rollback of T22 which would be reassigned a new

timestamp (t22\ > t23) and would be reexecuted)

12.5 Timestamp-Based Order 587

After step 8 A: 300, t23, t23 B: 500,Wb,t23

After step 10 A: 300, t23, t23 B: 600, t23, t23

After step 12 the value displayed will be 900

After step 14 A: 300, t23, t22' B: 600,t23. t23

After step 16 A: 300, t23, t22' B: 600,t23. t22'

After step 18 the value displayed will bq 900 /'■

Example 12.8 below illustrates a case where the write operation of a transaction
could be ignored.

Example 12.8 In the example illustrated in Figure G, we have three transactions. T24. T23,

and T26 with timestamp values of t24, t25, and t26 respectively (t24 < t2? <

t26). Note that transactions T24 and T26 are write-only with respect to data-
item B.

Figure G Another serializable schedule.

Step Schedule Transaction T24 Transaction T25 Transaction T

1 ReadfAJ ReadfAJ
2 A : = A + 1 A := A + 1
3 WritefAj WritefAj
4 ReadfCj ReadfO
5 C := C * 3 C := C * 3
6 Readf C) ReadfCj
7 WritefCJ WritefO* causes a rollback

8 C := C * 2
of transaction T23

C := C * 2

9 WritefCj Writ e(C)

10 B := 100 B := 100
11 WriteffiJ Writeffij
12 B := 150 B := 150

Q © Write(fi) Writeffij** causes the write operation to

14 ReadfCJ

be ignored

ReadfCJ

15 C := C * 3 C := C * 3

16 WritefCj WritefCJ

Initially

After step 1

After step 3

After step 4

After step 5

A: 10. Wa, Ra

A: 10, Wa, t24

A: 11, t24, t24

A: 11, t24, t24

A: 11, t24, t24

B: 50, W„. Rh

B: 50, Wb, Rb

B: 50, Wb, Rb

B: 50, Wb, Rb

B: 50, Wb, Rb

C: 5, Wc, R>

C. 5, W~RC

C: 5, Wc, Rc

C: 5, Wc, t25

C. 5, Wc, t25

588 Chapter 12 Concurrency Management

After step 6 A: 11, t24, t24 B: 50, Wb, Rb C. 5, Wc, t26

At step 7 transaction T25 with a timestamp value of t25 attempts to write

the value of C; however, since the read timestamp value of C is t26, which

is greater than t25, transaction T25 would be rolled back; the trans¬

action would be reassigned a timestamp value of, say, t25'(> t26)-and rerun

at step 14.

After step 9 A: 11, t24, t24 B: 50, Wb, Rb C: 10, t26, t26

After step 11 A: 11, t24, t24 /i.(^100j)t26, Rb C: 10, t26, t26

At step 13, the attempt by transaction T24 to write a value of B is ignored

since t24, the timestamp of T24, is less than the write timestamp (t26) of B,

and greater than the read timestamp value (Rb) of B.

After step 14 A: 11, t24, t24 B: 100, t26, Rb C: 10, t26, t25'

After step 16 A: 11, t24, t24 B: 100, t26, Rb C: 30, t25', t25' ■

It is obvious from the above examples that the timestamping scheme ensures

serializability without waiting but causes transactions to be rolled back. Since there

is no waiting there is no possibility of a deadlock. However, when transactions are

rolled back, a cascading rollback may be needed. For instance, if transaction T22

had written a value for a data-item Q before it was rolled back, this data-item value

must be restored to its old value. If another transaction, T', had used the modified

value of the data-item Q, transaction T' has to be rolled back as well.
The cascading rollback could be avoided by disallowing the values modified by

a transaction until the transaction commits. This adds additional overhead and re¬

quires waiting as in the case of the locking scheme. Furthermore, the waiting can

cause a deadlock!

12.6 Optimistic Scheduling

In the locking scheme, a transaction does a two-pass operation. In the first pass it

locks all the data-items it requires and if all locks are successfully acquired, it goes

through the second pass of accessing and modifying the required data-items. In the

optimistic scheduling scheme, the philosophy is to assume that all data-items can

be successfully updated at the end of a transaction and to read in the values for data-

items without any locking. Reading is done when required and if any data-item is

found to be inconsistent (with respect to the value read in) at the end of a transaction,

then the transaction is rolled back. Since a DBMS normally has a built-in rollback

facility for recovery operations, the optimistic approach does not require any addi¬

tional components. For most transactions, which access the database for read-only

operations and modify disjoint sets of data-items, the optimistic scheduling scheme
performs better than the two-pass locking approach.

In the optimistic approach, each transaction is made up of three phases: the read

phase, the validation phase, and the write phase. The read phase is not constrained

but the write phase is severely constrained; any conflicts could cause a transaction to

be aborted and rolled back. Note that displaying a value of a data-item or a derived

value of a set of data-items to a user is equivalent to a write operation (even though

589 12.6 Optimistic Scheduling

no items are modified). The optimistic technique uses a timestamp method to assign

an unique identifier to each transaction, as well as for the end of the validation and
write phases. The three phases are described below.

Read phase: This phase starts with the activation of a transaction and is consid¬

ered to last until the commit. All data-items are read into local variables and any
modifications that are made are only to these local copies.

Validation phase: For data-items that were read, the DBMS will verify that the

values read are still the current values of the corresponding data-items. For data-

items that are modified (a deletion and an insertion can be considered as modifica¬

tions), the DBMS verifies that the modifications will not cause the database to be¬

come inconsistent. Any change in the value of data-items read or any possibility of

inconsistencies due to modifications causes the transaction to be rolled back.

Write phase: If a transaction has passed the validation phase, the modifications
made by the transaction are committed.

The three timestamps associated with the transactions are the following:

• tSi: The start timestamp for transaction Tj. We assume that a transaction starts
its read phase when it starts.

• tvi: The timestamp for transaction Tj when it finishes its read phase and starts its

validation phase. This will occur when the transaction completes. All writes

prior to the start of the validation phase will be to local copies of database items

and these local copies will not be accessible to other concurrent transactions.

• twi: The timestamp for transaction Tj when it completes its write phase. The

write phase will only start if the transaction completes the validation phase

successfully. After the write phase, all modifications are reflected in the
database.

A transaction such as Tj can complete its validation phase successfully if at least

one of the following conditions is satisfied:

• For all transactions T; such that tsi < tsj, the condition tWj < tSj holds. This

condition ensures that all older transactions must have completed their write

phases before the requesting transaction began.

• For all transactions Ts such that tsi < ^j, i.e., for an older transactions, the data-

items modified by Tj must be disjoint from the data-items read by transactions

Tj. Furthermore, all older transactions must complete their write phase before

time tVj. Here tVJ is the time at which transaction Tj finishes its read phase and

starts its validation phase. This ensures that a younger transaction’s writes are

not overwritten by an older transition’s writes.

• For all transactions Tj such that tsi < tsj, i.e., for all older transactions, the data-
items modified must be disjoint from the data-items read or modified by

transactions Tj. Furthermore, tiv < tjV, which ensures that the older transaction,

Tj, completes its read phase before Tj completes its read phase. In this way the

older transaction cannot influence the read or write phase of Tr

Consider a schedule for a set of concurrent transactions. If each transaction in

this set can complete its validation phase successfully with at least one of the above

conditions, then the given schedule is serializable. Example 12.9 illustrates

optimistic scheduling.

590 Chapter 12 Concurrency Management

Example 12.9 Consider transactions T22 and T23 of Figure 12.21 and the schedule of Figure

H. The initial value; of A and B are as follows:

A: 400 B: 500

The progress of the concurrent execution of transactions T22 and T23

causes the following actions:
At steps 7 and 14, the write is only local and the actual write to the

database would be delayed until all reads are completed.
As step 10, before the value of Sum is displayed, the validation phase

for transaction T22 would find that there are no outstanding writes from older

transactions and its validation will be successful; the value of Sum would be

displayed.
At step 16, before the value of Sum is displayed, the validation phase

for transaction T23 would find that there are no outstanding writes from older

transactions and its validation would be successful. Consequently the writes

to A and B as well as the display of Sum would be completed.

Figure H Example of optimistic scheduling.

Step Schedule Transaction T22 Transaction T23

1 Sum : = 0 Sum : = 0

2 Sum : = 0 Sum : = 0

3 ReadfA) Readf A)

4 'ii i ©

o
 o

o

 1 II

5 ReadfA) Read(A)
6 Sum : = Sum + A Sum : = Sum + A

, 7 WritefAj WritefAj

8 Readf5^ Readf B)
9 Sum : = Sum + B Sum : = Sum + B

10 Show(Swm) Sho w (Sum)

11 Sum : = Sum + A Sum : = Sum + A

12 Readfflj Read (B)
13 B := B + 100 B := B + 100
14 WritefflJ WritefBj
15 Sum : = Sum + B Sum : = Sum + B
16 Show (Sum) Show (Sum)

As the optimistic scheme does not use locks, it is deadlock free even though

starvation can still occur. This is because a popular item, for instance an index, can

be used by many transactions and each transaction could cause it to be modified as a

result of insertions or deletions. An older transaction can thus fail its validation phase

continuously. The method of solving this problem involves resorting to some form
of locking.

12.7 Multiversion Techniques 591

Multiversion Techniques

In the concurrency control schemes discussed so far, the arbitration that produced

serializable schedules was required when one or more of the concurrent transactions

using a part of the database needed to modify the data-item. Any modifications to

data required that the transaction have exclusive use of the data, and other trans¬

actions would be locked out or aborted until the lock on the data-item was released.

In a database system that uses the multiversion concurrency scheme, each write

of a data-item, e.g., X, is achieved by making a new copy or version (hence the

name multiversion) of data-item X. The multi version scheme, which is also called a

time domain addressing scheme, follows the accounting principle of never over¬

writing a transaction. Any changes are achieved by entering compensating trans¬

actions. In this way, a history of the evolution of the value of a data-item is recorded

in the database. As far as the users are concerned, their transaction running on a

system with multiversions will work in an identical manner as a single version
system.

For data-item X the database could keep the multiversion in the form of a set of

triples consisting of the value, the time entered, and the time modified as shown
below:

Variable: {{value, time entered, time modified}, { . . . }, . . . }

X: {{x0, to, t,}, {xj, t,, t2}, . . . , {xn, tn, tp}}

Here the value of the data-item X is initially x0 and this value is entered in the

database at time to- At time t,, the value is modified to x,. The value xn entered at

time tn is the last update made to data-item X. Having many versions of a data-item,

it is easy to know that the value of X from time to to t| was x0 and so on.

When a transaction needs to read a data-item such as X for which multiple

versions exist, the DBMS selects one of the versions of the data-item. The value read

by a transaction must be consistent with some serial execution of the transaction with

a single version of the database. Thus, the concurrency control problem is transferred

into the selection of the correct version from the multiple versions of a data-item.

With the multiversion technique, write operations can occur concurrently, since

they do not overwrite each other. Furthermore, the read operation can read any ver¬

sion. This results in greater flexibility in scheduling concurrent transactions. Many

schemes have been proposed for controlling concurrency using the multiversion ap¬

proach. We discuss one such scheme based on timestamping below. Concurrency

control ensures, among other things, that no new version of a data-item is created

such that it is based on a version that already may have been used to create yet

another version. In this way the phenomenon of lost update could be avoided.

In order to choose the correct version of data to be read by a given transaction,

the multiversion timestamping scheme uses the timestamp ordering of the concurrent

transactions and the time parameters associated with each version of the data-items

to be used by a transaction. The timestamping of transactions was discussed earlier

in Section 11.5. As mentioned above, there are two time values associated with each

version of a data-item X. These are the write timestamp, Wx, and the read time-

stamp, Rx.

592 Chapter 12 Concurrency Management

The write timestamp of a version of a data-item is the timestamp value of the

transaction that wrote the version of the data-item. In other words, a value of the

data-item X with the write timestamp value Wx was written by a transaction with a

timestamp value of Wx. Note, that here we are ignoring the time lapse from the start

of the transaction to the generation of the new version. The timestamps are in reality

pseudotimes and a nondecreasing counter can be used instead of a timestamp with

similar results.
The read timestamp of a version of a data-item is the timestamp value of the

most recent transaction that successfully read the version of the data-item. A version

of the data-item with the read timestamp of Rx was read by a transaction with a

timestamp value of Rx. The read timestamp value is the same as the time of modifi¬

cation of the value of the data-item, if another version of the data-item exists; oth¬

erwise it remains the most recent version of the data-item. This is because a new

version usually will not be created without first reading the current most recent ver¬

sion.
If a transaction Tj with a time stamp value of writes a value Xj for the kth

version of a data-item X, then the kth version of X will have the value Xj. Wxk, the

write timestamp value, and Rxk, the read timestamp value of Xk will both be initial¬

ized to tj.
A transaction needing to read the value of data-item X is directed to read that

version of X that was the most recent version, with respect to the timestamp ordering

of the transaction. We call this version the relative-most-recent version. Thus, if a

transaction Ta with the timestamp value of ta needs to read the value of data-item X,

it will read the version Xj such that Wxj is the largest write timestamp value of all

versions of X that is less than or equal to ta. The read timestamp value of version Xj

of X, read by transaction Ta, is updated to ta if ta > RXJ.

A transaction Ta, wanting to modify a data-item value will first read the relative-

most-recent version Xj of data-item X. When it tries to write a new value of X, one

of the following actions will be performed:

• A new version of X, e.g., version Xj', is created and stored with the value Xj'

and with the timestamp values of Wxj' = Rxj' = ta, if the current value of

RXj < ta. This ensures that transaction Ta was the most recent transaction to

read the value of version Xj, and no other transaction has read the value that

was the basis of updating by Ta.

• Transaction Ta is aborted and rolled back if the current value of RXJ > ta. The

reason is that another younger transaction has read the value of version Xj and

may have used it and/or modified it. Transaction Ta was too late and it should

try to rerun to obtain the current most recent version of the value of X.

It is easy to see that the value of the write timestamp is the same as the time of

generation of a new version of the value of a data-item, and the read timestamp value

is the same as the time of modification of the value of the data-item.

A transaction Ta with a timestamp value of ta, writing a new version of a data-

item X without first reading, creates a new version of X with the write timestamp
and read timestamp values of ta.

It can be shown that any schedule generated according to the above requirements

is serializable, and the result obtained by a set of concurrent transactions is the same

as that obtained by some serial execution of the set with a single version of the data-
items.

12.7 Multiversion Techniques 593

Example 12.10 Consider the schedule given in Figure I for two concurrent transactions T22

and T23 of Figure 12.21. Suppose the multiversion technique is used for

concurrency control. Assume initially that a single version exists for data-
items A and B with their initial values being:

A: {{ 400, Wa, RJ} and B: {{ 500, Wb, Rb}}

Transaction T22 has a timestamp value of t22; transaction T23 has a times¬
tamp value of t23.

t22 < t23, Wa < t22, Ra < t22, Wb < t22, Rb < t22

The modifications after the following steps are:

After step 3

After step 5

After step 6

After step 8

After step 10

After step 12

After step 14

After step 16

A: {{400, Wa, t23}}

B: {{500, Wb, Rb}}

A: {{400, Wa, t23}, {300, t23, t23}}

B: {{500, Wb, Rb}}

A: {{400, Wa, t23}, {300, t23, t23}}

B: {{ 500, Wb, Rb}}

A: {{400, Wa, t23}, {300, t23, t23}}

B: {{500, Wb, t22}}

the value shown by T22 is 900

21: {{400, Wa, t23}, {300, t23, t23}}

B: {{500, Wb, t23}}

A: {{400, Wa, t23}, {300, t23, t23}}

B: {{ 500, Wb, t23}, {600, t23, t23}}

the value shown by T23 is 900

Figure I Schedule for the multiversion technique.

Step Schedule Transaction T22 Transaction T23

1 Sum : = 0 Sum : = 0

2 Sum : = 0 Sum : = 0

3 Read(A) ReadfA)

4 A := A - 100 A := A - 100

5 WritefA) Write(A)

6 ReadfA) ReadfAJ

7 Sum : = Sum + A Sum : = Sum + A

8 Read(fl) Read (B)

9 Sum : = Sum + B Sum : = Sum + B

10 Show (Sum) Show (Sum)

11 Sum : = Sum + A Sum : = Sum +

12 Readffij Read(B{

13 B := B + 100 B := B + 100

14 Writer WriteffiJ

15 Sum : = Sum + B Sum : = Sum +

16 Show (Sum) Show(Sum)

594 Chapter 12 Concurrency Management

12.8

Note: If the value of timestamp t22 were larger than the value of timestamp t23 (i.e.,

transaction T22 was younger than transaction T23), then at step 5 transaction T23 will

be aborted and rolled back. (See Exercise 12.7.)
The multiversion scheme never causes a read operation to be delayed however,

the overhead of the read operation is a search for the correct version of the value of

the data-item and an update of the read timestamp of the version of the value read.

This is advantageous if the majority of database operations are reads and only one

version is likely to exist for most of the data-items. The locking overhead is traded

for the overhead of updating the read timestamp. But this gets expensive when an

entire file is to be processed and thousands of records are read, requiring the writing

of the read timestamp for many records!
Another drawback of the multiversion scheme is that instead of forcing trans¬

actions that modify data-items to wait, it allows them to proceed with the caveat that

any transaction could be rolled back if a younger transaction reads the same value as

an older transaction and the older transaction is too late in modifying the value.

Serializability is achieved by rollback, which could result in cascading and hence be

quite expensive.
The deadlock problem is not possible in the timestamp-based multiversion

scheme, though cascading rollback is possible. This problem can be avoided by not

allowing other transactions to use the versions created by uncommitted transactions.

Deadlock and its Resolution

12.8.1

In the concurrent mode of operation each concurrently running transaction may be

allowed to exclusively claim one or more of a set of resources. Some of the problems

with this mode of operations are that of deadlock and starvation, which we illustrate

with the following examples. Here Ta, Tb, Tc, . . . , Tn are a set of concurrent

transactions and ra, rb, rc, . . . , rm are a set of shared data-items (resources). Each

transaction can claim any number of these data-items exclusively.

Suppose we have a situation where transaction Ta has claimed data-item ra and

is waiting for data-item rb. Data-item rb, however, has been claimed by transaction

Tb, which in turn is waiting for data-item rc. This chain of transactions holding some

data-items and waiting for additional data-items continues until we come to trans¬

action T„ which has claimed data-item r, and is waiting for data-item ra. We know

that data-item ra is held by transaction Ta! If none of these transactions is willing to

release the data-items they are holding, none of these transactions can proceed. This
is deadlock.

The situation of starvation can occur if there is a transaction waiting for data-

item r;. However, the resource allocation method used by the system, along with the

mix of transactions, is such that every time resource r,, becomes available, it is

assigned to some other transaction. This results in transaction Tj having to continue
to wait. (Not unlike waiting for Godot.)

Deadlock Detection and Recovery

In the deadlock detection and recovery approach, the philosophy is to do nothing to

avoid a deadlock. However, the system monitors the advance of the concurrent trans-

12.8 Deadlock and Its Resolution 595

actions and detects the symptoms of deadlock, namely, a chain of transactions all

waiting for a resource that the next transaction in the chain has obtained in an exclu¬
sive mode.

The reason for this philosophy is that if deadlocks are rare, then the overhead

of ensuring that there is no deadlock is very high, and the occasional deadlock and

recovery from it is a small price to pay for doing nothing until a deadlock actually

develops. In addition, deadlock avoidance schemes avoid all potential deadlocks,
even those that do not translate into an actual deadlock.

In order for the system to detect a deadlock, it must have the following infor¬
mation:

• the current set of transactions

• the current allocations of data-items to each of the transactions

• the current set of data-items for which each of the transactions is waiting.

The system uses this information and applies an algorithm to determine if some

proper subset of these transactions are in a deadlock state. If the system finds this to

be the case, it attempts to recover from the deadlock by breaking the cyclic chain of
waiting transactions.

We present below an algorithm for deadlock detection and a method of re¬
covery.

Deadlock Detection

A deadlock is said to occur when there is a circular chain of transactions, each

waiting for the release of a data-item held by the next transaction in the chain. The

algorithm to detect a deadlock is based on the detection of such a circular chain in

the current system wait-for graph. The wait-for graph is a directed graph and con¬

tains nodes and directed arcs; the nodes of the graph are active transactions. An arc

of the graph is inserted between two nodes if there is a data-item required by the

node at the tail of the arc, which is being held by the node at the head of the arc. If

there is a transaction, such as T;, waiting for a data-item that is currently allocated

and held by transaction Tp then there is a directed arc from the node for transaction

Tp to the node for transaction Tj.

Figure 12.22 gives examples of the wait-for graph. In part a we have the follow¬

ing situation:

• Transaction T27 is waiting for data-items locked by transactions T28 and T31.

• Transaction T28 is waiting for data-items locked by transactions T29 and T30.

• Transaction T29 is waiting for data-items locked by transactions T31 and T32.

• Transaction T30 is waiting for data-items locked by transaction T3I.

• Transaction T32 is waiting for data-items locked by transaction T33.

• Transaction T33 is waiting for data-items locked by transaction T3I.

In the wait-for graph of Figure 12.22a there are no cycles, hence the correspond¬

ing set of transactions is free from deadlock.
Figure 12.22b represents the state of the system after a certain period of time,

when transaction T3I makes a request for a data-item held by transaction T28. This

request, assuming no previous requests depicted in the wait-for graph of part a have

596 Chapter 12 Concurrency Management

Figure 12.22 Wait-for graph showing (a) no cycle and hence no deadlock; (b) a cycle and hence a

deadlock. _

been satisfied, adds the arc from the node for transaction T3| to the node for trans¬

action T28. The addition of this arc causes the wait-for graph to have a number of

cycles. One of these cycles is indicated by the arc from transaction T28 to transaction

T30, then, from transaction T30 to T3), and finally from T31 back to T28. Consequently

part b represents a situation where a number of sets of transactions are deadlocked.

Since a cycle in the wait-for graph is a necessary and sufficient condition for

deadlock to exist, the deadlock detection algorithm generates the wait-for graph at

regular intervals and examines it for a chain. If the interval chosen is very small,

deadlock detection will add considerable overhead; if the interval chosen is very

large, there is a possibility that a deadlock will not be detected for a long period.

The choice of interval depends on the frequency of deadlocks and the cost of not

detecting the deadlocks for the chosen interval. The overhead of keeping the wait-

for graph continuously, adding arcs as requests are blocked and removing them as

locks are given up, would be very high.

The deadlock detection algorithm is given on page 598. In this algorithm we

use a table called Wait_for table. It contains columns for each of the following:

transaction IDs; the data-items for which they have acquired a lock; and the data-

items they are waiting for (these wait-for items are currently locked in an incompat¬

ible mode by other transactions). The algorithm starts with the assumption that there

is no deadlock. It locates a transaction, Ts, which is waiting for a data-item. If the

data-item is currently locked by transaction Tr, the latter is in the wait-for graph. If

597 12.8 Deadlock and Its Resolution

Tr in turn is waiting for a data item currently locked by transaction Tp, this trans¬

action is also in the wait-for graph. In this way the algorithm finds all other trans¬

actions involved in a wait-for graph starting with transaction Ts. If the algorithm

finally finds that there is a transaction Tq waiting for a data-item currently locked by

Ts, the wait-for graph leads back to the starting transaction. Consequently the algo¬

rithm concludes that a cycle exists in the wait-for graph and there is a potential
deadlock situation.

Example 12.11 Consider the wait-for table of Figure J. The wait-for graph for the trans¬

actions in this chain is given by Figure 12.22a. It has no cycles and hence

there are no deadlocks. However, if transaction T3[makes a request for

data-item C, the wait-for graph is converted into the one given in Figure

12.22b. This graph has a cycle that starts at transaction T28, goes through

transactions T30, T3); and back to T28, and Algorithm 12.2 detects it. There
are other cycles as well.

Figure J Wait-for table for Example 12.11.

Transaction_Id Data_items_locked Data_items_waiting_for

T 27 B C,A

T28 C,M H,G

t29 H D, E

T30 G A

T31 A, E (C)

T32 D, 1 F

t33 F E

An adaptive system may initially choose a fairly infrequent interval to run the

deadlock detection algorithm. Every time a deadlock is detected, the deadlock detec¬

tion frequency could be increased, for example, to twice the previous frequency and

every time no deadlock is detected, the frequency could be reduced, for example, to

half the previous frequency. Of course an upper and lower limit to the frequency

would have to be established.

Recovery from Deadlock

To recover from deadlock, the cycles in the wait-for graph must be broken. The

common method of doing this is to roll back one or more transactions in the cycles

598 Chapter 12 Concurrency Management

Algorithm

12.2 Deadlock Detection

Input and

Data

Structure

Used:

Output

A table called Wait_for_Table that contains: transaction IDs, the data-items

they have acquired a lock on, and the data-items they are waiting for (these

wait-for items are currently locked in an incompatible mode by other trans¬

actions). A Boolean variable Deadlock-situation. A first-in, first-out stack,

Transaction—stack, to hold transaction IDs: this stack will contain the trans¬

actions in a deadlocked chain if a deadlock is detected.

Whether the system is deadlocked and if so, the transactions in the cycle.

Initialize Deadlock-Situation to false;

Initialize Transaction-stack to empty;
for next transaction in table while not Deadlock-Situation

begin

Push next Transaction ID into Transaction-stack ;

for next Data_item_waiting_for of

transaction on top of Transaction-stack and

while not Deadlock-Situation

and not Transaction-Stack empty

begin

D_next : = next Data_item_waiting_for

find Tran_ID of transaction which has locked D_next

i/'Tran_ID is in stack

then Deadlock-Situation : = true

else Push Tran_ID to Transaction-Stack

end

Pop Transaction-stack

end

until the system exhibits no further deadlock situation. The selection of the trans¬
actions to be rolled back is based on the following considerations:

• The progress of the transaction and the number of data-items it has used and

modified. It is preferable to roll back a transaction that has just started or has

not modified any data-item, rather than one that has run for a considerable time
and/or has modified many data-items.

• The amount of computing remaining for the transaction and the number of data-

items that have yet to be accessed by the transaction. It is preferable not to roll

back a transaction if it has almost run to completion and/or it needs very few
additional data-items before its termination.

• The relative cost of rolling back a transaction. Notwithstanding the above

considerations, it is preferable to roll back a less important or noncritical
transaction.

12.8 Deadlock and Its Resolution 599

Once the selection of the transaction to be rolled back is made, the simplest

scenario consists of rolling back the transaction to the start of the transaction, i.e.,

abort the transaction and restart it, de nouveau. If, however, additional logging is

done by the system to maintain the state of all active transactions, the rollback need

not be total, merely far enough to break the cycle indicating the deadlock situation.

Nonetheless, this overhead may be excessive for many applications.

The process of deadlock recovery must also ensure that a given transaction is

not continuously the one selected for rollback. If this is not avoided, the transaction

will never (or at least for a period that looks like never) complete. This is starving a
transaction!

12.8.2 Deadlock Avoidance

In the deadlock avoidance scheme, care is taken to ensure that a circular chain of

processes holding some resources and waiting for additional ones held by other trans¬

actions in the chain never occurs. The two-phase locking protocol ensures serializa-

bility, but does not ensure a deadlock-free situation. This is illustrated in Example

12.12.

Example 12.12 Consider transactions T34 and T35 given in Figure K and the schedule of

Figure L. These are two-phase transactions; however, a deadlock situation

exists in Figure L, as transaction T34 waits for a data-item held by trans¬

action T35; later on, transaction T35 itself waits for a data-item held by T34,

which is already blocked from further progress.

Figure K Two-phase transactions.

Transaction T34 Transaction T35

Sum : = 0 Sum : = 0

Locks (A) LockxfZ?)

ReadfA) Read(Zl)

Sum : = Sum -1- A B : = B + 100

Locks(fl) Write(fi)

Read(fi) Sum : = Sum + B

Sum : = Sum + B LockxfA)

Show (Sum) UnlockfZ?)

Unlock(A) Read(A)

Unlockffij A := A — 100

WritefA)

UnlockfA)

Sum : = Sum + A

Show (Sum)

600 Chapter 12 Concurrency Management

Figure L Schedule leading to deadlock with two-phase transactions.

Schedule Transaction T34 Transaction T35

Sum : = 0 Sum := 0 «

LocksfAj LocksfA)

ReadfA) ReadfAj

Sum : = Sum + A Sum : = Sum + A

T Sum : = 0 Sum : = 0

i Lockxffij Lockx(5)

m Readffij Readffij

e B := B + 100 B := B + 100

Write(fl) Write(5j

Sum : = Sum + B Sum : = Sum + B

Locks (B) Locksffij* transaction T34 will wait

r Lockx(A) Lockx(A)* T35 will

One of the simplest methods of avoiding a deadlock situation is to lock all data-

items at the beginning of a transaction. This has to be done in an atomic manner,

otherwise there could be a deadlock situation again. The main disadvantage of this

scheme is that the degree of concurrency is lowered considerably. A transaction typ¬

ically needs a given data-item for a very short interval. Locking all data-items for

the entire duration of a transaction makes these data-items inaccessible to other con¬

current transactions. This could be the case even though the transaction holding a

lock on these data-items may not need them for a long time after it acquires a lock

on them.

Another approach used in avoiding deadlock is assigning an order to the data-

items and requiring the transactions to request locks in a given order, such as only

ascending order. Thus, data-items may be ordered as having rank 1, 2, 3, and so on.

A transaction T requiring data-items A (with a rank of i) and B (with a rank of j with

j > i) must first request a lock for the data-item with the lowest rank, namely A.

When it succeeds in getting the lock for A, only then can it request a lock for data-

item B. All transactions follow such a protocol, even though within the body of the

transaction the data-items are not required in the same order as the ranking of the

data-items for lock requests. This scheme reduces the concurrency, but not to
the same extent as the first scheme.

Another set of approaches to deadlock avoidance is to decide whether to wait or

abort and roll back a transaction, if a transaction finds that the data-item it requests

is locked in an incompatible mode by another transaction. The decision is controlled

by timestamp values. Aborted and rolled back transactions retain their timestamp

values and hence their “seniority.” So, in subsequent situations, they would even¬

tually get a “higher priority.” We examine below two such approaches called wait-
die and wound-wait.

12.8 Deadlock and Its Resolution 601

Figure 12.23 Example of wait-die deadlock prevention scheme.

Wait-Die

One solution in a case of contention for a data-item is as follows:

• If the requesting transaction is older than the transaction that holds the lock on

the requested data-item, the requesting transaction is allowed to wait.

• If the requesting transaction is younger than the transaction that holds the lock

on the requested data-item, the requesting transaction is aborted and rolled
back.

This is called the wait-die scheme of deadlock prevention.

If concurrent transactions T36, T37, and T38 (having timestamp values of t36, t37,

and t38, respectively, with t36 < t37 < t38) have at some instance a wait-for graph, as

shown in Figure 12.23, then transaction T36 would be allowed to wait, but trans¬
action T38 would be aborted and rolled back.

Wound-Wait

An opposite approach to the wait-die scheme is called the wound-wait scheme. Here

the decision whether to wait or abort is as follows:

• If a younger transaction holds a data-item requested by an older one, the

younger transaction is the one that would be aborted and rolled back (the

younger transaction is wounded by the older transaction and dies!).

• If a younger transaction requests a data-item held by an older transaction, the

younger transaction is allowed to wait.

For the request shown in Figure 12.24, where transaction T39 has a smaller

timestamp value than transaction T^, the younger transaction T40 would be aborted

and rolled back, thus freeing the data-item locked by it to be used by transaction T39.

For the request shown in Figure 12.25, where transaction T41 has a smaller

timestamp value than transaction T42, the younger transaction T42 is allowed to wait

for the completion of the older transaction T41.

We observe that in neither the wait-die scheme nor the wound-wait scheme is it

required to abort and roll back an older transaction. In this way the older transaction

Figure 12.24 Example of wounding request.

602 Chapter 12 Concurrency Management

Figure 12.25 Example of waiting request.

would eventually get all the data-items it needs and would run to completion. This

implies that this scheme minimizes problem of starvation. However, the waiting that

may be required by an older transaction could be significantly higher in the wait-die

scheme. This because the older transaction has to wait for younger transactions to

finish using popular data-items. On the other hand, in the wound-wait scheme, the

older a transaction gets, the greater its probability of acquiring a data-item. An older

transaction would force the abortion of any younger transaction that holds data-items

it needs, but would only be aborted by a transaction older than itself. However, as a

transaction gets older, the number of more senior transactions would decrease!

In the wait-die and the wound-wait schemes the first word of the scheme name

indicates what the older transaction does when there is contention for a data-item. In

the first scheme the older transaction waits for the younger transaction to finish; in

the second scheme, the older transaction wounds the younger transaction, which re¬

leases the data-item for the older transaction. The second component indicates what

a younger transaction does when there is a contention with an older transaction. In

the first scheme the younger transaction is aborted and in the second, the younger

transaction waits.
The number of aborts and rollbacks tend to be higher in the wait-die scheme

than in the wound-wait scheme. This because, when a younger transaction such as

Ty makes a requests for a data-item held by an older transaction, the younger trans¬

action is aborted and rolled back. However, it is reinitiated with the original time-

stamp, which it retains. The reinitiated transaction Ty will make the same requests

as in its last life, and it is likely that some of the data-items may still be held by

older transactions. So transaction Ty dies again, to be bom again, and so on. On the

other hand, in the wound-wait scheme the younger transaction Ty is aborted by an

older transaction because the younger transaction holds a data-item needed by the

older transaction. When transaction Ty is reinitiated, it will request the same data-

items as in its last life. However, these data-items may still be held by the older
transaction, hence the younger transaction merely waits.

In addition to deadlock, the problem of starvation (where one or more trans¬

actions are forced to wait indefinitely) is also possible. For example, the situation

can develop where, among the data-items required by some transaction, at least one
of them is found to be locked by another concurrent transaction.

In conclusion, we note that the disadvantage of requesting all data-items at the

beginning of a transaction, and the ordered data-item request method for deadlock

avoidance, is the potential lower degree of concurrency. The advantage of these

schemes is that there is no deadlock detection overhead. The disadvantage of the

wait-die or wound-wait deadlock avoidance schemes is that the request for a data-

item held by another transaction does not necessarily imply a deadlock. Hence, the
abort required in either of these schemes may be unnecessary.

12.10 Summary 603

1 2.9 Atomicity, Concurrency, and Recovery

The atomic property of a transaction has to be preserved under concurrent execution.

The atomicity requirement is an additional constraint to the serializability require¬

ment, which we discussed earlier. Nevertheless, concurrency and failure of a trans¬

action are both responsible for not preserving the atomicity requirements. These two

requirements force the situation known as cascading rollback, described earlier. Con¬

sider a case where a write operation modifies the database, as in the update in place

scheme (see Chapter 11). Following such write operations by a transaction and the

subsequent unlocking of the data-items, the updated values are accessible to other

concurrent transactions. However, the first transaction may have to be aborted and

rolled back. This implies that all transactions that used any data-item written by a

rolled-back transaction or any other data-item derived from such a data-item also

have to be undone, resulting in cascading rollback.

The method of avoiding a cascading rollback is to prevent transactions from

reading a data-item modified by an uncommitted transaction. One way of doing this

is to extend all locks to the point of committing a transaction, though this reduces

concurrency. Another approach requires that all writes to the database are to a log

and considered as tentative. A transaction commits after it has done all its write

operations. At the time of the commit, all tentative values are reflected in the data¬

base. Any transaction that needs a tentatively written data-item has to wait for the

transaction to commit. Alternatively, if a transaction is allowed to use a tentative

data value, it is marked for rollback in case the transaction that wrote the value is

aborted.

The locking scheme of concurrency control can be considered to require the

following steps: lock, read and/or write, unlock, commit. The timestamp scheme

requires three steps, as follows: read, write, and commit. Optimistic scheduling also

has three steps: read, validate, and write. The two latter schemes are preferable if

the expected number of contentions and the resulting number of rollbacks is relatively

low.

Summary

Concurrent access to a database by a number of transactions requires some type of

control to preserve the consistency of the database; to ensure that the modifications

made by the transactions are not lost; and to guard against transactions reading data

that are inconsistent. A number of concurrency control schemes were discussed in

this chapter.

Concurrent execution of transactions implies that the operations from these

transactions may be interleaved. This is not the same as serial execution of the trans¬

actions, where each transaction is run to completion before the next transaction is

started. The serializability criterion is used to test whether or not an interleaved ex¬

ecution of the operations from a number of concurrent transactions is correct. The

serializability test consists of generating a precedence graph from a interleaved exe-

604 Chapter 12 Concurrency Management

cution schedule. If the precedence graph is acyclic, the schedule is serializable,

which means that the database will have the same state at the end of the schedule as

some serial execution of the transactions.
The concurrency control scheme ensures that the schedule that can be produced

by a set of concurrent transactions will be serializable. One of two approaches is

usually used to ensure serializability: delaying one or more contending transactions,

or aborting and restarting one or more of the contending transactions. The locking

protocol uses the former approach. Timestamp-based ordering, optimistic scheduling,

and the multiversion technique of concurrency control use the latter.

In the locking protocol, before a transaction can access a data-item, it is required

to lock the data-item in an appropriate mode. It releases the lock on the data-item

once it no longer needs it. In the locking scheme, the two-phase locking protocol is

usually used. The principle characteristic of the two-phase locking protocol is that all

locks are acquired before a transaction starts releasing any locks. This ensures seri¬

alizability; however, deadlock is possible.

With hierarchically structured storage of the database and its data-items, a dif¬

ferent granularity of locking is implied. Thus, locking an item may imply locking all

items that are its descendants. To enhance the performance of a system with hierar¬

chically structured data, additional modes of locking are introduced. Thus, in addi¬

tion to read and write locks, intention locks are required. The locking protocol is

modified to require a root-to-leaf direction of lock requests and the reverse direction
of lock releases.

In timestamp-based ordering, each transaction is assigned an unique identifier,

which is usually based on the system clock. This identifier is called a timestamp and

the value of the time-stamp is used to schedule contending transactions. The rule is

to ensure that a transaction with a smaller timestamp (older) is effectively executed

before a larger (younger) transaction. Any variation from this rule is corrected by

aborting a transaction, rolling back any modifications made by it, and starting it
again.

In optimistic scheduling, the philosophy is that a contention between trans¬

actions will be very unlikely and any data-item used by a transaction is not likely to

be used for modification by any other transaction. This assumption is valid for trans¬

actions that only read the data-item. If this assumption is found to be invalid for a
given transaction, the transaction is aborted and rolled back.

In the multiversion technique, data is never written over; rather, whenever the

value of a data-item is modified, a new version of the data-item is created. The result

is that the history of the evolution of a data-item is maintained. A transaction is

assigned an unique timestamp and is directed to read the appropriate version of a

data-item. The write operation of a transaction, such as T, could cause a new version

of the data-item to be generated. However, in case another transaction has already

produced a new version of the data-item based on the version used by transaction T,

an attempt to write a modified value for the data-item by transaction T causes trans¬

action T to be aborted, rolled back, and restarted as a new and younger transaction.
Deadlock is a situation that arises when data-items are locked in different order

by different transactions. A deadlock situation exists when there is a circular chain

of transactions, each transaction in the chain waiting for a data-item already locked

by the next transaction in the chain. Deadlock situations can be either avoided or

detected and recovered from. One method of avoiding deadlock is to ask for all data-

items at one time. An alternative is to assign a rank to each data-item and request

12.10 Summary 605

locks for data-items in a given order. A third technique depends on selectively abort¬

ing some transactions and allowing others to wait. The selection is based on the

timestamp of the contending transactions, and the decision as to which transactions

to abort and which to allow to wait is determined according to the preemptive pro¬

tocol being used. The wait-die and the wound-wait are two such preemptive proto¬
cols.

Deadlock detection depends on detecting the existence of a circular chain of

transactions and then aborting or rolling back one transaction at a time until no fur¬

ther deadlocks are present. The wait-for graph is generated periodically by the system
to enable it to detect a deadlock.

Key Terms

starvation

livelock

schedule

lost update

inconsistent read

phantom phenomenon

serial execution

serializable schedule

precedence graph

acyclic graph

cyclic graph

read-before-write protocol

concurrency control

lock

locking

Exercises

lock manager

exclusive lock

shared lock

two-phase locking

growing phase

contracting phase

granularity

intention mode

intention share mode

intention exclusive mode

share and intention exclusive
mode

tree-locking protocol

directed acyclic graph (DAG)

timestamp ordering

write timestamp

read timestamp

cascading rollback

optimistic scheduling

read phase

validation phase

write phase

multiversion

time-domain addressing

relative-most-recent version

wait-for graph

wait-die

wound-wait

12.1 Consider two transactions as follows:

Transaction 1: FacSalary, : = 1.1 * FacSalary, + 1025.00
N

Transaction 2: AverageSacSalary : = ^ FacSalary,!N
i = i

What precaution, if any, would you suggest if these were to run concurrently? Write a

pseudocode program for these transactions using an appropriate scheme to avoid undesirable

results.

12.2 Consider that the adjustment of salary of the faculty members is done as follows, where Fac_

Salaryj represents the salary of the ith faculty member:

Transaction 1: FacSalaryj := FacSalary, + 1025

Transaction 2: FacSalary, : = FacSalary, *1.1

What precaution, if any, would you suggest if these were to run concurrently? Write a

pseudocode program for these transactions using an appropriate scheme to avoid undesirable

results.

606 Chapter 12 Concurrency Management

12.3 Consider the schedule of Figure 12.8a. What is the value of A and B, if f\(A) is A + 10,

f2(B) is B * 1.2,f3(B) is B = 20, and f4(A) is A * 1.2? Assume that the initial values of A

and B are 1000 and 200, respectively.

12.4 Repeat Exercise 12.3 for the schedule of Figure 12.9a.

12.5 Consider the transactions of Figure 12.21. Rewrite the transactions using the two-phase

protocol and produce a schedule that is serializable.

12.6 Write an algorithm to find a cycle in a precedence graph. (Hint: Use an approach similar to

that of algorithm 12.1)

12.7 Consider the transactions of Figure 12.21 and the schedule of Figure I. What would happen

at step 5 if t22 > t23? Complete the schedule after step 5 and give the values for A and B

after each step. Assume that the initial values are A: {400, Wa, Rj and B: {500, Wb, Rb}.

12.8 Given the following schedule of Figure M, in a system where timestamp ordering is used,

suppose transactions T22 and T23 had been assigned timestamps t22 and t23 respectively and

Sum is a local variable. Any value read in from the database is copied into local variables

with the same names as the corresponding database items. The database items are only

changed with a write statement. If initially A: {400, Wa, Rj and B: {500, Wb, Rb}, indicate

their values after steps 3, 5, 7, 8, 12 and 14.

Figure M Schedule for Exercise 12.8.

Step Schedule Transaction T22 Transaction T23

1 Sum : = 0 Sum : = 0
2 Sum : — 0 Sum : = 0
3 ReadfA) Read(A{
4 A : = A — 100 A := A - 100
5 ReadfAJ Read(A)
6 Sum : = Sum + A Sum : = Sum + A
7 Write(A) Write(A)
8 Read(fi) Read (B)
9 Sum : = Sum + B Sum : = Sum + B

10 Show (Sum) ShowfiSum)
11 Sum : = Sum + A Sum : = Sum + A
12 Read (B) Read(fi)
13 B := B + 100 B := B + 100
14 Write(Zl) WritefZ?)
15 Sum : = Sum + B Sum : = Sum + B
16 Show (Sum) Show (Sum)

12.9 We have three transactions, T24, T25, and T26, with timestamp values of t24, t25, and ri6,

respectively (t24 < t25 < t26). The schedule for the concurrent execution of these transactions

is given in Figure N. Assuming that initially A: a, Wa, Ra and B: b, Wb, Rb and C: c, Wc,

Rc, show these values after each step if the timestamp-ordering scheme for concurrency
control is used.

12.10 Summary 607

Figure N Schedule for Exercise 12.9.

Step Schedule Transaction T24 Transaction T25 Transaction

1 Read(A) ReadfA)
2 ^ :=A(A) A : = fi(A)
3 Read(5) Read(fi)
4 Write(A) Write(A)
5 Read(C) Read(C)
6 C: = f2(C) C:=MC)
7 Read(C) Read(C)
8 Write(C) Write(C)
9 Read(fi) Read(fl)

10 B : = h(B) B : = MB)
11 Write(fl) Writ e(B)
12 B := MB) B := MB)
13 Write(fi) Writ e(B)

12.10 Suppose we want to add a record occurrence to record type R,, (Figure 12.19) which uses

indexes In and 1,2 for direct access to the records. Give the sequence of locking to perform

this operation.

12.11 Algorithm 12.2 is inefficient because some transactions are processed many times. Give a

modification to the algorithm to avoid this inefficiency.

12.12 In an adaptive deadlock detection scheme, why is it necessary to choose an upper and lower

limit for the frequency of running the deadlock detection algorithm?

12.13 In the concurrency control scheme based on timestamp ordering, we have assumed that the

timestamp value is based on a systemwide clock. Instead of using such a timestamp to

determine the ordering, suppose a pseudorandom number generator was used. Show how you

would modify the concept of older and younger transactions with this modification and give

the modified wait-die and wound-wait protocols.

Bibliographic Notes

Gray in (Gray 79) presents comprehensive operating system requirements for a database sys¬

tem. The transaction concept and its limitations are discussed in (Gray 81). The serializability

concept, the two-phase locking protocol, and its correctness is due to the early work by Es-

waran et al. (Eswa 79) in connection with System R. The extension of the serializability test

for read-only and write-only cases are discussed in (Papa 79). The algorithm for this case is

developed in (Bern 79), and the text by Ullmann (Ullm 82) also treats this topic. Locking

schemes, multigranularity, and intention-locking extensions are discussed in (Gray 75). Exten¬

sions to lock modes and deadlock avoidance are discussed in (Kort 82) and (Kort 83).

(Reed 79) presented the earliest known multiversion timestamping algorithm. The use of

a pseudotimestamp was discussed in (Reed 83) and (Svob 80). It is shown in (Bern 83) that

any schedule generated according to the timestamp concurrency control algorithm requirements

is serializable, and the result obtained by a set of concurrent transactions is the same as ob¬

tained by some serial execution of the set of transactions with a single version of the data-

608 Chapter 12 Concurrency Management

items. The reader interested in the multiversion concurrency control algorithms based on lock¬

ing is referred to (Baye 80) and (Ster 81). The extension of the locking scheme and locking

with timestamp ordering (combination scheme) is discussed in (Bern 83). The combination

scheme was discussed in (Chan 82). The tree-locking protocol for a database whose storage is

tree structured is discussed in (Silb 80) and this protocol is generalized to the read-only and

write-only locks in (Kade 80). (Bern 80) presents a number of different distributed database

concurrency control schemes based on timestamping.

An optimistic method for concurrency control is presented in (Kung 81). (Rose 79) pro¬

posed the wait-die and wound-wait transaction retry schemes to avoid deadlocks in a distrib¬

uted database system, although these schemes are applicable to a centralized database system

as well.

The deadlock problem is surveyed in (Coff 71) and (Holt 72). (Islo 80) discusses the

general deadlock problem and examines the problems unique to database systems, both cen¬

tralized and distributed.

Bibliography

(Bass 88) M. A. Bassiouni, “Single-Site and Distributed Optimistic Protocols for Concurrency Control,” IEEE-
SE SE 14 (8), August 1988, pp. 1071-1080.

(Baye 80) H. Bayer, H. Heller, & A. Reiser, “Parallelism and Recovery in Database Systems,” ACM TODS
5(4), June 1980, pp. 139-156.

(Bern 79) P. A. Bernstein, D. W. Shipman, & W. S. Wong, “Formal Aspects of Serializability in Database
Concurrency Control,” IEEE-SE SE 5 (3), May 1979, pp. 203-215.

(Bern 80) P. A. Bernstein, & N. Goodman, “Timestamp-Based Algorithms for Concurrency Control in
Distributed Systems,” Proc. 6th International Conf. on Very Large Data Bases, Montreal,
October 1980, pp. 285-300.

(Bern 83) P. A. Bernstein, & N. Goodman, “Multiversion Concurrency Control—Theory and Algorithms,”
ACM TODS 8(4), Dec. 1983, pp. 465-483.

(Caso 81) M. A. Casonova, “The Concurrency Control Problem of Database Systems,” Lecture Notes in
Computer Science, vol. 116. New York: Springer-Verlag, 1981.

(Chan 82) A. Chan, S. Fox. W. T. K. Lin, A. Nori, & D. R. Ries, “The Implementation of an Integrated
Concurrency Control and Recovery Scheme,” Proc. ACM/SIGMOD Conf. on Management
of Data, Orlando, Florida, June 1982, pp. 184-191.

(Coff 71) E. G. Coffman, M. J. Elphick, & A. Shoshani, “System Deadlocks,” ACM Computing Surveys 3(2),
June 1971, pp. 67-88.

(Eswa 79) K. P. Eswaran, J. N. Gray, R. A. Lorie, & I. L. Traiger, ‘‘The Notion of Consistency and Predicate
Locks in a Database System,” CACM, 19(11), November 1979, pp. 624-633.

(Gray 75) J. N. Gray, R. A. Lorie, & G. R. Putzolu, “Granularity of Locks in a Shared Data Base ” Proc of
the VLDB, 1975, pp. 428-451.

(Gray 79) J. N. Gray, “Notes on Data Base Operating Systems,” in R. Bayer, R. M. Graham, & G.

Seegmuller, eds., Operating Systems: An Advanced Course. Berlin: Springer-Verlag, 1979.

(Gray 81) J. N. Gray, “The Transaction Concept: Virtues and Limitations,” Proc of the 7th VLDB Conference
1981, pp. 144-154.

(Holt 72) R. C. Holt, “Some Deadlock Properties of Computer Systems,” ACM Computing Surveys 4(3)
September 1972, pp. 179-196.

(Hunt 79) H. B. Hunt, & D. J. Rosenkrantz, “The Complexity of Testing Predicate Locks,” Proc. ACM-

S1GMOD 1979 International Conference on Management of Data, May 1979, pp 127—133

12.10 Summary 609

Oslo 80) S. S. Isloor, & T. A. Marsland, “The Deadlock Problem: An Overview,” Computer 13(9), September
1980, pp. 58-78.

(Kade 80) Z. Kadem, & A. Silberschatz, “Non-Two Phase Locking Protocols with Shared and Exclusive
Locks,” Proc. 6th International Conf. on Very Large Data Bases, Montreal, October 1980,
pp. 309-320.

(Kort 82) H. F. Korth, “Deadlock Freedom Using Edge Locks,” ACM TODS 7(4), December 1982, pp. 632-
652.

(Kort 83) H. F. Korth, “Locking Primitives in a Database System,” ACM JACM 30(1), January 1983, pp. 55-
79.

(Kung 79) H. T. Kung, & C. H. Papadimitriou, “An Optimality Theory of Concurrency Control for
Databases,” Proc. ACM-SIGMOD 1979 International Conference on Management of Data,
May 1979, pp. 116-126.

(Kung 81) H. T. Kung, & J. T. Robinson, “On Optimistic Methods for Concurrency Control,” ACM Trans, on
Database Systems 6(2), June 1981, pp. 213-226.

(Lync 83) N. A. Lynch, “Multilevel Atomicity—A New Correctness Criterion for Database Concurrency
Control,” ACM TODS 8(4), September 1983, pp. 484-502.

(Papa 79) C. H. Papadimitriou, “The Serializability of Concurrent Database Updates,” JACM 26(4), October
1979, pp. 150-157.

(Reed 79) D. P. Reed, “Naming and Synchronization in a Decentralized Computer System,” MIT/LCS/TR-
205, Cambridge, MA: MIT, September 1979.

(Reed 83) D. P. Reed, “Implementing Atomic Actions on Decentralized Data,” ACM Transactions on
Computer Systems 1(1), pp. 3-23.

(Rose 79) D. J. Rosenkrantz, R. E. Steams, & P. M. Lewis II, “System Level Concurrency Control for
Distributed Data Base Systems,” ACM TODS 3(2), March 1978, pp. 178-198.

(Silb 80) A. Silberschatz, & Z. Kadem, “Consistency in Hierarchical Database Systems,” JACM, 27(1),
January 1980, pp. 72-80.

(Ster 81) R. E. Stem, & D. J. Rosenkrantz, “Distributed Database Concurrency Controls Using Before-
Values,” Proc. ACM/SIGMOD Conf. on Management of Data, 1981, pp. 74-83.

(Svob 80) L. Svobodova, “Management of Object Histories in the Swallow Repository,” MIT/LCS/TR-243,
Cambridge, MA: MIT, July, 1980.

(Ullm 82) J. D. Ullman, Principles of Database Systems. Rockville, MD: Computer Science Press, 1982.

Database
Security,
Integrity,

and Control

Contents

13.1 Introduction

13.2 Security and Integrity Threats
Accidental Security and Integrity Threats

Malicious of Intentional Security and'Integrity Threats

13.3 Defense Mechanisms
Human Factors

Physical Security

Administrative Controls

DBMS and OS Security Mechanisms

13.3.1 Security Policies

Access Control Policies

Access Operation Type Control Policies

Information Flow Policies

13.3.2 Authorization

Objects

Views as Objects

Granularity

Subject

Access Types

Authorization Grant Tree

Authorization Facilities

13.3.3 Identification and Authentication

Something Known Only by the User

Something in the User's Possession

Some Characteristic of the User

13.3.4 Views/Subschemes in Security Enforcement

13.3.5 Distributed Systems

13.3.6 Cryptography and Encryption

13.4 Integrity

13.4.1 Domain or Data-ltem Value Integrity Rules

13.4.2 Implicit and Data Dependency Constraints

13.4.3 Violation of Integrity Constraints and Corrective
Action

13.4.4 A General Model of Integrity

13.4.5 Expressing Integrity Constraints

13.5 Statistical Databases

13.6 Auditing and Control

610

611 13.1 Introduction

Security in a database involves both policies and mechanisms to protect the data and

ensure that it is not accessed, altered, or deleted without proper authorization. Integ¬

rity implies that any properly authorized access, alteration, or deletion of the data in

the database does not change the validity of the data. Security and integrity concepts,

though distinct, are related. Implementation of both security and integrity requires

that certain controls in the form of constraints must be built into the system. The

DBA, in consultation with the security administrators, specifies these controls. The

system enforces the controls by monitoring the actions of the users and limiting their
actions within the constraints specified for them.

13.1 Introduction

It is generally recognized that access to up-to-date information is of vital importance

to an organization. With the increasing amount of information under the control of

DBMSs and the consequent dependence of organizations on databases, it is manda¬

tory that these databases be secured from unauthorized access or manipulations. Data

has to be protected in the database. There is a similar need for protection in a non¬

database environment, however, the database system must have features to enhance

these manual confidentiality mechanisms. The database environment contains data

from the most mundane to the most vital and this data is concurrently shared by a

multitude of oneline users. Furthermore, modifications in a database mean that old

values are no longer accessible; the fact that there was an old value for a given data

item is not even evident unless steps are taken in processing to save the old value.

Coupled with the trust and reliability with which users tend to treat the data in the

database, the mechanisms of security and integrity are significant. The DBMS must

have mechanisms to restrict users to only those pieces of data that are required for

the functions they perform. In addition, the DBMS must restrict the type of actions

that these users can perform on data that is accessible to them.

There are two dimensions for the protection of data in the database. First, a

certain class of data is available only to those persons who are authorized to access

it. This ensures that the confidentiality of the data is maintained. For example, the

medical records of patients in a hospital are accessible only to health care officials.
Second, the data must be protected from accidental or intentional (malicious)

corruption or destruction. For example, tampering with prescriptions could endanger

lives. Data on national defense is vital to the security of a state. Manufacturing

processes and techniques are vital to the competitive edge of a corporation. Disclo¬

sure of data regarding manufacturing processes or techniques would compromise the

economical success of an enterprise. Destroying the customer mailing list of a retail

sales organization could lead to the disruption of its operations.

In addition to the economic or strategic reasons for protecting data from unau¬

thorized access, corruption, or destruction, there is a privacy dimension for data

security and integrity. Tampering with the personal records of individuals is recog¬

nized in many countries as violating the privacy of the individual. Additionally, there

are legal restrictions that data can only be used for the purpose for which it is col¬

lected.
Below are some informal definitions of the terms used in this chapter:

• Privacy: The ethical and legal rights that individuals have with regard to

control over the dissemination and use of their personal information.

612 Chapter 13 Database Security, Integrity, and Control

• Database security: Protection of the information contained in the database

against unauthorized access, modification, or destruction.

• Database integrity: The mechanism that is applied to ensure that the data in

the database is correct and consistent. The term semantic integrity is

sometimes used to refer to the need for maintaining database consistency in the

presence of user modifications. Semantic integrity is maintained either implicitly

by the data model, or is specified explicitly by appropriate constraints on the

data that can be entered by the user, and this data is checked by the DBMS.

Entity and referential integrity constraints are implicit in the relational data

model. Set insertion and retention rules are implicit in the network model. A

record occurrence in the network model is restricted to be a member in only one

occurrence of a set type. The requirement that an instance of a child type record

cannot exist without the parent record occurrence is implicit in the hierarchical

model. We discuss integrity issues further in Section 13.4.

• Authorization: The culmination of the administrative policies of the

organization, expressed as a set of rules that can be used to determine which

user has what type of access to which portion of the database. Persons who are

in charge of specifying the authorization of different portions of the database are

usually called security administrators or authorizers.

13.2 Security and Integrity Threats

Some types of threats can only be addressed using social, behavioral, and control

mechanisms such as ethical training, expected conduct by the employees of an or¬

ganization, and appropriate legislation. These threats include actions on the part of

authorized users to perform actions such as deliberately adding unauthorized users,

giving some users more access than required for their normal operations, divulging

passwords, and threatening bribery and blackmail. However, in spite of the most

stringent legislation and penalties for transgressions, there will always be lapses in

any system, computerized or not. The intention of the DBMS is to make it unprofit¬

able, economically or otherwise, for casual users to breach the security mechanism.

In addition to features required in the DBMS for security and integrity, addi¬

tional requirements have to be supported by the operating system and the protocol
for physical access to the computing system itself.

The operating system must ensure that files belonging to the database are not

used directly without proper authorization. This authorization can consist of the user

providing the proper passwords for the file. The operating system must also ensure

that illegal users using public communication facilities are not allowed access to the

system. Users must be required to use adequate identification and passwords (pass¬

words must be sufficiently long and must be changed frequently to thwart intruders
and hackers).

Access to the computing facility and the storage medium must be restricted to

authorized persons only. There must be adequate physical protection, as in the case

of any valuable asset. Disposal of old storage devices must be done in a proper

manner. Any sensitive data resident on storage devices to be disposed of must be
destroyed.

13.2 Security and Integrity Threats 613

In a telecommunications environment, data may be accessed by eavesdroppers,

wiretappers, and other illegal users. To prevent this type of threat, data transmitted

over public communication channels should be in a ciphered form.

We can classify security and integrity threats in the categories of accidental, or
intentional or malicious.

Accidental Security and Integrity Threats

• A user can get access to a portion of the database not normally accessible to

that user due to a system error or an error on the part of another user. For

example, if an application programmer accidentally omits appropriate

verification routines, the resulting programs would compromise the database.

• Failures of various forms during normal operation, for example, transaction

processing or storage media loss. Proper recovery procedures are normally

used to recover from failures occurring during transaction processing. Lack of

such procedures could lead to inconsistencies in the database as discussed in

Chapter 11.

• Concurrent usage anomalies. Proper synchronization mechanisms are used to

avoid data inconsistencies due to concurrent usage. We discussed these

problems in Chapter 12.

• System error. A dial-in user may be assigned the identity of another dial-in user

who was disconnected accidentally or who hung up without going through a

log-off procedure.

• Improper authorization. The authorizer can accidentally give improper

authorization to a user, which could lead to database security and/or integrity

violations.

• Hardware failures. For example, memory protection hardware that fails could

lead to software errors and culminate in database security and/or integrity

violations.

Malicious or Intentional Security and Integrity Threats

• A computer system operator or system programmer can intentionally bypass the

normal security and integrity mechanisms, alter or destroy the data in the

database, or make unauthorized copies of sensitive data.

• An unauthorized user can get access to a secure terminal or to the password of

an authorized user and compromise the database. Such users could also destroy

the database files.

• Authorized users could pass on sensitive information under duress or for

personal gain.

• System and application programmers could bypass normal security in their

programs by directly accessing database files and making changes and copies

for illegal use.

• An unauthorized person could get access to the computer system, physically or

by using a communications channel, and compromise the database.

614 Chapter 13 Database Security, Integrity, and Control

13.3 Defense Mechanisms

Four levels of defense are generally recognized for database security: human factors,

physical security, administrative controls, and the security and integrity mechanisms

built into the operating system and the DBMS.

Human Factors

At the outermost level are the human factors, which encompass the ethical, legal,

and societal environments. An organization depends on these to provide a certain

degree of protection. Thus, it is unethical for a person to obtain something by stealth,

and it is illegal to forcibly enter the premises of an organization and hence the com¬

puting facility containing the database. Many countries have enacted legislation that

makes it a crime to obtain unauthorized dial-in access into the computing system of

an organization. Privacy laws also make it illegal to use information for purposes

other than that for which it was collected.

An organization usually performs some type of clearance procedure for person¬

nel who are going to be dealing with sensitive information, including that contained

in a database. This clearance procedure can be a very informal one, in the form of

the reliability and trust that an employee has earned in the eyes of management; or

the clearance procedure could be a formal one.

The authorizer is responsible for granting proper database access authorization

to the user community. Inadvertent assignment of authorization to a wrong class of
users can result in possible security violations.

Physical Security

Physical security mechanisms include appropriate locks and keys and entry logs to
computing facility and terminals.

Security of the physical storage devices (magnetic tapes, disk packs, etc.) within

the organization and when being transmitted from one location to another must be

maintained. Access to the computing facility must be guarded, since an unauthorized

person can make copies of files by bypassing the normal security mechanism built
into the DBMS and the operating system.

Authorized terminals from which database access is allowed have to be physi¬

cally secure, otherwise unauthorized person may be able to glean information from
the database using these terminals.

User identification and passwords have to be kept confidential, otherwise unau¬

thorized users can borrow the identification and password of a more privileged
user and compromise the database.

Administrative Controls

Administrative controls are the security and access control policies that determine

what information will be accessible to what class of users, and the type of access
that will be allowed to this class. We discuss this topic in Section 13.3.1.

13.3 Defense Mechanisms 615

DBMS and OS Security Mechanisms

The database depends on some of the protection features of the OS for security.
Among the OS features required are:

• The proper mechanisms for the identification and verification of users. Each

user is assigned an account number and a password. The OS ensures that access

to the system is denied unless the number and password are valid. In addition,

the DBMS could also require a number and password before allowing the user

to perform any database operations.

• The protection of data and programs, both in primary and secondary memories.

This is usually done by the OS to avoid direct access to the data in primary

memory or to online files.

The DBMS has the following features for providing security and integrity:

mechanisms to support concurrency; transaction management; audit and recovery

data logging. In addition, the DBMS provides mechanisms for defining the authori¬

zations for the user community and specifying semantic integrity constraints and

checking.

13.3.1 Security Policies

To prevent the dissemination of sensitive information from the database to unauthor¬

ized users and thence to outside competitive or hostile agents, an organization must

establish effective security policies. Database security policies are guidelines for

present and future decisions regarding the maintenance of the database security. Da¬

tabase security mechanisms are the functions used to enforce database security poli¬

cies. These functions could be implemented by a combination of one or more of the

following: administrative control procedures, hardware functions, software functions,

firmware functions.
The administrative control procedures are the implementation of security poli¬

cies to provide protection, external to the database, operating systems, and computer

hardware. An example of such administrative control procedures is to have applica¬

tion programs written by one team and validated by a separate team. Another admin¬

istrative rule would require that passwords be a random string of alphanumeric char¬

acters, at least eight in length, and be changed regularly.
One of the first lower level decisions that has to be made is to choose the

security features provided by the DBMS to adequately implement the security poli¬

cies. The relative importance and sensitiveness of various parts of the database has

to be determined. This will help determine the extent of protective features that can

be economically justifiable for those parts of the database. As mentioned earlier, the

intention is to make it economically unprofitable for the prospective data pirate.

The other policy decision that has to be made is whether the focus of security

administration is integrated with the database administrator (DBA) and whether the

security administration is centralized or decentralized. In the case of a decentralized

security administration, the choice has to be made as to whether or not the owner of

the data should also be the security administrator. In the case of shared data, the

question of ownership of the database has to be settled by an administrative decision

616 Chapter 13 Database Security, Integrity, and Control

and the structure of the data has to be determined by the DBA (who could also be

designated as owner). Procedures for modifications to the security control mechanism

must also be enacted.

Access Control Policies

In addition to the administrative procedures, the lower level access control policies

have to be determined in light of the security features provided by the DBMS and

OS. Access control policies can be classified as follows:

• Open vs. closed system: In an open system, a user is allowed access to

everything unless access is explicitly denied. In a closed system, a user is not

allowed to access anything unless access is explicitly granted. A closed system

enforces the least privilege or the need-to-know policy; an open system
maximizes sharing of information and minimizes the portion that is not to be

known.

• Content-independent access control: This policy is also called name-

dependent access control. Access is allowed to those data objects whose

names are known to the user. A data object can be a relation name and some of

the associated attributes in the case of a relational database. In the case of a

network database, it could be a set with the owner and member record types,

with some of the associated data fields. Thus, access is independent of the

contents of the data object. Consider the relation of Figure 13.1. All the

employees in an organization may have content-independent access to the data

object EMPLOYEE (Employee-Name, Department, Room, Phone-No). The

manager of the Personnel department, however, has content-independent access

to the entire data object EMPLOYEE (Employee-Name, Department, Room,

Phone-No, Position, Salary).

• Content-dependent access control: In this policy the concept of least privilege

can be extended to take into account the contents of the database and result in

finer granularity of access control. The chairperson of a department can have

content-independent access to EMPLOYEE (Employee-Name, Department,

Room, Phone-No) and content-dependent access to EMPLOYEE (Employee-

Figure 13.1 The EMPLOYEE relation.

Employee-Name Department Room Phone-No Position Salary

Smith Comp Sci A632 848-3876 Asst Prof 44500

Clark Comp Sci A651 848-3874 Asso Prof 49750

Turner Chemistry C643 848-2981 Professor 63050

Jamieson Mathematics M728 848-3829 Professor 61430

Bosky Physics P388 848-1286 Asso Prof 52800

Newton Physics P391 848-1291 Asst Prof 42750

Mann Elect Eng
_

E389 848-8628 Asst Prof 44750

617 13.3 Defense Mechanisms

Figure 13.2 The HEAD relation.

Chairperson Secretary Department

Smith

Jamieson

Bosky

Turner

Mann

Rolland

Evans

Fuhr

Horngren

Messer

Comp Sci

Mathematics

Physics

Chemistry

Elect Eng

Name, Department, Room, Phone-No, Position, Salary), such that the

EMPLOYEE.Department is the department where she is the chairperson. This
can be implemented by a query modification as shown below:

select (Employee-Name, Salary)

from EMPLOYEE

where Department = Comp Sci

The above query can be modified as shown below, assuming that there is a

relation HEAD with attributes (Chairperson, Secretary department) as shown in Fig¬
ure 13.2.

select (Employee-Name, Salary)

from EMPLOYEE

where Department = (select (Department)

from HEAD

where Chairperson = user’s name)

Access Operation Type Control Policies

Greater control over the use of data is obtained when the security policy distinguishes

the type of access that is allowed to a data object. The classification of access to a

data object known to the user can be as follows: read, update, insert, delete. Thus,

everyone in an organization may be allowed access to the data object EMPLOYEE

(Employee-Name, Department, Room, Phone-No) with the access type being read.

The departmental secretary may be assigned update access to the EMPLOYEE.Room

and EMPLOYEE.Phone-No data items, and this update access may be content de¬

pendent only to occurrences of the secretary’s department. This can be implemented

by a query modification as follows:

update EMPLOYEE

Room = new room

Phone-No = new phone number

where Employee-Name = somename

The above query may be modified as follows to ensure that the departmental

secretary modifies only the tuples for his own department’s employees:

618 Chapter 13 Database Security, Integrity, and Control

update EMPLOYEE

Room = new room

Phone-No = new phone number

where Employee-Name = somename

and where Department = (select (Department)

from HEAD
where Secretary = user’s name)

The departmental chairperson may also be given update access to the EM¬

PLOYEE. Salary. The personnel manager has read, update, insert, and delete access

to the entire EMPLOYEE data object.
In addition to the above access type control, access control can be refined to

include control over the context of access and the sequence of accesses as described

below.

• Access context control: This type of access control is used to allow maximum

access to statistical-type data without compromising confidentiality. Suppose the

database contains a relation MED_HISTORY(Employee-Name, Department, Visit

Date, Diagnosis) to record diagnoses for the employees who visit the

company’s health center (see Figure 13.3). A personnel manager may be

allowed to access the attribute Diagnosis of this relation without simultaneous

access to any other attributes. This enables the manager to determine the type of

visits made to the health center and take appropriate actions to correct, say,

some environmental problems. The personnel manager may also be allowed

access to the attributes Employee-Name, Department, Visit-Date without

simultaneous access to the attribute Diagnosis to verify whether an employee

did in fact visit the health center and the number of visits made by a given

employee or department, or on a given date.

• Access control based on history of accesses: To guard the confidentiality of

information, it is not sufficient to depend solely on access context control, since

a user can use a sequence of queries satisfying the access context control rules

and yet be able to trace sensitive information to a single entity. We discuss the

need for access control based on the history of accesses made by a user with
respect to a statistical database in Section 13.5.

Figure 13.3 MED_HISTORY relation.

Employee-Name Department Visit-Date Diagnosis

Smith Comp Sci 12/03/86 bronchitis
Clark Comp Sci 11/22/86 conjunctivitis
Fuhr Physics 12/05/86 bronchitis
Roland Comp Sci 12/15/86 psittacosis
Mann Elect Eng 11/22/86 psittacosis
Homgren Chemistry 12/05/86 shingles
Bosky Physics 12/15/86 pleurisy

13.3 Defense Mechanisms 619

Information Flow Policies

Policies must be set up to prevent a flow of information from a secure program to an

insecure program. One method of controlling the flow of information is to consider

the programs to be running at different levels. A program assigned to run at a lower

level of security is not allowed to access data produced by a program running at a
higher level of security.

13.3.2 Authorization

As mentioned earlier, authorization is the culmination of the administrative policies

of the organization, expressed as a set of rules that can be used to determine which

user has what type of access of which portion of the database. The person who is in

charge of specifying the authorization is usually called the authorizer. The authorizer

can be distinct from the DBA and usually is the person who owns the data.

The authorization is usually maintained in the form of a table called an access

matrix. Figure 13.4 gives an example of an access matrix. The access matrix con-

Figure 13.4 Access matrix

OBJECTS

SUBJECTS EMPLOYEE HEAD MED_HISTORY

Faculty read except

Salary

read read1

Secretaries read except

Salary

update, 'Room

update, 'Phone-No

read read1

Chairpersons read except read2 Employee-Name, Date

Salary read1

read2

Physicians read except read read

Salary write

control

Director of read read read Employee-Name, Date

Personnel write write or read Diagnosis

update update but not together

control control read1

'query modification where EMPLOYEE.Department = select (Department) from HEAD

where Secretary = user’s_name)

2query modification where EMPLOYEE.Department = select (Department) from HEAD

where Chairperson = user’s_name)

3query modification where MED_HISTORY.Employee—Name = user’s_name

620 Chapter 13 Database Security, Integrity, and Control

tains rows called subjects and columns termed objects. The entry in the matrix at

the position corresponding to the intersection of a row and column indicate the type

of access that the subject has with respect to the object.

Objects

An object is something that needs protection and one of the first steps in the author¬

ization process is to select the objects to be used for security enforcement. A typical

object in a database environment could be a unit of data that needs to be protected.

However, the unit of data could be at some convenient size or granularity. Thus, a

data field, a record, or a file could be considered an object. Another type of object

that can be protected is a view or subscheme. Using views as objects and hence as

units of protection automatically limits the amount of the database that can be ac¬

cessed by a user.

The objects in the access matrix represent content-independent access control.

However, to enforce content-dependent access control, some structure for conditions

or access predicates are incorporated in the access matrix. Some examples of access

predicates, expressed as query modifications, are shown in Figure 13.4.

Views as Objects

In addition to providing different ways of looking at the data in the database, views

or subschemes can be used to enforce security. A user is allowed access to only that

portion of the database defined by the user’s view. A number of users may share a

view. However, the user may create new views based on the views allowed. The

advantage of this approach is that the number of objects accessible to a class of users

and the entry for it in the authorization matrix is reduced to one per view. This

reduces the size of the authorization matrix. The disadvantage is that the entire class
of users have the same access rights.

Granularity

The usual practice is to choose the granularity of security enforcement. This could

be a file, a record (relation), or a data item (attribute). The smaller the protected

object, the finer the degree of specifying protection. However,, the finer granularity

increases the size of the authorization matrix and the overhead in enforcing database
security.

Subject

A subject is an active element in the security mechanism; it operates on objects. A

subject is a user who is given some rights to access a data object. We can also treat

a class of users or an application program as a subject. A user who belongs to or

joins a class of users gets the access rights of that class of users. If a user belongs to

more than one class of users, then the access rights for a given access made by the

user depends on the class of user that is being used by that user for the access.

13.3 Defense Mechanisms 621

Access Types

The access allowed to a user could be for data manipulation or control. The manip¬

ulation operations are read, insert, delete, update. The control operations are add,

drop, alter, and propagate access control. We define these operations below:

• Read: Allows reading only of the object.

• Insert: Allows inserting new occurrences of the object type, for example, a

tuple in a relation. Insert access type requires that the subject has a read access

as well. However, an insert access may not allow modification of existing data.

• Delete: Allows deleting an existing occurrence of the object type.

• Update: Allows the subject to change the value of the occurrence of the object.

Some data-items in a record, such as the primary key attributes, however, may

not be modified. For reasons discussed in Section 5.4.1, update through a view

may or may not be allowed. An update authorization may not include a delete

authorization as well.

• Add: Allows the subject to add new object types such as new relations (in

relational systems), record and set types (in network systems), or record types

and hierarchies (in hierarchical systems).

• Drop: Allows the subject to drop or delete existing object types from the

database. Here we are referring to the deletion of a type and not of an

occurrence.

• Alter: Allows the subject to add new data-items or attributes to an existing

record type or relation; also allows the subject to drop existing data-items or

attributes from existing record types or relations.

• Propagate access control: This is an additional right that determines if this

subject is allowed to propagate the right over the object to other subjects. Thus,

a subject S may be assigned an access right R over an object O, and in addition

the right to grant this access right (or part of it) to another subject.

In the access matrix of Figure 13.4, we have indicated both content-independent

access rights and content-dependent access rights; the latter have been indicated with

query modification clauses.
In addition to the above access rights, a subject may have the privilege to create

additional indexes for a record type or relation, execute certain application programs

(another type of object), and so on.

Authorization Grant Tree

Consider a user subject. When the user has the propagate access control right over

an object, he or she can pass all or part of her or his right to another subject, for

instance another user. In a organization that uses the centralized security administra¬

tion policy, the authorizer has all the access rights including the propagate access

control right over the database. When the authorizer grants a user some rights this

may be granted with the propagate access control as well. This leads to an authori¬

zation grant tree, as shown in Figure 13.5.
To properly revoke access rights, all paths in the access grant tree must start

from the authorizer, otherwise the revocation cannot be guarded from unscrupulous

622 Chapter 13 Database Security, Integrity, and Control

usage. With this proviso, revocation of the access rights of subject S3 in Figure 13.5

means that subject S7 also loses all rights. Subject S6 retains those rights granted by

S5 and S5 loses rights granted by S6. We illustrate this pruned access grant tree in

Figure 13.6.
Further revocation of access right of subject S5 by S) causes S6 to lose all access

rights as well; this is illustrated in Figure 13.7.
Without the requirement that a direct path exists from the authorizes the reader

can verify that S5, S6, and S7 would retain their access rights when the authorizer

revokes the access right of subject S3, as illustrated in Figure 13.8.

Figure 13.6 Authorization grant tree after revocation of access rights from S3; S6 retains the access
right granted by S5.

e
r

S3

S7

13.3 Defense Mechanisms 623

Figure 13.7 Authorization grant tree after revocation of access rights from S5; S6 also loses access
rights.

Authorization Facilities

The facility available to the authorizer (and to the users who can propagate access

rights) to assign access rights could be in the form of a separate language or could

be integrated with the data definition or the data manipulation language.

In the network model the access rights specifications are integrated with the data

definition language. The subschema can be used to grant access to a subset of the

database to an user. However, it does not provide a facility to indicate the operations

that a user can perform on the portion of the database accessible to the user.

Figure 13.8 Authorization grant tree with access rights that cannot be properly revoked.

624 Chapter 13 Database Security, Integrity, and Control

Another method of specifying the access privilege of a user is by means of a

user profile. The profile for a user contains the objects and the associated access

types allowed to that user as well as the application programs that the user can

execute (i.e., types of transactions allowed to the user). The user profile is equiva¬

lent, in a sense, to a row of the access matrix. However, no null entries need be

maintained in the user profile.
In a rule-based system, the access profile is given in the form of rules. For

instance, to indicate that a user can have read access to the object EMPLOYEE could

be specified by the following rule:

user ‘Fuhr’ can read EMPLOYEE

The data manipulation language can incorporate statements to grant and revoke

access rights. This is the approach used in SQL to limit the operations a user can

perform on the portion of a database defined by the user’s view. The grant statement

is used to grant access privileges and the revoke statement is used to revoke privi¬

leges. In the following example, the departmental secretaries are granted the access

privilege of reading and updating a limited number of attributes from the EM¬

PLOYEE relation. The tuples accessible to a given secretary are those belonging to

his or her department.

grant select (Employee-Name, Room, Phone-No)

update (Room, Phone-No) on table EMPLOYEE to

‘user_name’ where EMPLOYEE .Department =

select (Department) from HEAD where

Secretary = ‘user_name’)

The following statements could be used to grant the personnel manager access

rights to read, insert, update, or delete any tuple from the EMPLOYEE relation:

grant select, insert, update, delete on table EMPLOYEE to

‘ personneLmanager’

The following form of grant allows the personnel manager to propagate the
granted access rights or any subset of it to another user.

grant select, insert, update, delete on table EMPLOYEE to

‘personnel-manager’ with grant option

The personnel manager can now propagate some of these access rights to the
chairperson of the department by the following statement:

grant select, update on table EMPLOYEE to

‘chairperson_name’ where EMPLOYEE .Department =

select (Department) from HEAD where

Chairperson = ‘chairperson_name’)

A limited number of attributes of the relation MED-HISTORY may be made

accessible to the personnal manager by means of the following grant statement:

grant select (Date, Diagnosis) on table MED_HISTORY to

‘ personnel-manager’

The limited access rights granted a secretary could be revoked by the following
revoke statement:

13.3 Defense Mechanisms 625

revoke select update (Room, Phone_No) on table EMPLOYEE
from ‘user_name’

QUEL uses the define permit statement to grant access authorization to a user.

It specifies the operations allowed on specified attributes of a relation. The statement

has provisions to optionally specify the terminal from which access is allowed and

the time and day of the access. The syntax of the define permit statement is as
follows:

define permit operations

on relation (attributes)
to user

at terminaLid

from timel to time2

on dayl to day2

where predicates

A user may be allowed to create a new relation by means of the following access
right:

grant createtab to ‘user_name’

A user who can create a new relation is allowed all access rights to the relation
including propagating any subset of these rights.

13.3.3 Identification and Authentication

The authorization mechanism prepares the user profile for a user and indicates the

portion of the database accessible to that user and the mode of access allowed. The

enforcement of the security policies in the database system requires that the system

knows the identity of the user making the requests. This in turn requires that before

making any request, the user has to identify herself or himself to the system and

authenticate the identification to conform that the user is in fact the correct person.

A number of methods can be used in this authentication: by something known only

by the user, by something that only the user possesses, or by some physi¬

cal/physiological characteristic of the user.

Something Known Only by the User

The simplest and most common authentication scheme used is a password to authen¬

ticate the user. The user enters the user name or number and then authenticates

herself (himself) by the password. Typically, these identification/authentication steps

are used once for the initial sign-on to the system. However, for sensitive data, this

step could be repeated for each operation. The passwords themselves have to be

guarded and a secure way of doing this is by storing only the encrypted form of the

password. The encryption algorithm will not be of any use in deciphering the pass¬

words. Thus, even if the file containing the enciphered passwords is stolen, it, along

with the encryption algorithm, will not be useful. Application programs could also

626 Chapter 13 Database Security, Integrity, and Control

be designed to require the user to provide a password before allowing a sensitive

operation.
Instead of a simple password, the system may ask the user one or more ques¬

tions from a set of questions; only the user can correctly answer these questions. One

such scheme involves generating a pseudorandom number X and prompting the user

to respond with T(X), where T is a prearranged simple transformation function. Since

only the user and the system know what this prearranged transformation T is, anyone

eavesdropping will only see X and T(X) and cannot easily discern T. Each authorized

user in this method of authentication is supplied with unique transformation function.

Something in the User’s Possession

In this scheme, each user could be given an appropriately encoded badge, card, or

key to be used for identification purposes. A password or question-answering scheme

as before can be used for the authentication purpose.

Some Characteristic of the User

In this scheme, the identification and authentication procedures are combined in one

step, but require the use of special hardware and software to identify some physical

or physiological characteristic of the user. These characteristics are known to be

unique or have a very low probability of duplication in a population of a given size,

and hence cannot be easily faked. Examples of such characteristics are fingerprints

or the relative lengths of the fingers of a hand. Another scheme that has been pro¬

posed is the use of voiceprint; however, a simple technique like using a tape record¬

ing of the authorized user’s voice can be used to impersonate the user.

13.3.4 Views/Subschemes in Security Enforcement

The content of the database is described by the conceptual scheme and the users’

views are defined by the subschemes. The subscheme can be used in the name-

dependent security enforcement policy to limit the portion of the database known to

and hence accessible by a user. The network model as proposed in the DBTG uses

the subschema as the major security enforcement mechanism. A user is not allowed
access to anything that is not included in that user’s subschema.

The following example illustrate creating a view for use by the departmental

secretary consisting of the attributes Employee-Name, Room, and Phone-No. The

tuples accessible are limited to the employees in the secretary’s department.

create view EMP_ADDRESS (Name,Room-No, Phone) as
(select (e.Employee-Name,e.Room, e.Phone-No)
from EMPLOYEE e

where e.Department = (select (Department)

from HEAD

where Secretary = ‘secretary_name’))

13.3 Defense Mechanisms 627

Having created this view, the secretary is granted appropriate access rights to

any tuple of this relation and is allowed to update Room-No, Phone by means of the
following grant statement:

grant select update (Room-No, Phone) on table EMP_ADDRESS to

‘secretary_name’

13.3.5 Distributed Systems

Security enforcement in distributed systems can be enhanced by distribution. Sensi¬

tive information can be fragmented and stored at dispersed sites. The leakage of some

portion of the fragmented data may be not as disastrous as the leakage of unfrag¬

mented data. Also, with distribution, different sites can have different levels of se¬

curity. However, in this case, the more secure sites have to take into account the

existence of less secure sites in transmitting data over the network. Since data will

be transmitted over a communication channel, appropriate encryption schemes (dis¬
cussed in Section 13.3.6) should be used.

The authorization functions in a distributed system have to be decentralized and

a decision has to be made as to where to store the access matrix or access rules. One

possible choice is to fragment the access matrix and store the appropriate fragments
at the sites of the data fragments.

13.3.6 Cryptography and Encryption

Consider the secure transmission of this message:

“Mr. Watson, can you please come here.”

One method of transmitting this message is to substitute a different character of

the alphabet for each character in the message. If we ignore the space between words

and the punctuation, and if the substitution is made by shifting each character by a

different random amount, then the above message can be transformed into, e.g., the

following string of characters:

‘ ‘ xhlkunsikevoabondwinh woajahf. ’ ’

Cryptography has been practiced since the days of the Roman Empire. With the

increasing use of public communication facilities to transmit data, there is an in¬

creased need to make such transmissions secure. In a distributed environment, trans¬

mitting highly confidential information between geographically dispersed sites, in

spite of the most stringent local security enforcement, could lead to leakage from

eavesdropping and wiretapping.

This points to the need for the data to be encrypted before it is transmitted. At

the receiving end, the received data is deciphered before it is used. The sender must

know how to encrypt the data and the receiver must know how to decipher the coded

message. Since the computers at both ends can be used to cipher and decipher the

data, the code used for ciphering can be quite complex.

628 Chapter 13 Database Security, Integrity, and Control

The simple enciphering method discussed at the beginning of this section turns

out to be the most secure. This type of code has been used since the time of Julius

Caesar and is called Caesar code. The one-time code is a Caesar code used only

once, which makes it difficult for the interceptor of the coded message to break the

code since he or she does not have an opportunity to intercept more than one sample

of the coded message, apply the distribution characteristics of the language, and

break the code. The other advantage of the one-time code is that breaking the code

of a single transmission is not very helpful in deciphering subsequent coded mes¬

sages, since each message will use a different code for encryption. However, the

drawback is that there must be an initial transmittal of the code that is to be used to

the recipient, and for absolute unbreakability, the code has to be as long as the

message that is transmitted.
A enciphering scheme developed by the U.S. National Bureau of Standards

(NBS) is called the Data Encryption Standard (DES). The NBS-DES scheme is

based on the substitution of characters and rearrangement of their order and assumes

the existence of secure encryption keys. This scheme, which has been implemented

in hardware, is a relatively easy means to both encipher and decipher data. The

algorithm is well known and publicized but the encryption key is kept secret, which

makes it very difficult for anyone who does not know the key to decipher the mes¬

sage. However, the drawback in this scheme is that the encryption key has to be

transmitted to the recipient before a message can be transmitted.
This difficulty has led to the search for encryption techniques called one-way or

trapdoor functions having the following characteristics:

• It can change any message X into a message Y.

• It has an inverse function that changes Y back into X.

• Efficient algorithms can be devised to change X into Y and Y back into X.

• If the function and the algorithm to convert from X to Y is known, it is

computationally infeasible to discover the inverse function; hence, the same

enciphering and deciphering functions can be used over and over again.

The last property gives the function its name: the trapdoor function, easy to

drop through but hard to get out of! The knowledge of an appropriate trapdoor func¬

tion allows the use of a public key encryption scheme where both the encryption key

and the encryption algorithm are public and readily available. This allows anyone to

send a message in a coded form; however, the decryption key is secret and only the
rightful recipient can decipher the coded message.

One of the best known trapdoor functions is the one proposed by Rivest et al.

(Rive 78). Their encryption scheme, which is a form of a public key scheme, works

as follows. Each member of a group wanting to securely communicate devises her

or his own trapdoor function with its forward and reverse transformation algorithm.

Thus, given a message N in a numeric form, D (E (N)) = N, where E is the forward
algorithm for encryption and D is the inverse algorithm for deciphering.

A directory containing the forward encoding algorithm of each member of this

group is published in a publicly accessible directory. The reverse algorithms are kept

secret. Since the forward algorithms are public, anyone can consult the directory and

using the published forward algorithm of a member of this group, encipher a message

and send the enciphered message to the member. Only the intended recipient knows

the reverse algorithm and will be able to decipher the coded message. The method

of sending the message to a member P with forward algorithm Ep is as follows:

13.4 Integrity 629

1. Convert the message M into numeric form N.

2. Compute Y = Ep(N) and transmit Y to P over a public communication
channel.

3. On receipt P will apply the secret reverse algorithm Dp on the message Y to
compute N and thence M.

A method to sign the message can be incorporated if the functions D and E have
the following additional property:

E (D(N)) = N

In order to “sign” a message, the sender R (who is required to be a member of

the group listed in the published directory) uses his or her own secret inverse function

Dr on the numeric form N of the message M, and then uses P’s public key Ep and

transmits the resulting message T over a public communication channel. Thus, the
transmitted message T will be Ep (Dr(N)).

P, on receipt of T, first applies her or his own (secret) inverse function Dp and

then the published forward function Er of the sender to retrieve a “signed” message

from R. Thus, P will decipher the message as being Er (Dp(T)).

P now has a signed message from R. R cannot deny having sent P this message,

since no one else could have created Dr(N), because the function Dr is secret and

Er(Dr(N)) is N, which is the numeric form of the message M. P cannot modify the

message to M' and thence to N', since P doesn’t know the secret function Dr.

See (Rive 78) for their version of the trapdoor function, which is based on two
prime factors of a large nonprime number.

13.4 Integrity

Security constraints guard against accidental or malicious tampering with data,

whereas integrity constraints ensure that any properly authorized access, alteration,

deletion, or insertion of the data in the database does not change the consistency and

validity of the data. This requires that there is a need for guarding against invalid

database operations. An operation here is used to indicate any action performed on

behalf of a user or application program that modifies the state of the database. Such

operations are the result of actions such as update, insert, or delete. In short, invalid

changes have to be guarded against by the integrity subsystem, whereas illegal up¬

dates must be guarded against by the security subsystem.
Database integrity involves the correctness of data; this correctness has to be

preserved in the presence of concurrent operations, errors in the user’s operations and

application programs, and failures in hardware and software. Two facets of maintain¬

ing the integrity of data in the presence of concurrent operations and failures of

various types were discussed in Chapters 11 and 12. For example, the concurrency

control mechanism ensures that two concurrent transactions are serializable. How¬

ever, the integrity constraints must be applied to both these concurrent operations and

these constraints ensure that each of these transactions, when run to completion,

concurrently or in isolation, will not cause the database to become invalid. The re¬

covery subsystem ensures that failures of various types, which may cause the loss of

some of the actions of one or more transactions, will not cause the database to be¬

come inconsistent.

630 Chapter 13 Database Security, Integrity, and Control

In this section we consider some types of constraints that the database has to

enforce to maintain the consistency and validity of data. One aspect that has to be

dealt with by the integrity subsystem is to ensure that only valid values can be as¬

signed to each data-item. This is referred to as domain integrity. Another set of

integrity constraints are the so-called structural and semantic constraints. Some of

these types of constraints are addressed by the data models used and others are ad¬

dressed in the design of the database by combining appropriate functional depend¬

encies in different records. Some if not most of the functional dependencies can be

expressed if the DBMS allows each record type or relation to have an associated

primary key. We discuss these aspects below.
In traditional systems, application programs were responsible for the validation

of data and maintaining the consistency of the data used by the programs. However,

in a DBMS environment, depending on the application programs to perform these

checks has the following drawbacks:

• Each application program must have correct validation and consistency check

routines; a failure in one program could lead to database inconsistencies.

• Each application program must be aware of the semantics of the complete

database to enforce the correct consistency checks; this is not always the case

and unnecessarily burdens the application program writers.

• There will be considerable duplication of efforts.

• Integrity constraints are hard to understand when they are buried in the code of

application programs.

• No consistency or validity checks are possible for direct database manipulation

using a query language.

Centralizing the integrity checking directly under the DBMS reduces duplication

and ensures the consistency and validity of the database. The centralized integrity

constraints can be maintained in a system catalog (data dictionary) and can be acces¬

sible to the database users via the query language. This does not rule out an appli¬

cation program performing some specific checking, including input validation.

13.4.1 Domain or Data-ltem Value Integrity Rules

One of the most common integrity constraints that is specified and validated is to

define the domain for each attribute, or in the case of network or hierarchical models,

to define the value set for each data-item. Domain integrity rules are simply the

definition of the domains of the attributes or the value set for the data-items. The

value that each attribute or data-item can be assigned is expressed as being one or

more of the following forms: a data type, e.g., alphanumeric string or numeric; a

range of values; or a value from a specified set. For instance, in the relation EM¬

PLOYEE of Figure 13.1, the domain of the attribute Salary may be given as being

between $12,000 and $300,000. The final Grade assigned to a student in a course
can only be one of, say, A, B, C, D, or F.

A domain can be composite; for instance, the Date attribute in the relation

MED_HISTORY is restricted to the form mm/dd/year, where mm is the month and

is restricted to the range 01 through 12; dd is the date and is restricted to the range

13.4 Integrity 631

01 through 31; and year is, say, 1986 through 2000. We can make the range of dd
more precise by taking into account both the month and year.

Since online data entry is a common operation, validation of the entered values

has to be performed to maintain the integrity of data. Traditionally the validation was

performed by application programs. However, this approach has two drawbacks:

first, it depends on the application programmer to include all validity checks, and

second, each application program is duplicating some of these checks. Hence, it is

preferable to centralize these operations and let the DBMS perform the validity

checks. Note that some types of errors cannot be detected. For instance, a professor

may incorrectly assign a grade of F instead of D to a student (an accidental error

perhaps, because the keys for D and F are next to each other on the QWERTY

keyboard). The validation procedure cannot detect this as an error, since F is a valid

grade. Thus, integrity mechanisms can only ensure that the data is in the specified

domain. Incorrect choices, as long as they do not violate any integrity constraints,
are not considered to be errors.

Some domain constraints could be conditional. For example, the salary con¬

straint in the EMPLOYEE relation, instead of being restricted to a given range could
be restricted conditionally as follows:

if Position is Asst. Prof Salary must be between 35,000 and 45,000

if Position is Asso. Prof Salary must be between 42,000 and 55,000

if Position is Professor Salary must be between 53,000 and 200,000

The domain values supplied for an operation are validated against the domain

constraints. Any violation of a domain integrity rule typically results in the operation

being rejected with an appropriate message returned to the user for the correct value.

Other possible choices of action to be undertaken by the DBMS on the detection of

a domain constraint violation are: correct the value to a valid value; replace the value

with a sentinel value that will be detected at audit time; roll back the transaction that

issued the invalid value.

The validation procedure typically runs after each attempted modification; how¬

ever, some integrity constraints may be validated only after the completion of a

transaction. Consider the total quantities of some part in a plant. This value must not

change unless there is a shipment or receipt of that part. If a transaction transfers

100 units of the part from inventory to a project in the plant, the total units of that

part will be incorrect after the first operation of the transaction, which subtracts 100

units from the quantity on hand in inventory, and before the end of the second op¬

eration of the transaction, which adds 100 units to a project. The database is in an

inconsistent state if the total for the part being transferred were to be computed after

the first operation was completed.

In specifying the domain constraints, null values may or may not be allowed.

Thus, it is usual not to allow null values for any attribute that forms part of a primary

key of a relation.

The definition of the EMPLOYEE relation of Figure 13.1 can be given as shown

below, where some of the domain constraints are included. The attribute Employee-

Name is declared as a primary key that must not be null.

type EMPLOYEE = relation
Employee-Name alphabetic string length 25 unique null not allowed

Department alphabetic string length 15 values (CompSci, Chemistry, Elec¬

trical Engineering, Mathematics, Physics, . . .)

632 Chapter 13 Database Security, Integrity, and Control

Room string alphanumeric length 4

Position alphabetic string length 15
Salary decimal of length 6 digits value range (10000 — 200000)

end

13.4.2 Implicit and Data Dependency Constraints

The simplest example of an implicit integrity constraint is that each record type must

conform to the record declaration for that type. The data model used by the DBMS

implicitly builds in certain integrity constraints, such as the one-to-many relationship

between a parent record type and the children record types in the hierarchical model.

The hierarchical model requires that the parent record type must exist for the child

record type to be inserted in the database; the parent-to-child data structure is the

implicit implementation of a one-to-many relationship. The insertion and the reten¬

tion rules for set membership are examples of implicit structural integrity rules in the

network model. A many-to-many relationship in the network model between record

types A and B implicitly assumes the existence of two set types owned by the record
types A and B with a common member record type.

These are structural constraints between the values of different data-items or

fields and are the reflection of the functional and multivalued dependencies between

the attributes of the entity being modeled in the database. Many functional depend¬

encies can be implicitly represented in a database that allows the declaration of some

attributes as a primary key. Having declared that a given set of attributes form a

primary key of a relation, the update and insertion operations for that relation can be

validated. For instance, duplicate tuples and update to attributes in the primary keys
are disallowed.

Any general constraint that involves multiple relations is expensive in compu¬

tation time. The conditional constraint of the valid range of Salary which was depen¬
dent on the Position of the employee involves a single relation.

Consider the relations STUDENT(StudentJName, Major), COURSE(Co«rse_

No, Department) and ENROLLMENT) StudentNJame, Course-No, Year, Term,

Grade). A many-to-many relationship between students and courses is implemented

in the relational model by the ENROLLMENT relation. However, a constraint that a

student is not allowed to enroll in a course unless the course is scheduled and the

student is a registered student at the university, involves multiple relations. Thus, the

ENROLLMENT relation that represents a relationship between a course and a student

requires that, for a given tuple in ENROLLMENT, the referenced tuples must exist

in the relations STUDENT and COURSE; and a tuple in the relation STUDENT must

have the same value for the attribute Student-Name as the given tuple in the relation

ENROLLMENT; furthermore, the tuple in the relation COURSE must have the same
value for the attribute Course as the given tuple in the relation ENROLLMENT. This
is referred to as referential integrity.

There are similar integrity rules for other data models. In the network data

model, a many-to-many relationship between record types A and B requires the pres¬

ence of an intermediate record type, which is a member in two set types owned by

record types A and B. Furthermore, a relationship can only exist between existing

occurrences of each of these record types. Another example of referential integrity

13.4 Integrity 633

Figure 13.9 Referential integrity in network model.

ENROLLMENT

in the network model is that a member record type cannot exist without the presence

of the owner record type in a set where the membership is automatic fixed. Consider

a record type that is a member in one or more set types wherein the membership is

specified to be automatic fixed. Inserting into the database a new occurrence of such

a member record type requires that each of the owner record occurrences must exist

and the appropriate set currency indicators point to these occurrences.

Let us see how the network model represents the relationship between students

and courses. The many-to-many relationship between the record types student and

course is represented in the network model by the sets STUDENT-ENROLLMENT

and COURSE-ENROLLMENT as shown in Figure 13.9; ENROLLMENT is the com¬

mon member record type in these sets. To maintain the integrity of the database, the

deletion of a STUDENT (or COURSE) record occurrence should not be allowed if

the set STUDENT-ENROLLMENT (or COURSE-ENROLLMENT) is not empty.

Conversely, an occurrence of the set STUDENT-ENROLLMENT cannot exist without

the existence of the record occurrence of its owner, i.e., STUDENT. An occurrence

of the set COURSE-ENROLLMENT cannot exist without the existence of the record

occurrence of its owner COURSE. An ENROLLMENT record cannot exist without

the existence of both a STUDENT and a COURSE record occurrence.

The many-to-many relationship between students and courses can be represented

in the hierarchical model by a hierarchical structure as shown in Figure 13.10. In a

hierarchical model, the dependent record type does not exist independently of the

parent record type. Also, if a data-item of some field of a record is declared to be an

unique value, the insertion of another record with the same value in that field is not

allowed at the same position in an occurrence of the hierarchical tree.

Figure 13.10 Referential integrity in hierarchical model.

ENROLLMENT (physical) ENROLLMENT (virtual)

634 Chapter 13 Database Security, Integrity, and Control

13.4.3 Violation of Integrity Constraints and Corrective Action

As mentioned earlier, the validation of the database can be done right after the com¬

pletion of a single request to the database; at some point within a transaction, includ¬

ing at the end of a transaction; or at some time specified by the DBA or a database

auditor (the latter may be called the audit time).
If the validation is done after each request to the database, a message can be

returned to the user or application program indicating the problem, and the request

will fail. If the validation checks are performed at some point within a transaction

(including just before it is committed), there is a requirement to perform a mainte¬

nance operation in case of integrity violation. This would involve terminating the

transaction and undoing any changes made by the transaction.

If the validation checks are done at audit time, it becomes difficult to assign the

integrity violation to a single database request or a single transaction. An audit trail

could be helpful in pinpointing the culprit; however, corrective actions have to be

performed on transactions that were processed from the time of the integrity viola¬
tion.

13.4.4 A General Model of Integrity

A general integrity constraint can be specified using a model that gives the following
parameter for each constraint:

• D: The data object(s) to which the constraint applies.

• O: The database operation for which the constraint will be tested.

• A: The assertion or semantic constraint that must be satisfied by the occurrence
of the data object(s).

• C: Predicates to be applied to the data object. The predicates select those

occurrences of the data object to which the assertion A will be applied. If

the condition holds for a given occurrence of D, it is a candidate for the con¬
straint A.

• P: The procedure (sometimes called an auxiliary procedure) that will be

triggered for execution when an integrity violation is found to be true (if the

condition A is not true). The auxiliary procedure must take corrective action to
maintain integrity.

Using this model, each constraint can be expressed as a five-tuple: (D, O, A, C, P).

The auxiliary procedure P in the above model is said to be triggered when a

modification to the database causes an integrity violation, i.e., the constraint A does

not hold. The procedure is responsible for taking corrective actions.

One type of operation that the auxiliary procedure can be called to take is to

check some complex integrity requirements that cannot be specified by assertions. A

method of triggering such a procedure would be by setting the assertion A to false

and the condition C to true in the constraint rule. In addition, such an auxiliary
procedure could be called to prepare appropriate audit trails, and so forth.

13.4 Integrity 635

It has been proposed that an integrity mechanism called trigger be included in

the new standard for SQL. A trigger is defined as follows:

define trigger trigger_name

on relation names

predicate(s)

action auxiliary procedure

We give below an example of trigger definition where the salary of employees

is checked on insertion or update:

define trigger salary_validation

on relation EMPLOYEE

EMPLOYEE.Salary > 10000 and Employee.Sa/ary < 200000

action Notify_Personnel_Manager

13.4.5 Expressing Integrity Constraints

Most DBMSs have some form of language constructs for expressing domain and key

constraints. These constructs could be part of the data definition language, the data

manipulation language, or a special language. However, the constructs for expressing

complex constraints are only in the evolution stage. We gave a form for checking a

general constraint in Section 13.4.4 and the define trigger statement proposed for

SQL.

Since the DBMS is representing a given data model, it is aware of some of the

integrity constraints implicitly built into the data model. It is informed of the record

structure and other implicit integrity constraints by the declaration in the data defini¬

tion language. For instance, in a hierarchical system the declaration of a record type

gives its structure; in addition, some data fields may be declared as unique to specify

a primary key of the record type. The hierarchies with the parent and dependent

record type gives the relationship between record types. Additional rules, as men¬

tioned in Chapter 9, may be specified which could result in the creation of logical or

virtual parents and enforce appropriate referential integrity constraints and semantic

consistencies.
The network data definition facility allows the definition of a primary key (by

not allowing duplicates). The check clause in the data definition can be associated

with each data-item that specifies the valid values or data type. The insertion and

retention rules for sets define the semantics and referential integrity of the indepen¬

dent existence of the member record type occurrence vis-a-vis the owner record oc¬

currence. The check clause is also used to specify other arbitrary constraints, and it

may be formulated to enforce constraints between distinct record types, stipulating

operations that will trigger the execution of an associated auxiliary procedure.

Relational data definition language also provides statements to allow specifica¬

tion of constraints. The assert statement is one such statement. The assert indicates

that a constraint is specified involving relations in the on clause. The assertion to be

enforced is given by predicates following the list of relations. However, current re¬

lational languages and DBMSs support such a statement only partially.

636 Chapter 13 Database Security, Integrity, and Control

An assert statement can be used to specify referential integrity. The following

assert statement ensures that only registered students are enrolled in existing courses:

assert Enrollment_Constraint on ENROLLMENT e STUDENT s COURSE c

Student-Name = s.Student-Name and e.Course = c.Course

13.5 Statistical Databases

A statistical database contains confidential information about individuals (or orga¬

nizations), which is used to answer statistical queries concerning totals, averages,

numbers with certain characteristics. Since the data is confidential, involving, say,

the medical history or income of individuals, responses to queries should only in¬

volve nontrivial size subsets of the database.

In a statistical database the objective is to maximize the sharing of statistical

information, yet preserve the privacy of individuals. The challenge is to make it

difficult if not impossible for anyone to extract information about particular individ¬

uals from the answers to a set of queries that involve a large number of records. This

security problem cannot be solved by normal access control strategy, since the aim

of the database is to maximize sharing and allow all users full access to the data in
the database.

To illustrate how individual values can be traced by a series of queries, let us

look at the data of Figure 13.11. If this were a statistical database, the need for the

unique identifier, such as Employee-Name in this database, would be to verify the

correctness of the information. However, such unique identifiers will not be accessi¬

ble to the users. (We assume that the persons who entered these unique identifiers

and the rest of the information are reliable, or else the unique identifiers are in a

coded form.) It is not possible to get a response from the database to a query that
asks for the salary of one individual.

A query similar to the following, though of a statistical nature, would compro¬

mise the database since the response involves only one record in the database:

find average Salary for all EMP_SALARY

where Department = Comp Sci.

and Position = Asst Prof response 44500

Figure 13.11 The EMP_SALARY relation.

Employee-Name Department Position Salary

Smith Comp Sci Asst Prof 44500
Clark Comp Sci Asso Prof 49750
Turner Chemistry Professor 63050
Jamieson Mathematics Professor 61430
Bosky Physics Asso Prof 52800
Newton Physics Asst Prof 42750
Mann Elect Eng Asst Prof 44750

13.5 Statistical Databases 637

This points out the constraint that the statistical database must not respond to a

query if the number of records involved in arriving at the response for the query is

very small, i.e., less than s. Notwithstanding the above condition, it is still possible

for someone who has some knowledge about certain records in the database to com¬

promise the database. For example, Clark, knowing her or his own salary and know¬

ing that there are only two employees in the Computer Science department, can find

Smith’s salary using the following queries:

find average Salary for all EMP_SALARY

where Department - Comp Sci: response 47125

Thus Smith’s salary = 47125 * 2 — 49750 = 44500

If we limit queries so that only those queries that involve a large number of

records are fielded by the database, Clark may use the following set of queries to

compromise the database:

find average Salary for all EMP_SALARY: response 51290

find total number of EMP_SALARY: response 7

find average Salary for EMP-SALARY not in Comp Sci: response 52956

Thus knowing the details about Clark and the above responses. Smith’s salary

is computed as being:

51290 * 7 - 52956 * 5 - 49750 = 44500

In the above sequence of queries, each query by itself involved a large number

of records. The database was compromised because the number of common records

in the various queries in the above sequence was large. This leads us to the conclu¬

sion that if queries involve a very large set of records, e.g., greater than N - s,

the response should be withheld (here N is the total number of records in the data¬

base).

Even if we restrict the DBMS to respond to only those queries such that the

response involves records between s and N — s, it is still possible to compromise

the database if the user has access to information pertaining to some specific records,

as illustrated by the following sequence of queries. Here, we are assuming s is 2 and

N — s is 5. This case of compromising the database involves the following set of

queries:

find sum Salary
where Position = Asst Prof and Department = Comp Sci

or Position = Asso Prof and Department = Comp Sci

or Position = Professor: response 218730

find sum Salary
where Position = Asso Prof and Department = Comp Sci

or Position = Professor: response 174230

Thus Smith’s salary is computed as being 218730 — 174230 = 44500.

As shown above, it is possible for an unscrupulous user to extract information

about individual records; however, the following techniques make this task difficult.

One or more of the following strategies are usually used.
The first strategy is to reject queries that involve a very small number of records

in the statistical database. Thus, if the response to the query involves only a few

records, the use can infer the values for one individual using other generally available

638 Chapter 13 Database Security, Integrity, and Control

information of further queries. The method to thwart such attempts at breaching pri¬

vacy is to reject queries unless the response involves a minimum number of records.

Similarly, queries that involve a very large subset of the records in the database are

also rejected.
However, as we saw rejecting queries, where the number of records involved in

the response is either a very small subset(s) or a very large subset (N — s) is not

sufficient when more than one query is used.
Thus, if the number of records involved in two queries q, and q2 is n + 1,

where s < n + 1 < N - s, and if the number of common records (intersection

records) in these two queries is, n, then the number of different records in the two

queries is only 1. If the user has knowledge about one of these two nonintersecting

records, information on the other record can be inferred, as shown in Figure 13.12.

Additional outside information can lead to a compromise of the database when the

intersecting number of records is less than n or greater than 1.

The method to prevent this type of inference is to reject queries if the number

of intersection records with previous queries made by the user is very large. To

implement this strategy the system must maintain a history of all records that were

used in a query by a given user over a reasonable period of time. The amount of

storage required to maintain this information will become very large and strain the

capacity of the computing system. If this information is retained on only a few past

queries, the system may be compromised and answer queries that it shouldn’t. An¬

other method of bypassing such precautions by the system is for the user to be in a
pact with other users.

A third precaution is random falsification. In this approach, a small random

amount of data is falsified. This falsification is statistically insignificant so that nor¬
mal users will not suffer from erroneous statistics.

Another strategy that can be used in a large statistical database like a census

database is to select a random sample of the database that will be used to answer any

query. The random sample would be representative of the entire database. The user

would get the correct statistical information without the possibility of the database
being compromised.

A final strategy is to produce an audit trail of activities on the database. This

trail will maintain the identity of the users and their interaction with the database. It

can be used to find out after the fact if any user was trying to or had actually com¬

promised the database. The very fact that this can be done would discourage such
actions.

Figure 13.12 Statistical database compromise with response set intersection size being too large.

13.6 Auditing and Control 639

1 3.6 Auditing and Control

Auditing is a standard practice used in most organizations. It consists of an exami¬

nation of the accounting and recordkeeping practices and other evidence to establish

the soundness and validity of the underlying operations. The audit is done by an

independent outside body called an auditor so as to be unbiased and objective. How¬

ever, an appropriate continuous internal audit is required in any organization to en¬

sure its health and continued existence.

The auditing process is relevant in the database environment to verify that the

automated operations are properly implemented and executed. Since data entry and

maintenance is done online, the history of the evolution of a piece of data is no

longer available in the database, which will contain the latest values only. Contrast

this with a traditional system where the evolution of a data object is preserved in the

form of a trail of records on paper. Furthermore, the computing system, with its

quiet and humanly invisible toil, can be used by crafty fraud artists to permanently

destroy the evidence of their mischievous deeds. The maintenance of a secure audit

trail becomes all the more necessary in the database environment.

In addition to the above, functions that were previously separated and controlled

by distinct parts of an organization (for example, initiation of a transaction and re¬

cording the financial and operational part of the transaction) are integrated into the

database environment. This integration of operations, while reducing redundancy,

causes the loss of independent scrutiny and corrections. Furthermore, in an online

system where a number of transactions are executed concurrently, it is very difficult

to reproduce the same sequence of processing. All these factors point to a need for

an audit trail in the database environment.
On the positive side, the computing system, with all its computing and record¬

keeping power, also provides a great opportunity for improving the audit procedure.

The auditing can now look into the complete database and, with minimum effort,

perform a greater number of checking and cross-checking operations than was feasi¬

ble with a manual system.
The audit trail to be maintained for audit purposes has some similarity with the

data collected for recovery operations. Thus for each update operation, the before

and after image of the data objects undergoing modification are recorded. All log¬

ons, read operations, and suspect or illegal operations are recorded. This information

can be used to analyze the practice of the users of the database, detect any attempted

violations, help correct errors in design or execution, and improve the control pro¬

cedure.
The control of the database starts with the design of the database and the appli¬

cation programs that will be using the data. One of the first control principles is that

of separating the responsibilities. This can be practiced by assigning separate teams

for the design and implementation of the program and for its validation and installa¬

tion. Any changes to the specifications or the actual program should be made and

reviewed by different teams.
The integrity control mechanisms should be integrated in the database and the

data entry function should be validated by the application programs. Careful design

of the user interface could reduce the chances of data entry errors. The semantic

640 Chapter 13 Database Security, Integrity, and Control

integrity constraints should be enforced for all update operations. Finally, appropriate

audit trails should be generated.

Summary

Security and integrity concepts are crucial since modifications in a database require

the replacement of the old values, but the fact that there was an old value for a given

data item is not evident. The DBMS security mechanism restricts users to only those

pieces of data that are required for the functions they perform. Security mechanisms

restrict the type of actions that these users can perform on the data that is accessible

to them. The data must be protected from accidental or intentional (malicious) cor¬

ruption or destruction. In addition there is a privacy dimension to data security and

integrity.
Four levels of defense are generally recognized for database security: human

factors, administrative controls, physical security, and the security and integrity

mechanisms built into the operating system and the DBMS. Access control policies

are classified as open vs. closed systems, content-independent access control, con¬

tent-dependent access control, access operation type control, access context control,

access control based on history of accesses, and information flow policies. The da¬

tabase depends on protection mechanisms such as user identification and validation

as well as the memory and file protection features of the OS.
Authorization is the outcome of the administrative policies and is expressed as

a set of rules that can be used to determine which user has what type of access to

which portion of the database. The person who is in charge of specifying the author¬

ization is called the authorizer. The authorization is usually maintained in the form

of an access matrix, containing rows called the subjects and columns called the ob¬

jects. An object is something that needs protection. The entry in the matrix at the

position corresponding to the intersection of a row and column indicate the type of

access that the subject has with respect to the object. Views or subschemes can be

used to enforce security. A user is allowed access only to that portion of the database

that is defined by the user’s view. A user may be granted some rights with the

propagate access control, which leads to the existence of an authorization grant tree.

To revoke access rights, all paths in the grant tree must start from the authorizer,

otherwise the revocation cannot be guarded against unscrupulous usage.

The facility available to the authorizer (and to the users who can propagate

access rights) to assign access rights could be in the form of a separate language or

could be integrated with the data definition or data manipulation language.

The user has to identify herself/himself to the system and authenticate the iden¬

tification. Security enforcement in distributed systems can be enhanced by distribu¬

tion; thus, sensitive information can be fragmented and stored at dispersed sites.

With the increasing use of public communication facilities to transmit informa¬

tion, there is a need for the data to be encrypted before it is transmitted and this

requires that, at the receiving end, the received data be deciphered. A public key

encryption scheme can be used. In this scheme both the encryption key and the

encryption algorithm are public and readily available. However, the decryption key
is secret; only the rightful recipient can decipher the coded message.

Security constraints guard against accidental or malicious tampering with data;

13.7 Summary 641

integrity constraints ensure that any properly authorized access, alteration, deletion,

or insertion of the data in the database does not change the consistency and validity

of the data. Database integrity involves the correctness of data and this correctness

has to be preserved in the presence of concurrent operations, errors in the user’s

operations and application programs, and failures in hardware and software. One

aspect to be dealt with by the integrity subsystem is to ensure that only valid values

can be assigned to each data-item; this is referred to as domain integrity. Another set

of integrity constraints are the so-called structural and semantic constraints. Some of

these types of constraints are addressed by the data models and others are addressed

in the design of the database by combining appropriate functional dependencies in

different records. Many functional dependencies can be implicitly represented in a

database that allows the declaration of some attributes as a primary key. Most DBMS

have some form of language constructs for expressing integrity constraints.

In a statistical database the objective is to maximize sharing statistical informa¬

tion and yet preserve privacy of individual records. This security problem cannot be

solved by normal access control strategy, since the aim of the database is to allow

all users full access to the data. The means to prevent compromising a statistical

database is to reject queries if the number of intersection records with previous quer¬

ies made by the user is very large (or very small). If random falsification is used to

protect confidentiality, it is statistically insignificant, so that normal users will not

suffer from erroneous statistics. The maintenance of audit trails could discourage

unscrupulous snooping.
The auditing process is also relevant in nonstatistical databases to verify if the

automated operations are properly implemented and executed.

privacy

database security

database integrity

semantic integrity

authorization

security administrator

authorizer

open system

closed system

least privilege

need to know

maximize sharing

content-independent access

control

name-dependent access control

content-dependent access

control

access type control

access context control

access matrix

subject

object
propagate access control

authorization grant tree

password

identification

authentication

Caesar code

one-time code
Data Encryption Standard

(DES)

trapdoor functions

public key

domain integrity

implicit constraint

referential integrity

auxiliary procedure

trigger

assert

on clause

statistical database

13.1 Consider a case of computer-related fraud you are familiar with (or consult one of the

references cited in the bibliographic notes). List the security and integrity constraints that

642 Chapter 13 Database Security, Integrity, and Control

should have been implemented. Could appropriate audit and control procedure have

prevented the fraud?

13.2 Define two views for the MED_HISTORY database for the use of the personnel manager and

the chairperson of the department so as not to compromise the confidentiality of the data

contained in the relation.

13.3 Given that a view or a subschema can be used to enforce security, would it be possible in all

cases to allow updates to be performed on a relation in a view (or records in a subscheme)?

List cases where updates cannot be allowed and indicate what type of constraints could be

violated if they were allowed.

13.4 Since it is possible to compromise the security of a statistical database by a sequence of

queries, some form of access control based on the history of accesses is required. Is it

possible to implement an access control mechanism that would prevent a number of users

conspiring to compromise the database?

13.5 Can a user who has access both to the Diagnosis attribute and the rest of the attributes of the

MED_HISTORY relation of Figure 13.3, but not simultaneously, compromise the

confidential information? If so, give the queries used.

13.6 Consider the relations STUDENTfSmt/ent-JVame, Major), CO\JRSE(Course-No,

Department), PREREQUISITEfCoMrse-JVo, Prerequisite-Course-No) and

ENROLLMENT(.S'/w<?<’«/_A,<ame, Course-No, Year, Term, Grade). Suppose it is required that

students be registered in only those courses for which they have passed all the prerequisite

courses. Indicate how this could be implemented using the trigger mechanism.

13.7 Consider the MED_HISTORY relation of Figure 13.3. Suppose the personnel manager is

allowed to access to the attributes Employee-Name, Department, and Visit-Date. He or she

is also allowed access to the Diagnosis attribute, but not simultaneously with the other

attributes. Is it possible for the personnel manager to compromise the confidentiality of the

data in the relation? If so, what corrective actions are indicated?

Bibliographic Notes

(Hoff 69) provides an early discussion of the danger of the privacy problem and presents some

early proposals for the safeguard. (Hoff 77) and (Mart 73) discuss the general problem of

security in computer systems. Textbook discussions of database security and integrity problems

are presented in (Date 83), (Fern 81), and (Mart 73).

The original proposal of the authorization mechanism for System R was presented in (Grif

76) and (Fagi 78). The paper by Fagin gives the proof of an algorithm for authorization grant

tress. (Zloo 78) presents the security and integrity features in Query-by-Example. The ap¬

proach used in INGRES to implement security was by query modification; this was presented

in (Ston 74).

The concept of public key encryption was presented in (Diff 76). (Rive 78) presents a

method to derive computationally secure trapdoor functions, public key encryption and de¬

cryption keys, and the associated algorithms. (Lemp 79) gives an excellent survey article on

cryptology.

(Hoff 70) poses the earliest problem of compromising a statistical database. Several re¬

searchers, (Kam 77), (Dobk 79), and (Reis 79), have looked at the mathematical analysis of

queries required to compromise a statistical database. (Denn 79) presents other methods of

13.7 Summary 643

compromising a statistical database where minimum set size constraints are imposed on re¬

sponse sets.

An audit trail model is given in (Bjor 75). (Mair 78) is a textbook on electronic data

processing auditing.

Bibliography

(Bjor 75) L. A. Bjork, Jr., “Generalized Audit-Trail Requirements and Concepts for Data Base Applications,”
IBM Systems Journal 14(3), 1975, pp. 229-245.

(Date 83) C. J. Date, An Introduction to Database Systems, vol. 2. Reading, MA: Addison-Wesley, 1983.

(Denn 79) D. E. Denning, P. J. Denning & M. D. Schwartz, “The Tracker: A Threat to Statistical Database
Security,” ACM Transactions on Database Systems 4(1), March 1979, pp. 76-96.

(Diff 76) W. Diffie & M. Heilman, “New Directions in Cryptography,” IEEE Trans. Information Theory IT-
2216), November 1976, pp. 644-654.

(Diff 77) W. Diffie & M. Heilman, “Exhaustive Cryptanalysis of the NBS Data Encryption Standard,”
Computer 10(6), June 1977, pp. 74-84.

(Dobk 79) D. Dobkin, A. K. Jones & R. J. Lipton, “Secure Databases: Protection against User Inferences,”
ACM Transactions on Database Systems 4(1), March 1979, pp. 97-106.

(Fagi 78) R. Fagin, “On an Authorization Mechanism,” ACM Trans, on Database Systems 3(3), September
1978, pp. 310-319.

(Fem 81) E. B. Fernandez, R. C. Summers & C. Wood, Database Security and Integrity. Reading, MA:
Addison-Wesley, 1981.

(Grif 76) P. P. Griffiths & B. W. Wage, “An Authorization Mechanism for a Relational Data Base System,”
ACM Trans, on Database Systems 1(3), September 1976, pp. 242-255.

(Hoff 69) L. J. Hoffman, “Computers and Privacy: A Survey,” ACM Computing Survey 1(2), June 1969, pp.
85-103.

(Hoff 70) L. J. Hoffman & W. F. Miller, “Getting a Personal Dossier from a Statistical Data Bank,”
Datamation 16(5), 1970, pp. 74-75.

(Hoff 77) L. J. Hoffman, Modern Methods for Security and Privacy, Englewood Cliffs, NJ: Prentice-Hall,
1977.

(Kam 77) J. B. Kam & J. D. Ullman, “A Model of Statistical Databases and their Security,” ACM

Transactions on Database Systems 2(1), January 1977, pp. 1-10.

(Lemp 79) A. Lempel, “Cryptology in Transition,” ACM Computing Survey 11(4), December 1979, pp. 285—

303.

(Mair 78) W. C. Mair, D. R. Wood & K. W. Davis, “Computer Control and Audit.” Wellesley, MA: Institute
of Internal Auditors, Q.E.D. Information Sciences, Inc., 1978.

(Mart 73) J. Martin, Security, Accuracy, and Privacy in Computer Systems. Englewood Cliffs, NJ: Prentice-

Hall, 1973.

(Reis 79) S. P. Reiss, “Security in Databases: A Combinatorial Study,” Journal of ACM, 26(1), January 1979,

pp. 45-57.

(Rive 78) R. L. Rivest, A. Shamir & L. Adleman, “A Method for Obtaining Digital Signature and Public Key
Cryptosystems,” CACM 21(2), February 1978, pp. 120-126.

(Ston 74) M. R. Stonebraker & E. Wong, “Access Control in a Relational Data Base Management by Query
Modification,” Proc. ACM National Conference, 1974, pp. 189-222.

(Worm 89) Special Section on the Internet Worm, Communications of the ACM, 32(6), June 1989, pp. 678-

710.
(Zloo 78) M. M. Zloof, “Security and Integrity within the Query-by-Example Database Management

Language,” IBM Research Report RC6982, Yorktown Heights, NY, February 1978.

Contents

Database
Design

14.1 The Organization and Its Information System

14.2 Phase I: Definition of the Problem

14.3 Phase II: Analysis of Existing System and
Procedures

14.4 Phase III: Preliminary Design

14.5 Phase IV: Computing System Decision

14.6 Phase V: Final Design
14.6.1 Designing the Conceptual Database—Relational

DBMS

14.6.2 Designing the Conceptual Database—Network DBMS

14.6.3 Designing the Conceptual Database—Hierarchical
DBMS

14.6.4 Designing the Physical Database

14.7 Phase VI: Implementation and Testing

14.8 Phase VII: Operation and Tuning

14.2 Phase I: Definition of the Problem 645

Database design is an iterative process. A number of design methodologies have been

developed.This chapter offers an informal discussion of the steps involved in design¬
ing a database.

14.1 The Organization and Its Information System

The information system of an organization consists of a number of subsystems in¬

volved in the collection, dissemination, and management of information. Some of

these subsystems are manual, others are automated. A database system consisting of

the data, DBMS software, hardware, and personnel is a component of such an infor¬
mation system.

Deciding to use a database system requires studying the organization and its

needs. In the case of a small organization with few users, where the volume of data

is small and there is no need for online query or update, a database system may not

be necessary. In an organization with a large volume of data that changes rapidly,

where there is a need for interactive queries and modifications, with a large number

of users, and where decision making is distributed, the need for concurrent access to

shared data is addressed by a database system.

In an organization where a large number of users and applications exist, the

database system provides data independence, insulating these users and applications

from changes. For the database to meets its objectives, its design must be complete

and consistent. All the significant inputs should be used in the design process, in¬

cluding the inputs of the users. The external schema allows multiple views of the

data contained in the database. Designing a database system requires gathering details

about the applications and transactions that are to be supported and the classes of
users that will use the system.

Figure 14.1 gives the system cycle for the design of a database system. It starts

off with the definition of the problem and goes through a number of steps, culminat¬

ing in the installation and operation of the system. In the following sections we

examine the activities performed in each phase of this cycle.

14.2 Phase I: Definition of the Problem

The first step in the system cycle is the rough outline and scope of the project.

Alternatives are examined and one of the alternatives is targeted for a feasibility

study. Estimates of the costs, including initial setup and operational costs, and the

risks versus the benefits are examined. The initial cost consists of acquiring the soft¬

ware and the hardware, converting from a manual or file-based system, and training

the personnel. Time scales for the various stages of the development cycle are esti¬

mated. Approval of top management for a go-ahead is required.

Once it is decided that the organization wants to pursue the database solution

for its information needs, the design of the database system begins.

646 Chapter 14 Database Design

Figure 14.1 Information system cycle.

Determining the
processing
requirements

Design of
applications and
transactions

Determining the
performance
requirements

Conversion of
applications and
transactions

Phase II: Analysis of Existing System and
Procedures

The second phase of the cycle is to perform a feasibility study of the proposed solu¬

tion. An analysis of the existing system and procedures and the impact of the pro¬

posed system on the operations of the organization must be considered at this stage.

The study of the existing system and procedures is a very important phase of

the design process. This study is in the form of observation of the existing system,

14.3 Phase II: Analysis of Existing System and Procedures 647

existing procedures and practices, current communication channels (both formal and

informal), and interviewing and/or surveying the users. The survey could be in the

form of questionnaires. A detailed study of the system may reveal inefficiencies,

duplications, and desired changes in procedures, as well as the effect of the database

system on the existing system and procedures. The consideration of how these could

be improved and/or replaced by more efficient or effective automated procedures is
also essential.

Some design tools such as data flow diagrams may be used to graphically depict

the data needs of the processes and how processes are interconnected. Information

required to generate these diagrams can be gathered via interviews with users and
existing procedural documentations.

Requirements that the system is to fulfil must be defined. These requirements

refer to the functions of the system, activities that will be supported by it, and the

data that will be required for these activities.

Factors that are considered in collecting and analyzing the requirements are the

following: levels of management to be supported, the nature of functions to be

served, and types of activities to be performed. A representative from each group of

users is chosen for participation in collecting and verifying the requirements. The

requirements could then be classed into two groups: information requirements and
processing requirements.

Information requirements specify the information under the control of the pro¬

posed database system. These include the entities, their attributes, and relationships
among them.

Processing requirements define the data-manipulation capabilities of the sys¬

tem and include their expected frequencies and required turnaround or response. Each

process is listed along with its data requirements and its data manipulation opera¬

tions. The processing requirements must be semantically correct and consistent, so

that the processing does not violate any constraints imposed by the information re¬

quirements.

Integrity constraints are defined from the above two requirements. These re¬

quirements are generated from interaction with the targeted users of the database

system. The conceptual schema would be generated from these requirements, speci¬

fying the entities and their relationships and including their attributes. For example,

the payroll preparation function would require information about employees’ salaries,

pay rates, hours worked, and tax status (number of dependents, other valid deduc¬

tions for tax computation). The payroll has to be prepared weekly, bimonthly, or

monthly. The turnaround time is in hours.
The information and processing requirements form the entries in the data dictio¬

nary. The latter contains an entry for each data item used in the system. The entry

defines each data item, provides any synonyms, and gives the characteristics of the

data item and its domain.
Formal requirement specification methods have been developed and are men¬

tioned in the bibliographic notes. These methods use hierarchical graphs and/or flow

charts for gathering and documenting the requirements.
To summarize we list below the steps of this phase of the database design pro¬

cess:

• Study of existing system and procedures: This involves examining the current

methods for recording and processing data.

648 Chapter 14 Database Design

• Meetings with user groups: One or more key users from each user group is

invited to provide input in determining the data and processing needs for the

group. A formal interview may be supplemented by a questionnaire.

• Analysis of the procedures and information flow: The information gathered is

analyzed for consistency and problem areas are targeted for further study.

• Modifications to improve efficiency: Modification in the current procedures

that could improve efficiency may be discovered. Such modifications have to be

discussed with the groups concerned to elicit their cooperation.

• Preparing the initial proposal and requirement specifications: The initial

proposal is prepared and may be discussed with the user group for any

omissions and corrections made to the proposed requirements.

The output of this phase is:

• Data requirements

• Properties and interrelationships of the data

• Operation requirements

• Significant events and the operations and conditions causing transitions

• Constraints

The application programs and transactions are designed at this stage of the de¬

sign process. The structure of the programs, their functions, and data needs (read

and write sets) are determined, and the user interface is defined.

14.4 Phase III: Preliminary Design

A preliminary design of the proposed system is derived in the next step. This design

is evaluated against the initial requirements. The users are consulted and required

changes are made to the design.

The cycle of the steps consisting of the definition of the problem, procedure

analysis, and preliminary design is repeated until a satisfactory design is obtained.

The design of the conceptual schema is initially DBMS independent and allows

a better understanding of the information requirements and their interrelationships. It

describes the contents of the database without reference to its implementation. It can

be understood by the nonspecialist and can be used in documenting the proposed

database. A data model such as the E-R model may be used for its graphical nature,
simplicity, and expressiveness.

The requirement specifications would have established the entities and the rela¬
tionships among them, as well as their attributes. The primary key of the entities,

the cardinality of the relationship, and constraints are to be specified in the concep¬
tual schema design.

Structure constraints such as normal forms for relations have to be enforced by

the design. Two approaches to the design of the conceptual schema may be taken:

centralized schema design or a view-integration approach. In the former, the re¬

quirement specifications for each class of users are merged into a single set of spec¬

ifications. The conceptual schema is designed from this single set. Any conflicts that

may exis* in the individual requirement specifications are to be arbitrated by the

14.5 Phase IV: Computing System Decision 649

DBA. After designing the conceptual schema, the views of the user classes are de¬
fined.

In the view-integration approach, the requirement specifications for each class

of users form the basis for designing their views. These views are then integrated

into the conceptual schema for the database. Conflicts such as synonyms and hom¬

onyms are easy to resolve. Conflicts that cannot be resolved by a conceptual schema

to view mapping have to be arbitrated. An instance of such a conflict is where one

application uses a locally generated sequential employee number and another may

use the social security number, conflict in which one application views an attribute

such as Length as meters and another interprets it as yards may be easier to resolve.

Once such conflicts are resolved the views are appropriately integrated. The

integration could be stepwise, where we start by integrating two similar views. Sub¬

sequently, at each step, an additional view is merged into the integrated conceptual

schema. After the conceptual schema is defined, the individual views are defined.

In the top-down approach to conceptual schema design we start with the major

entities of interest, their attributes, and their relationships for the database applica¬

tion. We add other attributes and may decide to split up the entities into a number of

specialized entities and add the relationships among these specialized entities.

In the bottom-up approach, we start with a set of attributes. We group these

attributes into entities and relationships among them. We also attempt to find higher

level entities to generalize these entities and locate relationships at this higher level.

The processing requirements in the form of applications and transactions are

designed and their response requirements are estimated. To determine the perfor¬

mance requirements, the data items to be read and written out (read and write sets)

for each operation in the transaction or application have to be determined. This is

used to derive the number and size of input/output for each transaction and applica¬

tion. The performance requirements for the system will influence the distribution of

files on physical devices, the physical file structure, and the need for indexes.

14.5 Phase IV: Computing System Decision

This decision may be based on the existing environment. If the database is to be

implemented on an existing computer system, the choice is limited to that for the

DBMS. The existing system must be able to meet the storage and processing needs

of the proposed DBMS. DBMSs are usually chosen from one of the commercial

systems because of the cost of developing an in-house system. Features provided by

different systems are also important. Some that should be considered are report gen¬

eration facilities, utilities such as menu and form-based user interface, features to

support distribution of the database, communication facilities, and the like. Other

considerations such as the expertise of the personnel and their preferences also come

into play.
The structure of the data dictates the data model of the database. If the data is

mainly hierarchical, the hierararchical model and a hierarchical DBMS may be ap¬

propriate. If the data exhibits a large number of interrelationships, the network or

relational model would be preferable. Deciding on a model also narrows the choice

of commercial DBMSs. Other factors that can influence the choice of a DBMS are

650 Chapter 14 Database Design

the experience of the personnel, reputation of the vendor, and the availability of

services from the vendor. Selecting the DBMS also dictates the data model.

New applications are increasingly implemented on relational DBMSs and non¬

relational DBMSs are retrofitted with a relational interface. The current trend for the

same DBMS being able to run on different CPUs under different OSs allows some

degree of independence between the choice of a DBMS and that 'of a computer

system.
If the database is to be implemented on an existing system, it must be able to

meet the processing requirements for the foreseeable features.

Factors that have to be considered in the choice of the computing system are

capital costs, conversion and initial training costs, operating costs including those for

personnel, and maintenance of the hardware and software.

14.6 Phase V: Final Desigh

The preliminary design of the database in Phase III is in database-independent

form, for instance, using the E-R model. Once the DBMS is chosen, the (DBMS-

independent) conceptual scheme is translated into the DBMS specific conceptual

scheme and the views of the applications are derived from it as external views. The

schemes are generated as programs in the DDL of the target DBMS.

The first step is to convert the conceptual and external schemes in the model of

the database. We discussed the method of converting a design from the E-R model

to one of the relational, network, or hierarchical models in Section 2.9. These con¬
versions rules are summarized in Figure 14.2.

14.6.1 Designing the Conceptual Database—Relational DBMS

It is apparent from Figure 14.2 that converting the preliminary design in the E-R

model to a relational model is a trivial task. An entity type is represented as a rela¬

tion. A weak entity type is represented as a relation that includes the key of the

identifying strong entity. A relationship is also represented as a relation and includes

the primary keys of the entities involved in the relationship. In the case of a 1:N

relationship, if it does not involve any attributes and if the entity on the “N side”

does not participate in any other relationships, the 1:N relationship can be repre¬

sented by appending the primary key of the ”1 side” to the relation for the ”N

side. It is also possible to merge these two relations into one if performance require¬
ments are not compromised.

An IS_A relationship representing a generalization-specialization hierarchy (su¬
perclass/subclass relationship) in the E-R diagram may be represented as a set of

relations. Here a relation is created for the superclass entity and its key is used as a

foreign key in each of the relations corresponding to the subclass entities. Another

option is to have the subclass entities inherit the attributes of the superclass entity

(These options were illustrated in Figures 2.28 and 2.30, respectively.) In a third

option, a single relation is created that includes the attributes of the entities at all

levels of die generalization-specialization hierarchy. In this case null values are used

651 14.6 Phase V: Final Design

Figure 14.2 Conversion of E-R diagram to relational, network, and hierarchical models.

Concept in E-R

Model

Conversion to

Relational Model

Conversion to

Network Model

Conversion to

Hierarchical Model

Entity set Relation Record type Record type

1:1 and 1:N

binary relation¬

ship

As a relation in¬

cluding the pri¬

mary keys of en¬

tities involved or

by appending the

primary key of

the “1” side re¬

lation in the

other relation.

As a set type

where the owner

record type is the

“ 1 side. ”

As a hierarchy with

the parent is the "1

side” record type.

M:N

relationship

As a relation in¬

cluding the pri¬

mary keys of the

entities in the re¬

lationship.

Introduce an in¬

termediate record

type that is a

common member

of two set types

owned by the rec¬

ord types corre¬

sponding to the

M: N relation¬

ship.

For symmetric access

use two hierarchies

with either duplica¬

tion or use of virtual

records.

IS-A

relationship

As a relation for

the superclass

and each of the

subclasses with

the primary key

of the superclass

included, or as a

relation for each

subclass with the

attributes of the

superclass in¬

cluded.

A 1:1 set type

with mandatory

membership. At

most one member

record type oc¬

currence is en¬

forced by the ap¬

plication program.

A hierarchy with at

most one occurrence

of the child record

type. The constraint

of at most one record

occurrence at the

child level is en¬

forced by the appli¬

cation program.

for attributes that do not apply to a given instance of the entity. An additional attrib¬

ute to indicate the type of the tuple could be used in case the generalization-special¬

ization is disjoint. For an overlapping generalization-specialization, a Boolean attrib¬

ute for each possible type may be included. In this way, the nonrelevant attributes

may be ignored.

652 Chapter 14 Database Design

14.6.2

If care is taken in the preliminary design to normalize the records, the database

will satisfy structural constraints. To meet the performance requirements, a number

of indexes will have to be generated for each relation. The attributes used in gener¬

ating the indexes depend on the types of access required.

Designing the Conceptual Database—Network DBMS

14.6.3

In the network model, the entity is represented as a record type. A weak entity is

represented as a set type where the strong entity is the owner record type. Alterna¬

tively, the weak entity type may be represented as a repeating group within the record

type for the strong entity. A 1 :N relationship is represented as a set type where the

record type corresponding to the “1 side” is the owner record type. The attribute of

the relationship is combined with the attributes of the member record type. However,

if the member record type participates in more than one set, the representation of the

relationship requires the introduction of a record type to hold the attributes of the

relationship. This newly introduced record type now becomes the common member

in two sets. One is a 1 :N set involving the original owner record type as owner and

the new record type as member. The other is a 1:1 set involving the original member

record type as an owner and the new record type as member. An N: M relationship

is represented by two set types involving an intermediate record type as the member.

The intermediate record type represents the attributes of the relationship.

The IS-A relationship representing a generalization-specialization hierarchy of

the E-R diagram is represented by a 1:1 set type where set membership is manda¬

tory. The fact that a set can have only one member occurrence is enforced by the

application program.

Designing the Conceptual Database—Hierarchical DBMS

14.6.4

In the hierarchical model, each entity type is represented by a record type. A 1:1 or

a 1 :N relationship is represented as a hierarchy with the record type for the ”1 side”

being the parent. Optionally the child record type is represented as a part of the

parent record type. A weak entity is represented as a child record type in a hierarchy

where the record type for the strong entity is the parent or as a repeating group in

the strong entity record type. An N:M relationship is represented by duplications or
by use of virtual records.

The IS-A relationship representing a generalization-specialization hierarchy of
the E-R diagram is represented by a 1:1 hierarchy, the constraint that there can be

only one child record type occurrence being enforced by the application program.

Designing the Physical Database

The primary keys of the records included in the database are chosen during the

preliminary logical database design. The physical design includes decisions regarding
the following aspects of the physical database:

14.6 Phase V: Final Design 653

• The choice of clustering of records

• The choice of the file organization

• The choice of supporting indexes

• The provision of links between records

Here the intent is to choose appropriate storage structures and access aids for

optimum performance of the database system. Direct access is required where the

file has a high rate of insertions and deletions and indexed-sequential access is suit¬
able for a stable file.

Performance is measured in response time for online queries such as airline

reservations or banking applications, or turnaround time for application programs

such as payroll preparation. Performance depends on the size of records, the amount

of data and its distribution on a number of storage devices, the presence of various

indexes or direct access mechanisms.

For a given system the file structures that may be used are usually dictated by

the DBMS. The expected types and frequencies of data manipulation operations are

used to determine access aids that would be effective. If an attribute such as address

is normally used for retrieval in an online system, a direct access path based on this

attribute may be implemented.

Special care is taken to define indexes in a relational system for attributes par¬

ticipating in join operations. The storage structure and indexes may have to be mod¬

ified during the fine tuning of the system, once it becomes operational and supports

day-to-day operations.

Physical storage strategy includes decisions regarding the partitioning of a rec¬

ord into vertical, horizontal, or mixed fragments. Vertical fragmentation is appro¬

priate if some of the record’s fields are accessed more frequently than others. By

removing the less frequently used fields along with the primary key into a separate

record on a different physical file, the volume of data transfer is reduced. This would

also be applicable if the vertical fragments were rarely used simultaneously. Hori¬

zontal fragmentation is appropriate if some occurrences of a record are more fre¬

quently used than others.

A strategy used in a relational system is to store the join of two relations, or at

least those attributes of the joined relations that are frequently required. However,

this strategy requires that all update operations must maintain the consistency of the

database by updating such duplicated attributes.
In a relational database, a number of indexes are created for each record. The

records themselves may be stored in a serial manner. The attributes used for creating

secondary indexes are determined from the processing requirements of the database.

Alternately, performance requirements may dictate that if a relation is retrieved using

its primary key, which is also used for join operations, the relation may be stored

using direct file structure. If the relation is to be stored as a sequential file, the

ordering is on the attribute that is used frequently in retrieving tuples from the rela¬

tion or for performing join operations. If more than one such attribute is needed, the

relation may be stored in a serial file and secondary indexes created for each such

attribute. The advantages of a serial file are ease of growth and shrinkage of the file

size.
In a network system, access to member record types can be improved by storing

the members close to the owner record type. However, if a record type participates

as a member in more than one set type, this scheme is possible for only one set.

654 Chapter 14 Database Design

which has to be chosen judiciously. The remaining sets would be implemented with

pointers and/or linked lists. Using pointers is the most common method of imple¬

menting a set construct of the network model. However, many network DBMSs

allow the specification of the subsequent as well as the prior member and a pointer

to the owner record from each member record. The owner record may be located

efficiently using one or more indexes.
Performance in a network DBMS can be improved by the following strategies:

• Replicating attributes of the owner record in the member record. This avoids the

necessity of locating the owner record to access the replicated attributes. Such

replication requires that update operations modify these replicated attributes to

maintain database consistency.

® Using direct access. This is specified by the calc option for an attribute of the

record. The records are then stored in a direct access file and could be retrieved

randomly using the value of the field.

• Assessing member records only through the owner record, specified by the via

set option.

• Storing records in sequential order by specifying the field(s) to be used for the

ordering.

In the hierarchical database, the storage structure allows efficient access via the

root record type. The choice of the root record type will determine the performance

of the system. Virtual parent-child hierarchies are implemented by pointers. A hier¬

archy can be partitioned and the root of each subtree can have direct access imple¬

mented for it. In this way it is possible to improve performance in the hierarchical

system.

The physical database design is also an iterative process. Following the initial

design, the performance of the system for a suitable mix of transactions is estimated.

If the performance is not near the expected value, changes are made in the physical

design. Possible problem areas could be the result of an improper choice of file

organization for online transactions, storage of records required simultaneously on

the same physical drive, improper type of storage unit, too many records in the

overflow area of an indexed-sequential file, inappropriate bucket size for a direct

access file, and so on. A number of strategies could be used to improve performance.

This includes dividing a record into two or more records (e.g., relegating the little

used fields into a separate record), combining two or more records into one (e.g.,

storing the join of two relations), or duplicating a file. These factors are considered

and corrected until the performance requirements are achieved. The validity of the
final design is confirmed in the next phase of the design process.

14.7 Phase VI: Implementation and Testing

In this phase the design is implemented and tested. Implementation consists of writ¬

ing and compiling the code for the conceptual and external schemes in the DDL of

the DBMS. The physical database is created and loaded with test data. The applica¬

tion programs and transactions are written using appropriate high-level languages
with embedded DML statements or query language.

14.9 Summary 655

Once implemented, the system is put through a number of tests to verify its

functioning. In a system where a large number of concurrent accesses and updates

are made, errors are very difficult to locate. The test data and test pattern must be

carefully planned to facilitate the location of the cause of errors.

Documentation of the system is also prepared. Documentation records proce¬

dures to be followed for regular operations and steps to be taken in the event of

errors or failures. Procedures for backing up and restarting after failure of various
types are outlined.

Once the system is found to be satisfactory, it is installed for use in day-to-day

operations. Users are trained on the new system. It is usually given a dry run, which

consists of using the new system along with the existing system. The operation of
the system is monitored.

14.8 Phase VII: Operation and Tuning

In this phase of the design cycle, the design is completed and is ready for day-to-day

operation. The users have been trained and the bugs have been removed. The system

has been tried and the actual performance can now be measured. If the performance

is not satisfactory, fine tuning is called for. This would entail using one or more of

the following options: increasing the number of buffers, defining additional in¬

dexes, partitioning records, and/or clustering records that are likely to be accessed to¬
gether.

Summary

In this chapter we informally examined the steps involved in the design of a database

system. It begins with the identification of a problem area in the information handling

capability of an organization. The feasibility of using a database system to resolve

these problems is studied and where it is found that such an approach is warranted

the design process starts. Once the information and processing requirements for the

database system and the applications it supports are gathered, the preliminary design

is undertaken. The preliminary database design is independent of any DBMS or its

data model. These phases of the design problem are cyclic and may require going

back to the initial step to resolve ambiguities in requirements or conflicts. The deci¬

sion of which computing system and DBMS system to use can be made upon the

completion of the preliminary design and the identification of the processing, storage,

and performance needs. Once a decision is made on these aspects, the final design

begins. It consists of mapping the preliminary design into the model of the selected

DBMS and implementing the various schemes in the DDL of the DBMS. The phys¬

ical database design is completed and the internal schema is defined. The application

programs and the transactions are coded and the system is integrated and evaluated.

At the end of the evaluation phase the system is made available for productive use

and its performance is monitored.

656 Chapter 14 Database Design

information requirements

processing requirements

integrity constraints

centralized scheme design
view-integration approach

top-down approach

bottom-up approach
vertical fragmentation

horizontal fragmentation

14.1 Videobec is the leading corporation in the growing video rental business. It has the largest

number of stores and prides itself on having the most comprehensive list of video movies and

games. It also rents VCRs and video cameras to its members. As a convenience, it repairs

video equipment, the actual work being contracted out to a number of repair shops who reap

80% of the repair charge. Each of Videobec’s stores is run by a manager and assistant

manager who are full-time employees. In addition, each store hires its own part-time help

who are paid on a hourly basis.

The membership privilege is extended to customers for a period of one year and is

renewable, unless a member has been habitually tardy in returning items borrowed. A

member is allowed to rent up to 12 movie titles, 6 video games, 1 VCR, and 1 video-camera

simultaneously. Movies and games can be returned to any store, but a VCR or video camera

has to be returned to the store from which it was borrowed. Members have access to the

online catalogue of titles and may reserve titles. A reserved title has to be picked up before 6

p.m., after which time the reservation is automatically canceled. Items are charged per day

and borrowed items have to be returned before noon. Any late return bears a charge of one

additional day. A discount of 20% is awarded on weekdays for all items rented. A total

discount of 33% is also given on movie rentals on weekdays when more than three titles are

borrowed at one time.

Movies are held by Videobec in both VHS and Beta format. The catalogue of movies

contains the title of the movie, the studio or producer, the director, two leading actors, the

category of the movie, number of cassettes per copy, and charge per day. The video grames

catalogue contains the name of the game, the game system, and the charge per day.

Videobec carries multiple copies of the same title, and a store could have been assigned any

number of copies of each title. A store that has more copies of a given title than assigned to

it will return these at the end of each week to Videobec’s head office, which redistributes

them to appropriate stores.

You are required to design and implement the database for Videobec’s operational data

using an appropriate DBMS package. Prepare a report documenting your design, including

an E-R model of the database. The implementation of the database is to be made using the

chosen DBMS on an appropriate computer system.

Your database implementation should allow the following types of queries to be made:

• Add new titles, equipment, stores, members, employees, part-time employees, repair

shops.

• Remove titles, equipment stores, members, employees, part-time employees, repair

shops.

• Update appropriate attributes of titles, equipment, stores, members, employees, part-

time employees, repair shops.

• Show status of a member, including titles borrowed and amount outstanding for

items rented.

14.9 Summary 657

• Show status of movies, games, and equipment.

• Show payment to employees for the week.

• Show payment to repair shops for the month.

• Show income of a given store for the month.

• Reserve titles by members.

• Note return of items by members and additional charges outstanding (e.g., $1.00 per

cassette not rewound).

• Show rental of items and initial charge for the first day of the rental.

Start with the E-R model of your system and note the attributes of each entity and

relationship. Choose the DBMS and the computer system. Convert the E-R model to that of

your DBMS. Implement the applications indicated above and design a set of tests for your

system.

Many ambiguities in this case study will have to be resolved. This should be done via

observation of an actual video store and discussions with its management. You may make

appropriate assumptions but you must be able to defend them.

14.2 Do Drive is a small driving school that is growing and feels the need for a database system.

The school offers driving lessons on three different vehicles—cars, trucks, and buses. To get

a driving certificate from the school, which is a prerequisite for getting a driver’s licenses,

each student should score more than 75% in five theoretical courses (Defensive Driving,

Automobile Mechanics, Highway Code, Safe Driving, and Maintenance) and more than 85%

in practical driving. After 10 hours of practical driving, a student’s performance is assessed.

If the student fails, he or she will be asked to take two hours of additional driving. If the

student fails one of the theoretical courses, he or she will be asked to appear for a

supplementary test in that course.

The fee for the driving course is $300.00 for car, $700.00 for bus, and $1,000.00 for

trucks. The fee for one supplementary test or one hour of extra driving, 10% of the course

fee. Students can pay their fees in installments; however, the certificate is withheld while the

student owes money to the school.

The school employs three types of employees: salaried employees for administration,

teachers who offer theoretical courses, and instructors who give practical lessons. The

salaried employees are paid a monthly salary. Each teacher is paid $300.00 per course

section and each instructor is paid $100.00 per student.

You may make the following assumptions:

• A teacher can offer one or more courses. A teacher can also offer more than one

section of the same course.

• An instructor can offer practical lessons to several students.

• An instructor can offer practical lesson on more than one type of vehicle.

• The school owns more than one vehicle of each type.

Once a student gets a certificate, the details pertaining to the student can be removed

from the online database.

Typical operations to be supported by the database are listed below:

• Add new students, teachers, instructors, salaried employees, and vehicles.

• Remove existing students, teachers, instructors, salaried employees, and vehicles.

• Compute various types of statistics for the student population.

• Compute the payments for employees.

• Prepare the schedules for the courses and driving lessons.

• Keep track of payments made by students and amounts outstanding.

658 Chapter 14 Database Design

Design an E-R model for this database. Convert the model to a relation model listing

the relational scheme, primary keys, and functional dependencies. Ensure that all relations

are in at least the third normal form. Implement the relational model on a relational DBMS.

If the DBMS does not support the concept of domain, your application programs and

transactions must be able to support data validation.

14.3 You are hired to design a database system for Hotel Plein Air. The hotel owns a personal

computer system and the database must be implemented on this system. The hotel has 100

guest rooms, a restaurant, a coffee shop, and a convention center/ballroom which may be

divided into as many as four seminar rooms.

Each of the guest rooms has a description indicating its room number, type of beds, and

its rate. Records are maintained for the regular guests of the hotel. The restaurant and the

coffee shop have a certain seating capacity, and each has a number of menus. Registered

guests may charge their restaurant bills to their room account. Registered guests’ bills are

updated every day and all charges made by these guests are entered on their room bill.

The hotel has a number of employees (assistant managers, chefs, waiters, maitre d’,

bus-persons, maids, janitors, host/hostess, cashier, dishwashers, clerks, and a manager). All

employees except the manager are paid on the basis of the number of hours worked. Each

work position requires a minimum level of skill. Employees are assigned these positions for

a given date and shift.

Design a database system for managing reservations, accounts, employee work

assignments, and payroll preparation for the hotel. The system must have a friendly user

interface, since the hotel is unwilling to train its employees extensively.

Bibliographic Notes

In this text, we did not discuss automated database design tools. However, a number of design

tools for the more computationally intensive and time-consuming aspects of design are ap¬

pearing on the market. Requirement analysis can be made manually using a graphical design

tool such as data flow diagram (Gane 79) or hierarchical input process output (HIPO) (Jone

76), (Katz 79). Other commercial techniques such as structured analysis and design technique

(SADT) (Ross 77a), (Ross 77b), developed by SofTech Inc., may also be used in establishing

the requirements.

Scheme integration is surveyed in (Bati 87). In (Schk 78) the physical database design

methodology is surveyed. (Marc 77) gives methods for segmenting records and deciding the

blocking factor for the physical design. The following textbooks have extensive coverage

of database design: (Atre 80), (Ceri 83), (Flem 89), (Furt 86), (Hawr 84), (Weid 83), and

(Yao 82).

The projects given in the Exercises at the end of this chapter were used at Concordia

University and were conceived by Profs. B. C. Desai, P. Goyal, T. Narayanan, and F. Sadri.

Bibliography

(Atre 80) S. Atre, Database: Structured Techniques for Design, Performance, and Management. New York:
Wiley-Interscience, 1980.

(Bati 86) C. Batini, M. Lenzerini, & S. Navathe, “A Comparative Analysis of Methodologies for Database
Schema Integration,” ACM Computing Surveys 18(4), December 1986, pp. 323-364.

(Ceri 83) S. Ceri, ed. Methodology and Tools for Data Base Design. Amsterdam: North-Holland, 1983.

14.9 Summary 659

(Dewa 89) R. M. Dewan, & B. Gavish, “Models for the Combined Logical and Physical Design of
Databases,” IEEE Trans, on Computers 38(7), July 1989, pp. 955-967.

(Flem 89) C. C. Fleming, & B. von Halle, Handbook of Relational Database Design. Reading, MA: Addison-
Wesley, 1989.

(Furt 86) A. L. Furtado, & E. J. Neuhold, Formal Techniques for Data Base Design. Berlin: Springer-Verlag,
1986.

(Gane 79) C. P. Gane, & T. Sarson, Structured Systems Analysis: Tools and Techniques. Englewood Cliffs, NJ:
Prentice Hall, 1979.

(Hawr 84) I. T. Hawryszkiewycz, Database Design and Analysis. Chicago: SRA, 1984.

(Jone 76) M. N. Jones, “HIPO for Developing Specifications,” Datamation March 1976, pp. 112-125.

(Katz 79) H. Katzan, Jr., System Design and Documentation: An Introduction to the HIPO Method. NY: Van
Nostrand Reinhold, 1976.

(Loom 87) M. E. S. Loomis, The Database Book. NY: Macmillan, 1987.

(Marc 77) S. March, & D. Severance, “The Determination of Efficient Record Segmentation and Blocking
Factor for Shared Files,” ACM Trans, on Database Systems 2(3), September 1977, pp. 279-
296.

(Ross 77a) D. T. Ross, “Structured Analysis (SA): A Language for Communicating Ideas,’ IEEE Trans, on

Software Engineering SE-3(1), January 1977, pp. 16-33.

(Ross 77b) D. T. Ross, & K. E. Schoman, Jr., “Structured Analysis for Requirements Definition,” IEEE

Trans, on Software Engineering SE-3(1) January 1977, pp. 6-15.

(Schk 78) M. Schkolnick, M. “A Survey of Physical Database Methodology and Techniques,” Proc. of the
Fourth International Conf. on Very Large Data Bases, West Berlin, 1978, pp. 474-487.

(Wied 83) G. Wiederhold, Database Design. NY: McGraw-Hill, 1983.

(Yao 82) S. B. Yao, S. B. Navathe, J. L. Weldon, & T. L. Kunii, eds. “Data Base Design Techniques I &
II,” Lecture Notes 132, 133. Berlin: Springer-Verlag, 1982.

Distributed
Databases

Contents

15.1 Introduction

15.1.1 Advantages and Disadvantages of the DDBMS

15.2 Networks

15.2.1 Failures and Distributed Databases

15.3 Data Distribution

15.3.1 Fragmentation

Vertical Fragmentation

Horizontal Fragmentation

Mixed Fragmentation

Disjoint Fragmentation

Nondisjoint Fragmentation

15.3.2 Replication

15.3.3 Transparency

15.3.4 System Catalogs

15.4 Object Naming

15.5 Distributed Query Processing

15.5.1 Parallelism in Distributed Query Processing

15.5.2 Semijoin

15.5.3 Semijoin and Reduction of Relations

15.5.4 Concluding Remarks

15.6 Consistency

15.7 Concurrency Control

15.7.1 Distributed Locking

Majority Locking

Primary Site Locking

Distributed Two-Phase Locking

15.7.2 Timestamp-Based Concurrency Control

15.8 Distributed Commitment and Recovery

15.8.1 Two-Phase Commit

15.8.2 Recovery with Two-Phase Commit

Site Recovery

Lost Message

Communication Link Failure

15.9 Deadlocks in Distributed Systems

15.9.1 Deadlock Detection by Probe Computation
15.9.2 Deadlock Prevention

15.10 Security and Protection

15.11 Homogeneous and Heterogeneous systems
15.11.1 The Homogeneous DDBMS

SDD-1: A System for Distributed Databases R’
15.11.2 The Heterogeneous DDBMS

MULTIBASE

660

15.1 Introduction 661

In this chapter we discuss some of the issues involved in the case of a distributed

database. The components of such a database are located at a number of sites inter¬

connected by means of a communications network. Each node consists of an inde¬

pendent computer system and its software. Advantages of distributing the database

are the increased availability, reliability and the possibility of incremental growth.

However, the costs and complexity of the system are higher. The partitioning of the

database can be non-disjoint and some portions of the database could be replicated.

Data distribution is covered in Section 15.3.

A query in a distributed database may need data from more than one node which

entails communication costs. Distributed query processing is the topic of Section

15.5 wherein we introduce the semijoin operation. This operation is used to reduce

the amount of data transmission. Consistency requirements are stressed in Section

15.6. Concurrency control in the case of a distributed database requires special treat¬

ment. A number of concurrency control alternatives are presented in Section 15.7.

Section 15.8 introduces the failures peculiar to a distributed system and presents

schemes for recovery from such failures. Distributed deadlock detection and preven¬

tion are covered in Section 15.9. Issues of security are the topic of Section 15.10.

Examples of distributed systems are the subject of Section 15.11.

15.1 Introduction

Independent or decentralized systems were the norm in the earlier days of informa¬

tion management, the 1950s and early 1960s. There was duplication of hardware and

facilities. Incompatible procedures and lack of management control were the conse¬

quences of the evolving nature of the field. The latter may also have been partly due

to the lack of understanding of the computer as a tool. In the late 1960s and early

1970s, the trend was toward the use of large general-purpose computers, heralded by

the introduction of the IBM System/360. The same facility served a multitude of

users with differing needs, leading to conflict and lack of responsiveness. A central¬

ized database system is one such shared facility.

In a centralized database system, the DBMS and the data reside at a single

location, and control and processing is limited to this location. However, many or¬

ganizations have geographically dispersed operations. A case in point is the MUC

Library system discussed in Chapters 8 and 9. For such organizations, accessing data

from a centralized database creates problems. Data of concern to a particular loca¬

tion, such as the Lynn branch, has to be obtained from the central site. The reliability

of the system is compromised since loss of messages between sites or failure of the

communication links may occur. The excessive load on the system at the central site

would likely cause all accesses to be delayed. Furthermore, the single central site

would exhibit a sizable load of transactions, requiring a very large computing system.

An organization located in a single building with quasi-independent operational

divisions, each with its own information processing needs and using a centralized

database on a local network, would have similar problems.
The current trend is toward a distributed system. This is a central system con¬

nected to intelligent remote devices, each of which can itself be a computer or inter¬

connected, possibly heterogeneous, computers. The distribution of processing power

creates a feasible environment for data distribution. All distributed data must still be

662 Chapter 15 Distributed Databases

accessible from each site. Thus, distributed database can be defined as consisting

of a collection of data with different parts under the control of separate DBMSs,

running on independent computer systems. All the computers are interconnected and

each system has autonomous processing capability, serving local applications. Each

system participates, as well, in the execution of one or more global applications.

Such applications require data from more than one site.
We have to distinguish between a global or systemwide item and a local item in

the distributed database system. The global item is the item as it would appear if the

database were not distributed, corresponding to a conceptual data item. A local data

item is a component or a copy of a global database item. We also distinguish between

global and local transactions. A global transaction may involve the generation of a

number of subtransactions, each of which may be executed at a different site. A

transaction requiring data from its “home” site is a local transaction.

Example 15.1 Consider data item A for which two copies, A| and A2, exist at sites S| and

S2. The operation of updating the value of A involves generating two sub¬

transactions, TS| and TS2, each of which will perform the required operation

at sites Si and S2. S3

Teleprocessing techniques permit users to retrieve data from a remote central

database. A straightforward extension permits retrieval from multiple remote data¬

bases. The implicit requirement is user knowledge of data availability and distribu¬

tion. If a user desires access to some data that is moved around to different sites, the

user needs to keep track of the data movement. In a general environment where each

of the remote databases could have differing underlying models and be implemented

on different database systems, the user would require knowledge of the properties of

each of the accessed databases. Give the complexity of individual systems, this pre¬

cludes effective routine access to multiple databases by most users. A distributed

database hides the complexity of the underlying differences and allows such routine
accesses.

Distributed database systems are capable of handling both local and global trans¬

actions. The system resolves all local database requests, access to data at other sites,

and any requests it may receive from other sites. The system masks differences in

the various local systems by providing a common networkwide view of the data.

Through appropriate translation mechanisms, requests expressed on the common

view can be translated to the local system view being accessed.

In addition to network and data distribution characteristics, the major issues in

a distributed database management system (DDBMS) are query processing (in¬

cluding transaction processing), concurrency control, and recovery. We have consid¬

ered these topics with respect to centralized DBMSs in earlier chapters. In this chap¬
ter we shall see how data and control distribution affect these issues.

1 5.1.1 Advantages and Disadvantages of the DDBMS

Distributed databases, like other distributed systems, offer advantages in:

• Sharing: Users at a given site are able to access data stored at other sites and at
the same time retain control over the data at their own site.

15.2 Networks 663

• Availability and reliability: Even when a portion of a system (i.e., a local site)

is down, the system remains available. With replicated data, the failure of one

site still allows access to the replicated copy of the data from another site. The

remaining sites continue to function. The greater accessibility enhances the
reliability of the system.

• Incremental growth: As the organization grows, new sites can be added with

little or no upheaval. Compare this to the situation in a centralized system,

where growth entails upgrading with changes in hardware and software that
affect the entire database.

• Parallel evaluation: A query involving data from several sites can be

subdivided into subqueries and the parts evaluated in parallel.

Data distribution in DDBMs with redundant copies can be used to increase sys¬

tem availability and reliability. If data can be obtained from a site other than the one

that has failed, then availability improves, and as the system can still run, reliability

does too. Data distribution can, also, be used to decrease communication costs. If

most of the data used at a given site is available locally, the communication cost

compared with that of a remote centralized system is obviously reduced. These fac¬

tors are also affected by the choice of network topology. While the nature of the

network should be inconsequential to the database user, in reality this is not the case.

Network characteristics have important effects on reliability, availability, and the cost

and speed of response. In the next section we briefly look at some common network

topologies.
The disadvantages of the distributed approach are its cost and complexity. A

distributed system, which hides its distributed nature from the end user, is more

complex than the centralized DBMS. Increased complexity means that the acquisition

and maintenance costs of the system are higher than those for a centralized DBMS.

The parallel nature of the system means that errors are harder to avoid and those in

the applications are difficult to pinpoint. In addition, the distributed system, by its

very nature, entails a large communication overhead in coordinating messages be¬

tween sites. These messages not only clutter up the network, but degrade the sys¬

tem’s performance as well. Out-of-sequence delivery or nondelivery of messages

creates problems such as phantom deadlocks and blocked transactions. We examine

these problems later in this chapter.

15.2 Networks

A network consisting of a number of dispersed sites interconnected over a large

geographical area is referred to as wide area or long haul network. Wide area

networks generally use shared telephone lines, microwaves, or satellites and are most

likely relatively slow. Over a small geographical area, with a maximum distance of

approximately 10 km, the interconnecting is referred to as a local area network

(LAN). A LAN is likely to use dedicated lines in the form of a twisted pair, coaxial

cable, or fiber optics and is likely to have a relatively higher transmission speed.

The sites participating in a distributed database system must be connected. Net¬

work design issues involve the choice of network topology, control and access meth¬

ods, and transmission technology. The possible options for each of these aspects of

networking are shown in Figure 15.1.

664 Chapter 15 Distributed Databases

Figure 15.1 Network design issues.

Topology

Mesh Star/Tree Bus/Tree Ring Hybrid

(a)

Access Methods

Dedicated Controlled Statistical

FDM TDM SDM Polling Reservation ALOHA CSMA/CD

Roll call Token

(b)

Transmission Technology

Telephone line Microwaves Twisted pair Coaxial Fiber optics

Baseband Broadband

(c)

Network topology defines the structure of the network, as illustrated in Figure

15.2. In the star topology, all sites or nodes are connected to a central node, which

is responsible for transmitting messages between the nodes. A star topology can be

considered tree-based, if we consider the central node as the root node. In the mesh

connection, the interconnecting could be variable or fully interconnected, where each

node is connected directly to all other nodes. The nodes are connected by taps to a

linear cable in the bus network. In ring topology each node is connected to the next

by a point-to-point cable with the nodes forming a closed circuit.

A fully connected network (or mesh), in which every site is connected to all

other sites, is very reliable, although expensive. Even when a link is down, a number

of alternate paths exist. In practice, partially connected networks are more likely to

occur. Based on traffic load and networking considerations, certain nodes are inter¬

connected and this still allows some alternate paths between sites. In a partially con¬

nected network there may be links whose failures could partition the network.

The star network has a central node to which other nodes are connected. Some

of these peripheral nodes may act as concentrators for nodes connected to them in a

treelike fashion. The reliability of the system is critically dependent on the central

node. Star networks or derivatives occur frequently in communication networks.

In ring topology, the nodes are connected to each other and form a closed loop.

Data is transmitted in packets that circulate through the ring. The packets are inserted
into the ring one at a time.

15.2 Networks 665

Figure 15.2 Network topologies.

(a) Star

(b) Mesh,
fully connected

(c) Mesh,

partially (d) Bus
connected

(e) Ring

The control and access method defines how the nodes on the system get control

of and utilize the transmission media. In the dedicated approach, the communication

media is shared in a dedicated fashion, based on time or frequency. In synchronous

time-division multiplexing (SDM), the different sites connected to a shared channel

666 Chapter 15 Distributed Databases

are assigned a time slot during which they take turns using the entire bandwidth of

the channel. If a node does not have to transmit during its allocated time slot, the

channel remains idle. In time-division multiplexing (TDM) the time slots are des¬

ignated in a dynamic manner, avoiding idle periods on the channel. In frequency

division multiplexing (FDM), the frequency spectrum of the communication channel

is divided, as in radio and TV broadcasts. Each site communicates over a designated

frequency.
Control can be either by polling or reservation in the controlled access scheme.

In the polling scheme, the sites are usually polled by a central site, though distributed

polling is also possible. A site requiring the use of the channel acknowledges when

its address is polled and thereby gains control of the channel. In the token passing

scheme, a token (a special bit stream) is passed from one node to another. A token-

based scheme is a form of distributed polling and is used extensively in ring topol¬

ogy, although it could be used in others. The site requiring use of the channel waits

until it receives the token. Once this happens, the site assumes control of the channel

by retaining the token for as long as required. In the reservation scheme, a site gains

control of the channel by requesting it and once the request is granted it has exclusive

use of the channel.
The approach taken in the statistical access control scheme is to use the channel

whenever a node has to transmit data and to detect collisions. A collision occurs

when more than one node use the channel simultaneously. In the ALOHA scheme

the senders detect the occurrence of a collision during transmission. The senders

retransmit the data after a random delay. The carrier sense multiple access with

collision detection scheme, better known by its acronym CSMA/CD, requires that

all nodes listen before and during transmission to detect collision of simultaneous

transmissions by more than one site. It is possible that more than one node will find

that the channel is free and began to transmit. This would cause a collision, which

would be detected since the nodes are listening during transmission. Detection of a

collision causes the nodes to abort their transmission and delay retransmitting for a

random time period, to prevent reoccurring collisions. In CSMA/CD, the time delay

is also influenced by traffic on the channel, length of the transmission, and size of

the network.
Transmission technology imposes physical constraints such as effective band¬

width and possible transmission speeds. The database system insulates the user from

details of both topology and communication media characteristics, except in terms of

response time.

Two topologies, bus and ring, have become popular in local area networks.

Among bus-based systems, the Ethernet system has become the de facto standard.

In Ethernet, the nodes are connected to a coaxial cable via transceiver taps as shown

in Figure 15.3a. The access method used is CSMA/CD, which can be described as

“listen before and while transmitting.” The “listen before transmitting” is to deter¬

mine if the bus is available; if it is being used, the node waits. Two nodes could

simultaneously or within a short time find the bus to be quiet and start transmitting.

“Listening while transmitting” allows for the discovery of collisions. In the event of

a collision, the nodes involved abort transmission and reattempt after waiting a ran¬

dom period of time. The maximum speed of transmission on Ethernet is 10 Mbps

(million bits per second) and the effective utilization is around 40%. Ethernet perfor¬

mance, shown in Figure 15.3b, is quite sensitive to utilization load. An increase in
the number of collisions degrades performance.

15.2 Networks 667

Figure 15.3 Ethernet system: (a) Typical Ethernet configuration; (b) Throughput.

(a)

Slotted and token broadcast (or token passing) access methods are the more

usual access methods employed on rings. In the token-based method, the node with

the token has control of the ring. On finishing the task, the token is passed to the

next node or broadcast on the ring for capture by another node.

Because the ring is susceptible to site or link failure, an alternate scheme called

the star ring, using “wiring concentrators,” has been devised. This scheme, illus¬

trated in Figure 15.4, ensures that the wiring lengths from operating nodes is con¬

stant. It allows for detecting and easily bypassing failed sites. Data from multiple

rings can be selectively routed by use of a bridge, as shown in the figure. A ring

can also contain a gateway to connect to external networks that might be using

different communication protocols. The use of twisted pairs of wires allow speeds of

up to 4 Mbps. Coaxial cables allow for speeds of up to 10 Mbps, while with fiber

optics, speeds greater than 100 Mbps can be achieved.

668 Chapter 15 Distributed Databases

Figure 15.4 Use of wiring concentrator in ring networks.

15.2.1 Failures and Distributed Databases

Distributed databases are designed to be operational even when certain failures occur

in the system. Failure is said to have occurred when a site does not receive messages

on a particular link, or when it receives garbled messages. Three kinds of failures

can easily be identified: node failure, loss of message, or communication link failure.

A simple decentralized scheme to detect these failures could be based on peri¬

odic message exchanges between terminal nodes of the links with each site maintain¬

ing a table of “up” and “down” sites. A site that detects the failure of another site

or of the link between the sites informs all other sites (including the failed site). This

eventually forces a recovery procedure to start at the failed site. A site that is recov¬

ering from failure (has been down and is now ready to be up) requires that the system

initiate special procedures to allow it to be reintegrated into the system. These pro¬

cedures allow the site database state to become consistent with the rest of the data¬
base.

Communication link or node failures, in certain cases, can result in the database

system becoming partitioned, i.e., become two or more independent systems. Ex¬
ample 15.2 illustrates such network partitioning.

Example 15.2 Consider the partially connected mesh structured communication network of

Figure A. A failure in the link between nodes B and D will not cause any

disruption in communication, since an alternate path exists. A failure of the

link between A and D will divide the network into two partitions. A failure
of node D will divide the network in three partitions.

15.3 Data Distribution 669

Figure A Failures and network partitioning.

Each of the partitioned systems could operate by marking the sites in the other

partitions as being down. A moment’s thought should tell us that there is a consid¬

erable overhead in recovering from such a partitioning. Alternatively, the complete

system has to be restarted from a consistent checkpoint before the partitioning oc¬

curred.

15.3 Data Distribution

One of the aims of a distributed database system is to maintain better control of the

organization’s data. The data is distributed at different sites and the distribution is

based on the access patterns and costs. A comparison of the costs for different data

placement options allows a selection of the best option. If a particular data item dx

stored at site S) is also accessed from site S2, some possible options and correspond¬

ing cost considerations are:

1. The cost of accessing dx at S| from S2 and other sites.

2. The cost of storing dx at S2 instead of S| and the cost of accessing it from St

and other sites.

3. The cost of storing a copy of dx at S2 in addition to S, and the cost of

accessing these from other sites. This is known as replication, with the copies

at S| and S2 being replicates.

Replication allows for increased local data availability. The advantages of local

data availability are:

1. Access of a nonupdate type is cheaper.

2. Even if access to a remote site is not possible, access to local data is still

available.

670 Chapter 15 Distributed Databases

The major disadvantage of data replication is that the cost and complexity of

updates increases, because all copies are required to be consistent with one another.

However, local availability or unavailability are not issues that concern the user. One

of the principal characteristics of distributed databases is location transparency,

i.e., the insulation of the user from data location details.
It is likely that instead of access to a complete data relation, different sites need

access to only portions of it. The relation can thus be divided into fragments. The

Figure 15.5 Data fragmentation: (a) A typical relation; (b) Horizontal fragmentation; (c) Vertical frag¬
mentation; and (d) Horizontal-cum-vertical fragmentation.

(a)

15.3 Data Distribution 671

partitioning of relations is formally known as fragmentation. However, in the data¬

base literature, the term disjoint fragmentation is used to denote partitioning, and

the term fragmentation refers to either disjoint or nondisjoint fragmentation.

A distributed database system insulates the user from knowledge of data frag¬

mentation. This characteristic of distributed database systems is called fragmenta¬

tion transparency. However, from our discussions on networks and data distribu¬

tion, we realize that it may not always be possible to access all the data when

communication link and node failures occur. The user may sense that some data is

unavailable and consequently realize that data is partitioned.

To achieve locality of reference and reduced communication and redundancy

costs, data is often fragmented. Fragmentation allows a subset of the relation’s attri¬

butes or the subset of the relation’s tuples to be defined at a given site to satisfy local

applications. The idea of data fragmentation is displayed in Figure 15.5 and examples

are given in Examples 15.3 and 15.7 and Figure E.

Example 15.3 Consider the MUC library system shown in Figure B. It has a number of

branches and maintains a central acquisition, cataloging, and distribution

center. A central catalog contains the title and a detailed description of each

item. However, each branch maintains a local catalog and has access to the

central catalog, as well as catalogs at other branches. In a manual system,

the index card for items are duplicated at the central site and sent to each

branch where they are stored in their local catalogs. Access to the central

catalog or the catalog of another branch can only be had by calling on these

locations. An alternate solution to this problem would be to include in each

index card a list of all the branches at which a copy is maintained, and have

a copy of the entire catalog stored at all branches. In a computerized distrib¬

uted database system, the catalog is fragmented and maintained in a data¬

base at each branch.

Figure B The MUC library system.

672 Chapter 15 Distributed Databases

15.3.1 Fragmentation

A relation R defined on the scheme R can be broken down into the fragments Rlt

R2, . . Rn defined on the schemes R,, R2, . . ., R„ such that it is always possible

to obtain R from the fragments R,, R2, . . Rn. The fragmentation could be verti¬

cal, horizontal, or mixed, as described below.

Vertical Fragmentation

Vertical fragmentation is the projection of the original relation on different sets of

attributes. Relations may be fragmented by decomposing the scheme of R, such that

R = U Rj
i = I

and

R, = ttr. (R), for i = 1,2,. . ., n

The original relation R can be reconstructed by a join of the fragments:

R = R, XI R2 1X1 . . . CXI Rn

It should be clear that for the original relation to be reconstructible, either:

1. For all fragments Rj (i = 1,2,. . ., n), there must exist another fragment Rj

(i ^ j> j = F2,. . ., n), such that if we represent Rj D Rj by X, then X is
either a key of Rj or of R- or

2. System-generated TIDs (tuple identifiers) of the original relation must be
duplicated in all fragments.

Examples 15.4 and 15.5 illustrate these methods of deriving the original relation
from its fragments.

Example 15.4 Consider the relation EMPLOYEEfEmployee#, Name, Department, De¬

gree, Phone#, Salary_Rate, StartDDate). This relation can be partitioned

into the vertical fragments EMPLOYEE_QUALIFICATION(£mp/oyee#

Name, Degree, Phone#) and EMPLOYEE_PAY(Employee#, Name, Salary

Rate, Start-Date). The fragments are not disjoint because the Employee#

and Name attributes are common in the fragments. If Employee# is a pri¬

mary key of the original relation, we can derive the original relation by a

natural join of these fragments, followed by the elimination of the duplicate
Name attribute. ■

Example 15.5 Consider the relation MODULE_USE given in Figure C. Two vertical frag¬

ments of this relation, MODULE and USES, include the system-supplied
attribute TIDs and could be joined to derive the original relation.

15.3 Data Distribution 673

Figure C TIDs in vertical fragmentation.

relation: MODULE_USE

TID MODULE USES

tl

t2

Query processor

User interface

SORT

SORT

fragment: MODULE fragment: USES

TID MODULE

tl

t2

Query processor

User interface

TID USES

tl

t2

SORT

SORT

TIDs may be used by the DDBMS as a physical pointer and are not visible to

users. If the TIDs are visible, a user may use them in some manner and this con¬

strains the DDBMS from changing the TIDs, for instance, when the data is reorga¬

nized. As a result, data independence, a goal of database systems, is compromised.

Note that with fragmentation, duplicate tuples may in reality be part of distinct

tuples of the unfragmented relation. Such duplicate tuples should not be deleted from

a fragment or, alternatively, the TIDs of the deleted tuples should somehow be main¬

tained to reconstruct the original tuples. For example, consider the relation and its

fragments given in Figure C. It is obvious that if one of the tuples in the fragment

USES is deleted, say the tuple with TID t2, a join with the fragment MODULE will

not result in the original relation. The reconstructed relation would lack the fact that

the SORT module is also used by the user interface module. If we include the TIDs

in the fragmented relation, there is no possibility of duplicate tuples. The original

relation can be obtained using a join on the TIDs.

Horizontal Fragmentation

In horizontal fragmentation the tuples of a relation are assigned to different frag¬

ments, such that

n

R = U Ri
i= 1

where each Rj = aCi (R) each Q is some selection condition, and R = Ri = R2 =

Example 15.6 In Figure D we graphically show a relation that is fragmented into a number

of disjoint horizontal fragments, which are replicated and stored at a number

of sites. The original relation could be obtained by a union operation.

674 Chapter 15 Distributed Databases

Figure D Replications of disjoint horizontal fragments.

Global
relation

Site 2

Site 3

Figure 15.6 Data fragmentation tree.

Relation R

rcx(R)

CTA=a(nY(R)) 0B=b(JtY(R)) 7tw(0x=x(R)) 7tv(0X=x(R))

Mixed Fragmentation

Horizontal (or vertical) fragmentation of a relation, followed by further vertical (or

horizontal) fragmentation of some of the fragments, is called mixed fragmentation.

The original relation is obtained by a combination of join and union operations.

Figure 15.6 illustrates a data fragmentation tree for a mixed fragmentation.

Example 15.7 The BOOK relation in the library database can be made up of the following

attributes. Book#, Call#, Copy#, First-Author-Name, Title, Volume,

Publisher, Place-of-Publication, Date, Binding, Size, Number_of.Pages,

Date-Acquired, Branch, and Cost. Note that the attribute Book# is unique

15.3 Data Distribution 675

Figure E Mixed fragmentation.

BOOK relation

Horizontal subsets of vertical fragments

Branch = Lynn

n .'T V t :

Branch = Revere

Branch = Saugus

and forms a primary key of the relation. The attributes Call# and Copy#

also form a key of the relation. The portion of this relation of interest to the

general public is limited to Call#, Copy#, First-Author-Name, Title, and

Branch; it forms a vertical fragment of the BOOK relation. The collection

at a given branch forms the horizontal subset of this vertical fragment. This

is illustrated graphically in Figure E. ■

Disjoint Fragmentation

In disjoint vertical fragmentation there are either no common attributes between

any two vertical fragments or one fragment contains all the attributes of another, i.e.,

Ri (1 Rj = 0 or Rj for all i and j. In disjoint horizontal fragmentation there are

either no common tuples in any two fragments or one fragment contains all the tuples

contained in another fragment, i.e., Rj D Rj = { } or R(for all i and j.

There is no partial overlap between the fragments. Replicates of a complete

fragment are allowed in disjoint fragmentation. We point out that in disjoint vertical

fragmentation with Rj D Rj = 0, it is not possible to reconstruct the original rela¬

tion unless each fragment contains the system generated TID.

Nondisjoint Fragmentation

In nondisjoint horizontal fragmentation, a tuple may be assigned to more than one

fragment. With nondisjoint vertical fragmentation, an attribute may be assigned to

more than one fragment. This differs from replication. Replicate fragments are exact

676 Chapter 15 Distributed Databases

copies of each other, while in nondisjoint fragmentation only portions of the frag¬

ments may be identical. It can be argued that all vertical fragmentation is nondisjoint

because of the duplication of TIDs.
We conclude this discussion of fragmentation by stating that a user sees logical

relations, while the database contains stored relations that could be fragments of

logical relations. In this case, the logical relations are obtained, as discussed in Sec¬

tion 15.5.4, by some predefined sequence of join and union operations on the stored

relations.

15.3.2 Replication

A database is said to be:

1. strictly partitioned when no replicates of the fragments are allowed

2. fully redundant when complete database copies are distributed at all sites

3. partially redundant when only certain fragments are replicated

For any reasonable set of applications, choice 1 for data replication would lead

to relatively expensive query evaluation due to the unavailability of the data locally

or at some nearby site. Choice 2 is very expensive in terms of storage space and the

overhead to maintain consistency. It is meaningless to replicate data at nodes where

it is unlikely to be accessed. Choice 3 is reasonable, allowing for reduced access

time for frequently read local data or that from a nearby site. The choice allows for

higher reliability and availability during site crashes. However, because of replica¬
tion, updates are expensive.

Updates require access to all copies of the data item. Because the copies are

distributed over different sites of the network, the sites must reach a consensus on

the possibility of an update. Failed sites may not participate in the agreement, and

sites may fail after the process has started. These issues are dealt with later in this
chapter in sections on concurrency and recovery.

Although a major aim of database systems is to reduce if not eliminate redun¬

dancy, planned data redundancy can improve distributed database performance. For

example, if a number of copies of a data item are available, a read operation can be

directed to any one of these copies. A write operation, however, must update all

copies, otherwise we would have inconsistent data. The system is required to ensure

that any update operation is done on all replicates. This results in increased over¬
head—a price to be paid in distributed databases.

To summarize, replication improves the performance of simple read operations

in a distributed system and improves its reliability. However, updates incur greater

overhead and the requirement that all replicates of data be updated and consistent

adds complexity to a distributed database system. This is especially true in the case
of concurrent updates.

15.3.3 T ransparency

In the preceding sections we discussed data distribution, fragmentation, and replica¬

tion. Since it is possible for data to change, the number of copies could vary and

these copies could migrate from one site to another. It is unreasonable to expect the

15.3 Data Distribution 677

user to know on which site the requested data resides, or the fragmentation criterion.

This being so, the DDBMS is required to hide all such details from the user and
provide:

• Location transparency: User does not need to know the location of the data.

• Fragmentation transparency: User need not be aware of the data
fragmentation.

• Replication transparency: User is unaware of data replication.

In light of the above, a user accesses the database more or less as if it were
completely local.

Example 15.8 Consider the fragmentation of the catalog information in the library database

given in Example 15.7. A user who consults the database to find all the

titles of books by Haley could pose the following query: “List all titles

where first author is Haley.” The response would return all titles by Haley,

regardless of the branch to which a book is assigned. ■

In addition to providing a transparency to the user for reading, a DDBMS is

required to provide an update transparency. This entails that all copies of the data

item being updated, in all fragments that contain it, be modified. This involves con¬

currency control to ensure consistency and serializability. Failures of different types

require rollback or recovery. We consider the problems of concurrency and recovery

in Sections 15.7 and 15.8, respectively.

15.3.4 System Catalogs

System catalogs, or dictionaries, maintain metadata on database relations. In a dis¬

tributed database system, information on locations, fragmentations, and replications

is also added to the catalogs. The catalogs themselves, just like the database, may

be distributed in any of the above three ways. That is, a catalog could be: (1) strictly

partitioned, (2) fully redundant, or (3) partially redundant. Now let us consider the

ramifications of each of these replication options.

During the transformation of a query from the user-specified form to an internal

access plan, system catalogs are consulted at all stages. Choice 1 for catalog distri¬

bution would therefore be a poor strategy, requiring considerable communication

between sites. Catalog maintenance is, however, very simple and the scheme allows

for maximum site autonomy. Choice 2 would allow fast access for query resolution,

but the catalogs would be costly to maintain. Choice 3 is a reasonable alternative,

particularly when the complete catalog is available at a number of sites. For query

resolution the user site accesses the nearest site with the complete catalog, or the one

with the required catalog fragments. An advantage of schemes 2 and 3 is that there

are always some sites on the system containing the catalog, allowing the system to

function even when other sites have failed. The choice between 2 and 3 depends on

retrieval and catalog update frequencies.

Catalog updates usually occur at the time of creation or deletion of relations and

678 Chapter 15 Distributed Databases

modification of attributes. In distributed databases, certain statistics pertaining to the

characteristics of the data play an important role in determining access and query

evaluation plans. These statistics, maintained in the system catalog, are likely to

change regularly, entailing catalog updates. Some typical approaches to catalog dis¬

tribution and maintenance problems are discussed below.
The R* system uses a distributed catalog. Local catalogs keep information on

locally stored objects, including any fragments and replicates. The catalog at the

birth_site of an object (site at which the object was first created) maintains the

current storage sites of that object. Object movement causes this information to be

updated. This scheme maintains complete site autonomy and is a type 1 scheme.

Distributed INGRES differentiates between local and global relations. Only

global relations are accessible from all sites. A catalog of all global relations, the so-

called global catalog, is maintained at all sites. The creation of a global relation

requires its name and location to be broadcast to all sites. This is a type 2 scheme.

In the SDD-1 system, the catalog is a single relation that can be fragmented and

replicated, allowing the entries to be distributed at data module sites. It is possible

for local objects to have their catalog entries at a remote site. Consequently data

definition operations may be nonlocal. This is a type 3 scheme. However, a fully

replicated locator catalog is required at each site to keep track of the database cata¬

log. A locator catalog contains information on the global scheme and details con¬
cerning fragmentation and replication.

Catalog details such as local-to-global name mappings, physical details concern¬

ing file organization and access methods, general and integrity constraint details, and

database statistics could be stored locally. A site needing remote catalog information

requests such information and stores it for later use. This scheme is called caching

the remote catalog. It is not a replication of the remote catalog insofar as no attempt

is made to maintain the consistency between the cached catalog and the remote one.

The two are identical at the time of caching and this is indicated by both having

identical version numbers. However, over time the remote catalog could be modified

and its version number could change. This inconsistency is revealed when a query

processed with a cached catalog is executed. At that time it is discovered that an out-

of-date catalog has been used. This causes the query plan to be abandoned and the

updated catalog to be transmitted to and cached at the site in question. The query is

then reprocessed with the up-do-date remote catalog. SSD-1 and Distributed INGRES
use this scheme of remote catalog caching.

15.4 Object Naming

In a distributed database system, we want to share data but we don’t want too many

restrictions on the user s choice of names. The system can adopt a global naming

scheme such that all names are unique throughout the system. Two sites or users

cannot use the same name for different data objects. This requirement for unique

names can cause problems when a new site with an existing database is being inte¬

grated into the DDBMS. A unique name criterion would entail renaming objects in

the database to be integrated as well as in the application programs that access them.

A drawback of the global name requirement is the loss of local autonomy, which al¬

lows users to choose appropriate local names even for global data items. Another deter¬

rent is the bottleneck that would be created with the use of a single global name server

15.5 Distributed Query Processing 679

which has to be consulted for each name that is to be introduced in the database. The

reliability of the system would also be compromised, since the entire system would

be dependent on a single name server site for resolving naming conflicts.

For these reasons we stay away from a global naming scheme or the requirement

that users choose systemwide unique names. Lifting such restrictions make it possible

for different names to be used for the same data object, or the same name for differ¬

ent data objects. Although objects may not have unique names in the database, the
DDBMS is required to differentiate between the objects.

Names used in queries or application programs are chosen by the end-users. To

keep programming and query specification simple and invariant, regardless of the site

from which they are executed, the network details must be transparent to the user.

For instance, user A can enter the same query at site 1 or site 2 and anticipate the

same results. Names selected by users have to be converted into system-unique

names. This is done by consulting the local and/or the remote site catalog.

System R* maps end-user names (called print names) to internal systemwide
names (SWNs). An SWN has the form:

creator@creator_site.object_name@birth_site

The birth—site is the site at which the object was first created, and because site

names are chosen to be unique, an SWN is unique. An object X that was created in
Washington by user John will have the SWN of:

John@Washington.X@Washington.

The same user could create, from Washington, an object named X at Montreal and

this would receive the SWN of:

John@ Washington. X@Montreal.

Note that the second data item is distinct from the first one. Also note that the

user name is local; John@Washington is distinct from John@Montreal. In addition

the name of an object includes its birthusite but this need not be its actual location.

The data item could be moved to another site and be replicated at a number of sites.

To allow users to use print names, which are names of their choice for global

data items, System R* creates these print names as synonyms for the corresponding

SWNs. The synonyms are stored in the local catalog. The synonym-mapping scheme

allows different print names for the same object and different objects having the same

print names. The local catalog entry for an object includes its SWN, among other

things. To find the catalog entry for an object, search the local catalog, followed by

the birth_site catalog, then the site indicated by the birth_site catalog as currently

holding the object.
Internal names can also be used to differentiate between fragments and replicates.

If each fragment and replicate is assigned a number, these numbers can be concatenated

with the name@birth_site to distinguish the different fragments or copies.

15.5 Distributed Query Processing

A query in a DDBMS may require data from more than one site. The transmission

of this data entails communication costs. If some of the query operations can be

executed at the site of the data, they may be performed in parallel. Section 15.5.1

680 Chapter 15 Distributed Databases

elaborates on this aspect of distributed query processing. The semijoin operation,

introduced in Section 15.5.2, is used to reduce the size of a relation that needs to be

transmitted and hence the communication costs.
Consider a user at site S| that poses a query that requires data from another site,

S2, as well as its own. The response to the query can be built by one of the following:

1. Sending data from S2 to S|.

2. Resolving the query at S2.

3. Resolving the query at another site, S3.

The first choice is obvious. Option 2 requires that the query and relevant data

be transmitted from S| to S2, while option 3 requires that the relevant data from both

S, and S2 be sent to some other site, S3 (strange as it may sound, in some circum¬

stances this choice can be better than the other two). The optimal choice depends on

the sizes of the relations and results; the communication costs between S] and S2, S,

and S3, S2 and S1; S2 and S3; and the site where the result will be utilized. Here we

concern ourselves only with communication cost. It is common to calculate commu¬

nication cost in terms of the number and size of messages, i.e.,

communication cost = c0 + c, * size

where c0 is the setup constant, Cj the cost per byte of transmitting data, and size the

number of bytes of data transmitted. When the same message is broadcast to n sites,

the factor c, can be replaced by cn, where for point-to-point transmissions:

cn = n * c,

and for broadcast transmissions:

cn = c,

It becomes clear that if we want to optimize communication cost alone, we should

consider both the total number of messages and the number of bytes transmitted.

The other point to be considered is data distribution. Access for read operations

can be localized as far as possible. Consequently, communication costs can be in¬
curred for update operations.

We consider the communication cost reduction techniques for one of the most
common relational algebra operations, the join. The join is also one of the most

expensive operations to perform. In the following join we ignore the joining attri¬
butes for convenience.

T = R\X\S

If these relations are stored at different sites, the join can be performed by

transmitting tuples of one of the relations, on demand, to the site of the other rela¬

tion; or one of the relations, in its entirety, to the site of the other relation; or both

relations to a third site. The number of messages in the first choice is at least equal

to the number of tuples in the relation. In the second, it is one and only one of the

relations needs to be transmitted. In the third case the number of messages is two,

and the size of each message transmitted is equal to the size of the corresponding
relation.

Let us discuss the first method in more detail. If we have to transmit tuples on

demand, why not ask for tuples that match some tuple in the other relation? For

15.5 Distributed Query Processing 681

example, if we are to join the relations R and S, we can send a tuple of S and ask

for all tuples of R that match this tuple of S. In this instance the number of messages

is 2 * |S|. The size of each response depends on the number of tuples that match a

given S tuple. If we assume that the number of tuples of R that join with a tuple of

S is 8|R|, where 8 is some factor in the range [0,1], then the communication cost is
given by:

|S| * (c0 + cj * Ssz) + |S| * (c0 + c, * 8|R| * Rsz)

Here Rsz and Ssz are the tuple sizes of relations R and S, respectively. The first

factor is due to the tuples of S transmitted to the site of R. The second factor is due
to the tuples of R returned in response to each tuple of S.

In the first and second methods of performing the join of R and S, having the

choice of which relation to transmit doubles the number of possibilities to evaluate
before a satisfactory determination of optimal costs can be made.

1 5.5.1 Parallelism in Distributed Query Processing

Consider the evaluation of a query involving a number of joins, as follows:

RMSMTNU

Suppose the relations R, S, T, U are stored at sites S,, S2, S3, and S4. Ignoring

the differing costs due to the different sizes of these relations, the query can be

evaluated in parallel by the following scheme. Relation S could be shipped to site S,

where the first join R XI S is evaluated. Relation U is shipped to site S3 where the

join T CXI U can be evaluated in parallel. In a bus-structured network, the transmis¬

sion of these relations can be done in sequence, whereas in a mesh-structured net¬

work the transmission can occur in parallel.

At the conclusion of the first join, the result is transmitted to site S3, where the

final join of (R [XI S) with (T IX U) is performed to evaluate R [X S IX T CXI

U. Alternatively, the tuples of the first join can be transmitted to S3 as they are

produced at site Sj. Another alternative, where the result of the join is needed at site

S, is to transmit to site S the tuples of the join R X S from S, and the tuples of the

join T CX U from S3 as they are produced. This enables site S to concurrently

compute the final join operation.
If the site where one of the relations involved in the join is also the site where

the result of the join is required, that site should be used to evaluate one of the first

joins and the final join. This scheme avoids retransmitting the result of the first of

these joins.

15.5.2 Semijoin

Let us examine Example 15.9, which requires the join of two relations stored at

different sites.

Example 15.9 Consider the two relations shown in Figure F. STUDENT is at site 1 and

REGISTRATION is at site 2. Suppose a class list of each course is to be

682 Chapter 15 Distributed Databases

Figure F Obtaining a join using a semijoin.

STUDENT

Std# Std—Name

1234567 Jim
7654321 Jane
2345678 San
8765432 Ram
3920137 John
4729435 Ron
3927942 Aron
1934681 Rodney
8520183 Maria

Site 1

REGISTRATION

Std# Course#

1234567 COMP353

1234567 COMP443

2345678 COMP201

8765432 COMP353

8765432 COMP441

7654321 COMP441

Site 2

X ~ As/rf#

(REGISTRA¬

TION)

Std#

1234567

2345678

8765432

7654321

Y = STUDENT EX

REGISTRATION

= STUDENT IX X

Std# Std-Name

1234567 Jim
7654321 Jane
2345678 San
8765432 Ram

STUDENT CXI REGISTRATION =

Y tX REGISTRATION

Std# Course# Std-Name

1234567 COMP353 Jim
1234567 COMP443 Jim
2345678 COMP201 San
8765432 COMP353 Ram
8765432 COMP441 Ram
7654321 COMP441 Jane

prepared, which involved joining the two relations. The join could be per¬

formed by first projecting REGISTRATION on Std# and transmitting the

result, itstd# (REGISTRATION), to site 1. At site 1, we select those tuples

of STUDENT that have the same value for the attribute Std# as a tuple in

17std# (REGISTRATION) by a join. The entire operation of first projecting
the REGISTRATION and then performing this join is called a semijoin and

denoted by CX. However, we do not obtain the desired result after the CX

operation. The semijoin operation reduces the number of tuples of STU¬

DENT that have to be transmitted to site 2. The final result is obtained by a

join of the reduced STUDENT relation and REGISTRATION. These steps

are illustrated in Figure F. The class list can be obtained by sorting the
resulting relation on Course#.

Note: It may be worthwhile to compute Y = STUDENT tX REGISTRA

TION and Z = REGISTRATION IX STUDENT and then obtain the final
result by X 1X1 Z. ffl

15.5 Distributed Query Processing 683

To reduce the communication cost in performing a join, the semijoin (tX) op¬

erator has been introduced. Let P be the result of the semijoin:

P = R tX S

Then P represents the set of tuples of R that join with some tuple(s) in S. P does not

contain tuples of R that do not join with any tuple in S, thus P represents the reduced

R that can be transmitted to a site of S for a join with it. If the join of R and S is

highly selective, the size of P would only be a small proportion of the size of R. To

get the join of R and S, we now join P with S, i.e.,

T = ?\X\S
= (R tX S) IX S
= (S (X R) XI R

= (R tX S) 1X1 (S IX R)

The semijoin is a reduction operator; R IX S can be read as R semijoin S or

the reduction of R by S. Note that the semijoin operation is not associative. In Ex¬

ample 15.9, STUDENT [X REGISTRATION is not the same as REGISTRATION

IX STUDENT. The former produces a reduction in the number of tuples of STU¬

DENT; however, the latter is the same relation as REGISTRATION!

In distributed query processing, communication cost reduction is one of the ob¬

jectives. The semijoin operation can be introduced to reduce the cardinality of large

relations that are to be transmitted. Reduction in the number of tuples reduces the

number and total size of the transmission and the total cost of communication.

It is wrong to assume that if |R| > |S|, then R should be reduced, as we shall

see below.

To compute the join of R and S, we first compute the semijoin and then the join

of one of the reduced relations with the other. The evaluation of the semijoin R tX

S requires that we transmit TrRns(S) to the site of R. We do not need to transmit the

whole of S. Let us refer to this projection of S and S' and the size of the projected

S as s'.
We use S' to reduce R by computing R IX S'. Let us refer to the reduced R as

R' and the size of reduced R as r'. R' is then transmitted to the site of S to compute

the join (R'lXl S). The communication cost incurred is:

2 * c0 + Ci * (s' + r')

Without the semijoin, we would have sent the whole of R to the site of S and

the cost would have been:

c0 + G * |R| * Rsz

Therefore, the benefit of using the semijoin is:

c, * (|R| * Rsz - s' - r') - c0

If the benefit is greater than zero, we prefer the semijoin over the traditional

join.
The decision as to whether to reduce R or S can only be made after comparing

the benefit of reducing R with that of reducing S. (We can also choose to reduce

both.) We have already calculated the cost of reducing R; now let us do the same

for S. As before, let us represent the size of 7rRns(R) as r" and the size of the reduced

684 Chapter 15 Distributed Databases

S, after performing the semijoin S IX iTRns(R)> as s"- Then l^e tota* communicati°n

cost incurred is:

2 * c0 + C| * (s" + r")

Therefore, the optimal communication cost in evaluating R IXI S using the

semijoin technique is:

2 * c0 + ct * min (s' + r\ s" + r")

The optimal cost of performing R tXI S without the semijoin is:

c0 + C| * min (|R| * Rsz, |S| * Ssz)

The semijoin technique is beneficial when:

Cq + C| * min (r' + s', r" + s") < C| * min (|R| * Rsz. |S| * Ssz)

Example 15.10 illustrates a numerical example to determine when the semijoin

will be advantageous.

Example 15.10 Let us reconsider the join operation in Example 15.9. Suppose the result is

required at site 2. Let us compare the communication costs of the semijoin

with those of a simple join. Assume that the size of attributes are as follows:

Std# = 7, Std-Name = 20.

The first semijoin incurs a communication cost of c0 + c, * 28 and the

transmission of the semijoin result incurs a communication cost of c0 + C|

* 108, for a total of 2 * c0 + ct * 136. For the joint operation the com¬

munication cost of transferring STUDENT to site 2 would be c0 + c, *

243. The difference in cost is C| * 107 — c0. If c0 < c,/107, then the

semijoin operation is better from the point of view of communication

costs. ■

In the above analysis, we have ignored the fact that the result of the join will

be available at a different site when we reduce R rather than S. The same is true for

the join operation (without using the semijoin) when we transmit S rather than R. In

a complete analysis, the cost of transmitting the join result to the required site has to
be taken into consideration.

The semijoin operation reduces the communication cost but not the I/O and
processing costs. In fact, the latter two costs may increase.

1 5.5.3 Semijoin and Reduction of Relations

As we have seen, the semijoin operation reduces the size of the relations and this
characteristic can be profitably utilized in query evaluation.

15.5 Distributed Query Processing 685

Definition: Full Reduction of Relation:

A relation that appears in the qualification clause of a query is said to be fully

reduced if all of its tuples that do not satisfy the qualification have been
eliminated.

In query evaluation, we can process the fully reduced relations instead of the

original relations. The problem now becomes identifying all tuples that do not satisfy

the qualification. A semijoin reduces a relation by eliminating tuples that will not

take part in the join. Thus, we can use semijoin programs to reduce the participating

relations. We cannot, however, claim that the relations are fully reduced.

Consider the qualification part of a query,

(R.A = S.B) A (R.C = T.D) A (R.C = U.F) A (S.G = V.H) A (S J = W.K)

where the attributes A and B are defined on the same domain. Similarly, each of

(C,D), (E,F), (G, H) and (J,K) are defined on the same domains. We can rename

the attributes and rewrite the qualification part of the query as:

(R.A = S.A) A (R.C = T.C) A (R.C = U.C) A (S.G = V.G) A (S.J = W./)

Each term of this expression can be evaluated by a join. A pictorial method of

showing the order of evaluation of the joins involved is given in Figure 15.7a and is

known as a query graph. The relations involved in the expression appear as nodes

of the query graph. There is an edge in this graph between nodes R and S with the

label A, if the clause (R.A = S.A) is in the expression. It has been shown (please

see the bibliographic notes for reference) that the relations in a query whose qualifi¬

cation is either a tree or the equivalent of a tree graph can be fully reduced.

A query whose qualification part cannot be converted to a query graph in the

form of a tree is called a cyclic query. (R.A = S.A) A (S.J = W.J) A (R.C =

Figure 15.7 Query graph: (a) tree query; (b) cyclic query.

(a)

686 Chapter 15 Distributed Databases

W.C) is an example of a cyclic query expression. The query graph for this query is

given in Figure 15.7b. In the case of cyclic queries, it may not be possible to fully

reduce all relations by semijoins.

15.5.4 Concluding Remarks

We have only considered the communication cost to date because it was not present

in query processing in a centralized DBMS. The other two costs, I/O and processing

costs, are similar to the centralized case. The other reason for focusing on commu¬

nication costs is because of the traditional use of slow speed lines for connecting

geographically dispersed sites. With slow speed lines, the communication cost dom¬

inates all other costs. On faster networks, which are more common for local area

networks, communication and I/O costs are comparable and any optimization should

attempt to optimize total costs.
In an earlier chapter on centralized database query processing, we considered

ways of reducing the number of I/O pages accessed in processing a query. A com¬

mon technique is the use of secondary access structures. In distributed systems, such

access structures are sometimes inappropriate. We need to keep these indexes cur¬

rent. The processing of a query at multiple sites in parallel can reduce overall eval¬

uation costs. Even when data is transmitted between sites, any possible local reduc¬

tion, for example, due to selection or projection, is first made. After local reduction,

the resultant relation or fragment becomes incompatible with the index. It has been

shown that in some cases it may be advantageous to create a temporary index for

query optimization. Such temporary indexes are discarded at the end of the query
evaluation process.

Distributed query processing is also complicated by the presence of fragments.

As we saw in the section on data distribution, some fragments are stored relations.

The users see logical relations. A logical relation can be considered a query on stored

relations. Such a query is composed of some sequence of joins and union operations

on the stored fragments. The user query can thus be transformed into an expression

containing operations on stored relations. For example, let R be some logical relation

such that R = R| IXI R2. Let the user query be CTpTTqCR). We can replace the user

query with ctpttq(R| tXl R2) and subsequently apply query optimization operations
to this modified one.

15.6 Consistency

In a distributed system, a transaction T, requiring data items from a remote site Sj

spawns a subtransaction (also called a transaction agent) T;j at this remote site (Figure

15.8). Such subtransactions are executed independently at the respective sites. The

site of the transaction can be considered the coordinator site and the sites where the
spawned subtransactions run are called participating sites. The transaction Tt is re¬

ferred to as the coordinator. In addition each site, as in a centralized database, con¬

tains a transaction manager that arbitrates resource requests from transactions run¬

ning at the site. A request for a remote resource results in the spawning of a
subtransaction at the remote site.

15.6 Consistency 687

Figure 15.8 Query processing in the DDBMS.

Coordinator site Participating site

Site i Site j

One such need for a subtransaction is when a transaction has to modify a data

item and several copies of the data item exist at a number of different sites. Each

data item could be modified by a subtransaction spawned at these remote sites, as

indicated in Example 15.1.

All data in a database system must be consistent and must always satisfy certain

a priori constraints. The DDBMS (DBMS, in a centralized system) must guarantee

that these constraints are never violated. In practice, as we saw in Chapter 12, there

are times when such constraints are violated; however, since the values of the data

items not satisfying these constraints are not accessible during these times, the con¬

straints never appear to be violated. Constraints of this type are also referred to as

invariants. The system state is not only consistent, but it arrives at this consistent

state from another consistent state as a result of external stimuli. Such is the case

when a system in some consistent state is required to perform an action. Then the

resultant state is not only consistent but also reflects the result of only that action. A

system is required to be consistent with respect to its invariants and the externally

applied stimuli.
We can say that an action F will change the state of the database:

state' : = F(state)

by changing the values of some entities in the write set of F (denoted Fw) depending

on the values in the read set of F (denoted Fr). Thus, the action F needs only to read

the referenced values in Fr and write the values in Fw.
While performing an action, the system state might be temporarily inconsistent.

If the state is visible, our requirement for a consistent state is violated. An action,

however trivial, will take some finite amount of time and during that time the state

may be inconsistent (we use the word maybe because if the write set of the action is

empty, it cannot leave the system in an inconsistent state). If we can make the tran¬

sition from the old state to the new state instantaneously or not allow another action

during the transition period, then we can guarantee that the visible state is always

consistent.
An action F is atomic if all the writes are completed without making the data¬

base inconsistent, or none of the writes take place. When all the writes are success¬

fully completed an action is said to have committed, otherwise it is said to have

aborted.

688 Chapter 15 Distributed Databases

As we discussed in Chapter 12, transactions are said to possess certain proper¬

ties:

• Consistency: A transaction transforms a consistent database state into another

consistent database state.

• Atomicity: All operations of the transaction are performed or none are

performed.

• Serializability: If several transactions are executed concurrently, the result must

be the same as if they were executed serially in some order.

• Durability: Once a transaction has been committed the results are guaranteed

not to be lost.

• Isolation: An incomplete transaction cannot reveal its results.

These properties of a transaction are assured by using certain concurrency con¬

trol and recovery techniques. Chapters 11 and 12 covered such techniques for cen¬

tralized DBMSs. In the next two sections we briefly cover some techniques used in

distributed DBMSs.

15.7 Concurrency Control

Concurrency control in a DDBMS has to take into account the existence of fragmen¬

tation and replication of data. Variations of the schemes used in centralized DBMSs

are used in distributed concurrency control. A number of such schemes based on the

locking and timestamp approaches are presented in this section.

Locking is the simplest concurrency control method. Locking enforces serial

access to data. In centralized DBMSs, the lock requests go to a single lock manager,

which can arbitrate any conflicts. In distributed systems, a centralized lock manager

is not desirable due to the bottlenecks created at the central site. A centralized lock

manager at a single site, furthermore, is vulnerable to failure, leading to the disrup¬
tion of the entire system.

The locking scheme must be well formed. In other words, no transactions can
access (read or write) a data item that it has not locked.

15.7.1 Distributed Locking

As discussed in Chapter 12, the different locking types can be applied to distributed

locking. A centralized lock manager at a single site is relatively simple to implement.

Here a transaction sends a message to the lock manager site requesting appropriate

locks on specific data items. If the request for the locks could be granted immedi¬

ately, the lock manager replies granting the request. If the request is incompatible

with the current state of locking of the requested data items, the request is delayed.

In the case of a read lock request, the data item from any site containing a copy of

it, is locked in the share mode and then read. In the case of a write, all copies of the

data items have to be modified and are locked in the exclusive mode. With a cen¬

tralized lock manager, the detection of deadlock is straightforward, requiring the

15.7 Concurrency Control 689

generation of a global wait-for graph (GWFG). The disadvantage of this scheme, in

addition to the bottlenecks it creates, is the disruption of the entire system in case of
the failure of the centralized lock manager site.

In the distributed method each lock manager is responsible for locking certain

data items. The problem this scheme creates, however, is that of detection of dead¬

locks. Since lock requests are directed to a number of different sites, the nonexist¬

ence of a cycle in the local wait-for graph at each lock manager is not sufficient to

conclude the absence of a deadlock. It is still necessary to generate a global wait-
for graph to detect a deadlock.

Example 15.11 illustrates the type of locking required in a distributed system
where data is fragmented as well as replicated.

Example 15.11 Consider transactions T, and T2 of Figure G. Suppose the data is replicated

and three copies of A are stored at sites S,, S2, and S3. To execute these

transactions, each spawns three local subtransactions, T1S!, T|S2, T)S3, and

T2Si, T2S2, T2S3 to be executed at sites S], S2, and S3, respectively. A pos¬

sible execution schedule for these transactions is given in Figure H. As we

see from Figure H, the final result obtained is incorrect because the schedule

is not serializable. If each subtransaction of T! had run to completion before

those of transaction T2, the values in each replicate of A would have been

200. If each subtransaction of T2 had run to completion before those of

Figure G Two modifying transactions.

Transaction T|

Lockx(A)

A := 100

Write(A)

Unlock(A)

Transaction T2

Lockx(A)

A := 200

WTite(A)

Unlock(A)

Figure H A schedule for the transactions in Figure G.

site Si

Trans¬ Trans¬ Trans¬

action action action

Time Tisi T2S1 TlS2

ti Lockx(A)

0 A := 100

t3 Write(A)

I4 Unlock(A)

t5 Lockx(A) Lockx(A)

t* A := 100 A : = 200

h Write(A) Write(A)

^8 Unlock(A) Unlock(A)

site S2 site S3

Trans¬ Trans¬ Trans¬

action action action

T2S2 TlS3 T2S3

Lockx(A) Lockx(A)
A := 200 A := 100
Write(A) Write(A)
Unlock(A) Unlock(A)

Lockx(A)
A := 100
Write(A)
Unlock(A)

690 Chapter 15 Distributed Databases

transaction T)5 each replicate of A would have the value 100. Consistency

requires that transactions T, and T2 be serializable and one of them be run

to completion before the other. ■

Example 15.11 illustrates that allowing more than one transaction,to write lock

some subset of the replicates of a data item leads to inconsistency in the database.

To achieve consistency, the write lock (exclusive mode locking) must be extended

to all replicates of a data item. Reading can be achieved by locking a single replicate.

A read lock can only be obtained if no transaction has locked the data item in the

write mode.
Implementation of the locking mechanism can be effected as follows. A trans¬

action T executing at site S does not know the total number of replicates of a data

item nor the addresses of these sites. T, requiring a write lock on data item A, sends

a message to all sites requesting the write lock. With n sites this involves n messages,

unless a broadcast mode can be assumed. The sites having a replicate of the data

item reply in the affirmative if the lock can be granted. The other sites indicate that

they do not have a copy of the data item. Thus, up to 2n messages are involved

before the transaction can proceed. Once the transaction decides to update the value

of A, it would send up to n messages containing the updated value. Again, if a

broadcast mode could be assumed, a single message could be used. If a transaction

requires a read lock on a data item, say B, it could request the read lock from some

known site that has a copy of B. If the site is not known, control messages have to

be sent to a number of sites until one replies in the affirmative. The broadcast mode

reduces the number of such control messages to one. In the latter case, the closest

site having a copy of B would reply. The closeness criterion has to be determined a
priori in the network.

Majority Locking

We can relax the requirement that all copies of a data item to be updated must be

exclusively locked to the requirement that a majority of these copies must be locked

for both the share (read) and exclusive (write) modes. This approach is called the

majority locking strategy. Since a read lock is shareable, any number of transactions

can simultaneously hold a read lock on a majority of the replicates of a data item.

However, only one transaction can hold a write lock on a majority of these replicates.

No transaction can majority lock a data item in the share mode if it is already major¬
ity locked in the exclusive mode.

To lock a data item in the read or write mode, a transaction must send out at

least f(n + l)/2] messages and wait until it receives at least f(n + l)/2j affirmative

replies. If the data item is to be updated, the transaction would have to send n
messages with the updated value of the data item.

The number of messages required for an update in the majority approach is

smaller than those required for locking all replicates. Compared to the approach re¬

quiring an exclusive lock on all replicates, the number of deadlocks and subsequent

recoveries is smaller. In the lock-all approach, if two competing transactions obtain

a write lock on at least one site, neither of them succeeds. In the majority approach,

at least one transaction is able to obtain a write lock on a majority of sites. Note that

in an update, all replicates have to be updated. A transaction, having obtained a write

lock on a majority of replicates, locks out all other transactions and can subsequently

15.7 Concurrency Control 691

succeed in locking all replicates for the update. The disadvantage of this scheme is

that a majority of locks have to be acquired for reads.

Primary Site Locking

In the primary site locking approach, a single site is designated as the primary site

for a given data item, regardless of the number of copies existing for that data item.

All lock requests for the data item must be directed to this site, which will decide

whether or not to grant the request. In the centralized approach, only one site is

chosen as a primary site for all data items; in the distributed approach, different sites

are chosen for different data items. The disadvantage of using a single site as the

centralized coordinator for all locking is the bottleneck created by having to process

all lock requests at a single site and the vulnerability of the entire system when the

site fails. The distributed approach overcomes these problems. The choice of which

site to choose as the primary site is flexible and the site that is chosen for managing

the lock of a data item need not have a copy of that data item. A transaction T

requiring a lock on a data item A sends the lock request to the primary site. The

primary site will grant the request and could indicate in the grant message the address

of the site of the replicate to be used by the transaction. If the primary site fails, the

portion of the database controlled by the failed site is not available, in spite of the

fact that the actual data may be stored at a site that has not failed.

Distributed Two-Phase Locking

Concurrent transactions in a distributed system must be serializable, in addition to

obtaining appropriate locks. This requires, as in the case of the centralized system,

distributed two-phase locking. A schedule in the case of a distributed system is

serializable if it is equivalent to a schedule wherein all actions of one transaction

precede those of another. Example 15.12 illustrates the need for two-phase locking

to be generalized to a distributed database.

Example 15.12 Consider transactions T, and T2 of Figure I. Suppose the data is distributed

and A is stored at site S, and B at site S2. To execute these transactions,

each transaction spawns two local subtransaction, T1S1, T!S2 and T2S1, T2S2,

Figure I Two modifying transactions.

Transaction T,

Lockx(A)

A : = 100

Write(A)

Unlock(A)

Lockx(B)

B := 1000

Write(B)

Unlock(B)

Transaction T2

Lockx(A)

A := 200

Write(A)

Unlock(A)

Lockx(B)

B : = 2000

Write(B)

Unlock(B)

692 Chapter 15 Distributed Databases

Figure J A schedule for the transactions of Figure I.

site S|

Transaction Transaction

Time Tisi T2si

ti Lockx(A)

I2 A : = 100

L Write(A)

*4 Unlock(A)

t5 Lockx(A)

A := 200

Write(A)

*8 Unlock(A)

site S2

Transaction

TlS2

Lockx(B)

B : = 1000

Write(B)

Unlock(B)

Transaction

T2S2

Lockx(B)

B : = 2000

Write(B)

Unlock(B)

respectively, to be executed at sites Si and S2. A possible execution sched¬

ule for these transactions is given in Figure J. As we see from Figure J, the

final result obtained is incorrect since the schedule is not serializable. If

transaction T] had run to completion before transaction T2, the values of A

and B would have been 200 and 2000, respectively. Had transaction T2 run

to completion before transaction Tl? A and B would have the values 100

and 1000, respectively. ■

As in centralized two-phase locking, serializability requires that the locking in

the distributed system also be two-phase. Recall that the two-phase locking scheme

is required to have growing and shrinking phases. All lock requests made by a trans¬

action or any of its subtransactions should be made in the growing phase and released

in the shrinking phrase. Whenever a transaction issues an unlock instruction the

shrinking phase starts indicating that all required locks are obtained. Where data is

replicated, all subtransactions of a transaction that would modify the replicated data

item would have to observe the two-phase locking protocol. Therefore, we cannot

have one subtransaction release a lock and subsequently have another subtransaction

request another lock. This requires that each subtransaction of a transaction notify all

other subtransactions that it has acquired all its locks. The shrinking phase can start

once all subtransactions have acquired all their locks.
In establishing the fact that all subtransactions have finished their growing

phase, the number of messages involved is high. The possibility of failure in nodes

and communication links and that of a rollback of some subtransactions in case of

failure of others to complete normally indicates that the unlocking operations should

be delayed until the distributed commit point of all subtransactions.

The distributed commit requires the exchange of a number of messages between

the sites of subtransactions. It is done using a two-phase commit protocol discussed
in Section 15.8.

1 5.7.2 Timestamp-Based Concurrency Control

Locking schemes suffer from two serious disadvantages: deadlock and low level of

concurrency. Timestamp methods have been advocated as an alternative to locking.

15.7 Concurrency Control 693

The timestamp methods discussed in Chapter 12 can be extended to the distributed

case. As in the case of the centralized timestamp methods, each copy of a data item

in the distributed approach contains two timestamp values: the read timestamp and

the write timestamp. Also, each transaction in the system is assigned a timestamp

value that determines its serializability order. A transaction T with a timestamp value

of t ensures that it does not read a value from the future (that is, the write timestamp

of the data item must not be greater than value t) nor write a value that was already

read by a younger transaction (i.e., the read timestamp of the data item must not be

greater than value t). If the write timestamp of the data item to be read is greater

than value t (written by a younger transaction) or if the read timestamp of the data

item to be written is greater than value t (read by a younger transaction), transaction

T must be aborted and restarted. If transaction T attempts to write a data item but

finds that the read timestamp of the data item is less than t (an older transaction had

read the value) and the write timestamp of the data item is greater than t (a younger

transaction had already written a new value), transaction T is not required to be

aborted. However, it does not update the data item (it was too slow to change the

value of the data item). When more than one copy of a data item exists, a new value

must be written in all of its copies. In this case, the two-phase commit protocol

discussed in Section 15.8 must be used to make the new value permanent.
As in the centralized database system, a number of different timestamp-based

schemes can be used. In these schemes a timestamp is used to associate some value

with a transaction and give it an order in the set of all transactions being executed.

In the serial execution of transactions, time plays an important role and timestamping

seems to be the natural solution to the serializability problem.

If a system assigns a unique timestamp to a transaction, the timestamp identifies

the transaction. The generation of timestamps in a centralized system requires the

use of some monotonically increasing numbers. In distributed systems, each site gen¬

erates a local timestamp and concatenates it with the site identifier. If the local

timestamp is unique, its concatenation with the unique site identifier would make the

(global) timestamp unique across the network. The site identifier must be the least

significant digits of the timestamp so that the events can be ordered according to their

occurrence and not their location, as illustrated in Example 15.13.

Example 15.13 Let two events be assigned the timestamps 200100 and 100200, where the

first three digits of the timestamp identify the site and the last three digits

the time at which the event occurred. Now even though the event with ti¬

mestamp 100200 occurred later than the event with timestamp 200100, the

timestamp comparison states otherwise. ■

The local timestamp can be generated by some local clock or counter. In the

event a counter is used, a relatively busy site would rapidly outrun slower sites. The

local clocks at different sites can also get out of step. These local timestamp-gener¬

ating schemes can be kept fairly well synchronized by including the timestamp in the

messages sent between sites. On receiving a message, a site compares its clock or

counter with the timestamp contained in the message. If it finds its clock or counter

to be slower, it sets it to some value greater than the message timestamp. In this

way, an inactive site’s counter or a slower clock will become synchronized with the

others at the first message interaction with another site.

694 Chapter 15 Distributed Databases

On the one hand, the number of messages required to be transmitted in the

timestamp approach is smaller than in the locking approach. On the other hand, the

number of transactions that are aborted to be restarted is relatively larger. This occurs

in cases where more than one transaction attempts, simultaneously, to access the

same data item. (If we can delay one of the conflicting operations, we can reduce

the number of transactions that have to be aborted.)

15.8 Distributed Commitment and Recovery

In addition to the types of failures encountered in the centralized DBMSs, the recov¬

ery subsystem in a DDBMS has to contend with the loss of messages and failure of

communication links and nodes. A distributed commit protocol known as two-phase

commit is used to ensure data consistency. The recovery subsystem is used to restore

the database to a consistent state on the restoration of the failed nodes or communi¬

cation links.
In our discussion of transaction properties, we stated that not only should the

transaction be serializable but that it should be atomic. This in tum implies that either

all or none of the writes should be performed. In a distributed system, when the

write requests have been issued there must be some way of ascertaining that all of

them have indeed been performed. Where a site (or link) may have failed, recovery

operations must be performed when the site or link is reconnected to the network.

The recovery operations must guarantee that for committed (sub)transactions, the

write operations are in fact correctly reflected in the database before the site comes

online. If for some reason a subtransaction at a site cannot terminate normally, then

all the other subtransactions spawned by its parent should be aborted.

In order for the atomic transactions to be recoverable,

• Updated data items should not become permanent until recovery data is
transferred to stable storage.

• The original state of all updated data items should be available, at least until the
updated data becomes permanent.

If there are no failures or abnormal conditions, such as denial of locks or dead¬

locks requiring the abortion of any of the subtransactions, the distributed commit

protocol is relatively straightforward. Each subtransaction Ty of transaction T; sends

a ready to commit or abort message to the coordinator. If the coordinator receives

the ready to commit message from all subtransactions, it sends a commit message to

all subtransactions. Once the commit message is received all subtransactions perform

the appropriate commit action, which involves writing the recovery log including a

commit (sub)transaction marker, and then making the updates to the data items per¬

manent. If the coordinator receives an abort message from any subtransaction, it need

not wait for any further messages and issues an abort message to all subtransactions.

On receipt of an abort message, all subtransactions abort, after making appropriate
entries in the recovery log.

Failures in a distributed system, in addition to the types of failure in a central¬

ized system, include the following: lost message, node failure, and communication

link failure. The latter two types may partition the network into two or more parts.

These network failures create problems in the above simple method used in commit-

15.8 Distributed Commitment and Recovery 695

ting a transaction. One of the problems is that of blocking a subtransaction. A sub¬

transaction is said to be blocked when it does not know what to do next. It cannot

safely commit or abort, since it is cut off from the rest of the network. If it unilat¬

erally decides to either commit or abort, there is a possibility that the system would

be in an inconsistent state. This is illustrated in Example 15.14.

Example 15.14 Consider the subtransactions Tn, T12, and T13 spawned at sites Si, S2, and

S3 of transaction Tj at site S. Each of these subtransactions has been created

to update the value of a replicated data item, A. If the communication links

to site S) break down after T|S, has sent a ready to commit message at step

s4 (Figure K), then it would not receive the commit message back from the

coordinator. If TIS1 decides to abort, the value of A would be unchanged at

site S|. If the other two subtransactions had also indicated that they were

ready to commit, the coordinator would have sent a commit message and

the value of A at sites S2 and S3 would be updated. This means the database

is inconsistent and T1SI must not abort. If TISI decides to commit, the value

of A would be changed at site S,. However, if one of the other subtransac¬

tions had indicated that it was aborting, the coordinator would have issued

an abort message. This would mean that the value of A in the copies at sites

S2 and S3 would be unchanged. Thus, T1SI must not commit. As a result of

the possibility of inconsistency, regardless of what T(S1 does, it cannot pro¬

ceed beyond step s4. In other words, the subtransaction is blocked.

Figure K Blocked transaction

site S| site S2 site S3

Transaction Transaction Transaction

Step Tisi TlS2 T" 1 S3

Sl Lockx(A) Lockx(A) Lockx(A)

S2 Read(A) Read(A) Read(A)

s3 A : = A + 100 A : = A + 100 A : = A +

S4 ready ^to-commit
failure of link to S(

Protocol for the two-phase commit, which allows recoverability of distributed

transactions, is presented in the following section.

15.8.1 Two-Phase Commit

The voting phase and the decision phase are the two phases of the two-phase commit

protocol. In the voting phase, the subtransactions are requested to vote on their

696 Chapter 15 Distributed Databases

readiness to commit or abort. In the decision phase, the decision as to whether all

subtransactions should commit or abort is made and carried out. The transactions at

a site interact with the transaction manager of the site, cooperating in the exchange

of messages.

It is more convenient to use the process concept rather than the transaction

concept in discussing the two-phase commit and deadlocks. Just like a transaction, a

process is capable of requesting data items and releasing them. However, they have

a better knowledge of their environment, including knowledge about the identity of

the processes that are blocking them. The pseudocode for the processes at the partic¬

ipant and coordinator sites is given below. Note that part of the code belongs to the

transaction manager (TM) and the remaining to the subtransactions or the coordi¬
nator.

The coordinator process starts by spawning a number, n, of subtransactions.

Some of these would be at remote sites and others could be at the same site as the

coordinator. The only difference is that a subtransaction at the same site does not

have to communicate via the network. These subtransactions are run along with the

respective TM as participant processes at a number of sites.

Participant Process

begin

acquire locks and make local changes
if normal end

then status : = okay to commit

else status : = should abort;
set timeout;

while (not request from coordinator for voting or not timeout)
do {nothing};

if timeout

then write recovery log, release all locks, and abort
if request from coordinator for voting

then if status : = should abort

then begin

send abort to coordinator

write status on recovery log, release all locks, and abort
end;

else begin {status : = okay to commit}

send ready to commit, write status on recovery log
set timeout

while (not second_signal from coordinator or not
timeout)

do nothing;

if receive commit from coordinator

then write recovery log, commit,

release all locks, and send

acknowledge to coordinator
if receive abort from coordinator

then write recovery log, release all locks,

abort, and send acknowledge to coordinator
if timeout {blocked}

then begin

15.8 Distributed Commitment and Recovery 697

send SOS_second_signal and wait for response
activate recovery
end

end

end

Coordinator Process

begin

spawn n subtransactions

write into recovery log request for voting, send to all

subtransactions request for voting
messages := 0;

abortall : = false;

set timeout;

while (messages =£ n or not timeout or not abortall)
do begin

if receive ready to commit

then messages : = messages + 1;
//receive abort

then abortall : = true;

end;

if timeout or abortall

then begin

seconcLsignal : = abort

write global abort in log

end

else begin

second-signal : - commit

write global commit in log

end;

send second-signal to all subtransactions;

set timeout;

acknowledge : = 0;

while (acknowledge ^ n or not timeout)

do begin

if receive acknowledge from participant

then acknowledge : = acknowledge + 1;

end;

if timeout and acknowledge =£ n

then spawn SOS (second-signal) response process

else write transaction complete in log

end;

When the participant processes execute, they know whether the tasks assigned

to them were completed successfully or not. If successful, they are willing to com¬

mit, otherwise they have to abort. Recall that the assigned database update is done

only on a copy of the data items in each process’s own workspace. These participant

processes wait for a voting request from the coordinator process. If such a request is

not received by a participant process, after a predetermined time period (timeout) it

aborts after writing an appropriate recovery log. No changes are made to any data

698 Chapter 15 Distributed Databases

items in the database. If a request for voting is received before timeout, the partici¬

pant process sends the appropriate status signal (okay to commit or should abort) to

the coordinator process. On receipt of okay to commit signals from all the participant

processes, the coordinator process sends a second signal to the participants to com¬

mit. On receipt of this commit signal, the participant process writes appropriate re¬

covery log and commit markers onto stable storage at its site. Following this, it

makes the changes permanent in the database.
If a participant process does not receive the second signal within a predeter¬

mined time period, it is said to be blocked. This could happen if the site goes down

and then the recovery operation restores it and finds that the second signal was not

received before the crash. A blocked participant process sends out an SOS signal,

which is responded to by an SOS process. Such an SOS process could have been

spawned by the coordinator process to help in the recovery of any site that failed

after the vote was taken to commit or abort, but before the site could actually commit

or abort. The SOS signal would also be emitted by a participant process if it did not

receive the second signal (to commit or abort) from the coordinator, the signal being

lost in the network.
A participant process that does not receive a request from the coordinator pro¬

cess for voting within a predefined time period will timeout. Timeouts result in the

participant process having to write the recovery log, release all locks, and abort. In

case the request for a voting message from the coordinator was lost, the coordinator

would not receive any signal from such aborted participant processes. The coordina¬

tor process timeouts and therefore aborts all the other participant processes.

1 5.8.2 Recovery with Two-Phase Commit

The recovery log, in addition to the type of information indicated in the centralized

case, includes the log of the messages transmitted between sites. Such a record would

enable the recovery system to decide, when the site is reconnected to the network,

on the extent of the site’s interaction with the rest of the system. The recovery system

would also be able to determine the fate of the subtransactions running at the site. It

can then determine which subtransactions were committed, aborted, or blocked. Re¬

garding the committed subtransactions, the recovery system would ensure that the

changes are reflected in the database at the site. In the case of aborted transactions,

any partial updates would be undone. As for the transactions that were blocked, an

SOS signal would be sent to determine whether it should be committed or aborted.

Communication link failures in certain cases can result in the database system

becoming partitioned. Each of the partitioned systems could operate by marking the

sites in the other partitions as being down. A moment’s thought should tell us that

there may be no possibility of a smooth recovery from such a partitioning. In this

case, the complete system has to be restarted from the period before the partitioning

occurred with a manual assist to recover subsequent database modifications.

Site Recovery

When a failed site resumes operation, it consults the recovery log to find the trans¬

actions that were active at the time of the failure. For strictly local transactions,

15.8 Distributed Commitment and Recovery 699

recovery actions similar to a centralized database requiring a simple undo or redo

would be called for. Global transactions would be of two types: coordinator or par¬
ticipant.

Regarding all participant type transactions, if the log indicated that it had not

sent the status message to the coordinator, then the latter would have aborted all

subtransactions. The recovery operation would ensure that such participant trans¬

actions be aborted and no changes be reflected by such transactions in the database.

Suppose the log for a participant type transaction indicates that it send an okay to

commit status to the coordinator. This means that the global transaction could have

been either committed or aborted. The recovery operation would ensure that the par¬

ticipant transaction, on restart, would send a SOS message to learn its fate from the

SOS process. Once it receives the signal either to commit or abort, the recovery

process performs a redo or undo operation. In the case of a participant for which the

log indicates the receipt of a second signal from the coordinator (to commit or abort),

the recovery process can take appropriate action and ensure that an acknowledge

signal be sent to the coordinator.
For a coordinating transaction at the failed site, the recovery process examines

the log to determine its status. If no request for a voting message was sent before the

site failure, all participants would have aborted, whereupon the coordinating trans¬

action can be aborted as well. If the coordinator sent a request for voting before the

crash, the recovery process must retransmit this request for voting. Even though the

pseudocode of the participant processes given above does not indicate this, they

should treat the second request for voting as the first and proceed as if this were the

first request for voting. The global transaction can then be completed as if nothing

had happened. If the site failed after the coordinator sent the second signal for com¬

mit or abort, the recovery process would entail resending this signal. Participant sites

that received this signal and acted accordingly would treat this as a repeat message,

ensure that appropriate actions were taken (from their recovery logs), and send the

required acknowledge signal. Participants that did not receive this second signal

would be blocked and attempt to recover via SOS. The coordinator would not

receive acknowledgement from these participants and therefore would spawn the

SOS process, which would respond to these SOS signals and conclude the global

transaction.
If the site failed after the coordinator wrote a complete transaction marker in the

log, no further actions would be called for.

Lost Message

The type of recovery operation to be performed depends on the message that was

lost. If the request to vote from the coordinator is lost, the participant would abort,

which would eventually lead to the abortion of the global transaction. If the status

message from any one of the participants is lost, the coordinator would timeout and

abort the global transaction, including all the participant transactions. Should the

second signal be lost, a participant would timeout and attempt a recovery via the

SOS message. In the event that one of the acknowledge messages is lost, the coor¬

dinator would spawn the SOS response process. The coordinator would not know if

the transaction is complete. An alternative approach is to have the coordinator send

a request to the participants to retransmit the acknowledgements.

700 Chapter 15 Distributed Databases

Communication Link Failure

Suppose the failure of the communication link occurs in such a way that a subset of

the participant sites are partitioned without a coordinator. In this case, as far as the

coordinator is concerned, this is equivalent to the failure of a number of participant

sites. If the failure occurs before the partitioned participants were sent the voting

message, the coordinator would have aborted the global transaction, including all

nonpartitioned subtransactions. The partitioned participants would also abort after a

timeout. If the failure occurs after the participants have reported their status, the

coordinator would have decided either to commit or abort. The partitioned sites could

recover, on reconnection, by sending an SOS.

t 5.9 Deadlocks in Distributed Systems

As in the case of a centralized system, deadlocks can occur in a distributed system,

as illustrated in Example 15.15.

Example 15.15 Consider the transactions of Figure L, where data item A is resident at site

S, and data item B is resident at site S2. The schedule for the execution of

the transactions is given in Figure M. The transactions are using two-phase

Figure L Two modifying transactions.

Transaction T| Transaction T2

Lockx(A) Lockx(B)
Read(A) Read(B)
A := A - 100 B : = B * 1.1
Write(A) Write(B)
Lockx(B) Lockx(A)
Read(B) Read(A)
B : = B + 100 A := A * 1.1
Write(B) Write(A)
Unlock(A) Unlock(B)
Unlock(B) Unlock(A)

Figure M A schedule for the transactions in Figure L.

site S, site S2

Transaction Transaction Transaction
Step Tisi T2si T2S2

Sl Lockx(A) Lockx(B)
S2 Read(A) Read(B)
s3 A : = A — 100 B : = B * 1.1
S4 Write(A) Write(B)
S5

Transaction

TlS2

Lockx(A) Lockx(B)

15.9 Deadlocks in Distributed Systems 701

Figure N A global wait-for graph.

SiteS, SiteS2

locking protocol and the schedule shows that the transactions will be dead¬

locked. The global wait-for graph for the situation at step s5 of the schedule

is shown in Figure N. ■

One simple method of recovering from a potential deadlock situation is to allow

a transaction to wait for a finite amount of time for an incompatibly locked data item.

If at the end of that time the resource is still locked, the transaction is aborted. The

period of time should not be too short or too long. An unduly short period would

likely cause the transaction to be aborted, since the resource may not be released.

An unnecessarily long period would mean that these transactions would hold the

resources already acquired, causing further transactions to deadlock. With this

scheme, only transactions that are blocked are aborted.

The deadlock detection scheme allows deadlock to occur, but makes provision

to detect the existence of a deadlock by the presence of a chain of transactions, each

waiting for data items locked by the next transaction in the chain. The detection of

deadlock in a distributed system requires the generation of not only a local wait-for

graph (LWFG) for each site, but also a global wait-for graph (GWFG) for the entire

system. Note that here we are assuming that a transaction can request one or more

data items at a time and become blocked if it has at least one outstanding request for

a data item. Under this assumption, a cycle in the global wait-for graph indicates a

deadlock situation. Figure N shows the GWFG for the execution schedule of Fig¬

ure M.
We see from Figure N that even though there are no cycles in the LWFG at

each of two sites, there is a cycle in the GWFG and this indicates the existence of a

deadlock. The disadvantage of the GWFG is the overhead required in generating such

graphs. Furthermore, a deadlock detection site has to be chosen where the GWFG is

created. This site becomes the location for detecting deadlocks and selecting the

transactions that have to be aborted to recover from deadlock. One of the problems

with such an approach is that if the messages indicating which transactions are wait¬

ing for which resources and the release of the resources by transactions are received

out of order, then the deadlock detection site may conclude that there is a deadlock.

However in reality no such deadlock exists. The erroneous deadlock that was de¬

tected is called a phantom deadlock. Example 15.16 shows how a phantom dead¬

lock could result.

Example 15.16 Consider the GWFG of Figure O. Suppose the graph is maintained at site

S. Suppose there is a request from T8 for a data item locked by T9 at about

702 Chapter 15 Distributed Databases

Figure O A global wait-for graph.

Site S2 Site S3

the same time as T4 releases the data item it locked. The release of the data

item allows T6 to proceed and causes a removal of the edge (T6,T4). If the

fact that the edge (T6,T4) is removed reaches site S after it learns of the

addition of the edge (T8,T9), then a phantom deadlock would be detected.

The cycles (T1,T3,T8,T9,T6,T4,T|) and (T1,T2,T3,T8,T9,T6,T4,T1) do not, in

fact, exist. ■

Instead of using a central site for deadlock detection, it is possible to use a

distributed deadlock detection scheme. In one such approach, the LWFGs are broad¬

cast to all sites. Each such site generates the portion of the GWFG that is of concern

to it. If one of the site detects a deadlock, it tries to resolve it by aborting one or

more of its transactions. The disadvantage of this approach is that the deadlock may

not be detected for some time, and since the broadcast of the LWFGs is asynchron¬

ous, a phantom deadlock could be detected and lead to unnecessary transaction
aborts.

Below we give another scheme, known as a probe computation algorithm, for

distributed deadlock detection. It is from a class of algorithms called the edge¬

chasing algorithms. For other deadlock detection algorithms, refer to the biblio¬
graphic notes.

15.9.1 Deadlock Detection by Probe Computation

In the edge-chasing algorithms, the cycle in the GWFG is detected not by actually

creating the graph but by sending messages along the edges of the graph. Such mes¬

sages, called probes, are different from the other messages discussed above, and

15.9 Deadlocks in Distributed Systems 703

Figure 15.9

also distinct from resource requests and grant messages. As before, instead of refer¬

ring to transactions, let us use the process concept, which encompasses the interac¬

tion between a transaction at a site with the TM at the site. Figure 15.9 shows an

example of a number of such processes in a GWFG in a deadlock situation. Let us

examine how probe computation is used to detect the deadlock.

An edge from a process in one site to a process in a distinct site is called an

intercontroller edge. An outgoing edge for a process is an intercontroller edge that

can be reached from the process by following edges in the local part of the GWFG.

The probe is initiated by a blocked process and it is referred to as the initiator of the

probe. A probe is made up of a three-tuple (i, j, k) and indicates that it is a probe

for process T; and the probe has been sent along the outgoing edge (Tj, Tk). Here

process T, is blocked by process Tk and Tj is blocked, directly or via a chain of

intermediate processes, by Tj. If the initiator of the probe receives a matching probe,

we can conclude that the blocked process is in a cycle in the GWFG. Thus, if process

Tj, the initiator of a probe, receives a probe (i, x, i), it is in a cycle. An active

process simply discards the probes. A blocked process propagates the probe along all

its outgoing edges. This blocked process will send a probe (i, j, k) to the process at

node k, along outgoing edge (Tj, Tk), under the following conditions: (a) the process

T| is blocked, (b) Tj is waiting for the process Tk, (c) Tj is blocked by Tr Note

that a site that has several blocked processes may initiate several probes. Similarly,

several probes may be initiated in sequence by a blocked process if it has sever¬

al outstanding requests. Each such probe is distinctly identifiable by the ini¬

tiator.

Detection of deadlock using probe computation.

Site 1 Site 2

704 Chapter 15 Distributed Databases

A blocked process, Tk, accepts only meaningful probes; others are discarded on

receipt. A probe (i,j ,k) is said to be meaningful under the following conditions: (a)

the process Tk is blocked, and (b) it was unaware that Tj was dependent on it (that

Tk is in a chain with Tj). Condition (b) ensures that nonmeaningful probes are sup¬

pressed and, consequently, only one probe per cycle is propagated. Receipt of a

meaningful probe leads to the deduction that Tj is dependent on Tk and'further probes

(i,j,k) will be discarded (they will not longer be meaningful). On receipt of a mean¬

ingful probe, Tk sends, probes (i,p,q) on all its outgoing edges (Tp, Tq).
If a blocked process, Tj, receives a probe (i,j,i), we can deduce that it is dead¬

locked. The probe computation algorithms are given below and Example 15.17

illustrates its use in the detection of a distributed deadlock.

Algorithm

15.1 A Blocked Process Initiates Probe Computation

if process T, is blocked and the deadlock is not local,

then for each distinct outgoing edge Tj, Tk
transmit a probe (i,j,k)

Algorithm

15.2 A Blocked Process Response to Probes Received

for each probe (x,y,z) received by Tj

//probe is meaningful

then if x = z (both x and z also being equal to i for

some blocked process TO

then T; is in a deadlock: initiate deadlock

resolution

else for each distinct outgoing edge Tp, Tq

transmit a probe (x,p,q)

Example 15.17 Consider the situation depicted in the GWFG of Figure 15.9. We have pro¬

cesses Tj, Tj, Tk, Tq, Tr, Tj in a deadlock situation. The probe is initiated,

say, by Tj. It sends a probe (i,j,k) along its outgoing edge (j,k) to process

Tk at site 2. When Tk receives this probe it finds it meaningful since it was

unaware that Tj was blocked by it. It knows that Tj is blocked by it since it

has not released the data item requested by Tj. Tk, in turn, sends a probe

(i,q,r) along its outgoing edge (Tq,Tr) to Tr at site 3. Tr finds this probe

705 15.11 Homogeneous and Heterogeneous systems

meaningful and, in turn, learns that Ts is dependent on it. Tr sends the probe

(i,r,i) along its outgoing edge (r, i) to T,. On receipt of this probe Tj learns

that it is in a closed cycle in the GWFG. Note that a probe (i,s,p) along the

Outgoing edge (Ts,Tp) will be eventually ignored by process Tn and will not
reach Tj. ■

15.9.2 Deadlock Prevention

The deadlock prevention method can be used in a distributed system. For instance,

the timestamp method could be applied to prevent deadlock from occurring by abort¬

ing the transactions that could potentially cause deadlock. The wait-die scheme and

the wound-wait scheme could be used to abort appropriate transactions as in the

centralized system. The aborted transactions are reinitiated with the original time-

stamp to allow them to eventually run to completion. The timestamp method does

not require that any messages be transmitted over the network; however being a

deadlock prevention scheme it causes unnecessary transaction aborts.

15.10 Security and Protection

Security and protection problems are similar to those in the centralized database with

remote access. However, the problem is exacerbated by the fact that there is in¬

creased communication, including site-to-site transfer of large amounts of data. This

calls for appropriate identification and authentication of the user and the site. To

prevent eavesdropping on the communication lines by intruders, these lines must be

secure and the message should be encrypted.

The fact that data is replicated in the database means that a user can access any

one of these replicated copies. Security dictates that the authorization rules for access

and update of certain parts of this data be verified before user action is allowed. If

the authorization rules are centralized, the authorization validation will generate

traffic and the central site would become the bottleneck. Another approach is to

replicate the authorization rules. Full replication allows local validation of user action

at the time of compilation or execution of the user query. However, full replication

adds unnecessary update overheads. Still another approach involves replicating, at a

given site, only those authorization rules that pertain to the data items at the site.

The maintenance problem is improved but validation of a user’s action for a remote

site can only be done at the remote site during an advance compilation or execution

stage of the user’s query. Considerable computing efforts are wasted, since a query

is aborted on discovery that the query lacks authorization for particular data items.

15.11 Homogeneous and Heterogeneous Systems

In general, a distributed database system may be either homogeneous (i.e., all local

database systems have the same underlying data model) or heterogeneous (i.e., local

706 Chapter 15 Distributed Databases

Figure 15.10 Homogeneous and heterogeneous database systems.

Homogeneous DDBMS
with identical DBMSs

DB2
site 3

Heterogeneous DDBMS with all DBMSs
based on the same data model

IMS
site 1

IDMS
site 2

DDBMS
and

network

DB2 INGRES
site 3 site 4

Heterogeneous DDBMS with all DBMSs
based on different data models

database systems at different sites may have different underlying data models). In

fact, even with the same underlying data model there are substantial differences in

individual DBMS implementations. A truly homogeneous database system is imple¬

mented with the same local DBMS at all sites. Figure 15.10 shows examples of
homogeneous and heterogeneous systems.

We can differentiate between local and global schemas.1 All data items that are

visible at other nodes are specified in a global schema. This schema is specified using

a common global model; translators between the local and global models and lan¬

guages are provided. A distributed system with n different local systems and without

the use of a global model would require n * (n—1) translators. Using a global model,

we require only n translators to map between the global and local models (and vice-
versa).

With the proliferation of microcomputers and microcomputer-based database

systems and the growing networking of these systems, the existence of heterogeneous
systems is bound to increase.

In the next section, we briefly consider some common DDBMSs. Note that

these are mostly experimental systems. First we look at the homogeneous DDBMSs,
followed by an example of a heterogeneous DDBMS.

The term network schema is sometimes used to refer to the global schema. We prefer to use the term global schema to avoid
confusion with the term applicable to the DBTG model.

15.11 Homogeneous and Heterogeneous systems 707

1 5.11.1 The Homogeneous DDBMS

SDD-1: A System for Distributed Databases

The SDD-1, a prototype DDBMS, was developed by Computer Corporation of

America in the late 1970s. SDD-1 supports the relational model. SDD-1 is a collec¬

tion of three different types of virtual machines: transaction and data modules inter¬

connected by the reliable network (Figure 15.11). The actual system runs on a num¬

ber of DEC PDP-lOs and PDP-20s using Arpanet. The Datacomputer database, a

relational DBMS, is used at each site. Fragmentation is obtained in SDD-1 by first

taking horizontal fragmentation and subsequently vertical fragmentation. The system

catalog is also treated as ordinary data and can be fragmented and replicated. To

allow any site to determine the locations of the catalog fragments, a higher level

catalog known as a directory locater is fully replicated at each site.
Users interact with a given transaction module, which plans and controls the

execution of the users’ transactions. The transaction module is responsible for query

translation, control of execution, and concurrency control. The transaction module

converts a transaction into a parallel program that can be executed cooperatively at

several data modules.
A data module manages all local data at a site. It provides data handling capa¬

bilities for transaction execution (e.g., move data from database to workspace, etc.).

Data modules and transaction modules are interconnected by the reliable net¬

work. All messages are guaranteed to be delivered by the network. It monitors sites

and provides a global clock. The reliable network also ensures transaction atomicity

by committing transactions at all sites or aborting at all sites.
In the SDD-1 system, the catalog is a single relation that can be fragmented

and replicated, allowing the catalog entries to be distributed at data module sites. It

Figure 15.11 SDD-1 architecture.

u

e
Transaction

module

Data
module

r

Reliable
network

708 Chapter 15 Distributed Databases

is therefore possible for local objects to have their catalog entries at a remote site.

Consequently data definition operations may be nonlocal.
SDD-1 uses a centralized control scheme and a given transaction is supervised

by a single transaction module. The transaction execution is in three phases, read,

execute, and write. All reads for a transaction are performed at the beginning of the

transaction; all writes are done at the end.
The read-set, the set of fragments to be read by the transaction, are determined

by the TM. SDD-1 provides fragmentation transparencies and the set of fragments

to be accessed for the read-set of the transaction are determined by it. This operation

is called materialization. The TM then coordinates the data modules at various sites

to transfer the required data into the workspace used by the transaction.

SDD-1 uses the conservative timestamp method for concurrency control. We

briefly describe the conservative timestamp scheme here. The basic timestamp

method, discussed in Chapter 12, suffers from costly restarts.

A pessimistic approach is taken by the conservative timestamp method, which

causes possible delays until no conflict with a transaction can possibly happen. This

is done by buffering younger transactions until all possible older transactions have

been executed. At some point the system must decide that no older transaction is

likely to be received. A simple implementation of the idea requires that a site send

all requests to another site in timestamp order and that the network deliver messages

in the order that they were sent. In this manner, if site j receives a message from site

i with a timestamp tik, site j knows that it will not receive messages from site i with
timestamps less than tik.

At site j, instead of keeping the timestamps of the last read or write operation

on data item X, we now keep the oldest timestamp for the buffered read and write

operations for data item X, say XRMIN and XWMin, respectively. Site j, having re¬

ceived messages from all other sites, can proceed to execute an operation. The
method is implemented as follows:

while not at least one request from each site wait.
READ

if Xrmin < XWmin
then the read is older than any of the write re¬

quests on X, i.e., all older transactions that

could update X have been executed and thus the

read operation can be executed and XRMIN updated.

else there is at least one older update request
and the read is buffered.

WRITE

*/XWM1N < XRMtN

then all read requests for the current data value

have been executed and the write operation can be
executed; the value of XWMIN is updated.

else there is at least one older transaction that has

still to read the current value and thus the write
remains buffered.

This simple method suffers from the fact that at least one request must be re¬

ceived from each site. So that the system will not remain blocked, each active site

15.11 Homogeneous and Heterogeneous systems 709

that lacks an action request sends a null request message. In this manner, the buffer

from each site would at least have a request, albeit null.

Major disadvantages of the conservative timestamp method are the long waiting

periods and consequent low concurrency. The improvements suggested to overcome

these shortcomings include the use of transaction classes and conflict analysis

graphs.

All transactions are categorized into classes. Those transactions that are likely

to conflict belong to the same class. A transaction’s read requests can be termed its

read-set and the write requests, its write-set. Two transactions conflict if the intersec¬

tion of their write-sets or the read-set of one and the write-set of the other is non¬

empty. For instance, let the read and write sets of transaction Ti be RS, and WS,, re¬

spectively, and those for T2 be RS2 and WS2. Then transactions T, and T2 conflict if

RS, n WS2 + 0, or

WS, n RS, * 0, or

ws, n ws2 * 0

Transaction requests waiting in buffers need only be compared with requests

from conflicting transactions. Two requests from nonconflicting transactions can pro¬

ceed concurrently, thus improving concurrency.

Whether or not transactions conflict can be decided using conflict graph analysis

techniques in which arcs can be labeled to define the type of conflict (read-write or

write-write).

The execute phase is performed by a compile-and-go approach. The access plan

generated is executed and the supervision is by the TM at the site of the query.

Program compilation uses semijoins extensively in optimization. The write phase

begins by the distribution of the updated fragments to all data modules containing a

replicate of an updated fragment. The updated fragments are made permanent by a

write command issued by the coordinating TM.

Transaction atomicity is provided in SDD-1 by a four-phase commit protocol,

which includes selection of backup coordinators to supervise the commit protocol in

case of coordinator failure.

R* (see Figure 15.12) is an experimental adaptation of the System R relational

DBMS to the distributed environment. The architecture of R* is based on System R

architecture. It is claimed that major modifications were made to the relation data

storage (RSS*) and transaction manager (TM*) systems. A distributed communica¬

tions (DC*) component was added.
R* runs under IBM’s Customer Information Control System (CICS). CICS is

responsible for handling online users and could entail running application programs

or provide support for interactive queries. CICS is also responsible for intersite mes¬

sage communications and interfaces with another CICS at a remote site.
All requests are made at a single site, which becomes the master site. In com¬

mon with System R, queries are compiled rather than interpreted. A distributed com¬

pilation scheme is used wherein the master site coordinates the global aspects of

query compilation. The local decisions, including local data structure selections, are

710 Chapter 15 Distributed Databases

Figure 15.12 R* architecture.

R*

delegated to all the participating sites, called slave or apprentice sites. The master

site produces a global plan that is broadcast to the apprentice sites along with the

original SQL statement and catalog information used.

R* uses a distributed catalog. Local catalogs keep information on locally stored

objects, including any fragments and replicates. The catalog at the birth—site (site at

which the object was first created) of an object maintains the current storage sites of

that object. Object movement causes this information to be updated. This scheme

maintains complete site autonomy.

Each apprentice site takes the portions of the plan relevant to it and compiles it

to produce an optimal local access plan. The sequence of actions is shown in Figure

15.13. Note that the master site can also be an apprentice site.

Transaction management, two-phase commit protocol, recovery, global and lo¬

cal deadlock detection and resolution are supported by the transaction manager. It

also assigns unique names to the transactions. The run-time manager of RSS* exe¬

cutes calls to TM* and DC* (when data movement between sites is required).

R* uses the process concept wherein transactions are organized as processes,

sharing common code and data structures, including lock tables. A master process is

created for a single user or application program and all database requests are made

through this process. In this scheme, creation and deletion of a process for each

database manipulation is avoided. Similarly, for a remote database request, a process

is created at the remote site. In this way, a hierarchy of processes can exist at a

number of sites. The root of such a hierarchical tree is the process created at the
master site.

15.11.2 The Heterogeneous DDBMS

The major problems in heterogeneous DDBMSs are concerned with the translation

between different data manipulation languages, different data models, and the variety

in data usage and definition. We can include in our definition of heterogeneous sys-

15.11 Homogeneous and Heterogeneous systems 711

Figure 15.13 Distributed query compilation in R *

SQL statement

Apprentice site

terns DBMSs which, while employing the same generic data model (relational, hier¬

archical, or network), are in essence different systems.

Earlier we mentioned possible conflicting situations that may arise in systems in

which we aggregate preexisting systems. The possible conflicts are:

• Name: Same name used to describe different facts, or different names used for

the same fact.

• Structure: Same fact described in two different schemes using different

elements of a data model.

• Abstraction: Different levels of details.

• Scale: Different units of measurement for the same data item.

In addition to the above conflicts, others arise, such as disagreements in the data

representing the same fact in separate databases due to measurement or entry errors.

The conflicts cannot be resolved by force or mediation if the definitions in the com¬

ponent DBMSs are to remain unaltered—an important local autonomy consideration.

The problem of mapping between different data models and DMLs is solved by

utilizing a common data model and DML. A DDBMS consists of k different

DBMSs. Then, if we do not utilize a common data model we would need k * (k-1)

translators—each system would need a translator to the remaining (k-1) systems.

Using a common global data model, we need only 2 * k translators, one from each

system to the common model and vice-versa. The characteristics that the common

data model and its accompanying DML should possess include simple translation

rules between it and the data models and DMLs of constituent DBMSs; and suitabil¬

ity to represent data and processing requirements of the DDBMS (e.g., fragmenta¬

tion, replication, etc.).

712 Chapter 15 Distributed Databases

Figure 15.14 MULTIBASE scheme architecture (adapted from [Land 82]).

Site 1 Site n

In a heterogeneous system, the level of performance of the various host DBMSs

may differ considerably. For instance, the same operation on the same data may be

done at varying costs under different DBMSs. This factor would be a consideration

in allocating subtransactions, just as the nearness criteria is used when considering

communication costs. In some cases, a particular host DBMS may not even be able

to perform a specific operation. The above issues are addressed below in the section

on MULTIBASE. If the DDBMS provides a single interface to external users, as is

the common practice, then the network DML should be easy to learn and sufficiently
powerful to satisfy all needs.

A few heterogeneous DDBMS prototypes have been built. Here we consider
only one of them, a derivative of SDD-1.

Multibase

The MULTIBASE DDBMS,2 3 developed by Computer Corporation of America, pro¬

vides an integrated interface for retrieving data from preexisting, heterogeneous, dis¬

tributed databases. Its aim is to present an integrated uniform interface. This is

achieved by defining an integrated global schema and by utilizing a single global

query language. Besides being read-only, MULTIBASE does not implement controls

to ensure that when reading data from one site, other required data at another site is

not being updated—because most systems do not make concurrency control services

available to an external process. The global query language DAPLEX is based on

the functional data model/ This model consists of entity sets and functions between

them, and models object types of concern and their characteristics. The schema ar¬
chitecture is shown in Figure 15.14.

Resolving data and naming inconsistencies and any other incompatibilities in the

preexisting databases are functions of the MULTIBASE system. For this reason an

2The discussion here is based on (Land 82).

3See (Ship 81) for details on DAPLEX and the functional data model.

15.11 Homogeneous and Heterogeneous systems 713

Figure 15.15

integration schema called the auxiliary schema is specified. The auxiliary schema

describes a DAPLEX auxiliary database that is maintained by an internal DBMS,

which is part of MULTIBASE. It contains data unavailable in any of the host

DBMSs, or data needed to solve incompatibilities. Examples of such data are the

following: statistics to determine which data values should be used in case of conflict;

conversion tables for performing data transformations that can’t be done via simple

arithmetic manipulations. Furthermore, if two sites have, say, EMPLOYEE data but

only one site has an EMPLOYEE.Phone-No, the missing phone number data can be

added to the auxiliary database. This is in addition to the global and local schema

(both specified using DAPLEX) and a local host schema. The local host schema is
the schema description in the local DBMS language.

Besides the language and schema definition systems, MULTIBASE also pro¬

vides a query processing system. The query processing system incorporates the local

data interface and local DBMS. At the global level are the query translator and query

processor subsystems. The query translator transforms the global query into subquer¬

ies over the local and auxiliary schema. The global query processor chooses appro¬

priate query optimization criteria and coordinates the local query executions. The

optimization plan includes data movement between sites and the integration of the
results from the sites.

Local queries are sent to the local sites and are subjected to local query optimi¬

zation. These locally optimized queries are then translated into queries over the local

host schema of the host DBMS.

Each of these tasks is performed at different levels. Figure 15.15 displays the

MULTIBASE architecture, which shows the two major components, the global data

manager (GDM) and local database interface (LDI). The user submits queries to

the global data manager, which is responsible for global query translation and opti¬

mization. It receives results from the local sites and performs any processing neces¬

sary to output the result. At each local site is a local database interface module that

MULTIBASE architecture (adapted from [Land 82]).

714 Chapter 15 Distributed Databases

Figure 15.16

is responsible for DML translation and local query optimization, as well as reformat¬

ting local results to global format and returning them to the global data manager.

The local database interface isolates the global data manager from the local site's

DBMS and could be designed to augment the processing capability of the host

DBMS.
The GDM is made up of the following subsystems, as shown in Figure 15.16:

transformer, optimizer, decomposer, filter and monitor. We briefly describe the ma¬

jor tasks of each of these subsystems.

• Transformer: The transformer converts users’ queries, expressed in DAPLEX

on the global schema, into a DAPLEX query on local and auxiliary schemas. In

this way the original query is modified to include mapping and conflict

resolution information.

• Optimizer, decomposer, filter: These subsystems work in a cyclic fashion to

define an overall strategy (optimizer), create DAPLEX single site queries

(decomposer), and determine single site queries that can’t be processed at the

sites indicated by the overall strategy (filter). Output of the filter is resubmitted

to the optimizer because if enough single site queries are unable to be executed

at the planned sites, it may be worthwhile reevaluating the overall strategy. This

cyclic processing caters to the DBMS difference that would not occur in a
homogeneous DBMS.

Components of GDM (adapted from [Land 82]).

15.12 Summary 715

• Monitor: The monitor, as its name indicates, monitors the execution of the plan

developed by the optimizer/decomposer/filter and communicated to the monitor

by the optimizer. The monitor sends the single site DAPLEX queries to the

corresponding LDIs. It also sends an internal query that may include reference

to the auxiliary database and operations to compensate for operations for local

database limitations. The monitor oversees the combination of local results and

formats the output as requested by the user. (This is response integration, called

internal DBMS in Multibase.)

The above components, plus the internal DBMS, are part of the GDM. There

may be as few as one GDM for the entire system.

As described above, MULTIBASE provides a uniform interface and access lan¬

guage to the user of the heterogeneous databases. The local schema are integrated

into a global schema and users see only this global schema. The system provides
global as well as local query optimization.

Summary

A distributed database system consists of a collection of data in which separate parts

of the collection are under the control of a separate DBMS running on an independent

computer system. These independent computer systems are interconnected in a net¬

work. Each system is aware of the existence of the other systems and they commu¬

nicate with each other via the network. Data can be replicated in a distributed system,

increasing its accessibility and reliability. Since a query can be evaluated in parallel

at different sites, the response can be faster in such a system.

The major issues involved in the DDBMS are that of data distribution, query

processing, concurrency control, and deadlock detection and recovery.

Network design issues involved in the interconnecting of the different sites of

the distributed system concern the choice of network topology, access method, and

transmission technology.
In a distributed system, the data is distributed at a number of sites. The distri¬

bution is based on the expected access pattern and costs. The data can be partitioned.

Such partitioning could be horizontal, vertical or both. Different DDBMSs allow

different types of fragmentation. The DDBMS usually provides one or more of the

following forms of transparencies, so that users need not concern themselves about

them: location, fragmentation, and replication. The system catalog could be treated

in a manner similar to ordinary data.

A query in a distributed system involves data from more than one site. An

optimal query evaluation strategy involves determining the sites at which intermedi¬

ate and final responses will be generated. The semijoin operation has been used to

reduce communication costs.
The consistency and atomicity of a transaction requires the implementation of

concurrency control and recovery techniques. Such techniques must take into account

failures not only at local sites, but failures in the communication network. Consis¬

tency requirements dictate that all copies of a data item be modified. Usually a two-

phase commit protocol is used.
Concurrency control schemes used in a centralized DBMS can be applied to

control the concurrent execution of transactions in the DDBMS environment, with

716 Chapter 15 Distributed Databases

appropriate modifications. Detection of deadlock requires the generation of global

wait-for graphs, either directly or indirectly. The deadlock prevention method based

on schemes for a centralized system may be used. The problems of security and

protection are similar to those of a centralized system.

Key Terms

distributed database

global transaction

subtransaction

local transaction

distributed database
management system

(DDBMS)

wide area network

long haul network

local area network (LAN)
star topology

mesh connection

bus network

ring topology

synchronous time-division
multiplexing (SDM)

time-division multiplexing
(TDM)

frequency division multiplexing
(FDM)

polling

token

reservation

ALOHA

carrier sense multiple access
with collision detection
(CSMA/CD)

Ethernet

star ring

bridge

gateway

network partitioning
replication

location transparency

fragmentation

disjoint fragmentation

fragmentation transparency

vertical fragmentation

horizontal fragmentation

mixed fragmentation

disjoint vertical fragmentation

disjoint horizontal
fragmentation

nondisjoint vertical
fragmentation

nondisjoint horizontal
fragmentation

replication transparency

update transparency

system catalog

birth_site

global catalog

locator catalog

caching the remote catalog

global naming

print name

systemwide name (SWN)

semijoin

reduction of relations
query graph

cyclic query

coordinator site

participating site

transaction manager

invariant

local wait-for graph (LWFG)

global wait-for graph (GWFG)

majority locking

primary site locking

distributed two-phase locking

distributed commit

blocking

two-phase commit

voting phase

decision phase

phantom deadlock

edge-chasing algorithms

probe

intercontroller edge

outgoing edge

probe computation

homogeneous system

heterogeneous system

local scheme

global scheme

materialization

conservative timestamp

transaction class

conflict analysis graph
master site

apprentice site

global data manager (GDM)

local database interface (LDI)
transformer

optimizer

decomposer

filter

monitor

15.1 Explain why the query processing techniques discussed in this chapter would need to be

modified for a distributed system running on a local area network. In your opinion, which of

the three costs, communication, I/O, or CPU, are likely to dominate in a local area network

environment? Justify your answer.

15.12 Summary 717

15.2 What are the advantages of horizontal fragmentation? How is query evaluation complicated

or simplified by horizontal fragmentation? Design an algorithm to perform the join of two

relations, R and S, both of which are horizontally fragmented. Account for the network to be

either wide area or local area. Create some arbitrary data for the relations and their

fragments. Distribute the fragments over a number of sites. Test your algorithm.

15.3 For exercise 2, modify your algorithm to use the semijoin technique.

15.4 Under what conditions is R \X S = S IX R?

15.5 How can the optimistic method presented in Chapter 12 be applied to concurrency control in

a DDBMS? Discuss the relative advantages and disadvantages of the conservative timestamp

and optimistic methods.

15.6 The validation phase of the optimistic method of a transaction may be checked against

already committed transactions—the “committed validation technique,” or the currently

active (but not committed) transactions—the “active validation technique.” Discuss the

relative merits of these validation techniques for the optimistic concurrency control scheme

for a DDBMS.

15.7 Using the library example discussed in Chapters 8 and 9, create a suitable distributed

database. Indicate how the queries in those chapters would be handled.

15.8 Suppose a single copy of data items A and B is stored at sites S, and S2, respectively.

Consider the schedule for transactions T, and T2 given in Figure P. Why is the schedule

serializable, even though two-phase locking is not used?

Figure P Schedule for Exercise 15.8.

site S(site S2

Time Transaction Transaction Transaction Transaction

t, Tisi T2S1 T|S2 T2S2

*2 Lockx(A) Lockx(B)
Read(A) Read(B)

u A := A -100 B := B -

t5 Write(A) Write(B)

^6 Unlock(A) Unlock! B)
Lockx(A) Lockx(B)

*8 Read(A) Read(B)
A : = A + 200 B := B + 100

t,o Write(A) Write(B)

til Unlock(A) Unlock(B)

15.9 Consider a token approach to locking. Any number of read tokens can exist for a data item,

but only one write token can exist, and that only if no read tokens are present. A transaction

manager (TM) at a site can grant a read or write lock to a transaction at that site if the TM

has a read or write token for the data item. Indicate the sequence of messages required

between sites to allow transaction T running at site S to obtain a write lock on data item A.

15.10 Consider the following scheme to detect deadlock in a distributed database system. Each site

maintains an LWFG with the addition of a node called Tex (see Figure Q). Tex is to depict

718 Chapter 15 Distributed Databases

Figure Q LWFG at site Sj.

the situation in which a transaction at the site is waiting for a data item already locked by a

transaction at a remote site. On detection of a cycle in the LWFG involving Tex, site Si sends

its LWFG to, say, site Sr containing the transaction that has locked the data item required

by transaction T| at site Sj. The site uses this information to extend its LWFG to detect a

global deadlock involving T3 at site Sj. If deadlock is found, appropriate corrective action is

taken. However, if Sj finds that there is a cycle involving a transaction in Sj but also

involving its own special node Tex with some site Sk, then Sj sends the extended wait-for

graph to Sk for detection of a global deadlock. Comment on the feasibility of this scheme to

detect global deadlocks. If the scheme does detect global deadlock, verify that such

deadlocks are not phantoms.

Bibliographic Notes

Distributed database systems have been the subject of extensive study since the middle 1970s.

A number of prototype systems were developed to explore the large number of problems that

such systems encounter. Notable among the prototypes are SDD-1: A System for Distributed

Databases, developed by Computer Corporation of America (Roth 80); System R,* developed

by IBM (Will 81); and Distributed Ingres, developed at the University of California, Berkeley

(Ston 77). MULTIBASE is presented in (Smit 81) and (Land 82).

The study of transactions management, including concurrency control, was influenced

greatly by the works of Bernstein et al. (Bern 79), Eswaran et al. (Eswa 76), Gray et al. (Gray

75), and Steams et al. (Stea 76). Excellent surveys of concurrency control are found in Bern¬

stein and Goodman (Bern 81b, Bern 82). Concurrency control has also been covered by text¬

books on distributed databases: Ceri and Pelgatti (Ceri 84) and Date (Date 83). Recent text¬

books devoted exclusively to concurrency control are Bernstein, Hadzilacos and Goodman

(Bern 87), and Papadimitriou (Papa 86).

Distributed query processing continues to be an extensive area of research. The papers by

Wong (Wong 77), Hevener and Yao (Heve 79), Apers et al. (Aper 83), Bernstein and Chiu

(Bern 81a) and Epstein and Stonebraker (Epst 80) set the direction of research. Bernstein and

Chiu (Bern 81a) present an analysis of semijoins and show how tree form queries can be fully

reduced using the semijoin, but semijoins are not adequate to fully reduce a cyclic query. Yu

and Chang (Yu 84) present a survey of distributed query processing, while Ceri and Pelgatti

(Ceri 84) give textbook coverage.

15.12 Summary 719

Data distribution and its effects on query processing is the subject of study in a number

of the works cited above. Specific problems with data distribution are studied by Ceri et al.

(Ceri 82, Ceri 83) and Navathe et al. (Nava 84).

Distributed deadlock detection is another area of active research. The survey papers by

Knapp (Knap 87) and Elmagarmid (Elma 86) show the pitfalls in a number of published

algorithms and give an excellent introduction to the subject. The proof of the edge-chasing

algorithm given in this chapter is found in (Chan 82).

Bibliography

(Abad 89) A. El Abaddi & Sam Toueng, “Maintaining Availability in Partitioned Replicated Databases,” ACM
Trans, on Database Systems, 14(2), June 1989, pp. 264-290.

(Agra 89) D. Agrawal and S. Sengupta, “Modular Synchronization in Multiversion Databases: Version Control
and Concurrency Control,” SIGMOD Record 18(2), June 1989, pp. 408-417.

(Aper 83) P. Apers, A. Hevner, & S. B. Yao, “Optimization Algorithms for Distributed Queries,” IEEE

Transactions on Software Engineering SE-9(1), January 1983, pp. 57-68.

(Bagr 89) R. Bagrodia, “Process Synchronization: Design and Performance Evaluation of Distributed
Algorithms,” IEEE Trans, on Software Engineering, 15(9), September 1989, pp. 1053-
1065.

(Bern 79) P. A. Bernstein, D. W. Shipman, & W. S. Wong, “Formal Aspects of Serializability in Database
Concurrency Control,” IEEE Transactions on Software Engineering SE-5(3), 1979, pp.
203-216.

(Bern 80) P. A. Bernstein, D. W. Shipman, & J. B.' Rothnie, “Concurrency Control in a System for Distributed
Databases (SDD-1),” ACM Transactions on Database Systems 5(1), January 1980, pp. 18-

51.

(Bern 81a) P. A. Bernstein & D. W. Chiu, “Using Semijoins to Solve Relational Queries,” JACM 28(1),

January 1981, pp. 25-40.

(Bern 81b) P. A. Bernstein & N. Goodman, “Concurrency Control in Distributed Database Systems,” ACM

Computing Surveys 13, 1981, pp. 185-221.

(Bern 82) P. A. Bernstein & N. Goodman, “A Sophisticate’s Introduction to Distributed Database Concurrency
Control,” Proceedings of the Eighth International Conference on Very Large Data Bases,

1982, pp. 62-76.

(Bern 87) P. A. Bernstein, V. Hadzilacos, & N. Goodman, Concurrency Control and Recovery in Database

Systems, Reading, MA: Addison-Wesley, 1987.

(Ceri 82) S. Ceri, M. Negri, & G. Pelgatti, “Horizontal Data Partitioning in Database Design,” Proceedings of
the ACM SIGMOD International Conference on Management of Data, Orlando, FL, 1982,

pp. 128-136.

(Ceri 83) S. Ceri, S. Navathe, & G. Widerhold, “Distribution Design of Logical Database Schemas,” IEEE

Transactions on Software Engineering SE-9(4), 1983, pp. 487-504.

(Ceri 84) S. Ceri & G. Pelgatti, Distributed Databases—Principles and Systems. New York: McGraw-Hill,

1984.

(Chan 82) K. M. Chandy & J. Misra, “A Distributed Algorithm for Detecting Resource Deadlocks in
Distributed Systems,” Proc. of the ACM Symposium on Principles of Distributed

Computing, Ottawa, Canada, 1982, pp. 157-164.

(Date 83) C. J. Date, An Introduction to Database Systems, vol. 2. Reading, MA: Addison-Wesley, 1983.

(Elma 86) A. K. Elmagarmid, “A Survey of Distributed Deadlock Detection Algorithms,” ACM SIGMOD

Record 15(3), September 1986, pp. 37-45.

(Epst 80) R. Epstein & M. R. Stonebraker, “Analysis of Distributed Database Processing Strategies,” Proc. of
the International Conf. on VLDB, 1980, pp. 92-100.

720 Chapter 15 Distributed Databases

(Eswa 76) K. P. Eswaran, J. N. Gray, R. A. Lorie, & I. L. Traiger, “The Notions of Consistency and
Predicate Locks in a Database System,” Communications of the ACM 19(11), November

1976, pp. 624-633.

(Gray 75) J. N. Gray, R. A. Lorie, G. R. Putzula, & I. L. Traiger, “Granularity of Locks and Degrees of
Consistency in a Shared Database,” IBM Research Report RJ1654, 1975.

(Gray 81) J. N. Gray, “The Transaction Concept: Virtues and Limitations,” Proceedings of the Seventh
International Conference on Very Large Databases, 1981, pp. 144-154.

(Heve 79) A. R. Hevener & S. B. Yao, “Query Processing in a Distributed Database System,” IEEE

Transactions on Software Engineering SE-5(3), May 1979, pp. 177-187.

(Knap 87) E. Knapp, “Deadlock Detection in Distributed Databases,” Computing Surveys 19(4), December
1987, pp. 303-328.

(Land 82) T. Landers & R. L. Rosenberg, “An Overview of Multibase,” in H. J. Schneider, ed. Distributed

Data Bases. New York, North Holland, 1982, pp. 153-188.

(Nava 84) S. Navathe, S. Ceri, G. Widerhold, & J. Dou, “Vertical Partitioning Algorithms for Database
Design,” ACM Transactions on Database Systems 9(4), December 1984, pp. 680-710.

(Papa 85) C. H. Papadimitriou & M. Yannakakis, “The Complexity of Reliable Concurrency Control,”
Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on the Principles of
Database Systems, 1985, pp. 230-233.

(Papa 86) C. H. Papadimitriou, The Theory of Concurrency Control. Rockville, MD: Computer Science Press,
1986.

(Roth 80) J. B. Rothnie, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C. Reeve, D. W.
Shipman, & E. Wong, “Introduction to a System for Distributed Databases (SDD-1),”
ACM Transactions on Database Systems 5, January 1980, pp. 1-17.

(Ship 81) D. W. Shipman, “The Functional Data Model and the Data Language DAPLEX,” ACM Transactions

on Database Systems 6(1), March 1981, pp. 140-173.

(Smit 81) J. M. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers, K. W. T. Lin, & E. Wong,
“Multibase-Integrating Heterogeneous Distributed Database Systems,” NCC Conf. Proc. 50,
May 1981, pp. 487-499.

(Stal 87) W. Stalling, Local Networks, An Introduction, 2nd ed. New York: Macmillan, 1987.

(Ston 77) M. Stonebraker & E. Neuhold, “A Distributed Database Version of INGRES,” 1977 Berkeley
Workshop on Distributed Data Management and Computer Networks, University of
California, Berkeley, 1977, pp. 19-36.

(Will 81) R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck, P. Selinger, A.
Walker, P. Wilms, & R. Yost, “R*: An Overview of the Architecture,” IBM Technical
Report, RJ 3325, San Jose, CA, 1981.

(Wong 77) E. Wong, “Retrieving Dispersed Data from SDD-1: A System for Distributed Databases.” Proc. of
the 2nd Berkeley Workshop on Distributed Data Management and Computer Networks,
Berkeley, CA, 1977, pp. 217-235.

(Yu 84) C. T. Yu & C. C. Chang, “Distributed Query Processing,” ACM Computing Surveys 16(4), December
1984, pp. 399-433.

Contents

16.1

16.2

16.3

16.4

16.5

16.6

What Is a Knowledge Base System?

Knowledge Base and Database Systems: A
Comparison

Chapter

Knowledge and Its Representation

16.3.1 Semantic Networks

16.3.2 First-Order Logic (Predicate Logic)

16.3.3 Frames

16.3.4 Rule-Based Systems (Production Systems)

16.3.5 Procedural Representation

Deductive Databases

Expert Systems

Expert Database Systems: Integration off
Expert Systems in Database Applications

16.7 Object Approach

Object-Oriented Systems

16.7.1 Concept of the Object

16.7.2 Names and Identity

16.7.3 Database and Identity

16.7.4 Implementation of Object Identifiers

16.7.5 Object Class and Instantiation

16.7.6 Inheritance

Current
Topics in
Database
Research

16.8 Object Databases

Extensions to Existing Systems

OODBMS Approach

16.8.1 Pros and Cons of the Object Approach in Databases

721

722 Chapter 16 Current Topics in Database Research

In this chapter we present some highlights of the recent advances in database sys¬

tems. We discuss knowledge base systems, deductive or logic databases, expert sys¬

tems, and the object-oriented approach.

What Is a Knowledge Base System?

Knowledge is an abstract entity that can be characterized according to its use. We

consider knowledge to be a justifiable belief and we use the pragmatic rather than

the philosophical approach in a knowledge base system.
Using the analogy of a DBMS, we can define a knowledge base management

system (KBMS) as a computer system used to manage and manipulate shared knowl¬

edge. A knowledge base system’s manipulation facility includes a reasoning1 facil¬

ity, usually including aspects of one or more of the following forms of reasoning:

deductive, inductive, or abductive. Deductive reasoning implies that a new fact can

be inferred from a given set of facts or knowledge using known rules of inference.

For instance, a given proposition can be found to be true or false in light of existing

knowledge in the form of other propositions believed to be either true or false. In¬

ductive reasoning is used to prove something by first proving a base fact and then

the increment step; having proved these, we can prove a generalized fact. Abductive

reasoning is used in generating a hypothesis to explain observations. Like deductive

reasoning, it points to possible inferences from related concepts; however, unlike

deductive reasoning, the number of inferences could be more than one. The likeli¬

hood of knowing which of these inferences corresponds to the current state of the

system can be gleaned from the explanations generated by the system. These expla¬

nations can facilitate choosing among these alternatives and arriving at the final con¬
clusion.

In addition to the reasoning facility, a knowledge base system may incorporate

an explanation facility so that the user can verify whether the reasoning used by the

system is consistent and complete. The reasoning facility also offers a form of tutor¬

ing to the uninitiated user. The so-called expert systems and the associated expert

system generation facilities are one form of knowledge base systems that have

emerged from research labs and are being marketed commercially. Since a KBMS

includes reasoning capacity, there is a clear benefit in incorporating this reasoning

power in database application programs in languages such as COBOL and Pascal.

Most knowledge base systems are still in the research stage. The first generation

of commercial KBMSs are just beginning to emerge and integration of a KBMS with

a DBMS is a current research problem. However, some headway has been made in
the integration of expert systems in day-to-day database applications.

'We can define reasoning informally as the extraction of new knowledge from existing knowledge

Knowledge Base and Database Systems: A Comparison 723

16.2 Knowledge Base and Database Systems:
A Comparison

There is no consensus on the difference between a knowledge base system and a

database system. In a DBMS, the starting point is a data model to represent the data

and the interrelationships between them; similarly, the starting point of a KBMS is a

knowledge representation scheme. The requirements for any knowledge represen¬

tation scheme are adequacy, completeness, consistency, soundness, and validity. The

scheme should provide some mechanism to organize knowledge in appropriate hier¬

archies or categories, thus allowing easy access to associated concepts. In addition,

since knowledge can be expressed as rules and exceptions to rules, exception-han¬

dling features must be present in the knowledge representation scheme. Further¬

more, the scheme should have some means of ensuring knowledge independence.

Here, independence signifies that the knowledge stored in the system must be insu¬

lated from changes in usage in its physical or logical structure. This concept is sim¬

ilar to the data independence concept used in a DBMS. To date, little headway has

been made in this aspect of a KBMS.

A KBMS is developed to solve problem for a finite domain or portion of the

real world. In developing such a system, the designer selects significant objects and

relationships among these objects. In addition to this domain-specific knowledge,

general knowledge such as concepts of up, down, far, near, cold, hot, on top of,

and besides must be incorporated in the KBMS. Another type of knowledge, which

we call common sense, has yet to be successfully incorporated in the KBMS.

The DBMS and KBMS have similar architectures; both contain a component to

model the information being managed by the system and have a subsystem to respond

to queries. Both systems are used to model or represent a portion of the real world

of interest to the application. A database system, in addition to storing facts in the

form of data, has limited capability of establishing associations between these data.

These associations could be preestablished as in the case of the network and hierar¬

chical models, or established using common values of shared domains as in the re¬

lational model. A knowledge base system exhibits similar associative capability.

However, this capability of establishing associations between data and thus a means

of interpreting the information contained is at a much higher level in a knowledge

base system, ideally at the level of a knowledgeable human agent.2

One difference between the DBMS and KBMS that has been proposed is that

the knowledge base system handles a rather small amount of knowledge, whereas a

DBMS efficiently (as measured by response performance) handles large amounts of

shared data. However, this distinction is fallacious since the amount of knowledge

has no known boundaries and what this says is that existing knowledge base systems

handle a very small amount of knowledge. This does not mean that at some future

date we couldn’t develop knowledge base systems to efficiently handle much larger

amounts of shared knowledge.

2The classical Turing test measures the performance of an intelligent system against a human being, the latter being the only

measure we have for intelligent behavior.

724 Chapter 16 Current Topics in Database Research

In a knowledge base system, the emphasis is placed on a robust knowledge

representation scheme and extensive reasoning capability. Robust signifies that the

scheme is rich in expressive power and at the same time it is efficient. In a DBMS,

emphasis is on efficient access and management of the data that model a portion of

the real world. A knowledge base system is concerned with the meaning of infor¬

mation, whereas a DBMS is interested in the information contained in the data.

However, these distinctions are not absolute.
For our purposes, we can adopt the following informal definition of a KBMS.

The important point in this definition is that we are concerned with what the system

does rather than how it is done.

Definition: A knowledge base management system is a computer system that manages the

knowledge in a given domain or field of interest and exhibits reasoning power to

the level of a human expert in this domain.

A KBMS, in addition, provides the user with an integrated language, which

serves the purpose of the traditional DML of the existing DBMS and has the power

of a high-level application language. A database can be viewed as a very basic

knowledge base system insofar as it manages facts. It has been recognized that there

should be an integration of the DBMS technology with the reasoning aspect in the

development of shared knowledge bases. Database technology has already addressed

the problems of improving system performance, concurrent access, distribution, and

friendly interface; these features are equally pertinent in a KBMS. There will be a

continuing need for current DBMSs and their functionalities coexisting with an inte¬

grated KBMS. However, the reasoning power of a KBMS can improve the ease of
retrieval of pertinent information from a DBMS.

Knowledge and Its Representation

To solve a problem (i.e., carry out an intelligent activity) we need three compo¬
nents:3

• A model or a symbolic representation of the concepts of the domain of interest.

• A set of basic operations on this symbolic representation to generate one or
more solutions to the problem.

• An evaluation method to select a solution from the set of possible candidates.

The representation scheme must be able to register the significant characteristics

of the problem domain. These features of the problem domain must be easily acces¬
sible for appropriate manipulations.

3A. Newell & H. A. Simon, “Computer Science as Empirical Inquiry: Symbols and Search,” ACM 10th Turing Lecture-
1975, CACM 19(3), March 1976, pp. 113-126.

16.3 Knowledge and Its Representation 725

A natural language is an example of a symbolic representation scheme. Using

this scheme, knowledge has been represented in folklore and more recently using the

written word and recorded speech and image. These forms of representing knowledge

have been developed over thousands of years. Natural language has very high ex¬

pressive power. However, this form of representation, though suitable for humans,

is either inappropriate or requires an enormous amount of resources for use in a

computer-based system.

A knowledge base system contains knowledge about a particular domain. In

addition, it contains a certain amount of general knowledge. The latter includes the

pertinent world knowledge applicable to the domain and some degree of so-called

commonsense knowledge. For instance, a knowledge base system containing infor¬

mation about diseases and diagnoses must have knowledge of the different units of

measurements of mass, length, temperature, concepts of nearness, normal, higher,

lower, faster, slower, and so on.

Just as beauty is in the eye of the beholder, meaning is not contained in the

message, but is constructed around it by the recipient. For example, if we are pre¬

sented with the statement “Jumbo is an elephant,” we conjure up a picture of an

elephant; we know that it is large, with a trunk and tusks and huge flapping ears. In

order to make this addition to the simple statement, we recalled this common knowl¬

edge that we acquired during our life. If we are then presented with the statement

“Jumbo lives in a teacup,” we will think either (a) the statements are from a fairy

tale or (b) the statements are inconsistent with what we know about elephants and

cups in the real world. We know from experience that elephants are large animals, a

normal teacup is too small to hold an elephant, and normally we don’t put elephants

in teacups!
One of the requirements of any knowledge representation scheme is that it must

allow the associated knowledge about a concept or statement to be easily retrieved

and employed to enable the knowledge base system to understand and reason. The

concept of using association in retrieving information is a very old one; it can be

traced back to the time of Aristotle. The use of association in database applications

in the form of associative or intelligent memories has also been investigated. How¬

ever, the use of associative memory4 to model human memories for intelligent com¬

puter systems is more recent. The efficient access to associated knowledge in a par¬

ticular situation need not be in a form similar to human memory; nevertheless, the

result should be useful so that related concepts, associated both explicitly and implic¬

itly, can be employed in inferences.
We not only know something, we know that we know it and have developed a

certain degree of confidence in using the knowledge correctly (expertise). Our ability

to read a map, our sense of orientation, and knowledge of these abilities give us the

confidence to drive to an unknown city and find an address. Similarly, the knowledge

base system must have knowledge about the knowledge representation scheme being

used and how it can be manipulated in the reasoning process. Such knowledge, called

metaknowledge, can be compared to the metadata used in a database system.

The knowledge base system must be able to deal with incomplete knowledge,

4An associative memory system has logic associated with each word or each bit of every word. This logic is used to simulta

neously examine the contents of the entire memory and matching words are flagged.

726 Chapter 16 Current Topics in Database Research

as well as dynamically acquire new knowledge. These points are also applicable to

DBMSs.
A knowledge representation scheme consists of two parts: data structures to

represent the domain of the problem, and procedures to interpret the information

contained therein to enable a knowledge base system to exhibit the behavior of a

knowledgeable human expert. The knowledge to be maintained can be one of the

following: objects, events, know-how, precedence and cause-and-effect relationships,

and metaknowledge. Knowledge about objects can be considered factual knowledge

such as: an elephant is a mammal, an elephant has a trunk and tusks, a bird has

wings, a car has a steering wheel and pedals. Examples of knowledge about events

are: John gave a book to Mary, Canada geese come back in spring. Know-how

knowledge consists of the knowledge involved in doing something. For instance,

driving a car involves using the accelerator pedal to activate the choke; turning the

ignition key to engage the starter to start the engine; using the transmission and

pedals to put the car in motion; and using the steering wheel to control the trajectory

of this motion. Precedence knowledge in this case involves the correct ordering of

the various operations. Animals, including humans, use know-how knowledge to

perform repetitive operations. Walking, running, flying, or riding a bike require a

considerable amount of computing; however, having learned these actions, animals

do them without effort. Imparting the know-how knowledge in a knowledge base,

and to robots, is not a trivial task. Metaknowledge, as discussed above, is knowledge

about knowledge.
In the following sections we look at these knowledge representation schemes:

semantic networks, first-order logic (predicate logic), frames, rule-based systems

(production systems), and procedural representation.

16.3.1 Semantic Networks

The idea of a semantic network was introduced in the late 1960s to represent the

semantics of English words and phrases as perceived by humans. The term semantic

network refers not to one concept but a set of related concepts, extensions, and

modifications. All these networks share a node-based data structure, the nodes being

connected by arcs. Each arc denotes a relationship between the nodes and has a

semantic or meaning associated with it, the common relationships being IS—A, HAS,

A-KIND-OF (AKO), and so on. The IS-A relationship denotes a member-to-class

relationship (Jumbo is a elephant); the AKO relationship denotes a class-to-superclass

relationship (an elephant is a kind of mammal). An associated set of inference pro¬
cedures uses these structures in the reasoning process.

A semantic network (see Figure 16.1) can thus be classified as a system wherein

concepts or objects are hierarchically classified either as trees, lattices, or graphs. In

a tree hierarchy, each node has a single immediate parent node. A hierarchy with

multiple higher order nodes can be represented by a lattice. The nodes of this net¬

work are the objects and the arcs represent the relationships between these objects.

One such relationship is to provide inheritance of properties from one object to an¬

other. Such a relationship is usually called an IS-A link. Concepts such as John is a

male, Jumbo is an elephant. Rags is a dog, a dog is a kind of mammal, a mammal

is a kind of living organism, are examples of IS^\ and AKO relationships. Here the

16.3 Knowledge and Its Representation 727

Figure 16.1 A semantic network.

AKO link is used to describe a generalization relation between the concepts mammal

and living organism, mammal being a subconcept of living organism. The 7S_A link

is used to identify an instance of a class. The /S_A and AKO links also represent a

specialization relationship or a classification relationship in the reverse direction.

The AKO and /S_A links are associated with the property inheritance mecha¬

nism. Any property of a higher level node is inherited by all nodes connected to it

by such a link. The property that all living organisms propagate is inherited by mam¬

mals, other animals, and plants. However, we may need to distinguish the properties

of Indian elephants from those of African elephants; among Indian elephants, only

the males have tusks. One method of showing these distinctions is illustrated in

Figure 16.2. Furthermore, to represent exceptions, some mechanism must be used to

allow cancellation of such inheritances. Thus, if Jumbo has lost one of its tusks, then

it is an elephant with only one tusk. This is represented by canceling the inheritance

of the general elephant properties for the node Jumbo and assigning its specific prop¬

erties. Figure 16.2 also shows a mechanism for overriding inherited properties:

Jumbo is an Asiatic male elephant with a trunk, four legs, and one tusk; the inherited

property, two tusks, is canceled and explicitly overridden by a specific property,

namely, one tusk.

The inheritance mechanism allows a more compact knowledge base since com¬

mon properties are stored only once. The exception-handling features allow us to

override some of these inherited properties.

728 Chapter 16 Current Topics in Database Research

Figure 16.2 Inheriting and overriding properties.

The AKO link can also be used to provide specialization or a classification or

taxonomy in the reverse direction. In Figure 16.1 the AKO link provides a relation¬

ship between two generic nodes and the IS—A link provides it between a generic and

an individual node. Thus, the generic nodes, human and mammal, are connected by

an AKO arc to show the relationship that the human is a type of mammal. The

relationship between a node representing an individual, Jumbo, and the generic node,

elephant, is provided by an IS-A arc. In Figure 16.2, the node Jumbo inherits the

properties of the elephant, Indian, and male nodes.

The semantics of an action, for instance, “John gave Mary a book yesterday,”

can be represented as shown in Figure 16.3.

In addition to assigning the meaning to the arcs in the network, the use of a

semantic network for knowledge representation requires that procedures using the

semantic network correctly interpret the meaning of these arcs. The assigning of

meaning to the arcs is ad hoc and a wide variation of network-based schemes have

been proposed, along with procedures to interpret them. In spite of a lack of stan-

Figure 16.3 Assigning a meaning to an arc.

16.3 Knowledge and Its Representation 729

dardization, semantic networks are popular knowledge representation schemes. Their

structure resembles the association perceived to be used by humans.

1 6.3.2 First-Order Logic (Predicate Logic)

A proposition is a declarative (or assertive) sentence, e.g., “It is snowing,” “Rags

is a dog.” Declarative sentences are distinguished from interrogative and imperative

sentences. An interrogative sentence asks a question; an imperative sentence is a
directive or command.

Propositional logic is concerned with establishing the validity of a proposition

in light of a given set of propositions. It establishes whether the proposition is true

or false, relative to the given set. (The propositions in the set could be either true or

false. It is, however, not in the realm of logic to establish the truthfulness of each

statement in the given set of propositions.) Simple propositions can be combined

using the sentential connectives and, or, not, implies, equivalent, and so on. An

example of a combined proposition, which is always true, is the following: “If ele¬

phants are mammals, and if Jumbo is an elephant, then Jumbo is a mammal.”

Propositional calculus is, in effect, computing with propositions. Given a set

of propositions or axioms known to be true (or false), propositional calculus uses

rules of inference to determine whether a given proposition is true or false. Let us

use X, Y, Z, etc. to denote propositions; for instance, X may be the proposition

“Jumbo is an elephant.” The first rule of inference, called modus ponens, allows

us to infer that proposition Y, “Jumbo is a mammal,” is true under the condition

that proposition X is true, and hence X logically implies Y (written as X —» Y).

Thus, given that “Jumbo is an elephant” (X) is true, and “Jumbo is an elephant”

implies “Jumbo is a mammal,” which is also true, then “Jumbo is a mammal” is

true. That is, if X and X —> Y are both true, Y is also true. In the above example Y

is the proposition “Jumbo is a mammal”.

The second rule of inference is the chain rule, which allows us to infer a new

implication from known implications; thus, if X —» Y and Y —» Z, then X —> Z.

Mathematical logic, just like any other formal science, uses a language to ex¬

press statements or formulas. The semantics of these statements are well defined.

Mathematical logic also uses a theory of proofs so that statements can be proved to

be correct or false. One method of proving the truthfulness or falsity of a proposition

is called reductio ad absurdum. In this method the known propositions or axioms

are appended with the negation of the proposition to be proved. If the resulting set

is inconsistent, the proposition cannot be false. A major problem with this approach

is that as the number of propositions increases, the number of combinations to be

investigated increases in an exponential manner and the computation time becomes

astronomical.
Propositions that specify a property consist of an expression that names an in¬

dividual object and an expression, called the predicate, that stands for the property

that the individual object possesses. We use the lowercase symbols from the end of

the alphabet to denote variables, those from the beginning of the alphabet to denote

constants, and uppercase letters to denote predicates. Thus P(x), where x is the ar¬

gument, is a one-place or monadic predicate. DBMS(x) and COMPANY(y) are ex-

730 Chapter 16 Current Topics in Database Research

amples of monadic predicates; the variables x and y are replaceable by constants (or

names of individual objects), like DBMS(ISS).
A predicate is a statement about an object or a relationship between two or more

objects. Thus, in the propositions “Jumbo is an elephant,” “an elephant is a mam¬

mal,” “an elephant is bigger than a dog,” “is an elephant,” “is a mammal,” “is

bigger than” are predicates. The last predicate is applied to two arguments, whereas

the first two have a single argument.
A one-place predicate, when applied to an object, gives a statement that is either

true or false and thus divides or sorts the object into two disjoint sets or sorts. The

predicate “is an elephant,” when applied to the object Jumbo, forms a true state¬

ment: “Jumbo is an elephant.” However, when it is applied to Robin, a bird, it

forms “Robin is an elephant,” a false statement.
Predicates can be combined using the operators A (and), V (or), “1 (negation),

—» (implication), or = (equivalence). Other interesting formulas are formed with the

use of quantifiers: universal (or for all; denoted by the symbol V) and existential (or

some; denoted by the symbol 3). To express the term “for all objects” a certain

property holds, we use the quantifier V- T° express the term “there exists some

object” with a certain property we use the quantifier 3. Thus, (\/*)P(x) and (3x)P(x)

are used to specify that “for all x, x is P” (or simply that “everything is P”) and

“for some x, x is P” (or simply that “something is P”). Quantifiers are used to

limit the range of values of a variable inside a predicate. The symbol V is used to

denote all values of the variable for which the predicate is valid. The symbol 3

denotes the existence of some value of the variable for which the predicate is true.

Well-formed formulas combine predicates with these operators. Parentheses can be

used to resolve operation precedence ambiguities.

The only other primitive that we need to define is a function. A function, like

a predicate, takes arguments and specifies some object; for example, the monadic

function mother_of(x) specifies the individual who is the mother of the individual x.

A function has a concept, similar to the one used in programming languages; i.e., a

function has a number of arguments and returns a value that could be true, false, or

have some other value related to the arguments. Note the difference between a pred¬

icate and a function. A function specifies an object that has some specified relation¬

ship (or property) to the argument objects, while a predicate specifies a property that
the argument objects possess.

First-order logic can be used as a programming language. It consists of con¬

stants, variables, predicates, function symbols, logical connectives, and quantifiers.

Traditionally, lowercase letters from the beginning of the alphabets are used to de¬

note constants and lowercase letters from the end of the alphabets are used to denote

variables. In first-order logic, we do not allow predicates to be used as variables.

The concept of equality is defined as follows: two objects X and Y are considered
equal, i.e., X = Y, if for all predicates P, P(X) = P(Y).

Predicate calculus is obtained by applying the rules of propositional calculus

to predicates, using quantification, and adding to these the inference rules for quan¬

tifiers. If we further add the concepts of functions and equality, the result is a version
of first-order logic or first-order predicate calculus.

A function is defined by a function symbol followed by its arguments: f(a),

gcm(a,b), lcd(12,16), dad(Roy) fraction (7,8). The function lcd(12,16) is equal to 4,

the function dad(Roy) has the value Frank, Roy’s dad, and the function fraction(7,8)
has the value 7/8.

16.3 Knowledge and Its Representation 731

A relation name can also be denoted by a predicate symbol. The relation PAR-

ENT(X,Y) is a two-place predicate symbol and indicates that Y is a parent of X.

Some tuples from this relation are shown in Figure 16.4. Note that the relation PAR-

ENT(X,Y) is a form of a rule that states that Y is the parent of X.

First-order logic is complete since every true statement can be proven; in addi¬

tion it is sound, since no false statement can be proven. The response to a query in

a system using logic can be reduced to that of theorem proving. Some examples of
wff in first-order logic are given in Example 16.1.

Example 16.1 The following are wffs:

brotherfRoy, Jerry)

brother(Myma,Roy)

brotherf Jerry,Roy)

parent(y,x) A parent(z,x)

Vx(Vy (parent(x,y) A female(y) —» mother(x,y)) ■

The last example above indicates logic to state a rule. The rule is that for all

(individuals) x and for all (individuals) y, if y is a parent of x and if y is a female,

than y is a mother of x. The term “for all and for all y” can be abbreviated as “for

all x and y.”

A Horn clause is a wff of the form:

A V —'B| V —iB2 V “>53 V • • ■ V ~lBn

which can be written as:

B, A B2 A B3 A . . . A Bn-» A

where A and BjS are nonnegated atomic formulas.

Figure 16.4 PARENT relation.

PARENT

X Y

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

732 Chapter 16 Current Topics in Database Research

In a Horn clause there is only one conclusion. PROLOG (PROgramming in

LOGic) is a programming language based on the Horn clause. The human reasoning

process is generally considered to be similar to the scheme used in logic. Logic

results in a precise and flexible knowledge representation scheme that is easy to

formulate and understand. The disadvantages of using logic are the lack of indexing

or associative capability, the handling of dynamic and incomplete knowledge, and

the intractability of computations involved in logic-based deductive inferences. In a

logic-based knowledge representation, the processing is separated from the knowl¬

edge representation. The processing part, which determines the utility of the system,

is usually implemented by theorem-proving techniques; however, this approach may

not be useful for all applications. Another drawback of logic-based representation

schemes is that heuristic or rule-of-thumb type knowledge may not be expressed in

logic. In addition, the following assumptions have to be made in this processing (Gall

84), (Reit 84):

• Closed world assumption (CWA), which states that facts not known to be true

are false.

• Unique name assumption (UNA), which states that objects are uniquely

identified.

• Domain closure assumption (DCA), which states that no other objects or

instances of objects other than the known ones exist.

16.3.3 Frames

The frame is another knowledge representation scheme used to represent the knowl¬

edge from a limited domain of stereotyped concepts or events. The concept of frames

evolved from observations gleaned by psychologists as to the method humans use to

interpret new situations. When confronted with an unknown object from a category

of objects already experienced, we expect certain similarities and accept certain dif¬

ferences. We know how to handle these differences. We know what to expect and

what to do if these expectations don’t materialize. Thus, when we drive to a new

city, we expect to see parks, buildings, streets, street signs. We know the usual

locations of street signs and the correspondence between a street and a sign when a

number of signs are posted on the same signposts. We also know what to do if a
sign is missing at an intersection.

A frame (see Figure 16.5), is a data structure representing the collection of the

expected and/or predicted description of a stereotype object, action, or event. Each

important feature of the object is held in a slot. An optional procedure can be at¬

tached to a slot to introduce procedural information or specify consistency con¬

straints. The frame also contains the object’s relationship to other objects, these being

represented by frames as well. The latter feature gives a frame a semantic network¬

like property. The description of the object includes a number of important features
of the object and the relationships between other descriptors.

In addition to the predicted description of the various features of the object being

represented, the frame may contain information such as the level of confidence as¬

signed to the descriptor, the default values, alternate values (or their range) for de¬

scriptors, anci variations in the descriptors that can be associated with the frame. The

descriptors or slots can allow the inheritance of properties from a related frame. In

16.3 Knowledge and Its Representation 733

Figure 16.5 Frames

IS A

t

Slot 1
value 1

Slot 2
value 2

Slot n
value n

t

Procedures 1

Procedures 2

Procedures n

s lot a Procedures a
value a

Slot b Procedures b
value b

I
l
1
1
1

I
l
I
I
I

Slot x Procedures x
value x

Slot z Procedures z
value z

IS_A

Figure 16.6, the frame Bungalow is a specialization of the frame Building and inher¬

its from Building descriptors such as walls, doors, windows, roof. The slot or de¬

scriptor itself can be a frame. Thus, the descriptor window can have descriptors of

its own, for example, size and type.
In addition, descriptors could have appropriate reasoning or inferencing proce¬

dures attached. These procedures are triggered or executed whenever the descriptors

are filled in, modified, or matched to glean precompiled knowledge.

Frames have been used extensively to represent visual knowledge and knowl¬

edge about natural languages.

16.3.4 Rule-Based Systems (Production Systems)

The basic idea in production systems is the coupling of a condition with an appro¬

priate action. Each such condition-action pair is called a rule, production rule, or

simply a production. An example of a production is given below:

If condition then action

The condition part of a production expresses the conditions under which the rule

is valid; the appropriate action to be taken is given by the action part. The action

part of the rule changes the state of the system and can introduce new facts. The

condition part of the rule is known as an antecedent and the action part, the conse¬

quent. An example of a production rule for the game of hockey, involving a team

trailing by one goal in the ultimate minute of the game, can be expressed as a pro¬

duction rule as follows:

If trailing by one goal and

remaining time-to-play in game is less than one minute and

play is in opponent’s zone

then replace goalie by forward.

734 Chapter 16 Current Topics in Database Research

Figure 16.6 Frame representation of different types of buildings.

Building

Slot 1
type

Slot 2
floors

Slot 3
wall type

Slot 4
roof type

Slot 5
window type

Slot 6
door type

t
IS A

Highrise Mall Bungalow

Slot 1
office tower

Slot 2
55 floors

Slot 1
shopping mall

Slot 2
2 floors

.

Slot 1
cape cod

Slot 2
1 1/2 floors

Slot 3
glass wall

Slot 3
cement block

Slot 3
brick veneer

Slot 4
flat roof

Slot 4
flat roof

Slot 4
shingle roof

Slot 5
glass wall

Slot 5
central atrium

Slot 5
double-clad

Slot 6
revolving

Slot 6
100 stores

Slot 6
cedar door

A production-based system consists of a set of production rules, a data structure

that models the system s current state, and a control subsystem or interpreter that

interprets the current state and controls its activity by initiating appropriate action. A

rule is said to be enabled or triggered when the condition part of the rule is satisfied

by the current state of the system. An enabled rule is said to be fired if the action

part of a rule is executed. If the system status is such that more than one rule is

triggered, the interpreter may be required to fire one or more of these simultaneously

enabled rules; this is referred to as a conflict resolution. The conflict resolution can

be enacted using its own set of productions. It uses criteria such as priority or rank¬

ing, prior selection, arbitrary or random choice, or doing all actions in parallel. The

order in which the conditions are examined can be determined a priori or could be

adjusted dynamically. The action part can be a single action or a set of procedures

that will change the status of the system. The latter change can include disabling a
subset of die existing productions and enabling other productions.

16.3 Knowledge and Its Representation 735

An example of a rule-based system is given below. This system examines the

causes and the corrective actions to be performed after failing to start a car. The

execution of each action will modify the state of the starting system under consider¬

ation and if there is more than one problem, all the corrective actions will have to
be taken.

if starter cranks the engine very slowly

then problem may one or more of: extreme cold

temperature, battery, cables, connections, voltage

regulator, alternator; use jumper cable to start

if starter does not crank but solenoid operates

then check cables and tighten and clean terminals and

check battery voltage

if problem is low battery voltage

then problem may be battery: check specific gravity and

replace if not acceptable;

problem may be loose, worn, or broken alternator

belt: do a visual inspection and if belt is okay,

tighten belt, otherwise replace it;

problem may be cables: visual inspection, clean

and tighten connections, and replace broken

connectors or cables;

problem may be voltage regulator: check and

replace;

problem may be alternator: check and repair or

replace alternator;

problem may be shorts in electrical system: locate

and correct

if problem loose or worn alternator belt

then tighten or replace alternator belt

if problem is battery

then check specific gravity and if acceptable charge

otherwise replace battery

if problem is voltage regulator

then replace voltage regulator

if problem is alternator

then repair or replace alternator

if battery, cables, and connections are good, solenoid

operates, but starter does not crank or cranks

slowly

then replace the starter

if battery, cables, and connections are good but solenoid

does not click
then check ignition switch to solenoid circuit and

correct malfunctions

//battery, cables, connections, and ignition switch to

solenoid circuit are good but solenoid does not

click

then replace solenoid

736 Chapter 16 Current Topics in Database Research

if starter spins but does not crank the engine

then replace starter
if starter cranks the engine, smell of gas in the exhaust,

but the engine does not fire
then check and dry ignition circuit and replace faulty

parts

if starter cranks the engine but engine does not fire and no

smell of gas
then check and correct problems with fuel lines, fuel

pump, fuel filter, carburetor, fill tank

Since the action part of a rule can modify the state of the system, additional

rules may have to be fired. There are two methods of matching rules to the current

state of a system: forward chaining and backward chaining. In forward chaining,

the initial set of facts are used to determine the rules that apply. If more than one

rule applies, one of these is chosen. The search proceeds by firing this rule and

arriving at a new set of facts. This procedure is repeated until a solution is reached.

In backward chaining, all rules that have to be fired are first determined for the

desired solution. These rules are then fired sequentially in the forward direction. We
discuss this further in Section 16.5.

In a larger system, the production rules limit the interaction between rules and

lead to inefficiencies. These inefficiencies become evident when a number of produc¬

tion rules have to be fired, but can only be executed one at a time. Each such firing

is preceded by an interpretation of the current state of the system against the produc¬

tion rules. On average, half of these production rules have to be tested before each
firing.

One approach used in a system with a very large set of production rules is to

organize the condition part of the rules in a partitioned hierarchy or structured tax¬

onomy. Here, taxonomy implies that the condition can be partitioned into disjoint

sets and the condition in each such disjoint set can be organized hierarchically. Fig¬

ure 16.7 represents the rules corresponding to the car starter system above, structured

in a disjoint hierarchy. However, it may not be possible to do this in all applications.

A production system is a natural way of imparting some forms of expert knowl¬

edge in a modular and uniform way. Each production rule represents an independent

slice of knowledge and how to use it. A rule can be added, changed, or deleted
without affecting other production rules.

16.3.5 Procedural Representation

In the procedural representation method, the interpretation of so-called declarative

knowledge is encapsulated in specialized procedures. Each such procedure processes

a data structure representing certain semantics in the declarative data. The rationale

is that what humans know can best be described as know-how knowledge. Such

know-how knowledge is difficult to express in descriptive form. For example, knowl¬

edge that the engine is struggling or turning very slowly when being started is relative

to what we already know as being its normal turning speed during starting. The

heuristics as to what to do when confronted with such a situation can be built into

16.4 Deductive Databases 737

Figure 16.7 Hierarchically structured rules.

rules but could be expressed elegantly when built into procedures. The emphasis is

on combining the data structures in these procedures along with the know-how of

using the knowledge represented in these data structures. Instead of using irrelevant

knowledge in the form of superfluous rules, the procedural representation uses spe¬

cific knowledge for the problem at hand.

This approach, though not necessarily sound or complete, is pragmatic. It uses

specialized procedures to limit the amount of processing involved in answering a

query. The procedures, being ad hoc, have built-in heuristics to allow them to suit¬

ably direct the reasoning process. The disadvantage here is the complexity of the

procedures and their interactions. Furthermore, there is an inherent difficulty in un¬

derstanding, modifying, or augmenting the knowledge represented by these proce¬

dures.

16.4 Deductive Databases

There is a growing interest in the use of logic as a conceptual framework for database

concepts. Mathematical logic can be used not only to formalize database concepts,

but also to deduce facts implied by the facts stored in the database.
A deductive database is a marriage of a relational database system and logic

programming. The term deductive highlights the fact that the system is able to make

deductions from facts stored in the database using rules stored in the database. The

two parts of the system are the extensional database (EDB), the set of facts in the

form of the relations in the database, and the intensional database (IDB), the data¬

base derived by the set of rules imparting the deductive capability to the overall

system. The relation gives explicit information; the rules elicit implicit information

from this explicit information.

738 Chapter 16 Current Topics in Database Research

Deductive databases are also referred to as logic databases, deductive relational

databases, and virtual relational databases. A relational database is a subset of a

deductive database.
Up to now we have defined a relation as a set of tuples, i.e., by its extension.

The set of tuples can be called the elementary facts, and the relation a base predicate.

These sets of facts, which we have referred to as a database, are essentially an

extensional database. In the extensional database we define the set of tuples that

satisfy a relation. We can also define a relation intensionally by specifying some set

of rules. These rules, defining the intensional database, are expressed as well-formed

formulas in first-order logic. We can thus consider a database as consisting of a set

of rules (or laws) and a set of tuples. The intensional database supplements the ex¬

tensional one with rules that allow other facts to be derived from those explicitly

stored in the extensional database.5

Example 16.2 Let the extensional database consist of a parent relation, i.e., a tuple (or

fact) of the parent relation tells us the name of the parent of some person.

If we also need grandparent names, we can either store the name of the

grandparents or—from our knowledge of who the grandparents are—write a

derivation rule: The grandparent of X is the person Y in that Z is the parent

of X and Y is the parent of Z. ■

If we wanted to find the ancestors or cousins of a person we can specify these

as rules. Obviously we save considerably on storage, but more importantly we in¬
crease the usability of our database.

Consider the relation PARENT(X,Y) given in Figure 16.4. It represents the fact

that Y is a parent of X and is in the extensional database. To find the descendants of

an individual, we have to specify a number of rules. The descendants can be speci¬
fied as follows:

X is a descendant of Y if Y is a parent of X

X is a descendant of Y can be represented as DESC(X,Y), which can be inter¬

preted as a relation DESC having two attributes X and Y. We can write this rule as
an implication:

PARENT(X,Y) -> DESC(X,Y)

We can go even further and consider a database as not having an extension but as consisting entirely of axioms The exten¬
sion counterpart could be a set of particularization axioms (to specify the CWA, UNA, and DCA) (Gall 84), (Reit 84).

Databases have been characterized by two basic approaches, the model-theoretic view (MTV) and the proof-theoretic view
(PTV). In the MTV, the database is a model of a first-order theory and queries and integrity constraints are formulas to be
evaluated on the model using the semantics of truth. Model here is in terms of some set of axioms (in the form of integrity
constraints) and an interpretation that makes these axioms true. Queries are evaluated in the MTV under the CWA UNA and
DCA. In the PTV, the database is a first-order theory (i.e., we try to spell everything out with formulas) and integrity con¬
straints and queries are theorems to be proved. One difference between the MTV and the PTV is that with the former we can
add data (a tuple) to the database and still have a model of the same theory (i.e., the model does not have to be changed)
while with the latter a different theory would result. 6

DBM?L^LeUatkTaIiZati0n ^ ^ °f ^ deduCt‘Ve database aad not intended to be directly used as the basis of a

16.4 Deductive Databases 739

The above rule gives us the immediate descendants. However, we can find other

descendants using a recursive rule:

If Z is a parent of X and a descendant of Y, then X is a descendant of Y

This rule can be expressed as:

PARENT(X,Z) A DESC(Z,Y) DESC(X,Y)

The PARENT relation and the two rules can be used to derive the DESC relation

and answer queries such as finding all the descendants of an individual.

Example 16.3 Consider the PARENT relation of Figure 16.4. We can find all the descen¬

dants using the above two rules. Initially the DESC relation is empty. We

apply the first rule, PARENT(X,Y) —* DESC (X,Y), and get the DESC

relation (Figure A), which is the same as the PARENT relation.

Figure A DESC relation after the application of the first rule.

DESC

X Y

Roy Lrank

Jerry Lrank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Lrank

Lrank George

Now we apply the second rule. This involves the natural join of PAR¬

ENT (X,Y) and DESC(Y,Z) followed by a projection on the attributes XZ.

The new tuples, shown in Figure B, are generated for the DESC relations

as a result of the join. (Note: we are renaming the variables in the figure.)

We repeat this step of applying the second rule until no new tuples are

added to DESC. The new tuples generated after each application are shown

in Figures C and D. No new tuples are generated after the third application

of the second rule, so the resulting DESC relation gives all the descendants

of a person.
To answer a query such as “Find all the descendants of George,” we

do a selection on the DESC(X,Y), relation with the following query:

^x(^Y = George^ESC)

740 Chapter 16 Current Topics in Database Research

Figure B After one application of the second rule.

PARENT

X Y

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

DESC

Y Z

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

new tuples for DESC

X Z

Roy George

Jerry George

Lynn Ruth

Lynn Frank

Justin Roy

Justin Rachel

Janet Ruth

Drew Frank

Pavan Frank

Sheila George

Figure C After a second application of the second rule.

PARENT DESC new tuples for DESC

X Y

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

Y Z

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

Roy George

Jerry George

Lynn Ruth

Lynn Frank

Justin Roy

Justin Rachel

Janet Ruth

Drew Frank

Pavan Frank

Sheila George

X Z

Justin

Justin

Drew

Pavan

Lynn

Ruth

Frank

George

George

George

16.4 Deductive Databases 741

Figure D After a third application of the second rule.

PARENT DESC new tuples for DESC

X Y

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

Y Z

Roy Frank

Jerry Frank

Myma Ruth

Roy Ruth

Lynn Roy

Lynn Rachel

Justin Lynn

Janet Myma

Drew Sheila

Pavan Sheila

Sheila Frank

Frank George

Roy George

Jerry George

Lynn Ruth

Lynn Frank

Justin Roy

Justin Rachel

Janet Ruth

Drew Frank

Pavan Frank

Sheila George

Justin Ruth

Justin Frank

Drew George

Pavan George

Lynn George

X Z

Justin George

For our sample PARENT relation, the result of this query is: Drew,

Pavan, Lynn, Justin, Frank, Roy, Jerry, Sheila. ■

In Example 16.4 we use the database relation PRODUCT to find all constituents

of a product.

Example 16.4 Consider the relation PRODUCT (Prod-No, Sub-Prod-No). In this relation

each subproduct is also a product. For each product, the relation gives all

of its subproducts. If S is a subproduct of a product P, then S is its constit¬

uent. We can express this rule as follows:

PRODUCT (P,S) CONSTITUENT (P,S)

742 Chapter 16 Current Topics in Database Research

To find all products and their constituent products (at the lowest level),

we require the following additional rule. This rule is recursive:

PRODUCT (P,C) A CONSTITUENT (C,S) -*• CONSTITUENT (P,S)

Here we are defining the rule that an object S is a constituent of an object

P if it is a subproduct of P, or it is a constitutent of an object C, which is a

subproduct of P. ■

Employees who work together can be derived as follows:

Example 16.5 Consider the relation ASSIGNED_TO (Prod#,Emp#), which gives the

employees assigned to a given project. We can find all employees who have

worked together on a project by using the following rule:

ASSIGNED_TO (P,E,) A ASSIGNED_TO (P,E2) -»>

TOGETHER(E,,E2) ■

We can see that the above rules in the form of logic expressions allow us to

express recursive queries. This adds to the power of database querying as well as

specifying the intensional database.

If Pi, . . ., Pn and Q are atoms, then —iP, V ... V >Pn V Q (with a maxi¬
mum of one unnegated atom) is a Horn clause. The Horn clause with one positive

atom is said to contain one conclusion. The conclusion is also known as the head.

The atoms Plt . . ., Pn, specify the conditions to be satisfied and are known as the

body of the clause. A Horn clause with no positive atom has no conclusions. A Horn

clause with no head may be thought of as integrity constraints, i.e.,P]A. . .A

Pn —» • can be interpreted as: (P| and P2 and . . . Pn) is a violation of an integrity

constraint. For example, no individual can be both a father and a mother nor a

brother and sister of another individual. This integrity constraint may be specified as:

brother (x,y) A sister(x,y) —» •

Horn clauses can be expressed easily in PROLOG. If the conditions P,, . . .,

Pn, imply more than one conclusion, i.e., Q is of the form Q, V • • • V Qm, we
write these as m Horn clauses.

In this section we have introduced a powerful extension to the relational data¬

base model. Coverage in greater depth is beyond the scope of this text. We give
references to relevant literature in the bibliographic notes.

Expert Systems

Expert systems, also called knowledge base systems, are computer systems designed

to implement the knowledge and reasoning used by experts in a particular domain to

solve problems in that domain. Knowledge in these systems is obtained from inter¬

views with human experts and represents known procedures, usual practice, heuris-

16.5 Expert Systems 743

Figure 16.8

tics, and rules of thumb. This knowledge is usually implemented as a set of rules,

similar to those given in the car-starting example. These computer systems, as do

the human experts, use logical inference procedures and compiled production rules

(rules of thumb). The explicit domain knowledge, the so-called institutional mem¬

ory, is accessible by the expert system and along with some form of reasoning gives

it artificial intelligence. Unlike a human expert, this codified knowledge is of a more
permanent nature.

The structure of an expert system, which is built around an appropriate repre¬
sentation of the domain knowledge of an expert, is shown in Figure 16.8. Many

expert systems use productions or rules to represent the domain knowledge. The

inference system uses the knowledge and applies inference procedures to infer facts

not explicitly represented in the knowledge base to solve problems posed by the user.

The inference system, in addition, provides the user with the steps used in the rea¬

soning procedure to arrive at a solution to the problem. The user interface is respon¬

sible for presenting the user with an easy-to-use interface, and generates responses
and understandable explanations to the queries posed by the user.

Abductive reasoning is used in expert systems for applications in areas such as

medical or fault diagnostics. Medical diagnostics determines the likely cause for a

patient’s symptoms. The diagnosis may be multiple, there being a certain level of

confidence associated with each possible diagnostic and each level having associated

with it a subset of symptoms. Human judgment, along with suggested additional

tests, may be required to confirm or rule out some of these multiple diagnoses. For

instance, when a starting problem is encountered with the starter cranking the engine

very slowly, the diagnosis is that there is a problem with one or more of the follow¬

ing components: extremely cold temperatures, alternator, battery, belt, cables, con¬

nections, fuse link, or regulator. Further tests in the form of visual inspection, spe¬

cific gravity tests, battery voltage, voltage across the battery while the engine is

running, or output current from the alternator are required to make a final diagnosis

of the problem. In a rule-based expert system, the current known status of the system

is matched with the rules and the actions corresponding to one or more of the

matched rules are executed, i.e., the rules are fired. As a result of the firing, the
state of the system changes.

However, not all expert systems deal with multiple answers or uncertainty. Pro¬

duction or rule-based systems can be deductive systems. Such is the case when the

An expert system.

User interface

mm r : Inference jf||| >

Domain
knowledge

base
Mk?

System .

744 Chapter 16 Current Topics in Database Research

if part of the rules refer to one or more known facts (within the domain for which

the expert system is being used) and the then part of the rules specify new facts that

can be deduced from the known facts. The if part of the rule is the antecedent and

the then part is the consequent.
An expert system can use the rules in a forward or backward direction. The

former is called forward chaining; the latter, backward chaining. Consider the rules

being used as follows:

antecedent —> consequent

Here we interpret the rule as follows: if the antecedent is true, then the conse¬

quent is also true. In forward chaining, each rule is fired when the rule is enabled by

having its antecedent satisfied. As a result of the firing of a rule, the state of the

system would change; the facts corresponding to the consequent of the fired rule

would be added to the set of known facts. This in turn would enable and fire other

rules. The direction of action is from the left-hand side of the rule to the right-hand

side.
Consider a system containing the following rules:

a^b, a-^f, bAc^d, e A f -» j, dAg^h

Here the rule e A f —» j can be interpreted as: if currently e and f are true, then

we can deduce that j is true as well.
Suppose it is currently known that (a, c, e, g) are true. We want to know

whether h is true.

In this system the first rule, a —> b, will indicate that b is true, since a is known

to be true. Augmenting this with the current known facts, we get the new known

facts about the system as being (a, b, c, e, g). The second rule, a —> f, which can

be fired simultaneously with the first rule, will augment the known facts by f. The

next rule to be fired, bAc^d, augments the known facts by d; and the subsequent

rule, e A f —» j, augments the known facts by j. Finally the last rule, d A g —> h,

establishes the fact h. We see from this example that the firing of the rules a —» f

and e A f —» j were superfluous in proving h. The sequence of these steps is given

in Figure 16.9. The rules being triggered and fired at each step are enclosed in

parentheses.

In the backward chaining scheme, we hypothesize consequent n; then we try to

verify this hypothesis by establishing the validity of a rule wherein n is a consequent.

In other words, we prove a fact by showing that the antecedents corresponding to a

rule where the hypothesized consequent appears on the right-hand sides are true. If

the system contains a rule antecedent) —> consequent), then consequent) can be im¬

plied if antecedent) can be established to be a fact. If the state of the system is such

that antecedent) is true, then we have shown consequent). Otherwise proving conse¬
quent; requires that we prove antecedent).

Now, if antecedent;_) A antecedent)_2 —> antecedent), then proving consequent)

requires proving both antecedent,_, and antecedent)_2. If antecedent, _, A antece¬

dent) _2 A ... A antecedent) _j —> antecedent), then proving consequent) requires
proving all of antecedent,, . . ., antecedent)_j.

Thus, the inference starts with what is required to be shown and the system

finds what is needed for this to be established in a backward direction. This scheme

is called backward chaining because the search is against the direction of the arrows

16.5 Expert Systems 745

Figure 16.9 Forward chaining.

Known facts Rules Inferred facts

(a)-r- (a -> b) b
c L (a —> f) f
e b A c —> d
g e Af->J

d A g -> h

Known facts Rules Inferred facts

a a —»b
(b) —| a —> f
(C) J- (b A c —» d) d
(e) —|- (e A f —> j) j
(f) —1 d A g —> h
g
j

Known facts Rules Inferred facts

a
b
c

(d) —.

f

(gl
j

a —> b
a -> f
b A c —> d
e A f —»j

(d A g h)

of the rules from the right-hand side to the left-hand side. Only rules that are perti¬

nent to establishing the required facts are examined in a backward direction.
Let us take the previous example and try to establish the fact h using backward

chaining. We hypothesize h and use the rule d A g —* h to establish that we need

the facts d and g. Since g is already known, we have to establish d. To prove d, we

use the rule bAc->d and find that we need the facts b and c. Since c is known,

we need to establish b, which requires by rule a —> b that we need a. Since a is

already known, we have proved h. The sequence of these steps is given in Figure

16.10.

This example illustrates that in backward chaining, only rules that are pertinent

to establishing the required hypothesis or facts are examined; hence, the scheme is

more efficient than the forward chaining scheme. When deciding whether to use

forward or backward chaining, remember that for the given initial state and the de¬

sired goal, the chaining scheme that fans in will be more efficient than the one that

fans out.

Production or rule-based systems can explain the reasoning process used to

come to a given conclusion. The explanations entail showing the rules used in com¬

ing to the conclusion. Antecedent matching can be used to show why a given rule

was used, and the consequent part can be used to show the conclusions reached and

the subsequent actions taken.

746 Chapter 16 Current Topics in Database Research

Figure 16.10 Backward chaining.

Known fact

a
c
e

g
Required fact

h

Rules

a —> b
a —> f
b A c —» d
e A f -> j

(d A g —» h)

Facts needed to establish
the required fact

dg

Facts needed to establish

Known fact Rules the required fact

a a —> b
c a —> f
e (b A c —> d) be
g e A f —> j

Required fact j a g h

d ---

a —> b
a —> f

(b A c —> d)
e A f —> j

d A g -> h

Facts needed to establish
Known fact Rules the required fact

c
e

g
Required fact

b

(a -> b)
a —> f
b A c —> d
e A f —■>j
dAg-»h

16.6 Expert Database Systems: Integration of Expert
Systems in Database Applications

Expert systems have been developed as stand-alone systems. A stand-alone expert

system may be required to access data from a database as an ordinary application

program. With an integrated approach, the expert system is integrated with the

DBMS, as shown in Figure 16.11. In addition to traditional data, the system handles

textual and graphical data as well as knowledge. (It must be pointed out that no such

integrated system exists to date.) Such an integrated system will be called upon to

perform the traditional DBMS functions and use the inference system in aspects of

abductive, inductive, and deductive reasoning. The integrated system needs distri¬

bution and concurrent access, and at the same time provides enhanced integrity,
security, and reliability.

There are obvious advantages in bringing rule-based knowledge representation

and reasoning capability to database applications and traditional data processing

tasks. The database can be used to store the known facts about objects and events as

well as the rules required by the expert system. An ordinary database query not

requiring any inference system service could be handled more efficiently by the tra¬

ditional DML and database manager component of the multimedia database and

747 16.7 Object Approach

Figure 16.11 Integrated expert database system.

knowledge base system; the user interface can forward such queries directly to this
subsystem.

The expert system component of such an integrated expert database system can

be used to provide a means for interpreting the responses to queries, including re¬

sponses that contain, for instance, null values. It can be used with appropriate knowl¬

edge to enhance the enforcement of integrity and security of the entire system.

16.7 Object Approach

In the object approach physical entities or abstract concepts of the real world are

represented by objects. Objects are distinguished by identifiers and they encapsulate

the characteristics or properties of the real world objects as well as their valid oper¬

ations. The main difference between objects used in object-oriented programming

and those in object-database is the persistence. Objects in object-oriented program¬

ming persist only for the duration of the program while those in object-database are

of a more permanent nature.

It has been predicted that object-oriented programming will be the accepted soft¬

ware development approach of the ’90s just as structured programming was the style

used in the ’70s. One of the results of the evolution of structured programming was

the strongly typed requirement made popular by Pascal and the top-down modular

approach.

Everyone has a different conception of object-oriented programming (OOP)

and the object model (OM). One yardstick (meterstick!) used by almost everyone is

748 Chapter 16 Current Topics in Database Research

that the OOP approach leads to software reusability. However, OOP by itself is not

a panacea of reusability. Program components developed using OOP must have been

designed for reusability, and reuse may require extension of the program module.

We use the following terms in discussing OOP:

• Reusability: The ability of a system to be used in an entirely new context from

the one in which it was originally designed. This is the so-called black box

approach. A black box (Figure 16.12) is anything that accepts certain inputs

and produces certain outputs. It can be used as a building block in a more

complex system wherein the same set or combination of inputs is required to

produce the same set or combination of outputs.

• Extendability: The ability of easily modifying a system to accommodate

additional requirements. However, the original requirements may not be

changed; for the original set of inputs, the system would deliver the original set

of outputs. The extendability characteristic allows the system to be used for the
original needs, while accommodating the new requirements.

• Compatibility: The ability of the system to be easily combined with other
systems.

Traditionally software has been developed using functional methods wherein the

application is expressed by a set of algorithms, each of which may be implemented

by a separate procedure. This scheme does not provide the following features:

• effective data abstraction facility

• scheme for information hiding

• concurrency and distribution

• easy means of adapting to changes

In a database environment, the data is separated from the programs that use it.

The database provides a basic set of operations common to all objects in the database

and additional operations, including the exact meaning of the data, are in the pro¬

grams. The database is not aware of the existence of these programs.

Object-Oriented Systems

The simulation programming language SIMULA (Dahl 66) is considered to be the

immediate ancestor of OOP. The Smalltalk programming system (Gold 83) devel¬
oped this concept and coined the phrase object-oriented approach (OOA).

Figure 16.12 A black box with its inputs and outputs.

Inputs

•
clack

•
•

box

Outputs

749 16.7 Object Approach

An object has a private memory and can manipulate the contents of this private

memory as a result of the messages it accepts. The operations performed on the

private memory are the methods of the object. Objects that respond to the same

messages in the same way are grouped together; such a group is called a class. An

object in Smalltalk is an instance of a class. A class could also be refined by adding
further methods to create a subclass.

A message in Smalltalk is equivalent to a procedure call. It contains the name

of the object to receive the message, the name of the message, and keyword argu¬
ments.

16.7.1 Concept of the Object

The first characteristic of the object-oriented approach is to change our point of view

from inside the object that we are studying to outside. This change of perspective

allows us to concentrate not on what the inner workings of an object are, but rather

on what the object does. This is the so-called first principle of object approach,

namely, to look at objects from the outside and determine what inputs they accept
and what responses they provide for these inputs.

An object can be characterized as follows:

• It has a state that is recorded in private memory.

• It is characterized by the messages that it recognizes and the methods

(procedures) used as a consequence of the message.

• It is denoted by a name.

Consider the university database example. Here we are interested in objects such

as courses, students, enrollment, faculty, and so on. We could represent the enroll¬

ment by a relation, ENROLLMENT. The grades that students receive in the course

in which they are enrolled could be assigned by using an application program with

embedded query language. The application program could be used many times but it

is considered separate from the database and stored and maintained separately. In an

object-oriented approach, each of the above objects could be encapsulated with all

possible operations that we may need to perform on the data of the object. These

operations could be similar to the ones performed by the application programs. The

data structures and the operations on these structures could be treated as objects. The

data part of the object for ENROLLMENT would be similar to the corresponding
relation.

An object can be considered a uniform abstraction or representation of the two

capabilities of a computing system: storing and manipulating information. They are

encapsulated in the object and everything can then be considered an object. However,

for objects to be useful, they must be able to interact with other objects. This inter¬

action is provided by message communication. The set of operations performed by

an object is determined by the message to which it responds. This set of operations

is sometimes called the object’s message interface or message protocol.

Each object is cognizant of the messages it can understand. For each such mes¬

sage, it will carry out certain operations. These operations for each message make

up a procedure or method and determine the response generated by the object to the

accepted message.

750 Chapter 16 Current Topics in Database Research

Figure 16.13 Similarity of a black box and an object.

Black box

Message
-►

►

Data and
implementation
of operations

on them

Response (object)
-►

Encapsulation

The messages that an object understands depends on the nature of the object.

Objects for numbers understand a message that requests computation and reporting

the result. An object representing a thesaurus would understand a message to provide

the synonyms, antonyms, or homonyms for an entry in the thesaurus object.

The private memory of an object, which records the value of the data associated

with an object, is made available to other objects via the response generated by the

object. There is no way to open up an object and look inside it unless the object, via

its behavior to messages accepted by it, allows such persual.

Objects are uniform in the method used for communicating, which is by mes¬

sage passing, and because no object is given special status. There is no distinction

between objects supplied by the system and those created by a user.

The basic problem in OOP is to determine the kinds of objects that should be

implemented. In addition, for each object, we have to determine the messages it will

accept and the response provided by such messages. The choice of object depends

on the application and use of the system. Sending a message in OOP is equivalent

to calling a procedure in procedural language or providing inputs to a black box (see

Figure 16.13).

16.7.2 Names and Identity

What’s in a name?6

Identity is such a simple and fundamental idea that it is hard to explain otherwise than

through mere synonyms. To say that X and Y are identical is to say that they are the

6William Shakespeare, Romeo and Juliet, Act II scene 2.

16.7 Object Approach 751

same thing. Everything is identical with itself and with nothing else. But despite its

simplicity, identity invites confusion. E.g. it may be asked: Of what use is the notion of

identity if identifying an object with itself is trivial and identifying with anything else is

false?7

Having defined objects still leaves open the question of the ability to distinguish

objects from each other. This ability must be distinct from the state of the object or

its location and at the same time allow different objects to be shared. When talking

of identifying something, we do not necessarily mean locating a name, but the object
associated with the name.

Addressability is a scheme of locating an object or providing access to an ob¬

ject and is dependent on the environment. Consider Professor Smith. Her students

address her in a way that is different from the way her children do, which in turn is

different from the way her friends and acquaintances address her. However, Profes¬
sor Smith is the same person and she knows it!

Addressability is external to an object. Consider the method used in FORTRAN

to access a file. A file number is mapped into a logical file name, which is mapped

into a physical file name and a physical file. The file has an identity of its own,

which is compared to the physical file name to ensure that the correct file is accessed.

This highlights the concept that identity is internal to the object.

Programming languages use variable names to distinguish objects, which last

for the duration of the execution of the program or portion thereof. Such variable

names are defined by users to represent the identity of an object. An object required

by more than one program module is made global among these modules. The binding

of an object, which in this case is a storage location in real or virtual memory, is

done either at compilation time or run time. If the same program is rerun the same

variable is used over again for the same purpose; this fact keeps us from realizing

that these objects are only temporary. The addressing of an object is thus merged

with the identity of the corresponding object. Objects that persist over different exe¬

cutions of a program or that are passed from one program to another use a file

system.

The use of variable names without some built-in representation of identity and

operator to test and manipulate this abstraction can cause problems. This is the case

when the same transient objects are referred to by different variable names and ac¬

cessed in different ways. The concept of COMMON in FORTRAN is used to share

objects among different program units and could refer to the same object, such as

storage location in real or virtual memory, using different variable names with pos¬

sibly different data types. This creates a great number of errors that are hard to

detect. The concept of EQUIVALENCE allows objects to be shared among variables

of the same program module. Without a test for establishing the identity of the ob¬

ject, a problem is created. Pascal addressed this problem by introducing the variant

record type. Smalltalk provides a simple identity test expression of the form X = =

Y, where two variables, X and Y, are tested to determine if their identity is the

same.

7W. V. Quine, Methods of Logic, 4th ed. Cambridge: Harvard University Press, 1982.

752 Chapter 16 Current Topics in Database Research

16.7.3 Database and Identity

Databases emerged to resolve the storage problem and facilitate the sharing of per¬

sistent objects. This required the support of the identity of an object not only in terms

of its representation but also over time.

Every object is unique. However, we cannot, for example, distinguish between

two 2d nails, nor do we bother to try. What is important for most applications is that

they are 2d nails as opposed to 3d nails. In modeling a definite object for a particular

application, we do not model all of its characteristics but only a subset of interest to

the application. This subset may not be sufficient to bring out the uniqueness of the

object. (For example, the 2d nails could have some characteristics that may identify

one nail uniquely from another.) We also use some means to characterize abstract

objects. It may also happen that the uniqueness of the object can only be established

as a result of the object’s relationship with another object.

Database systems use the concept of key attributes to distinguish individual rec¬

ords or tuples (persistent objects). The data values of the key attributes are thus

mixed with the identity of the objects. This dictates that the value of the key attri¬

butes cannot be modified, even though they are descriptive data or artificially intro¬

duced data. The name of a department, for instance, is used as a key of the depart¬

ment and also used as a foreign key in the employee relation (object) to establish the

relationship that an employee is assigned to a given department. Suppose the name

of a department changes as a result of reorganization or modernization, say, from

Quantitative Methods to Decision Science or from Personnel to Human Resources.

This causes the problem of updating in the department object and all others referring
to that object.

A change could be required in the choice of an identifier. Such a situation occurs

when preexisting databases having similar classes of objects with different identifiers

must be integrated. Two different divisions of a company, for instance, may use

different identifiers for identifying employees. One division may use a locally gen¬

erated sequential employee number; the other may choose the Social Security num¬

ber. Another problem with this approach is that the individual attributes or any subset
of attributes of a relation lack an identity.

In the object-oriented approach, a separate consistent mechanism is used to iden¬
tify an object regardless of the actual method used in modeling the object or the

attributes associated with the object (i.e., the descriptive data). An object system can

then be defined to be made up of objects. In a consistent object system no two

distinct objects have the same object identifiers, and for each existing object identifier

there is a corresponding object. Two objects, O, and 02, are identical if the identi¬
fiers for the objects are identical.

16.7.4 Implementation of Object Identifiers

The object identifier is best implemented using a system-generated surrogate. Such

object identifiers, provided operations on them are allowed, need not be accessible

to a user. The question as to what to do with an object identifier when the corre¬

sponding object ceases to exist is simply answered if the object is considered to be

753 16.7 Object Approach

totally annihilated and no memory of such an object remains in some other object. If

such a memory remains in the system, we have a problem of dangling pointers,

which should not be allowed. The identifier of an object that ceases to exist may be
reassigned depending on the implementation.

Object identifiers are useful for implementation and allow users to perform tests

on the identity of an object. Nevertheless, they should not play a role in the model.

16.7.5 Object Class and Instantiation

As in traditional programming language, the notion of type is used to describe an

object. It consists of two parts: the data and operation parts and their implementa¬

tions, and the interface to the object that is visible from the outside. The data and

the implementation of the operations on this data are private to the object. The op¬

erations that are implemented cater to the specified interface of the object.

Traditional programming language provides a number of data types such as in¬

tegers, character strings, bit strings, floating point numbers, and so forth. These can

be used as required by associating a name with an instance of this type. The instan¬

tiation can be static at compile time or dynamic at run time depending on the features
provided by the language.

Similarly, in OOP, objects may be instantiated either statically at compile time

or dynamically at run time. There could exist more than one object that recognizes

and responds similarly to the same set of messages. These objects of the same object

types are grouped together into a class of objects or simply as a class. Such objects

have the same type of private memory, which is referred to by their methods using

the same set of names. Each class has a name and is itself considered as an object

belonging to a special system-defined class.

The collection of a group of identical objects into a class allows the sharing of

common methods. The concept class thus groups together a set of externally visible

operations, a set of corresponding hidden methods, and a set of. private variables

belonging to instances of the objects of the class. A new instance of an object in a

class has its own private memory and shares the operations and the methods of the

class.

16.7.6 Inheritance

In OOP, inheritance is used to allow different objects to share attributes and methods.

One advantage of inheritance is lower development time due to program reusability.

In our university database (see Figure 16.14), The objects FACULTY and STU¬

DENT are both specializations of the object PERSON and share some common traits.

They both have a Birthdate, an Address, a Home-Phone-Number, Next-of-Kin, and

so on. A number of operations could be performed on these items. For instance, one

of these items could be updated. The program to implement these operations could

be shared. Similarly, each of the objects STUDENT and FACULTY has certain

special attributes, i.e., Set-of-Grades for STUDENT and Salary for FACULTY.

754 Chapter 16 Current Topics in Database Research

Figure 16.14 Objects in the university database.

Class inheritance provides a method whereby a new class can be defined as a

subclass of an existing class. It inherits not only the operations of the parent class

but also its data structure (instance variable). It could be possible to add further data

structures and operations on these structures in the subclass.

In multiple inheritance a subclass is considered to have not one parent class

but multiple parent classes (Figure 16.15). Many of the OOP languages provide only

single (or simple) inheritance. In the case of multiple inheritance, there would be the

need to override one or more inherited methods and a method of resolving conflict

in names of operations or instance variables. Conflict resolution would be by explicit

disambuguation, default rules, or prefixing the name with that of the parent class.

If a class has to be modified in the presence of existing instances of objects of

the class and its subclasses, there is a need for some form of object independence.

In partial inheritance the subclass inherits only a subset of the data structures

and operations from the parent class and suppresses the remaining.

Class inheritance is a static mechanism. In dynamic inheritance, an object

changes its response to a message when it accepts new parts from other objects or

when it changes its environment. The latter concept is similar to a programming

language where the environment can be changed dynamically, as in PL/1. Similarly,

a given text changes its fonts when a new style sheet is attached to the document.

The direction of research and the very concept of an object depend on the roots

of the researcher. Researchers are discovering new ways to use the old concepts.

Figure 16.15 Example of multiple inheritance.

16.8 Object Databases 755

They are looking at five major areas: programming languages; concurrency control;

object-based management; software management; and user interface and environ¬
ment.

Object Databases

In databases, we concern ourselves with the management and sharing of a large

amount of reliable and persistent data. The relational system is suitable for an ad hoc

query expressed in a query language such as SQL. However, such query languages

are not suitable for application development. The application development language

must be suitably integrated with the relational query language and should have a

similar model of the computation being performed. Unfortunately whereas relational

query languages are set oriented, application languages tend to be record oriented.

Object orientation, with the ability to treat everything as objects, including programs
and data, is therefore a promising avenue of research.

The object model and the object approach have not been defined formally; con¬

sequently a large number of systems can rightly claim to be using the object model.

The justification of the use of this approach in programming language is to provide

an increased degree of abstraction. In the area of OS there is a constant need to

reduce complexity in allowing concurrent tasks to share resources in an orderly man¬

ner and to communicate with each other. In the DBMS, there is a need to model

complex entities such as CAD/CAM design data, office documents, and coauthored
articles.

Along with the lack of a clear, well-defined and accepted object model, there is

a lack of uniformity in the concept of an object-oriented database system. In a

DBMS, the relationship between two record types may be statically established or

based on the content. Relationships exist between classes due to the hierarchical

structure and inheritance between subclass and superclass. In the object model, rela¬

tionships may exist at object level via objects that know about each other and com¬

municate via messages. However, content relationships between objects may not be

allowed if the object paradigm is to be preserved. In a database system, all record

instances share the same set of operations, which are implemented in the DBMS. In

the object model, each object has its own set of operations and can be tailored to the

object. However, to achieve efficiency, we use multiple inheritance, which creates

its own set of problems. Database record instances are accessed based on the con¬

tents. In the object model, the contents of the object are encapsulated and not acces¬

sible; therefore, the identifiers are the only means of externally identifying an object

instance.

Research projects in object databases can be classed as either an extension to

existing systems or as an object-oriented DBMS (OODBMS). In the latter, the data

model supports the object approach.

Extension to Existing Systems

POSTGRES (Ston 86a) (Ston 86b), designed by Stonebraker and his colleagues,

extends the relational model by supporting abstract data types and procedures. The

latter can be used to simulate objects.

16.8

756 Chapter 16 Current Topics in Database Research

Procedures in POSTGRES are global and unlike methods are not local to an

object and thus are not able to provide encapsulation.

DAPLEX (Ship 81) is a query language used on a functional data model.

PROBE (Mano 86) is a knowledge-oriented DBMS that uses an enhanced version of

DAPLEX. PDM is the data model used in PROBE, which uses entities and functions

in modeling. Entities are models of real objects and relationships among entities are

represented by functions. In addition, the properties of entities and operations on

them are also represented by functions.

Entities could be subtypes of other entities. They inherit their corresponding

properties and operations. Values could be stored or computed by procedures.

OODBMS Approach

GEMSTONE (Cope 84) is an OODBMS that integrates concepts from programming

languages and DBMSs. Objects in GEMSTONE are persistent without the concept

of file in the system. In addition, objects have a unique and immutable identity.

ORION is the prototype of an object-oriented DBMS. It supports the shared

objects and allows dynamic evolution of the schema. It addresses the problems in

the creation and deletion of classes, the alteration of the class/subclass relationship,

and those of addition and deletion of instance variables and methods. A set of rules

for these alterations is discussed in (Bane 87).

IRIS (Fish 88) is an object-oriented research DBMS under development at Hew¬

lett-Packard and is intended for integrating the needs of knowledge base systems.

The IRIS object manager supports the object model, nonnormalized data, version

control, user-defined functions, as well as abstractions such as aggregation, classifi¬

cation, generalization, and specialization. The IRIS storage manager currently sup¬

ports the conventional relational database. The interaction with the system is via

embedded languages such as C and LISP enriched with an object paradigm (see

Figure 16.16). Interactive support is with Object SQL, which is conventional SQL

with object-oriented features.

A class is called type in IRIS and represents a collection of objects that share

common properties. A method is called a function in IRIS and objects belonging to

the same type share common functions. Objects respond only to their functions.

Objects are organized in a hierarchy and inherit properties and functions.

To define an object class Person we use the following declaration:

create type Person

(name char required,

address char,

department char,

phone# char)

To instantiate two instances of this object type:

create Person(*)

instance A1 (‘Albert Smith’, ‘10 Main’, ‘Comp Sci’,

‘345-1234’),

Joe(‘Joseph Birke’, ‘35 Pine’, ‘Comp Sci’, ‘529-3856’)

16.8 Object Databases 757

Figure 16.16 Structure of the IRIS system (adapted from [Fish 87]).

C application

C-IRIS

Types and objects
Operations
Rules
Authorization
Optimization

Concurrency
Recovery
Indices
Buffer management
Clustering

Ol
Nonstructured

data

create type Student subtype of Person

(year integer,

major char)

Now an instant of the object type Student is created and values to the attribute

name (inherited from Person), year, and major are assigned as follows:

create Student (name, year, major) (‘Peter Watson’, 2, ‘Information Sys¬
tems”)

16.8.1 Pros and Cons of the Object Approach in Databases

The following are the advantages of the OODBMS:

• The object approach allows modifications that are localized to a given level of

an object hierarchy.

• The messages to which an object responds are encapsulated along with the

properties of the object. This allows constraints of various complex forms to be

758 Chapter 16 Current Topics in Database Research

easily enforced. Since the operations allowed on an object are encapsulated, its

interactions with other objects are known and hence predictable. This allows

ease in extension of the system.

• The inheritance mechanism allows compact codes and the overriding features

allow localization of changes.

On the negative side are the following drawbacks of the OODBMS:

• Unlike the relational approach, which started out with a formal theory and a

framework for a query language, there is no formal or accepted framework of

OODBMS. This lack of a formal framework and query system means that the

development of OODBMS will most likely be Darwinian, with the most popular

becoming the de facto standard.

• Since each object is a self-contained unit, there is no means of showing

relationships among a number of objects. Interobject reference is used to show

such an association indirectly.

• Performance will likely be a problem. Techniques such as associative access

and architecture features such as tagged architecture have to be investigated.

• In traditional database systems the user must know what the schema contains,

such as names of relations and attributes, and pose queries and design programs

using this knowledge. In an OODBMS the user must know what each object

class is, as well as its methods, messages, and responses. This is not a light

requirement8 and may be the biggest stumbling block in the use of the object

approach unless an intelligent user interface is provided with the database.

Summary

In this chapter we defined a knowledge base system as a computer system used for

the management and manipulation of shared knowledge. We compared a knowledge

base system with a DBMS and pointed out the similarities and differences. We con¬

sidered the different schemes used to represent knowledge: the semantic network,

first-order logic, rule-based system, frames, and procedural representation.

Expert systems are knowledge base systems wherein the knowledge of experts

in a limited domain of application is stored; this knowledge can be used by appro¬

priate inference procedures to solve problems in the domain. The knowledge in ex¬

pert systems is usually stored as rules. The expert system also generates explanations,

which can be employed to illustrate the rules used to answer a user query. Expert

systems use forward chaining or backward chaining in their inference procedures.

SIMULA, a programming language for computer simulation, introduced the

concept of object class. Class in SIMULA is an abstract data type mechanism and

the object-oriented programming language is based on this concept (Gold 83). Ob¬

jects can be considered uniform abstractions or representations of the storage and

manipulation capabilities of a computing system. The set of operations performed by

SA case in point is the UNIX operating system. It started off with a lean and utilitarian system with very attractive features but
it has become a dinosaur. The online help facility is of no use to a novice and the manuals are too large and badly organized.

16.9 Summary 759

an object is determined by the message to which it responds; this set of operations is

called the object’s message protocol. Such a set of operations for each message is

called a method and determines the response generated by the object. The collection

of a group of identical objects into a class allows the sharing of common methods.

In the object approach, inheritance is used to allow different objects to share attri¬

butes and methods.

Along with the lack of a clear, well-defined and accepted object model there is

a lack of uniformity in the concept of an object-oriented database system. Object

database can be classed as either an extension to an existing system or as an object-

oriented DBMS (OODBMS) wherein the data model supports the object approach.

knowledge base management first-order predicate calculus institutional memory
system (KBMS) Horn clause object-oriented programming

reasoning facility closed world assumption (OOP)

deductive reasoning (CWA) object model (OM)

inductive reasoning unique name assumption reusability

abductive reasoning (UNA) black box approach

explanation facility domain closure assumption extendability

knowledge representation (DCA) compatibility
scheme frame object-oriented approach

exception-handling features production system (OOA)

knowledge independence rule object

robust production rule message

metaknowledge production method

semantic network antecedent class

property inheritance mechanism consequent instance

override enable subclass

proposition trigger message interface

propositional logic fire message protocol

propositional calculus conflict resolution addressability

modus ponens forward chaining identity

chain rule backward chaining object identifier

reductio ad absurdum procedural representation class inheritance

predicate
method multiple inheritance

sorts
deductive database object independence

function
extensional database (EDB) partial inheritance

first-order logic

predicate calculus

intensional database (1DB)

expert system
dynamic inheritance

16.1 Write the production rules for an expert system to help in advising a client of a bank as to

the type of account or accounts he or she should open.

Using the production rules of Figure E, show the order in which the rules will be fired in 16.2

760 Chapter 16 Current Topics in Database Research

Figure E Production rules for Exercises 16.2 and 16.3

a —> b

b A c —> d, m

b A e —> c, f

bAf-»s

d A g —> n, r

dAv->x

h A m —» g

s A r —* b

m A n —*■ v

forward chaining to ascertain whether the fact x can be established under the assumption that

(a, e, h) are true.

16.3 Using the production rules of Figure E, show the order in which the rules will be fired in

backward chaining to establish if the fact x can be established under the assumption that (a,

e, h) are true.

16.4 A smart pressing iron (see Figure F) consists of the following components: a heating

element; a thermostat to control the heat setting; a motion-sensing probe to indicate if the

iron is being used and a controller to turn the iron off if it has not been used in the last ten

minutes; a manual reset button to reset the iron if it is turned off by the controller; a supply

cord and a plug for connecting the iron to a standard 110 volt electric wall outlet. The iron

resets automatically if it is unplugged. Write the production rules to indicate the likely cause

of a problem if the iron heats intermittently.

Figure F Smart pressing iron for Exercise 16.4.

Plug

=D
Cord

Manual
reset

V V
Automatic
disconnect

Motion probe
and automatic

disconnect
controller

.Tl

Thermostat

Heating
element

16.5 Design the knowledge base for an academic advisor expert system for advising new students

who join your department.

16.6 Given the relation parent (x,y), where y is a parent of x, specify the rules to get

a. siblings (brothers or sisters)

b. ancestors (you may treat a person p as having an ancestor p)

What other facts would need to be recorded if we want to distinguish between brothers and

sisters? How would you formulate the rules?

16.9 Summary 761

Bibliographic Notes

(Brod 86b) discusses the differences and similarities between a KBMS and a DBMS. (Brae

86) views a database from a knowledge level. (Find 79) is a collection of some later papers

on the use of semantic networks in knowledge representation. (Korf 66) and (Quin 51) are

introductory textbooks in mathematical logic. First-order logic is discussed in (Kowa 79).

Frames are discussed in (Kuip 75) and (Mins 75). The relative merits of procedural represen¬

tation and frames, wherein the procedures associated with the slots can incorporate aspects of

know-how knowledge, are discussed in (Wino 75).

(Brod 86a) discusses the integration of AI techniques in databases. Logical databases are

the subject of recent papers (Gall 84, Reit 84, and references given therein). A collection of

papers also appears in (Gall 78). (Gray 84, Ullm 88) give a textbook-level introduction to the

subject. (Smit 86) presents the architecture and functionality of an expert database system,

which is an integration of an expert system with a DBMS. (Wate 86) contains an excellent

textbook-level introduction to knowledge bases used for expert systems. (Wins 84) is an intro¬

ductory text and (Barr 81) has emerged as a classical reference in AI. (Wate 86) and (Kers

86) contain bibliographies of existing expert systems.

POSTGRES is presented in (Ston 86a) and (Ston 86b). The description of the data model

of PROBE is presented in (Mano 86). This data model is an extension of the DAPLEX (Ship

81) functional data model. VBASE (Andr 87) is a commercial OODBMS. Some of these

systems are also claimed to be KBMSs.

Bibliography

(Alme 85) G. T. Aimes, A. P. Black, E. D. Lazowska, & J. D. Noe, “The Eden System: A Technical
Review,” IEEE Transactions on Software Engineering SE—11(1), pp. 43-59, 1985.

(Ande 86) T. L. Anderson, E. F. Eckland, & D. Maier, “PROTEUS: Objectifying the DBMS User Interface,”
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986, pp.
133-145.

(Andr 87) T. Andrews & C. Harris, “Combining Language and Database Advances in an Object-Oriented
Development Environment,” Proc. of OOPSLA, October 1987, pp. 430-440.

(Atki 86) M. P. Atkinson, A. Dearie, & R. Morrison, “A Strongly Typed Persistent Object Store,”
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986,

p. 206.

(Badr 88) B. R. Badrinath & K. Ramamrithan, “Synchronizing Transactions on Objects,” IEEE Trans, on
Software Engineering 37(5), May 1988, pp. 541-547.

(Banc 86a) F. Bancilhon, “A Logic-Programming/Object-Oriented Cocktail,” ACM SIGMOD Record 15(3),
1986, pp. 11-21.

(Banc 86b) F. Bancilhon & S. Khoshafian, “A Calculus for Complex Objects,” Proceedings 5th ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, March 1986, pp. 53-59.

(Banc 88) F. Bancilhon, “Object-Oriented Database Systems,” Proc. SICACT/SIGMOD/SIGACT Symposium
of Principles of Database Systems, Austin, Texas, March 1988.

(Bane 87) J. Banerjee, et. al., “Data Models Issues for Object-Oriented Applications,” ACM TOOIS 5(1),

January 1987, pp. 3-26.

(Bapa 86) K. V. Bapa Rao, “An Object-Oriented Framework for Modeling Design Data,” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, p. 232.

762 Chapter 16 Current Topics in Database Research

(Barr 81) A. Barr & E. A. Feigenbaum eds., The Handbook of Artificial Intelligence, vol. 1. Los Alatos CA.:

William Kaufman, 1981.

(Birt 73) G. M. Birtwhistle, O. J. Dahl, B. Myrhaug, & K. Nygaard, SIMULA Begin. Auerbach Publishers,

1973.

(Blac 85) A. P. Black, “Supporting Distributed Applications: Experience with Eden,” Proceedings 10th ACM
Symposium on Operating System Principles, 1985, pp. 181-193.

(Bobr 75) D. G. Bobrow & A. Collins, eds., Representation and Understanding: Studies in Cognitive Science.

New York: Academic Press, 1975.

(Brae 83) R. J. Brachman, “What IS-A is and Isn’t: An Analysis of Taxonomic Links in Semantic Network,”
IEEE Computer 16(10), 1983.

(Brae 86) R. J. Brachman & H. J. Levesque, “What Makes a Knowledge Base Knowledgeable? A View of
Databases from the Knowledge Level,” in L. Kerschberg, ed.. Expert Database Systems:
Proceedings from the First International Workshop. Menlo Park, CA: Benjamin/Cummings,

1986, pp. 69-78.

(Brod 84) M. L. Brodie, J. Mylopoulos, & J. W. Schmidt, eds., On Conceptual Modelling: Perspective from
Artificial Intelligence, Databases and Programming Languages. New York: Springer-Verlag,

1986.

(Brod 86a) M. L. Brodie & J. Mylopoulos, eds., On Knowledge Base Management Systems: Integrating
Artificial Intelligence and Database Technologies. New York: Springer-Verlag, 1986.

(Brod 86b) M. L. Brodie, R. Balzer, G. Wiederhold, R. Brachman, & J. Mylopoulos, “Knowledge Base
Management Systems: Discussions from the Working Group” in L. Kerschberg, ed., Expert
Database Systems: Proceedings from the First International Workshop. Menlo Park, CA:
Benjamin/Cummings, 1986, pp. 19-23.

(Brod 86c) M. L. Brodie & J. Mylopoulos, “Knowledge Bases vs. Databases,” in M. L. Brodie, & J.
Mylopoulos, eds., On Knowledge Base Management Systems: Integrating Artificial
Intelligence and Database Technologies. New York: Springer-Verlag, 1986, pp. 83-86.

(Card 85) L. Cardelli & P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,”
Computing Surveys 17(4), December 1985, pp. 471-522.

(Care 86) M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. E. Richardson, & E. J.
Shekita, “The Architecture of the EXODUS Extensible DBMS,’ Proceedings, International
Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 52-65.

(Chen 76) P. P. Chen, “The Entity-Relationship Model—Towards a Unified View of Data,” ACM Transactions
on Database Systems 1(1), March 1976, pp. 9-36.

(Chri 86) S. Christodoulakis, F. Ho, & M. Theodoridou, “The Multimedia Object Presentation Manager of
MINOS: Symmetric Approach,” Proceedings, ACM SIGMOD ’86, May 1986, pp. 295-
310.

(Cope 84) G. Copeland & D. Maier, “Making Smalltalk a Data Base System,” Proceedings, ACM SIGMOD
’84,June 1984, pp. 316-325.

(Dahl 66) O. J. Dahl & K. Nygaard, “SIMULA, an ALGOL Bases Simulation Language,” Comm, of the ACM
9(9), September 1966, pp. 671-678.

(Danf 88) S. Danforth, & C. Tomlinson, “Type Theories and Object-Oriented Programming,” ACM Computing
Surveys 20(1), March 1988, pp. 29-72.

(Dasg 85) P. Dasgupta, R. J. LeBlanc, & E. Spafford, “The Clouds Project: Designing and Implementing a
Fault Tolerant, Distributed Operating System,” Technical Report GIT-ICS 85/28, Georgia
Institute of Technology, School of Information and Computer Science, 1985.

(Dasg 86) P. Dasgupta, “A Probe-Based Monitoring Scheme for an Object-Oriented Distributed Operating
System,” Proceedings, OOPSLA ’86, September 1986, pp. 57-66.

(Ditt 86) K. R. Dittrich, “Object-Oriented Database Systems: The Notion and the Issues,” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 2-4.

(Dixo 89) G. N. Dixon, G. D. Parrington, S. K. Shrivastaua and S. M. Wheater, “The Treatment of Persistent
Objects in Arjuna,” The Computer Journal, 32(4), August 1989, pp. 323-332.

16.9 Summary 763

(East 86) G. M. Eastman, “Three Uses of Object-Oriented Databases to Model Engineering Systems,”
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986, pp.
215-216.

(Find 79) N. V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computers. New
York: Academic Press, 1979.

(Fish 87) D. H. Fishman, et al., “Overview of the IRIS DBMS,” ACM TOOIS 5(1), January 1987, pp. 48-69.

(Fish 88) D. H. Fishman, et al.. Overview of the IRIS DBMS. Palo Alta, CA: 1988. H-P Labs, 1988.

(Fros 86) R. Frost, Introduction to Knowledge Base Systems. New York: Macmillan, 1986.

(Gall 78) H. Gallaire & J. Minker, Logic and Databases. New York: Plenum Press, 1978.

(Gall 84) H. Gallaire, J. Minker, & J.-M. Nicolas, “Logic and Databases: A Deductive Approach,” ACM

Computing Surx’ey 16(2), June 1984, pp. 153-185.

(Gold 83) A. Goldberg & D. Robson, Smalltalk-80: The Language and Its Implementation. Reading, MA:
Addison-Wesley, 1983.

(Goya 87) P. Goyal, T. S. Narayanan, Y. Z. Qu, & F. Sadri, “Requirements for an Object-Based Integrated
Systems Environment,” Technical Report CSD-87-007, Dept, of Computer Science,
Concordia University, 1987.

(Gray 84) P. Gray, Logic, Algebra and Databases. Chichester, England: Ellis Horwood, 1984.

(Hamm 81) M. Hammer & D. McLeod, “Database Description in SDM: A Semantic Database Model,” ACM

Transactions on Database Systems 6(3), 1981, pp. 351-386.

(Hard 86) T. Harder, “New Approaches to Object Processing in Engineering Databases,” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, p. 217.

(Huds 86) S. E. Hudson & R. King, “CACTIS: A Database System for Specifying Functionally Defined Data,”
Proceedings, International Workshop on Object-Oriented Database Systems, Sept. 1986, pp.
26-37.

(Isra 86) D. Israel, “Al Knowledge Bases and Databases,” in M. L. Brodie & J. Mylopoulous, eds.. On

Knowledge Base Management Systems: Integrating Artificial Intelligence and Database

Technologies. New York: Springer-Verlag, 1986.

(Jone 79a) A. K. Jones, “The Object Model: A Conceptual Tool for Structured Software,” in R. Bayer, R. M.
Graham, & G. Seagmuller), eds., Operating Systems: An Advanced Course. NY: Springer-
Verlag, 1979, pp. 8-18.

(Jone 79b) A. K. Jones, R. J. Chandler, I. E. Durham, K. Schwans, & S. Vegdahl, “StarOS: Multiprocessor
Operating System for Support of Task Forces,” Proceedings 7th ACM Symposium on
Operating System Principles, Dec. 1979, pp. 117-129.

(Jones 86) M. B. Jones & R. F. Rashid, “Mach and Matchmaker: Kernel and Language Support for Object-
Oriented Distributed Systems,” Proceedings, OOPSLA ’86, Sept. 1986, pp. 67-77.

(Katz 86) R. H. Katz, E. Chang, & R. Bhateja, “Version Modeling Concepts for Computer-Aided Design
Databases,” Proceedings, ACM SIGMOD ’86, May 1986, pp. 379-386.

(Kers 86) L. Kerschberg, ed., Expert Database Systems: Proc. from the First International Workshop. Menlo
Park, CA: Benjamin/Cummings, 1986.

(Keta 86) M. A. Ketabchi, “Object-Oriented Data Models and Management of CAD Databases,” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 223-224.

(Khos 86) S. Khoshafian & G. P. Copeland “Object Identity,” Proceedings, OOPSLA ‘86, Sept. 1986, pp.
406-415.

(Kim 88) W. Kim & F. Lochovsky, Object-Oriented Concepts and Databases. Reading, MA: Addison-Wesley,
1988.

(Know 83) Special issue on knowledge representation. IEEE Computer 16(10), October 1983.

(Korf 66) R. R. Korfhage, Logic and Algorithms. New York: John Wiley, 1966.

(Kowa 79) R. Kowalski, Logic for Problem Solving. New York: North-Holland, 1979.

(Kuip 75) B. J. Kuipers, “A Frame for Frames: Representing Knowledge for Recognition,” in D. G. Bobrow

764 Chapter 16 Current Topics in Database Research

& A. Collins, eds.. Representation and Understanding: Studies in Cognitive Science. New

York: Academic Press, 1975, pp. 151-184.

(Lazo 81) E. D. Lazowska, H. M. Levy, G. T. Aimes, M. J. Fischer, R. J. Fowler, & S. C. Vestal, “The
Architecture of the Eden System,” Proceedings, 8th ACM Symposium on Operating System

Principles, Dec. 1981, pp. 148-159.

(Lisk 83) B. Liskov & R. Scheifler, “Guardians and Actions: Linguistic Support for Robust, Distributed
programs,” ACM Transactions on Programming Languages and Systems 5(3), 1983, pp.

381-404.

(Lloy 83) J. W. Lloyd, “An Introduction to Deductive Database Systems,” Australian Computer Journal 15(2),

May 1983, pp. 52-57.

(Lori 86) H. Lorin, “An Extended Approach to Objects,” Operating Systems Review 20(1), Jan. 1986, pp.
6-11.

(Lyng 86) P. Lyngback & W. Kent, “A Data Modeling Methodology for the Design and Implementation of
Information Systems,” Proceedings, International Workshop on Object-Oriented Database

Systems, Sept. 1986, pp. 6-17.

(Maie 86a) D. Maier, J. Stein, A. Otis, A. Purdy, “Development of an Object-Oriented DBMS,” Proceedings,
OOPSLA ’86, Sept. 1986.

(Maie 86b) D. Maier & J. Stein, “Indexing in an Object-Oriented DBMS,” Proceedings, International
Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 171-182.

(Mano 86) F. Manola, & U. Dayal, “PDM: An Object-Oriented Data Model,” Proceedings, International
Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 18-25.

(Maye 87) B. Mayer, “Reusability: The Case for Object-Oriented Design,” IEEE Software 4(2), March 1987,
pp. 50-64.

(Mend 78) E. Mendelson, Introduction to Mathematical Logic, 2nd ed. New York: Van Nostrand-Reinhold,
1978.

(Mins 75) M. Minsky, “A Framework for Representing Knowledge,” in P. Winston, ed.. The Psychology of

Computer Vision. New York: McGraw-Hill, 1975.

(Oren 86) J. A. Orenstein, “Spatial Query Processing in an Object-Oriented Database System,” Proceedings,
ACM SIGMOD ’86, May 1986, pp. 326-336.

(Peck 88) J. Peckham & F. Maryanski, “Semantic Data Models,” Computing Survey 20(3), September 1988,
pp. 153-190.

(Popl 73) H. E. Pople, Jr., ‘On the Mechanization of Abductive Logic,” Proc. Third International Joint
Conference on Artificial Intelligence, Stanford University, August 1973, pp. 147-152.

(Quin 51) W. V. O. Quine, Mathematical Logic. New York: Harper & Row, 1951.

(Reit 84) R. Reiter, “Towards a Logical Reconstruction of Relational Database Theory,” in M. L. Brodie, J.
Mylopoulos, & J. W. Schmidt, eds., On Conceptual Modelling: Perspective from Artificial

Intelligence, Databases and Programming Languages. New York: Springer-Verlag, 1986,
pp. 191-238.

(Rent 82) T. Rentsch, “Object-Oriented Programming,” SIGPLAN Notices 17(9), September 1982, pp. 51-57.

(Rowe 86) L. A. Rowe, “A Shared Object Hierarchy,” Proceedings, International Workshop on Object-
Oriented Database Systems, Sept. 1986, pp. 160-170.

(Schm 77) J. W. Schmidt, “Some High Level Language Constructs for Data of Type Relation,” ACM

Transactions on Database Systems 2(3), September 1977, pp. 247-261.

(Schw 86) P. Schwarz, W. Chang, J. C. Freytag, G. Lohman, J. McPherson, C. Mohan, & H. Pirahesh,
“Extensibility in the Starburst Database System,” Proceedings, International Workshop on
Object-Oriented Database Systems, Sept. 1986, pp. 85-92.

(Ship 81) D. Shipman, “The Functional Data Model and the Data Language DAPLEX,” ACM Transactions on

Database Systems 6(1), 1981, pp. 140-173.

(Smit 86) J. M. Smith, “Expert Database Systems: A Database Perspective,” in L. Kerschberg, ed., Expert

16.9 Summary 765

Database Systems: Proc. from the First International Workshop. Menlo Park, CA:
Benjamin/Cummings, 1986, pp. 3-15.

(Snyd 86) A. Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Languages,”
Proceedings, OOPSLA ’88, Sept. 1986, pp. 38-45.

(Spec 85) A. Z. Spector, J. Butcher, D. S. Daniels, D. J. Duchamp, J. L. Eppinger, C. E. Fineman, A.

Heddaya, & P. M. Schwarz, “Support for Distributed Transactions in the TABS Prototype,”
IEEE Transactions on Software Engineering SE 11(6), 1985, pp. 520-530.

(Ston 86a) M. R. Stonebraker, “Object Management in POSTGRES Using Procedures,” Proceedings,
International Workshop on Object-Oriented Database Systems, Sept. 1986, pp. 66-72.

(Ston 86b) M. R. Stonebraker & L. A. Rowe, “The Design of POSTGRES,” Proceedings, ACM SIGMOD
’86, May 1986, pp. 340-355.

(Tsic 88) D. Tsichritzis, ed.. Active Object Environment. Geneva, Switzerland: University of Geneva, 1988.

(Ullm 88) J. D. Ullman, Principles of Databases and Knowledge-Base Systems, vol. 1. Rockville, MD:
Computer Science Press, 1988.

(Vass 86) Y. Vassiliou, “Knowledge Based and Database Systems: Enhancements, Coupling or Integration?” in
M. L. Brodie & J. Mylopoulos, eds.. On Knowledge Base Management Systems: Integrating

Artificial Intelligence and Database Technologies. New York: Springer-Verlag, 1986, pp
87-91.

(Wate 86) D. A. Waterman, A Guide to Expert Systems. Reading, MA: Addison-Wesley, 1986.

(Wied 86) G. Wiederhold, “Knowledge versus Data,” in M. L. Brodie & J. Mylopoulos, eds., On Knowledge

Base Management Systems: Integrating Artificial Intelligence and Database Technologies.

New York: Springer-Verlag, 1986, pp. 77-82.

(Wino 75) T. Winograd, “Frames Representations and the Declarative/Procedural Controversy,” in D. G.
Bobrow & A. Collins, eds., Representation and Understanding: Studies in Cognitive

Science. New York: Academic Press, 1975, pp. 185-210.

(Wins 84) P. A. Winston, Artificial Intelligence, 2nd ed. Reading, MA: Addison-Wesley, 1984.

Database
Machines

Contents

17.1 Introduction

17.2 Database Machine Taxonomy

17.2.1 Backend Software Approach

17.2.2 Processor Associated with Memory or Intelligent
Memory Approach

17.2.3 Special Hardware Approach

17.3 DBC/1012 Overview and Features

Host System Communication Interface

Ynet

IFP

AMPs and DSUs

COP and MTPD

System Console and Printer

Data Dictionary!Directory

17.3.1 Operation of the DBC/1012

17.3.2 System Facilities of the DBC/1012

766

17.2 Database Machine Taxonomy 767

In this chapter we discuss a number of approaches used to relieve the main computer

system of the burden of running the database management system and to handle the

superfluous data not required for deriving the response to a user’s query.

17.1 Introduction

In the traditional approach to database systems (see Figure 17.1), the data is stored

on secondary storage devices and the ability to perform any logical or arithmetic

computing operations is limited to the central processor. Data has to be moved from

the secondary storage devices to the main memory attached to the central processor.

Once the data is transferred to the main memory, the processor can access it and

determine if the data is useful. Thus it is likely that a large quantity of superfluous

data will also be retrieved and processed. It has been estimated that on the average,

only 10% of the retrieved data is found to be pertinent. The utilization of indexes is

one approach used to reduce this wasteful movement and processing of data. How¬

ever, the indexes themselves take up considerable storage space and generate sub¬

stantial traffic on the input/output channels as well as a heavy processing load on the

processor.

17.2 Database Machine Taxonomy

The approach taken in database machines is to offload the database management

functions onto a special processor and optionally add some level of computing ca¬

pability closer to the data. The special processor relieves the main computer system

of the task of managing the database; the extra level of computing capability makes

it feasible to decide whether a given set of data will be useful in the evaluation of a

query without having to transfer the data to a central processing unit.

A number of approaches to moving the computing power closer to the data have

been proposed, and experimental systems for some of these proposals have been

Figure 17.1 Conventional approach.

768 Chapter 17 Database Machines

/

attempted. The references to some of these systems are given in the bibliographic

notes. These approaches can be classified as one of the following: backend software

approach; processor associated with memory or intelligent memory approach; special

hardware approach. We briefly describe these approaches in the following sections.

1 7.2.1 Backend Software Approach

In the backend software approach, sometimes called the backend computer ap¬

proach, the host computer where the applications are located is attached to a dedi¬

cated general-purpose computer and a conventional database management system

runs on this backend computer. This dedicated backend computer is responsible for

carrying out the database functions of locating and retrieving the required data as

well as ensuring security, enforcing consistency criteria, and providing for recovery

operations. This releases the host computer from database management functions.

Superior performance can be achieved by parallel processing of the application pro¬

grams and the database operations in distinct processors. A single backend computer

can be attached to a single host or a number of hosts, not necessarily identical, can

share a single backend computer.

A database request from an application program in the host computer is inter¬

cepted by special interface software, which sends the request to the dedicated back¬

end database machine. The backend machine performs the required data access and

processing operations to derive the response for the request and this response is sent

back to the host.
The backend machine can be a conventional computer dedicated to running a

conventional database management system. It can also be a system consisting of one

or more specialized processors using traditional secondary storage devices or associa¬

tive memories of one or more types. Associative memory has logic associated with

each word or each bit of the memory. The logic is used to simultaneously examine

the contents of the entire memory. Matching words are flagged and could be rapidly

located for subsequent processing.

Regardless of the nature of the backend system, it is dedicated to performing

the database functions in an optimal manner to achieve cost-effective performance.

Higher performance is achieved by the parallelism inherent in such a system.

There are certain advantages and disadvantages in dedicating a separate system

for the database functions. We already mentioned the higher performance attainable

with such a system as a consequence of parallelism and specialization. The perfor¬

mance here is measured in terms of the overall system throughput and not necessarily

the response for a single query. The response to a query in a backend approach

involves an overhead in the form of communication between the host and the back¬

end computers. As a result, the response time for a query is likely to be worse in the

backend approach compared to the conventional approach where communication be¬
tween computers is not required.

In the backend approach, since the data is under the control of a dedicated

system, data security is enhanced. This is because no user has direct access to the

backend system, all requests being handled through the host interface. Also, since

no application programs run on the dedicated system, the reliability of the database

system is improved; there is freedom from crashes that occur due to incorrect appli-

17.2 Database Machine Taxonomy 769

Figure 17.2

cation programs. However, since the overall system has more components than a

conventional system, the likelihood of failure is increased.

A dedicated database machine can be used to support the database operations

for a number of host computers and/or workstations, as shown in Figure 17.2. Such

an approach, where a number of hosts share one or more backend computers, permits

cost-effective sharing of both the data and the database management functions. How¬

ever, unless the dedicated database machine has the required capacity to handle this

load, it will create a bottleneck. Furthermore, failure of this dedicated system would

bring the operations of these hosts to a halt.

An alternative solution to relieve the bottleneck and to increase the reliability of

the backend system is to incorporate multiple dedicated database machines in the

database management functions, as shown in Figure 17.3. In this variation of the

backend approach, a number of backend computers can be used to handle a very

large database, the latter being distributed to optimize performance by allowing par¬

allel retrieval and processing of data required simultaneously. However, with this

scheme, the problems encountered are the following: the need to determine the dis-

Backend database computer approach.

Host Host

Disk
controller

770 Chapter 17 Database Machines

Figure 17.3 Multiple backend computers serving multiple hosts.

Host Host

tribution of data on the multiple backend computers; the maintenance of the directory

containing this information about the data distribution; if such a directory is not

maintained, then the overhead for determining the location of required data; consis¬
tency enforcement if data is replicated.

17.2.2 Processor Associated with Memory or Intelligent Memory Approach

In the intelligent memory approach (see Figure 17.4), sufficient processing logic is

associated with the secondary memory so that data can be processed before being

transmitted to the host processor. The host runs the database management system. If

sufficient processing capability is associated with the secondary storage device con¬

troller, it can intercept data from the secondary storage device to determine its use¬

fulness. There is no need to move superfluous data to the host system running the

database management system. The host could be a conventional system as in Figure

17.2 Database Machine Taxonomy 771

Figure 17.4 Associative memory approach.

Host computer

Database
management

system

Intelligent
device

controller Disk

17.1, running the application as well as the DBMS, or it could be a dedicated back¬
end computer.

The processing capability associated with the secondary memory is provided by

VLSI-based microprocessors and hence is cost effective. The storage device could

be electromechanical in the form of rotating disks or drums, or it could be nonme¬

chanical, e.g., magnetic bubble memories or charge-coupled devices. (In the follow¬

ing discussions, we assume that the storage devices are electromechanical; however,

the same concepts can be applied to the nonmechanical devices.) The processing

capability may be associated with a storage device in one of the following manners:

processor per track of a fixed-head type storage device; processor per surface of a

moving-head type storage device; processor per storage device; or multiprocessor and
cache approach.

In the processor-per-track approach, a processor is associated with each track

of the secondary storage device, the latter being a fixed-head disk or drum or other

such device (Figure 17.5). This type of structure is also called a cellular logic de¬

vice, since logic is associated with each cell of memory. Data from the track is

processed by the associated processor and data from all tracks can be processed

simultaneously. Thus, the entire contents of the storage device can be processed in

one pass, which in the case of a rotating storage device is a single revolution. Since
all data can be processed in a single pass, indexes are not needed.

The disadvantage of the processor-per-track scheme is that the data from all

tracks of a single device is not necessarily required and the concurrent processing of

the irrelevant data is unproductive. The cost of this type of storage device is high.

However, with the ultralarge-scale integration (ULSI) of logic components, the cost
is expected to decrease.

The processor-per-surface method is an attempt to associate processing power

with each read/write head of a moving-head type secondary storage device (Figure

17.6). The amount of data that can be processed per pass by each processor is the

same as in the processor-per-track approach; however, to process all the data from

the storage device would take m passes or revolutions, where m is the number of

tracks per surface. In the case of mechanical devices such as disks and drums, the

movement of the head from track to track takes a finite amount of time and this will

have to be accounted for in the total time required to process the data from the

device. If the storage device is nonmechanical, the switching of the cells to be pro¬

cessed can be done at much faster electronic rates. To reduce the number of passes,

indexes are necessary for these storage devices.

772 Chapter 17 Database Machines

Figure 17.5 Fixed-head disk with read/write head and processor per track.

The processor-per-device approach is an attempt to further reduce the number

of processing elements associated with the storage, and hence the cost. In this

scheme there is a single processor associated with each storage device. The processor

acts as a filter between the host computer and the device. Indexes are required to

reduce the number of passes and the amount of data actually processed by this filter

processor.

The multiprocessor and cache scheme (Figure 17.7) is an attempt to optimize

the cost-performance factor by allowing the filter processors to be assigned to process

the data from any one of a number of storage devices, or from a number of different

tracks or cells of a single device. The data to be processed is placed in one of the n

high-speed memory caches, there being m filter processors. The interconnection net¬

work is used to connect any one of the m processors to any of the n caches. Up to

m caches can be processed simultaneously; the data in these caches could be from

distinct devices or from the same device. With n > m, some of the empty caches

could be filled while m caches are being processed and buffer the difference between

the processing rate and the device access rate.

17.2.3 Special Hardware Approach

In the special hardware approach, instead of using a conventional computer as the

engine in the backend for running the database management system, a specially de-

17.2 Database Machine Taxonomy 773

Figure 17.6 Moving head disk with a single read/write head and processor per surface.

P0

Pi

_

P2n-2

P2n-1

r

arm

0

arm

i

arm

n-1

A
r
m

Track
0123... i

m
o
v
e
m
e
n
t

m
e
c
h
a
n

c
s
m

Track_
'0123. ..m-1

◄-►
Track
0123. .. I

Track T
0123...

surface 0

surface 1

surface 2

surface 2i-2

surface 2i-1

surface 2i

surface 2n-2

surface 2n-1

Figure 17.7 Multiprocessor and cache system.

H
O

s
t

c
o
m

P
u
t
e
r

s

y
s
t
e
m

Database Machines 774 Chapter 17

signed computer, usually called a database computer or database machine, is used to

perform the database functions in hardware, firmware, and software. Since the data¬

base functions are performed by dedicated hardware components, the j»rformance ot

the system is enhanced. A number of designs for database machmes have been pro-

posed; these are mentioned in the bibliographic notes.

1 Ta3 DBC/1012 Overview and Features

In this section we describe the design of one current database computer, the

DBC/1012 from Teradata Corporation. It is a self-contained database management

system that interfaces directly to the input/output channel of the host computer. It

can also be used as a local area network database server, servicing intelligent work-

Statl°The DBC/1012 (Figure 17.8) is an integrated system wherein the relational da¬

tabase management system is implemented in software, firmware, and hardware. It

Figure 17.8 Teradata DBC/1012 database computer (adapted from [Tera a]).

Host processor

Application program

Operating system

HSCI software

IFP, IFPo

AMP

System
console

Printer

IFPn

Ynet (dual)

AMP2 AMP-,

.
1

Disk storage units (DSU)

Workstation

micro-
OS, etc.

MTDP

LAN

Communication
processor

AMP,

17.3 DBC/1012 Overview and Features 775

is a dedicated system and interfaces with one or more host computers as well as

intelligent workstations connected to a LAN. It can be expanded modularly and con¬

sists of multiple microprocessors and direct-access storage devices; the database ma¬

nipulation and control functions are implemented in the software and firmware. The

interface and overall control function of the DBC/1012 is resident in one or more

interface processors and/or communication processors. The system is made up of the

following components: host system communication interface (HSCI); interface pro¬

cessors (IFP); processor interconnection network (Ynet); access module processor

(AMP); disk storage unit (DSU); system console and printer; communication proces¬
sor (COP). These components are described below.

Host System Communication Interface

The HSCI software, resident in the host computer, is responsible for supporting the

database requests of the users and applications on the host system. The HSCI allows

the users and applications to manipulate the database in the DBC/1012. It consists of
the following components:

• A library of runtime service routines called call-level interface (CLI) routines.

• The Teradata director program (TDP), which manages the interaction of

application programs and interactive users on the host system with the

DBC/1012. The TDP is also responsible for input and output from the
DBC/1012 via an IFP, as well as recovery and security.

• A set of routines called user-to-TDP communication (UTC), routines that

manage the communication between applications and the TDP.

The CLI routines present a uniform protocol for converting requests from inter¬

active users or programs into a form that can be communicated to the TDP via the

UTC. The CLI routines are also responsible for handling the responses to these re¬

quests from the DBC/1012 and forwarding it to the user or application program.

Ynet

Processors interconnect in the DBC/1012 through the Ynet bus. This is an intelligent

bus that implements the multiprocessor management, as well as interprocessor mes¬

sage routing and sorting functions in hardware. To provide reliable, fail-safe opera¬

tions, the interconnection network consists of dual Ynet buses. The Ynet allows

messages to be transmitted between the processors connected to it (IFPs, AMPs, and

COP). The node module of the basic Ynet configuration, shown in Figure 17.9, is a

three-level binary tree consisting of seven internal nodes and eight leaf nodes, the

processor modules being connected at the leaf level. Only one of the dual Ynets is

shown; the other network is identical. Each processor is connected to each of these

Ynets. The data traveling up and down the network contains control information

pertaining to the nature of the block of data and its destination. This control infor¬

mation enables the Ynet to route the block to the correct destination. The intercon¬

nection network is used as follows: A request from a user arrives at one of the IFP

processors. The IFP processor determines the nature of the request and generates a

776 Chapter 17 Database Machines

Figure 17.9 Basic configuration of the Ynet (adapted from [Tera a]).

number of work steps to respond to this request. These work steps are encoded into

data blocks that travel up the hierarchy from the IFP processor level to the node at

level 3, and then down to one or more AMPs. The downward transmission uses a

broadcast mode; the upward transmission is controlled by control information asso¬

ciated with the data block. Data retrieved by the AMPs travels up the network.

Contention logic in the network is used to sort the data moving up from the AMPs.

The control information in the data block is also used to sequence the arrival of

blocks from AMPs to a given IFP in a certain order and achieve merge/sorting of the

relevant data.
The following types of communication are provided by the Ynet: between any

two processors; from one processor to a group of processors; from a group of pro¬

cessors to a single processor; or between processors to synchronize their operations

on data. A Ynet can be expanded to support up to 968 processors.

IFP

The IFP (Figure 17.10) interfaces both with the host and the Ynets and manages the

traffic between the two. The number of IFPs depends on this traffic and can be

adjusted to match it. Each IFP is connected to both Ynets. The functions imple¬

mented in the IFPs are the following: host interface, session control, parser, dis¬

patcher, and Ynet interface. These functions are implemented in hardware or soft¬

ware and are briefly described below.
The Ynet interface in the IFP controls the transmission of messages to and the

receipt of responses from the AMPS. A message may be transmitted to a single AMP

or to a group of them.

17.3 DBC/1012 Overview and Features 777

Figure 17.10 Interface processor (adapted from [Tera a]).

YnetA Ynet B

Session control involves processing the logon and logoff requests from the host.

The messages to and from the TDP in the host are under the control of the host
interface.

A DBC/SQL request from the host is semantically interpreted by the parser.

This interpretation may need a reference to the system information stored in the data

dictionary/directory to resolve symbolic references and determine integrity con¬

straints. The parser generates a number of work steps required to process the request

and sends these to the dispatcher.

The dispatcher controls the execution of work steps and also performs the as¬

sembly of the response to be sent to the host via a response control subsystem. The

dispatcher schedules the execution of these work steps and passes them to the Ynet

interface, which in turn sends them over the Ynet to one or more AMPs. The dis¬

patcher is also responsible for monitoring the status of the work steps in the AMPS

and interacting with the response control. The response control is responsible for the

assembly and transmission of the response for a request from the host.

/
AMPs and DSUs

The access module processor (Figure 17.11) is very similar to the IFP and uses some

of the same components. The AMPs receive requests for database access over the

Ynet and respond by sending the required information back to the requesting IFP or

COP over the Ynet. Each AMP is connected to both Ynets and could have a maxi¬

mum of two data storage units. The database manager (DBM) subsystem is resident

on each AMP in the DBC/1012 and is responsible for executing the functions of

778 Chapter 17 Database Machines

Figure 17.11 Access module processor (adapted from [Tera a]).

YnetA YnetB

selecting, retrieving, or storing data onto the attached disk storage units (DSUs). The

DSUs store the data in the system; the data is distributed and replicated over the

DSUs to achieve both concurrency in access and reliability in case of the failure of

a single DSU. The components of the AMPs are the Ynet interface, the database

manager, and the disk interface. The Ynet interface is responsible for accepting re¬

quests from the IFPs or COPs via the Ynet and replying to them. The Ynet interface

is also responsible for synchronizing the operation of the AMP with other AMPs and

this allows data to be merge/sorted at the receiving IFP or COP.

The disk interface is responsible for controlling the i/O operations of the at¬

tached DSUs and communicates with them. Each disk contains space for use by the

system in addition to the database; the latter could be either primary data or optional

recovery data. The system area contains system software and system information

such as tables and indexes. For each table created in the database, the DBA can

specify if a second copy of the table is to be maintained for backup and recovery

purposes. If a second copy is required, this data is maintained in another disk at¬

tached to a different AMP from that containing the primary copy. With this scheme,

in the event the primary copy is inaccessible, the second copy can be used. The

primary data and the secondary data are distributed. This distribution balances the

load on the AMPs and allows concurrent access and processing of related data. This

distribution is an imaginative method of achieving the efficiency of the multiproces¬
sor and cache system.

17.3 DBC/1012 Overview and Features 779

The database manager is responsible for the definition, maintenance, and manip¬

ulation of the tables under control of the AMP, as well as participating in the recov¬

ery operations. The DBM receives the work steps from the dispatcher and processes

them by appropriate selection, retrieval, insertion, deletion, or modification of data

on the DSUs attached to the AMP. The DBM is also responsible for managing locks

for concurrent requests and manages consistency by sending update messages to

AMPs containing the secondary copy of data being modified. The database manager

is also responsible for sending the response to the dispatcher in the IFPs or COPs.

To facilitate data retrieval, the DBM uses two-level indexes (master index and cyl¬
inder index), processed using binary search.

Additional AMPs and DSUs can be modularly attached to the system to increase

both capacity and performance. When additional AMPs and their DSUs are attached

to the DBC/1012, the database is reconfigured by redistributing the existing tables
from the existing AMPs onto the new AMPs.

COP and MTPD

When a host computer or intelligent workstation communicates with the DBC/1012

over a local area network (LAN), the communication processor (COP) is used to

perform functions similar to those implemented in the IFP. The request to the

DBC/1012 is via messages over the network. The COP is a special-purpose IFP;

each COP is connected to both Ynets. The software resident in the host includes, in

addition to the CLI routines and BTEQ (a batch facility to submit a job containing

DBC/SQL statements as well as control statements for session control and output

formatting), the Micro Teradata Director Program (MTDP) and the Micro Operating

System Interface (MOSI). The MOSI is collection of routines for interfacing with the

host operating system and the communication protocol routines used by the host.

The COP, like the IFP, contains the session control, parser, and dispatcher sub¬

systems. These subsystems perform analogous tasks as in the IFP.

System Console and Printer

The system console, which is an IBM or compatible personal computer, is used for

operator communication to monitor the status of the system, including its current

configuration and performance. The console is also used in controlling the system

and in diagnostic operations. The printer can be used to obtain a hard copy record of

the operations of the console.

Data Dictionary/Directory

The data dictionary/directory (DD/D) contains information about the relations as well

as views on these relations and the appropriate control information. The relation

scheme consist of its attributes, the domains of these attributes, identification of the

780 Chapter 17 Database Machines

owner and creator of these relations, indexes to be maintained, a list of authorized

users and their access rights. The scheme is maintained in the DD/D.

1 7.3.1 Operation of the DBC/1012

The database system in the DBC/1012 consists of the following components: session

control, dispatcher, and database manager. Each IFP and COP is responsible for the

first two components and in addition these processors interface with the host systems.

The database manager is implemented on each AMP and is responsible for providing

the transformation from the logical database organization to the physical level; the

data is stored on the DSUs. The access aid used by the DBM is a two-level index

consisting of a master index and a cylinder index; binary search is used on these

indexes.
The user defines and manipulates the database using the following facilities:

• In DBC/SQL, the Teradata query language. This is the facility used to define

and manipulate the database. Thus, the user can define relations or views on

existing relations as well modify them using statements in DBC/SQL.

Statements in DBC/SQL allow the user to control access to the database by

establishing users and their access profiles.

• Interactively, by statements in the Interactive TEradata Query (ITEQ) language.

This includes functions for retrieving metadata about the database; entering,

editing, and executing DBC/SQL statements; and specifying the format of the
output.

• In a batch mode, using a facility provided by the Batch TEradata Query

(BTEQ) language, wherein a number of DBC/SQL statements along with BTEQ
batch commands can be executed.

• By DBC/SQL statements included in application programs in a high-level

language. These statements are converted by a language preprocessor into calls

to CLI routines. After the compilation of the source program, these CLI

routines are link-edited with the object code to generate a load module ready for

execution. It is also possible to dynamically load the CLI routines at run time.

At execution time, the CLI service routines generate a query request, which is
communicated by a UTC routine to the TDP.

• In a natural query language such as INTELLECT or a fourth-generation
language such as NOMAD.

• By using calls to CLI routines in a high-level language.

• By using a data directory/dictionary facility to access the meta information
regarding the database objects.

The user’s query requests are communicated to the TDP via UTC routines by

the CLI service routines. The TDP is responsible for managing the communication

between the application program or the user and the DBC/1012. On receiving a query

request, the TDP creates a message for the IFP, which is communicated via the host

to DBC/1012 interface. The CLI routines are also responsible for receiving the re¬

sponse to the DBC/SQL statements from the DBC, via the TDP, and forwarding it
to the application program or user that originated the request.

781 17.4 Summary

1 7.3.2 System Facilities of the DBC/1012

The DBC/1012 provides a number of system facilities for database security, integrity,
and concurrency control.

Security is implemented by means of a session protocol. A user is required to

log on to the DBC/1012 to establish a session. The logon procedure identifies the

user (or application program) and provides an account number and a password. A

session is established once the logon parameters are accepted. A session ends when

the user logs off. Unauthorized access or an attempt to access outside a session is
denied and appropriately reported.

Concurrency is implemented by locking. The locking granularity could be the

entire database, a relation, or a tuple. There are four modes of locking provided by

DBC/1012: exclusive, write, read, and access. The access lock can be used by users

who are not concerned with data consistency. The degree of concurrency is increased

since the access lock allows read operations to be executed simultaneously against a
data item locked in the write mode.

Recovery is implemented by the use of transient and permanent journals. The

transient journal is a log of updates to the database. The log entry consist of the

transaction identification and the before image or the modified data items. The tran¬
sient journal is used to undo a single transaction error.

The permanent journal is an optional second method of recovery implemented

in the DBC/1012. The DBA decides to log either the before image or the after image

of data items in the log of the permanent journal. The log could be single or double;

in the latter case redundancy in the log is provided by recording two copies of the
before or after image.

Archiving (dump) is performed by making copies of the database and permanent

journal at regular intervals. Checkpoint facility is part of the permanent journaling
feature.

Recovery from failures is achieved by rollback or roll forward optionally to a
specified checkpoint.

Summary

In the traditional approach to database systems, the DBMS runs on the same com¬

puter as the user programs. The data in this approach is stored on conventional ro¬

tating memories. It is necessary to move the data to the central processing unit for

processing and to determine what portion of it is needed to respond to a user’s query.

We discussed a number of approaches that have been used to place some of the

database management load on a separate system. In some of these approaches, some

form of computing capability is provided near the data, which avoids moving super¬

fluous data to the main processing unit. The processor per track or cellular logic, the

processor per surface, the processor per device, and the multiprocessors and cache

are attempts to provide processing close to the data. We also described one instance

of a commercially available special-purpose computer that handles the database man¬

agement functions.

782 Chapter 17 Database Machines

database machines

backend software

backend computer

associative memory

intelligent memory

processor per track

cellular logic device

processor per surface

processor per device

multiprocessor and cache

special hardware

Bibliographic Notes

With the development of database management systems, the load placed on the system of

second and third generation computers far exceeded their capabilities, which led to the concept

of database computers. One of the first reports of a prototype development of backend database

computers was the XDMS project of Bell Labs (Cana 74). Earlier, Slotnick (Slot 70) had

proposed a logic-per-track storage device. The cellular logic device is a generalization of

Slotnick’s logic-per-track concept. Examples of this approach are the CASSM (Su 79), the

RAP (Schu 78), and the RARES (Lin 76) projects. The processor-per-surface approach was

used in the DBC project (Bane 78). DBC/1012 (Tera a) is an example of the processor-per-

surface approach which, with the distribution of data on different AMPs, achieves the effi¬

ciency of the MPC approach. The DIRECT project (Dewi 81) is another example of the MPC

approach. More recent systems are described in (Hsia 83), (MDBS); (Fish 84), (Jasmin); (Kits

85), (Grace); and (Dewi 86), (GAMMA).

(Mary 80) presents a tutorial on the software backend computer approach. With the in¬

creasing use of the relational model, there was an increase in emphasis on developing systems

to improve the performance of the relational model in hardware (Babb 79), (Bane 78), (Dewi

81), (Lin 76), (Smit 79). The use of content-addressable memories is not cost effective and

they remain controversial (Hawt 81). Commercial database machines continue to use conven¬

tional rotating memories.

Textbook-oriented discussions of database computers are presented in (Hsia 83) and

(Su 88).

Bibliography

(Babb 79) E. Babb, “Implementing a Relational Database by Means of a Specialized Hardware,” ACM Trans,
on Database Systems 4(1), March 1979, pp. 1-29.

(Bane 78) J. Banerjee, D. K. Hsiao, & R. I. Baum, “Concepts and Capabilities of a Database Computer,”
ACM Trans, on Database Systems 3(4), 1978, pp. 347-384.

(Berr 79) P. B. Berra & E. Oliver, “The Role of the Associative Array Processor in Database Machine
Architecture,” Computers 12(3), March 1979, pp. 53-63.

(Cana 74) R. H. Canady, R. D. Harrison, E. L. Ivie, J. L. Ryder, I. A. Wehr, “A Backend Computer for
Database Management,” Comm, of ACM 17(10), October 1974, pp. 575-582.

(Date 83) C. J. Date, An Introduction to Database systems, vol. 2. Reading, Ma: Addison-Wesley, 1983.

(Dewi 81) D. J. DeWitt, “Direct—A Multiprocessor Organization for Supporting the Relational Database
Management Systems,” IEEE Trans, on Computers C-28, June 1979, pp. 395-406.

(Dewi 86) D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, & M. Muralikrishna,
“GAMMA: A Performance Dataflow Database Machine,” Proc. of the 12th International
Conf. On Very Large Data Bases, Kyoto, Japan, August 1986, pp. 315-344.

783 17.4 Summary

(Fish 84) D. H. Fishman, Ming-Yee Lai, & W. K. Wilkinson, “Overview of the Jasmin Database Machine ”
Proceedings of the ACM SIGMOD, 1984, pp. 234-239. ’

(Haw, 81) P. B. Hawthorn & D. J. DeWitt. "Performance Analysis of Alternative Database Machtne

Architectures, IEEE Trans, on Software Eng. SE-8, January 1982, pp. 61-74.

(Hsia 83) D K' Hsiao, et al., “The Implementation of a Multibackend Database System (MDBS) Part 1—An
Exercise in Database Software Engineering,” in D. K. Hsiao, ed., Advanced Database
Machines. Englewood, NJ: Prentice-Hall, 1983, pp. 300-326.

(Kerr 79) D. S. Kerr, “Data Base Machines with Large Content-Addressable Blocks and Structural Information
Processor, IEEE Computers 12(3), March 1979, pp. 64-79.

(Kits 85) M. Kitsuregawa M Fushimi, H Tanaka. & T. Moto-oka, "Memory Management Algorithm in
tpe and Merge Sorter, in D. DeWttt & H. Boral. eds., Pro, of the 4th International

Workshop on Database Machines. New York: Springer-Verlag, 1985, pp. 208-232.

(Lang 79) G. G. Langdon “Database Machine, An Introduction,” IEEE Transactions on Computers TC 28(6)
June 1979, pp. 381-383.

(Lin 76) C. S. Lin D. C. p. Srmth, & J. M. Smith, “The Design of a Rotating Associative Memory for

Relational Database Applications,” ACM Trans, on Database Systems 1(1), March 1976 pp
53—65. ’

(Mary 80) F. J. Maryanski, Backend Database Systems,” ACM Computing Survey 12(1) March 1980
pp. 3-26.

(Schu 78) S. A. Schuster, H. B. Nguyen, A. E. Ozkarahan, & C. K. Smith, “RAP.2—An Associative

Prwessor for Databases and its Applications,” IEEE Transactions on Computers, 1978 Vol
C28(6) pp. 446-458.

(Slot 70) D. L. Slotnick, “Logic per Track Devices,” in Advances in Computers, vol. 10. New York-Academic
Press. 1970, pp. 291-296.

(Smit 79) D. C. P. Smith & J. M. Smith, “Relational Database Machines,” IEEE Computers 12(3), March
1979. pp. 28-39.

(Su 79) S. Y. W. Su^“Cellular Logic Devices: Concepts and Applications,” IEEE Computers 12(3), March

(Su 88) S. Y. W. Su, Database Computers: Principles, Architectures and Techniques. New York' McGraw-
Hill, 1988.

(Tera a) DBC/1012 Data Base Computer, Concepts and Facilities, C02-0001-04. Los Angeles, CA: Teradata
Corporation.

(Tera b) DBC/1012 Data Base Computer, Reference Manual, C03-0001-06. CA: Teradata Corporation.

(Tera c) DBC/1012 Data Base Computer, User’s Guide, C09-0001-07. Los Angeles, CA: Teradata
Corporation.

(Tera d) DBC/1012 Data Base Computer, Systems Manual, C10-0001-06. Los Angeles, CA: Teradata
Corporation.

Appendix

3.1
•. ,-i.. . "'r'<.

Sequence

Let s be some sequence of elements. The kth element of the sequence is specified as

s(k), the number of elements in the sequence as #s. To specify that e is an element
of s, or not an element we write e € s, or e l s, respectively.

To determine whether or not, e, is an element of sequence s, we have the
program:

i := 1

while (i < #s) and (s(i) + e)

i := i + 1
end while

if i > #s then return (false)

else return (true)

This program sequentially accesses every element. Thus, if the element access re¬

quests are uniformly and randomly distributed, the average number of elements ac¬
cessed for each find is #s/2.

We can insert an element in the sequence s

s' : = s + e

where s' represent the sequence after the insertion operation denoted by +, #s' =

#s+ 1 and s'(#s') = e. The intersection is always made at the end of the sequence.
Thus, the insert program would be:

while i < #s do { while not end of sequence do }
s'(i) : = s(i) { copy s into s' }

i : = i + 1

end while

s'(i) := e { insert element into s' }

785

786 Appendices

The deletion of an element e from s is:

s' : = s - e

where — indicates the deletion operation and s' is the new sequence after the deletion

such that:

#s' = #s 1, and

if s(i) = e then
s'(j) = s(j) for j =1,2, . .
s'(j) = s(j + 1) for j =i,i+l, •

i-1
., #s 1

That is to say, one occurrence of e in the sequence is removed and the sequence

rearranged, so that no gaps exist.
The last operation we define is replace (or modify):

s' : = s * e%e'

which should be read as, “modify an occurrence of e in s to become e'”, and where

#s' = #s, and
if s(i) = e then T~ s'(j) = s(j), forj + i

L s'(j) - e', for j — i

So far, we have only considered unordered sequences. In an ordered sequence

the elements satisfy some given order, viz.

s(i) 0 s(j), if i > j

where 0 € [>,<] defines the ordering. Thus, for non-decreasing (or ascending) order

we have :

s(i) 2= s(j), if i>j

and for non-increasing (or descending) order, we have:

s(i) < s(j), if i > j.

The operations on ordered sequences would need to be, suitably, modified. As

such, the program for the find operation would be changed, as the if condition now

becomes "s(i)¥=e or i>#s. The element insert operation, now, has to maintain the

order and the program becomes :

i := 1

while (s(i)0e and i < #s) do

s'(i) = s(i)
i : = i + 1

end while

if i < #s then

s'(i) := e
for j : = i to #s do s'(j + 1) : = s(j)

else s'(#s+ 1) : = e

So far, we have been considering only atomic elements, these being the ele¬

ments that cannot be further subdivided. The ordering could, thus, be simply speci¬
fied on the elements.

787 3.1 Appendix

For both ordered and unordered sequences, we may specify that every element

of the sequence is distinguishable from all other elements in the sequence as each is

unique. This requires some changes to the operations. An element, e is, only, in¬

serted m s, if e i s. Deletion requires that e l s', and that the relational operator 0
^ l"» ^ J •

Lastly, we wish to consider the sequences of elements of which they themselves

are a collection (elements or sequence). Consider a sequence s and s(i) is an element

of s. However, s(i) is also a sequence, and thus, s(i)(j) represents the jth element of
the ith element of s; we shall write this in the more convenient form s(i,j). It is

simple to modify our operations to handle this situation. In ordered sequences, we

have to decide which components of our elements would be chosen for the orderings.
Earlier in our example on birth dates, we had considered ordering by date. What

should one do if two persons have the same date of birth? Thus, in some ordered
sequences a compound order may have to be defined :

s(i,k,) 0, s(j,k,) A s(i,k2) 02 s(j,k2) A,

where 0j $ {>,<} (for unique elements, we have 0j £ {>,<}.

Average
Seek Distance
Computation

Let the file consist of N consecutive cylinders. For a given seek request, let i repre¬

sent the current (or starting) cylinder, and j the destination cylinder.

The seek distance is |i— j| cylinders, and the average seek distance is, therefore,

given by:

| N N

average seek distance = -3 2 2 |i~j|
N~ i =1j =1

If we take the distance from the center, the above expression can be rewritten and

simplified as follows:

j N '

average seek distance = —2 2 2 ^ (i —j)
N“ i= 1 j = 1

= 7*72 S2 (i — 1 + i —2 + . . . + i-1)
IN i= 1 •

Jp&O1-' -2. . . -i)
IN i = 1

= 772 §2(i2-(l + i)i/2)

= ^S2(i* (i — l)/2)
IN i = I

1 N

= N5,?, (i2“°

789

790 Appendices

= ~2 (N*(N ■(■ 1)*(2N + l)/6 - N*(N + 1)/2)

_ N2 - 1

3N

For N >> 1, the average seek distance can be approximated by N/3.

Appendix

‘-•A »V>:-

Rotational
Delay
(Latency)

The circular track on a disk is divided into a number of sectors. Sectors may be hard

or soft. Hard sectors are physically fixed and a physical gap exists between such

sectors. Soft sectors are defined by the software system. The rotational delay is the

time needed to position the read/write head on the correct sector.

Let the disk be rotating at s revolutions per minute. The time taken for the disk

to rotate half a revolution is given by rt where r, is given by:

60 * 103

ft ” 2s mS

In the case of a hard sector type device, the sectors are physically implemented

and the disk controller is able to detect the start of each sector. It takes, on the

average, half a revolution before the correct sector is under the read/write head, and,

hence, the average rotational delay, rth, for this type of device is the same as rt.

For the soft sector type device, let us assume that there are b sectors per track,

and the start of a track is implemented physically on the disk. On the average, it

would take k sectors to move past the head, before the start of track appears under

the head; k being given by:

k = (b — l)/2

The average time needed before the start of track is detected is given by 2*k*r,/

b, and the average rotational latency, rts, is given by:

r,s = rt* (2- 1/b)

791

Appendix

3.4
Probabilities

Let us consider the probability of accessing records in a block. Let n be the number

of records per block and p be the probability that a block will be accessed (block hit

ratio). We are assuming that the probability of accessing the blocks is uniform.

If we assume uniform access probabilities, then the probability of hitting a rec¬

ord in the block is p/n.

Thus, the probability that a given record in the block will not be accessed is (1 -

p/n), and the probability that no record in the block will be accessed is (1 - p/n)n.

The probability of accessing at least one record in a block is thus given by 1 —

(1 — p/n)n.

As n increases, the probability that no record in the block will be accessed

approaches e-p, and the probability of accessing at least one record in a block ap¬

proaches (1 — e p).

793

Appendix

4.1
Formal

Definitions

of Some

Relational

Algebraic
Operations

Cartesian Product

We defined the extended cartesian product of two relations as the concatenation of

tuples belonging to the two relations. Formally we can define a cartesian product of

two relations P(Tp,ANp,np,mp) and Q(TQ,ANQ,nQ,mQ) as follows:

R = P x Q where

t 6 Tr where t = t, || t2 for all t, £ TP and t2 £ TQ,

ANr = ANP U ANq, assuming unique attribute names in

ANP and ANq,

R = P II Q
nR = nP + nQ, and

mR = mp * mQ.

795

796 Appendices

Projection

We define first the projection of a relation P(Tp,ANP,np,mP) on a single attribute

name, A£ ANP. This is defined in terms of the extraction of a value for each tuple in

P corresponding to the attribute A. The projection of tuple t (TP over A, denoted

by t[A] or iTA(t), is the value v corresponding to the attribute A. The projection of P

over A, denoted by P[A] or tta(P), is a single attribute relation R(Tr,A, 1, mR),

where mR < mP and t (TR = TT^(tp) for all tP £ TP. The cardinality of R(i.e., mR),

may be less than the cardinality of P(i.e., mP), as duplicate values of attribute A

would be deleted.

We can then define the projection of a relation on a set of attributes, X, as a

concatenation of extracted values for each attribute in X, for every tuple in the rela¬
tion.

R = '"xfP)

such that

t £ Tr where t = irA,(tp) || irA2(tP) || . . . || TrAk(tP) for all tP £ TP

where {AM A2, . . . ,Ak} = X and X C ANP

Thus, ttx(P) the projection of a relation P on the set of attribute names X C

ANP, is the projection of each tuple tP (: TP on the set of attribute names X. The
result is a relation R(TR,X.nR,mR) such that:

R = ttx(P)

tR € Tr where tR = Trx(tP) for all tP 6 Tp

nR < nP and mR < mP

If |X| = |ANP|, i.e., the projection is over all attributes, however, the order of

these could be rearranged, then the projection operation would rearrange the attri¬
butes of P.

Selection

Given a relation, P(TP, ANP, nP, mP), and a predicate expression, B, the selection

operation which gives a result relation, R(Tr, ANr, nR, mR), is given below:

R = crB(P)

where t € TR <h> t £ TP A B(t)

nR = nP>

ANr = ANP, and

mR < nip

Join A Formal Definition

The join of two relations P(TP,ANp,nP,mp) and Q(TQ,ANQ,nQ,mg) giving a result
relation R(TK,X,nR,mR) is defined, formally, as:

4.1 Appendix 797

R = PNQ

t € Tr where t = t, || t2 A t, (TP A t2 (TQ A (ir^t,) 0j irBi(t2))

where 0j is some comparison operator (0j C {= , + ,<,<,>,>}) and (Ai £ ANP,

Bj 6 ANq, (dom(Ai) = dom(Bj))) for i= 1,2, . . ., k

0 < mR < mp*mQ

nR = nP + nQ

Q = ANP U ANq

In general, ANP fl ANq may be null and this guarantees uniqueness of attribute

names in the result relation. Two common variants of the join are the equi-join and

natural-join.

In the equi-join, the comparison operators 0s(i = 1,2, . .,n) are always the

equality operator (=).

In the natural join the comparison operators 0 are always the equality operators

and ANP D ANQ + 4>. Thus, |ANP fl ANQ| = k join attributes are common in the

relations P and Q and, consequently, only one set of the join attributes needs to be

preserved in the result relation (nR = np + nQ — k where k is the number of join attri¬

butes). Therefore, in natural join X = (ANP U ANQ) — (ANP fl ANQ).

Division

Formally, we can define the division operation on two relations P(TP,ANP,nP,mP)

and Q(TQ,ANQ,nQ,mQ), where ANP C ANq. We assume that the attributes which

are common to P and Q are named A, for i = 1,2, . . ., |ANq|.

R = P h- Q

where

t € TR = t € TT(ANP — ANq)(P)

(Such that for all tq £ TQ, there exists tP £ Tp = tq || t.)

The division can also be expressed as:

R = P + Q such that t € TR = ir(ANp _ AnQ)(^b(P))»

where the predicate expression B is given as a conjunction C| A C2 A . . . A Q A
. . . where each Q is of the following form:

(TTAj(tP € Tp) = iTA.(tP € Tq)) where A; € ANQ.

Figure A.4.1

Recursive

Queries:

Transitive
Closure

Consider the relation: EMPLOYEE (Emp#, Name Manager). Here the attribute

Emp# is a key of the EMPLOYEE relation. Every employee has a manager, and as

managers are also employees, we may represent managers by their employee num¬

bers. Figure A.4.1 illustrates an example of such an employee relation. The Manager

attribute represents the employee number of the manager. Manager is a foreign key

which is referring, in this case, to the primary key of the same relation. An employee

can only have a manager who is also an employee.

EMPLOYEE Relation.

Emp# Name Manager

101 Jones @

103 Smith 110

104 Lalonde 107

107 Evan 110

110 Drew 112

112 Smith 112

799

800 Appendices

The attribute Manager is a foreign key which establishes a relationship between

one employee and another where one employee is the manager and the other is the

managed. As a manager is an employee a given employee such as 112, may directly

manage another employee such as 110, or indirectly manage an employee such as

103. Effectively, the relationship between employees is recursive.

We could use relational algebra to find all employees managed directly by a

given employee. However, in finding all employees who are managed directly or

indirectly by a given employee requires the implementation of some form of loop.

This operation is called computing the transitive closure of the management hierar¬

chy. Formally the transitive closure of a relation R is the smallest relation S that

includes R and is transitive. This means that if S(a,b) and S(b,c) implies S(a,c).

This type of query cannot be implemented directly in relational algebra or the

two forms of relational calculus.

Syntax
of SQL

The following is the syntax of the portion of SQL described in the text.

create table <relation> (<attribute list>)

where the <attribute list> is specified as:

<attribute list> ::= <attribute name> (<data type>) [not null] [,<attribute

list>]

<data type> ::= <interger>|<smallint>|<char(n)>|<varchar(n)>|

<float>|<decimal(p[,q]>

alter table existing-table-name

add column-name data-type [, . . .]

create [unique] index name-of-index

on existing-table-name

(column-name [asc or desc]

[,column-name[order] . . .])

[cluster]

drop table existing-table-name;

drop index existing-index-name;

select [distinct] Ctarget list>

from Crelation list>

[where <predicate>]

801

802 Appendices

• the distinct option is used in the select statement to eliminate duplicate tuples

in the result. Without the distinct option duplicates tuples appear in the result,

• the <target list> is a method of specifying a projection operation of the result

relation and it takes the form:

Ctarget list> <attribute name> [,<target list>]

• the from clause specifies the relations to be used in the evaluation of the

statement and includes a relation list

<relation list> ::= Crelation name> [tuple variable] (,<relation list>]

• the where clause is used to specify the predicates involving the attributes of the

relation appearing in the from clause.

update <relation> set <target_value_list> [where <predicate>]

where the Ctarget value list> is of the form:

<target value list> ::= <attribute name> = C value expression>

Retarget value list>]

delete <relation> [where <predicate>]

insert into <relation>

values<<value list>>

where the <value list> takes the form:

<value list> :: = <value expression> [,<value list>]

insert into <relation> (Ctarget list>)

values<<value list>>

and the Ctarget list> takes the form:

Ctarget list> :: = Cattribute name> [,Ctarget list>]

The value clause can be replaced by a select statement, which is evaluated, and

the result is inserted into the relation, specified in the insert statement.

SQL also provides the following set of built-in functions: count, sum, avg,

min, max. The operand of each of these functions is a column of an existing rela¬

tion. DISTINCT may be specified with the argument to eliminate redundant dupli¬

cates.

SQL provides a number of set operators. These are the any, in, all, exists, not

exist, union, minus, intersect, and contains operators.

create view Cview name> as Cquery expression>

drop view Cview name>

fih.

Syntax
of QUEL

The following is the syntax of the portion of QUEL used in the text.

create Crelation name> (<attribute list>)

where <attribute list> is defined as:

<attribute list> :: = <attribute name > = <format>[,<attribute list>]

range of <tuple variable> is <relation name>

index on <relation name> is index_name

(attribute_name [,attribute_name . .])

destroy <name[,name,. . .]>

modify relation_name to storage-structure [on attribute] [order ascend-

ing|descending] [, . .]]

retrieve [unique] (Ctarget list>)

[where <condition>]

QUEL provides a number of aggregation operators to be used in expressions.

The aggregation operators supported are any, avg, min, max, count, and sum.

aggregation operator (<expression>)

retrieve into <new-relation> (Ctarget list>)

[where <condition>]

append to Crelation name> (Cvalue listc)

[where Ccondition>]

803

804 Appendices

are the value list takes the form

<value list> ::= <attribute name> = <value expression> [,<value list>]

replace <tuple variable> (<value list>)

[where <condition>]

delete <tuple variable>

define view VIEW_NAME <target_list>

[where <predicates>]

destroy VIEW_NAME

Index

Numbers in italics indicate an

illustration.

Abductive reasoning, defined, 722

Abstraction, defined, 53. See also

Aggregation; Generalization

Access, types of, 621. See also specific

headings

Access aids, uses of, 27

Access context control, uses of, 618

Access files, secondary keys and, 114-

15

Access mappings, uses of, 90

Access matrixes, 619

uses of, 619-20

Access module processors (AMP),

777-78, 779

Access plans

query processing and, 469-70

uses of, 461, 505, 507

Access time, defined, 80, 82

Access type control, 617-18

Action-consistent checkpoints, defined,

527

Acyclic, defined, 566

Addressability, defined, 751

Aggregate functions, uses of, 253

Aggregation, 56. See also Abstraction

defined, 56

Query-By-Example and, 275-76

Query Language and, 250-55, 265

Structured Query Language and,

220-21, 233-34, 242

uses of, 56-51

Algorithms

for Boyce Codd normal form, 330

for B + -trees, 128

for closure, 299

for deadlocks, 598

for decomposition, 321, 323, 325,

330

for deletions, 109

for dependency preserving, 323, 325

for fourth normal form, 358

for hashing, 109

for index-sequential searches, 96

for insertions, 109

for join dependencies, 367

for lossless join decomposition, 321,

325, 358

for many-to-many relationships, 491

for membership, 301

for nonredundant covers, 302

for probe computation, 704

for queries, 504

for records

getting of, 85

insertion of, 86

for searches, 109

for serializability, 566-69

for sort and merge method, 491

for synthesis, 345-48

for third normal form, 325, 347

for views, 504

All, uses of, 228-29

ALOHA, 666

Alternate keys, defined, 6

Alter statements

syntax of, 214

uses of, 213

American National Standards Institute

(ANSI), 33

ANSI/SPARC model, architecture of,

14-19

Antecedents, defined, 733

Any, uses of, 225-26, 251

Append

format of, 256

uses of, 256-57, 258

Application-dependent domains,

defined, 154

Application-independent domains,

defined, 154

Application programmers, defined, 21

Application programs, transactions and,

520

Apprentice sites, defined, 710

Archival databases in stable storage

defined, 530, 549

uses of, 549

Archival logs, uses of, 530, 549

Archive databases, defined, 514

Area, defined, 403

Arity. See Degree

Armstrong, W. W., 297

Armstrong axioms, 297

Ash, W. L., 74

Assert, uses of, 635

Associations

attributes and, 155

defined, 36

relationships and, 44-45

types of, 35, 36, 37-40

Associative memory

characteristics of, 768

defined, 725n.4

Associative relations, defined, 160

Atomic domains, defined, 154

Atomic formulas, defined, 185

Atomicity

concurrency management and, 603

defined, 523

Atomic operations, uses of, 521

Atoms, representation of, 189

805

806 Index

Attribute associations

defined, 36

relationships and, 47-48

Attributes. See also Keys

associations and, 155

characteristics of, 154

defined, 2, 3-4, 36, 60, 153, 396

domains and, 5-6

masking and, 11, 72

relational data models and, 153-55

representation of, 84

storage of, 8-9

uses of, 83, 88

values and, 4, 5, 8-9

Attribute values, defined, 8

Auditing, uses of, 639, 641

Audit time, defined, 634

Audit trails, defined, 516

Authorization

defined, 611, 619, 640

uses of, 625

Authorization grant trees, uses of, 621 —

23

Authorizes, defined, 612

Automatic

defined, 399

set manipulation and, 419-20

Auxiliary procedures, defined, 634

Avg, 220

uses of, 251, 275-76

Bachman, C. W., 64, 74, 425

Backend computers, 768

Backend software, 769

characteristics of, 768

database machines and, 768-70

Backend software approach, 768

Backward chaining, 746

defined, 736, 744

Backward error recovery, uses of, 517

Base relations, defined, 237

Basis, defined, 355

Bernstein Synthesis algorithm, 345

Binary relationships, 49

defined, 41, 49

N-ary relationships and, 74

Binding, defined, 505

Birth_sites, defined, 678, 679, 710

Black box approach, 748, 750

defined, 748

Blocking, defined, 695

Blocks, defined, 27, 95. See also

Buckets

Bottom-up approach, uses of, 649

Bound, defined, 186, 189

Boyce Codd normal form (BCNF). See

also Fourth normal form

advantages of, 328

algorithm for, 330

defined, 328

lossless join decomposition and,

329-33

Bridges, 668

uses of, 667

B-trees, 132

B +-trees, 127

advantages of, 132, 135

algorithm for searching, 128

capacity of, 132, 133

characteristics of, 125-26, 137

deletions and, 127, 130-32

insertions and, 127, 128-iO, 132

operations and, 127-32

searches and, 127, 128

Bucket address tables (BAT), 110, III

Buckets. See also Blocks

defined, 95

hashing and, 106, 107, 108, 110

Buffer management

defined, 544

recovery and, 544-46

Buffer managers

defined, 544

uses of, 544, 546

Buffers, 545

defined, 517, 544

Bus networks, 665

By clauses, uses of, 253, 254

Bytes

organization of, 86

uses of, 84

Caching the remote catalog, defined,

678

Caesar code, defined, 628

Candidate keys, defined, 6, 41

Canonical covers, defined, 302

Cardinality, defined, 147

Carrier sense multiple access with

collision detection (CSMA/CD),

666

Cartesian products, 169. See also

Relational algebra

defined, 152, 168

uses of, 176

Cascading deletions, defined, 164

Cascading rollbacks

defined, 603

uses of, 588

Cells, 123

contents of, 79

defined, 123

organization of, 101

uses of, 103

Cellular lists

defined, 123

organization of, 123, 136, 137

secondary keys and, 122-23

Cellular logic devices. See Processor-

per-track

Centralized database management

systems

characteristics of, 661

locking and, 668

recovery and, 524-32

Centralized databases, uses of, 475

Centralized schema design, uses of,

648-49

Chain rules, defined, 729

Checkpoints. See also specific

checkpoints

recovery and, 526-29

uses of, 526-29, 549

Child pointers, 429, 453

uses of, 429, 452

Classes, defined, 749

Class inheritance, uses of, 754

Closed, defined, 187

Closed systems, defined, 616

Closed world assumptions (CWA),

defined, 732

Closure

algorithm for computing, 299

defined, 297, 298

functional dependencies and, 297-

300

multivalued dependencies and, 354-

57

Cluster options, 214

Codd, E. F., 74

Collisions

defined, 106

direct files and, 106, 137

hashing and, 137

Commitment, distributed database

management systems and, 694-

700

Committee on Computers and

Information Processing (ANSI/

X3), 33

Index 807

Communication control programs, uses

of, 26

Communication processors (COP), 779

Compatibility, defined, 748

Complex multilevel sets, 383, 384

network data models and, 382-84

Composite domains, contents of, 154

Conceptual databases, defined, 15

Conceptual levels, 15, 18

mapping and, 17, 19

uses of, 14-15

Conceptual records, 12

defined, 11

Conceptual schemas

contents of, 14-15

defined, 14

Conceptual views, 13

characteristics of, 16

defined, 13, 14

mapping and, 15-16, 17

Concurrency, DBC/1012 and, 781

Concurrency control. See also Locking;

Multiversion; Optimistic

scheduling; Timestamp ordering

concurrency management and, 569-

70, 603

distributed database management

systems and, 688-94, 715

uses of, 569-94

Concurrency management

atomicity and, 603

concurrency control and, 569-70,

603

deadlocks and, 594-602

locking and, 569, 570-83

multiversion and, 570, 591-94

optimistic scheduling and, 569-70,

588-90

problems with, 556-61

recovery and, 603

semantics and, 561-62

serializability and, 562-69, 603

timestamp ordering and, 569, 583-

88

uses of, 555, 603

Conflict analysis graphs, 709

Conflict resolution, defined, 734

Conjunctive, defined, 269

Conjunctive normal form, defined, 468

Conjunctive predicates, 273

Conjunctive queries, defined, 120

Connect, uses of, 407

Connection records. See Intersection

records

Consequents, defined, 733

Conservative timestamps, uses of, 708

Consistency

defined, 523

distributed database management

systems and, 686-88, 715

Consistency errors, 515

Constants, uses of, 185

Contains, uses of, 227-28

Content-dependent access control,

defined, 616

Content-independent access control,

defined, 616

Content preserving, defined, 306

Contracting phases, defined, 574

Control, uses of, 639

Control codes, 453

Control intervals

defined, 105

virtual storage access method and,

104, 105

Coordinator sites, defined, 686

Count, 220

uses of, 251,275-76

Covers

defined, 300

functional dependencies and, 300-

303

Create index statements, syntax of, 214

Create statements

format of, 213

syntax of, 243

uses of, 212-13, 243

Create view, uses of, 237-39

Cryptography, uses of, 627-29

Currency indicators

defined, 406

setting of, 410

uses of, 443

Current databases

contents of, 530

defined, 529

Current logs, contents of, 530

Current of the run unit, defined, 406

Current page tables, uses of, 540, 541

Current records of record types,

defined, 406

Current records of set types, defined,

406

Customer Information Control System

(CICS), 709

Cycles. See also specific cycles

defined, 391

network data models and, 391-95

Cyclic, defined, 566

Cyclic queries, uses of, 685-86

Cylinder indexes, uses of, 103

Cylinders. See Cells

Dangling tuples, defined, 333

DAPLEX

background of, 712

contents of, 713

uses of, 714, 715, 756

Data, defined, 30

Data aggregates, defined, 396

Database administrators (DBA)

defined, 10, 21

duties of, 27-29, 31, 200, 611,

615-16

Database control, uses of, 639

Database control systems. See Data

managers

Database design

computing system decisions and,

649-50, 655

final design and, 650-54, 655

information systems and, 645 , 646

operation of, 655

preliminary design and, 648-49,

650, 655

problem definition and, 645, 655

steps for, 645-55

system analysis and, 646-48, 655

testing of, 654-55

tuning of, 655

uses of, 654-55

Database integrity

defenses for, 629-36, 640-41

defined, 611, 612, 629

threats to, 612-13, 629, 634

uses of, 639

Database machines

backend software and, 768-70

characteristics of, 767

intelligent memory and, 770-72

special hardware and, 772-74

Database management systems

(DBMS). See also specific

headings

advantages of, 27-29, 30

characteristics of, 723-24

contents of, 21-23

defined, 2, 20

design of, 645-55

disadvantages of, 29-30

knowledge base management systems

and, 723-24

808 Index

logical records and, 13

masking and, 12

models and, 2-7

nondatabase operating environments

and, 13

organization of, 23-27

shared data and, 10-/7, 12, 28

users of, 20-21

uses of, 2, 9, 22, 30-31, 200-201

Databases, defined, 2

Database security

DBC/1012 and, 781

defenses for, 614-29, 640

defined, 611, 612, 629

distributed database management

systems and, 705

granularity and, 620

threats to, 612-13, 640

Database systems, defined, 2, 30

Database Task Group (DBTG) data

models. See Network data models

Database Task Group (DBTG) records,

contents of, 395

Database Task Group (DBTG) sets

area and, 403

contents of, 397-98

defined, 378, 397, 422

manipulation of, 414-20

members of, 398-402

network data models and, 378-80,

384-85

operations and, 413-21

restrictions on, 384-85

selection and, 402-3

singular sets and, 403

structural constraints and, 402

uses of, 384, 385

Database Task Group of the Conference

on Data System Languages

(DBTG/CODASYL), 63, 74,

377, 425

Data definition facilities, defined, 22

Data definition language (DDL)

compilers, defined, 23

Data definition languages (DDL),

defined, 22

Data Description Language Committee

(DDLC), 425

Data description languages (DDL),

background of, 425

Data dictionaries

defined, 22

uses of, 26, 677-78

Data dictionaries/directories (DD/D),

779-80

Data elements. See Attributes

Data Encryption Standard (DES), 628

Data fields. See Attributes

Data files

contents of, 26

defined, 93

Data integrity, defined, 28

Data items. See Attributes

Data managers

access and, 27

defined, 23, 31

uses of, 23, 27, 31

Data manipulation facilities. See Data

manipulation languages

Data manipulation languages (DML).

See also Query-By-Example;

Query Language; Structured

Query Language

characteristics of, 23

commands and, 407

contents of, 405-7

defined, 22

host languages and, 260-62

uses of, 22, 405

Data models. See also specific data

models

background of, 72

defined, 35

types of, 45

uses of, 35

Data storage definition languages,

defined, 22

Data structure diagrams

background of, 425

uses of, 64, 74

Data transfer time, defined,

82

DBC/1012, 774

characteristics of, 774-75

concurrency and, 781

contents of, 775-81

database security and, 781

operation of, 780

recovery and, 781

DB-Status, contents of, 443

Deadlocks

algorithm for detection of, 598

avoidance of, 599-602, 604-5

causes of, 595

concurrency management and, 594-

602

defined, 556, 594, 604

detection of, 595-97, 598, 605,

702-5, 715

distributed database management

systems and, 700-705,-716

locking and, 583, 604

multiversion and, 594

optimistic scheduling and, 590

prevention of, 516, 705

recovery and, 595-96, 597-99

timestamp ordering and, 588

two-phase locking and, 576

Decision phases, 696

Decomposers, uses of, 714

Decomposition

algorithms for, 321, 323, 325, 330

characteristics of, 306, 372

defined, 289

disadvantages of, 341, 342, 372

effects of, 341

normalization and, 313-15

relational databases and, 313-28,

329-34, 335, 341, 342, 357-60,

361, 372

relation schemas and, 289, 290

third normal form and, 324-26

uses of, 335, 341, 361

Decomposition method, uses of, 499-

501

Deductive databases

contents of, 737

defined, 737

uses of, 738-42

Deductive reasoning, defined, 722

Define view

syntax of, 259

uses of, 259-60

Definition trees. See Hierarchical

definition trees

Degree

defined, 147

relationships and, 158, 170

Delete

format of, 256

syntax of, 216

uses of, 216, 236, 256, 257, 449

De Morgan’s law, 186

Dependency basis, defined, 356

Dependency preserving

algorithms for checking, 323, 325

defined, 306-7

Design. See Database design

Design errors, causes of, 513

Index 809

Destroy statements

syntax of, 245

uses of, 245, 260

Determinants, defined, 41

Difference. See also Relational algebra

characteristics of, 169

defined, 152, 167

uses of, 182-83, 258-59

Directed acyclic graphs (DAG), locking

and, 582-83

Direct files

collisions and, 106, 137

defined, 90

deletions and, 108

extendable hashing and, 110-73, 137

hashing and, 706-8, 110

insertions and, 108

mapping and, 105-6, 137

overflows and, 106, 108

retrievals and, 108

Directories. See Data dictionaries

Disaster recovery, uses of, 548

Disasters, defined, 548

Disconnect, uses of, 407

Discriminators, defined, 48

Disjoint fragmentation, defined, 671

Disjoint horizontal fragmentation,

defined, 675

Disjoint vertical fragmentation, defined,

675

Disjunctive, defined, 269

Disjunctive predicates, 273

Disjunctive prenex normal form,

defined, 502

Disjunctive queries, defined, 120

Disk accesses, number of, 103-4

Disk managers

access and, 27

defined, 24

uses of, 24

Disk packs, 79

Disks, 81

tracks and, 79, 98

uses of, 79-80

Disk storage units (DSU), 778,

779

Distinct options, uses of, 215

Distributed commit, 694

Distributed database management

systems (DDBMS)

advantages of, 661, 662-63

characteristics of, 662, 676

commitment and, 694-700

concurrency control and, 688-94,

715

consistency and, 686-88, 715

contents of, 715

database security and, 705

data distribution in, 669-78, 715

deadlocks and, 700-705, 716

defined, 661

disadvantages of, 661, 663

failures and, 668, 669, 694-95

heterogeneous systems and, 705-6,

710-15

homogeneous systems and, 705-10

locking and, 688-92

networks and, 663-69

object naming and, 678-79

query processing and, 679-86, 687,

715

recovery and, 694-700

timestamp ordering and, 692-94

uses of, 662

Distributed databases

defined, 662

uses of, 475

Distributed systems, uses of, 627

Distributed two-phase locking, 691

Division, 177, 194. See also Relational

algebra

characteristics of, 170, 176-79

uses of, 182, 183

Do, 531

defined, 530

Domain calculus, 161-62. See also

Relational calculus

characteristics of, 201

formulas in, 193-98

negation and, 197

queries and, 184, 194-95, 196-98

Query-By-Example and, 209, 269,

281

Domain closure assumptions (DCA),

defined, 732

Domain constraints (DC), defined, 368

Domain integrity

defined, 630

rules for, 630-32

Domain key normal form (DK/NF)

advantages of, 371

defined, 369, 370

disadvantages of, 371

Domains

attributes and, 5-6

characteristics of, 154

contents of, 201

defined, 5, 60, 147, 153, 154, 198,

244

relational data models and, 153-55

Domino deletions, defined, 164

DO_NoT_Access_a Gain (DONTAG)

lists, 120-22

Drop SQL statements, 215

Drop view, uses of, 238

Duplicates, defined, 411

Durability, defined, 523

Dynamic inheritance, 754

Edge-chasing algorithms, 702

Elementary items. See Attributes

Embedded multivalued dependencies,

defined, 362

Embedded Query Language (EQUEL),

262

Enable, defined, 635, 734

Encryption, uses of, 627-29

Entities

characteristics of, 47

defined, 3, 36, 47

relationships and, \41-48, 160-61

representation of, 51-52

Entity integrity, 162-63

Entity-relationship (E-R) data diagrams,

46, 49, 52, 59, 161

characteristics of, 69

hierarchical data models and, 70

network data models and, 69-70

Entity-relationship (E-R) data models

background of, 74

characteristics of, 46

hierarchical data models and, 651

network data models and, 651

relational data models and, 651

uses of, 46, 72

Entity sets, 5, 55

defined, 3, 30, 47

Entity types. See Entity sets

Equi-joins, characteristics of, 174, 176

Equivalent, defined, 344, 470

Erase, uses of, 407, 412, 413

Errors

defined, 511

reliability and, 515-16

types of, 515-16

Ethernet, 667

characteristics of, 666

Example elements, defined, 270

Exception-handling features, 723

810 Index

Exclusive locks, uses of, 570, 578

Existing relations, defined, 237

Exists, uses of, 229-30

Expert database systems, 747

characteristics of, 746

uses of, 746

Expert systems

defined, 742, 758

organization of, 743

uses of, 743-46

Explanation facilities, uses of, 722

Explicit indexes, 94

Extendability, defined, 748

Extendable hashing, 110, 113

defined, 110

deletions and, 112

direct files and, 110-/3, 137

insertions and, 110-//

Extensional databases (EDB), defined,

737

Extensions, defined, 151

External levels, 14, 15

uses of, 14

External schemas, defined, 14

External views, 13, 18

characteristics of, 16

defined, 13, 14, 15

mapping and, 15-16

uses of, 15

Failure nodes, defined, 132

Failures

anticipation of, 523-24

defined, 511

distributed database management

systems and, 668, 669, 694-95

of hardware, 513, 516

reliability and, 513-15

of software, 513-14

of storage media, 514-15, 524

types of, 513-15, 524, 549

Faults, detection of, 511

Fault-tolerant systems, 512

Fields, defined, 153. See also Attribute

values

Fifth normal form (5NF), 361. See also

Project-join normal form

File-based systems, defined, 45

File managers (FM)

access and, 27

initialization and, 85

overflow blocks and, 86

uses of, 24, 82

Files. See also specific files

contents of, 82-83

defined, 8, 30, 78, 83, 84, 136

format of, 84-86

importance of, 82

labeling of, 78-79

operations on, 86-90

organization of, 78

primary keys and, 90

representation of, 83

secondary keys and, 113-24

storage and, 84-86

Filters, uses of, 714

Find, uses of, 407, 410, 411,413, 422

Find first within, uses of, 413

Find next within, uses of, 414

Fire, defined, 734

First normal form (INF)

defined, 309

disadvantages of, 309-10

First-order logic, uses of, 730

First-order predicate calculus, defined,

730

Fixed, defined, 400

Fixed head drives

defined, 79

read/write heads and, 80

Force, uses of, 546

Foreign keys

defined, 160

integrity rules and, 163-65

Forests, defined, 68

Formulas

in domain calculus, 193-98

in relational calculus, 201

in tuple calculus, 189-93

For updates, uses of, 411

Forward chaining, 745

defined, 736, 744

Forward error recovery, uses of, 517

Fourth normal form (4NF). See also

Boyce Codd normal form

algorithm for, 358

defined, 357

dependencies and, 360-61

lossless join decomposition and,

357-60

uses of, 352

Fragmentation, 670

defined, 200, 670-71

uses of, 200

Fragmentation transparency

characteristics of, 677

defined, 671

Frames, 733, 734

defined, 732

knowledge base management systems

and, 732-33

uses of, 732-33

Free, defined, 186, 189

Frequency division multiplexing

(FDM), 666

From clauses, uses of, 215, 242

Full functional dependencies, defined,

304

Functional dependencies (FD)

axioms for, 353-54

causes of, 293

closure and, 297-300

covers and, 300-303

defined, 41, 287/1.1

keys and, 303-6

logical implications of, 295-97

relational databases and, 293-306,

313-15

semantics and, 342

Functions, defined, 730

Garbage collection, uses of, 542

Gateways, 668

uses of, 667

GEMSTONE, 756

General constraints (GC), defined, 368

Generalization, 54

defined, 53

organization of, 54, 55

uses of, 54

Get, uses of, 407, 410, 444, 457

Get first, 444

Get hold, 449

Get leftmost, 444

Get next, uses of, 444, 457

Get next within parent, uses of, 446,

457

Get unique, 444

Global catalogs, defined, 678

Global data managers (GDM), 713

contents of, 714

uses of, 713

Global naming

characteristics of, 678

disadvantages of, 678-79

Global redo, uses of, 532, 548, 550

Global schemas, characteristics of, 706

Global transactions, characteristics of,

662

Global undo, uses of, 532

Index 811

Global views. See Conceptual views

Global wait-for graphs (GWFG)

disadvantages of, 689

generation of, 688-89

uses of, 701, 702

Granularity

database security and, 620

defined, 576

locking and, 576, 604

Group by function, uses of, 234-35

Growing phases, defined, 574

Hardware, failures of, 513, 516

Hashing

algorithm for, 109

buckets and, 106, 107, 108, 110

collisions and, 137

defined, 106, 137

direct files and, 106-8, 110

methods of, 107-8

uses of, 135, 492

Having options, 234

Heterogeneous systems, 706

defined, 705-6

disadvantages of, 710

distributed database management

systems and, 705-6, 710-15

Hiding. See Masking

Hierarchical data models (HDM)

advantages of, 456

background of, 45, 72

bias of, 456

characteristics of, 68, 71, 428, 652,

654

constraints and, 430

contents of, 441, 450, 456

control codes and, 453

data definition in, 441-43

data manipulation in, 443-47

disadvantages of, 456

entity-relationship (E-R) data

diagrams and, 70

entity-relationship (E-R) data models

and, 651

many-to-many relationships and,

436-41, 456

paths and, 453

redundancies and, 68, 69

replication and, 435, 456

selection and, 71

trees and, 430-35, 455, 456

updates and, 447-51

uses of, 68—69, 74, 451-53, 456

virtual records and, 435, 456

Hierarchical definition trees, 431, 433,

434, 439, 452

defined, 430

Hierarchical paths, defined, 453

Hierarchies, characteristics of, 67

High-level languages (HLL), uses of,

25-26. See also Host languages

“Holes”, 93

defined, 93

Homogeneous records, defined, 83

Homogeneous systems, 706

defined, 705

distributed database management

systems and, 705-10

Horizontal fragmentation

defined, 673

uses of, 653

Horn clauses, defined, 731

Host languages

data manipulation languages and,

260-62

defined, 260

Query Language and, 260

Structured Query Language and, 260

Host programs, defined, 260

Host System Communication Interface

(HSCI), 775

Idempotent, defined, 531

Identifying relationships, defined, 48

Identity

characteristics of, 751

databases and, 752

Implicit constraints, 632

Implicit indexes, 94

In, uses of, 226-27

Inconsistent reads, 559

defined, 560

Indexes

defined, 93

join selectivity and, 492

organization of, 99

uses of, 93

Index files, defined, 93

Index-sequential files. See also Limit

indexing

advantages of, 98

contents of, 93, 100-104

defined, 90, 93

disadvantages of, 98, 100, 104, 125,

135

mapping and, 105

organization of, 102, 135

overflows and, 100, 125, 137

retrievals and, 103

types of, 94-99

updates and, 103, 104

uses of, 93

virtual storage access method and,

104-5

Index-sequential searches, 96

Index statements

syntax of, 245

uses of, 244

Indirect page allocations, 539

uses of, 538-39

Indirect updates

costs of, 548

defined, 533

uses of, 538-44

Inductive reasoning, defined, 722

Inference axioms, 295-97

Information Management System

(IMS), 456. See also Hierarchical

data models

Information requirements, uses of, 647

Information systems

contents of, 645

database design and, 645, 646

INGRES (Interactive Graphics and

Retrieval System)

contents of, 260

Query Language and, 242

structures supported in, 245

uses of, 243, 262

Inheritance, object-oriented

programming and, 753-55

Initialization, file managers and, 85

Insert

format of, 216, 448

uses of, 216, 235-36

Instances, defined, 749

Institutional memory, defined, 743

Integrated Data Store (IDS), 425

Integrated systems, defined, 26

Integrity, defined, 28. See also

Database integrity

Integrity constraints, uses of, 647

Integrity rules

defined, 162

foreign keys and, 163-65

primary keys and, 162-63, 165

relational data models and, 146,

162-65

Intelligent memory, 771

characteristics of, 770

database machines and, 770-72

812 Index

Intensional databases (IDB), defined,

737

Intensions, defined, 151

Intention exclusive modes, uses of, 578

Intention modes

advantages of, 579

uses of, 577

Intention share modes, uses of, 577-78

Interblock gaps (IBG), defined, 80

Intercontroller edges, defined, 703

Interface processors (IFP), 776-77

Intermediate record types, defined, 70

Internal levels, 15, 19

mapping and, 17, 19

Internal schemas, defined, 15

Internal views, 13

defined, 13-14, 15

mapping and, 16, 17

Interrelation join constraints, defined,

307

Intersect, uses of, 233, 242

Intersection data, defined, 435

Intersection records, 394

defined, 386

uses of, 386

Intersections. See also Relational

algebra

characteristics of, 169

defined, 152, 167

representation of, 168

Invariants, defined, 687

Inverted index files, 116, 117

advantages of, 116

contents of, 115-16, 137

deletions and, 117

disadvantages of, 117

insertions and, 117

maintenance of, 117

organization of, 123

secondary keys and, 115-18

uses of, 116, 118

IRIS, 756

Isolation, defined, 523

Items. See Attributes

Join dependencies (JD)

algorithm for, 367

causes of, 365

defined, 361, 365

key dependencies and, 365

multivalued dependencies and, 365

normalization and, 361-68

relational databases and, 361-68

Join indexes

contents of, 495

defined, 494

uses of, 494-95

Joins. See also Relational algebra

characteristics of, 170, 173-74

defined, 172, 173

disadvantages of, 71

Query-By-Example and, 273-74

Query Language and, 250

query processing and, 478-79, 506,

507

relational data models and, 71

relationships and, 148-50, 181

Structured Query Language and,

221-25

uses of, 150, 165, 183, 242

Join selectivity

defined, 492

indexes and, 492

uses of, 492-94

Journals, defined, 516

Key constraints (KC), defined, 368

Key dependencies (KD)

defined, 366

join dependencies and, 365

Keys. See also Attributes; specific keys

defined, 6, 303

functional dependencies and, 303-6

relational data models and, 159-60

Knowledge base management systems

(KBMS)

characteristics of, 723-24, 725-26

contents of, 722, 725, 726

database management systems and,

723-24

defined, 722, 724, 758

frames and, 732-33

logic and, 729-32

procedural representation and, 736-

37

production systems and, 733-36

semantic networks and, 726-29

uses of, 723

Knowledge base systems. See Expert

systems

Knowledge independence, 723

Knowledge representation schemas, 723

Latency time, defined, 80

Leaf nodes

contents of, 124-25

defined, 124

Least privilege, 616

Least recently used (LRU), uses of,

545-46

Levien, R. E., 74

Limit indexing, 95. See also Index-

sequential files

comparisons and, 96-98

defined, 94

Livelock. See Starvation

Local area networks (LAN), defined,

663

Local database interfaces (LDI), 713

uses of, 713-14

Local schemas, characteristics of, 706

Local transactions, defined, 662

Local wait-for graphs (LWFG), uses

of, 701, 702

Location transparency

characteristics of, 677

defined, 670

Locator catalogs, contents of, 678

Locking. See also Concurrency control

centralized database management

systems and, 668

compatibility of, 570-77, 579-80

concurrency management and, 569,

570-83

deadlocks and, 583, 604

defined, 570

directed acyclic graphs and, 582-83

disadvantages of, 692

distributed database management

systems and, 688-92

granularity and, 576, 604

organization of, 576-79

relative privilege of, 579

serializability and, 604

steps for, 580, 603

types of, 574-76, 581-82, 604

uses of, 569, 572-74, 604

Lock managers, uses of, 570, 571-72

Locks, defined, 570

Logic, knowledge base management

systems and, 729-32

Logical access order, 78, 87

Logical children, defined, 435

Logical data independence

advantages of, 29

characteristics of, 29, 31

defined, 17

Logical file organizations, uses of, 90

Logical parents, defined, 435

Index 813

Logical records

database management systems and,

13

defined, 11, 64

nondatabase operating environments

and, 13

Logs

contents of, 524-25, 549

recovery and, 524-26, 546-47

uses of, 524, 525-26

Long haul networks, defined, 663

Loops, defined, 392

Lossless join decomposition

algorithms for, 321, 325, 358

Boyce Codd normal form and, 329-

33

defined, 317

fourth normal form and, 357-60

Lossy, defined, 316. See also

Decomposition

Lost updates, defined, 558

M:N relationships, 387, 388, 389, 394

network data models and, 386-90

Magnetic tapes, 81

uses of, 79, 80

Majority locking

defined, 690

disadvantages of, 691

Mandatory, defined, 400

Manual

defined, 399

set manipulation and, 415-19

Many-to-many associations, 38

Many-to-many relationships, 42, 43

algorithm for, 491

hierarchical data models and, 436-

41, 456

Mapping

conceptual levels and, 17, 19

conceptual views and, 15-16, 17

defined, 11

direct files and, 105-6, 137

external views and, 15-16

index-sequential files and, 105

internal levels and, 17, 19

internal views and, 16, 17

Structured Query Language and, 217

Maron, M. E., 74

Masking

attributes and, 11, 72

database management systems and,

12

Master sites, 709

Materialization, defined, 708

Materialized databases, defined, 530

Max, 220

uses of, 251, 275-76

Maximize sharing, 616

Mean time between failures (MTBF),

512

Mean time to repair (MTTR), 512

Member record types, 63, 64

Members, defined, 151

Membership, algorithm for, 301

Memory managers, uses of, 545

Mesh connections, 665

characteristics of, 664

Message interfaces, defined, 749

Message protocols, defined, 749

Messages, defined, 749

Metadata, defined, 9

Metaknowledge, defined, 725

Methods, defined, 749

Micro Operating System Interface

(MOSI), 779

Micro Teradata Director Program

(MTDP), 779

Min, 220

uses of, 251,275-76

Minimal covers, defined, 302

Minus, uses of, 233, 242

Mixed fragmentation, defined, 674

Models. See also Data models

database management systems and,

2-7

defined, 35

Model-theoretic views (MTV), 738n.5

Modify

syntax of, 245

uses of, 245, 407, 411

Modus ponens, defined, 729

Monadic predicates, defined, 185

Monitors, uses of, 715

M-order trees, characteristics of, 125

Moving head drives, defined, 79

MULTIBASE

architecture of, 713

uses of, 712-15

Multilevel cycles, 395

defined, 391

Multilevel indexes, 99. See also Index-

sequential files

Multilevel index files, uses of, 124-25

Multilevel sets, 381

network data models and, 380-82

Multilist files, 119

advantages of, 120

contents of, 118, 137

creation of, 119-20

deletions and, 122

maintenance of, 120, 122

organization of, 123, 136

records in, 118-19

searches and, 120-22

secondary keys and, 118-22

Multiple inheritance, 754

Multiprocessors and caches, 772

characteristics of, 772

Multivalued dependencies (MVD)

axioms for, 353-54

causes of, 372

characteristics of, 353, 362

closure and, 354-57

defined, 351, 353

disadvantages of, 351-52

join dependencies and, 365

normalization and, 352-53

relational databases and, 348-61

Multi version. See also Concurrency

control

characteristics of, 591-92, 604

concurrency management and, 570,

591-94

deadlocks and, 594

defined, 556

disadvantages of, 594

serializability and, 592, 594, 604

uses of, 570, 591, 593-94

Murderous terminations, defined, 522

Naive users, defined, 20

Name-dependent access control,

defined, 616

Names, uses of, 751

N-ary relationships

binary relationships and, 74

defined, 49

Natural joins, characteristics of, 174,

176

Navigation, defined, 71

Need-to-know, 616

Negation

domain calculus and, 197

tuple calculus and, 191-92

Nested loop method, uses of, 488-90,

506

Network database language (NDL), 425

814 Index

Network data models (NDM)

advantages of, 421

background of, 45, 63, 72

characteristics of, 71, 74, 652, 653-

54

complex multilevel sets and, 382-84

contents of, 425

cycles and, 391-95

Database Task Group (DBTG) sets

and, 378-80, 384-85

data description in, 395-403

data manipulation in, 405-21, 422

data structures in, 63-65

defined, 377

disadvantages of, 421

entity-relationship (E-R) data

diagrams and, 69-70

entity-relationship (E-R) data models

and, 651

M:N relationships and, 386-90

multilevel sets and, 380-82

schemas and, 403-5

selection and, 71

sets and, 123-24

subschemas and, 405

uses of, 65-67, 421

Network partitioning, defined, 668

Networks, 664, 665

distributed database management

systems and, 663-69

types of, 663

New master files, defined, 92-93

Nodes, contents of, 125

No force, uses of, 546

Nonatomic values, defined, 308

Nondatabase operating environments,

10

database management systems and,

13

logical records and, 13

shared data and, 9-10

Nondisjoint horizontal fragmentation,

defined, 675

Nondisjoint vertical fragmentation,

defined, 675

Nonfunctional relationships, defined,

343

Nonkeyed sequential files. See Serial

files

Nonprimary keys. See Secondary

keys

Nonprime attributes, defined, 304

Nonredundancy, defined, 159

Nonredundant covers

algorithm for, 302

defined, 301

Nonvolatile storage, failures and, 514,

524

Normal forms

types of, 309-15, 326-33

uses of, 307

Normalization

decomposition and, 313-15

join dependencies and, 361-68

multivalued dependencies and, 352-

53

relational databases and, 307-15,

324-34, 342-49, 352, 361-72

synthesis and, 342-48

Normalized, defined, 308

Not contains, uses of, 229

Not exists, uses of, 230-32

Not in, uses of, 229

Not steal, defined, 546

N-tuples, defined, 155

N-variable expressions

contents of, 501

defined, 496

Object databases, types of, 755-57

Object identifiers, uses of, 752-53

Object independence, 754

Object models (OM), 747

Object-oriented approach (OOA),

characteristics of, 749, 752

Object-oriented database management

systems (OODBMS), 755, 756

advantages of, 757-58

disadvantages of, 758

Object-oriented programming (OOP)

advantages of, 747-48

characteristics of, 748, 753

inheritance and, 753-55

Object properties. See Attributes

Objects, 750

characteristics of, 749-50, 753

defined, 620, 640, 747, 749

naming of, 678-79

types of, 753

views as, 620

Old master files, defined, 92

On clauses, 635

uses of, 245

One-place predicates, defined, 185

One-time codes, defined, 628

One-to-many associations, 37, 44

One-to-many relationships, 42, 43, 44-

45

One-to-one relationships, 41 -42

One-variable expressions, uses of, 486

On-line databases. See Current

databases

On-line users, defined, 20

Open, defined, 187

Open systems, defined, 616

Operations. See specific operations

Operator graphs, 468

uses of, 468

Optimistic scheduling, 590. See also

Concurrency control

concurrency management and, 569-

70, 588-90

deadlocks and, 590

serializability and, 604

starvation and, 590

steps for, 589, 603

uses of, 569-70, 588-90, 604

Optimizers, uses of, 714

Optional, defined, 400

Ordered trees, 429

defined, 67, 428

traversing of, 428

Order first, defined, 398

Order last, defined, 398

Order next, defined, 398

Order prior, defined, 398

Organizations, 2

ORION, 756

Orthogonal, defined, 263

Outgoing edges, defined, 703

Overflow areas

defined, 93

uses of, 103

Overflow blocks, defined, 86

Overflows

defined, 128

direct files and, 106, 108

index-sequential files and, 100, 125,

137

virtual storage access method and,

105

Overloading

causes of, 513, 514

defined, 513

Overriding, 727, 728

Overutilization

causes of, 513, 514

defined, 513

Owner record types, 63, 64

Index 815

Page-level logging, uses of, 547

Page tables, 540

uses of, 539

Paired bidirectional logical

relationships, defined, 441

Pairwise disjoint, 355

Parsers, uses of, 461

Partial dependencies, 305

defined, 305

Partial inheritance, 754

Participating sites, defined, 686

Passwords, uses of, 625-26

Paths, hierarchical data models and, 453

PDM, 756

Permanent storage

failures and, 514, 524

uses of, 514-15

Phantom deadlocks, defined, 701

Phantom phenomena, defined, 561

Physical access order, 78, 87

Physical databases, defined, 16, 529

Physical data independence

advantages of, 29

characteristics of, 19, 29, 31

defined, 17

Physical file organizations, uses of, 90

Pointers, uses of, 133-34

Polling, 666

Poor quality control, causes of, 513, 514

Positional notation, defined, 83

POSTGRES, 755-56

Precedence graphs, 564, 568, 569

uses of, 565-66

Predicate calculus

characteristics of, 184-87

defined, 184, 185, 730

propositions and, 184

relational calculus and, 184-87

symbols in, 185-86

Predicates, defined, 184, 729, 730

Prenex normal form, defined, 502

Preorder traversals, defined, 428

Preprocessor statements, 23

Primary blocks, defined, 86

Primary keys

defined, 6

files and, 90

integrity rules and, 162-63, 165

uses of, 30, 41, 88

values of, 162

Primary site locking, defined, 691

Prime attributes, defined, 159, 304

Primitive models, defined, 45

Print command, uses of, 270

Printers, 779

Print names, defined, 679

Privacy

defined, 611

statistical databases and, 636-38

PROBE, 756

Probe computation, algorithms for, 704

Probes

characteristics of, 702-3

defined, 702

Procedural representation, 736-37

Procedure calls, 23

Processing requirements, uses of, 647

Processor-per-device, 772

Processor-per-surface, 773

characteristics of, 771

Processor-per-track, 772

characteristics of, 771

Production rules, 733

Productions, 733

Production systems

contents of, 734

defined, 733

knowledge base management systems

and, 733-36

Projecting, defined, 150

Projections. See also Relational algebra

characteristics of, 170

defined, 156, 170-71

query processing and, 477-78, 480-

84, 486, 497

relationships and, 170-11

uses of, 165, 242

Project-join normal form (PJ/NF),

defined, 366.

See also Fifth normal form

Proof-theoretic views (PTV), 738n.5

Propagate access control, uses of, 621

Property inheritance mechanisms,

defined, 727

Propositional calculus, defined, 729

Propositional logic, defined, 729

Propositions

contents of, 184

defined, 729

predicate calculus and, 184

Public keys, defined, 628

Qualification clauses, defined, 88

Queries

algorithms for transforming, 504

contents of, 502

defined, 22

domain calculus and, 184, 194-95,

196-98

evaluation of, 486-502

format of, 502

improvement of, 480-86

Query-By-Example and, 269, 271—

72, 281

Query Language and, 248-50

relational algebra and, 179-84

relational calculus and, 184, 201

representation of, 467-69

Structured Query Language and,

221-25, 280

tuple calculus and, 184, 187-88,

190-93

Query-By-Example (QBE)

advantages of, 199

aggregation and, 275-76

background of, 269

categorization and, 276

data manipulation in, 273-14

domain calculus and, 209, 269, 281

joins and, 273-74

queries and, 269, 271-72, 281

retrievals and, 270-75

syntax of, 269

updates and, 277-80

Query graphs, 685

uses of, 685

Query Language (QUEL)

advantages of, 199, 263, 264

aggregation and, 250-55, 265

arithmetic operations in, 247-48

condition specification in, 246-47

data definition in, 243-45

data manipulation in, 246-60

disadvantages of, 263, 265, 266,

268, 269

Embedded Query Language and, 262

host languages and, 260

INGRES and, 242

joins and, 250

queries and, 248-50

renaming and, 247

retrievals and, 243, 255-56

set operations and, 250, 281

tuple calculus and, 209, 212, 281

tuple variables and, 243-44, 246,

251, 254, 265

updates and, 256-59

uses of, 247

views and, 259-60

816 Index

Query language logging, uses of, 547

Query languages, defined, 22. See also

specific query languages

Query Management Facility (QMF),

269

Query modification, uses of, 463

Query optimization, defined, 461

Query processing, 462

access plans and, 469-70

costs of, 469-70, 475, 480, 506,

507

defined, 461, 507

distributed database management

systems and, 679-86, 687, 715

equivalent expressions and, 470-75

joins and, 478-79, 506, 507

projections and, 477-78, 480-84,

486, 497

query representation and, 467-69

redundancies and, 484-85

relational algebra and, 502-3

relational calculus and, 502-3

relational database management

systems and, 461

relationship size and, 469-70, 475-

79, 480

selection and, 476-77, 480-82, 486,

497

statistics and, 480, 502

steps for, 461, 468-69, 501

uses of, 462-67

views and, 503-5

Query processors

characteristics of, 505-6

contents of, 461, 506

defined, 461

uses of, 25, 507

Query types, 114

Quiescent, defined, 530

R*, 709-10

Range statements, uses of, 243-44

Read-before-write-protocols, defined,

567

Read locks, uses of, 570, 578

Read phases, uses of, 589

Read timestamps, 583

defined, 592

Read/write head crashes, defined, 514

Read/write heads

disk packs and, 79

fixed head drives and, 80

Reasoning facilities, 722

Reconnect, uses of, 407

Record keys, defined, 397

Record-level logging, uses of, 547

Record occurrences, defined, 7

Record order keys, 397

Records. See also specific headings

algorithms for, 85, 86

defined, 83, 84

placement of, 134-35

representation of, 44, 83

Record templates

defined, 407

uses of, 443

Record types, 7/

contents of, 63

defined, 7, 30

storage of, 8

uses of, 63

Recovery

buffer management and, 544-46

centralized database management

systems and, 524-32

checkpoints and, 526-29

concurrency management and, 603

costs of, 547-48

DBC/1012 and, 781

deadlocks and, 595-96, 597-99

disasters and, 548

distributed database management

systems and, 694-700

failure anticipation and, 523-24

logs and, 524-26, 546-47

storage and, 529-30

transactions and, 517-24

two-phase commits and, 698-700

types of, 516-17

updates and, 532-44

uses of, 549

virtual memory and, 545, 546

Redistribution, contents of, 128

Redo, 531

characteristics of, 530

contents of, 528

uses of, 530-31

Reductio ad absurdum, defined, 729

Reduction of relations, defined, 685

Referential integrity, 163-65

defined, 632

uses of, 632-33

Relational algebra, 161, 162. See also

Joins; Relational data models

basic operations of, 165-69, 201

characteristics of, 199, 201

defined, 165

queries and, 179-84

query processing and, 502-3

relational calculus and, 198-99

relational-oriented operations of,

170-79, 201

Structured Query Language and,

209, 212, 242, 281

uses of, 198, 201

Relational calculus, 161, 162. See also

Domain calculus; Relational data

models; Tuple calculus

defined, 184

formulas in, 201

predicate calculus and, 184-87

queries and, 184, 201

query processing and, 502-3

relational algebra and, 198-99

Structured Query Language and, 209

Relational database management

systems (RDBMS), query

processing and, 461

Relational databases

contents of, 286

decomposition and, 313-28, 329-

34, 335, 341, 342, 357-60, 361,

372

design of, 306-35

functional dependencies and, 293-

306, 313-15

join dependencies and, 361-68

multivalued dependencies and, 348-

61

normalization and, 307-15, 324-34,

342-49, 352, 361-72

synthesis and, 342-48

universal relation and, 290-93

Relational data files. 74

Relational data management systems,

types of, 74

Relational data models (RDM). See

also Relational algebra;

Relational calculus; Set theory

advantages of, 59, 146

attributes and, 153-55

background of, 45, 72, 74, 146

characteristics of, 60, 71, 650, 653

contents of, 146-51, 153-58, 161 —

65

defined, 74

disadvantages of, 74

domains and, 153-55

entity-relationship (E-R) data models

and, 651

integrity rules and, 146, 162-65

joins and, 71

Index 817

keys and, 159-60

operations and, 161-62

relation schemas and, 157-58

representation of, 158-59

tuples and, 155-56

users and, 59-60

uses of, 59, 74

Relation schemas

contents of, 286, 307

decomposition and, 289, 290

defined, 61, 286, 335

design of, 286-87

disadvantages of, 287-90

relational data models and, 157-58

relationships and, 286

Relationships. See also specific

relationships

associations and, 44—45

attribute associations and, 41-48

characteristics of, 50

contents of, 157

defined, 3, 36, 49, 157, 738

degree of, 158, 170

entities and, \41-48, 160-67

identification of, 50-51

joins and, 148-50, 181

projections and, 170-11

relation schemas and, 286

representation of, 9, 60, 67, 158-59,

201

size of, 469-70, 475-79, 480

types of, 41^44

uses of, 41

Relationship sets, 7

defined, 7, 49, 50

representation of, 52

Relative-most-recent versions, defined,

592

Reliability

causes of, 511-13, 549

defined, 512

errors and, 515-16

failures and, 513-15

measurement of, 512

Reliable, defined, 511

Renaming, Query Language and,

247

Repeating groups, 397

defined, 44, 396

Replace

format of, 256

uses of, 256, 257, 449

Replication. See also Updates

advantages of, 676

defined, 669, 675-76

disadvantages of, 456, 676

hierarchical data models and, 435,

456

uses of, 435

Replication transparency, 677

Reservations, 666

Response time, characteristics of, 82

Retaining currency, uses of, 416

Retrieve

format of, 255

uses of, 243, 246

Retrieve unique commands, uses of,

246

Reusability, defined, 748

Ring files

characteristics of, 123, 137

secondary keys and, 123-24

Ring topologies, 665

characteristics of, 664

Robust, defined, 724

Rollback. See Undo

Roots, defined, 67

Rules, 733

Run units, defined, 405

Safe, defined, 198, 201

Schedules, defined, 556

Schemas, 404

contents of, 403

defined, 14, 403

network data models and, 403-5

SDD-1, 707

characteristics of, 707-8

uses of, 708

Searches

algorithm for, 109

B-(--trees and, 127, 128

multilist files and, 120-22

tree structured files and, 127

Secondary indexes, defined, 456

Secondary keys

access files and, 114-/5

cellular lists and, 122-23

defined, 6, 78

files and, 113-24

inverted index files and, 115-18

multilist files and, 118-22

query types and, 114

retrievals and, 113-24, 136, 137

ring files and, 123-24

update types and, 114

uses of, 6-7, 88, 114

Second normal form (2NF)

defined, 310

disadvantages of, 310-12

Security. See Database security

Security administrators, defined, 612

Seek time, defined, 79

Selection, 772. See also Relational

algebra; specific headings

characteristics of, 170

defined, 171

uses of, 165

Selectivity factors, defined, 476

Select statements

syntax of, 215

uses of, 214, 215, 242

Semantic data models, uses of, 45-46

Semantic integrity

defined, 612

uses of, 639-40

Semantic networks, 727

defined, 726

knowledge base management systems

and, 726-29

Semijoins, uses of, 680, 681-86

Sequential access, uses of, 487-88

Sequential files

advantages of, 92, 93

characteristics of, 90, 91, 92

defined, 90

deletions and, 92

disadvantages of, 92, 93

insertions and, 92

organization of, 92, 136

updates and, 92

Sequential index keys, defined, 95

Serial executions, 562

defined, 562

Serial files, 97

characteristics of, 91, 136

defined, 90

deletions and, 91, 136

generation of, 91, 136

uses of, 91-92

Serializability

algorithm for, 566-69

concurrency management and, 562-

69, 603

locking and, 604

multiversion and, 592, 594, 604

optimistic scheduling and, 604

test for, 603-4

timestamp ordering and, 583, 604

Serializable schedules, defined, 563

Set clauses, uses of, 215

818 Index

Set operations. See also All; Any;

Contains; Exists; In; Intersect;

Minus; Not exists; Union

Query Language and, 250, 281

Structured Query Language and,

225-33, 242

uses of, 225

Sets

defined, 151

network data models and, 123-24

Set selection, defined, 402

Set-theoretic unions, defined, 166

Set theory, 151-53. See also Relational

data models

Set types, 64

characteristics of, 63

uses of, 63

Shadow page schemas, 540

advantages of, 541

characteristics of, 533, 539

disadvantages of, 541-42

uses of, 540-41, 550

Shadow page tables, defined, 539-40

Share and intention exclusive modes,

uses of, 578, 579

Shared data

database management systems and,

10-/7, 12, 28

nondatabase operating environments

and, 9-10

Shared locks, uses of, 570, 578

Sibley, E. H., 74

Sibling pointers, 429, 453

uses of, 429, 452

Simple, defined, 301

Simple multivalued dependencies,

defined, 356

SIMULA, 748, 758

Single-level cycles, 391, 392

defined, 391

Singular sets, defined, 403

Skeleton tables, 270

defined, 269

obtaining of, 269-70

Skip-sequential processing, defined,

103

Slave sites, defined, 710

Smalltalk programming system, 748

Software

failures of, 513-14

modification of, 148-50

Sort and merge method

algorithm for, 491

uses of, 490-92, 506

Sorted, defined, 398

Sorts, defined, 730

Spanning trees, defined, 68

Special hardware, 772-74

Specialization, 54

defined, 53

Special registers, defined, 406

Spurious tuples, defined, 292

Stable storage. See Permanent storage

Standards Planning and Requirements

Committee (SPARC), 33

Star rings, 668

uses of, 667

Star topologies, 665

characteristics of, 664

Starvation

causes of, 602

defined, 556, 594

optimistic scheduling and, 590

Statistical databases

contents of, 636

privacy and, 636-38

Status registers, uses of, 443

Steal, uses of, 546

Storage media, failures of, 514-15,

524

Store, uses of, 407, 412

Stored fields, defined, 8

Store mappings, uses of, 90

Strategies. See Access plans

Strong entities, 47

defined, 47

Structural constraints (SC), defined,

402

Structured domains, contents of, 154

Structured Query Language (SQL)

advantages of, 198-99, 263, 268,

281

aggregation and, 220-21, 233-34,

242

arithmetic operations in, 219-20

background of, 212

categorization and, 233-35

condition specification in, 218-19

data definition in, 212-14

data manipulation in, 214-36, 242,

281

disadvantages of, 263-64, 265, 269

host languages and, 260

joins and, 221-25

mapping and, 217

queries and, 221-25, 280

relational algebra and, 209, 212,

242, 281

relational calculus and, 209

retrievals and, 217-18

set operations and, 225-33, 242

tuple calculus and, 212, 281

tuple variables and, 222

updates and, 235-36, 239-42

views and, 237-42, 281

Study Group on Database Management

Systems, 33

Subclasses, defined, 749

Subjects, defined, 620

Subschemas

defined, 405

network data models and, 405

uses of, 626-27

Subtransactions, 662

Successful terminations, defined, 522

Suicidal terminations, defined, 522

Sum, 220

uses of, 251, 275-76

Superkeys, defined, 6

Synchronous time-division multiplexing

(SDM), 665-66

Synthesis

algorithm for, 345-48

characteristics of, 306, 372

normalization and, 342-48

relational databases and, 342-48

uses of, 343-45

Synthesis approach, defined, 40-41

System availability, defined, 512

System catalogs. See Data dictionaries

System consoles, 779

System crashes, defined, 514

System defaults, defined, 398

System errors

defined, 515

prevention of, 515-16

System R project, 212

Systems, defined, 403

Systemwide names (SWN), format of,

679

Tapes. See Magnetic tapes

Telecommunication systems, uses of,

26

Ternary relationships, 50

defined, 49

Theta joins

characteristics of, 176

defined, 174

Third normal form (3NF)

algorithms for, 325, 347

Index 819

decomposition and, 324-26

defined, 312

disadvantages of, 312

Time-division multiplexing (TDM), 666

Time domain addressing. See

Multiversion

Timestamp ordering. See also

Concurrency control

concurrency management and, 569,

583-88

deadlocks and, 588

defined, 556, 569

distributed database management

systems and, 692-94

serializability and, 583, 604

steps for, 603

uses of, 569, 583-88, 604

Tokens, defined, 666

Top-down approach, uses of, 649

Track indexes, 101

contents of, 100-101

uses of, 103

Tracks

defined, 79

disks and, 79, 98

Traditional data models, types of, 45.

See also Hierarchical data

models; Network data models;

Relational data models

TRAMP system, 74

Transaction classes, 709

Transaction-consistent checkpoints,

defined, 527

Transaction files, defined, 92

Transaction managers, defined, 686

Transaction-oriented checkpoints,

defined, 527

Transaction redo, uses of, 532

Transactions

application programs and, 520

characteristics of, 523

defined, 518, 519, 549, 555-56

recovery and, 517-24

states of, 521-23

Transaction undo, uses of, 531

Transformers, uses of, 714

Transitive dependencies, 305

defined, 305

Trapdoor functions, 628

Tree locking protocols, uses of, 581 —

82

Trees

contents of, 428

defined, 67

hierarchical data models and, 430-

35, 455, 456

Tree structured files. See also specific

files

capacity of, 132, 133

characteristics of, 124-25

deletions and, 127, 130-32

insertions and, 127, 128-30

operations and, 127-32

searches and, 127

types of, 124-27

uses of, 137

Tree structure diagrams. See

Hierarchical definition trees

Triggers, defined, 635, 734

Trivial functional dependencies,

defined, 296

Tuple calculus. See also Relational

calculus

characteristics of, 198, 201

formulas in, 189-93

negation and, 191-92

queries and, 184, 187-88, 190-93

Query Language and, 209, 212, 281

Structured Query Language and,

212, 281

Tuple identifiers (TID)

contents of, 492-93

defined, 200

Tuples, 210, 211. See also specific

tuples

defined, 60, 156, 225

relational data models and, 155-56

uses of, 156, 201

Tuple substitution method

defined, 496

disadvantages of, 496

uses of, 497-98

Tuple variables

Query Language and, 243-44 , 246,

251, 254, 265

Structured Query Language and, 222

uses of, 244, 265-66

Turing test, 723n.2

Two-phase commits

characteristics of, 545

contents of, 695-96

recovery and, 698-700

Two-phase locking

characteristics of, 604

deadlocks and, 576

defined, 574

uses of, 574-75

Two-place predicates, defined, 185

Two-variable expressions, uses of,

488-90

Undo, 531

characteristics of, 530

defined, 528

uses of, 520, 522, 530, 531

Union. See also Relational algebra

characteristics of, 169

defined, 152, 166

uses of, 232, 242

Union compatible, defined, 165-66

Unique identification, defined, 159

Unique name assumptions (UNA),

defined, 732

Unique options, 214

Universal relation

advantages of, 293

defined, 290

disadvantages of, 291-92

obtaining of, 293

relational databases and, 290-93

validity of, 293

Universal relation assumption, defined,

290

Unnormalized, defined, 308

Update in place, 533, 536

characteristics of, 533

costs of, 547-48

defined, 532

uses of, 533-38, 550

Update locks, uses of, 570, 578

Updates. See also Delete; Insert;

Replication

defined, 89

exceptions to, 89-90

hierarchical data models and, 447-51

index-sequential files and, 103, 104

multilevel indexes and, 99

Query-By-Example and, 277-80

Query Language and, 256-59

recovery and, 532-44

sequential files and, 92

Structured Query Language and,

235-36, 239-42

syntax of, 216

uses of, 215, 236

views and, 239-42

virtual records and, 450-51

Updates via log

characteristics of, 533

uses of, 550

Update transparency, defined, 677

Update types, 114

820 Index

User errors, 515

User views. See External views

User work areas (UWA), defined, 405,

443

Validation phases, uses of, 589

Validity, defined, 515

Values

attributes and, 4, 5, 8-9

storage of, 8-9

Variables, uses of, 185

Vectors, 397

defined, 396

Vertical fragmentation

defined, 672

uses of, 653

View-integration approach, uses of,

649

Views

algorithms for transforming queries

on, 504

defined, 10, 237

as objects, 620

Query Language and, 259-60

query processing and, 503-5

representation of, I!

Structured Query Language and,

237-42, 281

updates and, 239-42

uses of, 626-27

Virtual fields, defined, 19

Virtual memory

defined, 539

recovery and, 545, 546

Virtual records

defined, 432, 435, 456

hierarchical data models and, 435,

456

updates and, 450-51

uses of, 432, 437, 438, 455-56

Virtual storage access method (VSAM)

advantages of, 104-5, 137

contents of, 105

control intervals and, 104, 105

index-sequential files and, 104-5

overflows and, 105

Volatile storage, failures and, 514, 524

Voting phases, 695-96

Wait-die, 601

defined, 601

Wait-for graphs, 596

contents of, 595

defined, 595

uses of, 605

Weak entities, defined, 48

Wearout, causes of, 513, 514

Well-formed formulas <wffs)

characteristics of, 187

defined, 186

rules about, 195

Where clauses, uses of, 215, 242, 243,

444

Wide area networks, defined, 663

Wound-wait, 601-2

defined, 601

Write-ahead log strategies

characteristics of, 525, 533

defined, 525

uses of, 525

Write locks, uses of, 570, 578

Write phases, uses of, 589

Write timestamps, 583

defined, 592

X3H2 committee, 425

Ynet, 775-76

Zloof, M. M., 269

