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Montréal, Québec, Canada

July 2021

© Bingwei Ge, 2021



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Bingwei Ge

Entitled: Statistical Framework Based on the Weighted Generalized Gaussian

Mixture Model : Application to Robust Point Clouds Registration and

Single Target Tracking

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Hassan Rivaz

External Examiner
Dr. Bruno Lee (BCEE)

Examiner
Dr. Hassan Rivaz

Supervisor
Dr. Nizar Bouguila (CIISE)

Approved by
Yousef R. Shayan, Chair
Department of Electrical and Computer Engineering

2021
Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science



Abstract

Statistical Framework Based on the Weighted Generalized Gaussian Mixture Model :
Application to Robust Point Clouds Registration and Single Target Tracking

Bingwei Ge

Due to the introduction of the shape parameter, generalized Gaussian has better modelling

capabilities than the Gaussian distribution. Therefore it is broadly used in various fields. Based on

this, we established a statistical framework for the data-weighted multivariate generalized Gaussian

mixture model (WMGGMM). By extending the traditional EM algorithm, we obtain the model pa-

rameters in non-closed forms and then apply an iterative method employing the fixed point equation

to get the values of the components’ mean and covariance. The Newton-Raphson approach is used

to update the shape parameters. The complexity of the model is automatically determined by the

minimum message length (MML) criterion. This thesis implements the proposed framework to two

challenging tasks: point clouds registration and single-target visual tracking. The data weighting

approach considers different techniques depending on the specific application’s needs. In the first

application, we adopt k-nearest neighbours to supply greater weight to points with high density,

highlighting the main structure of the entity point cloud object while reducing noise. In the second

application, the distance significance is based on the spatial kernel, which means pixels closer to the

center of the target candidate ellipse have more contributions.

In the first application, WMGGMMs describe the target point cloud and the point cloud to be

registered. Then the KL divergence between these two models will be used as the loss function

for the stochastic optimization to obtain the best transformation model parameters, decreasing the

probability of falling into a local optimum. The self-built point cloud is utilized to evaluate the

performance of the algorithm on rigid registration. The results show that the algorithm significantly

reduces the influence of outliers, enhances the robustness and accuracy of the algorithm, and effec-

tively extracts the critical features of the object. In the second application, the preprocessing step
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of colour compression (image segmentation) improves the adaptability of the generalized Gaussian

mixture model to the data while preserving the original image information as much as possible.

According to the ratio of each pixel’s responsiveness to the target and background model, segmen-

tation weights of the pixels are obtained to guide the location and size update of the target. The

performance of the proposed approach is experimentally verified on a public dataset and compared

with other algorithms.
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Chapter 1

Introduction

1.1 Motivation

Multivariate Generalized Gaussian Distribution (MGGD) has attracted widespread attention in

various fields due to its outstanding feature fitting ability. Furthermore, the introduction of shape

parameter makes it applicable for different situations [1]. However, the expression of its probability

density function is not unique, and many references have tried to simplify it to a certain extent.

For example, using a diagonal matrix to independently describe the variance of each dimension can

effectively reduce the amount of calculation of matrix inversion, but this will ignore the correlation

between the data dimensions [2, 3]. Intuitively, the surface of equal density will be a spherical shell

in d-dimensional space rather than an ellipsoid. In the pursuit of accuracy, such simplification may

lead to unacceptable results. Therefore, we will retain the complete covariance matrix and obtain

distribution parameters consistent with the actual data by sacrificing some computational perfor-

mance. The mixture model formed by the linear combination of a limited number of single MGGDs

is an extension of GMM. It will inherit its advantages and perform effective feature extraction on

global data. We assume that the data distribution is not uniform in most practical applications. Be-

cause under the premise of homogeneous distribution, the probability of the sample appearing in the

feature space is almost the same, which means that it is challenging to obtain obvious statistical laws

(this is also why uniform distribution is usually used as non-informative priors). The kernel method

will be used for data weighting to enhance further the distinction of data distribution (making the
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peak sharper) to improve the fitness of the MGGMM to the data and highlight the main features

of the data. According to these requirements, the estimation equations of WMGGMM parameters

need to be re-derived under the framework of the EM algorithm with different weighted methods.

Since the weighted generalized Gaussian mixture model (WMGGMM) has satisfying robust-

ness, we will apply it to point cloud registration and single-target tracking in this thesis. In point

cloud registration, the point-to-point registration method is likely to fall into local optimum, espe-

cially when there are similar structural blocks in the point cloud. The mixture model-based approach

can effectively deal with the above problems through the maximization of the posterior. Neverthe-

less, the traditional GMM model has an unsatisfactory description of the high-density region which

may be the skeleton structure of the object in the point cloud, and it is easy to be disturbed with

noise [4]. WMGGMM can effectively eliminate the influence of noise and outliers by using data

weighting, and it reduces the possibility of falling into local optimum through stochastic optimiza-

tion based on KL divergence. In single-target tracking, WMGGMM is utilized to improve the

tracking algorithm proposed in [5]. The preprocessing based on colour compression and image

segmentation will modify the original colour feature distribution on the premise of preserving the

image semantics to give play to the advantages of generalized Gaussian in fitting peak distribution.

Still, considering the data support for mixture components, the shape parameter is used as a hyper-

parameter which can be adjusted manually. The response model established by WMGGMMs takes

into account the mixing coefficients of similar components in the target and background. And from

this, the segmentation weights guiding the update of the target position and size are obtained.

1.2 Literature Review

1.2.1 Generalized Gaussian Mixture Model

The generalized Gaussian family originated from [6], and the related essential attributes, such as

the definition of probability density, were studied in [7–9]. Analytical properties of GGD, including

moments, product decompositions and characteristic functions, are given in [10]. [11, 12] indicate

that GGD and spherically invariant random vectors (SIRV) have similar features under some circum-

stances. In image and signal processing, most statistical features of data are peak-heavier tailed. The
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introduction of shape parameter makes GGD an excellent choice for such data. Therefore, GGD has

aroused great interest in these applications, and parameters estimation of GGD is the primary prob-

lem. [13] compares three classical GGD parameter estimation methods for different sample sizes:

momentum method (MM), maximum likelihood estimation (MLE) and momentum/Newton-step

(MNS). The performance of MLE is the best when the shape parameters are small, while MNS is

more suitable for the data satisfied with light trailing distribution. In [1], Pascal et al. point out that

although Maronna ’s conditions [14] do not apply to MGGD, its MLE exists. Based on the related

work of fixed-point equations analysis in [15, 16], they obtain the MLE of the scattering matrix M

when the shape parameter is between 0 and 1. [17] confirms that the fixed point iteration solution

of the covariance is essentially a geodesic convexity optimization. Under this premise, the local

optimal is also the global optimal. The negative log-likelihood satisfies the above conditions and

requires weaker assumptions, which simplifies the calculation. Based on this, they get the struc-

tural covariance estimation of high-dimensional MGGD using a small number of samples. Besides,

Farias et al. propose an explicit estimator based on the transcendental moment method for the shape

parameter and construct its confidence interval [18].

The generalized Gaussian Mixture Model (GGMM) is a linear combination of some single

GDDs. It has a wide range of applications, such as corpus keyword recognition [19, 20], image

semantic segmentation [21–23] and visual feature clustering [24]. And its parameters estimation

process is more complex than that of GDD. An intuitive and common approach approximates the

distribution of the mixture model by the Monte Carlo Markov Chain (MCMC) technique. Still,

this method is based on universal sampling, and the approximate process will take up a mass of

computational resources [25]. Srikanth et al. proposed a variational inference framework for the

generalized Gaussian mixture model [26]. In the original version, they used a one-dimensional

GGD. Since the shape parameter does not have a conjugate distribution, a prior distribution is not

considered. Instead, it is solved numerically using Newton-Raphson method. Their framework

combines the Dirichlet process with a stick-breaking representation and feature selection model in

subsequent improved versions. But when considering multivariate variables, the probability density

is still a simplified function with independent dimensions [27]. However, it is challenging to apply

variational inference using a complete covariance matrix because most of the parameters do not have

3



a conjugate prior due to introducing the shape parameter. It is feasible to apply the EM algorithm

framework to GGMM. However, the introduction of shape parameter makes it impossible to obtain

an analytical form by derivation of Q function. The solution of the fixed-point equation of the

mixture model parameters is extended from the theory of Pascal et al.. Nevertheless, the shape

parameter estimation still requires the Newton-Rapson method [28]. [29] combines the accuracy of

the EM algorithm with the high efficiency of an evolutionary algorithm to create the EP2 method,

i.e. the mixed parameters obtained through the random search of the particle swarm optimization

(PSO) are integrated into the expectation-maximization process. This design can evaluate the shape

parameters with a wide range.

1.2.2 Point Cloud Registration

The purpose of registration is to find the transformation and mapping relationship between two

point clouds that make them overlap as much as possible in the same space coordinate system. Point

cloud registration has wide applications in reverse engineering, robot vision SLAM positioning,

medical imaging, architecture and topographic surveying [30]. In this section, we will introduce

relevant works according to the fineness (coarse and fine matching) of registration.

The 4PCS (4-points congruent Sets) point cloud coarse registration method is suitable for cloud

registration of scenic spots with small overlap areas or significant changes in the overlap area [31].

There is no need for pre-filtering and denoising input data, and the algorithm can complete point

cloud registration quickly and accurately. It employs the RANSAC framework and reduces spa-

tial matching operations by constructing and matching congruent four-point pairs, accelerating the

registration process. Specifically, a coplanar four-point set is built in any pose’s input point cloud

P as well as Q. Then, the affine invariance constraint is adopted to match the corresponding point

pairs that meet the conditions in the coplanar four-point set. As a result, the LCP (Largest Com-

mon Pointset) strategy will find the four-point pairs with the maximum overlap after registration,

and the optimal coarse matching result is obtained. Since the 4PCS algorithm can cope with com-

plex scenes of point cloud registration tasks, a series of improved algorithms have emerged. The

Super4PCS algorithm uses an intelligent indexing strategy to reduce the computational complex-

ity of the 4PCS algorithm from O(n2) to O(n) [32]. The K-4PCS is aimed at the unreasonable
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point cloud downsampling (simplification) in the original algorithm and proposes a point cloud key

point detection strategy, using sparse key points instead of random sampling points [33]. Semantic-

keypoint 4PCS [34] is dedicated to the registration of urban architectural scenes. The semantic key

points of the buildings are extracted hierarchically, and then they are applied to replace the original

random sampling points for point cloud registration. Generalized 4PCS improves the construction

process for the original algorithm with four coplanar points. The construction of the coplanar four-

point base is generalized, and the four points are no longer strictly restricted to co-exist on the same

plane. This method dramatically improves the efficiency of point cloud registration [35].

Biber et al. proposed Normal Distributions Transform (NDT) [36] in 2003. The basic idea of the

NDT algorithm is first to construct the normal distribution of multi-dimensional variables based on

the reference scan data’s cell division. When the transformed point has the most significant posterior

probability density in this distribution, the two point clouds are the best match, and the optimal

transformation parameters can be obtained. On this basis, various enhanced methods have been

derived. For instance, [37] extended the above method to three-dimensional and verified it with a

real data set. In [38], a fast and robust registration method combining multi-layer normal distribution

transform (ML-NDT) with a feature extraction algorithm is introduced. The process reduces the

influence of outliers and advances the speed of calculation. Moreover, the registration based on

plane segments solves the problem of data association in 3D. Another coarse registration approach,

SAMPLE Consensus Initial Alignment (SAC-IA), is offered in [39]. The algorithm extracts the

normal vectors and the Fast Point Feature Histograms (FPFH) after simplifying the point cloud.

The FPFH, which is more efficient, describes the local geometry around a point in the point cloud.

The distance between features determines the relationship between point pairs, and then several

points are randomly selected to calculate the transformation matrix.

The simple and effective Iterative Closest Point (ICP) algorithm [40] is the legend of fine regis-

tration. It is widely practiced, and many improvements have been developed. The core idea of ICP is

to minimize the average Euclidean distance between the transformed points and the corresponding

points in the reference data by optimizing the rigid transformation parameters. The registration re-

sult is accomplished by completing the two substeps alternately until the loss function convergence,
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including finding the nearest corresponding points and solving the optimal transformation. The two-

level loop is required to find the nearest corresponding point directly, so the distance threshold or

KD-tree is generally used to accelerate the traversal process. For point-to-point ICP problems, SVD

decomposition can be adopted to obtain the closed solution. ICP does not need segmentation and

feature extraction of point clouds. When the initial value is suited, its accuracy and convergence are

perfect. Still, only the distance between points is considered, and the structure information of the

point cloud is not involved. The result is easily affected by the initial value and falls into the local

optimum. [41] proposed a precise and fast point-to-(tangent) plane registration technique based on

ICP. To find the intersection point on the target surface, Park et al. project the source control point

onto the target surface and then reproject the projection point onto the normal vector of the source

point. This method increases the speed and accuracy of registration in several situations. [42] com-

prehensively considers the point-to-point, point-to-plane and plane-to-plane strategies and forms a

single probabilistic framework (Generalized-ICP), which improves the accuracy and robustness of

registration. Normal Iterative Closest Point (NICP) [43] considers the normal vector and local cur-

vature and further uses the local structure information of the point cloud. The experimental results

in the paper show that the performance is better than GICP.

The authors in [44] proposed Coherent Point Drift (CPD) for rigid and non-rigid point set fine

registration. The algorithm uses GMM to describe the point set and converts the registration into

a probability density estimation problem. Each point in the point cloud is employed as a centroid

to initialize the components of the Gaussian mixture model. The transformation parameters are

fitted through maximum likelihood optimization. [45] proposed an automatic weight determination

method that combines genetic algorithm and Nelder-Mead simplex method to choose noise and

outlier measure weights in CPD. Experiments present that the proposed technique is more robust

than the baseline. Hirose et al. used Bayesian variational inference to improve CPD [46], and the

motion coherence was used as a prior to make the transformation parameters more explanatory. At

the same time, the algorithm enhances the adaptability to the target rotation situation and is suitable

for non-Gaussian kernels.
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1.2.3 Visual Tracking

The primary purpose of visual tracking is to imitate the motion perception function of the phys-

iological optical system. The algorithm will calculate the moving target’s position in each image

frame by analyzing the image sequence captured by the camera to obtain its motion parameters and

adjacent Correspondence between frames [47].

We will introduce some classical methods first. Mean-shift is a method based on probability

density functions, which searches for the target that always follow the direction of the rising prob-

ability gradient and iteratively converges to the local peak of the probability distribution [48]. Each

pixel value represents the probability that the corresponding point in the input image belongs to the

target object, which is suitable for situations where the target’s colour model and background are

quite different. However, it cannot solve the occlusion problem of the target and cannot adapt to

changes in the shape and size of the moving target. Therefore, some upgraded mean-shift algo-

rithms with scale adaptation have been proposed. For example, SOAMTS [49] uses the zero-order

moment and Bhattacharyya coefficient between the target and candidate model for practical scale

estimation and applies the estimated area and second-order central moment to predict the target

width, height and direction changes adaptively. [50] proposed a mean-shift scale estimation mecha-

nism that only relied on Hellinger distance and enhanced the discrimination of the target through the

weight of the background colour histogram of the target field. At the same time, this method intro-

duces forward-backward consistency checks and regularization to improve tracking performance.

Kalman filter [51] estimates the target’s position in the next frame by modelling the motion of the

target. This method considers that the motion model of the object obeys the Gaussian model to pre-

dict the motion state of the target and then compares with the observation model to update the state

of the motion target according to the error. Particle filtering [52] defines a similarity measure based

on particle distribution statistics to determine the degree of matching between particles and targets.

The search process randomly sprinkles a certain distribution of particles, calculates the similarity,

and adds more particles to the possible target position in the next frame to prevent the target from

being lost.
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The method of correlation filtering (CF) is originated in the field of signal processing. Corre-

lation is used to express the similarity between two signals, and convolution is usually handled to

show correlation operations. Its basic idea is to find a filter template and make the following image

and filter template perform a convolution operation. The area with the most prominent response is

the target of prediction. The principal advantage of this approach is that it is fast, making it a main-

stream method of tracking. The Minimum Output Sum of Squared Error Filter (MOSSEF) [53] is

the originator of correlation filtering tracking. The convolution operation in the time domain will

become a simple multiplication in the frequency domain, which significantly simplifies the calcu-

lation. [54] proposes the Kernelized Correlation Filter (KCF), which collects positive and negative

samples through the circulant matrix of the area around the target. This method uses the matrix’s

diagonalization in Fourier space to improve tracking performance significantly and enable the al-

gorithm to meet real-time requirements. The Discriminative Scale Space Tracker (DSST) stated

in [55] gains MOSSE to cope with multi-scale changes. This work regards the tracking process

as two independent sub-problems, combines grayscale and HOG features to train translational cor-

relation filtering to detect the center of the target, and applies size filtering to extract samples at

various scales. The SAMF (Scale Adaptive & Multiple Features) method [56] is based on KCF and

uses multiple feature fusions, including grayscale, HOG and colour namespace (CN). A multi-scale

search strategy is also employed.

In recent years, due to the innovation of hardware equipment, deep learning (DL) to auto-

matically extract features through a non-linear multilayer network structure has made remarkable

achievements in various fields. Therefore, trackers based on deep learning have also attracted

widespread attention [57]. There are three main types of DL trackers: (1) Based on pre-trained

deep features. Martin et al. proposed a new type of continuous equation, which combines multiple

convolutional layers with different spatial resolutions through a joint learning framework named

Continuous Convolution Operator (C-COT) [58]. The confidence score of the continuous domain

can achieve accurate sub-pixel positioning. Later, the authors released an improved version called

Efficient Convolution Operator (ECO) [59]. To deal with Discriminative Correlation Filter (DCF) ’s

overfitting, they proposed a factorization convolution operator that constructs the convolution filter

as a linear combination of basic filters. At the same time, the sample generation model is used to
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reduce the number of training samples. (2) Based on the off-line training depth feature. [60] uses a

Stacked Denoise Autoencoder (SDAE) to perform unsupervised offline training on the large-scale

natural image data set (Tiny Images) to obtain the characterization ability of the object. The online

tracking part takes the encoding part of offline SDAE, then superimposes the sigmoid classification

layer to form a classification network and uses positive and negative samples to fine-tune it. In the

current frame, particle filtering is used to extract a batch of candidate patches, and the one with the

highest confidence becomes the final prediction target. [61] proposed SiamFC to solve the real-time

tracking of neural networks. This method applies a fully convolutional twin network for similarity

learning, uses the ILSVRC dataset for target detection to train, and then extends the model from

the ImageNet Video domain to other video tracking dataset domains. The online tracking process

only needs to be inferred . (3) Correlation filtering integrated into a deep learning framework. For

example, [62] proposed CFNet, which is similar to SiamFC. This method rewrites CF into a differ-

entiable neural network layer and then integrates it with the feature extraction network to achieve

end-to-end optimization. And the algorithm calculates a new template in each frame, combines it

with the previous template using a moving average to update in real-time.

1.3 Problem Statements and Thesis Contributions

The first problem in this thesis is to derive the fixed-point equations of the weighted generalized

Gaussian mixture model. The introduction of weights makes the formulas more complicated, par-

ticularly when the weight parameters are utilized as random variables. Although allowing the data

to express the weighting law by itself can avoid low adaptability caused by subjective definitions,

the update of weights’ prior parameters directly based on the MLE will increase many calculations.

Applying conjugacy only involves the current small batch of data in each round of optimization, so

it is essential to find an effective conjugate prior. The second problem is how to quickly reduce the

redundant components in the early stage of the automatic determination of the number of compo-

nents in the mixed model. In addition, there will be a large number of multiplexed sub-blocks in the

iterative process of the fixed point equation. For example, the Mahalanobis distance is calculated

after the inversion of the covariance matrix. How to reasonably allocate the pre-calculation in the
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actual program to accelerate the algorithm convergence is also worth considering. One of the main

challenges in point cloud registration applications comes from sample noise and outliers caused by

different acquisition environments, sensor noise, and imaging mechanisms. We aim to find a suit-

able weighting method to achieve a more robust registration by removing interference as much as

possible while preserving the main characteristics of the data. [5] does not fully consider the prior

mixing coefficients of the same colour components in the target and the background in the visual

tracking application. At the same time, it is easy to fail to track when the target is moving quickly.

We will make improvements in response to the above problems.

The main contributions of this thesis are as follows: (1) The data weights are introduced into the

generalized multivariate Gaussian mixture model, and the fixed point equations under EM algorithm

framework are derived. (2) The minimum message length (MML) is adopted to determine the

number of components in the mixture model automatically and a negative feedback mechanism for

the initial components rapid reduction is introduced.

The highlights in point cloud registration are as listed: (1) A more explanatory Bayesian process

is used to update the weights, which reduces the impact of insufficient prior knowledge. (2) The

KL divergence between the two mixed models is applied as a loss function to guide the stochastic

optimization algorithm to update registration parameters.

The improvements and innovations in visual tracking are as follows: (1) Colour compression

is introduced to improve the fitness of the WMGGMM to data, reduce noise, enhance the contrast

between the target and the background, and speed up the model convergence. (2) According to the

ratio of each pixel’s responsiveness to the target and background model, segmentation weights of

the pixels are obtained to guide the location and size update of the target. (3) The model update

strategy based on the change of the ellipse aspect ratio is applied to deal with the three-dimensional

rotation of the target.

1.4 Thesis Outline

In Chapter 2, the WMGGMM framework combined with stochastic optimization is proposed

for point cloud registration. The KL divergence between these two mixture models is utilized as the
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loss function for stochastic optimization to find the optimal parameters of the transformation model.

The self-built point clouds are used to evaluate the performance of the proposed algorithm on rigid

registration.

In Chapter 3, a single target tracker is proposed based on probabilistic models. Colours compres-

sion is applied as preprocessing to reduce the noise of the video frames. The spatially WMGGMM

with shape hyperparameters describes the feature histograms of the aim area and context. Based on

the pixel-to-model responsivity ratio to generate segmentation weights, we improved the mean-shift

position and size update mechanism. And we renew the model according to the change in the as-

pect ratio of the ellipse. The performance of the proposed algorithm is experimentally verified on a

public dataset and compared with other algorithms.

In Chapter 4, we briefly give a summary of the current work and look forward to future research

directions based on the existing deficiencies.
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Chapter 2

Data-Weighted Multivariate Generalized

Gaussian Mixture Model: Application to

Point Cloud Robust Registration

2.1 Introduction

The purpose of point cloud registration is to extract the key points or features corresponding to

the target point set and the point set to be registered and find the transformation mapping relationship

between two point sets [63]. This task involving image processing, data analysis and computer

vision has essential applications in many practical scenarios.

For instance, point cloud registration is essential for driverless technology. Indeed, various hard-

ware sensors, such as lidars, short-wave radars and depth-of-field cameras, could be mounted on the

crew-less vehicle and point cloud registration technology can be used to fuse data collected from

multiple sensors [64–66] to provide fundamental functions such as scene stitching, vehicle position-

ing [67], and typical scene recognition and matching for vehicle control strategies. For example,

the authors in [68] proposed a framework used for unmanned vehicles based on end-to-end point

cloud registration deep networks. They obtained the corresponding relationship by learned match-

ing probabilities (LMP) among a group of candidate points related to static characteristics instead
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of using existing points. Point cloud registration is also applied in medical imaging [69]. Indeed,

to facilitate the diagnosis of the disease, several medical images from different instruments, such

as Positron Emission Tomography (PET), Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI), need to be combined [70]. For example, authors in [71] improved the popular it-

erative Closest Point (ICP) algorithm by combining 3D scale-invariant feature transform to register

3D free-form closed surfaces (human skull models). In another work the authors in [72] used the

Gaussian mixture model (GMM) with a semi-supervised EM algorithm and geometric constraints

to achieve retinal image registration. Moreover, 3D reconstruction also makes extensive use of

point cloud registration technology. For large buildings, for example, general scanning equipments

cannot complete the whole scanning process at one time because the scanning range is limited. It

requires scanning multiple parts and then splicing point clouds together [73]. In other cases, the

objects to be observed may be dynamic or with complex surface characteristics. The accuracy of

these features plays a crucial role in modelling and analysis; repeated scanning to build a fusion

model can improve details [74].

Considering the point set’s acquisition perspective, noise and outliers generated in the acquisi-

tion process, as well as the deformation and part missing of the point set caused by other factors,

point cloud registration is a challenging task [63]. Various methods are proposed to enhance the

robustness and accuracy of point cloud registration. In terms of pairwise registration considering

only two point sets, there are three main registration categories: distance-based methods including

ICP [75], Graph Matching (GM) [76], filter-based methods and probability-based methods [77].

However, most point-to-point methods are prone to fall into local optima, especially if there are

some similar point structure blocks in the point set. To improve this situation, registration based on

mixed models (most are GMM-based) has proven effectiveness [78–80]. The core idea is to model

and describe the probability distribution of the point set using a parameterized mixed model and

find the closest response of the mixture model to determine the corresponding relationship between

point sets. These models perform well even if the sampling rate of two point clouds is not the same.

Nonetheless, there are two evident deficiencies when using the GMM. First, the GMM can-

not describe well some non-gaussian distributions, such as the typical peak-trailing distributions in
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signal processing. In the point cloud, intuitively speaking, space with dense data will carry more in-

formation. These high-density areas may represent the crucial feature structures in the point cloud,

yet the GMM cannot effectively fit these high-density blocks, and its results tend to be relatively

average. Secondly, GMM is easy to be disturbed by noise. Different noise levels will result in

the mixture model’s divergent response parameters, which could compromise the final registration

accuracy [4].

The goal of this paper is to propose a point cloud registration method based on the weighted

multivariate generalized Gaussian mixture model (WMGGMM) that we develop in this paper to ad-

dress the difficulties above. The generalized Gaussian distribution (GGD) belongs to the family of

elliptic distributions. Due to the addition of a shape parameter, it has a strong ability to describe var-

ious data distributions, particularly considering the data peak [1]. Its special cases contain Gaussian

and Laplace distributions, and therefore it is widely used in feature extraction [81–83] and texture

retrieval [84–86]. The mixture model of GGD also has been applied in several applications such as

image processing and segmentation [2, 87, 88] and human movement recognition [3, 89].

We show that the generalized Gaussian mixture model (GGMM) is an alternative worthy choice

for point cloud registration when real-time is not required too much. Although most parameters of

GGMM have no closed solutions, its offers high registration accuracy and robustness. In addition,

we introduce weights to reinforce the ability to pay attention to dense areas and reduce the influence

of noise and outliers on the parameter estimation process. After obtaining the GGMM models for

the target scene and the scene to be registered, the approximate Kullback-Leibler divergence (KLD)

is computed to measure the models’ difference. It will be used as a loss function to find the optimal

registration parameters through the stochastic optimization algorithm.

The paper is organized as follows. Section 2.2 will tackle the WMGGMM parameters estima-

tion. This section will also give the complete learning algorithm. Section 2.3 presents some experi-

mental results conducted on synthetic data set to verify the algorithm’s performance and robustness.

It is also devoted to our approach to obtain the optimal registration parameters using stochastic opti-

mization and the final registration effect performed on rigid transformation is presented. Conclusion

and future works are finally reported in section 2.4.
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2.2 Weighted Multivariate Generalized Gaussian Mixture Model

In the majority of existing works, features independency assumption is used to simplify mod-

eling high-dimensional data which results in a distribution which is a product of one-dimensional

generalized Gaussians [2, 3]. Unlike these works, we use here the PDF as defined in [1]:

p(x;µ,Σ, β,m) =
Γ d

2 β

Γ d
2β π

d
2 2

d
2βm

d
2 |Σ|

1
2

e
− 1

2mβ
((x−µ)TΣ−1(x−µ))

β

(1)

where Γ(·) denotes the Gamma function, x, µ ∈ Rd and µ is the mean vector, Σ is d × d real

symmetric positive definite matrix called scatter matrix; m and β > 0 are the scale and shape

parameters of MGGD. The shape parameter controls the peak’s sharpness and the tail’s extension

in the probability density function. It is worth noting that when β = 1, the MGGD becomes

the multivariate Gaussian distribution. If β < 1, the distribution will have a sharper peak and

more massive tail. However, when β tends to infinity, MGGD is close to a multivariate uniform

distribution [1].

2.2.1 Data Weighting

Recent research works have shown that data weighting could improve modeling capabilities

(see, for instance, [90] and references therein). Here we follow these works via an extension to

GGMM-based modeling. As proposed in [90], for instance, each sample will get a corresponding

weight w greater than 0. If we consider the likelihood for a specific sample x, we can write it as

p(x;µ,Σ, β,m)w. This is not a probability distribution because the integral is not equal to one. But,

we notice that p(x;µ,Σ, β,m)w ∝ p(x;µ,Σ, β,mw−1/β), then we can obtain the PDF with weight

as a parameter:

p̂(x; θ, w) = p(x;µ,Σ, β,mw−1/β) (2)

where θ = {µ,Σ, β,m}. It can be seen that individual weight directly influences m in the PDF

here. Still, in parameter estimation, the weights will affect simultaneously the scale and shape in

the final mixture. Having the new distribution in equation (2) in hand we can get the K-component
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mixture:

ep(x; Θ, w) =

KX
k=1

πkp(x;µk,Σk, βk,mkw
−1/βk)

where Θ = {π1, ..., πK , θ1, ..., θK} denotes the parameter set of the model, (π1, ..., πK) are the

mixing coefficients which satisfy πk > 0 and
PK

k=1 πk = 1. θk = (µk,Σk, βk,mk) are the

parameters of the kth component. Let X = {x1, ..., xN} represents the whole data set and W =

{w1, ..., wN} is the weights set, then the log-likelihood function is given by:

L(X|Θ,W ) =
NX
i=1

ln

"
KX
k=1

πkp(xi;µk,Σk, βk,mkw
−1/βk
i )

#

2.2.2 MGGD with Fixed Weights

For maximum likelihood estimation, the missing variables Z = {z1, ..., zN} are introduced. If

xi is generated by the kth component, then zi = k. We assume that the weights are already known

by prior knowledge, so the expected complete data log-likelihood (Q function) can be written as:

Qc Θ,Θ(r) = Ep(Z|X;W,Q(r))[lnP (X,Z;W,Θ)]

Θ
=

NX
i=1

KX
k=1

ηik

"
lnπk + lnβk +

d

2βk
lnwi

− ln Γ
d

2βk
− d

2βk
ln 2 − d

2
lnmk −

1

2
ln |Σk|

−
wi

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk
2mβk

k

#
(3)

where EP [·] is the expectation with respect to the distribution P and Θ
= represents items related only

to Θ. Subsequently, the optimal parameters Θ∗ can be obtained by EM algorithm. In the expectation

step, the posteriors are updated with:

ηik = p (zi = k | xi; Θ, wi) =
p̂ (xi; θk, wi)PK

k=1 πkp̂ (xi; θk, wi)
(4)
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By taking the derivatives of complete data log-likelihood with respect to parameters and making the

results equal to zero, we can obtain the parameters update formulas:

πk =
1

N

NX
i=1

ηik (5)

mk =

"
βk

d
PN

i=1 ηik

NX
i=1

ηikwi

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk # 1
βk

(6)

µk =

PN
i=1 ηikwi

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk−1
xiPN

i=1 ηikwi

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk−1
(7)

Σk =
βk

mβk
k

PN
i=1 ηik

NX
i=1

 ηikwi (xi − µk) (xi − µk)
Th

(xi − µk)
T Σ−1

k (xi − µk)
i1−βk

 (8)

After replacing mk in equation (8) with the previous result in equation (6), we can find the Σk is

independent form mk. If we let yi = (xi − µk)
TΣ−1

k (xi − µk), we have:

Σk =
dPN

i=1 ηikwiy
βk
i

NX
i=1

"
ηikwi (xi − µk) (xi − µk)

T

y1−βk
i

#
(9)

And it is worth noting that µk and Σk do not have closed solutions; they are both solved through

the fixed point (FP) method. According to Banach fixed point theorem [91], if (S, d) is a non-

empty complete metric space with a contraction mapping T : S → S, then there exists a unique

fixed point S∗ in S. The authors in [1] proved the convergence of Σk and explained the existence

and uniqueness of the fixed point, based on the fact that β ∈ (0, 1] and Σ is a positive definite

real symmetric matrix. This is also consistent with our assumptions about β. We introduce the

Frobenius norm defined in equation (10) to measure the difference between Sn and Sn−1 in the

fixed point iteration. The process will stop when the approximate solution satisfies preset precision.

Besides, to ensure the convergence of the FP equation, the value range of weights should also be

between zero and one.

kSn − Sn−1kF =

vuut mX
i=1

nX
j=1

sij
n − sijn−1

2
(10)
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Then parameter β can be estimated using Newton-Raphson iterations [3, 89, 90]:

β
(t+1)
k = β

(t)
k − ξ

f β
(t)
k

f 0 β
(t)
k

(11)

where ξ is the learning rate used to prevent the oscillation and overflow in the iterative process, and

it is usually around 0.1. If necessary, the method of exponential decay can be applied to make the

convergence more stable. f(β
(t)
k ) and f 0(β

(t)
k ) are given as follows:
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where Ψ(·) is the digamma function.

2.2.3 Weights Considered as Random Variables

Above, we have derived the WMGGMM parameter updating formulas with fixed weights. How-

ever, it is pointed out in [90] that the Bayesian formalism is more inclined to treat parameters as
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random variables and update the posterior of parameters by combining the parameters prior with the

observed sample. Under this framework, the limitation of insufficient prior knowledge on the accu-

racy of weights will be reduced, and the inference process of weights will also be more explanatory.

As mentioned before, the generalized Gaussian distribution belongs to the family of elliptic distri-

butions so we select the same prior distribution, i.e. Gamma distribution, as in [90]. At this point,

the prior and the posterior of parameters have the same form. The advantage is when we make a new

observation, we do not have to re-calculate the whole process but only directly obtain the posterior

distribution through the parameters, which undoubtedly simplifies the updating process of weight

parameters. Then, the posterior will become the prior in the next calculation. Therefore, we can

make:

p(w;φ) = G(w; a, b) = Γ(a)−1bawa−1e−bw (14)

where G(w; a, b) is the Gamma distribution, and φ = {a, b} are the parameters of the prior distri-

bution of w. The mean and variance of random variable w are given by:

E[w] = a/b (15)

V ar[w] = a/b2 (16)

Due to the addition of prior parameters, the log-likelihood of complete data becomes the following

form:

Qc Θ,Θ(r) = Ep(Z,W|X;Θ(r),Φ)[lnP (X,Z,W ; Θ,Φ)] (17)

where Φ = {φ1, ..., φN} and φi = {ai, bi}. The posterior distribution factorizes on i is shown as

follows:

P Z,W | X; Θ(r),Φ =

NY
i=1

p zi, wi | xi; Θ(r), φi (18)

Each of these product terms can be expressed as two-factor expressions:

p zi, wi | xi; Θ(r), φi = p wi | zi, xi; Θ(r), φi p zi | xi; Θ(r), φi (19)
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According to the above formula, the expectation step in the EM algorithm is divided into two parts

(E-Z step and E-W step). In the E-Z step, the marginal posterior distribution of zi is obtained by

integrating over wi:

ηik =

Z
p zi = k,wi | xi; Θ(r), φi dwi

k∝
Z

πkp xi | zi = k,wi; Θ(r) p (wi;φi) dwi

=

Z
πkp̂ (xi; θk, wi)G (wi; ai, bi) dwi

∝ πkp̄ (xi;µk,Σk, βk,mk, ai, bi)

(20)

where p̄ (x;µ,Σ, β,m, a, b) is given as:

p̄(x;µ,Σ, β,m, a, b) =
βΓ d

2 Γ a + d
2β

(mπ)
d
2 (2b)

d
2β |Σ|

1
2 Γ(a)Γ d
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β

2bmβ
+ 1

#− a+ d
2β

(21)

In step E-W, according to the property of conjugate distribution, we can get:

p (wi | zi = k, xi; Θ, φi)
wi∝ p (xi | zi = k,wi; Θ) p (wi;φi)

= p̂ (xi; θk, wi)G (wi; ai, bi) = G wi; a
(r+1)
i , b

(r+1)
i

(22)

Thus, the updating formulas of prior parameters can be obtained:

a
(r+1)
ik = a

(0)
i +

d

2βk
(23)

b
(r+1)
ik = b

(0)
i +

(xi − µk)
TΣ−1

k (xi − µk)
βk

2mβk
k

(24)

w̄ik = EP (wi|zi=k,xi,Θ(r),φi)
[wi] =

a
(r+1)
ik

b
(r+1)
ik

(25)

The posterior weight mean is given as [90]:

w̄
(r+1)
i = E[wi|xi; Θ(r),φi ] =

KX
k=1

η
(r+1)
ik w̄

(r+1)
il (26)
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This explains the outliers shielding feature of the weighted algorithm. As an outlier is by definition

far from the centers of all components, it has a low posterior weight w̄ik for each component and

then a low mean posterior probability w̄i. By expanding equation (17), we can get a result similar

to the Q function with fixed weights:

Qc Θ,Θ(r) =

NX
i=1

KX
k=1

Z
wi

ηik lnπkp̂ (xi; θk, wi)

× p wi | xi, zi = k,Θ(r), φi dwi

Θ
=

NX
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KX
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"
lnπk + lnβk +

d

2βk
ln w̄
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− ln Γ
d
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−
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ik

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk
2mβk

k

#

(27)

Therefore, wi will be replaced by w̄ik in all the parameters updates formulas of the mixture model.

Since the equations are very similar, they are not repeated here.

2.2.4 Automatic Determination of the Number of Components

The model selection problem is tackled using the minimum message length (MML) criterion as

proposed in [92]:

ΘMML = arg min
Θ

−logP (Θ)−QR Θ,Θ(r+1) +
1

2
log |Ic(Θ)|+D(Θ)

2
1 + log

1

12
(28)

where IC(Θ) denotes the expected complete Fisher information matrix (FIM) and D(Θ) is the

dimensionality of the model. Using a similar development as in [92], we can show that

ΘMML = arg min
Θ

M

2

X
k∈K+

log πk −QR Θ,Θ(r+1) +
K+(M + 1)

2
1 + log

n

12
(29)
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where K+ is the set of non-empty components and K+ is the number of elements in it. Moreover,

we can rewrite the formula for calculating πk in maximization step of EM algorithm:

πk =
max 0,

PN
i=1 ηik −MK+/2PK

l=1 max 0,
PN

i=1 ηil −MK+/2
(30)

The threshold for minimum support is high when the number of non-empty components is large at

the beginning. Some components can be removed quickly. In the process of component updating

one by one, the threshold gradually approaches the situation in formula (30) as the number of non-

empty components decreases.

2.2.5 Complete Algorithm

The complete steps are outlined in Algorithm 1. We use k-means to initialize πk, µk,Σk. The

initial parameter βk is specified as 0.5, and the parameter mk is calculated according to the pre-

clustering results and the formula in [1]:

mk =
βk
dNk

NkX
i=1

h
(xi − µk)

T Σ−1
k (xi − µk)

iβk 1
βk

(31)

where xi ∈ Xk is the ith sample for the kth cluster and Nk is the number of samples. We adopt the

same data similarity measurement method based on the Gaussian kernel as in [90] for the initializa-

tion of weights. However, due to the constraint of the weight range, we modify it as follows:

wi =
1

q

X
j∈Sqi

exp −d2(xi, xj)

σ
(32)

where d2(xi, xj) denotes the euclidean distance and Sqi is the set containing q nearest neighbors of

xi, σ is a positive scale. The default setting for q is 20. Then we can calculate the initialization of the

prior parameters of the weight through equations (15) and (16), i.e. ai = w2
i and bi = wi. Fig.2.1

shows the impact of different σ on weights; its significance is to change the degree of differentiation

of weights. When there is a small σ, the difference in weights between dense and sparse areas

becomes more pronounced. Conversely, the distribution of weights will be relatively close. In other
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Algorithm 1 Proposed WMGGMM Algorithm with Component-Wise EM Procedure

Require: X = {xi}Ni=1; Φ(0) = {a(0)
i , b

(0)
i }Ni=1; Kmax

Θ(0) = {π(0)
k , µ

(0)
k ,Σ

(0)
k , β

(0)
k ,m

(0)
k }Kmaxk=1 ;

Ensure: Optimal mixture model parameters: Θ∗

Set: r = 0, MML = +∞
repeat

for k = 1 To Kmax do
E-Z step using (20):

η
(r+1)
ik =

π
(r)
k p(xi;µ

(r)
k ,Σ

(r)
k ,β

(r)
k ,m

(r)
k ,a

(r)
ik ,b

(r)
ik )Pkmax

l=1 π
(r)
l p(xi;µ

(r)
l ,Σ

(r)
l ,β

(r)
l ,m

(r)
l ,a

(r)
il ,b

(r)
il )

Compute the # of non-empty components: K+

E-W step using (23) - (25):
a

(r+1)
ik = a

(0)
i + d

2βk

b
(r+1)
ik = b

(0)
i +

[(xi−µk)TΣ−1
k (xi−µk)]βk

2m
βk
k

wik = a
(r+1)
ik /b

(r+1)
ik

M step:

π
(r+1
k =

MAX(0,η
(r+1)
ik −K+M/2)PKmax

l=1 MAX(0,η
(r+1)
il −K+M/2)

if π(r+1)
k > 0 then
Update µk using (7):
repeat

µnewk = T (µoldk )
until kµnewk − µoldk kF <

µ
(r+1)
k = µnewk

Update Σk using (8):
repeat

Σnew
k = T (Σold

k )
until kΣnew

k − Σold
k kF <

Σ
(r+1)
k = Σnew

k

Update βk using (11)-(13):
repeat

βnewk = βoldk − ζ
f(βoldk )

f 0(βoldk )

until |µnewk − µoldk | <
β

(r+1)
k = βnewk

Update m
(r+1)
k using (6)

end if
end for
Compute MML(r+1) using (29)
r = r + 1

until |∆MML(r)| <
Return the parameters Θ of non-empty components as optimal mixture model parameters Θ∗
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words, a smaller σ is more beneficial at removing outliers and noise. But it is important to note

that when the σ is too small, the weight operation is equivalent to remove most of the points that

away from the clustering center in the data distribution. The actual points involved in parameter

identification are reduced, leading to inadequate support of components. Also, the resulting mixed

model parameters will have a large deviation from the original data distribution. Therefore, the

selection of σ is a balance between model robustness and model accuracy. We set it to 25 in our

cases.

(a) σ = 1 (b) σ = 5

(c) σ = 10 (d) σ = 50

Figure 2.1: The influence of different Gaussian kernel parameter σ on the weights.
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2.3 Experimental Results

2.3.1 Synthetic Data

First, we demonstrate the performance of the WMGGMM model through synthetic data. The

method for generating data points that follow a MGGD distribution comes from [1]:

x ∈ Rde=τC1/2u (33)

where x is a random vector that follows a MGGD with scatter matrix C = mΣ and shape param-

eter β, and e= denotes equivalent on distribution; x is a random vector uniformly distributed on a

unit sphere and τ is positive scalar random variable that satisfies τ2β ∼ Γ (d/(2β), 2). Table 2.1

and Table 2.2 show the parameter estimation results for two generated two-dimensional data sets

from 4- and 3-component mixture models, respectively, where ρk = cov(X,Y )/
p
var(X)var(Y )

represents the correlation coefficient used to measure the slope of the scatter matrix. We can see

that the estimated parameters are close to the real ones. According to the correlation coefficient

comparisons, the slopes of the real and estimated scatter matrices are also close. Due to the role

of weight, the points essentially involved in parameter estimation are concentrated in data-intensive

areas, leading to reduced scale parameter m. However, the change in parameter β is not necessarily

a decrease. Suppose that β is small in the default setting. In the big trailing part, the data points are

distributed sparsely. The weight operation will remove most of these points, so the shape of data is

changed, and the final estimated β will become larger instead.

Fig.2.2 presents the parameter estimation results at different noise levels. Parameter estimation

is carried out after the proportional addition of random uniform noise in the primary distribution

area ([-5,25;-5,25]) of the original data. When σ is appropriately selected, the weights remove

most of the noise and outliers, and the actual points involved in parameter estimation are mostly in

the desired original data distribution. The final results show that the mixture models of the three

different cases are very similar, which effectively proves the WMGGMM algorithm’s robustness.

The results of the mixture model for overlapping data are shown in Fig.2.3. The introduction of

shape parameter β enables MGGD to improve the identification ability of data distribution peaks.
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Table 2.1: Estimation of the mixture model parameters for the first synthetic data set.
Default mixture model parameters

πk µk βk Ck ρk

0.25
(N=300)

h
1 1

i
0.85

"
3 1

1 5

#
0.35

0.25
(N=300)

h
15 2

i
0.85

"
2 0

0 2

#
0.00

0.25
(N=300)

h
1 18

i
0.85

"
3 −2

−2 4

#
-0.58

0.25
(N=300)

h
16 16

i
0.85

"
3 −1

−1 3

#
-0.33

Estimated mixture model parameters
πk µk βk Ck ρk

0.2444
h
0.98 0.90

i
0.72

"
1.43 0.57

0.57 2.94

#
0.28

0.2586
h
15.11 2.05

i
0.70

"
0.60 −0.04

−0.04 0.67

#
-0.06

0.2482
h
1.15 17.99

i
0.75

"
1.39 −1.00

−1.00 2.15

#
-0.58

0.2486
h
15.98 15.99

i
0.77

"
1.12 −0.3

−0.3 1.05

#
-0.27

Table 2.2: Estimation of the mixture model parameters for the second synthetic data set.
Default mixture model parameters

πk µk βk Ck ρk

0.25
(N=300)

h
8 16

i
0.60

"
3 −2

−2 4

#
-0.58

0.25
(N=300)

h
15 2

i
0.85

"
2 0

0 2

#
0.00

0.50
(N=600)

h
1 3

i
0.85

"
3 1

1 5

#
0.35

Estimated mixture model parameters
πk µk βk Ck ρk

0.2596
h
7.89 16.05

i
0.76

"
2.27 −1.34

−1.34 3.39

#
-0.48

0.2817
h
14.90 2.12

i
0.67

"
0.62 −0.17

−0.17 0.78

#
-0.24

0.4587
h
0.98 3.11

i
0.70

"
0.91 0.61

0.61 2.12

#
0.44
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(a) 10% noise (b) 20% noise (c) 30% noise

Figure 2.2: Estimation results of mixture model parameters with different noise levels (10%, 20%,
30%).

Although the overall distribution of two components overlaps, the WMGGMM algorithm can still

accurately identify the parameters of each component when their centers do not coincide. Fig.2.4

(a) (b)

Figure 2.3: The result of parameter estimation in the case of components overlap.

displays the execution time of the WMGGMM algorithm under different conditions (the default

number of components is 4). The average value of 5 independent running times is taken as the final

result, and the unit is seconds. Because most of the algorithm’s parameters need to be estimated

iteratively (fixed-point equations and Newton-Raphson method), the algorithm’s running time is
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much higher than that of the standard EM algorithm. The anti-interference performance of the

model is improved by sacrificing some efficiency. The time here can only be used as a relative

reference since algorithm run time is influenced by computer performance, hardware and software

acceleration, and randomness of parameter initialization.

Figure 2.4: Performance analysis of WMGGMM for 2-D data

2.3.2 Point Cloud Registration Using WMGGMM

We consider the approach proposed in [78], in the case of GMM, to perform WMGGMM-

based registration. Two mixture models are adopted to describe the target scene and the scene to

be registered. Then, the difference between these two models is applied to update the registration

parameters. Nevertheless, the algorithm proposed in [78] is still a method based on point to point in

essence. The data pre-clustering is not considered, but each point in the data set is used as a mean to

initialize a mixture component. This approach is equivalent to converting the entire data set into a

mixture model with multiple simple components. However, this method of initializing the mixture

model is not suitable in the point cloud with large data volume. The subsequent L2 divergence

provides convenience for the derivation based on the transformation model. But, the derivative
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optimization process is closely related to the expression of the specific model. If the transformation

model is changed, all optimization processes need to be rederived. Therefore, we propose a method

based on WMGGMM used to pre-cluster the target scene and the scene to be registered and extract

the key features to form the mixture models. Then, the optimal registration parameters are found by

using stochastic optimization through the KLD between the mixture models.The KLD of the two

statistical models is defined as follows:

KLD(f ||g) =

Z
x
f(x) log

f(x)

g(x)
dx (34)

Unfortunately, the KLD between mixture models has no analytical expression, so several approx-

imations have been proposed [93–95]. Compared with GMM, the KLD of generalized Gaussian

mixture model using the inner product of components is too complicated due to the introduction

of shape parameters. Even though a method for calculating the KLD of two MGGDs is proposed

in [86], the matched bound and variational approximations are also not feasible because the premise

of this approach is that all MGGDs have zero mean. However, the mean value of components is

significant in the point cloud registration scenario. Therefore, we finally used Monte Carlo sampling

to calculate the KLD between two GGMMs:

KLDMC(PS ||PM ) =
1

n

nX
i=1

[logPS(xi) − logPM (xi)] (35)

where PS(x) and PM (x) are the probability density functions of GGMM obtained from the tar-

get scene and the scene to be registered, respectively, and {xi}ni=1 denotes n samples taken from

PS(x). In the above formula, the sum of the probability of samples replaces the integral, and the

Monte Carlo method is the only method that can approximate the actual value of KLD when there

are enough sample points. The Gibbs sampling, one of the Markov Chain Monte Carlo (MCMC)

sampling techniques, is applied in this process using 1000. We assume that the point cloud trans-

formation model is:

X = fT (X0,Ω) (36)
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where X0 and X are the point sets before and after the transformation, Ω = {ω1, ..., ωm} is the pa-

rameter set of the transformation model. Then, we can express the point cloud registration problem

in the following form:

Ω∗ = arg min
Ω

{KLDMC [ggmm(S)k ggmm (fT (M,Ω))]} (37)

where S is the target scene point set and M is the point set to be registered, ggmm(·) denotes the

obtained PDF of GGMM from a data set using the WMGGMM algorithm. The complete point

cloud registration algorithm using WMGGMM is exhibited in Algorithm 2. However, it is only a

general framework and does not specify a concrete random optimization method. The stochastic

optimization technique can be selected depending on needs, as long as the definition of the loss

function in (37) is satisfied, and the optimization domain is Ω. The simulated annealing (SA)

algorithm is used in this paper. When the transformation model is rigid, i.e. X = RαX0 + t, the

Algorithm 2 Point Cloud Registration Algorithm Based on WMGGMM and Stochastic Optimiza-
tion
Require: Scene set: S, Model set: M , Initial transformation parameter set: Ω(0)

Ensure: Optimal transformation parameter set: Ω∗

Set: KLDold = 0, KLDnew = 0, Ωold = Ω(0)

ggmms = GGMM(S)
Gibbs sampling on ggmms to get: Xsample = {xi}1000

i=1

repeat
ggmmold

m = ggmm(fT (M,Ωold))
KLDold = KLDMC(ggmms||ggmmold

m )
Ωnew = RandomGeneration(Ωold)
ggmmm = ggmm(fT (M,Ωnew))
KLDnew = KLDMC(ggmms||ggmmnew

m )
if KLDnew < KLDold then

Ωold = Ωnew

end if
until some stopping criterion is satisfied
Return Ω∗ = Ωold

optimization process can be further simplified, where Rα is the rotation matrix with an angle of α

and t is a translation vector. The transformation of the data set is equivalent to the rigid change of

the corresponding mixture model. We can obtain µ0
k = Rαµk + t and Σ0

k = RT
αΣkRα; the shape

parameter β and scale parameter m are not affected during the transformation. In other words,
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we only calculate the mixture models of the target scene and the scene to be registered through

WMGGMM at the beginning, and the parameter estimation is not needed to be repeated during

optimization. The transformation models used in the experiments below are all rigid transformations

and all test data are generated based on the method in the previous section.

The unlikeness in sampling rate is a common challenge in point cloud registration. In general,

the original scene will have a higher sampling rate to achieve more accurate modelling. In compari-

son, the scene to be registered may have a lower sampling rate due to the limitations of the sampling

environment and tasks. Fig.2.5 shows the registration results of point sets with different sampling

rates. The target scene (blue) has 1200 samples, while the scene to be registered (red) has 800.

Although the sampling rate varies, the two scenes’ data meet similar statistical distribution, so the

method based on GGMM can still effectively register the two sets.

(a) original (b) centralized (c) registration

Figure 2.5: Registration result of point clouds with different sampling rates.

The registration results at different noise levels are given in Fig.2.6. The outcomes show that

our method can effectively remove the noise and outliers’ interference and extract the main features

of the point cloud for matching, and the algorithm has good robustness.

In Fig.2.7, we designed a point cloud shaped like the Chinese character ”zhi” and it is ap-

proximate center symmetrical. The distinction between it and the original graph after 180 degrees

rotation is only at one ”point.” Hence, it is straightforward to fall into the optimal local solution in

registration optimization. But, in several experiments, only 6% fell into local optima. Compared

with derivative optimization, stochastic optimization provides the ability to jump out of the local

optimal solution.

31



(a) original (b) centralized (c) registration

Figure 2.6: Registration results with 10% (top), 20% (middle), 30% (bottom) noise levels

(a) original (b) centralized (c) registration

Figure 2.7: The registration result when locally optimal solution exists.

2.4 Conclusion

This paper proposes a weighted multivariate generalized Gaussian mixture model and combines

it with the stochastic optimization algorithm for point cloud rigid registration. This method requires

enough samples in the registration scene to meet the minimum support of components. It extracts the

data’s mass features rather than the edge features (contour and shell), so it is suitable for substantial
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point clouds with large data volume. The introduction of weights and the ability of generalized

Gaussian to describe peak data can effectively reduce the influence of noise and outliers and obtain

the critical features of data-intensive regions. Experimental results attest that the algorithm has

sufficient robustness. The stochastic optimization algorithm reduces the coupling between algorithm

modules, intensifies the algorithm’s expansibility, and provides a more potent global optimization

capability. However, in the mixture model’s parameters estimation process, almost all parameters

need to be learned iteratively; therefore, some performance is sacrificed to enhance the algorithm’s

accuracy. Future work will be committed to improve the parameters estimation approach to improve

the algorithm’s performance.
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Chapter 3

Single Target Visual Tracking Using

Color Compression and Spatially

Weighted Generalized Gaussian Mixture

Models

3.1 Introduction

Visual tracking is a process to find the state of an object of interest (such as position, size

and rotation Angle) defined in the current frame in the subsequent frames of a video, which is

a significant and challenging task within computer vision [96, 97]. It is a supplement of target

detection since object recognition for each image will lead to massive computation and affect real-

time performance. In contrast, target tracking reduces the system complexity by taking advantage

of continuous information between frames. It has a wide range of applications in real life, such

as surveillance [98, 99], self-driving vehicles [100], UAV tracking shooting [101–103], human-

computer interaction (augmented reality) [104], robot navigation [105], smart transportation [106,

107], etc.

There are two basic assumptions in visual tracking: first, the spatial position and size of the
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same object in a video should not change dramatically in two frames, which is inferred according

to objective facts in the visual principle [108]; second, the target to be tracked and the background

should have a certain degree of differentiation based on some features. For instance, frequency

domain or texture features are more effective than colour features in tracking soldiers hidden in the

jungle. Under the hypothesis above, the general framework of target tracking consists of four parts:

(1) Target initialization. When having video sequence input, the target’s state in the initial frame is

automatically determined by manual marking or automatically via a detection algorithm. The target

candidate box could have different forms according to different needs, such as rectangle, ellipse,

skeleton, key points, contour, etc [109]. (2) Target description. This step includes the extraction

of target features (colour, texture, and so on) and subsequent modelling. There are two main types

of models (generative and discriminative), the latter considers both target and background, and it is

more robust. (3) Target search. An optimization method is used to find the best matching candidate

region according to the model. (4) Model update. Since the model can only describe the previous

target information, it will be lost if it has a significant change in tracking. The difficulty of visual

monitoring is to ensure the algorithm’s accuracy, adaptability, and real-time performance while

the target and environment constantly change. Appearance and scale changes caused by object

movement or non-rigid deformation, shooting angle and ambient illumination variation, objects

being blocked or beyond the field of view are likely to impact feature extraction, search strategy and

the final tracking performance [47].

Many classical algorithms have been proposed to solve the above problems, such as distance

measurement similarity [110–113], mean-shift [48,114,115], particle filtering [116,117], correlation

filtering [53, 118], etc. With the continuous development of deep learning, combining traditional

filtering methods with deep networks or only using neural network frameworks to design more

robust trackers have aroused widespread interest [104], such as CREST [119], DLT [60], TCNN

[120], FCNT [121], RTT [122], etc. Recently, several cutting-edge methods have been proposed.

For example, Danelljan et al. built a tracker based on the probabilistic regression network trained

through minimizing KL divergence, which can model label noise from inaccurate annotation and

ambiguities in the task [123]. Chen et al. came up with SiamBAN, which equates the tracking

problem with simultaneous classification and regression. This algorithm does not need to set a
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priori box in advance and directly classifies the target and obtains the boundary by regression in a

unified FCN [124]. In [125], the authors put forward the Siam R-CNN. They combined Siamese

re-detection architecture and a dynamic programming algorithm. This method effectively dealt with

the long-term occlusion problem using the initial information and the previous prediction results to

distinguish the target and interference.

In this paper, our main contribution is to improve further the approach previously proposed

in [5]. Each pixel in the candidate region is given a distance-based weight (pixels closer to the

center of the area have higher importance) by applying the spatial kernel method in the reference

work. The authors used weighted data in the elliptical region to build a Gaussian mixture model

(GMM) to describe the target’s feature distribution while unweighted data around the target region

to construct the other GMM to present the background. The observation model employed to guide

target updates merges object and environment information by removing similar components from

the targe t model to the background model. The log-likelihood of pixels in the expected region is

used as the loss function, and the gradient to the position directs target positioning. From another

point of view, the logarithmic likelihood function acts as the weight in the mean-shift update. When

updating the target size, they used a unique sampling method to solve the number of pixels coupling

with the region’s size. Simultaneously, backward tracking is adopted to judge whether the newly

added components in the GMM belong to the target when the model is updated.

However, the colour feature distributions of the target and the background are not uniform and

smooth in most cases. When the proportion of a specific colour is relatively high, the histogram will

show an apparent sharp shape, which leads to the fact that GMM cannot describe the target feature

well in some situations. Besides, simply removing components similar to each other in the target and

background model results in the loss of some of the judgment knowledge since it does not consider

the prior probabilities (mixing coefficients) of the components in different GMMs. Therefore, we

apply the generalized Gaussian mixture model (GGMM), which has a more powerful peak data

representation ability in our work. Concurrently, to hold other distribution types’ compatibility, we

use colour compression and reparameterization to modify the distribution of original characteristics

to make it more adaptable to the GGMM and accelerate parameters convergence. Moreover, the

logarithm of the ratio of each pixel’s responsiveness to the target and background model indicates
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the possibility that the pixel belonged to the potential target. The possibility value determined

each pixel’s segmentation weight based on the threshold, and the position and size of the target are

updated according to this.

The paper is organized as follows. Section 3.2 will review the literature related to the algo-

rithm proposed. Section 3.3 describes the algorithm’s workflow in detail, including processing the

original frames using colour compression and reparameterization, derivation of EM algorithm for

the spatially weighted generalized Gaussian mixture model, establishing the target model and back-

ground model, and updating the position and size with segmentation thresholds. Section 3.4 will

present experimental results and comparisons on public datasets. The conclusion is finally drawn in

section 3.5.

3.2 Related Work

This section will introduce the literature associated with the critical techniques used in this

article. It mainly involves the following three parts that have greatly inspired our work: colour

compression and image segmentation, generalized Gaussian mixture model, hybrid model-based

tracking.

3.2.1 Colour Compression and Image Segmentation

The significance of colour compression lies in removing image statistics and perceptual re-

dundancy to improve image expression and storage efficiency since the human visual system has

limitations on the resolution ability of colour signals with slight differences [126]. Its core task is to

improve the compressed image’s fidelity and make it as close as possible to the original image while

maximizing the elimination of irrelevant information [127]. For example, JPEG is a well-known

standard colour image compression technology [128]. However, computer understanding of image

is based on the colour value vectors rather like human perception, so the colour compression in a

broad sense can be interpreted as extract and retain the deciding colour characteristics of the image.

It makes the machine still obtain adequate messages in treating the compressed image while reduc-

ing the amount of input data. In this case, colour compression is essentially image segmentation
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based on clustering because areas with similar colours will be naturally connected to achieve image

objects’ semantic expression. For instance, the image compression and decompression methods

proposed in [129] are appropriate for most dual-colour images by applying bit-map creation, run-

length encoding and k-means clustering. A heuristic k-means algorithm based on flower pollination

compresses medical images has been proposed in [130]. Within our work, colour compression with

k-means is utilized for the preprocessing of image frames.

3.2.2 Generalized Gaussian Mixture Model

The generalized Gaussian distribution (GGD), proposed by Kelker in 1970 [131], belongs to

the family of elliptic distribution [132]. Due to the shape parameter introduction, the generalized

Gaussian has a comprehensive representation ability (from the peak distribution to the uniform dis-

tribution). The Gaussian and Laplace distributions are particular cases of GGDs. Therefore, it is

widely used in signal and image processing [1]. Most parameter estimation techniques of multivari-

ate GGD are based on the maximum likelihood estimation(MLE) or moment method [17, 84]. [1]

resolved the scatter matrix’s MLE based on fixed point equations by assuming that the shape param-

eter is within 0 and 1. The shape parameter hypothesis is moderate in most circumstances because

uniform distribution with big beta is meaningless in most practical feature extraction applications,

which implies that the data tends to subject to a non-informative distribution. In other words, the

probability of data appearing in the feature space is almost the same. On account of the excellent

property of GGDs, it is a natural choice for hybrid models. Multivariate Generalized Gaussian Mix-

ture Model (MGGM) has many applications in various scenarios, such as defect detection [133],

human motion recognition [28, 134, 135], blind source separation [136, 137], image denoising and

segmentation [88,138,139], etc. This paper derives the EM algorithm of spatially weighted GGMM

according to [1, 92]. Nevertheless, when using the Newton-Raphson method to estimate shape pa-

rameters, overflow error is likely to occur due to insufficient data supporting. Therefore, shape

parameters are taken as the hyper-parameter that can be adjusted artificially in our contribution.
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3.2.3 Hybrid Model-based Tracking

In target tracking, the mixture model (mainly GMM) can represent an object’s appearance or

assist the tracking procedure [5]. A dynamic Gaussian mixture model (DGMM) is offered for

elliptical moving target tracking [140]. The Kalman filter estimates the actual values of model

parameters in subsequent frames, which combines the past prediction with the current observation

to achieve a more accurate model update. Changes to objects (add, merge, delete) are reflected in the

GMM components, the idea in [5] is close to this. Another approach to applying the mixed model

is shown in [141]. Meghana et al. used the background differential technique to achieve soccer

players’ trajectory tracking. They built GMM of background through the first few frames, then

mask foreground to separate the athlete from the environment and provide more prominent target

detection features. [142] presents an improved Gaussian mixture model that integrates dynamic

pixel parameter updates, which solves the misjudgment and lag caused by too fast image frame

changes. The application of GMM in [143] supports the tracking process in the surveillance video,

that is, through GMM to precisely separate a specific person in the image into four regions from top

to bottom. It facilitates the subsequent human face recognition (based on HOG and SVM methods)

and tracking. Our paper employs GGMMs with different weighted rules for modelling the target

and background simultaneously to compute pixels’ responsiveness in the observation model.

3.3 Tracking Algorithm

The proposed algorithm details are specified in this section, including preprocessing, modelling

of target and background with spatially weighted generalized Gaussian mixture models, and location

and size updates using segmentation weights.

3.3.1 Preprocessing

The intention of accepting colour compression for preprocessing is as follows: (1) Assuming

that the object’s colour is single, uneven illumination or other factors may cause colour variation

in saturation and lightness, which can be considered as constant colour with Gaussian noise added.

Colour compression utilizes clustering to find the best substitution (centroid) of similar colours to
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decrease noise to a certain extent. (2) Colour compression is likewise a process of image seg-

mentation. Based on colour similarity, regions with the same semantics are naturally connected,

while areas that cannot be merged will have noticeable distinctions from each other. Therefore,

this potentially intensifies the contrast between the target and background. (3) From the histogram

perspective, colour compression is equivalent to reducing the number of bars and increasing their

width. It makes the probability density of pixels at each bar’s median value gain, leading to lep-

tokurtic colour distribution. This preprocessing further strengthens the importance of introducing

the GGMM because it is suitable for peak distributions. Together, colour compression guarantees

the distance between clusters and makes the components overlap of the GGMM smaller, improving

parameter estimation accuracy, and accelerating the model convergence.

Since K-means is a well-known and straightforward technique, we will not add more details.

After the clustering is complete, we will assign the centroid’s value to all points in the corresponding

group to perform colour compression. But it is worth noting that the selection of the number of

clusters is critical. If the number is inadequate, colour compression will eliminate some colour

features. It can be interpreted by the overperforming filter that removes not only noise but most

of the valuable characteristics. Conversely, the calculation amount will increase if the number

is too large, and the preprocessing cannot achieve the expected effect. The reasonable number

of components will vary according to the colour richness in the video sequence. Generally, 10-

20 clusters can be considered. Or we can apply other approaches to decide the optimal number

automatically. Besides, the above operations will result in many pixels with an identical colour

value. We notice that in the histogram, the centroid exists in isolation without other bars near it,

which is likely to cause singularity when estimating the covariance matrix of the GGMM. Hence

we added Gaussian noise with a small covariance (a diagonal matrix proportional to the number

of pixels in the cluster) to each colour component to deal with this issue, which can be viewed as

the reparameterization process exhibited in Fig.3.1. To show the outcome of preprocessing clearly

and intuitively in Fig.3.2, we apply a small number of components, leading to the yellow line in

the middle of the road being merged into other colour classes. From the visual effect aspect, the

processed image’s meaning has not been significantly changed compared with the original image.

Still, the features in the corresponding colour histogram have been considerably modified. [htbp!]
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Figure 3.1: Reparameterization of pixels’ colour distribution

Figure 3.2: Preprocessing modifications to color features

3.3.2 Spatially Weighted Generalized Gaussian Mixture Model

Spatial weighting is a kernel approach. The idea is that pixels in the target region do not con-

tribute equally to the likelihood function because they have different importance according to their

distance to the target center. A natural assumption is that pixels adjacent to the core are more likely

to belong to the target [144]. To carry out distance weighting of pixels, we first necessitate acknowl-

edging the target region’s appearance representation. Here, we adopt the same approach (ellipse)

as in [5]. We believe that the ellipse specifying the target is known in the head frame. A manually

labelled rectangular box determines the center, short and long axes of it. In the subsequent track-

ing process, the current frame ellipse’s initial parameters are the same as the immediately previous
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frame parameters. The ellipse expressing the target is defined as follows:

f (xn; y,h) = (xn − y)T H−1 (xn − y) =
xn1 − y1

h1

2

+
xn2 − y2

h2

2

(38)

where xn = [xn1 xn2]T is the position of the nth pixel in the frame, y is the center coordinates of

the ellipse, h = [h1 h2]T represents the long and short axis of the ellipse and H = diag(h2
1, h

2
2).

We notice that this is the Mahalanobis distance squared between xn and y. Simultaneously, this

expression normalizes the pixels inside the ellipse, making their relative position value within [-1,

1]. As mentioned earlier, the weight of each pixel depends on how far it is from the center, so we

have:

wn(y) = k[f(xn; y,h)] (39)

where k denotes the kernel function, which should be degressive for the pixels inside the ellipse, and

it makes the rest of pixels have zero weight. The selection of kernel function is not unique, as long

as the above properties are satisfied. However, some kernel functions can not guarantee that g(x)

defined in section 3.3.3 is still a decreasing function, which we will further explain in the content

of the position update. We choose the kernel function as following (σ is the bandwidth with default

setting as 1):

k(x) =

 e−x/σ (x ≤ 1)

0 (otherwise)
(40)

The preceding content illustrates how the weights of pixels are constructed. The next step is to

introduce the consequences into the GGMM. Here we use the probability density function of MGGD

defined in [1]:

Ng(I;µ,Σ, β) =
Γ(d/2)β

Γ(d/2β)πd/22d/2β|Σ|1/2
e−

1
2 [(I−µ)TΣ−1(I−µ)]

β

(41)

where Γ(·) denotes the Gamma function, I, µ ∈ Rd and µ is the mean vector, is d×d real symmetric

positive definite matrix called scatter matrix; β > 0 is the shape parameter of MGGD. Thus we can
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acquire the log-likelihood function of the nth pixel:

Ln = lnP (In;θ) = ln
KX
k=1

πkNg (In;µk,Σk, βk) (42)

where In is the feature vector corresponding to the nth pixel, which is three-dimensional in the

color RGB image. The GGMM in above equation has k components and the mixing coefficient is

πk which satisfies
PK

k=1 πk = 1. Accordingly, the weighted likelihood in the elliptic region is given

by:

L(I,w(y),π,µ,Σ,β) =

NX
n=1

wn(y)Ln =

NX
n=1

wn(y) ln

KX
k=1

πkNg (In;µk,Σk, βk) (43)

where N is the number of pixels, I = {In}Nn=1, w(y) = {wn(y)}Nn=1, Θ = {π, µ,Σ, β} =

{θk}Kk=1 and θk = {πk, µK ,Σk, βk}, it is worth noting that the weights here are not normalized.

To renew the model parameters using the EM algorithm, we introduce the corresponding hidden

variable zn = [zn1, . . . , znk] for each pixel. The log-likelihood of the complete data constituted by

{I,Z} is:

L = ln p(I,w(y),Z;π,µ,Σ) (44)

The posterior probability is proportional to the joint probability density according to the Bayesian

formula since the hidden variables are unknown. Then we obtain:

L = ln p(Z; I,w(y),π,µ,Σ) ∝
NY
n=1

KY
k=1

[πkNg (In;µk,Σk, βk)]
znkwn(y) (45)

The disagreement with the standard GMM definition is that each observation exists with probability

wn(y) instead of one. The γnk = E[znk] can be obtained from this so that we get the Q function:

Qθ =
NX
n=1

wn(y)
KX
k=1

γnk [lnπk + lnNg (In;µk,Σk, βk)] (46)

γnk =
πkNg (In;µk,Σk, βk)PK
k=1 πkNg (In;µk,Σk, βk)

(47)
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Through taking the gradient of Q with respect to π, µ and Σ, then setting derivatives equal to 0, we

get the following update form to ensure that the log-likelihood is maximized:

πk =

PN
n=1 wn(y)γnkPN
n=1 wn(y)

(48)

µk =

PN
n=1 wn(y)γnk

h
(In − µk)

T Σ−1
k (In − µk)

iβk−1
InPN

n=1 wn(y)γnk

h
(In − µk)

T Σ−1
k (In − µk)

iβk−1
(49)

Σk =
βkPN

n=1 wn(y)γnk

NX
n=1

wn(y)γnk (In − µk) (In − µk)
Th

(In − µk)
T Σ−1

k (In − µk)
i1−βk

(50)

It should be noted that µk and Σk do not have closed forms, and their updated formulas are fixed-

point equations, which require several iterations to achieve the final result. Paper [1] proves that

the solutions exist and converge under the condition when β is within 0 and 1. We use the Frobe-

nius norm to measure the difference between θtk and θt+1
k and the loop stop condition satisfies

||∆θk||F ≤ ε. Instead of estimating the mixed model’s shape parameter, we treat it as a tunable

hyperparameter (the default value is 0.8 and all βk have the same setting) to improve the hybrid

model’s representation ability for the peak distribution. The principal reason is that in parameters

updating, the valid point is only in the ellipse. The insufficient number of observed samples will

lead to inadequate component support when updating β.

We apply the MML criterion as the cost function and terminate refreshing the entire mixed

model’s parameters when it changes slightly [92]. The components are updated one by one, and

those that do not meet the threshold will be deleted during the updating process as well as the

mixing coefficient will be reassigned:

θMML = arg min
θ

M

2

X
k∈K+

lnπk −Qθ +
K+(M + 1)

2
1 + ln

N

12

 (51)

where M = d(d + 3)/2 is the number of free parameters in each component (in the case of using a

positive definite symmetric covariance matrix) and d is the dimensions of color features. K+ is the

set of non-empty components and K+ is the number of elements in it. The calculation formula for
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Figure 3.3: Weight masks for the target and background

πk can be modified as:

πk =
max 0,

PN
n=1 wn(y)γnk −MK+/2PK

k=1 max 0,
PN

n=1 wn(y)γnk −MK+/2
(52)

When modelling with GGMM, only the pixels inside the ellipse participate in the updating (pixels

with a weight of 0 outside the ellipse have no contribution). Therefore we use the ellipse’s outer

rectangle to form the ROI (region of interest) instead of the whole frame to withdraw the unnec-

essary computational overhead. To overcome background interference to the tracking process, we

select the annular area around the target to build the background model, i.e. it is twice the object

ellipse and does not contain the target region. There are different methods when picking weight-

ing for the background model, such as treating each pixel equally or giving more weight to pixels

farther away from the center (which are more likely to belong to the background). We consider the

former in this article, and Fig.3.3 shows the weight masks for the target and background (note the

size diversity shown on the axes). The fundamental steps for describing the object and context using

GGMM are presented in Algorithm 3.

45



Algorithm 3 Spatially Weighted Generalized Gaussian Mixture Models
Require: Kmax, I = {In}Nn=1, W = {wn}Nn=1,

Θ(0) = {π(0)
k , µ

(0)
k ,Σ

(0)
k }Kmaxk=1 , β = {βk}Kmaxk=1

Ensure: Optimal mixture model parameters Θ∗

Set: r = 0, MML(0) = +∞
repeat

for k = 1 to Kmax do
// E - Step:

γ
(r+1)
nk =

π
(r)
k Ng(In;µ

(r)
k ,Σ

(r)
k ,β

(r)
k )PKmax

l=1 π
(r)
l Ng(In;µ

(r)
l ,Σ

(r)
l ,β

(r)
l )

Compute the # of non-empty components:K+

// M - Step:

π
(r+1)
k =

max(0,γ
(r+1)
nk wn−MK+/2)PKmax

l=1 max(0,γ
(r+1)
nl wn−MK+/2)

if π(r+1)
k > 0 then
// Update µk:
repeat

µnewk = FPµ(µoldk )
until k∆µkkF <

µ
(r+1)
k = µnewk

// Update Σk:
repeat

Σnew
k = FPΣ(Σold

k )
until k∆ΣkkF <

Σ
(r+1)
k = Σnew

k

end if
end for
Compute MML(r+1)

r = r + 1
until |∆MML| <
return Θ of non-empty components as Θ∗

3.3.3 Location Update and Segmentation Weights

Assuming that we only consider the target model for the moment, position updating is essen-

tially looking for the location where the likelihood function of the pixels in the elliptical region is

maximized. To reach the target’s position in the next frame, we need to figure the gradient of the

log-likelihood for position y:

dL

dy
=

dL(I,w(y),π,µ,Σ,β)

dy
=

NX
n=1

dk (f (xn; y,h))

dy
Ln (53)
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By setting the above equation equal to zero and defining the negative derivative of the kernel func-

tion as g(x) = −dk(x)/dx, we can obtain the update formula for y in a mean-shift way, and it will

stop when the change in position is less than one pixel. As suggested earlier, although there are

multiple kinds of kernel functions satisfying monotonous decrease in the interval [0,+∞), the g(x)

gained from it has various monotonicity. As a result, pixels in the mean-shift update have different

spatial weighting methods according to the choice of k(x). For example, when k(x) = −x2 + 1,

g(x) = 2x (the weight increases with distance); When k(x) is equal to −x + 1, g(x) = 1 (the

weight is fixed independent of the distance). The kernel function we choose ensures the consistency

of the spatial weighting approach, i.e. k(x) = e−x = g(x).

ynew =

PN
n=1 xng (f (xn; yold,h))LnPN
n=1 g (f (xn; yold ,h))Ln

(54)

Besides, we can see that Ln acts as the information weight in the position update formula. In other

words, it denotes the role of pixel colour responsiveness of the model in the update. However, the

probability is generally less than 1 when bringing a pixel sample into the GGMM (its logarithm is

negative), which may cause the position to move outside the ellipse. Also, the current Ln does not

reflect the impact of the background. Hence we make the following definition then get the modified

Ln:

rn = Lt (In) − Lb (In) = ln [Pt (In) /Pb (In)] (55)

Ln =

 1 if Lt (In) ≥ δ and rn ≥ τ

0 otherwise
(56)

Where Lt(In) and Lb(In) represent the logarithm of the responsiveness of the nth pixel to the

target and background models, respectively. δ (taking -10 as default) and τ (pick from 0 to 0.4) are

the thresholds.

Fig.3.4 exhibits several conditions in which the pixel responds to the target and background

model. A one-dimensional diagram is used for the convenience of presentation. The horizontal axis

denotes the colour feature space, and the vertical axis signifies the probability (responsiveness). The

red and blue curves are the target and background GGMMs (it is simplified here by the single peak

47



Figure 3.4: Various examples of pixel responsiveness to target and background models

distributions), and the green dotted line expresses the pixel feature value. When the responsiveness

of these two GGMMs approaches zero (the first one in Fig.3.4), it means that the current pixel colour

scarcely exists in the target and background modelling region. Although it is unlikely to judge

whether it pertains to the unmodeled background area, it does not belong to the target. When the

object or background’s responsiveness is close to 0 while the environment or target’s responsiveness

is powerful, it is obvious to conclude the pixel relates to which side, as displayed by cases 2 and 3

in Fig.3.4.

When the target and background responsiveness are relatively high simultaneously, the two

GGMMs have similar components with different mixing coefficients, which indicates the target and

the background have the same colour zone, but their proportion is distinctive. If the gap between

them is significant, it can be explained as the target region contains a small portion of the back scene.

Subplots 4 and 5 of Fig.3.4 show this from the perspective of the pixel belonging to the background

and target, respectively. If there is a slight discrepancy between the two, as in situation 6 of Fig.3.4,

we need to introduce a threshold to decide. Only when the target’s responsiveness is greater than that

of the background to some extent, the pixel can be considered an element of the target. However,

such a comparable situation may also occur in case 1, so we need to consider the ratio and the
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Figure 3.5: The segmentation weights of the pixels

absolute value concurrently. The pixel is directly determined to belong to the background if the

target responsiveness is lower than the threshold delta. The summary of the above situation revises

Ln. The background and target are separated by this method, so Ln is also called segmentation

weight, and Fig.3.5 reveals this process. In addition, if the target moves too quickly, it is likely to

disappear in the ROI. At this time, almost all segmentation weights will be 0 and position updates

will not be able to continue (the denominator in the mean-shift formula approaches 0). Even if the

target is at the edge of the ROI, these pixels with segmentation weights of 1 contribute very little due

to the distance weighting of the kernel function, leading to the position change is less than one pixel

at the beginning. Since the sum of the segmentation weights expresses the size of the target area,

when it is less than 1/10 of the number of pixels in the ROI, we assume that the target does not exist

in the current ROI. Still, we cannot determine whether the object disappears in the video frame.

We adopt the method below to produce a rough prediction for the next trajectory point (position)

of the target and use the predicted value to reselect ROI for the mean-shift update. If the sum of

weights still has a similar situation as above, the tracking is considered to have failed. In reality,

the target’s movement is continuous and smooth (for example, the object cannot suddenly turn at

an acute angle). The inaccuracy of the position is from the low sampling rate. Fig.3.6 reveals the

process of location prediction based on this. The most recent four target positions y(t−3), . . . ,y(t)

are stored in tracking. Accordingly, we can further obtain the velocity and acceleration vectors of

the target as v(t) = y(t) − y(t−1) and a(t) = y(t) − 2y(t−1) + y(t−2), respectively. After applying

the weighted average, the predicted acceleration vector is a(t+1) = αa(t) + (1 − α)a(t−1), where
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Figure 3.6: The process of location prediction when the target disappears from the ROI

α ∈ (0, 1), and α is 0.7 in our case. Then the predicted position is represented as:

y(t+1) = y(t) + v(t+1) = y(t) + v(t) + a(t+1)

= (α + 2)y(t) − 3αy(t−1) + (α− 2)y(t−2) + (1 − α)y(t−3)
(57)

3.3.4 Scale Adaptation

The reference [5] designates that the method based on gradient updating is not feasible because

its derivative is always negative, and h will converge to only one pixel size finally. Since pixels’

number in ellipse changes with its size, and the increase of the likelihood function is proportional to

the decrease of the size of the ellipse, the method based on scaling the ellipse also fails to work. To

solve the preceding problems, we still apply the segmentation weights to estimate size parameters.

Intuitively, the optimal size of the ellipse can be obtained when the summation of importance for

all pixels in the ellipse is maximum. But since the weights of the background region are 0, virtually
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Figure 3.7: The principle of size adaptation

any ellipse containing the target will have the same weights aggregation. By making the weights

as -1, we introduce a penalty mechanism for the background pixels. Fig.3.7 considers an idealized

scenario to demonstrate the principle of this method. Considering the parameters of the major and

minor axes of the ellipse are alternately and independently determined in the same way until they

converge, we take the horizontal direction as an example. The target area is a yellow rectangle, and

the initial ellipse in the present frame is the solid red line. The long axis of the ellipse increases

will lead to the background area (red shade) gains more than the target area (green shade), resulting

in a negative increment of the weights-sum. When the horizontal size of the ellipse decreases, the

reduction of the background region is more significant than that of the target region, so the weights-

sum raises. According to the optimization goal of making the weight-sum maximum, the horizontal

size of the ellipse should move to the direction of decline. When the ellipse is exactly tangent to the

target, all the pixels in the ellipse belong to the target. If the horizontal size continues to decrease,

then the weights-sum will not be at the maximum. Therefore, the ellipse eventually becomes an

inscribed oval of the target in this case. This approach will make some tradeoffs between the target

and background area when discovering size parameters because the shape of most objects is not

51



necessarily regular in practice.

We scale up or down the size of two pixels every time for heuristic optimization in experiments,

based on the assumption that the change of the target between successive frames is usually tiny.

The same idea also can determine the rotation angle of the target. With a fixed size ellipse, we try

to rotate it by 1 or -1 degree at a time to find the angle that maximizes the weights-sum. But for

most papers, the tracking problem focuses on the object’s trajectory rather than the attitude change.

The rotation parameters are ignored in this paper to facilitate the comparison of results with other

methods. The progress of size updating is given in Algorithm 4 .

Algorithm 4 Ellipse Size Updating Algorithm
Require: Color compressed frame F, location y,

initial size h = [h1, h2], target model Mt, background model Mb

Ensure: Optimal size parameters h∗

cur roi = get roi(F, y,h)
w sum∗ = get weightsum(cur roi,h,Mt,Mb)
h∗ = h
repeat

while True do
h1 = h∗1 + 2
cur roi = get roi(F, y,h)
cur w sum = Get weightsum(cur roi,h,Mt,Mb)
if cur w sum ≤ w sum∗ then

break
else

w sum∗ = cur w sum
h∗1 = h1

end if
end while
same loop as above with h1 = h∗1 − 2
same loop as above with h2 = h∗2 + 2
same loop as above with h2 = h∗2 − 2

until |∆w sum∗| <
return h∗ as optimal size parameters

3.3.5 Model Update

In the tracking process, the target and background feature distribution is constantly changing.

The colour addition and removal caused by the rotation of cubes with different colours on each

surface in the three-dimensional space is a typical example. So the corresponding model needs to be
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Figure 3.8: Model update diagram

dynamically updated to ensure accuracy. The reconstruction of the model is based on the selection

determined by the algorithm in the previous frame. Still, this result does not necessarily represent

the actual position and size of the target, and manual correction would render the tracking of the

target meaningless. Therefore, new mechanisms need to be introduced to deal with this problem.

Under the situation mentioned above, the target’s newly increased colour should have evident

differences from the colours that exist in the object and background region. Otherwise, the area with

this colour will be assigned to the target or background based on current models when calculating

segmentation weights. The GGMM will not create new components during the updating. According

to the physical continuity of the target, the newly added colour area is in the neighbourhood of the

target, that is, within the background ellipse. Therefore, we prioritize the rebuilding of the GGMM

for the background region and use M (t+T )
b = {C(t+T )

i }mi=1 to represent it. The previous background

model is M (t)
b = {C(t)

j }nj=1, where C denoted the center of the model component. We obtain the

following formula by applying the Euclidean distance :

dj = min C
(t)
j − C

(t+T )
i

2 n

i=1

(58)

where dj measures the distance between the two closest components in M
(t+T )
b and M

(t)
b . When

it is larger than the threshold introduced to deal with colour drift, C(t+T )
j is considered the newly

added colour. If not, it means the component already exists in the previous background model.

Based on the rate of change of the ellipse aspect ratio, we can determine whether the new

component belongs to the target or the background because panning and zooming of the target
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during tracking do not change the ellipse’s aspect ratio, but rotation does. So when |h(t)
1 /h

(t)
2 −

h
(t+T )
1 /h

(t+T )
2 |/|h(t)

1 /h
(t)
2 | > ξ, we consider that the added colour belongs to the target and ξ is a

self-defined threshold that determines the sensitivity of model updates. The segmentation weights

Algorithm 5 Weighted Generalized Gaussian Mixture Models Based Tracking Algorithm
Require: Video sequence S = {Fi}ni=1, model update interval T ,

the initial parameters Θt and Θb of GGMMs, the number of compressed colors k
Ensure: The position and size of the ellipse in each frame

for i=1 To n do
resize Fi to the appropriate resolution
if i==1 then

initialize y and h = [h1, h2] by manual selection
Fi = colour compress(Fi, k) with Gaussian noise
target roi = get roi(Fi, y,h)
calculate the target space weights Wt

generate the target model Mt = GGMM(Fi,Wt,Θt)
background roi = get roi(Fi, y,h ∗ 2)
calculate the background space weights Wb

generate the background model Mb = GGMM(Fi,Wb,Θb)
else

Fi = colour compress(Fi, k)
while ||∆h||2 > 0 pixel do

cur roi = get roi(Fi, y,h)
compute the segmentation weights Ws = seg weights(cur roi,Mt,Mb)
if Ws < 0.1∗ pixels number in roi then

roughly predict the location and update the roi and Ws

else
stop tracking

end if
y = pos update(y, cur roi,Ws)

end while
using algorithm 2 to update the ellipse size h

end if
if i mod T == 0 then

Mt and Mb are updated according to the ellipse aspect ratio changes
end if

end for

of the area with this colour in the background ellipse will be corrected to one. Then we will use the

previous methods to adjust the position and size of the target ellipse to cover the changed target area

and rebuild the target model, which will spontaneously eliminate the components of the disappeared

colour. Simultaneously, we should delete the corresponding parts in the background model, and the
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mixing coefficient of other members should be normalized again. When the new colour belongs

to the background, we update the target model directly. The interval of the model update is fixed,

and it is refreshed every T frames. The process of updating the model is illustrated in Fig.3.8. The

overall procedure of the initialization and tracking is displayed in the weighted generalized Gaussian

mixture models based tracking (WGGMMT) Algorithm 5.

3.4 Experimental Results

We use seven real datasets to evaluate the proposed algorithm. These video sequences are se-

lected from the VOT2020 database, including book, girl, hand2, helicopter, polo, road and wheel.

Each series contains 50 frames without complete occlusion on the target. To reduce the time over-

head of colour compression, we first resize the video frame. Therefore, the original annotations

provided in the dataset are no longer available. We determine the target ground truth (both position

and size) in the video sequence using the average results of multiple manual labelling. It should be

noted that both [5] and our algorithm use ellipse to represent the target. To facilitate the compari-

son with the ground truth, we utilize the long and short axes of the ellipse to obtain the bounding

rectangle of the ellipse to carry out the relevant calculation.

There are three approaches used to compare with our method. We have reproduced the WLT

and WLTMS algorithms proposed in the primary references [5]. For the camshift algorithm, we use

the OpenCV library to implement. All parameter settings in the above comparison are consistent

with those in [5]. We employ the same six assessment criteria as in [5] and [144]: (1) The number

of frames tracked correctly, which is a rough measure as long as the outer rectangle of the ellipse

covers more than 25% of the actual area. (2) The position error is obtained from the Euclidean

distance between the estimated center and actual position dividing by the diagonal of the ground

truth rectangle. (3) The Euclidean distance between the estimated size vector h = [h1 h2] and the

actual size vector normalized by the diagonal of the ground truth rectangle specifies the size error.

The above two error computation methods eliminate the influence caused by the size difference of
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the target. (4) The average precision defined as:

P =
1

N

NX
n=1

pn (59)

pn =
# of correctly tracked pixels in frame n

# of tracked pixels in frame n
(60)

(5) The average recall defined as:

R =
1

N

NX
n=1

rn (61)

rn =
# of correctly tracked pixels in frame n

# of ground truth pixels in frame n
(62)

(6) The average F-measure defined as:

F =
2

N

NX
n=1

pn × rn
pn + rn

(63)

Tables 3.1 - 3.6 and Figures 3.9 - 3.15 display the quantitative comparison results of these four

methods. Experiments show that no single approach can be applied to all video sequences, and each

method has its advantages and disadvantages. On the whole, our WGGMMT algorithm can achieve

a similar capability to the compared ones. The average performance of tracking position error is

better than that of other methods in the majority of cases because of the introduction of target and

background responsiveness ratio. However, in terms of the average size error, the test outcomes

reveal a certain gap between our method and other techniques caused by our size update rule based

on the sum of segmentation weights. The non-rigid deformation of the object will result in the

smallest rectangular box containing the aim region mingled with a large number of background

pixels. The penalty brought by them will make the ellipse representing the target tend to be more

diminutive, leading to the target area is the complete subset of the ground truth most time. Therefore,

the reflection on performance is preferable precision but lower recall.

In video sequence one, the camera’s view is almost fixed, so the background does not change sig-

nificantly. However, the book has drastic and quick movements, including translation, turning and

scaling, which means that the change between frames is conspicuous. The camshift and WLTMS
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Table 3.1: Performance of camshift, WLT, WLTMS and WGGMMT in terms of correct target
localization

Seq. camshift WLT WLTMS WGGMMT
Book 19/50 50/50 22/50 50/50
Girl 50/50 50/50 50/50 50/50

Hand2 50/50 50/50 50/50 50/50
Helicopter 50/50 50/50 50/50 50/50

Polo 50/50 50/50 49/50 50/50
Road 49/50 50/50 50/50 50/50
Wheel 46/50 50/50 48/50 50/50

Table 3.2: Performance of camshift, WLT, WLTMS and WGGMMT in terms of position error
(mean±std)

Seq. camshift WLT WLTMS WGGMMT
Book 0.8969±0.5576 0.1131±0.0398 0.8607±0.6089 0.1077±0.0532
Girl 0.0819±0.0092 0.0889±0.0083 0.0734±0.0067 0.0656±0.0084

Hand2 0.1210±0.0248 0.1162±0.0173 0.1026±0.0149 0.1095±0.0278
Helicopter 0.1112±0.0068 0.0986±0.0057 0.0906±0.0098 0.0883±0.0151

Polo 0.1242±0.0059 0.0998±0.0055 0.1132±0.0120 0.1085±0.0122
Road 0.2880±0.0684 0.2729±0.0673 0.2426±0.0791 0.2381±0.0808
Wheel 0.2278±0.0150 0.1941±0.0160 0.1872±0.0212 0.2258±0.0367

Table 3.3: Performance of camshift, WLT, WLTMS and WGGMMT in terms of size error
(mean±std)

Seq. camshift WLT WLTMS WGGMMT
Book 0.1403±0.0789 0.0782±0.0304 0.1085±0.0490 0.1056±0.0482
Girl 0.1653±0.0196 0.1532±0.0159 0.1392±0.0137 0.1565±0.0115

Hand2 0.1872±0.0328 0.1397±0.0345 0.1330±0.0304 0.1713±0.0675
Helicopter 0.1085±0.0087 0.1185±0.0076 0.0998±0.0100 0.0990±0.0170

Polo 0.2241±0.0263 0.1764±0.0104 0.1817±0.0269 0.2786±0.0607
Road 0.2956±0.0660 0.2795±0.0528 0.2822±0.0603 0.3003±0.0599
Wheel 0.2603±0.0317 0.2380±0.0194 0.2315±0.0154 0.3249±0.0204

Table 3.4: Performance of camshift, WLT, WLTMS and WGGMMT in terms of average precision
Seq. camshift WLT WLTMS WGGMMT
Book 0.2338 0.9214 0.2416 0.9763
Girl 0.8649 0.8834 0.9152 0.9324

Hand2 0.8416 0.9428 0.9506 0.9810
Helicopter 0.8831 0.9135 0.9127 0.9507

Polo 0.8506 0.9316 0.9187 0.9290
Road 0.7692 0.8213 0.8205 0.8348
Wheel 0.7818 0.8492 0.8632 0.9653
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Table 3.5: Performance of camshift, WLT, WLTMS and WGGMMT in terms of average recall
Seq. camshift WLT WLTMS WGGMMT
Book 0.1426 0.8821 0.1637 0.7231
Girl 0.8210 0.8497 0.8753 0.8547

Hand2 0.7321 0.7954 0.8127 0.6205
Helicopter 0.9108 0.9189 0.9326 0.8824

Polo 0.7652 0.8837 0.8643 0.5712
Road 0.7376 0.7732 0.7591 0.6886
Wheel 0.7544 0.8185 0.8202 0.3244

Table 3.6: Performance of camshift, WLT, WLTMS and WGGMMT in terms of average F-measure
Seq. camshift WLT WLTMS WGGMMT
Book 0.1780 0.8966 0.1992 0.8281
Girl 0.8416 0.8686 0.8918 0.8912

Hand2 0.7804 0.8584 0.8719 0.7636
Helicopter 0.8927 0.9145 0.9208 0.9157

Polo 0.8050 0.9058 0.8878 0.7099
Road 0.7518 0.7985 0.7936 0.7543
Wheel 0.7662 0.8324 0.8451 0.4901

lost their target midway, caused by the object’s rapid drift and a region in the nearby background

with close colour to the target (the likelihood falls into a local optimum and cannot jump out). The

WLT and WGGMMT successfully track the target, but we notice that the size error of the WGGMM

appears to rise and fall periodically. When the edges of the book are not parallel to the axes, the size

update method makes the four corners of the book outside of the ellipse, which increases the size er-

ror. Although the girl in the second video sequence rotates in movement, the switch is very smooth,

and the distribution of the main colour features of the target (yellow-green jacket and pink pants)

almost does not change. Therefore, all four methods have sound effects. The WGGMM updates

the model near the end of the sequence. At this moment, the primary colours of the other person

adjacent to the target are black and white. But the aspect ratio of the ellipse representing the target

has not changed dramatically. Accordingly, these new colours are still considered background. The

main challenge given in video sequence three is the non-rigid deformation due to the dance actions

of the characters. The WLTMS is better by one tally in this test. Our method underestimates the

size of the target for the reasons specified earlier, particularly when the figure’s legs open and the

background fill. Similar situations appear in the series polo and wheel. Especially, WGGMMT does
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a poor job of tracking cyclists, where the colour of the bike is very close to the background, and

its proportion in the target area is small. Then the main subject being tracked becomes the rider,

and the algorithm completely ignores the bike, resulting in a notable deviation in terms of position

and size error. Other algorithms have the same problem, but not to the equivalent extent. In the

helicopter sequence, the camera’s perspective follows the target when shotting, so the background

replaces significantly (from grass to blue sky). The WGGMMT has excellent performance (both in

position and size) in this sequence because the shape of the central part of the helicopter is nearly

egg-shaped. For the road sequence, its characteristic is that the target is tiny compared with the

entire frame. As a result, the errors show a discrete and quantized variation. Due to the unique

sampling method adopted by the size update mechanism of WLT and WLTMS, the minimum size

of the ellipse is limited. In our comparison research, we use 11 symmetrical sampling lines in both

the horizontal and vertical directions. It can be seen that there is a lot of platform-like waveform

in error change in both of these two approaches. Fig. 3.16 displays the representative results of

WGGMMT on the real datasets (every ten frames).

Figure 3.9: Performance (book) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error
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Figure 3.10: Performance (girl) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error

Figure 3.11: Performance (hand2) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error
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Figure 3.12: Performance (helicopter) of camshift, WLT, WLTMS and WGGMMT in terms of
position and size error

Figure 3.13: Performance (polo) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error
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Figure 3.14: Performance (road) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error

Figure 3.15: Performance (wheel) of camshift, WLT, WLTMS and WGGMMT in terms of position
and size error
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Figure 3.16: Representative results (red ellipse) using WGGMMT on the real datasets, the blue box
is the ground truth
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Figure 3.17: Representative results of model update when applying WGGMMT

Fig. 3.17 shows the qualitative results of WGGMMT in the model update. We use a Rubik’s

cube to create a typical scene. The tracking using the non-updated model is carried out during

the cube rotation. The aspect ratio of the ellipse has a remarkable transformation in this process.

Consequently, the components of new colours within the background ellipse are supplemented to

the target model and the disappearing colour components are eliminated when modelling renewal.

The newly added colours are also selected in the ellipse after the model updating. In contrast, the

other condition is the added colour caused by the change of background around the target. Since

the ellipse aspect ratio is almost identical, the target model remains the same after the update.

Without considering model initialization and update, the average time required by our algorithm

to complete a frame tracking on a standard PC is about 45 ms, of which most time (about 33 ms on

average) is spent in the clustering process of image colour compression (10 categories). However,

when it comes to the model establishment since the parameters of the generalized Gaussian mixture

model have no closed form, the numerical solution based on iteration will take 2-3 minutes. There-

fore, matched with other techniques, this method still has some shortcomings in absolute real-time

performance.

3.5 Conclusion

This paper proposes a tracking method based on the spatially weighted generalized Gaussian

mixture model. In the preprocessing operation, colour compression enhances the GGMM’s adapt-

ability to target features while preserving the original colour distribution as far as possible. This
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algorithm combines the idea of image segmentation and likelihood maximization to build the dis-

criminative model and improve the mean-shift update method. The design of size estimation based

on the sum of weight is used to solve the problem that the derivative of likelihood cannot be ob-

tained. The model update is supported by the change of aspect ratio of the target ellipse, which

further advances the algorithm’s robustness. Experimental results show that the tracking accuracy

of this method is better than that of other methods in most cases, and the size estimation is con-

servative. However, this method still has some weaknesses in real-time performance. Future work

will attempt to reduce the time overhead of the algorithm and extend the framework to multi-target

tracking.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

This thesis proposes a weighted generalized Gaussian mixture model framework. The mean and

covariance parameters of the mixture model components are obtained through fixed-point equations.

The Newton-Raphson method is applied to get the shape parameters. The algorithm automatically

determines the number of components according to the MML criterion. The weighting method dra-

matically enhances the contrast between the primary and secondary features of the data, thereby

improving the model’s adaptability to fit peak distributions. The framework can effectively remove

the interference caused by outliers and noise and has satisfying robustness and accuracy. Due to the

introduction of shape parameters, the method based on variational inference is not feasible because

it is difficult to find the conjugate priors of the complete covariance. However, when using the MLE

method to promote the EM algorithm, almost all model parameters do not have closed solutions.

The iteration based on a numerical method causes a lot of time consumption, and the real-time per-

formance of modelling is relatively poor. In addition, the calculation of shape parameters requires

a certain degree of data support. Due to the truncated nature of computer floating-point operations,

logarithmic overflow errors are prone to occur in the case of insufficient samples. The above frame-

work is applied to robust point cloud registration and single target tracking. Experiments manifest

that the proposed framework can adequately cope with the problems of different sampling rates and

sensor noise in point cloud registration and accurately extract the structural features in the dense
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area of the point cloud. After combining with stochastic optimization, it can significantly reduce

the situation of falling into a local optimum. However, this method is only suitable for solid point

cloud data, and it does not work well for contour or surface point clouds. In visual tracking, the

framework joined with colour compression preprocessing can establish a more reliable discriminant

model to distinguish between the target and the background. The logarithmic responsiveness ratio

to the models provides segmentation weights for location and scale update, and the distance-based

kernel weighting can adequately suppress the edge effect. The model updating strategy based on

the ellipse aspect ratio change can effectively deal with the colour alteration caused by the three-

dimensional rotation of the target. Compared with other algorithms, it is proved that the proposed

method is superior in position accuracy but conservative in size estimation.

4.2 Future Work

Because of the shortcomings of existing work, we suggest the following prospective directions

and possible improvements: (1) Aiming at the time performance problem of the generalized Gaus-

sian mixture model. When using numerical methods to solve parameters, many formulas have the

same sub-blocks. Therefore, we can directly store the first calculation results as variables through

reasonable memory arrangements and call them in the subsequent process to reduce repeated com-

putations. Furthermore, software or hardware acceleration can be applied, such as an optimized

library of matrix operations to increase the speed of inversion and accumulation or using GPU for

parallel computing. As far as the framework algorithm itself is concerned, it may be required to

introduce other auxiliary methods (e.g. sampling) to roughly estimate the model’s parameters and

then use iterative approaches to make fine adjustments to speed up the convergence. For some

specific applications, reducing the precision of iteration can improve efficiency. For example, when

modelling the colour of an object, the colour space is discrete, and the step size is one. The accuracy

of the model parameters is not necessarily valid to decimal places. (2) For the problems in the regis-

tration process of the point cloud. The proposed method models both the point cloud to be registered

and the target point cloud and uses KLD to measure the difference between them to find the optimal

transformation parameters. Since rigid registration only involves translation and rotation, the model
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parameters of the transformed point cloud do not need to be recalculated. Instead, we can get them

by applying the same transformation to the previous mixture model components. However, in the

non-rigid registration, the mixture model must be re-established from the transformed point cloud,

which means that parameter estimation will be carried out several times in the optimization process.

This time consumption is unacceptable. Therefore, one possible approach is to model only the refer-

ence point cloud and use the maximum a posteriori idea to make the point cloud to be matched have

the maximum likelihood in the target model, which is also applicable to non-rigid transformations.

In addition, the proposed method is only suitable for solid point clouds. Since the three views of

the object can describe the structural information, we can consider projecting the 3D point cloud to

the plane with different perspectives and then using WMGGMM to represent the projection points

to enhance the description ability of the surface point cloud. (3) For problems in visual tracking. In

the proposed method, using k-means to compress each frame takes a lot of time. The improved idea

is to perform colour compression on the ROI window instead of the entire frame. But the following

problem is that as the pixels in the ROI change, the results of colour compressions may be inconsis-

tent. The identical pixel in the original image may be assigned different values. Considering that the

change between frames is not significant, we can perform colour compression at a specific interval.

During this period, the principle of nearest neighbour classification is utilized to assign values to

pixels based on the last colour compression results. This will reduce the amount of data involved in

clustering and obtains the same contrast with a lower number of clusters.
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[8] Eusebio Gómez Sánchez-Manzano, Miguel Angel Gomez-Villegas, and Juan-Miguel Marı́n-

Diazaraque. A matrix variate generalization of the power exponential family of distributions.

Communications in Statistics-Theory and Methods, 31(12):2167–2182, 2002.

[9] Kai-Sheng Song. A globally convergent and consistent method for estimating the shape

parameter of a generalized gaussian distribution. IEEE Transactions on Information Theory,

52(2):510–527, 2006.

[10] Alex Dytso, Ronit Bustin, H Vincent Poor, and Shlomo Shamai. Analytical properties of gen-

eralized gaussian distributions. Journal of Statistical Distributions and Applications, 5(1):1–

40, 2018.
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[112] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-based probabilistic

tracking. In European Conference on Computer Vision, pages 661–675. Springer, 2002.

[113] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking using the in-

tegral histogram. In 2006 IEEE Computer society conference on computer vision and pattern

recognition (CVPR’06), volume 1, pages 798–805. IEEE, 2006.

[114] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-rigid

objects using mean shift. In Proceedings IEEE Conference on Computer Vision and Pattern

Recognition. CVPR 2000 (Cat. No. PR00662), volume 2, pages 142–149. IEEE, 2000.

[115] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object tracking. IEEE

Transactions on pattern analysis and machine intelligence, 25(5):564–577, 2003.

[116] Katja Nummiaro, Esther Koller-Meier, and Luc Van Gool. An adaptive color-based particle

filter. Image and vision computing, 21(1):99–110, 2003.

[117] Waqas Hassan, Nagachetan Bangalore, Philip Birch, Rupert Young, and Chris Chatwin.

An adaptive sample count particle filter. Computer Vision and Image Understanding,

116(12):1208–1222, 2012.

[118] Joao F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. Exploiting the circulant

structure of tracking-by-detection with kernels. In European conference on computer vision,

pages 702–715. Springer, 2012.

[119] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Rynson WH Lau, and Ming-Hsuan Yang.

Crest: Convolutional residual learning for visual tracking. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2555–2564, 2017.

[120] Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. Modeling and propagating cnns in a

tree structure for visual tracking. arXiv preprint arXiv:1608.07242, 2016.

[121] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual tracking with fully

convolutional networks. In Proceedings of the IEEE international conference on computer

vision, pages 3119–3127, 2015.

82



[122] Zhen Cui, Shengtao Xiao, Jiashi Feng, and Shuicheng Yan. Recurrently target-attending

tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1449–1458, 2016.

[123] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic regression for visual track-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 7183–7192, 2020.

[124] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang, and Rongrong Ji. Siamese box

adaptive network for visual tracking. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 6668–6677, 2020.

[125] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bastian Leibe. Siam r-cnn: Visual

tracking by re-detection. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6578–6588, 2020.

[126] C-H Chou and K-C Liu. Colour image compression based on the measure of just noticeable

colour difference. IET Image Processing, 2(6):304–322, 2008.

[127] A Messaoudi and K Srairi. Colour image compression algorithm based on the dct transform

using difference lookup table. Electronics Letters, 52(20):1685–1686, 2016.

[128] Majid Rabbani. Jpeg2000: Image compression fundamentals, standards and practice. Journal

of Electronic Imaging, 11(2):286, 2002.

[129] Ayan Banerjee and Amiya Halder. An efficient image compression algorithm for almost dual-

color image based on k-means clustering, bit-map generation and rle. In 2010 International

Conference on Computer and Communication Technology (ICCCT), pages 201–205. IEEE,

2010.

[130] G Vimala Kumari, G Sasibhushana Rao, and B Prabhakara Rao. Flower pollination-based

k-means algorithm for medical image compression. International Journal of Advanced In-

telligence Paradigms, 18(2):171–192, 2021.

83



[131] Douglas Kelker. Distribution theory of spherical distributions and a location-scale parameter
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