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Abstract
Capsule Network-based Radiomics: From Diagnosis to Treatment

Parnian Afshar, Ph.D.
Concordia University, 2021

Recent advancements in signal processing and machine learning coupled with devel-
opments of electronic medical record keeping in hospitals have resulted in a surge of
significant interest in “radiomics". Radiomics is an emerging and relatively new re-
search field, which refers to semi-quantitative and/or quantitative features extracted
from medical images with the goal of developing predictive and/or prognostic mod-
els. Radiomics is expected to become a critical component for integration of image-
derived information for personalized treatment in the near future. The conventional
radiomics workflow is, typically, based on extracting pre-designed features (also re-
ferred to as hand-crafted or engineered features) from a segmented region of interest.
Clinical application of hand-crafted radiomics is, however, limited by the fact that
features are pre-defined and extracted without taking the desired outcome into ac-
count. The aforementioned drawback has motivated trends towards development of
deep learning-based radiomics (also referred to as discovery radiomics). Discovery
radiomics has the advantage of learning the desired features on its own in an and-
to-end fashion. Discovery radiomics has several applications in disease prediction/
diagnosis. Through this Ph.D. thesis, we develop deep learning-based architectures
to address the following critical challenges identified within the radiomics domain.
First, we cover the tumor type classification problem, which is of high importance for
treatment selection. We address this problem, by designing a Capsule network-based
architecture that has several advantages over existing solutions such as eliminating
the need for access to a huge amount of training data, and its capability to learn
input transformations on its own. We apply different modifications to the Capsule
network architecture to make it more suitable for radiomics. At one hand, we equip
the proposed architecture with access to the tumor boundary box, and on the other
hand, a multi-scale Capsule network architecture is designed. Furthermore, capitaliz-
ing on the advantages of ensemble learning paradigms, we design a boosting and also
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a mixture of experts capsule network. A Bayesian capsule network is also developed
to capture the uncertainty of the tumor classification. Beside knowing the tumor
type (through classification), predicting the patient’s response to treatment plays an
important role in treatment design. Predicting patient’s response, including survival
and tumor recurrence, is another goal of this thesis, which we address by designing a
deep learning-based model that takes not only the medical images, but also different
clinical factors (such as age and gender) as inputs. Finally, COVID-19 diagnosis,
another challenging and crucial problem within the radiomics domain, is dealt with
using both X-ray and Computed Tomography (CT) images (in particular low-dose
ones), where two in-house datasets are collected for the latter and different capsule
network-based models are developed for COVID-19 diagnosis.
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Chapter 1

Overview of the Thesis

1.1 Introduction

Radiomics [1–15] refers to the process of extracting and analyzing several semi-
quantitative (e.g., attenuation, shape, size, and location) and/or quantitative features
(e.g., histogram and grey-level intensity) from medical images with the ultimate goal
of obtaining predictive or prognostic models. Although several challenges are in the
way of bringing radiomics into daily clinical practice, it is expected that radiomics
become a critical component for integration of image-driven information for person-
alized treatment in the near future.

The first comprehensive clinical application of radiomics [16–19] was performed
by Aerts et al. [20] with involvement of 1, 019 lung cancer patients. More than 400

different intensity, shape, and texture features were extracted from Computed Tomog-
raphy (CT) images and used together with clinical information and gene expression
data to develop radiomics heat map, which shows the association between radiomics
and different clinical outcomes such as cancer stage. This clinical study has illus-
trated/validated effectiveness of radiomics for tumor related predictions and showed
that radiomics has the capability to identify lung and head-and-neck cancers from a
single-time point CT scan. Consequently, there has been a surge of interest [21–25]
on this multidisciplinary research area as radiomics has the potential to provide sig-
nificant assistance for assessing the risk of recurrence of cancer [26]; Evaluating the
risk of radiation-induced side-effects on non-cancer tissues [27], and; Predicting the
risk for cancer development in healthy subjects [27].
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Figure 1.1: Different Screening Technologies.

The key underlying hypothesis in the radiomics is that the constructed descrip-
tive models (based on medical imaging data, sometimes complemented by biological
and/or medical data) are capable of providing relevant and beneficial predictive, prog-
nostic, and/or diagnostic information. In this regard, one can identify two main cate-
gories of radiomics. Conventional pipeline based on Hand-Crafted radiomics features
(HCR) that consists of the following four main processing tasks: (i) Image acquisi-
tion/reconstruction; (ii) Image segmentation; (iii) Feature extraction and quantifica-
tion, and; (iv) Statistical analysis and model building. On the other hand, the Deep
Learning-based radiomics (DLR) pipeline has recently emerged, which differs from
the former category since deep networks do not necessarily need the segmented Re-
gion Of Interest (ROI), and their feature extraction and analysis parts are partially
or fully coupled. Before highlighting radiomics challenges and contributions of the
thesis, next, medical resources available for radiomics are briefly presented.

1.2 Medical Resources for Radiomics

Several potential medical resources provide information to the radiomics pipeline,
some of which are directly used to extract radiomics features, while some serve the
decision making process, as complementary information sets. Below, we briefly review
the most important data resources for radiomics.

1.2.1 Screening Technologies

The radiomics features can be extracted from several imaging modalities, as shown
in Fig. 1.1, among which the following are the most commonly used modalities:
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• Computed Tomography (CT) Scans : The CT is the modality of choice for
the diagnosis of many diseases in different parts of the body, and by providing
high resolution images [16] paves the path for extracting comparable radiomics
features. Nonetheless, the CT imaging performance depends on different com-
ponents of the utilized protocol including the following three main properties:
(i) Slice thickness, which is the distance in millimetre (mm) between two con-
secutive slices; (ii) The capability for projecting the density variations into
image intensities, and; (iii) Reconstruction algorithm, which aims at converting
tomographic measurements to cross-sectional images. Although CT protocols
for specific clinical indications are usually similar across different institutions,
radiomics features can even differ between different scanners with the same set-
tings [28]. Therefore, there is still a considerable need to ensure consistency
of radiomics feature extraction amongst different scanners and imaging proto-
cols [17]. CT images are typically divided into two categories [29]: screening and
diagnostic. While screening CT uses low dose images, diagnostic CT utilizes
high dose and is of higher quality and contrast.

• Positron Emission Tomography (PET) Scans : The PET is a nuclear
imaging modality that evaluates body function and metabolism [16], and since
its performance depends on not only the scanner properties, but also the doze
calibration, similar to the case with the CT scans, standardizing the PET pro-
tocols across different institutions is challenging. Furthermore, glucose level at
the time of scanning can also affect the properties of PET images [17].

• Magnetic Resonance Imaging (MRI): Unlike CT, properties of MRI im-
ages are not directly associated with tissue density and specific methods are
required to obtain the so-called signal intensity. Besides, several imager and
vendor-dependant factors such as gradient and coil systems [30], pulse sequence
design, slice thickness, and other parameters such as artifacts and magnetic
field strength affect the properties of the MRI images [17], which should be
consistent across different institutions.

3



1.2.2 Complimentary Data Sources

In addition to imaging resources, the following clinical data sources are typically
combined with radiomics features:

• Gene Expression : The process of converting DNA to functional product to
have a global insight of cellular function.

• Clinical Characteristics : Patient’s characteristics such age, gender, and past
medical and family history [17].

• Blood Bio-markers : Measurable characteristics from the patient’s blood such
as glucose level, cholesterol level and blood pressure.

• Prognostic Markers : Markers to evaluate the progress of the disease, re-
sponse to treatment or survival, such as size, tumor stage, tumor recurrence,
and metastasis.

1.3 Targeted Applications of Radiomics

In recent years, radiomics has been applied to several health-care applications, in-
cluding oncology, cardiology, and neurology. In cardiology, for instance, radiomics is
used in different investigations, such as identifying the coronary plaques [31]. In neu-
rology, it is widely applicable for detecting Alzheimer’s disease [32] and Parkinson’s
disease [33]. However, among all the applications of the radiomics, cancer-related
topics, such as diagnosis, detection, classification, and survival and recurrence predic-
tion, have been the focus of interest. Furthermore, in the recent year, the COVID-19
pandemic and its consequences have caused a trend towards exploring radiomics for
the diagnosis of COVID-19 using chest radiographs, having the promise of compensat-
ing for the low sensitivity and accessibility of the Reverse Transcription Polymerase
Chain Reaction (RT-PCR) test.

In particular, the thesis covers three main applications of the radiomics:

• Tumor Classification , which refers to determining the type of the tumor.
Typically, cancer is classified into the following main classes: (i) benign; (ii)
primary malignant, and; (iii) metastatic malignant, based on several factors
such as their ability to spread to other tissues. Benign tumors usually do not
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spread to other organs but may need surgical resection because occasionally
they may grow in size. Pre-invasive lesions may be indolent for years, how-
ever, they may transform to aggressive malignant tumors and therefore need
to be monitored closely or even be treated with lower dose of anti-cancer regi-
mens. Malignant tumors are life threatening and may spread to distant organs,
requiring more complicated treatments such as Chemotherapy. Prediction of
tumor malignancy likelihood with noninvasive methods such as Radiomics is,
therefore, of paramount importance.

• Time-to-event outcome Prediction : The knowledge of the expected sur-
vival of a specific disease with or without a specific treatment is critical both
for physicians and the patients. Physicians need to choose the best treatment
plan for their patients and patients need to know their predicted survival time
in order to make their own choices for the quality of their life. Radiomics can
add significant information about patient’s survival based on image properties
and heterogeneity of the tumor and this has attracted a lot of attention recently.

• COVID-19 Diagnosis : Since the beginning of the coronavirus disease (COVID-
19) outbreak in December 2019 in Wuhan, China, a global healthcare crisis has
emerged. Currently, RT-PCR is considered as the gold standard method in
COVID-19 diagnosis. RT-PCR is, however, prone to a number of limitations,
i.e., besides being time consuming, it is associated with high false-negative rate
in different clinical samples. Due to high sensitivity and rapid access, chest CT
scan has been the main imaging modality for diagnosis, prognostic assessment,
and detection of complications of COVID-19. CT scan, by means of radiomics,
can contribute to assessing the complications, extent of COVID-19 involvement,
and risk of intensive care unit (ICU) admission.

1.4 Radiomics Challenges and Opportunities

Despite recent advancements in the field of radiomics and increase of its potential
clinical applications, there are still several open problems, which require extensive
investigations, including:

C1. Most radiomics models need rich amounts of training images, however, due to
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strict privacy policies, medical images are usually hard to collect.

C2. Even without considering the privacy issues, it is difficult to find the required
amount of data with similar clinical characteristics (e.g., corresponding to the
same cancer stage).

C3. Radiomics analysis need ground truth, which is scarce as labels can only be
provided by clinical experts (this is in contrary to other multimedia domains).
This calls for development of weakly or semi-supervised solutions taking into
account the specifics of the radiomics domain.

C4. Unbalanced data refers to the problem where classes are not equal in a clas-
sification task rendering the classifier biased toward the majority class. This
is almost all of the time the case for radiomics analysis as the number of pos-
itive classes (existence of disease) is typically smaller than the negative ones.
Therefore, proper care is needed when working with medical data. Although
several solutions, such as modifying the metric function to give more weight to
minority class, are provided to deal with the aforementioned issue, it is still an
unsolved problem that needs further investigations.

C5. The biggest challenge in combining various data sources (such as imaging and
clinical) is that not all data is provided for all the patients. In other words, ra-
diomics analysis model should be equipped with the ability to work with sparse
data. Besides, the currently used fusion strategies within the radiomics are still
in their infancy and development of more rigorous fusion rules is necessary. For
instance, feature-level fusion results in a vector and how to sort/combine the
localized feature vectors is an open challenge. Giving the superiority of the ini-
tial results obtained from hybrid radiomics, this issue becomes an urgent matter
calling for advanced mixture of expert solutions.

1.5 Thesis Contributions

Below, the contributions of the thesis are briefly outlined:

• Chapter 3: Deep Learning-based Radiomics for Tumor Classification
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1. A capsule network-based brain tumor classification is developed [2, 3],
which benefits from the capability of this kind of architecture in han-
dling small datasets, targeting challenges C1 and C2, as introduced in
Section 1.4. Capsule networks, however, tend to account for every de-
tail present in the input, and as such, they perform better when fed with
segmented tumors rather than the whole brain tissue. Nevertheless, seg-
menting the tumors is time-consuming and burdensome, which led us to
develop a modified version of the capsule network, which is fed with rough
tumor boundaries. In other words, this framework does not require fine
annotations, and the model has access to both brain tissues and location
of the tumor.

2. A boosted capsule network, referred to as BoostCaps [4] is proposed that
benefits from boosting to gradually enhance an initial weak learner (a sim-
ple capsule network). This framework does not require a full exploration
within the domain of all possible CapsNet architectures. In fact, the algo-
rithm starts with a simple design and by giving more weight to misclassified
samples, the model improves itself through steps.

3. BayesCap [5], a Bayesian capsule network, which is designed to account
for uncertainty in the model’s weights. The output of BayesCap is not
only the average over predictions (through Monte-Carlo simulation), but
also entropy as a measure of uncertainty with the promise of returning
uncertain prediction to human experts.

4. To increase the accuracy of lung nodule malignancy prediction, a 3D multi-
scale capsule network, referred to as 3D-MCN [6], is proposed. This
model is fed with multi-scale tumor crops, with the intuition that the
nodule morphological characteristics are not the only indicators of its ma-
lignancy, and incorporation of information obtained from the surrounding
tissues and vessels play a critical role in determining the type of the nodule.

5. Capitalizing on the success of ensemble models, a mixture of capsule net-
works (MIXCAPS [7]) is designed. Each expert is shown to be focusing
on particular nodules, and the final output is the weighted average over
all the predictions. It is also shown that capsule networks, themselves,
can be viewed as mixture of experts, and thus, the proposed model is a
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hierarchical mixture of experts. This contribution targets challenge C5 in
Section 1.4.

• Chapter 4: Time-to-Event Outcome Prediction [8, 9]

1. A novel deep learning architecture, referred to as DRTOP is possessed to
predict pre-defined clinical endpoints in a cohort of lung cancer patients
before the initiation of treatment, based on staging PET/CT images. The
proposed DRTOP model considers not only PET and CT images, but also
clinical factors, such as age and gender. The model is pre-trained as a
convolutional auto-encoder on an external unlabeled dataset, in an unsu-
pervised manner, targeting challenge C3 in Section 1.4. Cox proportional
hazards model (PHM) and random survival forest (RSF) are trained on
the output of the deep learning model. The features extracted from the
deep model show high interpretability when compared with hand-crafted
features.

• Chapter 5: Deep Learning-based COVID-19 Diagnosis

1. To tackle the crucial problem of COVID-19 diagnosis, a capsule network
(referred to as COVID-CAPS [10]) is designed, which is fed with X-
ray images of COVID-19, normal, and pneumonia cases. The model is
pre-trained on an external X-ray dataset, and loss function is modified to
account for class imbalance, as discussed in challenge C4 in Section 1.4.

2. CT scans are more sensitive compared to X-ray images as they capture the
tissue 3D characteristics. In this sense, an in-house dataset of standard-
dose CT scans (referred to as COVID-CT-MD [11]), along with clini-
cal information is collected and used in designing a hybrid deep learning
model [12].

3. Standard-dose CT scans have the disadvantage of high radiation exposure.
Therefore, first a dataset of low-dose and ultra-low-dose CT scans (LDCT
and ULDCT) is collected, followed by designing a time-distributed deep
learning model, analyzing the slices simultaneously [13], where the final
decision is a weighted average over the prediction coming from single slices.
Experiments show the proposed model achieves human-level performance.

8



1.6 Organization of the Thesis

Chapter 1 (this chapter) provided an overview and a summary of important contri-
butions made in the thesis. As stated previously, through this Ph.D. thesis, we cover
three main applications of the radiomics, i.e., tumor classification, time-to-event out-
come prediction, and COVID-19 diagnosis, with focus on developing deep learning-
based architectures. These topics will be covered through the following chapters:

• Chapter 2 provides the literature review of the topic.

• In Chapter 3, we concentrate on the deep learning-based solutions to tumor
classification.

• Time-to-event outcome (in particular survival) prediction is investigated in
Chapter 4.

• Radiomics-based COVID-19 diagnosis is provided in Chapter 5.

• In Chapter 6, we conclude the thesis and future direction will be discussed.
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Chapter 2

Literature Review

This chapter provides an overview of the radiomics literature [1] mainly focusing
on the two categories of Hand-Crafted Radiomics (HCR) and Deep Learning-based
Radiomics (DLR).

2.1 State-of-the-Art in Hand-Crafted Radiomics

Studies on hand-crafted radiomics features [16, 17, 19], typically, consist of the fol-
lowing key steps:

1. Pre-processing, introduced to reduce noise and artifacts from the original data
and typically includes image smoothing and image enhancement techniques.

2. Segmentation, which is a critical step within the HCR workflow, as typically
HCR features are extracted from segmented sections and many tissues do not
have distinct boundaries [18]. Although manual delineation is the conventional
(standard) clinical approach, it is time consuming and extensively sensitive to
inter-observer variability [17], resulting in a quest to develop advanced (semi)
automated segmentation solutions of high accuracy that can also generate re-
producible boundaries.

Automatic and semi-automatic segmentation techniques can be either con-
ventional, meaning that pre-defined features are used to classify image pix-
els/voxels, or deep learning-based, referring to the use of a deep network to
segment the image. Conventional techniques can, themselves, lie within three
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categories of intensity-based [34], model-based, and machine learning methods.
In the former category, intensity is used as the main distinguishing feature of
the pixels, while in the model-based approaches, the aim is to improve an initial
contour, by optimizing an energy function. In machine learning methods, how-
ever, a set of features, including intensity and gradient, are extracted from the
pixels. These features are then used as the inputs to a machine learning model,
such as a Support Vector Machine (SVM), to classify the pixels. Nevertheless,
conventional techniques are subject to several shortcomings. For instance, the
intensity of the ROI can, sometimes, be similar to other tissues, and therefore,
intensity can not be a good discriminator. Furthermore, the formulation of
an energy function, in a model-based segmentation, may involve large number
of parameters [35], which makes optimization of the energy function difficult
and time-consuming. Deep learning methods, on the other hand, are capable
of learning the features that can best distinguish pixels, and can be trained in
an end-to-end manner. Deep learning approaches, such as different variations
of the U-Net [36], “LungNet” architecture [37], DenseNet [38], and hybrid di-
lated convolutions (HDC) [39] are currently used more often for medical image
segmentation.

3. Feature extraction, which is the main step in radiomics workflow and will be
discussed in details in Sub-section 2.1.1.

4. Feature reduction, is another critical step in radiomics as although a large
number of quantitative features can be extracted from the available big image
datasets, most of the features are highly correlated, irrelevant to the task at
hand, and/or contribute to over-fitting of the model. To address these issues,
radiomics feature reduction techniques are discussed in Sub-section 2.1.2.

5. Statistical analysis, which refers to utilizing the extracted radiomics features
in a specific application. We will further elaborate on such radiomics-based
statistical analysis in Sub-section 2.1.3.

2.1.1 Radiomics Feature Extraction

During the feature extraction step within radiomics workflow, different types of fea-
tures are extracted that can be generally classified into three main categories: (1) First

13



Table 2.1: Different categories of HCR features commonly used within the context of
radiomics.

Category Description Sub-category
First Order Radiomics Concerned with the distribution of

pixel intensities and use of elemen-
tary metrics to compute geometrical
features.

• Shape Features Quantify the geometric shape of re-
gion or volume of interest [17]

Size of the Region of Interest (ROI);
Sphericity; Compactness; Total vol-
ume; Surface area, Diameter, flat-
ness and; Surface-to-volume ra-
tio [17,29].

• Intensity Features Derived from a single histogram
generated from the 2D region or the
whole 3D volume [17].

Intensity Mean; Intensity Standard
Deviation; Intensity Median; Mini-
mum of Intensity; Maximum of In-
tensity; Mean of Positive Intensi-
ties; Uniformity; Kurtosis; Skew-
ness; Entropy; Normalized Entropy;
Difference of Entropy; Sum of En-
tropy, and; Range [17,29].

Second Order Radiomics (Texture
Features)

Concerned with texture features
and relations between pixels to
model intra-tumor heterogeneity.
Texture features are generated from
different descriptive matrices [17].

• Gray Level Co-
occurrence (GLCM)

GLCM [29] is a matrix that presents
the number of times that two inten-
sity levels have occurred in two pix-
els with specific distance.

Contrast; Energy; Correlation; Ho-
mogeneity;Variance; Inverse Differ-
ence Moment; Sum of Average;
Sum of Variance; Difference of Vari-
ance; Information Measure of Corre-
lation; Autocorrelation; Dissimilar-
ity; Cluster Shade; Cluster Promi-
nence; Cluster Tendency, and; Max-
imum Probability.

• Gray Level Run-
Length (GLRLM)

GLRLM [40] is a matrix that
presents the length of consecutive
pixels having the same intensity.

Short run emphasis; Long run em-
phasis; Gray Level Non-Uniformity;
Run length non-uniformity; Run
percentage; Low gray level run em-
phasis, and; High gray level run em-
phasis [17].

• Neighborhood Gray Tone Differ-
ence Matrix (NGTDM)

NGTDM [29] is concerned with the
intensities of neighboring pixels in-
stead of the pixel itself.

Coarseness; Contrast; Busyness;
Complexity Texture Strength.

• Grey-Level Zone Length Matrix
(GLZLM)

GLZLM [23] considers the size of
homogeneous zones in every dimen-
sion.

Zone Percentage; Short-Zone Em-
phasis; Long-Zone Emphasis; Gray-
Level Non-Uniformity for zone;
Zone Length Non-Uniformity.

Higher Order Radiomics Use of filters to extract patterns
from images.

Wavelets; Fourier features [29];
Minkowski functionals; Fractal
Analysis [18], and; Laplacian of
Gaussian (LoG) [23].
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order (intensity-based and shape-based features) [24]; (2) Second order (texture-based
features) [24], and; (3) Higher order features [18]. Table 2.1 provides a summary of
different potential features. It is worth mentioning that HCR features are not limited
to this list and can exceed hundreds of features (e.g., in Reference [20] 400 HCR fea-
tures are initially extracted before going through a feature reduction process). Below,
we further investigate the most commonly used categories of hand-crafted features:

1. Intensity-based Features: Intensity-based methods convert the multi-dimensional
ROI into a single histogram (describing the distribution of pixel intensities), from
which simple and basic features (e.g., energy, entropy, kurtosis, and skewness) are
derived. Intensity features allow us to investigate properties of the histogram such
as sharpness, dispersion, and asymmetry. These features are, however, the most sen-
sitive ones to image acquisition parameters such as slice thickness [29]. Therefore,
designing intensity-based features need special care and pre-processing. Among all
intensity features, entropy and uniformity are the most commonly used ones in Ra-
diomics [40]. Generally speaking, entropy measures the degree of randomness within
the pixel intensities, and takes its maximum value when all the intensities occur with
equal probabilities (complete randomness). Uniformity, on the other hand, estimates
the consistency of pixel intensities, and takes its maximum value when all the pix-
els are of the same value. Although intensity-based features are simple to calculate
and have the potential to distinguish several tissues such as benign and malignant
tumors [40], they suffer from some drawbacks. First, the selected number of bins can
highly influence such features, as too small or too large bins can not resemble the
underlying distribution correctly, and as such these features are not always reliable
representatives. Besides, optimizing the number of histogram bins can also be prob-
lematic, because it leads to different number of bins for different ROIs, and makes it
difficult to compare the results of various studies.

2. Shape-based Features: Shape-based features describe the geometry of the ROI
and are useful in the sense that they have high distinguishing ability for problems such
as tumor malignancy and treatment response prediction [29]. Although radiologists
commonly use shape features (also referred to as “Semantic Features” or “Morphologi-
cal features”), the aim of Radiomics is to quantify them with computer assistance [18].
These features are extracted from either 2D or 3D structures to investigate different
shape and size characteristics of the ROI.
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Among different shape-based features, volume, surface, sphericity, compactness,
diameter, and flatness are more commonly used in Radiomics. For instance, sphericity
measures the degree of roundness of the volume or region of interest. Compactness
is itself defined based on sphericity and as such, these two need not to be calculated
simultaneously, and one of them will be probably excluded by the feature selection
methods, which are targeting feature redundancy.

3. Texture-based Features: Shape-based and intensity-based features fail to pro-
vide useful information regarding correlations between different pixels across a given
image. In this regard, texture-based features are the most informative ones, specially
for problems where tissue heterogeneity plays an important role, because texture-
based features can catch the spatial relationships between neighboring pixels [29]. In
Radiomics, typically, texture-based features are extracted based on different descrip-
tive matrices, among them gray level co-occurrence matrix (GLCM), gray level run
length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM), and
gray level zone length matrix (GLZLM) are the most commonly used ones [40], which
are defined below:

• The GLCM, models the spatial distribution of pixels’ intensities and can be
calculated by considering the frequency of the occurrence of all pairs of intensity
values. Features extracted from GLCM are the most commonly used textural
features in Radiomics [40]. Each GLCM is associated with two predefined pa-
rameters θ and d, where θ ∈ {0◦, 45◦, 90◦, 135◦}, and d is any integer distance
admissible within the image dimensions.

• The GLRLM, defines the number of adjacent pixels having the same intensity
value, e.g., the (i, j) element of the GLRLMθ matrix determines the number of
times intensity value i has occurred with run length j, in direction θ.

• The NGTDM, which is based on visual characteristics of the image, is a vector
whose kth element is defined as the summation of differences between all pixels
with intensity value k and the average intensity of their neighborhood (size of
which is determined by the user).

• The GLZLM, which looks for zones in a matrix. A zone can be defined as the
set of connected pixels/voxels sharing the same intensity. The (i, j)th element
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of the GLZLM corresponds to the number of zones with the intensity i, and the
size j.

4. Higher Order Radiomics Features: Higher order features such as Wavelet
and Fourier features capture imaging bio-markers in various frequencies [29]. Wavelet
features are the mostly used higher order features in Radiomics. Wavelet course and
fine coefficients represent texture and gradient features respectively, and is calculated
by multiplying the image by a matrix including complex linear or radial “wavelet
mother functions”. Fourier features can also capture gradient information. Minkowski
Functional (MF) is another common higher order feature extractor considering the
patterns of pixels with intensities above a predefined threshold.

In brief, the MFs are computed by initially forming a binary version of the ROI
through utilization of several thresholds within the minimum and maximum intensity
limits. Although the number of utilized thresholds is a free parameter, for better
results, it should be identified through a selection mechanism (typically empirical
tests are used). Based on the binarized ROI, different MFs such as area and perimeter
are computable as follows

MFarea = ns, (2.1)

and MFperimeter = −4ns + 2ne, (2.2)

where ns and ne are the total number of white pixels (above the threshold) and edges,
respectively.

2.1.2 Radiomics Feature Reduction Techniques

Feature reduction is another critical step in radiomics as although a large number of
quantitative features can be extracted from the available image datasets, most of the
features are highly correlated, irrelevant to the task at hand, and/or contribute to
over-fitting of the model (making it highly sensitive to noise). Feature reduction tech-
niques that are used in radiomics can be classified into supervised and unsupervised
categories [24], as summarized in Table 2.2. Supervised approaches, such as filtering
and wrapper methods, take the discriminative ability of features into account and
favor features that can best distinguish data based on a pre-defined class. Unsuper-
vised methods, on the other hand, aim to reduce feature redundancy and include
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Table 2.2: Feature reduction techniques commonly used within the Radiomics literature.

Category Description Methods
Supervised Considers the relation of features

with the class labels and features are
selected mostly based on their con-
tribution to distinguish classes.

• Filtering (Univariate) Test the relation between the fea-
tures and the class label one by one.

Fisher score (FSCR); Wilcoxon
rank sum test; Gini index (GINI);
Mutual information feature selec-
tion (MIFS); Minimum redundancy
maximum relevance (MRMR), and;
Student t-test [40].

• Wrapper (Multivariate) Considers both relevancy and re-
dundancy.

Greedy forward selection, and
Greedy backward elimination.

Unsupervised Does not consider the class labels
and its objective is to remove redun-
dant features.

• Linear Features have linear correlations. Principle Component Analysis
(PCA), and; Multidimensional
scaling (MDS)

• Nonlinear Features are not assumed to be lied
on a linear space.

Isometric mapping (Isomap), and;
Locally linear embedding (LLE).

Principle Component Analysis (PCA), Independent Component Analysis (ICA) and
Zero Variance (ZV) [24].

In summery, various objectives can be defined when reducing the feature space
in radiomics. The following key characteristics can be defined for feature selection
purposes [17,18]:

• Reproducibility : Reproducible features (also referred to as “stable features”) are
the ones that are more robust to pre-processing and manual annotations. These
features will be discussed in Sub-section 2.1.4.

• Informativeness and Relevancy, which can be defined as features that are highly
associated with the target variable [29]. For instance a χ2-test, calculates the
chi-squared statistic between features and the class variable, and consequently
features with low impact on the target are discarded. Another selection ap-
proach is a Fisher score test, where features with higher variance are treated as
the more informative ones.

• Redundancy : Non-redundant features are the ones with small correlation with
each other. Feature redundancy is defined as the amount of redundancy present
in a particular feature with respect to the set of already selected features.
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Below, supervised and unsupervised techniques commonly used in Radiomics are
further discussed.

1. Supervised Feature Selection Methodologies: Supervised methods are gen-
erally divided into two categories as outlined below:

• Filtering (Univariate) Methods : These methods consider the relation between
the features and the class label one at a time without considering their redun-
dancy. Among all filtering approaches, Wilcoxon test based method has been
shown to be more stable, resulting in more promising predictions in the field
of Radiomics [40]. A Wilcoxon test is a nonparametric statistical hypotheses
testing technique that is used to determine dependencies of two different feature
sets, i.e., whether or not they have the same probability distribution.

• Wrapper (Multivariate) Methods : Filtering methods have the drawback of ig-
noring relations between features which has led to development of wrapper
techniques. In contrary to the filtering methods, wrapper methods investigate
the combined predictive performance of a subset of features, and the scoring is a
weighted sum of both relevancy and redundancy [40]. However, computational
difficulties prevent such methods from testing all the possible feature subsets.

Wrappers methods include greedy forward selection and greedy backward elim-
ination. In a forward feature reduction path, selection begins with an empty
set and the correlation with class label is calculated for all features individually.
Consequently, the most correlated feature is selected and added to the set. In
the next step, the remaining features are added, one by one, to this set to test
the performance of the obtained set, and the process continues until no further
addition can increase the predictive performance of the set. A backward selec-
tion path works in contrary to the forward one, beginning with a set including
all the available features, and gradually reduces them until no further reduction
improves the performance.

Since supervised methods are based on class labels, they are subject to over-fitting
and can not be easily applied to different applications once trained based on a given
feature set.

2. Unsupervised Feature Selection Methodologies: Unsupervised approaches
try to reduce the feature space dimensionality by removing redundant features (those
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Table 2.3: Common analysis methods in Radiomics.

Purpose Description Methods
Clustering Similar patients are grouped to-

gether based on a distance metrics.
Hierarchical, Partitional

Classification Models are trained to distinguish
patients based on their associated
clinical outcome.

Random Forest (RF); Support
Vector Machine (SVM); Neural
Network (NN); Generalized linear
model (GLM); Naive Bayes (NB);
k-nearest neighbor (KNN); Mixture
Discriminant Analysis (MDA);
Partial Least Squares GLM (PLS),
and; Decision Tree (DT).

Time-related analysis The survival time or the probability
of survival is calculated based on the
available set of data from previous
patients.

Kaplan-Meier survival analysis;
Cox proportional hazards regres-
sion model [19], and; Log-Rank
Test.

who are correlated and do not provide any additional information). Although these
methods are not prone to over-fitting, they are not guaranteed to result in the opti-
mum feature space. Unsupervised techniques can be divided into linear and non-linear
methods, where the former assumes that features lie on a linear space.

2.1.3 Radiomics Statistical Analysis

Statistical analysis refers to utilizing the extracted radiomics features in a specific
task. Although most statistical methods, initially, treat all the features equally and
use the same weights over all predictors, in the area of radiomics, the most success-
ful methods are the ones that use a prior assumption (provided by experts) over
the meaning of features [18]. One basic approach to analyze the radiomics features
adopted in [20,23] is to cluster the extracted features and look for associations among
clusters and clinical outcomes. For instance, patients belonging to one cluster may
have similar diagnosis or patterns. Observations show that image bio-markers are
associated with clinical outcomes such as tumor malignancy. Hierarchical clustering
is most commonly used in radiomics [17]. However, clustering techniques are not
basically trained for target forecasting purposes, which necessitates the use of pre-
diction tools that are specially trained on predefined class label. Prediction tools in
radiomics are categorized as:

(i) Classification and Regression Models that are mostly similar to other multi-
media domains, trying to foresee a discrete or continues value. Random Forest
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(RF), Support Vector Machine (SVM) and Neural Network (NN) are among the
most common regression and classification techniques used to make predictions
based on radiomics [24].

(ii) Survivability analysis : Also referred to as time-related models, mostly try to
predict the survival time associated with patients. These models are also useful
when testing the effectiveness of a new treatment.

Table 2.3 presents a summary of different Radiomics analysis techniques. As predic-
tors belonging to the former category are also common in other multi-media applica-
tions, they are not covered in this chapter. Survivability analysis (the latter category),
however, is more specific to radiomics. This category includes Kaplan-Meier Survival
Curve (KMS), Cox Proportional Hazards (regression) Model (PHM), and Log-Rank
Test.

1. Kaplan-Meier Survival Curve (KMS): The KMS curve [20, 24] represents a
trajectory for measuring the probability of survival S(t) in given points of time t, i.e.,

S(t) =
Number of patients survived until t

Number of patients at the beginning
. (2.3)

The KMS curve can be calculated for all radiomics features to assess the impact of
different features on patients’ survival as follows:

1. A desired feature, for which the KMS curve is supposed to be calculated, is
selected.

2. Based on the selected feature, one or more thresholds are considered that can
partition patients into, e.g., low and high risk cancer subjects. Patients are
then grouped based on whether their associated feature lies above or below the
threshold.

3. The KMS curve is calculated for all the obtained groups, and the result can be
used to compare the survivability among patients with, e.g., low and high risk
cancer. For instance, in Reference [20] high heterogeneity features are associated
with shorter survival time, while high compactness features are associated with
longer survival.
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2. Cox Proportional Hazards (Regression) Model (PHM) [20], is commonly
used in medical areas to predict patient’s survival time based on one or more predictors
(referred to as covariates) such as radiomics features. The output of the PHM model
denoted by h(t) is the risk of dying at a particular time t, which can be calculated as
follows

h(t) = h0(t)× exp
∑Nc

i=1 bixi (2.4)

where xi, for (1 ≤ i ≤ Nc), are predictors (covariates); bi represent the impacts of
predictors, and h0(t) is called the base-line hazard. The exponent term in Eq. (2.4)
is referred to as the “Risk” and is conventionally assumed to be a linear combination
of the features (covariates), i.e., Risk ,

∑Nc

i=1 bixi. The Risk coefficients (bi, for
(1 ≤ i ≤ Nc)) are then computed through a training process based on historical
data. More realistically, the risk can be modeled as a general non-linear function, i.e.,
Risk , f(x), with the non-linearity being learned via deep learning architectures,
which has not yet been investigated within the radiomics context.

3. Log-Rank Test [20], which is used for comparing the survival of two samples
specially when these two samples have undergone different treatments. This test is
a non-parametric hypothesis test assessing whether two survival curves vary signifi-
cantly. One limitation associated with the Log-Rank test is that the size of the groups
can influence the results, therefore, larger number of patients should be included to
from equal sized groups.

2.1.4 Radiomics Stability

An important aspect of radiomics is the stability of the extracted features, which
quantifies the degree of dependency between features and pre-processing steps. Sta-
bility in radiomics is generally evaluated based on either of the following two tech-
niques:

1. Test-Retest: In this approach, patients undergo an imaging exam more than
once and images are collected separately. Radiomics features are then extracted
from all the obtained sets and analyzed. Here, being invariant across different
set of images illustrates stability of radiomics features.

2. Inter-observer reliability, which is referred to an experiment where multiple
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observers are asked to delineate the ROI from the same images, and radiomics
features are extracted from all different delineations to test their stability for
variation in segmentation [23]. Here, being invariant across different segmenta-
tions illustrates stability of radiomics features.

Different stability Criteria are used to find robust features in radiomics as briefly
outlined below:

1. Intra-class Correlation Coefficient (ICC): One approach to measure the
stability of radiomics features, which is used for both the aforementioned cate-
gories (i.e., test-retest and inter-observer setting) is referred to as the intra-class
correlation coefficient (ICC) [20]. The ICC is defined as a metric of the relia-
bility of features, taking values between 0 and 1, where 0 means no reliability
and 1 indicates complete reliability. Defining terms BMS and WMS as mean
squares (measure of variance) between and within subjects, which are calculated
based on a one-way Analysis of variance (ANOVA), for a test-retest setting, the
ICC can be estimated as

ICCTest-Retest =
BMS −WMS

BMS + (N − 1)WMS
, (2.5)

where N is the number of repeated examinations. By defining EMS as residual
mean squares from a two-way ANOVA and M as the number of observers, for
an inter-observer setting, the ICC can be calculated as

ICCInter-Observer =
BMS − EMS

BMS + (M − 1)EMS
. (2.6)

2. Friedman Test : The Friedman test, which is specially useful for assessing the
stability in an inter-observer setting, is a nonparametric repeated measurement
that estimates whether there is a significant difference between the distribution
of multiple observations, and has the advantage of not requiring a Gaussian
population. Based on this test, the most stable features are the ones with a
stability rank of 1 [20].

In [20], it is declared that radiomics features with higher stability have more prognostic
performance, therefore, stability analysis can be interpreted as a feature reduction
technique. According to Reference [23], Laplacian of Gaussian (LoG), intensity-based,
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Figure 2.1: Extracting deep radiomics. The input to the network can be the original image,
the segmented ROI, or the combination of both. Extracted radiomics features are either
utilized through the rest of the network, or an external model is used to make the decision
based on radiomics.

and texture features are more stable for lung CT images, while wavelet and shape-
based features are sensitive to variation in segmentation.

2.2 State-of-the-Art in Deep Learning-based Radiomics

Deep learning-based radiomics (DLR), sometimes referred to as “Discovery Radiomics”
or “Radiomics Sequence Discovery” with “Sequence” referring to features [41], is the
process of extracting deep features from medical images based on the specifications
of a pre-defined task including but not limited to disease diagnostics; Cancer type
prediction, and; Survival Prediction. In brief, the DLR can be extracted via differ-
ent architectures (stack of linear and non-linear functions), e.g., convolutional neural
network (CNN) or an auto-encoder, to find the most relevant features from the in-
put [42]. Fig. 2.1 illustrates the schematic of extracting deep features. The extracted
features can then either go through the rest of the deep net for analysis and making
decisions or they may exit the network and go through a different analyzer such as
an SVM or a Decision Tree (DT). Commonly used deep architectures for radiomics
will be discussed in details later in Section 2.2.3.
Benefits of DLR vs. HCR: An important advantage of DLR over its hand-crafted
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counterpart is that the former does not need any prior knowledge and features can
be extracted in a completely automatic fashion with high level features extracted
from low level ones [42]. Moreover, deep learning networks can be trained in a simple
end-to-end process, and their performance can be improved systematically as they
are fed with more training samples [43]. Another key benefit of using DLR instead
of HCR is that the input to the deep networks to extract radiomics features, can be
the raw image without segmenting the region of interest, which serves the process in
two ways:

(i) Eliminating the segmentation step can significantly reduce the computational
time and cost by taking the burden of manual delineation off the experts and
radiologists, besides, manual annotations are highly observer-dependent, which
makes them unreliable sources of information, and;

(ii) Automatic segmentation methods are still highly error prone and inaccurate to
be used in a sensitive decision making process.

Furthermore, the input to a deep network can also be the combination of the original
and segmented image along with any other pre-processed input such as the gradient
image (referred to as “multi-channel” input), all concatenated along the third dimen-
sion [21]. The variety of input types can even go further to include images from
different angles such as coronal and axial [44].

Generally speaking, studies on DLR can be categorized from several aspects in-
cluding:

(i) Input Hierarchy : The input to the deep net can be the single slices, the whole
volume, or even the whole examinations associated with a specific patient. Each
of these cases require their own strategy, e.g., in case of processing the whole
volume simultaneously, one should think of a way to deal with the inconsistent
dimension size, as patients are associated with different number of slices. One
common architecture that allows for utilization of inputs with variable sizes,
such as various number of slices, is the Recurrent Neural Network (RNN), which
will be briefly discussed in Section 2.2.3;

(ii) Pre-trained and Raw Models : Depending on the size of the available dataset and
also the allocatable time, pre-trained models can be fine-tuned or raw models
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Figure 2.2: Taxonomy of deep learning-based radiomics (DLR).

can be trained from scratch. This will be analyzed more specifically in Sec-
tion 2.2.2, and;

(iii) Deep Learning Network Architectures : Choice of the deep network is the most
important decision one should make to extract meaningful and practical DLR,
which will be discussed in Section 2.2.3.

2.2.1 Input Hierarchy

As shown in Fig. 2.3, input images for DLR studies can be divided into three main
categories: Slice-level; Volume-level, and; Patient-level. Slice-level classification refers
to analyzing and classifying image slices independent from each other, however, this
approach is not informative enough as we typically need to make decisions based
on the labels assigned to the entire Volume of Interest (VOI). Shortcomings of slice-
level classification leads to another approach referred to as volume-level classification,
where either the slice-level outputs are fused through a voting system, or the entire
image slices associated with a volume is used as the input to the classifier. Finally,
patient-level classification refers to assigning a label to a patient based on a series
of studies (such as CT imaging follow-ups). For example, in Reference [45], patient-
level classification is explored with the goal of estimating the probability of lung tumor
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Figure 2.3: Input hierarchy for one patient. In the top row the slice-level input is shown
where the patients went through K examination visits during each of which N (i), for (1 ≤
i ≤ K), number of slices is captured. The second row shows the volume-level where all slices
associated with one visit is provided simultaneously as the input to the network. Finally, the
third row shows the Patient-level analysis, where a single input consisting of all the volumes
is provided.

malignancy based on a set of CT studies. To achieve this goal, initially, a simple three
layer CNN is trained to extract DLR from tumor patches associated with individual
CT series (volume-level classification) with the objective of minimizing the difference
between the predicted malignancy rate and the actual rate. Then, by adopting a
previously trained CNN, the malignancy rate is calculated for all the series belonging
to the patient and the final decision is made by selecting the maximum malignancy
rate. In other words, a patient is diagnosed with malignant lung cancer if at least
one of the predicted rates is above a pre-determined rate for malignancy.

2.2.2 Pre-trained or Raw Models

Similar to the other medical areas, the DLR can be extracted based on either of the
following two approaches:

Training from scratch : Training a deep network from scratch for extracting DLR
has the advantage of having a network completely adjusted to the specific problem at
hand. However, performance of training from scratch could be limited due to couple
of key issues, i.e., over-fitting and class imbalance. Adhering to patients’ privacy
and need for experts to provide ground truth typically limits the amount of medical
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datasets available for extracting DLR resulting in over-fitting of the deep nets. The
second issue is the problem of class imbalance, i.e., unequal number of positive and
negative classes. This happens as number of patients diagnosed with abnormalities
is commonly less that the amount of data available from healthy subjects. More
specifically, class imbalance in medical areas is due to the fact that typically number
of positive labels is less than the number of negative ones, making the classifier biased
toward the negative class, which is more harmful than the other way around because,
for instance, classifying a cancerous patient (positive label) as healthy (negative label)
has worse consequences than classifying a healthy patient as cancerous [22]. The
following strategies can be adopted to address these two issues:

(i) Data Augmentation , where different spatial deformations (such as rotation [46])
are applied to the existing data in order to generate new samples for training
purposes. Sub-patch Expansion [21] is another form of augmentation commonly
adopted in Radiomics to handle the inadequate data situation via extracting
several random fixed-sized sub-patches from the original images.

(iii) Multitask training is another method introduced to handle class imbalance
and inadequate data [47], which is achieved by decreasing the number of free
parameters and consequently the risk of over-fitting. For instance, this approach
is adopted in [48] for spinal abnormality classification based on MRIs through
training a multitask CNN. Multitask in this context refers to performing differ-
ent classification tasks simultaneously via the same unified network (e.g., the
network tries to classify disk grading and disk narrowing at the same time).
The loss function is defined as the weighted summation of all the losses associ-
ated with different tasks. One important decision to make in multitask learning
is the point that branching begins, e.g., in Reference [48], a unified CNN is
trained, where all Convolutional layers are shared for performing different tasks
and tasks are separated from the point that fully connected layers begin.

(iv) Loss function modification : Another common approach specific to handling
class imbalance for DLR extraction is to modify the loss functions by giving
more weight to the minority class [48].

Transfer Learning via a Pre-trained Network : A different solution to class
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imbalance and inadequate training data is “transfer learning" followed by “fine tun-
ing" [21, 47, 49]. The transfer learning phase refers to training the deep net using a
natural image data set, and then in the fine tuning phase, the trained network will
be re-trained using the desired medical dataset. This strategy is adopted in Refer-
ence [49], where a pre-trained CNN is used for breast cancer classification based on
mammographic images. The pre-trained CNN used is an Alexnet which is too com-
plicated and prone to over-fitting for small datasets. Therefore, this network is first
pre-trained using ImageNet database which consists of more than one million natural
images. Pre-trained CNN based on ImageNet is also adopted in [50] for lung cancer
survival prediction.

2.2.3 Deep Learning Architectures in Radiomics

Radiomics features can be extracted through both discriminative and/or generative
deep learning networks. As is evident from its name, discriminative deep models try
to extract features that make the classes (e.g., normal or cancerous) distinguishable,
and thus these models can directly classify instances from the extracted features. On
the other hand, generative models are unsupervised, meaning that they are trained
without considering the class labels. Generally, the goal of these models is to learn
the data distribution in a way that enables them to generate new data from the
same distribution. In other words, generative models can extract the natural and
representative features of the data, which can then be used as inputs to a classifier.
Furthermore, in the field of radiomics, it is common [43] to train a generative model
and use the learned weights as initial weights of a discriminative model. Below, an
introduction to widely used discriminative and generative deep models in radiomics
is provided.

1. Discriminative Models: Deep discriminative models try to extract features
capable of distinguishing class labels, and the objective is to minimize the prediction
error. Below, we will review the convolutional neural networks (CNNs) and Recurrent
Neural Networks (RNNs), which are the most popular discriminative architectures in
radiomics. Later, we will introduce a recently designed deep architecture referred
to as the capsule network (CapsNet) [51] and explain how this new architecture can
contribute to the radiomics.

29



1.1. Convolutional Neural Networks (CNNs): CNN is a stack of layers per-
forming convolutional filtering combined with nonlinear activation functions and pool-
ing layers [47]. The fact that CNNs have recently resulted in promising outcomes have
made them the mostly used architecture in medical areas including radiomics. CNNs
are more practical in the sense that shared weights are utilized over the entire input,
which reduces the number of trainable parameters. Unlike extracting hand-crafted
features, kernels used in convolutional layers are not pre-determined and are auto-
matically learned through the training process. This property makes CNNs suitable
methods for extracting DLR features as they are flexible and can be applied without
requiring a prior knowledge. In [52], it has been shown that the DLR extracted from a
CNN can visually distinguish benign and malignant lung tumors when projected into
a 2D space, while the original pixel values completely fail to provide such distinction.

When adopting CNNs in the field of Radiomics, output of the fully connected
layers is typically treated as DLR features. These features are then either used within
the original CNN to provide the desired (classification and/or regression) output such
as cancer type, or exist the network to be provided as the input to the rest of the
Radiomics pipeline. As an example, in Reference [50] DLR are extracted from the
layer just before the classification (SoftMax) layer of the CNN with the goal of lung
cancer survival prediction. These features are referred to as the “preReLU” and
“postReLU” features as they are extracted both before and after applying the ReLU
activation function. The DLR features are then used as inputs to four classifiers
(i.e., Naive Bayes, Nearest Neighbor, Decision tree and Random Forest) after going
through a feature selection algorithm.

The CNN architectures used in Radiomics can be divided into three main cate-
gories: (i) Standard architectures; (ii) Self-designed architectures, and; (iii) Multiple
CNNs. Below, we describe each of these categories with examples from Radiomics:

1.1.1. Standard CNN Architectures : As the name suggests, standard architectures
are those that have been previously designed to solve a specific problem, and
due to their success are now being adopted in the Radiomics. Two of such
architectures that have been used in Radiomics are LeNet and AlexNet. The
LeNet is one of the simplest CNN architectures, having a total of 7 layers, that
has been used in Radiomics. However, researchers have some times modified
this network to achieve higher performance, e.g., the CNN used in Reference [21]
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is a LeNet architecture with a total of 9 layers including 3 Convolutional layers,
3 pooling layers and one fully connected layer followed by the classification layer
to classify lung tumors as either benign or malignant.

Another commonly used standard architecture in Radiomics is the 11 layers
CNN called Alexnet, which has been adopted in [49] to extract DLR features
from breast mammographic images. Features are extracted from all 11 layers
and used as inputs to 11 support vector machine (SVM) with the goal of clas-
sifying breast tumors as either benign or malignant. Since it is not obvious
which set (output of which of the 11 underlying layers) of DLR features are
more practical, these SVMs are compared and the one with the largest area
under the curve is chosen for predictive analysis of breast cancer. The results
of [49] concluded that the features extracted from the 9th layer (a fully con-
nected layer before the last fully connected layer and the classification layer)
are the best predictors of breast cancer and they are of lower dimension com-
pared to previous ones, which reduces the computational cost. In other words
and in contrary to [50], the output of the last Convolutional layer, right before
the fully connected layer, is selected as the DLR features.

Although AlexNet is a powerful network, it has too many parameters for small
datasets and is, therefore, prone to over-fitting. As a result, Reference [53] has
used an Alexnet with number of layers reduced to 5 in order to avoid the over-
fitting problem. The input to this network is a combination of CT and PET
images, each having 3 channels: One slice corresponding to the center of the
lung nodule, specified by an expert, and the two immediate neighbors. The goal
of this article is to classify lung tumors as benign or malignant, and although
it has been shown that the adopted CNN does not result in significantly higher
accuracy than classical methods (HCR), it is more convenient as it does not
require the segmented ROI.

Inception network [54,55] is another CNN adopted in Radiomics. This network
involves parallel convolutions with different kernel sizes, and poolings within
the same layer, with the overall aim of allowing the network to learn the best
weights and select the most useful features. The Inception CNN is used in [56],
for the detection of diabetic retinopathy. This paper is the first work on deep
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learning-based detection of diabetic retinopathy that has been approved by the
Food and Drug Administration (FDA).

1.1.2. Self-designed CNNs : As opposed to researchers that have used standard
CNNs with or without modifications, some have designed their own architec-
tures based on the specification of the Radiomics problem at hand. For example,
Reference [46] has used a CNN with three Convolutional layers to extract DLR
features, and although the CNN itself is trained to use these features for classi-
fying benign and malignant tumors, they are used as inputs to a binary decision
tree.

In a similar fashion, Reference [57] has used a CNN with 6 Convolutional layers
and one fully connected layer for DLR extraction in the problem of brain tu-
mor classification. The designed network, however, is different from previously
mentioned articles as it is developed for tumor segmentation, and features are
extracted from the last Convolutional layer since they are more robust to shifting
and scaling of the input. In other words, the CNN was designed for segmenta-
tion and once trained, the output of the last Convolutional layer is used as the
DLR features. The claim here is that the quality of extracted features depends
on the accuracy of segmentation, and when segmentation is precise the quality
of Radiomics features is guaranteed.

Due to the high importance of the segmentation, more advanced and efficient
CNN architectures have been developed, one of which is the Fully Convolutional
Neural Network (FCNN) [58]. In an FCNN, fully connected layers are rewritten
as convolutional layers, having the advantage of not requiring fixed-sized inputs.
This network is also extended to 3D image segmentation, to segment multiple
targets at once. To decrease the false positive rate, FCNN is further combined
with graphical models such as Markov Random Fields (MRFs) and Conditional
Random Fields (CRFs). Finally, to improve the resolution of the output, U-
Nets [36] are proposed, which include up-convolutions to increase the image
size, and skip-connections to recover spatial information.

Lung cancer detection using CNNs is also investigated in [59], with the difference
that the input to the network is not only the original image but also the nodule-
enhanced and vessel-enhanced images, stating that providing the network with
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Figure 2.4: Different angles of lung CT scan along with tumor crops in three different
scales.

more information on tumor and vessels reduces the risk of misplacing these
two by the network. The main focus here is to reduce the false positive rate
while keeping the sensitivity high, therefore, a significant number of nodule
candidates are selected at the beginning. Use of CNNs is further investigated
in [60], where a 7 layer architecture is fed with down-sampled volumetric CT
images along with their segmentation masks for longevity prediction. In [61]
an architecture called XmasNet is provided that can maximize the accuracy
of prostate cancer diagnosis. This network consists of 4 Convolutional layers,
2 fully connected layers, 2 pooling layers and one SoftMax layer for cancer
prediction. The inputs to this network are 3D MRI images.

In summary, self-designed CNNs are developed by varying the depth of the
network (number of the Convolutional and non-Convolutional layers); the order
the layers are cascaded one after another; the type of the input to the network
(e.g., single channel or different form of multi-channel), and/or; the layer whose
output is treated as the DLR features.

1.1.3. Multiple CNNs : Beside using single standard or self-designed CNNs, some
researchers have proposed to use multiple networks, which has the advantage
of benefiting from multiple inputs, having various modalities, scales and angles
as shown in Fig. 2.4, or different architectures with different properties.

“Scale” is a significant factor to consider when designing the input structure.
For example to distinguish tumors from vessels, a large enough region should
be included in the input patch, while to differentiate between solid and non-slid
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tumors, the nodule region should be the main core of the patch. Having this in
mind, Reference [44] has designed a CNN architecture for lung tumor classifica-
tion, where inputs are patches not only from different angles (sagittal, coronal,
and axial) but also in different scales. Following a similar path, Reference [62]
has also designed a multiple CNN architecture, where each CNN takes a lung
tumor patch at a specific scale (illustrated in Fig. 2.4) as input and generates
the associated DLR features. Features extracted from all the CNNs are then
concatenated and used for lung tumor malignancy prediction through a con-
ventional classifier (SVM). The idea here is that segmenting the tumor regions
is not always feasible. Furthermore using a tumor patch provides information
on not only the tumor itself but also the surrounding tissues, and since tumor
sizes can vary significantly among patients, using multi-scale patches instead
of the single ones will improve the overall performance of the extracted DLR
features. An interesting property of such multiple CNN architecture is that
since the constituent CNNs share parameters, training can be performed in a
reasonable time. Another benefit of using a multiple CNN architecture is that
the network becomes robust to addition of small noise to the input.

Similar to the work in [62], Reference [63] has designed a CNN called “Multi-view
CNN", which uses 7 patches at different scales as inputs, with the difference
that these patches are resized to have the same dimension, and therefore, a
single CNN can be used instead of multiple CNNs. This work has also ex-
tended the binary lung tumor classification to a ternary classification to classify
lung tumors as benign, primary malignant, and metastatic malignant. Further-
more, this article has adopted another validation approach called “separability"
besides the common terms such as accuracy and AUC (area under curve). Sep-
arability refers to the extend that different classes are distinguishable based on
the learned features, and according to the aforementioned article, the proposed
multi-view CNN has a higher Separability compared to a single scale CNN. In
addition to that, as the layers go deeper, features with higher separability are
learned.

The idea of using multi-scale image patches is further expanded in Reference [52]
through designing a novel CNN architecture called “Multi-crop CNN", where
instead of taking inputs in various scales, multi-scale features are extracted
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through parallel pooling layers, one of which applies pooling to a cropped ver-
sion of the input from the previous layer. Features from multiple pooling layers
are then concatenated and fed to the next layer. 3D lung CT images are inputs
to this network, and since multiple CNNs are replaced with one single CNN, the
training can be performed in a more time effective manner. Beside forecasting
the lung tumor malignancy, this work has also predicted other attributes asso-
ciated with tumor such as diameter, by replacing the final SoftMax layer with
a regression one. It is worth mentioning that this network is not performing
all the assigned tasks simultaneously. Instead they are performed one after an-
other, which distinguishes this network from a multitask training one discussed
in section 2.2.2.

Radiomics through multiple CNNs is further explored recently in [64] for Alzheimer’s
disease diagnosis using MRI, where in the first stage several landmarks are de-
tected based on the comparison between normal and abnormal brains. These
landmarks are then used to extract patches (separately around each individual
landmark), and consequently each CNN is trained taking patches correspond-
ing to a specific landmark position as input. Final decision is made based on
a majority voting among all the CNNs. Here, the idea behind using a multiple
architecture is the fact that detecting Alzheimer’s disease requires the exami-
nation of different regions of the brain.

In summary, multiple CNNs methods developed for DLR feature extraction are
designed by either fusing the outputs of several CNNs which are trained based
on a specific input, or multi-path layers are embedded within a single network
to modify the output from previous layers differently.

One challenge shared among all the aforementioned CNN architectures is that they
do not take the spatial information between objects into account. As an example, they
may fail to consider the location of abnormality within the tissue as an indicator of
its type. The newly proposed deep architecture called CapsNets, described next, is
introduced to overcome this drawback.

1.2. Capsule Networks : Although CNNs are the state of the art in many medi-
cal and non-medical classification problems, they are subjected to several drawbacks
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Figure 2.5: Capsule network architecture.

including their low explainability and their negligence in preserving the spatial rela-
tionships between elements of the image leading to miss-classification. Besides, CNNs
have low robustness to some types of transformation. Loss of spatial relation infor-
mation, which is associated with the pooling layers, is resolved by the newly proposed
capsule networks (CapsNets) [51] consisting of both convolutional and capsule layers
that can handle more types of transformation. These deep architectures have the
ability to consider the relationships between the location of objects and tolerate more
types of transformation, through their routing by agreement process, which dictates
that an object will not be classified as a specific category unless the lower level el-
ements of this object agree on the existence of that category. Another important
property of CapsNets is that they can handle smaller datasets, which is typically the
case in most medical areas. Here we explain the architecture of capsule networks, as
illustrated in Fig. 2.5, and their routing by agreement process.

Capsule networks are constructed based on capsules, as their main building blocks.
A capsule being represented by a vector consists of several neurons representing, col-
lectively, a specific object at a specific location. While neurons capture the instan-
tiation parameters of the object, the length of a capsule determines the existence
probability of that object. The most important property of a capsule network, dis-
tinguishing it from CNNs, is its routing by agreement process. Generally speaking,
each Capsule i, having the instantiation parameter vector ui, in a lower layer tries
to predict the output of the capsules in the next layer, through a trainable weight
matrix Wij given by

ûj|i =Wijui, (2.7)
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where ûj|i denotes the prediction for parent Capsule j. Through the routing by agree-
ment process, the predictions are evaluated in terms of their similarity to the actual
outputs. More weight is then given to the successful predictions, before calculating
the final output sj for the capsule j, as follows

aij = sj.ûj|i, (2.8)

bij = bij + aij, (2.9)

cij =
exp(bij)∑
k exp(bik)

, (2.10)

and sj =
∑
i

cijûj|i, (2.11)

where aij shows the agreement between actual output sj and its prediction ûj|i, and
cij denotes the score assigned to the prediction based on the obtained agreement.
Routing by agreement, as defined through Eqs. (2.8)-(2.11), is an iterative process,
with sj initially defined as an average over all the predictions. The routing by agree-
ment process, summarized in Fig. 2.6, enables capsule the network to recognize spatial
information between image instances. Finally, the margin loss function lj is computed
as

lj = Tj max(0,m+−||sj||)2+λ(1−Tj)max(0, ||sj||−m−)2. (2.12)

Term Tj is 1 whenever the class j is present, and is 0 otherwise. Term m+, m− and
λ are hyper parameters to be indicated before the learning process. The total loss
is the sum over the losses of all output capsules. The original Capsule network has
also a set of fully connected layers, referred to as the decoder part, that takes the
final instantiation parameters of the true classes as inputs, and try to reconstruct
the original image, with the aim of forcing the network to capture real representative
features. The decoder loss is defined as a simple squared error and contributes to the
final error with a smaller weight, compared to the loss of the capsules. This is done
to avoid distracting the network from its main target, which is classifying the objects.
This completes a brief introduction to CNNs and CapsNets. Next, we present the
proposed framework for tumor classification.

1.3. Recurrent Neural Networks : Most of the deep network architectures need
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Figure 2.6: Routing by agreement. For the sake of simplicity number of output capsules is
set to two.

fixed-sized inputs, which makes them ineffective for Radiomics analysis of volumetric
images (volume-level classification), i.e., when the whole volume is needed to be
processed at once (such as tumor classification based on the 3D volume). In these
scenarios, the RNNs can be adopted as they are capable of processing sequential data
such as CT or MR slices, and they take both the present image slice and result of
processing the previous ones as inputs. RNNs are also useful to monitor the medical
images resulted from follow-up examinations (patient-level classification).

Since RNNs are associated with the vanishing gradient problem, a new type called
long-short-term-memory (LSTM) is proposed which has the ability to decide what to
store and what to forget. Although it seems that RNNs and LSTM are computation-
ally more expensive than other architectures, their training time and cost is greatly
reduced by using the same weights over the whole network [47]. Use of LSTMs is
explored in Reference [65] for prostate cancer benign and malignant classification
based on sequences of ultrasound images, where it has been shown that the predic-
tive accuracy of this sequential classification is higher than making decision based on
independent single images.

2. Generative Models: The objective of most of the deep generative models is to
learn abstract yet rich features from the data distribution in order to generate new
samples from the same distribution. What makes these models practical in radiomics
is the fact that the learned features are probably the best descriptors of the data, and
thus have the potential to serve as radiomics features and contribute to a consequent
tasks such as tumor classification. Auto-encoder networks, deep belief networks, and
deep Boltzmann machines are among the deep generative models that have been
utilized in radiomics works as outlined below:
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2.1. Auto-Encoder Networks : An auto-encoder network consists of two main
components: An encoder which takes as input Ns medical images denoted by
f (i), for (1 ≤ i ≤ Ns), and converts each into a latent space φ(W f (i) + b), i.e.,
Radiomics features. The second component, the decoder, takes the latent space
and tries to reconstruct the input image with the objective of minimizing the
difference between the original input and the reconstructed one φ(W Tφ(W f (i)+

b) + c) [42] given by

min
W ,b,c

Ns∑
i=1

||φ
(
W Tφ

(
W f (i) + b

)
+ c
)
− f (i)||, (2.13)

where φ(·) is the network’s activation function; W denotes the weight matrix
of the network used by both the encoder and the decoder; Term b denotes the
encoder’s bias vector; c is the decoder’s bias vector, and; superscript T denotes
the transpose operator. The reason that the encoded variables can be treated
as Radiomics features is that they are the most important representatives of the
input image that can be used to reproduce it. Although an auto-encoder can be
trained completely in an end-to-end manner, to begin training with good initial
weights and thus avoid the vanishing gradient problem, one can first train layers
one by one, and use the obtained weights as the auto-encoder starting point [47].
Depending on the application, Auto-encoders have several extensions including:

2.1.1. Denoising Auto-Encoders (DAEs): To make auto-encoders capture
more robust features of the input, one common strategy is to add some
noise to the input. This kind of auto-encoder is called a denoising auto-
encoder (DAE) [47]. Reference [66] has adopted DAE for extracting Ra-
diomics features that are fed to an SVM to classify lung tumors as be-
nign or malignant. Reference [21] has also adopted a five layer denoising
auto-encoder which takes the corrupted lung images as inputs and tries to
recover the original image. In particular, 400 Features extracted by the en-
coder part of this network are treated as Radiomics to train another neural
network for lung cancer classification (identify the type of the tumor such
as benign or malignant).

2.1.2. Convolutional Auto-Encoders (CAEs): This type of auto-encoders
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are specially useful for Radiomics (image type inputs) as the spatial corre-
lations are taken into account. In these networks, nodes share weights in a
local neighborhood [47]. A CAE with 5 Convolutional layer is adopted in
Reference [22] for lung cancer diagnosis (identify the presence of cancer).

There are two common strategies to leverage Auto-encoders in Radiomics:

– The first and most frequent approach is to directly use the extracted fea-
tures to train a classifier. For instance, [42] has extracted Radiomics fea-
tures using a 5 layer auto-encoder, which receives the segmented region of
interest as the input. These features go through a binary decision tree in
the next step to produce the output which is the classified lung nodule in
this case.

– Auto-encoders can also serve as a pre-training stage to make the network
extract representative features before trying to perform the actual classi-
fication. For instance, Reference [43] has first trained a DAE based on
resized (down-sampled images to facilitate training) lung CT patches. In
the next stage, a classification layer is added to the network and the whole
network is re-trained taking both resized images and the resizing ratio as
inputs.

2.2. Deep Belief Networks (DBNs): DBNs are stack of Restricted Boltzmann
Machines (RBMs) on top of each other where the RBM is an unsupervised two
layer stochastic neural network that can model probabilistic dependencies with
the objective of minimizing the reconstruction error. More importantly RBM is
a bipartite graph allowing value propagation in both directions. Although DBNs
are composition of RBMs, only the top two layers have undirected relations.
DBNs are first trained in a greedy fashion meaning that RBM sub-networks are
trained individually followed by a fine-tuning phase [47]. In Reference [21], a
DBN consisting of 4 hidden layers is designed with the goal of extracting the
DLR from the top layer which has 1600 nodes. This last layer is connected to an
external neural network to classify lung nodules. Besides, to have multi-channel
input (original image, segmented tumor, and gradient image), these channels
are concatenated vector wise before being fed to the network.
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2.3. Deep Boltzmann Machine (DBMs): DBMs are also based on RBMs, but
they differ from DBNs in the sense that DBMs include undirected relations
between all layers which makes them computationally ineffective, though they
are trained in a layer wise manner [47]. Due to the two-way relations, however,
RBMs can capture complicated patterns from the data [32]. DBMs are adopted
in [32] for Alzheimer’s disease diagnosis. In this work, a classification layer is
added to the last layer of the DBM allowing to extract not only hierarchical
(generative) but also discriminative features.

2.2.4 Explainability of Deep Learning-based Radiomics

Explainability of deep networks refers to revealing an insight of what has made the
model to come into a specific decision, helping with not only improving the model
by knowing what exactly is going on in the network, but also detecting the failure
points of the model. No matter how powerful DLR are, they will not be utilized by
physicians, unless they can be interpreted and related to the image landmarks used
by the experts. Besides, not even a single mistake is allowed in medical decisions as it
may lead to a irreparable loss or injury, and having an explanation of the logic behind
the outcome of the deep net is the key to prevent such disasters. This subsection will
present an overview on recently developed techniques to increase the explainability
of deep Radiomics.

One simple approach to ensure the accuracy of the automatic prediction, is to
double-check the results with an expert. For instance, Reference [60], which has used
a CNN for longevity prediction using CT images, has reviewed the outcomes with
experts leading to the fact that people predicted with longer lives are indeed health-
ier. However, this approach is time consuming and needs complete supervision and
investigation, which is in conflict with the concept of automatizing and personal-
ized treatment, which is the whole point of Radiomics. Therefore, nowadays several
criteria are being presented to reduce the time and complexity of explaining deep
Radiomics. One of these approaches is “feature visualization” which tries to gain
knowledge on the network behavior by visualizing what kinds of features the network
is looking for. This technique can be applied to different layers of the model. For
example, to visualize the first layer features, the associated filters are applied to the
input and the resulting feature maps are presented. However, as the last layer is the
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most responsible one in the network’s output, paying attention to the features learned
in this layer is more informative. For instance, Reference [21] has visualized the final
weights of a DBN, showing that the network is looking for meaningful features such
as curvity. Nevertheless, these features are not as meaningful as they are for sim-
ple image recognition tasks as clinicians themselves are sometimes unsure about the
distinctive properties of the images.

One other method to provide the user with an explanation on the decision made by
a deep architecture is called “sensitivity analysis” referring to generating a heat-map
highlighting the image regions responsible for the output [48]. In the heat-map, the
brighter areas are the ones that have influenced the prediction. This can be achieved
by determining and measuring the effect of changing each individual input pixel on the
output. In a CNN this effect can be estimated by determining the weight associated
with each input pixel through back propagation. This approach can discover the
cause for the prediction [48], however, the drawback of this approach is that not
all the detected pixels through the heat-map are necessarily the ones leading to the
specific decision, and besides, as the depth and complexity of the deep net increases,
it becomes more difficult to measure the contribution of each individual pixel on the
output.

A third proposed approach to understand the learned features is to project the
high-dimensional feature space from the deep network to a bi-dimensional plane.
Reference [44] has adopted this strategy by using t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm to visualize the features learned by a CNN for lung
tumor classification. The resulted plane presents clearly defined clusters of lung tu-
mors, which shows that the networks has successfully learned discriminating features.
However, although this method can verify the accuracy of the network, it does not
provide information on the exact reason behind making the decision.

The interpretability of meaningless weights is improved in the newly proposed
Capsule networks through reconstructing the input image based on the features
learned by the network. CapsNet includes a set of fully connected layers that take
the final calculated features, based on which the final classification is made, as in-
puts, and reproduce the original image with the objective of minimizing the difference
between the original and the reconstructed image. This objective function is added
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to the classification loss with a smaller weight not to distract network from extract-
ing discriminative features. If the trained CapsNets is not only of high accuracy
but also capable of resembling the input image, it has been successful in extracting
representative features. Besides, visualizing these features provides insight on the
explainability of the model. Interestingly, CapsNets are equipped with a powerful
feature visualization technique through their input reconstruction part, which works
as follows:

1. If CapsNet is in the training phase, the feature vector associated with the true
class label is selected, otherwise, the one with the higher probability is used.

2. The selected feature vector is tweaked, meaning that small numbers are added to
or subtracted from the feature values leading to a slightly changed new feature
vector.

3 The new feature vector is fed to the reconstruction part and the input image
is reproduced. However this reconstructed image is not supposed to exactly
resemble the input image as it is generated using the tweaked features not the
actual ones learned by the network.

4. By repeating the process of tweaking and reconstructing process over and over
again, one can understand what features are learned by observing the influence
of changing them on the generated images.

2.3 Hybrid solutions to Radiomics

To summarize our findings on HCR and DLR features, Table 2.4 provides different
comparisons between these two categories from various perspectives. In scenarios
where neither of the above two mentioned categories are capable of providing infor-
mative Radiomics features with high predictive capacity, one can resort to hybrid
strategies. Here, potential hybrid solutions to Radiomics [67] are reviewed from dif-
ferent points of view including combination of Radiomics with other data sources and
combination of HCR and DLR features.
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Table 2.4: A Comparison between hand-Crafted and Deep Radiomics.
Hand-Crafted Radiomics

(HCR)
Deep Radiomics (DLR)

Needs a prior knowledge on types of fea-
tures to extract.

Can learn features on its own and without
human intervention.

Features are typically extracted from the
segmented ROI.

does not necessarily require a segmented in-
put.

It is generally followed by a feature selection
algorithm.

Feature selection is rarely performed.

As features are defined independent from
the data, does not require big datasets.

Requires huge datasets, since it has to learn
features from the data.

Processing time is not normally significant. Can have high computational cost depend-
ing on the architecture and size of the
dataset.

Since features are pre-designed, they are
tangible.

The logic behind the features and decisions
is still a black box.

2.3.1 Combination of Radiomics and Other Data Sources

Physicians, normally, do not rely on a single input for their diagnosis of diseases and
disorders. To come into a conclusive decision, inputs from different sources are com-
pared and combined including Radiomics (image bio-markers from different imaging
modalities); Blood bio-markers; Clinical outcomes; Pathology, and; Genomics re-
sults [16]. Below, we discuss two different ways to fuse/combine Radiomics with
other available resources of information along with the rationales and potentials be-
hind such combinations:

i. Extracting Radiomics from Different Imaging Modalities : As stated
previously, Radiomics can be extracted from different imaging modalities each
of which can only capture/provide particular information on tissues’ properties.
For instance, although the CT scan is among the most common and informative
imaging modalities allowing to observe the body internal organs, the CT can not
provide information on body function and metabolism. This type of information
is available through PET scan, which calls for studying the effect of combining
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Radiomics extracted from different modalities. For example, in [19] Radiomics
features are extracted from both CT and PET images, and the concatenated
feature vector is fed to a classifier for lung cancer survival prediction, resulting
in a higher accuracy compared to each modality separately.

Combining different imaging modalities is also tested on brain tumor classifica-
tion in [57]. Since MRI can output different images varying mostly in terms of
their contrast and relaxation parameters, these images can be fused to provide
complementary information. Based on [57], extracting Radiomics from this
combination of MRIs outperforms the single modal classifier for brain tumor
classification.

ii. Integration of Extracted Radiomics with Other Data Sources : Ra-
diomics features are combined with other resources only after the extraction
process. The best descriptive or predictive models in the field of Radiomics are
the ones that utilize not only imaging bio-markers, but also other information
such as Genomics patterns and tumor histology [18]. In [20], it is reported that
combining Radiomics features with lung cancer staging information, which is
obtained based on the tumor location and dispersion, can improve the prognos-
tic performance of Radiomics alone or staging alone. In other words, Radiomics
can provide a complementary information for lung cancer prognosis [17]. It is
also shown that combining Radiomics with other prognostic markers in head-
and-neck cancer leads to a more inclusive decision. Combining Radiomics with
clinical data is further investigated in [68] for brain cancer survival prediction.
The interesting output of this work is a nomogram based on both Radiomics
and clinical risk factors such as age that can be used to visually calculate sur-
vival probability. Developing such a nomogram is further investigated in refer-
ences [69] and [70] for prediction of Hepatitis B virus and lymph node metastasis,
respectively.

In brief, the first step to build a Radiomics-based nomogram, is calculating a
linear combination of selected Radiomics features based on a logistic regression,
which results in a Radiomics score to exploit further for the desired prediction
task. Consequently, by training a multivariate logistic regression, Radiomics
score is fused with other influential factors to make the final prediction. Fig. 2.7
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Figure 2.7: Radiomics-based nomogram to predict lymph node metastasis. Tumor position
is considered as extra information to assist with making a more reliable prediction.

presents the nomogram introduced in [70] along with an example illustrating
how the lymph node metastasis prediction is made.

Reference [67] has adopted a fusion approach based on both Radiomics and
Genomics bio-markers for predicting the recurrence risk of lung cancer. In
this study, 35 hand-crafted features are extracted from segmented lung CT
images and reduced to 8 after a feature selection phase. These features are
then used to train a Naive Bayesian network. The same classifier is also trained
using two Genomics bio-markers, and the outputs of two classifiers are fused
through a simple averaging strategy. Results demonstrate that the combination
of classifiers not only leads to higher prediction accuracy compared to individual
ones, but also resembles the Kaplan-Meier plot of survival more precisely.

2.3.2 Fusion of HCR with DLR (i.e., Engineered Features Cou-

pled with Deep Features)

As mentioned in Table 2.4, engineered (hand-crafted) and deep Radiomics both have
their own advantages and disadvantages. As a result, combining these features has
the promise of benefiting from both domains and incorporating different types of
features [59] potentially results in significantly improved performance. As shown in
Fig. 2.8, the following two categories of data fusion have been used in Radiomics most
recently:

1. Decision-level Fusion: One common approach to combine HCR with DLR is to
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Figure 2.8: Combining deep and hand-crafted Radiomics through feature-level or decision-
level fusion.

first use them separately to train separate classifiers and then adopt a kind of voting
between the outputs to make the final decision. The voting or fusion approaches in
Radiomics include:

(i) Soft Voting, which is combining the probability outputs, for instance, through
a simple averaging. Soft voting is adopted in [49], where two individual SVMs
are trained on hand-crafted and deep Radiomics features (extracted using a pre-
trained CNN), and consequently breast cancer prediction is performed based
on averaging the output probabilities. Results of this article shows that the
combined features are associated with higher prediction accuracy. Fusion of
separately trained classifiers through soft-voting based on deep and hand-crafted
Radiomics is also examined in [71] for breast cancer classification, where it has
been shown that the combined SVM model outperforms individual classifiers in
term of accuracy for mammogram, ultrasound, and MRI images.

(ii) Hard Voting, which is combining outputs, for example, through a majority
vote.

(iii) Adaptive Voting, where a weight of importance for each model (HCR and
DLR) is learned for example using a separate neural network. In Reference [72],
a different kind of voting is adopted for lung cancer classification. This voting
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is based on the idea that not all the classifiers contribute equally to the final
decision, and contribution weights are parameters that should be optimized
through a learning process. The aforementioned article has first trained a CNN
and several traditional classifiers such as SVM and logistic regression to inde-
pendently predict the type (benign or malignant) of lung cancer. Predictions
are consequently utilized to train a second-stage classifier to generate the final
outcome. Any classifier such as SVM and NN can be used as the second-stage
classifier.

2. Feature-level Fusion: Second widely used approach to combine deep and hand-
crafted Radiomics is to first concatenate the feature vectors and then feed them to a
classifier, referred to as feature-level fusion [66]. Reference [50] has shown that this
combination lead to the highest performance in lung cancer survival prediction using
Random Forest and Naive Bayes classifiers. The efficiency of this approach is also
verified in [59] for lung tumor detection. Although mixing deep and hand-crafted
Radiomics has several advantages such as ensuring the heterogeneity of the features,
it may cause over-fitting as the number of training data is relatively less than the
number of features. Therefore, Reference [68] has examined this large set of features
in terms of stability, informativeness, and redundancy leading to a dramatic dimension
reduction and increase in the accuracy of brain cancer survival prediction. To further
reduce the number of features, a Cox regression is adopted that can determine the
impact of features on survival, and as a result, those with small weights can be
removed as effectless.

Reference [73] has leveraged the idea of concatenating deep and hand-crafted
features for lung tumor attributes (such as spiculation, sphericity and malignancy)
scoring through a multi-task learning framework. For extracting deep features, 9

CNNs corresponding to each of the 9 task at hand, and a 3 layer DAE are trained,
where each CNN generates 192 Radiomics features extracted from the last fully con-
nected layer before the SoftMax layer, and DAE results in 100 features. Deep features
are further combined with hand-crafted features consisting of Haar and Histogram
of oriented gradients (HoG) features, and the resulting vector is used as input to
a multi-task linear regression model, which can consider the inter-task relations, in
order to calculate the score of each of the 9 lung cancer attributes.
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2.4 Conclusion

During the past decades, medical imaging made significant advancements leading to
the emergence of automatic techniques to extract information that are hidden to
human eye. Nowadays, the extraction of quantitative or semi-quantitative features
from medical images, referred to as radiomics, can provide assistance in clinical care
especially for disease diagnosis/prognosis. There are several approaches to radiomics
including extracting hand-crafted features, and deep features. Furthermore, these two
groups can be combined to take advantage of their inherited benefits and capabili-
ties. We have presented an integrated sketch on radiomics by introducing practical
application examples, and basic processing modules of the radiomics.
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Chapter 3

Deep Learning-based Radiomics for

Tumor Classification

This chapter considers the problem of tumor classification using deep learning-based
radiomics by focusing on first brain tumor in Section 3.1 and then lung tumor in
Section 3.2. As stated previously, tumor classification refers to determining the type
of the tumor, where the focus is on three main classes: (i) Benign; (ii) Primary
malignant, and; (iii) Metastatic malignant. While benign tumors, typically, do not
spread to other organs but may need surgical resection as they may grow in size.
Primary malignant tumors may not become metastatic for years, there is, however,
possibility of transforming to aggressive malignant tumors, therefore, must be closely
monitored/treated. The third category, i.e., the malignant tumors are life threatening
and may spread to distant organs, requiring more complicated treatments. Conse-
quently, tumor type classification using deep learning-based radiomics is of paramount
importance.

3.1 Brain Tumor Classification

Brain tumor classification refers to determining the type of the tumor, having crucial
impact on treatment design and selection. We begin this section by introducing an
initial capsule network design, which is then improved by including the rough tumor
boundaries. We, then, propose a boosting framework to facilitate the problem of
architecture design. Finally, we model the prediction uncertainty through a Bayesian
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design of capsule network.

3.1.1 Brain Tumor Type Classification via Capsule Networks

According to cancer statistics, brain tumor is the leading cause of cancer death and
it is among the most common cancers in children and adults [74]. Medical images
are widely used for early detection of this cancer which leads to a more effective
treatment. Among all medical imaging technologies, Magnetic Resonance Imaging
(MRI) is more popular for brain tumor detection due to its harmless nature. Brain
tumors have different types and determining these types for each patent is a crucial
task, since it helps physicians to have a more precise treatment plan and predict
the patient’s response to the treatment [75]. In this work, we consider three types
of brain tumors: Meningioma, Pituitary and Glioma. Tumor type classification by
human inspection is a timely and error prone task, because it highly depends on the
experience of the radiologist [76]. Due to this reason, nowadays, designing automated
systems for brain tumor classification is of significance.

Most of the previous works on brain tumor classification consists of segmenting
the tumor region from the MR images and then extracting different types of features
to classify the tumors. Havaei et al. have provided one of the most recent works for
brain tumor segmentation. This work has proposed a two path Convolutional Neural
Network (CNN), which not only takes the pixel properties into account, but also
considers the probabilities of neighbouring pixels [77]. After segmenting the tumor
region, different types of engineered features can be extracted. Usman et al. have used
intensity, intensity differences, neighbourhood and wavelet texture. These features are
then used for the classification part using random forest classifier [78]. In [76], the
effect of tumor region augmentation for three feature extraction methods is studied.
These methods include intensity histogram, grey-level co-occurrence matrix (GLCM),
and bag-of-words (BoW). Results of this paper show that the proposed criteria can
enhance the accuracy of brain tumor classification. Abbadi et al. have also adopted
GLCM and grey-level run length matrices(GLRLM) to extract 18 features for tumor
classification using probabilistic neural network (PNN) [79].

All the aforementioned studies on tumor classification have a considerable draw-
back. They need a prior knowledge of kind of features to extract, which reduces
their generalization capability. One of the most important advantages in machine
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Figure 3.1: Proposed Capsule network architecture for brain tumor classification.

learning and specially vision tasks was the use of CNN [80]. These networks have a
large learning capacity and can infer the image nature on their own without any prior
knowledge, which makes them a suitable method for image classification. The use of
CNNs for brain tumor type classification is explored in [81]. In this paper, neural net-
works and CNNs have been used with different kinds of preprocessings including data
augmentation, and their results show that CNNs without any pre-processing outper-
form other methods on axial brain MR images. Although CNNs have successfully
overcome many approaches in image processing, they still have some drawbacks. For
instance, they are not robust to affine transformation and they do not take the spatial
relationships into account. Therefore, they should be provided with data consisting
of all kind of rotations and transformation to improve their generalization, and they
perform poorly confronting small data sets, which is the case for most of the medical
image databases, including brain MRI. Capsule networks can overcome these draw-
backs [2]. In this sense, we begin solving the problem of brain tumor classification by
developing a CapsNet-based architecture. The summary of the layers of our proposed
model, shown in Fig. 3.1, is as follows:

• Inputs to the model are MRI images which are down-sampled to 64× 64 from
512 × 512, in order to reduce the number of parameters in the model and
decrease the training time. We did not observe any performance degrade due to
this sown-sampling. Later, in Section 3.1.2, we show how a boosting approach
can relieve the need for exhaustive parameter space exploration.

• Second layer is a convolutional layer with 64×9×9 filters and stride of 1 which
leads to 64 feature maps of size 56× 56.
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• Next layer is a capsule layer which is the result of 256× 9× 9 convolutions with
strides of 2. This layer consists of 32 capsules with dimension of 8 and the size
of feature maps are 24× 24.

• final capsule layer includes 3 capsules, one for each type of tumor. The dimen-
sion of these capsules is 16.

• The decoder part is composed of three fully connected layers having 512, 1024
and 4096 neurons respectively. The number of neurons in the last fully con-
nected layer is the same as the number of pixels in the input image, as the
goal is to minimize the sum of squared differences between input images and
reconstructed ones.

For the goal of tumor type classification, two types of images can be used as inputs.
We can use either the whole brain tissue or we can first segment the tumor regions
and use these regions as the inputs to the classification model. As stated in the
capsule network original paper [51], capsules tend to model everything in the input
image, thus they do not perform as good for images with miscellaneous backgrounds.
Due to this fact, we expect our capsule network to have a better result when fed with
segmented tumors instead of the whole brain images.

To test our proposed approach, we have used the data set presented from [43,76].
This data set contains 3, 064 MRI images of 233 patients diagnosed with one of the
brain tumor types. The most important property of this data set is that it includes
both the brain images and the segmented tumors, which enables us to perform exper-
iments on two types of inputs. The first part of our experiments is allocated to testing
different kinds of capsule network architectures. We have changed different parts of
the original framework and calculated the prediction accuracy. Table 3.1 shows the
obtained results. According to these results, reducing the number of feature maps
from 256 (as in the original architecture) to 64 leads to the highest accuracy.

After selecting the best architecture of the capsule network, we have compared
its classification accuracy with a CNN. The CNN we have used is adopted from [81],
which has investigated the problem of brain tumor classification on the same data set
we have used. The layers of this CNN are as follows:

• Convolutional layer with 64× 5× 5 filters and strides of 1
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Table 3.1: Brain tumor classification accuracy based on different capsule network architec-
tures.

Capsule network architecture Prediction accuracy
Original architecture 82.30%

Two convolutional layers with
64 feature maps each 81.97%

One convolutional layer with
64 feature maps 86.56%

One convolutional layer with
64 feature maps 83.61%

and 16 primary capsules
One convolutional layer with

64 feature maps and 82.30%
32 primary capsules of dimension 4

Three fully connected layers
with 1024, 2048 83.93%
and 4096 neurons

• 2× 2 Max-Pooling

• Convolutional layer with 64× 5× 5 filters and strides of 1

• 2× 2 Max-Pooling

• Fully connected layer of 800 neurons

• Fully connected layer of 800 neurons

• Fully connected layer of 3 neurons

We compared capsule network with the CNN for both brain images and segmented
tumors. Obtained results is shown in Fig. 3.2. Based on this figure, Capsnet outper-
forms CNN for both types of inputs. As it is stated in the original Capsnet paper,
capsules tend to account for everything in the input image even in the background,
and considering the fact that brain MRI images are taken from different angles such as
Sagital and Coronial, backgrounds have lots of variations. Therefore, Capsnet cannot
handle brain images as good as segmented tumor images, and this may be one of the
reasons Capsnet results in lower accuracy for brain images than for the segmented
tumor ones.
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Figure 3.2: Capsnet and CNN accuracy for brain and segmented tumors images.

Figure 3.3: Defining the tumor boundary box.

Capsule Networks with Coarse Tumor Boundaries

Although CapsNet has a better performance on the segmented tumor, needing the
segmented tumor has two major problems: (i) First, segmenting the tumor is a time-
consuming task and can only be provided by experts, and; (ii) Second, the tumor
surrounding tissue contains valuable information, which is not accessible, when the
network is fed with only the segmented region.

We address the aforementioned issues by giving CapsNet the access to the tumor
surrounding tissues, without distracting it from the main target, and requiring the
tumor detailed annotation [3]. More specifically, to help the CapsNet to focus on the
main region while, at the same time, use the information from the surrounding tissues,
we provide the network with the tumor coarse boundaries, leading to a modified
CapsNet architecture, referred to as “BoxCaps”.
BoxCaps Architecture: The vector containing the tumor boundary, shown in the
Fig. 3.3, is concatenated with the output of the capsule layer, and goes through a set
of fully connected layers, in order to make the final decision, which is the type of the
tumor. The detail of the proposed architecture is as follows:
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• The inputs to the network are brain MRI images which are downsampled to
128× 128 from 512× 512.

• Second layer is a convolutional layer, with a total of 64 feature maps. The size
of the filters is 9× 9 with stride one.

• The third layer is a capsule layer resulted from 9 × 9 convolutions. This layer
contains 32 capsules of dimension 8.

• The last capsule layer, which contains one capsule for each brain tumor type,
determines the most probable class, along with its instantiation parameters.
Outputs from this layer are masked based on the detected class, i.e., all capsules,
but the winner, are set to 0.

• The tumor boundary box is concatenated with the obtained masked vector and
goes through two fully connected layers, with 512 and 1024 neurons, respec-
tively.

• The last layer is a Softmax layer that outputs the probability of each class being
present.

Loss Function: The loss for the output of the capsule layers should be added to
the Softmax layer loss, which we have defined as a cross entropy loss, with a smaller
weight (indicated in Table 3.2), not to dominate the final loss. As such, we have
defined the final loss as

Loss = γ ×
K∑
j=1

lj︸ ︷︷ ︸
Capsule Loss

−
K∑
j=1

yj log
(
p(yj)

)
︸ ︷︷ ︸

Cross Entropy Loss

, (3.1)

where yj is a binary variable indicating whether class j is present or not. Term p(yj)

is the probability of this class being present, which is determined by the network, and;
K is the number of output classes (types of the tumor). This loss is back propagated
through the whole network, including both capsule and fully connected layers.

As shown in Table 3.3, the proposed BoxCaps architecture is compared with
different alternative scenarios where the network is fed with either the brain or the
segmented tumor image. In Table 3.3, we have also included the result for a modified
CNN adapted based on the proposed architecture. The modified CNN takes as input
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Table 3.2: Training hyper-parameters used for brain tumor classification via Adam opti-
mizer.

Hyper-parameter Optimized Value
Optimizer Adam

Number of Epochs 50
Batch size 16

Routing iteration 3
Learning rate 0.01

Learning rate decay 0.9
γ (in Eq. (3.1)) 0.1
λ (in Eq. (2.12)) 0.5
m+ (in Eq. (2.12)) 0.9
m− (in Eq. (2.12)) 0.1

Table 3.3: Comparison between the proposed CapsNet BoxCaps and previous results. The
bold number corresponds to the proposed approach, which outperforms its counterparts.

Approach Accuracy
1. CapsNet given brain image as input [2]. 78%
2. CapsNet given segmented tumor as input [2]. 86.56%
3. Proposed BoxCaps Architecture. 90.89%
4. CNN given brain image as input [81]. 61.97%
5. CNN given segmented tumor as input [81]. 72.13%

6. Modified CNN with brain image and tumor 88.33%boundary box as inputs.

both brain images and bounding boxes, where the box coordinates are concatenated
with the last fully connected layer of the CNN. As it can be inferred from Table 3.3,
the CapsNet architecture introduced in our study outperforms CNN in all situations,
and achieves the best performance when it is fed with brain images, and coarse tumor
boundaries.

3.1.2 BoostCaps: A Boosted Capsule Network for Brain Tu-

mor Classification

In Section 3.1.1, we showed that capsule networks considerably outperform CNNs
in brain tumor type classification. However, we observed that these networks, be-
ing sensitive to miscellaneous backgrounds, have a better performance when being
fed with the segmented tumor rather than the whole brain image. Segmenting the

57



Figure 3.4: The proposed BoostCaps framework.

tumor, however, is time consuming and prone to inter-observer variability. More im-
portantly, it completely loses the information about the location of the tumor and the
surrounding tissue, which are of paramount importance in brain tumor classification.
To tackle this problem, we developed the BoxCaps architecture that took not only
the whole brain image, but also the coarse boundary box of the tumor as the input.
This architecture, having the advantages of providing information about the whole
brain tissue, and not requiring the exact segmented tumor, improved the accuracy of
the brain tumor classification.

Capsule networks, similar to other deep learning networks, can have various archi-
tectures, depending on the number of layers, number of capsules, activation functions
and many more. Exploring all these architectures, in order to find the most accurate
one for the problem at hand, is significantly time-consuming and requires powerful
computational resources. One possible solution to eliminate the need for searching in
the space of all possible architectures is to take a boosting approach [82]. Boosting,
which is a committee-based machine learning technique, starts with a weak learner
(simple machine learning model) and trains this model, over and over again, by giving
more weights to miss-classified samples, at each step. Accordingly, the final predic-
tion is the weighted average of all predictions coming from the weak learners, where
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weights are determined based on how successful each learner has been in predicting
the correct labels. In this study, we take the BoxCaps architecture proposed in Sec-
tion 3.1.1, and adopt a boosting approach, namely the Stage-wise Additive Modelling
using a Multi-class Exponential loss function. Real (SAMME.R) [83], to make the
most out of the network, without the need to explore all possible architectures. Our
proposed boosted capsule network, referred to as “BoostCaps” [4] is , to the best of our
knowledge, the first capsule network that incorporates a boosting approach. Further-
more, boosting deep learning has been rarely applied to medical imaging problems,
including the brain tumor classification.
Boosting [84] is a method for improving performance of machine learning techniques
accomplished by combining several weak learners. These learners are trained over and
over again, while at each round tmore weight is assigned to certain samples, leading to
the modified distribution, denoted by Dt hereafter, over the training set. Distribution
Dt will then directly effect the cost function, or change the way training instances
are sampled. Generally speaking, in boosting techniques, weights are distributed such
that incorrectly classified instances, will be associated with higher weights, and higher
chance of being picked, accordingly. Generally speaking, there are the following three
different training strategies available in a boosting approach:

1. The tth classifier is trained on instances resampled from the original data, with
respect to distribution Dt. This resampled dataset is used in all the epochs.

2. For training the tth classifier, different resampled instances are used for each
and every epoch.

3. The tth classifier is trained by directly weighting the cost function, where miss-
classified samples are associated with higher weights.

In deep learning applications, the first two criteria are more common.

BoostCaps Framework

The developed framework, referred to as a boosted capsule network (BoostCaps),
shown in Fig. 3.4, is summarized in Algorithm 1. Notations used in this algorithm
are as follows: wi is the weight associated with the ith sample, N denotes the total
number of samples;M is the total number of capsule networks (weak learners); Tm(x)
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Algorithm 1: BoostCaps
Result: The tumor type C(x)
Initialize the observation weights wi = 1/N ;
for m = 1 to M do

(a) Fit a capsule network Tm(x) to the training data resampled based on
the weights wi;

(b) Pm
k (x) = Prob(c = k|x), k = 1, ..., K;

(c) hmk (x) = (K − 1)
(
logPm

k (x)− 1/K
∑

k′ logP
m
k′ (x)

)
, k = 1, ..., K;

(d) wi = wi.exp
(
− K−1

K
yTi logPm(xi)

)
, i = 1, ..., n;

(e) Re-normalize wi;
end
C(x) = argmax

k

∑M
m=1 h

m
k (x);

Figure 3.5: ROC curve for the three tumor types predicted by the proposed BoostCaps.

represents the mth capsule network that takes a sample x as input; Pm
k (x) is the

probability of the sample x belonging to the class k, for (1 ≤ k ≤ K), based on the
mth capsule network; hmk (x) is the contribution of the mth capsule network to the
class k for the sample x; yi is the true label for the ith sample; Symbol T denotes the
transpose operation, and; C(x) is the final output of the proposed BoostCaps.

To test the proposed BoostCaps framework, shown in Fig. 3.4, we used the brain
cancer dataset introduced in Section 3.1.1, where 20% of the data is set aside for
testing purposes. We have trained our proposed BoostCaps framework, using 10
capsule networks as the weak learners. Although the number of the weak learners is
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Figure 3.6: ROC curve for the three tumor types predicted by the capsule network.

usually much larger than 10, a deep learning model can bring training error to zero
after a few steps [84]. Each capsule network is trained for 100 epochs, with a batch
size of 16, and 3 routing iterations. We compared the proposed BoostCaps with a
single BoxCaps model, in terms of accuracy, sensitivity, specificity, and area under
the curve (AUC), where all the metrics, except accuracy, are calculated for the three
classes separately. Obtained results are presented in Table 3.4. As it can be inferred
from this table, the proposed BoostCaps can outperform the capsule network in terms
of accuracy, sensitivity for the first and the third class, specificity for all three classes,
and AUC for the first class. The receiver operating characteristic (ROC) curves
is also presented in Figs. 3.5 and 3.6, for the BoostCaps and the capsule network
model, respectively. Based on these figures, while BoostCaps results in relatively
similar performance for the first two classes, there is a gap between them, in the case
of using a single capsule network.

3.1.3 BayesCap: A Bayesian Approach to Brain Tumor Clas-

sification Using Capsule Networks

Similar to other standard deep learning networks, CapsNets do not capture model
uncertainty [85], referring to how much the model is uncertain about its weights and
thus the predictions. Measuring this uncertainty is critical as it provides a means to
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Table 3.4: Results obtained from the proposed BoostCaps and the capsule network.

BoostCaps Capsule Network
Accuracy 92.45% 89.83%

Sensitivity for Meningioma 75.35% 64.79%
Sensitivity for Glioma 96.85% 97.89%
Sensitivity for Pituitary 98.9% 96.72%

Specificity for Meningioma 97.64% 97.43%
Specificity for Glioma 88.61% 82.77%
Specificity for Pituitary 89.69% 82.77%
AUC for Meningioma 0.97 0.96

AUC for Glioma 0.98 0.99
AUC for Pituitary 0.99 0.99

return the uncertain predictions to experts, and develop a human-in-the-loop mech-
anism. In other words, uncertainty estimates have the promise of improving: (i)
The time-efficacy, by keeping and processing certain inputs, and; (ii) The accuracy,
referring the uncertain ones to human experts [85]. In a recent study by Kendall
and Gal [86], several examples are provided illustrating the importance of modeling
uncertainty, without which disastrous mistakes can happen.

Most of the deep learning models, developed for classification problems, are associ-
ated with a softmax output that assigns probabilities to possible classes. The softmax
output (similar to the squashing function in CapsNets), however, is often mistakenly
interpreted as a measure of the model’s confidence about its prediction [85]. Nev-
ertheless, it has been shown that a model can have a high softmax output for its
uncertain predictions. Motivated by this, Bayesian theory provides a mathematically
grounded solution to model the uncertainty associated with model weights. Bayesian
deep learning has drawn significant attention [87–89] recently. Arming a deep learn-
ing network with Bayesian reasoning often reduces the accuracy and is associated
with higher computational cost [85]. However, it paves the path for measuring the
prediction uncertainty, keeping the human in the loop, and improving overall inter-
pretability of the network, which are critical for medical applications.

Returning the uncertain inputs to the human experts is based on the hypothesis
that uncertain predictions tend to be incorrect [90]. One possible approach to test
this hypothesis is to define an uncertainty index, such as the sample variance of the
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predictions made from different forward passes through the network [91], and investi-
gate the association between this index and the incorrect predictions. If removing the
uncertain predictions can enhance the performance, uncertain inputs are in fact the
incorrect ones, and it seems reasonable to refer them to the experts for subsequent
clinical revisions [90]. Capitalizing on this intuition, Nair et al. [90] have proposed
several uncertainty measures in deep learning that can be correlated to incorrect pre-
dictions. Their results indicate that the uncertainty measures are indeed useful for
human in the loop construction. Ozdemir et al. [92] have, additionally, studied the
role of uncertainties in improving the network performance by propagating the un-
certainty through the pipeline leading to enhanced performance, in terms of accuracy
and confidence of the lung tumor detection.

Here, we propose a Bayesian CapsNet [5], referred to as the BayesCap, for the
task of brain tumor type classification, which differs from the previous studies from
different aspects. Derived from Variational Bayes, Reference [93] proposed a new
Capsule routing algorithm that does not consider a probability distribution over all
the model weights to capture model uncertainty. Reference [94], on the other hand,
replaces the Bayesian framework with a Dropout procedure, through which, neurons
are activated randomly during both training and testing. This means that rather
than considering a trainable probability distribution over the model weights, a pre-
defined Bernoulli function is utilized. The proposed BayesCap benefits from: (i)
Capsule network architecture design being capable of handling small datasets, while
inferring the spatial relations; (ii) Bayesian inference that defines priors over the
network parameters, and hence managing the over-fitting of the model by avoiding
the need to rely on point estimations alone; (iii) A means to asses the prediction
uncertainty by leveraging a Monte Carlo approach, and; (iv) An index to measure
the uncertainty and filtering out the uncertain predictions. The proposed BayesCap
can be a part of a larger framework to accelerate the clinical decision-making, instead
of completely replacing the human-centered procedures. Besides accuracy and time-
related advantages, as deep learning is often treated as a black-box method, the
proposed approach can improve the trust in such techniques.

As shown in Fig. 3.7, the following formalizes the BayesCap architecture, taking
advantage of the ability of the capsule networks to handle small datasets and the
Bayesian framework to manage the uncertainty.
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Figure 3.7: Proposed BayesCap architecture, capable of outputting the mean prediction,
as well as the prediction entropy.

Bayesian Formulation of Capsule Networks

To develop the proposed BayesCap framework, without loss of generality, let’s con-
sider two capsule layers, i.e., a primary capsule layer consisting of NPr capsules,
and; a parent capsule layer with NPa capsules. Each Capsule i is a group of neu-
rons, conveying information about the object they are representing. This information
includes both the object instantiation parameters ui, and its probability of being
present as represented by the length of the capsule (‖ui‖). Each Capsule i, for
(1 ≤ i ≤ NPr), in the primary capsule layer predicts the output of a parent Cap-
sule j, for (1 ≤ j ≤ NPa), using a predication weight matrix Wij (trained through
back propagation), as ûj|i = Wijui, where ûj|i denotes the prediction of Capsule i
for Capsule j. Next and before presenting the Bayesian agreement process of the
proposed BayesCap, we formulate Bayesian modelling of the weight matrices (Wij)
to form Capsule predications (ûj|i).
Bayesian Modelling of Predication Weight Matrices: All the network weights,
including the prediction weights in the Bayesian agreement process (Wij), are defined
as distributions to evolve through the back-propagation. To learn the predication
weight matrices, we formulate the proposed BayesCap as a probabilistic model by
defining prior and posterior distributions, denoted by p(W) and p(W|D), over the
model weightsW = [Wij], whereD = {x(n), y(n)}Nn=1 is the training dataset consisting
of N training instances, i.e., x(n), for (1 ≤ n ≤ N ) and its associated label y(n).
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By marginalizing over the predication weight matrices, the posterior predictive
distribution p(y|x,D) for each {x(n), y(n)} can be defined as follows

p(y(n)|x(n),D) =

∫
p(y(n)|x(n),W)p(W|D)dW . (3.2)

Since computation of p(W|D) is analytically intractable, it is approximated by a
variational distribution q(W|θ), having a known functional form parameterized by θ.
Parameters of the variational distribution (θ) are estimated based on its statistical
distance measure from the true distribution p(W|D). To achieve this goal, different
distance measures, such as Wasserstein [95] and Bhattacharyya [96] can be used.
Here, for tractability of the derivations, we consider minimization of the Kullback-
Leibler (KL) divergence between the two underlying distributions, i.e., p(W|D) and
q(W|θ) to compute parameter θ. The cost function, F (D,θ), therefore, is defined
as follows

F (D,θ) , KL
(
q(W|θ)||p(W|D)

)
= KL

(
q(W|θ)||p(W)

)
− Eq(W|θ) log p(D|W), (3.3)

where the equality is established following some simplifications, not included here to
save on space. The cost function (Eq. (3.3)) can be re-written as follows

F (D,θ) = Eq(W|θ) log q(W|θ)− Eq(W|θ) log p(W)

− Eq(W|θ) log p(D|W).
(3.4)

Consequently, through a Monte-Carlo simulation and sampling from q(w|θ), the cost
function can be approximated as

F (D,θ) ' 1

NM

NM∑
m=1

[
log q(W(m)|θ)− log p(W(m))

− log p(D|W(m))
]
,

(3.5)

where NM is the number of Monte Carlo iterations. In practice, through the training
phase, the first two terms of the cost function F (D,θ) in Eq. (3.5) are analytically
calculated, whereas the log-likelihood term (Eq(W|θ) log p(D|W)) is approximated by
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drawing a sample from the variational distribution. Commonly, the variational dis-
tribution (q(W|θ)) is modelled as a Gaussian with parameters θ = (µ,σ). Then, in
the backward-pass, µ and σ are updated. At the test time, different predictions are
obtained by sampling from the variational distribution.
Bayesian Agreement Process: Similar to our Bayesian modelling of the prediction
weight matrices (W = [Wij]) to form capsule prediction vectors ([ûij]), we formulate a
Bayesian agreement step. During this step, the coupling coefficient (cij) is calculated
based on which the output of the parent Capsule j, denoted by sj, is formed.

The coupling coefficient cij determines the score parent Capsule j assigns to ûj|i.
Consider an auxiliary binary variable zij taking the value of one, when Capsules i
and j are coupled, and zero otherwise. The posterior over zij is given by

p(zij = 1|sj, ûj|i) ≈ p(zij = 1|ûj|i)× p(sj|ûj|i, zij), (3.6)

which is the product of the prior over zij and the output’s likelihood. To form
the coupling coefficients [cij], the prior probability of zij given the prediction ûj|i is
denoted by term exp(bij) and term exp(aij) is used to represent the likelihood of sj
given the prediction and zij. Consequently, the posterior in Eq. (3.6) reduces to

p(zij = 1|sj, ûj|i) ≈ exp(bij)× exp(aij). (3.7)

Term aij is estimated by measuring the similarity between each prediction ûj|i of
Capsule j and its actual output sj. The aforementioned similarity, also referred to as
the agreement coefficient, is calculated taking the inner product of the two underlying
capsule vectors as aij = sj.ûj|i. The coupling coefficient cij is, accordingly, computed
as

cij =
p(zij = 1|sj, ûj|i)∑
l p(zil = 1|sl, ûl|i))

, (3.8)

where l is the possible capsules in the parent layer. Output of Capsule j is, finally,
calculated by summing over all the predictions, taking the coupling coefficients into
account, i.e.,

sj =
∑
i

cijûj|i. (3.9)

Through the Bayesian agreement process, prior (p(zij = 1|ûj|i)) and posterior (p(zij =
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1|sj, ûj|i)) over zij repeatedly replace each other, for a pre-defined number of itera-
tions.

Architecture of the BayesCap

Structure of the BayesCap is as follows:

• The first layer is a convolutional one with 9×9 filters and stride of 1, outputting
64 feature maps.

• The second layer, referred to as the primary capsule layer, is formed by 9 ×
9 convolutions with stride of 2. The resulting feature maps are reshaped to
generate 32 capsules of dimension 8.

• The third layer, referred to as the main capsule layer, is formed through the
routing by agreement process, leading to 3 capsules of dimension 16.

• The last layer is a fully connected layer that produces the final class probabili-
ties, through a softmax activation.

One important aspect of the Bayesian framework is that the model should notify the
human experts, in case of uncertain predictions. An uncertainty index is, therefore,
required to determine such predictions. In this study, we adopt “Entropy” as an
uncertainty measure, defined as

ŷk =
1

T

T∑
t=1

ŷk,t, and H = − 1

K

K∑
k=1

ŷk log(ŷk), (3.10)

where T is the total number of samples drawn for the same input, andH is the entropy
of the model predictions over the underlying input. K is the number of output classes,
ŷk,t is the estimated probability of class k in the tth drawn of the model weights, and
ŷk is the final estimation for the class k after T iterations. In other words, the model’s
uncertainty about its prediction can be measured using this index to provide uncertain
predictions to the human expert for further analysis. Eventually, at the test time,
our proposed BayesCap can output both the mean prediction, by averaging over all
the predictions, and entropy as its uncertainty. For further illustration, Algorithm 2
summarizes how the proposed model works at test time, using T Monte Carlo steps.
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Algorithm 2: Bayesian CapsNet at test time
Result: Tumor type and prediction uncertainty
Feed instance x(n) to the network;
for t = 1 to T do

(a) Draw a sample from q(w|θ);
(b) Compute the tumor type probabilities, based on the weights obtained
in previous step;

(c) Store the probabilities obtained in the previous step;
end
Compute the tumor type by calculating the mean of the T previously
obtained predictions;

Compute the prediction entropy, as a measure of uncertainty, using
Eq. (3.10);

Figure 3.8: Evolution of BayesCap and CNN weights mean and standard deviation.

BayesCap Experiments

At the test time, the number of Monte-Carlo simulations [97] is set to 100 for calcula-
tion of the mean prediction. Fig. 3.8 shows the evolution of the weights’ distributions
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obtained through the training phase. As it can be inferred from Fig. 3.8, while the
distributions conform each other at the beginning, they tend to take distance, through
the steps. The initial accuracy obtained after 500 epochs is 68.3%, which is higher
than the accuracy of a non-Bayesian CNN trained on the same data (Section 3.1.1).
This accuracy, however, is lower than 78% obtained from a non-Bayesian CapsNet
using the whole brain image (Section 3.1.1), which is expected as the Bayesian ver-
sion is trained with the goal of learning the posterior of model weights and capturing
uncertainty rather than increasing accuracy.

As stated previously, one important advantage of modelling the uncertainty is
to refer the uncertain predictions to the human expert for further follow ups. This
process, however, is based on the hypothesis that the uncertain predictions are indeed
the incorrect ones. To test this hypothesis, we calculated the uncertainty over the
test set, and developed an uncertainty histogram, shown in Fig. 3.9a for one of the
bootstraps. Based on this histogram, we filtered out predictions and their associated
data sample, at several thresholds, shown in Fig. 3.9a. After filtering out the data,
at each threshold, we calculated the prediction accuracy. We observed that starting
from an accuracy of 68.3%, with no filtering, the performance gradually improves,
at each threshold as follows: (i) By filtering out the predictions associated with an
uncertainty over 0.25, where on average 65% percent of the uncertain predictions are
incorrect, the accuracy improves to 71.3%; (ii) By removing the predictions with over
0.2 uncertainty, where on average 51% of the uncertain prediction are incorrect, the
accuracy further improves to 72.6%, and; (iii) Finally, by filtering out the predictions
associated with an uncertainty over 0.15 and 0.1, where on average 47% and 40% of
the uncertain prediction are incorrect, the accuracy increases to 73.6%, and 73.9%,
respectively. These observations, therefore, confirm the hypothesis that the uncertain
predictions tend to be incorrect, and it makes sense to refer them to human experts,
for further investigations. Finally, we trained a Bayesian CNN with the relatively
same complexity (two convolutional layers and two fully connected layers) on the
same dataset to compare the uncertainty in terms of entropy. As shown in Fig. 3.9b,
the Bayesian CNN leads to a significantly higher prediction uncertainty, which means
higher number of samples need to be referred to experts. Furthermore, last row of
Fig. 3.8 presents the CNN weights’ distributions after 200 steps, showing that they
failed to adopt distinctive distribution parameters, compared to the BayesCap weights
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(a) Uncertainty histogram for the test set in
the BayesCap model.

(b) Uncertainty histogram obtained from a
Bayesian CNN.

Figure 3.9: Uncertainty histograms.

provided in the same figure.
One important aspect of the Bayesian framework is the trade-off between exploit-

ing/consulting the developed model and referring the samples to the experts. In other
words, if too many samples need to be referred, one may choose to completely cast
aside the model. The proposed BayesCap, with entropy of 0.25 used as the threshold
(Fig. 3.9a), leads to referring less than 8% of the test instances. In the Bayesian CNN
(Fig. 3.9b) with the same entropy of 0.25, however, most of the test instances are
above the threshold, which means the relative failure of the CNN-based system. It
is worth mentioning that through the development of the BayesCap framework, we
have tried to capture the uncertainty in the model itself, referred to as the epistemic
uncertainty [86,98]. Such uncertainty can be further reduced by collecting more data
samples. Aleatoric uncertainty, on the other hand, is a different approach trying to
calculate the inherited uncertainty of the data instances, caused by the observation
noise. Including the aleatoric uncertainty in the proposed BayesCap is the focus of
our upcoming research, through including the observation noise parameters in the
loss function.

This completes developments and discussions on different CapsNets designs for
the task of brain tumor type classification based on MRI images. Next, we shift the
focus to lung nodule type classification based on CT scans.
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3.2 Lung Nodule Classification

This section considers the problem of lung nodule classification, referring to determin-
ing malignant and benign tumors. First, a 3D multi-scale capsule network is proposed
that can consider features extracted from neighbouring tissues. Then, a mixture of
experts framework is designed, where each expert is specialized on particular types
of the lung tumor.

3.2.1 3D-MCN: 3D Multi-Scale Capsule Network for Lung

Nodule Malignancy Classification

Lung cancer is ranked first worldwide in terms of mortality and is among the top
three cancer types in terms of incidence. Lung cancer together with breast cancer
lead worldwide in terms of the number of new cases with approximately 2.1 million
diagnoses estimated in 2018. Lung cancer is also responsible for the largest number
of deaths (1.8 million deaths, 18.4% of the total), with a low 5-year survival rate
(18%) [74]. The high mortality rate of the lung cancer is mainly due to the fact that
lung cancer is diagnosed at advanced stages [74], in more than half of the cases. In
recent years, significant technological advancements in medical imaging, especially
Computed Tomography (CT) scans, have improved the detection rate of the lung
tumor [99]. Analyzing and interpreting these images, however, is time consuming [24],
and subject to inter-observer variability. Furthermore, intrinsic tumor heterogeneity
that can significantly contribute to the cancer diagnosis, may not be visible to the
human eye. [100].

To address the problem of lung nodule diagnosis, we propose a 3D multi-scale
CapsNet [6], referred to as 3D-MCN, shown in Fig. 3.10, which takes 3D patches of
the nodules at three different scales as inputs, and classify the nodule’s malignancy.
The motivation behind the proposed multi-scale technique is that the the nodule mor-
phological characteristics are not the only indicators of its malignancy, incorporation
of information obtained from the surrounding tissue and vessels play a critical role in
determining the type of the nodule. In brief, the proposed approach benefits from: (i)
3D inputs, which give the model access to 3D features of the nodule; (ii) Multi-scale
inputs, helping the network assess the local and global features; (iii) The CapsNet
capability, when encountering with small datasets, and; (iv) Not requiring the nodule
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Figure 3.10: The proposed 3D-MCN framework. Three independent capsule networks take
3D nodule crops as inputs. Each CapsNet takes inputs at a different scale. The output
vectors are masked and concatenated into a single vector. The resulted vector goes through
a fusion module consisting of a set of fully connected layers to form probability associated
with each class (benign or malignant).

detailed annotation and pre-defined features.
Dataset Description: We have conducted our experiments on the LIDC-IDRI [101–
103], which is a collection of 1018 CT scans from 1010 patients. The nodules in
this collection are identified and annotated through a two-phase process. In the first
phase, 12 radiologists have independently reviewed the scans and marked the lesions as
nodule≥ 3, nodule< 3, and non-nodule. Furthermore, the radiologists have annotated
the ones identified as nodule≥ 3. In the second step, radiologists have had access to
the results of the other radiologists to refine their own marks or leave them unchanged.
After this phase, the radiologists have independently assessed several characteristics
of the nodules≥ 3, including the likelihood of malignancy, shape, margin, and internal
structure. Malignancy is rated from 1 to 5, where 1 indicates the lowest malignancy
likelihood, and 5 denotes the highest. Fig. 3.11 shows illustrative examples of available
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Figure 3.11: Examples of available marked regions in the LIDC-IDRI dataset. Each regions
can be classified as nodule or non-nodule. Nodules can also be categorized based on their
size. Nodules larger than 3 mm are further grouped based on their malignancy ratings.

marked regions in the dataset.
Nodule Patch Selection and Processing: In this study, we chose nodules≥ 3 to
classify them as benign (rating of 1 and 2) or malignant (rating of 4 and 5), based
on the radiologists’ provided ratings. We included all the marked nodules, in either
the training or test set, even if the nodule was identified by only one radiologist, to
have a model that is more robust to noisy inputs. The labels of the nodules that were
identified by more than one radiologist, are the average over all the available ratings,
rounded to the nearest integer. Consequently, nodules with an average malignancy
of 3 (indeterminate malignancy) were discarded. For each nodule, we extracted three
different 3D patches around the nodule center, where 3D patch refers to extracting
one patch from the central slice, and two from the two immediate neighbors. As
we later discuss in Section 4.2, selecting a higher number of channels leads to the
following two important challenges: (i) First, it requires advanced memory resources,
and; (ii) Second, it makes some tumors too small to be distinguished from surround-
ing tissues [143]. Furthermore, the 3-channel input has been previously investigated
in several studies, leading to satisfying results. For instance, in Reference [144], 3-
channel CT scans are used to predict short and long-term survival in lung cancer,
using CNNs, and it has been shown that the 3-channel input outperforms the single
channel one. The 3-channel input is also utilized in References [145] and [146], for
classifying breast tumor and mediastinal lymph node metastasis of lung cancer, re-
spectively, using CNNs. Each 3D patch was extracted at three different scales. The
first scale completely fits the nodule boundary, based on the provided annotation. As
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nodules are associated with different sizes, all extracted patches were zero padded up
to the fixed size of 80×80 (the biggest possible width and height based on the training
data). The second scale was extracted by allowing a margin of 10 pixels at each side.
The patches were zero padded to the fixed size of 100 × 100, and down-sampled to
80 × 80, to be consistent with the first scale, and reduce the complexity. Similarly,
the third scale was extracted by allowing a margin of 20 pixels at each side. The
patches were zero padded to the fixed size of 120×120, and down-sampled to 80×80.
At the end, data was normalized between 0 and 1. The training set was shuffled and
augmented by including random flipping. Finally we ended up having three sets of
training (at three scales), three sets of test, one set of training label, and one set
of test label. Each training set was fed to an independent CapsNet, along with its
corresponding test set.
3D-MCN Architecture: Our multi-scale model is a fully connected neural network
with 3 three hidden layers of sizes 1028, 512, and 256. The input to this network is
the combination of all the output instantiation vectors from the three CapsNets. For
each CapsNet, the output vector of the lower probability class is masked (set to
zero). Each output class is of dimension 16. Having two output classes (benign and
malignant) results in a vector of dimension 32 for each CapsNet, and having three
CapsNets results in an input of size 96 to the multi-scale network. The output of
this network is the probability of the nodule being benign or malignant, based on the
information from all the three scales.

3D-MCN Experiments

Four measures of the area under the curve (AUC), accuracy, specificity, and sen-
sitivity are calculated, based on the performance on the test set. The results are
provided in Table 3.5, which shows that the proposed framework outperforms its
counterparts in terms of the AUC, accuracy and sensitivity. Specificity is higher for
the second scale model. However, we believe that sensitivity is of greater importance,
as the consequences of miss-classification are worse for malignant cases. Furthermore,
typically in clinical practice, suspected malignant cases will go over complementary
examinations [104], which can identify whether the underlying case was a false pos-
itive. Fig. 3.12 illustrates the Receiver Operating Characteristic (ROC) curve for
the single-scale models, as well as the multi-scale one, and the base-line, which is
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Table 3.5: Performance of the proposed 3D-MCN approach along with performance of single
scale-models, on the independent test set. The proposed approach outperforms others in
terms of the AUC, accuracy and sensitivity.

Model AUC Accuracy Specificity Sensitivity
Proposed Model 0.9641 93.12% 90% 94.94%
First Scale 0.9633 91.65% 90% 92.21%
Second Scale 0.96 91.65% 91.33% 91.82%
Third Scale 0.96 91.40% 89.33% 92.60%
Base-line Model 0.9524 87.47% 86.66% 87.93%

Figure 3.12: The ROC curve for the single-scale and multi-scale models, and the base-line
model (i.e., fully connected layers trained on hand-crafted features only), showing that the
proposed approach is capable of achieving higher AUC.

a fully-connected neural network (having the same architecture as the one in the
multi-scale model) trained on four hand-crafted features, namely volume, diameter,
center-of-mass x coordinate, and center-of-mass y coordinate, as the base-line model.
These four features accompany the IDC-IDRI dataset, as means to ensure all research
groups use the same size-selected nodules.

In clinical applications, where false positives and false negatives are not treated
equally, the threshold resulting in the desired sensitivity and specificity can be selected
based on the ROC curve. Another strategy to tune these measures is to assign
different weights in the objective function. In this work, the proposed approach is
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Table 3.6: Effect of changing the weights of the terms controlling the false positives and
false negatives. As expected, it is observed that assigning more weight to the false positive
loss, increases the sensitivity, while putting higher weight to the false negative loss, increases
the specificity.

Weight Setting Area Under the Curve (AUC) Accuracy Specificity Sensitivity
Equal Weights 0.9641 93.12% 90% 94.94%
α = 2 and β = 1 0.9641 93.12% 87.33% 96.49%
α = 1 and β = 2 0.9638 92.87% 92% 93.38%

trained with the objective of minimizing the binary cross entropy loss [105, 106]. As
such, we have modified the loss as follows to put different weights on the loss function
terms (specificity and sensitivity)

loss = −( α y log(p)︸ ︷︷ ︸
Controlling the false positives

+ β (1− y) log(1− p)︸ ︷︷ ︸
Controlling the false negatives

), (3.11)

where y is the target, and p is the predicted probability of Class 1. Terms α and β
denote the weights given to the false positives and false negatives, respectively. We
have trained the multi-scale model with three settings (equal wights, more weight
assigned to the false positive, and more weight given to the false negative). Table 3.6
shows the obtained results.

We inspected the cases in the test set for which our proposed approach failed to
predict the correct label. We realized that 28% of such failure cases are nodules that
are marked by only one radiologist. In other words, there is no agreement on these
cases being nodules between different radiologists. Although all other failure cases
are nodules identified by at least two radiologists, there is a common pattern between
most of them, i.e., the malignancy labels are not consistent, and moreover, there is
at least one label 3, among the provided labels. In other words, although the average
malignancy is not 3 to be discarded, there is a high chance that the underlying nodule
is neither benign nor malignant.

As stated previously, the motivation behind our multi-scale approach is that the
nodule morphological characteristics are not the only indicators of its malignancy.
In fact, the surrounding tissue and vessels play an important role in determining in
determining the benign or malignant nature of the nodule. [107]. To illustrate on the
importance of having multi-scale inputs, we extracted the cases, where the output
is different for different scales. Fig. 3.13 presents four nodules from three different
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Figure 3.13: Cases, where not all the single-scale models provided correct predictions. The
check sign indicates the successful scale. This figure illustrates the necessity of including all
the three scales in the final model.

Figure 3.14: Correlation between the CapsNet features and the hand-crafted features. Most
of the features are positively or negatively correlated with volume and diameter. However,
the correlation with x and y centers is not considerable, as the model is fed with cropped
nodule slices in different scales, and the location with respect to the whole image is not
accessible to the model.

scales. The figure also indicates the scale which has been successful in classifying
the nodule. In other words, having a correct prediction was not possible without
including all the scales.
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(a) Training data (b) Test data

Figure 3.15: T-SNE plot of the CapsNet learned features in 2D, showing that the features
are capable of distinguishing between the two classes.

In another experiment, we calculated the correlation between the CapsNet ex-
tracted features from all three scales with the four hand-crafted features of volume,
diameter, x center-of-mass, and y center-of-mass, as shown in Fig. 3.14. Volume and
diameter are important factors of the nodule malignancy, therefore, as expected, most
of the learned features are highly (positively or negatively) correlated with these two
features. The centers of mass are, however, calculated from the whole images, and
as the model is only being fed with the cropped nodule slices via different scales, the
learned features cannot represent these two characteristics.

Another important aspect that needs to be considered when extracting deep
learning-based radiomics features is that weather they are capable of distinguish-
ing the classes. We projected the high dimensional feature space of the CapsNet
into a lower dimensional space, using a t-Distributed Stochastic Neighbor Embedding
(t-SNE). The resulted feature space for both the training and test sets are shown in
Fig. 3.15, according to which, features are distinctive, even in the simplified 2D space
shown in Fig. 3.15.

There are two general paths to use the LIDC-IDRI dataset. The first one is to
rely on the labels from the diagnosis data which is available for only 157 patients.
The diagnosis labels are resulted from different examinations, including image review,
biopsy, and surgical resection, at a nodule level. Such a pathway is explored in [108],
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Table 3.7: A list of papers that have used LIDC-IDRI to predict the lung nodule malignancy
based on the radiologists’ provided ratings. Our proposed approach outperforms all the
others except the third one. However, the third model incorporates hand-crafted features,
needing exact annotations from the radiologists. Our proposed model, however, only requires
nodule rough boundary box.

Method AUC Accuracy Specificity Sensitivity
Proposed model 0.9641 93.12% 90% 94.94%
CNN [100] 0.938 87.9% 87.9% 87.9%
CNN in combination with hand-crafted features [100] 0.971 93.2% 98.5% 87.9%
Deep residual network [110] 0.9459 89.90% 88.64% 91.07%
Deep belief network [25] - 81.19% - -
CNN in combination with hand-crafted features [111] - 86.79% 95.42% 60.26%
Multi-crop CNN [52] 0.93 87.14% 93% 77%

for lung nodule malignancy prediction, by training a CNN on the pathologically-
proven diagnostic data. This approach has resulted in an accuracy of 77.52%, sen-
sitivity of 79.06%, and specificity of 76.11%. Reference [109] is another example of
using the diagnostic data, that has achieved an AUC of 0.981 and error rate of 5.41%.

The second path to use the LIDC-IDRI dataset (also followed in our work) is
to adopt the ratings provided by experienced radiologists, at the time of reviewing
the CT scans. In [100] a CNN based architecture is presented that can distinguish
between benign and malignant nodules with an AUC of 0.938, accuracy of 87.9%,
sensitivity of 87.9%, and specificity of 87.9%. The authors have further improved the
performance to an accuracy of 93.2% by incorporating the hand-crafted features. A
Random Forest (RF) classifier is trained on the combination of hand-crafted and deep
learning-based features, to predict the nodule malignancy. Although the obtained
accuracy is on a par with that of our proposed framework, it requires the nodules’
fine annotations, from which our model is completely independent. Table 3.7 presents
a list of papers that have used the same setting of the LIDC-IDRI as we did, along
with their proposed method and obtained results.

One important challenge in comparing different studies on the LIDC-IDRI dataset
is that different researchers have used different cohorts of training and testing. One
solution to this challenge is to cross-validate the results, instead of using the fixed
sets. This strategy, however, should be used with care, not to include nodules from
the same patient in both sets. Another challenge of comparing the studies is the
difference between reported performance measurements. Accuracy, which is the only
metric provided in several studies, is not informative enough, as it gives no details
on the portions of positive and negative samples, and a highly biased model can lead
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to a high accuracy. Our proposed Multi-scale model achieves high accuracy, as well
as high sensitivity and specificity, showing that it is not biased towards positive or
negative samples.

Another limitation of most of the previous models is that they require large number
of samples and they rely on heavy data augmentation. However, the model proposed
in this model is based on the CapsNet, which is capable of interpreting small datasets.
This study shows that a good performance is achievable even in the lack of large
datasets, which is typically the case in the medical domains.

3.2.2 MIXCAPS: A Capsule Network-based Mixture of Ex-

perts for Lung Nodule Malignancy Prediction

Capitalizing on the success of the CapsNets, we propose a new framework, referred to
as the Mixture of Capsule networks (MIXCAPS), for the task of lung nodule malig-
nancy prediction. The proposed MIXCAPS [7] framework is a “Mixture of Experts”
type model [112–114], which has the potential to noticeably improve the classifica-
tion accuracy by integrating/coupling several experts (individual CapsNets in the
context of the proposed MIXCAPS). To be more precise, mixture of experts solves
the classification problems by splitting the dataset into similar samples, and each
expert specializes in classifying similar instances. To the best of our knowledge, the
proposed MIXCAPS is the first CapsNet-based mixture of experts framework. The
MIXCAPS model benefits from the following three important properties: (i) The em-
bedded capsule network is capable of classifying the lung nodules without requiring
availability of a large dataset; (ii) The mixture of experts approach enables each Cap-
sNet within the MIXCAPS architecture to focus on a specific subset of the nodules,
therefore, improving the overall classification performance of the model, and; (iii) As
shown in our experiments, MIXCAPS is not restricted to the task of lung nodule
malignancy prediction. In fact, it can be easily generalized to the prediction of other
tumor types such as brain cancer.

Background: Mixture of experts (MoE) [112] refers to adopting several experts,
each of which is specialized on a subset of the data, to collectively perform the final
prediction task. As shown in Fig. 3.16, experts are separately fed with the input data
and the final output is a weighted average of all the predictions coming from all the
N active experts. The weight gi assigned to Expert i can be either a pre-determined
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Figure 3.16: General framework of a mixture of experts approach.

value, or a trainable one. One simple example of the former case is averaging over
all the experts’ predictions [114]. However, more sophisticated approaches such as
soft clustering of the input may also be adopted. In the latter case, weights may be
trained at the same time with the experts. One other approach to use trainable gating
weights is to concatenate the feature vectors obtained from the individual experts and
feed the resulting vector to an external gating model to make the final decision.

The MoE concept has been widely used in medical imaging. The simple averaging
scenario is investigated in References [115] and [116] for retinal vessel detection from
fundus images and breast cancer detection from histology images, respectively. Train-
able gating weights are studied in Reference [117], where hand-crafted and CNN-based
features are combined to detect breast cancer from pathology images. The scenario
where gating weights are trained at the same time with the experts is investigated in
Reference [113] for breast cancer diagnosis. In particular, CNN experts are combined
using weights coming from an external gating network. The gating network itself is a
CNN, taking the same inputs as the experts, and outputting the probability of each
expert being responsible for each particular input.

MIXCAPS Architecture

The proposed capsule network-based mixture of experts for lung nodule malignancy
prediction, referred to as the MIXCAPS, is shown in Fig 3.17. The 3D nodule patches
are the inputs to two capsule network experts, as well as the convolutional gating net-
work. The two experts, as shown in Fig 3.17, consist of two convolutional layers, the
last of which is reshaped to form a capsule layer. This capsule layer is followed by
a routing by agreement and the final capsule layer. The outputs of the two experts,
denoted by o1 and o2, represent the class (benign and malignant) probabilities. The
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gating network, consisting of a convolutional and two fully connected layers, deter-
mines the contribution of each expert, denoted by g1 and g2, for a specific input
through a Softmax layer, as follows

g1 =
exp (G1)

exp (G1) + exp (G2)
, g2 =

exp (G2)

exp (G1) + exp (G2)
, (3.12)

where G1 and G2 are pre-activation outputs. The Softmax layer ensures that g1 and
g2 sum to one. These contributions are multiplied by o1 and o2 to calculate the final
prediction o as follows

o = g1o1 + g2o2. (3.13)

Output vector o encompasses the probability of benign and malignant classes, denoted
by o(0) and o(1), respectively. In other words

o = [o(0), o(1)]T . (3.14)

where superscript T denotes transpose operator. Originally, margin loss is proposed
for the training of the capsule networks. In this study, we adopt the same loss function
with the difference that the loss l is calculated over the final output of the MIXCAPS
instead of the individual capsule networks. In other words, The CapsNet loss function
(margin loss) is modified to reflect the loss associated with the experts and gating
models, as follows

l(0) = T (0)max(0,m+ − o(0))2 + λ(1− T (0))max(0, o(0) −m−)2, (3.15)

l(1) = T (1)max(0,m+ − o(1))2 + λ(1− T (1))max(0, o(1) −m−)2, (3.16)

l = l(0) + l(1), (3.17)

where l(0) and l(1) denote the losses associated with the benign and malignant classes,
respectively. m+, λ, and m− are hyper-parameters. Terms T (0) and T (1) are the
ground-truth labels for benign and malignant classes, respectively. According to
Reference [112] comparing the desired output with the blend of outputs from the
experts, leads to a strong coupling between experts and solutions in which many
experts are used for one case. However, in this study, we did not encounter such a
problem, and therefore did not adopt non-linear combinations of the outputs.

CapsNet as a Mixture of Experts: Now, we revisit the idea of the capsule
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networks and show how they can be viewed within the mixture of experts framework.
In other words, we show that a CapsNet is a series of consecutive MoE layers such that
each lower level capsule with instantiation vector ui serves as an expert to predict
the output of the capsule in the next layer with instantiation vector sj.

Each capsule (among NPrC number of primary capsules) with instantiation vector
ui, for (1 ≤ i ≤ NPrC), makes predictions ûj|i, through Eq. (2.7). Consequently, each
capsule (among NPaC number of parent capsules) with instantiation vector sj, for
(1 ≤ i ≤ NPaC), receives predictions from all the lower level primary capsules. Each
primary Capsule i, therefore, can be considered as an expert making predictions for all
the parent (final) capsules. Contribution of each capsule expert i to each final capsule
j is represented by cij, which is basically similar to gi in an MoE framework, with the
difference that in the conventional MoE formulation, each expert contributes equally
to all the outputs, whereas capsule experts have different contributions to different
final capsules. This is the reason why the notation of cij is used instead of ci. The
instantiation parameter of each final Capsule j is calculated according to Eq. (2.11)
incorporating predictions from all the experts. Another difference between capsule
experts and conventional MoE ones is that the gating model in the latter case is
typically a simple or advanced machine learning model, whereas in the former case,
routing by agreement serves as the gate to determine contribution through Eq. (2.8)
to (2.11). It is also worth noting that Eq. (2.10) ensures that contributions to each
final capsule j sum to one, satisfying the requirement of an MoE approach as in
Eq. (3.12).

Having the aforementioned discussion in mind, each CapsNet itself is a series
of mixtures of experts. In the proposed MIXCAPS, the CapsNets themselves are
utilized as single experts. Therefore. MIXCAPS can be considered as a hierarchical
MoE technique. It is also interesting to study how the calculation of cijs resembles
the calculation of experts’ weights in an MoE approach. Generally speaking, there
are several solutions to an MoE problem [118]. An Expectation Maximization (EM)
algorithm is one applicable solution, through which the experts’ weights are considered
as hidden variables, whose posteriors are estimated in the E-step, as follows

p(zni |tn,xn) =
p(tn|zni = 1,xn)p(zni = 1|xn)

p(tn|xn)
, (3.18)

where binary variable zni is one when instance n is assigned to expert i, and zero
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otherwise. Term p(zni |tn,xn) represents the posterior probability of zni given input
vector xn and target vector tn. Following the Bayes’ rule, this posterior is calculated
using the likelihood term p(tn|zni = 1,xn) and the prior over zni , denoted by p(zni =

1|xn). All the terms appearing in Eq. (3.18) can be calculated through the MIXCAPS
framework. The likelihood term can be replaced by the output of the expert capsule
networks on(1)i , which denotes the probability of malignancy for Instance n, based on
the ith expert. The prior probability can also be estimated using the output of the
gating model gni denoting the probability of assigning Instance n to Expert i. The
posterior, therefore, can be defined as

p(zni |tn,xn) =
gni o

n(1)
i∑M

j gnj o
n(1)
j

, (3.19)

whereM is the number of experts. The part-whole relationships in a capsule network
and how the routing process resembles the MoE framework is also recently investi-
gated in Reference [119], where the iterative procedure is replaced with a self-routing
mechanism. This Reference, however, does not consider a hierarchical mixture of
experts by using the capsule networks as individual experts.

To further shed light on the MoE view of CapsNets, it would be interesting to note
that the EM formulation of the MoE closely resembles the weight update process of a
multiple model (MM) [120] approach. In MM formulation, observations are sequen-
tially generated from different models and the goal is to identify the contribution of
each single model i given all the observations up to the current time (Y k), as follows

p(zki |Y k) =
p(yk|zki = 1,Y k−1)p(zki = 1|Y k−1)∑M
j=1 p(y

k|zkj = 1,Y k−1)p(zkj = 1|Y k−1)
, (3.20)

where yk is the most recent observation. Comparing Eq. (3.20) with Eq. (3.19), it can
be seen that while the prior in an MoE approach is determined based on the current
input vector, it is calculated based on the previous observations, in the MM case. In
other words, in MM, the prior is iteratively replaced with the posterior. The updates
of coefficients in the routing by agreement process of the CapsNet is similar to the
weight updates in MM. In particular, in each round of the routing by agreement, the
previously calculated cij serves as the prior to compute the coefficient in the next
round.
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Experiments on Lung Dataset

Three different experiments on lung cancer malignancy prediction are presented. The
main objective is to evaluate performance of the proposed MIXCAPS framework and
compare its capabilities with those of its state-of-the-art counterparts. Results are
obtained with 200 iterations of bootstrapping, where in each iteration, 80% of the
data is sampled (with replacement) from the whole dataset. 20 % of the training
dataset is then randomly extracted for validation. A 95% confidence interval (CI) is
calculated for all the performance metrics. Adam optimizer with 10 epochs and batch
size of 16 is used for training.

Experiment 1 : Our first experiment is to compare the performance of the proposed
MIXCAPS with a single capsule network, a mixture of CNNs, and a single CNN, as
shown in Table 3.8, where performance is measured in terms of sensitivity, specificity,
accuracy, and area under the curve (AUC). The architecture of the single capsule
network is exactly the same as the CapsNet experts. We tried to keep the complexity
as similar as possible to the MIXCAPS, when designing the mixture of CNNs. In
particular, the gating network exactly resembles that of the MIXCAPS. The CNN
experts consist of two convolutional layers with 256 filters, similar to the experts in
the MIXCAPS. The convolutional layers are followed by a dense layer with 32 neurons
(the same as the dimension of the last capsule layers), and the final softmax layer for
nodule malignancy prediction. The single CNN has also the same architecture as the
experts in the mixture of CNNs. As shown in Table 3.8, MIXCAPS outperforms its
three aforementioned counterparts, in terms of sensitivity, specificity, accuracy, and
AUC. In particular, to gain an insight on what components of the proposed MIXCAPS
lead to its superior performance, it is worth noting the higher performance of a single
capsule network compared with a single CNN, showing the advantage of a capsule
network-based design. Furthermore, the superiority of the proposed MIXCAPS over
the single capsule network, as well as the mixture of CNNs over the single CNN,
illustrates the benefit of a mixture of experts framework.

Experiment 2 : In a second experiment, we compare the proposed MIXCAPS with
an ensemble of two capsule networks. The goal of this experiment is to investigate
whether the trainable gating network is an effective component of the MIXCAPS by
replacing it with a non-trainable average voting of the two capsule networks. The
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utilized ensemble model consists of two capsule networks with the same architecture
as the experts in the MIXCAPS. However, the gating model is removed, and the final
output is the average of the outputs of the two capsule networks. This averaging is
performed through both training and testing steps. In other words, Eq. (3.13), which
calculates the final output, is modified as follows

o = 0.5× o1 + 0.5× o2. (3.21)

Table 3.9 shows the obtained results according to which, we can observe that re-
placing the gating model with an average voting degrades the performance. It is
worth mentioning that ensemble of capsule networks, although having lower perfor-
mance compared to the MIXCAPS, outperformed the stand-alone capsule network
architecture illustrating the benefits of ensembling capsule networks.

Figure 3.18: Example of nodules assigned to experts based on their volume and diameter.
The nodule on the left, which has a lower probability of belonging to the first expert, is
smaller in terms of volume and diameter compared to the nodule on the right.

Figure 3.19: Activation magnitude of the true class capsule, based on the tumor size and
diameter. The darker the color, the higher the activation. (a) The true class capsule of the
first expert has higher activation for larger nodules. (b) The true class capsule of the second
expert has higher activation for smaller nodules.

Experiment 3 : We begin this experiment by measuring the performance of the
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individual experts on the test set. In other words, after the MIXCAPS is trained
on the training set, we use experts separately for the final decision on the test set.
Doing so, we observed that the accuracy of the first and the second experts decreased
to 66% and 60%, respectively. This implies that the performance of the MIXCAPS
is related to leveraging the capabilities of both of the experts. Next, we conduct an
experiment to gain an insight on how the data instances are split between the two
experts. The LIDC-IDRI dataset is accompanied by a few nodule-related properties,
determined by the radiologists. These features include volume, diameter, x center
of mass and y center of mass. We calculated the correlation between the output
of the gating network and these features. While the correlations with volume and
diameter are 0.58 and 0.77, respectively, we observed no correlation with the centers
of mass. It should be noted that the inputs to the proposed MIXCAPS are cropped
nodule regions. In other words, the model has no access to the location of the nodule.
Therefore, the almost zero correlations with the centers of the mass is completely
expected. The observed correlations between the gate outputs and the volume and
diameter imply that larger nodules have higher probabilities of being assigned to the
first expert. Fig. 3.18 shows two nodules in the test set. The left nodule, which
has a volume of 496.32 and diameter of 9.823, has a low probability of belonging
to the first expert, whereas the nodule on the right, with a volume of 6663.44 and
diameter of 23.347, has a high probability of being assigned to the first expert. In
other words, the first expert tends to handle larger nodules, compared to the second
expert. Finally, it is worth exploring how the individual experts respond to the
nodules assigned to them. To this goal, we measured the activation of the capsule,
related to the true class, for both of the experts, where activation refers to the length
of the capsule. Consequently, we studied the relation between this activation and the
size and diameter of the nodule, as shown in Fig. 3.19. According to this figure, the
first expert (plotted on the left hand side) has higher activation for larger nodules,
whereas the second expert (plotted on the right) has higher activation for smaller
nodules. This observation is also consistent with how the gating model assigns the
nodules. While the gating model tends to assign the larger nodules to the first expert,
the true class capsules in the first expert have high activation for these nodules. The
same rationale holds for the second expert being assigned with smaller nodules.
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Table 3.10: Performance of the proposed MIXCAPS with BoxCaps as experts. Numbers
in parenthesis show the 95% confidence intervals.

MIXCAPS-BoxCaps BoxCaps
Accuracy 91.3 (91.1, 91.5) % 90.9 (90.2, 91.5) %

Sensitivity for Meningioma 77.5 (77.1, 77.9) % 80.1 (76.2, 84) %
Sensitivity for Glioma 95.9 (93.2, 98.5) % 92 (90, 94.1) %
Sensitivity for Pituitary 97.7 (97.2, 98.3) % 97.2 (95.6, 98.9) %

Specificity for Meningioma 96.1 (96, 96.1) % 94.1 (92.7, 95.5) %
Specificity for Glioma 88.7 (87.6, 89.8) % 89.8 (88.4, 91.2) %
Specificity for Pituitary 88.7 (86.2, 91.2) % 88.1 (86.9, 89.3) %

Although MoE techniques are shown to be able to improve the classification per-
formance, they typically face an objection related to the high computational cost at
the test time. This problem, however, can be dealt with by using distillation [121].
Therefore, in our future studies, we will focus on distilling MIXCAPS into a smaller
and more time-efficient model.

Experiments on Brain Dataset

To investigate whether the MIXCAPS can be generalized to brain tumor classification,
we replaced the capsule experts in MIXCAPS with the previously designed BoxCaps
architecture, as shown in Fig. 3.20. We then tested the resulting framework on
the brain tumor dataset [43], where train, validation, and test splits are obtained
from the same bootstrapping approach used for the LIDC-IDRI dataset. Table 3.10
presents the obtained results, according to which, the MoE approach leads to higher
accuracy compared to a single BoxCaps. Furthermore, the MoE approach leads to
higher sensitivity for Glioma and Pituitary, and higher specificity for Meningioma
and pituitary tumor types.

To investigate whether the individual experts specialize on certain tumor types,
after training the MIXCAPS-BoxCaps, we evaluated the experts separately on the
test set. We also calculated what percentage of each tumor type was assigned to
the experts by the gating model. Consequently, we observed that while 94% of the
Gliomas were assigned to the first expert, this expert had a high sensitivity of 99% for
the underlying tumor type. This expert, however, had very low sensitivities for the
other two tumor types. The second expert, on the other hand, received 88.6% of the
Meningiomas and Pituitaries, leading to 95% and 96.2% sensitivities, respectively.
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Finally, we conduct another experiment to study if the provided boundary box is
the only important factor leading to the obtained result. In other words we need to
make sure that the input images are not ignored by the model, simply because the
boundary box itself can determine the tumor type. To this end, we gradually added
zero-mean Gaussian noise to input images and calculated the model’s accuracy. It is
observed that while a noise with a standard deviation (STD) of 0.01 does not change
the accuracy, increasing STD to 0.1 and 0.5 degrades the accuracy to 84.44% and
76%, respectively. This experiment shows that while the boundary box assists the
classification, it does not replace the input images.

3.3 Conclusion

In this Chapter, we targetted the problem of tumor type classification using deep
learning-based radiomics by focusing on brain tumor classification in Section 3.1 and
lung tumor classification in Section 3.2. For the former category, we have presented
a CapsNet architecture, referred to as BoxCaps, that incorporates both the raw MRI
brain images and the tumor coarse boundaries in order to classify the tumors. The
proposed CapsNet architecture has two main advantageous: (i) First, the need for
tumor exact annotation is eliminated, and; (ii) Second, it helps the CapsNet to fo-
cus on the main area, and at the same time, consider its relation with surrounding
tissues. Our results show that the proposed approach is capable of increasing the
classification accuracy, compared to the previous CapsNets and CNN architectures.
Capitalizing on the success of ensemble techniques in different domains, we improved
BoxCaps by incorporating a boosting approach. Since, similar to most of the deep
learning models, CapsNet does not capture model uncertainty in its predictions, we
equipped CapsNet with a Bayesian framework to not only model the posterior distri-
butions over the weights, but also estimate the mean prediction and entropy, having
the benefit of keeping human in the inference loop. For the problem of lung nodoule
type classification, i.e., to address the lung nodule diagnosis problem, we proposed a
3D multi-scale capsule network, capable of distinguishing between benign and malig-
nant lung nodules. This model, which benefits from 3D inputs from three different
scales, can capture local and global features from the tumor. Our experiments show
that the proposed model outperforms its counterparts, from different aspects such as
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accuracy and sensitivity. Finally, we concluded this chapter by proposing a CapsNet-
based mixture of experts, having the promise of assigning similar instance to separate
experts, utilizing a trainable gating network.
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Chapter 4

Time-to-Event Outcome Prediction

In Chapter 1, three application domains for deep learning-based radimoics, i.e., tumor
classification, time-to-event outcome prediction, and COVID-19 diagnosis, have been
identified. In Chapter 3, we focused on the first application. In this chapter, we focus
on the second task to predict time-to-event outcome for lung cancer patients. The
reminder of the chapter is organized as follows: Section 4.1 describes the intuition
and problem statement, followed by the proposed DRTOP framework in Section 4.2.
Results and experiments are presented in Section 4.3. Finally, Section 4.4 concludes
the chapter.

4.1 Introduction

Significant recent progress in the biological understanding and tumor heterogeneity
of non-small cell lung cancer calls for treatment individualization. Specific clinical
endpoints are used in clinical trials to measure the clinical benefit of a specific treat-
ment [122, 123]. Although overall survival (OS) remains the gold standard, other
clinical endpoints such as recurrence free survival (RFS), distant control (DC), and
local control (LC) measure different and significant aspects of the clinical benefit of
treatment. Inherent difficulties to assess these clinical outcomes such as the lengthy
duration of the follow-up needed until the time of event and the various parameters,
unrelated to the primary cancer, affecting the result during follow-up, have led to
a surge for developing surrogates that can predict clinical outcomes noninvasively.
Recently, radiomics, which is the process of extracting high throughput quantitative
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and semi-quantitative features from medical images aiming at diagnosis, classifica-
tion or prediction of outcomes, has attracted much attention, showing promising
results [1, 20,24,124–131].

Studies, investigating the relation between radiomics and time-to-event outcomes
(e.g., survival and/or recurrence), have mostly focused on hand-crafted radiomics,
referring to extracting pre-defined features. Using pre-treatment Computed Tomog-
raphy (CT) images, Sun et al. [132] have extracted 339 pre-defined features from the
segmented lung tumor volume, to predict the patients’ OS. These features, including
shape, size, texture, and intensity statistics, are shown to be predictors of the OS,
when going through a set of feature selection and machine learning methods. The
prognostic value of hand-crafted radiomics features for OS in lung cancer is also stud-
ied by Timmeren et al. [133], where CT-based extracted features led to a concordance
index (a measure of model accuracy) of 69%. Khorrami et al. [134], recently, investi-
gated the correlation of CT-based features with OS and time to progression (TTP) in
lung cancer patients treated with chemotherapy, and found a high predictive ability
for the extracted features. Although hand-crafted radiomics has shown correlation
between imaging modalities and the clinical outcomes, its practical application is lim-
ited by the fact that features are pre-defined. Furthermore, hand-crafted radiomics
requires the exact segmented region of interest (ROI), being highly dependent on the
quality of the segmentation. Obtaining an accurate segmentation is burdensome and
subject to inter-observer variability [135], challenging the reliability of the result.

Considering the potential of radiomics, and at the same time, the limitations
associated with hand-crafted radiomics, there has been a recent surge of interest [1,
25, 52, 108, 136] in using deep learning, especially Convolutional Neural Networks
(CNNs) [137, 167], to extract radiomics features. In deep learning-based radiomics,
features are not pre-defined, and do not require the segmented ROI. Therefore, the
model can be trained in an end-to-end fashion, with the goal of improving the overall
prediction accuracy. Zhu et al. [139] developed a CNN to predict OS in lung cancer
patients and trained the model on pathological images of the lung tumor, leading to
a 63% concordance index.

Most of the studies on deep learning-based time-to-event outcome prediction
in cancer have focused on features extracted from CT images, which capture only
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Figure 4.1: Proposed DRTOP model, where 3D CT and PET images go through separate
networks, which are unsupervisedly pre-trained on an independent dataset. The outputs of
the two networks (referred to as the CT risk and the PET risk) are combined with other
clinical factors and fed to a Cox PHM.

anatomical information. 18-Fluorodeoxyglucose Positron Emission Tomography/Com-
puted Tomography (FDG PET/CT), which combines anatomic data with functional
and metabolic information, is the standard of care and has become an integral part of
lung cancer staging in clinical practice [140]. The focus of this chapter is to propose a
novel deep architecture, referred to as DRTOP [8], based on staging PET/CT images
to predict pre-defined clinical endpoints in a cohort of lung cancer patients before the
initiation of treatment. The schematic of our proposed DRTOP model is shown in
Fig. 4.1.

4.2 DRTOP Architecture based on Staging PET/CT

Images

Data Description and Pre-processing: The in-house dataset we used in this
study consists of 132 lung cancer patients (65 women, 67 men) with an average age
of 74.65 (range: 52-92), having 150 lung tumors in total, (treated between April 2008

97



Figure 4.2: The CT and PET components of the PET/CT, for patient 1 and patient 2,
show the tumors in the superior segment of the left lower lobe and the right lower lobe
respectively. CT and PET images for each patient are captured at the same level.

and September 2012), who underwent staging pre-treatment PET/CT. Tumors visi-
ble in both CT and PET components are annotated by a thoracic radiologist, with 18
years of experience in thoracic imaging (A. O.), using an in-house software described
in Reference [19] as follows: Each lesion was contoured on every sequential slice that
was visible on CT as increased homogeneous or ground glass density compared to
surrounding normal lung parenchyma. Attention was made so that volume averaging
areas, and adjacent vascular structures were not included in the regions of interest.
The segmentation/contouring of the lesions on the PET images was performed manu-
ally on all the sequential images showing increased FDG uptake in the corresponding
area of the tumor, which was either the same area covered on the equivalent CT im-
ages or slightly smaller. Fig. 4.2 shows the observed tumor for two patients on the CT
and PET component, at the same level. Other characteristics that were entered and
assessed in the analysis include age, gender, SUVmax, and radiation dose (prescribed
biological effective dose). All the patients had early stage lung cancer (N0M0) and
were treated with a specific high dose and focused radiotherapy method (SBRT) [19].
Post-treatment patients were followed up for a median period of 27 months, during
which different observations, including local recurrence, regional recurrence, lobar re-
currence, distant recurrence, and death were recorded. In this work, we have focused
on four different outcomes: (i) Overall survival (OS), which is defined as the time
from the SBRT to the date of the death or final follow-up visit; (ii) Recurrence free

98



survival (RFS), referring to the time from SBRT to the earliest of recurrence (local,
lobar, regional, or distant), second cancer, death or final follow-up visit; (iii) Local
control (LC), defined as the absence of local (within the area of the planning target
volume) recurrence, and; (iv) Distant control (DC), calculated as the absence of re-
currence outside of local, lobar or regional recurrences. There are patients who have
more than one lung tumor. Since the outcomes of OS, DC, and RFS are related to the
patient and not to each single tumor, we decided to take the tumor with the highest
SUV. However, LC is tumor-related, and therefore, all the 150 tumors are treated as
data instances.

All the images are cropped based on the annotations provided by our experienced
Radiologist to only contain the tumor region. As the proposed DRTOPmodel requires
fixed size inputs and tumors have different sizes, we have zero-padded the cropped
tumor regions. In other words, cropped tumors are placed in the middle of a black
image (intensity of zero), whose size is determined based on the largest tumor available
in the dataset. The largest tumor available is of size 80× 80 pixels in CT images and
28×28 pixels in PET images. All the images are, therefore, first cropped to completely
fit the tumor. Then, cropped CT scans are placed in 80× 80 black images, whereas
cropped PET scans are placed in 28 × 28 black images. Determining the size of
the inputs, based on the largest tumor, to ensure all the target area is covered, is a
common practice in deep learning-based cancer image analysis [142].As the inputs to
our model are 3D images, where the third dimension is of size 3, three cropped slices,
for each tumor, are stacked together. The middle image is the tumor middle slice,
and the other two are the two immediate neighbors of the middle slice. At the end,
each patient/tumor is associated with two 3D inputs, one generated from the PET
component, and the other generated from the CT component.

Here we further elaborate on the choice of a 3-channel input. As shown in Fig. 4.3,
number of the tumor-containing slices, in our in-house dataset, significantly varies
from one patient to another (between 3 and 42). The proposed DRTOP architecture
requires a fixed-size input. This means that in case of selecting a higher number
of channels, all inputs having less number of tumor-containing slices, have to be
accompanied with healthy slices, in order to maintain a fixed size. Accordingly,
selecting a higher number of channels leads to the following two important challenges:
(i) First, it requires advanced memory resources, and; (ii) Second, it makes some
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Figure 4.3: Frequency of number of tumor-containing slices, that can vary from 3 to 42.

tumors too small to be distinguished from surrounding tissues [143]. Furthermore,
the 3-channel input has been previously investigated in several studies, leading to
satisfying results. For instance, in Reference [144], 3-channel CT scans are used to
predict short and long-term survival in lung cancer, using CNNs, and it has been
shown that the 3-channel input outperforms the single channel one. The 3-channel
input is also utilized in References [145] and [146], for classifying breast tumor and
mediastinal lymph node metastasis of lung cancer, respectively, using CNNs.

In order to validate our model and also the hand-crafted method, we have split
the dataset into two independent set of training (80%) and testing (20%) instances.
The training dataset is used to train our proposed model, and also the hand-crafted
method, whereas the test set remains unseen during the training, and is used at the
end for evaluating the models.

It is worth mentioning that for lung cancer survival analysis, large datasets are
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Table 4.1: Datasets used in the literature for lung cancer time-to-event outcome predictions.

Reference Number of patients Difference with our
dataset

Availability

Wu et al. [124] 101 Only PET images are
utilized and outcome is
distant metastasis.

Not public

Pyka et al. [125] 45 - Not public
Huang et al. [126] 282 Only CT images are uti-

lized and outcome is
disease-free survival.

Not public

Sun et al. [132] 422 Only CT images are uti-
lized and outcome is
overall survival.

Public [20]

Khorrami et al. [134] 125 Only CT images are
utilized and outcome
is overall survival and
time to progression.

Not public

Wang et al. [160] 129 Only CT images are uti-
lized and outcome is
overall survival.

Not public

Xu et al. [141] 179 Only CT images are uti-
lized and patients are
treated with chemoradi-
ation.

Not public

scarce and very difficult to acquire, as patients need to be followed up for years.
Studies investigating the problem of lung cancer time-to-event outcome prediction,
a few of which are listed in Table 4.1, therefore, evaluate their models on relatively
small datasets. In order to evaluate the proposed DRTOP model, dataset needs to
include both PET and CT images that are contoured by an expert, which limits us
to the in-house dataset with 132 patients. Furthermore, outputs of the model, i.e.,
OS, RFS, LC, and DC, are required to be available for all the patients in the dataset.
As we have shown in Table 4.1, the dataset used in Reference [125] is the only one
that includes all the DRTOP’s requirements. This dataset, however, is not publicly
available and is limited to 45 patients. To the best of our knowledge, the NSCLC-
Radiomics dataset [20] is the only publicly available data that focuses on the lung
cancer survival analysis. Nevertheless, it is accompanied with only CT images and
the outcome is limited to the overall survival.

CNN Architecture of the DRTOP Model: The CNN architecture we used
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in this work is shown in Fig. 4.1. We have adopted two separate networks, for CT
and PET components, each of which contains two convolutional layers (with 3 × 3

filters, 32 feature maps, and rectified linear units), two pooling layers (with 2×2 filter
size) and two fully connected (FC) layers. The first and second FC layers contain
32 and 1 neurons, respectively. While the first FC utilizes rectified linear units, the
second one has a linear activation. Both CNNs are trained separately with the goal
of maximizing the Cox partial likelihood. The optimization method is a stochastic
gradient descent (SGD), with a learning rate of 10−5. Number of epochs is set to
2, 000, and while most of the studies on deep learning-based time-to-event analysis
feed the model with the whole dataset at once, we used a batch size of 32 [147], to
prevent the network from over-fitting the training set. The outputs of the last fully
connected layers are treated as radiomics signature (risk), and fed to a Cox PHM,
along with the other clinical factors (age, gender, SUV, and radiation dose).

One problem associated with CNNs is that they, typically, require large datasets
to be able to learn a useful mapping from the input to the output. Otherwise, the
network over-fits the training set, leading to poor predictions for the test set. Large
dataset is, however, difficult to collect in the medical field. One solution to compensate
for the lack of large dataset is to pre-train the model with, preferably, a similar
dataset [148]. Pre-training helps the network with learning the data distribution.
Consequently, when training the model supervisedly on the main dataset, weights
are initialized by the pre-trained values instead of the random ones, getting one step
closer to the optimal solution. The Convolutional Auto-encoder (CAE) [149,150], we
adopted in this work for the pre-training, is explained next.

Pre-training with Convolutional Auto-encoders: Auto-encoders are unsu-
pervised neural networks that are only fed with the input, without any additional
information or labels. The network is aimed to learn features from the input that
are useful in reconstructing the input. Auto-encoders consist of two main compo-
nents, i.e., the encoder, which learns features from the input, and; the decoder, which
uses learned features to reconstruct the input. The CAEs are variants of the original
Auto-encoders with embedded Convolutional layers, making them powerful models
for unsupervised training of the image inputs. In this work, two separate CAEs are
trained on the PET and CT components, where the encoder’s architecture is exactly
the same as the main CNN architecture described in the previous sub-section. The
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CNNs are, consequently, initialized with the weights learned in the CAEs, through
the unsupervised training.

The dataset we used for the unsupervised pre-training is different from the main
dataset. However, it includes pre-treatment PET/CT images of 86 lung cancer pa-
tients from a previous work [151]. This dataset does not contain the time-to-event out-
comes. Images in this dataset are also annotated by our thoracic radiologist (A.O.),
and pre-processed using exactly the same approach as the one used for pre-processing
the main dataset.

Cox Proportional Hazards Model (PHM):
The DRTOP model was trained, separately, for all four outcomes, and calculated

the CT and PET risks. These two risks, along with four clinical factors are entered
into the Cox PHM, using a stepwise selection of the variables. In other words, the final
model includes only the significant predictors, where significance is evaluated based
on an F-test of the obtained coefficients. Therefore, to assess the significance of a
coefficient, the Cox PHM is trained after excluding the underlying variable (restricted
model), and compared against training the model, including all the variables (unre-
stricted model). The significance level is set to 0.05, and only the variables associated
with p-values less than the significance level remain in the model. Table 4.2 shows
the four time-to-event outcomes along with their significant predictors. Hazard ratio
(HR) measures the effect of the predictors on the outcome. Concordance index [152],
presenting the quality of ranking, is also computed for all the four outcomes. The
PHM formulation, based on our predictors is as follows

h(t|xi) = h0(t) exp

(
β1×CTi + β2×PETi + β3×Agei + β4×Genderi + β5×SUVi + β6×Dosei

)
(4.1)

where h(t|xi) refers to the hazard at time t for the ith patient. Term h0(t) is the
base-line hazard, and βis (1 ≤ i ≤ 6) are the coefficients (covariates) to be learned
with the objective of maximizing the Cox partial likelihood.

It is worth mentioning that in design of the proposed DRTOP model, we have
chosen to use the final deep learning output as the inputs to the Cox PHM. The
rationale behind this design is to prevent the 64 features, extracted from the layer
before the final one, from dominating the Cox PHM, and cancel out potential effects
of the clinical factors (age, gender, SUV, and radiation dose). The incorporated
strategy is similar in nature to the approach adopted in Reference [134], where a
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Table 4.3: Hand-crafted features, extracted in DRTOP study.

Category Description Sub-
category

First Order Radiomics Distribution of pixel in-
tensities and ROI shape.

• Shape Features Quantify the geometric
shape of the tumor [17]

Area regularity (1),
Perimeter regularity
(2), Region bilateral
symmetry (4).

• Intensity Features Derived from a single his-
togram [17].

Size of the tumor (num-
ber of pixels), Mean
gray level, Standard
deviation, Median gray
level, Minimum pixel
intensity, Maximum
pixel intensity, Kurtosis,
Skewness [17,153].

Second Order Radiomics
(Texture Features)

Relations between pixels
to model intra-tumor het-
erogeneity [17].

Contrast, Energy, Corre-
lation, Homogeneity, En-
tropy, Normalized En-
tropy.

Least Absolute Shrinkage and Selection Operator (LASSO) Cox model is, first, used
to extract the most important radiomics features, before going through the final Cox
PHM, along with other clinical factors.

Random Survival Forest (RSF): An RSF model [154] is a collection of several
survival trees, each of which is constructed using a randomly drawn sample of the
data and underlying variables. Each survival tree is separately trained, based on a
logrank splitting rule, which tries to maximize the survival difference between the
daughter nodes. While each tree outputs a separate CHF for each patient, the final
outcome is the ensemble CHF. The Nelson-Aalen estimator is used to calculate the
CHF, denoted by Ĥ, at each terminal node h, and is given by

Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

, (4.2)
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where tl,h denotes a distinct event time at node h, and dl,h and Yl,h are number of death
and patients at risk, respectively, at time tl,h. In this study, the RSF model consists
of 10, 000 survival trees. The maximum depth is set to 10, and the minimum node
size is 10. To obtain the important predictors, a variable importance (VIMP) [154]
approach is adopted. Based on this approach, for each variable, the prediction error
is calculated for the original RSF, and also an RSF with random assignment, when
encountering the underlying variable. The VIMP is then calculated as the difference
between these two errors. A large positive VIMP indicates a high predictive ability,
whereas a zero or negative one means no prognostic value.

Hand-crafted Radiomics: To compare the ability of our proposed DRTOP
model in predicting the time-to-event outcomes, in lung cancer patients, with the
hand-crafted radiomics, we have extracted 42 features from the CT and PET com-
ponents. As shown in Table 4.3, these features include both first and second-order
radiomics, where the former refers to features extracted mostly from the image his-
togram, and the latter refers to texture-related features. The “Sub-category” column
presents the features we have extracted, where the numbers in the parenthesis indi-
cate the number of features extracted from that specific category. All the features,
consequently, go through a PCA, where a total of 18 features are extracted. These
features are the inputs to a stepwise Cox PHM.

Concordance Index: Concordance index (c-index) is a measure of how well the
patients are ranked based on a specific time-to-event outcome. Mathematically, it
can be defined as [155]

c =
1

|ξ|
∑

Ti uncensored

∑
Tj>Ti

1f(xi)<f(xj), (4.3)

where |ξ| denotes the number of possible ordered pairs, Ti and Tj are the time-to-
event outcomes for Subjects i and j, respectively, and f(xi) is the predicted time
for Subject i. The c-index varies between 0 and 1, where a c-index of 1 means a
perfect prediction, and a c-index of 0.5 can be interpreted as a random assignment. In
biomedical applications and in particular lung cancer survival analysis, a c-index close
to 0.7 is considered as satisfying and acceptable [156,157], however, interpretation of
the computed c-index value depends on the dataset and the problem at hand.
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4.3 Experiments and Performance of the Proposed

DRTOP

Based on Table 4.2, the OS can be predicted by CT risk, PET risk, and age, where
PET risk with the HR of 0.67 has a negative impact (protective effect) on the OS,
CT risk with the HR of 1.35 has a positive (an increased risk) impact, and the impact
of age is relatively small. The obtained HRs can be interpreted as follows: (i) one
unit increase in the CT risk predictor variable results in an increase in the risk of
the event occurring by 35%; (ii) Increasing the PET risk by one unit leads to a 33%

risk reduction, and; (iii) One year increase of the age can only increase the hazard
by 1%. The concordance index of 68% shows that the three predictors are capable of
providing a satisfying ranking of the patients, with regards to the OS.

Performance of the Hand-crafted Radiomics: Out of 42 PET and CT hand-
crafted radiomics features, calculated as suggested by a previous study [19], 18 fea-
tures (principal components) are extracted using the principle component analysis
(PCA). These features, together with SUV, age, gender, and radiation dose, are fed
to a Cox PHM to explore predictive models for the specific time-to-event outcomes.
Table 4.4 illustrates the obtained results. Radiomics (PC2) is the only predictor of
the OS. Radiomics (PC1 and PC2), together with SUV, contribute to the prediction
of RFS and DC. Neither hand-crafted radiomics nor clinical factors can predict the
LC. A failed prediction for LC, using hand-crafted radiomics, does not mean a con-
cordance index (c-index) of 0. It means that the c-index is not calculated because
the Cox PHM has not found any significant predictors for the LC, where significance
is assessed using an F-test. In other words, any calculated c-index, in this case, is
not reliable and can be the result of a random model. The c-index is not necessarily
an indicator of the predictors’ performance, when they fail to statistically predict
enough of the variability in the outcome. If no predictors are found for the model
then the hazard function is equal to the baseline hazard. In the case of Cox PHM
the baseline hazard is not estimated as it is a semi-parametric approach which was
designed specifically to benefit from NOT having to estimate the baseline hazard.

Comparison of the DRTOP and Hand-crafted Radiomics: Fig. 4.4 shows
the comparison between the concordance indices obtained from the hand-crafted ra-
diomics and the proposed DRTOP model. The performance of the proposed model is
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Figure 4.4: Comparison between our proposed DRTOP model and hand-crafted radiomics,
based on the concordance index.

better than the hand-crafted method, in predicting the OS. Although both methods
fail to provide a satisfying result for predicting the RFS, the hand-crafted radiomics
has a slightly better performance. The two methods are on a par with each other, in
predicting the DC, and in the case of the hand-crafted method, no significant variable
is identified to predict the LC. We also attempted to predict the time-to-event out-
comes, based on the combination of hand-crafted and deep learning-based features.
However, this did not improve the predictive ability of the model.

Kaplan-Meier Curves and Cut-off Values: To visualize the impact of a vari-
able on the survival function of different groups, such as low-risk and high risk ones,
Kaplan-Meier estimation technique [158] is utilized. The cut-off value to identify
these two groups is often calculated based on a logrank test [159], that tries to max-
imize the survival or recurrence difference between the two groups. Considering the
significant predictors of the four time-to-event outcomes, we have computed the cut-
off values, and obtained the low and high-risk groups, as shown in Figs. 4.5-4.7. The
cut-off values to identify low and high-risk groups from CT risk, PET risk, and age
(in years) for OS are 21.15, 0.3, and 85, respectively. In other words, a patient having
a CT risk higher than 21.15, and/or a PET risk higher than 0.3, and/or age higher
than 85 is considered a high-risk patient, and has a lower chance of survival compared
to a low-risk patient. It should be noted that while PET risk is associated with a
hazard ratio of less than one in the DRTOP model, meaning that it has a negative
impact on the outcome when combined with other factors, it has a positive impact
when it is the only predictor taken into account. The cut-off values obtained from
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Figure 4.5: Kaplan-Meier curves associated with the OS, with respect to (a) CT risk,
(b) PET risk, and (C) age. Cut-off values to determine the low and high-risk groups are
obtained from a logrank test. All predictors, when considered independently, have positive
correlations with the OS.

Figure 4.6: Kaplan-Meier curves associated with the RFS, with respect to (a) PET risk,
and (b) SUV.

the PET risk and SUV for the RFS, are 0.16 and 3.6, respectively, and the cut-off
values obtained from the CT risk for DC and LC are 21.9 and 10.8, respectively.

Random Survival Forest (RSF) Analysis: Our results demonstrated that,
based on an RSF model, recurrence free survival (RFS) can be predicted with a
concordance index of 64%, while, based on the variable importance (VIMP) values
presented in Table 4.5, all predictors, except the radiation dose, show predictive
importance.

Fig. 4.8 shows one of the obtained trees from the RSF. Cumulative hazard func-
tion (CHF) is calculated for all the terminal nodes, and all the unique time points.
However, only the CHF associated with the first event time is shown in this figure. It
should be noted that the left terminal node is associated with a CHF of zero, meaning
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Figure 4.7: Kaplan-Meier curves corresponding to (a) DC, and (b) LC, with respect to the
CT risk, where cut-off values are determined by a logrank test.

Table 4.5: Variable importance values obtained from the RSF, for recurrence free survival
prediction. The negative value means no predictive importance.

Variable CT risk PET risk Age Gender SUV Radiation dose
VIMP 60.72 71.36 0.59 6.73 53.90 −4.82

Figure 4.8: One of the trees obtained from the random survival forest (RSF) to predict
the recurrence free survival (RFS). Following this tree, one is able to obtain the cumulative
hazard function (CHF), for each patient, at a desired time point. Based on the CHFs, the
survival can also be calculated.

that no recurrence event has been observed at this node. The RSF model, however,
did not reveal any important predictor for the LC, and the concordance index could
not be improved. Likewise, the RSF did not improve the accuracy of predicting the
OS and DC, compared to the Cox PHM.

The 2-year risk score for RFS can be estimated by summing over the CHF values
up to 2 years, obtained at discrete time points. This score can, specially, be used to
compare the 2-year RFS risk scores of patients. For instance, for two patients, one of
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Table 4.6: Results obtained from the proposed MDR-SURV and the single-scale methods.

Method C-index
Proposed MDR-SURV framework 73%
First scale only (tumor region) 53%
Second scale only (10 pixels added to each side) 69%
Third scale only (20 pixels added to each side) 57%

which is censored after three years and 4 weeks, and the other has experienced the
event of recurrence after one year and 3 weeks, the risk scores obtained from the RSF
are 7.5 and 11.27, respectively.

Interpretability of the Deep Learning-based Features: To enhance inter-
pretability of the extracted deep features (make them more tangible), we have con-
ducted correlation analysis between the features extracted from the layer before the
final layer in the DRTOP model and hand-crafted features, as shown in Figs. 4.9
and 4.10. In these heat maps, blue and red colors show positive and negative cor-
relation, respectively. The darker the color, the stronger the relation. As it can be
inferred from Figs. 4.9 and 4.10, features associated with the PET-risk are highly cor-
related with hand-crafted features extracted from PET images. The ones associated
with the CT-risk, also, show correlation with some hand-crafted features extracted
from CT images, although the correlation is not as strong as it is with the PET-risk.

Comparision with Previous Studies: Generally speaking, it is difficult to
directly compare our study with previous works, as models are developed based on
different datasets. Next, we focus on highlighting the differences between the pro-
posed DRTOP architecture and previous relevant studies. Considerably lower than
the obtained concordance index (c-index) of 68% using the proposed DRTOP model,
the CNN model proposed by Zhu et al. [139] reaches a c-index of 62.9% in predict-
ing OS in lung cancer patients, utilizing pathological images, which capture different
information, compared to PET/CT images. Furthermore, the clinical parameters,
such as SUV, and their predictive importance, are not considered in their study. The
deep learning-based OS prediction model, developed by Wang et al. [160], reaching a
c-index of 70%, also differs from DRTOP, in that multi-scale CT slices are utilized.
Multi-scale input refers to including not only the tumor region itself, but also the sur-
rounding tissues. Features extracted from the ROI (tumor) are not the only features
that influence the outcome. Studies [134] have shown that the tissues surrounding the
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Figure 4.9: Correlation of the hand-crafted radiomics features extracted from PET images,
with the deep learning-based features extracted from layer before the output layer of the
model, trained on PET images.

tumor, also, play an important role in predicting the outcome. To be able to compare
the predicted OS, using the DRTOP model, with the study by Wang et al., we mod-
ified the DRTOP framework to account for multi-scale inputs, leading to a modified
model referred to as MDR-SURV [9]. In paticular, we cropped the CT and PET
slices from three different scales, shown in Fig. 4.11, where the first scale completely
fits the tumor region, and the second and third scales are constructed by adding 10

and 20 pixels to each side of the tumor boundary, respectively. The three scales are
stacked together, to form a 3-channel input, for both CT and PET scans. Other
details of this modified architecture is quite similar to the DRTOP framework. The
c-index, however, increases from 68% to 73%, which shows the significant importance
of including multi-scale inputs. Our future plan is to study the impact of the sur-
rounding regions of tumor on other time-to-event outcomes, including RFS, DC, and
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Figure 4.10: Correlation of the hand-crafted radiomics features extracted from CT images,
with the deep learning-based features extracted from layer before the output layer of the
model, trained on CT images.

LC. Table 4.6 shows the contribution of the different scales to the performance of the
model. The proposed DRTOP framework leads to a better performance in predicting
the OS, compared to the hand-crafted approach [19], increasing the c-index from 51%

to 68%, because deep learning model is trained on its own, on the entirety of the
image, as opposed to hand-crafted radiomics that are based on certain characteristics
of the image.

PET risk and SUV are the only significant predictors of the RFS. However, there
is much variability in the RFS that cannot be explained by the identified predictors,
based on the Cox PHM. To the best of our knowledge, the prediction of lung cancer
RFS, using deep learning, has not been, previously, investigated. The DC can be
predicted by CT risk and SUV, leading to a concordance index of 63%. Deep learning-
based DC prediction has been recently investigated by Xu et al. [141], where serial
CT images are utilized to update the prediction, after each follow-up. This study,
however, fails to provide high accuracy, having only the pre-treatment scans, without
any follow-ups, which is the main goal of our work. The c-index using pre-treatment
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Figure 4.11: The CT and PET components cropped from three scales. These scales are
stacked together and fed to the network.

images only, reported by Xu et al., is 58.9% for 1 year distant control, and 58.5% for
2 year distant control. DRTOP and hand-crafted radiomics are almost on a par with
each other, in predicting DC. While CT risk remains the only significant predictor
of the LC, it does not lead to a satisfying concordance index. This means that there
may be other factors influencing the LC. Hand-crafted radiomics completely failed
to find predictors for the LC, as these features are extracted without considering the
final goal, and there is no guarantee that they can contribute to the prediction.

It should be noted that all the results are reported based on the test set (20%
of the whole dataset), and the low c-index obtained for LC, using the proposed DR-
TOP model, does not indicate a poor performance on the training set. In fact, our
model was able to fit the training set and reach a high concordance index of 75%.
Nevertheless, it failed to generalize well for the test set. This is the reason why the
performance of the LC prediction was low. Increasing the number of patients may
improve the performance.

As the Cox PHM is a semi-parametric model, thus, restricted to a predefined
class of functions, we hypothesized that the poor performance may be due to an
insufficiently met relationship between the predictors and the outcomes (RFS and
LC). In other words, to ensure the appropriateness of the Cox PHM, the propor-
tional hazards assumption must be met, which is not always the case. We, therefore,
replaced the Cox PHM with a random survival forest (RSF) [154], which does not
make this assumption, and calculated the importance values of the predictors, along
with the final concordance indices. Our results demonstrated that, based on the RSF
model, recurrence free survival (RFS) can be predicted with a concordance index of
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64%, while all the predictors, except the radiation dose, showed high predictive value.
Although a Cox PHM cannot predict the RFS, a non-parametric model can better
explain the relation between the predictors and the outcome. Furthermore, although
it is computationally expensive to calculate the cumulative hazard and absolute risk
from the Cox PHM, as the baseline hazard is almost impossible to estimate, the RSF
can be more easily used to provide the risk score. The RSF, however, may be biased,
in the sense that it favors the variables with many split-points [161]. Variables with
more split-points have a higher influence on the prediction error, and as such, they
may be given more importance value.

4.4 Conclusion

In this chapter, we proposed a novel deep architecture, referred to as Deep learning-
based radiomics for Time-to-event Outcome Prediction (DRTOP), consisting of two
parallel CNNs, one of which was trained based on the CT component, and the other
based on the PET component of the PET/CT. The output of the two models (referred
to as CT and PET risks), together with clinical parameters such as Standardized Up-
take Value (SUV), are fed to a Cox Proportional Hazards Model (PHM), to predict the
time-to-event outcomes. The correlation between SUV and time-to-event outcomes
has been previously studied, and it has been shown that SUV is of prognostic value
for Overall Survival (OS), Local Control (LC), and Recurrence Free Survival (RFS).
The SUV is, however, incapable of predicting the outcome, independently. To the
best of our knowledge, this is the first time-to-event study that applies a deep learning
method to the PET/CT images for staging lung cancer. Moreover, unlike most of
the previous studies, which are limited to predicting the OS, our study explores the
prediction of RFS, LC, and DC, which are of high clinical value. In conclusion, the
proposed deep learning-based model on staging PET/CT images predicted the overall
survival, recurrence free survival and distant metastasis in lung cancer patients. The
comparison with hand-crafted radiomics showed that the deep learning model had a
relatively better performance. While hand-crafted radiomics will continue to foster
medical imaging research and give new insights about individual characteristics of
medical images in patients with lung cancer, the combination of the two approaches
may prove to be the future for clinical application. It should be noted that despite
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all the advancements in radiomics, there is still a long way until it is utilized as a
stand-alone decision making tool. Challenges include the difficulty of acquiring rich
amounts of training samples, considering the privacy issues and lack of homogeneous
cohorts of patients, the difficulty of obtaining ground truth, unbalanced data, and im-
age noise. The proposed model, however, can assist the radiologist with having a pick
on factors and variables that are not available to the unaided human eye. In other
words, deep learning-based radiomics may add complimentary predictive information
in the personalized management of lung cancer patients.
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Chapter 5

Deep Learning-based COVID-19

Diagnosis

As discussed in Chapter 1, COVID-19 diagnosis is the third application considered
in this thesis. This chapter focuses on this problem considering different imaging
modalities and clinical information. The chapter is organized as follows: Section 5.1
describes the intuition and problem statement, followed by the proposed COVID-
CAPS framework in Section 5.2. Data collection and model development from CT
scans are presented in Section 5.3. Finally, Section 5.4 concludes the chapter.

5.1 Introduction

Novel Coronavirus disease (COVID-19), first emerged in Wuhan, China [162], has
abruptly and significantly changed the world as we know it at the end of the 2nd
decade of the 21st century. COVID-19 seems to be extremely contagious and quickly
spreading globally with common symptoms such as fever, cough, myalgia, or fatigue
resulting in ever increasing number of human fatalities. Besides having a rapid human-
to-human transition rate, COVID-19 is associated with high Intensive Care Unit
(ICU) admissions resulting in an urgent quest for development of fast and accurate
diagnosis solutions [162]. Identifying positive COVID-19 cases in early stages helps
with isolating the patients as quickly as possible [163], hence breaking the chain of
transition and flattening the epidemic curve.

Reverse Transcription Polymerase Chain Reaction (RT-PCR), which is currently
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the gold standard in COVID-19 diagnosis [162], involves detecting the viral RNA from
sputum or nasopharyngeal swab. The RT-PCR test is, however, associated with rela-
tively low sensitivity (true positive rate) and requires specific material and equipment,
which are not easily accessible [162]. Moreover, this test is relatively time-consuming,
which is not desirable as the positive COVID-19 cases should be identified and tracked
as fast as possible [163]. Images [1] in COVID-19 patients, on the other hand, have
shown specific findings, such as ground-glass opacities with rounded morphology and
a peripheral lung distribution. Although imaging studies and theirs results can be
obtained in a timely fashion, the previously described imaging finding may be seen
in other viral or fungal infections or other entities such as organizing pneumonia,
which limits the specificity of images and reduces the accuracy of a human-centered
diagnosis.
Literature Review: Since revealing the potentials of computed tomography (CT)
scans and X-ray images in detecting COVID-19 and weakness of the human-centered
diagnosis, there have been several studies [164–166] trying to develop automatic
COVID-19 classification systems, mainly using Convolutional Neural Networks (CNNs)
[167]. Xu et al. [162] have first adopted a pre-trained 3D CNN to extract potential in-
fected regions from the CT scans. These candidates are subsequently fed to a second
CNN to classify them into three groups of COVID-19, Influenza-A-viral-pneumonia,
and irrelevant-to-infection, with an overall accuracy of 86.7%. Wang et al. [163] have
first extracted candidates using a threshold-based strategy. Consequently, for each
case two or three regions are randomly selected to form the dataset. A pre-trained
CNN is fine-tuned using the developed dataset. Finally, features are extracted from
the CNN and fed to an ensemble of classifiers for the COVID-19 prediction, reaching
an accuracy of 88%. CT scans are also utilized in Reference [168] to identify positive
COVID-19 cases, where all slices are separately fed to the model and outputs are ag-
gregated using a Max-pooling operation, reaching a sensitivity of 90%. In a study by
Wang and Wong [169], a CNN model is first pre-trained on the ImageNet dataset [80],
followed by fine-tuning using a dataset of X-ray images to classify subjects as normal,
bacterial, non-COVID-19 viral, and COVID-19 viral infection, achieving an overall
accuracy of 83.5%. In a similar study by Sethy and Behera [170], different CNN
models are trained on X-ray images, followed by a Support Vector Machine (SVM)
classifier to identify positive COVID-19 cases, reaching an accuracy of 95.38%.
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Figure 5.1: The proposed COVID-CAPS architecture.

Throughout this chapter, first COVID-19 diagnosis using X-ray images is consid-
ered. Since, CT scans contain more informative 3D features, we continue by devel-
oping deep learning models to identify COVID-19 from CT scans.

5.2 Capsule Networks for Identification of COVID-

19 cases from Chest Radiographs (CXR)

In this section, we propose a Capsule Network-based framework, referred to as the
COVID-CAPS [10], for COVID-19 identification using X-ray images. To potentially
and further improve diagnosis capabilities of the COVID-CAPS, we considered pre-
training and transfer learning using an external dataset of X-ray images, consisting
of 94, 323 frontal view chest X-ray images for common thorax diseases. This dataset
is extracted from the NIH Chest X-ray dataset [171] including 112, 120 X-ray images
for 14 thorax abnormalities. It is worth mentioning that our pre-training strategy
is in contrary to that of Reference [169] where pre-training is performed based on
natural images (ImageNet dataset). Intuitively speaking, pre-training based on an
X-ray dataset of similar nature is expected to result in better transfer learning in
comparison to the case where natural images were used for this purpose.

The architecture of the proposed COVID-CAPS is shown in Fig. 5.1, which con-
sists of 4 convolutional layers and 3 Capsule layers. The inputs to the network are 3D
X-ray images. The first layer is a convolutional one, followed by batch-normalization.
The second layer is also a convolutional one, followed by average pooling. Similarly,
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the third and forth layers are convolutional ones, where the forth layer is reshaped
to form the first Capsule layer. Consequently, three Capsule layers are embedded in
the COVID-CAPS to perform the routing by agreement process. The last Capsule
layer contains the instantiation parameters of the two classes of positive and negative
COVID-19. The length of these two Capsules represents the probability of each class
being present.

Since we have developed a Capsule Network-based architecture, which does not
need a large dataset, we did not perform any data augmentation. However, since
the number of positive cases, N+, are less than the negative ones, N−, we modified
the loss function to reduce the class imbalance effect. In other words, more weight
is given to positive samples in the loss function, where weights are determined based
on the proportion of the positive and negative cases, as follows

loss =
N+

N+ +N−
× loss− +

N−

N+ +N−
× loss+, (5.1)

where loss+ denotes the loss associated with positive samples, and loss− denotes the
loss associated with negative samples.

As stated previously, to potentially and further improve diagnosis capabilities of
the COVID-CAPS, we considered pre-training the model in an initial step. In contrary
to Reference [169] where ImageNet dataset [80] is used for pre-training, however, we
constructed and utilized an X-ray dataset. The reason for not using ImageNet for
pre-training is that the nature of images (natural images) in that dataset is totally
different from COVID-19 X-ray dataset. It is expected that using a model pre-trained
on X-ray images of similar nature would result in better boosting of the COVID-
CAPS. For pre-training with an external dataset, the whole COVID-CAPS model is
first trained on the external data, where the number of final Capsules is set to the
number of output classes in the external set. From existing 15 disease in the external
dataset, 5 classes were constructed with the help of a thoracic radiologist, with 18
years of experience in thoracic imaging (A. O.). To fine-tune the model using the
COVID-19 dataset, the last Capsule layer is replaced with two Capsules to represent
positive and negative COVID-19 cases. All the other Capsule layers are fine-tuned,
whereas the conventional layers are fixed to the weights obtained in pre-training.

In summary, COVID-CAPS architecture contains the following modifications ap-
plied to the original Capsule Network presented in Reference [51]:
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• The Capsule Network presented in Reference [51] originally works on a dataset
of digital numbers, which are black-and-white and small in size compared to the
X-ray images. To make the Capsule Network applicable in the problem at hand,
we have extended the Capsule layers and the number of routing procedures to
be able to extract useful patterns from X-ray images.

• The dataset originally used for the development of the Capsule Networks is
completely balanced in terms of the number of instances available for each class
label. The COVID-19 identification problem, however, is restricted to highly
unbalanced datasets, as COVID-19 is a relatively new disease. To account for
this unbalanced dataset, we modified the original margin loss to assign more
penalty to mis-classified positive cases.

• We pre-trained the Capsule Network to compensate for the small available
dataset. The pre-training is performed on an external dataset with 5 classes,
reflected in 5 final Capsules. These 5 Capsules are then replaced with two, and
all the Capsule layers are fine-tuned on the main COVID-19 dataset.

We used Adam optimizer with an initial learning rate of 10−3, 100 epochs, and a
batch size of 16. We have split the training dataset, into two sets of training (90%)
and validation (10%), where training set is used to train the model and the validation
set is used to select a model that has the best performance. Selected model is then
tested on the testing set, for the final evaluation. The following four metrics are
utilized to represent the performance: Accuracy; Sensitivity; Specificity, and Area
Under the Curve (AUC).

COVID-CAPS Performance : To conduct our experiments, we used the same
dataset as Reference [169]. This dataset is generated from two publicly available chest
X-ray datasets [173, 180]. As shown in Fig. 5.2, the generated dataset contains four
different labels, i.e., Normal; Bacterial; Non-COVID Viral, and; COVID-19. As the
main goal of this study is to identify positive COVID-19 cases, we binarized the labels
as either positive or negative. In other words, the three labels of normal, bacterial,
and non-COVID viral together form the negative class.

Using the aforementioned dataset, the proposed COVID-CAPS achieved an ac-
curacy of 95.7%, a sensitivity of 90%, specificity of 95.8%, and AUC of 0.97. The
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Table 5.2: Description of the External X-ray images dataset used for pre-training COVID-
CAPS.

Final Category Initial Categories Number of Images
No Findings No Findings 60361

Tumors Infiltration, Mass, Nodule 16103
Pleural Diseases Effusion, Pleural Thickening, Pneumothorax 8042
Lung Infection Consolidation, Pneumonia 1668

Others Atelectasis, Cardiomegaly, Edema, Emphysema, Fibrosis, Hernia 8149

Figure 5.2: Labels available in the COVID-19 dataset.

Figure 5.3: ROC curve from the proposed COVID-CAPS. Without pre-training refers to
training from scratch.

obtained receiver operating characteristic (ROC) curve is shown in Fig. 5.3. In par-
ticular, false positive cases have been further investigated to have an insight on what
types are more subject to being mis-classified by COVID-19. It is observed that 54%
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of the false positives are normal cases, whereas bacterial and non-COVID cases form
only 27% and 19% of the false positives, respectively.

As shown in Table 5.1, we compare our results with Reference [170] that has used
the binarized version of the same dataset. COVID-CAPS outperforms its counterpart
in terms of accuracy and specificity. Sensitivity is higher in the model proposed in Ref-
erence [170], that contains 23 million trainable parameters. Reference [165] is another
study on the binarized version of the same X-ray images. However, as the negative
label contains only normal cases (in contrast to including all normal, bacterial, and
non-covid viral cases as negative), we did not compare the performance of the COVID-
CAPS with this study. It is worth mentioning that the proposed COVID-CAPS has
only 295, 488 trainable parameters. Compared to 23 million trainable parameters of
the model proposed in Reference [170], therefore, COVID-CAPS can be trained and
used in a more timely fashion, and eliminates the need for availability of powerful
computational resources.

In another experiment, we pre-trained the proposed COVID-CAPS using an ex-
ternal dataset of X-ray images, consisting of 94, 323 frontal view chest X-ray images
for common thorax diseases. This dataset is extracted from the NIH Chest X-ray
dataset [171] including 112, 120 X-ray images for 14 thorax abnormalities. This
dataset also contains normal cases without specific findings in their corresponding
images. In order to reduce the number of categories, we classified these 15 groups
into 5 categories based on the relations between the abnormalities in each disease.
The first four groups are dedicated to No findings, Tumors, Pleural diseases, and
Lung infections categories. The fifth group encompasses other images without spe-
cific relations with the first four groups. We then removed 17, 797 cases with multiple
labels (appeared in more than one category) to reduce the complexity. The adopted
dataset is then used to pre-train our model. Table 5.2 demonstrates our classification
scheme and distribution of the data. Results obtained from fine-tuning the pre-trained
COVID-CAPS is also shown in Table 5.1, according to which, pre-training improves
accuracy and specificity. The ROC curve is shown in Fig. 5.3, according to which,
the obtained AUC of 0.99 outperforms that of COVID-CAPS without pre-training.

Based on an inclusive study reported in Reference [174], human-centered COVID-
19 detection from chest radiography leads to a high sensitivity, whereas specificity
remains as low as 25%. The low specificity can lead to excessive expenses to isolate
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and treat false positive cases. The obtained specificity of 98.6% using the proposed
COVID-CAPS can significantly assist radiologists to lower the number of reported
false positives. Furthermore, the ROC curve can provide physicians with a means
to calibrate and balance the sensitivity and specificity. In other words, by changing
the probability threshold, above which the positive label is assigned to a subject,
physicians are able to form the desired balance between sensitivity and specificity.
To make this point more clear, we changed the probability threshold based on the
ROC curve from the default value of 0.5 to 0.44. This new threshold increases the
sensitivity to 100%, while specificity is slightly decreased to 98.4%.

To further elaborate on the effectiveness of the proposed model, we designed a
CNN that has the same front-end as that of the COVID-CAPS. In other words, it
has the same convolutional layers (the first four main layers of the COVID-CAPS).
The Capsule layers, however, are replaced with three fully-connected layers, the first
two of which have 256 neurons and the last one, having a Sigmoid activation, has two
neurons representing the two classes of positive and negative COVID-19 cases. It is
worth noting that we considered fully-connected layers after the front-end, because to
some extent they resemble Capsule layers in the sense that there is no shared weights
or kernels. This CNN is pre-trained on the same external dataset. In the fine-tuning
phase, the convolutional layers are kept fixed and only the fully-connected layers are
retrained. Furthermore, the cross-entropy loss function is modified (similar in nature
to the modifications introduced on the margin loss of the COVID-CAPS in Eq. (5.1))
to give more penalty to mis-classified positive cases. All other hyper-parameters,
including the optimizer and learning rate, exactly resemble the hyper-parameters of
the COVID-CAPS. The training, validation, and test sets are also the same as the
ones used in COVID-CAPS. Based on the obtained results, which are presented in
Table 5.1, the designed CNN, having 368, 508, 226 trainable parameters, achieves an
accuracy of 96.24%, a sensitivity of 50%, and a specificity of 96.97%. The lower
performance of the CNN, and the fact that it has exactly the same front-end with
only the Capsule layers replaced with fully-connected ones support the effectiveness
of the Capsule layer with the routing by agreement mechanism.

Finally, it is worth providing some intuition on COVID-CAPS time and space
complexity. In particular, following the literature [175] we model the time complexity
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as a function of the number of required multiplications in both Capsule and fully-
connected layers. Generally speaking, a fully-connected layer involves a matrix mul-
tiplication. Considering m×d1 and n×d2 neurons in two consecutive fully-connected
layers, the required matrix multiplication involves m × d1 × n × d2 multiplication
operations. Reshaping the two fully-connected layers into two consecutive Capsule
layers leads to m Capsules of dimension d1 making predictions for n Capsules of di-
mension d2. Each single prediction involves d1×d2 multiplications, as each lower layer
Capsule i with dimension d1 should be multiplied by the weight matrix Wij to form
the prediction ûj|i for the higher layer Capsule j of dimension d2. In other words,
Wij has d1 rows and d2 columns. Considering n Capsules in the lower layer and m
Capsules in the higher layer, the total number of operations is m× d1×n× d2 which
is exactly the same as the fully-connected scenario. However, each parent Capsule
is calculated as a weighted average over the predictions. Weighting each prediction
ûj|i by the coupling coefficient cij involves d2 (dimension of the prediction and parent
Capsule) multiplications. Again having n Capsules in the lower layer and m Capsules
in the higher layer, one routing by agreement process includes d2×n×m multiplica-
tions. In conclusion, even with one round of routing by agreement, which means equal
contribution of all the predictions, a Capsule layer has d2 × n × m multiplications
more than a fully-connected layer. In practice, however, Capsule Networks require
far less layers to have comparable performance with CNNs. To illustrate this point
we calculated the time needed to predict the outcome of one single subject using the
proposed COVID-CAPS. Our TITAN Xp GPU computer takes almost 0.16 seconds
to calculate the outcome, whereas this time is approximately 1.62 seconds for the
ResNet-50 model utilized in Reference [170]. Finally, regrading the space complexity,
as we showed in the Table 5.1, COVID-CAPS contains far less trainable parameters
compared to its counterparts. In particular, while trained COVID-CAPS occupies
almost 1.5 Megabytes, the ResNet-50 requires 98 Megabytes.

5.3 Diagnosis of COVID-19 from CT scans

Although, CXR can act as a quantitative method to assess the extent of COVID-
19 involvement and estimate the risk of Intensive Care Unit (ICU) admission, it
still has lower sensitivity compared to Computed Tomography (CT) [176]. Due to
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high sensitivity and rapid access, chest CT plays a significant role in diagnosis and
management of COVID-19 and has been recognized as the most sensitive imaging
modality to detect complications [177]. It is worth noting that the developed imaging-
based AI algorithms for the purpose of COVID-19 diagnosis can pave the path for the
development of similar automatic systems for potential future pandemics, for which
RT-PCR tests are not available.

5.3.1 COVID-CT-MD, COVID-19 computed tomography scan

dataset applicable in machine learning and deep learning

Despite the high potential of CT in contributing to the COVID-19 research and
clinical usage, publicly available datasets are mostly limited to a few number of cases,
are not accompanied with other types of respiratory diseases to facilitate comparisons,
and are not associated with suitable labels. Furthermore, cases may be collected from
different sources with different imaging protocols, limiting a unified study. In a few
identified datasets, available CT scans are limited to only infected slices, rather than
the complete volume. Another important aspect that should be considered in the
available datasets is that whether labels are available in a patient-level, slice-level,
and lobe-level fashion. The later can further contribute to identify the location of the
COVID-19 infection. Finally, different types of labels and information, suitable for
different tasks, are provided in identified datasets. Table 5.3 provides an overview of
the available datasets along with the provided COVID-19 related information.

Table 5.3: Available COVID-19 CT scan datasets. NA stands for not available.

Number of cases Label type Data Source CT volume Label Level

Dataset COVID CAP Normal Classification Segmentation Multiple Single Available Not available Patient-level Slice-level Lobe-level

Reference [178] 49 NA NA 3 3 3 3

Reference [179] 20 NA NA 3 3 3 3

Reference [180] 20 NA NA 3 3 3 3

Reference [181] 856 NA 254 3 3 3 3

Reference [182] 216 NA 55 3 3 3 3

Reference [183] 60 NA 60 3 3 3 3

Reference [184] 95 NA 282 3 3 3 3 3

Reference [185] 2,980 NA NA 3 3 3 3

COVID-CT-MD 169 60 76 3 3 3 3 3 3

128



The introduced COVID-19 CT scan dataset, referred to as the COVID-CT-MD [11],
is applicable in Machine Learning (ML) and deep learning studies of COVID-19 clas-
sification. In particular, COVID-CT-MD dataset consists of 169 confirmed posi-
tive COVID-19 cases (gathered from 2020/02/23 to 2020/04/21), 76 normal cases
(gathered from 2019/01/21 to 2020/05/29), and 60 Community Acquired Pneumonia
(CAP) cases (gathered from 2018/04/03 to 2019/11/24). All these cases are collected
from Babak Imaging Center in Tehran, Iran, and labeled by three experienced radi-
ologists in patient-level, slice-level, and lobe-level manners. Patient-level label refers
to a single diagnosis assigned to the participant, whereas slice-level and lobe-level
refer to identifying slices and lobes demonstrating infection, respectively. More im-
portantly, the whole CT volume is available for all the participants. COVID-CT-MD
is presented in Table 5.3, along with the previous datasets, to highlight its differ-
ences. Regarding Reference [184], we would like to mention that while this Reference
provides only COVID-19 and normal cases, COVID-CT-MD provides CAP cases ad-
ditionally. Furthermore, COVID-CT-MD is the only classification-related dataset
that contains lobe-level information, which can significantly improve and contribute
to the localization and analysis of the COVID-19 infection.

Data Collection Methods

This section provides a description of the data collection procedure, inclusion criteria,
and de-identification. Furthermore, detailed statistics of the data is presented to
facilitate its usage. More importantly, applicability of the COVID-CT-MD dataset
for development of ML/DNN solutions is explained. This section is concluded by
describing the possible limitations of the provided dataset.
Data Collection: The COVID-CT-MD dataset contains volumetric chest CT scans
of 169 patients positive for COVID-19 infection, 60 patients with CAP, and 76 normal
patients. COVID-19 cases are collected from February 2020 to April 2020, whereas
CAP cases and normal cases are collected from April 2018 to December 2019 and Jan-
uary 2019 to May 2020, respectively, in Babak Imaging Center, Tehran, Iran. Three
main criteria are considered by three radiologists for classifying the participants, as
follows:

1. Imaging findings including:

– Ground Glass Opacities (GGOs), referring to hazy transparent opacities;

129



– Consolidation pattern, which means the air in the alveoli and peripheral
bronchioles is replaced by fluid;

– Crazy Paving, referring to thickened interlobular septa and intralobular
lines superimposed on a background of ground-glass opacity;

– Bilateral and multifocal lung involvement;

– Peripheral distribution; and

– More distribution in lower lobes.

2. Clinical findings including symptoms, characteristics, patient history, and RT-
PCR outcome if available; and

3. Epidemiology, referring to whether the participant comes from high risk areas
or has had close contact with a positive COVID-19 patient.

If a participant is identified positive according to all three criteria, COVID-19 label
is assigned. Otherwise, the participant is classified as either CAP or normal. This
procedure is followed by the three radiologists. Subsequently the majority voting is
adopted for the final assignment. The three radiologists have 88.9% agreement in
identifying COVID-19, CAP, and normal cases, whereas the first and second radiol-
ogists have 91.1% agreement, the first and third radiologists have 97.4% agreement,
and the second and third radiologists have 89.1% agreement.

A subset of 54 COVID-19, and 25 CAP cases were analyzed by the first radiologist
to identify and label slices with evidence of infection. The labeled subset of the data
contains 4,957 number of slices demonstrating infection and 18,392 number of slices
without infection.

Besides CT slices, clinical data is collected for the patients, which includes the
following:

• Patients’ age;

• Patients’ gender;

• Patients’ weight;

• Clinical characteristics: including symptoms, reason for scanning, and patients’
history;

• Surgery history;
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• Follow-up: some of the COVID-19 patients are followed-up after scanning and
their status including recovery, hospital admission, and death is recorded;

• RT-PCR: positive RT-PCR outcome is available for some of the COVID-19
patients.

Table 5.4: CT scan settings used to acquire the COVID-CT-MD dataset.

Diagnosis Slice Thickness (mm) Peak Kilovoltage (kVp) Exposure Time (ms) X-ray Tube Current (mA) SID (mm) SOD (mm) Exposure values (mAs)

COVID-19 2 110− 130 600 153− 343 940 535 61.2− 180.0

CAP 2 110− 120 420− 600 94− 500 940− 1040 535− 570 38.4− 175.24

Normal 2 110 600 132− 343 940 535 60.4− 163.71

Figure 5.4: The distribution of the Exposure values for COVID-19, CAP and Normal cases.

Table 5.5: The statistical parameters (mean and standard deviation) of the Exposure values.

Diagnosis Exposure mean Exposure standard deviation

COVID-19 111.43 23.70

CAP 96.64 29.75

Normal 109.18 23.97

CT scans are comprised of cross-sectional 2D images from thin sections of the
body (slices), creating a 3D representation of the structures inside the body. In the
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modern CT scanners, a rotating X-ray generator sends multiple X-ray beams into the
object from multiple angles. The amount of the radiation passed through the object
is then captured by sensitive radiation detectors, followed by a computer-assisted
process, which reconstructs the information obtained from the detectors into detailed
sequential images using image reconstruction techniques [186]. All images in COVID-
CT-MD are obtained from a SIEMENS, SOMATOM Scope scanner in the axial view,
using the helical acquisition technique, i.e., the patient is moved through the gantry
while the X-ray beams and detectors are spinning rapidly around the patient. The
images are reconstructed using the Filtered Back Projection (FBP) reconstruction
method [187]. The reconstruction matrix size (output size of the images) is set to
512×512, and the D40s reconstruction kernel is used to reduce the blurring and noise
by modifying the frequency contents of the data during the image reconstruction in
the scanner [188]. Finally, all images are provided in the Hounsfield Unit and saved in
the Digital Imaging and Communications in Medicine (DICOM) format. It is worth
mentioning that following the recommended chest CT protocols for suspected cases
or follow up of metastasis, bronchiectasis, interstitial lung disease and pulmonary
infections [189] all images are Non-Contrast CT (NCCT) and none of them is CT
Pulmonary Angiography (CTPA). Acquired images are, consequently, reconstructed
into high resolution CT (HRCT).

Table 5.4 shows different CT acquisition settings, where Peak KiloVoltage (kVp)
and Exposure Time affect the radiation exposure dose, while slice thickness represents
the axial resolution. As shown in Table 5.4, slice thickness, kVP, and exposure time
are almost the same with a few variations in a few CAP cases. Distance of Source
to detector and Distance of Source to patient, which are traditionally referred to as
SID and SOD, respectively, are also the same in all cases except for a few CAP cases.
The minimum and maximum exposure value (in mAs) used in the scanning process is
also presented in Table 5.4. The exposure value determines the total radiation dose
in CT scan. The distribution of the exposure values is illustrated by the violin plots
for each disease type in Figure 5.4. Accordingly, the mean and standard deviation of
the exposure values are reported in Table 5.5.
CT Acquisition Care in The Medical Imaging Department: As COVID-19
is highly contagious, all the staff of the medical imaging department involved in
the CT acquisition are provided with personnel protective equipment (PPE). More
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importantly, there is a minimum of 5-minute time slack between two consecutive CT
scans, allowing enough time to sanitize the CT scanner.
Data Inclusion and Exclusion Criteria: All cases with confirmed clinical diag-
nosis are included in the dataset. Nevertheless, during the data collection procedure,
there were some cases related to the late 2019, with manifestations similar to those of
COVID-19. However, as the first COVID-19 case in Iran is reported in early February
2020, these cases were excluded from the dataset. Furthermore, according to the radi-
ologists’ assessment, images with poor quality and visible artifacts were excluded. In
summary, 320 cases were initially screened, among which 5% (15 cases) were excluded
according to the radiologists’ judgement, allowing 305 high quality CT studies.
De-identification: To respect the patients’ privacy and comply with the DICOM
supplement 142 (Clinical Trial De-identification Profiles) [190], we have de-identified
all the CT studies by removing or obfuscating every names, UIDs, dates, times,
comments, and center-related information. Some helpful DICOM attributes related
to the patients’ gender and age, the scanner type, and the image acquisition settings
have been retained to preserve the statistical characteristics of the dataset. Patient’s
ID and UID attributes which are necessary to retain the consistency of the CT studies
are replaced by new generated values which does not allow the identification of the
patients.
Data Statistics: The demographic distribution of the dataset describing the

Table 5.6: Gender and age distribution in COVID-CT-MD

Diagnosis Cases Gender Age (year)

COVID-19 169 108 M/61 F 51.96± 14.39

CAP 60 35 M/25 F 57.7± 21.7

Normal 76 40 M/36 F 43.4± 14.1

gender and age distributions is illustrated in Table 5.6 and Figure 5.5. Please note
that, no restrictions were imposed on the participants to indicate a binary response.
As shown in Figure 5.5(a), males outnumbered females in this dataset. However,
we would like to mention that although male cases are dominant, according to a
recent study [191], there is no correlation between the CT score and participants’
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(a) (b)

Figure 5.5: (a) The number of cases separated by the patient’s gender. (b) The distribution
of age for COVID-19, CAP and Normal cases.

Table 5.7: The number of cases, Slices, and Infection Ratio in the labeled dataset.

Diagnosis Cases Slices Demonstrating Infection Slice without infection Infection Ratio

COVID-19 54 3779 4269 7.0%− 86.2%

CAP 25 1178 2718 7.8%− 56.8%

gender. Furthermore, this dominance is common in most of the COVID-19-related
datasets [177], possibly because men are more vulnerable to COVID-19, compared
to women [192]. The boxplot in Figure 5.5(b) represents the important statistical
parameters of the patients’ age distribution. As shown in this boxplot, normal cases
are mainly distributed in lower ages, while CAP cases are distributed in a wide
range of ages with a higher average age. Regarding the ethnicity of the patients,
the participants are Iranian (more than 60% Persian). Potential combination of the
COVID-CT-MD dataset with other available ones, presented in Table 5.3, improves
the applicability of AI algorithms to different populations.

As previously stated, part of the dataset is analyzed and the slice-level labels
are extracted. The number of labeled cases and slices demonstrating infection are
presented in Table 5.7. Infection ratio in this table represents the ratio of the slices
demonstrating infection to the total number of slices in a CT scan, which varies for
different cases based on the severity and stage of the disease. The minimum and
maximum values for the infection ratio in the labeled dataset are presented in Ta-
ble 5.7. The distribution of the Infection Ratio is also illustrated by the boxplots in
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(a) (b)

Figure 5.6: (a) The distribution of the Infection Ratio in the labeled dataset for COVID-
19 and CAP cases. (b) The histogram of the Infection Ratio in the labeled dataset for
COVID-19 and CAP cases.

Table 5.8: Number of cases and slices, respectively, demonstrating infection in each lobe.
LLL: Left Lower Lobe – LUL: Left Upper Lobe – RLL: Right Lower Lobe and Lingula –
RML: Right Middle Lobe – RUL: Right Upper Lobe

Diagnosis LLL LUL RLL RML RUL

COVID-19 42&1669 38&1120 45&2008 26&420 29&826

CAP 13&374 5&117 18&519 7&186 9&208

Total 56&2079 43&1237 63&2527 33&606 38&1034

Figure 5.6(a), which demonstrate a higher infection ratio in COVID-19 cases com-
pared to CAP cases. The histogram of the Infection Ratio values is illustrated in
Figure 5.6(b).

In addition to the described slice-level labels, the detailed distribution of infection
in each lobe of the lung is provided by the radiologists. Table 5.8 indicates the number
of cases and slices with infection demonstrated in specific lung regions. Similar to
Figure 5.6, where the infection ratio was presented for the total slices with infection in
the lung, the average of lobe infection ratios are presented in Figure 5.7, illustrating
the average ratio of slices demonstrating infection in a particular lobe to the total
number of slices in a CT scan. As evident in Table 5.8 and Figure 5.7, the average
infection ratio in the lower lobes is higher in both COVID-19 and CAP cases compared
to other lung regions in our labeled dataset.
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Figure 5.7: Average Infection Ratio in each lobe of the lung for COVID-19 and CAP cases
in the labeled dataset.

Limitations: Although all cases and labels are confirmed by three experienced radi-
ologists, we would like to describe a few limitations that the data users may encounter.
These limitations are as follows:

• The slice and lobe labeling processes focus more on regions with distinctive
manifestations rather than minimal findings.

• Not all the COVID-19 patients have confirmed positive RT-PCR result, as this
test was not publicly accessible in Iran at the time of the first emergence of
the COVID-19. Furthermore, the high load of patients in need of COVID-19
examination, did not allow for an inclusive RT-PCR test. The diagnosis of some
patients in the COVID-CT-MD dataset is confirmed based on the CT findings,
as well as the clinical results and epidemiology.

• Although most of the cases with low quality CT scans are excluded, there may
still be some cases with mild motion artifact which is inevitable, since COVID-
19 patients suffer from dyspnea.

• During the slice and lobe labeling process, some suspicious areas adjacent to
the chest wall and diaphragm are not labeled as “infected”, due to their poor
distinction.
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COVID-19 Cases

Case-ID

Slice-ID.dcm

Cap Cases
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Slice-ID.dcm

Normal Cases

Case-ID

Slice-ID.dcm

Index.csv

Slice-level-labels.npy

Lobe-level-labels.npy

Clinical-data.csv

Radiogists-seperated-labels.csv

Figure 5.8: Structure of the data included in COVID-CT-MD dataset.

Data Records

The diagram in Figure 5.8 shows the structure of the COVID-CT-MD dataset. The
COVID-CT-MD dataset is accessible through Figshare [193]. COVID-19, CAP and
Normal participants are placed in separate folders, within which patients are arranged
in folders, followed by CT scan slices in DICOM format. “Index.csv” is related to the
patients having slice-level and lobe-level labels. The indices given to patients in
“Index.csv” file are then used in “Slice-level-labels.npy” and “Lobe-level-labels.npy” to
indicate the slice and lobe labels. “Slice-level-labels.npy” is a 2D binary Numpy array
in which the existence of infection in a specific slice is indicated by 1 and the lack of
infection is shown by 0. In “Slice-level-labels.npy”, the first dimension represents the
case index and the second one represents the slice numbers. “Lobe-level-labels.npy”
is a 3D binary Numpy array in which the existence of infection in a specific lobe and
slice is determined by 1 in the corresponding element of the array. Like the slice-level
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array, in “Lobe-level-labels.npy”, the two first dimensions represent the case index
and slice numbers respectively. The third dimension shows the lobe indices which are
specified as follows:

• 0 : Left Lower Lobe (LLL)

• 1 : Left Upper Lobe (LUL)

• 2 : Right Lower Lobe (RLL)

• 3 : Right Middle Lobe (RML)

• 4 : Right Upper Lobe (RUL)

It is worth noting that CT slices are sorted based on the "Slice Location" value stored
in the corresponding DICOM tag "(0020,1041) - DS - Slice Location". The slice-level
and lobe-level labels are provided according to described slice order. The researchers,
however, can re-arrange the slices using other CT attributes based on their preference,
as long as they re-arrange the labels accordingly. The COVID-CT-MD dataset is also
accompanied with the clinical data, stored in "Clinical-data.csv". Finally, to facilitate
the inter-observer reliability studies, labels assigned by the three radiologists are
separately provided in "Radiologists-separated-labels.csv".
Technical Validation: Two noteworthy parameters in the studies using CT scans
are the quality control and calibration of the scanning device. The longest time period
between the scanner auto-calibration and the study in the COVID-CT-MD dataset
is 1 day, which ensures calibrated and accurate performance of the scanning device.
Furthermore, there is an annual SIEMENS quality control that ensures the absence
of ring artifacts in the acquired CT scans.
Usage Notes: With the increasing number of COVID-19 patients, healthcare work-
ers are overwhelmed with a heavy workload, lowering their concentration for a proper
diagnosis. Accurate and timely COVID-19 diagnosis, on the other hand, is a crit-
ical factor in preventing the disease transition, treatment, and resource allocation.
Machine Learning (ML), in particular Deep Learning (DL) based on Deep Neural
Networks (DNN), is shown to be practical and effective in COVID-19 diagnosis and
severity assessment. The COVID-CT-MD dataset is specifically designed to facilitate
application of ML/DL in COVID-19-related tasks. In particular, this dataset can be
used towards:
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Figure 5.9: Pipeline of the proposed hybrid model for COVID-19 diagnosis.

• A patient-level binary classification [194] to distinguish COVID-19 from all other
cases.

• A patient-level multi-class classification [194] to identify COVID-19, CAP, and
normal participants.

• A slice-level [195] and lobe-level classification to separate infected slices and
lobes from non-infected ones for further analysis.

• Slice-level and lobe-level labels can be used as additional inputs to segmentation
models [196], to focus on only infected slices.

• Slice-level and lobe-level labels can be used in generative models to generate
artificial COVID-19 images, towards increasing the security of the healthcare
systems and developing attack resilient solutions [197].

5.3.2 Hybrid Deep Learning Model for Diagnosis of COVID-

19 using CT Scans and Clinical/Demographic Data

In this section, we develop a hybrid deep learning model for COVID-19 diagnosis [12],
using the COVID-CT-MD dataset, incorporating the patient’s clinical/demographic
data. The proposed hybrid model includes a CapsNet model as its building block,
and a Random Forest (RF) Classifier. Fig. 5.9 depicts the pipeline and the main
components of the proposed hybrid model.
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CapsNet model: The CapsNet model is a fully automated framework, designed
upon a stack of convolutional, pooling, batch normalization, and capsule network
layers, outlined in Fig. 5.9, to extract slice-level feature maps from CT images in its
first stage. The first stage is trained on the slice-level labeled portion of the data,
with the goal of detecting COVID-19 suspected slices. The first stage generated
feature maps go through a max pooling operation to develop one set of capsules
per patient. The max pooling output forms the input to the second stage, which is
a conventional multi-layer perceptron network with 256, 128, 32, and 2 layer sizes.
The second stage is trained on the whole training dataset (patient-level label), and
the final output is the probability of COVID-19 and non-COVID classes. The main
advantage of the CapsNet framework over its counterparts is the far less number of
trainable parameters (0.5M compared to several millions of parameters used by other
models) and its capability of capturing spatial relations between object in an image
using the routing by agreement process. It also introduces a capsule network-based
feature extraction framework to replace a large volumetric 3D CT scan by a very
small matrix ( 32×16 in this case) which would be useful in many classification tasks
working with volumetric image data.

It is worth noting how the inputs to the CapsNet are pre-processed. Since the chest
CT images contain non COVID-related components and artifacts, we adopted a pre-
trained U-Net-based model [198], in order to segment the lungs as the main regions
of interest. This model is fine-tuned on a subset of COVID-19 images, to increase
the robustness against infected regions. Furthermore, we have normalized the inputs
between zero and one, to increase the generalizability. Following the literature [199,
200], we downsampled all slices from 512 × 512 to 256 × 256, which further reduces
the time complexity, without loss of important details. At last, slices in which the
lung region is not visible are removed.
Random Forest Classifier: An RF classifier consists of a set of T decision trees
in which each tree Tt, t ∈ {1, . . . , T}, is trained separately on a randomly sampled
subset of the training data. Each decision tree is comprised of several nodes, each
of which represents a binary decision on a specific subset of the feature space. Each
tree is comprised of an input (root) node, several internal (split) nodes and terminal
(leaf) nodes. Each tree can be characterized independently based on the nodes by
which it is constructed. Accordingly, Node j in a decision tree can be characterized by

140



the split function parameter θj = (φj, ψj, τj), where φj denotes the feature selection
function specifying which features from the full feature set are used in the split func-
tion associated with node j. Term ψj denotes the data separation function indicating
which hyper-surface type is used to split the data, and τj is a threshold specifying the
binary decision boundary at Node j. The axis-aligned hyper-plane strategy is used
as the data separation function ψj, which splits the feature space of training samples
using only one feature at a time by a hyper-plane which is associated with the feature
axis. The training process aims to find the optimized split function parameter θ∗j by
maximizing the information gain (change in the entropy) objective function I given
by

θ∗j = argmin
θj

Ij, (5.2)

where Ij = I(Sj, S
L
j , S

R
j , θj), Sj , SLj , and SRj represent training data before and

after (Left/Right) split at node j respectively. Term I denotes the information gain
function given by

Ij = H(Sj)−
∑

i∈{L,R}

∣∣Sij∣∣
|Sj|

H(Sij), (5.3)

where H denotes the entropy function. The output of the RF classifier is calculated
through an ensemble model combining output probabilities from all decision trees
into a single output probability [201]. The average-based ensemble model is used in
this study.
Hybrid Mechanism: The proposed hybrid model aims to integrate clinical and de-
mographic data and the CT scans to improve the predictive performance and intro-
duce another viewpoint to the model. As such, the patient-level COVID-19 probabil-
ity scores PCOV ID, acquired from the CapsNet framework trained on the CT scans, are
concatenated with the encoded clinical and demographic data {gender, age, weight, s1, . . . , s13}
and fed to the RF Classier. The patient’s gender is encoded into 0 and 1 and
s1, . . . , s13 represent binary values corresponding to the patient’s symptoms. The out-
put of the RF classifier is the probability distribution associated with target classes of
non-COVID (CAP and normal) and COVID-19, which is followed by a thresholding
mechanism with the default value of 0.5 to provide the predicted classes.
Results from the Hybrid Model: In this study, we randomly sampled 60% of
the dataset for training, 30% for testing, and 10% as the validation set to select the
model with the minimum loss value during the training step. We made sure that the
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Table 5.10: Features contributing the most to the final RF decision.

Rank Feature Importance Value

1 CapsNet output 6.73e-01
2 Age 1.15e-01
3 Weight 1.03e-01
4 Cough 1.89e-02
5 Fever 1.88e-02

Figure 5.10: The internal structure of one of the decision trees created by the RF component
of the proposed hybrid model. CT refers to the probability score obtained from the CapsNet
model.

slices from the same patient are appeared in the same set to avoid any data leakage.
The first stage of the CapsNet is trained using the Adam optimizer, with the learning
rate of 1e − 4, batch size of 16, and 100 epochs. As the healthy slices outnumber
the infected ones, we used balanced class weights. The second stage of the CapsNet
is trained with the initial learning rate of 1e − 3, and 500 epochs. The RF classifier
used for this study contains 1, 000 decision trees. The minimum number of samples
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required to split an internal node is 2, and the minimum number of samples required
to be at a terminal (leaf) node is 1. The trees do not have a fixed depth and grow
until all terminal nodes are pure (unable to divide the samples based on a set of
features) or until all leaves contain less than 2 samples.

The performance of the proposed hybrid model on the described in-house dataset
is presented in Table 5.9. As shown in Table 5.9, the proposed hybrid model is
compared with several counterparts, the first of which is the CapsNet framework when
the standard cutoff probability threshold of 0.5 is used. The second counterpart is
the same hybrid model, with the difference that the whole CT image is used without
lung segmentation, as an ablation study. Furthermore, we compared the proposed
model with a Hybrid-CNN, which means the capsule layers are replaced with two
fully connected layers with the size of 128. Finally, a Hybrid-Res50 is implemented
for comparison where the Resnet50 [202] model is used as the feature extraction
model in which the fully connected layer with 2,048 neurons before the last layer
is taken as the feature map. As shown in Table 5.9, the proposed Hybrid model
outperforms its counterparts, demonstrating the beneficial effects of the aggregation
of clinical/demographic data and the CT scans, and incorporating a capsule network-
based model.

The importance (i.e., contribution to the final decision) of the features is also
extracted from the RF classifier and the 5 most important features with their corre-
sponding importance value are listed in Table 5.10. In order to visualize the decision
making procedure occurring inside the RF classifiers, the internal structure of one of
the decision trees created by the proposed hybrid model is depicted in Fig. 5.10. The
nodes and branches, which correspond to the split functions, features, and thresholds
are demonstrated in this figure.

5.3.3 Human-level COVID-19 Diagnosis from Low-dose CT

Scans Using a Two-stage Time-distributed Capsule Net-

work

The main concern of widespread use of CT scan as a screening tool for suspected
patients during the outbreak is the radiation exposure. In some scenarios, severely
symptomatic patients will need multiple chest CT scans during the course of their
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disease. The cumulative effect of these multiple exposures can significantly increase
the radiation dose. Studies [203] have shown that the projected radiation to body
organs during chest CT scan is highest in thyroid, lung, breast, and esophagus. Due
to their longer life expectancy, higher dose-effective breast tissue and cell prolifera-
tion [204,205], children and young women are more vulnerable to radiation exposure
damage with increased risk of radiation-following malignancy. As low as reasonably
achievable (ALARA) [206] rule states that whenever radiation is expected, the expo-
sure should be kept at the minimum achievable level such that the resulting scan still
provides reasonable resolution.

Diagnostic accuracy of Low and Ultra-low-dose CT scan (LDCT and ULDCT)
in detection and follow-up of pulmonary nodule and other lung pathologies has been
previously established [207]. The radiation dose associated with standard chest CT
is estimated at 7 mSv, which is reduced to 1-1.5 mSv with LDCT methods and as
low as 0.3 mSv with ULDCT ones. The advantage of the low dose protocols is the
reduction of radiation dose by more than 80%. Recent studies [208] have shown that
DNA double-strand breaks and chromosome damage increased in patients undergoing
a standard-dose CT scan while no effect on human DNA was demonstrated in patients
undergoing low-dose CT scan. LDCT and ULDCT have shown significant accuracy
in the detection of GGOs and consolidation in patients with pneumonia [209]. Since
GGO and consolidation are the most common CT findings of COVID-19, recently,
replacing standard CT scan with LDCT and ULDCT has been recommended [210] as
a solution to decrease radiation exposure in COVID-19 patients. In a retrospective
study [211], LDCT with iterative reconstruction (IR) demonstrated sensitivity, speci-
ficity, positive predictive value, negative predictive value, and accuracy of about 90%
in the diagnosis of COVID-19. In conjunction with other clinical findings, LDCT and
ULDCT can potentially replace standard-dose for the evaluation of patients, in par-
ticular pregnant and young women, and pediatric populations, to decrease radiation
exposure [212].

To the best of our knowledge, Reference [213] is the only study considering LDCT
in AI-based COVID-19 analysis, by simulating standard dose scans from low dose
ones. The aforementioned study, however, uses synthesized data, i.e., it does not use
real LDCT/ULDCT data from COVID-19 individuals, and does not deal with the
disease diagnosis, which is the main focus of our research. We hypothesize that AI
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can achieve a human-level performance in diagnosing COVID-19 based on LDCT and
ULDCT scans.

We developed a two-stage deep learning model, shown in Fig. 5.11, built upon the
capsule network architecture, which takes segmented lung regions as inputs. The first
stage will provide a subset of candidate slices to be analyzed in the next stage, which
focuses only on the disease type. To train the first stage, we used 2D CT images and
their corresponding label (infectious vs non-infectious) to construct a slice-level classi-
fier whose output determines the probability of the input image belonging to a specific
target class (infectious vs non-infectious). We then extracted 10 [214] slices with the
highest infection probability for each patient to be used as the input of the second
stage. The architecture of the first stage initiates with a stack of four convolutional
layers, one pooling layer, and one batch normalization layer which are augmented by
two shortcut connections to deliver shallow features to the deeper layers of the model.
These layers are then followed by a stack of three capsule layers to generate the final
output, which is the probability of the input image belonging to the related target
class. It is worth noting that in the first stage, we are dealing with an imbalanced
dataset with more number of slices without the evidence of infection. To cope with
this imbalanced dataset, we have modified the loss function in the training step and
considered a higher penalty for the errors in the slices demonstrating infection. The
second stage of the proposed AI framework is a time-distributed capsule network that
takes the 10 candidates from the previous stage as inputs. These images are processed
in parallel through capsule networks with the same architecture sharing all the train-
able weights. These capsule networks consist of three convolutional layers, one batch
normalization and one max pooling layer. The output of the last convolutional layer
is reshaped to form the primary capsules, which then go through two capsule layers.
The final capsule layer for each candidate corresponds to the three classes of COVID-
19, CAP, and normal. To take into account the probability of the candidate slice
being infected, COVID-19 and CAP classes are multiplied by the infectious proba-
bility generated by the first stage. The normal class is also multiplied by one minus
the infectious probability. At the end, a global max pooling operation is applied to
the outputs of the capsule networks corresponding to candidate slices, to make the
final decision. We trained the second stage time-distributed capsule network with an
Adam optimizer with learning rate of 1e−4, batch size of 8, and 150 epochs. Similar
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Figure 5.11: The proposed 2 stage deep learning model for COVID-19 diagnosis using
LDCT/ULDCT. At the first stage, CT slices go through a capsule network, one by one,
to detect those with evidence of infection. At the second stage, 10 most probable slices
with infection detected in the previous stage go through a time-distributed capsule network,
output of which determines the probability of COVID-19, CAP, and normal, after applying
a global max pooling.

to the first stage, we used a modified margin loss function to consider more penalty
for the minority class.

After training the two-stage deep learning model, output probabilities of the three
classes (COVID-19, CAP, normal) are concatenated with the 8 clinical data (demo-
graphic and symptoms, i.e., sex, age, weight, and presence or absence of 5 symptoms
of cough, fever, dyspnea, chest pain, and fatigue) and fed to a multi-layer perceptron
(MLP) model, shown in Fig. 5.12. This model has 4 fully-connected layers with 64
neurons, where each layer is followed by batch normalization. The last layer includes
3 neurons with a “Softmax" activation function. We trained the MLP model with a
cross-entropy loss and Adam optimizer with the learning rate of 1e−4, batch size of
16, and 500 epochs.

We collected an in-house dataset of LDCT and ULDCT scans of 104 COVID-
19 positive cases, and 56 normal cases, collected in October 2020, December 2020,
and January 2021, Babak Imaging Center, Tehran, Iran. Diagnosis of 36.5% of the
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Figure 5.12: The MLP model combining the output of the two-stage deep learning model
with the clinical data. Clinical data includes demographic characteristics and 5 common
COVID-19 and CAP symptoms. Four sets of fully connected layers determine the final
output.

Table 5.11: Characteristics of the in-house dataset. SD stands for standard deviation.

COVID-19 CAP Normal P-value:
COVID-19
vs. rest

P-value:
CAP vs.
rest

P-value:
Normal vs.
rest

Sex: Men 58.6% 58% 39.3% 0.7386 0.1848 0.0314
Age in Years (Mean ± SD) 49.53± 15.5 57.78± 21.94 40.18± 15.37 0.7283 0.0003 0.0002
Weight in Kg (Mean ± SD) 80.75± 14.84 67.38± 12.96 75.91± 14.52 0.0001 0.0000 0.6881

Dyspnea 26.9% 18% 45% 0.8932 0.0091 0.0425
Cough 31.7% 53% 33.93% 0.1480 0.0160 0.4916
Fever 14.4% 36% 9% 0.5130 0.0242 0.0589

Chest Pain 7% 0% 10.7% 0.7571 0.9999 0.6439
Fatigue 10.5% 0% 1.7% 0.0107 0.9999 0.2681

COVID-19 cases (38 cases) is confirmed with the RT-PCR test. The rest are specified
by taking the consensus between 3 experienced thoracic radiologists, who labeled
the dataset by taking the imaging findings, clinical characteristics (symptoms and
history), and epidemiology into account. The three radiologists reached an agreement
of 95.6%. They also scored the severity of the COVID-19 cases between 1 and 4,
based on the percentage of the lung involvement. Four positive COVID-19 cases
do not reveal any related imaging findings. As we did not have access to LDCT
scans of CAP patients, we combined this dataset with 60 standard-dose volumetric
CT scans [11]. The dataset characteristics are shown in Table 5.11. P-values are
obtained using logistic regression, by considering three binary scenarios of COVID-
19 versus CAP and normal, CAP versus COVID-19 and normal, and normal versus
COVID-19 and CAP. Finally, a fourth experienced thoracic radiologist, blind to the
ground-truth, labeled the collected dataset to compare the performance of the AI
model with a human expert. The radiologist was first provided with only the CT
scans, and then the clinical data.

To decrease bias towards a specific test set, we adopted a 10-fold cross validation
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approach [215] to assess the performance of the radiologist and the AI model, based
on two scenarios of using CT scans only, and incorporating the clinical data. The
dataset is randomly split into 10 equal size test sets, leading to 10 sets each including
22 cases. We made sure that each set contained 10% of the COVID-19, CAP, and
normal cases, leading to 10 or 11 COVID-19, 6 CAP, and 5 or 6 normal cases in each
test set. The AI model is trained 10 times, setting one of the test sets aside and using
the rest for training. Averaging over the 10 folds, the slice-level classifier in the first
stage achieved accuracy of 89.88%, sensitivity of 88.24%, and specificity of 92.01%,
in detecting the slices with infection.

Figure 5.13: ROC curve for COVID-19 diagnosis (vs CAP and normal) using the proposed
deep learning model and CT scans only.

Using only CT scans, we evaluated the developed deep learning model and com-
pared it with the fourth thoracic radiologist, as shown in Table 5.12. Averaging over
all the 10 folds, AI model achieves COVID-19 sensitivity of 89.5%± 0.11, CAP sen-
sitivity of 95% ± 0.11, normal sensitivity (specificity) of 85.7% ± 0.16, and accuracy
of 90% ± 0.06. The radiologist, on the other hand, achieves COVID-19 sensitivity
of 89.4%± 0.12, CAP sensitivity of 88.33%± 0.11, normal sensitivity (specificity) of
100%, and accuracy of 91.8%± 0.07. We tested the hypothesis of the AI model and
radiologist having the same performance, in term of accuracy, using a McNemar [216]
test with the significance level of 0.05, leading to P-values over the significance level
for all the 10 folds. The lower specificity of the AI model conforms the non-specific
COVID-19 findings [217]. COVID-19 sensitivity versus one minus specificity is plot-
ted in the receiver operating characteristics (ROC) curve, shown in Fig. 5.13. Area
under the curve (AUC) is 0.96± 0.03.

Based on the CT scans only, we analyzed the misclassified COVID-19 cases through
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Figure 5.14: Grad-CAM visualization of one CAP slice. This figure shows that the proposed
AI model is paying attention to relevant locations of the image.

all folds (11 cases in total), and studied their relation with the disease severity, coming
to the conclusion that 4 out of 11 cases, did not have any related imaging findings,
5 were scored 1 by the three radiologists, one was scored 2, and only one case was
scored at 3, which means the developed model is less likely to misclassify severe cases.
Neither the developed model nor the experienced radiologist was able to detect the 4
COVID-19 cases without imaging findings, using CT scans only. Furthermore, since
the CAP patients come from a different cohort and scanned with a standard dose, we
visualized the model’s output for CAP cases, one of which is shown in Fig. 5.14, using
Grad-CAM localization technique [218]. This figure shows that the model is paying
more attention to disease-related regions of the image, rather than dose-related ones.
We performed the same localization technique on two slices with infection of the same
COVID-19 patient, shown in Fig. 5.15.

Using both CT scans and clinical data, we evaluated the developed deep learning
model and compared it with the radiologist, as shown in Table 5.13. Averaging
over all the 10 folds, AI model achieves COVID-19 sensitivity of 94.3%± 0.05, CAP
sensitivity of 96.7%±0.07, normal sensitivity (specificity) of 91%±0.09 , and accuracy
of 94.1%±0.03. The radiologist, on the other hand, achieves COVID-19 sensitivity of
94.4%±0.05, CAP sensitivity of 93.3%±0.08, normal sensitivity (specificity) of 100%,
and accuracy of 95.4%±0.03. We tested the hypothesis of the AI model and radiologist
having the same performance, using LDCT and clinical data, in terms of accuracy,
leading to P-values over the significance level for all the 10 folds. COVID-19 sensitivity
versus one minus specificity is plotted in the receiver operating characteristics (ROC)
curve, shown in Fig. 5.16. Area under the curve (AUC) is 0.96± 0.03.
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Figure 5.15: Grad-CAM visualization of two COVID-19 slices. This figure shows that the
proposed AI model is paying attention to relevant locations of the image.

Based on using both CT scans and clinical data, we analyzed the misclassified
COVID-19 cases through all folds (6 cases in total), and studied their relation with
the disease severity, coming to the conclusion that 3 out of 6 cases, did not have any
related imaging findings, one was scored 1 by the three radiologists, and two cases
were scored at 3. Incorporating the clinical data, the AI model can detect one of the
four positive COVID-19 cases, without having related imaging findings, whereas the
radiologist did not detect any of them.

Finally, we tested the developed AI model, incorporating LDCTs and clinical data,
on an extra set of 100 positive COVID-19 patients, whose diagnosis are confirmed
with RT-PCR test and are collected in a different time interval (narrow validation).
These patients were not included in any of the 10 folds and are completely unseen to
the model and radiologist. While 68 out of 100 cases have imaging findings, 32 do
not reveal any related manifestations. Male cases constitute 53% of the total cases,
and age average is 46.16 with a standard deviation of 14.07. The AI model correctly
identifies all the 68 positive cases having imaging findings, whereas it detects only 3 of
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Figure 5.16: ROC curve for COVID-19 diagnosis (vs CAP and normal) using the proposed
deep learning model and both CT scans and clinical data.

those not having related findings. Radiologist, on the other hand, correctly classifies
64 out of 68 patients having imaging findings as COVID-19 and classifies 4 as CAP.
None of the cases without imaging findings are identified by the radiologist. The
p-value between the AI model and radiologist’s sensitivity is 0.01.

Although LDCT and ULDCT can reveal COVID-19 related findings and reduce
the potential radiation-related harms, an accurate diagnosis requires full investigation
by radiologists, which may not be possible during the outbreak. Based on our exper-
iments, the proposed capsule network-based AI model has the potential to rapidly
distinguish COVID-19 cases from CAP and normal ones with a human-level perfor-
mance using LDCT and ULDCT, having a radiation dose of a single X-ray image. In
other words, with minimal radiation, the developed AI system can assist the radiolo-
gists and contribute to controlling the chain of COVID-19 transmission. Furthermore,
we showed that by incorporating the clinical data, COVID-19 sensitivity increases by
4.8%, CAP sensitivity increases by 1.7%, and normal sensitivity and accuracy increase
by 5.3% and 4.1%, respectively.

Our study has some limitations. First, the dataset is collected from a single cen-
tre, and experiments are required to verify its performance on data from external
institutes, as it is critical to investigate if the model generalizes to diverse popula-
tion [219,220]. Vulnerability to data shifts, and bias against underrepresented popu-
lation [219] are also crucial to address before the AI model can be put into practice.
It is worth mentioning that as the extra set of 100 positive COVID-19 patients are
collected in a disjoint time interval from the original set, it can act as a narrow val-
idation [220]. It is, however, collected from the same institute and thus does not
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account for broad validation. It is also of high interest to explore domain validation
for COVID-19 diagnosis, where test set comes from different variants. Second, the
sample size is relatively small. Verifying the model’s performance on larger multi-
centre datasets is the goal of our upcoming studies. The capsule network used in
our study, is capable of handling small datasets compared to conventional models
and due to fewer trainable parameters it is less prone to over-fitting, however, larger
datasets can still improve the performance of the model. We also aim at expanding
the proposed AI model to predict the disease severity besides the diagnosis. More-
over, although as shown in Figs. 5.14 and 5.15 visualization of the AI model’s output
shows it is paying attention to relevant regions, more research is required to increase
its explainability. Low performance on COVID-19 cases without imaging finding is
another limitation of the developed model.

5.4 Conclusion

The consequent global COVID-19 crisis has directed many research studies towards
developing rapid and automated frameworks aiming to prevent the spread of the dis-
ease and flatten the epidemic curve. In this chapter, we proposed a Capsule Network-
based framework, referred to as the COVID-CAPS, for diagnosis of COVID-19 from
X-ray images. The proposed framework consists of several Capsule and convolutional
layers, and the lost function is modified to reduce for the class-imbalance effect. The
obtained results show that the COVID-CAPS has a satisfying performance with a low
number of trainable parameters. Pre-training was able to further improve the accu-
racy, specificity, and AUC. Furthermore, capitalizing on the advantages of CT scans
over X-ray images, we collected a rich dataset of CT scans from COVID-19, CAP, and
Normal cases, along with their clinical characteristics. This dataset, referred to as
COVID-CT-MD, is further utilized to develop a hybrid model incorporating patients’
clinical/demographic data into an automated COVID-19 identification framework.
We showed that adding such informative data to the models that are working only
with the CT scans will improve the classification performance and increase the ex-
plainability of the obtained results. We utilized a Random Forest classifier to propose
decision making strategies based on the large set of input features and identify the
most informative ones. The proposed hybrid model achieved the accuracy of 90.8%,
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sensitivity of 94.5%, and specificity of 86.0% showing improvement over the origi-
nal CapsNet framework which only relies on the features extracted from CT scans.
Furthermore, we showed that the probability scores generated by the CapsNet frame-
work along with the age, weight, cough symptom, and fever have the most influence
on the confirmation of the COVID-19 infection. In addition, we demonstrated that
even self-reported symptoms are beneficial and relatively reliable in the diagnosis of
COVID-19 and CAP infections.

Although CT scans have shown considerable image findings related to COVID-19
diagnosis, they are associated with harmful impacts on the body. Low dose CT scans,
on the other hand, can contribute to diagnosis with less harmful effects. In this sense,
we collected a dataset of LDCT and ULDCT, based on which we proposed a time-
distributed deep learning model for COVID-19 diagnosis. The developed AI model
achieves human-level performance by incorporating LDCT/ULDCT and clinical data,
having the advantage of reducing the risks related to radiation exposure. This model
can act as a decision support system for radiologists and help with controlling the
transmission chain. As our developed AI model is not intended to be a primary
diagnostic tool, we aim at testing the model alongside a thoracic radiologist to assess
its performance as a decision support tool rather than a stand-alone system.
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Chapter 6

Conclusion and Future Direction

During the past decades, medical imaging made significant advancements leading to
the emergence of automatic techniques to extract information that are hidden to
human eye. Nowadays, the extraction of quantitative or semi-quantitative features
from medical images, referred to as radiomics, can provide assistance in clinical care
especially for disease diagnosis/prognosis. Throughout this Ph.D. thesis, we first pre-
sented an integrated sketch on radiomics by introducing its practical applications and
processing modules. Then we focused on three important applications of radiomics,
i.e., tumor classification, time-to-event-outcome prediction, and COVID-19 diagnosis.
In the following, we first summarize the thesis contributions, presented in Table 6.1,
and then discuss potential directions for future research.

6.1 Summary of Contributions

The thesis contributions can be summarized as follows:

• Tumor Classification: In Chapter 3, we discussed the most important appli-
cation of the radiomics, which is the tumor type classification, and investigated
the use of newly proposed Capsule networks for the problem of brain tumor
classification. Since these networks can handle small number of training sam-
ples, and units in these networks are equivalent, they outperform CNNs in
tumor classification problem. We followed-up this study, by presenting a Cap-
sNet architecture that incorporates both the raw MRI brain images and the
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tumor coarse boundaries in order to classify the tumors. The proposed Cap-
sNet architecture has two main advantageous: (i) First, the need for tumor
exact annotation is eliminated, and; (ii) Second, it helps the CapsNet to focus
on the main area, and at the same time, consider its relation with surrounding
tissues. Our results show that the proposed approach is capable of increasing
the classification accuracy, compared to the previous CapsNets and CNN ar-
chitectures. We further improved the CapsNet ability to classify tumors, by
proposing a 3D multi-scale network, capable of distinguishing between benign
and malignant nodules. Capitalizing on the potentials of ensemble machine
learning techniques, we proposed a boosting as well as mixture of CapsNets,
and showed how the CapsNet itself can be viewed as a mixture of experts
framework. Furthermore, to capture the model uncertainty, we developed a
Bayesian workflow, capable of outputting both mean predictions and an index
of uncertainty, thus referring the uncertain predictions to the human expert.

• Time-to-event Outcome Prediction: After the tumor classification prob-
lem, we focused on the time-to-event outcome prediction in Chapter 4, which is
of high importance for treatment design. We presented a deep learning-based
architecture that takes the multi-scale PET and CT images as inputs, and cal-
culates the PET and CT risks. The CT risk, PET risk, age, gender, SUV, and
radiations dose are then fed to a COX PHM, as well as an RSF, to predict the
desired outcome. Our experiments on an in-house dataset of 132 patients show
that the proposed framework outperforms its counterparts.

• COVID-19 Diagnosis: Last but not least, in Chapter 5, we focused on the
emerging problem of COVID-19 diagnosis, by first developing a deep learning
model to predict COVID-19 from X-ray images. Capitalizing on the advantages
of CT scans over X-ray images, we collected a rich dataset of CT scans, along
with clinical and demographic features, using which we developed a hybrid
deep learning model to diagnose COVID-19. To reduce the radiation exposure
associated with standard-dose CT scan, we collected an in-house dataset of
LDCT and ULDCT and showed that a time-distributed deep learning model
achieves human-level performance in COVID-19 diagnosis, based on LDCT,
ULDCT, and clinical data.
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Table 6.1: Summary of the contributions.

Target Description Advantages
BoxCaps [2, 3] Brain tumor classi-

fication
A capsule network
fed with MRI im-
ages and rough tu-
mor boundaries.

Segmentation is
not required and
handles small
datasets.

BoostCaps [4] Brain tumor classi-
fication

A boosted cap-
sule network to
improve perfor-
mance.

No need to explore
the space of possi-
ble architectures.

BayesCap [5] Brain tumor classi-
fication

A Bayesian cap-
sule network to
handle uncer-
tainty.

Return uncertain
predictions to hu-
man expert.

3D-MCN [4] Lung nodule clas-
sification

A 3D multi-scale
Capsule network.

Captures features
from the surround-
ing tissues and is
fed with 3D input.

MIXCAPS [7] Lung nodule clas-
sification

A mixture of cap-
sule networks as
individual experts.

Improves perfor-
mance by splitting
samples between
experts.

DRTOP [8,9] Time-to-event out-
come prediction

A CNN to predict
lung cancer pa-
tients’ survival and
tumor recurrence.

Predicts response
to treatment to
avoid unnecessary
procedures.

COVID-
CAPS [10]

COVID-19 diagno-
sis

A Capsule network
fed with X-ray to
diagnose COVID-
19

Handles small and
unbalance dataset
with less computa-
tion.

Hybrid COVID-19
model [12]

COVID-19 diagno-
sis

A Hybrid deep
learning model to
diagnose COVID-
19 from CT
scan and clinical
information.

Combines infor-
mation from two
sources to have an
inclusive decision.

LDCT [13] COVID-19 diagno-
sis

A time-distributed
capsule network to
diagnose COVID-
19 from LDCT.

Decreases radia-
tion dose.
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6.2 Future Direction

Our future directions are as follows:

• Knowledge Distillation: Practical and clinical application of the proposed
deep learning models are limited by the fact that they require extensive compu-
tational resources. One solution is to adopt a knowledge distillation framework,
in which the developed models are distilled into student models. These models
are less complicated, networks which are aimed at producing the same output
as the teacher models. Leveraging scalable models, such as EfficientNet [221],
is another technique to develop more practical frameworks.

• Aleatoric Uncertainty: Including the aleatoric uncertainty is another impor-
tant part of our future direction, in which the uncertainty of the data and its
inherited noise is considered, besides the model’s uncertainty. This type of un-
certainty is of paramount importance in medical imaging domains, where clean
data is rare and difficult to acquire.

• Fusion Methodologies: Properties of medical images such as their con-
trast and resolution varies significantly from one institute to another (from one
dataset to another), because each institute may use different types of scanners
and/or use different technical parameters. Development of novel and innova-
tive information fusion methodologies together with construction of unifying
schemes are critical to compensate for lack of standardization in this field and
produce a common theme for comparing the radiomics results. Furthermore
ground truth and annotations provided by different experts can vary signifi-
cantly as experts, depending on their area of specialty (such as oncology and
surgery), may consider and look for different details and landmarks in an image.

• Image Noise: Dealing with image noise is another challenging problem, which
is common in all multi-media domains, but it is more severe in radiomics as
there may be more unpredictable sources of variation in medical imaging. As
an example, patient’s breathing in the CT scanner can cause change of lung
tumor location in consecutive slices bringing about difficulty in extracting sta-
ble radiomics features. Therefore, to achieve reliable personalized diagnosis and
treatment, careful strategies should be developed to address the effects of these
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kinds of variations. Furthermore, there are several factors, such as imaging en-
vironments, capabilities of the scanners and other shortcomings of radiological
images (e.g., radiations during acquisition or noisy acquisitions), that limit the
resolution of the obtained medical images. For instance, the range of the cap-
tured frequencies is limited by the maximum sampling rate of the scanner, and
increasing the rate, will increase the resolution, at the cost of an increased noise.
Since access to high-quality images is necessary to achieve an early and accurate
diagnosis/detection, there is an ongoing research on improving the quality of
the medical images via development of advanced computational models to over-
come the aforementioned shortcomings. One of such computational techniques
is known as “Super-Resolution”, aiming at reconstructing a high-resolution im-
age, using several low-resolution instances. Deep learning networks, and CNNs
in particular, are widely used in super-resolution problems, and so far have
shown promising results.

• Multi-centre Studies: Most of the datasets we used are collected from single
centres, and experiments are required to verify performance on data from exter-
nal institutes, as it is critical to investigate if the model generalizes to diverse
population. Vulnerability to data shifts, and bias against underrepresented pop-
ulation are also crucial to address before the AI models can be put into practice.
It is also of high interest to explore domain validation for COVID-19 diagnosis,
where test set comes from different variants.

• Performance Lower Bound: Generally speaking, deep learning models are
verified based on one or more validation sets, and there is no guarantee on the
performance lower bound. Posterior Cramer–Rao Bounds (CRB) [222] is one
potential technique to model such guarantee.

• Histopathological Images: Lastly, our future direction contains an extensive
research on histopathological images for disease diagnosis. These types of images
contain detailed molecular information. They are however, very large in size
(millions of pixels) and current models cannot handle them at once. Processing
these images require specific multi-instance learning frameworks to split images
without loss of information.
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