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ABSTRACT 

“The Application of Multiple Imputation to Explore Alcohol Consumption Among Young 

Adults and Its Impact on Body Mass Index” 

 

Maryam Tafreshi Motlagh 

 

Obesity is associated with health issues such as high blood pressure, cardiovascular disease, and 

cancer. Concurrently, excessive alcohol consumption and its negative health effects among young 

adults are growing global public health concerns. However, the studies on the association between 

alcohol consumption and weight gain are inconsistent. In particular, analyzing weight gain and 

alcohol consumption over time is complicated by data missingness. Indeed, one potential reason 

for the mixed findings could be how those studies addressed missing data. Missing data can occur 

due to a variety of reasons including loss to follow-up and various non-response cases. As a result, 

missing data can lead to loss of efficacy in data analysis and is one of the main challenges of 

longitudinal studies and large surveys. Therefore this thesis attempted to address missing data 

challenges by utilizing multiple imputation (MI). Generalized linear models were then conducted 

to assess the relationship between alcohol consumption with BMI, adjusting for age at baseline, 

sex, race, smoking, depression status, relationship status, employment status, student status and 

physical activities. Analyses were conducted separately for a complete-case dataset and the 

imputed dataset. 

 

Data were from the Nicotine in Dependence in Teens (NDIT) cohort, a 20-year prospective cohort 

initiated in 1999 (n=1294, 52% female). Data were collected every three months when participants 

were in high school (grade 7 to grade 11; 1999-2005, 20 cycles). After high school, follow-up 

assessments were conducted approximately every four years (2007-08 and 2011-12 for cycles 21 

and 22). The GLM results demonstrated that there was no association between alcohol 

consumption and BMI at cycle 21, but at cycle 22 a negative association was detected. Many 

similarities between the complete-case and MI general linear models were observed. However, 

estimates and standard errors were different between the two models, and were generally smaller 

in the MI models compared with the complete-case. 
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Although counterintuitive, the negative association is consistent with the existing literature. 

Preliminary evidence from the literature further suggests there is an interaction with age on the 

alcohol and obesity relationship. Indeed, it seems that alcohol consumption does not have an 

immediate impact on body mass among young adults, or it may have an inverse relationship. 

However, as alcohol remains one of the main contributing factors to chronic diseases such as high 

blood pressure, cardiovascular disease, and cancer, it is perhaps a latent effect that does not show 

any immediate positive relationship with symptoms of these diseases at early stages of young 

adulthood. Specific details about the alcohol use (such as type of beverage or calorie count) were 

not available in this study. While this is similar to other cross-sectional study limitations, they are 

important confounding variables that should be addressed in future studies. Although the statistical 

methodology is not consistently utilized in the alcohol and obesity risk literature, this thesis 

demonstrated the use of MI to produce unbiased estimates and smaller standard errors compared 

to the complete cases analysis. Further research is needed on the same cohort to further track the 

weight changes and other possible health problems due to alcohol use in the long-term.   
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1. Introduction 

 

Obesity  

 

Normal body fat varies between 25-30% (Williams, et al., 1992). When body fat exceeds these 

proportions (adiposity), it is associated with health risks such as diabetes, high blood pressure, 

heart disease, and cancer (Freedman, et al., 2007). Excessive adiposity is one of the major causes 

of morbidity and mortality (Singh, et al., 2008). However, measuring adiposity accurately is costly 

as it requires blood tests, computerized tomography, scanning, or the use of x-rays (Ellis, 2001). 

Therefore, a person’s body mass index (BMI, calculated based on the person’s height and weight) 

is oftentimes used as a proxy for adiposity.  

 

Overweight and obesity are defined by the World Health Organization as BMI 25 and above, and 

30 and above, respectively (Statistics Canada, 2015). It has been noted that the proportions of 

young people with obesity and overweight in Canada have increased significantly over the past 

four decades (Shields, et al., 2011). Most adults who gain weight in middle-age had a history of 

gaining weight in young adulthood (Lewis, et al., 2000). Thus, as obesity during adolescence and 

young adulthood tracks into adulthood, monitoring obesity during this period is essential (Public 

Health Agency of Canada, 2011).  

 

Obesity Determinants 

 

Different factors, including biological, psychological, sociocultural, and genetics can increase the 

risk of obesity (Suter & Tremblay, 2008). For instance, eating patterns and physical activity are 

among the behavioral factors that can lead to weight changes (Statistics Canada, 2015). In 

particular, alcohol contains 7.1 kcal per gram (Yeomans, 2010) and is thus one of the risk factors 

for gaining weight because of the high-calorie content (Suter, 2005). It also causes fat 

accumulation by inhibiting fat oxidation (Suter & Tremblay, 2008). Approximately 50-75% of 

Canadian young adults drink alcohol (Albanese & Bryson, 2015). However, only a few studies 

have looked at alcohol consumption and risk for overweight or obesity among teenagers and young 

adults (Oesterle, et al., 2004; Pajari, et al., 2010). 
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Knowledge Gaps 

Alcohol consumption remains one of the most important preventable causes of death and disability 

in most countries (De Castelnuovo, et al., 2006). It is now well-established that alcohol 

consumption has negative effects on health issues, such as obesity, blood pressure, cardiovascular 

disease, and cancer in adults (Collins, 2016). However, the influence of alcohol consumption on 

BMI among young adults remains unclear. To be specific, the research to date has tended to focus 

on alcohol consumption in middle-aged or older adults rather than young adults. Many young 

adults try drinking alcohol at different stages of their education and continue to drink in their 

adulthood (Hingson, et al., 2006). Several adult studies have concluded that the quantity of 

drinking alcohol “occasionally” is associated with BMI, while more frequent drinking is associated 

negatively (Bendsen, et al., 2013; Sayon-OreaC, et al., 2011; Yeomans, 2010). For instance, some 

studies showed that the risk of obesity for those who drank alcohol 1-2 drinks per week (Odds 

Ratio [OR] =1.8) and those who consumed 3-5 drinks per week (OR=1.6) was higher compared 

to daily drinkers (Dumesnil, et al., 2013). On the other hand, some results showed a negative 

impact on gaining weight for daily alcohol consumers compared to non-daily drinkers on 

abdominal obesity (Dorn, et al., 2003). Previously published studies on the effect of alcohol 

consumption on BMI are not consistent in different age groups, such as young adults. Thus this 

thesis attempted to examine the relationship between alcohol intake and BMI among a prospective 

cohort of young adults. 

 

Furthermore, one of the main longitudinal study challenges is missing data. Missing data can occur 

because of non-response or loss to follow-up. In addition, applying imputation methods for missing 

information in these prospective investigations are not utilized very often. In several studies, all 

the analyses were conducted on all complete and observed information (Molenberghs & Ibrahim, 

2009). 

 

As a result, this thesis attempts to address several knowledge gaps regarding alcohol consumption 

and BMI by: (1) focusing on young adults by analyzing existing data from the longitudinal 

Nicotine Dependence in Teens (NDIT) study, and (2) utilizing multiple imputation methods to 

address non-response and missing data issues. By applying imputation methods, this study 
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explores missing data in alcohol consumption among young adults and its effects on BMI. Results 

between imputed and complete case analyses will be compared.  

 

This thesis will be organized in the following order: (I) introduction and literature review for 

alcohol consumption and its impact on gaining weight (II) method section containing the overview 

of the methods of handling missing data, as well as the description of the study cohort and variable 

selection for statistical analysis; (III) results and (IV) discussion and conclusion.  
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2. Methods  

2.1  NDIT Cohort 

 

Data were from the NDIT (Nicotine Dependence in Teens) cohort, a 20-year prospective cohort 

initiated in 1999 (n=1294). The study's original objectives were to examine the natural course and 

determinants of cigarette smoking and nicotine dependence. Other factors including 

anthropometric measures, diet, alcohol, physical activity, and mental health were subsequently 

added to the data collection over time (www.nditstudy.ca). A school-based sampling strategy was 

used for identifying and selecting the NDIT participants. A total of 13 public high schools located 

in urban, suburban, and rural area of Montreal (comprising a mix of French- and English-language 

schools) were initially selected.  Out of 13 schools, three of them were excluded because of the 

low return of parental consent forms and no guarantee for further follow-ups after the first year. 

 

Data were collected every three months when participants were in high school (grade 7 to grade 

11; 1999-2005, 20 cycles). After high school, follow-up assessments were conducted 

approximately every four years (2007-08 and 2011-12 for cycles 21 and 22, respectively). For this 

thesis, the exposure and outcome of interest were taken from cycle 21 and cycle 22. However, 

some of the demographic characteristics and covariates were taken from baseline or subsequent 

cycles. 

 

2.2  Introduction to Missing Data 

 

One of the most common issues in longitudinal studies is non-response occurrence, also known as 

missing data (Fiona, et al., 2006). Missing data can occur because of the long-term follow-up, as 

well as item non-response (Newman, 2003). For instance, some participants may not feel 

comfortable responding to some sensitive questions such as drug use or alcohol consumption.  

 

Missing data can bring theoretical issues into the data analysis. For example, less available 

observations lead to the loss of efficiency. On the other hand, when the observed values do not 

represent the original full dataset correctly, a biased estimate occurs (Carpenter & Carpenter, 

2012). Thus, ignoring missing data issues may lead to biased parameter estimates and loss of 

http://www.nditstudy.ca/
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efficiency (Carpenter & Carpenter, 2012). Therefore, it is important to identify and address 

missing data patterns for perform the valid statistical analysis. 

 

2.2.1 Missing Data Pattern 

  

The missing data pattern refers to the arrangement between observed and missing values in the 

dataset. For instance, for the dataset with two variables X and Y, there are four potential missing 

patterns (numbers of variables)2. Missing patterns are classified as univariate, unit non-response, 

monotone, arbitrary, general, planned, and latent variable patterns (Enders, 2010):  

 

• Univariate: Contains a single variable with a missing value in the whole dataset.  

This pattern most commonly happens in experimental studies (Enders, 2010).  

• Non-response: Occurs when a subset of subjects do not answer a portion of the 

questionnaire. In survey research, this happens when some subjects refuse to respond to 

some of the questions (Enders, 2010). 

• Monotone: Occurs in many longitudinal studies when the subject drops out permanently 

from the study. This pattern reduces the mathematical complexity by eliminating the 

iterative estimation algorithms for both maximum likelihood and multiple imputation, 

which will be further explained in a later section (Enders, 2010). 

• Arbitrary: Contains either the monotone or non-monotone missing patterns. It includes the 

subjects who quit the study permanently and those who do not answer some questions 

randomly.  

• General: A “haphazard” pattern is seen between the variables. This can be seen as random 

missingness as well (Enders, 2010). The general pattern contains the missing values in any 

location in the dataset; subject discontinuation does not happen in this pattern. 

• Planned: Based on the pre-defined design of the questionnaire. For instance, out of four 

sets of questions (Y1, Y2, Y3 and Y4); the researcher designs four different forms: form 1 

includes Y1, but is missing one of the Y2, Y3 or Y4, and so on. In this case, a large number 

of questionnaires are collected. 

• Latent variable: There are two sets of variables; observed (“manifested”) and unobserved 

(“latent”). Latent variables can represent complex or abstract concepts that cannot be 
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directly measured easily (such as beliefs and emotions). Thus in theory, latent variables are 

entirely missing for all the samples. Statistical procedures are necessary (such as 

confirmatory factor analysis) in order to define the latent constructs among a set of 

variables (Y1, Y2 and Y3). 

 

 

2.2.2 Missing Data Mechanisms 

 

Whereas missing data patterns indicate the missing values’ location, missing data mechanisms 

define the relationship between observed and missing variables. In addition, missing data 

mechanisms indicate the probability of the missingness and other variables in the dataset. Survey 

variables and observations can be shown in a matrix with the available cases as elements of the 

matrix. If there is missing data in the matrix, the relationship of the missing cell can be random, or 

it can be dependent on the other variables' value. Defining the source of the missingness is one of 

the basic steps of missing procedure determination. (Newman, 2003).  

 

Rubin (1976) classified the missing data problems based on this theory. According to Rubin’s 

missing data theory, a probability distribution exists for missing variables. In order to clarify the 

concept, Rubin defined R as a binary indicator variable. For this purpose, he assigned 1 to observed 

values and 0 to missing ones. R becomes a matrix with the same total numbers of rows and 

columns of raw multivariate data. 

 

Let 𝐘 = (𝐲𝐢𝐣) denote an n × k dataset (n cases with k variables) 

𝐲𝐢𝐣= value of variable j for case i 

𝐘𝟎𝐛𝐬 = observed components of Y  

𝐘𝐦𝐢𝐬 = missing components of Y 

 

R is a Y dimension matrix with elements of 1 (If Y is observed) and 0 (If Y is missing) (Schafer, 

1997). 

 𝐑 = |

y11 y12 y13 …
y21 y22 y23 …
y31 y32 y33 …
… … … …

| 
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The p(R|Y, ξ) is the distribution of R given Y, while ξ is unknown parameters. Indeed, the notation 

p() represents the probability density function (Rubin, 1978). 

 

Rubin’s classification system includes missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR). 

 

Missing at Random (MAR) 

 

In missing at random (MAR), the probability of missing data on a variable Y is not related to Y’s 

value. Instead, it is related to another measured variable in the analytic model. Therefore, for MAR, 

missing values are related to other measured or observed variables Yobs, but not to unobserved or 

missing values Ymis, after controlling for Yobs.  

 

p(R|Y, ξ) = p(R|Yobs, Ymiss, ξ) = p (R|Yobs, ξ)                                (2.1) 

 

In this case, 𝛏 can be ignored because it is independent of the model’s parameters (𝛉) and the 

missing data mechanism MAR (Rubin, 1978). Therefore, there is no association between the 

probability of missing values and variables that are not complete when observed values are 

controlled in the dataset (Jacobs, 2015). However, one of this mechanism’s difficulties is that there 

is no way to formally examine whether the missing data probability is entirely a function of the 

other measured variables.  

 

Missing Completely at Random (MCAR) 

 

The MAR’s special case is MCAR. In this mechanism, missing data are neither related to the 

observed data Y0bs, nor Ymis. Thus, the variables have an equal probability of being missing for all 

cases. This mechanism's formal definition is that Y’s missing data is not related to other measured 

variables nor values of Y itself (Davey & Dai, 2020; Schafer, 1997) 

 

Pr (R|Y, ξ) = Pr (R|Y0bs, Ymiss, ξ)=P (R|ξ)                               (2.2)  
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Missing not at Random (MNAR) 

 

Missing not at random occurs when the probability of Ymis depends on itself. For instance, 

participants with high income are less likely to answer questions about income (Enders, 2010). In 

this case, missingness of the income variable is related to income (Enders C. K., 2006). 

 

Pr (R|Y, ξ) = Pr (R|Y0bs, Ymiss, ξ)                                (2.3) 

 

2.3   Methods for Handling Missing Data 

 

Traditionally, missing data were handled by deleting incomplete cases or replacing the missing 

values. In the following section, an overview of these traditional missing data methods is provided.  

 

2.3.1 Traditional Missing-Data Techniques 

 

Traditional methods of handling missing data include: listwise deletion, pairwise deletion, 

regression imputation, and single imputation. 

• Listwise deletion technique, also known as complete-case analysis, performs the analysis 

based on the fully observed cases. In this technique, all the missing values are excluded 

from the dataset before any analysis (Enders, 2010).  

• Pairwise deletion technique, also known as available-case analysis, attempts to include the 

observed values as much as possible. In the pairwise deletion technique, cases are 

eliminated if only they are missing data on the variables in the analysis. For example, two 

variables, X and Y, are part of the dataset with missing values. Only one of the variables 

(X) should be included in the statistical analysis. In order to keep only the observed cases, 

all missing values should be deleted from X. In contrast, no changes to Y are made because 

it is not in any analysis. Indeed, in the pairwise deletion technique, deletion is based on 

variable selection, not the entire dataset. 

• In regression imputation, missing values are replaced by the estimate of the regression 

model with observed values. Stochastic regression imputation solves the regression 

imputation problem. Customarily a random sample of the residual term from a normal 

distribution is added to the missing value.  
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• Single imputation technique replaces every single value with either the mean of the 

observed values or the last observation carried forward before performing any analysis 

(Enders, 2010). 

 

However, these traditional methods can lead to biased estimates. Thus, other methods such as full 

information maximum-likelihood (FIML) and multiple imputation (MI) were developed to find 

other options for imputation in comparison to these traditional methods (Enders, 2010), as further 

outlined in the following sections.   
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2.3.2 Full Information Maximum-Likelihood vs. Multiple Imputation 

 

Both full information maximum-likelihood (FIML) and multiple imputation (MI) are similar 

techniques because they require multivariate normality and MAR data. The differences between 

FIML and MI estimates depend on whether the same set of input variables were used in both 

imputation methods and analysis or not (e.g., auxiliary variables which is described in a later 

section). If FIML and MI use similar input variables, their estimates may be similar, but MI 

standard errors may be slightly larger (Enders, 2010). Nevertheless, the two procedures’ results 

tend to be similar due to the assumption of large sample size (Demirtas & Schafer, 2003). In order 

to elaborate on the concepts, FIML techniques and multiple imputation techniques will be 

described in detail in the following sections. 

 

2.3.3 Full Information Maximum-Likelihood  

 

One of the fundamental goals of FIML is identifying the value of the population parameters. 

Parameters’ estimates from maximum-likelihood estimation include all available information 

containing all cases with missing data (Hartley & Hocking, 1971). FIML is also referred to as 

“direct maximum likelihood”, “raw maximum likelihood”, or simply “maximum likelihood”. 

 As a matter of fact, missing values are not imputed in this method. All parameter estimates are 

calculated based on the dataset, including missing information. Maximum likelihood calculates 

the estimates of the available information that contains missingness. This method does not 

‘impute’ any missing values in the dataset. Instead, the goal of FIML is to define the parameter 

estimates that maximize the sample log-likelihood. The available data for each case is used to 

compute the log-likelihood. For instance, some variables have 400 cases but some have only 390 

available cases, the model fit information is based on the 400 cases (Enders, 2010). 

 

Log-likelihood is used for fitting the set of the values of the parameter’s estimation. Additionally, 

the maximum-likelihood depends on the probability density function under the assumption of 

multivariate normal distribution (Enders, 2010). As a case in point, multivariate normal 

distribution for the population as an assumption is needed for the individual log-likelihood 

function.  
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The complete data log-likelihood for a single case i is calculated as:  

 

log Li = −
k

2
log (2π) −

1

2
log|Σ| −

1

2
(Yi − μ )

T  Σ−1 (Yi − μ)                 (2.4) 

 

In this formula, Yi is the vector of raw data for observed values for case i. The ki is defined based 

on the total number of observed variables for case i, μ  and Σ are the vector of mean and covariance 

matrix population, respectively. Estimates of μ  and Σ are calculated with this algorithm to 

maximize the log-likelihood (Enders, 2010). Replacing the score vector and values of density 

function parameters gives the likelihood value. For avoiding rounding errors, the natural logarithm 

values can be used instead (Enders, 2010). 

 

The main part of the formula   (Yi − μ )
T  Σ−1 (Yi − μ) is called Mahalanobis distance value. This 

value is calculated from each observed value’s squared z-score and the value of the center of the 

multivariate normal distribution (Enders, 2010). In fact, this value is very important because it 

specifies the value of log-likelihood (Enders, 2010). 

 

The simple term is shown in the second equation with a specific mean vector and covariance 

matrix. If there are missing values in the variables, log-likelihood handles this situation by 

removing the correspondence parameter related to the missing value. The equation below follows 

the same rule for missing data. 

 

With missing data, the log-likelihood for case 𝑖 (log is the natural logarithm with base): 

 

log Li = −
ki

2
log (2π) −

1

2
log|Σi| −

1

2
(Yi − μ i

)
T

  Σi
−1 (Yi − μi)                 (2.5) 

 

ki = The number of observed variables for case 𝑖. 

 

Y is a vector of observed variables and the Σi and μi can be different for each case by deleting 

the rows and columns of missing variables. 
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Another point to consider is that the (2.5) formula is calculated based on each individual case. This 

formula is identical to each individual case because the log-likelihood depends on the case 𝑖 related 

to each variable. As a result, the sum of n log-likelihood of each case is presented as the total 

sample log-likelihood (Enders, 2010). 

 

2.3.4 Multiple Imputation 

 

Broadly, MI includes three phases (Rubin, 1978):  

1. To create m complete or “imputed” datasets. 

2. To analyze each complete dataset individually. 

3. To combine all results from the analysis phase to obtain the overall parameters estimates. 

These phases are described in the following sections with more details.  

 

2.3.4.1 Imputation Phase 

 

By generating m set of acceptable values for each missing data point, the uncertainty of values is 

reduced in m complete datasets from this imputation (Dong & Peng, 2013) 

 

Based on Rubin’s (1978) recommendation, the Bayesian approach should be used in creating 

imputation with two steps: I-step, and as well as a posterior step, which is known as P-step. This 

approach includes determining a model with parameters for complete data, generating a prior 

distribution for models with parameters, and drawing m times from p(Ymis| Yobs ) (Schafer, 1999). 

 

Based on the Bayesian perspective, this phase includes two steps:  

I-step: Random draw of one of the parameters from the set of Ө from the conditional 

distribution given observed data (Yobs). 

P-step: Random draw of missing values Ymis from p(Ymis|Yobs, Ө). 

 

Evaluating the true expression of the posterior distribution is difficult in some studies when the 

missing data is multivariate, and the missing pattern is arbitrary. In these situations, because of the 

arbitrary missing pattern, the Markov Chain Monte Carlo method is recommended as a simulator 

algorithm to calculate the posterior p(Ө| Yobs ). Thus, the parameter Ө is unknown, and it is based 



13 
 

on the observed data. It can be pointed out that random samples are drawn from the Ymis from 

p(Ymis|Yobs, Ө) and Ө from p(Ө|Yobs, Ymis) separately. In this way, it is easier to draws samples 

in two separate steps in the MCMC method (Dong & Peng, 2013). 

  

In practice, data augmentation is used for performing the MI (Tanner & Wong, 1987). In particular, 

the stationary distribution p(Ymis| Yobs ) can produce the imputed missing values. For instance, 

suppose Y = ( Y1, … , Yk) is a vector with k random variable, following the Pr(Y| Ө ). 

 

In fact, the data augmentation algorithm depends on MCMC (Enders, 2010). Simulating random 

draws from posterior distribution is the main goal of the MCMC algorithm (Enders, 2010). The 

two equations of MCMC are listed in the subsequent section.  

 

Specifically, in equation 1, random sample Ymis
(j+1) is drawn from the predictive distribution of 

missing values, conditional on the observed values p(Ymis|Yobs, Ө(j)), and the parameter values 

iteration j (Dong & Peng, 2013).  

 

Ymis
(j+1) ∼  p(Ymis|Yobs, Ө(j))                         (2.6) 

 

 

Equation 2.7 is Monte Carlo simulation. In this step, new parameter Ө(j+1) is generated based on 

the conditional posterior distribution, which contains the Yobs as observed data and Ymis
(j+1)

 

imputed values from I-step. Theoretically, simulated parameters at P-step t are based on the 

preceding I-step imputed values. The imputation at I-step j+1 is related to parameter simulation 

from P-step, and so on. The data augmentation algorithm behaves randomly from one cycle to the 

next, repeating between I-step and P-step to produce a data augmentation chain. Thus, the mutual 

association of I-step and P-step makes a relationship among simulated parameters from 

consecutive P-steps (Enders, 2010). 

 

Ө(j+1)  ∼  p(Ө|Yobs, Ymis
(j+1))                                           (2.7) 
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Convergence to Markov Chain is achieved after J times repeats or both equations and steps in 

MCMC continues until the stationary distribution coverages: 

(Ymis
(1)

, θ(1)) , ( Ymis
(2)

, θ(2)), Ymis
(3)

, θ(3)), … , (Ymis
(j)

, θ(j)) 

Ymiss
(j)

: Imputed values at I-step j, drawn from a distribution with posterior distribution's average. 

θ(j): Simulated parameter values at P-step after iteration j 

 

As a result, the MCMC method is recommended as a simulator to calculate the parameter estimates 

(Enders, 2010). The MCMC convergence is stochastic; the distribution of the imputed values 

converges to p(Ymis | Yobs) and parameter estimates to p(Ө|𝑌𝑜𝑏𝑠) (Enders, 2010). 

 

2.3.4.2 The Analysis Phase 

 

The m complete datasets with imputed missing values created from the imputation phase are then 

used in the analysis phase. 

 

In this phase, m imputed datasets generated from the imputation phase are analyzed separately. At 

this point, analyzing the filled-in datasets is the goal of this phase. For instance, when we need to 

perform a regression analysis in this phase for completed data, the regression should be repeated 

m times, once for each dataset (Enders, 2010). The output of this step is m sets of parameter 

estimation and standard errors. 

 

2.3.4.3 The Pooling Phase 

 

Finally, the m estimates are pooled together to provide the single estimation of the parameters and 

their standard errors (Dong & Peng, 2013). 

 

Multiple imputation minimizes the bias of the single imputation standard errors of the parameters. 

In this phase, a single-point estimate is calculated from the m parameter. Rubin (1987) defined the 

multiple imputation point estimate as: 
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θ̅ =
1

m
∑ θ̂t

m

t=1
                                  (2.8) 

 

θ̂t:  Estimation of the parameter from dataset t  

θ̅:  Pooled estimate 

 

This equation is the usual formula of the sample mean where the parameters present as a data point. 

Rubin (1987) developed multiple imputation in the Bayesian scheme; the pooled point estimate is 

of the parameter θ that is obtained from data with no missingness. Whereas θ̅ is defined as the 

mean of observed-data posterior distribution by the Bayesian paradigm, the fixed population 

parameter point estimate is θ̅ in a frequentist standpoint (Little & Rubin, 2002; Rubin, 1978). 

 

The variance of θ̅ contains two-parts, which includes between and within imputation variance. 

Additionally, this variance is calculated based on the formula presented below (Rubin, 1978):  

 

u̅ =  
1

m
∑ ûi

m

i=1

 
(2.9) 

B =
1

m − 1
∑(θ̂i − θ̅)

2
m

i=1

 
(2.10) 

 

T = u̅ + (1 +
1

m
) B = the variance of θ̅ 

(2.11) 

 

 

u̅ : Within imputation variance  

B: Between imputation variances 

m: A finite number of imputations 

 

To test the null hypothesis as: θ̅ = θ0 , the following statistics can be used: (θ − θ̅  )  ⁄ (√T), 

which is following t distribution with degree of freedom of (νm or ν 
∗

m
) (Barnard J, 1999). 

F-distribution can be used with 1 and ν degree of freedom as the numerator and denominator, 

respectively. 



16 
 

F1,ν =
(θ̅ − θ0 )

2

T
 

(2.12) 

r =
(1 +

1
m) B

u̅
 

(2.13) 

νm = (m − 1)[1 +
1

r
]2  (2.14) 

 

ν 
∗

m
= [1/νm + 1/(((1 − gamma)ν0 (ν0 + 1))/(ν0 + 3))]−1 

 

In this formula, the r is the relative increase in variance because of missing data where:  

gamma: (1+
1

m
) B T⁄  

 

ν0: the degree of the of freedom for complete data  

ν 
∗

m
: correction of νm if ν0 is small with moderate missing rate. 

 

The fraction of B in T is shown with λ̂. The λ̂ represents the severity of missing data.  

respectively. 

 

  λ̂ =
(1+

1

m
)B+

2

νm +3

T
 

(2.15) 

 

Following the formula, λ̂ depends on the correlation between the variables and the missing data 

rate. When there is an association, this value is less than the missingness rate (Enders, 2010). It is 

assumed that λ̂ is the same for all the variables (Rubin, 1978).  

 

Thus, the two sources of uncertainty (between: due to missing data; and within: due to the 

estimations in the imputation) are combined into the parameter estimation’s pooled standard error 

(Dong & Peng, 2013). Therefore, the pooled standard error is bigger than the derived standard 

error of each individual imputed dataset. 
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2.3.4.4 Number of Imputations 

 

λ̂ The fraction of missing information 

 

 

 

For instance, if  λ̂= 0.2 (e.g., 20% missing data rate) with m=5 the efficiency rate is √1 +  0.2
5⁄  

=1.02. This value shows that with five imputed datasets, the standard error is 1.02 times larger 

than the standard error of an estimate with infinity many imputations. Some simulation studies 

showed that at least 25 imputations are recommended to decrease random effect sampling from 

multiple imputation (Enders, 2010). It is also recommended that the m should be at least equal to 

the percentage of incomplete ceases (Enders, 2010).  

 

2.3.5 Additional Technical Issues 

 

A more extensive set of variables can be used in the imputation phase than is required for the 

substantive analysis model (Schafer, 1999). It is recommended to include a large set of variables 

in the imputation phase, but the total variables should not be more than the total number of 

observations (Rubin, 1978). In general, any variable that predicts the probability of incomplete 

variables should be included in the imputation model. 

 

Particularly, three kinds of variables are recommended to be included in the imputation model 

(Schafer, 1997): 

1. Variables of analytical interest.  

2. Variables that are related to a missing mechanism based on the MAR assumptions. 

3. Variables that are correlated to the variables containing missing values. 

 

The second and third categories of variables are known as auxiliary variables (Collins, et al., 2001). 

Auxiliary variables are highly correlated with incomplete variables (r > |0.40|) and are thus 

recommended to be included in the MI model (Enders, 2010). 

RE = (1 +  
λ̂

m
)−1 

(2.16) 
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2.3.5.1 Auxiliary Variables  

 

Due to the correlation with observed or missing variables, auxiliary variables are included in the 

MI model. It is not necessary to include them in the final analysis. These variables could be part 

of the imputation step. For instance, age is an important auxiliary variable because it influences 

missingness in health and social science research (Enders, 2010). In the MAR mechanism, adding 

auxiliary variables helps to reduce bias in the analysis. Consequently, it presents more precise 

parameter estimates. Thus, including auxiliary variables in missing procedures is beneficial 

(Collins, et al., 2001). 

 

In general, auxiliary variables do not include any missing values (Enders, 2010). Based on the 

Monte Carlo simulation by Enders (2008), when auxiliary variable includes missing values, bias 

contraction is identical for both MAR and MCAR (Enders, 2008). Nevertheless, including 

auxiliary variables in the model may reduce the parameters’ bias. The reduction in the bias is 

related to the correlation between auxiliary variables and the probability of missingness; variables 

that are more strongly correlated with missingness will have a larger impact on this reduction than 

weakly correlated auxiliary variables. As a result, this improves the quality of the imputations 

(Graham & Hofer, 2000).  

 

2.3.6 Rounding Binary Variables 

 

In comparison to the original variables’ possible observed values, imputing discrete variables (such 

as binary or categorical) may produce implausible values. For instance, in this dataset, “sex” is 

defined as 0 and 1. After performing the MI, the value 0.657 is replaced for a missing data point, 

which is neither 0 nor 1. In this case, rounding is helpful to categorize the imputed values to match 

with observed values. Rounding can be an option to keep the consistency between the imputed 

values and original values. There are many different methods and strategies to follow for rounding 

the values after imputation, as described below. 
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2.3.6.1 Simple Rounding  

 

One of the common rounding methods is called simple rounding or naïve rounding. It works based 

on fixed 0.5 thresholds. If the value is greater than 0.5, it is rounded to one. On the other hand, if 

the value is less than 0.5, it is rounded to zero (Enders, 2010). However, this method is flawed 

because a biased parameter estimate is produced and is not generally recommended. 

 

2.3.6.2 Adaptive Rounding  

 

Adaptive rounding was introduced by Barnard (1999). This method follows the normal 

approximation to a binomial distribution to calculate the threshold for imputing each missing data 

point. In contrast to the simple rounding method and fixed threshold, adaptive rounding is applied 

to the rounding threshold (Jacobs, 2015). 

 

If  μ̂UR is the mean of unrounded imputed binary variables, then the rounding threshold is given 

by c: 

 

c = μ̂UR − ϕ−1(μ̂UR)√μ̂UR(1 − μ̂UR)                          (2.17) 

 

ϕ−1  is the inverse of standard normal cumulative distribution. 

 

The rounding threshold is unique, and it is calculated for each imputed dataset individually. If the 

imputed values are greater than the calculated threshold, they are rounded to one, and the rest of 

the values are rounded to zero. For instance, if an unrounded imputed binary variable was  μ̂UR= 

0.67, then  ϕ−1(0.67) is equal to 0.44. By replacing the calculated values in the formula, the 

threshold becomes 0.463. Imputed values that exceed this calculated threshold are rounded up to 

one, and values below this value are rounded down to zero. 

 

2.3.6.3 Calibration  

 

The calibration rounding method (Bernaards, et al., 2006) determines the rounding threshold using 

a subset of the imputed values reproducing the frequency of zeros and ones from raw data. The 

first step of calibration is to create one copy of the raw datasets. It is necessary to delete the 
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observed values from the variables that contain the missing values. In other words, no observed 

values for binary variables remain in the second dataset. The second step is to append the original 

data and new dataset in one stacked file. After imputing the entire stacked dataset, the rounding 

threshold can be identified ((Enders, 2010). By finding the threshold, simple rounding is applied 

for producing binary values (Enders, 2010). Some research indicates that even when data are 

missing at random, biased estimates can occur in the calibration method. However, this has not 

been found to be the case in simulation studies of adaptive rounding (Enders, 2010). 

 

In one study, three rounding methods for binary missing values were compared to one another 

(Bernaards, et al., 2007): (1) simple rounding, (2) randomly replacing the imputed values by 

Bernoulli trial as zero and one, and (3) adaptive rounding. Their results demonstrated that the 

random replacement performed the worst. In contrast, the adaptive rounding performed the best. 

There is no specific research comparing the advantages of calibration and adaptive rounding 

(Bernaards, et al., 2007). Nevertheless, based on the recommendations in the literature, adaptive 

rounding was applied for rounding the binary variables in this thesis. 
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2.4  Exposure  

 

Alcohol consumption was based on self-reported measures in the questionnaire. Alcohol intake in 

the previous 12 months was measured in both cycles 21 and 22. The questionnaire had five 

response options regarding alcohol consumption: never, less than once a month, 1-3 times per 

month, 1-6 times per week, and every day. For the purpose of this thesis, different categories of 

alcohol consumption were compared by nested model comparison to identify this variable’s 

optimal categorization for the statistical analysis. 

 

2.5 Outcome 

 

Weight and height measurements were self-reported in cycles 21 and 22. Body Mass Index (BMI) 

was calculated as weight in kilogram divided by height in meters (kg m2⁄ ).  

 

BMI= 
weight (kg)

(height(m))2                               (2.18) 

 

 

BMI was used both as a continuous variable and a categorical variable (weight status) in the 

statistical analysis. More specifically, weight status was defined as normal (BMI<25.0 kg m2⁄ ) 

and overweight with a BMI greater than or equal to 25.0 kg m2⁄ . 

 

2.6 Covariates  

 

Potential covariates were selected based on their associations with alcohol consumption or BMI 

with 𝒳2, t-test, or Wilcoxon rank-sum tests. Smoking status, whether the respondent had 

depression, relationship status, current employment status, whether the respondent was currently 

a student, physical activity, and demographic characteristics (baseline age, sex, and race) were 

considered as covariates in the analysis as outlined further in the following section.  

 

2.6.1 Smoking  

 

Smoking was measured in cycles 21 and 22. The questionnaire’s original variable consisted of five 

response options, including never smoked, once or a couple of times in the past 12 months, once 
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or a couple of times each month, once or a couple of times each week, and every day. For the 

purpose of this thesis, this variable was categorized as a binary variable (smoker vs. non-smoker) 

for the linear model and as a categorical variable (never, former, occasional, and daily) in the 

logistic model.  

 

2.6.2  Depression  

 

The presence of depressive symptoms was assessed using the Major Depression Inventory. The 

scores can range from 0 to 50. In accordance with the literature, the presence of depression was 

classified as a binary variable: no depression for scores between 0 to 20, and possible depression 

for scores greater than 20 (Timmerby, et al., 2015).  

 

2.6.3 Relationship Status 

 

Relationship status was defined as: single, married, living as married (common-law), divorced, 

separated, and other. For this thesis, relationship status was re-classified into whether the person 

was in a relationship (married or common-law), compared to being single, divorced, or separated. 

 

2.6.4 Employment Status  

 

Employment status was defined as working either full-time or not currently employed. 

Employment status was a binary variable as being either a current worker or not currently working.  

 

2.6.5 Student Status 

 

Student status was defined as whether the participant was a full-time student, part-time student, or 

not currently a student. Three categories were re-classified in two categories as a current student 

or not a current student. 

 

2.6.6 Physical Activity 

 

Physical activity was self-reported in each cycle using a validated questionnaire (Sallis, et al., 

1993). Participants indicated whether they had performed an activity (such as basketball, ice 

hockey, volleyball from a list) for 5 minutes or more in the past week. Each of the activities was 



23 
 

further classified as light, moderate or vigorous physical activity using the 2018 Youth 

compendium based on its Metabolic Equivalent of Task (MET). For instance, 1.5 to less than 3 

METs is considered light, 3.0 to less than 6 METs is considered as moderate, and more than 6 

METs is considered as vigorous physical activity (Wellman, et al., 2020). These values were then 

converted to the total number of light, moderate, and vigorous physical activity based on the data 

collection from cycles 1 to 20. 

 

Thus, each cycle contained three physical activity variables: number of activities as light, 

moderate, and vigorous physical activity. A new variable was created based on the mean number 

of each of these physical activity variables. For instance, the new light physical activity variable 

was calculated as the mean of all available light variables (light physical activity) from cycles 1 to 

20. The two other categories (moderate and vigorous) were calculated the same way. As a result, 

three new variables containing the mean number of light, moderate, and vigorous physical 

activities across cycles 1 to 20, were included in the MI model. 

 

Lastly, the physical activity variable was defined as a new variable: the sum of the two new 

calculated moderate and vigorous variables (Mean of cycle 1 to 20). This variable was included as 

a continuous covariate in statistical models for both cycles 21 and 22. 

 

2.6.7 Demographic Characteristics 

 

Demographic characteristics included age at baseline, sex, and race. The questionnaire’s original 

variable for race consisted of nine levels (Arabic, Black, Chinese, Latin American, Southeast 

Asian, West Asian, White, and Other).  The race was re-classified as “white” versus “non-white 
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2.7  Statistical Analysis 

 

The main predictor of interest (alcohol consumption) was categorized in the questionnaire as 

never, less than once a month, 1-3 times per month, 1-6 times per week, and every day. Prior to 

conducting the primary statistical tests, we investigated whether there was an optimal classification 

of alcohol consumption with non-nested model comparisons.  

 

SAS (version 9.4) was used for all analyses. Generalized linear models were conducted to assess 

the relationship between alcohol consumption with BMI and alcohol consumption with weight 

status. Analyses were conducted separately for a complete case dataset and the imputed dataset. 

Complete case analysis involved all participants with observed values for the variables of interest 

in the model. For the MI models, following the arbitrary missing pattern, the MCMC method was 

performed as a first step. In the next step, MI analyzed the 50 sets of data using statistical 

procedures such as logistic regression and GLM separately. At the end of this step, 50 sets of 

parameter estimates were obtained. In the last step, MI pooled the 50 estimates. For the imputed 

datasets, auxiliary variables included age at baseline, sex, race, and physical activities. In addition, 

all analytical variables that were used in statistical analysis were included in the MI procedure. 

The MI method was implemented with PROC MI and MCMC. Both PROC GLM and PROC 

LOGISTIC were used for the regression models; estimates were pooled with PROC MIANALIZE. 

All the statistical analyses (including GLM and logistic regression) were performed separately for 

the imputed datasets and the complete dataset.  

 

All regression models included age at baseline, race, sex, smoking status, depression, relationship 

status, employee status, student status, and physical activity as covariates. Additionally, based on 

the statistical associations between sex and student status with exposure and outcome, interactions 

were also incorporated into some regression models.  
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2.7.1 Non-nested Model Comparisons 

 

Alcohol consumption was measured in the questionnaire with five levels as never, less than once 

a month, 1-3 times per month, 1-6 times per week, and every day. This variable was re-classified 

in three different ways and all those three different categorizations were analyzed with non-nested 

model comparisons. Model comparisons were assessed with Akaike Information Criterion (Hens 

& Aerts, 2006). Smaller values indicate better model fit.  

 

The following table shows the alcohol consumption categories for each model: 

 

Models  
Never 

Less than once 

a month 

At least 

once a month 
Every day 

Model 1 X X X 

Model 2 X X X 

Model 3 X X 

 

 

 

2.7.2 General Linear Model (GLM) 

 

Many response modeling approaches commonly utilize generalized linear models (Wright, 2001).  

Generalized linear models include General Linear Model (GLM), and logistic regression (among 

others) and are used according to the nature of the response variable.  

 

X is the vector of the parameters, and xij is the jth covariates' value for observation i (Anderson, 

et al., 2005).  

 

X is a matrix of the independent variables 

• Each column is a variable 

• Each row is an observation 

β is a vector of parameter coefficients 

ɛ is a vector of residuals 
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yi = β0 + β1x1i + ⋯ + βpxpi + ɛi         (2.19) 

 

yi ∼ N(μi,ε) 

E(Yi) = μi = ∑ 1xijβj

𝑛

𝑖=0

                        i = 1, … , n 

 

 

 

2.7.3 Logistic Regression 

 

When the dependent variable is binary, it should be modeled with logistic regression. In this thesis, 

logistic regression was used to define the categorical probability of having overweight or obesity. 

Another point to consider is that the odds ratio in logistic regression shows the constant effect of 

predictor variables. Odds are the ratio between the probabilities; it contains the probability of 

having overweight/obesity over the probability of not having overweight/obesity; this value is 

between zero and infinity. Due to the ratio, the chance of the outcome builds on each characteristic. 

Subsequently, the model is based on the logarithm of:  

 

log [π
(a − π)⁄ ] = β0 + β1x1 + ⋯ + βpxp                       (2.20) 

 

 

π Probability of participants’ having overweight or obesity 

xj              Exploratory variables 

β0 The reference group 

βi Regression coefficients associated with the reference group and the xj 

explanatory variables 

 

 

2.7.4 GLM 

 

The GLM was fitted (separately for cycle 21 and cycle 22) to assess the association between each 

category of alcohol consumption and the continuous variable of BMI. Covariates included age, 
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gender, race, employee status, relationship status, student status, depression, physical activities, 

the interaction of gender and alcohol consumption, and the interaction of student status and alcohol 

consumption. Interactions were added to individual models separately.  

 

yi BMI  

β0 Intercept 

xj           Independent variables as alcohol consumption, age at baseline, gender, smoking, 

relationship status, physical activities, depression, student status, and employee 

status 

βi Coefficient of the linear combination 

ɛi    Errors independent and identically distributed with ɛi ∼ N(0, σ2) 
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▪ Model without interaction:  

 

BMIi = β0 + β1Age + β2Alcohol + β3Sex + β4Race+β5Employment Status

+ β6Relationship Status + β7Student Status + β8Depression +  β9Smoking

+ β10Physical Activity + ɛi 

i = (cycle 21 , 22) 

 

▪ Model with interaction: 

 

BMIi = β0 + β1Age + β2Alcohol + β3Sex + β4Race+β5Employment Status

+ β6Relationship Status + β7Student Status + β8Depression + β10Smoking

+ β11Physical Activity + β12Student Staus ∗ Alcohol + ɛi 

i = (cycle 21 , 22) 

 

BMIi = β0 + β1Age + β2Alcohol + β3Sex + β4Race+β5Employment Status

+ β6Relationship Status + β7Student Status + β8Depression + β10Smoking

+ β11Physical Activity + β12Sex ∗ Alcohol + ɛi 

i = (cycle 21 , 22) 
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2.7.5 Logistic Regression Application 

 

Logistic regression was performed as:  

 

Overweight = {
0, BMI ≤ 25
1, BMI > 25

 

 

log [π
(a − π)⁄ ]

= β0 + β1Age + β2Alcohol + β3Sex + β4Race+β5Employment Status

+ β6Relationship Status + β7Student Status + β8Depression +  β9Smoking

+ β10Physical Activity 
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3. Results 

This chapter begins with the descriptive statistics of the total participants and explores the potential 

interactions with sex. In the subsequent section, the optimal category of alcohol consumption is 

selected based on non-nested model comparisons. At the end of this chapter, the association 

between alcohol consumption and BMI is analyzed with GLM and logistic regression.  

 

3.1  Sample Characteristics 

 

There were 1293 participants included in this study. The general baseline characteristics of the 

participants are presented in Table 1. The data included 670 females (51.82%) and 623 males 

(48.18%).  

  

From table 1, sex differences can be observed. Men and women significantly differ in age at 

baseline (12.8 vs 12.7, p= 0.043), BMI at cycle 21 (23.57 vs 22.21, p= 0.001), and cycle 22 (25.18 

vs 23.78, p= 0.001). Figures 1 and 2 show this difference visually. No sex differences in language 

or race were detected. Approximately 92% were born in Canada (n=1191), and 389 (30.09%) were 

from French-speaking high schools. Over half of the participants were white. Figure 1 shows the 

BMI in cycle 21 and 22 from observed values, for males and females.  

 

Table 1 Demographic Characteristics by Sex at Baseline 

 

 

Male (n=623) Female (n=670) p 

Age, Mean (SD) 12.8(0.56) 12.7 (0.55) 0.043 

French Speaking, n (%) 176(28.3) 213(31.8) 0.165 

Caucasian (White), n (%)  320(79.6) 374(78.7) 0.753 
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Figure 1 Comparison of BMI by Sex 

 
 

 

3.2  Baseline Characteristics of Participants (Complete vs. Not-Complete Cases) 

 

As described earlier in the method section, associations between baseline demographic 

characteristics and non-response were assessed (Table 2). In cycles 21 and 22, statistically 

significant differences in the proportion of Canadian born, and race between complete and 

incomplete cases were detected. Missing data patterns including all main variables listed in 

statistical models, are shown in Figure 2. The pattern suggests arbitrary missingness. 

 

Table 2 Baseline Characteristics for Cycle 21 and 22 for Completed Cases vs. not 

Completed Cases 

  Cycle 21    Cycle 22  

  
Complete 

(n=594) 

Not Complete 

(n=700) 

p Complete 

(n=769) 

Not Complete 

(n=525) 

p 

Age, Mean (SD) 12.7 (0.53) 12.8 (0.58) 0.054 12.7 (0.47) 12.8 (0.65) < 0.001 

Born in Canada, n (%) 562 (94.6%) 629 (89.9%) 0.002 717 (93.2%) 474 (90.3%) 0.069 

French Speakers, n (%) 210 (35.4%) 179 (25.6%) < 0.001 237 (30.8%) 152 (29.0%) 0.486 

Caucasian (White), n (%) 486 (81.8%) 208 (29.7%) 0.003 562 (73.1%) 132 (25.1%) 0.636 
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Figure 2 Missing data Pattern 

 

 

After 50 imputations, the distribution of the imputed BMI variable was plotted and compared with 

the observed and completed data in the following Figure (blue: before MI, red: after MI; left 

panels: cycle 21, right panels: cycle 22). No significant difference of density between imputed and 

observed BMI were detected. Figure shows that the imputed values in both cycle 21 and 22 follows 

the same density after imputation. 
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Figure 3 Comparison of BMI (Observed vs. Imputed) 

 

 

The association between covariates and sex is shown in table 3. There were no sex differences in 

alcohol consumption between females and males in cycle 21. However, there was a significant 

association between alcohol consumption and sex in cycle 22 (p=0.016). Alcohol consumption 

‘never or less than once a month’ was 18.1% and 11.4%, and ‘at least once a month’ was 50.2% 

and 51.2% in females and males, respectively. No association was detected between sex and 

student status or physical activity in cycle 21, while a significant association between sex and 

student status was detected in cycle 22. Depression, being in a relationship, and smoking were 

significantly associated with sex in both cycles. 
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Table 3 Exposure and Covariates by Sex 

 Cycle 21  Cycle 22   

  
Male  Female p Male  Female p 

(n=623) (n=670)  (n=623) (n=670)  

BMI, Mean (SD) 23.57(3.57) 22.21(3.80) 0.001 25.18(4.45) 23.78(4.6) 0.001 

Alcohol Consumption   

0.428 

  

0.016      Never/<1 a month 96 (15.4%) 117 (17.5%) 71 (11.4%) 121 (18.1%) 

     At least once a month 307 (49.3%) 358 (53.4%) 313 (50.2%) 343 (51.2%) 

Depressed 382 (61.3%) 411 (61.3%) <0.001 363 (58.3%) 414 (61.8%) 0.002 

In a relationship 34 (5.5%) 71 (10.6%) 0.003 57 (9.1%) 99 (14.8%) 0.017 

Smoking status       
 

     Never 152 (24.4%) 125 (18.7%) 

0.002 

111 (17.8%) 101 (15.1%) 

0.03 
     Former 76 (12.2%) 111 (16.6%) 95 (15.2%) 152 (22.7%) 

     Current 90 (14.4%) 135 (20.1%) 98 (15.7%) 117 (17.5%) 

     Every day 85 (13.6%) 105 (15.7%) 81 (13.0%) 98 (14.6%) 

Student 260 (41.7%) 336 (50.1%) 0.055 149 (23.9%) 218 (32.5%) 0.018 

Employment 302 (48.5%) 378 (56.4%) 0.114 306 (49.1%) 373 (55.7%) 0.82 

All values except BMI are reported as “n (%)” 

Missing percentage and numbers are not presented in the table and all the percentages are based on the total number 

of each column. Available numbers for alcohol consumption: n=878 (Cycle 21), n=848 (Cycle 22); Depression: n=793 

(Cycle 21), n=777 (Cycle 22); In a relationship: n=105 (Cycle 21), n=156 (Cycle 22); Smoking Status: n=879 (Cycle 

21), n=853 (Cycle 22); Student Status: n=596 (Cycle 21), n=522 (Cycle 22); Employment Status: n=680 (Cycle 21), 

n=679 (Cycle 22). 

 

3.3 Assessing Model Assumption 

 

The model assumptions (residual pattern, homogeneity of variance and linearity) were checked for 

both cycle 21 and cycle 22 (Figure 4). The six panels below show no specific patterns at cycle 21 

(top row) and cycle 22 (bottom row), suggesting that errors were independent and random. 
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Figure 4 Checking Model Assumption: Residual Diagnostics 

 
 

 

 
 

  

 

 

The assumption of residuals normality (Figure 5) appeared to be violated for cycle 21 (top row) 

and cycle 22 (bottom row). The assumption was met with a log transformation on the outcome 

(data not shown). Then the GLM was performed before and after the transformation. No 

significant differences were seen in the GLM results. Thus the non-transformed data are 

exclusively presented for ease of interpretations of parameter estimates.   
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Figure 5 Checking Model Assumption: Normality of Residuals 
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3.4  Non-Nested Model Comparisons 

 

Model comparisons were performed for three non-nested models with three different alcohol 

consumption categories. AIC was assessed for these comparisons, with smaller values indicating 

better model fit. Table 4 shows that the smaller AIC for cycle 21 was model 2, and the smaller 

AIC for cycle 22 was model 3. These models were carried forward in the statistical analysis 

accordingly. 

 

Table 4 Non-nested Model Comparisons 

Model  Alcohol categories Criterion Model Fit Statistics  

      

Intercept and 

Covariates  

Cycle 21 

Intercept and 

Covariates 

Cycle 22 

Model 3 

At least once a month  

vs.  

Never/Less than once a month 

AIC 891.987 885.408 

SC 953.963 944.683 

-2 Log L 865.987 859.408 

     

Model 2 
Less than once a month vs.  

at least once a month vs. Never  

AIC 891.708 885.577 

SC 958.451 949.412 

-2 Log L 863.708 857.577 

     

Model 1 
Less than once a month/Never vs. 

at least once a month vs. Every day  

AIC 893.981 887.242 

SC 960.723 951.076 

 -2 Log L 865.981 859.242 
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3.5 General Linear Models 

 

GLM was applied to investigate the association between alcohol consumption and BMI for both 

complete and imputed datasets in cycles 21 and 22 separately. These models initially included 

interaction terms between being a student with alcohol consumption or sex with alcohol 

consumption. As the interaction terms (sex*alcohol consumption; student*alcohol consumption) 

were not statistically significant in the models (Supplementary table I and II), GLM was conducted 

after removing all interaction terms (Table 5).  

 

The result in table 5 shows that sex was a significant predictor for BMI. In addition, a significant 

difference between the participants who drank alcohol at least once a month for model 2CC and 

model 2MI compared to those who did not drink alcohol in the past year was detected. Those who 

consumed alcohol at least once a month had significantly lower BMI (model 2CC: B=-1.6, 

p=<.0001 and model 2MI: B=-1.26, p=0.0006).  

 

The GLM models using complete-case analysis and MI methods are compared in table 5.  For both 

GLM models, in cycles 21 and 22, the MI results do not largely differ from the complete case 

models. However, estimates in the MI model are smaller for all variables except alcohol 

consumption and student status for cycle 21; and student status and physical activity in cycle 22. 

In addition, the standard errors in the MI models are smaller than complete-case model for cycle 

21 except alcohol consumption and the depression. Likewise, standard errors are smaller than the 

complete-case model for all variables in cycle 22, except physical activity. 
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Table 5 GLM results: Betas (SE) on the Association between Alcohol Consumption with 

BMI  

 
a Never drinkers’ category is selected as the reference group for cycle 21 and 22, respectively. 

 

 

 

 

 

 

  

 
 

 

  Cycle 21 Cycle 22 

 Covariates Model 1cc p Model 1MI p Model 2cc p Model 2MI p 

 
Age at Baseline 0.41(0.26) 0.11 0.22(0.22) 0.32 0.26(0.35) 0.45 0.21(0.27) 0.44  

Alcohola  (less than once a month)  -0.35(0.45) 0.43 0.11(0.52) 0.84          

Alcohol (at least once a month)  0.23(0.53) 0.67 -0.32(0.44) 0.46 -1.6(0.41) <.0001 -1.26(0.37) 0.0006  

Sex (male vs female) -1.15(0.26) <.0001 -0.88(0.26) 0.0007 -1.39(0.35) <.0001 -0.99(0.32) 0.0022  

Race (white vs non-white) 0.22(0.32) 0.48 0.04(0.26) 0.87 0.3(0.42) 0.48 0.05(0.31) 0.86  

Smoking (smokers vs. non-smokers) -0.19(0.12) 0.11 -0.17(0.12) 0.17 -0.2(0.16) 0.2 -0.11(0.14) 0.44  

Employment (working vs. not working) 0.08(0.3) 0.8 0.07(0.3) 0.82 0.33(0.42) 0.43 0.18(0.41) 0.66  

Student Status (student vs non-student) -0.89(0.29) 0.002 -0.93(0.29) 0.002 -0.48(0.35) 0.17 -0.51(0.34) 0.14  

In relationship (yes vs. no) 0.43(0.39) 0.27 0.39(0.39) 0.32 -0.81(0.44) 0.07 -0.74(0.42) 0.08  

Depression (depressed vs. not depressed) 0.26(0.43) 0.55 0.1(0.44) 0.82 -0.2(0.62) 0.75 0.01(0.55) 0.98  

Physical Activity 0.02(0.01) 0.1 0.02(0.01) 0.06 0.01(0.02) 0.44 0.02(0.02) 0.16  
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3.6  Logistic Regression  

 

A logistic regression was used to investigate the relationship between BMI and alcohol 

consumption. The logit linearity assumption was not violated. Model 𝟑𝑪𝑪 and 𝟒𝑪𝑪 were conducted 

in complete cases; Model 𝟑𝑴𝑰 and 𝟒𝑴𝑰 were MI. 

 

Model  
Complete 

case analysis 
Imputed dataset 

Cycle 21 
Model 𝟑𝑪𝑪 X  

Model 𝟑𝑴𝑰 
 X 

Cycle 22 
Model 𝟒𝑪𝑪 X  

Model 𝟒𝑴𝑰 
 X 

 

From table 6, sex and being overweight is statistically associated in both models 3CC and 3MI. The 

odds ratio (OR) is 0.52 and 1.60, respectively, meaning that holding all other variables in the model 

constant, the odds of males having overweight or obesity is 48% less than females in model 3CC , 

but inversely the odds of overweight is 60% higher in model 3MI. Alcohol consumption showed 

no impact on having overweight or obesity in cycle 21 for both 3CC and 3MI. In model 3MI, risk of 

having overweight or obesity was significantly associated with student status and physical 

activities. Similarly, participants who were students during cycle 21 have a 60% higher risk of 

having overweight or obesity compared to non-students.  

 

Table 6 shows that gender was associated with weight status in cycle 22 in both 4CC and 4MI 

models, odds of being overweight or obese in males were 60% more than females in model 4CC 

and 51% less in model 4MI. Alcohol consumption and overweight were statistically significant in 

cycle 22 for both 4CC and 4MI models, the participants who drank at least once a month compared 

to those who drank less than once a month were less than half as likely to have overweight or 

obesity at cycle 22 in model 4CC and 36% less for the same group in model 4MI. Odds of having 

overweight or obesity in occasional smokers was 53% more than never smokers and the 

participants in a relationship were 44% less likely to have overweight or obesity compared to those 

who were not in a relationship in model 4CC.  
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Table 6 Logistic Regression results: Odds Ratios on the Association between Alcohol 

Consumption and the Risk of Living with Overweight or Obesity 

Parameters  

 

Model  p 

 
Model  
 

p 
 
Model  

 

p 

 
Model  

 

p 

 OR  OR  OR  OR 

Age at Baseline 0.99 0.94 0.99 0.97 1.2 0.3 1.13 0.3 

Alcohola (less than once a month) 0.97 0.94 0.98 0.96 0.54 0.002 0.64 <.0001 

Alcohol (at least once a month) 0.72 0.25 0.81 0.43   

Sex (male vs female) 0.52 <0.0001 1.6 <0.0001 0.49 <.0001 1.6 <.0001 

Race (white vs non-white) 0.91 0.66 1.41 0.03 1.06 0.79 1.27 0.79 

Smokingb (daily vs. non-smokers) 0.55 0.03 0.65 0.1 0.93 0.76 0.75 0.76 

Smoking (former vs. non-smokers) 0.8 0.36 0.83 0.38 0.89 0.61 0.74 0.61 

Smoking (Smoker vs. non-smokers) 0.97 0.88 1 0.99 1.53 0.05 0.82 0.054 

Employment (working vs. not working) 1.06 0.77 1.01 0.95 1.37 0.14 1.17 0.14 

Student Status (student vs non-student) 1.65 0.01 1.65 0.004 1.1 0.6 1.19 0.6 

In relationship (yes vs. no) 1.08 0.79 1.1 0.72 0.66 0.05 0.71 0.055 

Depression (depressed vs. not depressed) 1.23 0.49 1.05 0.85 1.01 0.98 1 0.98 

Physical Activity 1.02 0.03 1.01 0.04    1 0.75 1.01 0.75 
a Never drinkers’ category is selected as reference group in cycle 21 and never and less than once a month 

drinkers’ category as reference group in cycle 22. 
b Never smokers are selected as reference group. 

 

 

The logistic models generated by using complete-case analysis and MI methods can also be  

compared in Table 6. The complete-case model used only 46% of the data in cycle 21 and 61% in 

cycle 22. When we compared the complete-case and MI models, it was noted that the odds ratio 

for the two models were similar for most of the variables. However, larger odds ratio for sex and 

race in MI models were seen except employment, depression, and physical activity in cycle 21. In 

addition, age, smoking, employment, and depression were smaller in the cycle 22 MI model.  
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4. Discussion and Conclusion 

It has been widely acknowledged that obesity is associated with health issues such as high blood 

pressure, cardiovascular disease, and cancer (Freedman, et al., 2007). In addition, excessive 

alcohol consumption and its negative health effects among young adults are growing concerns of 

global public health (Peltzer, et al., 2014).  

 

However, the studies on the association between alcohol consumption and weight gain are 

inconsistent (Suter & Tremblay, et al., 2008). Whereas some researchers found positive association 

between alcohol consumption and obesity (Park, et al., 2017), others found a negative between 

alcohol intake and weight gain (Haffner, et al.; et al.,1990) or no association (Keenan, et al.,1992; 

Wakibayashi, I;, 2012). Due to various factors that may have an impact on this relationship, it is 

difficult to explain the inconsistency in the studies. For this reason, this thesis attempted to focus 

on a prospective cohort of young adults to monitor the impact of alcohol in gaining weight in this 

transition period of life. However, tracking weight gain and alcohol consumption over the time 

with follow-up studies may cause some missingness. 

 

Indeed one potential reason for the mixed longitudinal findings could be how those studies 

addressed missing data. Missing data can occur due to a variety of reasons including loss to follow-

up, and non-response. As a result, missing data can lead to loss of efficiency in data analysis and 

is one of the main challenges of longitudinal studies and large surveys. For instance, loss to follow-

up in most longitudinal studies ranges from 5% to 53% (Forster, et al., 2008; McNairy, et al., 2017; 

Kaplan, et al., 2017). In this thesis, the number of participants in the follow-up cycles was 596 in 

cycle 21 and 796 in cycle 22 in comparison to the participants at baseline (n=1293). Therefore, 

this thesis attempted to address missing data challenges by utilizing multiple imputation. All the 

statistical results were compared between complete cases and imputed cases. One of the 

advantages of multiple imputation model is that it can decrease standard errors by providing both 

within-imputation and between-imputation variabilities. The other advantage of utilizing a 

multiple imputation model is that it can provide unbiased estimates and may therefore be more 

valid. Nevertheless, in this thesis many similar findings were observed between the complete-case 

and MI general linear models in cycles 21. However, estimates and standard errors were generally 
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smaller for the MI models compared to the complete case models. In addition, when we compared 

the complete-case and MI logistic models, we noted that the odds ratio were consistent for most 

of the variables, with the exception of sex and race.  

 

In this study, different alcohol consumption categories were defined to assess the relationship with 

BMI for cycles 21 and 22. For cycle 21, no relationship was seen between alcohol consumption 

and body weight or the risk of having overweight/obesity. However, in the subsequent cycle, 

compared to those who never had a drink in the past year, those who consumed alcohol at least 

once a month had lower BMI and lower odds of having overweight or obesity in both the complete-

case and the MI models. These findings are aligned with a prospective cohort study in Japan in 

which an inverse association between age, alcohol consumption, and obesity among Japanese men 

was detected (Wakibayashi, 2012).  

 

Preliminary evidence from the literature further suggests there is an interaction with age on the 

alcohol and obesity relationship (Wakibayashi, 2012). Indeed it seems that alcohol consumption 

does not have an immediate impact on body mass among young adults, or it may have an inverse 

relationship. However, as alcohol remains one of the main contributing factors to chronic diseases 

such as high blood pressure, cardiovascular disease, and cancer (Freedman, et al., 2007), it is 

perhaps a latent effect that does not show any immediate positive relationship between symptoms 

of these diseases at early stages of young adulthood. Nevertheless, the exact reason for an inverse 

relationship remains unclear. In order to get a better understanding follow-up studies investigating 

the long-term impacts of alcohol consumption in large cohorts of young adults are needed. Perhaps 

frequency and consistency of alcohol consumption can increase the likelihood of developing 

symptoms in other stages of life (Hvidtfeldt, et al., 2010). 

 

The generalizability of this study is subject to certain limitations. For instance, the participants 

were young adults in Montreal. Therefore, they may not be representative of the general Canadian 

young adult population. Although data were from a cohort study, many variables of interest were 

more cross-sectional in nature and no causality can be inferred. Another point to consider is that 

many measures of interest were based on self-reported data, with their known limitations in bias 

and error (Carpenter & Carpenter, 2012). In addition, measurement of alcohol use such as type of 
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beverage or calorie count were not available in this study. While this is similar to other cross-

sectional study limitations, they are important confounding variables that should be addressed in 

future studies. Lastly, further research should include other participants from different regions 

other than Montreal to compare the result with this current study.  

 

As overweight and obesity is related to many different conditions, it is difficult to assess the 

independent impact of alcohol consumption on the risk of obesity. Although the current study was 

limited by the short-term follow up period with certain difficulties under the free-living condition 

to control for lifestyle habits, this study focused on young adults to complement those of earlier 

studies and addresses a critical gap in the literature. In addition, this study attempted to rely on two 

existing follow-ups among young adults to explore association between alcohol intake and weight 

gain which is a major public health concerns. However, in order to get a better understanding of 

the longitudinal effect of alcohol on body mass, additional follow-up studies are needed. 

Considerable more work and follow-up studies will need to be done to determine the exact impact 

of alcohol consumption on BMI in the long term. 

 

Nevertheless, the study of cycle 21 and cycle 22 in this prospective cohort of young adults 

highlight the importance of the passage of time in providing better estimates of the impact of 

alcohol consumption on obesity. Although cycle 21 shows no association between alcohol 

consumption and BMI, cycle 22 indicates a negative association between them. This unanticipated 

result can suggest the significance of calorie density. For instance, the calorie content of a 5 oz. 

glass of wine is the same as the calorie content of 12 oz. glass of beer and investigating types of 

alcohol and their related calorie density may be useful for more accurate results. In addition, the 

frequency of alcohol consumption and the amount of alcohol intake must be taken into 

consideration.  

 

In this study, an inverse relationship between alcohol consumption and BMI in cycle 22 was 

detected. The results must be interpreted with caution because it cannot be generalized for all ages, 

nor all populations. Although alcohol intake was inversely associated with risk of overweight in 

cycle 22, further research is needed on the same cohort to further track the weight changes and 

other possible health problems for alcohol consumers in the long-term. Indeed, longitudinal studies 
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suggest that increasing alcohol intake may cause weight gain over time (Traversy & Chaput, 

Alcohol Consumption and Obesity: An Update., 2015).  

 

Therefore, it seems that the impact of alcohol on BMI is a long-term process rather than an 

immediate effect among young adults. In other words, the impact of alcohol on obesity is not 

among short term effects of alcohol, but it might be counted as long term consequences of alcohol 

consumption. 

 

Taking all into consideration, it seems that age, passage of time, type of alcohol, the amount of 

alcohol intake, frequency of alcohol consumption, consistency of use, may play important roles on 

BMI in the prospective cohort of young adults. Perhaps the cause-and-effect association between 

alcohol consumption and weight is a slow process and the impact of alcohol on obesity is not 

among short term effects of alcohol, but it might be counted as long term consequences of alcohol 

consumption. Therefore, more follow-up studies may be needed to track weight gain. Taking all 

into consideration, it seems that age, passage of time, type of alcohol, the amount of alcohol intake, 

frequency of alcohol consumption, consistency of use, may play important roles on BMI in 

prospective cohorts of young adults and should be further investigated. However, because missing 

data issues are a common concern for all longitudinal studies, this thesis demonstrated the 

application of multiple imputation. Although the statistical methodology is not consistently 

utilized in this literature, in this thesis its use demonstrated unbiased estimates and smaller standard 

errors compared to the complete cases analysis. Therefore incorporating the aforementioned 

unmeasured covariates alongside an MI model would address a notable gap in the literature and 

should be further explored. 
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Appendix 

 

Model 1a, 2a, 3a, 4a were conducted in complete cases.  

 

Cycle   Interaction Model  

21 
Complete-Case 

Sex * Alcohol  

Model 1a 

Imputed Data Model 1b  

22 
Complete-Case Model 3a 

Imputed Data Model 3b  

21 
Complete-Case 

Student * 

Alcohol 

Model 2a 

Imputed Data Model 2b  

22 
Complete-Case Model 4a 

Imputed Data Model 4b  

 

The result in Table I shows that sex in models 1a, 2a and 2b was a significant predictor for BMI 

(model 1a: B =-2.71, p=0.02, model 2a: B =-1.38, p=0.001, model 2b: B =-0.97, p=0.002). The 

interaction terms between sex and student status with alcohol consumption were not significant in 

any models. 

 

Similar to cycle 21, Table II shows that sex is a significant predictor for BMI. The association 

between mean BMI and student status is also significant. Alcohol consumption and BMI are 

significantly negatively associated (model 4a: B=-2.05, p=0.0011, model 4b: B=-1.61, p= 0.0003). 

Alcohol drinking (at least once a month) is negatively associated with BMI, for both the complete 

case and imputed model (4a and 4b). For a person who consumed alcohol at least once a month, 

the predicted BMI was 2.05 units lower than a person who drank less than once a month.  
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Table I GLM results with Interaction terms: Betas (SE) on the Association between 

Alcohol Consumption with BMI (Cycle 21) 

 

 Covariates 

Model 1a 

(Complete) 
p 

Model 1b 

(MI) 
p 

Model 2a 

(Complete) 
p 

Model 2b 

(MI) 
p 

 

Age at Baseline 0.28(0.35) 0.43 0.21(0.27) 0.43 0.28(0.35) 0.43 0.21(0.27) 0.45  

Alcohol
a
 (less than once a month) -3.57(1.97) 0.07 -2.86(2.34) 0.22 -1.97(0.9) 0.03 -0.73(0.92) 0.43  

Alcohol (at least once a month)  -2.54(2.5) 0.31 -3.07(1.91) 0.11 0.12(1.03) 0.91 -2.11(0.79) 0.01  

Sex (male vs female)  -2.71(1.17) 0.02 -2.02(1.13) 0.07 -1.38(0.35) <.0001 -0.97(0.32) 0.002  

Race (white vs non-white) 0.27(0.42) 0.52 0.03(0.31) 0.91 0.29(0.42) 0.49 0.04(0.31) 0.89  

Smoking (smokers vs. non-smokers) -0.2(0.16) 0.2 -0.11(0.14) 0.45 -0.2(0.16) 0.21 -0.11(0.14) 0.45  

Employment Status (working vs. not working) 0.29(0.42) 0.49 0.18(0.41) 0.67 0.32(0.42) 0.44 0.17(0.41) 0.67  

Student Status (student vs non-student) -0.46(0.35) 0.2 -0.5(0.34) 0.14 -1.24(1.18) 0.3 -1.69(1.12) 0.13  

In a relationship (yes vs. no)  -0.78(0.44) 0.08 -0.74(0.42) 0.08 -0.79(0.44) 0.08 -0.74(0.42) 0.08  

Depression (depressed vs. not depressed) -0.18(0.62) 0.77 0.02(0.55) 0.96 -0.2(0.62) 0.75 0.04(0.55) 0.95  

Physical Activity   0.01(0.02) 0.42 0.02(0.02) 0.16 0.01(0.02) 0.44 0.02(0.02) 0.16  

Sex* Alcohol (less than a month) 1.39(1.23) 0.26 1.61(1.4) 0.25  
 

Sex* Alcohol (at least once a month) 1.75(1.5) 0.24 1.03(1.18) 0.38  

Student * Alcohol (less than a month)  
 

0.98(1.23) 0.43 0.79(1.4) 0.57  

Student * Alcohol (at least once a month) 0.05(1.46) 0.97 1.36(1.14) 0.23  

a Never drinkers’ category is selected as reference group and Physical activity is calculated based on mean of moderate and 

vigorous levels of physical activity variable defined in method section.  
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Table II GLM results with Interaction terms: Betas (SE) on the Association between 

Alcohol Consumption with BMI (Cycle 22) 

 

Covariates  
Model 3a 

(Complete) 
p 

Model 3b 

(MI) 
p 

Model 4a 

(Complete) 
p 

Model 4b 

(MI) 
p 

Age at Baseline 0.27(0.35) 0.44 0.21(0.27) 0.44 0.28(0.35) 0.43 0.21(0.27) 0.44 

Alcohol
a
 (At least once a month) -2.05(1.38) 0.14 -1.26(1.21) 0.3 -2.05(0.56) <.0001 -1.61(0.49) <.0001 

Sex (male vs female) -1.61(0.72) 0.03 -0.99(0.65) 0.13 -1.38(0.35) <.0001 -0.98(0.32) <.0001 

Race (white vs non-white) 0.29(0.42) 0.48 0.05(0.31) 0.86 0.3(0.42) 0.48 0.05(0.31) 0.87 

Smoking (smokers vs. non-smokers) -0.2(0.16) 0.21 -0.11(0.14) 0.44 -0.2(0.16) 0.21 -0.11(0.14) 0.44 

Employment Status (working vs. not working) 0.33(0.42) 0.43 0.18(0.41) 0.66 0.33(0.42) 0.43 0.17(0.41) 0.68 

Student Status (student vs non-student) -0.48(0.35) 0.18 -0.51(0.34) 0.14 -1.21(0.7) 0.08 -1.15(0.67) 0.08 

In relationship (yes vs. no) -0.81(0.44) 0.07 -0.74(0.42) 0.08 -0.79(0.44) 0.07 -0.74(0.42) 0.08 

Depression (depressed vs. not depressed) -0.2(0.62) 0.75 0.01(0.55) 0.98 -0.2(0.62) 0.75 0.01(0.55) 0.98 

Physical Activity 0.01(0.02) 0.44 0.02(0.02) 0.16 0.01(0.02) 0.43 0.02(0.02) 0.16 

Sex* Alcohol (At least once a month) 0.28(0.81) 0.73 0(0.74) 1     

Student * Alcohol (At least once a month)   
  

  
  0.96(0.78) 0.22 0.83(0.73) 0.26 

a Never or less than once a month drinkers’ category is selected as reference group and Physical activity is calculated based on 

mean of moderate and vigorous levels of physical activity variable defined in method section. 
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