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Abstract

Simplicial volume and non-positive curvature

Habib Alizadeh

The simplicial volume is a non-negative real valued homotopy invariant of closed connected
manifolds measuring how efficient the fundamental class can be represented by real singular
cycles. The problem of determining whether the simplicial volume of a given manifold is
non-zero has been a challenge. It is known that the simplicial volume of negatively curved
manifolds is positive [15]. Losing the negative bound on the sectional curvature, it has
been shown that locally symmetric spaces of non-compact type have positive simplicial
volume [21]. In their 2018 paper, C.Connell and S.Wang showed that the simplicial volume
of n-manifolds with non-positive sectional curvature and negative

X

n
4 ` 1

\

-Ricci curvature
have positive simplicial volume, which confirms the Gromov’s conjecture in special cases.
The conjecture states that the simplicial volume of manifolds with non-positive sectional
curvature and negative Ricci-curvature is positive. In this master thesis we will introduce
required notions and preliminaries and present detailed proofs of the results mentioned
above.
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Chapter 1

Introduction

For the first time, Gromov introduced the notion of the simplicial volume of a closed,
connected and orientable manifold M in his 1982 paper [26]. This homotopy invariant is
denoted by ||M || P r0,8q, and measures how ”efficiently” the fundamental class of M may
be represented using real cycles.

Definition 1.0.1 (Simplicial Volume). Let M be an oriented closed connected n-manifold
with fundamental class rM s P HnpM,Zq. The simplicial volume of M is defined as follows,

||M || :“ inft||α||1 : Bα “ 0, rαs “ i˚prM squ

where i˚ : HnpM,Zq Ñ HnpM,Rq is the change of coefficient homomorphism, and for
α “ Σiaiσi P CnpM,Rq with σi P C

0p∆n,Mq we define,

||α||1 :“
ÿ

i

|ai|

If M is not an orientable manifold then we take the oriented connected double cover of M
denoted by M , and define, ||M || :“ 1

2 ||M ||.

To find a lower bound for the simplicial volume one may proceed as follows, for any arbitrary
representative α “

ř

i aiσi of the fundamental class find a special representative λpαq “
ř

i biτi with smaller ||.||1 so that the volume of all simplices τi are bounded by a universal
constant only depending on the manifold, see the argument in Section 3.2. In 1980 H. Inoue
and K. Yano proved that indeed in a negatively curved manifold geodesic simplicies have a
universal bound on their volume, and for any simplex one can easily find a geodesic simplex
that represents the same homology class. Therefore they proved the following theorem,

Theorem 1.0.2. The simplicial volume of closed, connected Riemannian manifolds with
negative sectional curvature is positive.

We will explain the details of the proof of this theorem in Chapter 3. Moreover the sim-
plicial volume of hyperbolic manifolds, i.e. manifolds with constant negative sectional
curvature, has been explicitly calculated. Namely if Mn is a hyperbolic manifold, then
||M || “ volpMq{νn, where νn is the maximum volume of all geodesic simplices in M . For
instance the simplicial volume of closed connected surfaces with genus g ě 2 is equal to
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4g ´ 4, [26]. Now the question is what happens if we loose the negative upper bound for
the sectional curvature, i.e. what can we say about the simplicial volume of non-positively
curved manifolds. In the paper of Gromov([26]) the question was raised as whether the
simplicial volume of closed locally symmetric space of non-compact type is positive. Note
that a non-compact type manifold has non-positive sectional curvature by definition. This
question was mentioned in variety of sources, [25], [34], [30] and [6] until 2005 when it was
completely answered by J.F. Lafont and B. Schmidt, [21]. However there might be geodesic
simplices with arbitrary large volume in non-positively curved manifolds but the idea of
the proof in this case is to look for simplices with uniformly bounded volume by which the
fundamental class can be represented. They follow Thurston’s method, called the straight-
ening method, see Chapter 4, to find these simplices. Note that the method in negative
curvature case is also a straightening method, and Thurston’s method is a refined version
of the straightening used by H. Inoue and K.Yano. We will be explaining the details of the
proof of J.F. Lafont and B. Schmidt for the following theorem in Chapter 5,

Theorem 1.0.3. If M is a closed locally symmetric spaces of non-compact type, then
||M || ą 0.

Note that in the above theorem, ”closed” shall mean compact and without boundary as
usual. A different straightening procedure was developed by Savage to show the positivity
of the simplicial volume for co-compact quotients of SLnpRq{SOnpRq, [30]. The following
conjecture is attributed to Gromov.

Conjecture 1.0.4 (M.Gromov). If M is a closed manifold with non-positive curvature and
negative Ricci-curvature, then ||M || ą 0.

In 2018 C. Connell and S. Wang showed the following theorem, which indeed confirms
Conjecture 1.0.4 in some special cases,

Theorem 1.0.5. The simplicial volume of closed n-manifolds with non-positive curvature
and negative p

X

n
4

\

` 1q-Ricci curvature is positive.

The Ricci type curvature stated in the theorem above is a stronger assumption on the Ricci-
curvature than negative Ricci-curvature, i.e. for k “ n we have Rick ă 0 is equivalent to
Ricci ă 0, and for k ă n, Rick ă 0 implies Ricci ă 0. For the definition of k-Ricci curvature
see the Definition 6.4.3. We will also present a detailed proof of the Theorem 1.0.5. Non-
positively curved Riemannian manifolds can be classified by their geometric rank, which is
the minimum dimension of parallel stable Jacobi fields along geodesics, see Definition ??, or
in the case of symmetric spaces of non-compact type, the maximum k for which there is a
complete totally geodesic submanifold isometric to Rk. Higher rank manifolds turn out to
have universal cover which are either metric products or symmetric spaces of non-compact
type, [33], [17], and hence their simplicial volume is understood by theorems above. The
remaining class of geometric rank one manifolds which includes manifolds with both van-
ishing and non-vanishing simplicial volume will be studied in Chapter 5 in a special case.
The simplicial volume has been shown to vanish for several large classes of manifolds. Mani-
folds that admit a non-degenerate action of circle, or more generally a polarized F -structure
[18], [10], [26], certain affine manifolds [24] and manifolds with amenable fundamental group
[26]. Note that trivial, abelian, solvable and nilpotent groups are all amenable. In particular
simply connected manifolds have zero simplicial volume. The simplicial volume of mani-
folds with free fundamental group also vanishes. Here are some other important results on
the simplicial volume of manifolds some of which we will be using through the subsequent

2
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chapters.

Theorem 1.0.6 (Proportionality Principle). Let M,M 1 be two closed Riemannian mani-
folds with isometric universal cover, then

||M ||
V olpMq

“
||M 1||
V olpM 1q

Theorem 1.0.7 ([29, Proposition 3.2.4]). For a pair of closed oriented manifolds M,M 1

we have,
C||M ||.||M 1|| ě ||M ˆM 1|| ě ||M ||ˆ ||M 1||

where C ą 1 is a constant that only depends on the dimension of M ˆM 1. If dimpMq “ m
and dimpM 1q “ n, the inequality holds for C “

`

m`n
n

˘

.

Theorem 1.0.8. For n ě 3, the connected sum of a pair of n-manifolds M,M 1 satisfies

||M#M 1|| “ ||M ||` ||M 1||

Theorem 1.0.9 ([31]). Co-compact quotients of SLnpRq{SOnpRq have positive simplicial
volume.

Theorem 1.0.10 ([29, Proposition 3.2.5]). Let M be an n-manifold. If Hnpπ1pMqq “ 0
then ||M || “ 0. In particular the simplicial volume any simply connected manifold vanishes.

Theorem 1.0.11 ([29, Proposition 3.3.9]). Let M be a locally symmetric n-manifold whose
universal cover has a non-trivial compact factor, then ||M || “ 0.

Theorem 1.0.12 ([37]). The simplicial volume of oriented closed connected smooth mani-
folds that admit a non-trivial smooth S1-action vanishes.

Theorem 1.0.13 ([26]). Let M be a compact, connected and oriented Riemannian n-
manifold with constant sectional curvature ´1 on intpMq “ MzBM and finite volume.
Then,

||M, BM || “ volpMq

νn

In particular, if M is closed then

||M || “ volpMq

νn

where νn is the volume of the regular ideal simplices in Hn, i.e. νn “ suptvolpσq : σ P
SnpHnqu, where SnpMq is the set of all n-simplices in M .

Theorem 1.0.14 (No-gap Theorem, [16, Theorem A]). Let d ě 4 be an integer. For every
ε ą 0 there is an orientable closed connected d-manifold such that 0 ă ||M || ď ε. Hence the
set of simplicial volumes of orientable closed connected d-manifolds is dense in Rě0.

Theorem 1.0.15 (No-gap Theorem, [16, Theorem B]). For every q P Qě0 there is an
orientable closed connected 4-manifold Mq so that ||Mq|| “ q.

3



Chapter 2

Preliminaries

2.1 Riemannian geometry

In this section we explain some basics on Riemannian geometry which is required to follow
the rest of the notes.

Definition 2.1.1. A Riemannian metric on a smooth manifold M is a smooth section of
the 2-tensor bundle T˚M b T˚M so that for every point x PM , gpxq : TxM b TxM Ñ R is
a symmetric positive-definite bi-linear form. A smooth manifold is called Riemannian if it
is equipped with a Riemannian metric (Indeed every smooth manifold admits a Riemannian
metric).

Definition 2.1.2. Let pM, gq be a Riemannian manifold. Let M̃ be the universal cover of

M with the covering map p : M̃ Ñ M . Since p is a local diffeomorphism one can pull back
the metric g on M̃ , let us denote it by g̃. The volume entropy of pM, gq is defined as follows,

hppM, gqq :“ lim
RÑ8

1

R
volpBRpxqq

where x P M̃ is a point and BRpxq is a ball around x with radius R with respect to the
pull-back metric g̃.

Remark 2.1.3. The volume entropy defined above does not depend on the choice of the
base point x P M̃ . The volume entropy of the hyperbolic space with constant curvature ´1
is equal to 1.

The Euclidean space Rn with the standard Euclidean metric is a Riemannian manifold.
The shortest path from one point to another in the Euclidean space is simply the straight
line going through the points. To define the shortest path between two points p, q in an
arbitrary Riemannian manifold pM, gq one might define the following distance function on
the manifold,

dpp, qq :“ inf
γ

ż

I

a

gp 9γ, 9γqdt

where γ : I ÑM varies on the set of piecewise differentiable curves in M from p to q. And
define the curve that meets the infimum value above to be the shortest path from p to q.
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But it is not clear why such a curve exist. A better way of approaching this generalization
is the following, a straight line γ in the Euclidean space satisfies d

dt p 9γq “ :γ “ 0, where γ
is the velocity vector along γ which is indeed a vector field along the curve γ. It would be
a good idea to define a ”second derivative” of a curve, or in general derivative of a vector
field on a Riemannian manifold.

Definition 2.1.4. Let M be a smooth manifold. A connection on TM is a map ∇ :
ΓpTMq ˆΓpTMq Ñ ΓpTMq satisfying the following properties, for every X,Y, Z P ΓpTMq,
f, g P C8pMq and a, b P R,

• ∇fX`gY Z “ f∇XZ ` g∇Y Z

• ∇ZpaX ` bY q “ a∇ZX ` b∇ZY

• ∇XpfY q “ XpfqY ` f∇XY

The vector field ∇XY is called the covariant derivative of Y in the direction of X. If g is
a fixed metric on M , then a connection ∇ is called Levi-Civita connection if it satisfies the
following conditions,

• ∇XY ´∇YX “ rX,Y s

• ∇ZgpX,Y q “ gp∇ZX,Y q ` gpX,∇ZY q

Remark 2.1.5. For any metric g on a manifold M , there is a unique Levi-Civita connection.

Definition 2.1.6. Let M be a smooth manifold and γ : I ÑM be a peicewise smooth curve
in M . Let ∇ be a connection on TM . There is a unique operator Dt : ΓpTM|γ q Ñ ΓpTM|γ q

that satisfies the followings for every X,Y, Z P ΓpTM|γ q, f P C
8pIq and a, b P R,

• DtpaX ` bY q “ aDtX ` bDtY

• DtpfY q “ f 1Y ` fDtY

• If V is an extendible vector field along γ and Ṽ is an extension of V then we have

DtV ptq “ ∇ 9γ Ṽ

From now on we shall always mean the Levi-Civita connection by ∇ and the corresponding
covariant derivative along curve γ by Dγ .

Definition 2.1.7. A curve γ in a Riemannian manifold M is called geodesic if Dγ 9γ “ 0.

Definition 2.1.8. Define a p3, 1q-tensor field R P ΓpT˚pMqb3 b TMq as follows,

RpX,Y qZ :“ ∇X∇Y Z ´∇Y∇XZ ´∇rX,Y sZ

This p3, 1q-tensor field is called curvature tensor. And for any two independent local vector
fields X,Y on M the sectional curvature sectpX,Y q is defined as follows,

sectpX,Y q :“
gpRpX,Y qY,Xq

||X||2||Y ||2 ´ gpX,Y q

We may denote the sectional curvature by R too through the note. The Ricci-curvature of
M is denoted by Ricci is a p2, 0q-tensor field defined by Ricci “ trpsectq where the trace

5
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operator is defined by tr : ΓpT˚Mbk ˆ TMblq Ñ ΓpT˚Mbpk´1q ˆ TMbpl´1qq by

F ÞÑ

ˆ

pω1, . . . , ωk´1, X1, . . . , Xl´1q ÞÑ

Tr
`

X ÞÑ F p., ω1, . . . , ωk´1, X,X1, . . . , Xl´1q
˘

˙

Definition 2.1.9. A Riemannian manifold M is called negatively curved if sectpX,Y q ă
´δ ă 0 for some non-zero positive real number δ, every two independent tangent vectors
X,Y P TpM and every point p PM . A Riemannian manifold is called non-positively curved
if the sectional curvature is always non-positive and there is no universal negative upper
bound for the sectional curvature. Positively curved and non-negatively curved are defined
similarly.

Definition 2.1.10. Let M be a Riemannian manifold with Levi-Civita connection ∇. Let
V be a vector field along a geodesic γ in M . We say that V is a Jacobi field along γ if it is
a solution to the following equation,

DγDγp´q `Rp´, 9γq 9γ “ 0

If M is a complete non-positively curved Riemannian manifold, then a Jacobi field V along
γ is called stable if there is a constant C ą 0 so that ||V ptq|| ă C for all t ě 0.

Remark 2.1.11. A Jacobi field J along a fixed geodesic γ is uniquely determined by the
initial conditions Jp0q “ v P Tγp0qM and DγJp0q “ w P Tγp0qM . Furthermore for every
v, w P Tγp0qM there is a Jacobi field J with Jp0q “ v and DγJp0q “ w. Therefore the
dimension of jacobi fields along a curve γ is 2n where dimpMq “ n.

Lemma 2.1.12. (Uniqueness of stable Jacobi fields) Let M be a complete Riemannian
manifold with non-positive curvatur, γ : r0,8q Ñ M be a geodesic ray, and let v P TpM ,
p “ γp0q. There is a unique stable Jacobi field Y along γ with Y p0q “ v.

Proof. The uniqueness follows from the fact that in Hadamard spaces, complete non-positively
curved manifolds, the length of a Jacobi field is a convex function. This is simply because,

`

||Y ptq||2
˘2
“ xY ptq, Y ptqy2 “ 2xY ptq, Y 1ptqy1

“ 2p||Y 1ptq||2 ` xY ptq, Y 2ptqyq

“ 2
`

||Y 1ptq||2 ´ xRpY ptq, 9γptqq 9γptq, Y ptqy
˘

ě 0

Suppose Y is a stable Jacobi vector field along γ with Y p0q “ 0. If we show that Y ” 0
then the uniqueness follows. Since ||Y ptq||2 is a convex function and bounded so we have,
p||Y ptq||2q1 is increasing and non-positive. But since d

dt |t“0
||Y ptq||2 “ 2xY p0q, Y 1p0qy “ 0 so

then we have ||Y ptq||2 is constant 0 and therefore Y ptq “ 0. To prove the existence let Yn
be the unique Jacobi field along γ with Ynp0q “ v and Ynpnq “ 0. Applying the Rauch’s
comparison theorem to Yn ´ Ym we get,

||Y 1np0q ´ Y 1mp0q|| ď
1

t
||Ynptq ´ Ymptq||

6
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in particular we have,

||Y 1np0q ´ Y 1mp0q|| ď
1

n
||Ympnq||

but since ||Ymptq||2 is convex and it reaches 0 at t “ m it must be monotone decreasing in
the interval r0,ms, therefore,

||Y 1np0q ´ Y 1mp0q|| ď
1

n
||Ympnq|| ď

1

n
||v||

Thus ||Y 1np0q|| is a Cauchy sequence with limit w, say. If Yv is the unique Jacobi field along
γ with Yvp0q “ v and Y 1vp0q “ w then it follows immediately that Yv, as the limit of Yn, is
a stable Jacobi field along γ.

Theorem 2.1.13. Let M be a non-positively curved complete and simply connected man-
ifold. Then it is diffeomorphic to a Euclidean space. And M is a normal neighborhood of
every point in the manifold, thus for any two points p, q PM there is a unique geodesic γ in
M with γp0q “ p and γp1q “ q.

Proof. Let p P M be a point. Let expp : U Ñ M be the exponential map that is defined
on an open subset of U Ă TpM by v ÞÑ γp,vp1q, where γp,v is the unique geodesic passing
through p with the velocity vector 9γp0q “ v that is defined on the interval r0, 1s. One can
show that if the sectional curvature is non-positive then the exponential map defined above is
a local diffeomorphism wherever it is defined. On the other hand it is known that a manifold
is metric complete if and only if it is geodesically complete, that means all geodesics are
defined on R, i.e. U “ TpM . Putting all these together one shows that expp is a universal
covering map, and since M is simply connected so expp is a global diffeomorphism. It is
not hard to show that if expp : U Ñ V is a diffeomorphism between a neighborhood U of
0 P TpM and a neighborhood V ĂM of p then for every two points p, q P V there is a unique
geodesic γ in V with γp0q “ p and γp1q “ q. Thus the statement follows immediately.

Theorem 2.1.14 (Gauss-Bonnet). Suppose γ is a curved polygon on an oriented Rieman-
nian 2-manifold pM, gq, and γ is positively oriented as the boundary of an open set Ω with
compact closure. Then

ż

Ω

KdA`

ż

γ

κNds`
ÿ

i

εi “ 2π

where K is the Gaussian curvature of M , dA is the volume form, Dt 9γptq “ κN ptqNptq and
finally the ε1is are the rotation angles of γ at ”sharp points”, see Figure 2.1 and [22, pg.162].

Definition 2.1.15 (Geometric Rank). Let M be a symmetric manifold (of non-compact
type). A k-flat submanifold of M is a complete totally geodesic submanifold of M that is
isometric to Rk. The rank of M is denoted by rkpMq and is defined to be the maximum
number k such that M has a k-flat submanifold.

Manifolds with negative sectional curvature have rank equal to 1. In particular hyperbolic
spaces have rank “ 1. One can easily construct manifolds with rank one and arbitrary
”large” parts with zero sectional curvature by taking two copies of a flat manifold and
cutting off a ball and connecting two copies with a negatively curved cylinder along the
holes. Here is also two large classes of manifolds with rank at least 2,

7
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Figure 2.1:

Example 2.1.16. Let G be a semi-simple Lie group with finite center and no compact
factor. Consider the space M “ ΓzG{K where K Ă G is a maximal compact subgroup and
Γ Ă G is a uniform lattice. This manifold admits a metric with non-positive curvature and
rankpMq ě 2. See [33] for the details of why this manifold is in the desired class.

Example 2.1.17 (Direct product). If N1, N2 are two non-positively curved manifolds then
their product M “ N1 ˆ N2 is a non-positively curved manifold with rankpMq ě 2. This
is easily seen by the fact that each geodesic in M lies in an immersed flat two-plane. Let
γptq “ pγ1ptq, γ2ptqq be a geodesic in M , if non of the γ1, γ2 is constant then γ is contained
in the flat two plane spanned by γ1ˆγ2 ĂM . And if γ is parallel to one of the factors then
each geodesic γ1 parallel to the other factor determines a flat two plane containing γ.

Definition 2.1.18 (Hessian). Let pM, gq be a Riemannian manifold and f P C8pM,Rq be
a map. Then the Hassian of f is denoted by ∇2f and is defined as follows, for vector fields
X,Y P ΓpTMq,

∇2fpX,Y q “ XpY pfqq ´ p∇XY qpfq

2.2 Locally symmetric spaces

In this section we will discuss some properties of locally symmetric spaces that we will need
in Chapter 5 to study positivity of the simplicial volume of locally symmetric spaces of
non-compact type.

Definition 2.2.1. A Riemannian manifold M is said to be a locally symmetric space if for
every point p P M there exist a neighborhood U of p and an isometry s : U Ñ U so that it
leaves p fixed and dps “ ´idTpM .

Remark 2.2.2. Note that if M is an arbitrary Riemanian manifold and p PM any point on
M , then there exist a neighborhood U of p and a unique diffeomorphism sp,U : U Ñ U such
that sppq “ p and dps “ ´idTpM . For any two neighborhoods U, V of p for which the maps
sp,U and sp,V exist we have sp,UXV exist and sp,UXV “ sp,U |UXV “ sp,V |UXV . Therefore
there is a maximal neighborhood of p with a diffeomorphims sp : U Ñ U with spppq “ p and
dpsp “ ´idTpM . The map sp is called geodesic symmetry centered at p.

8
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Definition 2.2.3. A locally symmetric space is called a symmetric space if all the geodesic
symmetry maps can be extended to the entire manifold.

Lemma 2.2.4. Universal cover of a complete locally symmetric space is a symmetric spaces.

Proof. Without loss of generality, let M be a connected locally symmetric space and M̃ be
its universal cover with the induced metric. Thus M̃ is a locally symmetric space as it is
locally isometric to M . Now let sp : U Ñ U be a geodesic symmetry centered at p in M̃ .

Now suppose x P M̃zU . Let γ : I Ñ M̃ be a smooth curve from p to x. Cover the image of
γ by finitely many open neighborhoods U0, ..., Uk where U0 “ U , UiXUj “ H for |i´j| ě 2,
for each of which there exist a geodesic symmetry si centered at some point of Ui and also
a chart φi : Ui Ñ Ũi Ă Rn. Now let gi : Rn Ñ Rn be an isometry that extends the isometry
map φi ˝ si ˝ φ

´1
i´1 : φi´1 ˝ s

´1
i´1pUi X Uiq Ñ φipUi´1 X Uiq to an isometry of Rn. Now we

define the extension of sp at x to be sp ˝ φ
´1
0 ˝ g´1

1 ˝ ... ˝ g´1
k´1 ˝ g

´1
k ˝ φipxq. One can check

that this extension is an isometry and the definition does not depend on the choice of γ,
using the fact that M̃ is simply connected. for more details see [12].

Because of the proportionality principle, 1.0.6, to determine the positivity of the simplicial
volume of a manifold M , it would be enough to show that there is a manifold with positive
simplicial volume and universal cover isometric with that of M . Therefore let us talk about
(simply connected complete) symmetric spaces and their properties.

Lemma 2.2.5 ([14, Theorem 3.2, Ch 2]). Let G be a locally compact group with a countable
basis. Suppose G is acting transitively and continuously on a locally compact Hausdorff
space M . Let p PM be a point and H be the subgroup of G leaving p fixed. Then H Ă G is
a closed subgroup and the map G{H ÑM defined by gH ÞÑ g.p is a homeomorphism.

Furthermore for a Riemannian manifold one can prove the following theorem,

Theorem 2.2.6 ([14, Theorem 3.3, Ch 4]). The followings hold,

• Let M be a Riemannian manifold and IpMq be the isometry group of M . Then the
compact-open topology of IpMq, turns it into a locally compact group with countable

basis, and IpMq acts smoothly on M . Furthermore the subgroup K̃ Ă IpMq that leaves
a point p PM is a compact subgroup.

• If M is a globally symmetric space, then the identity connected component of isometry
group IpMq, denoted by G :“ I0pMq, admits a smooth structure compatible with the
compact-open topology that turns it into a Lie group acting transitively and smoothly
on M . If K Ă G is the maximal subgroup of G fixing a point p P M then, K is a
compact subgroup and M – G{H(diffeomorphism).

So in order to study the structure of symmetric spaces one might attempt to use the theory
of Lie groups and Lie algebras. Note that for a semisimple Lie group G and a maximal
compact subgroup K Ă G, the quotient group G{K can be equipped with a metric that
is G-equivariant and turns the quotient into a globally symmetric Riemannian manifold.
To see this, let g, k be the Lie-algebra of G and K respectively. If G is a semisimple Lie
group, i.e. by definition g is a semisimple Lie algebra, then the Cartan Killing form is a
non-degenerate bi-linear form on g defined as follows,

B : gˆ g ÝÑ R

9
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pX,Y q ÞÑ TrpadpXqadpY qq

where ad : g Ñ glnpgq is the derivative of the adjoint representation of G at e, defined by
g ÞÑ Adpgq P GLnpgq, where Adpgq is the derivative of cg : GÑ G at e, taking h to ghg´1.
Now since the killing form is a non-degenerate bi-linear form we can define the orthogonal
complement of k in g, let us denote it by p. So then we have, g “ k‘ p. Now one can check
that the differential of the projection map GÑ G{K is a linear map g “ k‘ pÑ TKpG{Kq
with kernel equal to k and it induces an isomorphism between p and TKpG{Kq, where by
indexK we mean the cosetK P G{K. One can show that the Killing form is negative definite
on k and positive definite on p. So the the killing form induces a norm on p, consequently
on TKpG{Kq, denote this norm by gK . now since G{K is a homogenuous space, i.e. for
every point x P G{K there is a diffeomorphism fx : G{K Ñ G{K so that fxpKq “ x, we can
transform the norm gK to a norm gx on the tangent space at the point x using fx for any
point x P G{K. Therefore we get a G-equivariant metric g on G{K defined by gpxq “ gx.

Lemma 2.2.7 ([14, Theorem 3.5, Ch4]). Let M be a symmetric space, G be the identity
component of isometries of M and K Ă G be the isotropy subgroup at the point p P M . G
is a semi-simple Lie group. If g, k are the Lie algebras of G,K respectively, then we have
TpM – p, where p is the orthogonal complement of k Ă g with respect to the Killing form.
Furthermore, we have p “ tX P g : decppXq “ ´Xu and k “ tX P g : decppXq “ Xu where
cp : GÑ G is defined by g ÞÑ spgsp, where sp is the geodesic symmetry at the point p. And
finally M is isometric with G{K, where the metric on G{K is the one constructed in the
paragraph right before the Lemma.

Definition 2.2.8. Let g be a semisimple Lie algebra that admits an involutive automorphism
s : g Ñ g, i.e. s ‰ I and s2 “ id such that the Lie subalgebra of fixed points of s, denoted
by u, is compactly imbedded in g. Then we call the pair pg, sq an orthogonal symmetric lie
algebra. In addition if uX z “ 0 where z is the center of g, then the pair is called an effectice
orthogonal symmetric Lie algebra. Note that with the notation of Lemma 2.2.7, the pair
pg, decpq is an orthogonal symmetric Lie algebra.

In the following definition by compact Lie algebra we shall mean Lie algebra of a compact
group. And by Cartan decomposition we shall mean, there is a Cartan involution θ : gÑ g,
i.e. BθpX,Y q :“ ´BpX,Y q is positive definite bi-linear form, and e is the orthogonal
complement of u with respect to Bθ.

Definition 2.2.9. Let pg, sq be an effective orthogonal symmetric Lie algebra. Let g “ u‘ e
be the decomposition of g into the eigenspaces of s corresponding to `1,´1 eigenvalues.

• If g is a compact semi-simple Lie algebra, then pg, sq is said to be of compact type.

• If g is a non-compact semi-simple Lie algebra, and g “ u‘e is a Cartan decomposition,
then pg, sq is said to be of non-compact type.

• If e is an abelian ideal in g, then pg, sq is said to be of Euclidean type.

Theorem 2.2.10 ([14, Theorem 1.1, Ch V]). Let pg, sq be an effective orthogonal symmetric
Lie algebra. Then there exist ideals I0, I´, I` in g with the following properties,

• g “ I0 ‘ I´ ‘ I`

• I0, I´, I` are invariant under s and orthogonal with respect to the Killing form on g.

10
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• Let s0, s´, s` be the restriction of s to I0, I´, I` respectively. Then the pairs
pI0, s0q, pI´, s´q, pI`, s`q are effective orthogonal symmetric Lie algebras of the Eu-
clidean type, compact type and non-compact type respectively.

Theorem 2.2.11 ([14, Theorem 3.1, ChV]). Suppose that pg, sq is an effective orthogonal
symmetric Lie algebra and pG,Kq is the corresponding pair of Lie groups. Here G is a
Lie group with Lie algebra g and K is the corresponding connected closed Lie subgroup of
G to the Lie subalgebra k :“ tX P g : spXq “ Xu. Let g be an arbitrary G-equivariant
Riemannian metric on G{K. Then the following hold,

• If R is the curvature tensor associated with the metric g, then RpX,Y qZ “ ´rX, rY, Zss.
Thus the curvature tensor of the quotient G{K does not depend on the metric as long
as the metric is G-equivariant.

• If pg, sq is of compact type then the sectional curvature of G{K is non-negative.

• If pg, sq is of non-compact type then the sectional curvature of G{K is non-positive

• If pg, sq is of Euclidean type then the sectional curvature of G{K is vanishes.

An immediate consequence of the Theorem 2.2.11 together with the Theorem 2.2.10 is the
following theorem,

Theorem 2.2.12. Every simply connected symmetric space M is isometrically decomposed
to the Cartesian product of symmetric spaces M0,M´,M` where,

1. M0 is isometric to a Euclidean space

2. M´ is a non-positively curved manifold that is not decomposed into Riemannian prod-
uct of any Euclidean space with any other Riemannian manifold. These manifolds are
called of non-compact type.

3. M` is a non-negatively curved manifold that is not decomposed into Riemannian prod-
uct of any Euclidean space with any other Riemannian manifold. These manifolds are
called of compact type. Furthermore, M` is compact.

Now we state another decomposition theorem for complete simply connected symmetric
spaces, known as de Rham decomposition theorem, which will reduce the study of classi-
fication problem of symmetric spaces to the classification of irreducible symmetric spaces.
Before stating the theorem we introduce the notion of linear holonomy group and a lemma
that will give an idea of the proof of the de Rham decomposition theorem.

Definition 2.2.13 (Linear Holonomy Group). Let M be a Riemannian manifold with Levi-
Civita connection ∇. For any closed curve γ : r0, 1s Ñ M with γp0q “ γp1q “ x P M we
define,

γ̃ : TxM ÝÑ TxM

X ÞÑ Par∇,γx,x pXq

where Par∇,γx,x is the parallel transport along γ with respect to the connection ∇ from tangent
space at x to itself. Now we can think of γ̃ as an invertible linear transformation in GLnpRq.
Thus we define the linear holonomy group as the following,

tγ̃ P GLnpRq
ˇ

ˇ γ : r0, 1s ÑM, γp0q “ γp1q “ x, u

and denote it by Hol∇x .

11
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Definition 2.2.14. Let M be a Riemannian manifold with a connection ∇. Let Hol∇x be
the linear holonomy group at a fixed point x PM . We say that M is reducible if and only if
Tx contains a non-trivial subspace T 1x that is stable under the holonomy group, i.e. for any
X 1 P T 1x and g P Hol∇x we have, gpX 1q P T 1x.

Lemma 2.2.15 ([19, Proposition 6.1, Ch 4]). Let M be a connected, simply connected
and complete Riemannian manifold. Then M is reducible if and only if there are non-zero
dimensional Riemannian manifolds M 1,M2 so that M –M 1 ˆM2.

Proof. Let p PM be a point such that TpM “ T 1pM‘T
2
pM where the subspaces T 1p, T

2
pM are

stable under the linear holonomy group action. Now one can show that the subspaces T 1p, T
2
p

are involutive. Let T 1, T 2 be the distributions obtained by parallel transporting the spaces
T 1pM,T 2pM along geodesics to other points of M . Let M 1,M2 be the the maximal integral
submanifolds of M associated with T 1, T 2 respectively. The goal is to prove that M –

M 1 ˆM2. The isometry f : M ÑM 1 ˆM2 is defined as follows, let q PM be an arbitrary
point in M , and let γ be a geodesic in M with γp0q “ p and γp1q “ q. If 9γptq “ 9γ1ptq` 9γ2ptq
is the corresponding decomposition of 9γptq, then define the following curves in T 1pM and
T 2pM respectively, Parγt,0p 9γ1ptqq and Parγt,0p 9γ2ptqq. Now let γ1 and γ2 be two curves in M
such that Parγt,0p 9γ1ptqq “ Parγt,0p 9γ1ptqq and similarly, Parγt,0p 9γ2ptqq “ Parγt,0p 9γ2ptqq. Now
clearly γ1 lies in M 1 and γ2 lies in M2. Thus define fpqq :“ pγ1p1q, γ2p1qq. One can show
that this map is an isometry, for more details see the reference.

Corollary 2.2.16 (The de Rham Decomposition). Every connected simply connected com-
plete Riemannian manifold is isometric to a direct product M0ˆM1ˆ ...ˆMk of connected,
simply connected, complete and irreducibe Riemannian manifolds tMiu

k
i“0, where M0 is a

Euclidean space (possibly of dimension 0). Such a decomposition is unique up to reordering.
Furthermore, if M is a symmetric space then so are Mi’s.

Proof. This is an immediate consequence of the Lemma 2.2.15.

Lemma 2.2.17 ([19, Theorem 3.5, Ch 7]). Let M “ M1 ˆM2 be a direct product of two
Riemannian manifolds. It is clear that M is a symmetric space if and only if M1,M2 are
symmetric. Assume that M is a symmetric space. Let G be the subgroup of isometries of
M consisting of geodesic symmetries around points of M , i.e.

G :“ tsx P IsompMq
ˇ

ˇ sxpxq “ x, dxsx “ ´idTxM , x PMu

Then we have G – G1ˆG2 where G1, G2 are corresponding subgroups of the isometry groups
IpM1q, IpM2q respectively. Furthermore, if M is an irreducible manifold then G is a simple
group.

The upshot of this section is the following corollary which is an easy consequence of the
discussion above,

Corollary 2.2.18. Let M be a complete locally symmetric space and M̃ be its universal
cover. Then M̃ is isometric to a Riemannian product M1 ˆM2 ˆ ...ˆMk, where each Mi

is an irreducible symmetric space which is either isometric with a Euclidean space or has
non-positive curvature or has non-negative curvature.

12
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After all let us present some examples of symmetric and locally symmetric spaces. The only
examples for symmetric spaces with flat type, is the Euclidean spaces and their quotients.
A typical example for symmetric spaces of non-compact type is the hyperbolic spaces, i.e.
simply connected complete Riemannian manifolds with constant sectional curvature. Sym-
metric spaces of compact type are compact manifolds. A typical example for the symmetric
spaces of compact-type is the spheres. In fact a general symmetric space of compact type
is not that far from spheres,

Theorem 2.2.19 ([11]). If M is a simply connected compact Riemannina manifold with
non-negative curvature then by de Rham decomposition theorem, it is isometric to a product
of irreducible manifolds M1 ˆ ...ˆMk. All the Mi’s are homeomorphic to spheres.

By Theorem 2.2.7 one can easily check that H2 is isometric with SL2pRq{SO2pRq. As a
generalization of hyperbolic spaces, SLnpRq{SOnpRq is a symmetric space of non-compact
type. Any quotient of a hyperbolic space by an arithmetic subgroup is a locally symmetric
space of non-compact type. For instance, all Riemannian surfaces with genus at least 2 are
quotients of hyperbolic plane, therefore are locally symmetric spcace of non-compact type.
As another non-trivial and important example of locally symmetric spaces of non-compact
type we should mention the modular curves ΓzH “ ΓzSL2pRq{SO2pRq where Γ Ă SO2pZq.
When Γ “ SL2pZq the space is called the moduli space of elliptic curves.

2.3 Geometric boundaries

In this section we introduce the geodesic(visual) boundary and the Furstenberg boundary
of a Riemannian manifold and provide some examples as we shall be familiar with these
notions in the construction of Patterson-Sullivan measures.

2.3.1 Geodesic boundary

The geodesic boundary is defined for any simply connected non-positively curved Rieman-
nian manifold X, and will be denoted by Xp8q. But in the following we will restrict
ourselves to the symmetric simply connected non-positively curved manifolds. Therefore let
X “ G{K be a symmetric space of non-compact type. Let g “ k ‘ p be the Cartan de-
composition associated with K, then the tangent space Tx0X at K “ x0 P X is canonically
identified with p. We fix the G-equivariant Riemannian metric g on X that is obtained by
restricting the killing form to p which would be a positive-definite bi-linear form on p. This
metric turns X into a symmetric simply connected Riemannian manifold with non-positive
curvature. Now we can define the geodesic boundary as follows,

Definition 2.3.1. Let X “ G{K be a simply connected symmetric space with non-positively
curved metric constructed above. Let γ1, γ2 be two geodesics in X. Since X is symmetric,
hence complete, all geodesics are defined on R. Now we say that γ1 „ γ2 if

lim
tÑ`8

dpγ1ptq, γ2ptqq ă 8

Clearly „ is an equivalence relation on the set of all geodesics, we define the geodesic bound-
ary by tgeodesics in Xu{ „ and denote it by Xp8q.

Lemma 2.3.2. The set Xp8q can be canonically identified with the unit sphere in the
tangent space TxX for any point x P X, in particular Tx0

X “ p.

13
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Proof. Let x P X be a point. For any unit tangent vector v P TxX there is a unique geodesic
γv with the initial velocity vector v. For any two distinct tangent vector v, w P TxX we
have γv � γw. This is because the exponential map exp : TxX Ñ X is a norm-increasing
map with TxX equipped with the Euclidean metric. Now let γ be any geodesic in X. Then
for every positive integer n there is a unique geodesic γn from x to γn. Hence there is a
subsequence γn1 that converges uniformly for t on compact sets to a geodesic γ8. then it is
easy to check that γ8 is a geodesic passing through x and equivalent to γ.

Definition 2.3.3. The geodesic compactification of X is defined to be X YXp8q and the
topology of it is defined as follows, let x0 P X be fixed and let rγs P Xp8q be a point. Then
we say an unbounded sequence tyjujě1 in X converges to rγs if the geodesic from x0 to yj
converge to γ. This defines a topology on X YXp8q and it does not depend on the choice
of base point x0. A base open subset Cpγ, t, εq around a point rγs P Xp8q with t, ε ą 0 in
this topology is constructed as follows, for any ε, t ą 0 we define,

Cpγ, t, εq :“ Cpγ, εqzBpγp0q, tq

where Bpγp0q, tq is the ball with radius t around γp0q and Cpγ, εq consists of points x so
that the angle between γ and the geodesic from x0 to x is less than ε. This topology on the
compactification X YXp8q is called conic topology.

Lemma 2.3.4. The isometric action of G on X extends to a continuous action on X Y

Xp8q.

Proof. Since γ1 „ γ2 if and only if gpγ1q „ gpγ2q, where g P G arbitrary, so the action of
G on X extends to an action of G on X YXp8q. And since the convergent sequences are
preserved under isometries, thus the action of G is continuous on X YXp8q.

Theorem 2.3.5 ([4, Proposition I.2.6]). A proper subgroup of G is a parabolic subgroup of
G if and only if it is the stabilizer of a point in Xp8q.

2.3.2 Furstenberg boundary

We start with introducing the parabolic subalgebras and subgroups. Let G be a real Lie
group with maximal compact subgroup K. There is a unique Cartan involution θ : GÑ G
with fixed point set K. We shall denote the differential of θ at e with the same notation θ.
If p is the p´1q-eigenspace of θ on g and k is the p`1q-eigenspace of θ on g, which is the Lie
algebra of K, then we have, g “ k‘ p, so that,

rp, ps Ă k, rp, ks Ă p, rk, ks Ă k

If B is the Killing form, then B is negative semi-definite on k, negative defintie on kX rg, gs
and also positive definite on p. The subspace p maybe identified with the tangent space
Tx0

X where X “ G{K and x0 “ K. The restriction of the Killing form on p defined a G-
equivariant Riemannian metric on X “ G{K with respect to which X is simply connected
complete Riemannian symmetric space with non-compact type. The maximal sub-algebras
of p are all abelian sub-algebras and conjugate under K, i.e. the lie bracket of each two
elements vanish and for any two maximal sub-algebra a1, a2 there is an element k P K so
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that adpkqpa1q “ a2. Let a be a maximal sub-algebra of p. A linear 1-form α : a Ñ R is
called a root on a if the corresponding root space is non-zero, i.e.,

gα :“ tV P g : @H P a, rH,V s “ αpHqV u ‰ 0

The set of roots in a˚ is a root system, i.e. for a root α P a˚ and any other root β there
is a root that is the reflection of β with respect to the perpendicular hyperplane Hα to
α. We shall denote the set of roots by Φpg, aq or simply by Φ. Every root α determines
a hyperplane Hα on which it vanishes. A connected component of the complement in a
of the union Hα’s is called Weyl chamber. We fix one of the connected components and
call it positive Weyl chamber and denote it by a`. The choice of a` defines an ordering
Φ`pg, aq “ tα P Φ : α ą 0 on a`u. Let ∆ denote the set of simple roots, i.e. the roots that
are written as sum of two other roots. Define,

n :“
ÿ

αą0

gα, n´ :“
ÿ

αă0

gα

then we will have g “ n ‘ zpaq ‘ n´, where zpaq is the centralizer of a in g. Moreover
zpaq “ m‘ a where m “ zpaqX k. If we let A “ exppaq, then A is a maximal totally geodesic
sub-manifold of X “ G{K which is isometric with a Euclidean space. And any other flat
maximal totally geodesic submanifolds is a translation of A by an element of G. Now we
are ready to define the parabolic sub-algebras. let I Ă ∆ be a set of simple roots in a˚. Let
aI “ XαPIHα. We denote the set of all roots that are linear combinations of simple roots in
I by ΦI and the orthogonal complement of aI in a by aI . So then we should have a “ aI‘aI .
Now we define the standard parabolic sub-algebra pI to be a sub-algebra generated with
the centeralizer of aI , zpaIq and n “

ř

αą0 gα. Therefore we should have,

pI “ n‘ zpaIq “
ÿ

αą0

gα ‘m‘ aI ‘ aI

“ p
ÿ

αPΦ`zΦI

gαq ‘ paIq ‘ pm‘ aI ‘
ÿ

αPΦI

gαq

“ nI ‘ aI ‘mI

Now in the extreme cases we will have, pH “ n ‘ a ‘ m and p∆ “ g. A sub-algebra p of
g is said to be parabolic if it is conjugate to a standard parabolic sub-algebra pI for some
subset I of simple roots.

Definition 2.3.6. A subgroup P of G is called parabolic if it is the normalizer of a parabolic
sub-algebra p in g. i.e. there is a parabolic sub-algebra p in g so that the Lie-algebra of P is
the following set,

Ngppq :“ tx P g : rx, ps P p @p P pu

We shall denote the normalizer of the standard parabolic sub-algebra pI by PI . For I “ H
we will call the corresponding normalizer PH the minimal parabolic subgroup.

Now the decomposition pI “ nI ‘ aI ‘ mI will give us PI “ NI o ZpAIq, where NI is
the corresponding connected subgroup of G with nI , called the unipotent radical of PI ,
and ZpAIq is the centeralizer of AI in G, where AI is the corresponding subgroup with aI .
Moreover we have, ZpAIq “MI ˆAI . Here MI is a subgroup with Lie-algebra mI but not
necessarily connected. Finally we can write PI – NIˆAIˆMI , as analytic manifolds, which
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is called the Langlands decomposition of PI in which MI , AI are θ-stable. Recall that θ is the
unique involution of G that fixes K. Since MI is stable under θ, we have KI :“ KXMI ĂMI

is a maximal compact subgroup. The quotient XI :“ MI{KI “ PI{KIAINI is called the
boundary symmetric space associated with PI and it is a symmetric space of non-compact
type. The boundary symmetric space XI can be identified with the orbit MIK of the point
K P X “ G{K as a subspace of X.

Theorem 2.3.7 (Iwasawa Decomposition). Let G be a real Lie group, and K be a maximal
compact Lie subgroup of G. Let θ be the unique Cartan involution whose fixed point set is
K, and g “ k ‘ p be the corresponding Cartan decomposition. Let a be a maximal abelian
sub-algebra of p with a fixed root ordering a`. If n “

ř

αą0 gα ‘
ř

αă0 gα then we have,

G “ NAK

where N,A are the corresponding Lie subgroups of G with n and a respectively. Moreover,
we have NA Ă PI for any I subset of simple roots.

As an immediate consequence of Iwasawa decomposition we have G “ PIK. Thus PI acts
transitively on X “ G{K, so X “ PI{K XPI and therefore Langlands decomposition of PI
induces a decomposition of X as follows,

X –
PI

K X PI
“

PI
NI ˆAI ˆ pK XMIq

“ NI ˆAI ˆ
MI

K XMI
“ NI ˆAI ˆXI

This decomposition of X “ G{K is called the horospherical decomposition.

Example 2.3.8. Let G “ SLnpRq for n ě 2. Fix the maximal compact subgroup K “

SO2pRq. A maximal abelian subalgebra a in p is given by,

a “ tdiagpt1, ..., tnq : t1 ` ...` tn “ 0u

Recall that the Lie algebra of G is the trace-free matrices, the Lie algebra of K is the skew-
symmetric matrices and consequently p is the set of upper triangular matrices with trace
zero. Define a` :“ tdiagpt1, ..., tnq : t1 ą ... ą tnu, then the nilpotent sub-algebra n consists
of upper triangular matrices with zero on the diagonal entries, and its corresponding Lie
subgroup is the set upper triangular matrices with 1 on the diagonal entries. Then the
standard minimal parabolic subgroup normalizing the sub-algebra p “ n ‘ a ‘ m is the
set of upper triangular matrices. The Langlands decomposition is PH “ NAM , where
M “ tdiagp˘1, ...,˘1qu

We have been defining the parabolic subgroups in the context of real Lie groups, but it is
more natural to look at them from the point of view of algebraic groups. A subgroup P
of a linear algebraic group G defined over an algebraically closed field is called parabolic
subgroup if the homogenuous space G{P is a projective variaty. If G is a linear algebraic
group, then we can embed it into a SLnpRq for some n. Then if GC is the complexification of
G, i.e. smallest linear algebraic subgroup of SLnpCq that contains G, or the Zariski-closure
of G in SLnpCq, then the parabolic subgroups that we have defined are the intersection of
parabolic subgroups of GC, subgroups P Ă GC so that GC{P is an algebraic variety, with
G.
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Now we shall introduce the Furstenberg boundary that we will be dealing with in the
subsequent chapters.

Definition 2.3.9 (Haar measure). Let G be a locally compact Hausdorff topological group.
The Borel-algebra Σ of G is the σ-algebra generated with the open subsets of G. An element
of the Borel-algebra is called Borel set. Then there is a unique non-trivial measure µ, up to
a positive multiplicative constant, with the following properties,

• µ is left-invariant, @g P G,S P Σ, µpgSq “ µpSq

• µ is finite on every compact Borel set

• µ is outer regular on Borel sets, @S P Σ, µpSq “ infSĂUtµpUqu, where infimum is
taken over all open subsets U containing S

• µ is inner regular on Borel sets, @S P Σ, µpSq “ supKĂStµpKqu, where supremum is
taken over all compact subsets contained in S

such a measure in G is called a left Haar measure. Right Haar measure is defined analo-
gously.

Now we first construct the Furstenberg compactification of the unit Poincare disc D in C and
generalize it to the symmetric spaces. Let ∆ be the Laplace operator and let f P C0pS1q.
Then we can extend f to a harmonic map u : D Ñ R, i.e. one can solve the following
Dirichlet problem,

"

∆u “ 0 in D
u “ f on BD

The solution to the above problem would be,

upzq “

ż

S1

1´ |z|2

|z ´ ξ|2
fpξqdξ

where dξ is a Haar measure on S1 normalized so that the total measure is 1. Therefore each
point of S1 determines a measure,

µzpξq :“
1´ |z|2

|z ´ ξ|2
dξ

on S1. By taking f – 1 we conclude that µz is in fact a probability measure on S1. If
M1pS

1q is the space of probability measures on S1, then we get the following map,

i : D ÑM1pS
1q, z ÞÑ µz

where the space M1pS
1q is given the weak-* topology. One can see that the map i is an

embedding. Now the closure of ipDq in M1pS
1q is called the Furstenberg compactification

of D and denoted by D̄F . The Furstenberg compactification of D is homeomorphic to the
closed unit ball D Y S1. There is an obvious map D Y S1 Ñ M1pS

1q that is defined by
zµz on D and takes ξ P S1 to the delta measure δξ. It is easy to check that if zi Ñ ξ
then µzi Ñ δξ. Now we shall generalize this definition of compactification to the symmetric
spaces X “ G{K. If we think of D “ SUp1, 1q{Up1q, then the action of SUp1, 1q extends
continuously on S1 and the stabilizer of any point ξ P S1 is a parabolic subgroup of SUp1, 1q.
In the upper half plane model, H “ SL2pRq{SOp2q, the boundary corresponds to RY ti8u
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and the stabilizer of i8 is the set of upper triangular matrices which is a parabolic subgroup
of SL2pRq. Note that we have the Furstengerb boundary of D is in fact the quotient of
SUp1, 1q by a parabolic subgroup. Similarly in the upper half plan model, Furstenberg
boundary is the quotient of SL2pRq by the subgroup of upper triangular matrices which is
a parabolic subgroup.

Definition 2.3.10. let G be a group. A topological space X is called a homogeneous space
of G if G acts transitively on G. Special cases of this is the group G is a Lie/topological
group that is a subgroup of automorphisms of X, where automorphism could mean, isometry,
diffeomorphism etc. depending on the context.

Definition 2.3.11. Let Y be a compact homogeneous space of a group G. We say Y is a
G-boundary if for every probability measure µ P M1pY q there exist a sequence tgjujě1 in
G for which the sequence of measures gj .µ converges to a delta measure δy for some point
y P Y .

Definition 2.3.12. A homogeneous space M of a group G is called the maximal/universal
G-boundary if it is a G-boundary and for any other G-boundary M 1 there is a surjective
G-equivariant map f : M Ñ M 1. The universal G-boundaries are isomorphic and hence
unique up to isomorphism. A universal G-boundary of G is denoted by FpGq and called the
maximal Furstenberg boundary.

Note that clearly there is a correspondence between the homogeneous spaces of G and the
quotient groups of G. It turns out that the following theorem holds,

Theorem 2.3.13 ([4, page 109]). If P0 is the minimal parabolic subgroup of G then G{P0

is the maximal Furstenberg boundary. Moreover, every other G-boundary if G is of the form
G{P0,I where P0,I is a standard parabolic subgroup of G containing P0. In the subsequent
chapters we will be denoting the Furstenberg boundary of M by BFM .

Example 2.3.14. Let G “ SL2pRq and P0 be the upper triangular matrices in G, the
minimal parabolic subgroup of G. Here we confirm that G{P0 is a G-boundary. Identify

G{P0 with the set RY t8u “ Hp8q under the map

ˆ

a b
c d

˙

ÞÑ a
c . Let µ PM1pHp8qq be a

probability measure. Now there exist an element k P SO2pRq so that,

lim
tÑ`8

k.µ

ˆ

tx P Hp8q : |x| ą tu

˙

“ 0

In particular µpt8uq “ 0. Now let gt :“ diagpt´1, tq P SL2pRq. Thus we have, for every
subset E Ă Hp8q

gtk.µpEq “ k.µpt2Eq

therefore gtk.µÑ δ0. So this confirms the Theorem 2.3.13.

2.4 Busemann functions

Definition 2.4.1 (Busemann function). Let M be a Riemannian manifold with non-positive

curvature, M̃ its universal cover and BM̃ be its geodesic boundary, see Definition 2.3.1. The
following map is called the Busemann function on M̃ ,

B : M̃ ˆ M̃ ˆ BM̃ ÝÑ R

18
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px, y, θq ÞÑ lim
tÑ8

`

d
M̃
pγx,θptq, yq ´ t

˘

where γx,θ is the unique geodesic ray from x to θ. As long as the base point x is understood
we will be denoting the map Bpx, y, θq by Bpy, θq.

Theorem 2.4.2. If M is a complete non-positively curved Riemannian manifold, and γ1, γ2

are two geodesics in M , then dpγ1ptq, γ2ptqq is a convex function. The Busemann function

B “ Bpx, ., ξq : M̃ Ñ R is also a convex function, where x P M̃ and ξ P BM̃ are fixed.

Proof. Let γ1, γ2 be two geodesic in M . The function dpγ1ptq, γ2ptqq is a convex function.
Let t1, t2 be two distinct real number and t “ 1

2 pt1` t2q. Let σ : rt1, t2s ÑM be the unique
geodesic from γ1pt1q to γ2pt2q. Now we have,

dpγ1ptq, γ2ptqq ď dpγ1ptq, σptqq ` dpγ2ptq, σptqq

ď
1

2
dpγ1pt2q, γ2pt2qq `

1

2
dpγ1pt1q, γ2pt1qq

where the second inequality comes from the comparison with the Euclidean case. Now let
γ be the geodesic ray starting from x and going towards ξ P BM and let σ be any geodesic.
Then for any t, s P Rą0, m “ 1

2 ps` tq and large enough r P Rą0, then to prove the convexity
of the Busemann function we need to prove the following

pdpσpsq, γprqq ´ rq ` pdpσptq, γprqq ´ rq ě 2pdpσpmq, γprqq ´ rq

which is true by comparison with the Euclidean case.
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Chapter 3

Negative curvature

Thurston showed that the simplicial volume of the hyperbolic manifolds, i.e. Riemannian
manifolds with negative constant sectional curvature, are proportional to their volumes
and thus positive, see Theorem 1.0.13. In the current chapter we will prove the following
theorem,

Theorem 3.0.1. There exist a constant Cn for n ě 2, such that the following holds. Let δ
be a positive number, and let M be an n-dimensional closed orientable Riemannian manifold
with sectional curvature bounded above by ´δ. Then the simplicial volume of M is estimated
as follows,

||M || ě Cnδ
n{2volpMq

and in particular it is positive.

Before we start the proof of the above theorem, we need to fix some notations. In the
followings in this chapter, δ shall denote a positive number, M a closed n-dimensional
Riemannian manifold with sectional curvature bounded from above by ´δ and p : M̃ ÑM
shall denote the universal covering of M . For two points p0, p1 of M̃ and 0 ď t ď 1, by
tp0 ` p1´ tqp1 we shall mean the point γptq where γ is the unique geodesic with γp0q “ p0

and γp1q “ p1, see Theorem 2.1.13.

3.1 The volume of geodesic simplices

In this sectoin we will find an universal upper bound for the volume of the geodesic simplices
which totally benefits the presence of the negative curvature. Losing the negative upper
bound for the curvature may allow the volume of geodesic simplices become arbitrary large,
and this will prevent us extending the idea of the proof to the non-positive curvature case.
But we might still be able to get rid of the simplices with large volumes and try to represent
the fundamental class of the manifold with universally bounded volume simplices. This will
be done through a refined straightening procedure that we shall discuss in the Chapter 4.

Definition 3.1.1 (Geodesic Simplex). A geodesic k-simplex with vertices p0, p1, ..., pk, de-
noted by σp1...pk is defined inductively as follows, define ∆k :“ tpx1, ..., xk`1q P Rk`1 :
ř

i xi “ 1, xi ě 0u, and identify ∆k´1 with tpx1, ..., xk`1q P ∆k : xk`1 “ 0u. For
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k “ 0 we let σp0
be the map t1u ÞÑ p0 P M̃ , and when σp0...pk´1

is obtained, we define

σp0...pk : ∆k Ñ M̃ by,

σp0...pk

`

p1´ tqs` tp0, ..., 0, 1q
˘

:“ p1´ tqσp0...pk´1
psq ` tpk

where s P ∆k´1 Ă ∆k.

Definition 3.1.2 (Straightening). Let σ be a singular k-simplex in M . we put λpσq “ p˝ σ̄
where σ̄ is the geodesic simplex with the same vertices of some lift of σ. λ extends to a linear
map,

λ : S˚pMq ÝÑ S˚pMq

For every simplex the term λpσq is called the straightening of σ and The map λ is called
straightening.

Remark 3.1.3. Note that The term λpσq does not depend on the choice of the lift of
σ. For simplicity let k “ 1. Then for any two lifts σ1, σ2 of σ, if γ1, γ2 are the unique
geodesics connecting σ1p0q and σ2p0q to σ1p1q and σ2p1q respectively, then both p ˝ σ1 and
p ˝σ2 are geodesics connecting σp0q and σp1q, thus by uniqueness of geodesics we must have
p ˝ σ1 “ p ˝ σ2. The straightening map λ satisfies the following,

• λ is a chain map and chain homotopic to idS˚pMq

• ||λpcq||1 ď ||c||1 for every c P S˚pMq

To see the proof of the first property of λ see Theorem 5.3.1(condition (2)), the second one
is obvious. Considering the second property of the straightening map we have,

||M || “ inft||c||1 : c P λpS˚pMqqu

Now we find a universal bound on the volume of the geodesic simplices, namely we prove
the following theorem,

Theorem 3.1.4. There exist a constant Ck for k ě 2, such that for every geodesic k-simplex
σ in M̃ , the k-dimensional volume of σ, is estimated as follows,

volpσp∆kqq ď Ckδ
´k{2

Proof. To prove this theorem we proceed by induction. Let k “ 2. Let σ be a k-simplex.
Without loss of generality we may assume δ “ 1 and impσq is a k-dimensional submanifold
of M . Recall that ´δ is the negative upper bound for the sectional curvature. Now we have
the follwoing inequalities,

volpσp∆kqq “

ż

σp∆kq

dV ď ´

ż

σp∆kq

KdV ď π

where in the first inequality we are using the fact that the Gaussian curvature K of impσq

coincide with the sectional curvature of M̃ restericted to impσq and so is bounded above by
´1, and in the second inequality we use a very important result so-called Gauss-Bonnet For-
mula, which only holds in dimension 2, see Theorem 2.1.14. With the notation of Theorem
2.1.14, we consider Ω “ intpimpσqq, γ “ impB∆kq, so then we get,

ż

intpimpσqq

KdV “ 2π ´

ż

γ

κN psqds´
2
ÿ

i“0

εi

21
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“ 2π ´
2
ÿ

i“0

εi ě ´π “: C2

where the second equality is because the image of the boundary of ∆k is a union of geodesics
so then κNN “ Dtγ “ 0, and the inequality comes from the fact that

ř

0ďiď2 εi ď 3π. This
completes the proof for k “ 2. Suppose the theorem is verified for dimensions less than k.
Let τ : ∆k´1 ˆ r0, 1s Ñ ∆k Ă M̃ defined by,

px, tq ÞÑ p1´ tqx` tpk

Here we are identifying ∆k with its image in M̃ as a geodesic k-simplex. Now let φ :
∆k´1 ˆ r0, 1s Ñ R defined by,

τ˚ωpx, tq “ φpx, tqdt^ π˚ω̄

where π : ∆k´1 ˆ r0, 1s Ñ ∆k´1 is the projection to the first factor, ω is the volume form

on ∆k Ă M̃ and ω̄ is the induced volume form on ∆k´1 Ă ∆k Ă M̃ .

Lemma 3.1.5. There is a constant D depending only on k such that for every p P ∆k´1,

ż 1

0

φpp, tqdt ď D

Let us first finish the proof of the theorem, then we will come back to the proof of the
lemma. Using Lemma 3.1.5, if ω is the volume form on M̃ then we have,

volp∆kq “

ż

∆k

ω “

ż

∆k´1ˆr0,1s

τ˚ω

“

ż

∆k´1

ˆ
ż 1

0

φpx, tqdt

˙

ω̄pxq ď D

ż

∆k´1

ω̄pxq ď DCk´1 “: Ck

Proof of the Lemma 3.1.5. Let γ : r0, 1s Ñ ∆k be the geodesic defined by γptq “ τpp, tq for

some p P ∆ P ∆k´1. Let X0p0q, . . . , Xn´1p0q be an orthonormal basis for TpM̃ , such that
X0p0q “

1
L 9γp0q where L is the length of γ, and X0, . . . , Xk´1 span Tp∆

k. We extend Xip0q
to a parallel vector field Xiptq along γ. Now choose a local coordinate system py1, . . . , yk´1q

for ∆k´1 around p satisfying,

B

Byi
ppq “ Xip0q ` biX0p0q

and regard py1, ..., yk´1, tq as local coordinates around γpr0, 1qq using τ . Note that the map τ

is a diffeomorphism from ∆k´1ˆr0, 1q to its image and takes ∆k´1ˆt0u to ∆k´1 Ă ∆k Ă M̃ ,
so then we are able to choose such a local coordinate. Then ω̄ at p is expressed as follows,

ω̄ppq “

d

det

ˆ

g
` B

Byi
p0q,

B

Byj
p0q

˘

˙

dy1 ^ ...^ dyk´1
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“

d

det

ˆ

Ik´1 `
`

bibj
˘

0ďi,jďk´1

˙

dy1 ^ ...^ dyk´1 “

d

1`
ÿ

i

b2i dy1 ^ ...^ dyk´1

where Ik´1 is the identity pk ´ 1q ˆ pk ´ 1q-matrix. Now for every 1 ď i ď k ´ 1 and
0 ď j ď n´ 1, define aij : r0, 1s Ñ R by the formula

B

Byi
pγptqq “

n´1
ÿ

j“0

aijptqXjptq

Now let for all 1 ď i ď k ´ 1,

Yiptq :“
n´1
ÿ

j“1

aijptqXjptq

It is clear that Yip0q “ Xip0q. Now note that by construction of the coordinate system B
Byi

around γpr0, 1qq it is clear that removing the 9γ direction from B
Byi

will give us a variation
field of a geodesic variation, thus Yi’s are Jacobi fields.

Let Aptq for 0 ď t ă 1 denote the pk ´ 1, k ´ 1q-matrix

`

xYiptq, Yjptqy
˘

1ďi,jďk´1
“

ˆ n´1
ÿ

l“1

ailptqajlptq

˙

1ďi,jďk´1

the volume form ω on ∆k is written as

ωpγptqq “

d

det

ˆ

g
`

Ȳiptq, Ȳjptq
˘

˙

dt^ dy1 ^ ...^ dyk´1

where Ȳ0 “
B
Bt and Ȳi “ Yi for 1 ď i ď k ´ 1. Thus we have,

ωpγptqq “ L
b

det
`

Aptq
˘

dt^ dy1 ^ ...^ dyk´1

Therefore by definition we have,

φpp, tq “
L
b

det
`

Aptq
˘

a

1`
ř

i b
2
i

ď L
b

det
`

Aptq
˘

ď L

d

ˆ

sup
u‰0

utAptqu

||u||2

˙k´1

“ L

d

ˆ

sup
u‰0

||Uptq||2
||u||2

˙k´1

where u “ pu1, . . . , uk´1q and Uptq “
ř

i uiYiptq which is a Jacobi field along γ as a linear
combination of some Jacobi fields. The last equality holds as follows,

||Uptq||2 “ g
`

k´1
ÿ

i“1

uiYiptq,
k´1
ÿ

i“1

uiYiptq
˘

“

k´1
ÿ

i,j“1

uiujgpYiptq, Yjptqq “ utAptqu
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Now we have,

`

||Uptq||2
˘2
“ xUptq, Uptqy2 “ 2||U 1ptq||2 ´ 2

B

R
`

Uptq,
B

Bt

˘ B

Bt
, Uptq

F

ě 2||U 1ptq||2 ` 2||Uptq||2.|| B
Bt

||2 “ 2||U 1ptq||2 ` 2L2||Uptq||2 ě 2L2||Uptq||2

For all t P r0, 1q. Since ||Up0q||2 “ ||u||2 and ||Up1q|| “ 0, we can apply the maximum value
principle to the above inequality and obtain the following inequality,

||Uptq||2 ď ||u||2
`

sinhp
?

2Lq
˘´1

sinhp
?

2Lp1´ tqq

Namely let fptq :“ ||Uptq||2{||u||2 and gptq :“ sinhp
?

2Lp1 ´ tqq{ sinhp2Lq, then we have
f2 ´ 2L2f ě 0 “ g2 ´ 2L2g. Now if we calculate the first and the second derivative of the

function kptq :“ fptq{gptq
fp0q{gp0q , we see that k2ptq ě 2

?
2Lk1ptq, and k1p0q ă 0. Now if k1pt0q “ 0

for some t0 then the function kptq keeps increasing after t0 and since limtÑ1 kptq “ 1 so it
has to stay below the line y “ 1, therefore we have kptq ď 1. Now we get,

detpAptqq ď
`

sinhp
?

2Lq
˘´k`1`

sinhp
?

2Lp1´ tqq
˘k´1

And eventually we can estimate,

ż 1

0

φpp, tqdt ď Lpsinhp
?

2Lqq´pk´1q{2

ż 1

0

`

sinhp
?

2Lp1´ tqq
˘pk´1q{2

dt

“
1
?

2
psinhp

?
2Lqq´pk´1q{2

ż

?
2L

0

psinhptqqpk´1q{2dt “: X

Now as L Ñ 0 we have X Ñ 0 and as L Ñ 8 we have X Ñ 2
k´1 . So the right hand side

integral is finite and only depends on k.

3.2 Proof of Theorem 1.0.2

Now we get back to the proof of Theorem 3.0.1

Proof. Let ω be the volume form on M . Suppose that z “
ř

i aiσi P λpSnpMqq represents
the real fundamental class i˚prM sq. Then we have

volpMq “

ż

M

w
p˚q
“

ż

ř

i aiσi

w “
ÿ

i

ai

ż

σi

w

ÿ

i

ai

ż

σ̃i

p˚w “
ÿ

i

aivolpσ̃ip∆
nqq

p˚q

ď
ÿ

i

|ai|Cnδ
´n{2

where p : M̃ ÑM is the covering map and σ̃i is a lift of σi to a geodesic simplex in M̃ . The
equality p˚q holds because there is an isomorphism between the de Rham cohomology and
the ordinary singular cohomology defined by

Hk
drpM,Rq Ñ Hk

singpM,Rq “ HompHkpMq,Rq
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τ ÞÑ
`

rσs ÞÑ

ż

σ

τ
˘

where k is a positive integer and if σ : ∆k ÑM is a simplex, then
ş

σ
τ :“

ş

∆k σ
˚τ . By Stokes’

theorem, this isomorphism is well defined, i.e. it does not depend on the representatives of
the cycle rσs P HkpMq. Since any smooth manifold is triangulable, let T be a triangulation
of M . Then a linear combination of simplices in T with coeficients ˘1 and a careful choice
of signs, denoted by t P HnpM,Rq, represents the fundamental class of M and clearly we
have,

volpMq “

ż

t

ω

Now if
ř

i aiσi represents the fundamental class then the equality p˚q above holds. The
inequality p˚q is proved in the Theorem 3.1.4. So that for any representative z P λpSnpMqq
of the fundamental class i˚prM sq we have

||z||1 ě
1

Cn
δn{2volpMq

therefore we have, ||M || “ infzPλpSnpMqq||z||1 ě 1
Cn
δn{2volpMq.
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Chapter 4

Straightening method

To prove that the simplicial volume of a certain manifold is positive, there is a general
approach due to Thurston through which one shows that the manifold admits a straightening
and positivity of simplicial volume follows immediately.

Definition 4.0.1 (Straightening). Let M̃ be the universal cover of an n-dimensional closed

oriented Riemannian manifold M . Denote by Γ the fundamental group of M and by C˚pM̃q

the real singular chain complex of M̃ . Equivalently, CkpM̃q is a free R-module generated

by C0p∆k, M̃q, the set of singular k-simplices in M̃ , where ∆k is equipped with some fixed
Riemannian metric induced from a metric on Rk`1. We say a collection of maps stk :
C0p∆k, M̃q Ñ C0p∆k, M̃q is a straightening if it satisfies the following conditions,

1. the maps stk are Γ-equivariant

2. the maps st˚ induce a chain map st˚ : C˚pM̃,Rq Ñ C˚pM̃,Rq that is Γ-equivariantly
chain homotopic to the identity.

3. top dimensional straightened simplices are C1 i.e. the image of stn lies in C1p∆n, M̃q,

where C1p∆n, M̃q is the set of continuous maps f : ∆k Ñ M̃ that can be extended to
a differentiable map on a neighborhood of ∆k in Rk`1.

4. there exists a constant C depending on M̃ and the Riemannian metric on ∆n such that
for every f P C0p∆n, M̃q and corresponding straightened simplex stnpfq : ∆n Ñ M̃
we have

@δ P ∆n, |Jacpstnpfqqpδq| ď C

We will see that manifolds with a straightening have positive simplicial volume. To prove
this theorem one could replace the conditions p3q and p4q in the definition of straightening by
a more general condition that the volume of the image of the top dimensional straightened
simplices are uniformly bounded above.

Theorem 4.0.2 (Thurston). Let M̃ be the universal cover of an n-dimensional closed

oriented Riemannian manifold M . If M̃ admits a straightening then ||M || ą 0.
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Proof. Because of the first property of the straightening we can descend the procedure of
straightening to a straightening on the compact quotient M . For every simplex σ : ∆k ÑM
we define stkpσq to be p ˝ stkpσ̃q where σ̃ is a lift of σ to M̃ and p : M̃ ÑM is the covering
map. By condition p1q this does not depend on the lift and is well-defined. Condition p2q of
the straightening ensures that the homology of M obtained via the complex of straightened
chains coincides with the ordinary singular homology ofM , where by complex of straightened
chains we mean Cst˚ pM,Rq where Cstk pM,Rq is a free R-module generated by Cstp∆

k,Mq :“
tf : ∆k ÑM : f “ stkpσqu. Now if Σaifi is a real chain representing the real fundamental
class of M then so does Σaistnpfq and we have ||Σaifi||1 ě ||Σaistnpfiq||1. So to prove
that the simplicial volume of M is positive it suffices to find a positive lower bound for the
L1-norm of the straightened chains representing the real fundamental class of M . Now by
condition p3q of straightening the top dimensional straightened simplices are C1 and hence
we have,

volpMq “

ż

ř

aistnpfiq

dVM “
ÿ

ai

ż

stpfiq

dVM

where dVM is the volume form of M . Now we have,

ÿ

ai

ż

stpfiq

dVM ď
ÿ

|ai|

ż

∆n

|Jacpstnpfiqq|dV∆n

where dV∆n is the volume form for the fixed Riemanninan metric on ∆n. Now by condition
p4q of the straightening the Jacobian of straightened simplices are uniformly bounded from
above by a constant C, so we have,

V olpMq ď C volp∆nq
ÿ

|ai|

Now taking infimum over all straightened chains we get, ||M || ě 1
C volp∆nq

volpMq ą 0.
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Chapter 5

Closed locally symmetric spaces

The aim of this chapter is to understand the positivity of the simplicial volume of closed
locally symmetric spaces. Through this chapter by closed we shall mean compact and
without boundary. If M is a locally symmetric space then M̃ the universal cover of M , is
a simply connected symmetric space. Hence it is decomposed isometrically to a product
M0 ˆ M´ ˆ M` where M0,M´,M` are of Euclidean, non-compact and compact type
respectively. As the factor M` is a compact manifold, by Theorem 1.0.11 if M` is a non-
trivial factor then ||M || “ 0. Thus we may assume that M` “ t˚u. Furthermore if M0 “ Rk
for some k ě 1, then if M 1 is a closed locally symmetric space with universal cover M´, hence

pS1qkˆM 1 has universal cover M̃ . So by Theorem 1.0.12 and the proportionality principle,
Theorem 1.0.6, we get ||M || “ 0. Therefore we assume that M is a closed locally symmetric
space of non-compact type, which means the universal cover of M is of non-compact type.
In this chapter we shall prove the following theorem,

Theorem 5.0.1 ([21]). If M is a closed locally symmetric space of non-compact type, then
we have ||M || ą 0.

5.1 Patterson-Sullivan measures

In this section we explain the construction of the Patterson-Sullivan measures on symmetric
spaces of non-compact type. The Patterson-Sullivan measures form the core of the barycen-
tric straightening procedure introduced in Section 5.2. To construct these measures we need
some preparation. Let us start with some preliminaries on the decomposition of semi-simple
Lie groups. Let X “ G{K be a symmetric space with G a semi-simple Lie group and K
stabilizer of a base point x0 P X. Let g “ k‘p be the corresponding Cartan decomposition,
so Tx0X is identified by p, and let a Ă p be a maximal abelian subalgebra of p. All the
maximal abelian subalgebras of p are conjugate under the action of adpKq and there are only
finitely many of them. If A “ exppaq Ă G is the image of a under the exponential map then
Ax0 is a totally geodesic submanifold of X isometric with Rk with the standard Euclidean
metric, where k “ dimpaq “: rankpXq. The submanifold Ax0 is called a flat submanifold of
X. There are only finitely many distinct flat submanifolds of X as they correspond to the
maximal abelian subalgebras of p. Let a` be a Weyl chamber of a and ∆ “ tα1, ..., αku be
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a set of simple roots, i.e. the fundamental system, see Section 2.3.2. We have p “ adpKqa`

which implies that K acts transitively on the set of Weyl chambers of a. Every geodesic
lies in at least one flat submanifold. A geodesic called regular if it lies in exactly one flat
submanifold and singular otherwise. As there are only finitely many flat submanifolds, if F
is a flat submanifold through a fixed point x P X, then the singular geodesics through x with
initial velocity vector tangent to F form a finite union

Ť

αHα of hyperplanes in F . Indeed
the tangent spaces of Hα’s correspond to the perpendicular hyperplanes to the roots in a.
The image of the Weyl chamber in a is one of the connected components of F z

Ť

αHα which
is also called Weyl chamber. Now let N˘ be the horospherical subgroup of G corresponding
to ˘a`, i.e. N˘ “ expp

ř

˘αą0 gαq, and let A “ exppaq. Then the demposition G “ KAN`

is called the Iwasawa decomposition, see Theorem 2.3.7. Let I Ă ∆ be a subset of simple
roots, we denote by fI the face of type I of the Weyl chamber a` defined by

tH P a : αpHq ą 0, @α P ∆zI, αpHq “ 0, @α P Iu

Note that fH “ a` and f∆ “ 0. The image of these faces under the exponential map acting
on x0, exppfIqx0, is the geometrical faces of the infinite polyhedral of the Weyl chamber
without their boundaries. If I Ă ∆, then the connected subgroup of K that fixes the
geometrical face exppfIqx0 of the Weyl chamber in F Ă X is denoted by MI whose Lie
algebra is equal to the centralizer of fI Ă a in k. It is clear that MH “M “ exppmq, where
m “ zpa`q X k, and M∆ “ K since the corresponding face exppfIqx0 is just the point x0.
A subgroup of G that is conjugate to PI :“ MIAN

` for some I Ă ∆ is called a parabolic
subgroup of G “ KAN`, in particular P :“ PH “MAN` is called the minimal parabolic
subgroup of G, see also Definition 2.3.6. Note that the Lie algebra of gLg´1 for a subgroup
L Ă G is Adpgql where l is the Lie algebra of L. Now it is clear that the parabolic subgroups
of G are the ones that fix a face of a Weyl chamber translated by an element of G. One can
also show that for any ξ P exppfIqx0p8q the stabilizer of ξ in G is exactly PI . In particular
the stabilizer of ξ P exppa`qx0p8q is the minimal parabolic subgroup P of G. Now let Xp8q
be the geodesic boundary of X. There is a bijection between T 1

x0
X and Xp8q. Now since

Tx0
X “ p “ AdpKqa` we get

Xp8q “
ď

ξPA`x0p8q

Gξ

Furthermore we have Gξ “ Kξ as the subgroup AN` Ă PI for all I Ă ∆ and consequently
fixes ξ. Now since P , the minimal parabolic subgroup of G, is the stabilizer of a point
ξ P A`x0p8q, so then we may identify the orbit Gξ with the quotient G{P . The quotient
G{P is called Furstenberg boundary and it can also be described as the set of equivalence
classes of asymptotic Weyl chambers since K, and in particular G, acts transitively on the
set of Weyl chambers, see also Section 2.3.2. Also G{PI is identified with the orbit of an
element ξ P exppfIqx0p8q and can be described as the set of asymptotic equivalence classes
of faces of type I. Now if W is the Weyl group, i.e. the quotient of the normalizer of
A` in K by its centeralizer in K, and WI :“ W XMI , then we the generalized Bruhat
decomposition can be written as follows,

G “
ď

ωPW {WI

N`ωPI (disjoint union)

The N`-orbits of G{PI are algebraic varieties which are called standard cells. The standard
cell N´PI “ N`ωopPI , where ωop P W is the one that takes a` to ´a`, has the maximal
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dimension among all the cells and it is called the standard big cell. Cells with smaller
dimensions are called small cells. The big cell is an open dense subset of G. Now it is clear
that N´Pξ “ N´ξ is an open dense subset of the orbit Gξ (Furstenberg boundary), its
complement consists of finite union of subvarieties with smaller dimensions. The subvarieties
gN´ξ are called the big cells of Gξ and the complementary varieties the small cells. Let us
shortly introduce the Finsler metrics (on symmetric spaces of non-comapct type).

Now for a symmetric space of non-compact type X we construct the Patterson-Sullivan
measures. Let x0 P X be a fixed point and Γ Ă G be a discrete subgroup of the identity
component of the isometry group ofX. define δpΓq :“ infts P R : ψpsq “

ř

γPΓ e
´sdpx0,γx0q ă

8u and call it critical exponent of Γ. On the geodesic compactification of X we define the
following family of measures,

µs,x :“
1

ψpsq

ÿ

γPΓ

e´sdpx,γx0qδγx0
, s ą δpΓq, x P X

where δx is the Dirac mass at x. Clearly these measures are all supported on the orbit
Γx0. Now a Patterson-Sullivan density is an accumulation point µ “ tµxuxPX of the family
of maps tµs : X Ñ MpBXq

ˇ

ˇ µspxq “ µs,x, s P pδpΓq, δpΓq ` 1qu as s Ñ δpΓq. One can

see that the support of the Patterson-Sullivan density lies inside the limit set Γx0 XXp8q.
The Patterson-Sullivan measures give us information about distribution of the orbit Γx0 in
the geodesic boundary Xp8q. Now let Xregp8q be the set of regular elements of Xp8q. A
discrete subgroup Γ Ă G is called generic if it is Zariski-dense and if the support of any
Patterson-Sullivan density lies in Xregp8q.

Definition 5.1.1. A Γ-invariant conformal density µ of dimension β is a continuous Γ-
equivariant map µ : X ÑM`pXp8qq so that,

dµpxq

dµpyq
pξq “ e´βhξpxq

for all x P X and ξ P Xp8q where by M`pXp8qq we mean the cone of positive finite Borel
measures on Xp8q.

The Patterson-Sullivan density that we introduced above is a conformal density of dimension
δpΓq that is supported in Γx0 XXp8q.

Theorem 5.1.2 ([1, Theorem A]). Let Γ Ă G be a generic subgroup. There is a single
regular G-orbit DΓ in Xp8q such that the support of any Γ-invariant conformal density of
dimension δpΓq on Xp8q lie is DΓ. Moreover the support of the Patterson-Sullivan measures
lie in DΓ X Γx0.

5.2 Barycentric straightening

As we have seen in Chapter 4, a manifold that admits a straightening has positive simplicial
volume. In this section our goal is to introduce a straightening procedure for closed locally
symmetric manifolds with non-compact type. In the subsequent sections we will prove that
it is actually a straightening, i.e. it satisfies the conditions p1q to p4q of Definition 4.0.1.
Then the positivity of simplicial volume follows immediately from Theorem 4.0.2. Let M
be a closed locally symmetric space of non-compact type, M̃ be the universal cover of M
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and fix a point p P M̃ . In the following we shall denote the identity component of the
isometry group of M̃ by G and the isotropy group of the point p by K. Thus by Theorem
2.2.7 we have M̃ – G{K. The geodesic boundary of M̃ will be denoted by BM̃ and the

Furstenberg boundary will be denoted by BF M̃ , see Definition 2.3.1, Definition 2.3.12 and
Theorem 2.3.13. Indeed the Furstenberg boundary of M̃ is G{P where P is a minimal
parabolic subgroup of G, see also Section 5.1.

Definition 5.2.1. Under the assumptions for M and M̃ in the above paragraph, we define
the Busemann function Bp : M̃ ˆ BM̃ Ñ R by,

px, ξq ÞÑ lim
tÑ`8

`

dpγp,ξptq, xq ´ t
˘

The Busemann function satisfies Bpp., .q “ Bgppg., g.q where g P Γ “ π1pMq. Because,

Bgppgx, gξq “ lim
tÑ8

dpgx, γgp,gξptqq ´ t

“ lim
tÑ8

dpgx, gγp,ξptqq ´ t

“ lim
tÑ8

dpx, γp,ξptqq ´ t “ Bppx, ξq

Before we continue let us point out that since M̃ is a symmetric space of non-compact type,
if it has rank “ 1 then it must be a negatively curved manifold and consequently M is a
negatively curved manifold. The negative curvature case was explained in Chapter 3.

Lemma 5.2.2. If the Theorem 5.0.1 holds for irreducible closed locally symmetric spaces
of non-compact type then it holds for every closed locally symmetric spaces of non-compact.

Proof. To prove the positivity of the simplicial volume of a manifold M , it is enough to
prove that there exist a manifold M 1 with universal cover isometric with the universal cover
of M and has positive simplicial volume, see Theorem 1.0.6. Let G “ G1 ˆ ¨ ¨ ¨ ˆGk be the
product decomposition of G corresponding to the de Rham deomposition of M , see Theorem
2.2.16 and Lemma 2.2.17. There exist cocompact lattices Γi Ă Gi for all i, [3]. Let M 1 be
the locally symmetric space M1ˆ¨ ¨ ¨ˆMk obtained by the quotient group G{pΓ1ˆ¨ ¨ ¨ˆΓkq.
By the Theorem 1.0.7, If we prove the main theorem for irreducible cases, then using the
inequality ||M || “ ||M 1|| ě ||M1||ˆ ¨ ¨ ¨ ˆ ||Mk|| the main theorem follows.

So far we have reduced the problem to irreducible higher rank locally symmetric spaces of
non-compact type. Now by Theorem 1.0.9 we may also assume that M̃ � SL3pRq{SO3pRq.
Therefore the main theorem will follow from the following claim,

Claim 5.2.3. If M is a compact quotient of an irreducible symmetric space of non-compact
type M̃ � SL3pRq{SO3pRq with rank at least 2 then the simplicial volume of M is positive.

To prove the claim we will use Thurston’s approach, see Chapter 4, thus we need to define
a straightening procedure on these manifolds.

Definition 5.2.4. Let µ be a measure on the geodesic boundary of M̃ . Define gµ : M̃ Ñ R
by

gµp.q :“

ż

BM̃

Bpp., θqdµpθq

31



Master Thesis July 2021

where Bp is the Busemann function. If gµ has a unique minimizing point, then we call the

minimizing point the barycenter of µ and denote it by barpµq P M̃ .

Remark 5.2.5. Note that if we denote the first and the second derivative of the Busemann
function Bp at px, θq by,

dBpx,θq : TxM̃ Ñ R

DdBpx,θq : TxM̃ ˆ TxM̃ Ñ R

then the map gµ has a unique minimizing point if DdBpx,θq is a positive definite bi-linear
form, which is equivalent to say that Bp is a strictly convex function. Here convexity means

that for any geodesic γ : R Ñ M̃ the map B0p., θq ˝ γ is a convex map. Since the space M̃
is a complete non-positively curved manifold so the Busemann function Bpp., θq is a convex

function on M̃ where θ P BM̃ is fixed, see Theorem 2.4.2. But it is not clear why the
Busemann function should be strictly convex.

Denote the space of atomless probability measures on the geodesic boundary BM̃ by MpBM̃q.

And let ν : M̃ Ñ MpBM̃q denote the hpg0q-conformal density given by the family of
Patterson-Sullivan measures, see Section 5.1 for the construction of the Patterson-Sullivan
measures. Now by Proposition 3.1 in [7] we know that for a Patterson-Sullivan measure µ the
map gµ in the Definition 5.2.4 is a strictly convex map and consequently it has a well-defined
barycenter. Now we are ready to define the barycentric straightening procedure.

Definition 5.2.6. Spherical k-simplex ∆k
s is the following subset of Rk`1,

∆k
s :“

 

pa1, ..., ak`1q P Rk`1 :
k`1
ÿ

i“1

a2
i “ 1, ai ě 0

(

equipped with the standard Riemannian metric induced from Rk`1 with Euclidean metric.

Definition 5.2.7 (Barycenteric straightening). Let M be a Riemannian manifold with

the properties in the Claim 5.2.3. Given a singular k-simplex f P C0p∆k
s , M̃q with ver-

tices xi :“ fpeiq, where ei’s are the standard basis for Rk`1, define stkpfq : ∆k
s Ñ M̃ by

stkpfqp
ř

i aieiq :“ barp
ř

i a
2
i νpxiqq. Here ν is the hpg0q-conformal density given by the fam-

ily of Patterson-Sullivan measures constructed in Section 5.1. So the collection of straight-
ening maps tstku

n
k“1 is called barycentric straightening. As the definition of straightened

simplex stkpfq only depends on the vertices of f , for a collection V of k vertices in M̃ we

define stV : ∆ Ñ M̃ by stV pσq :“ stkpfqpσq for some simplex f with the same vertices as
V .

5.3 Condition (1) and (2)

Lemma 5.3.1. The barycentric straightening satisfies the conditions p1q and p2q of the
Definition 4.0.1.

Proof. Condition(1): The maps stk are Γ-equivariant: Fix σ “ Σiaiei P ∆k
s . Then for

every γ P Γ, stγV pσq is the unique minimizing point of the function Bν defined below, where
ν “ νγfpΣiaieiq :“ Σia

2
i νpγxiq and xi “ fpeiq. Now we have,
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Bν :“

ż

BM̃

Bpp., θqdνpθq “

ż

BM̃

Bpp., θqd
`

ÿ

i

a2
i νpγxiq

˘

pθq

“

ż

BM̃

Bpp., θqdp
ÿ

i

a2
i γ˚νpxiqqpθq

“

ż

BM̃

Bpp., γ
´1θqdp

ÿ

i

a2
i νpxiqqpθq

“

ż

BM̃

Bγ´1γppγ
´1γ., γ´1θqdp

ÿ

i

a2
i νpxiqqpθq

p˚q
“

ż

BM̃

Bγppγ., θqdp
ÿ

i

a2
i νpxiqqpθq

where the equality p˚q holds since the Busemann function satisfies Bγppγ., γ.q “ Bpp., .q for
every γ P Γ. The map Bγpp., .q ´Bpp., .q does not depend on the first factor. To see this let

x P M̃ , θ P BM̃ , and let ξp,θ denote the unique geodesic starting from p and going towards
θ. Then we have

Bγppx, θq “ Bppγ
´1x, γ´1θq “ lim

tÑ8

ˆ

d
`

γ´1x, ξp,γ´1θptq
˘

´ t

˙

“ lim
tÑ8

ˆ

d
`

γ´1x, k.ξp,θptq
˘

´ t

˙

where k P Γ is a stabilizer of p that takes ξp,θ to ξp,γ´1θ, it exist because the orbit of G on

BM̃ coincides with the orbit of the stabilizer of p. To prove that the last term is equal to
Bppx, θq, we show that for any t P Rě0 there exist a t1 P Rě0 so that

d
`

x, ξp,θ
˘

´ t ě d
`

γ´1x, k.ξp,θpt
1q
˘

´ t1

and vice-versa. So let t be a positive real number, then for large enough t1 we have,

d
`

x, ξp,θ
˘

` pt1 ´ tq ě d
`

x, ξp,θ
˘

` d
`

k´1γ´1x, x
˘

ě d
`

k´1γ´1x, ξp,θ
˘

“ d
`

γ´1x, k.ξp,θ
˘

and therefore we get,
d
`

x, ξp,θ
˘

´ t ě d
`

γ´1x, k.ξp,θ
˘

´ t1

The converse is the same so they have the same limit. Now we have,

Bν ´B
1
ν

p˚q
“

ż

BM̃

kpθqdp
ÿ

i

a2
i νpxiqqpθq

where

B1ν :“

ż

BM̃

Bppγ., θqdp
ÿ

i

a2
i νpxiqqpθq

since the right hand side of the equation p˚q is constant on M̃ the unique minimizer of Bν
is also the unique minimizer of B1ν . But if x P M̃ is the unique minimizer of B1ν then γ´1x
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must be the unique minimizer of Bν which means γstV “ stγV .

Condition (2): The maps st˚ induce a chain map st˚ : C˚pM̃,Rq Ñ C˚pM̃,Rq which is
Γ-equivariantly chain homotopic to identity: To prove that st˚ is a chain maps, it is enough
to note that if f : ∆k Ñ M̃ is a simplex then stkpfq|

∆k´1
“ stk´1pf|

∆k´1
q where ∆k´1 Ă ∆k

is a face of ∆k, together with the fact that the straightening only depends on the vertices.
So st˚ induces a chain map. We need to prove that st˚ is Γ-equivariantly chain homotopic
to identity. note that every simplex is canonically homotopic with its straightening. Let
σ : ∆K Ñ M̃ be a simplex and stkpσq be its straightening. For every point p P ∆k there is
a unique geodesic γp from with γpp0q “ σppq and γpp1q “ stkpσqppq. Define the homotopy
as follows,

Hσ : ∆k ˆ r0, 1s Ñ M̃

pp, tq ÞÑ γpptq

Now clearly we have Hσ
ˇ

ˇ

∆k´1ˆr0,1s

“ Hσ|
∆k´1

where ∆k´1 is a face of ∆k. Now the collection

of maps tHσuσ gives us a homotopy between simplices and their straightening.

5.4 Top dimensional simplices

Lemma 5.4.1. The Barycenteric straightening defined in Definition 5.2.7 satisfies the con-
dition p3q of the Definition 4.0.1.

Proof. We shall prove that the image of stn lies in C1p∆n
s , M̃q, i.e. the straightened top

dimensional simplices are C1. Note that for any simplex f P C0p∆n
s , M̃q and any point

σ “ Σiaiei P ∆n
s we have an implicit characterization of the point stnpfqpσq “ stV pσq via

the following equation that comes from deriving the map Bνpσq,

0 ” dBpstV pσq,νpσqqp.q “

ż

BM̃

dBpstV pσq,θqdνpσqpθq

where νpσq “ Σia
2
i νpxiq and by dBpx,µq where µ is a measure on BM̃ and x P M̃ we mean

dxBµ. Suppose that dBpx0,νpσ0qq ” 0 for a point x0 P M̃ and σ0 P ∆n
s . Now for a chart

pŨ , φq around x0 define the following function,

dB : ∆n
s ˆ Ũ ÝÑ Rn

pσ, xq ÞÑ pdBpx,νpσqqp
B

Bφ1 ˇ
ˇ

x

q, ..., dBpx,νpσqqp
B

Bφn
ˇ

ˇ

x

qq

Now if this function satisfies the conditions of the implicit function theorem, Theorem 6.5.2,
then we conclude that there exist an open subset V Ă ∆n

s around pσ0, x0q and an open subset

U 1 Ă Ũ such that there exist a unique continuously differentiable function g : V Ñ U 1 for
which we have, dBpσ, gpσqq “ 0 for all σ P V . But this means that dBpgpσq,νpσqq “ 0 so that
by uniqueness of the minimal point of Bνpσq we have gpσq “ stV pσq and this means stV is
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a C1 map since so is the map g. To prove that the map dB satisfies the condition of the
Implicit function Theorem it suffices to show that for the endomorphism K defined by,

xKpuq, uy :“

ż

BM̃

DdBpstV pσq,θqpu, uqdpνpσqq

defined on the tangent space TstV pσqM , the determinant is non-zero. Since νpσq is fully

supported in BM̃ so by Theorem 5.5.1, we have detpKq “ detpKstV pσqpνpσqqq ą 0.

5.5 Jacobi estimate

Theorem 5.5.1 ([9, Section 4]). Let M be a closed locally symmetric space of non-compact

type with no local direct factors locally isometric to H2 or SL3pRq{SO3pRq, and let M̃ be

its universal cover. Let µ P MpBM̃q be a probability measure fully supported on BF M̃ and

let x P M̃ . Consider the endomorphism Kxpµq, Hxpµq, defined on TxM̃ by,

xKxpµqpuq, uy “

ż

BM̃

DdBpx,θqpu, uqdpµqpθq

and

xHxpµqpuq, uy “

ż

BM̃

dB2
px,θqpuqdpµqpθq

Then detpKxpµqq ą 0 and there is a positive constant C :“ CpM̃q ą 0 depending only on

M̃ such that:

Jxpµq :“
detpHxpµqq

1{2

detpKxpµqq
ď C

Furthermore the constant C is explicitly computable.

Lemma 5.5.2. The Barycenteric straightening defined in Definition 5.2.7 satisfies the con-
dition p4q of the Definition 4.0.1.

Proof. We shall prove that there exist a constant C ą 0, depending only on M̃ , such that
for every f P C0p∆n

s , M̃q and the corresponding straightened simplex stnpfq : ∆n
s Ñ M̃ , we

have
|Jacpstnpfqqpσq| ă C

for all σ P ∆n
s , where the Jacobian is computed relative to Riemannian metric on ∆n

s induced
by Euclidean metric on Rn`1. Let us differentiate the following map which is identically
zero with respect to directions in Tσ∆n

s ,

dBpstV p.q,νp.qq : ∆n
s ÝÑ T˚M

σ ÞÑ dBpstV pσq,νpσqqp.q “

ż

BM̃

dBpstV pσq,θqp.qdνpσqpθq

So then the differential would look like the following,

DσdBpstV p.q,νp.qq : Tσp∆
n
s q b TstV pσqM ÝÑ R

35



Master Thesis July 2021

DσdBpstV pσq,νpσqqp., .q “ Dσ

ˆ
ż

BM̃

dBpstV pσq,θqdνpσqpθq

˙

p., .q

“ Dσ

ˆ
ż

BM̃

dBpstV pσq,θqdp
ÿ

i

a2
i νpxiqqpθq

˙

p., .q

“ Dσ

ˆ

ÿ

i

a2
i

ż

BM̃

dBpstV pσq,θqdpνpxiqqpθq

˙

p., .q

“
ÿ

i

2aix., eiy

ż

BM̃

dBpstV pσq,θqp.qdpνpxiqqpθq

`

ż

BM̃

DdBpstV pσq,θqpDσpstV qp.q, .qdp
ÿ

i

a2
i νpxiqqpθq

Now we define the endomorphisms Hσ and Kσ of TstV pσqM̃ by,

xHσpuq, uystV pσq “

ż

BM̃

dB2
pstV pσq,θq

puqdp
ÿ

i

a2
i νpxiqqpθq

xKσpuq, uystV pσq “

ż

BM̃

DdBpstV pσq,θqpu, uqdp
ÿ

i

a2
i νpxiqqpθq

Now by Theorem 5.5.1, Kσ is a positive definite endomorphism. Let tvju
n
j“1 be an or-

thonormal eigenbasis of TstV pσqM̃ for Hσ. At point σ P ∆n
s where the Jacobian of stV is

non-zero, let tũiu
n
i“1 be the pull back of the basis tvju

n
j“1 via Kσ˝DpstV qσ and tuiu

n
i“1 be

the orthonormal basis of Tσ∆n
s obtained from tũiu

n
i“1 by Gram-Schmidt algorithm. Now

we have,
detpKσq.|JacpstV qpσq| “ |detpKσ ˝DpstV qσq|

p1q
“

n
ź

j“1

|xKσ ˝DpstV qσpujq, vjystV pσq|

p2q
“

n
ź

j“1

|

n`1
ÿ

i“1

xuj , eiyσ.2ai

ż

BM̃

dBpstV pσq,θqpvjqdpνpxiqqpθq|

p3q
ď

n
ź

j“1

„ n`1
ÿ

i“1

xuj , eiy
2

1{2„ n`1
ÿ

i“1

4a2
i

ˆ
ż

BM̃

dBpstV pσq,θqpvjqdpνpxiqqpθq

˙1{2

p4q
ď 2n

n
ź

j“1

„ n`1
ÿ

i“1

a2
i

ż

BM̃

dB2
pstV pσq,θq

pvjqdpνpxiqqpθq

1{2

p5q
“ 2n

n
ź

j“1

xHσpvjq, vjy
1{2
stV pσq

“ 2ndetpHσq
1{2

Where the equation (1) holds since the basis ui has been obtained by Gram-Schmidt algo-
rithm starting from the pull back basis so the matrix representation of Kσ ˝DpstV qσ with
respect to tuju’s and tvju’s is upper triangular so the determinant is the product of diagonal
entries. The equality (2) follows from the following equation,

0 ” DσdBpstV pσq,νpσqqpuj , vjq
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“
ÿ

i

2aixuj , eiy

ż

BM̃

dBpstV pσq,θqp.qdpνpxiqqpθq

`

ż

BM̃

DdBpstV pσq,θqpDσpstV qpujq, vjqdp
ÿ

i

a2
i νpxiqqpθq

together with the fact that, by definition of Kσ we have,

xKσpDpstV qσpujqq, vvj ystV pσq

“

ż

BM̃

DdBpstV pσq,θqpDpstV qσpujq, vjqdp
ÿ

i

a2
i νpxiqqpθq

The inequality (3) and (4) are just the Cauchy-Schwartz inequality applied in Rn`1 and the

space L2pBM̃, νpxiqq. And finally the equality (5) is just by definition of Hσ. So eventually
we get the following inequality,

|JacpstV qpσq| ď 2n
detpHσq

1{2

detpKσq

Now again by Theorem 5.5.1, since the right-hand side is exactly JacstV pσqpΣa
2
i νpxiqq and

the measure Σa2
i νpxiq is fully supported in BF M̃ , there is a constant C ą 0 depending only

on M̃ such that,

|JacpstV qpσq| ď 2n
detpHσq

1{2

detpKσq
ď C

5.6 Proof of Theorem 1.0.3

Proof. Now let tνxuxPM̃ be the Patterson-Sullivan measures supported on the geodesic

boundary of M̃ . Consider the barycentric straightening defined in Definition 5.2.7. In
the preceding section we saw that the barycentric straightening is a straightening, satisfying
the conditions of Definition 4.0.1. Therefore M has a positive simplicial volume by Theorem
4.0.2.
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Chapter 6

Non-positive curvature and
negative Ricci-curvature

I this chapter we will be studying The positivity of the simplicial volume of manifolds with
geometric rank one in some special cases. Namely non-positively curved manifolds with a
negative Ricci-type curvature. Here we define another notion of rank using Jacobi fields for
non-positively curved Riemannian manifolds which will coincides with the previous notion
of geometric rank defined in the Definition 2.1.15 for symmetric spaces of non-compact type.

Definition 6.0.1 (Geometric Rank). Let M be a non-positively curved Riemannian man-
ifold and v P T 1M be a unit tangent vector. Let γv be the unique geodesic with initial
velocity vector v. The rank of v is denoted by rankpvq and is defined as the dimension of
the space of all parallel Jacobi fields Y along γv. Now the rank of the manifold is defined by
rankpMq :“ infvPT 1M rankpvq.

Remark 6.0.2. The notion of the geometric rank defined in both Definition 6.0.1 and
Definition 2.1.15 coincide for symmetric spaces of non-compact type. Furthermore one can
easily see that for v P T 1M , Xptq a parellel vector field along γv and perpendicular to 9γptq,
we have Xptq is a Jacobi field if and only if the sectional curvature of the plane spanned by
Xptq, 9γptq vanishes for all t.

Definition 6.0.3. Let M be a non-positively curved manifold. We denote the upper rank
of M by RankpMq and define it as follows,

RankpMq :“ sup
vPT 1M

rankpvq

Remark 6.0.4. Note that for a non-positively curved n-manifold we have 1 ď rankpMq ď
RankpMq ď n. In Chapter 5 we studied the simplicial volume of manifolds with 1 ă

rankpMq. According to Lemma 6.4.5 we have, Rick`1 ă 0 (see Definition 6.4.4) if and
only if supvPT 1M dimpnullpRvqq ď k. Now by Remark 6.0.2 it is clear that rankpvq ´ 1 ě
dimpnullpRvqq. Therefore we have RankpMq ď k implies Rick ă 0. In the current chapter
we will be dealing with manifolds with negative p

X

n
4

\

` 1q-Ricci curvature and rank “ 1
which means in addition to the rank one condition we also require them to not have a large
dimensional flat submanifolds.
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In this chapter we will prove the following theorem,

Theorem 6.0.5 (Main Theorem). If M is a non-positively curved manifold with negative
p
X

n
4

\

` 1q-Ricci curvature, then ||M || ą 0.

Note that there are many examples of manifolds with rank one but a great deal of zero
sectional curvature. In the followings we construct some of these manifolds,

Example 6.0.6. Every compact surface of non-positive curvature and negative Euler char-
acteristic has rank one. Such surfaces may contain large flat regions. Consider two unit
squares lying parallel, one above the other in Euclidean space R3. Identify opposite edges of
squares to obtain two flat tori, make two identical round holes at the center of each of the
squares and connect the tori by a ”neck of negative curvature” as shown in the Figure 6.1.

Figure 6.1:

Topologically we get a surface of genus two. Now the curvature is zero on both squares and
negative on the neck. Consider a geodesic γv which is parallel to one of the edges and does
not touch the hole. Clearly rankpvq “ 2. Moreover, two such parallel geodesics bound a flat
strip in the universal cover of M . And obviously the rank of any tangent vector v whose
corresponding geodesic goes through the hole is certainly one. Therefore this manifold has
rank one and negative 2-Ricci curvature.

Example 6.0.7. Consider a non-compact n-manifold N of constant negative curvature and
finite volume. Such a manifold has only finitely many cusps, [28]. See Definition 6.5.3 for
the definition of cusped manifolds and Remark 6.5.4. For simplicity we assume that it only
has one cusp. The cross section of the cusp is a compact flat pn´ 1q-dimensional manifold
T . Cut off the cusp and flatten the manifold near the cut to make it locally isometric to
the direct product of T and the unit interval, see Figure 6.2, Now consider another copy of
the same manifold and identify T, T 1. The manifold M we obtain has non-positive sectional
curvature and an isometrically flat pn ´ 1q-torus inside it. The rank of any tangent vector
to to a geodesic in torus is n. On the other hand any tangent vector to a geodesic that
is transverse along the torus has rank one, so that rankpMq “ 1. The manifold M that
we just constructed does not admit metric with negative curvature but we can certainly
make the sectional curvature negative every where but on the torus. Therefore the manifold
constructed above has rank one and negative pn´ 1q-Ricci curvature.

Example 6.0.8. Let N0 be a closed k-dimensional manifold with non-positive curvature.
By a result in [32], we may construct a pk ` 1q-dimensional manifold N1 that contains
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Figure 6.2:

N0 as a totally geodesic submanifold so that for every tangent vectors v P TpN1zTpN0 and
w P TpN0, where p P N0 is a point, we have the sectional curvature of the plan spanned
by v, w is negative. We iterate this process and obtain a k ` j “ n-dimensional manifold
Nj. Then it is clear that Nj has negative k-Ricci curvature. Now if j ě 3k then Nj is an
n-dimensional manifold with negative p

X

n
4

\

` 1q-Ricci curvature.

We will be following the same method as we used in Chapter 5. First we prove that there
is a unique family of finite Borel measures fully supported in the visual boundary, then we
use them to define the Barycentric straightening. Then the proof of the satisfaction of the
condition (1) and (2) in the Definition 4.0.1 works exactly the same way as in Chapter 5.
but we are going to have to use some other tools to prove that the Barycentric straightening
satisfies the condition (3) and (4) of the Definition 4.0.1.

6.1 Patterson-Sullivan measures

Theorem/Definition 6.1.1 ([13]). Let M be a compact non-positively curved geomet-

ric rank one manifold, M̃ the universal cover of M and Γ the fundamental group of M .
There exist a unique family of finite Borel measures tµxuxPM̃ fully supported on BM̃ , called
Patterson-Sullivan measure, which satisfies the following conditions,

1. µx is Γ-equivariant for all x P M̃

2. dµx
dµy
pθq “ ehBpx,y,θq for all x, y P M̃ and θ P BM̃

where h is the volume entropy of M , see Definition 2.1.2 and Bpx, y, θq is the Busemann

function of M̃ .

Example 6.1.2. (Harmonic measures in the disk model)
For the disk D with hyperbolic metric we have BD “ S1. Consider the following map,

P : Dˆ BS1 ÝÑ R

px, ξq ÞÑ
1´ ||x||2

||ξ ´ x||2

Now let νx “ P px, .qσ be a probability measure on S1 and call it harmonic measure associated
to x, where σ is the uniform probability measure on S1. Now a direct computation shows
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that,

@ξ P S1, @x, y P D, Bpx, y, ξq “ log

ˆ

P py, ξq

P px, ξq

˙

In other words, the harmonic measures associated to points of D satisfy,

@ξ P S1, @x, y P D,
dνy
dνx

pξq “ e´Bpx,y,ξq

which means these harmonic measures are the Patterson-Sullivan measures of D. Note that
the volume entropy of the disk model of 2-dimensional hyperbolic space with radius 1 is
constant 1.

6.2 Barycentric straightening

We start by a very important theorem which we will be using a lot later o, it estimates
the Hessian of the Busemann function in terms of curvature, and it holds for all closed
non-positively curved manifolds,

Theorem 6.2.1. Let M̃ be the universal cover of some closed non-positively curved manifold
M , x P M̃ and θ P BM̃ . If Y0 P T

1
xM̃ is any unit vector in the horocycle direction, that is,

Y0 K γ1xθp0q, where γxθ is the geodesic ray connecting x and θ, then there exist a constant
C that depends on quantities ||R||, ||∇R||, ||∇2R||, such that,

DdBpx,θqpY0, Y0q ě C

ˆ

´ xRpγ1xθp0q, Y0qγ
1
xθp0q, Y0y

˙3{2

Proof. We extend Y0 along the ray γxθ to Y ptq, the unique stable Jacobi field with Y p0q “ Y0.
Then the Hassian DdBpx,θqpY0, Y0q is the second fundamental form in the direction Y0 of
the horosphere determined by x and θ, which is further equal to ´xY p0q, Y 1p0qy. We now
take the second covariant derivative along the geodesic ray of xY ptq, Y ptqy,

xY ptq, Y ptqy2 “ 2

ˆ

xY 1ptq, Y 1ptqy ` xY ptq, Y 2ptqy

˙

“ 2

ˆ

||Y 1ptq||2 `Rγ1xθptq
`

Y ptq
˘

˙

Note that since curvature is non-positive so the second covariant derivative above is posi-
tive. Therefore since ||Y ptq||2 is bounded and the second derivative is positive so we must
have xY ptq, Y ptqy1 ă 0. So in particular ||Y ptq||2 converges to a constant which means
xY ptq, Y 1ptqy Ñ 0. Now integrating along the geodesic ray we obtain,

2

ż 8

0

ˆ

||Y 1ptq||2 `Rγ1xθptq
`

Y ptq
˘

˙

dt

“ 2

ˆ

lim
tÑ8

xY ptq, Y 1ptqy ´ xY p0q, Y 1p0qy

˙

“ ´2xY p0q, Y 1p0qy “ 2DdBpx,θqpY0, Y0q
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Therefore we get the following inequality,

DdBpx,θqpY0, Y0q ě

ż 8

0

Rγ1xθptq
`

Y ptq
˘

dt

To finish the proof of the theorem we need the following lemma from calculus,

Lemma 6.2.2. Let F be a C2 function on r0,8q. If F ě 0 and F 2 is bounded above by a
constant L ě 0, then there is a constant C ą 0 that depends on L such that,

ż 8

0

F ptqdt ě C.F p0q3{2

First we continue with the proof of the theorem and we will prove the Lemma 7.19 right after.
If we can apply Lemma 7.19 to the function Rγ1xθptqpY ptqq then we get the inequality of the
theorem and we are done. So it suffices to show that the second derivative of Rγ1xθptqpY ptqq
is bounded above. In the following we shall write γ1, Y, Y 1 for γ1xθptq, Y ptq, Y

1ptq respectively
for brevity.

ˇ

ˇ

ˇ

ˇ

ˆ

Rγ1xθptqpY ptqq

˙2ˇ
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˆ

@

p∇γ1Rqpγ
1, Y qγ1, Y

D

`
@

Rpγ1, Y qY, Y 1
D

˙1ˇ
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

@

p∇2
pγ1,γ1qRqpγ

1, Y qγ1, Y
D

` 4
@

p∇γ1Rqpγ
1, Y qγ1, Y 1

D

`2
@

Rpγ1, Y qγ1, Y 1
D

` 2
@

Rpγ1, Y qγ1, Y 2
D

ˇ

ˇ

ˇ

ˇ

ď Cp||Y ||2 ` ||Y 1||2q

where the last inequality is obtained by Cauchy-Schwartz inequality and the Jacobi equation
Y 2 ` Rpγ1, Y qγ1 “ 0. And the constant C is only dependant on ||R||, ||∇R||, ||∇2R||. We
also note that ||Y ||2 is bounded so we only need to prove that ||Y 1|| is bounded above.
However we have,

ˇ

ˇxY 1ptq, Y 1ptqy1
ˇ

ˇ “ 2
ˇ

ˇxY 1ptq, Y 2ptqy
ˇ

ˇ “ 2
ˇ

ˇxRpγ1, Y qγ1, Y 1y
ˇ

ˇ

ď C1

a

xRpγ1, Y qγ1, Y yxRpγ1, Y 1qγ1, Y 1y

ď C2

a

x´Rpγ1, Y qγ1, Y y||Y 1||

ď C2

ˆ

x´Rpγ1, Y qγ1, Y y ` ||Y 1||2
˙

“ C2xY, Y
1y1

where the first inequality is the Cauchy-Schwartz inequality for the positive semi-definite
bilinear form ´R, the second inequality uses the bound ||R||, the third inequality is again
Cauchy-Schwartz inequality in R and the last equality uses the Jacobi equation. Here the
constant C2 only depends on ||R||. Integrating the above inequality, we obtain, for any
0 ă t ă s ă 8,

ˇ

ˇxY 1ptq, Y 1ptqy ´ xY 1psq, Y 1psqy
ˇ

ˇ

p˚q

ď C2

ˇ

ˇxY ptq, Y 1ptqy ´ xY psq, Y 1psqy
ˇ

ˇ
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As we saw, xY psq, Y 1psqy increases to 0 as sÑ8. Note that,

ż 8

0

||Y 1ptq||2dt ď
ż 8

0

ˆ

||Y 1ptq||2 `Rγ1xθptqpY ptqq
˙

dt

“

ż 8

0

ˆ

xY 1ptq, Y 1ptqy ` xY 2ptq, Y ptqy

˙

dt

“

ż 8

0

xY ptq, Y 1ptqy1dt ă 8

So xY 1psq, Y 1psqy goes to 0 as s Ñ 8. Now if we let s goes to infinity in the inequality p˚q
we get,

ˇ

ˇxY 1ptq, Y 1ptqy
ˇ

ˇ ď C2

ˇ

ˇxY ptq, Y 1ptqy
ˇ

ˇ ď ´C2xY
1p0q, Y 1p0qy “ C2DdBpx,θqpY p0q, Y p0qq

But by the comparison theorem the Hassian is bounded above by a constant depending on
||R||. This shows that ||Y 1|| is bounded by a constant depending on ||R||, hence the second
derivative of Rγ1xθptqpY ptqq is bounded by a constant on ||R||, ||∇R||, ||∇2R|| and in view of
the Lemma 7.19 we eventually obtain the main iequality stated in the theorem.

Proof. (Proof of Lemma 7.19) Considering the derivative of the function
a

F ptq we obtain

F ptq ě p
a

F p0q´L1tq2 on the interval r0,
a

F p0q{L1s for some constant L1 depending on L. If

we set Gptq “ F ptq´p
a

F p0q´L1tq2, then Gp0q “ 0, and Gp
a

F p0q{L1q “ F p
a

F p0q{L1q ě 0.

Moreover G2ptq “ F 2ptq ´ 2L12. So if we choose L1 ą
a

L{2, then G2 ă 0. Therefore G

would be concave and hence G ě 0 on r0,
a

F p0q{L1s. Using this and noting that F ě 0 we
estimate the integral

ż 8

0

F ptqdt ě

ż

?
F p0q{L1

0

ˆ

a

F p0q ´ L1t

˙2

dt “
F p0q3{2

3L1
“ C.F p0q3{2

where C is a constant only depending on L.

Theorem 6.2.3 (Convexity of Busemann Function). let M be compact non-positively curved
geometric rank one manifold. Fix a base point O in M and denote the Busemann function
BpO, ., .q by Bp., .q, see Definition 2.4.1. The Busemann function is convex and the null space
of its Hassian DdBpx,θq in direction vxθ-connecting x to θ have zero sectional curvature with
vxθ, i.e. secpu, vxθq “ 0 for u P nullpDdBpx,θqq. Where vxθ is the velocity vector of the
unique geodesic connecting x to θ.

Proof. If one think of the Busemann function Bpx, θq as a function that measures the angle
∠Opx, θq then it is clear that it is a convex map. But we will see the detailed calculation soon.
The second part of the theorem is an immediate consequence of the Theorem 6.2.1.

Theorem 6.2.4 (Strictly convexity of Busemann Function). Let M be a compact non-
positively curved geometric rank one. If Ricci-curvature is negative and ν is a finite Borel
measure fully supported in BM̃ then the function below is strictly convex,

Bν : M̃ ÝÑ R
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x ÞÑ

ż

BM̃

Bpx, θqdνpθq

So consequently there is a unique point in M̃ such that Bν attains its minimum on, we
denote this point by barpνq.

Proof. Considering the definition of convexity of a map on a manifold it is clear that a map
is strictly convex if and only if its hessian is positive definite. So we shall prove that the
hessian,

ż

BM̃

DdBpx,θqp., .qdνpθq

is positive definite. To see this let u P TxM̃ be a unit tangent vector. We claim that there
is a θ0 P BM̃ such that DdBx,θ0pu, uq ą 0 and vxθ0 is orthogonal to u. If not then we have

DdBpx,θqpu, uq “ 0 for every θ P BM̃ that vxθ is orthogonal to u. By previous theorem since
u is in the null space of DdBx,θ in the direction vxθ so the sectional curvature of the plane
spanned by u and vxθ is zero for any θ that vxθ is orthogonal to u(see Theorem 7.18). So

the Ricci-curvature at x vanishes that is a contradiction. Therefore there exist a θ0 P BM̃
such that DdBx,θ0pu, uq “ δ0 ą 0. By continuity there is a neighborhood U of θ0 such that
DdBx,θpu, uq ą δ0{2 for all θ P U . hence we have,

ż

BM̃

DdBx,θpu, uqdνpθq ě

ż

U

DdBx,θpu, uqdνpθq ą
δ0
2
νpUq ą 0.

Note that here we have used that ν is fully supported in BM̃ , and also the Busemann
function is (not strictly)convex even without the assumption Ricci ă 0. So the Hessian is
positive definite and hence Bν is strictly convex.

Definition 6.2.5. Standard spherical k-simplex ∆k
s is defined as follows,

∆k
s :“ tpa1, a2, ..., ak`1q : ai ě 0,

k`1
ÿ

i“1

a2
i “ 1u Ă Rk`1

with the induced Euclidean Riemannian metric from Rk`1 and with ordered vertices te1, ..., eK`1u.

Definition 6.2.6 (Barycentric Straightening). Let M be a Riemannian manifold. Sup-
pose M is a closed compact manifold with non-positive sectional curvature, negative Ricci-
curvature and geometric rank one (Connell, Wang) and let M̃ be its universal cover. Given

any singular k-simplex f : ∆k
s Ñ M̃ , with ordered vertices px1, ..., xk`1q “ pfpe1q, ..., fpek`1qq,

we defined the k-straightened simplex,

stkpfq : ∆k
s ÝÑ M̃

pa1, ..., ak`1q ÞÑ barp
k`1
ÿ

i“1

a2
i νxiq

where νxi “ µxi{||µxi || is the normalized Patterson-Sullivan measure at xi and barpνq is
defined in the statement of Theorem ??. Note that stkpfq is determined only by the ordered
vertex set V , so then we denote stkpfqpδq by stV pδq for any δ P ∆k

s .
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6.3 Top dimensional simplices

Lemma 6.3.1 (condition (3)). Let M be a compact manifold with non-positive sectional
curvature, negative Ricci curvature and geometric rank one. Then the Barycentric straight-
ening, see Definition 6.2.6, satisfies the condition (3) of the Definition 4.0.1, i.e. the top-
dimensional straightened simplices under Barycentric straightening procedure are C1.

Proof. Proof is quite similar to the proof of Lemma 5.4.1 once we prove that the following
map is strictly convex,

x ÞÑ

ż

BM̃

Bpx, θqdνpθq

where ν is a finite Borel measure fully supported in BM̃ . Because then we would have
detpKσq ‰ 0, hence we would be able to proceed in the proof of Lemma 5.4.1. Strictly
convexity of the above map was proved in the Theorem 6.2.4.

6.4 Jacobi estimate

Lemma 6.4.1 (condition (4)). Let M be a compact manifold with non-positive sectional
curvature, negative p

X

n
4

\

` 1q-Ricci curvature (which implies negative Ricci curvature) and
geometric rank one. Then the Barycentric straightening, see Definition 6.2.6, satisfies the
condition (4) of the Definition 4.0.1.

Proof. Proof is quite similar to the proof of Lemma 5.5.2 up to where we get the following
inequality,

|JacpstV qpσq| ď 2n
detpHσq

1{2

detpKσq

Now to get a uniform bound on the fraction on the right hand side we would need a new
method. In the rest of this section we will develop a method to bound the fraction. Recall
that the bound in the proof of Lemma 5.5.2 was obtained thanks to the Theorem 5.5.1 for
locally symmetric space of non-compact type with no local factors locally isometric to H2

or SL3pRq{SO3pRq.

Definition 6.4.2. For any positive semi-definite linear endomorphism A : V m Ñ V m and
for any 0 ď k ď m we define the k ´ th trace of A as follows,

TrkpAq :“ inf
VkĂVm

TrpA|Vk q

where Vk is a k-dimensional subspace of V (not necessarily invariant under A), and A is
viewed as a bilinear form when taking restriction. Equivalently it is sum of k least eigenvalues
of A.

Definition 6.4.3. Given an n-dimensional Riemannian manifold M with curvature tensor
R, for any u P TxM we define a symmetric bilinear form, Rupv1, v2q :“ ´Rpu, v1, u, v2q :“
´xRpu, v1, uq, v2y where v1, v2 P TxM . In particular if the manifold is non-positively curved
then Ru defines a positive semi-definite symmetric form on TxM . Furthermore we define
the k-Ricci curvature in direction u as,

Rickpuq :“ ´TrkpRuq
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Definition 6.4.4. Given an n-dimensional Riemannian manifold with curvature tensor R,
u, v P TxM and 0 ď k ď n define,

Rickpu, vq :“ sup
VĂTxM
dimV“k

Tr

ˆ

Rpu, ., v, .q|V

˙

whrere Rpu, ., v, .q|V is the restriction of R to VˆV . And we also set Rick :“ supvPT 1
xM

Rickpv, vq

where T 1
xM is the set of unit vectors in TxM .

Lemma 6.4.5. Let M be a closed manifold with non-positive curvature. Then the followings
are equivalent,

1. dim
`

nullpRvq
˘

ď n{4 for all v P T 1
xM .

2. @v P T 1
xM , there exist a subspace Fv Ă TxM of dimension at least 3n{4 such that

xv, Fvy “ 0 and Rvpu, uq ě C0 for all u P Fv, where C0 is some universal constant
that only depends on pM, gq.

3. @v P T 1
xM the k-eigenvalue (in increasing order) of Rv is at least C0 when k ą n{4,

where C0 is some universal constant that only deppends on pM, gq.

4. There is a δ ą 0 that only depends on pM, gq such that,

inf
vPT 1

xM
TrkpRvq ě δ

when k ą n{4.

5. The manifold has strictly k-th Ricci when k ą n{4. That is Rickpvq ă 0 for all
v P T 1

xM and k ą n{4, or equivalently Rictn{4u`1 ă 0.

Proof. We will be proceeding as follows, first we prove p4q ô p5q and then p4q ñ p3q ñ
p2q ñ p1q ñ p4q.

• p4q ñ p5q : @v P T 1
xM and k ą n{4 we have,

Rickpvq “ ´TrkpRvq ď ´ inf
VkĂTxM

TrkpRvq ď ´δ ă 0

Equivalently, for k “ tn{4u` 1,

Rick “ sup
vPT 1

xM

Rickpv, vq “ sup
vPT 1

xM

sup
VkĂTxM

Tr

ˆ

Rpv, ., v, .q|Vk

˙

“ sup
vPT 1

xM

´ inf
VkĂTxM

Tr

ˆ

´Rpv, ., v, .q|Vk

˙

“ sup
vPT 1

xM

´TrkpRvq “ ´ inf
vPT 1

xM
TrkpRvq ď ´δ ă 0

Note that we are taking the last Infimum over T 1
xM which is a compact set.

• p5q ñ p4q : Similar to p4q ñ p5q.
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• p4q ñ p3q : Let Vk be the span of the first k eigenvectors of Rv, with associated
eigenvalues λ1 ď λ2 ď ... ď λk. By definition we have, λ1 ` ... ` λk “ TrpRv |Vk q ě

TrkpRvq ě δ. So that we have λk ě δ{k, with constant δ{k only depending on pM, gq.

• p3q ñ p2q : Take Fv to be the span of the last n ´ k ` 1 eigenvectors of Rv, where
k “ tn{4u ` 1. Now since Rvpv, vq “ 0 so v P nullpRvq and corresponds to the
first eigenvalue of Rv, λ1 “ 0. Assuming p3q we know that λi ą 0 for i ě k so we
have xv, Fvy “ 0. Note that Rvpu, uq ě λk ě C0 for all u P Fv. Also note that
dimpFvq “ n´ k ` 1 ě n´ tn{4u ě 3n{4.

• p2q ñ p1q : For any v P T 1
xM , by property of Fv, Fv X nullpRvq “ 0, Therefore

dimpFvq ` dimpnullpRvqq ď n, hence dimpnullpRvqq ď n{4.

• p1q ñ p4q : Let l “ tn{4u` 1 and denote by λkpvq the k-th eigenvalue of Rv. By p1q,
λlpvq ą 0 for all v P T 1

xM . Since λlpvq is continuous on v and T 1
xM is compact, there

exist a universal constant δ ą 0 such that λlpvq ě δ, hence for any k ą n{4 we have,

inf
vPT 1

xM
TrkpRvq ě inf

vPT 1
xM

λkpvq ě inf
vPT 1

xM
λlpvq ě δ

Definition 6.4.6. We say that a non-positivelt curved manifold has negative p
X

n
4

\

` 1q-
negative Ricci-curvature if it satisfies any of the five conditions in Lemma 9.3.

Theorem 6.4.7. Under the assumption of Theorem 7.18, If M has negative p
X

n
4

\

`1q-Ricci
curvature, then

Trk`1pDdBx,θp., .qq ě C0

where k “
X

n
4

\

and C0 depends on the negative p
X

n
4

\

` 1q-Ricci constant in Lemma 9.4, in
particular it depends on pM, gq.

Proof. We choose an orthonormal frame e1, ..., ek`1 of the k ` 1 least eigenvectors of the
DdBpx,θqp., .q, so that,

Trk`1pDdBpx,θqp., .qq “
k`1
ÿ

i“1

DdBpx,θqpei, eiq

Now according to Theorem 7.18 and Holder’s inequality we have,

k`1
ÿ

i“1

DdBpx,θqpei, eiq ě C
k`1
ÿ

i“1

Rvxθ pei, eiq
3{2 ě C 1

k`1
ÿ

i“1

ˆ

Rvxθ pei, eiq

˙3{2

Now the negative p
X

n
4

\

` 1q-Ricci curvature condition implies,

k`1
ÿ

i“1

Rvxθ pei, eiq ě Trk`1pRvxθ q ě C2

where C2 only depends on pM, gq. So we have the inequality of the lemma.
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As a first step to find a bound on the Jacobian of the straightened simplices in barycentric
straightening method, we use the Theorem 7.18 to conclude the following lemma which
compares pointwise the integrands of Hσ and Kσ. We should remark that the power 2/3
in the following lemma which traces back to Lemma 7.19 directly leade to the imposed
n{4 condition. If this power can be improved to be closer to 1, then the resulting k-Ricci
condition could be slightly weakened, but is still limited to n{3 condition.

Lemma 6.4.8. Suppose M is a closed non-positively curved n-manifold with negative p
X

n
4

\

`

1q-Ricci curvature and M̃ is the Riemannian universal cover of M . Let x P M̃ , θ P BM̃ .
Then there is a constant C that depends on pM, gq such that for all v P T 1

xM and all u P Fv
(where Fv satisfies (2) of Lemma 9.4), we have,

dB2
px,θqpu, uq ď C

ˆ

DdBpx,θqpv, vq

˙2{3

Proof. We decompose v “ v1` v2 where v1 is parallel to vxθ and v2 is orthogonal to it, and
we denote by α the angle between vxθ and v. Note that if sinpαq “ 0, that is v is parallel
to vxθ then BOpγuptq, θq is a constant function so dB2

px,θqpu, uq “ 0 and the inequality holds

automatically. Now if sinpαq ‰ 0 then we can estimate,

DdBpx,θqpv, vq “ DdBpx,θqpv2, v2q ě sin2pαq

ˆ

CRvxθ p
v2

||v2||
,
v2

||v2||
q

˙3{2

“
C3{2

|sinpαq|
Rvxθ pv2, v2q

3{2 ě C3{2Rvxθ pv2, v2q
3{2

“ C3{2Rvpvxθ, vxθq
3{2

Note that when restricted to Fv, Rv have eigenvalues at least C0 according to Lemma 9.4,
hence,

Rvpvxθ, vxθq ě C0cos
2p∠pvxθ, Fvqq ě C0cos

2p∠pvxθ, uqq “ C0dB
2
px,θqpu, uq

So then we finally have,

dB2
pxq,θpu, uq ď C

ˆ

DdBpx,θqpv, vq

˙2{3

Theorem 6.4.9. Suppose M is a closed non-positively curved n-manifold with negative
p
X

n
4

\

` 1q-Ricci curvature, and M̃ is its universal cover. Let xM̃, θ P BM̃ , and ν be any

probability measure that has full support in BM̃ . Then there exist a universal constant C
that only depends on pM, gq, so that,

det

ˆ

ş

BM̃
dB2

x,θp., .qdνpθq

˙1{2

det

ˆ

ş

BM̃
DdBpx,θqp., .qdνpθq

˙ ď C
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Proof. Set Kx,θ :“ DdBpx,θqp., .q, Hx,θ :“ dB2
px,θqp., .q and K :“

ş

BM̃
Kx,θp., .qdνpθq, H :“

ş

BM̃
Hx,θp., .qdνpθq. Let 0 ď λ1 ď ... ď λn be the eigenvalues of K, and let v be the

eigenvector corresponding to λ1. Then there exist a constant C 1 depending on pM, gq, such
that for any u P Fv, we have,

Hpu, uq “

ż

BM̃

Hx,θpu, uqdνpθq ď C 1
ż

BM̃

Kx,θpv, vq
2{3dνpθq

ď C 1
ˆ
ż

BM̃

Kxθpv, vqdνpθq

˙2{3

“ C 1λ
2{3
1

Therefore we can find an orthonormal frame e1, ..., en´k at x such that Hpei, eiq ď C 1λ
2{3
1

for 1 ď i ď n´ k where k “
X

n
4

\

. This implies that,

Trn´kpHq ď
n´k
ÿ

i“1

Hpei, eiq ď pn´ kqC
1λ

2{3
1

If we further denote by µ1 ď µ2 ď ... ď µn the eigenvalues of H then we have,

µi ď Trn´kpHq ď pn´ kqC
1λ

2{3
1 , 1 ď i ď n´ k

Since Trn´kpHq “ µ1 ` ... ` µn´k. Note that the eigenvalues of H are at most 1 and
k “

X

n
4

\

ď n{4, so we can estimate the following,

detpHq1{2

detpKq
“

śn
i“1 µ

1{2
i

śn
i“1 λi

ď

ˆ

pn´ kqC 1λ
2{3
1

˙

n´k
2

λk1λ
n´k
k`1

ď
C2

λn´kk`1

for some constant C2 depending on pM, gq. And finally we can bound λk`1 as follows,

λk`1 ě
1

k ` 1
Trk`1pKq ě

1

k ` 1
inf
θPBM̃

Trk`1pKx,θq ě
C0

k ` 1

Therefore by combining the above inequalities we conclude,

pdetHq1{2

detK
ď C2

ˆ

k ` 1

C0

˙n´k

ď C

where C depends on M .

6.5 Proof of Theorem 1.0.5

Now we restate the main theorem here and prove it,

Theorem 6.5.1 (Main Theorem). If M is a non-positively curved manifold with negative
p
X

n
4

\

` 1q-Ricci curvature, then ||M || ą 0.
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Proof. By Theorem 6.1.1 we know that non-positively curved manifolds with geometric rank
one admit a unique family of Borel finite measures fully supported in the visual boundary
(Patterson-Sullivan measures). Now by Theorem 6.2.4 we know that the following map is
strictly convex,

Bνp.q “

ż

BM̃

Bp., θqdνpθq

where ν is a weighted sum of Patterson-Sullivan measures and Bp., .q is the Busemann
function, see Definition 2.4.1. Now using this map we define the Barycentric straightening,
see Definition 6.2.6. By the Theorem 5.3.1, Theorem 6.3.1 and Theorem 6.4.1 we see that
the Barycentric straightening satisfies all the conditions of the straightening defined in the
Definition 4.0.1. Now the main theorem follows from the Theorem 4.0.2 by Thurston.
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Appendix

Theorem 6.5.2 (Implicit Function Theorem). Let M be an n-dimensional smooth manifold
and f : M ˆ V Ñ Rn be a continuously differentiable function where V Ă Rn is an open
subset and let px1, ..., xn, y1, ..., ynq be a local coordinate on some open subset UˆV ĂMˆV .
Fix a point pa, bq PM ˆV with fpa, bq “ 0. If the Jacobian matrix Jf,ypa, bq “

“

Bfi
Byj
pa, bq

‰

is

invertible then there exist an open subset Ũ Ă U containing a such that there exist a unique
continuously differentiable function g : Ũ Ñ V such that gpaq “ b, and fpx, gpxqq “ 0 for

all x P Ũ .

Definition 6.5.3 (Cusped manifold). A non-compact complete hyperbolic manifold with
finite volume is called cusped manifold.

Remark 6.5.4. The name ”cusp” comes from the fact that these manifolds have the follow-
ing structure, let M be such a manifold, then M retracts to a compact submanifold M 1 which
has a boundary consisting of flat manifolds T1, ..., Tk, and the rest of the manifold consist of
so-called cusps, which are warped products Ti ˆ r1,8q with the metric 1

t2 pdx
2 ` dt2q where

dx2 is the flat metric on T 1is.

Definition 6.5.5 (convex function). Let M be a Riemannian manifold and f P C8pM,Rq
be a smooth map. We say f is convex if its restriction to any geodesic is a convex function.
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