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Abstract
Simplicial volume and non-positive curvature

Habib Alizadeh

The simplicial volume is a non-negative real valued homotopy invariant of closed connected
manifolds measuring how efficient the fundamental class can be represented by real singular
cycles. The problem of determining whether the simplicial volume of a given manifold is
non-zero has been a challenge. It is known that the simplicial volume of negatively curved
manifolds is positive [15]. Losing the negative bound on the sectional curvature, it has
been shown that locally symmetric spaces of non-compact type have positive simplicial
volume [21]. In their 2018 paper, C.Connell and S.Wang showed that the simplicial volume
of n-manifolds with non-positive sectional curvature and negative [% + 1J—Ricci curvature
have positive simplicial volume, which confirms the Gromov’s conjecture in special cases.
The conjecture states that the simplicial volume of manifolds with non-positive sectional
curvature and negative Ricci-curvature is positive. In this master thesis we will introduce
required notions and preliminaries and present detailed proofs of the results mentioned
above.
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Chapter 1

Introduction

For the first time, Gromov introduced the notion of the simplicial volume of a closed,
connected and orientable manifold M in his 1982 paper [26]. This homotopy invariant is
denoted by ||M|| € [0, ), and measures how "efficiently” the fundamental class of M may
be represented using real cycles.

Definition 1.0.1 (Simplicial Volume). Let M be an oriented closed connected n-manifold
with fundamental class [M] € H,(M,Z). The simplicial volume of M is defined as follows,

[|M]] == inf{{lally : da =0, [a] = ix([M])}

where iy : Hy(M,Z) — Hp,(M,R) is the change of coefficient homomorphism, and for
a = Y;a;0; € Cp(M,R) with o; € C°(A™, M) we define,

lledly == D lail
%

If M is not an orientable manifold then we take the oriented connected double cover of M
denoted by M, and define, ||M|| := 3|[M]|.

To find a lower bound for the simplicial volume one may proceed as follows, for any arbitrary
representative o = Y. a;0; of the fundamental class find a special representative A(«o) =
>, bim; with smaller [|.||; so that the volume of all simplices 7; are bounded by a universal
constant only depending on the manifold, see the argument in Section 3.2. In 1980 H. Inoue
and K. Yano proved that indeed in a negatively curved manifold geodesic simplicies have a
universal bound on their volume, and for any simplex one can easily find a geodesic simplex
that represents the same homology class. Therefore they proved the following theorem,

Theorem 1.0.2. The simplicial volume of closed, connected Riemannian manifolds with
negative sectional curvature is positive.

We will explain the details of the proof of this theorem in Chapter 3. Moreover the sim-
plicial volume of hyperbolic manifolds, i.e. manifolds with constant negative sectional
curvature, has been explicitly calculated. Namely if M"™ is a hyperbolic manifold, then
[|M|| = vol(M)/vy, where v, is the maximum volume of all geodesic simplices in M. For
instance the simplicial volume of closed connected surfaces with genus g > 2 is equal to
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4g — 4, [26]. Now the question is what happens if we loose the negative upper bound for
the sectional curvature, i.e. what can we say about the simplicial volume of non-positively
curved manifolds. In the paper of Gromov([26]) the question was raised as whether the
simplicial volume of closed locally symmetric space of non-compact type is positive. Note
that a non-compact type manifold has non-positive sectional curvature by definition. This
question was mentioned in variety of sources, [25], [34], [30] and [6] until 2005 when it was
completely answered by J.F. Lafont and B. Schmidt, [21]. However there might be geodesic
simplices with arbitrary large volume in non-positively curved manifolds but the idea of
the proof in this case is to look for simplices with uniformly bounded volume by which the
fundamental class can be represented. They follow Thurston’s method, called the straight-
ening method, see Chapter 4, to find these simplices. Note that the method in negative
curvature case is also a straightening method, and Thurston’s method is a refined version
of the straightening used by H. Inoue and K.Yano. We will be explaining the details of the
proof of J.F. Lafont and B. Schmidt for the following theorem in Chapter 5,

Theorem 1.0.3. If M is a closed locally symmetric spaces of mon-compact type, then
[|M]| > 0.

Note that in the above theorem, ”closed” shall mean compact and without boundary as
usual. A different straightening procedure was developed by Savage to show the positivity
of the simplicial volume for co-compact quotients of SL,(R)/SO, (R), [30]. The following
conjecture is attributed to Gromov.

Conjecture 1.0.4 (M.Gromov). If M is a closed manifold with non-positive curvature and
negative Ricci-curvature, then ||M|| > 0.

In 2018 C. Connell and S. Wang showed the following theorem, which indeed confirms
Conjecture 1.0.4 in some special cases,

Theorem 1.0.5. The simplicial volume of closed n-manifolds with non-positive curvature

n

and negative (|2 | + 1)-Ricci curvature is positive.

The Ricci type curvature stated in the theorem above is a stronger assumption on the Ricci-
curvature than negative Ricci-curvature, i.e. for k = n we have Ricy < 0 is equivalent to
Ricci < 0, and for k < n, Ric, < 01implies Ricci < 0. For the definition of k-Ricci curvature
see the Definition 6.4.3. We will also present a detailed proof of the Theorem 1.0.5. Non-
positively curved Riemannian manifolds can be classified by their geometric rank, which is
the minimum dimension of parallel stable Jacobi fields along geodesics, see Definition 77, or
in the case of symmetric spaces of non-compact type, the maximum £ for which there is a
complete totally geodesic submanifold isometric to R*. Higher rank manifolds turn out to
have universal cover which are either metric products or symmetric spaces of non-compact
type, [33], [17], and hence their simplicial volume is understood by theorems above. The
remaining class of geometric rank one manifolds which includes manifolds with both van-
ishing and non-vanishing simplicial volume will be studied in Chapter 5 in a special case.
The simplicial volume has been shown to vanish for several large classes of manifolds. Mani-
folds that admit a non-degenerate action of circle, or more generally a polarized F-structure
[18], [10], [26], certain affine manifolds [24] and manifolds with amenable fundamental group
[26]. Note that trivial, abelian, solvable and nilpotent groups are all amenable. In particular
simply connected manifolds have zero simplicial volume. The simplicial volume of mani-
folds with free fundamental group also vanishes. Here are some other important results on
the simplicial volume of manifolds some of which we will be using through the subsequent
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chapters.

Theorem 1.0.6 (Proportionality Principle). Let M, M’ be two closed Riemannian mani-
folds with isometric universal cover, then

[p (1M
Vol(M) ~ Vol(M')

Theorem 1.0.7 ([29, Proposition 3.2.4]). For a pair of closed oriented manifolds M, M’
we have,

Cl[MI|.[|IM'|| = [|M x M'|| = [[M]] x || M']]
where C > 1 is a constant that only depends on the dimension of M x M'. If dim(M) = m
and dim(M’) = n, the inequality holds for C = ("™).

n

Theorem 1.0.8. For n > 3, the connected sum of a pair of n-manifolds M, M’ satisfies

[ M#M|| = || M]] + [|M]]

Theorem 1.0.9 ([31]). Co-compact quotients of SL,(R)/SO,(R) have positive simplicial
volume.

Theorem 1.0.10 ([29, Proposition 3.2.5]). Let M be an n-manifold. If H"(mw(M)) = 0
then ||M|| = 0. In particular the simplicial volume any simply connected manifold vanishes.

Theorem 1.0.11 ([29, Proposition 3.3.9]). Let M be a locally symmetric n-manifold whose
universal cover has a non-trivial compact factor, then ||M|| = 0.

Theorem 1.0.12 ([37]). The simplicial volume of oriented closed connected smooth mani-
folds that admit a non-trivial smooth S*-action vanishes.

Theorem 1.0.13 ([26]). Let M be a compact, connected and oriented Riemannian n-
manifold with constant sectional curvature —1 on int(M) = M\OM and finite volume.
Then,

vol(M)

n

|[M, 0M]| =
In particular, if M is closed then

vol (M)
Vn

M| =

where vy, is the volume of the reqular ideal simplices in H", i.e. v, = sup{vol(o) : o €
Sy (H™)}, where Sp(M) is the set of all n-simplices in M.

Theorem 1.0.14 (No-gap Theorem, [16, Theorem A]). Let d = 4 be an integer. For every
€ > 0 there is an orientable closed connected d-manifold such that 0 < ||M|| < e. Hence the
set of simplicial volumes of orientable closed connected d-manifolds is dense in Rxg.

Theorem 1.0.15 (No-gap Theorem, [16, Theorem B]). For every q € Qs there is an
orientable closed connected 4-manifold M, so that || M,|| = q.



Chapter 2

Preliminaries

2.1 Riemannian geometry

In this section we explain some basics on Riemannian geometry which is required to follow
the rest of the notes.

Definition 2.1.1. A Riemannian metric on a smooth manifold M is a smooth section of
the 2-tensor bundle T* M Q T*M so that for every point x € M, g(z) : T, M T, M — R is
a symmetric positive-definite bi-linear form. A smooth manifold is called Riemannian if it
is equipped with a Riemannian metric (Indeed every smooth manifold admits a Riemannian
metric).

Definition 2.1.2. Let (M, g) be a Riemannian manifold. Let M be the universal cover of

M with the covering map p : M — M. Since p is a local diffeomorphism one can pull back
the metric g on M, let us denote it by g. The volume entropy of (M, g) is defined as follows,

M(M.9)) = Jim ol (Br(a)

where © € M is a point and Br(z) is a ball around x with radius R with respect to the
pull-back metric g.

Remark 2.1.3. The volume entropy defined above does not depend on the choice of the
base point x € M. The volume entropy of the hyperbolic space with constant curvature —1
is equal to 1.

The Euclidean space R™ with the standard Euclidean metric is a Riemannian manifold.
The shortest path from one point to another in the Euclidean space is simply the straight
line going through the points. To define the shortest path between two points p,q in an
arbitrary Riemannian manifold (M, g) one might define the following distance function on

the manifold,
dr.q) = inf | oG A)a

where 7 : I — M varies on the set of piecewise differentiable curves in M from p to ¢q. And
define the curve that meets the infimum value above to be the shortest path from p to q.
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But it is not clear why such a curve exist. A better way of approaching this generalization

is the following, a straight line « in the Euclidean space satisfies %(&) = 4 = 0, where v

is the velocity vector along -+ which is indeed a vector field along the curve . It would be
a good idea to define a ”second derivative” of a curve, or in general derivative of a vector
field on a Riemannian manifold.

Definition 2.1.4. Let M be a smooth manifold. A connection on TM is a map V :
T(TM) xT(TM) - T'(TM) satisfying the following properties, for every X,Y,Z € T(TM),
frge C®(M) and a,beR,

o VfX+gyZ = fVxZ+gVyZ
. VZ(GX +bY) =aVzX +bVzY
e Vx(fY) =X(f)Y + fVxY

The vector field VxY is called the covariant derivative of Y in the direction of X. If g is
a fized metric on M, then a connection V is called Levi-Civita connection if it satisfies the
following conditions,

e VxY —VyX =[X,Y]
° ng(Xa Y) = g(vZX7 Y) + g(Xv VZY)
Remark 2.1.5. For any metric g on a manifold M, there is a unique Levi-Civita connection.

Definition 2.1.6. Let M be a smooth manifold and ~ : I — M be a peicewise smooth curve
in M. Let V be a connection on TM. There is a unique operator Dy : I'(T'M| ) — I'(T' M)
that satisfies the followings for every X,Y,Z e T(T'M, ), f € C*(I) and a,b e R,

e Dy(aX +bY) = aD,X + bD,Y
o Di(fY) = f'Y + fDY

o IfV is an extendible vector field along v and V is an extension of V' then we have

D,V (t) = V5V

From now on we shall always mean the Levi-Civita connection by V and the corresponding
covariant derivative along curve v by D,.

Definition 2.1.7. A curve v in a Riemannian manifold M is called geodesic if Dy = 0.
Definition 2.1.8. Define a (3,1)-tensor field R € T(T*(M)®3® TM) as follows,

R(X.Y)Z :=VxVyZ—-VyVxZ—Vxy|Z

This (3, 1)-tensor field is called curvature tensor. And for any two independent local vector
fields X, Y on M the sectional curvature sect(X,Y) is defined as follows,

 g(R(X, Y)Y, X)
sect(X,Y) := ||XH2||Y||2 — g(X7 Y)

We may denote the sectional curvature by R too through the note. The Ricci-curvature of
M is denoted by Ricci is a (2,0)-tensor field defined by Ricci = tr(sect) where the trace
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operator is defined by tr : T(T* M®* x TM®) — T(T* MOF=1) x TMSI=1)) py
F— ((wl,...,wkl,Xl,...,Xll) [and

T’I’(X —> F(.,wl,...,wk_l,X,Xl,...,Xl_l))>

Definition 2.1.9. A Riemannian manifold M is called negatively curved if sect(X,Y) <
—0 < 0 for some non-zero positive real number §, every two independent tangent vectors
X, Y e T,M and every point p e M. A Riemannian manifold is called non-positively curved
if the sectional curvature is always mon-positive and there is no universal negative upper
bound for the sectional curvature. Positively curved and non-negatively curved are defined
similarly.

Definition 2.1.10. Let M be a Riemannian manifold with Levi-Civita connection V. Let
V' be a vector field along a geodesic v in M. We say that V is a Jacobi field along ~y if it is
a solution to the following equation,

DD, (=) + R(—4)7 = 0

If M is a complete non-positively curved Riemannian manifold, then a Jacobi field V' along
~v is called stable if there is a constant C' > 0 so that ||V (t)|| < C for allt = 0.

Remark 2.1.11. A Jacobi field J along a fired geodesic v is uniquely determined by the
initial conditions J(0) = v € Ty oyM and DJ(0) = w € TyoyM. Furthermore for every
v,w € Ty)M there is a Jacobi field J with J(0) = v and DJ(0) = w. Therefore the
dimension of jacobi fields along a curve v is 2n where dim(M) = n.

Lemma 2.1.12. (Uniqueness of stable Jacobi fields) Let M be a complete Riemannian
manifold with non-positive curvatur, v : [0,00) — M be a geodesic ray, and let v € T,M,
p =7(0). There is a unique stable Jacobi field Y along v with Y (0) = v.

Proof. The uniqueness follows from the fact that in Hadamard spaces, complete non-positively
curved manifolds, the length of a Jacobi field is a convex function. This is simply because,

(Y @)IR)" =Y (@), Y ()" = 20Y(2), Y' ()
= 2(IY' @O + ¥ (1), Y"(t)))

=2(IlY"(®)II* = R (1), 4()F (1), Y (t))) = 0
Suppose Y is a stable Jacobi vector field along v with Y(0) = 0. If we show that Y = 0
then the uniqueness follows. Since ||Y(¢)||? is a convex function and bounded so we have,
(|[Y (#)]|?)" is increasing and non-positive. But since %lt:OHY(t)H2 = 2Y(0),Y’(0)) =0 so
then we have ||Y (¢)]? is constant 0 and therefore Y (¢) = 0. To prove the existence let Y,,
be the unique Jacobi field along v with Y,,(0) = v and Y,,(n) = 0. Applying the Rauch’s
comparison theorem to Y,, — Y,, we get,

V20) = YA (O)l1 < 31V (6) ~ Yo (0
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in particular we have,
1
1Y2(0) = Y5, (0)]] < —[[Ym (n)]]

but since ||Y;,,(t)||? is convex and it reaches 0 at ¢+ = m it must be monotone decreasing in
the interval [0, m], therefore,

1 1
Y'(0)-Y! < =Y, < =
1Y:(0) = YOl < ~|[¥u(m)l| < o]

Thus ||Y,,(0)|] is a Cauchy sequence with limit w, say. If Y,, is the unique Jacobi field along
~ with Y, (0) = v and Y,(0) = w then it follows immediately that Y, as the limit of Y,,, is
a stable Jacobi field along ~. O

Theorem 2.1.13. Let M be a non-positively curved complete and simply connected man-
ifold. Then it is diffeomorphic to a Euclidean space. And M is a normal neighborhood of
every point in the manifold, thus for any two points p,q € M there is a unique geodesic y in
M with v(0) = p and (1) = gq.

Proof. Let p € M be a point. Let exp, : U — M be the exponential map that is defined
on an open subset of U < T,M by v — 7, ,(1), where -, is the unique geodesic passing
through p with the velocity vector 4(0) = v that is defined on the interval [0,1]. One can
show that if the sectional curvature is non-positive then the exponential map defined above is
a local diffeomorphism wherever it is defined. On the other hand it is known that a manifold
is metric complete if and only if it is geodesically complete, that means all geodesics are
defined on R, i.e. U = T, M. Putting all these together one shows that exp, is a universal
covering map, and since M is simply connected so exp, is a global diffeomorphism. It is
not hard to show that if exp, : U — V is a diffeomorphism between a neighborhood U of
0 € T, M and a neighborhood V' < M of p then for every two points p, g € V' there is a unique
geodesic 7y in V' with 7(0) = p and v(1) = g. Thus the statement follows immediately. [

Theorem 2.1.14 (Gauss-Bonnet). Suppose 7y is a curved polygon on an oriented Rieman-
nian 2-manifold (M, g), and v is positively oriented as the boundary of an open set Q with
compact closure. Then

J KdA+J knds + ) € =21
Q v i

where K is the Gaussian curvature of M, dA is the volume form, Dyy(t) = kn(t)N(t) and
finally the €,s are the rotation angles of v at "sharp points”, see Figure 2.1 and [22, pg.162].

Definition 2.1.15 (Geometric Rank). Let M be a symmetric manifold (of non-compact
type). A k-flat submanifold of M is a complete totally geodesic submanifold of M that is
isometric to R¥. The rank of M is denoted by rk(M) and is defined to be the mazimum
number k such that M has a k-flat submanifold.

Manifolds with negative sectional curvature have rank equal to 1. In particular hyperbolic
spaces have rank = 1. One can easily construct manifolds with rank one and arbitrary
”large” parts with zero sectional curvature by taking two copies of a flat manifold and
cutting off a ball and connecting two copies with a negatively curved cylinder along the
holes. Here is also two large classes of manifolds with rank at least 2,
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o =1

Figure 2.1:

Example 2.1.16. Let G be a semi-simple Lie group with finite center and no compact
factor. Consider the space M = T\G/K where K c G is a mazimal compact subgroup and
I' ¢ G is a uniform lattice. This manifold admits a metric with non-positive curvature and
rank(M) = 2. See [33] for the details of why this manifold is in the desired class.

Example 2.1.17 (Direct product). If Ny, No are two non-positively curved manifolds then
their product M = Ny x Ny is a non-positively curved manifold with rank(M) = 2. This
is easily seen by the fact that each geodesic in M lies in an immersed flat two-plane. Let
(t) = (v1(t),72(t)) be a geodesic in M, if non of the v*,~? is constant then ~y is contained
in the flat two plane spanned by v' x v < M. And if v is parallel to one of the factors then
each geodesic v' parallel to the other factor determines a flat two plane containing -y.

Definition 2.1.18 (Hessian). Let (M,g) be a Riemannian manifold and f € C*(M,R) be
a map. Then the Hassian of f is denoted by V2 f and is defined as follows, for vector fields
X, Y eI'(TM),

VZA(X,Y) = X(Y(f) = (VxY)(f)

2.2 Locally symmetric spaces

In this section we will discuss some properties of locally symmetric spaces that we will need
in Chapter 5 to study positivity of the simplicial volume of locally symmetric spaces of
non-compact type.

Definition 2.2.1. A Riemannian manifold M is said to be a locally symmetric space if for
every point p € M there exist a neighborhood U of p and an isometry s : U — U so that it
leaves p fized and d,s = —idTpM.

Remark 2.2.2. Note that if M is an arbitrary Riemanian manifold and p € M any point on
M, then there exist a neighborhood U of p and a unique diffeomorphism s,y : U — U such
that s(p) = p and dps = —idr,ar. For any two neighborhoods U,V of p for which the maps
sp,u and sp v exist we have spy~v exist and Sp U~V = SpU|y.y = Sp,V|p.y- Lherefore
there is a mazimal neighborhood of p with a diffeomorphims s, : U — U with s,(p) = p and
dypsp = —idr,pr. The map s, is called geodesic symmetry centered at p.
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Definition 2.2.3. A locally symmetric space is called a symmetric space if all the geodesic
symmetry maps can be extended to the entire manifold.

Lemma 2.2.4. Universal cover of a complete locally symmetric space is a symmetric spaces.

Proof. Without loss of generality, let M be a connected locally symmetric space and M be
its universal cover with the induced metric. Thus M is a locally symmetric space as it _is
locally isometric to M. Now let s, : U — U be a geodesic symmetry centered at p in M.
Now suppose x € M\U Let v: I — M be a smooth curve from p to z. Cover the image of
~ by finitely many open neighborhoods Uy, ..., Uy, where Uy = U, U; nU; = F for |i—j| = 2,
for each of which there exist a geodesic symmetry s; centered at some point of U; and also
a chart ¢; : U; —» U; < R™. Now let g; : R — R” be an isometry that extends the isometry
map ¢; o s; o (b;ll D10 siill(Ui N U;) = ¢;(Ui—1 n U;) to an isometry of R™. Now we
define the extension of s, at x to be sp, 0 ¢51 ogilto..o g,;ll o g,;l o ¢;(x). One can check
that this extension is an isometry and the definition does not depend on the choice of 7,
using the fact that M is simply connected. for more details see [12]. O

Because of the proportionality principle, 1.0.6, to determine the positivity of the simplicial
volume of a manifold M, it would be enough to show that there is a manifold with positive
simplicial volume and universal cover isometric with that of M. Therefore let us talk about
(simply connected complete) symmetric spaces and their properties.

Lemma 2.2.5 ([14, Theorem 3.2, Ch 2]). Let G be a locally compact group with a countable
basis. Suppose G is acting transitively and continuously on a locally compact Hausdorff
space M. Let pe M be a point and H be the subgroup of G leaving p fized. Then H < G is
a closed subgroup and the map G/H — M defined by gH — g.p is a homeomorphism.

Furthermore for a Riemannian manifold one can prove the following theorem,
Theorem 2.2.6 ([14, Theorem 3.3, Ch 4]). The followings hold,

e Let M be a Riemannian manifold and I(M) be the isometry group of M. Then the
compact-open topology of I(M), turns it into a locally compact group with countable
basis, and I(M) acts smoothly on M. Furthermore the subgroup K < I(M) that leaves
a point p e M is a compact subgroup.

o If M is a globally symmetric space, then the identity connected component of isometry
group I(M), denoted by G := Iy(M), admits a smooth structure compatible with the
compact-open topology that turns it into a Lie group acting transitively and smoothly
on M. If K < G is the maximal subgroup of G fixing a point p € M then, K is a
compact subgroup and M = G/H (diffeomorphism,).

So in order to study the structure of symmetric spaces one might attempt to use the theory
of Lie groups and Lie algebras. Note that for a semisimple Lie group G and a maximal
compact subgroup K < G, the quotient group G/K can be equipped with a metric that
is G-equivariant and turns the quotient into a globally symmetric Riemannian manifold.
To see this, let g, ¢ be the Lie-algebra of G and K respectively. If G is a semisimple Lie
group, i.e. by definition g is a semisimple Lie algebra, then the Cartan Killing form is a
non-degenerate bi-linear form on g defined as follows,

B:gxg—R
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(X,Y) — Tr(ad(X)ad(Y))

where ad : g — gl,,(g) is the derivative of the adjoint representation of G at e, defined by
g — Ad(g) € GL,(g), where Ad(g) is the derivative of ¢, : G — G at e, taking h to ghg™ .
Now since the killing form is a non-degenerate bi-linear form we can define the orthogonal
complement of £ in g, let us denote it by p. So then we have, g = £ @ p. Now one can check
that the differential of the projection map G — G/K is a linear map g = ¢®p — Tk (G/K)
with kernel equal to £ and it induces an isomorphism between p and Tk (G/K), where by
index K we mean the coset K € G/K. One can show that the Killing form is negative definite
on ¥ and positive definite on p. So the the killing form induces a norm on p, consequently
on Tk (G/K), denote this norm by gx. now since G/K is a homogenuous space, i.e. for
every point « € G/K there is a diffeomorphism f, : G/K — G/K so that f,(K) = z, we can
transform the norm gx to a norm g, on the tangent space at the point x using f, for any
point z € G/K. Therefore we get a G-equivariant metric g on G/K defined by g(x) = g,.

Lemma 2.2.7 ([14, Theorem 3.5, Chd4]). Let M be a symmetric space, G be the identity
component of isometries of M and K < G be the isotropy subgroup at the pointpe M. G
is a semi-simple Lie group. If g,€ are the Lie algebras of G, K respectively, then we have
T,M = p, where p is the orthogonal complement of € — g with respect to the Killing form.
Furthermore, we have p = {X € g : decpy(X) = =X} and ¢ = {X € g : decp(X) = X} where
cp: G — G is defined by g — spgsp, where sy, is the geodesic symmetry at the point p. And
finally M is isometric with G/K, where the metric on G/K is the one constructed in the
paragraph right before the Lemma.

Definition 2.2.8. Let g be a semisimple Lie algebra that admits an involutive automorphism
s:g—g,de s#1I and s? = id such that the Lie subalgebra of fized points of s, denoted
by u, is compactly imbedded in g. Then we call the pair (g,s) an orthogonal symmetric lie
algebra. In addition if ung = 0 where 3 is the center of g, then the pair is called an effectice
orthogonal symmetric Lie algebra. Note that with the notation of Lemma 2.2.7, the pair
(9,decy) is an orthogonal symmetric Lie algebra.

In the following definition by compact Lie algebra we shall mean Lie algebra of a compact
group. And by Cartan decomposition we shall mean, there is a Cartan involution 6 : g — g,
ie. Byp(X,Y) := —B(X,Y) is positive definite bi-linear form, and e is the orthogonal
complement of u with respect to By.

Definition 2.2.9. Let (g, s) be an effective orthogonal symmetric Lie algebra. Let g = u®e
be the decomposition of g into the eigenspaces of s corresponding to +1, —1 eigenvalues.

e If g is a compact semi-simple Lie algebra, then (g, s) is said to be of compact type.

e If g is a non-compact semi-simple Lie algebra, and g = u®e is a Cartan decomposition,
then (g, s) is said to be of non-compact type.

e If ¢ is an abelian ideal in g, then (g, s) is said to be of Euclidean type.

Theorem 2.2.10 ([14, Theorem 1.1, Ch V]). Let (g, s) be an effective orthogonal symmetric
Lie algebra. Then there exist ideals Jo,I_, T in g with the following properties,

e g=TJ0®I_@®J.

e Jo,J_,J4 are invariant under s and orthogonal with respect to the Killing form on g.

10
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o Let sg,s—,Sy+ be the restriction of s to Jo,TI_, T, respectively. Then the pairs
(Jo,50), (T—,5-), (T4, 84+) are effective orthogonal symmetric Lie algebras of the FEu-
clidean type, compact type and non-compact type respectively.

Theorem 2.2.11 ([14, Theorem 3.1, ChV]). Suppose that (g, s) is an effective orthogonal
symmetric Lie algebra and (G, K) is the corresponding pair of Lie groups. Here G is a
Lie group with Lie algebra g and K is the corresponding connected closed Lie subgroup of
G to the Lie subalgebra ¢ := {X € g : s(X) = X}. Let g be an arbitrary G-equivariant
Riemannian metric on G/K. Then the following hold,

e If R is the curvature tensor associated with the metric g, then R(X,Y)Z = —[X,[Y, Z]].
Thus the curvature tensor of the quotient G/K does not depend on the metric as long
as the metric is G-equivariant.

o If (g,s) is of compact type then the sectional curvature of G/K is non-negative.
e If (g,s) is of non-compact type then the sectional curvature of G/K is non-positive
e If (g,8) is of Fuclidean type then the sectional curvature of G/K is vanishes.

An immediate consequence of the Theorem 2.2.11 together with the Theorem 2.2.10 is the
following theorem,

Theorem 2.2.12. FEwvery simply connected symmetric space M is isometrically decomposed
to the Cartesian product of symmetric spaces My, M_, M where,

1. My s isometric to a Euclidean space

2. M_ is a non-positively curved manifold that is not decomposed into Riemannian prod-
uct of any Fuclidean space with any other Riemannian manifold. These manifolds are
called of non-compact type.

3. My is a non-negatively curved manifold that is not decomposed into Riemannian prod-
uct of any Fuclidean space with any other Riemannian manifold. These manifolds are
called of compact type. Furthermore, My is compact.

Now we state another decomposition theorem for complete simply connected symmetric
spaces, known as de Rham decomposition theorem, which will reduce the study of classi-
fication problem of symmetric spaces to the classification of irreducible symmetric spaces.
Before stating the theorem we introduce the notion of linear holonomy group and a lemma
that will give an idea of the proof of the de Rham decomposition theorem.

Definition 2.2.13 (Linear Holonomy Group). Let M be a Riemannian manifold with Levi-
Ciwita connection V. For any closed curve v : [0,1] — M with v(0) = ¥(1) = z € M we
define,

y:T, M — T, M

X Pary)(X)

where Parzg is the parallel transport along v with respect to the connection V from tangent
space at x to itself. Now we can think of ¥ as an invertible linear transformation in GL, (R).
Thus we define the linear holonomy group as the following,

{FeGL.(R)| v:[0,1] = M, 7(0) =~(1) = =, }
and denote it by HolY .

11
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Definition 2.2.14. Let M be a Riemannian manifold with a connection V. Let Holy be
the linear holonomy group at a fixed point x € M. We say that M is reducible if and only if
T, contains a non-trivial subspace T, that is stable under the holonomy group, i.e. for any
X" eT! and g € HolY we have, g(X') € T.

Lemma 2.2.15 ([19, Proposition 6.1, Ch 4]). Let M be a connected, simply connected
and complete Riemannian manifold. Then M is reducible if and only if there are non-zero
dimensional Riemannian manifolds M', M" so that M =~ M’ x M".

Proof. Let p e M be a point such that T, M = T, M@®T,’ M where the subspaces T, T, M are
stable under the linear holonomy group action. Now one can show that the subspaces TZ',7 TI’,’
are involutive. Let T",T” be the distributions obtained by parallel transporting the spaces
T, M, T, M along geodesics to other points of M. Let M’, M" be the the maximal integral
submanifolds of M associated with T”,T” respectively. The goal is to prove that M =
M’ x M". The isometry f: M — M’ x M"” is defined as follows, let ¢ € M be an arbitrary
point in M, and let v be a geodesic in M with y(0) = p and v(1) = q. If ¥(t) = ¥'(t) + 7" (¢)
is the corresponding decomposition of 4(t), then define the following curves in TT’,M and
T,) M respectively, Par(¥'(t)) and Par],(¥"(t)). Now let v, and 72 be two curves in M
such that Par/(41(t)) = Par{,(¥(t)) and similarly, Par/(32(t)) = Par{y(¥"(t)). Now
clearly 1 lies in M’ and 7y, lies in M”. Thus define f(q) := (71(1),72(1)). One can show
that this map is an isometry, for more details see the reference. O

Corollary 2.2.16 (The de Rham Decomposition). Every connected simply connected com-
plete Riemannian manifold is isometric to a direct product My x My x ... x My, of connected,
simply connected, complete and irreducibe Riemannian manifolds {Mi}i-‘;o, where My is a
Euclidean space (possibly of dimension 0). Such a decomposition is unique up to reordering.
Furthermore, if M is a symmetric space then so are M;’s.

Proof. This is an immediate consequence of the Lemma 2.2.15. O

Lemma 2.2.17 ([19, Theorem 3.5, Ch 7]). Let M = My x My be a direct product of two
Riemannian manifolds. It is clear that M is a symmetric space if and only if My, Mo are
symmetric. Assume that M is a symmetric space. Let G be the subgroup of isometries of
M consisting of geodesic symmetries around points of M, i.e.

G = {sy € Isom(M)| so(2) = x, dysy = —idr,p, x € M}

Then we have G = G x Gy where G1, G2 are corresponding subgroups of the isometry groups
I(My), I(Ms) respectively. Furthermore, if M is an irreducible manifold then G is a simple
group.

The upshot of this section is the following corollary which is an easy consequence of the
discussion above,

Corollary 2.2.18. Let M be a complete locally symmetric space and M be its universal
cover. Then M is isometric to a Riemannian product My x Ms x ... x My, where each M;
is an irreducible symmetric space which is either isometric with a Fuclidean space or has
non-positive curvature or has non-negative curvature.

12
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After all let us present some examples of symmetric and locally symmetric spaces. The only
examples for symmetric spaces with flat type, is the Euclidean spaces and their quotients.
A typical example for symmetric spaces of non-compact type is the hyperbolic spaces, i.e.
simply connected complete Riemannian manifolds with constant sectional curvature. Sym-
metric spaces of compact type are compact manifolds. A typical example for the symmetric
spaces of compact-type is the spheres. In fact a general symmetric space of compact type
is not that far from spheres,

Theorem 2.2.19 ([11]). If M is a simply connected compact Riemannina manifold with
non-negative curvature then by de Rham decomposition theorem, it is isometric to a product
of irreducible manifolds My x ... x M. All the M;’s are homeomorphic to spheres.

By Theorem 2.2.7 one can easily check that H? is isometric with SLy(R)/SO2(R). As a
generalization of hyperbolic spaces, SL,(R)/SO,(R) is a symmetric space of non-compact
type. Any quotient of a hyperbolic space by an arithmetic subgroup is a locally symmetric
space of non-compact type. For instance, all Riemannian surfaces with genus at least 2 are
quotients of hyperbolic plane, therefore are locally symmetric spcace of non-compact type.
As another non-trivial and important example of locally symmetric spaces of non-compact
type we should mention the modular curves T\H = I'\S L3 (R)/SO2(R) where I' = SO3(Z).
When T" = SLy(Z) the space is called the moduli space of elliptic curves.

2.3 Geometric boundaries

In this section we introduce the geodesic(visual) boundary and the Furstenberg boundary
of a Riemannian manifold and provide some examples as we shall be familiar with these
notions in the construction of Patterson-Sullivan measures.

2.3.1 Geodesic boundary

The geodesic boundary is defined for any simply connected non-positively curved Rieman-
nian manifold X, and will be denoted by X(o0). But in the following we will restrict
ourselves to the symmetric simply connected non-positively curved manifolds. Therefore let
X = G/K be a symmetric space of non-compact type. Let g = €@ p be the Cartan de-
composition associated with K, then the tangent space T,,X at K = ¢ € X is canonically
identified with p. We fix the G-equivariant Riemannian metric g on X that is obtained by
restricting the killing form to p which would be a positive-definite bi-linear form on p. This
metric turns X into a symmetric simply connected Riemannian manifold with non-positive
curvature. Now we can define the geodesic boundary as follows,

Definition 2.3.1. Let X = G/K be a simply connected symmetric space with non-positively
curved metric constructed above. Let v1,7v2 be two geodesics in X. Since X is symmetric,
hence complete, all geodesics are defined on R. Now we say that v, ~ v if

Jim d(y1(t),72(t)) < o0

Clearly ~ is an equivalence relation on the set of all geodesics, we define the geodesic bound-
ary by {geodesics in X}/ ~ and denote it by X (00).

Lemma 2.3.2. The set X(00) can be canonically identified with the unit sphere in the
tangent space Ty X for any point x € X, in particular Ty, X = p.

13
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Proof. Let z € X be a point. For any unit tangent vector v € T,, X there is a unique geodesic
v, with the initial velocity vector v. For any two distinct tangent vector v,w € T, X we
have v, » v,. This is because the exponential map exp : T, X — X is a norm-increasing
map with 7, X equipped with the Euclidean metric. Now let v be any geodesic in X. Then
for every positive integer n there is a unique geodesic ~,, from z to 7,. Hence there is a
subsequence v,/ that converges uniformly for ¢ on compact sets to a geodesic 4. then it is
easy to check that o, is a geodesic passing through x and equivalent to ~. O

Definition 2.3.3. The geodesic compactification of X is defined to be X u X (o0) and the
topology of it is defined as follows, let xog € X be fized and let [y] € X (0) be a point. Then
we say an unbounded sequence {y;};j>1 in X converges to [v] if the geodesic from xq to y,
converge to . This defines a topology on X U X () and it does not depend on the choice
of base point xo. A base open subset C(v,t,€) around a point [y] € X () with t,e > 0 in
this topology is constructed as follows, for any €,t > 0 we define,

C(Vv 12 6) = 0(77 6)\B<7(0)’ t)

where B(y(0),t) is the ball with radius t around v(0) and C(v,€) consists of points x so
that the angle between =y and the geodesic from xg to x is less than €. This topology on the
compactification X U X (00) is called conic topology.

Lemma 2.3.4. The isometric action of G on X extends to a continuous action on X U
X ().

Proof. Since v; ~ 7 if and only if g(y1) ~ g(72), where g € G arbitrary, so the action of
G on X extends to an action of G on X u X (o0). And since the convergent sequences are
preserved under isometries, thus the action of G is continuous on X u X (). O

Theorem 2.3.5 ([4, Proposition 1.2.6]). A proper subgroup of G is a parabolic subgroup of
G if and only if it is the stabilizer of a point in X (0).

2.3.2 Furstenberg boundary

We start with introducing the parabolic subalgebras and subgroups. Let G be a real Lie
group with maximal compact subgroup K. There is a unique Cartan involution 6 : G — G
with fixed point set K. We shall denote the differential of 6 at e with the same notation 6.
If p is the (—1)-eigenspace of 6 on g and ¢ is the (+1)-eigenspace of 6 on g, which is the Lie
algebra of K, then we have, g = ¢ @ p, so that,

[p.pl =t [p,t]cp, [LE]ct

If B is the Killing form, then B is negative semi-definite on £, negative defintie on € N [g, g]
and also positive definite on p. The subspace p maybe identified with the tangent space
T, X where X = G/K and xy = K. The restriction of the Killing form on p defined a G-
equivariant Riemannian metric on X = G/K with respect to which X is simply connected
complete Riemannian symmetric space with non-compact type. The maximal sub-algebras
of p are all abelian sub-algebras and conjugate under K, i.e. the lie bracket of each two
elements vanish and for any two maximal sub-algebra a;, as there is an element k € K so
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that ad(k)(a;) = ag. Let a be a maximal sub-algebra of p. A linear 1-form « : a — R is
called a root on a if the corresponding root space is non-zero, i.e.,

0o = {VEgZVHGCl, [H,V] :a(H)V}?&O

The set of roots in a* is a root system, i.e. for a root o € a* and any other root 8 there
is a root that is the reflection of 8 with respect to the perpendicular hyperplane H, to
a. We shall denote the set of roots by ®(g,a) or simply by ®. Every root « determines
a hyperplane H, on which it vanishes. A connected component of the complement in a
of the union H,’s is called Weyl chamber. We fix one of the connected components and
call it positive Weyl chamber and denote it by a®. The choice of a®™ defines an ordering
DT (g,a) ={ae®:a>0o0na’} Let A denote the set of simple roots, i.e. the roots that
are written as sum of two other roots. Define,

ni= > ga, 0= ) ga

a>0 a<0

then we will have g = n@® 3(a) @ n~, where 3(a) is the centralizer of a in g. Moreover
3(a) = m@a where m = 3(a) n €. If we let A = exp(a), then A is a maximal totally geodesic
sub-manifold of X = G/K which is isometric with a Euclidean space. And any other flat
maximal totally geodesic submanifolds is a translation of A by an element of G. Now we
are ready to define the parabolic sub-algebras. let I — A be a set of simple roots in a*. Let
ar = NeerH,. We denote the set of all roots that are linear combinations of simple roots in
I by ® and the orthogonal complement of a; in a by a’. So then we should have a = a;®a’.
Now we define the standard parabolic sub-algebra p; to be a sub-algebra generated with
the centeralizer of ar, 3(ar) and n = > _, 8. Therefore we should have,

pr=n®j(a) =) ga®@mda; da’

a>0

=( ), s)®@em®d® ), ga)

aed+t\o! aed!
=n;@a;dOmy

Now in the extreme cases we will have, poy = n@a®m and pa = g. A sub-algebra p of
g is said to be parabolic if it is conjugate to a standard parabolic sub-algebra p; for some
subset I of simple roots.

Definition 2.3.6. A subgroup P of G is called parabolic if it is the normalizer of a parabolic
sub-algebra p in g. i.e. there is a parabolic sub-algebra p in g so that the Lie-algebra of P is
the following set,

Ng(p) :={zeg:[r,plep Vpep}

We shall denote the normalizer of the standard parabolic sub-algebra pr by P;. For I =
we will call the corresponding normalizer Py the minimal parabolic subgroup.

Now the decomposition p; = n; @ ay @ m; will give us Py = N; x Z(Ay), where Ny is
the corresponding connected subgroup of G with nj, called the unipotent radical of Py,
and Z(Ay) is the centeralizer of A; in G, where A; is the corresponding subgroup with a;.
Moreover we have, Z(A;) = My x A;. Here M is a subgroup with Lie-algebra m; but not
necessarily connected. Finally we can write P =~ Ny x A; x My, as analytic manifolds, which
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is called the Langlands decomposition of P; in which My, A; are 6-stable. Recall that 6 is the
unique involution of GG that fixes K. Since M7 is stable under 0, we have K; := KnM; < My
is a maximal compact subgroup. The quotient X; := M;/K; = P;/K; ANy is called the
boundary symmetric space associated with P; and it is a symmetric space of non-compact
type. The boundary symmetric space X can be identified with the orbit M; K of the point
K € X = G/K as a subspace of X.

Theorem 2.3.7 (Iwasawa Decomposition). Let G be a real Lie group, and K be a mazimal
compact Lie subgroup of G. Let 0 be the unique Cartan involution whose fixed point set is
K, and g = €@ p be the corresponding Cartan decomposition. Let a be a mazimal abelian
sub-algebra of p with a fived root ordering a*. If n =73 _ 8o ® >, 0a then we have,

G =NAK

where N, A are the corresponding Lie subgroups of G with n and a respectively. Moreover,
we have NA c Pr for any I subset of simple roots.

As an immediate consequence of Iwasawa decomposition we have G = Py K. Thus P; acts
transitively on X = G/K, so X = P;/K n Pr and therefore Langlands decomposition of Py
induces a decomposition of X as follows,

Pr Pr
X =~ =
KHP] N]XA[X(K(\M[)
My
=N A —— =N A X
I X IXKmMI I XA X A1

This decomposition of X = G/K is called the horospherical decomposition.

Example 2.3.8. Let G = SL,(R) for n > 2. Fiz the maximal compact subgroup K =
SO3(R). A mazimal abelian subalgebra a in p is given by,

a={diag(t1,....tn) : t1 + ... + t, = 0}

Recall that the Lie algebra of G is the trace-free matrices, the Lie algebra of K is the skew-
symmetric matrices and consequently p is the set of upper triangular matrices with trace
zero. Define at := {diag(t1,...,tn) : t1 > ... > t,}, then the nilpotent sub-algebra n consists
of upper triangular matrices with zero on the diagonal entries, and its corresponding Lie
subgroup is the set upper triangular matrices with 1 on the diagonal entries. Then the
standard minimal parabolic subgroup mormalizing the sub-algebra p = n @ a ® m is the
set of upper triangular matrices. The Langlands decomposition is Py = NAM, where
M = {diag(£1, ..., £1)}

We have been defining the parabolic subgroups in the context of real Lie groups, but it is
more natural to look at them from the point of view of algebraic groups. A subgroup P
of a linear algebraic group G defined over an algebraically closed field is called parabolic
subgroup if the homogenuous space G/P is a projective variaty. If G is a linear algebraic
group, then we can embed it into a SL,, (R) for some n. Then if G¢ is the complexification of
G, i.e. smallest linear algebraic subgroup of SL,,(C) that contains G, or the Zariski-closure
of G in SL,(C), then the parabolic subgroups that we have defined are the intersection of
parabolic subgroups of G¢, subgroups P < G¢ so that G¢/P is an algebraic variety, with
G.
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Now we shall introduce the Furstenberg boundary that we will be dealing with in the
subsequent chapters.

Definition 2.3.9 (Haar measure). Let G be a locally compact Hausdorff topological group.
The Borel-algebra ¥ of G is the o-algebra generated with the open subsets of G. An element
of the Borel-algebra is called Borel set. Then there is a unique non-trivial measure p, up to
a positive multiplicative constant, with the following properties,

w18 left-invariant, Vg € G, S € &, u(gS) = u(S)

W is finite on every compact Borel set

w is outer regular on Borel sets, VS € X, u(S) = infgcp{u(U)}, where infimum is
taken over all open subsets U containing S

e 1 is inner regular on Borel sets, VS € &, u(S) = supgcg{u(K)}, where supremum is
taken over all compact subsets contained in S

such a measure in G is called a left Haar measure. Right Haar measure is defined analo-
gously.

Now we first construct the Furstenberg compactification of the unit Poincare disc D in C and
generalize it to the symmetric spaces. Let A be the Laplace operator and let f € C°(S1).
Then we can extend f to a harmonic map u : D — R, i.e. one can solve the following
Dirichlet problem,

u=f on 0D

The solution to the above problem would be,

{Au=0 in D

[ o1-keP
ue) - |

where d¢ is a Haar measure on S' normalized so that the total measure is 1. Therefore each
point of S! determines a measure,

12
|z = £J?

on S'. By taking f =~ 1 we conclude that p, is in fact a probability measure on S*. If
M (S?) is the space of probability measures on S, then we get the following map,

oz (f) : dg

i:D— My(SY), 2z pu.

where the space M (S!) is given the weak-* topology. One can see that the map i is an
embedding. Now the closure of i(D) in Mj(S?!) is called the Furstenberg compactification
of D and denoted by D¥. The Furstenberg compactification of D is homeomorphic to the
closed unit ball D U S'. There is an obvious map D U S — M;(S!) that is defined by
zii; on D and takes £ € St to the delta measure d¢. It is easy to check that if z; — &
then p,, — d¢. Now we shall generalize this definition of compactification to the symmetric
spaces X = G/K. If we think of D = SU(1,1)/U(1), then the action of SU(1,1) extends
continuously on S* and the stabilizer of any point & € S* is a parabolic subgroup of SU(1,1).
In the upper half plane model, H = SL2(R)/SO(2), the boundary corresponds to R u {ico}

17



Master Thesis July 2021

and the stabilizer of 700 is the set of upper triangular matrices which is a parabolic subgroup
of SLy(R). Note that we have the Furstengerb boundary of D is in fact the quotient of
SU(1,1) by a parabolic subgroup. Similarly in the upper half plan model, Furstenberg
boundary is the quotient of SL2(R) by the subgroup of upper triangular matrices which is
a parabolic subgroup.

Definition 2.3.10. let G be a group. A topological space X is called a homogeneous space
of G if G acts transitively on G. Special cases of this is the group G is a Lie/topological
group that is a subgroup of automorphisms of X, where automorphism could mean, isometry,
diffeomorphism etc. depending on the context.

Definition 2.3.11. Let Y be a compact homogeneous space of a group G. We say Y is a
G-boundary if for every probability measure ;1 € My (Y') there exist a sequence {g;}j>1 in
G for which the sequence of measures g;.jv converges to a delta measure d, for some point
yeY.

Definition 2.3.12. A homogeneous space M of a group G is called the maximal/universal
G-boundary if it is a G-boundary and for any other G-boundary M’ there is a surjective
G-equivariant map f : M — M'. The universal G-boundaries are isomorphic and hence
unique up to isomorphism. A universal G-boundary of G is denoted by F(G) and called the
maximal Furstenberg boundary.

Note that clearly there is a correspondence between the homogeneous spaces of G and the
quotient groups of G. It turns out that the following theorem holds,

Theorem 2.3.13 ([4, page 109]). If Py is the minimal parabolic subgroup of G then G/P,
is the maximal Furstenberg boundary. Moreover, every other G-boundary if G is of the form
G/Py 1 where Py 1 is a standard parabolic subgroup of G containing Py. In the subsequent
chapters we will be denoting the Furstenberg boundary of M by op M.

Example 2.3.14. Let G = SLy(R) and Py be the upper triangular matrices in G, the
minimal parabolic subgroup of G. Here we confirm that G/Py is a G-boundary. Identify
G/Py with the set R u {0} = H(c0) under the map (Z Z) — 2. Let p e M;(H(0)) be a
probability measure. Now there exist an element k € SO5(R) so that,

tEI-Poo k. <{gc € H(o) : |z| > t}) =0

In particular p({o0}) = 0. Now let g, := diag(t~1,t) € SLa(R). Thus we have, for every
subset E < H(o0)
gik-u(B) = k.u(t*E)

therefore gik.p — dg. So this confirms the Theorem 2.85.13.
2.4 Busemann functions
Definition 2.4.1 (Busemann function). Let M be a Riemannian manifold with non-positive

curvature, M its universal cover and oM be its geodesic boundary, see Definition 2.3.1. The
following map is called the Busemann function on M,

B:MxMxoM—TR
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(z,y,0) — tli_)rrog (dir(va0(t),y) — )

where 5 ¢ is the unique geodesic ray from x to 6. As long as the base point x is understood
we will be denoting the map B(x,y,0) by B(y,H).

Theorem 2.4.2. If M is a complete non-positively curved Riemannian manifold, and 1,y
are two geodesics in M, then d(v1(t),v2(t)) is a convex function. The Busemann function

B = B(z,.,£): M — R is also a convex function, where x € M and e oM are fized.

Proof. Let 1,72 be two geodesic in M. The function d(vy(t),y2(t)) is a convex function.
Let t1,ty be two distinct real number and ¢t = %(tl +1tg). Let o : [t1,t2] = M be the unique
geodesic from 71 (t1) to y2(t2). Now we have,

d(m1(t),72(t)) < d(n(t), 0(t)) + d(72(t), 0 (t))

< 21 (02),22(02)) + 2 (1), 70(12)

where the second inequality comes from the comparison with the Euclidean case. Now let
~ be the geodesic ray starting from x and going towards £ € dM and let o be any geodesic.
Then for any ¢,s € Rog, m = %(s +t) and large enough r € R~ , then to prove the convexity
of the Busemann function we need to prove the following

(d(a(s),7(r)) =) + (d(o(t),~(r)) =) = 2(d(a(m),¥(r)) —7)

which is true by comparison with the Euclidean case. O
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Chapter 3

Negative curvature

Thurston showed that the simplicial volume of the hyperbolic manifolds, i.e. Riemannian
manifolds with negative constant sectional curvature, are proportional to their volumes
and thus positive, see Theorem 1.0.13. In the current chapter we will prove the following
theorem,

Theorem 3.0.1. There exist a constant C,, for n = 2, such that the following holds. Let 6
be a positive number, and let M be an n-dimensional closed orientable Riemannian manifold
with sectional curvature bounded above by —§. Then the simplicial volume of M is estimated

as follows,
[|M|| = Crd™vol(M)

and in particular it is positive.

Before we start the proof of the above theorem, we need to fix some notations. In the
followings in this chapter, § shall denote a positive number, M a closed n-dimensional
Riemannian manifold with sectional curvature bounded from above by —6 and p: M — M
shall denote the universal covering of M. For two points pg,p; of M and 0 < ¢t < 1, by
tpo + (1 — t)p; we shall mean the point v(¢) where v is the unique geodesic with v(0) = pyg
and (1) = py, see Theorem 2.1.13.

3.1 The volume of geodesic simplices

In this sectoin we will find an universal upper bound for the volume of the geodesic simplices
which totally benefits the presence of the negative curvature. Losing the negative upper
bound for the curvature may allow the volume of geodesic simplices become arbitrary large,
and this will prevent us extending the idea of the proof to the non-positive curvature case.
But we might still be able to get rid of the simplices with large volumes and try to represent
the fundamental class of the manifold with universally bounded volume simplices. This will
be done through a refined straightening procedure that we shall discuss in the Chapter 4.

Definition 3.1.1 (Geodesic Simplex). A geodesic k-simplex with vertices po, p1, ..., Pk, de-
noted by oy, p, is defined inductively as follows, define AF := {(x1,...,2511) € RFFL :
>uri = 1, x; = 0}, and identify ARV with {(z1, .., 2p1) € AF 2 xp = 0}, For
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k = 0 we let op, be the map {1} — po € M, and when opy..p,_, 15 obtained, we define
Tpo...pp - AF — M by,

Opoepn (L= 1)s +(0,...,0,1)) 1= (1 = t)0p,..p, 1 (5) + TP
where s € A1 <« AF,

Definition 3.1.2 (Straightening). Let o be a singular k-simplex in M. we put A(0) = poad
where & is the geodesic simplex with the same vertices of some lift of 0. X extends to a linear
map,

A S (M) — S (M)
For every simplex the term A o) is called the straightening of o and The map X is called
straightening.

Remark 3.1.3. Note that The term A(c) does not depend on the choice of the lift of
o. For simplicity let k = 1. Then for any two lifts 01,02 of o, if y1,72 are the unique
geodesics connecting o1(0) and o2(0) to o1(1) and o2(1) respectively, then both p o o1 and
pooy are geodesics connecting o(0) and o(1), thus by uniqueness of geodesics we must have
pooy =pooy. The straightening map X\ satisfies the following,

e )\ is a chain map and chain homotopic to ids, (ur)
o M)l < lellx for every c e Sy (M)

To see the proof of the first property of A see Theorem 5.3.1(condition (2)), the second one
is obvious. Considering the second property of the straightening map we have,

[|M]] = inf{[[c]| : ¢ € A(S«(M))}

Now we find a universal bound on the volume of the geodesic simplices, namely we prove
the following theorem,

Theorem 3.1.4. There exist a constant Cy, for k = 2, such that for every geodesic k-simplex
o in M, the k-dimensional volume of o, is estimated as follows,

vol(o(AF)) < CroF/2

Proof. To prove this theorem we proceed by induction. Let k = 2. Let o be a k-simplex.
Without loss of generality we may assume § = 1 and im(o) is a k-dimensional submanifold
of M. Recall that —§ is the negative upper bound for the sectional curvature. Now we have
the follwoing inequalities,

vol(a(AF)) = J

o

dV < —J KdV <=
(a%) o(AF)

where in the first inequality we are using the fact that the Gaussian curvature K of im(o)

coincide with the sectional curvature of M restericted to im(o) and so is bounded above by
—1, and in the second inequality we use a very important result so-called Gauss-Bonnet For-
mula, which only holds in dimension 2, see Theorem 2.1.14. With the notation of Theorem
2.1.14, we consider Q = int(im(c)), v = im(0AF), so then we get,

2
J KdV =271 — f kn(s)ds — ) e
int(im(o)) 5

=0
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2
:QW—ZQZ—W::CQ
i=0

where the second equality is because the image of the boundary of A* is a union of geodesics
so then ky N = Dyy = 0, and the inequality comes from the fact that >}, , €; < 37. This
completes the proof for & = 2. Suppose the theorem is verified for dimensions less than k.
Let 7: AF=1 x [0,1] — A* = M defined by,

(z,t) — (L —t)x + tpg

Here we are identifying A* with its image in M as a geodesic k-simplex. Now let ¢ :
AF=1 % [0,1] — R defined by,

T*w(x,t) = ¢(z,t)dt A T 0

where 7 : A1 x [0,1] — A*~! is the projection to the first factor, w is the volume form
on A ¢ M and @ is the induced volume form on A¥~1 <« AF = M.

Lemma 3.1.5. There is a constant D depending only on k such that for every p e AF=1,
1
| ot <
0

Let us first finish the proof of the theorem, then we will come back to the proof of the
lemma. Using Lemma 3.1.5, if w is the volume form on M then we have,

vol(AF) = f w= f T*w
AF AF=1%[0,1]

1
=J (J (b(x,t)dt)w(x) <p[ @@ <po,—c
Ak—1 0 Ak—1
O

Proof of the Lemma 3.1.5. Let ~ : [0,1] — AF be the geodesic defined by v(t) = 7(p,t) for
some p e A € A*1. Let X((0),...,X,_1(0) be an orthonormal basis for TPM, such that
X0(0) = +7(0) where L is the length of 7, and Xy, ..., Xj—1 span T,A*. We extend X;(0)
to a parallel vector field X;(¢) along . Now choose a local coordinate system (y1, ..., yx—1)
for AF=1 around p satisfying,

aiyi(]?) = X;(0) + b; Xo(0)

and regard (y1, ..., yx—1, t) as local coordinates around ([0, 1)) using 7. Note that the map 7
is a diffeomorphism from A¥~1 x [0, 1) to its image and takes A*~1 x {0} to A¥~1 = A* = M,
so then we are able to choose such a local coordinate. Then w at p is expressed as follows,

w(p) = \/det (g(aayi(()), 6(;(0))> dyr A oo A dyg—1
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\/det<lk 1+ (b b; )0<m<k 1) dyi A o Adyp—1 = |1 +Zb% dyi A .o A dyg_1

where I, is the identity (k — 1) x (k — 1)-matrix. Now for every 1 < ¢ < k — 1 and
0 < j <n-—1, define a;; : [0,1] — R by the formula

:2 aq; (1) X;(t)

591
Now let for all 1 <¢ <k —1,

n—1
t) = Y ai; (t)X;(t
j=1
0

It is clear that Y;(0) = X;(0). Now note that by construction of the coordinate system 307

around ([0, 1)) it is clear that removing the 4 direction from 8‘; will give us a variation
field of a geodesic variation, thus Y;’s are Jacobi fields.

Let A(¢) for 0 <t < 1 denote the (k — 1,k — 1)-matrix

n—1
(U050 s = 2 aaltlan(o)
=1

1<i,j<k—1

the volume form w on AF is written as

w(y(t) = \/det <g(Yz(t),Y](t))) dt Adyp A oo A dyg—1

WhereYO:a@andf/i:Yiforléiék—l. Thus we have,

w(y(t)) = Ly/det(A(t)) dt A dyy A ... A dyp—1

Therefore by definition we have,

L4 [det(A
< Ly/det(A
t k-1 2\ k-1
< L\/(Sup UL A(t2)u> = L\/(sup ||U(t)2H )
wro |[ull wro ||l

where v = (uy,...,up—1) and U(t) = >, u;Y;(t) which is a Jacobi field along 7 as a linear
combination of some Jacobi fields. The last equality holds as follows,

k—1
U@ = Zw i ),Zum(t))

Z wiujg(Yi(t),Y;(t)) = ut A(t)u

7,7=1
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Now we have,
(IO = WO.U0) =200l -2 RO, ) 5.00)

0
= 20T 0|7 + 20T 15117 = 20" @) + 2L2[[U@)|* = 2L2|[U ()]

For all t € [0,1). Since ||U(0)||* = ||u||?> and ||U(1)|| = 0, we can apply the maximum value
principle to the above inequality and obtain the following inequality,

[T(0)]2 < [Jul [* (sinh(v2L)) " sinh(V2L(1 1))

Namely let f(¢) := ||[U(®)||?/||u||* and g(t) := sinh(v/2L(1 — t))/sinh(2L), then we have
f—2L%f > 0= g" —2L%g. Now if we calculate the first and the second derivative of the
function k(t) := J{(%%ZEB)), we see that k”(t) = 2+/2Lk/(t), and k’(0) < 0. Now if k'(ty) = 0
for some ¢y then the function k(t) keeps increasing after ¢y and since limy_1 k(¢) = 1 so it
has to stay below the line y = 1, therefore we have k(t) < 1. Now we get,

1

det(A(t)) < (sinh(v2L)) ™" (sinh(vV2L(1 — 1))~

And eventually we can estimate,

J olp. 1 < Lisinh(v2L) "D f (sinh(v2L(1 — )" 2ar

0

1 \@L
= —(sinh(\/ﬁL))*(’“l)/QJ (sinh(¢))FV2qt = X

V2 0
Now as L — 0 we have X — 0 and as L — o0 we have X — % So the right hand side
integral is finite and only depends on k. O

3.2 Proof of Theorem 1.0.2

Now we get back to the proof of Theorem 3.0.1

Proof. Let w be the volume form on M. Suppose that z = Y, a;,0; € A(S,(M)) represents
the real fundamental class i ([M]). Then we have

(%)
vol (M :J w = J w = aif w
( ) M D i le o

Zai L prw = ZGWOZ(@(A”)) (2 Z |as|C6 "2

K2

where p : M — M is the covering map and o; is a lift of o; to a geodesic simplex in M. The
equality (*) holds because there is an isomorphism between the de Rham cohomology and
the ordinary singular cohomology defined by

HY (M,R) — HE

sing

(M,R) = Hom(Hy(M),R)

24



Master Thesis July 2021

7 ([o] — f 7)
ag

where k is a positive integer and if o : A¥ — M is a simplex, then SU T = SAk o*1. By Stokes’
theorem, this isomorphism is well defined, i.e. it does not depend on the representatives of
the cycle [o] € Hi(M). Since any smooth manifold is triangulable, let T' be a triangulation
of M. Then a linear combination of simplices in T" with coeficients +1 and a careful choice
of signs, denoted by t € H,(M,R), represents the fundamental class of M and clearly we
have,

vol(M) ftw

Now if ), a;0; represents the fundamental class then the equality () above holds. The
inequality (%) is proved in the Theorem 3.1.4. So that for any representative z € A(S,,(M))
of the fundamental class i ([M]) we have

1
l2lls = 6"/ 2vol (M)

therefore we have, [|M|| = inf,cx(s, (aryl|2[l1 = 3-6"/2vol(M).
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Chapter 4

Straightening method

To prove that the simplicial volume of a certain manifold is positive, there is a general
approach due to Thurston through which one shows that the manifold admits a straightening
and positivity of simplicial volume follows immediately.

Definition 4.0.1 (Straightening). Let M be the universal cover of an n-dimensional closed
oriented Riemannian manifold M. Denote by I' the fundamental group of M and by Ci (M)
the real singular chain complex of M. Equivalently, Ck(M) is a free R-module generated
by CO(AF, M), the set of singular k-simplices in M, where A* is equipped with some fized
Riemannian metric induced from a metric on R We say a collection of maps sty :
CO(AF, M) — C°(A*, M) is a straightening if it satisfies the following conditions,

1. the maps sty are I'-equivariant

2. the maps sty induce a chain map sty : Cy (M, R) — C*(M, R) that is T'-equivariantly
chain homotopic to the identity.

3. top dimensional straightened simplices are Ct i.e. the image of st, lies in C1(A™, M),
where CT(A™, M) is the set of continuous maps f : A¥ — M that can be extended to
a differentiable map on a neighborhood of AF in RF+1,

4. there exists a constant C depending on M and the Riemannian metric on A™ such that
for every f € CO(A™, M) and corresponding straightened simplex st,(f) : A" — M
we have

Vo e A", |Jac(st,(f))(0)] < C

We will see that manifolds with a straightening have positive simplicial volume. To prove
this theorem one could replace the conditions (3) and (4) in the definition of straightening by
a more general condition that the volume of the image of the top dimensional straightened
simplices are uniformly bounded above.

Theorem 4.0.2 (Thurston). Let M be the universal cover of an n-dimensional closed
oriented Riemannian manifold M. If M admits a straightening then ||M|| > 0.
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Proof. Because of the first property of the straightening we can descend the procedure of
straightening to a straightening on the compact quotient M. For every simplex o : AR M
we define sty (o) to be po sty(d) where ¢ is a lift of 0 to M and p : M — M is the covering
map. By condition (1) this does not depend on the lift and is well-defined. Condition (2) of
the straightening ensures that the homology of M obtained via the complex of straightened
chains coincides with the ordinary singular homology of M, where by complex of straightened
chains we mean C$f(M,R) where C3f(M,R) is a free R-module generated by Cy;(AF, M) :=
{f:AF - M : f = st (0)}. Now if Ya;f; is a real chain representing the real fundamental
class of M then so does Xa;st,(f) and we have ||Za;fill1 = ||Za;stn(fi)||1. So to prove
that the simplicial volume of M is positive it suffices to find a positive lower bound for the
L'-norm of the straightened chains representing the real fundamental class of M. Now by
condition (3) of straightening the top dimensional straightened simplices are C' and hence
we have,

vol(M) = J dVar =Y. a; J dVr
2 aistn(fi) st(fi)

where dV); is the volume form of M. Now we have,

Zai J dVy < Z \al| J |Jac(stn(fi))|dVAn
st(fi) An

where dVan is the volume form for the fixed Riemanninan metric on A™. Now by condition
(4) of the straightening the Jacobian of straightened simplices are uniformly bounded from
above by a constant C', so we have,

Vol(M) < C vol(A™) Y |ay|

Now taking infimum over all straightened chains we get, ||M|| > WWOZ(M )>0. O
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Chapter 5

Closed locally symmetric spaces

The aim of this chapter is to understand the positivity of the simplicial volume of closed
locally symmetric spaces. Through this chapter by closed we shall mean compact and
without boundary. If M is a locally symmetric space then M the universal cover of M, is
a simply connected symmetric space. Hence it is decomposed isometrically to a product
My x M_ x M, where My, M_, M, are of FEuclidean, non-compact and compact type
respectively. As the factor M, is a compact manifold, by Theorem 1.0.11 if M, is a non-
trivial factor then ||M|| = 0. Thus we may assume that M, = {}. Furthermore if My = R¥
for some k > 1, then if M’ is a closed locally symmetric space with universal cover M_, hence
(S1)¥ x M’ has universal cover M. So by Theorem 1.0.12 and the proportionality principle,
Theorem 1.0.6, we get ||M|| = 0. Therefore we assume that M is a closed locally symmetric
space of non-compact type, which means the universal cover of M is of non-compact type.
In this chapter we shall prove the following theorem,

Theorem 5.0.1 ([21]). If M is a closed locally symmetric space of non-compact type, then
we have ||M]| > 0.

5.1 Patterson-Sullivan measures

In this section we explain the construction of the Patterson-Sullivan measures on symmetric
spaces of non-compact type. The Patterson-Sullivan measures form the core of the barycen-
tric straightening procedure introduced in Section 5.2. To construct these measures we need
some preparation. Let us start with some preliminaries on the decomposition of semi-simple
Lie groups. Let X = G/K be a symmetric space with G a semi-simple Lie group and K
stabilizer of a base point xg € X. Let g = €®p be the corresponding Cartan decomposition,
so Ty, X is identified by p, and let a < p be a maximal abelian subalgebra of p. All the
maximal abelian subalgebras of p are conjugate under the action of ad(K) and there are only
finitely many of them. If A = exp(a) c G is the image of a under the exponential map then
Axg is a totally geodesic submanifold of X isometric with R¥ with the standard Euclidean
metric, where k = dim(a) =: rank(X). The submanifold Az is called a flat submanifold of
X. There are only finitely many distinct flat submanifolds of X as they correspond to the
maximal abelian subalgebras of p. Let at be a Weyl chamber of a and A = {ay,...,ax} be
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a set of simple roots, i.e. the fundamental system, see Section 2.3.2. We have p = ad(K)a+
which implies that K acts transitively on the set of Weyl chambers of a. Every geodesic
lies in at least one flat submanifold. A geodesic called regular if it lies in exactly one flat
submanifold and singular otherwise. As there are only finitely many flat submanifolds, if F’
is a flat submanifold through a fixed point x € X, then the singular geodesics through z with
initial velocity vector tangent to F' form a finite union | J,, Ho of hyperplanes in F'. Indeed
the tangent spaces of H,’s correspond to the perpendicular hyperplanes to the roots in a.
The image of the Weyl chamber in a is one of the connected components of F\ | J,, H, which
is also called Weyl chamber. Now let N* be the horospherical subgroup of G corresponding
to a*, ie. N* =exp(dl, -0 0a), and let A = exp(a). Then the demposition G = KAN*
is called the Iwasawa decomposition, see Theorem 2.3.7. Let I < A be a subset of simple
roots, we denote by fr the face of type I of the Weyl chamber a™ defined by

{Hea: a(H)>0, Yae A\I, a(H) =0, Yae I}

Note that fz = a® and fa = 0. The image of these faces under the exponential map acting
on xg, exp(fr)xo, is the geometrical faces of the infinite polyhedral of the Weyl chamber
without their boundaries. If I < A, then the connected subgroup of K that fixes the
geometrical face exp(fr)zo of the Weyl chamber in F' < X is denoted by M; whose Lie
algebra is equal to the centralizer of f;  a in €. It is clear that Mg = M = exp(m), where
m = 3(at) n ¢, and Ma = K since the corresponding face exp(f;)zo is just the point xg.
A subgroup of G that is conjugate to Py := MyAN™ for some I < A is called a parabolic
subgroup of G = KAN™, in particular P := Py = MANT is called the minimal parabolic
subgroup of G, see also Definition 2.3.6. Note that the Lie algebra of gLg~" for a subgroup
L c G is Ad(g)l where [ is the Lie algebra of L. Now it is clear that the parabolic subgroups
of G are the ones that fix a face of a Weyl chamber translated by an element of G. One can
also show that for any £ € exp(fr)zo(o0) the stabilizer of £ in G is exactly Pr. In particular
the stabilizer of £ € exp(a™)zo(c0) is the minimal parabolic subgroup P of G. Now let X (c0)
be the geodesic boundary of X. There is a bijection between T;OX and X (o). Now since
Ty X = p = Ad(K)a*+ we get
X(w)= |J @

EeAtxp(w)

Furthermore we have G¢ = K¢ as the subgroup ANT < P; for all I < A and consequently
fixes £&. Now since P, the minimal parabolic subgroup of G, is the stabilizer of a point
& € Atzo(o0), so then we may identify the orbit G¢ with the quotient G/P. The quotient
G/P is called Furstenberg boundary and it can also be described as the set of equivalence
classes of asymptotic Weyl chambers since K, and in particular G, acts transitively on the
set of Weyl chambers, see also Section 2.3.2. Also G/P; is identified with the orbit of an
element £ € exp(f1)zo(00) and can be described as the set of asymptotic equivalence classes
of faces of type I. Now if W is the Weyl group, i.e. the quotient of the normalizer of
AT in K by its centeralizer in K, and W; := W n Mj, then we the generalized Bruhat
decomposition can be written as follows,

G= U N*wP; (disjoint union)
weW /Wy

The N*t-orbits of G/Pr are algebraic varieties which are called standard cells. The standard
cell N™P; = NTw,, P, where w,, € W is the one that takes a* to —a™, has the maximal
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dimension among all the cells and it is called the standard big cell. Cells with smaller
dimensions are called small cells. The big cell is an open dense subset of G. Now it is clear
that N™P¢ = N~¢ is an open dense subset of the orbit G¢ (Furstenberg boundary), its
complement consists of finite union of subvarieties with smaller dimensions. The subvarieties
gN & are called the big cells of G¢ and the complementary varieties the small cells. Let us
shortly introduce the Finsler metrics (on symmetric spaces of non-comapct type).

Now for a symmetric space of non-compact type X we construct the Patterson-Sullivan
measures. Let xg € X be a fixed point and I' € G be a discrete subgroup of the identity
component of the isometry group of X. define §(I') := inf{s e R: ¢(s) = > e sdzo,m0) <
oo} and call it critical exponent of I'. On the geodesic compactification of X we define the

following family of measures,

Pz 1= 1 Z eiSd(I’WO)émo, s>0(l), zeX
0(s) &

where 0, is the Dirac mass at x. Clearly these measures are all supported on the orbit
T'zg. Now a Patterson-Sullivan density is an accumulation point g = {;}.ex of the family
of maps {us : X — M(0X) | ps(x) = pise, s € (6(I),6(I') + 1)} as s — 6(I'). One can
see that the support of the Patterson-Sullivan density lies inside the limit set Txg n X (0).
The Patterson-Sullivan measures give us information about distribution of the orbit I'zg in
the geodesic boundary X (c0). Now let X,.4(c0) be the set of regular elements of X (). A
discrete subgroup I' € G is called generic if it is Zariski-dense and if the support of any
Patterson-Sullivan density lies in X, (00).

Definition 5.1.1. A T'-invariant conformal density p of dimension B is a continuous I'-
equivariant map p: X — MT (X (0)) so that,

du(x) (é-) _ efﬁhg(x)

for allz € X and £ € X(0) where by M+ (X (0)) we mean the cone of positive finite Borel
measures on X (o).

The Patterson-Sullivan density that we introduced above is a conformal density of dimension
0(T") that is supported in I'zg N X (00).

Theorem 5.1.2 ([1, Theorem A]). Let I' © G be a generic subgroup. There is a single
reqular G-orbit Dr in X (00) such that the support of any T-invariant conformal density of
dimension 6(T") on X () lie is Op. Moreover the support of the Patterson-Sullivan measures

lie in Or N Txg.

5.2 Barycentric straightening

As we have seen in Chapter 4, a manifold that admits a straightening has positive simplicial
volume. In this section our goal is to introduce a straightening procedure for closed locally
symmetric manifolds with non-compact type. In the subsequent sections we will prove that
it is actually a straightening, i.e. it satisfies the conditions (1) to (4) of Definition 4.0.1.
Then the positivity of simplicial volume follows immediately from Theorem 4.0.2. Let M
be a closed locally symmetric space of non-compact type, M be the universal cover of M
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and fix a point p € M. In the following we shall denote the identity component of the
isometry group of M by G and the isotropy group of the point p by K. Thus by Theorem
2.2.7 we have M = G/K. The geodesic boundary of M will be denoted by 0M and the
Furstenberg boundary will be denoted by é’FM see Definition 2.3.1, Definition 2.3.12 and
Theorem 2.3.13. Indeed the Furstenberg boundary of M is G/P Where P is a minimal
parabolic subgroup of G, see also Section 5.1.

Definition 5.2.1. Under the assumptions for M and M in the above paragraph, we define
the Busemann function By : M x 0M — R by,

(2,€) = Jim_(d(3p(),2) 1)

The Busemann function satisfies By(.,.) = Bgp(g.,9.) where g e I' = m(M). Because,

Bgp(ga,9€) = lim d(gz,7gp,g¢(t)) — 1
= lim d(gz, gyp.e(t)) — t
= Jim d(z, () —t = By(a,¢)

Before we continue let us point out that since Mis a symmetric space of non-compact type,
if it has rank = 1 then it must be a negatively curved manifold and consequently M is a
negatively curved manifold. The negative curvature case was explained in Chapter 3.

Lemma 5.2.2. If the Theorem 5.0.1 holds for irreducible closed locally symmetric spaces
of non-compact type then it holds for every closed locally symmetric spaces of non-compact.

Proof. To prove the positivity of the simplicial volume of a manifold M, it is enough to
prove that there exist a manifold M’ with universal cover isometric with the universal cover
of M and has positive simplicial volume, see Theorem 1.0.6. Let G = G X - -- x G be the
product decomposition of G corresponding to the de Rham deomposition of M, see Theorem
2.2.16 and Lemma 2.2.17. There exist cocompact lattices I'; < G; for all 4, [3]. Let M’ be
the locally symmetric space M; X - - - x M}, obtained by the quotient group G/(I'y x - - - x T'y,).
By the Theorem 1.0.7, If we prove the main theorem for irreducible cases, then using the
inequality ||M|| = ||M’|| = ||My|| x -+ x ||Mg]|| the main theorem follows. O

So far we have reduced the problem to irreducible higher rank locally symmetric spaces of
non-compact type. Now by Theorem 1.0.9 we may also assume that M 2 SL3(R)/SO3(R).
Therefore the main theorem will follow from the following claim,

Claim 5.2.3. If M is a compact quotient of an irreducible symmetric space of non-compact
type M 2 SL3(R)/SO3(R) with rank at least 2 then the simplicial volume of M is positive.

To prove the claim we will use Thurston’s approach, see Chapter 4, thus we need to define
a straightening procedure on these manifolds.

Definition 5.2.4. Let p be a measure on the geodesic boundary of M. Define g, : M —R
by
gu() =1 _ Bp(.,0)du(0)
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where By, is the Busemann function. If g, has a unique minimizing point, then we call the
minimizing point the barycenter of u and denote it by bar(u) € M.

Remark 5.2.5. Note that if we denote the first and the second derivative of the Busemann
function B, at (x,0) by,
dB(zﬂ) . TwM - R
DdB, gy : T:M x T,M — R
then the map g, has a unique minimizing point if DdB, g is a positive definite bi-linear
form, which is equivalent to say that B, is a strictly convex function. Here convezity means
that for any geodesic v : R — M the map Bo(.,0) o v is a convex map. Since the space M

is a complete non-positively curved manifold so the Busemann function By(.,0) is a convex

function on M where 6 € oM s fized, see Theorem 2.4.2. But it is not clear why the
Busemann function should be strictly convex.

Denote the space of atomless probability measures on the geodesic boundary dM by M (aﬁ ).
And let v : M — M(&M ) denote the h(gg)-conformal density given by the family of
Patterson-Sullivan measures, see Section 5.1 for the construction of the Patterson-Sullivan
measures. Now by Proposition 3.1 in [7] we know that for a Patterson-Sullivan measure p the
map g, in the Definition 5.2.4 is a strictly convex map and consequently it has a well-defined
barycenter. Now we are ready to define the barycentric straightening procedure.

Definition 5.2.6. Spherical k-simplex A¥ is the following subset of RF¥+1,

k+1
AR = {(a1, .. aps1) e RFT: Z a? =1, a; >0}
=1

equipped with the standard Riemannian metric induced from R*+1 with Euclidean metric.

Definition 5.2.7 (Barycenteric straightening). Let M be a Riemannian manifold with
the properties in the Claim 5.2.3. Given a singular k-simplex f € CO(A’;,M) with ver-
tices z; := f(e;), where e;’s are the standard basis for R¥*1 define sty (f) : AF — M by
ste(f) (X, asei) :=bar (Y, a?v(xz;)). Here v is the h(go)-conformal density given by the fam-
ily of Patterson-Sullivan measures constructed in Section 5.1. So the collection of straight-
ening maps {sty}p_, is called barycentric straightening. As the definition of straightened
simplex sty (f) onlidepends on the vertices of f, for a collection V' of k vertices in M we

define sty : A — M by sty (o) := stg(f)(o) for some simplex [ with the same vertices as
V.

5.3 Condition (1) and (2)

Lemma 5.3.1. The barycentric straightening satisfies the conditions (1) and (2) of the
Definition 4.0.1.

Proof. Condition(1): The maps sty are I'-equivariant: Fix o = 3;ae; € Af. Then for

every v € I, sty (o) is the unique minimizing point of the function B,, defined below, where
V= Uy fpsiare;) 1= Diazv(ya;) and @; = f(e;). Now we have,
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B, = JﬂMBp(.,H)dV(G) _ f

0

MBP(.,G)d(Zi:aiV('yxi))(ﬁ)
= v (z;
LMBp(-,ﬂ)d(Zi] 2 () (0)
= -1 av x;

- B o) el

~ [ B (S () 0)

® L _ Bw(v.,ﬁ)d(; aZv(z))(0)

where the equality (*) holds since the Busemann function satisfies B.,(7.,7.) = Bp(.,.) for
every v € I'. The map B.,(.,.) — Bp(.,.) does not depend on the first factor. To see this let

zeM ,0¢€ oM , and let &, ¢ denote the unique geodesic starting from p and going towards
6. Then we have

Byy(,0) = By(y~'x,77'0) = lim (d(le,fp,we(t)) - t)

= Jim (d(fylx, k.&po(t)) — t)

where k € I' is a stabilizer of p that takes &, g to §, ,-1¢, it exist because the orbit of G on

0M coincides with the orbit of the stabilizer of p. To prove that the last term is equal to
B, (x,0), we show that for any ¢t € R> there exist a t’ € Rx so that

d(z,&p0) —t = d(v 'z, k&po(t)) —t'
and vice-versa. So let t be a positive real number, then for large enough t' we have,
d(z,&po) + (' —t) = d(z,&pe) + d(k™ 'y 2, 2)
= d(k_lfy_lxagpﬁ) = d('y_lxa k-&pﬂ)

and therefore we get,
d(z,&0) —t = d(y 'z, k&pp) — 1

The converse is the same so they have the same limit. Now we have,
B, -8, | KOS atu(@)(6)
oM p

where

B = LMBm.,9>d<§a?u<xi>><e>

since the right hand side of the equation (*) is constant on M the unique minimizer of B,

is also the unique minimizer of B],. But if x € M is the unique minimizer of B!, then v~ 'z
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must be the unique minimizer of B, which means ysty = styy.

Condition (2): The maps st; induce a chain map sty : Cy(M,R) — Cy(M,R) which is
I-equivariantly chain homotopic to identity: To prove that st is a chain maps, it is enough
to note that if f : A¥ — M is a simplex then ste(f)) ooy = Ste—1(f|,,_,) Where AF=1 < AF
is a face of A¥, together with the fact that the straightening only depends on the vertices.
So sty induces a chain map. We need to prove that st is ['-equivariantly chain homotopic
to identity. note that every simplex is canonically homotopic with its straightening. Let
o : AK — M be a simplex and st (o) be its straightening. For every point p € A* there is
a unique geodesic v, from with 7,(0) = o(p) and ~,(1) = stx(o)(p). Define the homotopy
as follows, .

H,: A" x[0,1] - M

(p,t) = p(t)

Now clearly we have H, = Hy, - where A*—1 ig a face of A*. Now the collection
Ak=1x[0,1] ArT
of maps {H,}, gives us a homotopy between simplices and their straightening.

O

5.4 Top dimensional simplices

Lemma 5.4.1. The Barycenteric straightening defined in Definition 5.2.7 satisfies the con-
dition (3) of the Definition 4.0.1.

Proof. We shall prove that the image of st,, lies in C’l(A?,M), i.e. the straightened top
dimensional simplices are C'. Note that for any simplex f € C’O(AQ,M ) and any point
o = Y;ae; € AT we have an implicit characterization of the point st,(f)(0) = sty (o) via
the following equation that comes from deriving the map B, (),

0= dBsty (o)0(0)) () = LM dB sty (0,0 () (0)

where v(0) = E;a?v(z;) and by dB, ,) where y is a measure on oM and x € M we mean

d.B,,. Suppose that dB(;, ,(s,)) = 0 for a point zg € M and og € A7. Now for a chart
([7 , @) around z( define the following function,

dB: A" x U —> R"

(0,2) > (@B sion) 3y, ) BB ion (o )

g = v(o N1 PRRES] x,v(o AN n

J (z,v(0)) 5¢1|' (z,v(0)) a¢n|“

Now if this function satisfies the conditions of the implicit function theorem, Theorem 6.5.2,

then we conclude that there exist an open subset V' < A” around (o9, o) and an open subset

U’ = U such that there exist a unique continuously differentiable function g : V' — U’ for
which we have, dB(c, g(0)) = 0 for all o € V. But this means that dB(),.(s)) = 0 so that
by uniqueness of the minimal point of B,y we have g(o) = sty (o) and this means sty is
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a C'' map since so is the map g. To prove that the map dB satisfies the condition of the
Implicit function Theorem it suffices to show that for the endomorphism K defined by,

(K (u), uy == L DBy o) (s 0)(v(2)

defined on the tangent space Ty, (-)M, the determinant is non-zero. Since v(c) is fully

supported in @M so by Theorem 5.5.1, we have det(K) = det(K g, (o) (v(0))) > 0. O

5.5 Jacobi estimate

Theorem 5.5.1 (]9, Section 4]). Let M be a closed locally symmetric space of non-compact
type with no local direct factors locally isometric to H? or SL3(R)/SO3(R), and let M be
its universal cover. Let p € M(@M) be a probability measure fully supported on é’pM and
let v € M. Consider the endomorphism K, (), Hy (1), defined on T, M by,

(Ka(p)(uw),w) = | DdBgg)(u,u)d(1)(0)
oM

and
CH (1) (), ) = L B ) (w)d((6)

Then det(Ky (1)) > 0 and there is a positive constant C := C(M) > 0 depending only on

M such that:
 det(Hq ()"

o) = e )

Furthermore the constant C' is explicitly computable.

S

Lemma 5.5.2. The Barycenteric straightening defined in Definition 5.2.7 satisfies the con-
dition (4) of the Definition 4.0.1.

Proof. We shall prove that there exist a constant C' > 0, depending only on M , such that
for every f € C°(A”, M) and the corresponding straightened simplex st,,(f) : AT — M, we
have

|Jac(stn(f))(0)] < C

for all o € A7, where the Jacobian is computed relative to Riemannian metric on A7 induced
by Euclidean metric on R"*1. Let us differentiate the following map which is identically
zero with respect to directions in T,AY,

sty (.

0 = dB(sty (o) (o)) () = LMdB(stv(a),e)(-)dV(U)(e)
So then the differential would look like the following,

DydBsty () () To(AY) ® Topy (o)M — R
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DodBsty (0),u(0)) () = Do ( LM dB(sty (0),0)0V(0) (9)> ()
=D ( LM dB(stvw),e)d(Zi: a?V(wi))(9)> ()
= Do (Zl: a; LM dB(stvw),e)d(V(fvi))(@)) ()
= 2,200 LM dB(sty (0),0) (-)d(¥(2:))(0)

+J~DdB(StV(U),9)( Stv Z(L v 1’1
oM
Now we define the endomorphisms H, and K, of TStV(U)M by,

o).t 0) = [ By o100 M)

KWty 0) = | DABty a0V (@) 6)

Now by Theorem 5.5.1, K, is a positive definite endomorphism. Let {vj}?zl be an or-

thonormal eigenbasis of T, (U)M for H,. At point o0 € A? where the Jacobian of sty is
non-zero, let {u;};"; be the pull back of the basis {v;}7_; via Koop(sty), and {u;}j_; be
the orthonormal basis of T,A” obtained from {u;}" , by Gram-Schmidt algorithm. Now

we have,
det(Ky).|Jac(sty)(o)| = |det(Ks o D(sty)s)]

1 T
= H (K5 0 D(stv)o(Us), Vj)sty (o)

n+1

@ H PR L Bty (0 @) 0)

1] [nf% ez->2]1/2 [ ) ([ dB<stv<o—>,e><vj>d<u<xz->><e>)}1/2

j=1Lli=1

//\

ey H[Z P Bt @) (x»)(a)}l/g

@ gn H<H v;) U]>stv(0') = 2"det(H,)"?

Where the equation (1) holds since the basis u; has been obtained by Gram-Schmidt algo-
rithm starting from the pull back basis so the matrix representation of K, o D(sty ), with
respect to {u;}’s and {v;}’s is upper triangular so the determinant is the product of diagonal

entries. The equality (2) follows from the following equation,

0 = DydB(sty (),0(0)) (U5, 5)
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= 2 20iuj, e fﬁ dBsty (0),0) () d(v(:))(0)

+ | _ DdB(a (0),0) (Do (stv) (uy), v;)d() | aiv(x:))(6)
oM P

together with the fact that, by definition of K, we have,

<KU (D(StV)U<uj))7 Vy; >stv (o)

= ) DBty (0),0)(D(s5ty)o (1), v;)d(Y | a7 v(x;)) (6)
The inequality (3) and (4) are just the Cauchy-Schwartz inequality applied in R"*! and the

space L?(0M,v(z;)). And finally the equality (5) is just by definition of H,. So eventually
we get the following inequality,

, det(Hy)'?

|Jac(stv)(o)| <2 det(K,)

Now again by Theorem 5.5.1, since the right-hand side is exactly Jacstv(o)(Zafu(xi)) and

the measure Ya?v(x;) is fully supported in dr M, there is a constant C' > 0 depending only

on M such that,

,det(H,)?
7 <

[Jac(stv)(0)] < 2" =0 3™ <

5.6 Proof of Theorem 1.0.3

zeM
boundary of M. Consider the barycentric straightening defined in Definition 5.2.7. In
the preceding section we saw that the barycentric straightening is a straightening, satisfying
the conditions of Definition 4.0.1. Therefore M has a positive simplicial volume by Theorem
4.0.2. O

Proof. Now let {v,} _~ be the Patterson-Sullivan measures supported on the geodesic
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Chapter 6

Non-positive curvature and
negative Ricci-curvature

I this chapter we will be studying The positivity of the simplicial volume of manifolds with
geometric rank one in some special cases. Namely non-positively curved manifolds with a
negative Ricci-type curvature. Here we define another notion of rank using Jacobi fields for
non-positively curved Riemannian manifolds which will coincides with the previous notion
of geometric rank defined in the Definition 2.1.15 for symmetric spaces of non-compact type.

Definition 6.0.1 (Geometric Rank). Let M be a non-positively curved Riemannian man-
ifold and v € T'M be a unit tangent vector. Let 7y, be the unique geodesic with initial
velocity vector v. The rank of v is denoted by rank(v) and is defined as the dimension of
the space of all parallel Jacobi fields Y along ~y,. Now the rank of the manifold is defined by
rank(M) = inf,cp1 s rank(v).

Remark 6.0.2. The notion of the geometric rank defined in both Definition 6.0.1 and
Definition 2.1.15 coincide for symmetric spaces of non-compact type. Furthermore one can
easily see that for ve TTM, X(t) a parellel vector field along vy, and perpendicular to +(t),
we have X (t) is a Jacobi field if and only if the sectional curvature of the plane spanned by
X (t),~(t) vanishes for all t.

Definition 6.0.3. Let M be a non-positively curved manifold. We denote the upper rank
of M by Rank(M) and define it as follows,

Rank(M) := sup rank(v)
veTt M

Remark 6.0.4. Note that for a non-positively curved n-manifold we have 1 < rank(M) <
Rank(M) < n. In Chapter 5 we studied the simplicial volume of manifolds with 1 <
rank(M). According to Lemma 6.4.5 we have, Ricyr1 < 0 (see Definition 6.4.4) if and
only if sup, e dim(null(Ry)) < k. Now by Remark 6.0.2 it is clear that rank(v) — 1 =
dim(null(R,)). Therefore we have Rank(M) < k implies Ricy, < 0. In the current chapter
we will be dealing with manifolds with negative ([%J + 1)-Ricci curvature and rank = 1
which means in addition to the rank one condition we also require them to mot have a large
dimensional flat submanifolds.
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In this chapter we will prove the following theorem,

Theorem 6.0.5 (Main Theorem). If M is a non-positively curved manifold with negative
(|2 + 1)-Ricci curvature, then ||M]| > 0.

Note that there are many examples of manifolds with rank one but a great deal of zero
sectional curvature. In the followings we construct some of these manifolds,

Example 6.0.6. Fvery compact surface of non-positive curvature and negative Euler char-
acteristic has rank one. Such surfaces may contain large flat regions. Consider two unit
squares lying parallel, one above the other in Euclidean space R3. Identify opposite edges of
squares to obtain two flat tori, make two identical round holes at the center of each of the
squares and connect the tori by a "neck of negative curvature” as shown in the Figure 6.1.

Figure 6.1:

Topologically we get a surface of genus two. Now the curvature is zero on both squares and
negative on the neck. Consider a geodesic v, which is parallel to one of the edges and does
not touch the hole. Clearly rank(v) = 2. Moreover, two such parallel geodesics bound a flat
strip in the universal cover of M. And obviously the rank of any tangent vector v whose
corresponding geodesic goes through the hole is certainly one. Therefore this manifold has
rank one and negative 2-Ricci curvature.

Example 6.0.7. Consider a non-compact n-manifold N of constant negative curvature and
finite volume. Such a manifold has only finitely many cusps, [28]. See Definition 6.5.3 for
the definition of cusped manifolds and Remark 6.5.4. For simplicity we assume that it only
has one cusp. The cross section of the cusp is a compact flat (n — 1)-dimensional manifold
T. Cut off the cusp and flatten the manifold near the cut to make it locally isometric to
the direct product of T' and the unit interval, see Figure 6.2, Now consider another copy of
the same manifold and identify T, T'. The manifold M we obtain has non-positive sectional
curvature and an isometrically flat (n — 1)-torus inside it. The rank of any tangent vector
to to a geodesic in torus is m. On the other hand any tangent vector to a geodesic that
is transverse along the torus has rank one, so that rank(M) = 1. The manifold M that
we just constructed does not admit metric with negative curvature but we can certainly
make the sectional curvature negative every where but on the torus. Therefore the manifold
constructed above has rank one and negative (n — 1)-Ricci curvature.

Example 6.0.8. Let Ny be a closed k-dimensional manifold with non-positive curvature.
By a result in [32], we may construct a (k + 1)-dimensional manifold Ny that contains
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Figure 6.2:

No as a totally geodesic submanifold so that for every tangent vectors v € T,N:\T,Ny and
w € T,Ny, where p € Ny is a point, we have the sectional curvature of the plan spanned
by v,w is negative. We iterate this process and obtain a k + j = n-dimensional manifold
N;. Then it is clear that N; has negative k-Ricci curvature. Now if j = 3k then N; is an
n-dimensional manifold with negative ([%J + 1)-Ricci curvature.

We will be following the same method as we used in Chapter 5. First we prove that there
is a unique family of finite Borel measures fully supported in the visual boundary, then we
use them to define the Barycentric straightening. Then the proof of the satisfaction of the
condition (1) and (2) in the Definition 4.0.1 works exactly the same way as in Chapter 5.
but we are going to have to use some other tools to prove that the Barycentric straightening
satisfies the condition (3) and (4) of the Definition 4.0.1.

6.1 Patterson-Sullivan measures

Theorem/Definition 6.1.1 ([13]). Let M be a compact non-positively curved geomet-

ric rank one manifold, M the universal cover of M and I' the fundamental group of M.
There exist a unique family of finite Borel measures {p.}, 77 fully supported on OM, called
Patterson-Sullivan measure, which satisfies the following conditions,

1. g is I'-equivariant for all x € M

2. ‘;%:(9) = ehB@v.9) for qll x,y e M and 0 € OM

where h is the volume entropy of M, see Definition 2.1.2 and B(x,y,0) is the Busemann
function of M.

Example 6.1.2. (Harmonic measures in the disk model)
For the disk D with hyperbolic metric we have 0D = S'. Consider the following map,

P:DxoS'—R

1 o
@8~ e=alp

Now let v, = P(x,.)o be a probability measure on S' and call it harmonic measure associated
to x, where o is the uniform probability measure on S'. Now a direct computation shows
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that,

VfGSl, Vr,yeD, B(%y’g):l()g(igsy(}’g;)

In other words, the harmonic measures associated to points of D satisfy,

dvy

véeS!, Vr,yeD,
dvy,

(€) = e B@w:0)

which means these harmonic measures are the Patterson-Sullivan measures of D. Note that
the volume entropy of the disk model of 2-dimensional hyperbolic space with radius 1 is
constant 1.

6.2 Barycentric straightening

We start by a very important theorem which we will be using a lot later o, it estimates
the Hessian of the Busemann function in terms of curvature, and it holds for all closed
non-positively curved manifolds,

Theorem 6.2.1. Letﬂ be the universal cover of some closed non-positively curved manifold
M, xze M and 0 € OM. If Yy € TEM is any unit vector in the horocycle direction, that is,
Yo L +25(0), where 9 is the geodesic ray connecting x and 0, then there exist a constant
C that depends on quantities ||R||, ||VR||,||V2R||, such that,

3/2
DBy (Yo, Yo) > 0( —(R(1(0), Yo) 1L (0). Y0>>

Proof. We extend Yy along the ray 7,9 to Y (¢), the unique stable Jacobi field with Y (0) = Y.
Then the Hassian DdB(_,L.,g)(YE), Yp) is the second fundamental form in the direction Yy of
the horosphere determined by 2 and #, which is further equal to —(Y(0),Y”’(0)). We now
take the second covariant derivative along the geodesic ray of (Y (¢),Y (¢t)),

Y. Y1) =2 (<Y’<t>7 Y/(1)) + (Y (1), Y”(t»)

_ 2(||Y'<t>|2 YRy (Y(t)))

Note that since curvature is non-positive so the second covariant derivative above is posi-
tive. Therefore since ||Y (¢)||? is bounded and the second derivative is positive so we must
have (Y (¢),Y(t)Y < 0. So in particular ||Y(¢)||> converges to a constant which means
Y(t),Y'(t)y — 0. Now integrating along the geodesic ray we obtain,

2 LOO <||Y’(t)||2 + Ry ) (Y(t)))dt

- 2( lim (Y (£), Y (t)) — <Y(0), Y’(0)>>

t—ao0

= —2(Y(0),Y7(0)) = 2DdB(, 5)(Y0, Yo)
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Therefore we get the following inequality,
0
DdB, ) (Yo, Yo) = J Ry (Y(1))dt
0
To finish the proof of the theorem we need the following lemma from calculus,

Lemma 6.2.2. Let F be a C? function on [0,00). If F > 0 and F" is bounded above by a
constant L = 0, then there is a constant C > 0 that depends on L such that,

foo F(t)dt = C.F(0)*?

First we continue with the proof of the theorem and we will prove the Lemma 7.19 right after.
If we can apply Lemma 7.19 to the function R, ) (Y'(t)) then we get the inequality of the
theorem and we are done. So it suffices to show that the second derivative of R,/ ) (Y (t))
is bounded above. In the following we shall write 7/, Y, Y” for v/, (t), Y (t), Y’ (t) respectively
for brevity.

- ’ <<(V7'R)(7’7 Y)Y, Y) +(R(Y, Y)Y, Y/>)/

](RW;At) <Y<t>>)
- \<<V%¢,7,>R>w, YWY + 4V RS Y I, Y

—&—2<R(fy’7 Y)Y, Y’> + 2<R(7/7 Y)Y, Y”>

<C(IYI?+ 1Y%

where the last inequality is obtained by Cauchy-Schwartz inequality and the Jacobi equation
Y” + R(y,Y)y = 0. And the constant C is only dependant on ||R||,||VR||,|[V2R||. We
also note that ||Y||? is bounded so we only need to prove that ||Y’|| is bounded above.
However we have,

Y0, Y/ (0] = 200V (6), Y (8))] = 2RO V) YY)
< RO Y, VXRE Y, 7
< Co RV
< Co(¢RE 1) + IVIP)

= C? <Y, Yl>/

where the first inequality is the Cauchy-Schwartz inequality for the positive semi-definite
bilinear form —R, the second inequality uses the bound ||R||, the third inequality is again
Cauchy-Schwartz inequality in R and the last equality uses the Jacobi equation. Here the
constant Co only depends on ||R||. Integrating the above inequality, we obtain, for any
0<t<s<oo,

Y/ (£), Y'(£)) — (Y(), Y'())] © Cal(¥ (), Y/(8)) — (¥ (s), Y'(s))]
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As we saw, (Y (s),Y’(s)) increases to 0 as s — o0. Note that,

[ iea< [ (1@l + Ry oo )

— LOO <<Yl(t)7 Y'(t)) + <Y//(t)7Y(t)>> gt

0
= | Y(@),Y'(t)dt <
0
So (Y'(s),Y’(s)) goes to 0 as s — 0. Now if we let s goes to infinity in the inequality ()
we get,

[KY' (1), Y'(t))] < Col[KY (£), Y (1)) < —Co{Y"(0),Y"(0)) = C2DdB, (Y (0),Y(0))

But by the comparison theorem the Hassian is bounded above by a constant depending on
[|R||. This shows that ||Y”|| is bounded by a constant depending on ||R||, hence the second
derivative of R,/ (Y (t)) is bounded by a constant on || R[], [V R]], [|[V2R|| and in view of
the Lemma 7.19 we eventually obtain the main iequality stated in the theorem. O

Proof. (Proof of Lemma 7.19) Considering the derivative of the function 4/F(t) we obtain
F(t) = (\/F(0)—L't)? on the interval [0, 1/ F(0)/L'] for some constant L’ depending on L. If
we set G(t) = F(t)—(1/F(0)—L't)?, then G(0) = 0, and G(,/F(0)/L’) = F(4/F(0)/L") = 0.
Moreover G”(t) = F"(t) — 2L"2. So if we choose L' > 1/L/2, then G” < 0. Therefore G
would be concave and hence G = 0 on [0,+/F(0)/L']. Using this and noting that F > 0 we
estimate the integral

- VEO A () 2
JO F(t)dt>f0 <«/F(O)—Lt) dt = —— = C.F(0)®

where C' is a constant only depending on L. O

Theorem 6.2.3 (Convexity of Busemann Function). let M be compact non-positively curved
geometric rank one manifold. Fiz a base point O in M and denote the Busemann function
B(0,.,.) by B(.,.), see Definition 2.4.1. The Busemann function is convex and the null space
of its Hassian DdB, gy in direction v.e-connecting x to 6 have zero sectional curvature with
Vg, i-e. sec(u,vze) = 0 for u € null(DdB ;). Where vgg is the velocity vector of the
unique geodesic connecting x to 6.

Proof. If one think of the Busemann function B(z, ) as a function that measures the angle
Zo(z,0) then it is clear that it is a convex map. But we will see the detailed calculation soon.
The second part of the theorem is an immediate consequence of the Theorem 6.2.1. O

Theorem 6.2.4 (Strictly convexity of Busemann Function). Let M be a compact non-

positively curved geometric rank one. If Ricci-curvature is negative and v is a finite Borel
measure fully supported in OM then the function below is strictly conver,

B,: M —R
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x— JNB(LE,0>dI/(9)
oM
So consequently there is a unique point in M such that B, attains its minimum on, we
denote this point by bar(v).

Proof. Considering the definition of convexity of a map on a manifold it is clear that a map
is strictly convex if and only if its hessian is positive definite. So we shall prove that the
hessian,

f . DdB(w)g)(, )dl/(e)
oM

is positive definite. To see this let u € TIM be a unit tangent vector. We claim that there
is a 8y € M such that DdB; g,(u,u) > 0 and vgg, is orthogonal to u. If not then we have

DdB,,6)(u,u) = 0 for every 6§ € 0M that v, is orthogonal to u. By previous theorem since
w is in the null space of DdB, ¢ in the direction v;¢ so the sectional curvature of the plane
spanned by u and v.g is zero for any 6 that v,g is orthogonal to u(see Theorem 7.18). So

the Ricci-curvature at x vanishes that is a contradiction. Therefore there exist a 6y € oM
such that DdB, g, (u,u) = dp > 0. By continuity there is a neighborhood U of 6y such that
DdB, o(u,u) > do/2 for all § € U. hence we have,

JNDdBm’g(u,u)dl/(G) > J DdBy ¢(u,u)dv(6) > %OV(U) > 0.
oM U

Note that here we have used that v is fully supported in oM , and also the Busemann
function is (not strictly)convex even without the assumption Ricci < 0. So the Hessian is
positive definite and hence B, is strictly convex. O]

Definition 6.2.5. Standard spherical k-simplex A¥ is defined as follows,

k+1
AL = {(ar,az, ..., a41)  a; =0, Z aj =1} c RM!
i=1

with the induced Euclidean Riemannian metric from R¥+1 and with ordered vertices {ei, ...,ex 11}

Definition 6.2.6 (Barycentric Straightening). Let M be a Riemannian manifold. Sup-
pose M is a closed compact manifold with non-positive sectional curvature, negative Ricci-
curvature and geometric rank one (Connell, Wang) and let M be its universal cover. Given

any singular k-simplex f : A¥ — M, with ordered vertices (21, ...,xx11) = (f(e1), -, f(ers1)),
we defined the k-straightened simplex,

sti(f): AF — M

k+1
(ala ey ak+l) — bar(Z a?l/m)

i=1

where Vg, = pz,/||hz;|| s the normalized Patterson-Sullivan measure at x; and bar(v) is
defined in the statement of Theorem ?7. Note that sty (f) is determined only by the ordered
vertex set V', so then we denote sty,(f)(8) by sty (8) for any § € AF.
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6.3 Top dimensional simplices

Lemma 6.3.1 (condition (3)). Let M be a compact manifold with non-positive sectional
curvature, negative Ricci curvature and geometric rank one. Then the Barycentric straight-
ening, see Definition 6.2.6, satisfies the condition (3) of the Definition 4.0.1, i.e. the top-
dimensional straightened simplices under Barycentric straightening procedure are C*.

Proof. Proof is quite similar to the proof of Lemma 5.4.1 once we prove that the following
map is strictly convex,
z— | _ B(z,0)dv(9)
oM
where v is a finite Borel measure fully supported in 0M. Because then we would have
det(K,) # 0, hence we would be able to proceed in the proof of Lemma 5.4.1. Strictly
convexity of the above map was proved in the Theorem 6.2.4. O

6.4 Jacobi estimate

Lemma 6.4.1 (condition (4)). Let M be a compact manifold with non-positive sectional
curvature, negative ([%J + 1)-Ricci curvature (which implies negative Ricci curvature) and
geometric rank one. Then the Barycentric straightening, see Definition 6.2.6, satisfies the

condition (4) of the Definition 4.0.1.

Proof. Proof is quite similar to the proof of Lemma 5.5.2 up to where we get the following
inequality,

. det(H,)'?

det(Ky)

Now to get a uniform bound on the fraction on the right hand side we would need a new
method. In the rest of this section we will develop a method to bound the fraction. Recall
that the bound in the proof of Lemma 5.5.2 was obtained thanks to the Theorem 5.5.1 for
locally symmetric space of non-compact type with no local factors locally isometric to H?

|Jac(sty)(o)| < 2

Definition 6.4.2. For any positive semi-definite linear endomorphism A : V™ — V™ and
for any 0 < k < m we define the k — th trace of A as follows,
Tri(A):= inf Tr(A
Tk( ) Vklélvm 7'( |Vlc)
where Vi, is a k-dimensional subspace of V' (not necessarily invariant under A), and A is
viewed as a bilinear form when taking restriction. Equivalently it is sum of k least eigenvalues

of A.

Definition 6.4.3. Given an n-dimensional Riemannian manifold M with curvature tensor
R, for any u € T, M we define a symmetric bilinear form, R, (v1,vs) := —R(u,v1,u,vs) :=
—(R(u,v1,u),vy) where vi,ve € T, M. In particular if the manifold is non-positively curved
then R, defines a positive semi-definite symmetric form on T, M. Furthermore we define
the k-Ricci curvature in direction u as,

Ricp(u) := =Tri(Ry)
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Definition 6.4.4. Given an n-dimensional Riemannian manifold with curvature tensor R,
w,v € T, M and 0 < k < n define,

Ricg(u,v) := sup TT(R(U,.,U,.)|V>
vcl, M
dimV =k

whrere R(u, .,v,.)|, is the restriction of R to V xV . And we also set Ricy := sup,cr1 s Ricg(v,v)
where T} M is the set of unit vectors in T, M.

Lemma 6.4.5. Let M be a closed manifold with non-positive curvature. Then the followings
are equivalent,

1. dim(null(Ry)) < n/4 for allve TiM.

2. Yv € TIM, there exist a subspace F, < T, M of dimension at least 3n/4 such that
(v, F,) = 0 and R,(u,u) = Cy for all u € F,, where Cy is some universal constant
that only depends on (M, g).

3. Yv e TIM the k-eigenvalue (in increasing order) of R, is at least Cy when k > n/4,
where Cy is some universal constant that only deppends on (M, g).

4. There is a 6 > 0 that only depends on (M, g) such that,

inf Trip(Ry) =96
veT} M

when k > n/4.
5. The manifold has strictly k-th Ricci when k > n/4. That is Rick(v) < 0 for all
veTIM and k > n/4, or equivalently Ricpja41 < 0.

Proof. We will be proceeding as follows, first we prove (4) < (5) and then (4) = (3) =
(2)= (1) = (4).

e (4)= (5): Yve TIM and k > n/4 we have,

Ricy(v) = =Tri(Ry) < v i%fMTrk(Rv) <—6<0
kClz

Equivalently, for k = |n/4]| + 1,

Ricy = sup Rici(v,v) = sup  sup Tr(R(v, S0y, )
veT: M veTIM ViecTo M k

= sup — inf Tr|{ — R(v,.,v,.
0,7l (= R )

= sup —Tri(R,)=— inf Trip(R,)<—-6<0

veT M veTg M
Note that we are taking the last Infimum over T} M which is a compact set.

e (5) = (4) : Similar to (4) = (5).
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e (4) = (3) : Let Vi be the span of the first k eigenvectors of R,, with associated
eigenvalues A\; < Ao < ... < \;. By definition we have, A\; + ... + \y = TT(RUM) >
Tri(R,) = 0. So that we have A\ > 0/k, with constant §/k only depending on (M, g).

e (3) = (2) : Take F, to be the span of the last n — k + 1 eigenvectors of R,,, where
kE = |n/4] + 1. Now since R,(v,v) = 0 so v € null(R,) and corresponds to the
first eigenvalue of R,, A\ = 0. Assuming (3) we know that A\; > 0 for i = k so we
have (v, F,) = 0. Note that R,(u,u) = A\ = Cp for all u € F,. Also note that
dim(F,)=n—k+1>=n—|n/4| = 3n/4.

e (2) = (1) : For any v € T} M, by property of F,, F, n null(R,) = 0, Therefore
dim(F,) + dim(null(R,)) < n, hence dim(null(R,)) < n/4.

e (1)=(4) : Let | = [n/4] + 1 and denote by Ai(v) the k-th eigenvalue of R,. By (1),
Ai(v) > 0 for all v € TE M. Since \;(v) is continuous on v and T} M is compact, there
exist a universal constant § > 0 such that A\;(v) > ¢, hence for any k > n/4 we have,

inf Trp(R,) = inf Mg(v)> inf N(v) =4
veT} M veT} M veT} M

O

Definition 6.4.6. We say that a non-positivelt curved manifold has negative ([%J + 1)-
negative Ricci-curvature if it satisfies any of the five conditions in Lemma 9.5.

Theorem 6.4.7. Under the assumption of Theorem 7.18, If M has negative ([%J +1)-Ricci
curvature, then
Trry1(DdByg(.,.)) = Co

where k = [%J and Cy depends on the negative ([%J + 1)-Ricci constant in Lemma 9.4, in
particular it depends on (M, g).

Proof. We choose an orthonormal frame eq,...,ex1 of the k + 1 least eigenvectors of the
DdB;.9)(.,.), so that,

k1
Tri41(DdBag)(--) = Y, DBy g)(ei,e;)

i=1

Now according to Theorem 7.18 and Holder’s inequality we have,
k+1 k+1 k+1 3/2
Y. DdB, ¢ (eiei) = C Y. Ry, (e, e)*? = C" ] (Rvme(ei,ei))
i=1 i=1 i=1

Now the negative ([%J + 1)-Ricci curvature condition implies,

k+1
Z Ry, (€i,€1) = Trpi1(Ry,,) = C”
i=1
where C” only depends on (M, g). So we have the inequality of the lemma. O
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As a first step to find a bound on the Jacobian of the straightened simplices in barycentric
straightening method, we use the Theorem 7.18 to conclude the following lemma which
compares pointwise the integrands of H, and K,. We should remark that the power 2/3
in the following lemma which traces back to Lemma 7.19 directly leade to the imposed
n/4 condition. If this power can be improved to be closer to 1, then the resulting k-Ricci
condition could be slightly weakened, but is still limited to n/3 condition.

Lemma 6.4.8. Suppose M is a closed non-positively curved n-manifold with negatwe ([4J +

1)-Ricci curvature and M is the Riemannian universal cover of M. Let x € M 0 e oM.
Then there is a constant C' that depends on (M, g) such that for allve TEM and all u € F,
(where F, satisfies (2) of Lemma 9.4), we have,

2/3
dB(a:O (u,u) < C’(DalB(aIj 0) (v, v))

Proof. We decompose v = v1 + vy where vq is parallel to v,9 and vy is orthogonal to it, and
we denote by « the angle between v,¢9 and v. Note that if sin(a) = 0, that is v is parallel
t0 Vg then Bo (v, (t),0) is a constant function so dB(ZI’e) (u,u) = 0 and the inequality holds
automatically. Now if sin(a) # 0 then we can estimate,

3/2
. V: V!
DdB, 4)(v,v) = DdB(y g)(va,v2) > sin®(a) (CRM(HUZ, |Uz||))

03/2

~ [sin(a)]

Ry, (v2,12)%% = C32R,, , (v, v2)3/?

= C3/2Rv (Ua:l% 010)3/2

Note that when restricted to F,,, R, have eigenvalues at least Cp according to Lemma 9.4,
hence,

Ry (v26,v29) = Cocos®(£L(vaa, Fy)) = Cocos? (£ (vap,u)) = CodB(Qx,e)(u,u)

So then we finally have,
2/3
dBE,) o(u,u) < C(DdB(x o) (v, v))

O

Theorem 6.4.9. Suppose M is_a closed non-positively curved n-manifold with negative
([%J + 1)-Ricci curvature, and M is its universal cover. Let xM,0 € OM, and v be any

probability measure that has full support in OM. Then there exist a universal constant C
that only depends on (M, g), so that,

det(SaM o )du(e))1/2

<C
det ( S(’}M DdB(%g)(., )du(&))
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Proof. Set K, g := DdB,0)(.,.), Hep = dB(z gy(-s-) and K := Sonp Keo(.,)dv(0), H :=
S-ii Heo(,)dv(0). Let 0 < Ay < ... < A, be the eigenvalues of K, and let v be the
eigenvector corresponding to A;. Then there exist a constant C’ depending on (M, g), such
that for any u € F,, we have,

H(u,u) = JNHx,e(u,u)dy(e) <C' | Kypg(v,0)?3dv(6)
oM oM

2/3
< C’(JNKgEg(v,v)du(H)) =\
oM

Therefore we can find an orthonormal frame ey, ..., e, at « such that H(e;, e;) < C')\f/s
for 1 <i<n—k where k = [%J This implies that,

Trn_i( Z (ei,ei) < —k)C’)\f/?’

If we further denote by p1 < ps < ... < u,, the eigenvalues of H then we have,
i < Tro_w(H) < (n—K)C'AP 1<i<n—k

Since Try—x(H) = p1 + ... + pn—r. Note that the eigenvalues of H are at most 1 and
k= [%J < n/4, so we can estimate the following,

71;16‘,
_ \2/3
det(H)1/2 B H:L 1“’1/2 _ <(7”L k)C AY > - ol
det(K) H?:l Ai AWM )‘Z+f

for some constant C” depending on (M, g). And finally we can bound Agy; as follows,

1 Cy
A > —T K fT K,q) >
k+1 k1 Tk+1( ) k+19.lng Tk+1( ,0) E+1
Therefore by combining the above inequalities we conclude,
1/2 n—k
(detH) <" E+1 <C
detK C()
where C' depends on M. O

6.5 Proof of Theorem 1.0.5

Now we restate the main theorem here and prove it,

Theorem 6.5.1 (Main Theorem). If M is a non-positively curved manifold with negative
(|2 + 1)-Ricci curvature, then ||M]| > 0.
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Proof. By Theorem 6.1.1 we know that non-positively curved manifolds with geometric rank
one admit a unique family of Borel finite measures fully supported in the visual boundary
(Patterson-Sullivan measures). Now by Theorem 6.2.4 we know that the following map is
strictly convex,
B,(.) = | _B(.0)dv(0)
oM

where v is a weighted sum of Patterson-Sullivan measures and B(.,.) is the Busemann
function, see Definition 2.4.1. Now using this map we define the Barycentric straightening,
see Definition 6.2.6. By the Theorem 5.3.1, Theorem 6.3.1 and Theorem 6.4.1 we see that
the Barycentric straightening satisfies all the conditions of the straightening defined in the
Definition 4.0.1. Now the main theorem follows from the Theorem 4.0.2 by Thurston. [
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Appendix

Theorem 6.5.2 (Implicit Function Theorem). Let M be an n-dimensional smooth manifold
and f: M xV — R™ be a continuously differentiable function where V- R"™ is an open

subset and let (21, ..., Tn, Y1, ..., Yn) be a local coordinate on some open subset UxV < M xV.
Fiz a point (a,b) € M x V with f(a,b) = 0. If the Jacobian matriz Jy,(a,b) = [353 (a,b)] is

invertible then there exist an open subsegfvﬁ c U containing a such that there exist a unique
continuously differentiable function g : U — V such that g(a) = b, and f(z,g(x)) = 0 for
allzeU.

Definition 6.5.3 (Cusped manifold). A non-compact complete hyperbolic manifold with
finite volume is called cusped manifold.

Remark 6.5.4. The name “cusp” comes from the fact that these manifolds have the follow-
ing structure, let M be such a manifold, then M retracts to a compact submanifold M’ which
has a boundary consisting of flat manifolds Ty, ..., T}, and the rest of the manifold consist of
so-called cusps, which are warped products T; x [1,00) with the metric t%(clac2 + dt?) where
dxz? is the flat metric on T!s.

Definition 6.5.5 (convex function). Let M be a Riemannian manifold and f € C*(M,R)
be a smooth map. We say f is convex if its restriction to any geodesic is a convex function.

o1
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