VECTOR REPRESENTATION OF DOCUMENTS USING WORD
CLUSTERS

SUNANDA BANSAL

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2021
© SUNANDA BANSAL, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sunanda Bansal

Entitled: Vector Representation of Documents using Word Clusters
and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science
complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Examiner

(Dr. Gregory Butler)

Examiner

(Dr. Leila Kosseim)

Thesis Supervisor

(Dr. Sabine Bergler)

Approved by

(Dr. Lata Narayanan)
Chair of Department

(Dr. Mourad Debbabi)
Dean,

Gina Cody School of Engineering and Computer Science

Abstract

Vector Representation of Documents using Word Clusters

Sunanda Bansal

For processing the textual data using statistical methods like Machine Learning (ML), the data often
needs to be represented in the form of a vector. With the dawn of the internet, the amount of textual
data has exploded, and, partly owing to its size, most of this data is unlabeled. Therefore, often
for sorting and analyzing text documents, the documents have to be represented in an unsupervised
way, i.e. with no prior knowledge of expected output or labels. Most of the existing unsupervised
methodologies do not factor in the similarity between words, and if they do, it can be further
improved upon. This thesis discusses Word Cluster based Document Embedding (WcDe) where the
documents are represented in terms of clusters of similar words and, compares its performance in
representing documents at two levels of topical similarity - general and specific. This thesis shows
that WcDe outperforms existing unsupervised representation methodologies at both levels of topical
similarity. Furthermore, this thesis analyzes variations of WcDe with respect to its components and
discusses the combination of components that consistently performs well across both topical levels.
Finally, this thesis analyses the document vector generated by WcDe on two fronts, i.e. whether
it captures the similarity of documents within a class, and whether it captures the dissimilarity of
documents belonging to different classes. The analysis shows that Word Cluster based Document
Embedding is able to encode both aspects of document representation very well and on both of the

topical levels.

iii

Acknowledgments

In every endeavour of my life, I've been supported by many, probably too many. This thesis is no
different. I would like to take this moment to thank the people who have supported me in various
phases of this journey.

First and foremost, I would like to thank Dr. Sabine Bergler. Sabine, you’ve taught me how
to communicate. I've learnt not only to express with more clarity but also to interpret with more
objectivity. From you, I've learnt as much about the professional conduct as a researcher as the
research methodology itself. Above all, for your immense patience and professionalism during my
personal struggles, I can not thank you enough. I really appreciate your support and training
throughout my studies. This thesis would not be the same without it. Thank you!

When I started, Artificial Intelligence was popular but I wasn’t sure if I’d like it. For changing
my mind, and setting me on a path of no return, I want to thank Dr. Leila Kosseim. Your course
on Artificial Intelligence and my work with you, later, as a Teaching Assistant for the course, led to
further development of an interest in machine learning and deep learning methods. Without your
step-by-step explanation of well-designed simple and thorough examples, the math would have been
too daunting and I probably wouldn’t have dared to get close to the realm of neural networks or
word embeddings. Working through those examples as a student, and then as your TA, led to the
development of intuition and an unyielding fascination with Artificial Neural Networks (ANNs). I
owe the foundation and the development of my interest in the field to you. I was inspired.

One individual, in particular, has been my constant partner for all discussions with respect to
my research and the development of my thesis - Aman Kumar. In the middle of a pandemic, from
the other side of the globe, you spent the last 10 months with me, syncing your schedule with mine
to help me manage the execution of my research and thesis. You’ve reveled in the results and you've
stressed with me on the blocks. I loved how we built on top of each other’s ideas for the analysis.
For my endless discussions regarding every facet of this research, from the whiteboard discussions to
reading my drafts, you've done it all. You are my brother and a peer, and your input and company
were, and remain, invaluable in the formation of this thesis.

As it turns out I've had multiple partners for discussing my ideas and research. Here’s to the
ones that I bugged the most. Himani Saini, who’s been my friend of 10 years, was my roommate for
nearly 6, but who’s also a most valuable fellow professional - you were my go-to person for all the
discussion related to the research and random philosophical awanderings. Your input in research

and your support in everything else was instrumental. Parsa Bagherzadeh, who is a friend and a

iv

cherished colleague from the ClaC Lab - I sincerely admire your readiness and enthusiasm to share
your knowledge. We’ve had our intermittent discussions, and they have all been immensely helpful,
always. Nadia Bilal, a dear friend, a fellow CLaC Lab member, and my constant companion while
working on my thesis - your not being familiar with my research was the best asset for improving
this thesis. You gave me your uninhibited opinion on the drafts, and for that, I am really grateful
to you. Jerry George Thomas, who has been a friend, a roommate, and another fellow professional
- I picked your brain more often than I dare to count. For letting me do so, every time, I thank you.

I would also like to thank Dataperformers. The realization of the problem and the need for
research on the unsupervised representation of textual documents was a result of my work at Data-
performers. I am really grateful for the valuable experience, the excellent team and nourishing work
environment that I got at Dataperformers. The entire team was very supportive, accommodating
and understanding with respect to my studies. I’d like to thank Yoann Racine, in particular, who
advised me with regards to publishing my code. I would also like to thank all the members of CLaC
Lab. In particular, I would like to thank Narjes Tahei, a colleague in the ClaC lab. Your report on
word representations and our discussion thereafter has been significant in shaping up my discussion
for document representations. A shout out to all the ClaCers, especially, Parsa Bagherzadeh, Nadia
Sheikh, and Nadia Bilal - it was fun because you all were there.

Most importantly, for their unwavering affection and patience through my personal struggles as
well as my ramblings, I'd like to dedicate this milestone to my family. From every fibre of my being,
I am grateful to my mother, my rock, my closest friend, who left no stone unturned to support me
in every challenge I faced; to my father who gave me the push I needed, sometimes by doting and
flattery, and sometimes by saying just the right thing at just the right time; to my brother who lost
sleep (and his peace of mind) sorting my ramblings with me and my grandmother who repeatedly
insisted I finished it asap because she missed me. Because there are many, too many - to more than
I can mention, to all my friends and family, I thank you for being there.

And the last but definitely not the least, I'd like to thank Dr. Janet Ritchie. You saved my life.
From the bottom of my heart, I thank you.

Contents

List of Figures viii
List of Tables X
1 Introduction 1
2 Unsupervised Representation of Texts - An Overview 4
2.1 Document-Term Vector Space Model 6
2.2 Document-Topic Vector Space Model 11
2.2.1 Latent Semantic Analysis (LSA) 12
2.2.2 Latent Dirichlet Allocation (LDA) 15

2.3 Document representations using Word Vectors 18
2.3.1 Word Vectors oL e 18
2.3.2 Aggregating Word Vectors 26

2.4 Doc2vec e e e e 28

3 Word Clusters based Document Embedding (WcDe) 30
3.1 Methodology 32
3.2 AnExample 34
3.3 Discussion of Variations and Related Works 38
3.3.1 Word embedding 38
3.3.2 Clustering Techniques L 40
3.3.3 Weight Functions L 46

4 Evaluation & Quantitative Analysis 50
4.1 Dataset & Task e 51
4.2 Evaluation Metrics L 52
4.2.1 Mutual Information L o 52
422 RandIndex e 59
4.2.3 Fowlkes Mallows Index 57

4.3 Results of Other Methods 58
4.3.1 Document-Term Vector Space Model 59
4.3.2 Latent Semantic Analysis L 61
4.3.3 Latent Dirichlet Allocation 63

vi

4.3.4 Unweighted Average of Word Vectors
4.3.5 TF-iDF Weighted Aggregate of Word Vectors
4.3.6 Smooth Inverse Frequency Weighted Average of Word Vectors
4.3.7 Doc2veco e e
4.4 Resultsof WeDe e
4.4.1 WcDe Variationso
4.42 WcDevstheRest

5 Discussion & Qualitative Analysis
5.1 Captures Similarity?
5.2 Captures Difference?
5.3 LSA and WcDe - Synonymyo e
5.4 Concluding Observations

6 Conclusion
6.1 Future Work e

References

A Quantitative Evaluation - Additional Plots
B Quantitative Evaluation - Additional Tables
C Document Vector Axes - LSA and WcDe

D Implementation Details

Term Index

vii

101
101

103

107

110

112

122

125

List of Figures

2.1 Example of a vector in a 2-dimensional vector space
2.2 Word2vec model architectures proposed by Mikolov et al. (2013) as explained in Rong
(2014) (slightly modified). In CBOW architecture (left), the current word is predicted
given the context words, whereas in the Skip-gram architecture (right) the neighboring
context words are predicted given the current word.
2.3 Analogy drawn by Le et al. (2014) between the framework used for computing word
representations (Bengio et al., 2003) and document representations using Distributed
Memory Architecture of Doc2vec.
3.1 A visualization of word vectors given for the step-by-step example of WeDe method-
ology in 2-D (Table 3.1)
3.2 An example of a dendrogram of Agglomerative Hierarchical Clustering
3.3 Various cluster similarity merge criteria for Agglomerative Hierarchical Clustering
4.1 Hierarchy of the topics/classes/categories in the BBC datasets
4.2 A Diagram analogous to Venn Diagrams for sets showing various information measures
associated with the correlated variables X and Y
4.3 Boxplots depicting the distribution of Normalized Mutual Information scores over
DT-VSM experiments on each dataset.
4.4 Boxplots depicting the distribution of Normalized Mutual Information scores over the
LSA experiments on each dataset.
4.5 Boxplots depicting the distribution of Normalized Mutual Information scores over the
LDA experiments on each dataset.
4.6 Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_AVG experiments on each dataset.,
4.7 Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_TFIDF experiments on each dataset.
4.8 Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_SIF experiments on each dataset.
4.9 Boxplots depicting the distribution of Normalized Mutual Information scores over the
Doc2vec experiments on each dataset.

4.10 Boxplots of Normalized Mutual Information of all methods on both datasets.

viii

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19
5.1

5.2

5.3

Al

A2

A3

A4

A5

A6

AT

Boxplots depicting the distribution of Normalized Mutual Information score with
respect to a combination of weighting functions and length normalization for the
WceDe experimentso Lo
Boxplots depicting the distribution of Normalized Mutual Information score with
respect to various clustering methods for the WeDe experiments
Boxplots depicting the distribution of performance of WcDe experiments with nor-
malized CF-iDF weights for variations with respect to clustering parameters.

Boxplots depicting the distribution of Normalized Mutual Information score with
respect to various word vectors in WeDe experiments on BBC Dataset
Boxplots depicting the distribution of Normalized Mutual Information score with
respect to various word vectors in WcDe experiments on BBC Sport Dataset.

WceDe+ vs the Rest - Boxplots o o
Bar graph comparing the performance of each method on both datasets side-by-side.
Bar graphs comparing the methods on each metric
Bar graphs showing performance of each method on each evaluation metric
Heatmap of top 20 axes of WcDe document vector representation of all documents
of class tech. The axes have been sorted from left to right in the decreasing order
according to Countsg.
Heatmap of top 20 axes of WcDe document vector representation of all documents of
class tech. The axes have been sorted in the decreasing order of median (Figure 5.2a)
or sum/mean (Figure 5.2b) L
Heatmap of 50 axes of document vectors. Top 10 axes of each class have been selected
in the decreasing order of their sum of weights. The axes have been arranged from
left to right on the x-axis in the alphabetical sequence of class names.
Boxplots depicting the distribution of various scores over DT-VSM experiments on
each dataset. L
Boxplots depicting the distribution of various scores over LSA experiments on each
dataset.
Boxplots depicting the distribution of various scores over LDA experiments on each
dataset. L
Boxplots depicting the distribution of various scores over WE_AVG experiments on each
dataset.
Boxplots depicting the distribution of various scores over WE_TFIDF experiments on
each dataset. L
Boxplots depicting the distribution of various scores over WE_SIF experiments on each
dataset.
Boxplots depicting the distribution of various scores over Doc2vec experiments on

each dataset. e

ix

List of Tables

2.1
3.1
3.2

4.1
4.2

4.3

44

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12

A few pre-Trained Word Embeddings that are used in the experiments in this thesis
Word vectors given for the step-by-step example of WeDe methodology
Word clusters based on the word vectors given in Table 3.1 for the step-by-step ex-
ample of WeDe methodology L
Class-wise frequency distribution of BBC datasets
Various parameters and their values used for generating Document-Term Association
Vectors of documents.
Various parameters and their values used for Latent Semantic Analysis representation
of documents
Various parameters and their values used for Latent Dirichlet Allocation representa-
tion of documentso
The results of document clustering using unweighted average of semantic word vectors
to represent the documents
Various parameters and their values used for representing documents using TF-iDF
weighted aggregate of word vectors
Various parameters and their values used for representing document using Smooth
Inverse Frequency weighted average of word vectors
Various parameters and their values used for representing document using Doc2vec .
Normalized Mutual Information score values for the boxplots of each method. The
color-coding of the cells containing the score is distributed such that the minimum
score is darkest red, and the maximum score is the darkest green. The median of the
color distribution (white) has been fixed as 0.75.
Various parameters and their values used for representing document using WcDe
methodology L
Various clustering parameters and their values used in WcDe experiments for repre-
senting documents oL
Average of Minimum (including outliers), Maximum (including outliers), First, Second
and Third quartile NMI scores for a subset of WcDe experiments. The values are
averaged for both datasets. In this subset of WcDe experiments, the semantic word
vectors are clustered with either K-Means or AHC with minimum variance merge

criterion and the document vectors are created using normalized CF-iDF weights. . .

82

4.13 Performance scores for each method correspond to the experiments with best perfor-
mance on Normalized Mutual Information score.
5.1 Statistics for the top 10 axes (word clusters) for tech class. The axes have been sorted
in the descending order of the count of document vectors in which the component along
the axis a non-zero value (Countsg). o
5.2 Table listing word clusters and their members corresponding to the top 10 axes based
on Countsg sorting of axes for tech class given in figure 5.1
5.3 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for tech class of BBC dataset
5.4 LSA configuration selected for the analysis with respect to synonymy.
5.5 List of terms (stemmed) and their association with each of the top 10 axes of LSA
vector space on BBC Dataset. The top 10 axes have been selected in the decreasing
order of their singular values. L o
5.6 A comparison between the top 5 topics/clusters (represented by 5 terms/words each)
of both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the
basis of sum of weights across the document vectors of tech class.
B.1 The tables give the distribution of performance scores over WcDe experiments where
the word vectors are clustered with either K-Means or AHC with minimum variance

merge criterion and the document vectors are created using CF-iDF weight function

90

98

and length normalized in the end. The median of color distribution is fixed to be 0.75.111

C.1 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for business class of BBC dataset
C.2 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for entertainment class of BBC dataset
C.3 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for politics class of BBC dataset
C.4 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for sport class of BBC dataset
C.5 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for tech class of BBC dataset
C.6 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for athletics class of BBC Sport dataset
C.7 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for cricket class of BBC Sport dataset
C.8 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for football class of BBC Sport dataset
C.9 Top 10 word clusters and their members when sorted based on the decreasing order
of sum of weights for rugby class of BBC Sport dataset
C.10 Top 10 word clusters and their members when sorted based on the decreasing order

of sum of weights for tennis class of BBC Sport dataset

xi

C.11 Top 20 axes of Latent Semantic Analysis on BBC Dataset sorted and selected in the
decreasing order of the singular values. The table also lists the terms (stemmed)
weighing at least 0.1 in their association with each of the top 20 axes. 118

C.12 Top 20 axes of Latent Semantic Analysis on BBC Sport Dataset sorted and selected
in the decreasing order of the singular values. The table also lists the terms weighing
at least 0.1 in their association with each of the top 20 axes. 119

C.13 A comparison between the top 5 topics/clusters (represented by 5 terms/words each)
of both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the
basis of sum of weights across the document vectors of each class of BBC dataset. . 120

C.14 A comparison between the top 5 topics/clusters (represented by 5 terms/words each)
of both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the
basis of sum of weights across the document vectors of each class of BBC Sport dataset121

D.1 Relevant python libraries and their versions 122

xii

Chapter 1

Introduction

In order to automate the analysis and processing of large amounts of data using statistical Artificial
Intelligence (AT) methods, like Machine Learning (ML) models or Artificial Neural Networks (ANNs),
the first thing to do with the data is to encode it in some mathematical form, usually in the form
of real-valued vectors. This mathematical representation plays a key role in the performance of
these methods as it serves as the input to the model and the starting point for automated statistical
analysis. This mathematical representation stands in for the actual data and how well it encodes the
essential features of the data plays a significant role in what the statistical AT methods can do with
it. A simple statistical model using well-represented data as the input can usually stand shoulder to
shoulder with a complex model that uses the same representation or worse. An excellent example
of the importance of representation can be found in Computer Vision (CV). In Computer Vision,
with the same underlying machine learning models, Convolutional Neural Network (CNN) layers
were able to drastically improve the performance of CV systems by simply representing the image
in such a dense real-valued vector that, as random as it may seem, captures essential features in the
image. Such improvement in the representation of visual data and thereby, the results, established
CNNs as the cornerstone of the success of Computer Vision. Therefore, it is vital how we represent
the data and it is the representation of data, specifically textual data, that is at the center of the
discussion in this thesis.

Data can usually be represented in a supervised or unsupervised fashion. If the expected outcome
of the processing is indicated on a portion of data, i.e. a subset of the data is labeled, then this
labeling can be leveraged to transform a basic initial representation of data to better reflect the
expected outcome. This generates a new transformed representation, which is often dense and low-
dimensional. Overall, the supervised representation of data allows for the data to be effectively
represented according to particular labels. On the other hand, regardless of the availability of
the labeled data, the data can be represented with no contribution or knowledge of the expected
outcome (labels). Within the purview of unsupervised ways to represent data, there are generally
two approaches that can be taken - task-specific representation and general. In the former, data
is manually represented by features engineered to cater to a specific task whereas in the latter we

attempt to automatically represent and capture essential features of data regardless of the task.

It is important to note here that there is a lot of data out there, often mostly unlabelled. Speaking
of data, specifically of textual data, every day nearly 500 million tweets, 6 billion texts, and 10 billion
Facebook messages are sent. It is a gross understatement to say that the amount of data generated
in one internet day is huge. Much of the available is often unlabelled. On the other hand, data
labeling is time-consuming and expensive, and therefore often not always a viable option. Therefore,
for any analysis or to draw insights from such a large amount of unlabelled data, one simply cannot
undermine the importance of unsupervised methods - be it sorting through your business product
reviews to gather insights for improvement or sorting through a sudden influx of inquiries in the case
of a worldwide pandemic. So with no knowledge of the labels, often the unsupervised methods are the
only option one can resort to. To this end, even data has to be represented in an unsupervised way.
However, it is difficult to manually analyze such large amounts of data. And it is even more difficult
to manually engineer features that will ultimately effectively represent all of the data, especially
based on a manual analysis of a very small part of it. Therefore, we need a way to automatically
represent large amounts of data in a general and non-task-specific way. Therefore, out of the two
approaches for unsupervised representation of data, this thesis will focus on the general, i.e. not
task-specific, representation of data - specifically, textual data.

Furthermore, the role of representation is more pronounced when the labeled data is not available.
For example, in the supervised statistical AT models, like Machine Learning models, the weights of
the model are adjusted to produce results that align with the expected outcome. In these models,
the representation of the data is ultimately weighted by the model, in some way. Therefore, to
a certain degree, what the representation may lack, a supervised AI model can compensate by
adjusting the weights. However, the unsupervised Al models operate without any knowledge of
the expected output; there is no weighting of the representation of data to align with the expected
output; the representation stands in for the data by itself and becomes the entire basis of the
performance of the model. Therefore, for unsupervised processing of data, the initial representation
of data is instrumental to the quality of the results. Since this thesis is focusing on discussing the
representation of textual data, the representation will be evaluated in an unsupervised setting to
compare the data representation in the absence of any knowledge of expected output. In other
words, this thesis will address the unsupervised representation of textual data and evaluate it in an
unsupervised data processing task, i.e. clustering.

Speaking of the general representation of textual data (i.e. not specific to a task), a good rep-
resentation of a textual unit (e.g. a word, a sentence, etc.) is considered to be the one that best
places the similar units closer in the vector space and dissimilar units further apart. In other words,
a good representation of textual data captures its distinctive aspects and encodes it in the form
of a vector. For the moment, let’s focus on text documents that contain at least one sentence.
Some techniques that have been popularly used to represent text documents in an unsupervised way
completely bypass the inherent relatedness between different words of a language. However, with
the advent of word embeddings in the last 2 decades or so, the words can now be represented in a

mathematical form that encodes their contextual information and, based on this encoding, it places

similar words closer in vector space and dissimilar ones further apart. Now, these word representa-
tions can be leveraged to represent text documents. However, many approaches that do use word
embeddings to represent a text document, simply average the contextual information across each
axis. This leads to a representation that completely loses the distinction between the words that was
encoded in their vector representation. In other words, the similarity and dissimilarity encoded in
the word representations are averaged out to somewhere in between and the distinction between the
words that is encoded in the axes is not leveraged to its full potential. In this thesis, I will discuss
a methodology that attempts to better utilize the contextual information encoded in word embed-
dings to represent textual documents. In this methodology, the word vectors obtained from word
embeddings are clustered and these word clusters are then used to represent the documents. This
underlying methodology, with slight variations, has been proposed and used by different researchers
over the past 5-6 years. However, the discussion and research regarding this technique are scattered

and are often lost in the heaps of publications. This thesis

e discusses the underlying methodology common to the multiple variations

e expands the variations of this methodology

e extends the evaluation to two topical levels

e compares this methodology with other unsupervised document representation methods

e compares various variations of this methodology with each other

o analyses the various components of the methodology

e draws insights that will provide a configuration of components that performs consistently well
across different levels of topical similarity

e analyses the document vectors generated by the methodology

e attempts to consolidate much of the scattered research

e publishes a GitHub repository that implements the methodology and can be used to demo it.
The repository is available at https://github.com/sunandabansal/WcDe.

https://github.com/sunandabansal/WcDe

Chapter 2

Unsupervised Representation of

Texts - An Overview

Broadly speaking, in Natural Language Processing (NLP), the objective is automated understanding
and/or generation of natural text or speech. In this thesis, the discussion is limited to the sub-
domain of NLP that focuses on analyzing/understanding the language data present in textual form.
Regardless of the medium, the natural language contains information at different unit levels - letter,
word, phrase, sentence, paragraph, etc. The smallest unit of a language is a letter. A word is a
unique sequence of these letters that expresses one or more concepts. At a point in time, the concepts
associated with the word are more or less constant and universal. A phrase is a sequence of such
words, which may or may not stand completely on its own to relay a complete thought, but forms a
conceptual unit. A sentence is constituted of words or phrases within some grammatical structure of
the language that expresses a complete stand-alone thought. One or more of such sentences can be
considered a paragraph. Now that we’ve established that, in this thesis, I will use the term document
to refer to any piece of text containing one or more sentences.

The textual data can be analyzed at any of the unit levels described above - word, alphabetical,
sentence, etc. However, this thesis will particularly address the textual analysis at the document
level. For analyzing the textual documents using statistical Al models, the text documents need to
be represented in the form of a vector. In this thesis, our focus is the unsupervised representation
of textual documents. This chapter will discuss the existing popular methodologies and underlying
concepts related to the vector representation of documents. However, before we discuss vector
representation of documents, let us briefly discuss vector spaces and the notation used hereafter.

A wvector is any quantity defined with a direction and a magnitude. But for the linear algebra
within the scope of this thesis, a vector can be thought of as a quantity that identifies a point in
a Cartesian coordinate system. Such a vector forms a part of a wvector space. A vector space is
defined by a set of coordinate axis, or directions, which can then be used to define any vector that
will identify any point in this space. The number of these coordinate axes in this vector space

determines the dimension of the vector space. In this thesis, I will use Cartesian representation to

Figure 2.1: Example of a vector in a 2-dimensional vector space

represent the vectors. In this representation, the vector is broken down and represented in terms of
its magnitude across the direction of each coordinate axis. The direction of each axes is indicated by
a unit vector which is simply a vector of length 1. For example, let’s consider a 2-dimensional vector
@ that identifies a point with the coordinates (4,6) (Figure 2.1). This vector can be represented in
terms of its magnitude in the direction of x and y axes respectively -
A =42 + 67

where, £ and ¢ are the unit vectors in the direction of x and y axes. A variable containing a
vector is indicated with an arrow on top of the variable to differentiate between scalars and vectors.
Similarly, a variable representing a unit vector is indicated with a cap/hat on the variable. In the
field of statistical analysis in Artificial Intelligence, a vector is also understood as an array of real
values (Goodfellow et al., 2016). In this array, each index of the array represents a feature of the data
and the corresponding value, the weight of the feature in the data. Therefore, a vector representation
of data is also known as a feature vector of the data, where each axis of the vector is referred to as
a feature of the data. This term is particularly relevant for a particular class of approaches that can
be taken to represent the textual data in NLP - feature engineering.

Among various unsupervised ways to represent text as a vector, one is that of manual feature
engineering. In manual feature engineering, the data is analysed to determine statistical and/or
linguistic aspects of the documents that are observed to be most relevant for the task at hand. Based
on these features statistics are drawn leading to a real valued feature vector for the document. For
example, consider a document d which contains one sentence - I love reading.. Let’s say you have
to represent it in terms of two features - the number of words and the number of characters in the

document. Then this document can be represented in a feature vector as given below -

Feature 1 Feature 2
No. of words No. of characters
z (]
I love reading. 3 15

where & and ¢ are the unit vectors representing the axis of feature 1 and 2. In Cartesian represen-

tation, the feature vector of the document d above, can be represented as
d =33+ 15§

But as mentioned in the previous chapter, the feature-engineering-based approach can lead to docu-
ment representations that specifically cater to a task. Moreover, this requires manual analysis of the
data. However, this thesis focuses on general and automated unsupervised document representation
techniques.

As mentioned in the Introduction, the goal here for a general vector representation of any entity
- be it a word, a document, a text, or an image - is to map the similarity between the entities to
the distance between their corresponding vectors in the vector space. That is, the relative distance
between vectors should be indicative of the relative similarity between the two entities. Therefore,
the goal of the vector representation of documents in this thesis is to represent documents in the
form of a real-valued vector, in an unsupervised fashion, such that the closer the vectors, the similar

the documents.

2.1 Document-Term Vector Space Model

One of the simplest ways to represent a document is to represent it in terms of the words it contains.
In such representation of documents, the sequence of the words is disregarded and only the occurrence
remains. In this thesis, such a model of document representation is referred to as Document-Term
Vector Space Model (DT-VSM). Before we get into why it is referred to as the Document-Term
Vector Space Model in this thesis, let’s discuss what this model does. As I just said, in this model
the document is represented in terms of the words it contains. To do so, a document is first split
into word-level units called tokens and the process of splitting a text document into tokens is known
as tokenization. Since it is a word-level unit in a text document it is also called a word in the
text document. Unlike a word in a language that has a concept associated with it, a word in a
document refers only to a word-level unit in the document. In this thesis, the term word is preferred
to refer to word-level units because it is more relevant for the discussion in the thesis. When all
the documents in the dataset are tokenized, the total set of words in the dataset is referred to as
the vocabulary of the dataset and each element of the vocabulary is called a term. Therefore, to
reiterate, in Document-Term Vector Space Model a document is represented in terms of the words

it contains. For example -

Document 1 they ran a 100m race and he ran a 500m race.
Words (Tokens) they ran a 100m race and he ran a 500m race
Terms they ran a 100m race and he 500m

(Example 1.1)

Let’s consider the document in the example above (Example 1.1). In Document-Term Vector

Space Model, each document is represented as a vector in a vector space where each axis represents

a term in the vocabulary of the dataset. But, the vocabulary of a dataset is usually big. Therefore,
to fit the vector of our arbitrary example here, let’s assume that the vocabulary of the dataset is
limited to these 5 terms - won, lost, ran, 100m and race. Given this vocabulary, let us represent the
example document in terms of these 5 terms such that each of these 5 terms forms an axis of the

document vector as shown below -

won lost ran 100m race

they ran a 100m race and he ran a 500m race.

The empty cells above indicate the components of the document along each axis that are yet
to be determined (hence, empty). This component will indicate an association between the term
and the document in the form of importance, presence, or frequency of the term in that document.
For the moment, let’s represent the documents with a vector where the component indicates the
frequency of each term (column), in the given document (row). Example 1.2 that follows shows the

frequency of each term in the document from Example 1.1 as well as a few others.

Axes
won lost ran 100m race
t t t3 t4 ts
d; : they ran a 100m race and he ran a 500m race. 0 0 2 1 2
do : she won the 500m race but lost the rest. 1 1 0 0 1
ds : e lost the 100m race and 200m race as well. 0 1 0 1 2

(Example 1.2)

where, the unit vector along it" axis is represented as f; and d; refers to the jt" document. This
mapping of terms and their frequencies in each document can be represented in the form of a matrix
as given below -
t1 t2 t3 ta s
d |0 0 2 1 2

ds 10O 1 0 1 2

(Example 1.3)

Such a matrix that indicates the occurrence of terms in documents is also known as an document-
term incidence matriz. In the above matrix, each cell refers to the frequency of term (intersecting
column) in the document (intersecting row). So, for example, the cell in the second row from the

top (dz2) and the first column from the left (1) indicates that the term represented by t1, i.e. lost,

appears once in the document do, i.e. she won the 500m race but lost the rest. Such a matrix that

gives the frequency of terms in a document is also called a Document-Term Matrix.

A Document-Term Matriz is a document by term matrix which gives the frequency of
each term in every document of the dataset. In a Document-Term Matrix, each row
represents a document, each column represents a term and each cell at the intersection

indicates the frequency of the term in the document.

(Definition 1)

In a Document-Term Matrix, each row gives a vector that indicates the frequency of each term
with the document. In other words, each row vector gives a vector representation of documents
in Document-Term Vector Space Model. Based on the Document-Term Matrix (Example 1.3), the

Cartesian representation of document vectors for each document from Example 1.2 is -

— ~ ~ ~ ~ ~
dy = 0ty + Oty + 2t3 + 1t4 + 2t5
- ~ ~ ~ ~ ~
dy = 1t1 + 1ty + Ot3 + Oty + 1t5
- ~ ~ ~ ~ ~
ds = 0ty + 1to + Ots + 1t4 + 2t5

(Example 1.4)

where the document vector of i*" document is represented as Ez In the Example 1.4 above, the
components along each axis indicate the frequency of the term in the document. However, these
components don’t necessarily have to indicate frequency. As mentioned before, these components
can indicate any association between the term and the document, for example, the importance or
simply presence of a term in that document. Such a model of document representation where each
axis of the document vector space represents a term is popularly known as Vector Space Model.
However, the term Vector Space Model is too general and can be interpreted to refer to modelling
of documents in any vector space. But in Vector Space Model, the vector space is specifically
defined such that the axes of the vector space represent the terms. In the rest of the chapter, other
document vector spaces will be discussed where each axis does not represent a term. Therefore this
term, Vector Space Model, is not specific enough to differentiate between the different document
vector spaces. So for the purpose of differentiating between various vector spaces discussed in this
chapter, I have and I will continue to refer to it as Document-Term Vector Space Model (DT-VSM)
instead. Moreover, since the document vectors in Example 1.4 indicate only the terms and their
association with the document, I'll refer to such vectors as Document-Term Association Vector in
this thesis.

Document-Term Vector Space Model is the model wherein a document is represented
as a vector such that each axis of the vector represents a term and the corresponding
component/weight indicates a numerical association of the term with the document. In
this thesis, each vector in this vector space is referred to as Document-Term Association

Vector.

(Definition 2)

Similarly, though the Document-Term Matrix is defined to contain the frequency of terms in
documents, the association between a term and a document doesn’t have to be limited to the
frequency. Any document-term association data can be represented in a similar matrix where the

cells indicate a numerical association of the term with the document.

A Document-Term Association Matriz is a document by term matrix which gives the
association of each term in every document of the dataset. In a Document-Term Associ-
ation Matrix, each row represents a document, each column represents a term and each

cell at the intersection indicates a numerical association of the term in the document.

(Definition 3)

When the association between a term and a document is binary, it indicates the presence (1) or
the absence (0) of the term in the document. For example, the documents in Example 1.2 can be

represented in a Binary Document-Term Association Vector as -

- ~ ~ ~ ~ ~
dy = 0ty + Oty + 1tg + 1t4 + 1t5
— ~ ~ ~ ~ ~
dy = 1t; + 1ty + Ots + 0ty + 1t5
- ~ ~ ~ ~ ~
d; = 0ty + 1to + 0f3 + 1t4 + 1t5

(Ezample 1.5)

In Binary Document-Term Association Vector, the contribution of the terms is reduced to a mere
presence or absence in the document. However, the frequency of a term in the document may better
indicate the contribution of that term in the document. But in the vector representation based on
the frequency of terms, every single occurrence in the document is attributed equal importance.
So, if cancer was as frequent in a document as the, the axes representing both the terms will be
weighted equally. Practically, the is likely to be more frequent. Therefore, according to frequency
based Document-Term Association Vector, the weighs more in the document than cancer cancer.
This ultimately leads to a representation of the document where each occurrence, i.e. each token,
of both the terms contributes equally to the representation, while that may not be ideal. As we
can see, some words, for example, the, a, and, are very common and do not help in distinguishing
between two documents. Such words in a language, that are very common and contribute little to
nothing to the distinctive aspects of documents are known as stopwords.

Therefore, it is often desirable that the association between the terms and documents be in-
dicative of the relevance of that term in the document. To this end, the weight of a term in the
document can be calculated using a weighting scheme which can, hopefully, indicate its relevance in
the document. Term frequency-inverse document frequency (TF-iDF) is one such weighting scheme
that assigns a weight to a term ¢ in the document d based on the the term’s frequency in the doc-
ument as well as the term’s prevalence the entire corpus. This scheme introduces a mechanism to
attenuate the weight of terms that are too prevalent in the corpus to contribute a distinctive value

to the representation of the document. In other words, on top of accounting for the frequency of

a term in the document (term frequency), the score is also designed to account for the rarity of its
usage across various documents. Therefore the score of term for a document is highest when that
term rarely appears in any other document, but appears frequently in this document. The TF-iDF
score is proportional to the term frequency in the document and attenuates the score by the means
of inverse document frequency. The formula for calculating TF-iDF score for term ¢ in document d

is given below in Equation (2.1) -
tf—idft,d = tft_’d X ldft

N
= tft,d X IOg <df> (21)
t

where, tf-idf; 4 refers to the TF-iDF weight of term ¢ for document d and the idf; is the inverse
document frequency of term t. Additionally, term frequency tf; 4 refers to the frequency of term ¢
in document d and df; refers to the number of documents, out of total number of documents IV,
that the term ¢t appears in. The TF-iDF weighting scheme can be used to calculate a score to
indicate the numerical association of term with the document. The Document-Term Association
Vector using TF-iDF weights can be referred to as a TF-iDF Document-Term Association Vector,
or simply TF-iDF vectors.

In TF-iDF weighting scheme, the document frequencies of the terms are calculated on a dataset.
However, for a new term ¢ that did not exist in the dataset on which the TF-iDF values were
calculated, the document frequency of term t’ will be zero, i.e. dfy = 0. Therefore, this can lead to
division by zero in the calculation of inverse document frequency term, i.e. idfy. Since the division
by zero is undefined, the TF-iDF score can be slightly modified to take such a case into account. One
way to avoid division by zero is to assume an additional document that contains all the terms exactly
once. This way, for any term there is at least one document that contains the terms and dfy # 0. As
a result of this, the total number of documents is increased by 1, i.e. N 4+ 1. This modified inverse
document frequency is known as smoothened inverse document frequency. The Equation (2.1) with

smoothened inverse document frequency is as given below -

(2.2)

N+1
tf-idft,dtft,dxlog(i >

dfy +1

To recap, in this section, I've discussed Document-Term Association Vector and different weight-
ing schemes that can be used to create a document vector using the Document-Term Vector Space
Model. However, there are a few things to consider when representing a document as a Document-
Term Association Vector. In a Document-Term Association Vector, since each term is an axis, the
dimensionality of the vector space can be of the order of vocabulary of the dataset. Any document
represented in this high-dimensional vector space is likely to be sparse. Even for a dataset of news
articles with nearly 2000 terms in each article and a vocabulary of 50,000 terms, any vector repre-
senting a document will have no component corresponding to nearly 48,000 axes. Such high sparsity
in data can reduce the performance of the statistical Al methods. Therefore, often only a limited

number of most frequent terms are used to represent the documents and the rest are discarded. This

10

leads to an increase in performance, however, by trading off a significant portion of the vocabulary.

More importantly, most of the terms are words and words have a meaning associated with them
in the language. However, in Document-Term Vector Space Model, a document only indicates the
association of each term with the document without accounting for the similarity among the terms.
In other words, in Document-Term Vector Space Model, since each word is represented as an axis
in this vector space, each term is a separate entity and any relationship between the terms goes

completely unrepresented. For example, let’s consider the documents below -

likes loves cooks rain snow dog
dy : she likes the rain 1 0 0 1 0 0
de : she loves the snow 0 1 0 0 1 0
ds : that dog cooks 0 0 1 0 0 1

(Ezample 2.1)

The table above shows a Binary Document-Term Association Vector for three documents. In the
example above, the vectors representing all three documents are equally distant in the Document-
Term vector space. That is, this representation of the document completely bypasses any similarity
that exists between the terms likes and loves, or between the terms rain and snow. According to
this representation, there is no reason why she likes the rain is more similar to she loves the snow
than that dog cooks. In this representation, a document is completely stripped off of the meaning of
the words, and only the record of occurrence of individual term remains. But the meaning of the
words plays a significant role in making the document what it is. Since the goal of the document
representation is to map the similarity between documents to a vector space, the representation

must transcend mere term occurrence and encode within it some sense of meaning.

2.2 Document-Topic Vector Space Model

A document is constituted of one or more themes or topics. Based on this intuition a certain set
of techniques attempt to use the document-term association data, like a Document-Term Matriz, to
derive a representation of the documents where each document is hopefully represented as a distri-
bution over topics. These techniques transform the term-document associations that we discussed in
the last section, to a new dimensional space where each axis is observed to be a representative of an
artificial concept akin to a theme or topic. Therefore, these techniques have come to be popularly

known as topic modeling techniques. For example, consider the document vector 3 given below -

d = 0.22, + 0.05G + 0.57¢5 + 0.13q4 + 0.03¢
@ = 0.12£; + 0.05¢5 + 0.07¢5 + 0.0164 + ... + 0.03t.,,

(Example 3.1)

where, an arbitrary document X is represented in terms of 5 axes, where each axis ¢ corresponds

11

to a topic. The topics 3, in turn, form a distribution over the t1,ts, t3, ..., t,, terms. In this vector
space, each document vector gives an association of a document with each of the artificial concepts
or topics. Therefore, in this thesis, such models will be collectively referred to as Document-Topic
Vector Space Model and a vector in this space will be referred to as the Document-Topic Association
Vector. In this section, I will discuss two such popular topic modeling techniques that can be used
to represent the documents as a distribution over topics - Latent Semantic Analysis and Latent
Dirichlet Allocation.

2.2.1 Latent Semantic Analysis (LSA)

“Many mathematical objects can be understood better by breaking them into constituent
parts, or finding some properties of them that are universal, not caused by the way we
choose to represent them....”

“..Much as we can discover something about the true nature of an integer by de-
composing it into prime factors, we can also decompose matrices in ways that show us
information about their functional properties that is not obvious from the representation

of the matrix as an array of elements.”
(Goodfellow et al. (2016))

The passages quoted above beautifully explain the value of decomposing mathematical objects,
and this forms the basis of the process of Latent Semantic Analysis.

In the previous section, we’ve discussed the representation of the association between the term
and a document in the form of a matrix, i.e. a Document-Term Association Matrixz. The Document-
Term Assoctiation Matriz defined in the previous section refers to a matrix where each cell indicates a
numerical association of a document (row) with the term (column). This matrix records a numerical
association between the documents and the terms. However, this matrix records no association
among the terms. Each term is treated as a completely different feature of the text than the rest.
However, as we see in Example 2.1, often different words in the language aren’t wholly unrelated.

Latent Semantic Analysis hopes to encode the relatedness between the terms in a vector space.
It uses the association data between term and document to construct an artificial space where
the closely related terms are placed near each other in the vector space. In the artificial vector
space created by Latent Semantic Analysis, each axis/feature is referred to as an artificial concept
and represents a semantic structure akin to a topic. Each vector in this vector space represents a
distribution over the topics. In Latent Semantic Analysis, both the documents and the terms are
represented in the same vector space, i.e. in terms of the topics. Most importantly, through the
Latent Semantic Analysis, both documents and terms, are placed in this artificial space such that
the closely related terms and documents are closer in this space as well. For example, let’s extend
Example 3.1 to show the representation of documents and terms in the same space. Example 3.1
shows an arbitrary document d represented in terms of artificial concepts ¢, ¢s, g3, ..., ¢5. Similarly,
in Latent Semantic Analysis an arbitrary term ¢; is represented in the same space, i.e. in terms of

the same artificial concepts as the document d -

12

d = 022 + 0.05G, + 0.57¢5 + 0.13q4 + 0.03G
1 = 0.1241 + 0.332 + 0.37¢3 + 0.084 + 0.104s

(Example 3.2)

%
where, t; refers to the vector of a term ¢; as a distribution of artificial concepts/topics ¢y, gs, q5, ---, q5-
The weight corresponding to an artificial concept in the vector indicates the strength of the associ-
ation of the term or document with respect to that artificial concept (Deerwester et al., 1990). At

this point we can define Latent Semantic Analysis in terms of its process. -

Latent Semantic Analysis is a technique that uses truncated Singular-Value Decompo-
sition (SVD) to decompose the term by document association matriz and represent the
terms and documents in an artificial semantic space such that the closely related terms

and documents are closer in this space as well (Deerwester et al., 1990).

(Definition 4)

As to how Latent Semantic Analysis constructs the artificial space, let’s take a closer look at
the said process. Latent Semantic Analysis uses a term by document association matrix, i.e. Term-
Document association matriz, to construct this space. The term by document association matrix is
the association data between the terms and documents presented in the form of a matrix where the
rows indicate the term and columns indicate the documents. It is simply the transpose of Document-
Term association matriz and, for LSA as well, this matrix could indicate incidence, frequency, or
importance. Let’s call this matrix containing the term by document association data M, regardless
of the numerical association contained in the matrix. For further clarity, let’s suppose we have N
documents and a vocabulary of V' terms. Then, an entry M;; in the matrix M corresponds to a
score representing an association or weight of term ¢ in document j. For example, a binary term by

document association matrix for the documents in Example 1.2 will be -

Document by term Term by document
binary association matrix (M7T) binary association matrix (M)
t1 12 t3 ta ts di dy ds
d [0 0 1 1 1 t7 [0 1 0]
d {1 1 0 0 1 ta | O 1 1
ds (0 1 0 1 1 ts |1 0 O
ty |1 0 1
ts L1 1 1]

In Latent Semantic Analysis, using Singular Value Decomposition (SVD), the term-document

association matrix M is decomposed into three matrices, i.e. T, 3 and D, as shown below -

13

M=TxD? (2.3)

NXxN

- - VXN - - Vxv E - VXN
(2.4)

These three matrices contain a breakdown of the original associations into new artificial concepts.
In Equations (2.3) and (2.4), the left matrix T is a V x V matrix where each row is a vector
representation of a term as a distribution over the artificial concepts or topics. Similarly, the right
matrix D is a N x N matrix where each row is a vector representation of a document as a distribution
over the artificial concepts or topics. The ¥ matrix is a diagonal matrix that contains values, called
the singular values, that indicate the influence of the artificial concept in the latent semantic space.
These values are ordered in the decreasing order of magnitude. That said, for some artificial concepts,
the singular values are really small. Removing these artificial concepts reduces the dimensionality
of this artificial vector space and optimally approximates the original association data (Deerwester
et al., 1990; Manning et al., 2008d). Therefore, in the next step, the artificial concepts that have
the least influence are ignored. That is, the largest k singular values on the diagonal of ¥ are
retained and the rest of the matrix is truncated. Here, k is the desired number of topics, i.e. the
dimensionality of the artificial vector space. The truncation results in a matrix ¥, which is a square
diagonal matrix of k x k dimension. For example, let’s consider an arbitrary 3 matrix. Then the X

can be truncated for k£ = 3 as shown below -

0.20

0.07 0.20
0.03 N

0.11

0.01 0.07
3x3

L 475

In the matrices above, the matrix on the left shows arbitrary singular values where the empty cells
are all zero, and the matrix on the right shows its truncated version with only the largest 3 singular

values retained.

14

Just like the X above, the T and D are also truncated such that only the first £ columns are
retained. Let the truncated matrices be represented by Xj, Ty and Dy, respectively. Now, for a
new pseudo document, these truncated matrices are used to find a representation of the document
in terms of the k artificial concepts. In order to do so, a document is first represented in terms of a
Document-Term Association Vector with the same numerical association function as the one used for
the Term-Document Association Matrix M in the beginning. Then this new pseudo-document d can
then be transformed from its Document-Term Association Vector form to the LSA Document-Topic

Association Vector representation using Equation (2.5) -
d=%,."'T,"d (2.5)

where, d refers to the Document-Term Association Vector of document d and dy refers to the repre-
sentation of document as a distribution over k artificial concepts. This Document-Topic Association
Vector representation dg, which is obtained from the term-document vector d, is considered to be
the LSA Document-Topic Association Vector vector of document d.

In the end, it is important to note here that unlike the Document-Term Vector Space Model, an
axis in the Document-Topic Vector Space Model does not represent a term. Rather, each axis/feature
is now replaced by new features as the descriptors of documents. These new features, in turn, can be
described in terms of the terms or the documents they are associated with (Deerwester et al., 1990).
Latent Semantic Analysis leverages the document co-occurrence between the terms to establish
relatedness between the terms in terms of the artificial concepts. Similarly, it uses the term co-
occurrence between documents to establish the relatedness between the documents in terms of the
artificial concepts. Latent Semantic Analysis does so by using the Singular-Value Decomposition to
arrange an artificial space that reflects the major associative patterns in the term and document
association data. However, this is only one of the ways to represent terms and documents in terms

of a distribution of artificial concepts.

2.2.2 Latent Dirichlet Allocation (LDA)

Just like Latent Semantic Analysis, in Latent Dirichlet Allocation, the documents are also repre-
sented as a distribution over topics. The topics, in turn, are defined as a distribution over terms in

the vocabulary (Example 3.1). However, unlike LSA, LDA is a probabilistic model.

Latent Dirichlet Allocation is generative probabilistic modelling technique which approx-
imates the posterior or conditional probability of the hidden topics in the documents

given the terms observed in the documents.

(Definition 5)

In LDA, it is assumed that the documents arose from an imaginary random process. Before we
discuss the process, let’s discuss the assumptions. Let us consider a dataset with N documents and
a total vocabulary of size V. In the generative process, we assume a number of topics that each

document is distributed on. This is the desired number of topics we hope to represent the document

15

in. Let’s say that the desired number of topics is K. The documents are assumed to be a discrete
probability distribution! over K topics. Similarly, the topics are assumed to be a discrete probability
distribution over V' terms. Therefore, there are two distributions assumed in this process, i.e. 64
and By -

1. Distribution of topics in documents, 64 ~ Dirichlet(«), and,

2. Distribution of terms in topics, 8y ~ Dirichlet(n),

where, 04 refers to the distribution of K topics in document d and [refers to the distribution of
V terms in topic k. Additionally, & and 7 are the parameters which define the Dirichlet priors from
which the two distributions, 64 and S, are drawn, respectively (Hoffman et al., 2010).

Now, to understand the overall assumed generative process, let’s take the example of a document

d with a distribution of topics given by ;. Then, to generate n* term for document d -

1. Draw a topic index x € {1...K} from the topic weights x ~ 6.

2. Draw the n'* observed term of document d from the selected topic tan ~ Bz-

where t4,, is the observed term in the document and (3, is the distribution of terms in the topic x.

This generative process defines a joint probability distribution over both the hidden topics struc-
tures and the observed terms in the document. This joint probability distribution is then used to
compute the conditional probability distribution of topics given the terms in the documents. How-
ever, the posterior or the conditional probability can not be computed directly and is usually only
approximated (David M Blei et al., 2003; David M. Blei, 2012; Hoffman et al., 2010). The actual
approximation is beyond the scope of the discussion of the thesis. However, it is important to note
here that Latent Dirichlet Allocation of documents results in the representation of documents as
a probability distribution over topics. In the vector form of this distribution, each axis is an ar-
tificial concept, like LSA, and the corresponding component indicates a weight, an association, of
the artificial component with the document. Only that, in the case of LDA, the association is a

probability.

Let’s summarize the Document-Topic Association Vector representation of document. In both
the topic modeling techniques discussed so far, the axis for document vectors is an artificial concept
mathematically inferred from the distribution of terms in the documents. Each artificial concept
itself is further defined as a vector where each axis is a term and the corresponding component is
a weight of the term in the definition of the artificial component. An example of this is shown in

Example 3.1, which is repeated below -

d = 0.221 + 0.05¢, + 0.57qs + 0.13¢s + 0.03¢s
aQ = 0.126; + 0.05¢5 + 0.07¢5 + 0.01£4 + ... + 0.03t,

IThe probability of each value in the distribution is in the range [0,1] and the sum of all probabilities for a
distribution is 1.

16

where, 7 is the Document-Topic Association Vector of document d in terms of artificial concepts
q1, 92,93, ---, g5 and E{ is representation of the artificial concept ¢; as a distribution over all the terms
in the vocabulary t1,%s, %3, ..., tm.

However, it is important to note that for both of the methods, the mathematical model is based
on the occurrence of terms in documents. Therefore, in these methods, two terms are only related
based on the document co-occurrence. However, the words in a language have a meaning, a similarity,
a relatedness with each other. But with respect to the relationship between the terms, the topic
modeling techniques discussed in this section do not go beyond the document co-occurrence of terms.
Any relationship established between the terms is in the context of the entire document (Socher,
2015). Let’s see why this matters.

Let’s consider a document. If all the words in this document were switched out by their near-
synonyms, Document-Term Association Vector of the document would reflect a completely different
document. However, if these synonyms were previously observed in the dataset during the topic
modeling, the Document-Topic Association Vector of the document may yet represent them as a
part of the same topic. However, if all the words in the document were switched out by their near-
synonyms that have never been observed in the dataset, then the Document-Topic Association Vector
will not be able to associate the near-synonyms based on the document co-occurrence. But it still
does not change the fact that the words are related and very close in meaning. But any information
about the universal meaning for words is not taken into account while representing documents
as either Document-Term Association Vector or Document-Topic Association Vector. Moreover,
according to the distributional hypothesis, similar words occur in similar contexts (Jurafsky et al.,
2021). However, the context for the similarity between terms in Document-Topic Association Vector
is the entire document, which may be too broad for effectively associating two words with respect
to their similarity in meaning (Socher, 2015).

A set of techniques use a smaller neighboring context to compute representations that encode
some aspect of the meaning of a word. In such techniques, a word is represented in a vector
space where the representation of the word is computed based on its neighboring words throughout
the documents. The representation so learnt places the words in the vector space such that the
vectors that are used in similar contexts are closer in the vector space. These representations can
be computed over a large amount of data to reflect their general similarity with respect to other
words in the language. Once computed, these representations of words can stand on their own for
comparing different words in the language and establishing a similarity between them. Since, a word
is a basic unit in the document which significantly contributes to the overall meaning imparted by the
document, using such word representations can allow us to encode some extent of meaning imparted
by the document in its vector representation. In the next section, I'll discuss such representation of

words, and subsequently, representation of documents based on such representation of words.

17

2.3 Document representations using Word Vectors

Before we discuss the representation of documents using word vectors, let us briefly discuss the
vector representations of words. The vector representation of words refers to the representation of
word-level units of text documents. Any representation of a word in the form of a vector can be
called a word vector. However, there are different types of vector spaces for the representation of a
word as a vector. Therefore, a word vector can refer to different representations of words depending
on the vector space assumed. In the discussion that follows I'll briefly discuss a few of these vector

spaces for the representation of words.

2.3.1 Word Vectors

Words as Document Association Vectors Just like a document can be represented in terms
of the words, a word can be represented in terms of the document it appears in. In the case of
such a word vector, each axis of the vector represents a document. As explained in Section 2.1, the
association between a word (term) and document can be represented as a matrix called Document-
Term Matrix (Definition 3, page 9). An example of a Document-Term Matrix given in (Example 1.3)

18-

an)
()
[\
=
[\

di
d>
s 0 1 0 1 2

—
—_
o
(e}
—

Each row of this matrix is a document vector that represents the document in terms of the vocabulary
of the dataset. At the same time, each column of this matrix is a word vector that represents the
word in terms of the documents it appears in. In this way, a word can be represented in terms of

the documents it appears in.

Words as Term Association Vectors Quite similar to Document-Term Association Vector, a
word can also be represented in terms of other words. For representing words in terms of other words,
we can construct a V' x V where V refers to the total number of words in the dataset. Instead of
the document and word associations in Document-Term Matrix, this matrix records the association
between two words of the vocabulary. For simplicity, let’s indicate the frequency of their document
co-occurrence in the matrix. In other words, for association score between two words, let’s record
the number of documents in which both of the words occur. Therefore, each cell in this V' x V
matrix represents the number of times the words represented by the intersecting row and column
occurred in the same document. For example, let’s assume we have a vocabulary of the five words

as given in the table below -

18

win match thriller horror movie

win 23 11 3 3 5
match 11 31 0 0 1
thriller 3 0 19 15 19
horror 3 0 15 25 23
movie 5 1 19 23 38

(Example 5)

In the example above, both the row and columns indicate a word in the vocabulary and the cell at
the intersection indicates the frequency of co-occurrence of the words in documents. So, for example,
according to the above table, there are 15 documents in which the words thriller and horror appeared
together. However, we could also limit these statistics to a few neighboring words. For example,
let’s say that we only look at the 5 words before and 5 words after the word thriller. Then, for
thriller, we only count occurrences of the word horror if it appears in these “neighboring” 10 words.
These 5 words before and 5 words after the target word, i.e. thriller, form a context window. In
this case, we have limited the context we observe around each of our target words to a window of
5. This becomes significant in developing techniques that encode the contextual co-occurrence, and

some aspect of word meaning in the vector representation. Those techniques will be discussed next.

Semantic Word Vectors

“You shall know a word by the company it keeps.”
(Firth (1957))

The next class of word vectors attempts to encode the contextual information, i.e. company a word
keeps, into the vector representation of a word. However, unlike the word vectors where the observed
context of a word is the entire document, these techniques limit the observed context for each word
to a few neighboring words. This allows for capturing statistics that draw out the words that often
keep the same company of words, and are thereby similar. Ultimately, building upon this intuition,
these techniques attempt to place each word in an artificial vector space such that the words that are
used in similar contexts, and are therefore similar, are placed near one another. The word vectors so
obtained incorporate the aspects of word meaning that can be inferred from the context of words.
Since these vectors are designed to embed some aspects of the meaning of words in a language, let’s

call them Semantic Word Vectors?.

The word vectors that incorporate some aspects of the meaning of the words, usually
the aspects that can be inferred from their contexts, are referred to as Semantic Word
Vectors in this thesis. The entire structure that collectively associates words with their
respective semantic word vectors is known as Word Embedding.

(Definition 6)

2«Semantic” here refers to the meaning of a word only with respect to the fact that context embeds within it some
aspect of the meaning of a word.

19

For a class of semantic word vectors, while the context is taken into account while computing
(learning) the representation of words from the data, ultimately the representation computed (learnt)
for each word is fixed. These semantic word vectors that have a fixed vector representation for each
word are considered static, and their embedding is called static word embedding (Jurafsky et al.,
2021). However, a word in a language can have multiple meanings. For example, consider the

sentences below -

1. T finally found the first edition of that book.
2. I am planning to book two seats for the show.
3. The police will finally book him for murder.
4. T like doing things by the book.
(Example 6)

In the above example, the word book has been used in different senses. Though the learning
process will take all the instances of book into account, in the case of static semantic word vectors, the
representation ultimately learnt for book will be fixed. That is, when we look for a representation of
book in static semantic word vectors that have been computed from data, we will get 1 representation,
which will be the same for all the cases above. However, in each case above, though the word is
the same, its referent is not. Here’s where another class of semantic word vectors takes the context
into account while representing the word. That is, there may be a different vector representation
of the word book in each of the cases above, depending on its usage, its context. This class of
word embedding, e.g. ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), that generate
contextualized semantic word representation based on the context the word is being used in, are
called contextualized word embeddings (Jurafsky et al., 2021). That said, the scope of discussion
and analysis in this thesis is limited to only static word embeddings, specifically - Word2vec and
GloVe. In the following sections, I'll discuss both of these word embedding in just as much detail as

necessary for the upcoming discussion in the following chapters. Let’s first discuss Word2vec.

Word2vec

Mikolov et al. (2013) introduced two model architectures for estimating semantic vector representa-
tions of words from large datasets - continuous bag-of-words (CBOW) and skip-gram models. These
models are known as Word2vec model architectures. In both architectures, there is a target word

and a set of context words. For example, in the sentence -

‘ As ‘ ‘ walked ‘ ‘ past ‘ ‘ the ‘ lake ‘ that ‘ ‘ reflected ‘ ‘ the ‘ ‘ burning ‘ ‘ autumn‘ and the

radiating gray sky with silver edges, the hours went by and my heart stood still.
(Example 7)

lake is the target word (shown by the colored box) with a context window of 5 words (shown by
black border boxes). That means that the 5 words before and after the target word are considered
context words. The Continuous Bag-of-words (CBOW) architecture is designed such that the model

is trained while predicting the target word based on the given context words. That is the model

20

takes the context words as input and predicts the target word as the output. For example, predicting
the target word lake based on the 10 context words given in Example 7 forms one training sample
for Continuous Bag-of-words model architecture. On the other hand, in the Skip-gram architecture,
the model is trained while predicting the context words based on the target word. The task in
Skip-gram architecture is formulated as a classification task based on whether, for each pair of
words, they appear within the context window of each other. Though the exact mathematical
formulation of Word2vec is beyond the scope of the thesis, an understanding of the process of word
vector computation is essential in getting a sense of why it works the way it does. Moreover, a
basic understanding of Word2vec is essential for understanding a neural-network-based document
representation technique which was significantly inspired from Bengio et al. (2003) and Mikolov
et al. (2013) which will be discussed later in Section 2.4. Most importantly, it develops the intuition
which is necessary to analyze the methodology discussed in Chapter 3 with respect to the extents
and limits of the semantic word vectors so computed. Therefore, we’ll discuss the word vectors in
just enough detail to develop a basic understanding of the process. Please note that the explanation
below assumes a working understanding of the key components of Artificial Neural Networks (ANN)
- the objective function (or the loss function), weight update mechanism (backpropagation), and the
network architecture (Richards et al., 2019).

Figure 2.2° shows the model architectures of both CBOW and Skip-gram where both model
architectures contain 3 layers - input, projection, and output. Before we discuss the process, let’s
discuss a few important variables in Figure 2.2. In the figure, V is the size of our vocabulary, N is the
size of the projection layer, and also the desired size of a word vector. The input weight matriz, i.e.
the weight matrix between the input layer and the projection layer is represented by W € RV >V,
Similarly, W/ € R¥*V represents the output weight matrix, i.e. the weight matrix between the
projection layer and the output layer®. Input weight matrix W has V rows such that each row is
an N-dimensional vector corresponding to a word in the vocabulary. Similarly, the output weight
matrix W’ has V' columns such that each column of W’ is an N-dimensional vector corresponding
to a word in the vocabulary.

In the CBOW training process, the target word is predicted based on the context word. Therefore,
for CBOW, the input word vectors given in W are considered context word vectors, or context
embedding, since it contains semantic word vectors for context words. Similarly, the output word
vectors given in W/ in CBOW are considered the target word vectors, or target embedding, as it
contains semantic word vectors for the target word. In Skip-gram, on the other hand, the input
word vectors given in W are considered target embedding, and the output word vectors given in W’
are considered the contexrt word vectors.

The matrices W and W’ matrices may be randomly initialized but are updated through the
training process. These matrices are not defined separately for each training sample but are rather
shared across all the training samples (Figure 2.2). Therefore, each training sample during the
training uses and updates both of these matrices. While these matrices W and W’ are updated in

the training process, at the end of the training they reflect the semantic representation of words

3The figure and the notation has been borrowed from Rong (2014) and have been slightly modified for our discussion
4Note: W’ does not represent transpose of W, but instead represents a different matrix altogether.

21

INPUT PROJECTION OuUTPUT INPUT PROJECTION OUTPUT

5] g
1o o
1o ol
R A Vi
ol o
[0 9]
(O] 1ol
IO 10|
X_; ol - ol .‘!_’
(O] 101
:
5] o
10 o
1o 1ol
X 101 o Ye
OV CxV-dim 9
CxV-dim
CBOwW Skip-gram

Figure 2.2: Word2vec model architectures proposed by Mikolov et al. (2013) as explained in Rong
(2014) (slightly modified). In CBOW architecture (left), the current word is predicted given the
context words, whereas in the Skip-gram architecture (right) the neighboring context words are
predicted given the current word.

learnt in the Word2vec process. Ultimately, since two word embeddings are trained in the process of
Word2vec, for each word in the vocabulary, we learn two sets of semantic word vectors (Socher, 2015).
However, the final semantic word vector for a word could be the sum of both, or alternatively, we can
also use just the target word embedding, i.e. W', to obtain final semantic word vector representations
(Jurafsky et al., 2021). Now let’s take a look at the process to understand how the weight matrices
are updated.

For clarity of the training process of Word2vec, let’s consider one pass of the CBOW model at
the moment, i.e. let’s predict the target word given the context words. To prepare the input to the
model, the words are first represented in a one hot vector form. A one hot vector of a word is a
vector of the size of vocabulary, V| such that each index in the vector corresponds to a word in V,
just like Document-Term Vector Space Model. However, since we are representing words with this
representation, only the index corresponding to the word will be 1, rest will be 0, making it a 1-hot
representation of words. For example, let’s consider a vocabulary of 5 terms from Example 1.1 - won,
lost, ran, 100m and race. So to represent the word lost as a 1-hot vector based on this vocabulary,
for example, only the index corresponding to the word lost will be 1 and the rest will be 0 as shown

below -

22

won lost ran 100m race

Similarly, the input to Word2vec model, i.e. context words, are words represented in the form of
a 1-hot vector. So for a total of C' context words, let x; be the one-hot encoded vector of each of
the context words, where ¢ < C. Therefore, the input is a matrix of size C' x V. Let’s call this
input matrix I € R®*Y. We should note here that the matrix multiplication of input matrix I and
the input weight matrix W gives the semantic word vectors embedded in the context embedding
W corresponding to each of the context words. In the forward pass from the input layer to the
projection layer, these context word vectors are averaged to obtain an N sized vector corresponding
to the projection layer. Since the model is designed to predict the target word, the projection layer
values are then passed forward through the output weight matrix W’ to give a prediction score
for each word in the vocabulary in the form of a V' dimensional vector y. These scores are then
converted into probabilities using a softmax® function which is expected to reflect the probability of
each word being the target word given the context words. The predicted probability for each word
is then compared with the true target hot vector and the cross-entropy loss is backpropagated using
gradient descent to update the weight matrices W and W’. This is how the weights are adjusted to
best match the predictions and therefore ultimately can be used to represent the words themselves.

On the other hand, in Skip-gram architecture, for a given word, represented by its one-hot
encoding z, the context words y;,i < C are predicted. Analogous to the logic applied in CBOW
architecture, in Skip-gram, W and W’ are updated through the training process, where the former
is considered the target embedding and latter the context embedding. In Skip-gram, given a pair of
a target word and a context word the model predicts whether the context word appears within the
context of the target word or not. But, if we only add training samples from the context window
of each target word we will only have samples of the positive class. Therefore, to have training
samples of the negative class, additional samples are added to the training set. To obtain samples
with negative class a few noise words from the vocabulary, which are not a part of the context of
the target word, are paired with the target word as a negative sample. This is commonly called
Skip-gram with Negative Sampling (SGNS). Overall, in both the models, the semantic word vectors
are computed in a model designed to estimate the word vectors given their neighboring words or

vice versa.

GloVe - Global Vectors

Another popular algorithm for computing word vectors is known as Glo Ve (Pennington et al., 2014).
In Word2vec, any context word within the context window of the target word contributes to the
computation of its representation. However, in GloVe the target and context word statistics are

collected globally from the entire dataset, hence the name Global Vectors (GloVe). Therefore, unlike

Sconverts the distribution of scores into a discrete probability distribution, i.e. each probability value is in the
range [0,1] and the sum of the probability values is 1.

23

Word2vec which computes the values on local context windows, GloVe computes word vectors on
the basis of the global co-occurrence of words. To further clarify, I'll borrow the example of ice
and steam from Pennington et al. (2014), albeit with different statistics for the sake of the example.

Let’s consider the following global co-occurrence of words -

Context Words

‘ solid gas water fashion
ice 64 4 180 2
Target words
steam) 48 145 2

(Example 8.1)

The table above contains the co-occurrence of words in an arbitrary example. The context window
is irrelevant for this example, but still, let’s say that we select a context window of 5 words. Let’s
assume that only 4 words, i.e. solid, gas, water and fashion, ever appear within the context of given
two words - ice and steam. Then, the cell at the intersection of solid (column) and ice (row) tells us
that in the entire dataset, hence global, there were exactly 64 instances where solid was within the
context window of ice. That is, there were 64 instances where solid was one of the 5 words before
or after any occurrence of ice. These are the global statistics of contextual co-occurrence of words
that form the basis of GloVe.

The mathematical foundation of GloVe is based on an important observation related to the
ratio of probabilities that can be computed from the global contextual co-occurrence of words. To
understand the observation, let’s consider the probabilities calculated from the global co-occurrence

statistics given in Example 8.1 -

Probability and Ratio | k = solid k =gas k= water k= fashion
P(klice) 0.256 0.016 0.720 0.008
P(k|steam) 0.025 0.240 0.725 0.010
P(klice)/P(k|steam) 10.240 0.067 0.993 0.800

(Example 8.2)

In the table above, the P(j]i) is calculated based on the frequency of the word j within the context
of i. Let X be the matrix that represents the statistics given in Example 8.1 such that a cell X;;
represents the frequency of word j in the context of word i. Now given this, the P(j|i) = X;;/X;
where X; refers to total number of times any word appeared in the context of word i. So, for
ice, Xjee = 250 and for steam, Xgpeam = 200. As we can observe from the ratio of P(kl|ice) and
P(k|steam) given in the last row of the table, the words that relate exclusively to either ice or
steam, but not both of them, have either very large value or very small value for ratio. On the other
hand, the words that are either related to both ice or steam, or neither of them, have ratios close
to 1. The words that relate to both or neither, i.e. water and fashion, do not contribute distinctive

information with respect to the target words ice and steam. On the other hand, the words with very

24

Word embedding No. of words Dimension Training Dataset

GloVe 100d 0.4 Million 100 Wikipedia 2014 and
Gigaword 5 datasets
(~6 Billion tokens)

GloVe 300d 2.2 Million 300 Common Crawl
(~840 Billion tokens)

Word2vec Pre-trained 3 Million 300 Google News
(~100 billion tokens)

Table 2.1: A few pre-Trained Word Embeddings that are used in the experiments in this thesis

large or very small ratios, i.e. solid and gas, tell us not just that these words add distinction to the
target words but also among themselves. Thus the fundamental intuition behind GloVe is that in
comparison to raw probabilities, the ratio of co-occurrence probabilities can better encode some form
of the meaning of words. Sparing the mathematical details, it should suffice for our purpose to state
that the training objective of GloVe associates this ratio of co-occurrence probabilities with vector
differences in the word vector space. Ultimately, in this way, based on the ratio of co-occurring

probabilities, GloVe attempts to encode the word in a semantic vector space.

Though both of these algorithms, Word2vec and GloVe, can be used to compute word vectors
from scratch from a dataset, some popular word embeddings are also available that have been trained
over a large amount of data and are publicly available. These word embeddings are referred to as the
pre-trained word embeddings. The word vectors computed over a specific dataset have the benefit of
representing contextual information that is specifically pronounced in the corpus. However, having
been computed over a large dataset, the semantic word vectors in pre-trained word embeddings often
have the benefit of capturing more generalized contextual information corresponding to the words.
The semantic word vectors can be obtained from a pre-trained word embedding, or they can be
computed from scratch on a given dataset. Overall, the decision of whether to use pre-trained word
embeddings or not largely depends on the task. In the experiments discussed in the thesis, I have
used a selected few of the publicly available pre-trained word embeddings which were selected based
on their vocabulary size, the training dataset, and the method used to compute the word vectors.
Table 2.1 shows the size and training dataset details of a few of the pre-trained word embeddings
trained using either GloVe® or Word2vec” model.

In this section, we started the discussion with the representation of words. However, instead of
words, the focal point of this thesis is the representation of documents. The word representations
discussed in this section provide the necessary background for the discussion of document repre-
sentation methods in the rest of the thesis. Starting next section, we’ll discuss the representation
of documents in the form of a vector using the semantic word vectors that we’ve discussed in this

section.

6Downloadable from https://nlp.stanford.edu/projects/glove/ - GloVe 100d, GloVe 300d
"Downloadable from https://code.google.com/archive/p/word2vec/ - Word2vec Pre-trained

25

https://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://code.google.com/archive/p/word2vec/
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing

2.3.2 Aggregating Word Vectors

Unweighted or simple average - One of the easiest and widely used ways to obtain a vector
representation of a document from semantic word vectors is by averaging them. The average of
semantic word vectors is obtained by averaging the components along each axis for all the words in
the document. In a supervised setting, this representation is often used in combination with a neural
network (De Boom et al., 2016). However, this thesis focuses on the unsupervised representation of
documents. So let’s take an example of how the document vector is generated from a simple average
of word vectors. To start with, let us assume the 4-dimensional word vectors given below for each

of the three words I, love and reading -

I 0.17 | 0.33 | 0.76 | 0.54

love 0.82 | 0.19 | 0.28 | 0.47

reading | 0.51 | 0.42 | 0.16 | 0.74

(Example 9.1)

Given these word vectors, the sentence I love reading can be represented as a simple axis-wise
average of components of all the word vectors. So, for example, the component along the first axis
of the document vector will be the average of components along the first axis for each word in the
document, i.e. (0.17 +0.82 4 0.51)/3 = 0.50. Similarly, the complete document vector will be as

given below -

I love reading | 0.50 | 0.31 | 0.40 | 0.58

(Example 9.2)

The document vector so obtained represents the document as a vector in the same semantic
space as the word vectors. This representation in Example 9.2 is a result of an unweighted average,

i.e. each word vector is equally weighted in the averaging.

TF-iDF weighted average - To add some weight to the contribution of word vectors in the
averaged vector that represents the document, a weighted averaging of the word vectors can also
be applied. For example, the component-wise averaging of the word vectors could be weighted by
the TF-iDF score of the word in the corpus. Let’s say that the TF-iDF scores for the words I, love,
reading are 0.1, 0.5 and 0.2, respectively. Then for a TF-iDF weighted average of word vectors, each
word vector will be weighted by its TF-iDF score and then the weighted components are averaged
for each axis. So, for example, the component along the first axis of the document vector will be
the TF-iDF weighted average of components along the first axis for each word in the document, i.e.
(0.17x0.140.82 x 0.5+0.51 x 0.2)/3 = 0.18. The complete document vector as a result of TF-iDF

weighted averaging of word vectors is given below -

I love reading | 0.18 | 0.07 | 0.08 | 0.15 (Ezample 9.3)

26

Smooth Inverse Frequency weighted average - Another weighting scheme presented in
Arora et al. (2017)%, called Smooth Inverse Frequency (SIF), applies a smoothened inverse fre-
quency weighted averaging on the word vectors. After weighted averaging, it applies an additional
smoothening step of removing principal components. Therefore, the process of generating document
vectors by the process described in Arora et al. (2017) is a two-step process.

First of all, the weighted averages of the word vectors are obtained. For averaging the components

of word vectors each word vector is weighted according to the following weighting scheme -

a
f(w) = m (2.6)
where, f(w) is the weight for the word vector of word w, P(w) is the probability of word w in the
entire corpus and a is a term used for smoothening the inverse frequency”. The probability P(w) is
calculated based on the frequency of the word w in the dataset. The more frequent the word w will
be in the corpus, the smaller will be its weight f(w), and therefore its contribution in the averaged
word vectors. This is expected to attenuate the contribution of some frequent words that appear
frequently regardless of the document, like stopwords.

The second step in SIF methodology applies an additional smoothening step to the averaged word
vector obtained in the previous step. Arora et al. (2017) observe that the averaged vector seemed to
have huge components along semantically meaningless axes. Therefore, Arora et al. (2017) proposed
an additional smoothening of the document vector which removes the projections of the averaged
vector on the first singular vector. Arora et al. (2017) expect it to correct the document vector
with respect to the most frequent text that is often related to syntax. The vector obtained after
the correction is considered the final document vector by SIF methodology. Arora et al. (2017)
report that Smooth Inverse Frequency weighted averaging outperforms the unweighted and TF-iDF
weighted averaging of the word vectors in most of the Semantic Textual Similarity tasks (2012-2015)
(Agirre et al. (2012); Agirre et al. (2013); Agirre et al. (2014); Agirre et al. (2015))

In this section, we have discussed various methods that employ weighted or unweighted averaging
of semantic word vectors for representing documents. However, regardless of whether it is weighted
or unweighted, these methods average the word vectors to represent documents in the form of a
vector. The semantic word vectors place the words in a semantic vector space and the components
play an important role in this placement. All the components across all the axes together place
the word in this vector space. However, by averaging the components of the word vectors, we lose
the placement of individual words and thereby, much of the meaning encoded in that placement of
words. Therefore, while the averaging of semantic word vectors can represent documents, there may

be better alternatives.

8GitHub repository - https://github.com/PrincetonML/SIF
9In Arora et al. (2017), a is called weight parameter.

27

https://github.com/PrincetonML/SIF

Classifier [on | Classifier [on |

Average/Concatenate Average/Concatenate

N N

o
Word Matrix Paragraph Matrix----- > *
the cat sat

Paragraph the cat sat

id
(a) A framework for computing word vec- (b) A framework for computing the paragraph vector
tors where the next word in the sequence using distributed memory model where the the next
is predicted on the basis of the concatena- word in the sequence is predicted on the basis of the
tion or average of the preceding words in concatenation or average of the preceding words in the
the sequence. sequence as well as a paragraph vector.

Figure 2.3: Analogy drawn by Le et al. (2014) between the framework used for computing word
representations (Bengio et al., 2003) and document representations using Distributed Memory Ar-
chitecture of Doc2vec.

2.4 Doc2vec

Inspired by the neural network models for word vectors, a similar architecture for learning document
vectors was proposed by Le et al. (2014). Owing probably to the basis of inspiration behind the
model and the subsequent resemblance with Word2vec, along with the model’s objective of converting
documents to vectors, the approach has come to be popularly known as Doc2vec. The authors have
used the term “paragraph” to refer to a document that is possibly made up of more than one
sentence, and therefore provide a model for computing paragraph vector (PV).

In the Doc2vec model, the word vectors are computed similar to Word2vec and the paragraph
vector is computed along with the word vectors (Figure 2.3b). But unlike Word2vec, though the
word vectors are shared across all the training samples, the paragraph vectors are shared only for
the training samples from the same paragraph (as shown in Figure 2.3). Therefore, the word vectors
are shared across the contexts sampled from all paragraphs, but the paragraph vectors are limited
to the contexts sampled from the same paragraph. This allows for any difference in the prediction
that is specific to the paragraph to be backpropagated and encoded in the paragraph vector. To
this end, Le et al. (2014) defines two architectures - Distributed Memory (PV-DM) and Distributed
Bag of Words (PV-DBOW).

The architecture referred to as the Distributed Memory (PV-DM) is similar to the sequential
language modeling for word vectors in Bengio et al. (2003). In the neural network model proposed
for words in Bengio et al. (2003), the next word in a sequence is predicted on the basis of concate-
nation/average of the word vectors of the preceding words in the sequence. In Distributed Memory
(PV-DM) architecture as well, the next word in the sequence is predicted based on the concatena-
tion/average of the word vectors of the preceding words in the sequence and an additional paragraph
vector. This analogy drawn by the authors is given in Figure 2.3 using their original example. Un-
like the Distributed Memory (PV-DM) architecture, the Distributed Bag of Words (PV-DBOW)

28

architecture disregards the sequence of words. Despite its name PV-DBOW bears more similarity to
Skip-gram Word2vec instead of CBOW Word2vec. Just like Skip-gram architecture for Word2vec,
in Distributed Bag of Words (PV-DBOW) architecture, the context words are to be predicted given
the paragraph vector instead. Overall, Doc2vec results in dense'’ vector representations of low
dimensionality for the documents.

Doc2vec is the state-of-art for representing documents in an unsupervised way. In comparison
to DT-VSM, Doc2vec is able to represent the documents in a vector space of lower dimension while
encoding the similarity of documents in terms of proximity in the Doc2vec vector space. However,
except for the similarity indicated by proximity, the Doc2vec vectors are difficult to interpret as
there is no way, yet, to make sense of the axes of its vector space, i.e. the features of the document
vectors (Kim et al., 2017). This reduces the room for further analysis and the possibility of adapting
the representation of documents based on the task, which can be significant, especially when the
task is to be performed in an unsupervised fashion. Ultimately, in comparison to words, documents
are much more complex. Therefore, a vector representation of documents that can be easily inter-
preted without compromising on the performance or the quality of representation, is definitely worth
investigating. Such a technique is discussed in the next chapter and lies at the center of discussion

in this thesis.

10Quoting Jurafsky et al. (2021), dense vector implies that “instead of vector entries being sparse, mostly-zero counts
or functions of counts, the values will be real-valued numbers that can be negative”

29

Chapter 3

Word Clusters based Document
Embedding (WcDe)

In the previous chapter, we’ve discussed various methods that can be used to represent the docu-
ments. But as we saw in Example 2.1, in Document-Term Association Vector each word is repre-
sented by a separate axis and the only association between the words can be defined in terms of
documents they appear in. But a word is more than that - it’s a concept. It holds a meaning,
rather, multiple meanings, within a language that can stand on its own irrespective of the docu-
ment. Latent Semantic Analysis attempts to group similar words under an artificial concept based
on their document co-occurrence and represent the document in terms of these artificial concepts.
But a word is understood less by the documents it appears in and more by the immediate context
it is used in (Socher, 2015). Moreover, there can be many words with very similar meanings and
there can be many meanings to a single word. Therefore, some words are not completely unrelated,
while sometimes, the same words are being used in a completely unrelated sense. These two major
issues, termed synonymy and polysemy respectively, are discussed in Deerwester et al. (1990) re-
garding information need and information indexing. But these issues apply to the representation of
any document in general as well. Latent Semantic Analysis approach discussed in Deerwester et al.
(1990) attempts to address these issues. However, does the LSA representation of a document really
address the issues of synonymy and polysemy? This lingering question will be raised again and be
partly addressed in Chapter 5 (Section 5.3).

Word embeddings are trained over a large amount of data and result in a semantic vector repre-
sentation of the words such that the closer the words are in the word embedding vector space, the
more they are used in similar contexts, the more they share with respect to the concept they stand
for. In other words, the proximity in this vector space is proportional to the degree of similarity
of usage of the words in similar contexts, thereby, providing a measure of relatedness between the
words. On the other hand, the contextualized word embeddings can provide different word vectors
for the same word depending on the context it appears in. Therefore, we can have two representa-

tions for the same word based on the context it is used in, thereby separating unrelated senses of

30

the same word. This begs the question, will the issues of synonymy and polysemy not benefit from
using the semantic representation of word vectors while representing the documents? With that
goal in mind, we can look at several techniques that have been employed to represent documents as
a function of the semantic word vectors of the words it contains, as discussed in Chapter 2. Some
of these unsupervised techniques represent the document as a weighted /unweighted average of the
word vectors corresponding to the words in the document. However, in word vectors, the semantic
representation of a word is defined in the form of its components along a fixed number of axes. The
variation of components in the axis is what separates the contextual information for one word in the

vector space from another. Let’s consider the example below -

124 +12)

? =
%
b = —124 + —12§

(Example 10)

Example 10 above, shows two vectors a and E) The averaging of the components of these
vectors across each of its axes, & and ¢, results in the vector situated at the origin. This example
merely aims to lay an emphasis on what is lost in averaging the components across each of its axes.
In the word vectors, where the components along the axes play an important role in situating the
word in this semantic space, averaging is one way to lose much of the distinction that is created
after heavy computations over billions of documents. Weighted averaging merely leans the average
in favour of one concept over the other. The result, however, is a vector in the same space as the
words, albeit adjusted. But a document is much more complex than a word.

Two different documents can be centered around the same topics even though they don’t share

any words except the stopwords. For example, consider the two documents' below -

Document A Document B

The film sequel took three The romance thriller won all
prizes - voted top animated fea- siz of the movie awards for
ture film, top film comedy and which it was nominated.
top sequel.
(Example 11.1)

Both the documents above are discussing two movies that won awards. But except for the stopwords,
they don’t share any words that would indicate this similarity in Document-Term Association Vector
of these documents. However, there are words in the documents that are similar in meaning, e.g.
film and movie, awards and prizes. And then, there are words that are used in similar contexts
and refer to the same concept. For example, comedy, romance and thriller all refer to the genres of

movies. If we could sort the words into groups such that the words within the groups are similar

IExcerpts are originally from the BBC dataset - http://mlg.ucd.ie/datasets/bbc.html. However, these have been
slightly modified for the sake of the example.

31

http://mlg.ucd.ie/datasets/bbc.html

to each other and words from different groups are dissimilar to each other, we could analyze the
similarity of documents with respect to these groups of words. Such grouping of any entity is called
clustering of that entity. In this case, the entities are the words, i.e. we want a clustering of words.
Using clustering we can get clusters of words that are similar to each other. These word clusters
can now be used to analyze the similarity of documents with respect to these clusters instead of the
individual words. In other words, it means that instead of the exact words, both the documents

may exhibit a similarity in the word clusters they contain. For example, consider the word clusters

below -
Cluster Members Common concept
1 comedy, romance, thriller, horror, drama Genre
2 movie, movies, film, films Movie
3 prizes, prize, award, awards, merit, honour Award
4 rain, snow, thunderstorm Weather
5 one, two, three, four, six, 1, 5, 6 Numbers

(Example 11.2)

As we can see that both the documents in Example 11.1 contain different words from cluster 1,
2, 3 and 5 (Example 11.2). Therefore, it is worth investigating whether representing a document in
terms of clusters of similar words can be effective for encoding a document in a document vector
space.

Moreover, let’s say we do represent the documents in terms of clusters of similar words instead
of the words themselves. That is to say that the documents are be represented by various clusters of
words, where each cluster contains words that are very similar in their meaning or usage. This way,
similar words are mostly represented by the same cluster. Therefore, representing the documents in
terms of clusters of similar words can provide a better solution to address the issue of synonymy.
On the other hand, using contextual word embeddings different meanings of words can be clustered
in different clusters. So, the clustering of words based on their contextualized semantic word rep-
resentation can allow the same word with unrelated senses to be represented by different clusters,
thereby, addressing polysemy. Therefore, the representation of documents in terms of clusters of
similar words has the potential to address both issues. However, within the scope of this thesis,
only the synonymy is addressed and the addressal of polysemy is a work for the future. The sections
that follow will first outline the methodology, followed by a step-by-step example of the process and
ending with a slightly more detailed discussion of each component of the methodology with respect

to its role in this methodology.

3.1 Methodology

In order to represent a document in terms of a cluster of words, we need to first define the vector
space for such a document vector. The vector space for such document vectors can be defined with

these three major components -

32

Axes - Each axis represents a cluster of words. These word clusters are the same for all docu-

ments that we want to represent in a vector form.

Dimension - The size of the resulting vector will depend on the dimension of the vector space
in which the document vector is represented. Since each axis represents a cluster of words, the
dimension of this vector space indicates the number of word clusters that the document will

be represented in terms of.

Components - Each document will have a component along each axis in this vector space.

Each component represents the weight of the corresponding word cluster in that document.

Based on the definition of the vector space above, the methodology for generating document repre-

sentations in terms of word clusters can be defined as -

Word Cluster based Document Embedding (WcDe) In this thesis, Word Cluster based
Document Embedding (WeDe) refers to the document vectors that are represented in
terms of word clusters obtained by clustering semantic word vectors. In a document
vector generated by WcDe methodology, each axis represents a cluster of words and
the corresponding component represents the weight of the entire cluster of words in the

document.

(Definition 7)

The dimension and the axes are common for all the document vectors in WcDe vector space.
However, the components along each axis are individual for each document. Therefore, the process

of generating WcDe vectors happens in two parts -

Define Vector Space - Since both the dimension and axes that define the vector space depend
on the word clusters, the first step is to cluster the words. In WcDe, the word clusters are
obtained from clustering the semantic word vectors. For this purpose, semantic word vectors
are clustered using clustering methods like K-Means, Agglomerative Hierarchical Clustering,
etc. A few options for both and their respective effects on WeDe document representation will

be discussed in detail in Sections 3.3.1 and 3.3.2.

Compute Document Vector of each Document - Once the word clusters have been ob-
tained, each document is processed to attribute a weight corresponding to each word cluster.
This weight of a word cluster acts as a component along the axis that represents the word
cluster. So, if we have clustered the word vector space into, let’s say, m clusters, a document
can be represented as a vector 3 which can be defined as an m-dimensional vector, as shown

below -
=1

where, m is the number of word clusters, w; is the weight of i*" cluster in the document, ¢; is

the i*" cluster and §; is the unit vector along the axis that represents g;. Different weighting

33

schemes for WceDe that have been used in the past are discussed in detail in section 3.3.3.
But for the sake of clarity right now, let’s take a look at two simple weighting schemes based
on - binary incidence and word cluster frequency. For example, let’s say that we have to
compute cluster weight for a cluster of words given by the set {thriller, horror, comedy} in

the document? given below -

The original version of horror prequel Exorcist: The Beginning, which was dropped
by the producers over claims that it was not scary enough, is to have its world
premiere. Moreover, the low-budget horror film Boogeyman has knocked Robert
de Niro thriller Hide and Seek from the top spot at the UK box office. In Hide

and Seek, De Niro plays a widower whose daughter has a creepy imaginary friend.

Despite lukewarm reviews from critics, the film took more than the expected $18m
(£9.5m). ”The element of a real actor in a psychological thriller certainly elevated

it,” said Bruce Snyder, president of domestic distribution at 20th Century Fox.

(Exzample 12)

Then, a few simple ways to weigh the word clusters and calculate components for each axis

can be -

Binary - According to the binary weighting scheme, if any word from a cluster is present
in the document, then the weight for that word cluster is 1, else 0. So, according to
this weighting scheme, the weight of cluster {thriller, horror, comedy} for the document

given in Example 12 will be 1.

Cluster Frequency - It refers to the number of times any word from the cluster is
present in the document. Therefore, for all the words that are a part of the cluster,
the cluster frequency is the sum of frequencies of each of these words in the document.
Therefore, according to this definition, the cluster frequency based weight of cluster

{thriller, horror, comedy} for document given in Example 12 will be 2 4+ 2 = 4.

3.2 An Example

Before I discuss these steps in further technical detail, let’s walk through a simple example. For
the sake of fitting the example in and keeping it as simple as we can, let’s limit the vocabulary of
our example. Before we even take a look at the documents to be represented, let’s assume that we
want to represent our documents in terms of the word clusters of only 12 words given in Table 3.1.
The actual vocabulary of our example dataset may be more than these 12 words or maybe less than
these 12 words. But we are only concerned with these 12 words as far as the current document
representation goes. In other words, any word that is not a part of these 12 words will not count
towards representing the documents. In Table 3.1, I've also given arbitrary vector representations

to each word for the sake of the example. The similar words are placed closer in the vector space

2The text was pieced together from multiple texts from the BBC dataset - http://mlg.ucd.ie/datasets/bbc.html

34

http://mlg.ucd.ie/datasets/bbc.html

by design, to simulate the semantic word representations of the words. Figure 3.1a shows the word
vectors in a 2-dimensional vector space to provide a visualization of their placement with respect to
each other. Now that we have limited the vocabulary and defined some word vectors for the sake of

the example, let’s work on the example in detail below.

Word X y

cat 9 10
dog 11 10
pig 10 11
coOw 10 9
car -9 -10
bike -11 -10
bus -10 -11

cycle -10 -9
green 0 1

red 1 0
yellow 0 -1
blue -1 0

Table 3.1: Word vectors given for the step-by-step example of WeDe methodology

Y Y
10 + -t 10 + s
~10 0 0 ~10 g 0
< —10 + .« ~10 +
(a) A visualization of word vectors (b) A visualization of clusters of word
(indicated by black dot) vectors (indicated by colored dots

enveloped in colored circles)

Figure 3.1: A visualization of word vectors given for the step-by-step example of WecDe methodology
in 2-D (Table 3.1)

Defining Vector Space

As discussed in the Methodology above, the first step requires that we define the vector space for

WcDe document vectors. In this preparatory task, we cluster word vectors to get word clusters.

35

As we can observe in Figure 3.1a, there are 3 clear clusters of word vectors. In the next step, we
can employ a suitable clustering technique to get the word clusters. However, for the example, let’s
proceed with the assumption that we get the three clusters as shown in Figure 3.1b. In Figure 3.1b,
each colorful circle (red, blue, green) that encapsulates the word vectors, indicates a word cluster.
Based on the clusters shown in the figure, Table 3.2 shows 3 tables, each of which corresponds to a

cluster and lists the word vectors that are a part of that cluster.

Word x y Word x vy Word X y
cat 9 10 green 0 1 car -9 -10
dog 11 10 red 1 0 bike -11 -10
pig 10 11 yellow 0 -1 bus -10 -11
cow 10 9 blue -0 cycle -10 -9
(a) Cluster 1 (b) Cluster 2 (c) Cluster 3
(Red, Top Right) (Blue, Center) (Green, Bottom Left)

Table 3.2: Word clusters based on the word vectors given in Table 3.1 for the step-by-step example
of WcDe methodology

Each of these clusters form an axis in the document vector as shown below -
Cluster 1 Cluster 2 Cluster 3

q1 q2 q3

where § represents the unit vector along each axis that represents the word cluster, and the empty
cells represent the component along each axis that is yet to be determined. This is the end of the
preparatory step and the step that defines the WcDe vector space. At this stage in our example, we
have a 3-dimensional document vector space with each axis representing a cluster shown in Table 3.2.
In the next step, we will process each document to calculate weight for each word cluster for the

document.

Computing document vectors

In order to represent documents in terms of word clusters, let’s consider the 3 documents (sentences)

given below -

Document 1 I have a pig and a cow.
Document 2 There is a blue bike, a yellow cycle and a black bus.
Document 3 There is a black cat with a white dog in that red car.

(Example 13.1)

For the sake of example, let us walk through the process for Document 1 only. In order to

generate the WeDe document vector for Document 1, the document needs to be tokenized and split

36

into tokens that can be matched against word clusters. So, let’s consider the pre-processing steps

given below -

Raw Document I have a pig and a cow.
Casefolded i have a pig and a cow.
Tokenized i, have, a, pig, and, a, cow, .
Removed Special Characters i, have, a, pig, and, a, cow

(Example 13.2)

Now, we will sort the tokens obtained after the pre-processing of Document 1 (Example 13.2),
into the word clusters obtained in the previous step. After pre-processing, we can see that out of
all the tokens only two are a part of our vocabulary of 12 words, i.e. pig and cow. Therefore, only
these two will be sorted into clusters. Referring to Table 3.2, we can see that both of these tokens

belong to Cluster 1 as shown in Example 13.3 below -

Cluster 1 Cluster 2 Cluster 3

q1 q2 q3

di: I have a pig and a cow. pig, cow

(Example 13.3)

For the sake of simplicity, let’s attribute a weight based on the cluster frequency in the document.
As defined before, the cluster frequency refers to the total number of times any word from the word
cluster appeared in the document. So for Document 1, based on the tokens sorted in clusters above

(Example 13.3), the cluster frequency for each cluster is -

Cluster 1 Cluster 2 Cluster 3

q1 q2 q3

di: I have a pig and a cow. 2 0 0

(Example 13.4)

The table above gives the WcDe document vector for Document 1. Just like we calculated
cluster weights for Document 1 in the example above, we can calculate the cluster weights for all

the documents from Example 13.1 as shown below -

37

Cluster 1 Cluster 2 Cluster 3

q1 q2 a3
di: I have a pig and a cow. 2 0 0
dy: There is a blue bike, a yellow cycle and a black bus. 0 2 3
ds: There is a black cat with a white dog in that red car. 2 1 1

(Ezample 13.5)

Therefore, the WcDe vector of all the documents in Example 13.1 can be written in Cartesian

representation as given below -

- N . .
d; = 2¢1 + 0¢2 + 0ds
- . . .
dy = 0q1 + 2¢2 + 343
- . . .
ds = 2q1 + 1¢2 + 143

(Example 13.6)

3.3 Discussion of Variations and Related Works

Based on the discussion so far, there are three fundamental components in the WecDe methodology -

1. The semantic word vectors or the word embedding
2. The clustering method used for clustering the semantic word vectors
3. The weighting scheme that attributes a numerical score to the relationship between the word

cluster and the document

The first two define the WcDe vector space and the last one defines the component of each document
vector along an axis in this vector space. For each of the three components of WeDe methodology,

there are multiple options. In this section, I'll discuss a few options for each of these components.

3.3.1 Word embedding

The first step in the WeDe methodology is to define the WcDe vector space. In WeDe vector space,
each axis represents a word cluster and the word clusters are obtained by clustering semantic word
vectors. Therefore, in order to get the word clusters we first need the words to be represented in
form of semantic word vectors such that the distance between the vectors indicates the similarity
between words. In past research, many variations of the underlying methodology described in WcDe

have been employed for various tasks. In each variation, there is often a different combination

38

of the basic three components, but the underlying methodology remains the same. For example,
though the underlying methodology was the same, but with respect to semantic word vectors, Kim
et al. (2017), Qimin et al. (2015), and Mekala et al. (2017) trained word vectors using skip-gram
Word2vec for their experiments, while Seifollahi et al. (2019) used GloVe to train word vectors from
the datasets. On the other hand, instead of training word vectors, Dai et al. (2017) used pre-trained
Word2vec word embedding for obtaining word vectors. Among the various options available for
obtaining semantic word vectors, it is necessary to briefly discuss the impact of this decision with
respect to generating WcDe document vectors.

However, before we discuss the impact of semantic word vectors, we must first discuss the impact
of vocabulary. While clustering word vectors, we first need to identify the set of words that are to
be clustered. When we train semantic word vectors from scratch from the dataset at hand, the word
representations are learnt for each word in the vocabulary of the dataset. On the other hand, the
pre-trained semantic word vectors have often been trained on a large amount of data (Table 2.1).
Due to this, the vocabulary represented by the entire pre-trained word embedding often far exceeds
the vocabulary of the dataset at hand. When the vocabulary of word embedding is limited to the
vocabulary of the dataset at hand, the clustering will reflect word clusters based on the vocabulary
of our dataset only. But if the vocabulary of the pre-trained embedding is not limited to that of
the dataset, the word clusters will likely be more general rather than dataset-specific. But the
vocabulary of the entire pre-trained word embedding contains noisy gibberish strings as well as
words that are not relevant to the current dataset. This may lead to word clusters that do not serve
any purpose for representing documents from our dataset. This can increase the dimensionality in
the WcDe representation of documents and decrease the effectiveness as a representation. Therefore,
we can cluster words beyond the vocabulary of our dataset, or limit them to what is relevant to
our dataset our task. However, this decision can only be taken on a case-by-case basis. For most
cases, the vocabulary of the dataset should suffice for the task. In this thesis, instead of the entire
vocabulary of pre-trained word embedding, the experiments explore only the word clusters based on
the vocabulary of the dataset at hand. Based on the vocabulary selected in this decision, we obtain
the semantic vector representations for each word. However, there is more to consider. There are

particularly two aspects of semantic word vectors that I'll center my discussion around -

1. Static vs Contextualized word embedding

2. Pre-trained vs Trained from scratch

Static vs Contextualized word embedding In static word embedding, a fixed representation
is learnt for each word. However, in contextualized word embedding, the vector representation of
a word is different in different contexts (Section 2.3.1). In other words, the word clusters obtained
from the static word vectors will not account for different meanings of the same word. However,
since WcDe methodology creates the word clusters based on the semantic word vectors, the use of
contextualized semantic word vectors can lead to different senses of the same word being clustered in
different clusters. This can address the difference in documents that, for example, refer to different

senses of book (Example 6). However, this thesis analyses WeDe methodology with respect to static

39

semantic word vectors only, and the use of contextualized word vectors is work for the future. With
respect to word embedding, the focus of analysis in this thesis is more on the use of a word embedding

trained from scratch versus a pre-trained word embedding that we’ll discuss next.

Pre-trained vs Trained from scratch As we’ve discussed in Section 2.3.1, the semantic word
vectors can be either trained on the dataset, or they can be obtained from word embeddings that
have been intensively trained on a large amount of data. Since the pre-trained static semantic
word vectors are computed over the use of a word in multiple contexts, it may fail to account
for a word representation within a context that is specific to the dataset. That is, though the
concepts represented by a word can be consistent, the vocabulary and its use might vary significantly
depending on the intended audience and purpose of the communication. For example, the usage of
the term training in the Machine Learning literature is closer to computing, while in fitness blogs, the
term training refers to something else entirely. Therefore, training the word vectors on a selective
dataset might provide the advantage of having word vectors computed through the contexts that
are more pronounced and consistent in the dataset at hand. In this thesis, I will analyze the WcDe
document vectors with respect to both types of semantic word vectors - pre-trained and the ones

trained specifically on the dataset.

3.3.2 Clustering Techniques

The next step in the process of defining WcDe vector space is to define its axes. Since the axes in
WecDe vector space represent word cluster, the next step is to cluster the word vectors obtained in
the previous step. The choice of the clustering technique greatly impacts the performance, as we
will see in the next chapter. However, let us briefly discuss a few clustering techniques that are
relevant to the evaluation of multiple variations of WcDe that will be discussed in the next chapter.
Clustering can be distinguished on mainly two fronts - the relationship among the clusters and the
degree of participation of members in the clusters. With respect to the first front of distinction, the
clustering that clusters data with no explicit relationship between clusters is called flat clustering,
e.g. K-Means, whereas one that creates a hierarchy of clusters is known as hierarchical clustering, e.g.
Agglomerative Hierarchical Clustering (Manning et al., 2008b). The second front that distinguishes
clustering relates to full or partial membership of units (in this case words) in the cluster. If a unit
can be a member of only one cluster, the clustering is called hard clustering. However, if the unit’s
membership can be distributed in clusters, i.e. the membership is neither binary nor limited to one
cluster, then such clustering is known as soft clustering (Manning et al., 2008a). This thesis analyses
WcDe methodologies with respect to flat and hierarchical hard clustering only. In this section I'll
lightly discuss the two clustering techniques that have been used in the WcDe methodology in this
thesis - K-Means and Agglomerative Hierarchical Clustering. Let’s start with K-Means.

K-Means K-Means is a popular flat hard clustering technique. Let’s say that we want to cluster

some given points into k clusters. Then, given the points and a set of k initial cluster centers, also

called centroids, K-Means clusters the points as given below -

40

1. Assign each point to its nearest cluster center.
2. Recompute cluster centers - New cluster center coordinates are given by a mean of all the
points that are a member of the cluster.

3. Repeat steps 1-2 unless -

e No points have changed clusters in step 1 since the last iteration, or

¢ We’ve reached a pre-decided upper limit for the number of iterations, or

e The objective function that we are trying to minimize falls below some pre-decided thresh-
old. The objective function in the case of K-Means is called residual sum of squares (RSS).
RSS for K-Means is defined as the sum of squares of distance of each point from its as-
signed cluster center. It indicates how well the cluster center represents its members,
and falling below the pre-decided threshold indicates that we’ve minimized the objective

function enough (Manning et al., 2008a).

K-Means is simple and efficient clustering algorithm that is guaranteed to find local optimums
(Manning et al., 2008a; Arthur et al., 2007). However, in some cases, it can optimize locally instead
of globally and this significantly impacts the performance of clustering. That said, whether K-Means
optimizes locally or globally can depend largely on the selection of initial cluster centers. And this
is why the selection of initial cluster centers is crucial to the performance of K-Means. The initial
cluster centers can be random points in the vector space, or they can be selected out of the set of
points to be clustered. Instead of randomly selecting k& points we can use the process of selection
defined in Arthur et al. (2007). Arthur et al. (2007) define K-Means++ which provides a more
efficient way to select the initial cluster centers. Please note here that K-Means++ improves only on
the initial cluster selection of K-Means, the rest of the process remains the same as K-Means. In
K-Means++ the first cluster center is selected randomly from the given points that are to be clustered
(Arthur et al., 2007). Thereafter, next cluster is selected based on a probability of its contribution
in the objective function®, i.e. RSS. By initializing the cluster centers so, K-Means++ significantly
outperforms K-Means in terms of both - minimization of the objective function and the time taken
for the algorithms to converge to an optimum (Arthur et al., 2007). Another step often taken to
avoid local optimums in K-Means clustering, is to cluster multiple times with different initial cluster
centers each time. In the end, the clustering with minimum RSS is selected. The K-Means clustering
used in this thesis will use both K-Means++ initialization and multiple instantiations of K-Means in

hopes to obtain global optimization of the clustering.

Agglomerative Hierarchical Clustering Hierarchical clustering is also another hard clustering
technique. Unlike K-Means, which creates flat clusters, hierarchical clustering creates a hierarchy
of clusters, as the name suggests. The approach to hierarchical clustering can be either top-down
or bottom-up. The top-down hierarchical clustering starts with a cluster with all the points, and
generates the hierarchy of clusters by dividing, and therefore is known as divisive hierarchical clus-

tering. On the other hand, the bottom-up hierarchical clustering starts with single clusters and

3In Arthur et al., 2007, the objective function is referred to as potential of the clustering

41

agglomerates® as we go up and is therefore called Agglomerative Hierarchical Clustering (AHC). In
Agglomerative Hierarchical Clustering, the clusters are merged on the basis of a merge criterion that
we’ll discuss soon. But for laying out the algorithm, let’s assume that the clusters are merged on the
basis of the cosine similarity of their centroids. Initially, in Agglomerative Hierarchical Clustering,
each data point is considered a singleton cluster. Then, the similarity between each pair of singleton

clusters is calculated and the rest of the process is as follows -

1. Merge a pair of clusters - In this step, the pair of clusters that is next according to the
merge criteria is merged. Assuming that we are merging according to the cosine similarity of
centroids, the pair with the highest cosine similarity, i.e. least cosine distance, is selected and
merged.

2. Calculate similarity of the merged cluster with other clusters - In this step, we apply
the merge criterion to the newly merged cluster. This adds the merged cluster at its rightful
place in the next-to-be-merged list. Since we are assuming that the merge criteria is cosine
similarity of centroids, in this step we calculate the similarity of the merged cluster with the
rest of the clusters.

3. Repeat steps 1-2 until all clusters are merged.

This merging of clusters creates a hierarchy of clusters which is often depicted in a dendrogram as
shown in Figure 3.2. Each horizontal line in the dendrogram shows a merge and its corresponding
value at the y-axis indicates the cosine similarity value at which the clusters are merged as one. This
similarity value where two clusters are merged is called the combination similarity of the merged
cluster. For example, in Figure 3.2, the combination similarity for horror and thriller is 0.8. To get
flat clusters from hierarchical clustering, we can cut the dendrogram at any value. So, if we want the
minimum distance between the clusters to be, let’s say 0.3, then that means that the clusters with
a similarity of more than 0.3 should be merged. This cut-off value where we cut the dendrogram is
also known as distance threshold. Therefore, as we can see in Figure 3.2, a distance threshold of 0.3

leads to 2 clusters - {win, match} and {horror, thriller, comedy}.

0.0 A
0.2
E § 0.4 - 4‘;
= =
7 < 0.6
0.8 ’7*‘
1.0- win match horror thriller comedy

Figure 3.2: An example of a dendrogram of Agglomerative Hierarchical Clustering

4merges

42

As mentioned before, in order to merge clusters (step 1), we need to determine a merge criterion,
i.e. a criterion that will allow us to decide which clusters to merge next. We started off by assuming
that the merge criterion here refers to a similarity - particularly, cosine similarity of the centroids.
However, this is just one way to define similarity between the clusters. There are several other ways.
Figure 3.3 shows an example of two clusters with two members each. A solid line between two points
indicates a link, which indicates that the similarity between these points defines the similarity of the
clusters. In the case of multiple links, an average of the similarity of all the linked pairs defines the
similarity of clusters. That said, the similarity is only one of such criteria, however, it is not the only

criteria. Let’s discuss a few merge criteria that can be used to select clusters to merge (Figure 3.3)

QO SO

) Maximum Similarity) Minimum Similarity
) Centroid Similarity d) Average Similarity

Figure 3.3: Various cluster similarity merge criteria for Agglomerative Hierarchical Clustering

Maximum similarity - The mazimum similarity between two clusters means minimum dis-
tance between the clusters. This is calculated by selecting 1 point from each cluster such that
the pair is closest to each other, i.e. the cosine similarity between the points is maximum
and cosine distance is minimum (Figure 3.3a). In this case, the clusters are merged in the

decreasing order of maximum similarity.

Minimum similarity - The minimum similarity between two clusters means the maximum
distance between the clusters. This is calculated by selecting 1 point from each cluster such that
the pair is farthest from each other, i.e. the cosine similarity between the points is minimum
and the cosine distance is maximum (Figure 3.3b). In the minimum similarity criterion, the
clusters are merged in the decreasing order of minimum similarity, i.e. the increasing order of
maximum distance. So, the next pair of clusters to be merged will be the one where the distance
between their farthest points is the least in comparison to other cluster pairs. In other words,
the next pair of clusters to be merged will be the one where the similarity between their most
dissimilar points is the highest in comparison to other cluster pairs. Therefore, the clusters

that are merged in the decreasing order of their similarity are also the ones that will have

43

the smallest radius when merged. That is why merging with minimum similarity will lead to
compact clusters (Manning et al., 2008¢). However, at the same time, it makes the clustering

more sensitive to outliers as well.

Centroid similarity - The centroid similarity between two clusters is given as the cosine sim-
ilarity between the centroids of two clusters. In this criterion, the clusters are merged in the
decreasing order of the similarity between their centroids. Figure 3.3c shows the example of 2
clusters with 2 points each. The centroids of these clusters are given by the red dots and the
centroid similarity is calculated between the red dots (dashed line). But the centroids them-
selves are the average of the cluster members. So, mathematically, the centroid similarity can
also be calculated as an average of similarities between all pairs of points, where each point
in the pair belongs to a different cluster. This is especially useful in comparing the centroid

similarity with average similarity, which is coming up next.

Average similarity - The average similarity between two clusters is the average of cosine sim-
ilarity between every pair of the two clusters. Unlike centroid similarity, the cosine similarity
between the pair of points belonging to the same cluster contributes to the average as well
(Figure 3.3d). Just like the rest of the similarity criteria, with average similarity as criteria

for merging, the clusters are merged in the decreasing order of their average similarity.

Minimum Variance (Ward’s Method) - So far the merge criteria above have all selected the
next pair of clusters to merge based on the similarity between the clusters. However, Ward’s
Method selects the next cluster based on the variance of the resulting merged cluster. The
variance of a cluster is defined as the average of individual distances of all the points in the
cluster from its cluster center. In terms of residual sum of squares (RSS)°, variance is the
average RSS of the merged cluster. Therefore, according to minimum varianc merge criteria,
as the name suggests, the next pair to be merged, when merged, will have the minimum

variance within the cluster in comparison to other pairs.

Related variations The selection of clustering techniques impacts the word clusters which are
the foundation of the WeDe document vector space. I have discussed 2 clustering techniques in this
section and I'll use both of them in the analysis in the upcoming chapters. However, in past various
other clustering methods have been used to cluster word vectors leading to several variations of
WcDe. Qimin et al. (2015) used K-Means for clustering the word vectors for the same underlying
WecDe methodology. However, Kim et al. (2017) used spherical K-Means to cluster semantic word
vectors. Spherical K-Means uses cosine distance instead of Euclidean distance in the calculation.
However, cosine similarity may not be appropriate for measuring similarity between the semantic

word vectors. Consider the following three points in a 2-dimensional vector space -

5object function of K-Means, discussed on page 41

44

A =2 +4) T =8i+4j

b =4i+2j

(Ezample 14)

In the above example, let 7 and J be the unit vectors along z and y axis respectively. As we can
see from the figure, the cosine similarity between a and E) is the same as cosine similarity between
@ and ?7 i.e. cosf. In semantic word vectors, the value of components along the axis plays an
important role in placing the word in the semantic vector space. However, cosine similarity only
takes the angular similarity into account. Therefore, cosine similarity may not be the best measure of
similarity between semantic word vectors. Seifollahi et al. (2019), also used spherical K-Means, albeit
adapted in a divisive hierarchical fashion, to cluster the word vectors into a hierarchy of clusters. The
divisive clustering was implemented such that a cluster is split into two if its membership exceeds a
set threshold.

Dai et al. (2017), on the other hand, adapted a flat hard clustering algorithm from the Chinese
Restaurant Problem of Dirichlet Process to cluster the word vectors (Aldous, 1985). In their adapted
clustering algorithm, every word that is processed for clustering has two choices - either be added
to an existing cluster or create a new cluster. The probability of creating a new cluster is 1/(n + 1),
where n is the number of clusters. Therefore, the first word creates a new cluster and thereafter the
probability of creating a new cluster only decreases. The process adapted by Dai et al. (2017) to

cluster the words (after the first one) is as follows -

1. Select next word to process
2. Generate random probability value - Based on this random probability value, a word is

either added to an existing cluster or to a new cluster

i. If random probability is less than the probability of creating a new cluster, then a new

cluster is created.
ii. Else the new word is added to an existing cluster with which it has the maximum cosine
similarity.

3. Repeat steps 1-2 for the next word until all the words are clustered.

According to the algorithm given in Dai et al. (2017), one part of the clustering is not even considering
the semantic word vector (condition i.) when generating new clusters. Rather, a new cluster is
generated based on a random value between 0 to 1. The part that does consider the semantic word
vector is the one where a word is added to an existing cluster (condition ii.). However, this part

(condition ii.) uses cosine similarity. As we’ve discussed, the cosine may not be the best distance

45

measure to be used for comparing semantic word vectors (Example 14). Moreover, the algorithm
works in a way that discourages the formation of new clusters. Therefore, the words are more likely
to be added to an existing cluster. This leads to the formation of a few clusters, but at the same
time, it leads to a skewed distribution of words in clusters. That is, some clusters have most of the
members while many have barely a few members. Thus the larger clusters are likely to contain a lot
of words and may not represent a coherence with respect to word similarity.

Unlike the works mentioned so far that use hard clustering, Mekala et al. (2017) applied soft
clustering on word vectors using Gaussian Mixture Models (Reynolds, 2015). Therefore, in Mekala
et al. (2017) a word could be a member of more than one cluster and to varying degrees. However, the
discussion of Gaussian Mixture Models is beyond the scope of this thesis. To conclude, though there
are various avenues of investigation of WeDe with respect to clustering algorithm, in this thesis, I am
limiting my analysis of WcDe with respect to flat hard clustering techniques, specifically, K-Means

and Agglomerative Hierarchical Clustering.

3.3.3 Weight Functions

The two steps above define the axes that form the vector space. Having defined the WcDe vector
space, each document can now be placed in this vector space. Therefore, in this step, each docu-
ment is processed to obtain a component for its document vector along each axis. This calculation of
components is the next and the last step in the process of generating WeDe vectors. In the Method-
ology section (Section 3.1), I discussed two simple weighting schemes - binary and cluster frequency
(Example 12). In binary weighting scheme, the weight or score for a word cluster in a document is 1,
if any word from the cluster appears in the document. Similarly, in the weighting scheme based on
cluster frequency, the score is the count of the number of times the document contained any word
from the cluster. According to another weighting scheme used in Seifollahi et al. (2019), the weight
of a word cluster can be calculated as a simple sum of TF-iDF score for each word in the document
that belongs to the cluster.

However, many researchers have adapted the underlying modeling of TF-iDF score for Word
Cluster based Document Embedding. The adapted function adapts the concepts of term frequency
and inverse document frequency of the word in the form of cluster frequency and inverse document
frequency of word cluster, respectively. The cluster frequency is as described above and document
frequency of word clusters refers to the number of documents that contained at least one word from
the word cluster. For example, let’s consider the same word cluster that was used in Example 12,
i.e. {thriller, horror, comedy}. Let’s also assume that the entire corpus contains only the following

three documents® for the sake of the example -

6Excerpts have been taken from the BBC dataset - http://mlg.ucd.ie/datasets/bbc.html

46

http://mlg.ucd.ie/datasets/bbc.html

Document A

Document B

Document C

The

horror prequel FEzxorcist:

original wversion of

The Beginning, which was
dropped by the producers
over claims that it was not

scary enough, is to have its

Moreover, the low-budget
horror film Boogeyman has
knocked Robert de Niro
thriller Hide and Seek from
the top spot at the UK box

office.

Preview performances of
The Glass Menagerie will
begin at New York’s Ethel
Barrymore
Thursday.

Theatre on

world premiere.
(Example 15.1)

In Example 15.1 above, the document frequency of word cluster {thriller, horror, comedy} is
2 since no word from this word cluster appears in Document C. Similarly the cluster frequency for
Document A, B and C is 1, 2 and 0, respectively. Just like TF-iDF, now these cluster frequencies
and the document frequency of the word cluster can be used to compute, as Kim et al. (2017) called

it, the Cluster Frequency-Inverse Document Frequency (CF-iDF) score of the word cluster.

Cluster Frequency-Inverse Document Frequency (CF-iDF) It is a weighting scheme adapted
from the TF-iDF weighting scheme that, given a set of documents, calculates the rel-
evance of a word cluster in a document. In the Cluster Frequency-Inverse Document
Frequency weighting scheme, the word cluster and document association score is formu-
lated in terms of cluster frequency (in the document) and inverse document frequency

of the word cluster (in the entire set of documents).

(Definition 8)

A few sections ago, in Equation (3.1), a WeDe document vector 3 was defined as an m-dimensional

vector, as shown below -

m
d= Z w;ig;
i—1

where, m is the number of word clusters, w; is the weight of i** cluster in the document, ¢; is the i*"
cluster and ¢; is the unit vector along the axis that represents g;. So based on the Equation (3.1),
let’s indicate the weight of i** cluster, i.e. g;, in the document d by w; 4. Then the cluster weight

wj g in terms of CF-iDF score can be given as -
Wi,d = cf-idf, iyd

where, cf-idfy, ¢ is the CF-iDF score of cluster ¢; in document d. Now, similar to TF-iDF, the

CF-iDF score can be formulated as -

47

Wi .d = cf-idf, iyd

= of,, 4 X idf,,

N
= cfy, q X log (df) (3.2)
i

where cfy, ¢ represents the frequency of the cluster ¢; in document d and df,, represents the docu-
ment frequency of word cluster ¢;. Here, the occurrence of a word cluster in the document can be
understood to be the same as the occurrence of any word from the word cluster in the document.
Therefore, the document frequency df,, of cluster g; is basically the count of documents where any
word from the word cluster ¢; appears. Similarly, the frequency of word cluster ¢; in document d,
i.e. cfy, q, is the count of occurrences of any word from the cluster ¢; in the document d. Based on
this understanding, the cluster frequency cf,, 4 can also be given in terms of term frequency tf; 4 as

given below -

cfgia = Z tha (3.3)

teq;

To further understand the formulation of CF-iDF, let’s continuing working the Example 15.1
and calculate the CF-iDF score of the same word cluster g, = {thriller, horror, comedy} in each
document that is given in the example. Since we are considering a corpus of only these three
documents, i.e. A, B, and C, the total number of documents N = 3. The cluster frequency (cf),
document frequency of the word cluster (df), and the CF-iDF score (cf-idf) for each document is
as given below in Example 15.2. Please note that in the example, for the calculations involving

logarithm, I have used the decimal logarithm (log;,) as indicated in the table -

ooa dly, gy () cfidly,.q

da: The original version of horror prequel Ez- 1 2 0.176 0.176
orcist: The Beginning, which was dropped
by the producers over claims that it was not

scary enough, is to have its world premiere.

dp: Moreover, the low-budget horror film 2 2 0.176 0.352
Boogeyman has knocked Robert de Niro
thriller Hide and Seek from the top spot
at the UK box office.

dg: Preview performances of The Glass 0 2 0.176 0
Menagerie will begin at New York’s Ethel

Barrymore Theatre on Thursday.

(Example 15.2)

48

In Qimin et al. (2015), after computing the weights for each feature, the document vector was
length normalized as given in Equation (3.4). The length normalized form of document vector from

Equation (3.1) is given below as -

— Z S N (3.4)

In this section we’'ve seen that the WcDe methodology can be implemented with a variety of
options at each step. At each step an option can be selected depending on the problem. In the
upcoming chapters, I will not only compare this methodology against the other document repre-
sentation methods discussed in Chapter 2, but also among its several variations. Moreover, we
will further explore, evaluate and discuss this methodology and the subsequent results in detail in
Chapters 4 and 5.

49

Chapter 4

Evaluation & Quantitative Analysis

In the previous chapters, we’ve discussed various methods to represent the documents. But, how do
we evaluate these techniques? How do we determine if one document vector is a better representation
of the document than the other? In the beginning of this chapter, we will first create the foundation
of our evaluation and this will pave way for the results that will be discussed and analyzed thereafter.

So, what should be the criteria for determining which document representation is better in com-
parison? The answer to that depends on what it is that we expect the document vector to represent.
When we represent a word in a semantic vector space, it is expected that similar words should
reflect that similarity in the vector space in terms of proximity. Using an analogous hypothesis for
documents, we can say that similar documents should be closer in the vector space as well. How-
ever, unlike words, the similarity of documents can be much more subjective. Moreover, the larger
the document, the more arguable and subjective the notion of similarity between two documents
becomes. But the takeaway for evaluation is that a better representation of the documents in the
vector space should better map their relative similarities and dissimilarities in the document vector
space. The similarity itself can be at different levels - all the way from being identical to only sharing
a theme. For the evaluation in this thesis, the similarity between the documents is assessed only at
a topical level.

Therefore, we expect that the distance between the document vectors should reflect the relative
topical similarity. That is, the document vectors are expected to be closer in vector space if they
belong to the same topic. But the difference between some topics can be more apparent than the
others. For example, when comparing among a set of topics, some topics can be quite different like
Sports and Business, while some can have a common underlying theme like Rugby and Football,
which are both related to Sports (Figure 4.1). Therefore, even while evaluating document repre-
sentations on topical similarity, we can evaluate the document vectors at different levels of topical
similarity. This allows us to evaluate the document representations in terms of different levels of
topical similarity. This also demonstrates how well the representation can map the difference be-
tween the documents that differ less due to the presence of an underlying common theme. Therefore,
in my experiments, I've evaluated the document representations on specifically two levels of topical

similarity by using BBC datasets.

50

NEWS

BUSINESS ENTERTAINMENT SPORTS POLITICS TECHNOLOGY

FOOTBALL RUGBY CRICKET TENNIS ATHLETICS

Figure 4.1: Hierarchy of the topics/classes/categories in the BBC datasets

4.1 Dataset & Task

The BBC Datasets®, one of the many datasets that can used as a benchmark for machine learning
research, consist of two datasets - BBC and BBC Sport. Both the datasets contain news articles
spanning a total of 5 topical areas each (Figure 4.1). The difference between the datasets, however,
lies in the categories. While the former contains general news articles (Table 4.1a), the latter consists

of specifically sports news articles spanning 5 sub-categories of sports news (Table 4.1b).

Class Count Class Count
business 510 athletics 101
entertainment 386 cricket 124
politics 417 football 265
sport 511 rugby 147
tech 401 tennis 100
Total 2225 Total 737
(a) BBC (b) BBC Sport

Table 4.1: Class-wise frequency distribution of BBC datasets

Since these datasets contain two levels of topic distribution, these datasets can be used for
evaluating the performance of topical similarity of documents at different levels. Moreover, the role
of representation is more evident in unsupervised tasks. Therefore, to compare the representations
all by themselves, in my experiments, I've used clustering to ascertain the similarity of the document

vectors with respect to the topic of the document’s content.

IBBC Datasets are available at http://mlg.ucd.ie/datasets/bbc.html

51

http://mlg.ucd.ie/datasets/bbc.html

In document clustering, documents are grouped into a set of clusters such that there is
strong -
o Intra-cluster similarity - The documents belonging to the same cluster are very
similar
o Inter-cluster dissimilarity - The documents belonging to the different cluster

are very dissimilar
(Definition 9)

In the experiments, each document in the dataset is represented in the form of a vector using
various techniques discussed so far and then clustered into as many clusters as there are classes
in the dataset using K-Means clustering technique. The quality of clustering is then evaluated by
comparing the clusters with the categories, i.e. true class, of the documents using different metrics.
Before we dive into the results and exact parameters of the experiment, we first need to discuss the
measures for comparing the performance. In the following section, we’ll discuss a few evaluation

metrics that were used for quantitative comparisons.

4.2 Evaluation Metrics

Clustering is an unsupervised approach. Often when we cluster data, we do not know the true class a
document belongs to. Therefore, clustering can be usually evaluated with or without the knowledge
of true class labels. The approach to evaluation where the quality of clustering is determined based
on the inter-cluster and intra-cluster similarity and dissimilarity only, without the knowledge of true
labels or true class of documents, is called internal evaluation criterion. The other approach, where
we use the external judgement, true label for example, as a benchmark and evaluate on the basis of
how well it matches the clustering solution, is called external evaluation criterion. Among the metrics
that follow the external evaluation criterion, some rely on the step after clustering where each cluster
is assigned a class based on some parameter, for example, Purity, F-Measure. These metrics evaluate
the performance of clustering by mostly measuring the agreement between the assigned cluster label
and the true class label. Some other metrics evaluate on the basis of information theory and analyse
the distribution of class and cluster membership, for example, Entropy, Mutual Information etc.
Another set of metrics use a combinatorial approach where the performance is measured in terms of
keep-together or keep-separate decisions for each possible pair. A few examples of such evaluation
metrics are Rand Index and Fowlkes Measure (Rosenberg et al., 2007). In this thesis, T'll use
Normalized Mutual Information, Adjusted Rand Index and Fowlkes Mallows Index to evaluate the

clustering. These evaluation metrics are discussed in the sections that follow.

4.2.1 Mutual Information

Mutual information in clustering can be used to measure the agreement between two sets of labels.
Assuming a fundamental understanding of entropy and conditional entropy, let’s take a look at the

Figure 4.2a to understand Normalized Mutual Information as a clustering evaluation metric (Cover

52

H(X) H(Y)

(a) Individual entropies H(X) of X (left, yellow) and H(Y) of Y (right, blue)

H(X) H(Y)

HX|Y) ICXY) H(Y|X)

H(X)Y)

(b) A Diagram analogous to Venn Diagrams for sets showing additive and subtractive relationships of various
information measures associated with the correlated variables X and Y (Cover et al., 2005). The total area
contained by both circles (yellow, blue and green portions) is the joint entropy H(X,Y). The left circle
(including both yellow and green portions) represents the individual entropy H(X) of X, while the non-
intersecting part of left circle (yellow portion) indicates the conditional entropy H(X]|Y). Similarly, the
right circle (including both green and blue portions) represents the individual entropy H(Y) of Y, while
the non-intersecting part of right circle (blue portion) indicates the conditional entropy H(Y|X). The green
portion that forms the intersection of H(X) and H(Y) is the mutual information I(X;Y).

Figure 4.2

53

et al., 2005). Figure 4.2a shows the individual entropies of random variables X and Y whereas
Figure 4.2b figure shows the additive and subtractive relationships of various information measures
associated with correlated variables X and Y. In Figure 4.2a, the entire left yellow circle represents
the entropy of X, i.e. H(X) and similarly, the entire right blue circle represents the entropy of Y,
i.e. H(Y). In Figure 4.2b, the green portion where both the entropies (given by circles) overlap is
the mutual information I(X;Y). As we can infer from the figure, the Mutual Information between

X and Y can be equivalently expressed in terms of entropies below -

I(X;Y) = H(Y) — H(Y|X) (4.1)
= H(X) — HX[Y) (4.2)
= H(X,Y) — H(Y|X) — HX]|Y)

Let’s take a look at each component at the right-hand side of Equation (4.1) intuitively”. If
entropy H(Y) is regarded as a measure of uncertainty about a random variable Y, then the con-
ditional entropy H(Y|X) is a measure of uncertainty about a random variable Y despite knowing
X. Therefore the difference between total uncertainty and uncertainty despite knowing X is the
uncertainty reduced because X was known. In other words, the difference of the two quantities
can also be interpreted as information gained about Y because X was known. Similarly, looking
at Equation (4.2), we can understand that the difference of two quantities on the right hand side
indicates the information gained about X because Y was known. As we can see, this Information
Gain is mutual and therefore corroborates with the term Mutual Information.

In the evaluation of clustering, the Mutual Information score is popularly used to measure the
agreement between two assignments. So far, we’ve looked at it in terms of entropy. However, it
can also be formulated in terms of probabilities and set cardinalities. Let N be the total number
of documents, C = {¢1, ¢a, ¢3, ..., ¢y } be the set of classes and = {wy,ws,ws, ...,w,} be the set of
clusters where, ¢; and w; are the sets of all documents belonging to class ¢ and cluster j, respectively.
Equation (4.3) formulates the Mutual Information between the true class labels C and cluster as-
signments () with the probabilities instead of entropies. For evaluation of clustering, however, the
probabilities in Equation (4.3) can be further estimated in terms of set cardinalities using maximum

likelihood estimates® as shown in Equation (4.4) (Manning et al., 2008a) -

) — Viog LW 0es)
I(;C) = zk:zj:P(wk Ne¢j)log Plon) P(e) (4.3)
B lwe N ey o Nlwg N ¢
D2 ok vy 4

Normalized Mutual Information (NMI) The Mutual information score is the maximum for a
clustering that perfectly matches the true classes. But it also increases with the number of clusters.

In particular, the Mutual Information score is also maximum if the number of clusters is of the

2intuition borrowed from Wikipedia contributors, 2021.
3each probability is estimated as the corresponding relative frequency (Manning et al., 2008a)

54

same order of magnitude as the number of data points, i.e., |2] = N. To address this, the Mutual
Information can be normalized by using a mean of the entropies of each clustering as given in
Equation (4.5) (Manning et al., 2008a).

NMI(©, €) = mean(llf(zf;l(i)H((C)) (45)
____H%C) (4.6)

[H(©?) + H(C)]/2

This is called the Normalized Mutual Information. Normalizing Mutual Information score by the
arithmetic mean of entropies ensures that NMI is always between 0 and 1. Moreover, since entropy
tends to increase with the number of clusters, it also penalizes the NMI for a large number of clusters.

In this thesis, Normalized Mutual Information is the primary metric for evaluation because it
encompasses two aspects of clustering. For a good clustering, especially given true labels, there
are at least two essential aspects of evaluation - that both the cluster and the class distribution be
highly biased and skewed. The distribution of classes in a cluster being skewed in favour of one
class indicates homogeneity of the cluster. Therefore homogeneity indicates both - the degree of
presence of the majority class as well as the absence of other classes in the cluster. Similarly, the
distribution of clusters in a class being skewed in the favour of a single cluster indicates how well a
cluster envelops the entire class, i.e. completeness of the cluster. In other words, if the distribution
of clusters is not skewed in the favour of a single cluster, then it indicates how spread out the class
is among all the clusters, and how incomplete the cluster is. Rosenberg et al., 2007 defines both of

these aspects - homogeneity and completeness - in terms of entropy (Equations (4.7) and (4.8)).

h(Q,C) 1, it HC,Q) =0 (4.7)
7 1-— H}?ﬁ(‘g), otherwise .
©.0) 1, it HC,Q)=0 (48)
c(2,C) = .
1-— Hb([((zglg), otherwise

where h(Q,C) is the Homogeneity of clusters and ¢(2,C) is the Completeness of clusters. Mathe-
matically, Mutual Information normalized with arithmetic mean is equivalent to the harmonic mean
of both Homogeneity and Completeness (Becker, 2011). Since it reflects a balance of both Homo-
geneity and Completeness, for the experiments in this thesis, Normalized Mutual Information with

arithmetic mean of entropies has been used as the primary evaluation metric.

4.2.2 Rand Index

Rand Indez, is one of the clustering evaluation metrics that take a combinatorial approach, i.e.
assess performance with respect to all possible pairs of data points. In simple words, it measures
the fraction of all the pairs, that belong to the same class and have been correctly placed together

in some cluster, and the pairs that belong to different classes and have been correctly placed in

55

separate clusters.
Therefore, following the definition given above, for N data points, the Rand Index can be defined

as given below -

RI= (%Ef) (4.9)

where, V(5 is the notation for “N choose 2”. It gives the total number of unique combinations that
we’ll get when we select only 2 out of N at a time, i.e. the total number of pairs of documents. x
is the number of pairs that have been clustered together, and in fact, also belong to the same true
class; y is the number of pairs that have been assigned different clusters, and in fact, also belong to
the different true classes. Since the Rand Index is the fraction of correct pair assignments out of all
the total possible pair assignments, this can also be considered an accuracy measure for clustering
evaluation (Manning et al., 2008a).

Another way to look at it is as the assignment of pairs to the same cluster or different clusters.
So, the assignment of a pair of similar data points to the same cluster is considered a True Positive
(TP) assignment, and similarly, the assignment of the dissimilar data points to different clusters is
considered as True Negative (TN) assignment. Therefore, False Positive (FP) assignments will be of
the pairs that were supposed to be assigned to different clusters but were assigned the same cluster
instead. Similarly, the False Negative (FN) assignments will be of the pairs that were supposed to
be assigned to the same cluster but were assigned different clusters instead. Based on the definitions

given above, the Rand Index can also be defined as -

TP + TN
I= 4.1
R TP +FP + TN + FN (4.10)
TP + TN
= 4.11
e (@.11)

As we can see above in Equation in (4.11), « from Equation (4.9), essentially represents True Positive

assignments and y essentially represents True Negative Assignments.

Adjusted Rand Index Both the Rand index and Normalized Mutual Information will hardly
ever be close to zero. Even with randomly assigned cluster labels both the evaluation metrics may
produce a low score but it is nowhere close to zero. Though both the scores are defined to always be
between 0 and 1, there isn’t an appropriate selection of clustering that will ever result in a score of
0. Hubert et al. (1985) defines an “corrected for chance” adjustment to Rand Index such that there

is a constant value (e.g. 0) under an appropriate null hypothesis -

RI — E[RI]

ARL= maxz(RI) — E[RI]

(4.12)

_ RI- E[RI]
11— E[RI]

56

where, max(RI) is the maximum Rand Index, i.e. 1, and F[RI] is the expected value of the Rand
Index. This way the Rand Index takes on the value 0 when the value of the Rand Index is equal
to the expected value of the Rand Index. This is called the Adjusted Rand Index. Since Adjusted
Rand Index is akin to accuracy in clustering evaluation, it is used as an accuracy measure of the

document clustering in this thesis.

4.2.3 Fowlkes Mallows Index

Just like Rand Index, Fowlkes Mallows Index (FMI), also takes a combinatorial approach. In terms
of the TP, TN,FP,FN assignments defined in Adjusted Rand Index, Fowlkes et al. (1983) defined

Fowlkes Mallows Index as -

TP
= /(TP + FP) - (TP + FN) (4.13)

where FM refers to the Fowlkes Mallows Index. However, from Equation (4.13), we can derive Fowlkes
Mallows Index in terms of two more relatable measures. As we discussed in (Section 4.2.2), Rand
Index gives the Accuracy of pairwise assignments. Similarly we can also define the Precision and

Recall in terms of the pairwise assignments as given below -

TP

P=—"— 4.14
TP +FP ()
TP
= 4.1
R TP +FN (4.15)

where P is the precision and R is the recall of the pairwise assignments. Based on the definition
of Precision and Recall in Equations (4.14) and (4.15), the Fowlkes Mallows Index can derived in

terms of these two measures, i.e. Precision and Recall, as given below -

TP

Gy Gy o

7 \/ TP TP
- VTP+FP TP +FN
=VP-R (4.16)

To recap, in this section (Section 4.2) T have discussed three evaluation metrics. The Normalized
Mutual Information evaluates the clustering in terms of the intersection of the clusters and the
classes. It also stands as a harmonic mean of homogeneity and completeness measure and therefore
reflects a balance of both measures. Adjusted Rand Index score indicates the accuracy of cluster
assignments and Fowlkes Mallows Index indicates the geometric mean of precision and recall of the
cluster assignments, and therefore reflects a balance of both measures. These three metrics are used

for evaluating the clustering techniques.

57

4.3 Results of Other Methods

As we discussed in the beginning, the experiments are first set up such that the documents are
represented in the form of a vector. Then, the document vectors are clustered into as many clusters
as there are classes in the dataset, i.e. 5, using K-Means clustering technique. However, before
representing the documents as a vector, the documents require preparation and some pre-processing.
In my experiments, the documents are first case-folded. Then, the documents are tokenized such
that only the alphanumeric whole words of more than 2 characters are accepted as tokens. Finally,
out of all the tokens that were extracted, the stopwords were removed. These preparation and pre-
processing steps are the same for all the methods that will be discussed in the following sections
unless specified otherwise. After documents have been tokenized, they are then converted into vector

forms using each technique®

. The vectors are then clustered using K-Means clustering algorithm
(discussed in Section 3.3.2). The cluster centers are initialized using the initialization technique of
K-Means++> and the clustering with minimum RSS° is selected out of 10 clusterings, each initialized
with different cluster centers. The results of the clustering are then evaluated based on the evaluation
metrics discussed in the previous section (Section 4.2).

For a comparative analysis, the experiments were conducted on a wide range of values for the
parameters for each of the techniques discussed in Chapters 2 and 3. The methodology discussed in
Chapter 3, in particular, can be applied with a lot of variations depending on the word embeddings
used, the algorithm used to cluster the word vectors and the weighting function used. In this section,
I will state the exact value of parameters configured for each method and discuss the performance
of each technique in comparison with the rest, particularly, in comparison with the methodology

discussed in Chapter 3.

Boxplots

In the tasks where labeled data is not available for the development of a problem solution, the
selection of parameters for an unsupervised method can be a challenge. Therefore, a method that
can consistently perform well, regardless of the parameters will be preferred. For this purpose, it is
useful to analyze the performance score distribution over the experiments. In this thesis, I will use
the box and whisker plots, more commonly known as bozplots, for such analysis since the boxplots are
used to depict the distribution of data. Therefore, before we proceed to a discussion of experiments,
let’s briefly discuss the important attributes of a boxplot. For the discussion, a horizontal boxplot

is given below -

Qo Q1 Q2 Q3 Q4

4For implementation details, please refer to Implementation Details in Appendix (Appendix D)
5The initialization of cluster centers K-Means++ is discussed in Section 3.3.2
SRSS refers to “residual sum of squares”. This has been discussed in Section 3.3.2

58

In a boxplot, a box is drawn from the 25" percentile (Q; or First quartile) to 75*® percentile (Q3
or Third quartile) of the distribution. In the horizontal boxplot above, the vertical line within the
span of the box indicates the median, i.e. 50" percentile (Q2 or Second quartile). The horizontal
lines extending out from the box are known as the whiskers. The end of the whiskers is marked
by small vertical lines or tabs. These tabs indicate the minimum and maximum values of the
distribution excluding any outliers, i.e. 0™ percentile (Qo) and 100" percentile (Q4 or Fourth
quartile) respectively. All the instances that have a lower value than Qo or higher value than Q4
are considered outliers. The outliers are shown as small circles outside the span of the box and
whiskers. Now that we’ve discussed the boxplots, let’s begin the discussion of the experiments and

their results.

4.3.1 Document-Term Vector Space Model

In the Document-Term Association Vector representation of a document, each axis represents a term
in the vocabulary. Therefore, before representing the documents as Document-Term Association
Vectors, we need to extract the terms from the documents. Therefore, the document needs to be
prepared and split into tokens. For the pre-processing, the experiments were performed both, with
and without stemming”. For stemming Porter’s stemming algorithm was used. The terms obtained
after pre-processing the dataset can be used to represent the documents.

However, as we’ve discussed before, all the terms are not equally relevant. Therefore, it is
preferred to select the terms that make the most effective features for representing the document.
Document frequency is a good indicator of the relevance of the term in the corpus. The terms
that are too frequent in the documents, e.g. stopwords, don’t contribute to distinguishing the
documents. Similarly, the terms that are too rare and have appeared, let’s say, no more than once in
the entire dataset, are also not contributing to the representation of most of the documents. So, in
the experiments, the terms are selected on the basis of their document frequency. The experiments
were conducted with all the terms as well as with strict and lenient document frequency ranges.
In the strict document frequency range, the terms that appear in at least 5% of the documents
and no more than 85% of the documents are retained, and the rest are removed. Similarly, in the
lenient document frequency range, the terms that appear in at least 1% of the documents and no
more than 95% of the documents are retained, the rest are removed. The restriction on document
frequency also reduces the dimensionality and sparsity of the Document-Term Association Vectors
which improves the quality of document vectors and subsequently, the performance of clustering.

Table 4.2 lists all the parameters and their various values that were used to create Document-
Term Association Vectors during the DT-VSM experiments. After obtaining the terms, the score was
calculated for each term in the document according to the Document-Term association parameter
of the experiment. The document vector was obtained by representing each term as an axis and
its corresponding score, the component along the axis. Finally, the document vectors thus obtained
were length normalized.

Figure 4.3 shows the Normalized Mutual Information score distribution of the experiments in

“reduces the words to their root forms

59

Parameter Description Values

Document-term association ~ The association function for Binary, TF-iDF (Smoothened
Document-Term Association IDF)
Vector.

Vector Size

Numerical value of the upper
limit on the size of resulting vec-
tor where the terms are selected
in the decreasing order of their
frequency.

No upper limit, 500, 1000, 1500,
2000, 2500, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000

Document Frequency Range

The range of document fre-
quency for terms.

None, Strict: 5% - 80% , Re-
laxed: 1% - 95%

Stemming

Stemming terms using porter
stemmer.

True, False

Table 4.2: Various parameters and their values used for generating Document-Term Association

Vectors of documents.

Score

1.0i
0.8-:
0.6':
04-
0.2-:

0.0 -

BBC

Dataset

BBC Sport

Figure 4.3: Boxplots depicting the distribution of Normalized Mutual Information scores over DT-
VSM experiments on each dataset.

60

both datasets and Table 4.9 lists the exact Normalized Mutual Information score values correspond-
ing to each quartiles of the boxplot. Please note that since I will mostly discuss the performance with
respect to Normalized Mutual Information, only the boxplots for Normalized Mutual Information
are shown in this chapter. However, the boxplots of all the performance measures for all the meth-
ods are available for reference in Appendix (Appendix A). In the Figure 4.3, the third quartile (Q3)
for Normalized Mutual Information is more than 85% for both datasets (Table 4.9). This indicates
that more than 25% of all the experiments performed with a Normalized Mutual Information score
of at least 85%. Moreover, Considering that the highest Normalized Mutual Information score any
method achieved on BBC and BBC Sport dataset is 89% and 92% respectively, Q3 value of 85%
belonging to the DT-VSM experiments is very close to the best performance scores (Table 4.13). Tt
is important to note here that the high values of performance indicate better clustering which in turn
indicates better vector representation of the documents. Therefore, the consistency of performance
for one-fourth of all experiments indicates that more than 25% of all the experiments generated doc-
ument representations that were able to represent the similarity and distinction of the data points
on both topical levels of news data - general and specific. Moreover, the second quartile (Q2) being
greater than 81% for both datasets indicates that half of the experiments generated satisfactory
representations for both topical levels. This means that even with an uninformed selection of the
parameters, half of the time the performance with respect to Normalized Mutual Information score
is likely to be more than 80%.

4.3.2 Latent Semantic Analysis

As we’ve discussed in Section 2.2.1, in order to generate LSA vectors for the documents, first we
need a term-document association data. For the term-document association data, the TF-iDF
association was used. As discussed in Section 2.2.1, each column of the term-document association
matrix is a document Document-Term Association Vector. Therefore, the process of building a term-
document association matrix is the process of obtaining Document-Term Association Vector for each
document. So, for the TF-iDF Document-Term Association Vector, the experiments were conducted
over the same parameters values as DT-VSM experiments in the section before (Table 4.2), except for
Document-Term association which was fixed to be TF-iDF for this method. Just like for DT-VSM
experiments, the TF-iDF Document-Term Association Vector for LSA experiments were finally
length normalized. The TF-iDF term by document matrix is then decomposed using Truncated
Singular-Value Decomposition to give term-topic and document-topic matrices (Section 2.2.1). The
document-topic matrix obtained after decomposition provides the representation of each document in
a space of lower dimension. Table 4.3 lists all the parameters that were used in experiments conducted
with the document vectors generated using Latent Semantic Analysis. The LSA Document-Topic
Association Vectors obtained after the above process are then clustered and evaluated.

Figure 4.4 shows the distribution of Normalized Mutual Information score over all the experi-
ments with LSA Document-Topic Association Vectors. As we can see from the boxplot, the NMI
score corresponding to each quartile of BBC Sport dataset is higher that of BBC dataset. This
indicates that the performance of LSA is better in the BBC Sport dataset than in BBC dataset.

61

Parameter

Description

Values

Dimension of Topical Space

The number of topical axes to re-
duce the original document vec-
tor to.

3,4,5,6,7,8,9,10, 12, 14, 16,
18, 20, 30, 50, 70, 90, 110, 130,
150, 200, 300, 400, 500

Vector Size

Numerical value of the upper
limit on the size of the result-
ing vector where the terms are
selected in the decreasing order
of their frequency.

No upper limit, 500, 1000, 1500,
2000, 2500, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000

Document Frequency Range

The range of document fre-
quency for terms.

None, Strict: 5% - 80% , Re-
laxed: 1% - 95%

Stemming

Stemming terms using porter
stemimer.

True, False

Document-term association

The association function for
Document-Term Association
Vector.

TF-iDF (Smoothened IDF)

Length Normalization

Whether the document vectors
are length normalized or not

True

Table 4.3: Various parameters and their values used for Latent Semantic Analysis representation of

documents

1.0-
0.8 -

0.6 -

Score

0.4 -
0.2-

0.0 -

BBC

Dataset

BBC Sport

Figure 4.4: Boxplots depicting the distribution of Normalized Mutual Information scores over the

LSA experiments on each dataset.

62

Furthermore, Q1 = 79% of LSA experiments for the BBC Sport dataset indicates that nearly 75%
of all the LSA experiments on BBC Sport dataset performed with NMI score of 79% or more (Ta-
ble 4.9b). It is also worth noting from the figure that the median NMI score for BBC Sport dataset,
i.e. 83%, is much higher than that of BBC dataset, i.e. 67%. When comparing with Document-Term
Association Vectors, LSA is outperformed at every quartile in the BBC dataset (Table 4.9a). In
terms of the best performance, or the maximum score, Document-Term Association Vectors outper-
form LSA vectors by a margin of 3% on the BBC dataset. However, on the BBC Sport dataset both
the methods stand shoulder to shoulder with NMI score of 91% (Table 4.9).

4.3.3 Latent Dirichlet Allocation

As discussed in Section 2.2.2; in order to represent documents, Latent Dirichlet Allocation initializes

two distributions -

1. Distribution of topics in documents, 8,4 ~ Dirichlet(«), and,

2. Distribution of terms in topics, 85 ~ Dirichlet(n),

where, a and 7 are Dirichlet priors from which the two distributions are drawn (Hoffman et al.,

2010). For simplicity, I've used symmetric priors such that

a=n=g

where K refers to the number of topics a documents is to be represented in. Based on these
distributions and the observed occurrence of terms in the documents, the conditional probability of
topics given the terms in the documents is computed. In the experiments, the occurrence of the terms
in the documents is observed as a binary variable. It means that the observed association between
the documents and the term records only the presence of the term in the document. The remaining

parameters that were used in Latent Dirichlet Allocation experiments are listed in Table 4.4.

Parameter Description Values

K The number of topics axes tore- 3,4, 5,6, 7, 8,9, 10, 12, 14, 16,
duce the original document vec- 18, 20, 30, 50, 70, 90, 110, 130,
tor to. 150, 200, 300, 400, 500

Vector Size Numerical value of the upper No upper limit, 500, 1000, 1500,

limit on the size of the result- 2000, 2500, 3000, 4000, 5000,
ing vector where the terms are 6000, 7000, 8000, 9000, 10000
selected in the decreasing order

of their frequency.

Document Frequency Range The range of document fre- None, Strict: 5% - 80% , Re-
quency for terms. laxed: 1% - 95%

Table 4.4: Various parameters and their values used for Latent Dirichlet Allocation representation
of documents

63

1.0 -
0.8 -

0.6 -

Score

0.4 -
0.2-

0.0 -

| ' ' ' ' 1 '
BBC BBC Sport

Dataset

Figure 4.5: Boxplots depicting the distribution of Normalized Mutual Information scores over the
LDA experiments on each dataset.

Figure 4.5 depicts the distribution of Normalized Mutual Information scores over the experiments
using LDA Document-Topic Association Vectors. First of all, quite a contrast from LSA, which
performs better on the BBC Sport dataset than on the BBC dataset, we can see that LDA performs
better on the BBC dataset in comparison to the BBC Sport dataset. From Table 4.9, we can quickly
observe that the performance of LDA varies widely for both datasets. On the BBC dataset, it goes
as low as 1% and as high as 85%. Similarly, on the BBC Sport dataset, the performance goes as low
2% and as high as 70%. This range is quite large, especially in comparison to LSA and DT-VSM. In
comparison to the minimum score of 1% in the case of LDA, the lowest NMI score on either dataset
for LSA and DT-VSM is 48% and 60% respectively. Overall, such variability and range of scores are
undesirable for unsupervised methods, because there is usually no way of selecting the parameters
that will perform the best. As the concluding remark, it should be noted that LDA is outperformed
by both LSA and DT-VSM, on almost every quartile, on both of the datasets.

4.3.4 Unweighted Average of Word Vectors

In order to represent the documents as a simple average of the semantic word vectors, we first need
word vectors for all the words in a document. The document is then represented by an average of
these word vectors as described in Section 2.3.2. For this method, pre-trained embeddings listed
in Table 2.1 were used to represent the documents. In this chapter, the experiments using an
unweighted average of word vectors are collectively referred to as WE_AVG in the plots and tables.
First of all, let’s note here that the boxplots of the experiments, in this case, are not varying over

a large range of scores, regardless of the pre-trained word embedding. The range of NMI scores is

64

1.0-
0.8 -

0.6 -

Score

0.4 -
0.2-

0.0 -

BBC BBC Sport

Dataset

Figure 4.6: Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_AVG experiments on each dataset.

Dataset Pre-trained Word Embedding NMI ARI FMI

GloVe 300d 0.74 0.76 0.81
BBC Word2vec Pre-trained 0.76 0.75 0.8
GloVe 100d 0.77 0.78 0.82
GloVe 300d 0.28 0.2 0.4
BBC Sport Word2vec Pre-trained 0.34 0.27 045
GloVe 100d 0.39 0.28 047

Table 4.5: The results of document clustering using unweighted average of semantic word vectors to
represent the documents

65

from 74% to 77% for the BBC dataset, 28% to 39% for the BBC Sport dataset. It is also important
to note here that the total number of experiments, in this case, is much lower than that for the
other methods discussed previously. Due to a large number of values for multiple parameters, the
number of combinations of parameters was much more for the other methods. For averaging the
semantic word vectors, the only varying parameter over various experiments is the pre-trained word
embedding used. This amounts to a total of 3 experiments for each dataset. Since we only have 3
experiments, there isn’t enough data to compute all the quartiles. With 3 experiments, we only have
the minimum, maximum, and median values. Therefore, these are the only values to be observed
in the boxplot Figure 4.6 as well as Table 4.9 for this method. Since we only have a total of 6
experiments, we can directly look at the scores of each experiment. The performance scores of all
WE_AVG experiments are given in Table 4.5.

As we can see from Table 4.5 above, the average NMI score of document clustering when this
method is used to represent documents is & 75% on the BBC dataset, which is not the worst. Inter-
estingly, on the BBC Dataset, this representation performs better than 75% of the LDA experiments
(Q3 NMI score for LDA on the BBC dataset is 61%). But, at the same time, the average NMI score
on the BBC Sport dataset drops to ~ 34%, and the maximum is no greater than 39%. It is important
to note here, that there is a drastic drop in performance between the two levels of topical hierarchy.
This drop indicates that the averaged word vector representation for the BBC Sport dataset was not
able to properly encode the intra-class similarity, nor the inter-class dissimilarity in the documents
at the 2°¢ level of topical hierarchy (sports-specific news data). Here, intra-class similarity refers
to the similarity of documents belonging to the same class/category, and inter-class dissimilarity
refers to the dissimilarity between documents that belong to different classes/categories. And it
is exactly for the purpose of testing this that the experiment was set up to use documents at two
topical levels in an unsupervised fashion. In the upcoming sections, we’ll see that this drastic drop
in performance is consistent for all the weighted/unweighted averaging of word vectors that we’ve

discussed in Chapter 2.

4.3.5 TF-iDF Weighted Aggregate of Word Vectors

In the previous method, we represent a document by a simple average of semantic word vectors. In
this method, the document vectors are obtained as an aggregate of semantic word vectors weighted by
the TF-iDF score of each word. In the experiments, the weighted components have been aggregated
using one of the two functions - sum or average. Section 2.3.2 describes the process in which the
weighted components have been aggregated as an average. The experiments with this method also
vary with respect to vector normalization. In other words, the experiments were conducted both,
with and without length normalization of document vectors. All the parameters of the experiments
with this method are given in Table 4.6. For comparative plots and tables, WE_TFIDF collectively
refers to the experiments that are using TF-iDF weighted aggregation of word vectors for representing
documents.

Figure 4.7 shows the Normalized Mutual Information score distribution of WE_TFIDF experiments.

Just like the unweighted average of word vectors, we can clearly see a drastic drop in performance

66

Parameter Description Values

Pre-trained Word Word Embedding used for ob- GloVe 100d, GloVe 300d,
embedding taining semantic word vectors Word2vec Pre-trained

Aggregate function Function used to aggregate the Sum, Average
weighted components along each
axis of semantic word vectors

Length Normaliza- Whether the document vectors True, False
tion are length normalized or not

Table 4.6: Various parameters and their values used for representing documents using TF-iDF
weighted aggregate of word vectors

1.0-
0.8 -

0.6 -

Score

0.4 -
0.2-

0.0 -

BBC BBC Sport

Dataset

Figure 4.7: Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_TFIDF experiments on each dataset.

67

from BBC to BBC Sport dataset, regardless of the quartile. Moreover, on the BBC Sport dataset,
the maximum Normalized Mutual Information score achieved with this method is 44%. It can be
observed that this score is significantly low in comparison to the best performing experiments using

Document-Term Association Vector or LSA vectors.

4.3.6 Smooth Inverse Frequency Weighted Average of Word Vectors

For computing SIF weighted average of word vectors, we first compute weight of each word which

can is calculated as -

a

) = G Pw))

(4.17)
where, f (w) is the weight of word w, P(w) is the probability of word w in the entire corpus and a
smoothens the inverse frequency. This smoothened inverse frequency is expected to attenuate the
weights for stopwords. Therefore, in this experiment the stopwords were not removed explicitly.
Moreover, in the experiments, I have experimented with different values for the smoothening term
a (Table 4.7).

The probability of words can be calculated from the frequency of the words in the dataset
at hand. However, we can also use frequencies computed externally to calculate the probability.
SIF weighted average experiments have been conducted in both settings - with and without word
frequency computed on external data. The external weights used contain words and their frequency
calculated from the Wikimedia (2012). In the externally computed word frequencies, only words
with a frequency of 200 or higher in the Wikimedia (2012) dataset were retained, the rest were
discarded (Arora et al., 2017).

After obtaining the weighted average of semantic word vectors ad the intermediate representation
of the documents, an additional step is applied. Arora et al. (2017) removed the first principal
component to correct the document vector with respect to the most frequent text that is often
related to syntax. In the experiments, I have varied the removal of principal components. So, the
experiments are conducted with no principal component removal, 1 principal component removal,
and 2 principal component removal. All these variations were used with each pre-trained embedding
given in Table 2.1. Table 4.7 lists all the parameters and their corresponding values used in the
experiments.

Figure 4.8 shows the boxplot of performance of all the experiments where the documents were
represented using a Smooth Inverse Frequency weighted average of word vectors. Table 4.9 lists the
quartile values for the boxplot where the experiments using SIF weighted average of word vectors
are collectively referred to as WE_SIF. As we can see from Table 4.9 and figure 4.8, the maximum
NMI score of BBC Sport document clustering with SIF weighted averaging is 63%, whereas it is 39%
and 44% for clustering using unweighted average and TF-iDF aggregate of word vectors. Therefore,
for the BBC Sport dataset, we can say that the document vectors generated by using SIF weighted
averaging lead to better clustering than the ones using unweighted averaging or TF-iDF weighted

aggregate of word vectors. However, based on the maximum score, the overall method of averaging

68

Parameter

Description

Values

a

Inverse frequency smoothening
parameter

0.00001, 0.0001, 0.001, 0.01, 0.1

Removed Principal
Components

The number of principal compo-
nents to be removed

0, 1,2

Pre-trained Word
embedding

Word Embedding used for ob-

taining semantic word vectors

GloVe 100d, GloVe 300d,
Word2vec Pre-trained

External Weights

Word frequencies computed on
Wikimedia (2012) are used for
calculating word weights

True, False

Table 4.7: Various parameters and their values used for representing document using Smooth Inverse
Frequency weighted average of word vectors

1.0-
0.8 -

0.6 -

Score

0.4 -
0.2 -

0.0 -

'
BBC BBC Sport

Dataset

Figure 4.8: Boxplots depicting the distribution of Normalized Mutual Information scores over the
WE_SIF experiments on each dataset.

69

Parameter Description Values

Vector Size Size of the document vector 100, 200, 300, 400, 500

Vocab Size Upper limit on the size of vocabulary. 3000, 5000, 10000
Top most frequent words are kept

Minimum Frequency The words with frequency lower than 2,5
this parameter are ignored

Window The maximum distance between the 5, 10
current and predicted word within a
sentence

Function on Context Vec- The function to be applied on the con- Sum, Average
tors text vectors

Epochs Number of iterations (epochs) over the 10, 30, 50, 100, 150
corpus

Table 4.8: Various parameters and their values used for representing document using Doc2vec

the word vectors, weighted or otherwise, is significantly outperformed by all the others, on each
evaluation metric (Table 4.13 and figures 4.17 to 4.19).

4.3.7 Doc2vec

To compute Doc2vec vectors for the documents, the Doc2vec model was trained using the distributed
memory (PV-DM) algorithm with negative sampling of 5 noise words. The noise words were selected
as the negative samples based on an exponent of 0.75 of their frequency. The various Doc2vec model
configurations that were experimented with, over a varying range of values for document vector
size, the vocabulary, context window, function on context vectors, and the number of iterations over
dataset are all listed in Table 4.8.

Before we discuss the boxplot, let’s look at the best performance achieved with Doc2vec vectors
(Table 4.13). The maximum NMI score for Doc2vec experiments is 84% for the BBC dataset and
89% for the BBC Sport dataset. Whereas the maximum NMI scores for DT-VSM experiments are
88% and 91% respectively (Table 4.9). This shows that the best performing Doc2vec experiment is
outperformed by the best performing DT-VSM experiment. Furthermore, we can see from Table 4.13
that Doc2vec vectors are outperformed by DT-VSM by a margin of 2 — 5% regardless of the dataset
or evaluation metric.

Figure 4.9 shows the boxplot of NMI scores in Doc2vec experiments. It is important to note here
that the distribution of the Normalized Mutual Information scores over all the Doc2vec experiments
varies from nearly zero to more than 80%. This spread of the scores is interesting because it proves
just how sensitive the performance is with respect to the selection of parameters. It also shows how
bad the performance can be depending on the model configuration, especially if you have no way
of evaluating which model configuration is better. Since unsupervised tasks do not have the labels

against which we can evaluate the performance of a model configuration, this spread is undesirable in

70

1.0 -
0.8 -

0.6 -

Score

0.4 -
0.2-

0.0 -

| ' ' ' ' 1 '
BBC BBC Sport

Dataset

Figure 4.9: Boxplots depicting the distribution of Normalized Mutual Information scores over the
Doc2vec experiments on each dataset.

a model for unsupervised analysis. So, while the best performing configuration of Doc2vec according
to Table 4.13 is very close to the highest performance overall, the spread makes it less preferable
than DT-VSM. While I say that, it should also be considered that the spread of performance values
for Doc2vec experiments could also be related to more combinations of parameters of Doc2vec than
DT-VSM. Therefore, to be fair, a more informed Doc2vec parameter selection could reduce the

spread significantly and increase the minimum performance values as well.

4.4 Results of WcDe

The methods so far have been compared against each other. This section, however, focuses on all
comparisons related to the WeDe methodology. Before using WeDe methodology to generate docu-
ment vectors, the documents are prepared by tokenizing them and case-folding as discussed in the
beginning. However, for the experiments with WcDe methodology, the stopwords are not removed.
I hypothesize that the stopwords will be clustered together in the word clustering step and therefore
will neither significantly increase the dimensionality of document vectors nor significantly impact
the performance of the clustering. Therefore, retaining the stopwords allows for an analysis of the
word clusters with respect to the stopwords later on in chapter 5. The tokenized documents are used
to generate Word Cluster based Document Embedding for the documents. The experiments have
been conducted both with and without length normalization of the document vectors (Table 4.10).

As we’ve discussed in Section 3.3, there are three essential components in the Word Cluster based

Document Embedding methodology -

1. The semantic word vectors or the word embedding

71

Min.®
Qo
Q1
Q2
Qs

Q4
Max.?

Doc2vec

0.07
0.07
0.15
0.57
0.77
0.84
0.84

LDA
0.01
0.01
0.39
0.57
0.68
0.85
0.85

LSA
0.45
0.48
0.63
0.67
0.73
0.85
0.85

DT-VSM WE_AVG WE_SIF WE_TFIDF WcDe

0.64
0.64
0.75
0.82
0.86
0.88
0.88

(a) BBC Dataset

“Minimum value including the outliers
bMaximum value including the outliers

Min.®
Qo
@1
Q2
Qs

Q4
Max.?

Doc2vec

0.02
0.02
0.18
0.44
0.70
0.89
0.89

LDA
0.02
0.02
0.18
0.32
0.44
0.70
0.70

LSA
0.55
0.69
0.79
0.83
0.86
0.91
0.91

DT-VSM WE_AVG WE_SIF WE_TFIDF WcDe

0.60
0.60
0.68
0.81
0.87
0.91
0.91

(b) BBC Sport Dataset

“Minimum value including the outliers
bMaximum value including the outliers

0.74
0.74
0.75
0.76
0.77
0.77
0.77

0.28
0.28
0.31
0.34
0.37
0.39
0.39

0.04
0.42
0.57
0.61
0.73
0.77
0.77

0.02
0.02
0.16
0.28
0.43
0.63
0.63

0.21
0.61
0.61
0.73
0.75
0.77
0.77

0.04
0.04
0.10
0.22
0.33
0.44
0.44

0.00
0.00
0.10
0.28
0.66
0.89
0.89

0.01
0.01
0.06
0.18
0.53
0.92
0.92

WeDe+
0.65
0.65
0.74
0.80
0.84
0.89
0.89

WeDe+
0.65
0.65
0.74
0.81
0.85
0.90
0.90

Table 4.9: Normalized Mutual Information score values for the boxplots of each method. The color-
coding of the cells containing the score is distributed such that the minimum score is darkest red,
and the maximum score is the darkest green. The median of the color distribution (white) has been
fixed as 0.75.

72

2. The clustering method used for clustering the semantic word vectors
3. The weighting scheme that attributes a numerical score to the relationship between the word

cluster and the document

The first two define the WcDe vector space and the last one defines the component of each
document vector along an axis in this vector space. There are many possible options for each of
these components which lead to multiple variations based on the same fundamental methodology
(discussed in Section 3.3). Next, I'll discuss these options one component at a time and specify the

experiment parameters (Table 4.10).

Parameter Description Values

Word Vectors Vectors for words GloVe 100d, GloVe 300d,
Word2vec Pre-trained, Trained
Word2vec SGNS (20, 50, 100
and 150 epochs)

Clustering Method Method used to cluster word vec- K-Means, Agglomerative Hierar-
tors chical Clustering

Association Func- The function used to associate CF-iDF, TF-iDF Sum
tions a cluster score for the document
with the cluster

Length Normaliza- Whether the document vectors True, False
tion are length normalized or not

Table 4.10: Various parameters and their values used for representing document using WeDe method-
ology

Semantic Word Vectors/Word Embedding In Section 3.3.1, I've discussed WcDe method-
ology with respect to its first component, i.e. semantic word vectors. In that section, one of the
things that we discussed was the use of semantic word vectors trained from scratch and pre-trained
word embedding in the WcDe methodology. In my experiments, I have used both. For pre-trained
word embeddings, I used the ones listed in table 2.1. In addition to the pre-trained word embed-
dings, I trained 300-dimensional word vectors using Skip-gram Word2vec architecture with negative
sampling (SGNS) with a context window of 10 words. For negative sampling, 5 noise words were
sampled for each training sample with the proportion based on an exponent of 0.75 of their fre-
quency. Due to the sheer number of parameters to be experimented on in WcDe methodology, the
Word2vec model parameters were fixed. Using the same model parameters given above, 4 Word2vec
models were trained for a different number of epochs - 20, 50, 100 and 150 (Table 4.10). However,
it is not without reason that only epochs were varied for the experiments.

The purpose of experimenting with pre-trained as well as the word vectors trained from scratch
was to observe whether the semantic word vectors trained for specific data offer an advantage over
the pre-trained ones in WeDe methodology. Training for a higher number of epochs is likely to overfit

the word vectors for the dataset at hand. In supervised tasks, overfitting is undesirable because the

73

prediction model learns weights specific to the data. This leads to poor performance on unseen data.
However, in an unsupervised task like document clustering, no weights are learnt in a supervised
way and there is no unseen data that we will evaluate the methodology on. In an unsupervised task,
like document clustering, it is probably better to have word representations that are less generalized
and more specific to the dataset. Training the word vectors on a selective dataset might provide the
advantage of having word vectors computed through the contexts that are more pronounced and
consistent through the dataset at hand. Therefore, keeping the above considerations in mind, the
word vector training was varied with respect to epochs, specifically. For future work, the Word2vec
model can be tuned on parameters that suit the dataset and task better and even be trained with

additional datasets for better results.

Clustering Algorithm for clustering word vectors For the scope of this thesis, the clustering
algorithm used to cluster semantic word vectors in WcDe experiments have been limited to - K-
Means and Agglomerative Hierarchical Clustering. Using Agglomerative Hierarchical Clustering,
the word clusters were created with various values of distance threshold as well as merge criteria
for merging the word clusters. Using K-Means, the semantic word vector space was clustered into
various pre-specified number of clusters. For K-Means, the word cluster centers were initialized using
the initialization technique of K-Means++® and the word clustering with minimum RSS? is selected
out of 10 clusterings, each initialized with different cluster centers. Table 4.11 lists the clustering

configurations used in WcDe experiments for each of the clustering algorithms.

Clustering Method Parameter Values

Agglomerative Distance Threshold 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0,

Hierarchical Clustering 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0
Merge Criteria Average Similarity, Maximum Distance

(Minimum similarity), Minimum Vari-

ance (Ward)

K-Means Clustering Number of Clusters 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 1100, 1200, 1300, 1400, 1500,
1600, 1700, 1800, 1900, 2000

Table 4.11: Various clustering parameters and their values used in WcDe experiments for representing
documents

The weighting function After clustering the semantic word vectors, the WeDe document vector
space is defined such that each axis represents a cluster of words. Now, to represent each document
in this vector space, a weighting function is applied to calculate the score of the word cluster in the
document. This score serves as the component along the axis that represents the word cluster. I

have discussed a few weighting functions in Section 3.3.3. In my experiments, I have used CF-iDF

8The initialization of cluster centers K-Means++ is discussed in Section 3.3.2
9RSS refers to “residual sum of squares”. This has been discussed in Section 3.3.2

74

and a simple sum of TF-iDF weights to calculate the weight of the word cluster in the document
(Table 4.10).

Figure 4.10 shows the boxplots of Normalized Mutual Information score of all the methods on
both datasets. As we can see from the boxplot corresponding to WcDe, the performance can range
from the best to worst. The selection of word vectors, clustering methods, and weight function
for WcDe significantly impacts the performance. As we can see from Table 4.10, the experiments
for this method have multiple options for each component. Furthermore, each of these options can
be further configured. This results in a large number of experiment configurations that were tried
with WeDe methodology. Some options are less optimal than others. In WeDe we can analyze each
component, look at the document vectors to further optimize the document representation for our
purpose. However, it is important to note here that in Doc2vec vectors, because of the abstraction of
features, we can not analyze or improve them in a similar fashion. The only manner of improvement
of document representation with Doc2vec can either come from the dataset or the model parameters.
The beauty of using WcDe is in exactly this aspect of it - while it makes use of the contextual
information encoded in semantic word vectors, the document features are not abstract. Both the
document features and the components of the WeDe methodology can be inspected for further areas
of improvement. In the remainder of this thesis, I'll do exactly that. In the next section, I’ll inspect
each component, and in the next chapter, I'll inspect the document vectors. As we’ll see soon, by
analyzing the components and their various configurations, we’ll gather consistently well-performing

configurations for each component and we’ll be able to significantly limit the performance range.

4.4.1 WcDe Variations

In my experiments with WcDe, the most apparent difference in performance was observed in the
case of various weight functions and length normalization. Therefore, even though these contribute
to the last step of the methodology, I will begin this analysis and discussion pf components with
weight functions and length normalization. Figure 4.11 (page 77) shows the distribution of Nor-
malized Mutual Information score for a combination of weight functions and length normalization.
Quite interestingly, it can be observed that except for a few outliers, the length normalized CF-iDF
document vector clearly outperforms the WcDe vectors with the rest of the weight function and
length normalization configurations, on all quartiles regardless of the dataset. This observation will
now be used to further analyze and find such patterns for other components of the WcDe method-
ology within the experiments. I will analyze the performance of the rest of the components for the
subset of all WcDe experiments that used CF-iDF for weighting the features and applied length
normalization to the document vector.

The next component of WeDe that we will analyze is the clustering method used to cluster the
word vectors. The boxplots in Figure 4.12a (page 78) depict the distribution of performance of all
the WcDe experiments for various clustering methods. But as we can see from the boxplots, the
results vary over a very large range. Yet, with a quick look at Figure 4.12a we can see that for the

BBC dataset, the experiments using K-Means clustering and AHC with minimum variance merge

75

1.0-

p
o
()
3]
5 08"
©
g]
S 06-
E -
©
©]
5 04-
= 4
©
I 1
< 0.2-
£]
[e]
S]
0.0 -
A\ C (N > G & < 3
‘\\6 3¢)S) \/6 N S \®) (S)
T g Y W W I
Method
(a) BBC dataset
1.0 -
9_) J
o
()
wn d
.5 0.8'.
©
g]
S 06-
E -
©
©]
5 04-
= 4
©
]]
N
= 0.2-
£]
[e]
S]
0.0 -
|$ 1 C |P |P 1 6 |\? 1 ? |e
N° NeT\O \© N S oK (©
S ot W WS @ I
Method

(b) BBC Sport dataset

Figure 4.10: Boxplots of Normalized Mutual Information of all methods on both datasets

76

1.0- 1.0-

o] <]
S 0.8- g o8-
(2] (2]
c 1 c 4
2 Ks)
:c_'> 0.6 - :c_'a 0.6 -
£ 1 €]
© ©
g 4l 2 -
s 04- 2 04-
el 1 5 4
(9 (9]
= N
© 1 © 4
£ 02- E o2-
o d o d
=2 =4

0.0 - 0.0 -

D & D D & D
o)"& & ® & (o"é\ & ® &
< o & o « o & S
Q & N Q & N
& R N & ~ Q
< & & &
<& &
Cluster Score Function Cluster Score Function
(a) on BBC Dataset (b) on BBC Sport Dataset

Figure 4.11: Boxplots depicting the distribution of Normalized Mutual Information score with re-
spect to a combination of weighting functions and length normalization for the WcDe experiments

criterion for word clustering have relatively higher values for the median. Moreover, the Fourth
quartile Q4 value for both is among the highest and the size of the upper whisker (Q3 to Q4) is
relatively small. This indicates that the experiments indicated by the span of the upper whisker had
less variance and high performance on average. For the BBC Sport dataset, however, the medians
are all really low and the maximum values are mostly shoulder to shoulder. Overall, there is no
obvious pattern that can be observed from Figure 4.12a for the BBC Sport dataset.

For a much clearer pattern, let’s focus on the experiments that use normalized CF-iDF for
assigning a cluster weight (Figure 4.12b). In other words, instead of all the WcDe experiments,
let’s investigate the clustering algorithms on a subset of WcDe experiments. Based on the previous
analysis of weight function and length normalization, let’s investigate the clustering algorithms on
the subset of WcDe experiments that are using normalized CF-iDF weights. As we can clearly see
from comparing the boxplots in Figures 4.12a and 4.12b, the experiments using normalized CF-iDF
not only confirm the impression we can observe from boxplots for unfiltered data in Figure 4.12a,
but also add to the confidence of the observation by highlighting just how much better the results
are when the word vectors are clustered with K-Means clustering or AHC with minimum variance
merge criterion. In both datasets, both K-Means and Agglomerative Hierarchical Clustering with
minimum variance merge criterion, have higher values for nearly all quartiles. More importantly,
there is a stark drop in the variance of the performance. Moreover, a closer look at the clustering
parameters of all configurations (Figure 4.13), shows a consistently high performance regardless
of the clustering parameter in case of both K-Means clustering and AHC with minimum variance

merge criterion. It brings us closer to finding combinations of options for the components of WcDe

7

0.8-
0.6-

0.4-

Normalized Mutual Information Score
Normalized Mutual Information Score

0.2-

0.0- 0.0-
AHC_AVG AHC_MAX AHC_WARD KMEANS AHC_AVG AHC_MAX AHC_WARD KMEANS
Clustering Method Clustering Method

BBC dataset BBC Sport dataset

(a) All experiments

0.8-
0.6-

0.4-

Normalized Mutual Information Score
Normalized Mutual Information Score

0.2-

0.0- 0.0-
AHC_AVG AHC_MAX AHC_WARD KMEANS AHC_AVG AHC_MAX AHC_WARD KMEANS
Clustering Method Clustering Method

BBC dataset BBC Sport dataset
(b) Experiments using normalized CF-iDF

Figure 4.12: Boxplots depicting the distribution of Normalized Mutual Information score with re-
spect to various clustering methods for the WcDe experiments

methodology that perform consistently well, with the least variance of performance.

Having analysed clustering methods and weight functions, the only component that remains is
the word vectors that are used in the WeDe methodology. Figures 4.14 and 4.15 (Pages 80 and 81,
respectively) show the distribution of NMI for both - the experiments using K-Means clustering and
Agglomerative Hierarchical Clustering with minimum variance merge criterion in separate plots.
Since the actual values can be difficult to determine from the boxplot, the values corresponding to
the First, Second and Third quartile as well as the minimum and maximum values including the
outliers are given in Appendix in Table B.1 (Page 111) for reference. Now with respect to selecting a
word embedding for WcDe, the preference would be for the one that leads to high performance scores,
regardless of the dataset. Based on the maximum and median performance scores in Figure 4.14,
Word2vec trained for 20 epochs clearly dominates the performance in case of BBC dataset for both
clustering methods. However, based on the same quartile scores for the BBC Sport dataset, it falls
to the 2°¢ or 3" place in comparison to other word vectors when clustered with AHC with minimum
variance merge criterion. But it can be observed from the Table B.1 that Word2vec trained for 20
epochs has the highest scores in most of the quartiles for both datasets as well as both clustering.

From Figures 4.14 and 4.15 and table B.1 we can also observe that though the quartile scores for

78

08 08
05 06
H B
04 04
02 02
00 00
4o Tas s 'S5 o s 70 75 0 ws 9o 95 100 105 1o 115 120 40 as s ss 0 s 0 T7s ao ks e o5 100 108 1lo 1is
Distance Threshold Distance Threshold

BBC dataset BBC Sport dataset

) Variation of distance threshold for Agglomerative Hierarchical Clustering with average similarity merge
criterion
a0 as S0 'ss oo es 70 75 "so s oo 95 100 105 il0 ils 120 a0 as s ss 6o e 70 75 8o ss oo 95 100 105 110 115 120

BBC dataset BBC Sport dataset

(b) Variation of distance threshold for Agglomerative Hierarchical Clustering with maximum distance
(minimum similarity) merge criterion

10 10
08 08
05 06
H B
04 04
02 02
00 00
4o Tas s 'S5 o s 70 75 0 as 9o 95 100 105 1o 115 120 W0 Tas 5o 'ss eo Tes 70 7s 80 ws 90 95 100 105 10 115 120
Distance Threshold Distance Threshold

BBC dataset BBC Sport dataset

(c) Variation of distance threshold for Agglomerative Hierarchical Clustering with minimum variance
(ward) merge criterion

Normalized Mutual Information Score
Normalized Mutual Information Score

100" 200" 300 400 500" 600" 700" 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 100" 200" 300" 400 500" ‘600" 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Kmeans Clusters Number of Kmeans Clusters

BBC dataset BBC Sport dataset

(d) Variation of number of clusters for K-Means clustering

Figure 4.13: Boxplots depicting the distribution of performance of WcDe experiments with normal-

iz

ed CF-iDF weights for variations with respect to clustering parameters.

79

1.0-
0.8 -
0.6 -

0.4-

Normalized Mutual Information Score

0.2-

0.0-

GloVe 100d GloVe 300d Word2vec Pre Word2vec 20 Epochs ~ Word2vec 50 Epochs Word2vec 100 Epochs Word2vec 150 Epochs
Word Vectors

(a) Word vectors clustered using AHC with minimum variance merge criterion

1.0*7
0.8{
0.6{
0.4-

0.2-

Normalized Mutual Information Score

0.0 -
. ! ! ! ! ! ! ! . .
GloVe 100d GloVe 300d Word2vec Pre Word2vec 20 Epochs ~ Word2vec 50 Epochs Word2vec 100 Epochs Word2vec 150 Epochs
Word Vectors

(b) Word vectors clustered using K-Means clustering

Figure 4.14: Boxplots depicting the distribution of Normalized Mutual Information score with re-
spect to various word vectors in WeDe experiments on BBC Dataset

80

1.0-
0.8 -
0.6 -

0.4-

Normalized Mutual Information Score

0.2-

0.0 -

. ! ! ! ! !]] . .
GloVe 100d GloVe 300d Word2vec Pre Word2vec 20 Epochs ~ Word2vec 50 Epochs Word2vec 100 Epochs Word2vec 150 Epochs
Word Vectors

(a) Word vectors clustered using AHC with minimum variance merge criterion

1.0*7
0.8{
0.6{
0.4-

0.2-

Normalized Mutual Information Score

0.0 -
. ! ! ! ! ! ! l . .
GloVe 100d GloVe 300d Word2vec Pre Word2vec 20 Epochs ~ Word2vec 50 Epochs Word2vec 100 Epochs Word2vec 150 Epochs
Word Vectors

(b) Word vectors clustered using K-Means clustering

Figure 4.15: Boxplots depicting the distribution of Normalized Mutual Information score with re-
spect to various word vectors in WecDe experiments on BBC Sport Dataset.

81

Min. First Second Third Max.
GloVe 100d 0.68 0.73 0.77 0.82 0.86
GloVe 300d 0.66 0.73 0.77 0.81 0.86
Word2vec Pre-trained =~ 0.57 0.64 0.67 0.73 0.80
Word2vec 20 Epochs 0.70 0.78 0.81 0.85 0.89
Word2vec 50 Epochs 0.59 0.71 0.77 0.80 0.87
Word2vec 100 Epochs = 0.57 0.69 0.73 0.77 0.83
Word2vec 150 Epochs = 0.56 0.65 0.71 0.75 0.84

Table 4.12: Average of Minimum (including outliers), Maximum (including outliers), First, Second
and Third quartile NMI scores for a subset of WcDe experiments. The values are averaged for both
datasets. In this subset of WcDe experiments, the semantic word vectors are clustered with either
K-Means or AHC with minimum variance merge criterion and the document vectors are created
using normalized CF-iDF weights.

experiments with Pre-trained Word2vec are competitive on BBC dataset, they are the lowest among
all the semantic word vectors/word embedding options for BBC Sport dataset. Moreover, based on
the average performance in each quartile across both datasets and both clustering algorithms given
in Table 4.12, the experiments with Word2vec trained for 20 epochs have the highest average in each
quartile. The experiments with pre-trained 100-dimensional GloVe have the second-highest average
for all but the Maximum, where it marginally loses to the experiments with Word2vec trained for
50 epochs. Based on the analysis so far, the Word2vec trained for 20 epochs seems to be the best
choice, pre-trained 100-dimensional GloVe word embedding being the next best.

Based on the analysis of all the components so far, Figure 4.10 can be plotted again, however,
this time with experiments selected on the basis of some insights drawn for each component above.

I have denoted a subset of WcDe experiments as WeDe+ which use the following components -
Semantic word vectors/Word Embedding Word2vec word vectors trained for 20 epochs

Clustering algorithm to cluster word vectors K-Means or Agglomerative Hierarchical Clus-

tering with minimum variance merge criterion
Weight Function CF-iDF
Length Normalized Yes

Figure 4.16 (Page 83) shows a contrast in the performance distribution with both - all the WcDe
experiments and the WcDe+ experiments. The boxplot for WcDe+ shows distribution with high
values for performance for the entire set of experiments, especially in the case of the BBC dataset.
It is important to note here that limiting the experiments with some parameters, possibly excludes
come configurations that had a competitive performance. Therefore, the experiments that performed
the best, may not be a part of WcDe+ experiments. However, the goal of this analysis is to not select
the configuration that has the maximum performance score, once. Au contraire, the goal is to find

configurations that consistently perform well and show little variance with respect to parameters

82

Normalized Mutual Information Score

Normalized Mutual Information Score

1.0-_
0.8-:
0.6-:
0.4-:
0.2-:

0.0 -

A\ ¢ o > S
N° NET \PT \O N
ot 00‘:L Qe \\2g 2

Method

(a) BBC Dataset
1.0'.
0.8':
0.6':
0
0.2':

0.0 -

B N S N R R
,\\6 N2 \,0 \,(9 N S) A\%) (,0
o o N\ &5‘? W

Qe
Method

(b) BBC Sport Dataset

Figure 4.16: WcDe+ vs the Rest - Boxplots

83

& 3
O (o Q™

X

%

X

like the number of word clusters, i.e. dimensionality of document vector space. And WcDe+ is able
to do that for both topical levels.

4.4.2 WcDe vs the Rest

As we’ve discussed, the performance of many methods dropped drastically in the case of the BBC
Sport Dataset. So far, we’ve analysed the distribution. But for a clearer comparison, let’s take
the best performing experiments for each method (Figures 4.17 to 4.19). It can be seen clearly in
Figures 4.17 and 4.19 that there is a drastic drop in performance when using any sort of average of
semantic word vectors for representing documents. However, LSA, DT-VSM, Doc2vec and WcDe
have maintained the performance through both datasets. Furthermore, Figure 4.18 and table 4.13
show that even though LSA, DT-VSM, Doc2vec perform well on both the datasets, WeDe marginally

outperforms all the rest in each metric on both the datasets.

Method NMI ARI FMI Method NMI ARI FMI
Doc2vec 0.84 0.87 0.90 Doc2vec 0.89 0.89 0.92
LDA 0.82 0.85 0.88 LDA 0.71 0.73 0.79
LSA 0.85 0.87 0.90 LSA 0.91 0.92 0.94
DT-VSM 0.88 091 0.93 DT-VSM 0.91 0.91 0.93
WE_AVG 0.77 0.78 0.82 WE_ AVG 0.39 0.28 047
WE_TFIDF 077 0.78 0.83 WE_TFIDF 044 033 0.49
WE_SIF 0.77 0.78 0.82 WE_ SIF 0.63 0.5 0.61
WecDe 0.89 092 0.93 WcDe 092 093 094
(a) BBC (b) BBC Sport

Table 4.13: Performance scores for each method correspond to the experiments with best perfor-
mance on Normalized Mutual Information score.

In this chapter, we’ve compared WcDe methodology with various other unsupervised document
representation techniques in a task of document clustering at two levels of topical hierarchy. Further-
more, we’ve drawn insight from the analysis of WcDe experiments for a consistently well-performing
configuration, denoted by WcDe+. This configuration was able to significantly limit the variance of
performance while maintaining high performance at both topical levels. Lastly, based on the best
performance in terms of Normalized Mutual Information score, WcDe outperformed the rest of the
methods on all evaluation metrics. This concludes the quantitative analysis of WecDe methodology.
In the next chapter, we’ll take a close look at the WcDe document vector itself to discuss how well

it serves as a vector representation of documents.

84

1.0- patasets

g

S BBC
s]
-5 0.8-_ BBC Sport
©

g .
S 0.6-
E -
©

o]
5 0.4-
= 4
kel

[.
N
< 0.2-

E -

o
>]

0.0 -

o < N ‘o < N\ v e
I AP M S R R N
@Q// {(0/ N OO Q
Method

Figure 4.17: Bar graph comparing the performance of each method on both datasets side-by-side.

85

Score

Score

Method
] I WE_AVG
0.8 - " WE_SIF
- WE_TFIDF
| LDA
] © DT-VSM
0.6 - . LSA
] [Doc2vec
[WcDe
0.4 -
0.2 -
0.0 -
ARI
Evaluation Metric
(a) BBC Dataset
Method
" WE_AVG
1 " WE_SIF
0.8 WE_TFIDF
| LDA
| © DT-VSM
0.6 - I LSA
] [Doc2vec
[WcDhe
0.4 -
0.2 -
0.0 -

ARI

Evaluation Metric
(b) BBC Sport Dataset

Figure 4.18: Bar graphs comparing the methods on each metric

Score

Score

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

: o NMI
AR
I I I -FMI

Evaluation Metric

WE_SIF WE_TFIDF WE_AVG Doc2vec
Method

(a) BBC Dataset

DT-VSM WcDe

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

] © NMI
1 " ARI
| - FMI

Evaluation Metric

WE_AVG WE_TFIDF WE_SIF Doc2vec
Method

(b) BBC Sport Dataset

DT-VSM WcDe

Figure 4.19: Bar graphs showing performance of each method on each evaluation metric

87

Chapter 5

Discussion & Qualitative Analysis

The previous chapter focuses largely on the experiments and a quantitative analysis with respect to
the performance in clustering the documents. But as to whether the document vectors generated by
WcDe actually capture what it was initially designed for, and if it does, to what extent - remains to
be answered. And in this chapter, I hope to explore just that. In this chapter, we will take a closer

look at the document vectors generated by WcDe.

5.1 Captures Similarity?

In the vector representation of data, we hope to have features that strike the right balance between
capturing similarity and difference, especially for our purposes and tasks. In that respect, in the
design of WcDe representation, it is assumed the documents with similar content will use similar
words and therefore, have higher weights for common word clusters. Similarly, the documents with
very different content will use different words and will have higher weights in different word clusters.
Let’s use the temperature term “hot” to speak about the value of weights corresponding to a word
cluster such that a word cluster with non-zero weight in a document is hot in the document, the one
with larger weight is “hotter” and the one with the largest weight is “hottest”. Since the word clusters
are represented by axes in the WcDe document vector space, the same applies to the discussion of
axes. In other words, to speak about the value of component along an axis such that in a vector,
the axes which have a non-zero components are considered hot, the one with the larger component
is hotter and the one with the largest component is the hottest. So to rephrase what I said before,
in WcDe representation, it is expected that the same axis will be “hotter” for the documents that
belong to the same class. On the other hand for documents belonging to different classes, such
pattern would be exhibited by different axes. So let’s begin with the investigation for the common
axes that are hotter for the documents of the same class. Since we expect the same axis to be hot

in all the documents of the same class, the first line of investigation is -

e Considering all the documents of a particular class, are there any axes that are consistently

hotter than the rest of the axes?

88

e If there are, then what are the constituents of the word clusters represented by these vector

axes?

The simplest intuition for this investigation suggests that an axis that is hot (i.e. simply non-
zero), for most of the documents of a class, might be strongly related to the class. However, there

are two things to consider -

e The stopwords have not been removed while representing documents using WeDe. Therefore,
it is very likely that the axes that are hot in nearly every WcDe document vector represent

the word clusters that are made up largely of stopwords.

o It is not just the fact that a cluster is hot that counts, but also its degree. Not to mention
that the hotness of a word cluster in the documents of one class does not preclude its hotness

in the documents of other classes, nor its degree.

So, to begin the analysis, let’s use the document vectors generated with specific WcDe configu-
ration. Among the several available options for variations, for our analysis in this chapter, based on
the analysis in Section 4.4.1, let’s use Agglomerative Hierarchical Clustering with minimum variance
merge criterion to obtain word clusters from pre-trained GloVe word embeddings (100 dimensional)
and generate document vector by using normalized CF-iDF to compute association score for each
cluster. Furthermore, since a high distance threshold results in fewer word clusters and the count
of word clusters define the dimensionality of WcDe vector space, a distance threshold of 9 was used
to get the word clusters. Word clustering resulted in less than 2500 clusters for both datasets. The
selected distance threshold does not result in the best results and performs 80 4= 5% with respect to
Normalized Mutual Information score on both datasets. The reason behind this selection was also
so that we can analyze the document vector for a partly informed and partly random configuration
instead of the one that we know performs the best, because this knowledge of which configuration
performs best is a result of the feedback in the form of true labels. This feedback is not available
in unsupervised tasks. Finally, the WcDe document vectors generated using this configuration are
then used for the current analysis.

A lot of the upcoming discussion will be based on the heatmaps like the one in Figure 5.1.
Therefore, before we begin, we must discuss what the heatmap represents as well as some necessary
notation for the discussion. Let’s take Figure 5.1, for example, which shows a heat map representa-
tion of all the document vectors belonging to tech class. On the x-axis, we have document vector
axes which ultimately represent a word cluster. On the y-axis, we have all the documents belonging
to the tech class, represented by an identification number that is associated with the same docu-
ment throughout our discussion in this chapter. In the discussion, I'll refer to the document with id
1825 (y-axis) as DOC-1825 . In the heatmap, the color scale is given on the right which gives the
color corresponding to the component value of the document vector axis. In other words, the color
indicates the weight of the word cluster in the document. Finally, in the discussion in this thesis,
especially this chapter, I will repeatedly refer to the numbers that represent the axes of the WcDe
vector space (x-axis of heatmap). The axes represent word clusters, and in that sense, the numbers

on the x-axis of the heatmap also represent the word clusters. However, in the discussion, we have

89

two datasets and therefore two different sets of word clusters. Therefore, in the discussion, I'll refer to
the axes or the word clusters with dataset names prefixed to the number. For example, for the BBC
dataset, the axis labeled 1192 and its corresponding word cluster will be referred to as BBC-1192

and, similarly for the BBC Sport dataset, they will be referred to as BBC-SPORT-1192 . To sum it
up with an example, in Figure 5.1, the color corresponding to row labelled 1825 and column labelled

981 indicates the weight of word cluster BBC-981 in DOC-1825 as per the scale on the right.

1825

1840

1855

1870 -05
1885

1800

1815

1330)
1825 04
1360

175

1990

2005)
2020 03
235

030

065

2080 - 02
095

210

7135

140

2155 0.1
2170

2185

2200

215

-00
1?14 5?8 2073 1592 2].5 1514 369 202 1522 ?].? 1434 1342 538]43 1553 98] 1746 55?

Figure 5.1: Heatmap of top 20 axes of WcDe document vector representation of all documents
of class tech. The axes have been sorted from left to right in the decreasing order according to
Countsg.

Axis Count.y Sum Max

1714 400 3.84 0.02
578 400 249 0.02
2078 400 1.68 0.01
1892 400 1.44 0.01
218 400 1.28 0.01
1814 394 498 0.04
869 394 254 0.03
202 386 7.04 0.06
1522 385 4.47 0.04
717 377 1.35 0.01

Table 5.1: Statistics for the top 10 axes (word clusters) for tech class. The axes have been sorted
in the descending order of the count of document vectors in which the component along the axis a
non-zero value (Countsg).

A paragraph ago, we discussed the intuition that the axis (of WcDe vector space) with non-zero
components for most documents of a class, might be strongly related to the class. Now let’s analyze
the intuition discussed above with respect to one class, let’s say tech, which contains a total of 401
documents. Figure 5.1 shows a heat map representation of all the document vectors belonging to
tech class. In Figure 5.1, we are trying to investigate whether we can find the word clusters that
might be strongly related to the class by looking at the word cluster with maximum non-zero weights

throughout the documents of a class. In other words, we are interested in the axes for which most of

90

the documents have non-zero components. To investigate this, the WcDe vector space axes on the
x-axis are sorted in the decreasing order of the count of document in which the axis is hot (i.e. has a
non-zero component). For the analysis, only the top 20 axes are shown in the heatmap. Additionally,
to have the exact numbers for our discussion, Table 5.1 shows the exact statistics for the top 10
axes. For each axis, the sum, the maximum value, and the count of documents where the axis is hot
(Count~g) is indicated in the table. From Table 5.1 we can see that the top 5 axes are hot in all but
1 document of the class. However, the maximum component of these axes in all documents is 0.02
or less. Moreover, for the top 5 axes, the sum of all components corresponding to 400 documents
is very small. This indicates that though the components along these axes are non-zero in nearly
every document of tech class, the value of the components is really small, i.e. the weight of these
word clusters is really small. The difference in the weights of the top 5 axes with the rest of the axes
is much more apparent in Figure 5.1. It can be seen in Figure 5.1 that in comparison to clusters
BBC-281 and BBC-1853 , the cluster weights of the top 5 axes (the leftmost 5 axes on the x-axis)
are too small to even be discernible in the heatmap. When analyzing with respect to Countsg alone,
this pattern is consistent for all the classes, as expected. Furthermore, on a closer look at the top 10
clusters in Table 5.2, we can see that most of the top 10 clusters are constituted of stopwords or words
that are too common to add any distinctive value to the representation. Moreover, interestingly, in
this heatmap, we can notice two axes labeled BBC-281 and BBC-1853 that show a clear pattern
of large weights prevalent through most of the documents of this class. And these axes are exactly
what we want to be at the top of our sorting order which is clearly not the case when sorting with
respect to non-zero weight counts. So the criterion needs to be revisited.

Now, since the Count~q of axes, indicating the mere presence of non-zero value of the weight,
didn’t provide any insights into the search for document vector axes that may be contributing to
capturing the similarity between the documents of the same class, let’s rethink the criteria. The
criterion of the mere presence of word clusters has proven to be insufficient. We’ve seen that the
weights of the cluster are also an important part of our sorting criteria. Based on this we’ve identified

two aspects of axes that are necessary for this investigation -

Prevalence - The first aspect of the axes is with respect to non-zero components in most

documents of the class. I've called this aspect, the prevalence of the axis or the word cluster.

Strength - The second aspect of an axis that is relevant to the investigation is the value of its
components in the documents of a class. This aspect is referred to as the strength of an axis
in the document vectors of a class. In other words, it refers to the weight of the corresponding

word cluster in the documents of a particular class.

The previous criteria that only considered the prevalence of an axis, was found to be insufficient for
the analysis. In this investigation, we want to find the axes (the word clusters) that capture the
similarity between the documents of the same class. And for that, the strength of the axes is at least
as essential as prevalence. So let’s consider a few other criteria with respect to whether they represent
prevalence and strength of the axes, for example, maximum, sum, mean, median, variance, standard

deviation of the distribution of the components of an axis throughout the document vectors. The

91

Cluster

Members

1714
978

2078

1892

218

1814

869

202

1522
717

the, of, in, for, on, with, by, from, an, over, part, between, under

is, that, it, was, has, have, are, they, this, which, had, been, were, also, now, being,
still, already

and, as, people, all, other, some, them, like, such, made, many, while, well, most,
those, these, both, making, few, others, themselves

to, make, take, need, able, hard, find, enough, needed, difficult, needs, bring, ways,
finding, easier, unable, impossible, harder

at, up, one, out, time, only, just, back, next, way, home, off, down, going, go, where,
half, put, day, come, place, another, away, every, times, past, each, point, here,
coming, today, close, turn, twice

be, will, not, would, can, if, could, should, may, does, must, might, cannot, unless
but, there, or, so, no, because, any, however, even, too, same, without, despite, far,
seen, give, given, although, taking, yet, having, taken, clear, rather, though, saw,
instead, either, gave, longer, giving, seeing, appears, thanks, upon

more, about, than, number, much, around, less, almost, least, total, numbers, nearly,
estimated, fewer, scores, roughly, approximately

their, its, my, our, own, your

year, after, last, years, before, since, week, months, during, month, early, earlier,
recent, days, following, latest, ago, weeks, previous, late, followed, mid, initial, prior,
shortly, subsequent

Table 5.2: Table listing word clusters and their members corresponding to the top 10 axes based on
Counts sorting of axes for tech class given in figure 5.1

92

variance and the standard deviation of the components of an axis (in the documents of a class), do
say something about the variation of components with respect to the mean, but nothing about the
mean value itself. Therefore, these criteria do not consider the strength of the axes at all. On the
other hand, while the maximum weight of an axis in the documents of a class will represent the
strength aspect, it does not consider the prevalence at all.

The median value of the components for an axis indicates the minimum component value for more
than 50% of the documents. Therefore, a non-zero median indicates the prevalence of the axes in at
least 50% of the document vectors, and the value of median indicates the minimum strength of the
axis in 50% of the documents. In simpler words, median incorporates both prevalence and strength
of axes to a degree. Similarly, the mean of components of an axis indicates the average strength of
the axis throughout the documents of a class. Though numerically different, the mean and sum will
both yield the same sort order for the axes, and therefore either will suffice for the analysis. Both
the sum and the mean of components, will indicate a total strength of the axis based on all the
documents of a class. This total is unlikely to be competitively high if the axis is not prevalent in
the documents. Therefore, like median, both sum and mean of components also incorporate some
consideration of the strength as well as the prevalence of the axes. Therefore, out of all the criteria
that have been mentioned, it is only by considering the sum (or the mean) or the median, that
we can go beyond the mere prevalence of axes, and in one way or another take the strength into
account. Therefore, next, we’ll explore the sum/mean and median values of components as criteria
for investigating the axes that capture the intra-class similarity.

Figure 5.2 shows the heatmaps corresponding to top 20 clusters based on sum/mean and median
values. While analyzing these heatmaps, what makes an axis interesting is not just its hotness on the
given scale, but also the consistency of that hotness throughout a significantly skewed majority of
documents in the cluster. In these heatmaps, we can see that the axes 281 and 1853 are now at
the top of the sorting order. We can see that the first two axes (from the left) of both heatmaps, i.e.

281 and 1853, are not only hot for most documents but are also consistently and significantly
hotter than the other axes. Out of the two heatmaps, this is more apparent in Figure 5.2a, which is
based on the median criteria. In Figure 5.2a, the strength of axes quickly fades out as we go from
left to right. This indicates that while sorting based on the value of median indicates the minimum
weight for a majority of documents, this is more in favour of prevalence than strength. On the other
hand, when analyzing the axis sorted on the basis of the sum (Figure 5.2b), we can see multiple axes
with very high weights, continuing all the way to the end of the heatmap. For additional analysis
of the clusters represented by these axes, Table 5.3 shows the words that constitute the clusters
corresponding to the top 10 axes sorted in the decreasing order of the sum of its weights. These
axes are selected on the basis of documents of tech class only. Moreover, in Table 5.3 the words
representing each cluster are the top 10 words selected in the decreasing order of frequency in the

dataset.

In Table 5.3, we can see that the clusters are not only related to the tech class, but also demon-
strate a strong relatedness between words within the cluster. For example, BBC-290 contains the

names of various organizations related to technology, BBC-1692 contains words that are related

93

1840
1855
1870
1885
1300
1315
1930
1945
1360
1875
1390
2005
2020
2035
2050
2065
2080
2095
2110
2125
2140
2155
2170
2185
2200
215

281 1853 98] 325 2L5r1 1181 501 202]246 1342 369 2?2]814 143 18 1731 2241 82

(a) Median

1840
1855
1870
1885
1900
1915
1330
1345
1360
1975
1390
2005
2020
2035
2050
2065
2080
2095
2110
2125
2140
2155
2170
2185
200
215

1853 281 29-3 1692 2154 981 325 1151 ?DS BTE 1083 1325]TBE 1554 1129 533 1433

(b) Sum/Mean

Figure 5.2: Heatmap of top 20 axes of WcDe document vector representation of all documents of
class tech. The axes have been sorted in the decreasing order of median (Figure 5.2a) or sum/mean
(Figure 5.2b)

Cluster Members

1853 digital, software, computer, devices, device, computers, portable, electronic, hand-
held, hardware

281 users, online, internet, content, web, entertainment, user, multimedia, interactive,
programming

599 mobile, broadband, wireless, providers, subscribers, provider, voip, telephony, mo-
dem, subscriber

290 microsoft, apple, google, yahoo, ebay, aol, msn, skype, paypal, netscape

1692 nintendo, xbox, console, ds, consoles, playstation, psp, gameboy, ps2, sega

2154 technology, technologies, tech, innovation, inventions, technological, innovations

981 use, used, using, machine, machines, uses, tool, tools, equipment

327 pc, windows, mac, desktop, linux, xp, macintosh, os, symbian, solaris

325 service, services, system, systems, operating, operators, communications, operator,

operate, operates

1181 phone, information, data, account, accounts, telephone, customer, clients, ups, client

Table 5.3: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for tech class of BBC dataset

94

to digital games and BBC-327 contains words that refer to computer systems or are names of
operating systems. Just like Table 5.3 gives the top 10 words clusters and its members for tech
class, Tables C.1 to C.10 in Appendix list top 10 word clusters for each class of both BBC datasets.
Similar to the observations drawn from the top 10 word clusters of tech class, we can observe the
same for the rest of the classes of both BBC datasets (Tables C.1 to C.10). This confirms that
performance aside, to a reasonable extent, the WcDe methodology is able to capture what it was

designed for - representation of documents in the terms of groups of similar words.

5.2 Captures Difference?

Based on the criterion of the sum of components, now we can find the axes that capture similarity
for the documents of each class. So far we've investigated documents belonging to the same class,
thus exhibiting a topical similarity. But what happens when we pitch the documents of different
classes against each other? In order to analyze the documents with respect to the axes that most
contribute to intra-class similarity and inter-class difference, I selected the top 10 axes (based on the
sum of weights) from each class and plotted them together in a heatmap (Figure 5.3). So, on the
x-axis of this heat map, we should have approximately 50 axes represented. However, for the axes
that made the top 10 of more than one class, they were placed among the axes of the class where
the axis ranked higher.

For a visual impact alone, in both of the heatmaps in Figure 5.3, the documents on the y-axis and
the selected WeDe axes on the x-axis are both placed in the alphabetical order of classes. The same
order of documents and axes allows the heatmap to depict clear-cut bozes indicating the strength
and prevalence of the axes in the documents of the same class while clearly showing the difference
in strength and prevalence in the documents of different classes. This contrast between the bozes
and the area above and below them is indicative of the lack of overlap between the documents of
different classes, and the ability of WeDe methodology to capture that. However, in Figure 5.3b, we
can see that for the BBC Sport dataset, in the area on the top of the rugby boz, the contrast is less,
and the overlap is higher than that for the other classes. It is interesting to note that this shows
that the axes selected for rugby class were strong in other classes as well. What is more interesting
is that the class which exhibits strength in the axes selected for rugby class is football. Among
all the classes of the BBC Sport dataset where each class refers to a sport, rugby and football
are perhaps the most similar as sports. Overall, since the BBC Sport dataset contains articles with
a common topic, i.e. sport, higher overlap of content and occurrence of similar word clusters is
expected in the BBC Sport dataset than the BBC dataset.

It is clear from Figure 5.3 on top of Tables C.1 to C.10 that the selected axes are not only repre-
sentative of intra-class similarity of the documents, but also represent the inter-class dissimilarity of
the documents in both datasets. This entire analysis shows that the methodology of WcDe can rep-
resent the documents very well at the two levels of topical similarity without any loss in performance

and interpretability while retaining a portion of participation of each word in the document.

95

BN BN e RN eECNEE N8Rl e rRNpReaSCRRRROR AR ERagnds
2 0E 28 T ISREEZI R AR ZAEMIAFE S RERIAINRYRERATSRRAS
NE®] AE = o= R] 8 =R E R A

(a) Heat map of document vectors of BBC dataset. The documents on the y-axis are originally ordered by
sequence of class - business, entertainment, politics, sport, tech. The top 10 axes from each
class are selected and placed on the x-axis in the same order as well.

n

- meome MO R QN MDD OMmE @ om0 e n T m
- “aaRi 2R SRBESFBEARIR bt Fd MG A

1012

FmEam
AR RER

)
ril
=1
g

- oo Sgouny e
=t 1 = @ =
moF oA o Ll)

(b) Heat map of document vectors of BBC Sport dataset. The documents on the y-axis are originally
ordered by sequence of class - athletics, cricket, football, rugby, tennis. The top 10 axes from
each class are selected and placed on the x-axis in the same order as well.

Figure 5.3: Heatmap of 50 axes of document vectors. Top 10 axes of each class have been selected
in the decreasing order of their sum of weights. The axes have been arranged from left to right on
the x-axis in the alphabetical sequence of class names.

96

Parameter BBC BBC Sport

Tokenization Document Frequency Range Relaxed: 1% - 95% Relaxed: 1% - 95%
Vector Size 2500 2500
Stemming Yes No

Dimension of Topical Space 400 300

Table 5.4: LSA configuration selected for the analysis with respect to synonymy.

5.3 LSA and WcDe - Synonymy

At the beginning of Chapter 3, I raised the question of whether LSA is, in fact, able to address
synonymy and polysemy. Since the experiments in this thesis are not attempting to address polysemy,
T’ll limit the analysis of both techniques with respect to the synonymy of words. For this analysis,
the LSA configuration with best Normalized Mutual Information score was selected individually
for both the datasets (Table 5.4). In LSA the term-document association data is broken down
into associations of both the terms and documents with artificial concepts, i.e. topical axes. The
association of a document with these artificial concepts is then used as a document vector. Similarly,
the association of these artificial concepts with the terms in the dataset can be treated as a vector
representation of words in terms of topical axes. This association data can also be interpreted as
the distribution of terms over the artificial concepts and therefore could be considered a definition of
an artificial concept, i.e. a topic, as a distribution over terms. Therefore, in order to investigate the
artificial vector space generated by Latent Semantic Analysis, we can look at the term distribution
for each axis.

In Latent Semantic Analysis, due to the decomposition using Singular-Value Decomposition, the
topical axes are arranged in the order of singular values such that, the axes with the lowest singular
values can be removed while minimizing the discrepancy between the data before and after removal
of axes. Therefore, in order to investigate to what extent the topical axes are able to actually address
the synonymy of words, I've selected the topical axes based on singular values. For this discussion,
Table 5.5 shows only the top 10 axes in the decreasing order of the singular values in the LSA vector
space for the BBC dataset. Since the topic vector is a distribution over terms, based on the weight
of each term in the topic vector, we can obtain the terms that strongly associate with the topic.
For the purpose of this discussion, (Table 5.5) shows only the top 5 terms and their association
score with each of the top 10 topical axes. However, you can refer to Tables C.11 and C.12 in the
Appendix which shows top 20 topic axes for LSA vector space for both datasets.

In Table 5.5, we can see that the terms associated with LSA-BBC-7 are all related to music, the
ones associated with LSA-BBC-4 are mostly related to movies, and the ones with LSA-BBC-5 are
related to technology. However, there is less relatedness to be observed within the terms associated
with a topical axis. In comparison to others, LSA-BBC-4 , LSA-BBC-5 and LSA-BBC-7 bear

more semblance of a topic. This is even more difficult to observe for topical axes for the BBC Sport

97

Associated Terms

said (0.22), mr (0.16), year (0.13), would (0.11), game (0.11)

mr (0.27), labour (0.2), elect (0.2), blair (0.16), parti (0.16)

labour (0.17), elect (0.16), blair (0.15), mr (0.14), parti (0.14)

film (0.49), award (0.28), best (0.21), star (0.16), oscar (0.16)
mobil (0.22), phone (0.2), use (0.17), peopl (0.15), technolog (0.15)
yuko (0.18), court (0.14), compani (0.14), firm (0.13), law (0.13)
music (0.3), band (0.25), album (0.23), chart (0.18), song (0.15)
game (0.31), club (0.17), music (0.14), unit (0.13), sale (0.13)
england (0.26), music (0.19), wale (0.19), band (0.17), album (0.14)
mobil (0.4), phone (0.32), club (0.11), england (0.1), handset (0.09)

—_
5 © 0 N o ootk w3

Table 5.5: List of terms (stemmed) and their association with each of the top 10 axes of LSA vector
space on BBC Dataset. The top 10 axes have been selected in the decreasing order of their singular
values.

dataset in Table C.12. Moreover, it is worth noting that even if the strongly associated terms do
bear any topical semblance, there is hardly any synonymy to be observed.

Furthermore, although it makes less sense to do so for LSA, if I apply the same methodology
for selecting topical axes as I applied for WcDe in the previous section, I can get some topical axes
that seem to bear more relation to the class. In other words, for each class in the dataset, the top
10 topical axes are selected based on the sum of its weights across the documents of the class. For
example, Table 5.6 gives the top 5 axes obtained based on the sum of weights of documents of tech.
For both, LSA and WcDe, axes were selected on the basis of the sum of component criteria we
discussed in the previous section. For LSA, the top 5 terms, based on their term-topic association
score, represent each topical axis in the table. For WcDe, the axes are represented by the top 5
words from the corresponding word cluster based on their frequency in the dataset. Table 5.6 only
provides the comparison for tech. However, the same comparison for the remaining class of both,
BBC and BBC Sport, dataset are available for reference in the Appendix (Tables C.13 and C.14).

Axis Rank LSA WcDe

1 samsung, suppos, procedur, exceed, as- digital, software, computer, devices, de-
sum vice
economi, growth, bank, rate, econom users, online, internet, content, web

3 film, seed, mr, festiv, blair mobile, broadband, wireless, providers,

subscribers

tax, parti, film, tori, yuko microsoft, apple, google, yahoo, ebay

) india, site, mobil, search, blog nintendo, xbox, console, ds, consoles

Table 5.6: A comparison between the top 5 topics/clusters (represented by 5 terms/words each) of
both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the basis of sum of
weights across the document vectors of tech class.

98

From Table 5.6, the first and the fifth ranking axes of LSA bear some relation to the topic of

technology. But as is clear from the comparison, the word clusters from WcDe demonstrate more

coherence within the cluster and even within the class (Tables C.13 and C.14).

5.4 Concluding Observations

Finally, to conclude the qualitative analysis of WcDe, let’s wrap up with some observations based

on the cluster makeup of the few clusters listed in given in Tables C.1 to C.10 -

1. Some clusters, not all, contain terms that can be considered synonymous. For example -

Cluster # Members Near Synonyms
BBC-1832 win, won, winning, victory, wins, win, victory

victories
BBC-622 awards, award, prize, honour, award, prize, honor,

awarded, prizes, honorary, merit,

honor, awarding

merit

2. Though many clusters don’t entirely contain synonymous words, most of these clusters contain

words that are used in very similar contexts. For example, there are clusters containing all

genres, and others containing names of organizations and people.

Cluster # Members

Concept

BBC-390 comedy, drama, sequel, thriller, horror, Genre

biopic, remake, sitcom, spoof, parody,

flick, westerns, satire, sitcoms, comedies,

dramas, suspense

Interestingly, though both might be related to tech, it also separate the names of organizations

from the names of softwares and services -

Cluster # Members

Common Theme

BBC-290 microsoft, apple, google, yahoo, ebay, Organizations /

aol, msn, skype, paypal, netscape, Online Services

hotmail, gmail

BBC-327 pc, windows, mac, desktop, linux, xp, Computer Machines /

macintosh, os, symbian, solaris

Operating Systems

Furthermore, the clusters not only separate the names of the players on the basis of the sport,

but also separates the names of the players participating on behalf of different countries -

99

Cluster #

Members

Common
Theme

BBC-SPORT-493

BBC-SPORT-924

BBC-SPORT-600

BBC-SPORT-1058

ronaldo, beckham, ronaldinho, juninho,

adriano, zidane, cristiano, zinedine,
kaka, rivaldo, figo, robinho
kuznetsova, sharapova, dementieva,

svetlana, petrova, davydenko, youzhny,
nikolay, bondarenko, zvonareva, an-

dreev, dinara, safina

ntini, steyn, nel, makhaya, morkel, charl,
langeveldt, albie

shoaib, akhtar, kaneria, razzaq, akmal,

kamran, umar, shahid, afridi, mushtaq,
shabbir

Football Players

Tennis Players
(Russia)

Cricket Players
(South Africa)

Cricket Players
(Pakistan)

3. Using WcDe for document representation obviates the need for some text processing like,
stemming and lemmatization because the different words related to the underlying concept
are clustered together in the same cluster. Consider the italicized words in “Members” column

and the corresponding entry in the “Common” column in the table given below -

Cluster # Members Common

BBC-705

BBC-386

BBC-818

BBC-1832

BBC-SPORT-635

tv, radio, network, networks, television,
channel, broadcast, cable, station, broad-
casting, stations, channels, broadcasters,

broadcaster, broadcasts

growth, increase, increased, increasing,
output, increases, reduced, gdp, gross,
consumption, contraction, decrease, de-

creases

vote, voters, poll, voting, wvotes, ballot,
polls, woter, turnout, polling, ballots,
counting, counted, balloting, absentee
win, won, winning, victory, wins, victo-
ries

test, tests, testing, tested, samples, sam-

ple, urine

broadcast

increase

vote

win

test

100

Chapter 6

Conclusion

The explosion of textual data on the internet has long surpassed the capabilities of manual sorting
and processing. The effective automation of processing such a large amount of data, much of which
is usually unlabelled, usually requires that it be represented as a mathematical object or vector. As
we’ve seen in Chapter 4, WeDe methodology outperforms the existing popular unsupervised textual
document representation techniques. Moreover, it consists of various modular components, i.e. word
vectors, clustering technique, and weighting function, that can be adjusted according to the need
of the task. Furthermore, as we’ve seen in Section 4.4.1, an analysis of the components narrows
down the variation in performance while maintaining the quality. The insight on the best option
for each component and a robust variation is particularly useful for unsupervised tasks because
in unsupervised tasks there is no output label that can be used to adjust or compute the model
weights. Moreover, the combination of components so found can be observed to perform consistently
well across different datasets and at different levels of topical similarity. Not to mention the WcDe
methodology allows the representation of document without completely discarding any words in the
vocabulary (unlike Vector Space Model) while taking the similarity of words into account (unlike
Latent Semantic Analysis) and maintaining interpretability of features (unlike Doc2vec) without
compromising on performance at either level of similarity. That said, there are multiple avenues of

research and further development of this technique. Some of these avenues are discussed below.

6.1 Future Work

A set of future work in WeDe methodology can correspond to further development and investigation
of each of the individual components, the first of the components being the word embeddings or word
vectors. The word embeddings used in the experiments discussed in this thesis are non-contextualized
word embeddings, i.e. there is a single word vector corresponding to a word and the context in which
the word appears is not taken into account while generating word representation. But, a single word
can be used to convey different meanings, and therefore, a single vector representation of a word
may not suffice for words that represent different meanings in different contexts. Therefore, non-

contextualized embeddings do not address the polysemy of words in the textual language data.

101

However, in another type of word embeddings, called contextualized word embeddings, the context
of the word is taken into account while obtaining the word vector for a word. WcDe method
addresses synonymy of words but by using contextualized word embedding like BERT, it can also
address polysemy which has remained unaddressed in WcDe so far. Therefore, one of the major
directions for future work in further development of WcDe methodology is with respect to the use
of contextualized word embeddings.

Moreover, in this thesis, the experiments were limited to hard clustering techniques. But, as
we’ve just discussed regarding the addressal of polysemy of words, words can belong to more than
one cluster, and to different degrees. Therefore, by using soft clustering techniques for clustering
word vectors, we can define a word’s membership as a distribution over word clusters. This is similar
to the definition of words in terms of artificial concepts in Document-Topic Vector Space Model. In
other words, partial membership of words in word clusters can be investigated for its potential to
improve the representation of documents.

Moreover, in the experiments discussed in this thesis, the vocabulary of the word vectors was
limited to the vocabulary of the dataset. Another avenue of investigation involves expanding the
vocabulary beyond the dataset and finding a universal set of word clusters that can be used to
represent the documents effectively. This might result in very high dimensionality of WcDe docu-
ment vector space. But, using an analysis similar to the Document-Term Vector Space Model, the
word clusters with document frequency below a pre-decided threshold can be discarded. Therefore,
another interesting avenue of investigation is of the dimensionality reduction of WcDe vectors. In
conclusion, while some aspects of Word Cluster based Document Embedding were investigated in

this thesis, there are some promising avenues of investigation for the future work as well.

102

References

Agirre, Eneko, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Wei-
wei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria,
and Janyce Wiebe (June 2015). “SemEval-2015 Task 2: Semantic Textual Similarity, English,
Spanish and Pilot on Interpretability”. In: Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEwval 2015). Denver, Colorado: Association for Computational Lin-
guistics, pp. 262-263.

Agirre, Eneko, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Wei-
wei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe (Aug. 2014). “SemEval-2014 Task
10: Multilingual Semantic Textual Similarity”. In: Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemFEval 2014). Dublin, Ireland: Association for Computational
Linguistics, pp. 81-91.

Agirre, Eneko, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre (June 2012). “SemEval-2012 Task
6: A Pilot on Semantic Textual Similarity”. In: *SEM 2012: The First Joint Conference on Lezical
and Computational Semantics — Volume 1: Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Fvaluation
(SemFEval 2012). Montréal, Canada: Association for Computational Linguistics, pp. 385-393.

Agirre, Eneko, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo (June 2013). “*SEM
2013 shared task: Semantic Textual Similarity”. In: Second Joint Conference on Lexical and Com-
putational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared
Task: Semantic Textual Similarity. Atlanta, Georgia, USA: Association for Computational Lin-
guistics, pp. 32-43.

Aldous, David J. (1985). “Exchangeability and related topics”. In: Ecole d’Eté de Probabilités de
Saint-Flour XIII — 1983. Ed. by P. L. Hennequin. Vol. 117. Springer Berlin Heidelberg, pp. 1—
198.

Arora, Sanjeev, Yingyu Liang, and Tengyu Ma (2017). “A simple but tough-to-beat baseline for
sentence embeddings”. In: 5th International Conference on Learning Representations (ICLR).
Arthur, David and Sergei Vassilvitskii (2007). “K-means++: The advantages of careful seeding”. In:

Proceedings of the Fighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, pp. 1027-1035.
Becker, Hila (2011). “Identification and characterization of events in social media”. PhD dissertation.

Columbia University.

103

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, Christian Jauvin, Jauvinc@iro Umontreal Ca,
Jaz Kandola, Thomas Hofmann, Tomaso Poggio, and John Shawe-Taylor (2003). “A Neural
Probabilistic Language Model”. In: Journal of Machine Learning Research 3, pp. 1137-1155.

Blei, David M, Andrew Y Ng, and Michael I. Jordan (2003). “Latent Dirichlet Allocation”. In:
Journal of Machine Learning Research 3, pp. 993-1022.

Blei, David M. (2012). “Probabilistic topic models”. In: Communications of the ACM 55.4, pp. 77—
84.

Cover, Thomas M and Joy A Thomas (2005). “Entropy, Relative Entropy, and Mutual Information”.
In: Elements of Information Theory. John Wiley & Sons, Ltd. Chap. 2, pp. 12-49.

Dai, Xiangfeng, Marwan Bikdash, and Bradley Meyer (2017). “From social media to public health
surveillance: Word embedding based clustering method for twitter classification”. In: Southeast-
Con 2017, pp. 1-T7.

De Boom, Cedric, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt (Sept. 2016). “Rep-
resentation Learning for Very Short Texts Using Weighted Word Embedding Aggregation”. In:
Pattern Recognition Letters 80.C, pp. 150-156.

Deerwester, Scott, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harsh-
man (1990). “Indexing by latent semantic analysis”. In: Journal of the American Society for
Information Science 41.6, pp. 391-407.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (June 2019). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171-4186.

Firth, John R (1957). “A synopsis of linguistic theory, 1930-1955”. In: Studies in Linguistic Analysis.
Oxford, pp. 1-32.

Fowlkes, E B and C L Mallows (1983). “A method for comparing two hierarchical clusterings”. In:
Journal of the American Statistical Association 78.383, pp. 553—-569.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). “Linear Algebra”. In: Deep Learning.
MIT Press. Chap. 2, pp. 29-50.

Hoffman, Matthew D, David M Blei, and Francis Bach (2010). “Online learning for Latent Dirichlet
Allocation”. In: Proceedings of the 23rd International Conference on Neural Information Pro-
cessing Systems. Vol. 1.

Hubert, Lawrence and Phipps Arabie (1985). “Comparing partitions”. In: Journal of Classification
2.1, pp. 193-218.

Jurafsky, Daniel and James H Martin (2021). “Vector Semantics and Embeddings”. In: Speech and
Language Processing: An Introduction to Natural Language Processing, Computational Linguis-
tics, and Speech Recognition. 3rd ed. (draft of December 30, 2020). Chap. 6.

Kim, Han Kyul, Hyunjoong Kim, and Sungzoon Cho (2017). “Bag-of-concepts: Comprehending
document representation through clustering words in distributed representation”. In: Neurocom-
puting 266, pp. 336-352.

104

Le, Quoc and Tomas Mikolov (2014). “Distributed Representations of Sentences and Documents”.
In: Proceedings of the 31st International Conference on Machine Learning. Ed. by Eric P. Xing
and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR,
pp. 1188-1196.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze (2008a). Flat Clustering. Cam-
bridge University Press. Chap. 16, pp. 349-376.

— (2008b). Hierarchical Clustering. Cambridge University Press. Chap. 17, pp. 377-402.

— (2008c). Introduction to Information Retrieval. Cambridge University Press, p. 505.

— (2008d). Matriz decompositions and latent semantic indexing. Cambridge University Press. Chap. 18,
pp- 403-420.

Mekala, Dheeraj, Vivek Gupta, Bhargavi Paranjape, and Harish Karnick (2017). SCDV: Sparse
Composite Document Vectors using soft clustering over distributional representations. Tech. rep.,
pp. 659-669.

Mikolov, Tomds, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient Estimation of Word
Representations in Vector Space”. In: 1st International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove: Global vectors
for word representation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532-1543.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer (2018). “Deep contextualized word representations” In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, pp. 2227-2237.

Qimin, Cao, Guo Qiao, Wang Yongliang, and Wu Xianghua (2015). “Text clustering using VSM
with feature clusters”. In: Neural Computing and Applications 26.4, pp. 995-1003.

Reynolds, Douglas (2015). “Gaussian Mixture Models”. In: Encyclopedia of Biometrics. Ed. by Stan
Z Li and Anil K Jain. Boston, MA: Springer US, pp. 827-832.

Richards, Blake A, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia
Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, Colleen J.
Gillon, Danijar Hafner, Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham, Grace W. Lindsay,
Kenneth D. Miller, Richard Naud, Christopher C. Pack, Panayiota Poirazi, Pieter Roelfsema,
Joao Sacramento, Andrew Saxe, Benjamin Scellier, Anna C. Schapiro, Walter Senn, Greg Wayne,
Daniel Yamins, Friedemann Zenke, Joel Zylberberg, Denis Therien, and Konrad P. Kording
(2019). “A deep learning framework for neuroscience”. In: Nature Neuroscience 22.11, pp. 1761
1770.

Rong, Xin (2014). “word2vec Parameter Learning Explained”. In: CoRR abs/1411.2738.

105

Rosenberg, Andrew and Julia Hirschberg (June 2007). “V-Measure: A Conditional Entropy-Based
External Cluster Evaluation Measure”. In: Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguistics, pp. 410—
420.

Seifollahi, Sattar, Massimo Piccardi, Ehsan Zare Borzeshi, and Bernie Kruger (2019). “Taxonomy-
Augmented Features for Document Clustering”. In: Australasian Conference on Data Mining
(AusDM): Data Mining. Ed. by Rafiqul Islam, Yun Sing Koh, Yanchang Zhao, Graco Warwick,
David Stirling, Chang-Tsun Li, and Zahidul Islam. Communications in Computer and Informa-
tion Science (CCIS), Vol. 996. Springer Singapore, pp. 241-252.

Socher, Richard (2015). CS 224 D : Deep Learning for NLP (Lecture Notes: Part I). Available at
https://cs224d.stanford.edu/lecture_notes/LectureNotesl.pdf (2021/08/03).

Wikimedia (2012). English Wikipedia dump. Available at http://dumps.wikimedia.org/enwiki/
latest/enwiki-latest-pages-articles.xml.bz2 (2021/02/06).

Wikipedia contributors (2021). Mutual information — Wikipedia, The Free Encyclopedia. Available at
https://en.wikipedia.org/w/index.php?title=Mutual _information&oldid=1035953322
(2021/08/03).

106

https://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://en.wikipedia.org/w/index.php?title=Mutual_information&oldid=1035953322

Appendix A

Quantitative Evaluation -
Additional Plots

This chapter provides additional boxplots for reference with respect to the discussion in Evaluation
& Quantitative Analysis. Figures A.1 to A.7 show boxplots of distribution of scores for each method

for different evaluation metrics.

1.0- 1.0- 1.0-
0.8- 0.8- 0.8-
0.6- 0.6- 0.6-
g] g] g]
5 5 5
g S S
@] @] @]
0.4- 0.4- 0.4-
0.2- 0.2- 0.2-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.1: Boxplots depicting the distribution of various scores over DT-VSM experiments on each
dataset.

107

038- 038- 038-
06- 06- 06-
[[[
H H H
g g g
w j n 1] 0 1
04- 04- 04-
02- 02- 02-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.2: Boxplots depicting the distribution of various scores over LSA experiments on each
dataset.

1.0- 1.0- 1.0-
0.8- 0.8- 0.8-
0.6- 0.6- 0.6-
g 1 g 1 g 1
g g g
[j [l] n 1
0.4- 0.4- 0.4-
0.2- 0.2- 0.2-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.3: Boxplots depicting the distribution of various scores over LDA experiments on each
dataset.

1.0- 1.0- 1.0-
0.8- 0.8- 0.8-
0.6- 0.6- 0.6-
o o o]
s s s
S S S
@ | @ | @ |
0.4- 0.4- 0.4-
0.2- 0.2- 0.2-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.4: Boxplots depicting the distribution of various scores over WE_AVG experiments on each
dataset.

108

038- 038- 038-
06- 06- 06-
[[[
H H H
g g g
w j n 1] 0 1
04- 04- 04-
02- 02- 02-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.5: Boxplots depicting the distribution of various scores over WE_TFIDF experiments on each
dataset.

1.0- 1.0- 1.0-
0.8- 0.8- 0.8-
0.6- 0.6- 0.6-
g 1 g 1 g 1
g g g
[j [l] n 1
0.4- 0.4- 0.4-
0.2- 0.2- 0.2-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.6: Boxplots depicting the distribution of various scores over WE_SIF experiments on each
dataset.

1.0- 1.0- 1.0-
0.8- 0.8- 0.8-
0.6- 0.6- 0.6-
o o] o]
s s s
S S S
@ | @ | @ |
0.4- 0.4- 0.4-
0.2- 0.2- 0.2-
0.0- 0.0- 0.0-
BBC BBC Sport BBC BBC Sport BBC BBC Sport
Dataset Dataset Dataset

Figure A.7: Boxplots depicting the distribution of various scores over Doc2vec experiments on each
dataset.

109

Appendix B

Quantitative Evaluation -
Additional Tables

This chapter provides additional tables for reference with respect to the discussion in Evaluation &
Quantitative Analysis. Table B.1 gives the performance scores distribution of WcDe experiments
with respect to different word embeddings. The experiments given in Table B.1 use either K-Means
or AHC with minimum variance merge criterion for clustering the word vectors. The document
vector is generated by applying CF-iDF weight function and applying length normalization to the
resulting vector. The cells in Table B.1 are color-coded with a distribution of color from red to green
with the median value of color distribution fixed at 0.75. The median at 0.75 results in nearly no
color at values that are close to 0.75. The lower the value is from 0.75 the darker the red color of

the cell is, and the higher the value from 0.75, the darker the green color of the cell is.

110

BBC BBC Sport

Percentile Word Embedding K-Means AHC ward K-Means AHC ward
GloVe 100d 0.69 0.65 0.65 0.71
GloVe 300d 0.71 0.67 0.57 0.70
Word2vec Pre-trained 0.70 0.67 0.47 0.42
Min Word2vec 20 Epochs 0.78 0.69 0.67 0.67
Word2vec 50 Epochs 0.61 0.55 0.63 0.58
Word2vec 100 Epochs 0.65 0.54 0.52 0.55
Word2vec 150 Epochs 0.59 0.49 0.54 0.63
GloVe 100d 0.71 0.71 0.74 0.77
GloVe 300d 0.79 0.71 0.68 0.73
Word2vec Pre-trained 0.74 0.74 0.59 0.51
25th Word2vec 20 Epochs 0.84 0.76 0.80 0.73
Word2vec 50 Epochs 0.71 0.66 0.72 0.76
Word2vec 100 Epochs 0.72 0.60 0.70 0.74
Word2vec 150 Epochs 0.63 0.59 0.67 0.72
GloVe 100d 0.75 0.76 0.78 0.79
GloVe 300d 0.81 0.75 0.79 0.75
Word2vec Pre-trained 0.77 0.75 0.61 0.57
50th Word2vec 20 Epochs 0.85 0.81 0.84 0.74
Word2vec 50 Epochs 0.78 0.72 0.76 0.80
Word2vec 100 Epochs 0.75 0.64 0.77 0.76
Word2vec 150 Epochs 0.74 0.63 0.71 0.76
GloVe 100d 0.79 0.83 0.85 0.82
GloVe 300d 0.82 0.81 0.85 0.76
Word2vec Pre-trained 0.79 0.77 0.73 0.65
75th Word2vec 20 Epochs 0.86 0.85 0.86 0.82
Word2vec 50 Epochs 0.83 0.74 0.81 0.82
Word2vec 100 Epochs 0.79 0.75 0.78 0.78
Word2vec 150 Epochs 0.78 0.65 0.76 0.82
GloVe 100d 0.82 0.85 0.88 0.89
GloVe 300d 0.86 0.83 0.89 0.84
Word2vec Pre-trained 0.81 0.85 0.79 0.75
Max Word2vec 20 Epochs 0.89 0.88 0.90 0.87
Word2vec 50 Epochs 0.86 0.83 0.90 0.87
Word2vec 100 Epochs 0.83 0.80 0.87 0.83
Word2vec 150 Epochs 0.82 0.77 0.87 0.89

Table B.1: The tables give the distribution of performance scores over WeDe experiments where the
word vectors are clustered with either K-Means or AHC with minimum variance merge criterion and
the document vectors are created using CF-iDF weight function and length normalized in the end.
The median of color distribution is fixed to be 0.75.

111

Appendix C

Document Vector Axes - LSA and
WcDe

This chapter provides additional tables for Discussion & Qualitative Analysis -

e Tables C.1 to C.10 lists top 10 axes and their corresponding word clusters for each class of BBC
and BBC Sport datasets. The top 10 axes are selected on the basis of sum of components. The
words listed as the members of the word cluster are listed in the decreasing order of frequency
in the dataset.

e Tables C.11 and C.12 list out the top 20 axes for LSA artificial vector space for the LSA
experiments discussed in Section 5.3. For both datasets Tables C.11 and C.12 lists the axes
selected on the basis of singular values. The axes have been sorted in the decreasing order
of their singular values. The axes here are indicative of an artificial concept. The artificial
concept is a distribution over terms and for each axis, the tables provide a list of associated
terms and their weights with respect to the artificial concept. Only the terms with a weight

of 0.1 or more have been listed in the tables.

e Tables C.13 and C.14 provide a comparison of LSA topics and WcDe word clusters for each
class of both BBC and BBC Sport datasets. Just like the sum criterion for the analysis of
WcDe document vectors in Chapter 5, for each artificial axes of LSA document vectors, their
components are were summed for the documents of the class. Therefore, the LSA topical axes
in this table are sorted in the decreasing order of this sum. The table only lists the top 5
topical axes. For WcDe as well, the axes are selected on the basis of the sum criterion. The

top 5 terms are selected to represent each axis of either method.

112

Axis Members

460 market, sales, prices, demand, consumer, price, investors, markets, retail, traders

1233 bank, financial, investment, credit, banks, corporate, assets, securities, banking, in-
vestments

1807 economy, economic, global, asia, asian, economies, emerging

1888 shares, share, stock, exchange, trading, gains, stocks, futures, traded

386 growth, increase, increased, increasing, output, increases, reduced, gdp, gross, con-
sumption
75 rate, rates, unemployment, jobless, hike, joblessness, hikes

145 spending, budget, deficit, fiscal, deficits, budgets, surplus, expenditure, shortfall,
surpluses

1445 oil, crude, exploration, petroleum, offshore, drilling, refining, refinery, refineries, rigs
176 figures, analysts, figure, predicted, forecast, forecasts, economists, estimates, outlook,
predict

501 company, firm, industry, based, business, enterprise, consultant, consultancy, con-
sulting

Table C.1: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for business class of BBC dataset

Axis Members

756 film, films, series, movie, hollywood, movies, documentary, scene, episode, scenes
622 awards, award, prize, honour, awarded, prizes, honorary, merit, honor, awarding
2108 band, rock, pop, hip, hop, rap, bands

1707 actor, actress, starring, starred

1433 music, artists, musical, artist, musicians, performers, singers, songwriters, composers

65 album, song, label, albums, labels, demos, unreleased, demo, reissued, reissues
390 comedy, drama, sequel, thriller, horror, biopic, remake, sitcom, spoof, parody
114 festival, performed, concert, perform, performing, gig, concerts, gigs, touring, toured

823 swank, dicaprio, hilary, winslet, hanks, blanchett, depp, cate, spacey, gere

705 tv, radio, network, networks, television, channel, broadcast, cable, station, broad-
casting

Table C.2: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for entertainment class of BBC dataset

113

Axis Members

1529 election, parliament, elections, parliamentary, assembly, electoral, legislative
1092 party, leader, political, opposition, politics, leadership, presidency
336 mr, dr, mrs, prof, baroness, portman, firstly, secondly, thirdly, lynda

1881 blair, downing, gates, colin, pentagon, powell, ames, condoleezza

151 labour, union, association, unions, federation, labor, federations, confederation, asso-
ciations

996 tory, tories, backbenchers, backbencher, eurosceptic, backbench, sceptic, back-
benches, frontbench, eurosceptics

571 minister, prime, defence, premier, interior, defense

818 vote, voters, poll, voting, votes, ballot, polls, voter, turnout, polling

2030 he, his, she, her, him, himself, herself

2032 liberal, conservative, conservatives, moderate, libertarian, liberals, progressive, lean-
ing

Table C.3: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for politics class of BBC dataset

Axis Members

872 game, games, players, team, player, season, coach, teams, coaches, coaching

395 england, wales, ireland, scotland, irish, scottish, english, welsh, scots

819 chelsea, liverpool, manchester, newcastle, leicester, birmingham, sheffield, everton,
southampton, leeds

626 final, match, round, champions, matches, tournament, championship, finals, uefa,
qualifying

1497 roddick, hewitt, nadal, federer, henman, agassi, safin, rusedski, lleyton, marat
221 club, league, football, sport, sports, clubs, class, professional, sporting, junior
1832 win, won, winning, victory, wins, victories

127 injury, leg, injuries, knee, ankle, hamstring, shoulder, thumb, wrist, groin

738 williams, jones, gordon, robinson, smith, davis, johnson, campbell, taylor, jackson
2030 he, his, she, her, him, himself, herself

Table C.4: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for sport class of BBC dataset

114

Axis Members

1853 digital, software, computer, devices, device, computers, portable, electronic, hand-
held, hardware

281 users, online, internet, content, web, entertainment, user, multimedia, interactive,
programming
599 mobile, broadband, wireless, providers, subscribers, provider, voip, telephony, mo-

dem, subscriber

290 microsoft, apple, google, yahoo, ebay, aol, msn, skype, paypal, netscape

1692 nintendo, xbox, console, ds, consoles, playstation, psp, gameboy, ps2, sega

2154 technology, technologies, tech, innovation, inventions, technological, innovations
981 use, used, using, machine, machines, uses, tool, tools, equipment

327 pc, windows, mac, desktop, linux, xp, macintosh, os, symbian, solaris

325 service, services, system, systems, operating, operators, communications, operator,
operate, operates

1181 phone, information, data, account, accounts, telephone, customer, clients, ups, client

Table C.5: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for tech class of BBC dataset

Axis Members

311 olympic, championships, event, competition, athletics, athletes, olympics, events,
athlete, competitions

419 60m, 200m, 100m, 1500m, 800m, 400m, 50m, 500m, 3000m, 1000m

712 kenteris, thanou, katerina, annus
527 race, grand, finish, finished, runners, runner, finishing, prix, races, pole
10 gold, medal, silver, medals, bronze, bronzes, golds, silvers

911 athens, greek, greece, cyprus, turkey, turkish, cypriot

48 iaaf, doping, blatter, usada, ioc, cas, wada, sepp, usatf, rogge

380 indoor, indoors, outdoor, pool, makeshift, playground, outdoors, backyard, pools
55 chepkemei, kluft, heptathlon, gatlin, masai, lagat, kelli, kiplagat, obikwelu, joyner

82 marathon, sprinters, hurdles, sprint, marathons, sprinting, hurdle, sprints, obstacle,
hurdlers

Table C.6: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for athletics class of BBC Sport dataset

115

Axis Members

670 pakistan, india, sri, bangladesh, lanka, lankan

13 wicket, overs, wickets, batsman, bowler, bowled, bowling, batsmen, fours, bowlers
190 vaughan, trescothick, giles, gillespie, thorpe, gough, hogg, cairns, fleming, solanki
123 ponting, martyn, lehmann, hayden, warne, gilchrist, langer, damien, mcgrath, katich
394 pietersen, flintoff, harmison, hoggard, lbw, collingwood, nought, caddick

635 test, tests, testing, tested, samples, sample, urine

1058 shoaib, akhtar, kaneria, razzaq, akmal, kamran, umar, shahid, afridi, mushtaq

277 rugby, cricket, fifa, icc, uefa, sevens, irb

211 pollock, boje, graeme, shaun, jaarsveld, cronje, ontong, hansie, rhodes, jonty

600 ntini, steyn, nel, makhaya, morkel, charl, langeveldt, albie

Table C.7: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for cricket class of BBC Sport dataset

Axis Members

537 chelsea, liverpool, manchester, newcastle, everton, leicester, birmingham, southamp-
ton, sheffield, blackburn

829 arsenal, wenger, arsene, gunners

60 gerrard, ferguson, hodgson, owen, wilkinson, rooney, bellamy, lampard, giggs, jonny

105 mourinho, benitez, aragones, rafa, houllier, mcleish, ranieri, barca, cruyff, rijkaard

513 souness, redknapp, keegan, moyes, eriksson, mcclaren, jol, hoddle, gatland, warnock

688 goal, scored, goals, score, scoring

830 madrid, barcelona, villa, palace

493 ronaldo, beckham, ronaldinho, juninho, adriano, zidane, cristiano, zinedine, kaka,
rivaldo

406 premiership, fa, trophy, fixture, trophies, fixtures, silverware

698 team, players, club, coach, league, player, football, teams, clubs, coaches

Table C.8: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for football class of BBC Sport dataset

116

Axis Members

113 england, ireland, wales, scotland, irish, english, edinburgh, welsh, scottish, dublin

377 wasps, dallaglio, saracens, corry, vickery, grewcock, worsley, borthwick, harlequins

445 jones, williams, robinson, smith, johnson, holmes, cole, taylor, davis, lewis

277 rugby, cricket, fifa, icc, uefa, sevens, irb

97 lions, rangers, saints, wolves, dragons, sharks, reds, tigers, falcons, warriors

65 easterby, hickie, humphreys, horgan, ronan, maggs, horan, sheahan, leamy, geordan
366 luscombe, shanklin, sidoli, yapp, cockbain, mcbryde, charvis, gethin, voyce, ceri

22 henson, dawson, connor, byrne, malcolm, dempsey, carr, farrell, hart, sinclair

486 nations, africa, european, african, europe, countries, hemisphere, asian, global, asia
945 lewsey, carling, cueto, tindall, olly, balshaw, guscott, monye, catt

Table C.9: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for rugby class of BBC Sport dataset

Axis Members

314 roddick, federer, nadal, henman, hewitt, agassi, safin, rusedski, lleyton, marat

424 serena, clijsters, venus, hardenne, henin, capriati, hingis, justine, navratilova, martina
37 moya, ferrero, nalbandian, robredo, coria, gaudio, conchita, chela, gaston, feliciano
999 seed, seeds

435 slam, wimbledon, singles, doubles, clay, roland, semis, garros

707 set, open, break, opening, ended, broke, sets, breaks, closing, closed

924 kuznetsova, sharapova, dementieva, svetlana, petrova, davydenko, youzhny, nikolay,

bondarenko, zvonareva

738 mauresmo, dechy, rochus, nathalie, amelie, santoro, fabrice, monfils, grosjean, razzano
1012 davenport, lindsay, marion, haas, becker, pierce

223 ljubicic, jelena, ancic, srichaphan, ivanovic, jankovic, dokic, paradorn, sprem, karolina

Table C.10: Top 10 word clusters and their members when sorted based on the decreasing order of
sum of weights for tennis class of BBC Sport dataset

117

Terms (Associated Weight)
1 said (0.22), mr (0.16), year (0.13), would (0.11), game (0.11), us (0.1)
2 mr (0.27), labour (0.2), elect (0.2), blair (0.16), parti (0.16), tori (0.14), tax (0.13), brown
(0.13), govern (0.13), minist (0.11)
3 labour (0.17), elect (0.16), blair (0.15), mr (0.14), parti (0.14), win (0.12), tori (0.12),
england (0.11), brown (0.11), play (0.1)
4 film (0.49), award (0.28), best (0.21), star (0.16), oscar (0.16), nomin (0.15), actor (0.14),
actress (0.11), festiv (0.1)
5 mobil (0.22), phone (0.2), use (0.17), peopl (0.15), technolog (0.15), user (0.13), game
(0.13), comput (0.12), music (0.11), servic (0.11), softwar (0.1)
6 yuko (0.18), court (0.14), compani (0.14), firm (0.13), law (0.13)
7 music (0.3), band (0.25), album (0.23), chart (0.18), song (0.15), record (0.14), singl (0.14),
top (0.12), olymp (0.11), number (0.11), rock (0.1)
8 game (0.31), club (0.17), music (0.14), unit (0.13), sale (0.13), mr (0.12), yuko (0.11),
player (0.11), share (0.1)
9 england (0.26), music (0.19), wale (0.19), band (0.17), album (0.14), ireland (0.14), robin-
son (0.12), rugbi (0.12), chart (0.1)
10 mobil (0.4), phone (0.32), club (0.11)
11 yuko (0.26), game (0.19), mobil (0.17), wale (0.14), ireland (0.13), russian (0.13), england
(0.13), court (0.12), franc (0.12), phone (0.11), oil (0.11), tax (0.1)
12 game (0.32), lord (0.18), athlet (0.11), eu (0.1)
13 yuko (0.22), lord (0.16), seed (0.14), govern (0.13), law (0.12), play (0.12), russian (0.11),
oil (0.11), court (0.11)
14 award (0.37), best (0.31), tax (0.19), game (0.18), yuko (0.16), nomin (0.15)
15 eu (0.17), airlin (0.13), countri (0.12), plan (0.1), european (0.1)
16 mr (0.24), blair (0.22), brown (0.19), award (0.19), eu (0.17), best (0.16), minist (0.14),
game (0.13), prime (0.11), countri (0.11), mobil (0.11)
17 yuko (0.23), brown (0.22), oil (0.16), music (0.15), film (0.12), aid (0.11), countri (0.11),
world (0.11), tax (0.1), russian (0.1)
18 tv (0.22), show (0.19), broadband (0.14), mr (0.12), search (0.1)
19 game (0.21), broadband (0.2), bt (0.14), servic (0.12), brown (0.11)
20 oil (0.16), yuko (0.16), indoor (0.13), race (0.12), broadband (0.11), chart (0.11), minut

(0.11), european (0.11), eu (0.1), china (0.1)

Table C.11: Top 20 axes of Latent Semantic Analysis on BBC Dataset sorted and selected in the
decreasing order of the singular values. The table also lists the terms (stemmed) weighing at least
0.1 in their association with each of the top 20 axes.

118

Terms (Associated Weight)

1 said (0.16), england (0.16), first (0.12), game (0.11), year (0.11), win (0.1), would (0.1)

2 england (0.19), pakistan (0.17), test (0.16), cricket (0.15), india (0.14), series (0.14), south
(0.13), australia (0.13), africa (0.12), day (0.11), tour (0.11)

3 champion (0.18), open (0.17), olympic (0.15), seed (0.15), world (0.14), indoor (0.13), race
(0.11), set (0.11), australian (0.11), year (0.11), holmes (0.1), athens (0.1)

4 wales (0.25), ireland (0.23), england (0.19), france (0.18), nations (0.15), robinson (0.15),
rugby (0.12), italy (0.12), scotland (0.11), williams (0.11), half (0.11)

5 kenteris (0.2), iaaf (0.18), greek (0.18), thanou (0.17), athens (0.15), drugs (0.14), athletics
(0.12), olympic (0.11), olympics (0.11), england (0.11), doping (0.11)

6 indoor (0.16), race (0.14), minutes (0.13), holmes (0.12), european (0.12), record (0.11),
ball (0.11), goal (0.11), 60m (0.1)

7 kenteris (0.23), greek (0.21), thanou (0.2), iaaf (0.2), drugs (0.14), minutes (0.11), ball
(0.11), doping (0.11), goal (0.11), charges (0.1)

8 south (0.23), england (0.22), africa (0.21), vaughan (0.19), strauss (0.14), flintoff (0.13),
trescothick (0.13), boje (0.12), andrew (0.12), ntini (0.12), jones (0.12), smith (0.11),
pollock (0.11), harmison (0.1), steyn (0.1)

9 liverpool (0.46), gerrard (0.33), benitez (0.26), steven (0.16), anfield (0.13), morientes
(0.12), wales (0.11)

10 wales (0.37), williams (0.27), jones (0.21), ruddock (0.13), thomas (0.13), henson (0.1),
scotland (0.1), italy (0.1)

11 chelsea (0.29), mourinho (0.21), england (0.18), robinson (0.15), injury (0.14), bath (0.11),
pakistan (0.11)

12 chelsea (0.35), mourinho (0.28), zealand (0.19), sri (0.16), cricket (0.14), lions (0.12),
barcelona (0.11), new (0.1), lanka (0.1)

13 zealand (0.17), rugby (0.17), new (0.16), lions (0.14), club (0.12), australia (0.12), liverpool
(0.12), newcastle (0.11), injury (0.11), bath (0.1)

14 lions (0.17), rugby (0.16), zealand (0.14), roddick (0.12), australia (0.12), arsenal (0.12),
ponting (0.11), players (0.11)

15 united (0.22), cup (0.2), ireland (0.14), manchester (0.12), tie (0.1)

16 radcliffe (0.21), marathon (0.21), race (0.17), ireland (0.16), london (0.15), country (0.13),
cross (0.13), paula (0.12), cup (0.12)

17 club (0.18), chelsea (0.15), ireland (0.15), gara (0.14)

18 real (0.34), madrid (0.22), beckham (0.15), owen (0.12), barcelona (0.12), england (0.12),
arsenal (0.12)

19 roddick (0.3), seed (0.15), wales (0.13), agassi (0.11), moya (0.11), radcliffe (0.1)

20 united (0.2), robinson (0.13), england (0.12), fa (0.11), ferguson (0.11), football (0.11),

manchester (0.1)

Table C.12: Top 20 axes of Latent Semantic Analysis on BBC Sport Dataset sorted and selected in
the decreasing order of the singular values. The table also lists the terms weighing at least 0.1 in
their association with each of the top 20 axes.

119

Class

LSA

WcDe

business samsung, suppos, procedur, exceed, as- market, sales, prices, demand, consumer
sum
game, film, play, award, best bank, financial, investment, credit,
banks
olymp, athlet, user, mail, viru economy, economic, global, asia, asian
mobil, economi, elect, growth, rate shares, share, stock, exchange, trading
club, chelsea, arsen, liverpool, leagu growth, increase, increased, increasing,
output
entertainment samsung, suppos, procedur, exceed, as- film, films, series, movie, hollywood
sum
game, england, player, match, club awards, award, prize, honour, awarded
film, england, game, wale, oscar band, rock, pop, hip, hop
mobil, olymp, phone, champion, seed actor, actress, starring, starred
music, eu, european, softwar, appl music, artists, musical, artist, musicians
politics samsung, suppos, procedur, exceed, as- election, parliament, elections, parlia-
sum mentary, assembly
game, film, play, award, best party, leader, political, opposition, poli-
tics
mobil, firm, market, compani, phone mr, dr, mrs, prof, baroness
game, england, player, match, club blair, downing, gates, colin, pentagon
yuko, tax, phone, firm, mobil labour, union, association, unions, fed-
eration
sport samsung, suppos, procedur, exceed, as- game, games, players, team, player
sum
mobil, firm, market, compani, phone england, wales, ireland, scotland, irish
mobil, economi, elect, growth, rate chelsea, liverpool, manchester, newcas-
tle, leicester
game, microsoft, softwar, viru, comput final, match, round, champions,
matches
lord, parti, game, award, profit roddick, hewitt, nadal, federer, henman
tech samsung, suppos, procedur, exceed, as- digital, software, computer, devices, de-

sum
economi, growth, bank, rate, econom

film, seed, mr, festiv, blair

tax, parti, film, tori, yuko

india, site, mobil, search, blog

vice
users, online, internet, content, web

mobile, broadband, wireless, providers,
subscribers

microsoft, apple, google, yahoo, ebay

nintendo, xbox, console, ds, consoles

Table C.13: A comparison between the top 5 topics/clusters (represented by 5 terms/words each)
of both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the basis of sum
of weights across the document vectors of each class of BBC dataset.

120

Class

LSA

WcDe

athletics chelsea, england, arsenal, league, liverpool olympic, championships, event, competi-
tion, athletics
christos, drew, substances, clever, faking 60m, 200m, 100m, 1500m, 800m
seed, open, roddick, federer, beat kenteris, thanou, katerina, annus
open, said, seed, cricket, rugby race, grand, finish, finished, runners
williams, rugby, bangladesh, fifa, zim- gold, medal, silver, medals, bronze
babwe
cricket christos, drew, substances, clever, faking pakistan, india, sri, bangladesh, lanka
chelsea, arsenal, liverpool, league, united wicket, overs, wickets, batsman, bowler
robinson, club, pakistan, souness, united = vaughan, trescothick, giles, gillespie,
thorpe
lions, arsenal, souness, wenger, india ponting, martyn, lehmann, hayden, warne
seed, lions, rugby, pakistan, woodward pietersen, flintoff, harmison, hoggard, 1bw
football christos, drew, substances, clever, faking chelsea, liverpool, manchester, newcastle,
everton
open, said, seed, cricket, rugby arsenal, wenger, arsene, gunners
cricket, indoor, rugby, new, world gerrard, ferguson, hodgson, owen, wilkin-
son
arsenal, marathon, radcliffe, jones, chelsea mourinho, benitez, aragones, rafa, houllier
england, robinson, ireland, liverpool, souness, redknapp, keegan, moyes, eriks-
wilkinson son
rugby christos, drew, substances, clever, faking england, ireland, wales, scotland, irish
pakistan, cricket, india, test, chelsea wasps, dallaglio, saracens, corry, vickery
chelsea, arsenal, liverpool, league, united jones, williams, robinson, smith, johnson
seed, open, roddick, federer, beat rugby, cricket, fifa, icc, uefa
pakistan, ireland, cricket, india, team lions, rangers, saints, wolves, dragons
tennis christos, drew, substances, clever, faking roddick, federer, nadal, henman, hewitt

chelsea, england, arsenal, league, liverpool
cricket, indoor, rugby, new, world
pakistan, india, australia, khan, ireland

pakistan, cricket, india, test, chelsea

serena, clijsters, venus, hardenne, henin
moya, ferrero, nalbandian, robredo, coria
seed, seeds

slam, wimbledon, singles, doubles, clay

Table C.14: A comparison between the top 5 topics/clusters (represented by 5 terms/words each)
of both LSA and WcDe vector spaces. The top 5 topics/clusters were selected on the basis of sum
of weights across the document vectors of each class of BBC Sport dataset

121

Appendix D

Implementation Detalils

This chapter gives details of the implementation of different methodologies compared in this the-
sis. All the experiments were implemented in Python. There are majorly 3 python libraries that
implement many of the methods discussed in this thesis - scikit-learn, gensim and nltk. In this
chapter, I’ll provide details of which methods from these libraries were used to implement different
representation techniques evaluated in Chapter 4. Since these libraries are often updated, the defi-
nitions of the methods may change over time. Therefore, the versions of these libraries used at the

time of implementation, are given in Table D.1.

Python package Version

scikit-learn 0.23.2
gensim 3.8.0
nltk 3.5

Table D.1: Relevant python libraries and their versions

Pre-Processing

The pre-processing of documents was implemented using methods from nltk library -

RegexpTokenizer from nltk.tokenize package was used to split the documents into tokens
based on regular expression. For the sake of simplicity and consistency in tokenization, the
regular expression used to tokenize the documents is the same as the default regular expression

defined for sklearn.feature_extraction.text.CountVectorizer', ie. (?u)\b\w\w+\b .

nltk.corpus.stopwords provides stopwords for various languages. This provides the list of
stopwords for the English language. Wherever the stopwords were removed during the pre-

processing, this list of stopwords was used.

1Token pattern defined in the github repository of scikit-learn - link to the line of code

122

https://github.com/scikit-learn/scikit-learn/blob/2beed55847ee70d363bdbfe14ee4401438fba057/sklearn/feature_extraction/text.py#L1011

PorterStemmer from nltk.stem.porter package is used for stemming the words wherever

the words were stemmed during the pre-processing.

Text Representation Methods

The techniques used to represent documents or words were mostly implemented using the sklearn
and gensim libraries. Wherever applicable, the methods, classes, packages, and the libraries used in

the implementation of various methods discussed in the thesis are given below -

Document-Term Vector Space Model - TfidfVectorizer from sklearn.feature_extraction.

text was used to generate Document-Term Association Vector.
Latent Semantic Analysis -

e TfidfVectorizer from sklearn.feature_extraction.text was used to generate TF-
iDF Document-Term Association Matrix.
e TruncatedSVD from sklearn.decomposition was used to decomposing TF-iDF Document-

Term Association Matrix using Truncated Singular-Value Decomposition.
Latent Dirichlet Allocation -

e TfidfVectorizer from sklearn.feature_extraction.text was used to generate Bi-
nary Document-Term Association Matrix.
e LatentDirichletAllocation from sklearn.decomposition was used to generate LDA

document representation based on the Binary Document-Term Association Matrix.

Smooth Inverse Frequency weighted average of semantic word vectors was implemented
using the GitHub repository published by the authors of Arora et al. (2017). The repository
is available at https://github.com/PrincetonML/SIF?,

Word2vec - Word2Vec from gensim.models was used to train semantic word vectors using
Word2vec model.

Doc2vec - Doc2Vec from gensim.models.doc2vec was used to generate Doc2vec document

representations.
Word Cluster based Document Embedding -

e Word2Vec from gensim.models was used to train semantic word vectors using Word2vec
model.

e AgglomerativeClustering from sklearn.cluster was used to cluster the semantic word
vectors using Agglomerative Hierarchical Clustering algorithm.

e KMeans from sklearn.cluster was used to cluster the semantic word vectors using K-

Means clustering algorithm.

2 Accessed on 2021/08/07

123

https://github.com/PrincetonML/SIF

Document Clustering

The document vectors were clustering using the implementation of K-Means clustering algorithm

available in KMeans class from sklearn.cluster module.

124

Term Index

Adjusted Rand Index, 57

Agglomerative Hierarchical Clustering

combination similarity, 42
distance threshold, 42
merge criterion, 42

AHC, 42

artificial concept, 12

boxplots, 58

CBOW, 20
CF-iDF, 47
chinese restaurant problem, 45
clustering, 32
flat clustering, 40
hard clustering, 40
hierarchical clustering, 40
soft clustering, 40
completeness, 55
context window, 19
context word vectors, 21
context words, 20

coordinate axis, 4

dendrogram, 42
dimension, 4
Doc2vec, 28

distributed bag of words, 28

distributed memory, 28
document, 4

document clustering, 52

document frequency of word cluster, 46

document-term association data, 9
document-term association matrix, 9
Document-Term Association Vector, 8
document-term incidence matrix, 7
Document-Term Matrix, 8
Document-Term Vector Space Model, 8
Document-Topic Association Vector, 12
Document-Topic Vector Space Model, 12
DT-VSM, 8

external evaluation criterion, 52

feature, 5
feature vector, 5
flat clustering
K-Means, 40
FMI, 57
Fowlkes Mallows Index, 57

global vectors, 23
GloVe, 23

hierarchical clustering
Agglomerative Hierarchical Clustering,
42
divisive hierarchical clustering, 41

homogeneity, 55

information gain, 54

inter-class dissimilarity, 66
inter-cluster dissimilarity, 52
internal evaluation criterion, 52

intra-class similarity, 66

intra-cluster similarity, 52

K-Means
centroids, 40
K-Means++, 41

Latent Dirichlet Allocation, 15

Latent Semantic Analysis, 13

merge criterion, 42
average similarity, 44
centroid similarity, 44
link, 43
maximum similarity, 43
minimum similarity, 43
minimum variance, 44
ward’s method, 44

mutual information, 52

NMI, 55

Normalized Mutual Information, 55
one hot vector, 22

paragraph vector, 28
polysemy, 30
prevalence, 91
PV-DBOW, 28
PV-DM, 28

rand index, 55

residual sum of squares, 41

RSS, 41

semantic word vectors, 19
context words, 20
target word, 20
SGNS, 23
SIF, 27
Smooth Inverse Frequency, 27
spherical K-Means, 44
stopwords, 9
strength, 91

126

synonymy, 30

target word, 19, 20

target word vectors, 21

term, 6

term frequency-inverse document frequency,
9

TF-iDF, 9

tokens, 6

true class, 52
unit vector, 5

vector, 4
vector space, 4
Vector Space Model, 8

vocabulary, 6

WeDe, 33
weighting schemes
TF-iDF sum, 46
binary, 34, 46
cluster frequency, 34, 46
cluster frequency-inverse document
frequency, 47
word, 6
word cluster based document embedding, 33
Word Cluster based Document Embedding
weighting schemes, 46
word embedding, 19
contextualized word embeddings, 20
pre-trained word embeddings, 25
static word embedding, 20
Word2vec, 20
context embedding, 21
context word vectors, 21
continuous bag-of-words, 20
skip-gram, 21
skip-gram with negative sampling, 23
target embedding, 21

target word vectors, 21

	List of Figures
	List of Tables
	Introduction
	Unsupervised Representation of Texts - An Overview
	Document-Term Vector Space Model
	Document-Topic Vector Space Model
	Latent Semantic Analysis (LSA)
	Latent Dirichlet Allocation (LDA)

	Document representations using Word Vectors
	Word Vectors
	Aggregating Word Vectors

	Doc2vec

	Word Clusters based Document Embedding (WcDe)
	Methodology
	An Example
	Discussion of Variations and Related Works
	Word embedding
	Clustering Techniques
	Weight Functions

	Evaluation & Quantitative Analysis
	Dataset & Task
	Evaluation Metrics
	Mutual Information
	Rand Index
	Fowlkes Mallows Index

	Results of Other Methods
	Document-Term Vector Space Model
	Latent Semantic Analysis
	Latent Dirichlet Allocation
	Unweighted Average of Word Vectors
	TF-iDF Weighted Aggregate of Word Vectors
	Smooth Inverse Frequency Weighted Average of Word Vectors
	Doc2vec

	Results of WcDe
	WcDe Variations
	WcDe vs the Rest

	Discussion & Qualitative Analysis
	Captures Similarity?
	Captures Difference?
	LSA and WcDe - Synonymy
	Concluding Observations

	Conclusion
	Future Work

	References
	Quantitative Evaluation - Additional Plots
	Quantitative Evaluation - Additional Tables
	Document Vector Axes - LSA and WcDe
	Implementation Details
	Term Index

