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Abstract 

 

Harmonic states in quantum cascade lasers: Frequency-domain analysis and 

mode-spacing control 

 

Mithun Roy 

 

 Quantum cascade lasers (QCLs) are unipolar lasers where lasing transition and carrier 

transport occur between subbands that result from multiple nanometer-thick quantum wells and 

barriers formed by the conduction band edges of a semiconductor heterostructure. Since their 

inception in 1994, QCLs have undergone tremendous improvements with respect to output power, 

frequency range covered, and maximum operating temperature. As a result, they have become a 

prominent source of light emitting in the mid- and far-infrared regions of the electromagnetic 

spectrum. 

 

 Multimode behavior of QCLs was a focus of many past works. In a recent comprehensive 

study, it was found that, if the pumping is increased gradually from threshold, QCLs enter into a 

harmonic state regime, which is characterized by the lasing of side modes that are separated from 

each other by multiples of free spectral range (FSR). With a further increase in the pumping, 

finally, transition into the familiar single-FSR-spaced regime (dense state regime) occurs. Unlike 

the dense state regime, the harmonic state regime of QCLs has not gone through intense scrutiny, 

as it is a relatively recent discovery. 

 

 In this thesis, a theoretical investigation into the harmonic state regime of QCLs is 

performed. The work is based on Maxwell’s equation and the density matrix (DM) formalism. The 

two-level DM equations, although commonly employed, ignore many important details of 

complex carrier transport through a QCL structure. Therefore, here, a three-level DM formalism 

is employed, which takes into account phenomena such as resonant tunneling and carrier scattering 

between the three states.  
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 The thesis is mainly divided into two parts. In the first part, starting from the DM-Maxwell 

equations, an analytical expression for the instability gain of the side modes is derived. This 

expression can explain the appearance of harmonic states in QCLs. Using this analytical 

expression, the effects of group velocity dispersion on the harmonic states are studied. In the 

second part, multimode behavior of QCLs is analyzed using a more general model than that used 

in the first part. In particular, openness (non-unity facet reflectivity) of the cavity is considered, 

which was not taken into account in previous works that used the modal expansion method to study 

QCLs. Using the theory, it is shown that the coating of a facet can be used to excite harmonic states 

with different mode spacing. Such a control over the generation of harmonic states could make 

QCLs invaluable for applications such as microwave and terahertz generation, picosecond pulse 

generation in the mid-infrared frequency range, and broadband spectroscopy. 
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Chapter 1: Introduction 

 

1.1 Fundamentals of a laser 

 Lasers are one of the most important discoveries of the twentieth century. Modern life 

cannot be imagined without lasers. They have numerous applications in various fields, such as 

spectroscopy, medical imaging, microwave and terahertz photonics, and astronomy. 

  

 Broadly speaking, a laser is a device that amplifies light, just like transistors that amplify 

electrical signals at different frequencies. Lasers generate coherent and collimated electromagnetic 

waves of frequencies starting from the ultraviolet region up to the far-infrared region of the 

electromagnetic spectrum [1]. They can be of different sizes and can deliver a wide range of power 

depending on the applications, ranging from the laser pointers used in classrooms to powerful gas 

lasers used in industry.  

 

 The operating principle of a laser is based on a phenomenon called stimulated emission. 

Consider a material system having just two discrete energy levels. When an electromagnetic field 

of frequency close to the frequency corresponding to the energy difference between the two levels 

is incident on the material, the electrons face a sinusoidal potential perturbation. The probability 

of the electrons in the lower energy level performing an upward jump is the same as the probability 

of the electrons in the upper energy level performing a downward jump [2]. Photon emission due 

to this downward jump under the influence of an electromagnetic field is called stimulated 

emission. Now, if the number of electrons (population) at the lower level is higher than that in the 

upper level, which is the case if the material is in thermal equilibrium, then a net absorption of the 

incident photons will occur. However, if the population in the upper state is higher, a net downward 

transition of electrons will occur, emitting photons at the same frequency and polarization as those 

of the incident photons. As a result, the emitted light will be more intense than the incident light 

and will be coherent. 

 

 Therefore, population inversion is an essential ingredient for a laser to work. In order to 

create population inversion, one needs to supply energy from outside (pumping), thus driving the 

material out of thermal equilibrium. Pumping can be of any form, e.g., supplying electrical current 
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into the medium, or optically loading carriers in the upper state. The other ingredient necessary for 

a laser is an optical resonator (cavity), in which the medium (gain medium or active medium) is 

placed. Light in the cavity bounces back and forth upon repeated reflection at the end mirrors, 

gaining intensity each time while passing through the gain medium. At some point, after the 

transients have died out, the intensity becomes constant. This situation is referred to as the gain 

saturation being reached. Typically, two types of cavities are employed, a Fabry-Perot or a ring 

cavity. Both types of cavities are depicted in Fig. 1.1. 

 

 

Figure 1.1: Schematic diagram of (a) a ring cavity and (b) a Fabry-Perot cavity. 

 

Lasers can be roughly put into the following categories based on the material of the gain 

medium [3]. 

Solid state lasers: Gain medium is solid, often in the form of a crystal or a rod. Typically, it is 

doped with metallic ions. Pumping is done via optical means. Some common examples include 

ruby laser, Ti:Sapphire laser etc. 

Gas lasers: Active region is in gaseous form. Common gas lasers include CO2 laser, helium-neon 

laser etc. In CO2 laser, lasing occurs due to transition of CO2 molecules into lower vibration levels. 

Semiconductor lasers: As the name suggests, semiconductors, commonly III-V materials, are 

employed as the gain medium. Pumping is done electrically, i.e., electrical current is injected in 

order to achieve population inversion. Under electrical bias, electrons undergo lasing transition 

from a conduction band to a valence band, thus recombining with a hole in the valence band. A 

common example is a diode laser. As well, Electrons can perform radiative transition within 

subbands belonging to a conduction band, such as in quantum cascade lasers. 
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Dye lasers: A liquid solution of organic materials is employed as the active medium. Under optical 

illumination (pumping), lasing occurs due to fluorescence.  

 

1.2 Quantum cascade lasers 

 In conventional semiconductor lasers, population inversion is achieved between a 

conduction band and a valance band. Figure 1.2 depicts the operating principle of a double 

heterostructure semiconductor laser in terms of a simplified energy band diagram. Under the 

influence of an external bias (forward bias), electrons from the n-type layer and holes from the p-

type layer are injected into the sandwiched active layer, thus resulting in population inversion. 

Lasing occurs as a result of the electrons falling from the conduction band and recombining with 

the holes in the valence band. Although this type of interband lasers is cheap and easy to fabricate, 

there is a problem: the frequency of the lasing light is determined by the bandgap of the material, 

which cannot be easily changed. In particular, the conventional semiconductor lasers poorly cover 

the mid- to far-infrared region of the electromagnetic spectrum [4]. 

 

 

Figure 1.2: Schematic illustration of the operating principle of a double heterostructure laser. 

  

Quantum cascade lasers (QCLs) are unipolar lasers where lasing transition occurs between 

subbands that belong to a conduction band, as opposed to interband lasers where conduction to 

valence band transition is involved. Figure 1.3 shows the basic operating principle of a QCL. 

Layers of semiconducting materials, typically III-V materials, are grown in a way so that the 

corresponding conduction band edges form many repetitions of a quantum barrier-well-barrier 
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structure. These quantum wells and barriers result in bound states, also known as subbands, 

through which electron transport occurs. The widths of the materials (thickness of the quantum 

wells and barriers) are carefully chosen so that electrons are injected efficiently into the upper 

lasing state under appropriate DC biases. Although there exist other electron injection 

mechanisms, resonant tunneling mechanism is commonly employed, where the ground state of a 

preceding quantum well is designed to be located very close in energy to the upper lasing state of 

the following quantum well. Electrons then efficiently tunnel from the ground state into the upper 

lasing state. In addition, the lower lasing state is designed to have a very short carrier lifetime. As 

a result, population inversion occurs, and lasing ensues. Moreover, carrier transport in a QCL is 

periodic in nature, i.e., the same sequence of transport events is repeated as electrons traverse the 

structure (Fig. 1.3). Thus, one electron produces multiple photons—one photon per period.  

 

 

Figure 1.3: Simplified diagram showing carrier transport through a typical QCL. RT: Resonant 

tunneling, LT: Lasing transition, FNS: Fast nonradiative scattering, MQWs: Multiple quantum 

wells. 

 

 In QCLs, lasing frequency is determined by the energy difference between lasing subbands. 

Just by changing the thickness of the materials, one can vary emission frequency. Thus, the 

discovery of these lasers gave us freedom from “bandgap slavery.” Particularly, the emission range 

of QCLs covers both the mid-infrared and terahertz region of the electromagnetic spectrum. 

Moreover, the periodic nature of the carrier transport (hence the name cascade) results in a high 

differential quantum efficiency, i.e., high output power from the laser can be obtained. 
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 The idea of light amplification by intersubband transitions was first proposed by Kazarinov 

and Suris in 1971 [5]. However, due to technological issues, it was not until 1994 when the first 

intersubband laser (QCL) was demonstrated by Faist and coworkers [6]. The device operated in 

the mid-infrared region, providing limited optical power at cryogenic temperatures (maximum 

operating temperature was ~90 K). Then, in 2002, continuous-wave operation of QCLs at room 

temperature was achieved [7]. In the same year, another milestone was reached when the operating 

frequency of QCLs was extended into the terahertz range [8]. Since the energy difference between 

the lasing states in terahertz QCLs is small, they operated at cryogenic temperatures for years. 

Very recently, researchers have been able to raise the operating temperature above that of a 

thermoelectric cooler (235 K), demonstrating a maximum operating temperature of 250 K [9]. 

Besides, improvements were achieved in terms of high-power delivery and high wall-plug 

efficiency [10,11]. 

 

1.3 Multimode behavior of QCLs 

 Consider a Fabry-Perot cavity of length L  with unity facet reflectivity. The cavity is 

assumed to be filled with a medium of refractive index .n  The cavity does not just support any 

wavevectors; it supports a wavevector for which the corresponding spatial variation can replicate 

itself after each round trip. These allowed wavevectors are referred to as the longitudinal modes 

of the cavity. The angular frequencies of the longitudinal modes are given by  ( ) ,i i c Ln =  

where i  is an integer and c  is the speed of light in free space. The frequency spacing between the 

two consecutive modes, ( ) ,c Ln  is called the free spectral range (FSR) of the laser. If the 

refractive index is independent of frequency, i.e., if there is no group velocity dispersion (GVD), 

the modes will be equally spaced in frequency. However, in reality, no material is free of GVD. 

As a result, the modes always walk off to some degree from being equally spaced. 

 

 The gain spectrum of a QCL is not flat; rather it typically takes the shape of a Lorentzian, 

where the gain peaks at some frequency and gradually falls off as the frequency detuning from the 

gain-peak frequency increases. At a pumping slightly higher than lasing threshold, the longitudinal 

mode whose frequency is close to the gain-peak frequency lases, and the QCL operates in a single 

mode regime. As the pumping is increased slowly, the QCL enters into a harmonic state regime, 
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which is characterized by the appearance of side modes that are located multiples of FSRs away 

from each other. Although GVD causes the cavity modes to be spaced in a nonuniform way, the 

side modes in a harmonic state regime were shown to be equally spaced [12]. This uniform spacing 

occurs due to the optical nonlinearity of the gain medium. When a laser emits multiple modes that 

are equally spaced in frequency, the emission spectrum is referred to as a frequency comb. Finally, 

if the pumping is increased further, the operating regime changes into a more familiar single-FSR-

spaced (dense state) regime. Although harmonic state regime is a general phenomenon for QCLs, 

it was definitively discovered only recently, in 2016 [13], because the harmonic state is very 

sensitive to certain experimental conditions. Even placing a poorly aligned collimating lens 

between a QCL and a spectrometer or a rapid increase in the pumping current can cause the laser 

to undergo transition from the harmonic state regime to the dense state regime. Harmonic 

frequency comb has applications in microwave and terahertz generation, picosecond pulse 

generation in the mid-infrared frequency range, and broadband spectroscopy [14]. 

 

 If the pumping is not too high, QCLs emit frequency combs while operating in the dense 

state regime as well. The operation of a QCL as a dense frequency comb was first achieved in the 

mid-infrared frequency region [15]. The device had a low GVD and operated in a free-running 

mode. Later, dense frequency comb was achieved using a terahertz QCL as well [16]. The device 

also operated in a free-running mode, and a special dispersion compensation technique was 

employed, in that a chirped corrugation was etched into the facet of the QCL. These devices did 

not produce pulses in time domain. Rather, they produced output of almost constant intensity. In 

another words, the devices emitted frequency-modulated combs. Very recently, frequency comb 

operation of free-running ring QCLs has been demonstrated as well [17]. 

 

1.4 Problem identification and research objectives 

 The harmonic state regime of QCLs was studied in Refs. [12,13] by using a carrier transport 

model that considers only two states, i.e., lasing states. However, in a real QCL, transport involves 

a set of complex events, such as resonant tunneling and carrier scattering between many energy 

states. Moreover, in those works, the facets of the cavity were assumed to be perfectly reflective, 

i.e., closed-cavity assumption was employed. Furthermore, a detailed investigation into the effects 

of GVD on the harmonic states was not performed. However, in order to better understand the 
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regime as well as to be able to engineer the spacing between the modes, consideration of these 

factors in the analysis is necessary. 

 

Therefore, the research objectives are as follows: 

a. Construct an analytical frequency-domain theory for multimode behavior of Fabry-Perot 

QCLs by considering carrier transport involving three states, GVD, and cavity openness (nonunity 

facet reflectivity).  

b. Control the frequency spacing between the modes in a harmonic state by varying the 

attributes of a facet coating. 

 

1.5 Summary 

 In this chapter, an introductory discussion on lasers has been presented. Also, in simple 

terms, the operating principle of a QCL and its multimode behavior have been discussed. In 

addition, the research objective has been detailed. The remainder of this thesis is organized as 

follows: The second chapter discusses the theoretical background necessary to analyze multimode 

behavior of QCLs. The third chapter focuses on the study of the harmonic state regime of QCLs 

by using a model that considers resonant tunneling and GVD. The closed-cavity assumption is 

employed for analysis in this chapter. In the fourth chapter, a multimode theory that takes into 

account openness of the cavity is presented. Using the theory, a way to control the spacing between 

the modes in a harmonic state is shown. Finally, the thesis concludes with a summary, contribution, 

and future works in chapter five. 
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Chapter 2: Theoretical model 

 

2.1 Introduction 

 In quantum cascade lasers (QCLs), conduction band edges form multiple quantum wells 

and barriers which give rise to localized energy states. To describe carrier transport through these 

states, the density matrix (DM) formalism is typically adopted. Moreover, Maxwell’s wave 

equation is used to describe the propagation of the laser field through a QCL. Since the carrier 

transport and the laser field are inherently coupled, one needs to solve the DM and Maxwell’s 

equations simultaneously in order to analyze multimode behavior of a QCL. This chapter discusses 

the wave equation and the DM formalism, which will be used in the next two chapters. 

 

2.2 Maxwell’s wave equation 

 To derive the wave equation, one would start by writing Faraday’s and Ampere’s laws as 

follows, which describe the time evolutions of the electric field E  inside a QCL and the 

corresponding magnetic field strength vector :H   

 ,E B
t


 = −


  (2.1) 

 e.H D
t


 =


  (2.2) 

Here, B  represents the magnetic flux density and eD  is the electric displacement vector. QCLs 

are made of nonmagnetic materials, so one can write 0 ,B H=  where 0  is the magnetic 

permeability of free space. Also, the displacement vector can be expressed as e 0 ,D E P= +  where 

0  is the free-space permittivity and P  denotes the total electric polarization. Now, consider that 

the heterostructure of the QCL is grown in the -z direction. Then, according to the selection rules 

for intersubband transitions, only the resonator modes that have an electric field component along 

the -z direction will be amplified [18]. Therefore, supposing that the QCL has a slab waveguide 

structure, the focus can be limited only to the transverse electromagnetic modes [3]. Thus, Eqs. 

(2.1) and (2.2) reduce to [3] 
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 ( ) ( ) ( )
0 r

1
, , , ,z y zE x t H x t P x t

t x t 

   
= −    

  (2.3) 

 ( ) ( )
0

1
, , .y zH x t E x t

t x

 
=

 
  (2.4) 

Here, the -x axis denotes the propagation direction and ( ),zE x t  is the component of E  in the -z

direction averaged over the -y  and -z dimensions. Moreover, ( ),yH x t  is the component of H  in 

the -y direction averaged over the -y  and -z dimensions, and ( ),zP x t  is defined in a similar way. 

Finally, by eliminating 
yH  from Eqs. (2.3) and (2.4), one gets the wave equation 

 
2 2 2

2 2 2 2 2

0

1 1
,z z zE E P

x c t c t

  
− =

  
  (2.5) 

where the relation ( )2

0 01c  =  has been used with c  being the speed of light in free space. Note 

that zP  represents the total polarization, i.e., the sum of the linear polarization due to the 

background host medium and the nonlinear polarization associated with the intersubband 

transition. Equation (2.5) does not explicitly include any term that represents waveguide loss; 

however, it can be considered either by adding a phenomenological loss term or by taking the 

refractive index of the background medium to be complex.  

 

2.3 Density matrix formalism 

 First, consider electron transport through the multiple quantum wells and barriers in a real 

QCL. Figure 2.1 shows the conduction band diagram along with the relevant energy levels for the 

mid-infrared QCL designed in Ref. [19]. The laser is made of an InGaAs/AlInAs heterostucture, 

where the In0.53Ga0.47As layers represent quantum wells and the Al0.48In0.52As layers represent 

quantum barriers. Lasing starts at an external bias of 76 kV/cm. The region where lasing transition 

occurs is the active region, which consists of a thin well and two thick wells. Lasing transition is 

denoted by a wavy arrow, occurring between states | 3  (upper lasing state) and | 2  (lower lasing 

state) with an emission wavelength of ~ 5  m.  The energy difference between states | 2  and |1  

is designed to be close to the longitudinal optical phonon energy of InGaAs (34 meV), which 

ensures fast | 2 |1 →   electron scattering rate and therefore helps achieve population inversion. 

From |1 ,  electrons scatter to the injector region, which consists of a manifold of states (injector 



10 

 

states). The spatial extent of these states takes the form of a funnel, hence the name “funnel 

injector.” Finally, electrons (almost) resonantly tunnel from the injector ground state | g  to the 

upper lasing state of the next period (through the injection barrier), and the above cycle of carrier 

transport continues. Note that the described design is just one of the many designs that exist in the 

literature [20]. 

 

 

Figure 2.1: Conduction band diagram and relevant wavefunctions (moduli squared) for the QCL 

designed in Ref. [19]. The applied bias is 76 kV/cm (lasing threshold). The horizontal axis is in 

nanometer and the vertical axis is in meV. In0.53Ga0.47As and Al0.48In0.52As are used for the 

quantum-well and barrier layers, respectively. The thicknesses of the layers for one period, starting 

from the injection barrier, are as follows (in nm): 

5/0.9/1.5/4.7/2.2/4.0/3.0/2.3/2.3/2.2/2.2/2.0/2.0/2.0/2.3/1.9/2.8/1.9. The underlined layers are n-

type doped with Si, resulting in a free electron concentration of 
172 10  cm–3. Reproduced from 

[J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.‐N. G. Chu, 

and A. Y. Cho, “High power mid‐infrared ( ~ 5  μm ) quantum cascade lasers operating above 

room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996)], with the permission of AIP 

Publishing. 

 

 While modeling carrier transport through a QCL, one does not take into account all the 

states that the electrons travel through, since it would make the computation prohibitively 

intensive. Most commonly, only upper and lower lasing states are considered, and carrier transport 

is described by the two-level DM equations, also known as Bloch equations. Bloch equations have 

the following form [21]: 

https://doi.org/10.1063/1.115741
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( )

( )
( )2

eq 33 22 33 22*

33 22 32 32 2

32

i2 ,z

w
aE D

x

   
   



− −  −
− = + − +


  (2.6) 

 ( ) ( )1

32 23 || 32 33 22i i ,zaE     −= − + + −   (2.7) 

 where 33  and 22  represent the normalized populations in the upper and lower lasing states, 

respectively, 32  denotes the coherence between the lasing states, and the overdots denote time 

derivatives of the corresponding quantities. Moreover, 
eqw  represents the population inversion that 

would exist in the absence lasing, 32  is the carrier lifetime corresponding to | 3 | 2 →   scattering 

rate, 23a ez= , 23ez  represents the corresponding dipole matrix element, D  is the diffusion 

coefficient, 23  is the optical transition frequency (corresponding energy difference/ ), and 
1

||
−

 

denotes the dephasing rate of electrons between the lasing states. Often, in an attempt to capture 

the complex nature of carrier transport through a QCL, 32  is replaced by an equivalent time 

parameter known as the gain recovery time 1.T  For a typical mid-infrared QCL, the gain recovery 

time is ~ 2  ps [22]. 

 

 Although commonly used for simplicity, the above two-level model leaves out many 

important details of the carrier transport, such as resonant tunneling and carrier scattering into the 

other energy states. Figure 2.2 shows the schematic diagram of a more realistic model of carrier 

transport through a typical QCL. In particular, in addition to the lasing states | 3  and | 2 ,  a third 

energy state |1g  (or |1g  depending upon the period) has been added. This state takes into 

consideration the combined effect of |1  and the injector states in Fig 2.1 on the carrier transport 

(compare Fig. 2.2 with Fig. 2.1). So, for this three-level model, the population equations can be 

written as  

 

2

1g,3 1g,2 1g,1g1 1

1g,1g 3,1g 33 2,1g 22 2
,

J J
D

e e x


    − −

 


= − − + + +


  (2.8) 

 ( ) ( )
2

1g,3 1 1 * 33
33 32 3,1g 33 32 32 2

i ,z

J
aE D

e x


     − −




= − + + − +


  (2.9) 

 ( )
2

1g,2 1 1 * 22
22 32 33 2,1g 22 32 32 2

i ,z

J
aE D

e x


      − −




= + − + − +


  (2.10) 
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where  
,i i  (or ii ) denotes the normalized population in state | i  as before, 

,i jJ  represents the 

second-order currents due to resonant tunneling, and 
,i j  (or 

ij ) is the carrier lifetime 

corresponding to | |i j →   scattering rate. The coherence equation, however, remains the same as 

Eq. (2.7).  

 

 

Figure 2.2: Schematic depiction of carrier transport through the QCL periods under an appropriate 

bias. 

  

 Maxwell’s equation and the DM equations are coupled via the nonlinear part of the total 

polarization ,zP  i.e., three-level ,P  which acts as a source term for Eq. (2.5). three-levelP  depends on the 

coherence according to 

 ( )*

three-level 32 32 ,P N a  = −  +   (2.11) 

where N  denotes the concentration of free electrons in the QCL and   represents the overlap 

factor between the optical field and the active region. Therefore, the population equations (2.8)–

(2.10), the coherence equation (2.7), Maxwell’s equation (2.5), and the coupling equation (2.11) 

represent the complete set of equations which will be used in later chapters to describe multimode 

behavior of QCLs. 
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2.4 Summary 

 In this chapter, the derivation of the wave equation from Faraday’s and Ampere’s laws has 

been shown. Also, the band diagram of a real QCL has been presented, and in light of this, the 

two- and three-level DM equations have been discussed.  
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Chapter 3: Harmonic instability in a quantum cascade laser with 

Fabry-Perot cavity 

 

The content of this chapter has been taken from my publication in Ref. [23].1 

 

3.1 Abstract 

 A new state of instability called harmonic instability, which is characterized by the 

appearance of side modes separated by multiple of free spectral range from each other, was 

discovered in quantum cascade lasers (QCLs) a few years ago. However, a detailed analysis using 

a model beyond the two-level density-matrix (DM) equations as well as incorporating phenomena 

such as the detuning of the primary-mode frequency from the line-center frequency and the 

frequency dependence of the background refractive index, resulting in group velocity dispersion 

(GVD), has not been performed yet. In this chapter, we present a comprehensive analysis of 

harmonic instability in a QCL with Fabry-Perot (FP) cavity. Starting from the three-level DM 

equations, which include resonant tunneling phenomenon and scattering rates between all three 

states, and then by using Maxwell’s equation, we derive a closed-form expression for the gain of 

the side modes, from which quantities pertinent to instability can be determined. We also take the 

aforementioned phenomena into account in our theory. By using our theory, we show the way of 

determining the primary-mode detuning from the line center. Furthermore, we study the effects of 

GVD on instability in detail, showing that the output from an FP QCL demonstrates the 

characteristic of a frequency-modulated wave up to a certain value of dispersion. Above this value, 

because of the significant deviation of the side-mode amplitude ratio from unity, the output shows 

neither frequency-modulated-like nor amplitude-modulated-like behavior. 

 

3.2 Introduction 

 A laser, when pumped to its threshold, starts oscillating at a single mode, also referred to 

as primary or central mode. As the pumping is increased slowly, the intensity of the single-mode 

light increases. When the pumping reaches a specific value known as the instability threshold or 

 
1 M. Roy and M. Z. Kabir, “Harmonic instability in a quantum cascade laser with Fabry-Perot cavity,” Journal of Applied Physics 

128, 043105 (2020). 
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second threshold, the laser becomes unstable and emits multiple modes. For a unidirectional laser, 

in the single-mode regime, the population inversion remains constant at its threshold value 

everywhere inside the cavity. As a result, the linear gain, also known as the incoherent gain or 

Lorentzian gain, of the side modes does not vary with pumping and is smaller than the loss (the 

total loss is comprised of waveguide and mirror loss). Therefore, the linear gain alone cannot pull 

the side modes above threshold in a unidirectional laser. In a laser cavity, photons of a frequency 

different from the frequency of the central mode always exist. They, together with the central-

mode photons, create an intensity modulation at the difference frequency of the two fields, which, 

in turn, causes population inversion to vary at that difference frequency. This is known as 

population pulsation (PP). Due to PP, side modes at the corresponding frequencies experience a 

gain referred to as the nonlinear gain (also known as the coherent or parametric gain) that varies 

with pumping. For a sufficiently high pumping level, the total contribution of incoherent and 

coherent gains overcomes losses at a pair of frequencies—one on each side of the central mode. 

Consequently, the corresponding side modes start to lase, and the laser becomes unstable. This 

instability in a traveling-wave laser is known as the Risken-Nummedal-Graham-Haken instability 

[24,25]. 

 

 For a standing-wave laser, provided that the diffusion coefficient is not too high, population 

inversion does not remain constant everywhere inside the cavity in the single-mode regime. It 

assumes the form of a grating, a phenomenon known as spatial hole burning (SHB), which also 

varies with the pumping. SHB is responsible for the lowering of instability threshold in standing-

wave lasers [13,26,27]. 

 

 Single-mode instability in quantum cascade lasers (QCLs) was a focus of many past works 

[13,26,27,28,29]. In particular, Gordon et al. [27] analyzed instability in Fabry-Perot (FP) QCLs 

by treating the effects of SHB and PP separately. However, Mansuripur et al. [13] argued that one 

should treat the effects of SHB and PP simultaneously while analyzing instability. They indeed 

were able to explain the origin of a new state of instability in QCLs, namely harmonic instability. 

It was experimentally shown in Ref. [13] that, when primary mode in an FP QCL becomes 

unstable, which occurs at a pumping level not far from lasing threshold, it enters into a harmonic-

instability regime, characterized by the occurrence of side modes that are located multiple of free 
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spectral range (FSR) apart from each other. If the pumping is kept increasing, the laser enters into 

more familiar single-FSR regime, where the output spectrum is comprised of single-FSR-spaced 

modes. Though harmonic instability is a general phenomenon for QCLs, it had been observed 

rarely in prior works [30] because the harmonic state is very sensitive to certain experimental 

conditions. Even placing a poorly aligned collimating lens between a QCL and a spectrometer or 

a rapid increase in the pumping current can cause the laser to undergo a transition from the 

harmonic-instability regime to the single-FSR regime [13,14]. Recently, the frequency-comb 

nature (i.e., the uniform-spacing nature) of the modes in the harmonic-instability regime was 

demonstrated [12]. Harmonic frequency comb has applications in microwave and terahertz 

generation, picosecond pulse generation in the mid-infrared (mid-IR) frequency range, and 

broadband spectroscopy [14]. 

 

 In the previous work [13], each period of a QCL was considered to have two energy levels, 

and thus, the two-level density-matrix (DM) equations, also known as Bloch equations, were used 

in the analysis of harmonic instability. However, in reality, each period of a QCL has more than 

two states, and resonant tunneling (RT) is often exploited in the laser design as a mechanism to 

inject carriers from the injector region of the ( )1 -s − th period into the active region of the -s th 

period, where s  represents the period number. Therefore, in order to describe the complex carrier 

transport in actual devices and thus accurately predict the instability, we need a model beyond the 

two-level DM equations. Moreover, the detuning of the primary-mode frequency from line-center 

frequency (i.e., optical transition frequency) was not taken into consideration. In addition, the 

frequency-dependent nature of the background refractive index, which causes the group velocity 

of light inside the cavity to depend on frequency (i.e., group velocity dispersion), was not 

considered. In Ref. [12], though group velocity dispersion (GVD) was considered, a rigorous 

theory leading to a closed-form expression for the gain of the side modes was not developed. Also, 

the effects of GVD on instability were not fully explored. Therefore, a thorough study of harmonic 

instability in QCLs, in order to make QCLs more appealing for the aforementioned applications, 

is essential. 

 

 In this chapter, we present a detailed analysis of harmonic instability in a QCL having an 

FP cavity. We model each QCL period to have three energy states and describe carrier transport 
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by using a DM model that accounts for RT mechanism and scattering rates between all three states. 

We solve coupled Maxwell-DM equations by assuming the laser spectrum to be comprised of three 

modes, namely a primary mode and two weak side modes, and thus derive a closed-form 

expression for the gain of the side modes. The analytical model can determine different quantities 

pertaining to instability, such as the pumping level that causes the laser to be unstable and the side-

mode detuning at the onset of instability. Our theory takes the detuning of the primary mode 

frequency from line-center frequency and GVD into consideration. The theory works for lasing 

operation up to the onset of instability. 

 

 With the help of our theory, we show how to determine the central-mode detuning. 

Moreover, we study the effects of GVD on laser instability in detail. Though FP QCLs generally 

emit frequency-modulated (FM) light [31], this study reveals that FP QCLs show FM-like behavior 

up to a certain value of dispersion. When the dispersion exceeds this value, the ratio of the 

amplitudes of the side modes deviates considerably from unity, and therefore, the output shows 

neither FM-like nor amplitude-modulated-like (AM-like) behavior. 

 

 The remainder of this chapter is organized as follows: In Sec. 3.3, we present a theory of 

harmonic instability in an FP QCL. In Sec. 3.4, by using our theory, we explain the process of 

determining the central-mode detuning and also study the influence of GVD. Finally, we conclude 

our work with a summary in Sec. 3.5. 

 

3.3 Theory 

 We formulate the theory of harmonic instability by following an approach similar to those 

in Refs. [13] and [32]. Before going into the derivation, we give an outline of our approach. First, 

we assume that the laser electric field is composed of three spatially orthonormal modes, i.e., a 

primary mode and two weak side modes, and we represent the elements of the DM in terms of 

slowly varying (SV) amplitudes and rapidly varying exponential functions. Second, by putting 

these expansions into the DM equations, we get a system of coupled partial differential equations 

(PDEs), and then we solve this system, obtaining the steady-state solution of the SV amplitudes. 

Third, we plug these solutions into Maxwell’s equation, and by exploiting orthogonality of the 

lasing modes, we obtain an equation of motion (EoM), i.e., an equation describing the time 
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dependence of the mode amplitude, for each of the modes. Fourth, we solve the EoM for the 

primary mode, thereby finding the steady-state value of the primary-mode amplitude and the 

corresponding frequency. Finally, we assume that the side-mode amplitudes experience 

exponential gain (or decay), plug the values of the primary-mode amplitude and frequency into the 

side-mode EoMs, and find the final equation for the gain of the side modes. This equation provides 

all the relevant information regarding the instability.  

 

 We begin by assuming that an electric field ( , ),zE x t directed along the -z axis, propagates 

along the -x axis through a QCL. The QCL has an active medium consisting of many 

heterostructure periods, and each period is considered to have three energy levels. Under an 

appropriate DC bias, the carrier transport through the periods takes place, as shown in Fig. 3.1, 

according to the following sequence: First, from the ground (injector) state 1  of the ( )1 -s − th 

period, electrons predominantly scatter to the upper lasing state 2  of the -s th period by RT; 

next, they mainly undergo lasing transition, reaching the lower lasing state 3  of the same period; 

finally, electrons relax to the ground (collector) state 1  of the -s th period via phonon and other 

relevant scattering mechanisms. We describe carrier transport by the following simplified DM 

equations: 

 
2

1 11312 11
11 21 22 31 33 2

,
JJ

D
e e x


    − −

 


= − − + + +


  (3.1) 

 ( ) ( )
2

1 1 *12 22
22 23 21 22 23 23 2

i ,z

J
aE D

e x


     − −




= − + + − +


  (3.2) 

 ( )
2

1 1 *13 33
33 23 22 31 33 23 23 2

i ,z

J
aE D

e x


      − −




= + − + − +


  (3.3) 

 ( ) ( )1

23 23 ,23 23 22 33i i ,zaE     −= − + + −   (3.4) 

where 
ij  is the corresponding DM element, the overdots represent the time derivatives of the 

corresponding quantities, 
1

ij
−

 and 
1

,ij −
 denote the scattering rate and the dephasing rate of electrons 

between the states i  and ,j  D  is the diffusion coefficient, 23  is the optical transition 

frequency ( 23 23 =  with 23  denoting the energy difference between the states  2  and 3 ), 
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23a ez= , 23ez  represents the corresponding dipole matrix element, and J  denotes the second-

order tunneling current density between relevant states. Since single-mode instability in an FP 

QCL occurs at a pumping level not far above the lasing threshold [13], we assume that the energy 

differences between the states within a period and hence the carrier scattering rates between them 

do not change with pumping once lasing threshold is reached. Supposing that the energy of state 

1  is lower than or equal to that of 2 ,  we write the tunneling current densities as 

( )12 12 11 12 22J e   = −  and ( )13 13 11 33 13 ,J e   = −  where ( ) ( )
2

2 22 ,ij ij ij ij ij    =  +
 

 

( )B eexpij ij k T = −  [33,34]; ,ij  ,ij  and 
ij  are respectively the coupling energy, broadening 

parameter, and energy difference associated with the states i  and ,j  Bk  is the Boltzmann 

constant, and eT  represents the average electron temperature of the states. As we are dealing with 

a “closed” system, the diagonal elements of the DM must add up to 1, which enables us to eliminate 

11  from Eqs. (3.2) and (3.3). Thus, we get 

 ( )
2

* 22
22 2 1 22 2 33 23 23 2

i ,zC C C aE D
x


    


= − − + − +


  (3.5) 

 ( )
2

* 33
33 13 4 22 5 33 23 23 2

i ,zC C aE D
x


     


= + − + − +


  (3.6) 

where ( ) 1 1

1 12 12 23 211 ,C    − −

= + + +  2 12 12 ,C  =  1

4 13 23 ,C   −= − +  and ( ) 1

5 13 13 311 .C    −

= + +    
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Figure 3.1: Schematic illustration of carrier transport through the QCL periods under an 

appropriate bias. Each period is assumed to have three energy levels. 

 

 Since our focus is to study single-mode instability, we take the field inside the cavity to be 

composed of a strong primary mode and two weak side modes with one chosen from each side of 

the primary mode. In our derivation, we treat the couplings up to the first order in the side modes, 

which is equivalent to ignoring the saturation of the side modes. Therefore, our theory is valid for 

lasing operation up to single-mode-instability boundary, i.e., up to the onset of single-mode 

instability. We expand the field and the elements of the DM in terms of SV amplitudes and rapidly 

varying exponential functions: 

 0i i i

0( , )e ( , )e ( , )e c.c.,
t t t

zE E x t E x t E x t
  + −− − −

+ −= + + +   (3.7) 

 
iδ

22,33 dc, δ,( , ) ( , )e c.c.,t

b b bx t x t    −

= = + +   (3.8) 

 0i i i

23 0( , )e ( , )e ( , )e ,
t t t

x t x t x t
     + −− − −

+ −= + +   (3.9) 

where 0  is the frequency of the primary mode,   are the frequencies of the side modes and are 

expressed as 0 δ ,   =   and δ  is the side-mode detuning from the primary mode. We have 

assumed +  and −  to be equally detuned from 0  because such phenomenon was observed in 

the experiment [12]. The subscript “dc” is used to denote that the corresponding quantity is the 

coefficient of the zero-frequency exponential function. 0  and   are the oscillation frequencies 

and also known as the hot-cavity frequencies. Due to dispersion of the gain medium, these 

frequencies generally differ from the cold-cavity frequencies [35]. We assume that the FP cavity 
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is closed, i.e., the reflectivity of both the facets is unity. This assumption simplifies our analysis 

due to the fact that the eigenmodes of a closed cavity are well-defined and orthogonal to each 

other. Though our theory is derived by employing the closed-cavity assumption, it is, as well, 

applicable for QCLs with facets of non-unity but equal/nearly equal reflectivity, i.e., symmetric 

reflectivity [13]. However, it cannot predict instability in QCLs having facets with asymmetric 

reflectivity. Because the cavity is sharply resonant around its eigenmodes, we assume that the 

temporal and spatial variations of the field amplitudes 
0, , ( , )lE x t= + −

 are separable [36]. So, we write 

( , ) ( ) ( ),l l lE x t Y x F t=  where the cavity eigenmode ( )lY x  is given by  

( ) ( ) ( )( ) 1 2 exp i exp il l lY x k x k x= + −    and lk  is an allowed wavevector. The cold-cavity 

frequencies are related to wavevectors by ( ) ,l l lk c n =   where ( )ln   and c  are the frequency-

dependent background refractive index and the light velocity in free space, respectively. We 

assume that a cold-cavity mode of mode number 23N  exists at the line center; putting it another 

way, we assume that the relation ( )23 23 23N L n c  =  holds, where L  is the length of the 

cavity. Thus, we write 
0, ,lk = + −

 in terms of 23N  as ( )23 ,l lk N N L= +  where 23 lN N+  is the mode 

number for the -l th mode and lN  is the corresponding mode index (or mode offset). Now, 

plugging Eqs. (3.7)–(3.9) into Eqs. (3.4)–(3.6) and equating the terms that have the same argument 

for the exponential functions, we obtain a system of coupled PDEs as follows: 
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 ( ) ( )1
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and 

 ( ) ( )1 * *

23 ,23 0 0 δ,22 0 0 δ,33 dc,22 dc,33i i .a Y F Y F Y F Y F        −
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  (3.16) 

  

 As done in Refs. [21] and [31], we require the steady-state solution to these PDEs, which 

is achieved according to the following sequence. First, we make the time derivatives of these SV 

terms to zero. Since Eqs. (3.10)–(3.12) have terms containing SV amplitudes associated with the 

primary mode only, which is the consequence of our treatment of the couplings up to the first order 

in the side modes, we, then, proceed to solve these equations for 
dc, 22,33b =

  and 0.  However, in 

order to get rid of the spatial derivatives, we need to know the form of the spatial variation of 
dc, .b  

Therefore, second, we drop the terms containing spatial derivatives in Eqs. (3.10)–(3.12) and solve 

these equations for 
dc, .b  By keeping the terms up to second order in ( )0 0 0 ,E Y F=  we find that 

dc,b  has the form ( )dc, 0cos 2 ,b b bG H k x = +  where bG  and bH  are parameters free of spatial 

coordinate.  Third, assuming that bG  and bH  are unknown parameters, we put the aforementioned 

form of 
dc,b  in Eqs. (3.10)–(3.12) and equate the coefficients of ( )0cos 2k x  terms as well as 

( )0cos 2 -k x free terms. Contrary to what we have done in the second step, in this step, we consider 

the terms containing the spatial derivatives in Eqs. (3.10)–(3.12). Thus, we find the expressions of 

,bG  ,bH  and 0.  Finally, we put the expressions of 
dc,b  and 0  in Eqs. (3.13)–(3.16) and solve 

these equations for the SV amplitudes associated with the side modes. Thus, following these steps, 

we arrive at the expressions below: 

 ( ) ( )

( )( ) ( )

dc,22 dc,33

2 2
21 2 5 4 0 0 ,231 2 5 4

0 eq22 2 2
1 5 2 4 1 0 5 0 2 4 23 0 ,23

8 cos 2 2
1 ,

4 4 1

W

C C C C Dk k x aC C C C
F W

C C C C C Dk C Dk C C

 



  

= −

  + + − ++ + −
  = − +

 + + + + + −  

 

 (3.17) 
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( )

,23

0 0 0

23 0 ,23

i
,

1 i

a W
Y F




  
=

+ −
  (3.18) 

 ( ) ( )
2 2L NL NL * *0

0 0 0 0 ,Y F Y F Y F Y F
N a


   + + + + + +− − −

 = − + +
 

  (3.19) 

 ( ) ( )
2 2L NL NL * *0

0 0 0 0 ,Y F Y F Y F Y F
N a


   − − − − − −+ + +

 = − + +
 

  (3.20) 

 
( )

4 22

,23 eq,23L L NL NL

1 , 1 2 , , , 22 2
0 0 23 0 ,23

2ii
, ,

1
b b b b

N a WN a W 
   

    
=+ − =+ +− − −+


= − =

 + −
 

  

  (3.21) 

 
( )

L

23 0 ,23

1
,

1 i δ


   
+ =

+ − −
  (3.22) 

 
( ) ( )( )

( ) ( )( )

23 0 ,23 ,23 1 2 5 4NL

2

23 0 ,23 5 1 2 4

1 i 1 iδ 2 2iδ
,

1 i δ iδ iδ

C C C C

C C C C

    


     
+

 + − − + + − − =
 + − − − − +   

  

  (3.23) 

and 

 
( ) ( )( )

( ) ( ) ( )( )
23 0 ,23 ,23 1 2 5 4NL

23 0 ,23 23 0 ,23 5 1 2 4

1 i 1 iδ 2 2iδ
,

1 i δ 1 i δ iδ iδ

C C C C

C C C C

    


         
+−

 − − − + + − − 
=
   + − − − − + − − +     

 

 (3.24) 

where 
eqW  is the population inversion that would occur in the absence of lasing and is given by 

( ) ( )eq 2 5 13 2 13 1 2 4 1 5 2 4 ,W C C C C C C C C C C = − − − +  0  is the vacuum permittivity, N  is the free 

electron concentration,   represents the overlap factor between the optical field and the active 

region, and L

1b  and NL

2b  are the linear and non-linear susceptibilities [13], respectively. The scaled 

susceptibilities L

1b  and NL

2b  are introduced in order to simplify the final expressions [see Eqs. 

(3.37) and (3.38) below]. In Eqs. (3.17), (3.23), and (3.24), we keep terms up to second order in 

0 ,E  and the underlying assumption is that the central-mode field remains much weaker than the 

saturation field throughout the single-mode operation, i.e., 
2 2

0 sat ,E E  where 

( )
2 2

23 0 ,232 1 5 2 4
sat 2

1 2 5 4 ,23

1
.

2

C C C C
E

C C C C a

  



+ −+
=

+ + −
 Furthermore, the expressions of L ,−

 NL ,−
 and NL−+  
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can be found by simply replacing δ  with δ−  in Eqs. (3.22)–(3.24), respectively.  

 

 Unlike Refs. [28] and [29], which considered the diffusion of 23  (coherence diffusion), 

we have not taken this diffusion into account. This diffusion can be included in our analysis by 

adding an extra term 
2

23

2
D

x




 to Eq. (3.4). As shown in Eqs. (3.8) and (3.9) in Ref. [29], inclusion 

of the coherence diffusion converts 
1

,23 −
 into two new rates, namely relaxation rate of the 

coherence grating ( )1 1 2

,23,g ,23 09Dk − −= +  and effective carrier dephasing rate in the presence of 

diffusion ( )1 1 2

,23,eff ,23 0 .Dk − −= +  Let us compare the term 2

09Dk  with 
1

,23 −
 for mid-IR QCLs 

operating in the different wavelength regions. For a QCL that lases around 0 3.5 m, =  if we 

take ,23 43 fs = [13], 277 cm sD =  [20], and ( )0 3.25n  =  [13], we find that 
1 2

,23 09 10.Dk −   

Furthermore, for a QCL operating around 0 10 m, =  we find by using ,23 81 fs =  [13] and 

( )0 3.43n  =  [13] that 
1 2

,23 09 38.Dk −   For mid-IR QCLs operating in the longer wavelength 

region, i.e., longer than 10 m,  this ratio will be similar to or higher than the above values. Since 

the term 2

09Dk  is, at least, an order of magnitude smaller than 
1

,23 , −
 the rates 

1

,23,g −
 and 

1

,23,eff −
 will 

be close to 
1

,23 −
 for mid-IR QCLs operating with 0 ~ 3.5 m.   So, we expect that our theory, 

where we have implicitly taken these two rates to be equal to 
1

,23 , −
 will work well for mid-IR 

QCLs operating in the region 0 ~ 3.5 m.   However, for shorter-wavelength QCLs (i.e., 

0 ~ 3.5 m  ), the term 2

09Dk  could be comparable to 
1

,23 , −
 and thus taking coherence diffusion 

into account might be necessary. 

 

 To get an EoM for each of the modes, we use Maxwell’s equation of the following form 

 
2 2 2

2 2 2 2 2

0

1 1
,z zE E P

x c t c t

  
− =

  
  (3.25) 

where total polarization back NL ,P P P= +  polarization of the background host medium is given by 

( ) i

back 0 back

0, ,

e c.c.,lt

l l l

l

P Y F
   −

= + −

 
= + 

 
  ( )back l   represents the susceptibility of the host 
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medium, and the nonlinear polarization due to the three-level QCL periods is given by 

( )*

NL 23 23 .P N a  = −  +  The term representing the total loss will be added later. Now, after 

plugging the expansions of zE  and 23  into Eq. (3.25), by keeping the terms containing only 

positive frequencies, by making the slowly-varying envelope approximations (i.e., by ignoring the 

second time-derivative of lF  and the first and second time-derivatives of l ), and by using the 

relations 
2

2

2

l
l l

Y
k Y

x


= −


 and ( ) ( )

2

back1 ,l ln   = +    we get 

 
( )

( )

2 2
2i i i2 2

2 2 2
0, , 0, , 0, ,0

2i
e e e .l l l

l l t t t

l l l l l l l l l

l l l

n N a
k Y F n Y F

c c c

  
 

   


− − −

= + − = + − = + −

      − + =    
  

     

  (3.26) 

If we put the expression of 0  in Eq. (3.26), project this equation onto the eigenmode 0 ( ),Y x  and 

equate the terms oscillating at frequency 0 ,  we get the EoM for the central mode  

 
( ) ( ) ( ) ( )

( )
( )

22 2
0 ,23d 0

0 0 0 02 2

0 0 0 0 0 23 0 ,23

2
2,23

0 eq 02 2

23 0 ,23

1 i

2 2 2 1 i

2
1 2 .

1

N al c k c
F F F

n n n

a
A B F W F

 


       



  

   
= − + − + 

 + −          

 
 − + 

+ −  

  

  (3.27) 

Here, 1 2 5 4

1 5 2 4

C C C C
A

C C C C

+ + −
=

+
 and 

( )( )

2

1 2 5 4 0

2 2

1 0 5 0 2 4

8
.

4 4

C C C C Dk
B

C Dk C Dk C C

+ + − +
=

+ + +
 We assume that all three 

modes experience the same intensity loss per unit distance dl  [37]. For a mode ,l  intensity loss 

per unit distance dl  can be converted to intensity loss per unit time 
s,ll  by using ( )s, 0, , dl ll l c n = + − =  

[13]. Thus, the first term on the right-hand side (RHS) of Eq. (3.27), which has been added, denotes 

the amplitude loss experienced by the central mode per unit time (i.e., s,0

1

2
l ). The second term on 

the RHS arises due to the fact that the hot-cavity frequency is not necessarily equal to a cold-cavity 

frequency. The third term originates from 0 ,  thus representing the response of the three-level 

system to the primary-mode light. 
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 Now, we assume the steady-state operation for the primary mode, setting 
0 0F =  in Eq. 

(3.27). First, we equate the real part of the RHS of Eq. (3.27) to zero [ ( )Re RHS 0= ]. It means 

applying the “gain condition” on the central mode, i.e., for 0F  to become nonzero, 
eqW  has to 

exceed a threshold value th .W  The expression for thW  can be found by setting 0 0F =  in 

( )Re RHS 0,=  which reads 

 
( ) ( )

2 2

d 0 0 23 0 ,23

th 2

0 ,23

1
.

l c n
W

N a

    

 

 + −
 

=


  (3.28) 

Now, by introducing a parameter called pumping parameter 
eq thp W W=  in ( )Re RHS 0,=  we 

get the following expression for the primary-mode amplitude 

 
( ) ( )

2 2
2 23 0 ,23

0 2

,23

1 1
.

2 2

p p
F

a A B

  



+ − −
=

+
  (3.29) 

Next, we equate the imaginary part of the RHS of Eq. (3.27) to zero, which means ensuring that 

the primary-mode frequency is allowed in the cavity (in other words, satisfying the cavity-

resonance condition). Thus, we obtain the following expression for the primary-mode frequency 

 

( ) ( )
( )

( )

( )

2

2
0

23 d ,23 d ,23 0 d ,23 23

0 23

0

0 d ,23

1
4

.
2

N c
l c l c n l c n

n L

n l c


     

 


 

 
  

 + + + +   
   =

 + 

  

  (3.30)  

We note that, in the absence of the third term on the RHS of Eq. (3.27), i.e., in the absence of the 

active medium, equating the imaginary part to zero would result in 

( )
( )

( )
23 0

0 0 0

0

,
N N c

k c n
L n


 



+
= =  which means that 0  would be a cold-cavity frequency 

corresponding to 0.N  However, 0  shifts from the cold-cavity frequencies in the presence of the 

active medium and is now given by Eq. (3.30). We can also say that Eq. (3.30) generates a set of 

hot-cavity frequencies corresponding to different values of 0.N  In the next section, we will explain 

how the primary mode chooses a particular value of 0  (hence 0N ) for lasing. 
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 Now, to obtain the EoMs for the side modes, we put the expressions of   in Eq. (3.26), 

project it onto the eigenmodes ( ),Y x  and equate the terms oscillating at .  Thus, we get 

 
*,F S F C F+ + + + −= +   (3.31) 

 
* * * * ,F S F C F− − − − += +   (3.32) 

where S+  and C+  are given by 

 

( )

( )

( )

( )

( )
( )

( ) ( )

( )
( )

2 2

2s,0 02 2 Ld
23 0 ,23

0

2

2s,0 0 2 NL

23 0 ,23

0

1 i
1

2 2 2

1 2 1
1 1

2 2 2

ln nl c
S

n n n

lB p n p

A B n A B


    

    


   

 

+ +
+ + + +

+ + + +

+
+

+

    
  = − + −  + + −             

 −  −  + − + −      + +   
  

  (3.33) 

and 

 
( ) ( )

( )
( )

22

2s,0 0 0 2 NL i

23 0 ,23

0

δ 1 1
1 e .

2 2 2

l n p
C

n A B

  
   

  
+ +−

+ +

 + − = − + −     + 
  

  (3.34) 

Here, ( )02arg .F =  S−  and C−  can be found from Eqs. (3.33) and (3.34), respectively, by 

replacing all the plus subscripts with the minus subscripts and vice versa. Additionally, for ,C−  

the term 0 δ +  has to be replaced with 0 δ −  in Eq. (3.34). Let us focus briefly on each term 

in Eqs. (3.33) and (3.34). The first term in the expression of S+  represents the amplitude loss 

experienced by the +  mode per unit time. The second term arises due to the frequency difference 

between the hot- and cold-cavity modes. In the absence of the active medium, +  would be equal 

to .+  However, in its presence, +  (and − ) will deviate from the cold-cavity value so as to 

ensure that the imaginary part of the gain that the side modes experience vanishes. The third term 

is the linear contribution of the dipoles to the motion of the +  mode—linear in the sense that this 

term exists even when 0 0.F =  The fourth term in Eq. (3.33) and C+  in Eq. (3.34) represent the 

non-linear (or coherent) contributions to the +  mode; they result from the interactions between 
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the primary and +  modes and between the primary and −  modes, respectively, as can be seen 

from Eq. (3.19). The phases of the primary and side modes are assumed to be matched, i.e., 

02 0.k k k+ −− − =  As a result, the overlap integral ( ) 2

0
0

1 d
L

L Y Y Y x− +  becomes 1 2,  and this is 

denoted by an extra 1 2  factor in Eq. (3.34). We note that a phase mismatch between the modes 

would make both C+  and C−  zero and thus would decouple Eqs. (3.31) and (3.32). Finally, though 

C+  (and C− ) depends on ,  the gain of the side modes is independent of ,  as we will see next. 

 

 We write the solutions of Eqs. (3.31) and (3.32) in the following form:  

 a a*e   and  e ,
g t g t

F D F D+ + − −= =   (3.35) 

where ag  represents the net amplitude gain of the side modes. By plugging Eq. (3.35) into the 

respective EoMs, we get the following expression for the normalized net intensity gain:  

 

2
* * *

a
1,2 2

s,0 s,0 s,0 s,0

2 4
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g S S S S C C
g

l l l l

+ − + − + −
=

 + −
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  (3.36) 

where  
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 (3.37) 

and 

 
( )

( ) ( )
( )

2
2

* *20 2 NL NL

23 0 ,232

s,0 0

4 1
1 .

2 2

nC C p

l n n A B

  
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+ −+ −
+− −+

+ −

   −    = + −   +  

  (3.38) 

Here, 1g  ( )2g  corresponds to the expression with the positive (negative) square root. In general, 
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there exists a threshold for pumping, inst ,p  below which no values of the side-mode detuning will 

simultaneously satisfy the conditions 

 ( ) ( )Re 0 and Im 0.m mg g =   (3.39) 

Hence, for inst ,p p  the laser remains stable, emitting only the primary-mode light. (The subscript 

“inst” denotes that the corresponding quantity is a value at the onset of instability.) When p  

increases to inst ,p  usually a value of the detuning, namely instδ ,  can be found that satisfy both of 

these conditions. In this case, we say that the laser becomes unstable at a pumping instp  and that 

the side modes will oscillate at ,inst+  and ,inst−  frequencies at the onset of instability. These two 

conditions in Eq. (3.39) together constitute necessary and sufficient conditions for a laser to 

become unstable [32]. According to Ref. [13], side modes corresponding to one of the two 

solutions in Eq. (3.36) behave like an FM wave, i.e., the relative phase of the side modes 

( ) ( ) ( )*

0arg arg 2argF F F − += − +  −  and the ratio between the side-mode amplitudes 

* 1,F F− +   and side modes corresponding to the other solution have the characteristic of an AM 

wave, i.e., 0   and * 1.F F− +   However, the side modes corresponding to 1g  and 2g  may not 

always behave like FM/AM waves, especially when the GVD is high, as we will see in the next 

section. We can determine the relative phase and the amplitude ratio, and thus understand the 

nature, of the side modes by using   

 

*
s,0 s,0

1,2 i i

s,0 s,01,2

2 2
arg and .

2 e 2 e

m m

m

m

g S l g S lF

C l F C l 
 + +−

= − −

+ + +=

 − −
= =  

 
  (3.40) 

In Appendix A, we show that the expressions derived in this section can be reduced to the 

corresponding expressions for a two-level system. We also show that the reduced expressions 

agree with those in Ref. [13]. 

 

3.4 Results and discussion 

 The QCL that we choose for the simulations in this chapter is a typical mid-IR laser with 

a short gain recovery time, and its parameters are given in Table 3.1. The frequency dependence 

of refractive index gives rise to GVD, and the second derivative of the wavevector with respect to 
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frequency, i.e., 
2 2d d ,l lk =   is a measure of GVD. For QCLs, GVD mainly originates from the 

material and waveguide. Using the relation between lk  and l  and then ignoring the second 

derivative of ( )ln   with respect to ,l  we get ( )2 d d ,c n =   which, in turn, leads to the 

following expression of the refractive index [12]: 

 ( ) ( ) ( )23 23 .
2

l l

c
n n    = +  −   (3.41) 

 

 At first, we focus on the following issue regarding the central-mode detuning: How can we 

determine the detuning of the primary-mode frequency from the line-center frequency 23?  

Primary-mode frequency, 0 ,  which is given by Eq. (3.30), depends on the index 0.N  A zero 

value of 0N  results in 0 23, =  and the more deviation 0N  makes from zero, the more deviation 

0  undergoes from the line-center frequency. Since thW  depends on 0 ,  as shown in Eq. (3.28), 

thW  is also a function of 0.N  The characteristic of thW  versus 0N  relation is that thW  has a 

minimum point at 0 0,min .N N=  Now, starting from a point below lasing threshold, if the pumping 

level of a laser is gradually increased, the lasing will, or is likely to, commence when eqW  becomes 

equal to the value of thW  at the minimum point. Consequently, the primary mode will lase at 

0,min ,  where 0,min  is the value of 0  at 0,min.N   

 

Table 3.1: Parameters of the mid-IR QCL used for simulations in this chapter [20,38] 

Parameters related to 1 2→  

and 1 3→  electron 

tunneling Values 

Electron 

scattering rates Values 

1 2  coupling energy, 12   1.06  meV 

2 3→  

scattering rate, 

1

23 −
  ( )

1
1 ps

−
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1 2  broadening parameter, 

12   6.58  meV 

2 1→  

scattering rate, 

1

21 −

  ( )
1

3 ps
−

 

1 3  coupling energy, 13  0  meV 

3 1→  

scattering rate, 

1

31 −

  ( )
1

0.1 ps
−

 

Average electron temperature 

(assumed the same for all states), 

eT  300  K   

Optical parameters Values 

Parameters 

related to laser 

structure Values 

Line-center frequency, 23   

~ 2 48.36 THz   

( )23 3194N =   

Cavity length, 

L   3  mm 

Background refractive index at 

23,  ( )23n    3.3 

Free electron 

concentration, N   

16

3

~1.38 10  

cm−


  

Overlap factor between the 

optical field and the active 

region,    1   

Diffusion 

coefficient, D   
277 cm s   

Dipole matrix element, 23z   2  nm   

Intensity loss per unit distance, 

dl   

12 11.16 cm−  

(mirror loss 

included)   

 

 The parameter 0,minN  may not be zero; its deviation from zero, i.e., the detuning of the 

primary-mode frequency 0,min  from 23,  depends on GVD, 23,  and ,23,  as described in Eq. 

(3.28). In Fig. 3.2(a), we plot the primary-mode detuning as a function of ,23  for a QCL with 
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zero GVD. The absolute value of the detuning increases with decreasing ,23.  Figure 3.2(b) shows 

how the detuning changes with GVD for a QCL having ,23 0.05 =  ps. In this case, the absolute 

value of the detuning becomes zero at 70000 =  
2fs mm  and increases as   moves further 

away from this point. 

 

 Let us explain the issue of central-mode detuning in a different way. Equation (3.28) can 

be written in the following form 

 
( )

( ) ( )

2

23 0 th 23
d22

0 0 23 23 0

,
ez NW

l
c n

 

    


=

 + −
 

  (3.42) 

where we have written the dephasing time ,23  in terms of the broadening parameter 23  by using 

1

23 ,23  −=  (see Eq. (4.9.54) in Ref. [20]). The left-hand side of Eq. (3.42) represents the familiar 

expression of the intersubband gain experienced by a light of frequency 0  (see Eq. (4.4.21) in 

Ref. [20] and Eq. (52) in Ref. [39]). Equation (3.42) indicates that thW  will be minimum at a value 

of 0  where the peak of the intersubband gain occurs. We have found before that thW  becomes 

minimum at 0 0,min . =  Therefore, the intersubband gain peaks at 0 0,min =  as well, not at 

0 23. =  The detuning of the peak gain frequency ( )0,min  from 23  depends on the broadening 

parameter 23  (i.e., ,23 ), on the shape of ( )0n   (i.e., GVD), and on 23.  Specifically, Fig. 3.2(a) 

shows that the peak gain frequency moves further away from the line-center frequency with 

increasing broadening. In summary, by taking the primary mode to lase at a frequency that 

minimizes th ,W  we actually select for the primary mode a frequency where the gain peak occurs. 
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Figure 3.2: Detuning of the central-mode frequency from the line-center frequency (a) as a 

function of dephasing time and (b) as a function of GVD. In (a), GVD is taken to be zero, and in 

(b), the dephasing time is taken to be 0.05  ps. Other parameters are taken from Table 3.1. 

 

 Next, we discuss in detail how we determine instability and study the equations describing 

the gain, relative phase, amplitude ratio of the side modes. Since we assume that the central and 

side modes are phase-matched, in other words, k+  and k−  are equidistant from the primary-mode 

wavevector ( )0,min 23 0,min ,k N N L= +  we rewrite ( )23 0,min side ,k N N N L = +   where sideN  is 

the side-mode index and is a positive integer (we can say that the side modes are situated sideN  

modes away from the central mode). Therefore, Eq. (3.36) has three independent variables, i.e., 

12 ,  δ ,  and side.N  We note that, in our three-level model, p  is determined by the energy gap 
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12 :  p  increases as 12  decreases and vice versa. After determining the primary-mode frequency 

0,min ,  we proceed to determine the onset of instability according to the following sequence. First, 

for a value of the pumping ,p  by using the second condition (cavity-resonance condition) in Eq. 

(3.39), we get a pool of allowed values of δ  (i.e., a pool of side-mode frequencies that are 

allowed to oscillate); each value of sideN  produces an allowed value of δ .  In the presence of an 

active medium, these allowed side-mode frequencies ( )0,min  allowed values of δ ,   not the 

cold-cavity frequencies, represent the new resonant frequencies of the cavity. These allowed 

frequencies can also be called hot-cavity frequencies corresponding to different values of side.N  

Second, we filter this pool by using the first condition in Eq. (3.39) that checks whether the side 

modes at these allowed frequencies are able to overcome the total loss. For small pumping levels, 

no side modes from the pool will satisfy the first condition. Therefore, third, we slowly increase 

the pumping level and repeat the previous two steps. When the pumping level reaches the 

instability threshold inst ,p  a value from the pool, instδ ,  will satisfy the first condition, which 

marks the onset of instability. The corresponding side-mode index is labeled as side,inst .N  Thus, we 

say that, when the laser becomes unstable, the side modes at frequencies ,inst 0,min instδ   =   will 

oscillate. 

 

 For a QCL having ,23 0.12 =  ps and zero GVD (other parameters listed in Table 3.1), we 

find that the central mode lases at 2 48.38 THz   and that a pumping of 1.23 ( )instp  makes the 

laser unstable, resulting in an oscillation of the side modes of index 13  ( )side,instN  at frequencies 

that are 1.23 THz  ( )instδ  away from the central-mode frequency. This is a harmonic instability 

since side,instN  is greater than 1.  In Fig. 3.3, we show the real and imaginary parts of 1g  and 2 ,g  

relative phases 1  and 2 ,  and side-mode amplitude ratios corresponding to 1.23p   for this 

QCL. Allowed values of δ  are used to plot these graphs, which is denoted by ( )1,2Im 0g   in 

Fig. 3.3(b). Figure 3.3(a) shows that the real parts of 1,2g  meet near 3.87 THz.  Moreover, the plots 
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of 1,2  in Fig. 3.3(b) indicate that, in the region on the left side of the meeting point of ( )1,2Re ,g  

the values of 1  are close to −   and those of 2  are close to 0.  The ratios *

1,2
F F− +

 are close 

to 1 as well [Fig. 3.3(c)]. Therefore, in this region, side modes corresponding to 1g  ( )2g  show the 

characteristic of an FM (AM) wave. However, their behaviors change in the region on the right 

side of the meeting point of ( )1,2Re .g  Because 1  and 2  are now reasonably close to 0  and ,−  

respectively, and the amplitude ratios are reasonably close to 1, 1g -side modes and 2g -side modes 

in this region behave like an AM and FM waves, respectively. The solid circles in Fig. 3.3 denote 

the onset-of-instability values, showing that the laser is likely to emit an FM-like light after being 

unstable. 
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Figure 3.3: (a) Real parts and (b) imaginary parts of the normalized net intensity gains, relative 

phases of the side modes, and (c) side-mode amplitude ratios for a QCL with ,23 0.12 =  ps and 

zero GVD. The QCL is pumped to its instability threshold, i.e., 1.23.p    

 

 Now that we have discussed the instability determination procedure, we discuss the 

importance of considering central-mode detuning phenomenon in the theory. First, we choose a 

QCL with a dephasing time of 0.06  ps, which corresponds to a full-width-half-maximum (FWHM) 

gain broadening of ~ 22  meV. A similar broadening was reported in Ref. [40] for a mid-IR QCL 

with the two-phonon resonance design. As shown in Fig. 3.2(a), the absolute value of the detuning 

of the primary-mode frequency from 23  is ~ 0.47  THz. By considering the detuning, we find 
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that the laser becomes unstable at a pumping of ~1.08,  and the side modes that are ~1.42  THz 

away from the primary mode oscillate. Now, if we ignore the central-mode detuning (i.e., zero 

detuning), we get inst 1.078p   and instδ 1.42   THz, which are very close to the values just 

mentioned. Second, we select a QCL with ,23 0.036 =  ps, which results in an FWHM broadening 

of ~ 37  meV. Reference [40] reported a similar broadening for a QCL with the bound-to-

continuum design. The central-mode detuning is shown in Fig. 3.2(a) to be ~1.23  THz. By taking 

the detuning into account, we find that inst 1.04p   and instδ 1.61   THz. However, by ignoring 

the central-mode detuning, we get inst 1,p =  which indicates that the laser does not have a single-

mode regime—a significant error. Therefore, it is necessary to consider central-mode detuning 

phenomenon for broad-gain devices. 
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Figure 3.4: (a) Pumping level triggering the instability, (b) side-mode detuning, (c) logarithm of 

the amplitude ratio of the side modes, (d) relative phase ,  and (e) frequency difference between 

the cold- and hot-cavity modes (both corresponding to side,instN )  as a function of positive GVD. 

All the quantities are taken at the instability onset. Dephasing time ,23  is taken to be 0.05  ps. 

Solid triangle and circle are placed at points corresponding to 60000 =  and  118000  
2fs mm,  

respectively. The plots of ( )1,2Re ,g  1,2 ,  and *

10 1,2
log F F− +

 versus δ  for these two values of 

dispersion are shown in Fig. 3.5. 
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 Now, we study the effects of the frequency-dependent refractive index on laser instability. 

In Fig. 3.4, we present the effects of dispersion by varying   from 0  to 120000  
2fs mm;  such a 

wide range is chosen in order to show a complete behavior of the plotted quantities. The dephasing 

time of the QCL is taken as 0.05  ps [37,38]. instp  and instδ  are plotted in Figs. 3.4(a) and 3.4(b), 

respectively, and the latter figure shows a jump in the side-mode detuning from ~1.1  to ~ 3.1 THz  

near 46000 =  
2fs mm.  The reason behind this sudden increase in instδ  will be explained 

shortly. In Fig. 3.4(c), we plot the logarithm of the side-mode amplitude ratio, which shows a 

sudden decrease near the same dispersion value where instδ  undergoes a jump. The ratio 

*

inst
F F− +

 remains close to 1 for ~ 46000   
2fs mm.  Since the relative phase is close to −  

as well, as shown in Fig. 3.4(d), the side modes show FM-like behavior for dispersion values up 

to ~ 46000  
2fs mm.  As   goes past this value, *

inst
F F− +

 deviates significantly from 1. 

Specifically, the amplitude of the minus side mode is smaller than that of the plus side mode by, 

at least, an order of magnitude for ~ 46000 ~102000   
2fs mm.  Therefore, in this dispersion 

range, though the relative phase remains close to ,−  the side modes do not show the characteristic 

of an FM wave. Around 102000 =
2fs mm,  both the amplitude ratio and the relative phase of 

the side modes jump. *

inst
F F− +

, again, differs considerably from 1, and now, the amplitude of the 

minus side mode is larger than that of the plus side mode by an order of magnitude. So, for 

dispersion values higher than ~102000  
2fs mm,  though inst  is close to 0,  the side modes do 

not demonstrate AM-like behavior.  

 

 In order to see the details, we choose two dispersion values, namely 60000 =  and 

118000  
2fs mm  (points corresponding to these values are marked in Fig. 3.4), and plot the real 

parts of 1,2 ,g  1,2 ,  and *

10 1,2
log F F− +

 as a function of δ  (i.e., the allowed values of δ ) in 

Fig. 3.5 for these values of dispersion. The graphs in Figs. 3.5(a)–3.5(c) are plotted for 60000 =  

2fs mm  and for a pumping level equal to the corresponding instability threshold. Solid triangles 
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are placed to denote the onset-of-instability values. Figure 3.5(a) can explain why a sudden 

increase in instδ  occurs near 46000  
2fs mm  in Fig. 3.4(b). The plot of ( )1Re g  shows the 

occurrence of a local peak, referred to as “first maximum,” of negative value near 1 THz.  Another 

local peak, “second maximum,” of positive value occurs at the solid-triangle-marked point with 

the corresponding frequency of ~ 3.2 THz.  These frequencies are comparable to the frequencies 

just before and after the jump, respectively, in Fig. 3.4(b). Therefore, we deduce that, for 

46000   
2fs mm,  the pumping required to make ( )1Re 0g   in the vicinity of the first 

maximum is lower than the pumping required to make ( )1Re 0g   in the vicinity of the second 

maximum. So, instability occurs near the first maximum. As   gets past 46000  
2fs mm,  the 

pumping for which ( )1Re g  becomes positive in the vicinity of the second maximum becomes 

lower. As a result, the instability point jumps from the vicinity of the first to the second maximum, 

causing a jump in instδ .   

 

 In the vicinity of the first maximum, 1-g  and 2 -g side modes behave like FM and AM 

waves, respectively, as shown in Figs. 3.5(b) and 3.5(c). Near the second maximum, the phases 

( )1 2,   are close to ( ), 0 .−  But, due to the significant deviation of *

1,2
F F− +

 from 1 [Fig. 

3.5(c)], the modes do not show FM/AM-like behavior. Thus, Figs. 3.5(b) and 3.5(c), combined 

with the fact that the instability point is located near the first maximum for 46000   
2fs mm  

and jumps to a vicinity of the second maximum as   crosses 46000  
2fs mm,  explain the trends 

of inst  and *

10 inst
log F F− +

 in Fig. 3.4 for dispersion values up to ~102000  
2fs mm.  

 

 The graphs in Figs. 3.5(d)–3.5(f) are plotted for 118000 =  
2fs mm  and for a pumping 

equal to the corresponding instability threshold. The onset-of-instability points are denoted by the 

solid circles. As opposed to the case in Fig. 3.5(a), instability point in Fig. 3.5(d) is located on the 

right side of the meeting point of ( )1,2Re .g  In the case of a zero-GVD QCL, we have seen that 
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1-g  and 2 -g modes behave as AM and FM waves, respectively, past the meeting point. However, 

as Fig. 3.5(f) shows, the ratios *

1,2
F F− +

 deviate from 1 by an order of magnitude, which is a 

significant deviation. Therefore, in this case, 1-g side modes ( 2 -g side modes) do not act as an 

AM (FM) wave past the meeting point of ( )1,2Re .g  

 

 In Fig. 3.4(e), we plot the FSR, which is taken to be the frequency difference between the 

cold-cavity modes corresponding to side,instN  and side,inst 1.N −  The cold-cavity frequency 

corresponding to side,instN  is labeled as ,inst+  [we note that the cold-cavity mode corresponding to 

side,instN  means the mode corresponding to wavevector ( )23 0,min side,instN N N L+ + ]. We also 

show the difference between ,inst+  and ,inst+  (i.e., the hot-cavity frequency corresponding to 

side,instN ). As we can see, the absolute value of this frequency difference is smaller than or 

comparable to the FSR in the shown dispersion range. Therefore, instδ FSR  is a good 

approximation of side,instN  (i.e., the side modes that are approximately instδ FSR modes away 

from the primary mode oscillate when the instability sets in). The values of instδ FSR  are greater 

than 1, indicating that the QCL undergoes harmonic instability. 

 

 Figure 3.6 shows the effects of negative dispersion on laser instability. In this case, the 

side-mode detuning [Fig. 3.6(a)], the amplitude ratio [Fig. 3.6(b)], and the relative phase [Fig. 

3.6(c)], all show a sudden increase/decrease near 42000 = −  
2fs mm.  For 42000 −  

2fs mm,  

the side modes demonstrate FM-like behavior. As   moves toward further negative values, inst  

jumps to a value near 0.  However, *

inst
F F− +

 experiences a sudden decrease, becoming 

significantly smaller, i.e., an order of magnitude smaller than 1. As a result, the laser does not show 

AM-like behavior after being unstable. Finally, we show the frequency difference between the 

cold- and hot-cavity modes (both corresponding to side,instN ) and the FSR in Fig. 3.6(d). The 

comparison of instδ  with the FSR denotes the occurrence of harmonic instability. 
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Figure 3.5: (a) and (d) Frequency dependence of real parts of 1,2 ,g  (b) and (e) relative phases 1,2 ,  

and (c) and (f) amplitude ratios *

10 1,2
log F F− +

 for 60000 =  and 118000  
2fs mm.  The QCL 

has a dephasing time of 0.05  ps. For 60000 =  
2fs mm  ( )2118000 fs mm ,  the laser is pumped 

to a value denoted by the solid triangle (circle) in Fig. 3.4(a). Markers in this figure represent the 

onset-of-instability values. The detuning, the amplitude ratio, and the relative phase at these 

marked points are also indicated in Figs. 3.4(b)–3.4(d) with the respective markers. 
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Figure 3.6: (a) side-mode detuning, (b) logarithm of the amplitude ratio of the side modes, (c) 

relative phase ,  and (d) frequency difference between the cold- and hot-cavity modes (both 

corresponding to side,instN ) at the instability onset as a function of negative dispersion for a QCL 

with ,23 0.05 =  ps. 

 

3.5 Summary 

 We have presented a detailed study of harmonic instability in an FP QCL. We have used 

three-level Maxwell-DM equations to derive a closed-form expression for the side-mode gain, 

from which all the necessary information related to instability, such as the instability threshold, 

the side-mode detuning at the onset of instability, and the nature of the output after the laser 
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becomes unstable, can be determined. Resonant tunneling, which is an important carrier-transport 

mechanism in QCLs, scattering rates between all three states in a period, and other laser-

oscillation-related phenomena such as the detuning of the primary-mode frequency from line-

center frequency and GVD have been incorporated in the model. We have shown the process to 

determine the central-mode detuning from the line center. Moreover, our thorough study of the 

effects of GVD on instability has shown that, up to a particular value of dispersion, side modes 

behave like an FM wave. At higher dispersion, however, they behave neither like an FM nor an 

AM wave. 
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Chapter 4: Exciting harmonic states in a quantum cascade laser via 

facet engineering 

 

The content of this chapter has been submitted for journal publication and is currently under 

review.2 

 

4.1 Abstract 

 While analyzing multimode behavior of Quantum Cascade Lasers (QCLs) using modal 

expansion approach, it is generally assumed that the cavity is closed, thereby completely ignoring 

the influence of facet reflectivity. In this chapter, we present a theory that takes into account 

openness of the cavity and describes the behavior of the first three modes in a QCL. Expressing 

spatial variations of the modes in terms of constant-flux (CF) states and exploiting biorthogonality 

of the CF states, we derive a set of steady-state equations for CF-state coefficients of the modes. 

This set of equations provides all relevant information regarding the modes. By using our theory, 

we show that harmonic states, i.e., states characterized by the appearance of modes that are located 

multiples of free spectral range away from each other, with different mode spacing can be excited 

by varying the length and the refractive index of a coating at a facet. 

 

4.2 Introduction 

 Quantum Cascade Lasers (QCLs) are compact and powerful light sources that can operate 

both in the mid-infrared (mid-IR) and terahertz (THz) spectral regions. Since their inception in 

1994, QCLs went through tremendous improvements both in their single mode and multimode 

performances. On the multimode front in particular, they were engineered to produce optical 

frequency combs [12,15,16]. Thus, QCLs hold great promise for applications in high-precision 

metrology and spectroscopy. 

 

 Investigation into the multimode regimes of QCLs was a focus of many past works 

[13,23,27,28,29,41]. One of the recent comprehensive studies was done by Mansuripur et al. [13], 

 
2 M. Roy and M. Z. Kabir, “Exciting harmonic states in a quantum cascade laser via facet engineering,” Physical Review A, 

under first revision (2021). 
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where mode dynamics of Fabry-Perot (FP) QCLs with gradually increasing pumping level was 

observed. They discovered that QCLs first undergo transition from a single-mode regime into a 

harmonic-state regime, which is characterized by the appearance of side modes that are separated 

by multiples of free spectral range (FSR) from each other. With a further increase in the pumping 

level, the multimode character changes into the operation in a familiar conventional-state regime, 

marked by the appearance of single-FSR-spaced modes. In a later work, Kazakov et al. [12] 

demonstrated the frequency-comb nature of harmonic states. Besides, tuning of the mode spacing 

via optical seeding was achieved [42]. Although first observed in mid-IR QCLs, harmonic combs 

were also produced recently using THz QCLs [43,44]. 

 

 Theoretical investigation into multimode behavior of QCLs can be performed in two ways: 

using the space-time domain simulation of the density-matrix (DM) and Maxwell’s equations 

[37,38,45,46] or using the method of modal expansion of these equations [13,31,41,44,47]. While 

using the modal expansion approach, it is generally assumed that the QCL cavity is closed, i.e., 

the facet reflectivity is unity, and thus the mirror loss becomes zero. Therefore, the modes inside 

the cavity can be expressed in terms of real wavevectors and thus become power-orthogonal to 

each other. Although the analysis becomes simple due to the closed-cavity assumption, it 

completely ignores the influence of facet reflectivity on mode dynamics.  

 

 In this chapter, we present a theory that considers openness of the cavity and describes the 

behavior of the first three modes, i.e., a primary mode and two side modes, in a QCL. We handle 

the modes in the open cavity using a technique developed by Tureci et al. [48,49,50] In particular, 

spatial variations of the modes are expressed in terms of constant-flux (CF) states with an 

outgoing-wave boundary condition, and by exploiting biorthogonality of the CF states, we derive 

a set of steady-state equations (mode equations) for CF-state coefficients of the modes from the 

DM and Maxwell’s equations.  Moreover, since the three modes are locked via four-wave mixing 

(FWM) interaction in our formulation, the FWM locking phenomenon is included in our theory, 

which was not considered previously in steady-state ab initio laser theory (SALT) [48,49,50] and 

its subsequent extensions [51,52,53,54,55,56]. The mode equations derived here are valid up to a 

pumping level that is higher than but close to the pumping level causing primary-mode instability. 

Using these equations, we show that harmonic states with different mode spacing can be excited 
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by varying the length and the refractive index of a facet coating. 

 

 The remainder of this chapter is organized as follows. In Sec. 4.3, we derive the steady-

state mode equations from the DM and Maxwell’s equations. In Sec. 4.4, we apply these equations 

to a typical mid-IR QCL and thus show that harmonic states can be excited by varying the attributes 

of a facet coating. Finally, we conclude the chapter with a summary in Sec. 4.5.  

 

4.3 Theory: From density matrix and Maxwell’s equations to mode equations 

 We begin this section by giving an outline of our derivation of the mode equations. First, 

we describe carrier transport through a QCL by DM equations. We convert these equations into 

their frequency-domain forms and solve these via a perturbative approach, thereby finding an 

expression for the off-diagonal element (describes the coherence between energy levels) of the 

DM. Next, we assume that the laser electric field is composed of three modes, i.e., a primary mode 

and two side modes, and by invoking the rotating-wave approximation (RWA), we express the 

coherence in terms of spatial variations and frequencies of the modes. Then, we plug the expression 

of the coherence into Maxwell’s equation and express spatial variation of each mode as a 

superposition of CF states. Finally, we utilize biorthogonality property of the CF states to derive 

steady-state equations for CF-state coefficients of the modes. These equations can be solved 

iteratively to find the frequencies and spatial variations of the modes. 

 

 We assume that a -z directed electric field ( , )E x t  propagates along the -x axis of a QCL. 

The QCL cavity is of FP type, and, as shown in Fig. 4.1(a), the cavity employs a fully reflective 

coating at 0.x =  The active (gain) medium of the QCL, which consists of many heterostructure 

periods, starts right after 0x =  and extends up to 1.x L=  The linear refractive index of the active 

medium is 1,n  and we assume that 1n  has a positive imaginary component representing waveguide 

loss for the QCL. The active medium is followed by a coating of length 2 1.L L−  The coating is 

assumed to be optically linear to the laser field and lossy, having a complex refractive index of 2.n  

The QCL is placed in a medium of refractive index 3.n  The reflectivity that the laser light 

encounters at 1x L=  depends on the length of the coating, the refractive indices of the different 
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media, and the light frequency. Since the cavity is closed at 0,x =  ( , ) 0E x t =  for 0.x    

 

 

Figure 4.1: Schematic illustration of (a) the QCL cavity and (b) carrier transport through the QCL 

periods. 

 

 Each QCL period is assumed to have three energy levels, and carrier transport through the 

periods occurs in the following way [Fig. 4.1(b)]: First, electrons predominantly scatter from the 

ground state g  of the ( 1)s − th period to the upper lasing state (ULS) 2  of the s th period by 

resonant tunneling; then, they mainly undergo lasing transition and reach the lower lasing state 

(LLS) 3 ;  finally, the electrons perform non-radiative transition to the ground state g  of the 

same period. We write the following DM equations to describe carrier transport: 

 ( ) ( )
2

1 1 * 22
22 2 23 2g 22 23 23 2

( , ) i ( , ) ,x t C aE x t D
x


     − − 

= − + + − +


  (4.1) 

 ( )
2

1 1 * 33
33 3 23 22 3g 33 23 23 2

( , ) i ( , ) ,x t C aE x t D
x


      − − 

= + − + − +


  (4.2) 

 ( ) ( )1

23 23 || 23 22 33( , ) i i ( , ) ,x t aE x t     −= − + + −   (4.3) 

where 22  and 33  denote normalized populations at the ULS and LLS, respectively, 23  

describes the coherence between the lasing states, the overdot represents time derivative of the 

corresponding quantity, 2C  and 3C  are the rates of population pumping to the ULS and LLS, 
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respectively, 
1

ij
−

 is the scattering rate of carriers between the states i  and ,j  
1

||
−

 is the carrier 

dephasing rate, D  represents the diffusion coefficient, and 23  is the optical transition frequency 

( 23 23 =  with 23  denoting the energy difference between the ULS and LLS). Moreover, we 

define 23 ,a ez=  where 23ez  represents the dipole matrix element associated with the lasing 

states. 

 

 Now, we take Fourier transform (FT) of the terms in Eqs. (4.1)–(4.3), thus converting the 

equations into their frequency-domain forms. Next, we solve these equations following a 

perturbative approach. To find the zero-order (with respect to the electric field) expression for 

population inversion, we neglect the terms containing the electric field in the population equations 

[frequency-domain form of Eqs. (4.1) and (4.2)], getting ( ) ( ) ( )(0) (0)

22 33 eq 2 .W     − =  Here, 

  is the frequency variable, ( ),ii x   is the FT of ( , ),ii x t  ( )   is the Dirac delta function, and 

eqW  represents population inversion that would exist if the laser field was absent and is given by 

( ) ( ) ( )1 1 1 1 1 1 1

eq 2 3g 23 3 23 2g 23 2g 3g .W C C      − − − − − − −   = − − + +
   

 Plugging this zero-order expression into 

the coherence equation [frequency-domain form of Eq. (4.3)] results in the first-order expression 

for the coherence ( ) ( ) ( )(1)

eqi ,aW H E   =  where ( ),x   and ( ),E x   are the FT of 

23( , )x t  and ( , ),E x t  respectively, and ( ) ( )
1

1

|| 23i .H    
−

− = − −   To find the second-order 

term for the population inversion ( ) ( )(2) (2)

22 33 ,   −  we now consider terms containing the 

electric field in the population equations and plug into them the expression of ( )(1) .   We ignore 

the diffusion terms for now as we do not know spatial profile of ( )22 ,x   and ( )33 ,x   yet. 

The sum of the zero- and second-order terms gives the full expression for the population inversion: 

 ( ) ( ) ( ) ( ) ( )
2

eq

22 33 eq 2 ,
2

a W
W Z S       


− = −  (4.4) 

 ( )
( )( )

1 1

2g 3g

1 1 1

23 2g 3g

i2
,

i i
Z

  


    

− −

− − −

+ −
=

+ − −
  (4.5) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * ,S E H E E H E         =  + −  − −      (4.6) 

where the operator   denotes the convolution operation. Finally, by inserting Eq. (4.4) into the 

coherence equation, we get the full expression for the coherence, which is the sum of ( )(1)   and 

( )(3) :   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
3

eq eq2

i
i .

4

a
aW H E W H E Z S       


 = −     (4.7) 

The perturbation chain can be continued to find higher even-order and odd-order terms for the 

population inversion and the coherence, respectively, as done in Ref. [57]. However, the pumping 

levels used in this work do not significantly exceed the level triggering single-mode instability. 

Since the latter is close to lasing threshold for a typical FP QCL [13], inclusion of the higher-order 

terms is not required. 

 

 To carry our analysis forward, we now express the laser electric field in terms of a primary 

mode and two side modes: 

 

( ) ( )

( )*

, 2 ( )

2 ( ) , 0, ,  and ,

l l

l

l l

l

E x A x

A x l

    

   

= −

+ + = + −




 (4.8)  

where l  is a mode index, 0  is the frequency of the primary mode,   are the side-mode 

frequencies, and ( )lA x  represents the corresponding spatial variation. Also, 0 ,   =   where 

  is the frequency detuning of the side modes from the primary mode. The side modes have 

been assumed to be detuned equally from the primary mode because of the FWM locking 

phenomenon. The equality in the side-mode spacing was observed in the experiment as well [12]. 

The spatial variations and the frequencies are considered to be unknown. Next, to get an expression 

of the coherence in terms of ( )lA x  and ,l  we insert Eq. (4.8) into Eq. (4.7) and invoke the RWA. 

After simplification, we get 
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( ) ( ) ( )

( ) ( ) ( ) ( )  ( )

( ) ( ) ( ) ( )  ( )

( ) ( ) ( ) ( )  ( )

eq

0, ,

3 * *

eq 0 dc 0 0

dc 0 2

* * * *

dc 0 2

i 2

i 2 0

0 2

0 2 ,

l l l

l

aW A H

a W H Z B A Z B A Z B A

H Z B A Z B A Z B A

H Z B A Z B A Z B A

      

      

     

     

= + −

 −  +

+ +   − +

− −   + −

= −  

− +  +  −


+ +  +  −

+ +  +  −




 

  (4.9)  

 ( ) ( )* *

dc

0, ,

,l l l l

l

B A A H H 
= + −

 = +    (4.10) 

 ( ) ( ) ( ) ( )* * * *

0 0 0 0 ,B A A H H A A H H    + + − −
   = + + +      (4.11) 

 ( ) ( )* *

2 .B A A H H  + − + −
 = +    (4.12) 

To understand how the subscripts to B  have been chosen, we need to look at the expression of 

( ) :S    

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 * *

dc 2 22 2 2 .S B B B B B                  
 = + − + −  + + + +     

  (4.13) 

As it shows, the B terms are the coefficients of the delta functions, and their subscripts have been 

chosen to correspond to the frequencies of the associated delta functions. Since the electric field 

consists of three frequencies, the term ( ) ,S   and thus the population inversion, oscillates at   

and 2   difference frequencies. 

 

 Having found the coherence, we now calculate its impact on the laser field by using 

Maxwell’s wave equation: 

 ( ) ( ) ( ) ( )
2 2 2

back three-level2 2 2 2 2

0

1 1
, , , , .E x t E x t P x t P x t

x c t c t

  
− = +    

  (4.14) 

Here, c  is the speed of light in free space and 0  is the vacuum permittivity. back ,P  the nonresonant 

component of the total polarization, represents the linear polarization of the background host 

material in the active and coating regions. three-level ,P  the resonant component of the total 

polarization, represents the polarization due to the three-level QCL periods (zero inside the 

coating). Allowing for the possibility of the material in the active region to be dispersive, we write 
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the nonresonant part of the polarization as ( ) ( ) ( )back 0 back, , , ,P x t x t E x t =   where ( )back ,x t  is 

the corresponding electric susceptibility; the time-dependent nature of the susceptibility is due to 

dispersion. The resonant part can be written as ( ) ( )*

three-level 23 23 ,P N x a  = −  +  where ( )N x  is 

the concentration of free electrons (assumed uniform in the active region and zero in the coating 

region) and   represents the overlap factor between the optical field and the active region. Now, 

converting Eq. (4.14) into its frequency-domain form and considering only the positive 

frequencies, we get 

 ( )
( )

( )
( )

( )
2 2 22

2 2 2

0

,
, , , .

n x N x a
E x E x x

x c c

  
   




+ =


 (4.15)  

Here, we have introduced a space- and frequency-dependent refractive index through 

( ) ( )2

back, 1 , ,n x x  = +  where ( )back ,x   is the FT of ( )back , .x t  For the cavity shown in Fig. 

4.1(a), ( ) ( )1,n x n =  for 10 ,x L   ( ) 2,n x n =  for 1 2 ,L x L   and ( ) 3,n x n =  otherwise. 

Next, we plug Eqs. (4.8) and (4.9) into Eq. (4.15) and equate the terms with the same delta function, 

and it results in the following equations for the spatial variations ( ) :lA x    

 

( ) ( ) ( )

( ) ( ) ( ) 

2 22 22
0 eq 00 0

0 02 2 2

0

2 * *

0 dc 0

i,

0 ,

N x a W Hn x
A A

x c c

A a Z B A Z B A Z B A

  



  −  +


+ =



  − +  + 
 

  

  (4.16) 

 

( ) ( ) ( )

( ) ( ) ( ) 

2 22 22
eq

2 2 2

0

2

dc 0 2

i,

0 2 ,

N x a W Hn x
A A

x c c

A a Z B A Z B A Z B A

  



 

+ ++ +

+ +

+ +   −


+ =



  − +  +  

  

  (4.17) 

 

( ) ( ) ( )

( ) ( ) ( ) 

2 22 22
eq

2 2 2

0

2 * * * *

dc 0 2

i,

0 2 .

N x a W Hn x
A A

x c c

A a Z B A Z B A Z B A

  



 

− −− −

− −

− −   +


+ =



  − +  + 
 

  

  (4.18) 

These equations hold for all :x  For 1,x L  ( )lA x  are nonzero above lasing threshold but the right-
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hand sides of the equations vanish.  

 

 In most of the previous works that used modal expansion approach to analyze multimode 

characteristics of QCLs, the laser cavity was assumed to be closed, and hence, spatial variation of 

a mode was expressed in terms of a real wavevector [13,31,41,44,47]. This approach is not 

applicable in our case as we are dealing with an open cavity. So, we follow the technique developed 

by Tureci and coauthors [48,49,50] and express the spatial variations in terms of CF states with an 

outgoing-wave boundary condition. We represent these CF states as ( ) ( ), ;m l mlx x    since an 

infinite number of CF states exists for a value of ,l  we have used ,m  an integer, that serves as 

an index to the CF state. Let us take ,l lk c=  where lk  (real) represents the wavevector of the 

laser field in free space. Then, for the cavity in Fig. 4.1(a), ml  satisfies the following equations: 

 0, 0,ml x =    (4.19) 

 

2
2 2

1 12
, 0 ,ml l ml mln x L

x
  


= −  


  (4.20) 

 

2
2 2

2 1 22
, ,ml l mln k L x L

x
 


= −  


  (4.21) 

 
( )3 2i

2e , .ln k x L

ml mlF x L
−

=    (4.22) 

Here, ( )1 1 ,l ln n k c  ( )ml m lk   is the wavevector of ml  inside the active region (CF 

wavevector) and complex, and mlF  is the amplitude of the outgoing exponential function. In 

addition, ml  has to satisfy the continuity conditions at the interfaces [48]. By combining Eqs. 

(4.19) and (4.20), CF states in the active region can be written as  

 ( ) ( )1 1sin , 0 .ml l mlx n x x L =     (4.23) 

Next, we use the continuity conditions to smoothly connect different parts of ml  at the interfaces. 

Thus, we get the following equation that produces all the allowed CF wavevectors ml  for a given 

value of :lk  
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 ( )
( ) ( )

( ) ( )
3 2 2 1 2 2 2 11

1 1

2 2 2 2 1 3 2 2 1

i sin cos1
tan .

i i sin cos

l ll ml
l ml

l l l

n n k L L n n k L Ln
n L

k n n n k L L n n k L L




− − −      
=

− − −      
  (4.24) 

CF states are not power-orthogonal, but they are biorthogonal to their adjoint states 

( ) ( )* ;ml mlx x =  that means,  

 
12 *

1
0

dx .
L

l ml rl mr mln    =   (4.25) 

Here, mr  is the Kronecker delta and ( )ml m lk   is a normalization parameter. The integration 

has been taken to be performed over the active region only [58]. By putting Eq. (4.23) into Eq. 

(4.25), we get the normalization parameter to be ( ) ( ) ( )2

1 1 1 1 1 12 1 sin 2 2 .ml l l ml l mln L n L n L  = −    

 

 We now express ( )lA x  in the active region as a superposition of the CF states: 

 ( ) ( )1 1sin , 0 ,l ml ml ml l ml

m m

A x b b n x x L = =      (4.26) 

where mlb  are the corresponding CF-state coefficients. To get steady-state equations for these 

coefficients, we put Eq. (4.26) into differential Eqs. (4.16)–(4.18), multiply the equations by 
* ,rl  

and exploit biorthogonality of the CF states. After simplification, we get 

 
( )

( ) ( )  
1

2

th 2 2 2

|| 23 1

2 2

1
1

0

1 1
i

1 i

sin d 0, 0, ,  and , integers ,

l
rl

rl l l l

L
l

rl l l rl

rl

k
b pW

k c k k n

a n
b G x n x x l r

 




− −
− − −

 
 − = = + −  
 



  (4.27) 

 ( ) ( ) ( ) ( )* *

0 dc 00 ,G x Z B A Z k B A Z k B A −  += +  +    (4.28) 

 ( ) ( ) ( ) ( )dc 0 20 2 ,G x Z B A Z k B A Z k B A+ +   −= +  +    (4.29) 

 ( ) ( ) ( ) ( )* * * *

dc 0 20 2 ,G x Z B A Z k B A Z k B A− −   += +  +    (4.30) 

where p  is the pumping parameter and is given by eq th ,p W W=  thW  is the threshold population 

inversion, 2

th || th 0W N a W  =   represents the scaled threshold inversion (dimensionless), 

23 23 ,k c=  ,k c =   and ( ) ( ).Z k Z c k    If we set B  and 2B   to zero, thereby ignoring the 
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oscillation of population inversion, Eq. (4.27) will essentially be reduced to a third-order version 

of the SALT equation (Eq. (7) in Ref. [49]).  

 

 Now that we know the functional form of ( ) ,lA x  we can include the diffusion coefficient 

D  in our analysis. By inserting Eq. (4.26) → Eq. (4.13) → Eq. (4.4), we see that the second-order 

population terms 
(2)

22  and 
(2)

33  take the form ( ) ( )(2) * *

1 1, , ,
, ~ cos .ii l ml l m lm l m l

x n x n x        Then, 

from the frequency-domain form of Eqs. (4.1) and (4.2), one can deduce that the diffusion 

phenomenon can be included by replacing ( )
2

1 1 * *

2g 2g 1 1l ml l m lD n n   − −

  → +  and 

( )
2

1 1 * *

3g 3g 1 1l ml l m lD n n   − −

  → +  in ( ).Z   Since ( )Z   no longer remains independent of the CF 

wavevectors, the products of Z  and B  cannot be written as those in Eqs. (4.28)–(4.30). Let us 

consider that the mode indices 0,  ,+  and −  correspond to the integers 0,  1,  and 1,−  respectively. 

Then, by inserting Eq. (4.26) into Eqs. (4.28)–(4.30), we find that ( )lG x  can be expressed as a sum 

of terms of the following form: 

 

( ) ( ) ( ) ( )

( ) ( ) 

( ) ( )( )

* *

, ,

, ,

* * * *

, , , 1 1 , , , 1 1

1

1

2

cos cos

sin .

l l l l l l l m l m l m l l l
m m m

m l m l l m l l m l m l m l l m l l m l

l l l m l l l

U x H k H k b b b

Z n x n x Z n x n x

n x

   



         − +   − +
  

− +

                   

    − + − +

 = +  

 − − +






  (4.31) 

Here, ,m  ,m  and m  are CF-state indices corresponding to the mode indices ,l  ,l  and 

,l l l − +  respectively. Also, ( ) ( )l lH k H ck   and  

 

( ) ( )

( ) ( )

( ) ( )

2
1 1 * *

2g 3g 1 1

, , , 2
1 1 * *

23 2g 1 1

2
1 * *

3g 1 1

2 i2

i

1
.

i

l m l l m l

m l m l

l m l l m l

l m l l m l

D n n c k l l
Z

D n n c k l l

D n n c k l l

   

   

  

− −

     

   
− −

     

−

     

 + + −  −
=

 + + −  −


 + −  −

 (4.32)  

Equation (4.31) can be visualized in terms of the correspondence 
*

, , ;l l l l l l l l l lU A A A       − + − +  they 

would be proportional to each other in the absence of carrier diffusion. Finally, ( )lG x  becomes 
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 ( ) ( ), ,

,
1 1

.l l l l l l

l l
l l l

G x U x   − +

 
 −  − + 

=   (4.33)  

Equation (4.27), with ( )lG x  given by Eq. (4.33), represents the set of final mode equations, which 

can be used to find the CF-state coefficients rlb  and the wavevectors .lk  

 

4.4 Results and discussion 

 For simulations, we choose a typical mid-IR QCL with a short gain recovery time. Its 

parameters are given in Table 4.1. We consider the waveguide loss by taking the refractive index 

of the active medium 1n  to be complex with the imaginary part given by 

( ) ( )1 23Im amplitude of waveguide loss .n c =   Also, we take the active medium to be 

nondispersive in our simulation.  

 

Table 4.1: Parameters of the mid-IR QCL used for simulations in this chapter [20,38] 

Parameters  Values Parameters Values 

ULS → LLS scattering rate, 
1

23 −
  ( )

1
1 ps

−
 

Amplitude waveguide 

loss 110 cm−  

ULS → g  scattering rate, 
1

2g −
 ( )

1
3 ps

−
 

Refractive index of the 

active medium, 1n    3.3 0.00099i+   

LLS → g  scattering rate, 
1

3g −
 ( )

1
0.1 ps

−
 

Dipole matrix 

element, 23z   2 nm  

Carrier dephasing rate, 
1

||
−

  ( )
1

0.08 ps
−

  

Length of the active 

region, 1L   3 mm  

Free-space wavelength 

corresponding to the line-center 

wavevector 23k   6.2 μm   

Diffusion coefficient, 

D   
277 cm s   

 

 First, let us discuss lasing threshold. To determine the scaled threshold inversion and the 



57 

 

wavevector of the primary mode at threshold, we ignore the nonlinear part in Eq. (4.27) and set 

the mode index 0.l =  Equating the imaginary part of the equation to zero gives  

 
( )

2

0 2 2 2

00 0 || 0 23 1

1 1 1
Re 0,

1 i
k

k c k k n 

 
= 

− − −  
  (4.34) 

where 1 0 1ln n=   because there is no dispersion. Equation (4.34) and the CF eigenvalue equation 

(4.24) need to be solved simultaneously to find 0k  and 00.  Equation (4.24) produces an infinite 

number of 0r  for a value of 0 ,k  and the difference between the real parts of 0r  and ( )1 0r


+  is 

close to the FSR of the laser ( )1 1Re .n L     However, Eq. (4.34) is satisfied by certain discrete 

values of 0k  and only one CF wavevector ( )0 0r


=  for each of these discrete values. The spacing 

between the two consecutive values of 0k  is typically close to the FSR. Now, inserting the values 

of 0k  and 00  into the following equation, which is obtained by equating the real part of Eq. (4.27) 

to zero, we get the corresponding scaled threshold inversion: 

 
( )

1

2

th 0 2 2 2

00 0 || 0 23 1

1 1 1
Im .

1 i
W k

k c k k n 

−

    =   
− − −    

  (4.35) 

In Fig. 4.2, we plot thW   as a function of 0 23k k−  (normalized by the FSR) for the two facet settings: 

First, the facet is uncoated ( )2 1 0 ,L L− =  and second, a coating of length 2 1 0.14L L− =  mm with  

2 1.55 0.00099in = +  is applied to the facet. The values in the second case are chosen to explain 

the way of exciting harmonic states, as we will see later. In both cases, we assume the environment 

surrounding the laser to be free space. Also, the line-center wavevector 23k  is chosen to be close 

to one of the values of 0k  that satisfy Eq. (4.34). As Fig. 4.2 shows, there exists a global minimum 

for each curve, and the primary mode is expected to start lasing at the wavevector corresponding 

to the minimum point of the curve [23]. We denote the values of 0 ,k  00 ,  and thW   at the minimum 

point as th ,k  th ,  and th ,W   respectively. Moreover, Fig. 4.2 shows that the reflection coefficient 

of a facet can have strong influence on the shape of the scaled threshold function. For the uncoated 

case, the reflection coefficient ( ~ 0.286 ) is independent of the wavelength of the laser, and so, 
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thW   takes the form of the reciprocal of the Lorentzian gain function. However, for the coated case, 

the facet reflectivity depends on the wavelength, which, in turn, causes the mirror loss to modulate 

with the wavelength. As a result, multiple minima appear in th ,W   as depicted in Fig. 4.2. 

  

 

Figure 4.2: Scaled threshold function for the uncoated and coated facet. In both cases, the cavity 

is assumed to be placed in free space. 

  

We now focus on the single-mode regime. We suppose that the primary mode is composed 

of three CF states with wavevectors 00  and 10;  00  is close to th ,  10−  is the wavevector adjacent 

to 00  with ( ) ( )10 00Re Re , −   and 10  is adjacent to 00  with ( ) ( )10 00Re Re .   Since the 

coefficients 0rb  are nonzero above lasing threshold, we must take the nonlinear part in Eq. (4.27) 

into consideration. Thus, the primary-mode equation becomes  

 
( )

( ) ( )
1

2

0
0 th 2 2 2

0 0 || 0 23 1

2 2

1
0 0,0,0 1 0

0
0

1 1
i

1 i

sin d 0.

r

r

L

r r

r

k
b pW

k c k k n

a n
b U x n x x

 




− −
− − −

 
 − = 
 



  (4.36) 

The unknowns 0 ,rb  0 ,k  and 0r  can be found by solving Eqs. (4.36) and (4.24) iteratively. Since 

Eq. (4.36) is invariant under the transformation    0i

0 0er rb b


→  for an arbitrary phase angle 0 ,  

it is necessary to keep the phase angle of any one of 0rb  constant throughout the solving process. 
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This is known as the “gauge fixing requirement (GFR)” [49]. Following Ge [58], we implement 

the GFR by tuning the value of the lasing wavevector 0k  so that the dominant 0 ,rb  i.e., 00 ,b  

becomes a real quantity and remains so throughout the iterations. This procedure allows us to 

obtain 0k  above threshold. (We have repeated the procedure with the other 0rb  instead of 00b  and 

have obtained similar solutions for 0k ) In Fig. 4.3, we show the ratio 10 00 10log b b−  as a function 

of the pumping parameter for 3 1n =  and 2.7.  The coating length is set to zero. A refractive index 

of 2.7  for 3n  results in a frequency-independent facet reflectivity of 0.01.  Note that, in Fig. 4.3, 

we have disregarded lasing of the /+ −  side modes although the primary-mode instability has 

occurred at a pumping level much lower than 1.15.  The coefficients 10b  and 10b−  are similar in 

values, so we choose only one of them for plotting. According to Fig. 4.3, even though the ratio 

00 10b b−  decreases with increasing pumping level and with increasing openness of the cavity, 00b  

remains at least an order of magnitude larger than 10.b−  Therefore, in the following simulations, 

we will represent spatial variation of a mode in terms of a single CF state. Moreover, the detuning 

of 0k  from its value at threshold, th ,k  is found to be small (not shown).  

 

 

Figure 4.3: Ratio of the CF-state coefficients corresponding to the primary mode for 3 1n =  and 

2.7.  The coating length is set to zero. 
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 Having solved the mode equation for the primary mode, we now investigate its stability. 

For linear stability, we can drop the terms in Eq. (4.27) that are of second and third order in ( ),
.

r l
b

=+ −  

Then, the primary-mode equation decouples from the side-mode equations and reduces to Eq. 

(4.36). For the side modes, we can set up the following eigenvalue equations: 

 

( )

( )
1

2

th 2 2 2

|| 23 1

2 2

1
0,0, ,0,0 0, ,0 1

0

population oscillation

1 1
i

1 i

sin d ,

r

r

L

r r r

r

k
b pW

k c k k n

a n
b U U U n x x b

 

 


+
+

+ + +

+ + + − + +

+

− −
− − −

  
   − + + =
  
   



  (4.37) 

 

( )

( )
1

2
*

th * 2 2 *2

|| 23 1

2 *2
* * * * * * *1

0,0, 0, ,0 ,0,0 1* 0

population oscillation

1 1
i

1 i

sin d ,

s

s

L

s s s

s

k
b pW

k c k k n

a n
b U U U n x x b

 

 


−
−

− − −

− − + − − −

−

− +
− + −

  
   − + + =
  
   



  (4.38) 

where s  is a CF-state index. Equations (4.37) and (4.38) can be represented in the form 

 
T T

* * ,r s r sB b b b b+ − + −
   =   

 where   is the eigenvalue (dimensionless) of the coefficient 

matrix  B  and the superscript T  stands for the transpose operation. For the primary mode to 

become unstable, one of the values of   needs to satisfy the following two conditions: 

 ( ) ( )Im 0   and   Re 0. =    (4.39) 

We denote the pumping level for which Eq. (4.39) is satisfied as i .p  The nature of the side modes, 

i.e., whether they behave like a frequency-modulated (FM) or an amplitude-modulated (AM) 

wave, can be understood from the relative phase ( ) ( ) ( )*

0arg arg 2argF F F− + = − −  and the side-

mode amplitude ratio .F F− +  Here, lF  represents the total amplitude of the outgoing exponential 

function for mode .l  In particular, ,l rl rlr
F F b=  where rlF  is the amplitude of the outgoing 

exponential function as defined in Eq. (4.22).  

 

 Now, we take each of the three modes to be composed of a single CF state. Denoting the 

CF-state coefficients and CF wavevectors corresponding to the side modes as 0b   and 0 ,   
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respectively, we calculate the eigenvalue   using Eqs. (4.37) and (4.38). Of the two values of   at 

each ,k  we are only interested in the value whose real part is larger. Figure 4.4(a)  shows ( )Re   

as a function of the side-mode detuning k  (normalized by the FSR) for the following three facet 

settings: 2 1 0L L− =  with 3 1,n =  2 1 0L L− =  with 3 2.7,n =  and 2 1 0.14L L− =  mm with 

2 1.55 0.00099in = +  and 3 1.n =  Only those values of  that satisfy the first condition in Eq. (4.39) 

are chosen for plotting. Also, pumping level is set to respective i .p  As indicated by the arrow, 

( )Re   becomes positive, and thus instability occurs, at a detuning of ~ 1  FSR in all three cases. 

Moreover, the eigenvalue is zero at zero detuning, which can be explained in the following way. 

At zero detuning, only the terms that represent population oscillation survive in Eqs. (4.37) and 

(4.38). The other terms add up to zero since the primary mode is lasing. Now, recalling the 

correspondence 
*

, , ,l l l l l l l l l lU A A A       − + − +  and then by pulling out 0b +  and 
*

0b −  from ,U  one can 

deduce that the determinant of B  should be zero. Hence,   should be zero as well. Figure 4.4(b) 

shows the pumping level ip  for 3 1,n =  1.5,  2,  and 2.7  with the coating length being set to zero. 

As the facet reflectivity decreases, the primary mode becomes unstable at a lower pumping level. 

In Fig. 4.4(c), we plot   and the side-mode amplitude ratio (both at the onset of instability) for 

the same values of 3.n  In all the cases, the side modes are found to behave like an FM wave.  
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Figure 4.4: (a) Real part of the eigenvalue   at the onset of instability for three different facet 

settings. (b) Pumping level triggering single-mode instability for 3 1,n =  1.5,  2,  and 2.7.  (c) The 

relative phase   and the side-mode amplitude ratio at the onset of instability for the same four 

values of 3.n  The coating length is zero for (b) and (c). 

 

 The coefficient matrix  B  can be written as a sum of two matrices  
L

B  and  
NL

,B  where 

 
L

B  represents the linear contribution (diagonal matrix) and  
NL

B  represents the nonlinear 

contribution (due to U ). Then, assuming that the eigenvector 
T

*

0 0b b+ −
    is normalized, we can 

split the eigenvalue   into linear and nonlinear parts where the linear part 

 
* T

* *

L 0 0 0 0L
b b B b b + − + −
   =      and the nonlinear part  

* T
* *

NL 0 0 0 0NL
.b b B b b + − + −

   =      In 

Fig. 4.5, we show the breakdown of ( )Re   into their respective linear and nonlinear parts for the 
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same facet settings as those in Fig. 4.4(a). The second maximum of ( )LRe   in Fig. 4.5(c) 

corresponds to the two local minima (on each side of the global minimum) of thW   in Fig. 4.2 

(orange curve). Figure 4.5 shows that, in the vicinity of zero detuning, ( )LRe   is a decreasing 

function whereas ( )NLRe   is a slowly increasing function. Also, the sum of these two functions is 

zero at zero detuning. Therefore, instability occurs at a point adjacent to zero detuning, i.e., at 

1k   FSR. Now, is it possible to engineer ( )Re   so that it becomes positive at a detuning of 

value other than 1 FSR? Let us consider the case in Fig 4.5(c). Here, the second maximum occurs 

at 39k   FSRs. Although ( )NLRe 39 FSRsk      is higher than ( )NLRe 1 FSR ,k      the 

former fails to raise ( )Re   to zero before the latter does so. However, by increasing the curvature 

of ( )LRe   near zero detuning, we can make it “harder” for ( )Re 1 FSRk      to reach zero. 

Also, by decreasing the difference between the heights of the two maxima, we can make it “easier” 

for the second maximum to reach zero. Thus, if we keep reducing the height difference between 

the two maxima and/or keep increasing the curvature, at some point the instability will occur at 

the second maximum. The desired changes to the linear part ( )LRe   can be brought by varying 

the length and/or the refractive index of the coating.  
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Figure 4.5: Real part of the eigenvalue   and its breakdown into the linear and nonlinear parts for 

the same three facet settings considered in Fig. 4.4(a). Pumping level is set to respective i .p   

 

 In Fig. 4.6, we plot thW   and ( )Re   for coating lengths of 0.14,  0.17,  0.3,  and 0.45  mm, 

which depicts the gradual change of the occurrence of instability at 1 FSR to multiple FSRs. The 

refractive indices of the coating and of the surrounding environment are the same as that in Fig. 

4.5(c). Figure 4.6(a) shows that, as the coating length increases, the curvature of thW   around the 

global minimum increases as well as the difference between the heights of the global minimum 

and the local minimum adjacent to the global minimum decreases. As a result, the linear part 

( )LRe   undergoes a curvature increase around zero detuning and also experiences a decrease in 

the difference between the heights of the first two maxima. Therefore, as shown in Fig. 4.6(b), the 

second maximum of ( )Re   reaches zero before ( )Re 1 FSRk      for 2 1 0.3L L− =  and 0.45  

mm, resulting in the appearance of harmonic states. In particular, instability occurs at 21k   

FSRs for 2 1 0.3L L− =  mm and at 14k   FSRs for 2 1 0.45L L− =  mm. We note that these values 

of the wavevector detuning are close to respective ( )( )2 2 1Re ,n L L −    which can be considered 

as the “FSR” corresponding to the coating section only.  
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Figure 4.6: (a) Scaled threshold function and (b) real part of   at the onset of instability for four 

different coating lengths. The refractive index of the coating is 2 1.55 0.00099i,n = +  and the 

surrounding environment is assumed to be free space. For coating lengths of 0.14  and 0.17  mm, 

instability occurs at a wavevector detuning of ~ 1   FSR, whereas for 0.3  and 0.45  mm, instability 

occurs at ~ 21  and ~ 14  FSRs, respectively. 

 

 We now discuss the three-mode regime where the primary mode and the two side modes 

lase at a steady state. For i ,p p  the CF-state coefficients corresponding to the side modes are 

nonzero, and the primary-mode equation no longer remains independent of the side-mode 

equations. Therefore, the full equation (4.27), with ( )lG x  given by Eq. (4.33), has to be solved 

iteratively to find ( )0, ,r l
b

= + −  and .lk  Since the CF wavevectors rl  depend on ,lk  Eq. (4.24) needs 
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to be solved simultaneously as well. The values obtained from the linear stability analysis can be 

used as initial values for the iteration. One can verify that Eq. (4.27) is invariant under the 

transformation    0i

0 0e ,r rb b


→     i
e ,r rb b
+

+ +→  and   ( )  0i 2
e ,r rb b

 +−

− −→  where 0  and +  

are arbitrary phase angles. Since two free parameters are involved, one needs to vary either 0k  and 

k+  or 0k  and k−  in order to implement the GFR; the wavevector of the third mode can be found 

by noting that the side modes are equally detuned from the primary mode. Figure 4.7 shows the 

mode intensities ( )10 0i.e., 20log lF F  for the same four facet settings that have been considered 

in Fig. 4.6. The pumping levels used are higher than but close to respective i .p  The side modes 

lase at wavevectors very close to those predicted by the linear stability analysis. In particular, for 

coating lengths of  0.14  and 0.17  mm, the spacing between the modes is approximately 1 FSR, 

whereas for 0.3  and 0.45  mm, the modes are separated by multiple FSRs. In all the cases, side 

modes behave like an FM wave.  

 

 

Figure 4.7: Intensities of the primary and side modes for the same four facet settings considered 

in Fig. 4.6. The pumping levels at which the mode intensities are found are also shown in this 

figure. The relative phase   is approximately 180−  in each of the cases. 

 

 For harmonic states to appear, thW   does not need to be approximately symmetric like the 

ones in Fig. 4.6(a). In Fig. 4.8, we show thW   and the corresponding solution of the mode equations 

for the two facet settings: 2 1 0.345L L− =  mm with 2 1.45 0.00099in = +  and 2 1 0.4L L− =  mm 

with 2 1.71 0.00099i.n = +  In both cases, 3n  is taken to be 1. In Fig. 4.8(a), thW   is asymmetric 

with respect to the global minimum in the sense that the height of the left minimum is greater than 
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that of the right minimum, whereas thW   in Fig. 4.8(c) is asymmetric with the left minimum being 

lower than the right minimum. In both cases, harmonic states appear, as shown in Figs. 4.8(b) and 

4.8(d). However, the asymmetry in thW   causes the intensities of the side modes to be unequal to 

some degrees. Since the active region is the same for all our simulations, Figs. 4.7(c), 4.7(d), and 

4.8(b) indicate that the spacing between the modes in a harmonic state can be varied by the facet 

engineering (the mode separations are 21,  14,  and 19  FSRs, respectively).  

 

 

Figure 4.8: (a), (c) Scaled threshold function for two different facet settings, and (b), (d) the 

corresponding mode intensities. The pumping levels used for the simulation and the corresponding 

relative phases are also shown in the figure. 

 

4.5 Summary 

 By taking cavity openness into account, we have presented a theory that describes the 
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behavior of a primary mode and two side modes in a QCL. We have used CF states to express 

spatial variations of the modes in an open cavity and thus derived steady-state mode equations that 

give all relevant information about the three modes. Using our theory, we have shown that, 

harmonic states with different mode spacing can be excited by varying the length of a facet coating 

and its refractive index. Namely, facets can be designed so that mirror loss modulates with 

frequency, which, then, introduces multiple minima in the scaled threshold function of a QCL. If 

the curvature of the threshold function around the global minimum as well as the difference 

between the heights of the minima are properly set, harmonic states will appear. 
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Chapter 5: Conclusion, contribution, and future works 

 

5.1 Conclusion 

 This thesis has been devoted to understanding of the harmonic state regime of quantum 

cascade lasers (QCLs). Although operation in this regime is a general phenomenon for QCLs, it 

was not until 2016 that the regime was conclusively discovered. The reason behind its late 

discovery is that the harmonic states are very sensitive to external disturbances and hence easily 

change into the familiar dense states. The facts that this phenomenon is a recent discovery and it 

has important applications in many areas, such as in picosecond pulse generation and broadband 

spectroscopy, have provided motivation to perform research in this direction. 

 

 For theoretical investigation in this thesis, the coupled density matrix (DM) and Maxwell’s 

equations have been used. Although two-level DM equations were used in most of the previous 

works, here, instead, three-level DM equations have been employed, which is a more realistic 

reflection of complex carrier transport through QCLs.   

 

 In chapter 3, by employing the closed-cavity approximation (unity facet reflectivity), a 

closed-form expression for the instability gain of the side modes has been derived. This expression 

can explain the appearance of harmonic states in QCLs.  With the help of this analytical expression, 

the effects of group velocity dispersion (GVD) on the harmonic states have been studied. In 

particular, it has been found that, up to a particular value of GVD, side modes behave like a 

frequency-modulated wave. At higher dispersion, however, they behave neither like a frequency-

modulated nor like an amplitude-modulated wave. 

 

 In chapter 3, although the diffusion of the zero-frequency population terms has been taken 

into account, the diffusion of the population-pulsation (PP) terms has been ignored, as done in Ref. 

[13] as well. However, in a later work [41], it has been shown that if one takes into consideration 

the diffusion of the PP terms, the analysis (instability gain) fails to explain the origin of the 

harmonic states. 

 

 In chapter 4, multimode behavior of QCLs has been studied using a more general model 
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than that used in chapter 3. In particular, the diffusion of the PP terms has been included. In 

addition, and most importantly, openness of the QCL cavity has been accounted for, which was 

not considered in previous works that used the modal expansion method to study QCLs. In line 

with Ref. [41], it has been found that when the mentioned diffusion terms are included, the 

instability gain predicts the appearance of the dense state (single-free-spectral-range-spaced state), 

not the harmonic states; see Fig. 4.4. However, in experiments, the harmonic states clearly appear. 

Therefore, the modal analysis is not successful in explaining the origin of the self-starting 

harmonic states, and this issue remains unresolved to date.  

 

 Although the theory/model in chapter 4 does not explicitly explain the origin of the self-

starting harmonic states, it does, however, have the capability to suggest a way to excite them. The 

theory has this capability because of the consideration of cavity openness. Using this theory, it has 

been demonstrated that the coating of a facet can be exploited to excite harmonic states with 

different mode spacing. Such a control over the generation of harmonic states could make QCLs 

invaluable for the previously mentioned applications. 

 

5.2  Contributions 

The contribution of this thesis can be summarized below: 

a. A closed-form expression for the instability gain of the side modes has been derived from 

a coupled three-level DM and Maxwell’s equations. The closed-cavity approximation has been 

employed here. With the help of this analytical expression, the effects of GVD on the harmonic 

states has been investigated. 

b. A theory to describe multimode behavior of QCLs has been formulated, again from the 

DM-Maxwell equations, but considering openness of the cavity. Using the theory, it has been 

demonstrated that one can excite harmonic states with different mode spacing by exploiting the 

properties of the coating of a facet. 

 

 

The following publications are the result of this thesis: 

1. M. Roy and M. Z. Kabir, “Harmonic instability in a quantum cascade laser with Fabry-

Perot cavity,” J. Appl. Phys. 128, 043105 (2020). 
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2. M. Roy and M. Z. Kabir, “Exciting harmonic states in a quantum cascade laser via facet 

engineering,” Phys. Rev. A, under first revision (2021). 

 

5.3 Future works 

 As mentioned, the modal expansion method has not been able to satisfactorily explain the 

origin of the self-starting harmonic states in Fabry-Perot QCLs to date. There exists another 

method for studying multimode behavior of QCLs, namely the space and time domain simulation 

of Maxwell-Bloch equations. This method, either, has not been able to adequately explain the 

phenomenon; an external optical seeding is required for this method to reproduce the harmonic 

states [41], whereas they appear in experiments without any external seeding (hence the name self-

starting). Therefore, more theoretical work is needed to identify the origin of the self-starting 

harmonic states in Fabry-Perot QCLs. 

 

 Although the theory in chapter 4 considers cavity openness, it can be improved further as 

described below. Only three modes, i.e., a primary mode and two side modes, have been included 

in the theory. Although able to show the way to excite harmonic states, the model does not convey 

information about the bandwidth of the harmonic states with increasing pumping. For this, more 

side modes need to be included. Moreover, the Kerr effect, i.e., the change in the refractive index 

of the material with the intensity of an electromagnetic wave, has not been considered. The 

inclusion of these factors will make the theory more complete, realistic, and powerful. 
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Appendix A: Three-level system versus two-level system 

 

 In this appendix, we show that the three-level density matrix (DM) equations can be 

converted to two-level DM equations, and hence, the expressions derived in Sec. 3.3 can also be 

converted into the corresponding expressions for a system having two energy levels. We also show 

that the reduced expressions agree with those in Ref. [13]. 

 

 By subtracting Eq. (3.5) from Eq. (3.6), we find that the population inversion in a three-

level system varies according to 

 ( ) ( ) ( )
( )2

22 33*

22 33 2 13 1 4 22 2 5 33 23 23 2
i2 .zC C C C C aE D

x

 
      

 −
− = − + − − − − + − +


 

 (A1) 

However, for a two-level system, the population-inversion equation reads 

 
( )

( )
( )2

eq 22 33 22 33*

22 33 23 23 2

1

i2 ,z

w
aE D

T x

   
   

− −  −
− = + − +


  (A2) 

where 1T  denotes the gain recovery time and eqw  is the equilibrium population inversion that 

would occur in the absence of lasing (the interpretation of eqw  is the same as that of eq ;W  the 

difference is that eqw  in the two-level system acts as an independent variable, whereas eqW  in the 

three-level system is determined by the energy gap 12 ). By comparing Eqs. (A1) and (A2), we get 

 
eq

2 13 1 4 2 5

1 1

1
   and   .

w
C C C C C

T T
− = + = − + =   (A3) 

Due to the increased complexity in carrier transport in the three-level model, the parameters 1,C  

2 ,C  4 ,C  5 ,C  and 13 ,  all having the unit 
1s ,−

 arise. Equation (A3) simply describes how these 

five rates reduce to just two rates, i.e., to the pumping rate eq 1/w T  and the gain recovery rate 11/ ,T  

while going from a three-level to a two-level system. Now, if we use Eq. (A3) in Eqs. (3.17) and 

(3.29) and then plug the latter equation into the former one, W  will be reduced to  
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 (A4) 

Equation (A4) matches with Eq. (9) in Ref. [13]. 

 

 Now, we convert the expression of our intensity gain, i.e., ( )Re 1mg +  [see Eq. (3.36)], 

into the corresponding expression for a two-level system by using Eq. (A3) as well as by making 

the following assumptions: 0 23; =  ( ) ( ) ( )0 ,n n n  + −= =  i.e., group velocity dispersion is 

zero; , =   i.e., the hot- and cold-cavity modes are identical; and 0 0 1.   + −   Thus, we 

get 
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 (A5)  

which is the same as Eq. (19) in Ref. [13]. The agreement of Eqs. (A4) and (A5) with the 

corresponding equations in Ref. [13] proves that the derivation presented in Sec. 3.3 is correct. 
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