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Abstract

Fault Analysis Using Learning Models with Model Interpretation

Justin Whatley

As machine learning moves from theoretical applications in academia to promising solutions to

problems across industry and healthcare, effective interpretability strategies are critically impor-

tant to adoption. However, model interpretability strategies can be extended to offer more than

validation for the predictions a model is making. Learned models offer a proxy for the data by

capturing relationships between feature inputs and target outcomes, offering a representation that

can be analysed. To that end, this work describes a fault analysis system that leverages learned

models to characterize faults by using SHapley Additive exPlanations (SHAP).

In particular, this fault analysis system was designed for large structured datasets such as those

available in telecommunications networks. The strategy works by forming a learned representation

with tree-based models using gradient-boosting. Once a problematic sample is selected for analysis,

the computationally efficient implementation of the SHAP algorithm specialized for tree-based

models is employed to gauge feature contributions to the performance degradation observed in the

sample. Thus, this fault analysis strategy effectively provides an explanation for the degradation

in a problematic sample informed through a model-based representation of the relevance of input

characteristics across contexts. An evaluation of the strategy is performed, demonstrating its

reliability for structured communications data using a 4G LTE dataset.
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Chapter 1

Introduction

Information systems are growing in complexity, making it increasingly difficult to analyze system

faults. Faults can be described as a problematic event or occurrence in the system, but this

definition might vary by domain.

Traditionally, the monitoring and evaluation of large information systems was performed using

expert systems with hard-coded rules defined by professionals with expertise in the field. As the

complexity of the information systems grow, however, it is increasingly difficult for experts to build

sufficiently complex rules that capture interactions between different components of the system.

Furthermore, evaluating such complex systems when the underlying components and relationships

between them evolve compounds the difficulty of building customized rules with expert help.

A key industry affected by the need for improved fault analysis is telecommunications. The

recent developments and roll-out of 5G networks not only increases the data volumes in the network

to monitor for service assurance, it greatly increases the complexity of telecommunications networks

where faults occur by adding an additional layer of functionality. Consequently, the hard problem

of fault analysis in telecommunication networks is becoming considerably harder.

Addressing this problem of growing complexity increases the need for automation and strategies

like machine learning, where successes in the automation of tasks like image classification and

language translation have had large impacts. In fact, deep machine learning models are now

also being extended to prediction and diagnostic systems in many domains, but the size and

complexity of these machine learning models themselves reduces their inherent interpretability

and, thus, limit their applications in areas where interpretable models are required for integration

into existing workflows. To aid in the adoption of machine learning approaches, new strategies for

model interpretability and explainability are actively developed.

The intent of this thesis is to explore and evaluate the application of a fault analysis systems
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for complex information systems that leverages machine learning and state of the art model inter-

pretability strategies. The main idea of the fault analysis strategy is to train a machine learning

model to represent a complex system through its data and, from this representation, gain insight

into the features associated with problems (i.e., discovered faults or a problematic region of the

data distribution) through the application of model interpretability strategies. In particular, this

fault analysis strategy is evaluated on real-world telecommunications data from a 4G-LTE net-

work, allowing experts to ask questions about the data such as: “What explains low throughput

in a particular region of the telecommunications network?” or “What explains dropped calls on a

particular cell?”.

1.1 Contributions of this Thesis

This Thesis investigates the application of modern interpretability strategies to learned models of

data for use as a fault analysis. The main contribution are:

1. Providing an assessment of machine learning model interpretability strategies for their pos-

sible applications for fault analysis

2. Establishing an end-to-end strategy for fault analysis leveraging machine learning model

representation and interpretation using SHAP

3. Applying and evaluating the fault analysis strategy on real-world telecommunication network

data

1.2 Outline

Chapter 2 of the Thesis provides a brief overview of interpretability in machine learning. It intro-

duces the common reasons for model interpretability, describes the types of models and inherent

qualities that factor into their interpretability, and introduces model interpretability strategies

including SHAP.

Chapter 3 describes the fault analysis strategy proposed in this work. It provides an overview of

the general strategy taken, which includes model formation and SHAP interpretation of problem-

atic samples. It describes an approach for analysis that uses comparisons between problematic and

representative samples, distances between samples features, ranking aggregate feature importance

for analysis and confidence bounding by leveraging prediction error. The implementation details

and model feature selection considerations for the strategy are discussed.
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Chapter 4 applies and evaluates the fault analysis strategy on a 4G-LTE Radio Access Network

(RAN) dataset. First, there is a description of data characteristics and data preparation steps.

What follows is an extended evaluation of the representation strategy, which includes experiments

showcasing model training times and performance, the application of representative control sam-

ples, representation stability, and analysis on seen vs unseen data. Visualization strategies devel-

oped for the fault analysis system, which included aggregate feature importance by sample impact

and confidence bounding, are then shown and an qualitative assessment with telecommunications

experts is discussed.

Chapter 5 concludes with a summary of the fault analysis approach and an evaluation of the

assessment performed. Next steps and future work are discussed in closing.

3



Chapter 2

Model Interpretability Background

Model interpretability has become an increasingly important as complex models have moved from

niche or simple utility applications, to applications with broad implications in hiring, medical

diagnosis, criminal justice, self-driving vehicles, and many more. It is likely not an exaggeration

to state that the interpretability of machine learning models in these domains will be regulatory

requirement for most impactful application of artificial intelligence in the future.

This chapter discusses motivations for model interpretability as a strategy, the inherent inter-

pretability of select models that can be used for fault analysis in complex systems, and introduces

existing interpretability strategies and their applications to different model types.

2.1 Motivations for Model Interpretability

While interpretability and explainability are often used interchangeably, interpretability refers to

the ability for us to extract if-then relationships in the model whereas explainability has to do

with describing model outcomes in human terms. Both concepts are critical in many application

of machine learning because there is often a need to unpack what the model is doing and convey

the result in an understandable way.

2.1.1 The Need for Model Transparency

Consider the use of machine learning to screen for cancer in radiological images. Applying advanced

machine learning strategies like deep convolutional neural networks might allow for a more reliable

detection or classification of cancer than the average radiologist. However, key issues of bias, trust,

consistency arise when trying to integrate such a system correctly, which will be considered below.
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2.1.2 Bias

Machine learning models form a representation, or abstraction, of the data used to create them.

For a supervised learning task, the model architecture and trained weights create a mapping

between input parameters and a predicted outcome (i.e., target). As a consequence, the behavior

of the model will lead to incorrect predictions if the data is incorrectly labelled. Returning to the

radiologist example, this means that a model trained on radiological scans will have incorporated

the same mistakes made by the radiologists who labelled the dataset. Of course, this can be

mitigated by having multiple radiologists evaluate a scan requiring, for example, at least a 3/4

concordance between radiologist to label the image. However, once the model has incorporated

mistakes from mislabelled data these can become difficult to uncover.

Any consistent mistakes in the data used to train the model, such as might occur with sampling

error, would lead to model bias. What is most nefarious with bias is that consistent mistakes in

sampling can affect both training and test distributions. These consistent mistakes that lead to

model bias do not have to be so egregious as a mislabelling. For instance, a re-occurring artifact in

the scan that was systematically present in non-cancer patients might also be present in a cancer

patient scan at inference time leading the model to conclude there was no cancer because of the

presence of the artifact.

Ultimately, model bias will lead to consistently incorrect predictions that can, if accepted

without scrutiny, lead to consequential mistakes. Even having an unbalanced dataset, which is

common across domains, leads to bias. While there will certainly be policies in place to prevent

full reliance on machine learning systems when over-reliance on them may cause harm, improving

predictions scores may lead to complacence and increased risk. Without being able to interpret

the model itself it is difficult to form a sanity check to validate the model.

2.1.3 Consistency

The consistency of a model can be described as the reproducibility of the results produced in a

new context. Another way to think about the consistency of a machine learning model in a real-

world context is model generalizability, or how well the model performs for unseen data. In the

real-world, however, there is usually a limit on the supply of data that can be used to validate a

model. Furthermore, the test data used to validate models may have been captured in a setting

too similar to the training set leading to an overestimation of the model generalizability. In the

radiologist example, a model trained to detect cancer from images produced on a specific scanner

may no longer perform well given images produced on a different scanner.
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Using interpretability strategies allows for the exploration of the model performance for specific

types of predictions. Assessing how the model predicts certain classes and what specific input

characteristics lead to these predictions, improves confidence in the ability of the model to classify

a specific class. An analysis of the model in the radiology example might be used to improve

consistency by validating that specific regions of the scan correspond with the radiologist intuition

of what indicates cancer.

2.1.4 Trust

Perhaps one of the greatest problems for the integration of machine learning into new areas is

trust; why should the radiologist trust an opaque model inference when it is unclear how the

model decides on the presence of cancer? The naive answer to this question might be that if the

accuracy of a prediction from this model is, on average, better than that of a typical radiologist

on a similar set of data it would be a good idea. Or that if there is a sufficiently high precision

and sensitivity in the predictions it might be a good idea. However, such models often do fail

when, unbeknownst to those deploying the model, newly evaluated cases fall out of distribution.

In other words, models are trained in closed set environment, but then deployed in an open set

environment where new examples are out of distribution.

In practice, regulatory rigor in medicine prevents the introduction of new systems like this

until they are extensively vetted; trust must be earned by providing a reasonable explanation of

the model inference process. To complicate this, machine learning models rely on mathematical

concepts developed in computer science and statistics making some of the underlying concepts

less accessible to professionals in other fields. This problem is compounded by the opacity of

certain popular machine learning models, like deep neural networks. Consequently, one of the

most important motivations for model interpretability strategies is unpacking the model to build

trust in the decision progress being used by the model.

2.2 Inherent Interpretability of Models

The intention of the interpretability strategy, whether attempting to uncover bias, ensure consis-

tency or build trust, will change the interpretability approach taken; there is no one-size-fits-all

solution to-date. However, overarching strategies in model interpretability can still be understood

and applied to address different areas of focus.

The models resulting from different machine learning strategies have properties that make them

6



more or less interpretable. Broadly speaking, models are split into two overarching themes: white-

box and black-box models. White-box models are so titled for the simplicity of interpretation or

explanation, whereas black-box models are considered to be “opaque” because of the difficulty in

their interpretation. White-box models typically include the more traditional machine learning

approaches, such as linear and logistic regression and simple tree-based models. Black-box models

include more complex models like deep neural networks.

2.2.1 White-Box Models

White-Box Models are more directly interpretable than their counterparts, which can be explained

in part by their relative architectural simplicity and the number of parameters used to represent

the model. In fact, the model parameters themselves can often be associated to specific input

features so they can be interpreted directly as having some level of association between the input

and predicted outcome. As such, additional strategies for interpretation are not generally needed

for white-box models and these are commonly favored when the goal is to have a clear explainable

model.

2.2.1.1 Linear Models

Linear models such as linear regression and logistic regression are arguably the simplest cases of

interpretable white-box models. When interpreting the behavior of a linear model, the weights

or parameters established when training the model are a good approximation for the degree of

association between the input characteristic and the outcome.

However, linear models are limited to capturing linear relationship between the features and

outcomes, which can be a problem when non-linear relationships exist and, thus, more accurately

represent the data. Another complication is that the parameters of a linear model are determined

based on the average input set, meaning any particular feature importance is chosen based on the

average contribution of the other features and not a particular case being evaluated. Thus, any

influence of the context within which the features occurs is lost when interpreting linear models

by their weights because there is only one representation for the average case.

Consequently, using linear models for their improved interpretability should include an evalua-

tion of the reduced prediction performance of the model to assess a possible loss in representation

and consider the loss of context dependence when evaluating any particular feature. Regardless,

the necessity of model interpretability and explainability in applied settings and the ease of imple-

mentation will often lead to the use of these models instead of more complex ones despite a loss
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in prediction performance.

2.2.1.2 Tree Based Models

Tree-based models are interpretable, white-box models that can capture non-linear relationships.

Tree-based models such as decision trees and those comprising many decision trees formed through

boosting (e.g., AdaBoost) and bagging (e.g., random forest) are composed of a sequence of branches

that divide the dataset based on decision nodes. Different metrics can be used to split the dataset,

leaving an interpretable sequence of decisions that can easily be translated to an if-then boolean

logic.

Although tree-based approaches capture non-linear relationships better than linear models,

the interpretation can be more complex, particularly in the case of large trees or aggregations of

many trees. One complication arises when trying to attribute a directionality to the branch point;

although the branch point gives a best indication of which inputs are important to the model, they

no longer provide a simple indicator to which class a particular input is most associated. When

tree-based models becomes more complex, such as in the case of tree-based models formed through

gradient boosting, their interpretability may fall somewhere in between white-box and black-box

models.

2.2.2 Black-Box Models

Black-box models include the many variants of artificial neural networks. The opacity of these

models does not come from any restriction on observing the mode parameters but, instead, comes

from the high-dimensionality of the model. For example, in a feed-forward neural network, a

typical densely connected architecture will connect the nodes of each layer to every node in the

subsequent layer, giving these connections a parameter weight value to describe the value of the

connection. Because of this full connection between layers, the number of possible paths through

the network grows exponentially with each additional layer making the interpretation of the model

difficult. A trained deep-learning model will contain millions of learned parameters, making it

much more difficult to associate individual parameters to features as can be done for white-box

models. Consequently, although such models are effective at representing complex relationships in

the world, they cannot be interpreted directly or easily.
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2.3 Model Interpretability Strategies

Models that can be interpreted directly are often regarded as the best choice when model inter-

pretability is critical for its integration into a workflow. There are key characteristics of inter-

pretable models that form advantages and disadvantages, which will be explored here.

2.3.1 Direct Model Parameter Interpretability

2.3.1.1 Linear models

Linear models are generally the most interpretable choice for machine learning. These models

establish a direct relationship between input and target values. After training a linear model, the

weights (i.e., parameters) associated to feature inputs will increase proportionally to the contribu-

tion that feature input has to a particular prediction.

An important caveat is that linear models will not capture non-linear relationships and, thus,

such interactions must explicitly be added to consider the interaction importance. Model mismatch

is a one way to describe this problem with models of low-variance and high-bias, like linear models.

High-bias models offer very general solutions, with predictions that will likely be somewhat correct,

without being too accurate or inaccurate. While data mismatch might refer to a mismatch in the

data being used to train the model not being representative of the population data, model mismatch

describes a mismatch in the representation made by the model and one that would be more correct

(i.e., having few spurious feature associations).

Increased reliance on features with little to no bearing on the target variable due to the model

bias can result in model mismatch when linear models are fitted to non-linear data, making the

interpretation incorrect. Thus, data containing more non-linear of relationships will not only lead

to a decline in model accuracy for linear models, because such relationships cannot easily be

represented linearly, but also reduces the overall interpretability of the linear model. This can be

observed by the fraction of the model weights still attributed to features that do are not actually

influencing the outcome [9].

From a computational standpoint, linear models can be difficult to use as creating a one-hot-

encoding of tabular categorical columns can be infeasible in cases of high-cardinality. While this

is manageable for a small dataset, as the number of feature inputs increase due to high cardinality

categorical columns, interpretability will necessarily become less succinct and more difficult. A

necessary strategy is then to highlight or bound the number of feature weights used to explain the

model.
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2.3.1.2 Simple Decision Tree

The most interpretable tree-based model is the simple decision tree, particularly when used to

model an actionable set of instructions. In this model, each node represents the value (or presence,

in the boolean case) of a feature with which the model can best split the training dataset. These

branching points become the model and can then be applied to the test set to obtain scores to

assess the accuracy of the model.

From an interpretability perspective, the value of this approach is clear. The nodes of the

decision tree can be presented of a domain expert as a series of if-then steps, or rules to be

evaluated and applied. A counter-intuitive step can easily be questioned and corrected as part of

an application of such a model.

Unfortunately, the training of decision tree model is unstable, so that simple changes to the

data input such as reordering or re-sampling can lead to very different sequences of branch points.

To correct this, an ensemble of many decision tree models can be trained.

2.3.2 Interpretability of Complex Tree-Models

There are many algorithms used to create models based on the aggregation of trees. The random-

forest algorithm is one of the most common, where many decisions trees are trained independently

and the final model used is an ensemble of these decision trees. Another set of tree-based models

are formed by gradient boosting algorithms. An ensemble of “weak” learners (e.g., smaller decision

trees), where new learners are added based on the reduction in error they provide for the entire

ensemble.

While the implementation details vary, a model formed by the aggregation of many trees re-

duces the instability of the model relative to the simple decision tree case, but has some negative

consequences on the inherent interpretability. Aggregate tree-based models are not directly in-

terpretable like the weights for linear models or branch points for simple decision trees, different

strategies are employed to interpret feature importance. For example, the popular gradient boost-

ing library XGBoost [2] includes three options for feature importance measurement: weight, cover,

and gain. While it might be more appropriate to describe complex tree-based models as “grey-

box”, interpretability strategies that are necessary for black-box like LIME and SHAP can also be

applied to them; these strategies will be introduced shortly.

2.3.2.1 Classic Approaches for Interpreting Trees

There are three classic approaches to evaluating tree-based models:
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• Weight is a feature frequency measure across trees, telling you how many times a particular

feature was used to split the dataset across the ensemble of trees composing the model.

• Cover is a measure of the feature frequency (i.e., weight) divided by the number of examples

that are actually split by using these nodes as branching decisions.

• Gain, also known as Gini importance, is a measure of the average loss reduction produced

by using these features as decision nodes across the ensemble.

All three of these more common feature-interpretability strategies fall prey to inconsistency :

increased reliance of the model on a feature can decrease attributed importance. Further, of

the three classic approaches only gain satisfies the accuracy property: the sum of all feature

importances add up to the total importance in the model. Without guarantying accuracy it is not

possible to rely on the relative contributions of features to their overall importance in the model.

SHAP was designed explicitly to address these problems [10, 9].

2.3.3 Model Agnostic Strategies

To unpack some of the complexity of black-box models, local surrogate models are used to approx-

imate the model for a subset of the data. Surrogate models work by substituting a simpler, more

interpretable model to the original to explain a local set of examples. Two approaches for local

model interpretability are Local Interpretable Model-Agnostic Explanations (LIME) and Shapley

Additive Explanations (SHAP), which unifies LIME and game theoretic Shapley values.

2.3.4 Local Explanations

Complex models cannot be explained by summarizing their behavior without compromising or

over-simplifying the explanation. However, isolating the model behavior for a specific example

and approximating this behavior with a more explainable model (i.e., white-box model) allows for

better explanations. Such an approach can also be extended from single examples to a subset of

examples with characteristics of interest.

One strategy using this approach is Local Interpretable Model-Agnostic Explanations (LIME),

using a surrogate linear model for a local explanation [15]. This is accomplished by training a

local-surrogate model over a set of examples, using the prediction of the complex model as a

ground truth for the simpler, explainable model. This is a useful approach when looking to really

understand a subset or region of examples. SHAP expands on these ideas, incorporating Shapley

values.
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2.3.5 Additive Explanations

In the paper [10], Lundberg and Lee proposed a unification of different model interpretation

approaches. Along with the idea of local explanations described in the previous subsection, additive

explanations were used to connect different interpretability strategies for models.

From the paper, let f be the original model and g an explanation model, where the aim is to

explain a local prediction f(x) with input x. Simplified inputs x′ are used for the explanation

model with the mapping x = hx(x′). The aim of a local method is to ensure g(z′) ≈ f(hx(z′))

when z′ ≈ x′. In an additive explanation model that is composed of a linear function of binary

variables we get:

g(z′) = φ0 +
m

∑
j=1
φjz

′
j (1)

where z′, m is the number of simplified input features, and φi ∈ R [10]

In an additive explanation model g for the prediction, z′, is a vector indicating whether the

feature is absent or present such that z′∈{0,1}m. φ0 is the base rate, or expectation of the model

without any additional feature information

Many model explanation strategies take the form of an additive explanation. For example, you

can find explanations of this form in LIME [15], Shapley regression values [8], Shapley sampling

[18], Saabas [16], to name a few. SHapley Additive exPlanations (SHAP), introduced in the work

[10] is another of these approaches.

SHAP is an interpretability strategy that provides an additive explanation of a machine learning

model features by approximating Shapley values [17] to fairly distribute the effect of a set of features

on a model prediction [10]. Shapley values of features are computed by finding the marginal

contributions when adding this feature to all possible subsets of other features to establish a fair

contribution from each feature to a final payout (i.e., divergence in the prediction from the mean).

The intuitive formulation for computing Shapley values is the following:

φj(val) =
1

number of features
∑

coalitions excluding j

marginal contribution of j to coalition

number of coalitions excluding j of this size
(2)

To determine the Shapley value φj(val), or effect for the model feature j : The coalition repre-

sents the power set of feature combinations that exclude the feature j [13]. Summing the marginal

contribution of j to each coalition of other features while weighting it by the number of features

in that coalition gives the Shapley value for that feature (i.e., the SHAP value).
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To produce an additive explanation, an approximation of Shapley values is computed for all

features m. Thus, SHAP combines the ideas of LIME and Shapley values to optimally assigns

credit to different features for a particular example, offering a local explanation using Shapley

values.

Given an adequate sample size, such a distribution of SHAP results can extend local explana-

tions to characterize entire samples or subsets by calculating an aggregate result. Shapley values

can offer great insight into the feature contributions to particular predictions. The size of the

sample is somewhat restrictive, however, because the evaluation of many feature permutations is

computationally expensive. However, the fair credit assignment for different feature importances

ensures that this interpretability strategy does not succumb to the failures discussed in accuracy

and inconsistency discussed in other strategies.

From a practical standpoint, there is an efficient implementation for tree-based models called

TreeSHAP [9]. This algorithm is more feasible for large scale structured data analysis, offering

improved computational complexity O(TLD2) relative to the general case of O(TL2m). Here T

represents the number of trees, L the number of leaves, and D the largest depth. This special case

formula relies on conditional expectations instead of marginal expectations, which can for produce

non-zero feature attributions even when this feature does not contribute to a prediction [19, 5].

This version of SHAP is used for fault analysis in the thesis.

2.4 Assumptions About Causality

When considering the model and a possible interpretation for model predictions, it is important to

differentiate the interpretation of the model itself and any conclusions about causal relationships

between the input and outputs of the data. While a correlational fault analysis informed by

the interpretation of a learning model can be useful in performing an analysis and exploring the

circumstances surrounding a fault it will not guaranty causal relationships. This is because a

machine learning model does not learn on the basis of causal relationships and, instead, learns by

co-occurrence between the input and target variables during training. Thus, it is not correct to

make causal claims about the model interpretation as discussed below.

2.4.1 Direction of Causal Relationship

Machine learning models, and statistical approaches more generally, establish a relationship be-

tween A and B that is not directional. That a model A predicts B may indicate that B causes
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A, complicating the interpretation of machine learning models using any interpretability strategy.

Correct interpretation will, thus, depend on an understood representation of the concepts which

can be codified in a causal-graph. Alternatively, a temporal difference in (i.e., A precedes B) could

establish directionality to this particular relationship. However, this still cannot ensure a causal

relationship.

2.4.2 Third Variable Problem

By forming a testable, predictive model, there is certainly temptation to use causal arguments.

However, assuming the model uncovers that A predicts B, there is no guarantee that a third

property C is not causing the changes in both A and B. In fact, it is entirely possible that the

input that offers a true causal relationship with the outcome may be missing entirely from the

data.

Including more relevant inputs prior to training might improve the chances that the model

captures true causal relationship. There is, however, no guarantee that an increased feature set

will include this causal features or that the model will rely on the correct input that is the causal

driver. While expanding the input sets improves the chances of including the appropriate causal

features, this inclusion of many features may make the problem computationally intractable and

is likely to increase reliance on less interpretable models and dimensionality reduction techniques

that obscure the analysis.

2.4.3 Restricting Inputs for Causal Approximations

The limitation in uncovering causality with predictive models, and indeed most conclusions made

outside of rigorous experiments and counterfactual modelling, must be put in focus if the aim is

to derive important properties from a predictive model that are relevant to the problem at hand.

A validation with unseen data is necessary, but not sufficient to indicate that the features are

causal properties of the outcome. To quote the British statistician George E. P. Box,“All models

are wrong, but some are useful.” The aim of the following research is to extract some utility from

machine learning models, while falling short of establishing true causal relationships. Instead, by

starting with a general understanding of relationships in the data when selecting inputs and targets

to structure the model, the aim is to create an analytical strategy to guide further exploration

and provide select actionable insights. Future work may incorporate causal approaches that aim

to address these shortcomings.
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Chapter 3

Fault Analysis System

The motivation to apply model interpretability in this project are to evaluate their implications

and to develop a fault analysis system for large structured datasets. No solution to model in-

terpretability is perfect, however, but the decisions made for model selection and interpretability

strategies will be explained for fault analysis in this chapter. If the aims of the project were

different (e.g., to detect bias against a particular group), different decisions might be necessary.

Although the feature contributions might be determined by any local and additive explanation

method, SHAP was used for the favorable properties offered when approximating Shapley Values.

Thus, in the following discussion the interpretability strategy used was SHAP.

3.1 Overview of Strategy

This fault analysis strategy can be outlined using the following steps:

1. Create a model by learning a representation of a dataset, possibly augmented by including

various data sources to better represent the state of the information system, to associate

inputs to outcomes of interest

2. Assess the representation of the model to unseen data to confirm that representation gener-

alizes and, thus, can be extended to an analysis of unseen data (optionally in two steps to

1) validate generalizability, then 2) incorporate all data in learned representation )

3. Perform an analysis of sample deemed problematic by domain experts or predefined rules,

by using model interpretability strategies (e.g., SHAP) on the trained model and using

the interpretation to provide characteristic (i.e., feature or feature-value) contributions to

problems in the sample. By using a model that provides local interpretations such as SHAP,
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the system can be used to frame specific questions within a context; the sample is compared

against a baseline, control, where divergence between the relative importances of sample

features can be quantified to highlight problematic characteristics

4. Visualize impact and severity of characteristic contributions by taking the distributions or

aggregates of characteristic contribution values as they relate to a problem or degradation

in the problematic sample, whether it is a particular fixed outcome or the magnitude of the

degradation

These steps and their relationships can be seen in Figure 1.

3.1.1 Analysis by Contrasting Samples

Analysis tools commonly allow professionals to investigate and interact with data in near real-time

and it may not be practical to form specific question before starting the analysis. As such, the

success of this fault analysis approaches hinges on its ability to provide a good representation of the

data to allow investigation and on the responsiveness of the analytics system as an application.

Satisfying both conditions can be prohibitive with modern learning models as there is a large

computational cost to accurately represent large amounts of data and complex interactions.

To minimize the computational cost without losing the potential of a detailed representation,

we propose forming a model on a dataset that broadly represents the information system to ensure

the representation of different contexts prior to posing specific questions in an analysis of a fault.

The alternative, where models are trained to new, filtered set of inputs following whenever new

questions are posed by the analyst may:

• Reduce the model representation power when examples are excluded for not satisfying all

constraints despite containing features valuable for the representation

• Lengthen the analysis process by forcing the retraining of models on new set of data satisfying

all constraints

In our strategy we perform an analysis by contrasting samples, a general model is trained to

form a representation of the inputs to the outcome of interest. Then, a problematic sample is chosen

by the analyst for investigation using preconceived notions of what is considered to be problematic

(e.g., low values for the target variable accompanied by other characteristics the analyst wants to

constrain). Finally, the problematic sample can be evaluated for characteristic contribution with

SHAP without the selection of a baseline, which is equivalent to a random baseline of the dataset,
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Figure 1: High-level strategy for fault analysis system that uses a model interpretability based

approach
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or compared against a representative baseline with appropriate constraints for that sample which is

the strategy of contrasting samples. Using a representative baseline may change the distribution of

expected feature attributions and offer a more appropriate comparison for the constrained features

and other features that depend on them based on the new feature context.

Thus, the following strategy could be used by domain experts to ask specific questions of the

data while controlling for known differences based on data characteristics:

1. Train a model to learn a representation of the dataset

2. Select a problematic samples by asking a question based on applied filters (e.g., what explains

the worst performing examples for the target metric?)

3. Select a representative baseline sample based on characteristics to control for in an analysis

(e.g., in telecommunication this could be the geographical region, user characteristics, cell

characteristics, etc.)

4. Compare the contribution of different characteristics obtained for both samples to obtain a

relative contribution to the model predicted outcome

3.1.2 Sample Comparisons

When making a comparison between samples, the goal is to quantify the divergence to determine

whether the problematic sample is meaningfully different from a control sample. This quantifica-

tion can be thought of as a fingerprint that represents the composition general characteristics of

the sample relative to the baseline. Such a strategy might allow the grouping of specific samples

to characteristics bins. These bins could later be qualified by professionals who understand the

relevance of the composition of problematic features. Furthermore, this can aid in the automation

of a analysis as fingerprints that include a composition of different problematic characteristics and

metrics might be linked to boarder problems for the problematic sample.

A natural approach for such a comparison would be the global evaluation of SHAP values

between a problematic sample and control with Kullback-Leibler (KL) Divergence. This approach

could be used to gauge the absolute divergence between the problematic and control samples,

irrespective of which particular feature diverged. However, because of the diversity of features and

implications of particular features in the analysis such a generic divergence may not be all that

useful in deciding whether a particular sample is worth exploring; KL divergence will only indicate

how different the samples are, not the way they are different which is needed for analysis. Instead,
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the approach used for sample comparison will still focus on the distribution of SHAP values at a

feature level.

To perform sample comparisons, the SHAP distributions of each feature is compared by comput-

ing the first Wasserstein distance (also known as Earth-Movers distance) to represent a movement

of probability mass between the two samples:

w1(µ, ν) = inf
π∈Γ(µ,ν)∫R×R

∣x − y∣dπ(x, y) (3)

Where Γ(µ, ν) represents the set of probability distributions for the computed SHAP values in

R ×R with marginals µ and ν.

The approach was taken because certain distributions will not be regular and, if they are, may

be highly skewed if the target variable used is skewed as is shown in later experiments. For normally

distributed samples of SHAP values, standard statistical comparisons of normal distributions might

be appropriate. However, because of the transformations by the model to create SHAP values, our

preference was for this non-parametric approach.

To assess the direction of this distance, the two distributions are compared in aggregate. Com-

paring the medians of the two SHAP distributions of features gives the direction of their relative

importances in association to the target variable. For examples, given a median feature SHAP

value of -100 in a problematic sample and 0 in a control sample, the sign indicates an aggregate

negative contribution for the feature relative to the control. While this median comparison might

be used directly, the w1 provides a better representation of the actual distance between the SHAP

distribution masses. In particular, w1 of the SHAP values provide a better quantification of the

distances between the contributing features in the sample of interest relative to an appropriate

control.

3.1.3 Importance Ranking

When evaluating characteristics (i.e., features, or feature-values) associated with outcome predic-

tions using SHAP, an internal internal ranking is helpful to bring the most relevant characteristics

to the fore. Getting the Wasserstein distance w1 of feature importances distributions between

samples, as in the sample comparison section, is useful in determining how different the values

are from what would be expected with a representative control. An internal evaluation within the

sample that ranks the relative features contributions to the negative outcome is determined using

aggregate SHAP results.

For a fault-analysis system, this ranking would be made on the contribution in the direction

of the problematic metric (e.g., those characteristics most associated to lower performance). The
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relative contributions in the direction of the problem can be summarized and ranked for features

by Algorithm 1 as seen later in results Figure 11 and feature-values by Algorithm 2 as seen later

in results Figure 10 and Figure 12.

Algorithm 1 Feature contribution rankings

Input: Data matrix S ∈ Rn×m of SHAP results in a sample of size n with m features.

Output: Average feature-level contribution vector f

1: for j ∶= 1 to m do:

2: fj ← ∑S∗,j/n ▷ Get average SHAP contribution of feature-value bin

3: end for

4: return argsort(f) ▷ Return aggregate contributions of features to outcome

Both these algorithms provide a sorted average importance for the characteristics in the sample

at a different level of granularity. The high-level Algorithm 1 shows a feature level view that shows

the average SHAP values of any particular column of the dataset. The lower-level Algorithm

2 produces bins for k quantiles and each category instance, to provide improved visibility on the

importances of specific characteristics. Together, these rankings provide an initial order of priority,

or points of focus for the analyst reviewing the results.

SHAP estimates the contribution of a feature (i.e., Shapley value) in EX (f̂(X)), but the

expected value may be different given a new, representative baseline. Thus, adjustments to the

feature importances based on the representative baseline mean will be necessary to leverage this

difference. An external comparison between aggregate SHAP values could be made by comparing

the distribution of SHAP values for a particular characteristic in the problematic sample to the

control sample. This distribution comparison will still allow ranking and quantification with w1 of

the differences between SHAP value distributions for any characteristic.

3.1.4 Considering Model Prediction Accuracy

The Shapley values estimated with SHAP provide a relative importance for each feature giving

their contribution to a prediction made by the model. The goal of the fault analysis system

described in this Thesis is to evaluate samples subject to a fault, indicating the characteristics

most associated with problems in the sample. This sample is commonly framed or thought of as

a question such as: “Given a particular region, what explains the poor throughput observed in a

telecommunication network?”. The answer can be better characterized through the use of a model

with a representation of a wider area of the telecommunication network rather than an observation
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Algorithm 2 Feature-value binned contribution rankings

Input: Data matrix S ∈ Rn×m of SHAP values (n points with m features), data set D and

original set of features D, number of bins q (for quantile-based discretization).

Output: Average feature-value level SHAP contribution fbin

1: for d in D do:

2: if is numerical(d) then: ▷ Numerical case

3: interval1 . . . intervalq ← quantile based discretization(Dd, q)

4: for l ∶= 1 to q do:

5: s binl ←match rows(intervall, Sd) ▷ Find corresponding rows in SHAP values

6: f[d] binl ← ∑Sij∈s binl
Sij/∣s binl∣ ▷ Average SHAP by quantile interval bin

7: end for

8: else: ▷ Categorical case

9: value1 . . . valuek ← get unique values(Dd)

10: for l ∶= 1 to k do:

11: sl ←match rows(valuel, Sd) ▷ Find corresponding rows in SHAP values

12: f[d] binl ← ∑Sij∈sl Sij/∣sl∣ ▷ Average SHAP by category instance bin

13: end for

14: end if

15: end for

16: return argsort(f bin) ▷ Return average SHAP contributions of characteristic bins
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of the local region which will contain limited information.

A problem arises in that most models, particularly models of sufficiently complex real-world

data, are not perfect. As such, in making predictions there will be a difference (i.e., error) between

the model predicted value and actual value of a target for any given example. The average error

on a set of examples might be taken to represent the quality of the model in representing the

relationships between the inputs and target variable for these data.

The described fault analysis strategy uses SHAP to understand data in a sample believed to

have an underlying fault, that is unlike some other applications of SHAP which aim primarily to

understand the model. Whenever a SHAP explainer function is used to evaluate an individual case,

a SHAP value is given to represent the relative importance of each feature-value in the prediction

made by the model. Therein lies the problem; if model error is high, the contributions of particular

features to the overall degradation in a problematic sample may be misrepresented.

Thus, the importance of features as computed in Algorithm 1 and feature-values as computed

in Algorithm 2 will not reveal poor predictive performance by the model on specific examples.

As such, it could be helpful to account for systematic over-prediction or under-prediction in the

presence of specific characteristics, as systematic error for cases in the sample may lead to the over

or under representation of the importance of a specific feature. We propose providing visibility on

model prediction error through confidence bounds for the contributions of individual features.

3.1.4.1 Feature Importance Confidence Bound

To address this problem we propose establishing a feature importance confidence bound heuristic

with aim of using model prediction error as feedback to indicate confidence in the feature con-

tribution to degradation of a sample. Because there is no restriction on using the ground-truth

as part of an analysis system, the error between the ground-truth and model prediction are used

to create confidence bounds. The confidence bounds represent deviation (i.e., error) between the

model expectation when certain characteristics appear in a local sample to the actual observed

target value. How to use the error as a feedback mechanism is explored below.

Reviewing the original SHAP formulation discussed in the previous chapter:

g(z′) = φ0 +
m

∑
j=1
φjz

′
j (4)

where g is the explanation model for the prediction, (z′), where z′∈{0,1}m is a vector indicating

whether the feature is absent or present, representing the proportion of contribution by each

feature to the largest possible coalition size, which is the combination of all m features. The sum
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of marginal contributions is determined for each feature to establish showing a deviation from the

φ0 base prediction (i.e., the expected value if no feature details were known) [13]. The explainer

calculates SHAP values [φ1, φ2, . . . , φm] for one example with the property:

ŷ − φ0 = φ1 + φ2 + . . . + φm (5)

SHAP-values = [φ1, φ2, . . . , φm] (6)

where φj is the effect of each feature on the prediction of the model, ŷ is the model prediction and

φ0 is the expected value for the model.

To distribute the error between the different features evenly to create confidence bounds, the

following formula could be applied:

y + ε = ŷ (7)

y − φ0 + ε = φ1 + φ2 + . . . + φm (8)

y − φ0 = φ1 − ε + φ2 − ε + . . . + φm − ε (9)

y − φ0 = φ
′′
1 + φ2

′′
+ . . . + φ′′m (10)

confidence-bounds = [φ′′1 , φ2
′′, . . . , φ′′m] (11)

This distribution of error assumes that each feature can at most be responsible for the entire

error ε, as a worst-case error for selection φj. However, an assumption that each feature con-

tributed equally to the error seems unreasonable given: 1) a model that has learned reasonable

representations of relationships between the inputs and a predicted value and 2) SHAP indicates

how much each feature is relied on by the model for prediction and, therefore, a feature that is

not used should not be responsible for any of the error. A similar argument can be made when,

instead of making a worst-case assumption, dividing the error evenly between each features.

Using the assumption that if credit is fairly distributed, so is blame; we propose the following

heuristic. Making the assumption that SHAP credit and blame should be applied proportionally
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based on feature attribution, we incorporate local error proportionally to the feature contribution

by substituting the predictionδ with the ground truthδ in the following way:

predictionδ = δ(ŷ, φ0) (12)

ground truthδ = δ(y, φ0) (13)

ŷ − φ0 = φ1 + φ2 + . . . + φm (14)

(ŷ − φ0)/predictionδ = φ1/predictionδ + φ2/predictionδ + . . . + φm/predictionδ (15)

1 = φ′1 + φ
′
2 + . . . + φ

′
m (16)

where φ′j is the fraction of contribution each feature is responsible for in the prediction.

Applying these same fractions to the ground-truth values we obtain the following equation to

scale the original SHAP values:

ground truthδ = φ
′
1 ∗ ground truthδ + φ

′
2 ∗ ground truthδ + . . . + φ

′
m ∗ ground truthδ (17)

ground truthδ = φ
′′
1 + φ

′′
2 + . . . + φ

′′
m (18)

confidence-bounds = [φ′′1 , φ2
′′, . . . , φ′′m] (19)

where φ′′j represents the confidence bound calculated by scaling the original SHAP values φj, that

sum to the predictionδ to confidence bound values φ′′1 which sum to ground truthδ. These confidence

bounds can be extended to an entire sample using Algorithms 1 and 2.

The feedback is not sufficient to justify replacing the model importances established by SHAP,

as the model was likely formed using far more data than is available in the sample. However,

it serves to provide visibility on model error that might occur systematically in the presence of

specific characteristics. Although we ultimately cannot know whether the error represents noise

in the measurements or contributions from unknown variables, providing visibility on systematic

prediction error when certain feature are present may reinforce or instill doubt for the interpreted

importance provided by SHAP when performing analysis on a problematic sample.
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There is a serious drawback to implementing this strategy with SHAP values to a general

case: when the predicted value and ground truth value are on opposite sides of φ0, calculating

confidence bounds this will effectively inverse the sign and, therefore the relationship provided by

SHAP. This does not make any intuitive sense given a small error near the mean. However, for

the special case of fault analysis when values are consistently and often considerably below the φ0,

this strategy can still be used to provide confidence bounds for the most problematic variables.

However, any heuristic implementing this strategy must prevent these sign changes to produce a

reasonable result.

3.2 Implementation

3.2.1 Model Selection

As discussed previously, linear models stand out for their off-the-shelf interpretability making these

a simple way to identify more obvious problematic metrics in the network. However, the size of

the dataset and the presence of high cardinality categorical features can make the application

of linear models prohibitive. For instance, one-hot-encoding datasets with high cardinality to

allow the creation of a linear model is possible, but the memory and computational constraints of

transforming the data to obtain thousands of new feature columns make the use of linear models

highly impractical for high cardinality data.

Neural-networks offer state of the art prediction performance at the expense of interpretability

because of the high dimensionality of the models. Neural-networks were not used for this project

because the goal was to create a fault analysis system where interpretability is paramount. Further,

for structured data, neural-network approach may not offer much of a prediction benefit relative

to simpler models like tree-based models formed using gradient boosting.

Tree-based models formed using gradient boosting are well suited for computing large amounts

of structured data [2] and, thus, will be used for the fault analysis strategy. Using prediction

performance as a proxy for the quality of the representation, tree-based models are a good choice

to improve prediction performance relative to simpler linear models given sufficiently complex

data and a comparable choice to neural networks. In particular, a gradient boosting library called

LightGBM is highly optimized for the training of tree-based models using gradient boosting [6],

allowing parallel computation and direct support for categorical variables [3].
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3.2.2 Interpretability Strategy Selection

While their are computational considerations, SHAP distinguished itself as a clear choice among

the available interpretability strategies discussed in Chapter 2. It offers accuracy and consistency

guaranties when evaluating feature characteristics that other model interpretability strategies like

Gain, Permutation, and Saabas do not [10].

SHAP can be used in a model agnostic way, which means that implementation exists for dif-

ferent models. However, there is a computational constraint on applying this strategy to evaluate

complex models because of the combinatorial nature of Shapley value. This computational con-

straint is particularly important in a fault analysis system when the goal is to provide a analysis

relatively quickly in a space where conventional tools operate in near real time. The general ap-

proach used to compute SHAP must use approximation because the summation over all possible

feature-subsets, and generating all possible permutations in general, is NP-hard [12]. However, in

the tree-based SHAP computation introduced earlier, Lundberg et al. devised a way to compute

exact local explanations using Shapley values on tree-based models in polynomial time [9]. The

improved time-complexity when computing SHAP to interpret feature attributions in a model fur-

ther justifies the use of tree-based models over neural network models. Thus, the TreeExplainer

version of SHAP will be used for the fault analysis system to evaluate tree-based models.

3.2.3 Feature Selection

The selection of features is a particularly difficult in forming a model for fault analysis, with no one-

size-fits-all solution. Because machine learning models are produced by co-occurrence as opposed

to causal relationships, the features selected to be part of the model are critical in determining the

result produced by the analysis.

3.2.3.1 Saturation

One key consideration is that including features too highly associated with the target variable

prevents the discovery of association of other features with the target. This is because the model

will use the highly predictive feature at the exclusion of the others, saturating the signal for a single

feature. For instance, given a feature that is sufficient to predict 99% of target outcomes on its

own, the model will not put much weight on other input features because they are not necessary

for the prediction. However, assuming no simple answer in a complex information system, an

analysis that provides a variety of important features for further exploration will be more useful

to the domain expert.
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Saturation is a problem for the fault analysis system because allowing multiple input features

may provide a more nuanced description of the fault. Ideally, different inputs will be used in

different contexts, depending on the goal of the analysis. Discovering such a highly associated

feature that is used at the exclusion of other features may indicate a data leakage (i.e., the feature

is simply another descriptor of the target). Removing these features may be required to produce

a nuanced or informative story from the remaining features.

3.2.3.2 Metrics vs. Dimensions

Another challenge in establishing the fault analysis system is deciding the type of data to include

in the model. A dimension, or instance of a category, might offer a characteristic location for the

fault. While a dimension can offer a location to point to, indicating where the fault is occurring,

the actual problem can be more nuanced and only appear given conditions described by metrics.

Metrics can describe the network state for a sample, but do not offer much actionable insight when

the problem is not localized.

In a telecommunications example, perhaps there is a problem with particular equipment only

when there is a certain load on the network. Ignoring the load on the network might not allow the

model to properly account for the requirement that both characteristics appear before predicting the

outcome for an end-user of the network. In a second scenario, imagine a metric is highly predictive

of an outcome for an end-user of the network. Without an associated dimension to localize the

problem, this metric information may not provide enough useful or actionable information without

a proper analysis and further investigation. Consequently, a careful selection of the included

features is required to create an effective interpretation of the model for fault analysis. This is

explored in the following sections.

3.2.3.3 General Case for Feature Selection Choice

Understanding what the machine learning model represents is critical to effectively use the model

for fault analysis. Fundamentally, a machine learning model is a function that maps inputs to

a target outcome, learning associations based on the frequency of co-occurrence in the training

dataset. A framework for the implications for the fault analysis strategy can be seen in Figure 2.

The left hand side of the figure breaks down the input choices that comprise feature selection,

which can be metrics (i.e., key performance indicators), descriptive characteristics, and actionable

characteristics. The model in the middle of the figure represents the mapping. The right hand

side represents possible outcomes which can be a categorical outcome (i.e., classification) or a
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continuous value (i.e., regression).

Careful selection of input features for a particular outcome is important depending on the

ultimate goal of the fault analysis system. The implications of these choices are explored in the

next section. Note that correlations between input features will also have large implications in

what the model relies on for prediction and is relevant to feature selection but this is not explicitly

discussed here.

Model

Weighs the different characteristics
based on their predictive power in
estimating the a defined target or

outcome.  

Without modification, the algorithm
forming the model will not select 

inputs based on their relevance for a
telecom expert and instead selected

features based on an unbiased
association with target variable.

Consequently, selection of a correct
complement of input features prior to

model formation is critical in producing
a useful result . Given a new use-case
or dataset, this may take several trials

and tuning  

Key performance
Indicators

KPIs will be continuous value
entries that may offer insight into

the outcome, but may not be
actionable or causal on their own 

Descriptive Characteristics

Descriptive characteristics are
those that may help uncover the
problem through their description

of the systems involved if there is a
systematic link between in the

input and outcome, but may not be
actionable

Actionable Characteristics

Actionable characteristics that a
network operator has the ability to

change (e.g., reallocating
resources, changing the angle of
an antenna). These may be the
most valuable from a telecom

expert perspective  

Problem Detection for
Categorical or Thresholded

Continuous Outcomes

(e.g., dropped vs normal)

This is the simplest use case,
allowing the model to be used to

describe input feature
contributions to atypical outcomes

like faults. A thresholded
continuous outcome prior to

training a model is equivalent to
the categorical case. 

Problem Detection for
Continuous Outcomes

(e.g., download avg. throughput)

The model represents a mapping
of inputs to a continuous

distribution of possible outcomes.
The problem definition can be
made as a contrast between

normal behaviour and behaviour
defined as a fault (e.g., lowest
quintile, 4 standard deviations

from the target mean, etc). 

Selective sampling allows for
context specific analysis of faults

given a set of constraints. 

Figure 2: General description of data characteristics that may be present in a measurement system
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3.2.3.4 Feature Selection by Use Case

This section discusses some of the high-level implications of having different feature composition

from the left hand side of Figure 2.

The best fault analysis use case might be crafted through a combination of different KPIs,

descriptive and actionable characteristics. Furthermore, it is entirely possible that certain fields

will not fit neatly into these input groups already defined. The purpose of this exploration is to

consider the complexity and implications of using certain input features over others and how this

might impact the fault analysis system based on what the model is learning about the data.

Figure 3 outlines a system using all described input characteristic types. In this formulation,

key considerations might be:

• Adding too many features may reduce interpretability of the result by providing an interpre-

tation too complicated for the individual evaluating the result

• Highlighted symptoms may obfuscate possible causal contributors to the fault, as the model

will rely on feature inputs based solely on correlations with the target variable

Model Fault Analysis

Key performance
Indicators

Descriptive 
Characteristics

Actionable 
Characteristics

Analysis that includes all input types

Figure 3: A fault analysis system that uses all input types introduced for analysis

Figure 4 outlines a system that avoids performance metrics in the model, instead relying only on

the outcome as the symptom. Thus, the descriptive and actionable characteristics can be localized

and directly associated to the outcome during fault analysis. In this formulation, key properties

might be:

• Provides a focused picture of the characteristics associated with the problem that aid in

localizing the issue

• There may not be enough information in the model representation to correctly predict out-

comes and, thus, provide an insufficient analysis
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Model Fault AnalysisDescriptive 
Characteristics

Actionable 
Characteristics

Analysis without performance measurements or KPIs

Figure 4: A fault analysis system that avoids KPI metrics as potential symptoms

Figure 5 outlines a system that only includes actionable inputs, so that any feature input with

sufficient impact on the outcome will allow the analyst to take action. In this formulation, key

properties might be:

• Provides the most actionable analysis (e.g., experts can intervene if any feature is deemed

important by the model)

• May not accurately predict the outcome due to insufficient context

• Although actions may appear clear, incomplete information due to missing context features

may lead to overconfidence in a particular action which is problematic as causal relationships

are not established by this fault analysis strategy

Model Fault Analysis

Actionable 
Characteristics

Analysis for actionable insight only

Figure 5: A fault analysis system that only includes actionable inputs

Figure 6 outlines a system that only includes KPIs and actionable characteristics, to provide

a performance context within to qualify when actions are necessary. In this formulation, key

properties might be:

• Added KPIs may help qualify the actionable characteristics through interaction effects
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Model Fault Analysis

Key performance
Indicators

Actionable 
Characteristics

Analysis for qualified actionable insight

Figure 6: A fault analysis system that ignores non-actionable descriptive characteristics
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Chapter 4

Assessment

The analysis strategy discussed in this Thesis was developed through several iterations of feed-

back from Radio Access Network (RAN) telecommunications experts at EXFO to converge on a

presentation of the data that is sufficiently intuitive to allow experts to quickly determine analyze

problematic samples of structured data.

4.1 Dataset

The primary dataset consists of telecommunication Call and data Detail Records (CDRs) for LTE

radio access networks (RAN), obtained at EXFO. A CDR is a trace record produced by a passive

probe in a telecommunication operators network containing metadata of an individual call or data

transaction that took place over the network. Such CDRs are monitored and evaluated to ensure a

high quality of experience for end-users of the network, by aiding distributions of cell resources and

proper configuration of the telecommunication network [1]. For privacy, no operator or call-level

details are provided and sensitive data was removed prior to modelling.

The CDRs used were generated across peak and non-peak hours of activity on the network,

from 12:00 to 22:00, to model the impact of cell-level congestion on the quality of service for

end-users. The goal was to assess the viability of the proposed fault analysis strategy as applied

to this real-world information system in collaboration with EXFO telecommunications experts

to qualify the viability of such a solution and to aid in the partial automation of fault analysis.

Specifically, the use case discussed for this work maps characteristic inputs of CDRs to the measured

download average throughput per CDR, which is the measured download throughput for the

downlink between the antenna and the user equipment (UE).
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4.1.1 Data Preparation

4.1.1.1 Enrichment

In order to evaluate across modalities, CDRs were enriched by including cell specific information.

This enrichment adds cell level characteristics to the user-level characteristics found in CDRs to

improve localization for particular faults.

Specifically, LTE Physical Resource Block (PRB) Utilization represents the level of utilization

of a cell and can be used to measure of cell congestion. Including this information with a par-

ticular data record can help disentangle throughput performance from a user-level handset issue

to broader congestion on a particular cell. Other cell characteristics used to enrich the CDRs

include the number of Physical Cell Identity (PCI) clashes along with their severity, whether the

cell is an overshooter, and the number of other cells interfering with this particular cell. These cell

augmentations were commonly excluded from the experimental analysis for brevity, as the models

trained rarely relied on them for prediction.

4.1.1.2 Data Types

Continuous metrics were left unaltered, whereas string data representing a discrete characteristic

or dimension of the CDR (e.g., handset type, manufacturer) were treated as categorical instances

in training [?].

4.1.1.3 Cell Selection

To simplify the representation without losing much important detail, only characteristics of the

Cell at the end of the record (i.e., End Cell) were included. The Start Cell and End Cell remain

the same for most CDRs, indicating that most records take place on a single cell. To exclude

CDRs where the Start Cell and End Cell are different would offer more precise Data Enrichment,

but would exclude CDRs with handovers operations from one cell to another, which are a common

source of problems in causing Dropped calls in cellular networks. However, that use case will not

be discussed here. The Cell discussed in future sections will always be in reference to the End Cell

at the end of the CDR trace.

4.1.1.4 Data Filtering

Filtering was done to ensure that only CDRs of data transactions were included and that data

volumes are at least 1000 bytes to ensure that throughput was not bounded by the low data volume
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of the transaction. This was done to align with current practices used by the telecommunication

professionals when investigating throughput issues. The number of remaining CDRs after the

application of these filters was 15,600,403.

4.1.2 Characteristics

The download average throughput characteristic is present for all data transactions in the CDRs

and distributed as seen in Figure 7.

Figure 7: Average Download Throughput (kbps) violin (top) and bar (bottom) density plots of

dataset

The distribution of Download Average Throughput (kbps)is highly skewed, showing large dif-

ferences in mean and median results. These characteristics can be seen in Table 1. This type of

34



distribution can be modelled somewhat faithfully using tree-based models, but it does make it more

difficult to interpret mean results. Linear correlations to continuous metrics in the dataset were

measured and listed in Table 2, showing small positive correlations with Reference Signal Received

Power (RSRP), Signal-to-noise Ratio (SINR), Reference Signal Received Power (RSRP), and small

negative correlations with Cell physical resource block (PRB) Usage Ratio, Timing Advance to

Cell.

Table 1: Basic distribution statistics for Average Download Throughput

Statistic Score (kbps)

Median 3857.142

Mean 6579.526

Standard Deviation 8691.292

Kurtosis 19.091

Skew 3.535

Table 2: Correlations between continuous metrics and Average Download Throughput

Correlation (r) with Avg. Download Throughput

Reference Signal Received Quality (RSRQ) 0.102255

Signal-to-noise Ratio (SINR) 0.131026

Reference Signal Received Power (RSRP) 0.141005

Cell physical resource block (PRB) Usage Ratio -0.105429

Timing Advance to Cell -0.067372

Download total bytes 0.162478

In the interest of space, correlations for the many categorical instances in the dataset are not

shown here. However, the number of unique categories for categorical features is shown in Table

3. When the number of unique categories was sufficiently small, the possible category instances

are displayed.

35



Table 3: Dimensionality of categorical input features

Categorical field Count Unique categories

EnodeB 1730 -

Cell 13984 -

Quality of Service Class Identifier (QCI) 15 -

Carrier Frequency EARFCN 4 [124, 132,

3510, 6350]

Service Used 4 [lte,

originating-lte,

terminating-lte,

CS-fallback-provision]

Overshooter Level 4 [High, Low,

Medium, None]

Manufacturer 941 -

Handset Type 4022 -

Roamer 2 [Yes, No]
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4.2 Evaluation of Representation Strategy

4.2.1 Model Training

Model training times and performance were evaluated using three available training strategies

in the LightGBM library: Gradient Boosting Decision Trees (GBDT), Dropouts meet Multiple

Additive Regression Trees (DART) [14], and Gradient Boosting Decision Trees (GOSS)[6]. On a

brief discussion of the merits for each, GBDT is the standard approach that samples new datapoints

for training on the basis that they provide the highest gradient (i.e., error) for the decision trees

to date. DART is purported to reduce the overspecialization found in a regular GBDT approach

by introducing a form of dropout [14]. Finally, GOSS modifies the sampling strategy of GBDT

by keeping all large-error samples and taking a random sampling from the remaining training

instances with small error/low gradient.

While each gradient boosting strategy might have implications for the resulting model repre-

sentation and feature importance attributions from SHAP, our selection was based on computation

speed and model error for the dataset. Table 4 shows one such evaluation made on runtime, train-

ing accuracy, and validation accuracy for these each boosting strategy over 1,000 training iterations

and otherwise constant sampling hyperparameters across 20 CPU cores. This evaluation shows

that the default setting of GBDT was most appropriate for the task. When comparing GBDT

with GOSS, there was no difference in the prediction error but the training time was longer. This

may be the result of poor hyperparameter selection for GOSS, but this was not explored further

as it was considered tangential to the project.

Table 4: Training times and prediction error based on boosting strategy with LightGBM for dataset

Training Time (s) Mean Abs. Error

Boosting strategy Training Validation

GBDT 3516.36 3715.65 4274.62

DART 45182.25 3911.07 4279.76

GOSS 4361.08 3715.65 4274.62

GBDT (358th iteration) 1258.86 3911.18 4293.59

DART (1000th iteration) 45182.25 3911.07 4279.76

The introduction of dropout using DART as shown in Table 4 indicate some protection against
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overfitting insofar as there is a smaller difference between training and validation errors relative to

GBDT. To show this we use observations of GBDT and DART comparing the 358th and 1,000th

boosting iterations, respectively, DART does appear to be somewhat protective against model

overfitting on this basis, with a lower validation loss relative to training loss. However, the more

than 35 fold computation cost of training a model with DART make it impractical for our fault

analysis use case.

Table 5: GBDT training rounds with increasing leaves count over 1,000 boosting rounds for the

entire dataset

Leaves Time (s) Mean Abs. Error

Training SHAP Training Validation

250 1391.89 1492.24 4040.58 4327.37

500 1982.16 3600.00 3897.42 4303.37

750 2882.34 5948.42 3779.69 4283.00

1000 3465.94 8450.72 3715.65 4274.62

1250 3930.92 10575.79 3650.89 4267.00

In gradient boosting, new trees are added with each boosting round. The size of the final model

will depend on the size of each tree added and the total number of trees composing the model. While

the tree depth of individual branches is not controlled in this evaluation, Table 5 demonstrates the

computational costs of increasing the size of and, based on the reduced prediction error, improving

the representation of the model. SHAP evaluation times were calculated on 257,244 CDRs across

10 samples samples. These results demonstrate that SHAP computation scales linearly with the

number of leaves per tree (i.e., boosting rounds).

In general, it was difficult to overfit this data as demonstrated by the fact that training and

validation error continued to improve for all models (i.e., validation error did not diverge). The

difficulty in overfitting this data may have to do with the dataset size, cardinality, missing variables

and general noise in the system. Furthermore, the large influence in error for extreme cases with

high throughput may increase the learning difficulty. However, the interpretation for a sufficient

large problematic sample, ranking the learned impact of features from Shapley values should still

provide insight in the factors that consistently improved model prediction.

From a practical standpoint for analysis for fault analysis, the difficulty in overfitting the data

may justify the use of observed data in analysis. This difficult in overfitting indicates that the

model cannot memorize the training examples and, thus, that evaluating seen data with SHAP
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to provide a model based summary of importances has less of a risk of being formed spuriously.

Moreover, for this specific use case, computational constraints appear to be the bottleneck for a

fault analysis tool where continuing to improve the quality of the representation may reduce the

practical value of the approach.

4.2.2 Using Representative Baselines

Using a representative baseline is a central component of the contrasting samples idea described

in Chapter 3. For instance, when performing an analysis of a cell that appears to be problematic

in a telecommunications network selecting an appropriate representative baseline could involve

sampling CDRs from nearby cells, or other cells connected to a particular EnodeB, or cells of the

same carrier frequency, or the surrounding geographical area more generally.

For example, certain cell carrier frequency bands will have physical properties that will allow

better throughput transmission. Thus, selecting CDRs that were connected to a nearby cell of the

same frequency may be a better choice in isolating true performance differences and, therefore,

characteristics that are actually problematic. A representative control can be used to properly

evaluate the importance of features that may be relevant to general performance degradation, but

not necessarily relevant when compared to an appropriate baseline.

To evaluate the differences in the randomized baseline against a more representative baseline

where frequency was controlled, consider Table 6. In this experiment a representative baseline is

formed by randomly sampling CDRs that share the Carrier EARFCN 3510. This carrier has a

bandwidth of 5Mhz, the lowest on this network.

As expected when comparing a problematic sample to a randomized baseline, there is a con-

siderable Wassertein distance w1 between the distribution of Shapley values when compared to a

control. The metric was computed using the available SciPy package [20]. This table demonstrates

that, in selecting a control baseline, there is a considerable reduction in w1 when controlling for

Carrier Frequency. It might be expected that the Carrier characteristic itself is lower, which is the

largest distance between any of the listed feature distributions. However, this effect extends to

lowering the distance for most other characteristics, indicating that using a representative control

is worthwhile in qualifying the faults in a sample.

While controlling for Carrier EARFCN 3510 does seem to influence the distribution distances

of many features values, the effect appears to be largely independent of SINR, TA, and PRB Usage.

When performing fault analysis, a telecommunications expert with an understanding of network

interacts will be able to select appropriate control filters as part of the analysis.
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Table 6: Wasserstein distance between SHAP distribution in a problematic sample for Cell 217442-

10 and a representative baseline (CDRs with Carrier EARFCN 3510) or a randomized baseline

(CDRs from all frequencies)

Statistic Cell 217442-10 Representative Baseline Random Baseline

Mean 1935.609 3301.991 6902.786

Standard deviation 1564.512 3625.342 8973.761

Sample size 2868 10000 10000

Baseline

Feature Representative (w1) Random (w1)

Roamer 77.652 165.679

EnodeB 378.111 419.644

Reference Signal Received Quality (RSRQ) 102.119 187.344

Reference Signal Received Power (RSRP) 117.914 210.279

Signal-to-noise Ratio (SINR) 51.429 50.324

Quality of Service Class Identifier (QCI) 97.572 204.877

Carrier Frequency 255.961 897.025

Service Used 54.534 101.820

Timing Advance to Cell 320.074 337.632

Cell 181.521 380.454

Cell physical resource block (PRB) Usage Ratio 161.431 152.632

Handset Manufacturer 173.276 220.402

Handset Type 83.277 100.094

Mean 97.973 163.384

SD 111.990 214.762

Total distance 2057.430 3431.062
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Table 7 extends this investigation to samples of the 10 lowest download average throughput

cells with Carrier EARFCN 3510 in the dataset. The w1 feature distances between samples from

these problematic cells and representative or random controls are summarized in the table. Again,

the table demonstrates consistency lower mean and total w1 for the representative baseline that

controls for the frequency. This indicates that controlling for certain characteristics will produce

more representative baselines and, thus, be valuable as part of a fault analysis.

These results also suggest the model is complex enough to represent complex relationships in

the dataset, allowing it to distinguish between distinct subset characteristics in the data without

necessarily having to form model subsets separately. This point is critical for a practical implemen-

tation of a fault analysis strategy because, without it, specific questions usually posed in analysis

would have to be known a priori (i.e., before forming a model) and could not be asked by a team

of telecommunications experts while using an interactive analysis tool. While the results are not

included here, separate experiments confirmed that models formed on the subset of frequency-

specific CDRs only offered very minor improvement in throughput prediction relative to models

not restricting frequencies.

The implications for a fault analysis system are demonstrated in Table 8, which shows the

differences in w1 distances and median differences for Shapley value distributions between samples

from problematic Cell 217426-10 and controls. Again, w1 distance between the Shapley values

provides the distances between the mass of the PDFs of the compared samples distributions (i.e.

Cell 217426-10 compared to a control sample). The median difference provides a non-parametric

way of determining the direction of the distance by its sign.

Using the distribution distance w1 in Table 8, a rudimentary ranking procedure for fault analysis

becomes clear. Ranking features based on their SHAP distribution distance from controls provides

an order of relevance in association to degradation on the outcome we care about. As might be

expected, there are different feature rankings for each control. The goal in this fault analysis

is to uncover possible contributing factors to an observed problem, therefore characteristics with

positive Shapley values (i.e., expected by the model to improve throughput relative to the mean)

are ignored. Taking the top-5 feature level characteristics in order of distance from what was

expected, the random control would indicate that Carrier Frequency, EnodeB, RSRQ, RSRP, Cell

warrant further investigation for perceived contributions to poor throughput. However, using a

more representative baseline that controls for Carrier EARFCN 3510, a more appropriate story

emerges where the EnodeB, RSRQ, Cell PRB Usage Ratio, TA to Cell and Cell appear to be

the most relevant features that warrant further investigation. Incorporating this choice into a

fault analysis tool would allow experts to dynamically chose appropriate controls when evaluating

41



Table 7: Wasserstein distance between SHAP distributions for 10 lowest mean throughput cells on

Carrier EARFCN 3510 and control samples

Download Average Throughput (kbps)

Cell Sample (n) Mean SD

217426-10 1391 1267.006 1129.745

218871-9 1134 1504.011 1631.577

217058-10 1214 1562.401 1245.212

217904-10 862 1575.892 2842.743

217058-9 1278 1592.791 1286.613

217356-9 962 1609.179 2487.040

217991-10 1857 1627.012 3171.052

217170-9 749 1688.593 2122.803

218453-9 1473 1790.895 1747.628

218021-9 1131 1837.066 1421.247

Representative Control w1 Random Control w1

Cell Mean SD Total Mean SD Total

217426-10 98.215 118.403 2062.517 200.679 260.230 4214.265

218871-9 89.049 122.919 1870.033 192.216 298.296 4036.549

217058-10 116.213 160.652 2440.490 187.373 248.120 3934.848

217904-10 117.542 204.724 2468.383 224.391 378.519 4712.227

217058-9 103.828 151.288 2180.391 179.744 256.927 3774.624

217356-9 95.019 124.534 1995.419 203.072 332.545 4264.531

217991-10 101.525 133.971 2132.031 211.332 339.262 4437.988

217170-9 82.856 118.805 1739.994 185.938 296.315 3904.702

218453-9 84.823 129.972 1781.290 177.880 262.348 3735.489

218021-9 78.265 122.045 1643.572 180.678 265.255 3794.258
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samples.

The most interesting difference in the feature rankings is that the RSRP is much less problem-

atic when compared against the representative sample than a random sample, taking RSRP out

of contention as a problematic feature. This demonstrates the value of domain expertise in the

application of this fault analysis system, as RSRP is inherently tied to Carrier frequency charac-

teristics and controlling for one will impact the relevance of the other. Importantly, the model

representation included these relationships, otherwise drawing different samples would not have

produced different feature importances. Domain knowledge was required to apply the appropriate

control, however, so characteristic selection for the control would have to be a step of the analysis

system.

As part of an automated system it would be possible to flag minimum distances for further

exploration and, eventually, apply a new layer of rule-based systems to automate some of the

evaluation process. For example, given a threshold distance of w1 > 300, EnodeB, RSRQ, Cell

PRB Usage Ratio might suggest congestion on the Cell and EnodeB affecting service quality and

throughput. These results also indicate that, in general, this approach for fault analysis offers an

automation layer to learn relations in the data automatically and not an avenue for full automation.

4.2.3 Stability of Representation

One difficulty in using complex datasets is the ubiquity of correlated input features. Many statisti-

cal strategies assume independence of features prior to modelling, but this assumption is commonly

broken. Stability is a characteristic described in computational learning theory which, if present,

indicates that minor changes in the data characteristics such as the ordering used to train a model

or the subset of data chosen to represent the data, will not considerably change predictions. Thus,

models produced through a stable learning algorithm trained a on a largely similar data should be

largely the same.

When using the model for its representation instead of its prediction, the stability of represen-

tation is also important. A model produced through a gradient learning algorithm will be different

based on the order of presentation of the data, particularly when the input features are correlated.

This section will serve to validate that the learning approach used and the SHAP evaluation of

fault samples is stable. In practical terms, how consistent is the story told by models trained on

differing data? We compare representation outcomes between different models trained on subsets

of the data (i.e., folds) and the ordered presentation to the learning algorithm is different. For

each fold, stability was evaluated by comparing the SHAP representation for each model on cases
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Table 8: Wasserstein distance of SHAP distributions between Cell 217426-10 and controls as might

be used in feature ranking and selection

Representative Ctrl. Random Ctrl.

Feature w1 Dist. Median Diff. w1 Dist. Median Diff.

Roamer 77.538 13.250 166.781 44.495

EnodeB 364.749 -364.177 436.047 -392.454

Reference Signal Received Quality (RSRQ) 321.219 -301.447 407.840 -391.270

Reference Signal Received Power (RSRP) 143.903 -265.029 381.941 -539.685

Signal-to-noise Ratio (SINR) 55.123 -24.458 119.992 -67.308

Quality of Service Class Identifier (QCI) 58.045 28.712 211.230 57.059

Carrier Frequency 84.419 24.158 1116.70 -1100.733

Service Used 57.084 -29.855 152.966 -58.159

Timing Advance to Cell 187.889 -157.219 230.867 -145.295

Cell 178.584 -126.833 374.237 -223.467

Cell PRB Usage Ratio 342.614 -360.928 314.677 -345.388

Handset Manufacturer 117.434 -20.259 192.370 9.966

Handset Type 69.553 -8.948 105.381 -6.240
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in a held-out test set.

4.2.3.1 Experiment: SHAP Stability

Five models were created, using a standard k-fold cross-validation approach but keeping each of

the 5 trained models to evaluate against test data. In order to form an appropriate sample for

evaluation, samples of CDRs were drawn based on their connection to a particular EnodeB, a

hardware component in the RAN network. To make the samples pertinent for a fault analysis use

case, the selected EnodeB were chosen on the basis of association with the lowest average download

throughput CDRs and their being in the top 20% most frequently used EnodeB; these constraints

aim to assess severity and impact, respectively. By this criteria, the following 5 EnodeB were

evaluated: 217339, 217937, 218127, 218426, 227657.

The results of the first stability results are shown for a specific EnodeB 217339 in Table 9.

This table displays the average SHAP contributions per feature group as determined by the model

fold for the same 10,000 CDRs in the problematic EnodeB 217339. Because sample selection was

determined based on the worst performing EnodeB, the lower expected throughput for the EnodeB

feature is a good indicator that the model interpretability strategy is working in attributing feature

importances (i.e., we expect that this EnodeB is problematic). In taking the mean result for each

feature across the sample, as in Algorithm 1 without reordering, the estimated contribution of each

feature is consistent for each trained model.

Some variability is to be expected because each trained model has only seen 4/5
th

of the

possible data in the 5-folds. However, these results show a high stability of representation based

on the low variation between model folds with respect to the average feature contributions to the

target prediction (e.g., throughput) for each data line (e.g., CDR) and the same direction in the

importance for those values.

The CDR level analysis, shown in Table 10, compares Shapley values produced by each model

fold on a case-by-case basis for the same 10,000 unseen CDRs of EnodeB 217339. This table gives

better visibility on the variability between folds by evaluating variability per CDR. This evaluation

is important as the aggregations presented in Table 9 are using an averages of Shapley values per

feature for the entire model fold, which might hide variations between the models for individual

CDRs. This evaluation is particularly important for categorical variables as they unevenly occur

in a CDR sample (e.g., few occurrences of a particular handset).

To interpret Table 10: given an individual CDR, this table shows the mean, standard deviation

between folds, coefficient of variation (as measured by the standard deviation over the mean)

and the range (as measured by the absolute difference between the highest and lowest Shapley
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Table 9: Mean SHAP by model fold on EnodeB 217339

Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Roamer 23.59 24.24 24.62 24.11 25.22

EnodeB -801.73 -785.74 -774.84 -789.93 -772.96

Reference Signal Received Quality (RSRQ) -12.06 -11.83 -11.67 -14.97 -12.53

Reference Signal Received Power (RSRP) -62.21 -65.88 -64.47 -65.53 -65.24

Signal-to-noise Ratio (SINR) 18.89 17.77 23.71 12.74 16.71

Quality of Service Class Identifier (QCI) -88.34 -87.25 -91.76 -90.63 -93.47

Carrier Frequency 58.70 57.68 56.50 55.23 57.89

Service Used -64.52 -67.55 -63.28 -58.87 -64.47

Timing Advance to Cell -182.59 -187.25 -185.94 -185.12 -187.19

Cell 14.38 8.82 20.08 17.31 9.04

Cell physical resource block (PRB) Usage Ratio -271.13 -274.10 -274.20 -250.38 -264.71

Handset Manufacturer -97.42 -93.71 -97.78 -95.03 -98.59

Handset Type -32.49 -31.12 -30.86 -29.00 -26.23

values) across the 5 fold models for that CDR. A good indicator for the stability of representation

is the average standard deviation between folds, with a lower value representing a more stable

representation for this feature.

The variability in feature contributions range from 5.21 to 29.42. In general, the size of the SD

is proportional to the mean SHAP of any particular feature on the prediction. This proportion is

measured by the average coefficient of variation, which is the average sd/∣mean∣ SHAP per CDR

across folds. A high average coefficient of variation may indicate possible stability issues with

categorical variables such as Cell and Handset Type. This instability is possibly due to there

being fewer training examples for each of the categories and, thus, an uneven exposure based

on fold divisions. Accounting for infrequent categories may be required to ensure stability for

category variables. Another plausible explanation is that small amount of variability is inherent

to the training process. This could mean that a high coefficient of variation is an artifact of

low feature importance and constant variability between the model folds because of a baseline

instability. Further experiments will be required to rule this out.

To demonstrate stability in different samples, Table 11 extends the model fold comparison to the

5 worst EnodeB, consisting of 10,000 CDRs each and selected based on the severity and impact

factors for Download Average Throughput described previously. This demonstrates the same
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Table 10: Variability in SHAP per CDR across model folds on EnodeB 217339

Per CDR Average

Mean SD Coefficient Range

Feature b/w Folds of Variation b/w Folds

Roamer 24.35 5.21 0.04 12.94

EnodeB -785.04 29.42 0.04 72.84

Reference Signal Received Quality (RSRQ) -12.61 15.47 0.68 38.26

Reference Signal Received Power (RSRP) -64.66 16.67 0.64 41.25

Signal-to-noise Ratio (SINR) 17.96 14.29 0.80 35.48

Quality of Service Class Identifier (QCI) -90.29 12.44 0.64 30.64

Service Used -63.74 14.67 1.04 36.26

Timing Advance to Cell -185.62 20.38 0.14 50.56

Cell 13.93 23.50 2.02 57.81

Carrier Frequency 57.20 9.28 0.57 22.91

Cell PRB Usage Ratio -266.90 23.85 0.71 59.19

Handset Manufacturer -96.51 17.09 0.19 42.18

Handset Type -29.94 19.14 4.81 46.67
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stability results shown in 9 for an arbitrary selection of features (continuous and categorical),

to show stability within samples and differences between samples, as these have distinguishing

characteristics. For example, SINR for EnodeB 227657 is evaluated as problematic for each fold

model, whereas the SINR in EnodeB 218127 has a positive influence on the throughput prediction.

In most cases, the variability between the model fold characterizations, as measured by the standard

deviation, are considerably smaller than the mean characterization differences for the samples.

Thus, the stability for this strategy is sufficient to make meaningful comparisons between samples

that are not reducible to noise in the sampling or training process.

While these tests serve to ensure stability in the learned representation and interpretation with

SHAP, the ultimate goal of the fault analysis strategy is to characterize full samples. Table 11

establishes that the complement of feature values in each sample are quantitatively different based

on the weighted SHAP importances in a way that is consistently interpreted to be positive or

negative by the five different models. This consistency strengthens the idea that, given the type

and quantity of data made available for this use case, the model representation is sufficiently stable

to support an analysis framework.

Although the variability between model folds is small, this variability may be caused by the

high degree of correlation between input features as these can be used interchangeably during the

model training process. For instance, consider that Handset Type is a subset of manufacturer

and end cell is a subset of EnodeB, and, thus, are perfectly correlated. Moreover, other network

metrics included here describe qualities of the network signal that are often positively or negatively

correlated. As the input features are not independent, it is expected that the learning algorithm

will use different characteristics from data in the model formation process. However, even if such

correlations increase instability in the representation, these experiments suggest that they will not

hamper the utility of the approach for fault analysis in this dataset.

4.2.4 Analytical Exploration vs. Statistical Understanding

An insightful framing of analytical vs. statistical strategies is presented by Cassie Kozyrkov, Chief

Decision Scientist at Google [7]. In this framing, analytics offers a description of observed data,

which can provide insight and open up avenues for exploration. Once this insight is obtained,

statistics is the process used to draw conclusions about data to generalize them to data not yet

been seen. While either an analytical or statistical framing would be valuable for this project, the

primary goal for this fault analysis system is analysis; the system aims to facilitate the exploration

of faults to allow domain experts to follow up with concrete investigations. This section evaluates
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Table 11: Stability comparison across model folds for distinct samples

EnodeB Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean SD

EnodeB Mean SHAP

217339 -801.73 -785.74 -774.84 -789.93 -772.96 -785.04 11.76

217937 -1043.78 -1066.25 -1052.20 -1068.59 -1061.74 -1058.51 10.35

218127 -1304.55 -1349.48 -1353.95 -1320.52 -1321.69 -1330.04 20.97

218426 -1333.31 -1332.82 -1341.64 -1335.26 -1316.06 -1331.82 9.49

227657 -820.33 -826.36 -834.51 -831.66 -870.15 -836.60 19.52

Signal-to-noise Ratio (SINR) Mean SHAP

217339 18.89 17.77 23.71 12.74 16.71 17.96 3.96

217937 -9.31 -7.84 -10.30 -9.07 -9.68 -9.24 0.91

218127 47.63 41.67 47.87 40.48 41.79 43.89 3.56

218426 -1.48 -2.42 -1.84 -2.96 0.01 -1.74 1.13

227657 -95.18 -86.64 -83.96 -84.31 -86.32 -87.28 4.57

Timing Advance to Cell Mean SHAP

217339 -182.59 -187.25 -185.94 -185.12 -187.19 -185.62 1.92

217937 -18.82 -17.30 -18.25 -23.54 -21.03 -19.79 2.51

218127 -57.05 -56.68 -53.67 -59.60 -57.60 -56.92 2.14

218426 -23.90 -28.49 -29.21 -29.23 -31.91 -28.55 2.91

227657 -139.63 -139.50 -138.65 -130.22 -123.56 -134.31 7.18

Handset Manufacturer Mean SHAP

217339 -97.42 -93.71 -97.78 -95.03 -98.59 -96.51 2.05

217937 -84.07 -86.20 -80.63 -85.93 -84.29 -84.23 2.22

218127 -104.22 -105.92 -108.54 -106.85 -111.63 -107.43 2.82

218426 -125.14 -125.22 -128.18 -120.87 -132.39 -126.36 4.26

227657 -68.00 -71.80 -69.68 -68.97 -75.49 -70.79 2.98
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the implications for this approach.

4.2.4.1 Implications for Fault Analysis Strategy

Performing a model evaluation step on unseen data is the standard for machine learning, as the

goal is typically to create a model to perform predictions on new data. This step serves to

ensure the model has learned something fundamental about the true data distribution of the data;

that the model generalizes and does not simply memorize the observed data points. However,

because fault analysis of a sample can involve using a model to aggregate or summarize observed

data for interpretation, this validation step may not always be necessary; the model becomes a

summarization of the data it has seen rather than a representation that generalizes to unseen data.

Consequently, we have considered two possible approaches:

One approach evaluates the model against observed data while being reasonable in the con-

straining of the model size; there cannot be as many model parameters as datapoints because the

model will memorize the training data and, thus, does not summarize the data in any useful way.

As a preventative measure against overfitting, and initial model training could hold out data for

training (e.g., 20%) and be trained until validation error stops improving or diverges to establish

an appropriate number of training epochs at which to stop training the model. Once appropriate

hyperparameters that optimally reduce validation loss are selected, all available data are included

in a subsequent model on which the model interpretation algorithm is applied for analysis. This

strategy is more time consuming, as it involves the subsequent creation of two models, but en-

sures that all available data was used in the analysis while also providing a modest check against

overfitting. This strategy uses the model includes all the data that will be evaluated using SHAP.

Alternatively, a second approach is to only evaluate the model performance and interpretation

against unseen data. This approach aligns well with machine learning best practices, but other

considerations arise when taking the approach. For instance, verifying the quality of a particular

prediction prior to evaluating model feature attributions for that prediction becomes very impor-

tant when there is no guarantee that the model has had any exposure during training to such

an example. Because the model has not incorporated information from the particular cases being

evaluated, it weakens the case for the analytical discovery of specific patterns in the data that could

be meaningful, but transient. However, this approach increases our ability to draw generalizable

conclusions from the analysis.

50



4.2.4.2 Experiment: Seen vs. Unseen Data

This experiment evaluates the performance of the model in evaluating data seen and unseen by the

model. Sample selection was done by first finding the lowest median throughput EnodeB that was

also in the top 20% highest volumes with sufficient sample size and impact. These CDR samples

were thus drawn from the same problematic EnodeB used in the stability section: 217339, 217937,

218127, 218426, 227657.

CDRs are call traces which means that several CDRs can characterize a user interactions with

the telecommunications network over multiple transactions. Because we are not using sensitive

identifying information that would allow us to distinguish between individual users, a random

sample of CDRs across the dataset will likely contain CDRs by the same users and, worse, the

same transaction with the network. To mitigate the risk of drawing CDRs by the same user for

the same transaction in both the seen or unseen, the dataset was split in half, using the first half

to train the model and second half for unseen samples. Assignment to seen or unseen groups were

made at random for each EnodeB, drawing from the first or second half of the dataset, respectively.

While the throughput results are somewhat regular with large sample sizes, the high skew make

the median statistic a more appropriate measure in evaluating throughput prediction error. There

are occasional, high throughput cases that lead to very large prediction errors in the model, which

can be observed in Figures 8 and 9. As would be expected, the median line in either figure can be

found at the center of the probability mass, although a higher percentage of the errors values in

the histogram cluster toward lower error rates.

Table 12 demonstrates prediction errors in throughput when evaluating seen and unseen data

for the five selected EnodeBs. The absolute median model errors for all samples are consistently

lower for seen data, which suggests the model is better representing these cases. When instead look-

ing at the median error (i.e., not absolute median error) the median values are centered at roughly

0 for of the seen data, indicating an equal proportion of over-prediction and under-prediction.

This may indicate that prediction errors are attributable to noise and contributions from other,

unknown variables such as the service being used by the end-user. In this example for instance,

CDR selection for each EnodeB in the unseen data were made at a different time of day, which

may have changed usage patterns and the state of the telecommunications network resulting in

the differences observed for unseen data.

Another possible implication of this prediction error is that the unseen data is out of dis-

tribution, which again raises the question as to whether the aim in fault analysis system is to

describe the relationships in the observed in the data through analysis or extend conclusions to
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the network more generally. Regardless, the median prediction error has implications for the fault

analysis system because these predictions values will be fairly distributed between input features

as Shapley values. If there is a systematic over-prediction or under-prediction, this will also affect

the attributed importances of specific features. Thus, while the model behavior can be explained

through SHAP for seen or unseen data, the data is more appropriately explained by SHAP for

seen data; the fault analysis system aims to explain the data, not the model.

Table 12: Wasserstein distance between Shapley values generated on seen and unseen data

Avg. Throughput (kbps) Prediction Error

Size Median Mean SD Median Median Abs.

217339 Seen Data 10000 2801.646 4426.528 5206.050 -4.117 1173.358

Unseen Data 10000 2389.467 3521.754 3787.199 -559.602 1591.118

217937 Seen Data 10000 2324.686 3749.688 4656.388 -2.191 789.902

Unseen Data 10000 2593.403 4575.861 5866.191 85.078 1372.485

218127 Seen Data 10000 2288.000 3894.968 5210.933 0.559 1058.532

Unseen Data 10000 2083.104 3317.948 4019.789 -274.830 1341.896

218426 Seen Data 10000 1789.242 3545.208 5393.790 -0.086 532.807

Unseen Data 3048 1962.203 4130.702 6303.293 -70.976 1065.058

227657 Seen Data 10000 2223.272 3664.748 4726.869 0.456 782.570

Unseen Data 10000 2317.472 3387.768 3771.313 -345.780 1281.227

4.3 Visualization Strategies

A fault analysis system has to include both localization and qualification of the problem. Because

the described strategy aims to model and represent complex relationships in the data, presenting

the right amount of detail is key in making a useful application for fault analysis.

The SHAP visualization library is well developed, with many options. For example, there

are SHAP plot summaries that give visibility overall feature importance of a sample, feature

attributions for an individual example (i.e., force plot) and partial dependence, to name a few [11].

These graphs provide a lot of detail and include best-practices in explainability in that they show

point-cloud distributions that aid the viewer in developing an intuition for the results. However,
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Figure 8: Model error violin (top) and bar (bottom) density plots of seen data for EnodeB 217339
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Figure 9: Model error violin (top) and bar (bottom) density plots of unseen data for EnodeB

217339
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while these plots offer an appropriate amount of detail for a user who is comfortable with SHAP,

their complexity and lack of directness may make it difficult for fault analysis by those responsible

for monitoring information systems.

We developed a visualization tool that highlights the unusual characteristics found for prob-

lematic samples where faults are expected to have occurred. These visualization are based on a

severity and impact concept; where severity represents how “bad” the characteristic was when it

did occur, and impact distributes this severity based on the number of occurrences in the sample.

Severity is determined based on the SHAP aggregation Algorithms 1 and 2. Impact is a measure

used to represent the overall association of a characteristic with degradation (e.g., lower through-

put) in a sample. Impact is calculated by multiplying the severity of the characteristic by the

frequency of the occurrence in the sample.

Using severity and impact is particularly useful in bringing out the relative contributions feature

groups (e.g., an problematic categorical column) and the contributing values (e.g., a problematic

category) when a particular model was trained with categorical data. While this visualization will

not be as nuanced or complete as point clouds visualization included in the open-source SHAP

project, it may be more useful for fault analysis when the principles of machine learning and SHAP

are not an area of expertise, such as is the case for many telecommunications professionals.

The following visualizations demonstrate results for a sample from a geographical region of

interest Polygon 5. This area was selected by telecommunications professionals on the basis of it

being a problematic area of the RAN network

4.3.1 Contributions highlights

To quickly display characteristics with the highest contributions to lowering throughput for the

sample, a highlights table is displayed. The highlighted features tables shows the most impacting

feature-value pairs in the categorical case and quantile ranges in the continuous case in their order

of impact on the lowered performance for the full sample. Severity score is calculated by Algorithm

2. Multiplying the severity by the fraction of affected cases in the sample provides an impact score

used to represent the most important characteristic related to degradation for the sample.

In the example shown in Figure 10, the characteristic with the highest overall impact in lowering

expected throughput was feature EnodeB 217287. The impact score of 444.42 indicates an average

reduction in throughput of 444.42 kbps from the feature EnodeB 217287. The fraction column

indicates that 52% of the CDRs in the sample are on EnodeB 217287. Finally, the severity score

indicates the average SHAP calculated for the characteristic (using Algorithm 2). Thus, according
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to the model, EnodeB 217287 accounted for an average degradation of 854.65 kbps when it was a

characteristic of the CDR in this sample.

The highlight table concept can also include sample level statistics related to each characteristic

which may be unique to the information systems domain. For example, later iterations of this

highlights table included the number of affected subscribers with this characteristic and uniformity

of the CDRs these users accounted for. This additional information can aid in an assessment of

the results by helping domain experts draw conclusions with information they do not want to

explicitly include in the model representation.

Figure 10: Highlighted characteristics in order of contribution impact for Polygon 5

4.3.2 Contributions Flow-diagrams

Flow diagrams are used to represent the contributions of features and specific feature value bins

to the degradation in a problematic sample. The intention of these diagrams was to provide a

visual aid to rank the contributions, making it easier to evaluate relative importances for follow-up

investigation. The impact score described in the previous contribution highlights section is used

to represent the size of the diagram nodes. The nodes colored in blue represent dimensions (i.e.,

categorical values) and orange to represent metrics (i.e., continuous values) as the telecommunica-

tion experts indicated this will facilitate analysis for them. Because of our focus on fault analysis,

only those features with sufficiently negative associations to throughput in the sample are included

in the visualization, which is governed by an importance threshold (e.g., average SHAP feature

contribution ¡ -100 kbps).

In the flow-diagram shown in Figure 11, a Sankey Flow Diagram [4] is used to show the

proportion of each feature contribution to the throughput reduction of 30.18% in the Polygon 5

area. The size of each node is represented by the impact score. The severity used to determine

impact in this case is the SHAP value computed in Algorithm 1.
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Figure 11: Features contributions visualization for Polygon 5

The flow-diagram shown in Figure 12 is an extended feature view with the contributions of

feature value bins in the selected region Polygon 5. While the characteristics are largely the same

as the feature view, a top-k selection of highest impact categorical instances in the sample are

shown for each problematic dimension (e.g., manufacturer) and the problematic 5-quantiles ranges

as determined by q-cut binning are selected for each problematic metric. The impact score are

determined by calculating SHAP severity by Algorithm 2. 5-quantiles were chosen for continuous

metrics because this was the quantile range typically by telecommunication experts to perform

manual analysis, but this can be modified to suit the domain.

4.3.3 Confidence Bounding

Figure 13 shows an application of the scaled error heuristic introduced in Chapter 3 to create

confidence bounds on the results of Polygon 5. The figure shows a histogram with ordered presen-

tation of the impact of features-value in addition to the proposed confidence bounding heuristic.

A higher impact for a characteristic had a lower SHAP value and is interpreted as reducing the

expected throughput.

The confidence bounds provide visibility on whether the model was over-predicting or under-

predicting in the presence of the particular characteristic. In Figure 13, these bounds are displayed
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Figure 12: Features and feature-value set contributions visualization for Polygon 5
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Figure 13: Feature impact with confidence bounds based on scaled prediction error for Polygon 5
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as error bars, but are an entirely different concept than traditional error bars. The intuition in

interpreting these bars is the following:

• Predictions for CDRs with the characteristic end cell id enodeb: 217968.0 were systemati-

cally higher than they should have been (i.e., CDRs with that characteristic were worse than

the model expected them to be)

• Predictions for CDRs with the characteristic detailed service id: terminating-LTE-data-call

were systematically lower than they should have been (i.e., CDRs with that characteristic

were better than the model expected them to be)

• Predictions for CDRs with end cell frequency: 6350.0 were neither systematically higher nor

lower, or there was no prediction error; this case is most likely to be attributable to noise

and is the best outcome for the model

Another useful addition to this heuristic might be to include the variability of the bounding values.

While these are currently one-sided as they represent the average calculate bound, it could be

useful to know how high the error was even if the model was not systematically over-predicting or

under-predicting.

Although the confidence bounding heuristic is not well grounded theoretically, this style of

feedback may be helpful in preventing experts from drawing incorrect conclusions when the model

has a poor representation of local samples with specific characteristics.

4.4 Validation on Known Relationships

A qualitative assessment of the results on this dataset demonstrated that the model does capture

known relationships between the input values and throughput. Often, the telecommunications

experts collaborating with us on this project had intuitions about which values represented poor

quality metrics based on repeated exposures to these concepts in their work. In general, the

observed relationships in different problematic samples provided some insight into characterizing

what had gone wrong.

Critically, although these relationship between metrics and Download Average Throughput

have been confirmed by domain experts, they were learned from the data and did not require any

injection of domain knowledge. It is our belief that verifying these learned relationship with domain

experts will be necessary to validate any new system. Nevertheless, having a system that learns
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and quantify relationships from the data without intervention will greatly improve our ability to

perform analysis of faults in complex systems.

The following examples demonstrate the learned relationships between continuous feature val-

ues and download average throughput in the dataset. This following graphs were produced from the

standard SHAP visualization library. The Shapley values displayed were estimated for a randomly

drawn sample of CDRs in the dataset:

Figure 14 shows an exponential relationship between Download Average Throughput and RSRQ

(i.e., the Shapley value). The direction of this relationship is intuitive in that we expected signal

quality would be directly correlated with throughput for a downlink connection. However, the

quantified attribution to a specific amount of throughput for a particular metric value would

be difficult without this fault analysis approach using SHAP. This dependence plot shows an

exponential increase in the expected throughput when moving from a low (i.e., -20) to high (i.e.,

-2.5) RSRQ. Further, the variability in Shapley values for different CDRs of the same RSRQ

indicate that changing contexts will increase or decrease the impact of RSRQ on throughput.

Figure 14: Reference Signal Received Quality (RSRQ) dependence plot
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Figure 15 shows a linear relationship between Average Download Throughput given the spe-

cific value of SINR. This dependence plot shows a linear increase in expected contribution to

throughput when moving from a low (i.e., -5) to high (i.e., 20) SINR. Again, this relationship is

intuitive as a higher signal relative to the noise should indicate an improved downlink connection.

When considering interactions with the metric Reference Signal Received Quality (RSRQ) which

is displayed using a color gradient, the figure shows that higher values of RSRQ at the extremes

of SINR will lead the model to rely more heavily on SINR to determine outcomes in throughput.

Figure 15: Signal-to-noise Ratio (SINR) dependence plot

While only two examples are shared here, many others were verified and confirmed to reasonable

representations by the telecommunications experts assisting on this project. Overall, the results

confirmed that the model could accurately represent and quantify known relationships between

metrics in the system to throughput. By training a model over a larger area (e.g., CDRs of an

operator for an entire city) we gain a representation of the expected performance for features across

that area. While metrics like RSRP, RSRQ, SINR, TA will be available for any RAN network and

telecommunications experts will have an understanding of how such metrics influence performance
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of the network, learning directly from the CDRs in a specific network area allows the model to

capture insights specific to the network of interest; some networks will be better or worse than

others based solely on how modern their equipment is so having a model representation of the

specific network will allow for improvement of problematic areas to improve performance. Put

another way, what consists of a network problem may depend on the telecommunications operator

and their budget.
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Chapter 5

Conclusions and Future Work

This chapter includes conclusions drawn from the experiments and future work.

5.1 Conclusions

While a performance improvement by complex models such as gradient boosted tree over linear

models was expected, the robust interpretability of these model thanks to the SHAP libraries was

not. The creators of SHAP, most notably Scott Lundberg [10, 11, 9] created a theoretic robust

interpretability strategy through by unifying Shapley Values with local model explanations. We

incorporate this work into the fault analysis strategy proposed and tested in this Thesis.

5.1.1 Strategy

The strategy proposed involves first forming a representation of the data with a learning model. In

this work, tabular data is represented using a tree-based model formed using gradient boosting. The

learned model then encapsulates relationships and interactions between a set of inputs (e.g., CDR

characteristics) and a target variable outcome (e.g., average throughput). Unlike linear correlations

and expert rule based approaches traditionally used in certain industries like telecommunications,

this model captures complex interactions by forming a non-linear mapping to connect inputs to

target variable. Once the representation is formed, the proposed fault analysis strategy involves

interpreting the model to gauge the relative importance of features or feature-value bins on negative

outcomes in an isolated problem context.

The specific approach used to interpret the model is using SHapley Additive Explanations

(SHAP) [10]. SHAP extends the computation of game-theoretic Shapley values to provide an
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additive explanation of feature in a machine learning, fairly assigning feature contributions to

model predictions.

Following the formation of a learned model, the fault analysis strategy uses SHAP to explain

problematic samples. Thought of another way, an expert might ask a specific questions about

the data such as “What explains low throughput in a particular region of the telecommunications

network?” or “What explains dropped calls on a particular cell?”. The analysis system then serves

to answer the question when provided with a problematic sample that has been filtered for the

appropriate constraints.

5.1.2 Assessment

Different experiments were conducted to evaluate the proposed fault analysis strategy. The ex-

periments were performed on problematic samples drawn from a telecommunication network RAN

4G-LTE dataset. This dataset is composed of Call and Data Records (CDRs) transactions between

users and the network, and a model is trained to learn how input features in the CDRs relate to

average download throughput. SHAP was then used for model interpretation to provide relative

feature importances to uncover how they relate to network degradation (i.e., low download average

throughput).

From an implementation standpoint, gradient boosting with LightGBM was used for the dataset

in this study, which was approximately 15M CDRs with high cardinality that included categorical

variables. In particular, the standard GBDT implementation of LightGBM was used as it offered

the best training times and representation, as measured by prediction error. The Tree SHAP

implementation was used to improve training times, although empirical training times or differences

in interpretation for alternate SHAP computation approaches were not yet explored.

The value of using a representative baseline as a control instead of a random baseline was vali-

dated for feature comparisons. This is relevant because training machine learning models requires

a lot of computation, which can be impractical when performing analysis. In the experiment,

problematic samples of CDRs were chosen on the basis of low average download throughput on

the telecommunication network Cell. Two control samples were formed either by drawing from

CDRs with the same cell Carrier EARFCN or a random sample. SHAP values were computed for

all samples and Wasserstein w1 distances between features in the problematic and control feature

distribution were calculated. The results show large distances between SHAP distributions for

most features when controlling for the Carrier EARFCN, which is explained by its limited band-

width. Importantly for a fault analysis system, applying this control allowed for a new ranking of
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feature importances; controlling for Carrier better prioritized feature relevance and abnormalities

in the problematic sample.

Stability of the learning model and interpretation were also demonstrated. By forming 5

separate models in a typical k-fold validation setup, the stability of interpretation was tested

against fixed samples of CDRs on problematic EnodeBs. Models were trained with different

subsets containing 4/5
th

of the training data and a different training order. The experiments

demonstrated good stability of interpretation between model folds. Consistently, we observed

only small variations of feature attributions between model fold. Categorical inputs with too

few instances might warrant further investigation, however, as too few training examples having

a specific characteristic will likely lead to instability for their representation. While a certain

amount of variability was expected based on having different samples, the variability observed

between model folds is minor compared to the clear differences between problematic samples.

Thus, the fault analysis strategy is sufficiently stable to produce consistent results and detect

differences between problematic samples.

Another experiment explored the implications of using the strategy for analytics instead of

drawing statistical conclusions. The goal was to consider the implications for analysis when eval-

uating data the model has already seen vs unseen data. As this large, high-cardinality dataset

proves difficult to overfit with a gradient boosted model, we explored the implications of using the

learned model with interpretation to summarize the data it has seen before. In an experiment,

we found that the median prediction error (i.e., the median over-prediction and under-prediction)

are centered at 0 when evaluating seen data. This suggests that the model is fitting the data it

has seen as much as possible given some constraint on the number of available parameters for the

model. However, SHAP values distribute the relative contributions of features to the prediction,

so having a systematic over-prediction or under-prediction may offer an incorrect uneven feature

attribution. Thus, for the purposes of analytics where the goal is to evaluate the data and not the

model, an argument can be made for applying the fault analysis to seen data.

Finally, in displaying the results we explored different visualization strategies. To facilitate

analysis by domain experts, the flow-diagrams were used to quickly qualify differences in relative

importances of features. This view can be expanded to showcase the impact of binned charac-

teristics, quantiles for continuous metrics and categorical instances for dimensions of the data,

so provide more precise visibility on the degradation observed in a sample. With one heuristic,

we display what we call confidence bounds to provide visibility on the amount and direction of

model error associated to predictions of a certain characteristics in the problematic sample. While

there is not a good theoretical justification for how this approach was taken yet, the heuristic
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provides a useful feedback when predictions associated with certain problematic features are being

systematically misrepresented in a local sample. In general, review by telecommunications experts

suggest that the strategy was effective as an analytics tool. Further, it was confirmed that known

relationships were correctly captured by the model and explained using SHAP.

5.1.3 General Conclusions

There are many advantages to this strategy for fault analysis relative to conventional approaches.

For instance, given a particular feature that occurs in a high proportion of problematic cases, it

cannot be concluded that the feature is problematic as it may occur in an even higher proportion

of normal cases. This is the fatal flaw of any strategy that only analyzes a small set of observations

in a problematic sample while attempting to draw conclusions. With a large model trained on

millions of normal and problematic cases, however, the model forms a more comprehensive repre-

sentation of the dataset, determining how inputs relate to outcomes. The aim of this fault analysis

strategy is, thus, to explain problematic samples by drawing from this general understanding of

the dataset rather than local performance characteristics. This idea extends to the use of rep-

resentative baselines with SHAP and distributions comparisons, which can be used to compare

how problematic features are when compared to an appropriate baseline. Comparing samples

and ranking the relative contributions of features provides a comprehensive way to perform fault

analysis.

5.2 Limitation and Future Work

5.2.1 Application of Causality Approaches

An important next steps for this work would be to improve the ability to make causal claims

as part of the analysis. Fault analysis in the telecommunication domain are commonly referred

to as Root Cause Analysis, but this terminology was avoided as an acknowledgement that the

model used in the strategy described in this Thesis can at most present features associations with

problematic outcomes without providing any causal information. At this phase of the project,

domain experts are relied upon to explore the results of the fault analysis system as they understand

the interrelations of input features and are in a better position to infer possible causes based on

correlational results.

The inclusion of causal graphs and modern causal analysis approaches will be essential to

encapsulate expert knowledge for the relationships found between features in the dataset. This
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use of causal graphs could ensure the discovery of reasonable outcomes and provide much better

estimation of what is driving faults in problematic samples.

The application of counterfactual strategies as part of the system might also be a good next

step to allow causal claims. In a traditional telecommunication setting, domain experts decide

which configuration parameters to change when attempting to improve network performance. The

decision is largely based on expertise and observations on the state of the network. In a complex

system, however, a model representation of the data may be sufficient to predict the consequences

of specific changes to the data if causal relationships are taken into account. Validating through

counterfactual analysis and through guided interventions as experiments will be critical in extend-

ing the utility of the fault analysis system.

5.2.2 Testing with Predetermined Data Relationships

A machine learning model is formed by correlations and, consequently, relationships in the model

may have been formed by so called “spurious connections” due to chance circumstances in the

data. With enough data these spurious connections can dissipate, but there is no guarantee.

Thus, in additional to using causality based approaches, using simulated data with predetermined

and quantifiable relationships would aid in the process of detecting failure modes and revealing

the ability of the fault analysis system to indicate and quantify problems for real-world data.

A recurring challenge in validation with telecommunications experts is that there is often no

thorough or well-defined process when evaluating complex systems. Instead, data is often system-

atically filtered and reduced in dimension until only linear relationships are being investigated.

Extending the experiments with simulated data will allow us to quantify whether, and how well,

the fault analysis strategy will determine predetermined relationships in the data. The relation-

ships are difficult to quantify, which is one of the primary motivations for the use of a machine

learning model to learn relationships automatically.

5.2.3 Conditional Expectation

To further validate the approach, one next step will be to investigate whether differences between

the conditional expectation used in TreeSAHP relative to the traditional marginal expectation

version of SHAP poses a problem for the fault analysis system [19, 5]. The TreeSHAP algorithm

is used for its practical implications in explaining many examples for a sample in a reasonable

amount of time. Investigating these limitations will be helpful in bounding the possible use cases

for fault analysis.
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