
Aerodynamic Optimization Using High-fidelity Computational

Fluid Dynamics

Hamidreza Karbasian

A thesis

In the Department

of

Mechanical, Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Mechanical Engineering) at

Concordia University

Montréal, Québec, Canada

August 2021

© Hamidreza Karbasian, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Hamidreza Karbasian

Entitled: Aerodynamic Optimization Using High-fidelity Compu-

tational Fluid Dynamics

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Arash Mohammadi Chair

Dr. Charles Audet External Examiner

Dr. Biao Li Examiner

Dr. Marius Paraschivoiu Examiner

Dr. Carole El Ayoubi Examiner

Dr. Brian Vermeire Supervisor

Approved
Dr. Ivan Contreras,

Graduate Program Director

08/24/2021

Dr. Mourad Debbabi,

Gina Cody School of Engineering and Computer Science

Abstract

Aerodynamic Optimization Using High-fidelity Computational Fluid

Dynamics

Hamidreza Karbasian, Ph.D.

Concordia University, 2021

In this study, we demonstrate the ability to perform large-scale PDE-constrained

optimizations using Large Eddy Simulation (LES). We first outline the challenges as-

sociated with performing gradient-based optimization using LES, specifically chaotic

divergence of the sensitivity functions. We then demonstrate that shape optimization

using LES and Mesh Adaptive Direct Search Method (MADS) is feasible for aero-

dynamic design. Next, we introduce a Dynamic Polynomial Approximation (DPA)

procedure, which allows the high-order solution polynomial representation used by

the flow solver to be increased, or decreased, depending on the poll size being used

by MADS. This allows rapid convergence towards the optimal design space using

lower-fidelity simulations, followed by an automatic transition to higher-fidelity sim-

ulations when close to the optimal design point. Additionally, this study proposes

a new physics-constrained data-driven approach for sensitivity analysis and uncer-

tainty quantification of large-scale chaotic dynamical systems. Unlike conventional

sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity

function (i.e., tangent) for PDE-constrained optimizations. In this new approach,

high-dimensional governing equations from physical space are transformed into an

unphysical space (i.e., Hilbert space) to develop a closure model in the form of a

Reduced-Order Model (ROM). Afterward, a new data sampling approach is pro-

posed to build a data-driven approach for this framework. To compute sensitivities,

Least-Squares Shadowing (LSS) minimization is applied to the ROM. It is shown

that the proposed approach can capture sensitivities for large-scale chaotic dynami-

cal systems, where Finite Difference (FD) approximations fail. Therefore, we expect

that implementing the proposed optimization approach can be applied to large-scale

chaotic problems, such as turbulent flows, and this approach significantly reduces

computational cost and data storage requirements.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Brian Vermeire, for his

support, help and guidance throughout this research study. He showed me the way

and continuously encouraged me to proceed with this project. Moreover, he is a role

model for his students, and I am honoured to be his student.

Also, I would like to acknowledge our laboratory fellows. I should thank my friends

Siavash, Ramin, Mohsen, Jie, and other friends who helped me with technical stuff

and notable hints throughout this research study. A special salute belongs to Carlos

for his support and dedication.

I would love to thank Dr. Javad Abolfazli Esfahani for his continuous support

in each chapter of my life. His dedication has always been with me, and I am still

leveraging many valuable things from his guidance. Moreover, it was my pleasure to

meet Dr. Mahdi Bahadori, who showed me how to love all creatures. He showed me

how a person could fly in the soar of happiness.

I want to acknowledge the financial support from the National Science and Engi-

neering Research Council of Canada (NSERC) as well as school of graduate study at

Concordia University for awarding fellowships.

Last but not least, I sincerely would like to thank my supportive wife, Zahra,

whose endless love, patience, encouragement inspired me to complete this academic

milestone. I should also remark on the littlest supportive, Nina, whose existence

pushed me never to stop in this journey and do my best for a better future.

iv

I could not reach the source of light, and your true love raised me up!

To the best father, Mahdi, who illuminates the universe,

To my lovely wife Zahra,

& To my daughter Nina

iv

Contents

List of Figures ix

List of Tables xiv

1 Introduction 1

1.1 Overview . 1

1.2 Literature Review . 3

1.3 Motivation . 6

1.4 Objectives & Scope of Thesis . 11

1.5 Thesis Layout . 12

2 Chaotic Dynamical Systems 14

2.1 Dynamical System . 14

2.2 Ergodicity & Lyapunov Exponents 17

2.3 Governing Equations . 19

2.3.1 Discrete Representation of Dynamical Systems 19

2.3.2 Navier-Stokes Equations . 20

2.3.3 Spatial Discretization of the Navier-Stokes Equations 21

3 Gradient-Free Optimization 24

3.1 Overview . 24

3.2 Strategies Toward Gradient-Free Optimization 25

3.2.1 Solver Setup . 25

3.2.2 Mesh Adaptive Direct Search (MADS) Method 26

3.2.3 Time-Averaging Sensitivity 28

3.2.4 Dynamic Polynomial Approximation (DPA) 29

v

3.2.5 Multi-Level Parallelism . 30

3.3 Optimization Results . 31

3.3.1 The Lorenz System . 31

3.3.2 Application of MADS to the Lorenz System 31

3.3.3 Low Reynolds Number Flow: Re=10,000 32

3.3.4 Turbulent Flow: Re = 6× 104 41

3.4 Remarks . 44

4 Sensitivity Analysis of Chaotic Systems 46

4.1 Overview . 46

4.2 Partial Derivatives . 48

4.3 Least Squares Shadowing (LSS) . 50

4.4 Lagrange Multiplier . 51

4.5 Long-Term Sensitivity of the Objective Function 54

5 Dimensionality Reduction & Closure Models 56

5.1 Overview . 56

5.1.1 The Weak Form of the Full-Order Model (FOM) 57

5.1.2 Dimensionality Reduction . 58

5.2 Galerkin Projection . 60

5.3 Least Squares Petrov-Galerkin Projection 61

5.4 LSPG vs. Galerkin Projection . 63

5.5 Gauss-Newton Method . 64

6 Gradient-Based Optimization 66

6.1 Overview . 66

6.2 Gradient-Based Optimization for PDE 68

6.2.1 Optimization Using the Forward Sensitivity Function 68

6.2.2 Optimization Using the Backward Sensitivity Function 70

6.2.3 Steady-State Optimization . 71

6.3 Sensitivity Analysis Using Closure Models 73

6.3.1 Sensitivity of Invariants . 73

6.3.2 Descrete Form of Sensitivity Equation 74

vi

7 Physics-Constrained Reduced-Order Models 79

7.1 Reduced-Order Models . 79

7.2 Training Strategies . 80

7.3 Physics-Constrained Data-Driven Approach 84

7.3.1 Architecture . 84

7.3.2 Preparing a Closure Model for the Dynamics of the System . . 85

7.3.3 Building Manifolds for the Sensitivity Function 86

7.3.4 Hyper-Reduction . 89

7.3.5 Shaping the Trial Subspaces 90

8 Computational Platform 92

8.1 Overview . 92

8.2 Discrete Forward Minimization Problem 93

8.3 Platform Steps . 95

8.3.1 Input . 95

8.3.2 Simulation . 95

8.3.3 POD Function . 95

8.3.4 Data Sampling . 96

8.3.5 ROM . 96

8.3.6 Derivatives . 96

9 Sensitivity Analysis 98

9.1 Overview . 98

9.2 Computational Setup . 98

9.3 Test Case 1: Non-Chaotic Flow Past a Circular Cylinder 99

9.4 Test Case 2: Chaotic Flow Past a 2D NACA 0012 at Re = 2400 . . . 102

9.5 Test Case 3: Chaotic Flow Past a 3D NACA 0020 at Re = 2× 104 . . 107

9.6 Importance of Hyper-Reduction . 111

9.7 Remarks . 113

10 PDE-Constrained Optimization 116

10.1 Optimization of Stationary Airfoil . 116

10.1.1 Computational Setup . 118

10.1.2 Shape Optimization of a NACA0012 at αeff = 8◦ 120

10.1.3 Shape Optimization of a NACA0012 at αeff = 25◦ 122

vii

10.2 Optimization of Flapping Wing . 134

10.2.1 Kinematics & Aerodynamic Characteristics 135

10.2.2 Shape Optimization of a 2D Flapping Wing 137

10.2.3 Kinematics Optimization of a 3D Flapping Wing 145

10.3 Remarks . 148

11 Conclusions 150

11.1 Final Notes . 150

11.2 Future Work . 151

Appendix A Lyapunov Solver 154

Appendix B Developing Continuous Form of the Forward Tangent

Equation 155

Appendix C Singular Value Decomposition 158

Appendix D Data Collection From Steady-State Functions 159

Appendix E Data Collection From Unsteady Functions 160

Appendix F Trial Basis Function & ROB 162

Appendix G Sensitivity Analysis 163

Appendix H Sensitivity Analysis Using the Backward Sensitivity Func-

tion 164

H.1 Derivations . 164

H.2 Data Collection . 167

H.3 Discrete Backward Minimization Problem 168

viii

List of Figures

1 History of aircraft technologies - past and future. 2

2 Different scale-resolving simulations using LES. 5

3 High-fidelity and low-fidelity simulations for analysis and design. . . . 7

4 Different examples of PDE-constrained optimization done by RANS. . 8

5 Contours of sensitivity of x−momentun with respect to Re at the be-

ginning and end of sensitivity analysis. 9

6 Different approaches for convex and non-convex optimization. 10

7 Schematic of geometric objects describing different dynamical systems. 16

8 Schematic of Koopman’s theory. Here N is a non-linear space with

complicated structures, and L is a linear space, where there is an exact

solution for the dynamical evolution of the generalized coordinates. K
represents the Koopman operator, which works as a linear projection

function. 17

9 Explanation of covariant Lyapunov vectors and LEs. 18

10 Schematic of the search and poll steps used by MADS. 28

11 Different strategies for DPA. 30

12 Optimization of the Lorenz system using MADS. 32

13 Computational domain and mesh for the SD7003 airfoil at Re = 104. 33

14 Contours of vorticity magnitude for the SD7003 verification case at

Re = 104 with ps = 1, 2, 3 and 4 at α = 4◦. 34

15 Instantaneous aerodynamic loads (CL and CD) and their sensitivity

with respect to the evaluation time (∂CL

∂t
and ∂CD

∂t
) for the SD7003 case

at Re = 104 with: (a) α = 0◦, (b) α = 7◦, and (c) α = 14◦. 35

16 Progress of the objective function using MADS for optimization of the

SD7003 at Re = 104. 36

ix

17 Optimal airfoil shapes for the SD7003 at Re = 104. Colours correspond

to each optimization represented in Figure 16. 37

18 Contours of vorticity magnitude for the initial SD7003 at Re = 104

and α = 0◦, and the optimized airfoils with: (a) ps = 1, (b) ps = 2,

and (c) ps = 3. 38

19 Optimization of the SD7003 at Re = 104 with standard DPA: (a)

progress of the objective function and (b) trajectories in the design

space. 39

20 Optimization of the SD7003 at Re = 104 with binary DPA: (a) progress

of the objective function and (b) trajectories in the design space. . . . 40

21 Contours of vorticity magnitude for the SD7003 at Re = 104 using

binary DPA. 41

22 Computational domain and mesh for the SD7003 airfoil at Re = 6× 104. 42

23 Optimization results for the SD7003 at Re = 6×104 with binary DPA,

including the objective function versus optimization iterations (a), and

trial points in the design space (b). 43

24 Pressure coefficient distribution for the initial and final SD7003 designs

at Re = 6× 104 and α = 6.07◦. 44

25 Isosurfaces of Q-criterion for the optimized SD7003 airfoil at Re = 6×104. 45

26 Schematic of shadow and reference trajectories. 47

27 Optimization of the shape of an arbitrary object with subject to a

Hamiltonian system in physical space P versus optimization of dy-

namics with subject to a surrogate model in Hilbert space H 67

28 Evaluating different strategies for data sampling in design space. . . . 82

29 Comparing the performance of Strategies 2 and 3 during the optimiza-

tion procedure. 83

30 Schematic of the platform designed for sensitivity analysis. 85

31 Flow-chart describing the proposed platform for sensitivity analysis. . 92

32 Poincare map and aerodynamic loads for a periodic (non-chaotic) flow

past a circular cylinder at Re = 150. 101

33 Time-history of the first five leading LEs at Re = 150. 101

34 Sensitivity analysis for flow past a circular cylinder. 102

35 Poincare map for chaotic flow at Re = 2400 and αeff = 20◦. 103

x

36 Time-history of the first ten leading LEs at Re = 2400 and αeff = 20◦. 104

37 Aerodynamic loads and Fast Fourier Transform (FFT) results at Re =

2400 and α = 20◦. 105

38 Sensitivity analysis of the aerodynamic loads with respect to αeff near

stall and post-stall regions for chaotic flow at Re = 2400. 106

39 Contours of velocity magnitude, sensitivity solution obtained via a con-

ventional approach, and the sensitivity solution computed using the

proposed approach. Note: SA is the abreviation of sensitivity analysis. 107

40 The first fifty leading LEs at αeff = 20◦. 108

41 Instantaneous results of the sensitivity solutions obtained by the present

approach at αeff = 20◦. 109

42 Instantaneous sensitivity of the aerodynamic loads with respect to a

perturbation in the effective angle of attack at αeff = 20◦. 110

43 Time-averaged sensitivity of the aerodynamic loads with respect to

different angles of attack, where the flow is fully separated. 111

44 Q-criterion superimposed by the velocity magnitude (left), and corre-

sponding momentum sensitivity magnitude (right) at αeff = 20◦. . . . 112

45 RMSE computed for each element of Ψ̃>Ψ̃ ∈ Rr×r. 114

46 Geometrical definition of the airfoil using control and fixed points. . . 119

47 Comparison of present numerical simulations with the data from liter-

ature [42, 52, 77, 81]. 119

48 Optimization progress in the shape optimization of the airfoil at Re =

1000 and αeff = 8◦. 121

49 The geometry of the airfoil and the time-averaged pressure coefficient

along the airfoil surface. 122

50 Velocity contours with superimposed streamlines for Re = 1000 and

αeff = 8◦; (a) reference, and (b) optimized airfoils. 123

51 Optimization progress in the shape optimization of the airfoil at Re =

1000 and αeff = 25◦. 123

52 Instantaneous lift and drag coefficients for both reference and opti-

mized cases. 124

xi

53 The geometry of the airfoil and the time-averaged pressure coefficient

(red) along the airfoil surface. The shaded area also displays the vari-

ations of the pressure coefficient over time. 125

54 Flow structures around the reference airfoil. 126

55 Flow structures around the optimized airfoil. 127

56 Time variation of the total strength of core vortices (i.e., LEV, and

TEV) over 15t∗ for both reference and optimized cases. 128

57 Instantaneous gradients of the drag coefficient (geometrical, state, and

total sensitivities) with respect to the control points. 129

58 The primary modes of the solutions of the sensitivity for both reference

and optimized cases. 130

59 Variation of frequency for different modes in the reference and opti-

mized cases. 131

60 Correlations between modes: reference (blue) and optimized (red) cases.132

61 Correlations of modes coloured by sensitivity magnitude for the refer-

ence case. 134

62 Correlations of modes coloured by sensitivity magnitude for the opti-

mized case. 135

63 Smart bird manufactured by FESTO. 136

64 Kinematics of a moving wing in cartesian coordinates. 136

65 Comparing velocity contours for different solution polynomial degrees

at the instant t/T ∗ = 0.25. 138

66 NACA 0012 coordinates defined by control points. 139

67 Progressive results of optimization for different test cases. 140

68 Comparing the shape of the baseline and optimized designs. 142

69 Vorticity contours at different instants: “C1” (upper), and “C2” (lower).143

70 Vorticity contours at different instants: “C3” (upper), and “C4” (lower).

144

71 Instantaneous lift and thrust coefficients for both baseline and opti-

mized designs. 145

xii

72 Optimization results for a flapping wing: The baseline design, which

has only pure plunging motion, is optimized over ten design cycle, yeild-

ing a combination of plunging and pitching motions with an optimum

pitching angle. 147

73 Vorticity contours for the baseline and optimized designs. 148

xiii

List of Tables

1 Comparison of the results from different orders of accuracy with the

results from Uranga et al. [134] . 34

2 Poll size parameters for standard and binary DPA. 39

3 Average computational cost of optimization using different polynomial

degrees for the SD7003 airfoil at Re = 104. 41

4 Comparison of computational cost for optimization using standard and

binary DPA for the SD7003 at Re = 104. 42

5 Verification data for the SD7003 at Re = 6× 104 and α = 8◦. 43

6 Comparison of the current results with forces in other literature. . . . 100

7 Comparing the present results at Re = 2400 with those in [45]. 103

8 Comparing the aerodynamic results of a 3D NACA 0020 blade at Re =

2× 104 with those in [117, 135]. 108

9 Hyper-reduction considered for the test case 3 at αeff = 20◦. 113

10 Comparing the current results with those in Ref. [91]. 137

11 Test cases for optimization of a flapping wing at y0 = c, ka = 1.41, and

θs = 90◦. 138

12 Comparing the propulsive performance of the flapping wing for the

baseline and optimized designs. 141

13 Comparing the time-averaged thrust and power coefficients for the

present simulations with those in Ref. [3]. 146

xiv

List of Symbols

The following list describes symbols used later within the body of this thesis:

Q́v Matrix of generalized coordinates for unsteady sensitivity solution

Q́w Matrix of generalized coordinates for unsteady adjoint

X́adj unsteady adjoint dataset

X́sens unsteady sensitivity dataset

´́̃
Φv Reduced-order basis for unsteady sensitivity solution

´́̃
Φw Reduced-order basis for unsteady adjoint solution

ḿp Total number of spamles for unsteady sensitivity solutions.

ŕsens Rank of ROB for unsteady sensitivity

αeff Effective angle of attack (AOA).

αlss Weighting factor of time dilation

β Weighting factor

χ Computaitonal space

χ′ Referential computational space

∆t Discrete time-step

∆m Mesh size parameter

xv

∆p Poll size parameter

δv Kronecker delta

`(ξ) Nodal basis functions

η Time dilation

γ Ratio of specific heat

Γ+ Counter clock-wise Vortex

Γ− Clock-wise Vortex

λ̂ Lagrange multiplier of adjoint solution

R̂ Vector of residual in ROM (backward solution)

r̂ Residual of the backward sensitivity function

ˆ̃Ψ Test basis function for adjont equation

Λ Lagrange multiplier

λ Largrange multiplier in Hilbert space

F Actual function in Hilbert space

Np′ Set of time intervals for unsteady sensitivity solutions in building phase.

Np Set of time intervals for steady-state sensitivity solutions in building phase.

Nq Set of time intervals in shaping phase.

Ns Set of time intervals in hyper-reduction phase.

P Mapping function

T Time domain

Φ Trial basis function

Φ′ Fine-scale trial basis function

xvi

Ψ Test basis function

Ψ′ Fine-scale test basis function

Θv Linear operator in shaping phase (forward solution)

Θw Linear operator in shaping phase (backward solution)

B Primary matrix of KKT system

C Secondary matrix of KKT system

D Vector of KKT system

E Time dilation of the generalized coordinates

F flux in ROM

I Identity matrix

J Objective function

K Koopman operator

L Lagrange function

M Mesh points in design space

P Trial points in design space

Qu Matrix of generalized coordinates for state

Qv Matrix of generalized coordinates for steady-state sensitivity solution

Qw Matrix of generalized coordinates for steady-state adjoint solution

R Vector of residual in ROM (forward solution)

S Set of design parameter

W Weighting function in Petrov-Galerkin approach

X Kinematics of a wing section

xvii

C Covariant Lyapunov Exponent

E Eigenvalue

L Lyapunov Exponent (LE)

D Design space

H Hilbert space

L Linear space

N Non-linear space

P Physical space

µ Kinematic viscosity

µd Dynamic viscosity (µ/ρ)

∇.H Hamiltonian dynamical system

−V Volume

ν Normalized vector in MADS

Ω Source term

u Vector of reference state

v ss Vector of reference steady-state sensitivity solution

vus Vector of reference unsteady sensitivity solution

v Vector of reference sensitivity solution

w ss Vector of reference steady-state adjoint solution

wus Vector of reference unsteady adjoint solution

CL,rms Root-Mean-Square of Lift coefficient

CL,target Desired Lift coefficient in optimization

xviii

φ Vector of trial basis function

φx Vector of trial basis function for x−momentum

ψ Vector of test basis function

ρ Density

ρ∞ Free-stream density

τ Time transformation

τv Viscous stress tensor

f flux

f s Perturbed flux

f
′

c Corrected Riemann flux

f i Inviscid Navier-Stokes flux

f
′δm
i Elementwise polynomial representation of the flux

f
′

l Riemann flux of the left-hand side of the element

f
′

r Riemann flux of the right-hand side of the element

f v Viscous Navier-Stokes flux

h Vector of sensitivity solution of generalized coordinates.

h ′ Fine-scale sensitivity function of generalized coordinates

q Generalized coordinates

q ′ Fine-scale generalized coordinates

r Residual vector

r gn Cost function in Gauss-Newton method

u Vector of state

xix

u ′ Vector of fine-scale state

us Vector of perturbed state

u
′δm
i Elementwise polynomial representation of the solution

v Sensitivity solution

w Vector of adjoint solution

A Weighting matrix

C Constraint function

Cbound Bound constraint function

Cgeom. Geometrical constraint function

D Matrix of directions in design space

H House-holder matrix

K Weighting matrix

U Matrix of states

Vss Matrix of steady-state sensitivity solutions

Vus Matrix of unsteady sensitivity solutions

Wss Matrix of steady-state adjoint solutions

Wus Matrix of unsteady adjoint solutions

Xadj Steady-state adjoint dataset

Xsens Steady-state sensitivity dataset

Xstate State dataset

x(t) Steamwise motion

xcp Center of pressure

xx

y(t) Plunging motion

y0 Plunging amplitude

z(t) Spanwise motion

θ(t) Pitching motion

θ0 Pithing amplitude

θcorr scaling factor of a manifold

θm Mean pitching angle

θs Shift angle between the plunging and pitching motions

˜́
Φu Reduced-order basis for state

˜́
Φv Reduced-order basis for steady-state sensitivity solution

˜́
Φw Reduced-order basis for steady-state adjoint solution

Φ̃ Coarse-scale trial basis function

Ψ̃ Coarse-scale test basis function

ã Coarse-scale adjoint solution in Hilbert space

ã Generalized coordinates of the adjoint solution

ã c Corrected adjoint solution of the generalized coordinates

h̃ Coarse-scale sensitivity function of generalized coordinates

h̃ c Corrected sensitivity of the generalized coordinates

q̃ Coarse-scale generalized coordinates

ũ Vector of coarse-scale state

ξ Index of time intervals

ξ Nodal basis point

xxi

ξi,p Set of nodal basis point

ξ
(n)
p′ Index of time interval in Np′

ξ
(n)
p Index of time interval in Np

ξ
(n)
q Index of time interval in Nq

ξ
(n)
s Index of time interval in Ns

ζ Weighting factor

Bl Lower limits of bounds

Bu Upper limits of bounds

c Chord length

Cp Pressure coefficient

cp Specific heat at constant pressure

cv Specific heat at constant volume

CL Lift coefficient

Cn Normal force coefficient

CP Power coefficient

Ct Tangential force coefficient

dτ Time transformation step

dt Time interval

e Total energy

Ep Propulsive efficiency

fs Frequency

fa Flapping frequency

xxii

FD Drag

FL Lift

Fn Normal force

FT Thrust

Ft Tangential force

h Component of vector of sensitivity solution

k Number of steps in time integrator

ka Reduced frequency

lc Characteristic length

mq Number of samples in shaping phase

M∞ Free-stream Mach number

msamp Number of sample intervals

mk Total number of Ts

mp Total number of steady-state samples

mu Total number of time step

n+ list of indices at which LEs are positive

n0 list of indices at which LEs are zero

nD Number of direction defined in design space

nd Number of design sets

ne Number of elements in domain

ns Nuumber of design parameters

nu Dimension of state

xxiii

ndp Total number of design sets

nl Number of leading LEs

nw Total number of the objective functions

p Pressure

p∞ Ambient pressure

ps Polynomial degree

Pr Prandtl number

qv Heat flux

r Rank

rh Truncation rank for hyper-reduction

rsens Rank of ROB for steady-state sensitivity solution

rstate Rank of ROB for state

Re Reynolds number

s Design parameter

St Strouhal number

t Time

t∗ Convective time

Ts Time interval for calculation of LEs

ui Velocity component

u∞ Free-streem velocity

xi Space direction

xi,p Set of nodal solution point

xxiv

Chapter 1

Introduction

1.1 Overview

The aerospace industry can be considered as one of the highest-impact fields in his-

tory, significantly changing human behaviour over the last century. Air transportation

has paved the way for easier and faster travel worldwide. With the advent of pow-

erful computational tools in the fields of control systems, avionics, and conceptual

aircraft design, we see continuous improvements in air transportation every year. As

we reflect on the history of aircraft design over time, aircraft topology has changed

significantly. These changes arise as modifications to the fuselage, wings, stabilizers,

and related systems. For instance, engineers design aircraft wings that produce higher

lift, reduced drag, and to perform more efficiently at high-speeds. Moreover, the fuse-

lage is designed to reduce drag, or in next-generation designs, to produce additional

lift. Figure 1a shows a classical aircraft, the Bleriot XI, built in 1909 and restored

in 2006 to fly in the Wanaka International Airshow in Lake Wanaka, New Zealand 1.

Figure 1b shows a next-generation commercial aircraft proposed by NASA in 2012 2.

Notable changes between these two aircraft imply a continuous optimization process

performed by engineers over the past century to improve aircraft performance. To

accelerate this process, advanced optimization tools are now required to develop the

next-generation of more efficient aircraft.

By 2030 there will be an estimated global demand for approximately 27,000 new

commercial aircraft [127]. These aircraft must comply with current and forthcoming

1Wanaka International Airshow - http://www.warbirdsoverwanaka.com
2Greener aircraft - https://www.nasa.gov/topics/aeronautics/

1

(a) Classical aircraft (b) Future aircraft

Figure 1: History of aircraft technologies - past and future.

emission regulations, which require a 20 − 25% reduction in fuel consumption [127].

Hence, aerodynamic optimization of next-generation cleaner aircraft remains a sig-

nificant challenge in the aerospace community [128]. This is because aerodynamic

optimization is particularly difficult due to non-linear coupling between the design

parameters, such as the aircraft shape, and objective functions, such as lift and drag

coefficients. In general terms, aerodynamic optimization involves finding the optimal

set of design parameters that minimize the chosen objective function. Hence, aerody-

namic optimization applies to a wide range of applications because of the general na-

ture of the problem and the range of different aircraft operating requirements. Choos-

ing a suitable optimization strategy is dependent on the behaviour of the objective

function with respect to these design parameters [151]. Furthermore, optimization

strategies should efficiently utilize available computational resources to minimize the

computational cost of the optimization process [138]. It is worth mentioning that op-

timization with multiple objective functions, or multiple design parameters, is known

as multi-objective or multi-disciplinary optimization, respectively. Often, for aero-

dynamics applications, multi-disciplinary optimization is of interest [101, 129, 142].

Additionally, time-averaged objective functions are used in unsteady flow problems,

where mean quantities such as lift and drag coefficients, are of interest. Optimization

is usually an iterative process. The design parameters are updated at each step based

on the constraints and information from previously obtained objective functions. It

is important to note that optimization strategies do not generally guarantee reaching

the global optimum, as they may also stagnate at local optima [51, 112, 123, 130].

The derivative of an objective function is zero at local optima for unconstrained

optimizations. However, there are exceptions to this statement when constraints are

2

applied. Therefore, finding derivatives of the objective function with respect to each

design parameter can be used to identify locations of these local optima in the design

space, but we should always check the derivatives during the optimization method to

ensure the existence of any exceptions. In engineering design, sensitivity analysis has

been widely used to improve designs or understand to developing better control sys-

tems. Sensitivity analysis finds the derivative of the objective function, as an output

of the system, with respect to perturbed inputs. Conventional sensitivity analysis,

such as the adjoint method, is widely used for steady-state problems [127]. However, it

breaks down when applied to time-averaged quantities in chaotic systems, due to the

chaotic dependence of turbulent flows on initial conditions (commonly referred to as

the Butterfly Effect) [18]. Hence, computing these sensitivities becomes challenging.

This is because small perturbations to the initial flow field result in chaotic divergence

of the instantaneous flow, and introduces noise in the objective function under finite

time-averaging. Several methods have been proposed to overcome this problem [139].

However, each approach has several shortcomings, such as expensive computational

costs, and the unreliability of the computed results with high uncertainties.

1.2 Literature Review

Optimization arises in a wide range of applications from engineering design [15, 116,

121] to control systems [78, 85]. Increasing computational power has recently enabled

the application of optimization techniques for industrial scale problems. These prob-

lems are usually governed by large non-linear Partial Differential Equations (PDEs)

with suitable initial and boundary conditions, which are often referred to as Full-

Order Models (FOMs). These FOMs arise in computational mechanics applications,

such as Computational Fluid Dynamics (CFD) [94, 98, 105]. In practice, these FOMs

act as a constraint during optimization, referred to as PDE-constrained optimiza-

tion. This type of optimization can be prohibitively expensive, since it requires one

or more high-fidelity FOM solutions per design iteration [144, 149]. Solving mul-

tiple large-scale FOMs using high-fidelity solvers in the context of CFD, such as

Large-Eddy Simulation (LES) and Direct Numerical Simulation (DNS), can be pro-

hibitively expensive [86]. Therefore, the majority of optimizations are performed

using lower-fidelity models, such as the Reynolds-Averaged Navier-Stokes (RANS)

3

approach.

In aerodynamic design, optimization can be categorized into two distinct methods,

gradient-based and gradient-free optimization. Gradient-based optimization requires

the sensitivity of the objective function with respect to the design parameters. Given

this, the optimizer is then guided towards a superior design using this sensitivity

via gradient-based techniques [35, 68, 107]. Gradient-based optimization using the

adjoint is widely used in aerospace design, since it has a relatively low computa-

tional cost when handling a large number of design parameters [84, 87, 143]. Piron-

neau [111] applied the adjoint technique in fluid dynamics and showed that the cost

of computing sensitivities is independent of the total number of design parameters.

Therefore, the adjoint is well suited for shape design optimization with a large number

of design parameters. Gradient-free optimization is a relatively robust and flexible

design strategy. It increases the likelihood of finding a globally optimal solution

[48, 83, 84]. Gradient-free methods are often more suitable for noisy objective func-

tions, since they do not require sensitivities. However, the main drawback of these

methods is that they are relatively expensive when the number of design parame-

ters is large. Example algorithms for gradient-free optimization include the Genetic

Algorithm (GA) [51, 123, 126] and Particle Swarm Optimization (PSO) approaches

[113, 140, 150]. These population-based algorithms exploit evolutionary principles to

move towards a more optimal design [126]. They can handle non-linear, non-convex

and non-continuous problems [56]. However, studies have shown that while the GA

can quickly determine the region of optimal designs, it is then slow to find the true

optimal point [151]. In PSO, an improper population distribution can lead to poor

performance and a possible failure to find the optimal design [53]. Furthermore, these

methods require a large number of simulations per design iteration.

From a fluid dynamics perspective, resolving the entire turbulent energy cascade

is computationally expensive. This approach, called Direct Numerical Simulation

(DNS), is primarily used for some scientific applications. In contrast, the Reynolds

Averaged Navier-Stokes (RANS) approach solves for a statistical time-averaged flow,

and models all the turbulent length and time scales. RANS is computationally faster,

but has limited accuracy due to its reliance on approximate turbulence models. Sit-

uated between DNS and RANS, Large-Eddy Simulation (LES) is an approach that

resolves large-scale turbulent length scales, and models the smallest dissipative scales.

4

Figure 2 shows several scale-resolving simulations performed using LES. LES is a

promising approach for engineering applications since it provides accurate results,

but is computationally less expensive than DNS [16]. Hence, LES could become an

essential tool for aerospace CFD, most notably for flows around aircraft, wings, or

within jet engines. RANS solvers often fail to simulate relevant flow physics associ-

ated with these geometries. This is because flow and boundary layer features, such as

transition and separation points, are strongly affected by chaotic non-linear interac-

tions. Therefore, in many engineering designs, such as PDE-constrained optimization,

RANS struggles with inaccuracy of relevant flow physics. This inaccuracy brings high

uncertainty, leading to poor design. Therefore, scale-resolving simulations play an es-

sential role in engineering design and optimization, since they provide more accurate

flow physics for designs. However, there is, as yet, no suitable framework for efficient

and reliable optimization using LES.

Flow simulations using high-fidelity solvers (i.e., LES)

https://www.nasa.gov/

Figure 2: Different scale-resolving simulations using LES.

To alleviate the prohibitive cost of PDE-constrained optimization using FOMs,

5

such as LES, a wide range of studies have developed surrogate modelling techniques

[80, 88, 89]. Surrogate models of non-linear PDEs are usually referred to as Re-

duced Order Models (ROMs) [26, 60, 104]. Dimensionality reduction using ROMs

has become an attractive approach, and employed successfully in optimal control

[14, 76], optimization [121, 148], and sensitivity analysis [27, 148, 149]. Optimization

combined with surrogate models introduces a new approach called ROM-constrained

optimization. Generally speaking, ROMs can be embedded within machine learn-

ing frameworks [23, 119, 132], and are based on a projection of FOMs from physical

space into a lower-dimensional model space (i.e., Hilbert space, Eigenspace, Banach

space, etc.) and vice versa [119, 132, 133]. This projection typically employs trial ba-

sis functions. These trial basis functions typically use matrix representations, which

define the Reduced-Order Basis (ROB). For example, the ROB can be the eigen-

vectors or bases of a dataset obtained via Proper Orthogonal Decomposition (POD).

ROMs leveraging machine learning features are usually constructed by collecting data

initially obtained from FOMs [24, 25, 93]. After dimensionality reduction, other ma-

chine learning techniques can be applied to develop new models that can predict

the behaviour of the dynamical system. Depending on the system’s complexity, or

non-linearity, hidden layers can be used to build deep learning algorithms.

1.3 Motivation

Figure 3 is provided to illustrate the current state of aerodynamic optimization.

RANS, Unsteady RANS (URANS), and potential flow solvers are low-fidelity and

well-established for analysis with manually predefined geometry and boundary con-

ditions. These can be coupled with forward/backward sensitivity functions for design

and optimization purposes. Higher-fidelity simulations, such as DNS, LES, and De-

tached Eddy Simulation (DES), are now becoming more prevalent, due to algorithmic

improvements and advances in computing power.

However, sensitivity functions obtained using LES or DNS are unconditionally

unstable due to chaotic divergence. Therefore, optimization using high-fidelity CFD

simulations is currently impossible. Therefore, aerospace design and existing opti-

mization techniques are currently limited to low-fidelity CFD. Figure 4 displays exam-

ple of aerodynamic designs performed using PDE-constrained optimization. RANS

6

� �

Computational
Tools

Analysis Design
Single simulation with

predefined geometry and
boundary conditions

Multiple simulations with a
large number of design

parameters

Low Fidelity

High Fidelity

RANS, URANS
Potential flow

DNS, LES, DES

Trivial Challenging

Challenging Currently impossibleCurrently impossible

Flow Solvers

Figure 3: High-fidelity and low-fidelity simulations for analysis and design.

approach is required to stabilize the sensitivity functions of these large-scale opti-

mizations. To clarify how a non-linear problem leads to divergence of the sensitivity

function, Figure 5 is provided for the flow past a circular cylinder at the Reynolds

number of 150. Sensitivity of the state vector with respect to the Reynolds number

is provided. Figure 5a shows the instantaneous sensitivity of the x−momentun with

respect to the Reynolds number at the beginning of the analysis. Figure 5b shows

the moment instability errors propagate through the domain, due to divergence.

In optimization, chaotic dynamical systems usually yield noisy design spaces for

a short period evaluation of the objective function, and these noises contaminate the

sensitivities. Optimization in this design space could be convex or non-convex, with

a certain level of noise. Figure 6 shows different approaches for optimization includ-

ing benefits and limitations. Red boxes show the contribution of this work, and all

acronyms will be defined later in the following chapters. Popular approaches for op-

timization are divided into two distinct categories. The first category is gradient-free

methods, for which sensitivities are not required during the optimization procedure.

These methods are computationally inexpensive when the number of design parame-

ters is small. Genetic Algorithms (GA) [36, 145] and Heuristic Search methods, such

as General Pattern Search (GPS) [22] and Mesh Adaptive Direct Search (MADS)

7

Optimizations using steady-state solvers (i.e., RANS)

https://mdolab.engin.umich.edu/

Figure 4: Different examples of PDE-constrained optimization done by RANS.

[4, 6, 86], are popular gradient-free optimization algorithms. MADS is a promis-

ing gradient-free optimization strategy. In each design cycle, it only requires the

magnitude of the objective functions, not sensitivities, obtained with multiple design

parameters [6]. However, unlike the adjoint method, when the number of design

parameters is large, it becomes expensive since the required simulations in each de-

sign cycle increase. Therefore, applying gradient-free optimization for high-fidelity

problems is limited to a relatively small number of design parameters.

In gradient-based methods, conventional optimization methods accompanied by

sensitivity analysis (SA) commonly fail due to chaos. From a theoretical standpoint,

the shadowing lemma describes the existence of a trajectory for an augmented dy-

namical system that stays uniformly close to the real trajectory of the unaugmented

dynamical system [72]. By leveraging the shadowing lemma, Least Squares Shadow-

ing (LSS) was recently proposed [18, 139], and enables computation of sensitivities for

8

(a) Beginning of analysis (b) End of analysis

Figure 5: Contours of sensitivity of x−momentun with respect to Re at the beginning
and end of sensitivity analysis.

high-fidelity chaotic systems. However, LSS for large-scale PDEs is prohibitively ex-

pensive with available computing hardware [17]. The computational costs for LSS are

approximately 104 ∼ 105 times more than those of the primal PDE solvers (i.e., DNS

or LES) [20]. Recent formulations of LSS were developed to reduce computational

costs. In Multiple Shooting Shadowing (MSS) [19], the number of solutions required

in the discrete time domain is reduced, resulting in compacted linear systems. It was

observed that MSS has lower memory usage and computational requirements than

conventional LSS [19]. Although notable improvements were observed with MSS, it is

still not applicable for large-scale PDEs. The Non-Intrusive Least Squares Shadowing

(NILSS) approach [99] is another formulation for LSS, reducing computational costs

by applying a minimization problem to unstable modes that exist in chaotic dynami-

cal systems. In this method, the number of unstable modes in the dynamical system is

determined via several high-fidelity simulations of primal PDEs with different initial

conditions. In chaotic systems, the number of unstable modes may be large, which

increases the computational cost of NILSS. For instance, sensitivity analysis using

NILSS was considered for flow past a 3D circular cylinder at the Reynolds number

of 525 [100]. In this example, the computational domain had 3.7 × 105 hexahedra

elements. For sensitivity analysis, 40 primal CFD simulations were carried out to

determine the number of unstable modes in the problem. Therefore, this sensitivity

approach is also not an efficient tool for high-fidelity design.

Generally speaking, the shadowing lemma enables sensitivity analysis for chaotic

dynamical systems, but has prohibitive computational cost. Previous research fo-

cused on reducing memory requirements and computational cost. The similarity of

9

Gradient-based methodsGradient-free methods

Conventional LSS ROB

LSS
Pros: Exact sensitivities.

Cons: Computationally expensive.
 Needs huge data storage.

Cons: Highly unstable.
 Usually crashes.

Pros: Near exact sensitivities.
 Computationally inexpensive.
 Lower memory usage.
 Compatible with high-order PDEs.

Cons: Needs experience.

ROM

Evolutional
Algorithms

Pattern Search
Heuristic Search

Pros: Easy to implement.
 Used for global optimization.
 Works for unsteady problems.

Cons: Needs many FOMs.
 Converges slowly.

Genetic
Algorithm

GPS
MADS

Convex and non-convex optimization

Optimization

MADS

Pros: Easy to implement.
 Used for global optimization.
 Works for unsteady problems.
 Lower computational costs.
 Faster convergence.
 Compatible with high-order PDEs.

Cons: Still needs many FOMs.

DPA

CPU-GPU

Figure 6: Different approaches for convex and non-convex optimization.

these attempts with model-reduction techniques is that both of them reduce the size

of linear systems of equations. Therefore, dimensionality reduction could be an asset

to solve LSS problems, which is the main concept of the second part of this study.

Many classical ROMs are linear-based models developed by Galerkin projection. In

these approaches, modal bases, corresponding to dominant and energetic structures in

a dynamical system, are sorted in low-dimensional subspaces, and placed in a united

matrix, called the trial basis function. With the help of this trial basis function, the

FOM can be projected into low-dimensional subspaces [132]. While Galerkin pro-

jection has been employed successfully in many engineering problems, it often fails

for non-linear systems due to the presence of unstable modes [30, 133]. This lack

of stability results from the fact that fine-scale structures in non-linear dynamical

systems play a significant role in the evolutionary behaviour of the dynamical system

over long periods [133]. Closure models, such as the Least Squares Petrov-Galerkin

(LSPG) [29, 30] and Adjoint Petrov-Galerkin (APG) [108], have shown particular

promise for developing non-linear ROMs. In addition to dimensionality reduction,

several approaches have been developed based on machine learning algorithms to

model turbulent flows. Deep neural networks associated with trial basis functions

10

are able to develop accurate ROMs for complex flows at high Reynolds numbers [82].

Although machine learning has been successfully applied to scientific and engineering

problems, it has not yet been used for sensitivity analysis and design. Conventional

machine learning algorithms are used as black-box tools with large training datasets

[24, 25, 93]. Their resulting ROMs cannot produce interpretable gradients (i.e., Ja-

cobian). Furthermore, these models often yield non-physical results in off-design

conditions [2, 44, 57], and are not suitable for sensitivity analysis or uncertainty

quantifications.

1.4 Objectives & Scope of Thesis

In this thesis, we present several novel concepts to overcome the failure of high-

fidelity sensitivity analysis and optimization. Using new mathematical frameworks,

we propose several algorithms to obtain the sensitivities efficiently with high-fidelity

CFD, while avoiding their divergence.

For convex and non-convex optimizations, we consider both gradient-free and

gradient-based approaches. In the gradient-free approach, this study explores the

utility of MADS for high-fidelity aerodynamic optimization. To the author’s knowl-

edge, there have not yet been any optimization studies done using high-fidelity flow

simulations, such as LES and DNS. Since gradient-free optimization usually requires a

large number of CFD simulations, we devised a set of numerical algorithms to reduce

computational cost with this framework. To this end, the MADS executes optimiza-

tion tasks on CPU cores in parallel, while each task launches its CFD simulations

on GPU clusters. Furthermore, a method is proposed to find a proper time-domain

(time-averaging window) to reduce noise in the design space within a specified thresh-

old.

In the case of gradient-based approaches, we focus on sensitivity analysis, which

is the primary challenge of this type of optimization. We propose a novel approach

to compute time-averaged sensitivities of large-scale chaotic dynamical systems. We

transform sensitivity functions from physical space into a lower-dimensional space

(i.e., Hilbert space), and solve them using constraints that serve as optimality condi-

tions. To this end, we develop a closure model in the form of a ROM using the weak

form of the Navier-Stokes equations. This closure model is tied to the optimality

11

condition, and the residual of the ROM is minimized by searching optimal directions

in subspaces. Furthermore, a novel physics-informed machine learning framework is

developed to shape these manifolds in Hilbert space. This framework provides new

algorithms for training the closure model, and computing sensitivities in the form

of a boundary-value problem. This strategy can be achieved by applying LSS to

the sensitivity functions in Hilbert space. The proposed approach has been devel-

oped within an in-house scientific software package, named OPtimization Toolkit for

Highly NOn-linear Systems (OPTHiNOS).

1.5 Thesis Layout

This work is divided into eleven chapters, as follows

• Chapter 1 consists of the introduction, objectives, motivation of this work, and

a brief literature review.

• Chapter 2 includes principal mathematical theories regarding chaotic dynamical

systems. Also, different numerical schemes for spatial and temporal discretiza-

tions of the governing equations are discussed.

• Chapter 3 investigates the application of gradient-free optimization for non-

convex problems, including novel strategies to reduce optimization costs for

large-scale turbulent flows.

• Chapter 4 discusses sensitivity analysis in the presence of chaos. From a math-

ematical standpoint, the shadowing lemma is explained and applied to the gen-

eral form of a chaotic dynamical system.

• Chapter 5 introduces methods to develop surrogate models using dimensionality

reduction. It describes how to derive the weak form of high-dimensional PDEs,

and convert them into lower-dimensional ODEs. It also covers the application

of Galerkin and Petrov-Galerkin projection for reduced-order modelling.

• Chapter 6 describes gradient-based optimization for large-scale problems, with

a new perspective for large-scale optimization. Sensitivity analysis using di-

mensionality reduction is also included and applied to complicated engineering

problems.

12

• Chapter 7 includes the development of a physics-based machine learning frame-

work to build surrogate models. Different strategies for data sampling are de-

scribed, and steps are provided to devise feed-forward auto-encoders.

• Chapter 8 describes platforms, structures, and algorithms taken into account

for sensitivity analysis. Each algorithmic step is described in detail, and opti-

mization in the presence of constraints is discussed.

• Chapter 9 consists of numerical examples of sensitivity analysis. In this chap-

ter, the proposed approaches are employed for different optimization problems,

including non-chaotic and chaotic cases.

• Chapter 10 includes the application of PDE-constrained optimization to large-

scale non-linear problems. This chapter tackles several case studies previously

impossible due to failure of conventional sensitivity frameworks.

• Chapter 11 contains a summary, conclusions, and recommendations for future

work.

13

Chapter 2

Chaotic Dynamical Systems

2.1 Dynamical System

A dynamical system is defined as a physical phenomenon that evolves with time.

Any dynamical system consists of two things: (1) a set of states reflecting features or

variables in a system that evolves with time, and (2) a set of rules for this evolution.

Prominent examples of dynamical systems can be described in the form of differential

equations in physical space P, such that the dimensions of P are equal to the number

of variables in the system (i.e., dimension of the state vector).

An arbitrary high-dimensional dynamical system, in the form of a Full-Order

Model (FOM), is considered. The evolutional behaviour of this FOM can be described

by a system of PDEs, with known initial and boundary conditions, such that the

evolution of attractors occurs in a smooth time domain T. Consider a FOM of

dimension nu that evolves with time t ∈ T with the initial value of u0 ∈ Rnu at t = 0.

This FOM can be represented as a set of primal PDEs

∂u

∂t
+∇.f (u ,∇u ,S) = 0, u(0) = u0, t ∈ T, (1)

where, u : T→ Rnu is the state vector with dimension of nu, and ∇.f denotes diver-

gence of the flux f : Rnu → Rnu with u 7→ f (u). Moreover, S = [s1, s2, . . . , sns]
> ⊂ D

is a set of design parameters in the design space D ∈ Rns×ns , where ns is the number

of design parameters. Here x> denotes transpose of variable x. Additionally, the

dynamical behaviour of the primal PDE evolves over T, such that ∇.f : u × T→ u .

A Hamiltonian system is a mathematical formalism describing the evolution of

a dynamical system in P. When the dynamical system lies in a non-linear space,

14

N , the initial-value problem for this dynamical system can not be solved analytically.

The advantage of a Hamiltonian system is that it transforms the non-linear dynamical

system from P into a non-dimensional space, referred to as Hilbert space H . This

transformation provides some practical insights into the evolutionary behaviour of

underlying physical modes. From a mathematical viewpoint, dynamical modes can

be described geometrically. Some of these geometric objects are shown in Figure 7,

and described as follows

• Fixed point: If a dynamical system is steady-state, it has a unique solution,

shown by a fixed point for each state in phase space (i.e., Hilbert space H).

• Limit cycle: When the system is quasi-steady, and the solution converges to

a repetitive pattern over an infinite time domain, t ∈ T → ∞. Regardless

of the initial condition, resulting states create a cyclic pattern in phase space,

indicating these states vary periodically.

• Attractor: The states for a non-linear system converge to a regime in phase

space, where trajectories evolve around a dense orbit. This dense orbit attracts

these states to itself when t ∈ T → ∞. Since none of the trajectories for any

specified period in phase space are the same, the attractor can typically be

shown as a surface or volume for 2D and 3D problems. Regardless of the initial

condition, any trajectory in phase space is attracted by the same attractor over

infinite time. When the dynamical system is chaotic, the attractor is called a

strange attractor. An example of strange attractor is a butterfly-shaped set in

the Lorenz system.

These geometric objects are helpful to recognize different types of dynamical systems,

and when these systems have less complexity and lower-dimensionality. Additionally,

in certain circumstances, a fixed point in a dynamical system turns into two differ-

ent stable/unstable modes, where each mode exhibits notably different behaviours,

referred to as bifurcation.

Dynamical systems can be evaluated more efficiently by considering a set of observ-

ables evolving with time. These observables are measurements from the state vector

in physical space P. Let us discuss an example: consider a 2D channel in which flow

past a circular cylinder with constant boundary conditions (i.e., fixed free-stream

velocity and pressure in farfield). The principal state of this system is the velocity

15

4.88 4.89 4.90 4.91 4.92

8.97

8.98

8.99

9.00

9.01

9.02

9.03

9.04

20 10 0 10 20

20

30

40

50

60

70

Fixed point Limit cycle Attractor

Figure 7: Schematic of geometric objects describing different dynamical systems.

components and pressure, and can be viewed as smooth surfaces in space. Moreover,

the rule of evolution in this dynamical system is the Navier-Stokes equations. In

experiments, we do not have access to all the information in this dynamical system,

such as velocity and pressure values at every location in space. However, we can put

sensors to measure them at different points. As we increase the number of sensors in

this channel, our observation becomes more complete. If we put an infinite number

of sensors in this channel, then these measurements capture the true behaviour of the

dynamical system. On the other hand, we have a limited number of sensors, and as

we increase these sensors (e.g., pressure sensors), they might influence the flow. Lack

of access to this information, describing the true behaviour of the dynamical system,

was challenging for centuries. We have explained an arbitrary Hamiltonian system

and its different states briefly. We will now explain how to solve this system using

the Koopman formalism.

In 1931, Bernard Koopman introduced a linear transformation known as the Koop-

man operator [74]. He discovered that this operator is unitary for Hamiltonian dy-

namical systems. According to Koopman’s theory, a linear operator exists for a set of

observables that can convert a finite-dimensional non-linear system into an infinite-

dimensional linear system in Hilbert space. One way to characterize the importance

of dynamical patterns embedded in a linear dynamical system is to evaluate its Eigen-

values. This idea is the principle of Koopman Mode Decomposition (KMD) [120]. It

describes how we can identify a dynamical system by only considering prominent

patterns called “modes”. In fluid mechanics, the intuition of Koopman’s theory is to

view the evolution of field variables, such as velocity and pressure, governed by the

16

� �

N

L

K-1
K

t(1)

t(2)

t(1)
t(2)

Figure 8: Schematic of Koopman’s theory. Here N is a non-linear space with com-
plicated structures, and L is a linear space, where there is an exact solution for
the dynamical evolution of the generalized coordinates. K represents the Koopman
operator, which works as a linear projection function.

Navier-Stokes equations, by only considering prominent flow features. The dynami-

cal behaviour of these features is represented as a set of generalized coordinates in a

Hilbert space.

Figure 8 shows a schematic of Koopman’s theory. As solution at t(1) ∈ T is

embedded in the non-linear space N , and the dashed line shows the trajectory of

the solution from t(1) to t(2) ∈ T. However, because the dynamical system for this

case evolves in N , there is no exact solution at t(2). However, employing a Koopman

operator K, we can project this dynamical system onto a linear space L , and convert

it into a set of linear equations. Since there is an exact solution for this linear system,

we can solve for it in generalized coordinates at t(2). Finally, we lift-back these

generalized coordinates to N by K−1 to obtain the solution at t(2).

2.2 Ergodicity & Lyapunov Exponents

Most real-world engineering problems include chaotic dynamical systems. Ergodicity

refers to the fact that long time-averaged solutions are ultimately independent of

the initial condition. In fluid dynamics problems, the Navier-Stokes equations are

identified as an ergodic system [46, 50, 55]. According to ergodic characteristics of a

dynamical system, which is represented as Oseledet’s Multiplicative Ergodic Theorem

[106], there is a linear set of ODEs that satisfies the sensitivity solutions, such that

∂

∂t
Ci(u) =

∂∇.f

∂u
Ci(u)− LiCi(u), u(0) = u0, (2)

17

where, L1 ≥ L2 ≥ L3 ≥ · · · ≥ Lnu ∈ R are Lyapunov exponents (LEs). Furthermore,

C1,C2, ...,Cnu ∈ Rnu represent covariant Lyapunov vectors. Consider the trajectory of

a state in an arbitrary dynamical system that evolves in phase space, which is depicted

in Figure 9. Here three different vectors correspond to the dimensions of the state

in phase space. At instant t(0), the state is evenly augmented in all directions with

t = t(0)

t = t(0)+T
s

δ1

δ1

δ1

δ2

δ2

δ2

Figure 9: Explanation of covariant Lyapunov vectors and LEs.

a perturbation magnitude of δ1. After the state advances in time until t(0) + Ts, the

augmentation of the corresponding trajectory grows, shrinks or remains unchanged in

each direction. LEs are defined by the magnitudes of this augmentation in different

directions. Additionally, these directions also change in phase space, which correspond

to covariant Lyapunov vectors. Therefore, we can say that a small perturbation of δ1

magnitude at t = t(0) in the dynamical system can be changed to δ2 ≈ δ1 exp
Li(Ts−t(0)),

as Ts → ∞. In general, a dynamical system can be characterized typically in four

different categories as follows

• Steady-state: All LEs are negative, ∀i : Li < 0.

• Periodic: One LE is equal to zero, and the rest are negative, L1 = 0, and ∀i �=
1: Li < 0.

• Aperiodic: Atleast two LEs are equal to zero, and other exponents are neg-

ative, ∀j ∈ n0 : Lj = 0, and ∀i /∈ n0 : Li < 0, where n0 is list of indices at

which the LEs are zero.

• Chaotic: Atleast one LE is positive, one is equal to zero, and other exponents

are negative, ∀k ∈ n+ : Lk > 0, ∀j ∈ n0 : Lj = 0, and ∀i /∈ n0, n+ : Li < 0,

where n+ is set of indices corresponding to the positive LEs.

18

To compute the asymptotic LEs of a large-scale dynamical system, the corresponding

PDEs should be solved with DNS resolution [45], and generally speaking, obtaining

the true values of these LEs is prohibitively expensive. However, there are alternative

methods for estimating the LEs of a dynamical system, such as the Finite-Time

Lyapunov Exponent (FTLE) [75, 97, 131]. In this study, we compute approximate

values of LEs using a method introduced in [11], which is provided in Algorithm 1.

Note that we only compute the first nl leading LEs, where nl is the total number of

leading LEs for an ergodic system. In Algorithm 1, if a matrix is shown by X ∈ Ra×b,

then X[:, j] ∈ Ra (where, j ∈ {0, 1, . . . , b}) is the vector of jth column in matrix X.

In this algorithm, covariant Lyapunov vectors are normalized using QR-factorization

after each mk iterations.

2.3 Governing Equations

2.3.1 Discrete Representation of Dynamical Systems

From the mathematical point of view, the dynamical system presented in Eq. (1) is

usually non-linear for real-world engineering problems. The first step is to convert it

into a set of Ordinary Differential Equations (ODEs) in a discrete space to solve this

set of PDEs. These ODEs are obtained by spatial discretization techniques, such as

the Finite Volume (FV), Discontinuous Galerkin (DG) or Flux Reconstruction (FR)

[65] methods. In the second step, these ODEs are converted into a fully discrete

linearized form. In this study, we use “linear multi-step” temporal schemes as time

integrators. A linear k -step method applied to the semi-discrete form of Eq. (1) can

be given by

r (n) :=
k∑

j=0

ζju
(n−j) + ∆t(n)

k∑

j=0

βj∇.f (n)
(
u (n−j), t(n−j),S

)
, t ∈ T, (3)

where, r : Rnu → Rnu denotes the residual of Eq. (1) in the fully-discrete form. Also,

ζ and β are coefficients that define a specific temporal scheme. Moreover, ∆t ∈ R+ is

the time-step, and subscripts and superscripts in Eq. (3) denote the scheme’s step and

system’s step, respectively. The consistency condition for the aforementioned schemes

are ζ0 6= 0 and
∑k

j=0 ζj = 0. Also, these schemes are implicit if β0 6= 0. In Eq. (3),

the state vector u (n) is unknown, and can be solved by non-linear implicit solvers,

19

such as Gauss-Newton. In this method, u (n) is found by minimizing the residual until

we get r (n) → 0. In this study, we use the Backward Diffrentiation Formula (BDF),

where ∀j ∈ [1, ..., k] : βj = 0. Therefore, Eq. (3) can be written as

r (n) :=
k∑

j=0

ζju
(n−j) + ∆t(n)β0∇.f (n)(u (n), t(n),S), t ∈ ∆T, (4)

where ∆T is a discrete time domain, such that t(n) ∈ ∆T. We use this branch of linear

multi-step schemes because they are computationally cheaper than other branches in

the same class of time integrator. Additionally, because of BDF’s robustness and good

numerical stability, it has been widely used in many scientific numerical simulations,

particularly in fluid dynamics.

2.3.2 Navier-Stokes Equations

In this study, our objective is to consider the compressible Navier-Stokes equations as

the dynamical system. This set of equations contain a high level of non-linearity which

causes the dynamical system to be chaotic. In addition to chaoticity, the Navier-

Stokes equations are usually represented as large-scale PDEs, making optimization

and sensitivity analysis more challenging. Recall Eq. (1), according to the Navier-

Stokes equation, one can cast the state and dynamical system in the following general

form

u =

ρ

ρui

ρe

 , (5)

and ρ is the density, ρui is a component of the momentum, and ρe is the total energy.

The total flux f = f i− f v is the sum of the inviscid and viscous Navier-Stokes fluxes.

The inviscid fluxes are

f i,j(u ,S) =

ρuj

ρuiuj + δijp

uj (ρe+ p)

 , (6)

and the pressure is determined via the ideal gas law

p = (γ − 1)ρ

(
e− 1

2
ukuk

)
, (7)

20

where γ = cp/cv is the ratio of specific heats, cp is the specific heat at constant

pressure, and cv is the specific heat at constant volume. The viscous fluxes for the

Navier-Stokes equations are

f v,j(u ,∇u) =

0

τv,ij

−qv,j − uiτv,ij

 , (8)

where the heat flux is

qv,j = − µd
Pr

∂

∂xj

(
e+

p

ρ
− 1

2
ukuk

)
, (9)

Pr is the Prandtl number, and µd is the dynamic viscosity. The viscous stress tensor

is then given by

τv,ij = µd

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δv,ij

)
, (10)

where δv,ij is the Kronecker delta.

2.3.3 Spatial Discretization of the Navier-Stokes Equations

For spatial discretization of the Navier-Stokes equations we use Flux Reconstruction

(FR) approach introduced by Hyunh [65]. FR utilizes an elementwise polynomial

approximation of the solution, which allows it to obtain high-order accuracy on mixed-

element unstructured grids. This also allows multiple levels of solution fidelity to be

obtained on the same mesh, by simply increasing or decreasing the degree of the local

polynomial approximation of the solution. The FR approach in one dimension will be

described here, and its extension to multidimensional elements is available in Huynh’s

original paper [141].

We start by considering a computational domain, denoted by χ, decomposed into

ne elements χi such that

χ =
ne⋃

i=1

χi, and
ne⋂

i=1

χi = 0. (11)

Each element is mapped to a referential computational space χ
′

= [−1, 1], within

which a polynomial nodal basis representation of the solution is used. To transfer

the solution from this computational domain to physical space a mapping function

is used Pi : χ → χ
′
. In each element the solution is represented at a set of nodal

21

basis points, referred to as solution points, such that xi,p = {xi,0, xi,1, ..., xi,ps} and

ξi,p = {ξi,0, ξi,1, ..., ξi,ps}, where ps denotes the local polynomial degree that can be

represented using the ps + 1 solution points. Now, consider a general conservation

law of the form
∂u

∂t
+
∂f

∂x
= 0, (12)

where u is the vector of conserved variables, f : Rnu → Rnu is flux, and nu is the

number of conserved variables. The transformed solution in the reference element

is defined as u
′
i = Piu i. This transformed solution can be approximated using an

elementwise polynomial representation of the solution

u
′δm
i =

ps∑

j=0

u
′δm
i (ξj)`j(ξ). (13)

The flux can similarly be approximated by

f
′δm
i =

ps∑

j=0

f
′δm
i (ξj)`j(ξ), (14)

where, `(ξ) is one of ps + 1 nodal basis functions defined as

`j(ξ) =

ps∏

k=0

(
ξ − ξk
ξj − ξk

)(
1− δm,jk

)
, (15)

where, δm is the mesh spacing.

Since the solution is allowed to be discontinuous at the interface between elements,

so too is the flux. Hence, via the FR approach, we enforce a common Riemann flux at

this interface. For a given element, we denote these Riemann fluxes by f
′

l and f
′

r for

the left and right-hand sides of the element, respectively. A corrected flux function

is then introduced by

f
′

c(ξ) =
(
f
′

l − f
′δm
l

)
hl(ξ) +

(
f
′

r − f
′δm
r

)
hr(ξ), (16)

where, hl and hr are correction functions for the left and right-hand boundaries of

the element [65]. The discrete form of the conservation equation can now be written

as follows:

∂u

∂t
= −

ps∑

j=0

f
′δm
i,j

d`j(ξ)

dξ
−
(
f
′

i,l − f
′δm
i,l

)dhl(ξ)
dξ

−
(
f
′

i,r − f
′δm
i,r

)dhr(ξ)
dξ

. (17)

22

In the current study we used the Rusanov Riemman solver for the common inviscid

flux, and the Local Discontinuous Galerkin (LDG) scheme for the common viscous

flux. Finally, this expression can be advanced in time using a suitable temporal

integration scheme.

23

Chapter 3

Gradient-Free Optimization

3.1 Overview

Traditionally, aerodynamic optimization is performed using the adjoint combined

with Reynolds Averaged Navier-Stokes (RANS) flow solutions [58, 83, 87, 125, 143].

However, the RANS approach has some notable limitations, specifically when turbu-

lent transition and flow separation are observed. Therefore, the design optimization

strategies applied with RANS are only suitable for limited classes of problems, those

for which RANS provides accurate flow solutions. Outside of this regime high-fidelity

simulations, such as Direct Numerical Simulations (DNS) or Large Eddy Simulations

(LES), are required [128]. These unsteady scale-resolving methods capture some or

all of the turbulent length and time scales in the flow [20, 139]. However, a reliable

optimization strategy when using LES or DNS for the flow solution remains an open

challenge. This is mainly due to finite time-averaging requirements, resulting in noisy

objective functions that are not amenable to gradient-based optimization. Further-

more, conventional adjoint-based optimization has been shown to diverge for LES

and DNS, due to the chaotic nature of the Navier-Stokes equations at high Reynolds

numbers [17]. In contrast, gradient-free methods are more suitable for noisy objective

functions, since they do not require any sensitivities.

Due to the deficiencies of gradient-based optimization techniques for LES and

DNS, this study explores the gradient-free Mesh Adaptive Direct Search (MADS)

algorithm for high-fidelity aerodynamic optimization. Recently, Bahrami et al. [7, 8]

used this method for multi-objective optimization of hydraulic turbine runner blades.

24

They employed potential flow and RANS as a solver for the flow solver. Weiguang

Yang [146] also applied MADS for a surgical design for the Fontan procedure and used

RANS for solving the flow field within vessels. To the author’s knowledge, there has

not been any optimization done using high-fidelity flow simulations such as LES and

DNS. In this study we explore the utility of MADS in this context for flow over low

Reynolds number airfoils, specifically the SD7003. The open-source solver PyFR [141]

is used due to its high-order accuracy and suitability for modern high-performance

computing hardware architectures, meaning it can rapidly complete high-fidelity LES

and DNS simulations within each design iteration. It follows that the objective of

this work is to demonstrate that MADS is a suitable gradient-free shape optimization

strategy when using LES as an underlying solution technique for turbulent flows.

3.2 Strategies Toward Gradient-Free Optimization

3.2.1 Solver Setup

In this chapter we use the open-source flow solver PyFR to provide numerical solutions

to the governing equations [141]. In the current study we used the Rusanov Riemman

solver for the common inviscid flux, and the Local Discontinuous Galerkin (LDG)

scheme for the common viscous flux. Finally, this expression can be advanced in time

using a suitable temporal integration scheme. In the current study we use the RK45

explicit Runge-Kutta method with adaptive time stepping [141].

Depending on the choice of correction functions, the FR approach can recover

several existing schemes including the Discontinuous Galerkin (DG), Spectral Differ-

ence (SD), and Spectral Volume (SV) methods, depending on the choice of correction

functions. Also, it is expected to recover high-order accuracy on mixed-element un-

structured grids depending on the choice of solution points and polynomial basis used

to represent the solution. Due to the level of data locality within each high-order ele-

ment, the FR approach can exploit the performance of modern hardware accelerator

hardware architectures, such as Graphical Processing Units (GPUs). Recent research

has shown that this allows PyFR to obtain several orders of magnitude more accurate

solutions using LES and DNS compared to current industry-standard CFD tools, at

reduced computational cost. Hence, this makes PyFR an appealling framework for

optimization using LES and DNS, since its high-order accuracy and computational

25

efficiency can significantly reduce the cost of each objective function evaluation and

design iteration.

3.2.2 Mesh Adaptive Direct Search (MADS) Method

With the governing equations and flow solver defined, we now have a suitable frame-

work for performing LES and extracting the objective functions of interest. For opti-

mization we propose using the gradient-free MADS optimization algorithm, which

is of particular interest since it can be used for non-smooth objective functions,

J (u , t,S), with respect to design parameters, S. MADS’s gradient-free nature can

also be useful when several local stationary points exist in the design space or deriva-

tives of the objective function are unavailable, either because it does not exist or

cannot be accurately computed. MADS occupies a position somewhere between the

Generalized Pattern Search (GPS) [4] and the Coope and Price frame-based methods

[39]. The basic concept can be defined as two sequential steps in each design itera-

tion. First, several trial points are identified in the design space, and infeasible trial

points that do not satisfy the design constraints are discarded. This is referred to as

the search step. The objective function is then evaluated at these trial points and

compared with the incumbent value from the previous design iteration to determine if

a new optimum has been found. Each of these trial points lies on a mesh constructed

by a finite set of nD directions, which is scaled by the mesh size parameter, ∆m.

Here, D is a matrix of directions, and it must be a positive spanning set [4, 6] and

a nonnegative integer combination of the directions. Therefore, the mesh points are

defined by

Mk =
⋃

Sk∈D

{Sk + ∆k
mDkz : z ∈ NnD}. (18)

The objective function, J , is evaluated at the start of iteration k. The search-step is

said to be empty when no trial points are considered. More discussion about search

steps is given in [5]. In the next step, if an improvement in the objective function is

not found, the mesh size parameter is reduced to increase the mesh resolution around

the incumbent point. This is referred to as the poll step. This allows the evaluation

of an objective function at trial points closer to the incumbent solution. The primary

advantage of MADS over GPS is that the local exploration in D is not restricted to

a finite number of directions. This is the primary drawback of the GPS algorithms,

26

and the main motivation in defining MADS was to overcome this restriction [5]. The

trial points in the design space can be defined as

Pk = {Sk + ∆k
pz : z ∈ Dk} ⊂ Mk. (19)

The mesh size parameter, ∆m, may go to zero faster than the poll size parameter,

∆p. In order to show that MADS can generate an asymptotically dense set of poll

directions, the Householder matrix is used

Hk = I − 2νkνk,> ⊂ Rns×ns , and Hk =

[
h1, h2, ..., hns

]
, (20)

where ns, I and ν are the number of design parameters, identity matrix and a nor-

malized random vector, respectively. Additionally, ν> denotes the transpose of ν. To

create a poll set, Hk is normalized to the range of the design values by

Bk = {b1, b2, ..., bns},

bj = round

(
∆p

∆m

hj
max(‖hj‖)

)
,

Dk = Bk ∪ {zns+1 = −∑ns

i=1 zi},
or

Dk = Bk ∪ (−B).

(21)

Additionally, the poll size parameters are defined as:

∆k+1
m =

∆k
m

4
, if Sk is a minimal frame center,

4∆k
m, if an improved mesh point is found, and if ∆k

m ≤ 1
4

∆k
m, otherwise,

∆k
p =

ns
√

∆k
m ≥ ∆k

m, if minimal positive basis,
√

∆k
m ≥ ∆k

m, if maximal positive basis.

(22)

Figure 10 depicts the search and poll steps of MADS. At iteration k, the frame, shown

by the black mesh, has the largest values of ∆m and ∆p. The incumbent point is Sk,
and three different random trial points (Pk1 , Pk2 and Pk3) are selected from this mesh.

In the search step, it is assumed for demonstration purposes that Pk3 is superior to

other trial points, and hence, Pk3 would be Sk+1 for the next iteration. In the poll

27

step the frame size decreases and the mesh resolution increases (here, the frame size

has not been reduced for the blue mesh for clarity). When the mesh becomes finer,

the number of possible trial points increases. In this case, let us assume that the

blue trial points could not improve the objective function in the blue mesh frame,

and for the next iteration, k+ 2, another poll step is required. As shown, the orange

mesh becomes denser as the searching frame size reduces. In the end, when the poll

size parameter reaches a user specified threshold for termination, the optimization

stops. Note that the number of simulations required for each design cycle can be

either nD + 1 or 2nD [4]. In this study, we use 2nD simulations per design cycle.

Sk
P1
k

P
3
k

P2
k

P2
k+1

P1
k+1

P
3
k+1

Sk+1
Sk+2

P
3
k+2

P2
k+2

P1
k+2

k+1

Figure 10: Schematic of the search and poll steps used by MADS.

3.2.3 Time-Averaging Sensitivity

Scale-resolving simulations are unsteady and can only be run for a finite amount of

simulation time. As a result, time-averaged objective functions are inherently noisy

[139]. It is essential to provide a metric to quantify this noise, to ensure that it

remains within a reasonable level based on the required design precision. We assess

convergence of the objective function by evaluating the time average of its derivative

with respect to the time averaging period. When the time average of this derivative

goes to zero, or is within a specified tolerance, it implies that the objective function

28

has reached a constant value. This can be approximated from

∆J
∆T

=
1

T

∫ T

0

∂J
∂t

dt

≈ 1

T

∫ T

0

[
1

t+∆t

∫ t+∆t

0
J (u(t,S),S)dt− 1

t

∫ t
0
J (u(t,S),S)dt

∆t

]
dt

(23)

where, T is the full time-averaging window and ∆t is time interval. This allows us

to assess the sensitivity of the time-averaged objective function with respect to the

averaging period.

3.2.4 Dynamic Polynomial Approximation (DPA)

Aerodynamic shape optimization is usually initialized using a large design space to

include a wide range of different possible designs. However, in practice large regions

of this design space yield objective functions that are significantly worse than that of

the initial design. To accelerate convergence towards the optimal design, we propose

that lower-fidelity simulations can be used when MADS is performing a broad search

in the design space. This allows MADS to quickly discard regions of the design

space where the optimum is unlikely to be found. Then, as MADS converges towards

a smaller region of the design space, we increase the fidelity of the simulations to

provide more accuracy in the objective function. In the current study we achieve this

by adjusting the solution polynomial degree used by PyFR, depending on the size of

the search window used by MADS. We refer to this approach as Dynamic Polynomial

Approximation (DPA).

In the current study we consider two different strategies for performing DPA.

In the first approach, increasing and decreasing the solution polynomial degree is

performed using the same threshold values, referred to here as standard DPA. In the

second approach the thresholds for increasing or decreasing the solution polynomial

degree are offset, referred to as binary DPA, to minimize the number of changes

in degree. Figure 11 shows the difference between the standard and binary DPA

approaches for a generic objective function. Figure 11a shows that the polynomial

order for the standard approach will change at the same threshold level based on

∆p, the poll size used by MADS. The red and green lines show the search and poll

steps in MADS, respectively. As ∆p decreases, the polynomial order increases, while

increasing ∆p leads to a decrease in polynomial order. Figure 11b also illustrates

29

4

3

2

1

Search

Poll

(a) standard DPA.

4

3

2

1

Search

Poll

(b) binary DPA.

Figure 11: Different strategies for DPA.

binary DPA in which the thresholds for increasing or decreasing the polynomial order

are offset. The utility of these two modes of DPA will be assessed in the following

sections.

3.2.5 Multi-Level Parallelism

At the start of each design iteration MADS selects a number of candidates in the

design space, as shown in Figure 10. Each of these requires geometry specification,

mesh generation, running a simulation, and then post-processing the results to return

the objective function. Importantly, each of these simulations can be performed in an

embarrassingly parallel manner. This means that, provided sufficient computational

resources, any number of design parameters and resulting design candidates can be

evaluated in constant time. The MADS implementation starts by spawning a parent

CPU task that is responsible for one of the design candidates. Each of these CPU tasks

then exploits a second level of parallelism, by partitioning the mesh and launching its

respective LES simulation on a group of GPUs. This allows the time for each design

iteration to be reduced by strong-scaling each simulation. This strategy was found to

significantly reduced the time required to complete a design cycle, and was effective

at utilizing large clusters of GPUs.

30

3.3 Optimization Results

In this section, three different optimization cases are use to demonstrate the utility of

MADS for optimizing chaotic dynamical systems. These include, the classical Lorenz

system, a 2D airfoil at Re = 104, and a 3D turbulent airfoil at Re = 6 × 104 to

demonstrate gradient-free optimization using LES.

3.3.1 The Lorenz System

The Lorenz system is one of the most well-known examples of chaotic dynamical

systems. It represents the relation between thermodynamic properties of a 2D fluid

layer that is evenly heated from below and cooled from above. The set of equations

describing its evolution are

dx

dt
= σL(y− x)

dy

dt
= x(ρL − z)− y

dz

dt
= xy− βLz

(24)

where x, y, and z describe the system state variables, corresponding to rate of con-

vection, horizontal temperature variation, and vertical temperature variation, respec-

tively. Furthermore, σL, ρL, and βL are referred to as the Prandtl number, Rayleigh

number, and system constant, respectively. In this study σL and βL are taken to be

10 and 8/3, respectively.

3.3.2 Application of MADS to the Lorenz System

The objective function is taken to be a shifted time-average of z

J =
1

T

∫ T

0

(z− 32)dt, (25)

and ρL is taken to be the design parameter. Hence, the objective of this optimization

is to drive the Lorenz system towards a solution where z has a mean value of 32

by changing the value of ρL. The initial design starts with ρL = 5, and a stopping

precision of 10−4 is used. Each solution is run for 200 time units, and then time-

averaged over 100 time units, which was found to give sufficient convergence of the

31

0 10 20 30
Number of function evaluations

0

10

20

J

(a) Objective function progress

− 20 0 20
x

0

20

40

60

z

(b) Trajectories at ρL = 36.25

Figure 12: Optimization of the Lorenz system using MADS.

objective function. MADS completed a total of 32 function evaluations (16 design

iterations) and ultimately converged to the minimum value of J at ρL = 36.25. Figure

12a shows the progression of the objective function versus design iterations. From

this it is clear that MADS is able to rapidly converge to the region of optimal designs,

and the remainder of the optimization process then reduces the objective function to

within the specified tolerance. Importantly, despite the underlying dynamical system

being chaotic, and the objective function containing noise, MADS is still able to

successfully optimize it. Figure 12b shows the trajectory of the Lorenz attractor for

the optimal design with ρL = 36.25, plotted in phase space. This shows the trajectory

and chaotic behaviour of the Lorenz system, in the form of a strange attractor, at

the optimum point. From this simple demonstration case it is apparent that MADS

is suitable for optimization of chaotic systems with finite time-averaged objective

functions.

3.3.3 Low Reynolds Number Flow: Re=10,000

Problem Description

To demonstrate the utility of MADS for the Navier-Stokes equations, we consider

unsteady low Reynolds number flow over an SD7003 airfoil. The two-dimensional

computational domain extends to at least 12c away from the airfoil surface, and is

discretized using a regular C-type mesh with 2,836 quadratically-curved quadrilateral

elements, as shown in Figure 13. For the ranges of angles of attack and chosen

32

Reynolds number the flow is expected to remain laminar over the surface of the

airfoil [134]. The mesh is refined towards the surface of the airfoil to resolve the

viscous boundary layer region, and a stretching ratio of 1.03 is applied outwards

from the airfoil surface. Figure 13 shows the computational domain for the baseline

u=U
∞

v=0
∂p/∂n=0

p=p
∞

∂u/∂n=0
∂v/∂n=0

 u u= ∞

v=0

Figure 13: Computational domain and mesh for the SD7003 airfoil at Re = 104.

SD7003 with α = 0◦ and ηc = 0. The upstream and lateral edges of the domain

are specified using a standard velocity inlet boundary condition with u = u∞ and

v = 0. Additionally, the downstream boundary is specified using the ambient pressure

p = p∞, and a no-slip adiabatic boundary condition is specified on the surface of the

airfoil.

Resolution Requirements

Prior to optimizing the airfoil design, a sufficient level of resolution is assessed through

a polynomial convergence study at an angle of attack α = 4◦. Quantitative results in

Table 10 show the influence of polynomial degree on the time-average lift and drag

coefficients, alongside reference results from Uranga et al. [134]. The results using

ps = 3 are within 1% of those using ps = 4, suggesting that ps = 3 provides sufficient

resolution at this Reynolds number. Therefore, ps = 3 is used as the highest solu-

tion polynomial degree during the optimization procedure. Figure 14 shows vorticity

contours for each polynomial degree, and demonstrates qualitatively the influence of

increasing the solution polynomial degree on the results. The solution using ps = 1

33

ps Order of accuracy CL CD Error(CL) Error(CD)
1 2nd 0.3172 0.04628 16.34% 6.33%
2 3rd 0.3769 0.04856 0.61% 1.71%
3 4th 0.3788 0.04927 0.11% 0.27%
4 5th 0.3792 0.04941 - -

Uranga et al. [134] 4th 0.3743 0.04967 - -

Table 1: Comparison of the results from different orders of accuracy with the results
from Uranga et al. [134]

(a)

(b)

(c)

(d)

Figure 14: Contours of vorticity magnitude for the SD7003 verification case at Re =
104 with ps = 1, 2, 3 and 4 at α = 4◦.

is overly-dissipative, leading to premature breakdown of the unsteady vortices in the

wake of airfoil. However, increasing the solution polynomial degree beyond ps = 3

does not result in a discernable change in the resulting flow field.

Objective Function Sensitivity

In order to obtain accurate approximations of the aerodynamic forces on the airfoil,

a sufficient time-averaging period must be used. In Figure 15, the sensitivity of the

time-averaged lift and drag coefficients, CL and CD, respectively, are shown where

their instantaneous values are obtained from

CL =
Fy

0.5ρ∞cu2
∞
, CD =

Fx
0.5ρ∞cu2

∞
, (26)

34

0

0.25

0.5

0.75
CD

CL

0 12 24
-0.02

-0.01

0

0.01

0.02
CD

CL

0

1

2

3
CD

CL

0 12 24 36 48
-0.02

-0.01

0

0.01

0.02
CD

CL

0

1

2

3
CD
CL

0 12 24 36 48
-0.02

-0.01

0

0.01

0.02
CD
CL

(a) (b) (c)

t*t*t*

∂ C̄D/∂ t

∂ C̄L /∂ t

∂ C̄D/∂ t

∂ C̄L /∂ t

CD
CL

∂ C̄D/∂ t

∂ C̄L /∂ t

CD
CL

CD
CL

Figure 15: Instantaneous aerodynamic loads (CL and CD) and their sensitivity with

respect to the evaluation time (∂CL

∂t
and ∂CD

∂t
) for the SD7003 case at Re = 104 with:

(a) α = 0◦, (b) α = 7◦, and (c) α = 14◦.

where c is the airfoil chord length, and ρ∞ is the freestream density. The plotted

values ∂CD/∂t and ∂CL/∂t show the sensitivity of the time-averaged lift and drag

coefficients with respect to the time-averaging period [0, t]. Three different angles

of attack are considered for assessing this sensitivity, including α = 0◦, α = 7◦ and

α = 14◦. We note that, depending on the angle of attack of the airfoil, a different

time averaging period may be required to obtain sufficient convergence.

To automate the selection of the time averaging period, we start with an initial

time averaging period of 24t∗, where t∗ = tu∞/c. If the sensitivity of the objective

function with respect to the time-averaging window is above a specified threshold

value of ∼ 2.5 × 10−2, another 24t∗ time-averaging window will be added. This

procedure is repeated until the sensitivity of the objective function drops below the

aforementioned convergence criteria. The threshold range is shown by dashed-lines.

As shown in Figure 15a, the values of the instantaneous CL and CD for α = 0◦ become

steady before t∗ = 24. Figure 15b shows that the sensitivity of the objective function

is not within the specified threshold during the first averaging period, and hence,

another averaging period is added. Figure 15c also shows the same observations as

Figure 15b, but at a higher angle of attack. This approach allows us to automatically

select a sufficient time-averaging period, and extend the length of a simulation should

additional time-averaging be required.

35

The Optimization Process

In this section we use MADS to optimize the shape of the SD7003 airfoil using constant

solution polynomials of degree ps = 1, 2, and 3. The design parameters are the angle

of attack α, and the maximum camber ηc. A perturbation to the camber line is

defined as

yc =
ηc
x2
m

(2xmxc − x2
x), 0 ≤ xc < xm,

yc =
ηc

(1− xm)2
(1− 2xm + 2xmxc − xc2), xm ≤ xc ≤ 1,

(27)

where xc and yc represents the camber line coordinates in x and y directions. Addi-

tionally, xm shows the location of maximum camber, which is set to xm = 0.3. We use

MADS to optimize the shape of the SD7003 airfoil using constant solution polynomi-

als of degree ps = 1, 2, and 3. This will then be followed in the proceeding Section

3.3.3, where we demonstrate the utility of adapting the polynomial degree using DPA.

Figure 16 shows the progress of the time-averaged objective function with respect to

0 10 20 30

-12

-8

-4

0
0 10 20

-12

-8

-4

0
0 10 20

-12

-8

-4

0

J J J

(a) p
s
=1 (b) p

s
=2 (c) p

s
=3

Iterations Iterations Iterations

Figure 16: Progress of the objective function using MADS for optimization of the
SD7003 at Re = 104.

the design iteration, which is taken to be

J = −CL/CD. (28)

Here a negative sign is added since MADS is designed to solve general minimization

problems.

36

(a) ps = 1 (b) ps = 2

(c) ps = 3

Figure 17: Optimal airfoil shapes for the SD7003 at Re = 104. Colours correspond
to each optimization represented in Figure 16.

Sice MADS uses random searches, we repeat each optimization procedure with

each polynomial degree a total of four times. Figure 16a shows that each optimiza-

tion iteration using ps = 1 converges to approximately the same optimal value of the

objective function, noting that they follow a slightly different path due to the ran-

dom searches performed by MADS. Figures 16b and 16c show results from the same

optimization procedure using ps = 2 and ps = 3. These show that as the solution res-

olution is increased, there is greater variability in the optimal design found by MADS.

This behaviour is expected, and can be linked to the higher-resolution simulations

capturing more of the chaotic non-linear structures in the flow [45], resulting in a less

smooth design space when compared to the ps = 1 simulations. However, despite this

variability, all optimization iterations arrive at similar optimal values for the objective

function. The shapes for the initial and final designes are provided in Figure 17 for

each of the four optimization iterations using each polynomial degree. For ps = 1, all

four optimization iterations converge to nearly identical final designs. In this case,

α and ηc are 3.76 ± 0.17 and 0.02154 ± 0.002, respectively. However, as shown in

Figure 17b and 17c, the higher fidelity optimizations using ps = 2 and ps = 3 find

several distinct designs that yield nearly the same value of the objective function. For

example, one final design for ps = 2 has α = 6.43 ± 0.39 and ηc = 0.00525 ± 0.0027,

37

and for ps = 3 an optimal design has α = 5.81 ± 0.36 and ηc = 0.00315 ± 0.0028.

Finally, Figure 18 shows contours of vorticity magnitude around the airfoil for the

Initial case (SD7003)

Optimized case

Initial case (SD7003)

Optimized case

Initial case (SD7003)

Optimized case

(a) (b)

(c)

Figure 18: Contours of vorticity magnitude for the initial SD7003 at Re = 104 and
α = 0◦, and the optimized airfoils with: (a) ps = 1, (b) ps = 2, and (c) ps = 3.

initial and optimal designs for each polynomial degree. We note the under-resolution

of the ps = 1 simulation, whereas the final designs using ps = 2 and ps = 3 are similar

in both shape and the behaviour of the boundary layer and wake regions of the flow.

Dynamic Polynomial Approximation (DPA)

In this section we will demonstrate the utility of DPA in reducing the cost of a

complete optimization iteration. We again consider four independent optimization

procedures. Table 2 is provided to show changes in the polynomial order with re-

spect to different ∆p for both standard and binary DPA. According to this table,

in standard DPA, the polynomial order has the same threshold level based on ∆p,

while binary DPA uses a different threshold level. Figure 19 illustrates optimization

results with standard DPA. In this case, the polynomial order can change from ps = 1

up to ps = 4, and vice-versa. Figure 19a shows that the progress of the objective

function is different for all four cases. The maximum objective function achieved is

10.55 ± 0.96. Interestingly, the objective function occasionally reduces as the num-

ber of optimization iterations increases. This reduction in the objective function can

38

Polynomial order
∆p

(standard DPA)
∆p

(binary DPA)
ps : 1→ 2 0.5 0.5
ps : 2→ 3 0.25 0.25
ps : 3→ 4 0.0625 0.0625
ps : 2→ 1 0.5 2.0
ps : 3→ 2 0.25 1.0
ps : 4→ 3 0.0625 0.25

Table 2: Poll size parameters for standard and binary DPA.

occur when there is a change in ps, which means using DPA with MADS may not

converge monotonically. Figure 19b also shows four different paths taken through

the design space with optimal points denoted by stars. These results demonstrate

that the standard DPA approach can lead to a continuous expansion/contraction

of ∆p in MADS, which can lead to a large number of design iterations. Figure 20

-0.01

0

0.01

0.02

0.03

0.04

-5 0 5 10
-0.01

0

0.01

0.02

0.03

0.04

-5 0 5 100 10 20 30 40

-12

-8

-4

0

ααIterations
(b)(a)

η

η

J

Figure 19: Optimization of the SD7003 at Re = 104 with standard DPA: (a) progress
of the objective function and (b) trajectories in the design space.

shows the optimization results for four similar optimization cases but using the binary

DPA approach. Figure 20a shows different trajectories of the optimization through

the design space. This demonstrates that the binary DPA approach converges in

fewer iterations than the standard DPA approach, reaching a maximum objective

function of 10.98± 0.08. Additionally, fluctuations in the objective function are sig-

nificantly reduced when compared to standard DPA. Figure 20b shows that binary

39

DPA rapidly converges to the optimal design space. In conclusion, standard DPA can

result in unwanted oscillations between solution polynomial degrees, and fluctuations

in the objective function. In contrast, binary DPA, which offsets the thresholds for

increasing or decreasing the solution polynomial degree, is an appealling approach

for reducing computational cost and rapidly converging towards the optimal design

space.

-0.01

0

0.01

0.02

0.03

0.04

-5 0 5 10
-0.01

0

0.01

0.02

0.03

0.04

-5 0 5 100 10 20

-12

-8

-4

0

Iterations

(b)(a)

J

αα

η

η

Figure 20: Optimization of the SD7003 at Re = 104 with binary DPA: (a) progress
of the objective function and (b) trajectories in the design space.

Figure 21 represents the contours of the vorticity magnitude around the airfoil

for one of the optimal designs obtained using binary DPA. Figure 21a shows the

initial design with ps = 1. After several MADS iterations, the polynomial order is

automatically increased to ps = 2, as shown in Figure 21b, at which point the design

has ηc = 0 and α = 7◦. Finally, the polynomial degree is automatically increased

to ps = 3, when the design has α = 5.68◦ and ηc = −0.0043, as shown in Figure

21c. Results for the final optimal design are then shown in Figure 21d, which has

α = 6.04◦ and ηc = −0.0011. Table 3 represents the average computational cost for

a range of optimizations with different polynomial orders. As seen, standard DPA

interferes with the performance of MADS and therefore, it is not recommended. Table

4 compares the computational cost of optimization with standard DPA and binary

DPA. The average computational cost per iteration grows as the polynomial order

increases. Interestingly, binary DPA using up to ps = 4 has a lower computational

cost than using constant ps = 3. Hence, binary DPA is a suitable approach for

40

(a) p
s
=1

(b) p
s
=2

(c) p
s
=3

(d) p
s
=4

Figure 21: Contours of vorticity magnitude for the SD7003 at Re = 104 using binary
DPA.

decreasing the total computational cost of optimization using MADS.

Polynomial
order

Optimization
iterations

cost per iteration
(hr/iter)

ps = 1 25 0.33
ps = 2 17 0.68
ps = 3 13 0.82

standard DPA, ps = [1, 4] 28 0.93
binary DPA, ps = [1, 4] 17 0.76

Table 3: Average computational cost of optimization using different polynomial de-
grees for the SD7003 airfoil at Re = 104.

3.3.4 Turbulent Flow: Re = 6× 104

Mesh Generation

As a final test case, we consider shape optimization of a turbulent SD7003 airfoil

using LES. An unstructured 2D mesh is developed and then extruded 0.2c in the

spanwise direction using 12 layers. A structured boundary layer region is used, with

quadratically curved elements on the surface of the airfoil. The outer boundaries of

the domain extend to 12c away from the airfoil surface, and the boundary conditions

are the same as those used in the low Reynolds airfoil case. Figure 22 shows the

41

Polynomial
order

Simulation
cost (hr)

Number of simulations
(standard DPA)

Number of simulations
(binary DPA)

ps = 1 0.33 12± 4 4± 1
ps = 2 0.51 8± 2 2± 1
ps = 3 1.02 11± 4 8± 4
ps = 4 1.67 4± 1 5± 2

Total cost (hr) 17.85 ∼ 34.03 10.59 ∼ 27.11

Table 4: Comparison of computational cost for optimization using standard and
binary DPA for the SD7003 at Re = 104.

topology of the mesh. A refined region is also used on the upper surface of the airfoil

and in the wake near the trailing edge to accurately capture the turbulent flow in

these regions.

u=U
∞

v, w=0
∂p/∂n=0

p=p
∞

∂u/∂n=0
∂v/∂n=0
∂w/∂n=0

u u= ∞

 v w , =0

u v w , , =0

Figure 22: Computational domain and mesh for the SD7003 airfoil at Re = 6× 104.

Verification

To verify the mesh resolution, we consider the initial SD7003 design at an angle of

attack α = 8◦. Mean aerodynamic loads are compared with the numerical results of

Vermeire et al. [136] and Beck et al. [10] in Table 5. The values of CL and CD remain

relatively unchanged beyond ps = 4, and the errors corresponding to CL and CD are

0.1% and 1.59%, respectively, when compared to the values obtained using ps = 5.

42

Additionally, the lift and drag coefficients at ps = 4 are in good agreement with the

reference results of Vermeire et al. [136] and Beck et al. [10]. Hence, ps = 4 is chosen

as the highest polynomial degree to use during the optimization procedure.

ps Order of accuracy CL CD error(CL) Error(CD)
1 2nd 0.984 0.028 4.23% 44.22%
2 3rd 0.976 0.039 3.38% 22.31%
3 4th 0.954 0.043 1.05% 14.34%
4 5th 0.945 0.051 0.10% 1.59%
5 6th 0.944 0.0502 - -

Vermeire et al. [136] 5th 0.941 0.049 - -
Beck et al. [10] 8th 0.932 0.050 - -

Table 5: Verification data for the SD7003 at Re = 6× 104 and α = 8◦.

Optimization Process

0 10 20
0

15

30

45

60

-1 2 5 8
0

20

40

60

present (SD7003 case)

experimental data

present (optimized case)

Iterations

(b)(a)
α

Figure 23: Optimization results for the SD7003 at Re = 6 × 104 with binary DPA,
including the objective function versus optimization iterations (a), and trial points in
the design space (b).

Based on the verification results, we now consider a single optimization procedure

using binary DPA for the turbulent SD7003 airfoil. Figure 23a shows the variation of

the objective function versus the number of design iterations. The angle of attack and

the maximum camber of the initial design is set to α = 0◦ and ηc = 0, respectively.

Following the DPA approach, the initial design is launched with ps = 1. The objective

function quickly increases to 53 with ps = 2, and slightly decreases when the solution

43

polynomial degree is increased to ps = 3. Finally, MADS converges to the optimal

design using ps = 4 with an objective function of 49.7, which has α = 2.25◦ and ηc =

0.00348. Figure 23b compares the aerodynamic characteristics of the optimized airfoil

with those of the initial SD7003. Experimental data [124] for the SD7003 shows that

the maximum value of CL/CD is around 37.6 at α = 6.07◦, as shown in Figure 23b.

The optimum design obtained using MADS and binary DPA achieves a 32% increase

in the objective function to CL/CD = 49.7. An additional simulation of the initial

SD7003 is performed at the same α = 6.07◦, showing excellent agreement with the

reference experimental data and that the optimal airfoil obtains a significant increase

in aerodynamic performance. Figure 24 shows the time-averaged pressure coefficient,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

x/c x/c
(a) SD7003 (b) Optimized case

Figure 24: Pressure coefficient distribution for the initial and final SD7003 designs at
Re = 6× 104 and α = 6.07◦.

Cp, for both the initial and optimal designs. This shows that the optimal design has a

significantly large pressure difference between the upper and lower surfaces, resulting

in greater lift. Figure 25 shows isosurfaces of Q-criterion for the optimized airfoil.

This shows that the flow transitions to turbulence in the aft portion of the airfoil.

In conclusion, these results demonstrate that MADS combined with binary DPA is a

suitable strategy for aerodynamic shape optimization using LES.

3.4 Remarks

In this study, we have demonstrated the utility of MADS for shape optimization using

time-averaged objective functions obtained via LES for turbulent flows. The general

approach was initially validated using optimization of the chaotic Lorenz system. We

44

Figure 25: Isosurfaces of Q-criterion for the optimized SD7003 airfoil at Re = 6×104.

then applied the approach to two aerodynamics applications using the SD7003 airfoil

as an initial design. The first low Reynolds case was used to investigate DPA, where

the solution polynomial degree was dynamically adapted based on the current poll

size used by MADS. When the poll size is large, corresponding to a broad search in

the design space, a lower solution polynomial degree is used to reduce computation

cost. Conversely, when the poll size is small, corresponding to a narrow search near

the optimal design, a high solution polynomial degree was used to increase solution

accuracy. Of the two DPA modes investigated, the binary mode was found to be

more robust as it did not introduce unwanted oscillations in the objective function.

Finally, a demonstration case of shape optimization of a turbulent SD7003 airfoil

was considered using LES and the binary DPA approach with MADS. Following ver-

ification of the baseline configuration, MADS was able to find a new airfoil geometry

that was 32% more efficient than the baseline design. This represents a significant

increase in performance and, importantly, this was achieved using high-fidelity LES

as opposed to a lower-fidelity RANS-based approach. Hence, we have demonstrated

that optimization using LES is feasible, and that it can be achieved using MADS. Fu-

ture work will focus on exploring a larger number of design parameters and a greater

range of design spaces for which conventional RANS-based flow solvers are known to

be inaccurate.

45

Chapter 4

Sensitivity Analysis of Chaotic

Systems

4.1 Overview

Computational methods in a wide range of engineering fields are valuable tools for

design, optimization, control, and uncertainty quantification [54, 67, 79, 96]. Sensi-

tivity analysis, i.e., considering the derivatives of an output of a dynamical system to

entries, is the main part of optimization, or control approach, for real-world engineer-

ing problems. For engineering design, physical phenomena can be mathematically

modelled in the form of Partial Derivative Equations (PDEs), which are referred

to as governing equations of a dynamical system. These physical phenomena often

convey complicated non-linear behaviours, making engineering design more challeng-

ing. In fluid mechanics, conventional approaches in sensitivity analysis often fail to

compute practical sensitivities for scale-resolving turbulent flow simulations, such as

Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) [17]. With

the advent of powerful computational hardware, these high-fidelity tools have been

widely used for turbulent flow analysis in science and engineering fields. Unlike low-

fidelity Reynolds-Averaged Navier-Stokes (RANS) solver, LES and DNS resolve most

fine structures, containing chaotic behaviour of turbulent flows [18]. However, these

approaches often compute impractical sensitivity solutions due to chaotic divergence

of sensitivity functions [139]. This is because there is at least one unstable mode with

a positive Lyapunov exponent in the dynamical system.

46

dt

dt

Reference trajectory

Shadow trajectory

u(t)

u(t+dt)
u

s
(t+dt)

u
s
(t)

(a) Without time dilation

dt

dτ

Reference trajectory

Shadow trajectory

u(t)

u(t+dt)u
s
(τ+dτ)

u
s
(τ)

(b) With time dilation

Figure 26: Schematic of shadow and reference trajectories.

Least Squares Shadowing (LSS), proposed by Wang et al.[139], is an efficient

method to evaluate sensitivities of chaotic dynamical systems [139]. LSS leverages

shadowing lemma, and ergodicity of dynamical system to solve these sensitivities [18].

According to the shadowing lemma, there is one perturbed solution for any ergotic

dynamical system, such that this perturbed solution sticks as close as possible to

the reference one over time domain T. Figure 26 shows a schematic of a shadow

solution that tracks a reference trajectory for two different conditions. In this figure,

u : T → Rnu is a reference solution, evolving with physical time t ∈ T, and dt ∈ R+

denotes the time-step. Additionally, τ ∈ T is a time transformation for a perturbed

dynamical system, and dτ ∈ R+ is the time-step to advance shadow solution with

time, us : T→ Rnu . In Figure 26a, shadow and reference trajectories have the same

discrete time-steps, dτ = dt, yielding low accuracy results for LSS approach. This is

because the distances between these solutions are not minimum over T. On the other

hand, as shown in Figure 26b, shadow solution evolves with time transformation,

yielding a flexible solution in physical time that remains close to the reference one.

In other words, this time transformation applies an orthogonal constraint to the

perturbed dynamical system, such that the distance lines, connecting shadow and

reference solutions at each time interval, become perpendicular to both trajectories

over T. LSS particularly seeks for a new solution with different initial condition that

has the lowest loss function, 1
T

∫ T
0
‖us−u‖2

2dt, where [0, T] ∈ T is a time window with

final time T ∈ R+. Therefore, this approach paves the way to consider sensitivity

analysis, uncertainty quantification, and large-scale PDE-constrained optimization of

chaotic dynamical systems.

47

4.2 Partial Derivatives

Let us consider Eq. (1) with u(t, S) = [u1(t,S), u2(t,S), ..., unu(t,S)]>, where ui(t,S)

with i = 1, 2, . . . , nu is the state of the dynamical system. Suppose that the design

parameters are slightly perturbed by δS → ε, where, ε is small. The augmented state

is us,i(τ,S + δS), and the augmented state vector can be defined as us(τ,S + δS) =

[us,1(τ,S+δS), us,2(τ,S+δS), ..., us,nu(τ,S+δS)]>, where τ is a time transformation

for the augmented dynamical system.

According to the shadowing lemma, any state vector with a significant pertur-

bation can not be considered as the “shadow” of the reference state vector. Gen-

erally, three essential criteria should be taken into account for this purpose: (1)

when δS → ε, there is only one unique shadow solution, us(τ,S + δS) : T → Rnu ;

(2) the behaviour of us(τ,S + δS) remains in the flux of the augmented dynami-

cal system, f s : Rnu → Rnu , such that these evolutional behaviours should be in

τ ∈ T and τ 6= t, leading to ∇.f s : us × τ → us, which is often not equal to

∇.f : u × t→ u ; and (3) with respect to the shadowing lemma, the shadow solution

satisfies ‖ us(τ,S + δS) − u(t,S) ‖2≤ ε, where ε ∈ R+ is the maximum distance

between the reference and augmented state vectors. These three criteria ensure the

existence of a shadow for the reference state vector. Therefore, the sensitivity of the

reference state with respect to a set of design parameters can be defined as follows

v(t,S) =
∂u

∂S ≈ lim
δS→0

1

δS

(
us

(
τ,S + δS

)
− u(t,S)

)
. (29)

Employing a first-order forward Finite Difference (FD) scheme, Eq. (29) indicates

that there is a direct relation between the shadow and forward sensitivity solutions.

Rewriting Eq. (29) in the form of a Taylor series by neglecting higher-order terms,

and assuming that δS → 0, the shadow solution of the reference state vector can be

obtained by

us

(
τ,S + δS

)
= u(t,S) + δSv(t,S). (30)

Finding the derivative of Eq. (30) with respect to t ∈ T, the velocity of the state

vector for the augmented dynamical system is given by

lim
δS→0

∂us

∂t
= −∇.f

(
u , t,S

)
+
∂v

∂t
δS. (31)

It is worth mentioning that Eq. (31) shows that the augmented dynamical system is

48

proportional to the velocity of the sensitivity solution, ∂v
∂t

. This means that the aug-

mented dynamical system has the potential to be formulated with respect to v(t,S).

Hence, applying the shadowing lemma to sensitivity analysis of chaotic dynamical

systems paves the way to relate the sensitivity solution to the shadow solution of

the reference state vector. Similarly, by definition of the shadow solution, the partial

derivative of Eq. (1) can be written as

d∇.f
dS = lim

δS→0

1

δS

(
∇.f s

(
us, τ,S + δS

)
−∇.f

(
u , t,S

))
=
∂∇.f
∂u

v +
∂∇.f
∂S . (32)

Similar to Eq. (30), the shadow of the dynamical system is

∇.f s
(
us, τ,S + δS

)
= ∇.f

(
u , t,S

)
+ δS

(
∂∇.f
∂u

v +
∂∇.f
∂S

)
, t ∈ T, (33)

where Eq. (33) notes that, regardless of τ ∈ T, ∇.f s can be computed in the physical

time, t ∈ T, such that computing ∇.f and d∇.f /dS yields the approximation of

∇.f s.
Based on the shadowing lemma, the time transformation of the shadow solution

is a function of the physical time, τ ≡ η(t), where η ∈ R is the time dilation defined

by

η(t) = lim
δS→0

δ
(
dτ/dt− 1

)

δS . (34)

It is worth noting that when δS → 0, the time dilation becomes negligible (i.e.

η → 0), and both the shadow and reference solutions embed in the same time domain

(i.e. τ u t ∈ T). Integrating Eq. (34) yields

∫ dτ/dt−1

0

d
(dτ
dt
− 1
)

=

∫ S+δS

S
η(t)dS, (35)

and therefore, the solution of Eq. (35) is obtained by

dτ

dt
= 1 + η(t)dS. (36)

The same idea can also be applied to find the shadow of the objective function.

Therefore, the shadow solution will help compute the sensitivity of the objective

function in the design space D . Let us assume that the shadow of the objective

function is represented as Js(us, τ,S + ∆S) : Rnu → R. Hence, the full derivative of

the objective function is

dJ
dS = lim

δS→0

1

δS
(
Js
(
us, τ,S + δS

)
− J

(
u , t,S

))
=
[∂J
∂u

]>
v +

∂J
∂S , (37)

49

and, similar to Eq. (30), we can represent Eq. (37) as

Js
(
us, τ,S + δS

)
= J

(
u , t,S

)
+ δS

([∂J
∂u

]>
v +

∂J
∂S

)
. (38)

Note that Eq. (29) to Eq. (38) are basic definitions in sensitivity analysis, and using

them we can stabilize “ill-posed” forward sensitivity functions of chaotic dynamical

systems [21].

4.3 Least Squares Shadowing (LSS)

Least-Squares Shadowing (LSS) tries to find us(τ,S+δS) by minimizing the distance

between the trajectories of the shadow solution and the reference state vector over

[0, T] ∈ T. Therefore, the Least-Squares minimization formulated for LSS is given by

minimize
us∈Rnu ,τ∈R

lim
δS→0

1

T

∫ T

0

‖us(τ,S + δS)− u(t,S)‖2 + α2
lss‖

dτ

dt
− 1‖2dt,

subject to
∂us

∂τ
+∇.f s = 0, τ ∈ T,

(39)

where αlss is the weighting factor of the time dilation. When δS → 0, Eq. (29) and

Eq. (34) can be used to reformulate Eq. (39) as

minimize
us∈Rnu ,τ∈R

lim
δS→0

1

T

∫ T

0

‖v(t,S)‖2 + α2
lss‖η(t)‖2dt,

subject to
∂us

∂τ
+∇.f s = 0, τ ∈ T.

(40)

The main challenge in Eq. (40) is that the augmented state vector evolves with τ ∈ T,

and the shadow of the dynamical system is unknown. According to Section 4.2, the

augmented state vector should be solved in the physical time, t ∈ T. Using chain

rule, the velocity of the state vector for augmented dynamical system can be defined

as
∂us(τ,S)

∂t
=
∂τ

∂t

∂us(τ,S)

∂τ
. (41)

According to Eq. (41), Eq. (33) and Eq. (36), the constraint function in Eq. (40) are

∂us

∂t
+∇.f + ηδS∇.f + δS

(
∂∇.f
∂u

v +
∂∇.f
∂S

)

+ ηδS2

(
∂∇.f
∂u

v +
∂∇.f
∂S

)
= 0.

(42)

50

When δS → 0, the last term of Eq. (42) will be negligible, and then Eq. (42) can be

simplified to

∂us

∂t
+∇.f + δS

(
∂∇.f
∂u

v +
∂∇.f
∂S + η∇.f

)
+O(δS2) = 0. (43)

Therefore, by subtituting Eq. (43) into Eq. (31), the constraint function becomes

∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S + η∇.f = 0, v(0) = v 0, t ∈ T, (44)

where, η∇.f shows the effect of time dilation on the augmented dynamical system.

Note that if we set δS → 0, or neglect the effect of time dilation on the results (i.e.,

τ u t), then η∇.f can be removed from Eq. (44). In the end, the final formulation

of Eq. (40) is given by

minimize
v∈Rnu ,η∈R

lim
δS→0

1

T

∫ T

0

‖v(t,S)‖2
2 + α2

lss‖η(t)‖2
2dt

subject to
∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S + η∇.f = 0, t ∈ T.

(45)

According to Eq. (45), for a given perturbation, δS → ε, LSS seeks to find the smallest

values of v and η, guaranteeing the results of the augmented dynamical system are

as close as possible to the shadow solution.

4.4 Lagrange Multiplier

The Lagrange function for Eq. (45) is

L =
1

T

∫ T

0

(
v>Kv +α2

lssη
2

)
dt+

∫ T

0

Λ>
(
∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S +η∇.f

)
dt, t ∈ T,

(46)

where, Λ(t) ∈ Rnn is the Lagrange multiplier, and K ∈ Rnu×nu is a weighting matrix.

By applying the Karush-Kuhn Tucker (KKT) condition, the solution of the Lagrange

function is

∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S + η∇.f = 0,

∂Λ

∂t
− ∂∇.f

∂u

>
Λ− 1

T
K>v = 0, Λ(0) = Λ(T) = 0,

2

T
α2
lssη + Λ>∇.f = 0.

(47)

51

Note that there are some conditions for Lambda(t) to exist. Since the physical phe-

nomena we are looking at already satisfy these conditions, we do not investigate them.

Solving Eq. (47) returns the sensitivity solution and the time dilation over [0, T] ∈ T.

However, Eq. (47) represents a set of non-linear ODEs that must be solved numer-

ically in the discrete time domain, ∆T, such that t(n) = {t(1), t(2), . . . , t(mu)} ∈ ∆T,

where n denotes time index, and mu is the total number of time steps. To solve

Eq. (47) numerically, we discretize it using the BDF scheme in Eq. (4). Therefore,

the discrete form of Eq. (47) can be written as

lim
δS→0

dr (n)

dS :=
k∑

j=0

ζjv
(n−j) + β0∆t

∂∇.f (n)

∂u (n)
v (n) + ∆t

∂∇.f (n)

∂S + η(n)∆t∇.f (n) = 0,

k∑

j=0

ζjΛ
(n+j) + β0∆t

[
∂∇.f (n)

∂u (n)

]>
Λ(n) +

1

mu

K>v (n) = 0, Λ(0) = Λ(mu) = 0,

2α2
lssη

(n) −mu∆tΛ
>(n)∇.f (n) = 0.

(48)

Rearranging Eq. (48), the following formulation is obtained

(
ζ0I + β0∆t

∂∇.f (n)

∂u (n)

)
v (n) +

k∑

j=1

ζjv
(n−j) + β0∆t

∂∇.f (n)

∂S + η(n)∆t∇.f (n) = 0,

(
ζ0I + β0∆t

[
∂∇.f (n)

∂u (n)

]>)
Λ(n) +

k∑

j=1

ζjΛ
(n+j) +

1

mu

K>v (n) = 0, Λ(0) = Λ(mu) = 0,

2α2
lssη

(n) −mu∆tΛ
>(n)∇.f (n) = 0,

(49)

where, I ∈ Rnu×nu is identity matrix. Finally, the residual form of Eq. (49) with
∂r (n)

∂u(n) ,
∂r (n)

∂u(p) (where, p 6= n), and ∂r (n)

∂S is

∂r (n)

∂u (n)
v (n) +

k∑

j=1

∂r (n)

∂u (n−j)v
(n−j) +

∂r (n)

∂S + η(n)∆t∇.f (n) = 0,

[
∂r (n)

∂u (n)

]>
Λ(n) +

k∑

j=1

[
∂r (n)

∂u (n+j)

]>
Λ(n+j) + K>v (n) = 0, Λ(0) = Λ(mu) = 0,

α2
lssη

(n) −mu∆tΛ
>(n)∇.f (n) = 0.

(50)

Note that because αlss and K are weighting parameters, their factors (i.e., 2 and
1
mu

) are embedded. For simplicity, we solve Eq. (50) separately for each si ∈ S =

52

{s1, s2, . . . , sns}. Consequently, Eq. (50) can be represented as a multi-block matrix

B C 0

0 α2
lssI muC>

K> 0 B>

v

η

Λ

 = −

D
0

0

 , (51)

where,

B =

∂r (k)

∂u(1)
∂r (k)

∂u(2) . . . ∂r (k)

∂u(k)

∂r (k+1)

∂u(2)
∂r (k+1)

∂u(3) . . . ∂r (k+1)

∂u(k+1)

.

∂r (mu)

∂u(mu−k)
∂r (mu)

∂u(mu−1) . . . ∂r (mu)

∂u(mu)

,

C = ∆t

∇.f (k)

∇.f (k+1)

. . .

∇.f (mu)

, D =

∂r (k)

∂si
∂r (k+1)

∂si
...

∂r (mu)

∂si

.

(52)

In Eq. (52), B ∈ Rnu(mu+1−k)×nu(mu+1), C ∈ Rnu(mu+1−k)×mu are sparse multi-block

matrices, and D ∈ Rnumu is a vector. Eq. (51) can be represented in lower dimensions

using Gaussian elimination

[
BB> +

1

α2
lss

CC>
]
Λ = D, (53)

where, BB> ∈ Rnu(mu+1−k)×nu(mu+1−k) and CC> ∈ Rnu(mu+1−k)×nu(mu+1−k). In general,

B and C have a large number of non-zeros, which is usually the case for high-fidelity

chaotic dynamical systems. Moreover, according to Eq. (53), the derivative compo-

nents, ∂r
∂u

and ∂r
∂si

, should be stored for all time intervals to a hard disk (e.g., Hard

Disk Drive (HDD) or Solid-State Drive (SSD)), and Random Access Memory (RAM),

which makes Eq. (53) prohibitively expensive to solve. For instance, the number of

Jacobian matrices that should be stored in the computing device is mu, and we require

all Jacobian matrices at the same time to build B.

53

4.5 Long-Term Sensitivity of the Objective Func-

tion

In order to find the long-term sensitivity of the objective function with respect to a

set of design parameters, we define the vector sensitivities

∆J
δS =

Js − J
δS , (54)

where, x denotes the time-averaged of x(t) over T. To obtain the sensitivities in

Eq.(54), the gradient of the objective function is

∆J = Js−J =
1

τ(T)− τ(0)

∫ τ(T)

τ(0)

Js
(
us, t,S + δS

)
dt− 1

T

∫ T

0

J
(
u , t,S

)
dt, (55)

where, Js is a function of τ ∈ T, and J evolves with t ∈ T. Afterward, we use Eq.(36)

to eliminate τ from Eq. (55). Therefore, we integrate both side of Eq.(36)
∫ T

0

1 + η(t)dS =

∫ τ(T)

τ(0)

dτ

dt
= τ(T)− τ(0), (56)

where, the linear relation of the time transformation, τ(T)− τ(0), is expressed as an

integral function. Therefore, by substituting Eq.(38) and Eq.(56) into Eq.(55), we

obtain

∆J =
1∫ T

0
1 + η(t)dS

∫ T

0

(
1 + η(t)dS

)[
J
(
u , t,S

)
+ δS

(
∂J
∂u

v +
∂J
∂S

)]
dt

− 1

T

∫ T

0

J
(
u , t,S

)
dt.

(57)

Rearranging Eq.(57) as follows

∆J =
1∫ T

0
[1 + η(t)]dS

∫ T

0

[
η(t)δSJ (u , t,S) + (δS)2η(t)

(
∂J
∂u

v +
∂J
∂S

)

+ δS
(
∂J
∂u

v +
∂J
∂S

)]
dt−

∫ T
0
η(t)δSdt

∫ T
0
J (u , t,S)dt

T
∫ T

0
[1 + η(t)]dS

,

(58)

where the second term in the first integral becomes negligible due to small value of

(δS)2, if δS → 0. Therefore, Eq.(58) can be summarized as follows

∆J =
1∫ T

0
[1 + η(t)]dS

∫ T

0

δS
(
∂J
∂u

v +
∂J
∂S

)
dt

+

∫ T
0
η(t)δSJ (u , t,S)dt
∫ T

0
[1 + η(t)]dS

−
∫ T

0
η(t)δSdt

∫ T
0
J (u , t,S)dt

T
∫ T

0
[1 + η(t)]dS

+O(δS2).

(59)

54

Since δS is a known value, we can factor it out

∆J =

[
1∫ T

0
[1 + η(t)]dS

∫ T

0

(
∂J
∂u

v +
∂J
∂S

)
dt

+

∫ T
0
η(t)J (u , t,S)dt
∫ T

0
[1 + η(t)]dS

−
∫ T

0
η(t)dt

∫ T
0
J (u , t,S)dt

T
∫ T

0
[1 + η(t)]dS

]
δS +O(δS2),

(60)

and we can assume that the amount of η(t) would be negligible over time, since

δS → 0. Therefore, Eq.(60) can be represented as

∆J
δS =

1

T

∫ T

0

(
∂J
∂u

v +
∂J
∂S

)
dt+

1

T

∫ T

0

η(t)J (u , t,S)dt

− 1

T 2

∫ T

0

η(t)dt

∫ T

0

J (u , t,S)dt.

(61)

Finally, by rearranging those terms in Eq.(61), we obtain

∆J
δS =

1

T

∫ T

0

[(
∂J
∂u

v +
∂J
∂S

)
+ η(t)

(
J (u , t,S)− J

)]
dt. (62)

We apply Eq. (62) to find the sensitivities of the objective function with respect to S.

The second term in Eq. (62) is responsible for the effect of the time transformation

on the shadow solution. This term is often small if δS → 0, but it might become im-

portant when highly sensitive objective functions are considered. Another simplified

form of Eq.(62) can be cast as

∆J
δS =

(
∂J
∂u

v +
∂J
∂S

)
+ ηJ − J η. (63)

In this Chapter, implementing the shadowing lemma in a form of the mathematical

formulation will let us consider sensitivity analysis and optimization in the presence

of chaotic dynamical systems. Since conventional LSS is often prohibitively expensive

for scale-resolving problems, we will introduce a novel framework to implement this

idea with a feasible amount of computational resources for large-scale problems.

55

Chapter 5

Dimensionality Reduction &

Closure Models

5.1 Overview

Expensive computational costs of high-fidelity Full-Order Models (FOMs) led to the

emergence of surrogate models, referred to as Reduced-Order Models (ROMs), to ap-

proximate the solution of FOMs. Proper Orthogonal Decomposition(POD) [38, 73],

Dynamic Mode Decomposition(DMD) [114, 122], Balanced truncation [90, 92], Eigen

Realization Analysis (ERA) [69, 70, 110] are common techniques that have been de-

veloped, and applied successfully to a wide range of engineering problems. However,

these techniques are data-driven, with a lack of information from the governing equa-

tions. In other words, the ROM identifies the evolutionary behaviour of the dynamical

system using linear models and raw data to approximate the solution of the FOM.

However, most engineering problems, such as fluid physics and turbulence, are highly

non-linear or chaotic. Therefore, in the form of the ROM, those linear models often

fail to predict the dynamics of non-linear systems over long time domains.

Physics-constrained techniques apply the governing equations (i.e. Navier-Stokes

equations) directly to build the ROM. These techniques are referred to as projection-

based approaches. In these approaches, the solution from lower dimensional space is

projected into a higher dimensional one, and vice versa. One of the famous projection-

based approaches is Galerkin projection, which encompasses the governing equations

in its infrastructures. While the Galerkin projection is the simplest one, it has been

56

successfully applied to various engineering and scientific problems [37, 47, 115]. How-

ever, it loses its stability, accuracy, and convergence to predict non-linear and chaotic

systems [118]. This failure results from the lack of the priori property [61]. This

means that adding more subspaces (i.e., modes) to the model does not necessarily

improve or guarantee the accuracy of the solution.

Recently, the Least-Squares Petrov Galerkin (LSPG) approach was developed [30],

which is a promising projection-based approach to overcome stability issues in the

ROM of non-linear dynamical systems. Specifically, LSPG relies on the least-squares

residual minimization for model reduction of these non-linear systems [30]. The LSPG

is defined as a fully discrete approach, and it solves for the solution in lower dimen-

sional space by minimizing the residual of the ROM, where this residual is projected

into higher dimensional space at each discrete time step. Furthermore, this approach

inherently includes physical constraints, such as conservation, since it is formulated

as a minimization problem [31]. Although LSPG has the potential to be applied to

the ROM for highly non-linear and chaotic systems, it has some limitations. Firstly,

it does not guarantee priori stability, which means that it is still unclear how many

modes, or subspaces, are required to obtain the best computational performance

[29, 34, 62]. Secondly, solutions predicted via LSPG are significantly influenced by

time integrator, and time-step [29]. Thirdly, when explicit time integrators are em-

ployed, this LSPG mimics the Galerkin projection and, hence, it becomes unstable.

Therefore, the application of the LSPG is only limited to implicit time integrators

[29], resulting in higher computational costs compared to those with explicit schemes.

5.1.1 The Weak Form of the Full-Order Model (FOM)

In order to build a closure model in the form of the projection-based ROM, we need to

develop the weak form of the FOM. The FOM is in high-dimensional physical space

P, but can be decomposed into multiple lower-dimensional subspaces by the Galerkin

method. First, a trial basis function is defined as a mapping function between P and

a non-dimensional space H (i.e., Hilbert space). This trial basis function includes a

set of orthogonal bases

Φ =

| | |
φ1 φ2 ... φnu

| | |

 , (64)

57

where Φ ∈ Rnu×nu and Φ>Φ = I. These orthogonal vectors can be generated by

Proper Orthogonal Decomposition (POD). Since Φ is a full rank matrix, the state

vector can be defined as a set of linear combinations of these orthogonal vectors

u(t) = u +
nu∑

i=1

φiqi(t) = u + Φq , (65)

where, u ∈ Rnu is the reference vector of the state, and q : T→ Rnu is the generalized

coordinates of the trial basis function with q = [q1(t), q2(t), . . . , qnu(t)]>. In a similar

way, we define a test basis function, as a full rank matrix

Ψ =

| | |
ψ1 ψ2 ... ψnu

| | |

 , (66)

where Ψ ∈ Rnu×nu , and its columns are linearly independent vectors. Eq. (1) can be

represented in the form of the generalized coordinates by substituting Eq. (65) into

Eq. (1), which yields

Φ
∂q

∂t
+∇.f (u + Φq , t,S) = 0, q(0) = q0, t ∈ T, (67)

where, q0 ∈ Rnu with Φq0 7→ u0 is the initial condition. The weak form of Eq. (67)

can also be represented as

Ψ>Φ
∂q

∂t
+ Ψ>∇.f (u + Φq , t,S) = 0, q(0) = q0, t ∈ T. (68)

From a mathematical perspective, first we define the exact representation of the FOM

in H as F : Rnu → Rnu . In other words, F is the weak form of ∇.f that evolves in

H . then we employ Eq. (68) as a closure model to project the state vector of the

FOM from P into the generalized coordinates in H , such that F : q × T→ q with

q 7→ F(q).

5.1.2 Dimensionality Reduction

Significant evolutional behaviours of a dynamical system are usually governed by

dominant features, structures, or patterns. If we decompose the trial and test basis

functions into multiple lower-dimensional subspaces, these dominant structures are

common in the coarse-scale subspaces. Therefore, based on this concept, we can

58

rearrange vectors (i.e., columns) in the test and trial basis functions based on their

priority (i.e., according to the eigenvalue of each column). Next, we select the first r

rank of vectors (where, r << nu) from the test and trial basis functions as the coarse-

scale subspaces, and consider the remaining as the fine-scale subspaces. These basis

functions are

Φ̃ =

| | |
φ1 φ2 · · · φr

| | |

 , Φ′ =

| | |

φr+1 φr+2 · · · φnu

| | |

 , (69)

Ψ̃ =

| | |
ψ1 ψ2 · · · ψr

| | |

 , Ψ′ =

| | |

ψr+1 ψr+2 · · · ψnu

| | |

 , (70)

where Φ̃ ∈ Rnu×r and Φ′ ∈ Rnu×(nu−r) are the coarse-scale and fine-scale trial sub-

spaces, respectively. Additionally, Ψ̃ ∈ Rnu×r and Ψ′ ∈ Rnu×(nu−r) are defined in the

same manner. The test and trial basis functions can also be written as

Φ = Φ̃⊕Φ′, and Ψ = Ψ̃⊕Ψ′. (71)

It is worth pointing out that decomposition of space into two distinct subspaces should

have two important features: firstly, the subspaces do not overlap, i.e. Φ̃ ∩ Φ′ = 0,

and secondly, they are orthogonal, i.e. Φ̃ ⊥ Φ′. This is because the vectors in the

basis function are orthogonal. However, the test basis function may not have the

second feature. In a similar way, the state vector can also be decomposed into the

coarse-scale and fine-scale subspaces

ũ(t) =
r∑

i=1

Φ̃iq̃i(t) = Φ̃q̃ , (72)

u ′(t) =
N∑

i=r+1

Φ′iq
′
i(t) = Φ′q ′, (73)

where, ũ : T → Rnu , u ′ : T → Rnu , q̃ : T → Rr and q ′ : T → Rnu−r. Also,

u = u + ũ + u ′ represents the linear relation between the reference vector, coarse-

scale and fine-scale solutions. Hence, representing the state vector of the FOM in

multi-scale subspaces allows us to write Eq. (68) as two linearly independent systems

Ψ̃(n)>Φ̃
∂q̃

∂t
+ Ψ̃(n)>Φ′

∂q ′

∂t
+ Ψ̃(n)>∇.f (u + Φ̃q̃ + Φ′q ′, t,S) = 0, t ∈ T, (74)

59

Ψ′>Φ̃
∂q̃

∂t
+ Ψ′>Φ′

∂q ′

∂t
+ Ψ′>∇.f (u + Φ̃q̃ + Φ′q ′, t,S) = 0, t ∈ T, (75)

where a combination of Eq. (74) and Eq. (75) builds the wake form of the FOM. In

other words, these equations are the coarse-scale and fine-scale functions of the FOM

in H .

In order to build a closure model in the form of the ROM, the first assumption

is that the dynamical system contains only the coarse-scale solutions (i.e., u ′ ≈ 0).

This assumption turns the weak form of the FOM into a new equation for only the

coarse-scale dynamical features that are embedded in H . On the other hand, the

evolution of these coarse-scale features depends on the fine-scale dynamical features

[108]. This issue is addressed as a closure problem that should be taken into account.

Therefore, the closure model is obtained by

Ψ̃>Φ̃
∂q̃

∂t
+ Ψ̃>∇.f (u + Φ̃q̃ , t,S) = 0, q̃(0) = q̃0, t ∈ T. (76)

5.2 Galerkin Projection

Galerkin projection is a technique to build the ROM, where lower dimensional sub-

spaces are created using the POD technique, which is performed as the offline part of

the ROM [12]. Subsequently, the online part of the ROM is to solve for the solution

in constructed subspaces [12]. This approach is not practical if the number of physical

modes in these subspaces is small. Additionally, for long term approximation, this

method might become unstable [13]. In Galerkin projection, the test basis and trial

basis functions are equivalent (i.e. Ψ̃ = Φ̃). Therefore, Eq. (76) will be simplified to

∂q̃

∂t
+ Φ̃>∇.f (u + Φ̃q̃ , t,S) = 0, q̃(t = 0) = q̃0. (77)

If temporal discretization is based on the residual minimization at each discrete time-

step, t(n) ∈ ∆T, Eq. (77) can be written in the form of the residual, r : Rnu → Rnu ,

as follows

Φ̃>r (n) := Φ̃>

[
Φ̃
∂q̃

∂t
+∇.f (u + Φ̃q̃ , t,S)

]
= 0, q̃ (0) = q̃0. (78)

We assume that those vectors in Φ̃ are orthogonal, Φ̃>Φ̃ = I, otherwise the full

projection should be taken into account via
(
Φ̃>Φ̃

)−1

Φ̃. Additionally, the initial

condition for the ROM is approximated by q0 = Φ̃>u (0).

60

It is shown that this Galerkin projection is a continuous optimal technique, such

that it minimizes `2-norm of the high dimensional solution over the trial basis sub-

spaces [30]. Due to this optimal property, adding more trial basis vectors to the basis

function, Φ̃ → Φ, yields a monotonic reduction in the `2-norm of the residual [29].

Recall Eq. (3), the ROM using this Galerkin projection is represented in the discrete

form

Φ̃>r (n) :=
k∑

j=0

ζj q̃
(n−j) + ∆t

k∑

j=0

βjΦ̃
>∇.f

(
u + Φ̃q̃ (n−j), t(n−j),S

)
= 0, (79)

where, Eq. (79) indicates that the residual increases due to the accumulation of nu-

merical errors from the previous time intervals. As a matter of fact, the coarse-scale

subspaces produce excessive errors, influencing the dynamics in ∇.f . However, this

residual for the linear dynamical system is negligible, and the ROM is often stable.

On the other hand, the ROM becomes unstable if the dynamical system is highly

non-linear or chaotic. Therefore, having poor optimality conditions restricts the ap-

plication of Galerkin projection to linear dynamical systems.

5.3 Least Squares Petrov-Galerkin Projection

In the weak form of a FOM, if we apply a discrete time integrator, it will be possible

to check and control optimality conditions at all t(n) ∈ ∆T. This discrete optimality

concept raises up as a key step in the closure modelling, such that `2-norm of the

residual at each time interval is minimized. According to Eq. (3), the residual of the

dynamical system at each time interval is

r (n) :=
∆u (n)

∆t(n)
+∇.f (u (n), t(n),S) ≈ 0, u (0) = u0, (80)

where ∆t(n) ∈ ∆T is the time-step at t(n). Here, we use a constant time-step for all

time intervals, ∆t(n) = ∆t. To solve for this dynamical system in time, we need to

minimize the residual in Eq. (80) at each time interval. To this end, we employ the

Petrov-Galerkin approach to convert Eq. (80) into a minimization problem

W>r (n) =W>
(

∆u (n)

∆t
+∇.f (u (n), t(n),S)

)
= 0, u (0) = u0, (81)

where W ∈ Rnu×nu is a weighting function that enforces r (n) to be minimum over

∆T. Solving this minimization problem using the Petrov-Galerkin approach with

61

optimality condition, where `2-norm of the residual is considered, is called Least-

Squares Petrov-Galerkin (LSPG) approach. Therefore, LSPG formulation is written

as follows

u (n) ∈ argmin
z ∈ Rnu

∥∥A(z)r (n)(z , t(n),S)
∥∥2

2
, and n = 1, . . . ,mu, (82)

where mu is the number of time intervals, and A ∈ Rnu×nu is a weighting matrix

that enables definition of weighted norm [33]. The weighting matrix can also be

used for hyper-reduction at which we can only select a finite number of the states,

and compute the corresponding residual at those states [34]. In standard LSPG, the

residual for all states are considered, A = I.

We can extend the application of the LSPG to solve for the generalized coordinates

in lower subspaces as follows

q̃ (n) ∈ argmin
z ∈ Rnu

∥∥∥A(u + Φ̃z)r (n)(u + Φ̃z , t(n),S)
∥∥∥

2

2
, and n = 1, . . . ,mu, (83)

where the residual is a full-rank vector, r (n) ∈ Rnu , while the vector of the gen-

eralized coordinates is r-rank, q (n) ∈ Rr, which means that this minimization is

under-determined problem. Recall Eq. (3), we discretize Eq. (81), and cast it into

W>
(

k∑

j=0

ζju
(n−j) + ∆t(n)

k∑

j=0

βj∇.f (n)
(
u (n−j), t(n−j),S

))
= 0, (84)

and we use Eq. (65) to rewrite Eq. (84) as

W>
k∑

j=0

ζjΦ̃q (n−j) +W>
(

∆t(n)

k∑

j=0

βj∇.f (n)
(
u + Φq (n−j), t(n−j),S

))
= 0. (85)

Since the trial basis function, Φ̃, remains constant over ∆T, then Eq. (85) is presented

as follows

W>Φ̃
k∑

j=0

ζjq
(n−j) +W>

(
∆t(n)

k∑

j=0

βj∇.f (n)
(
u + Φq (n−j), t(n−j),S

))
= 0. (86)

Comparing Eq. (86) and Eq. (68), we realize that the ROM developed via LSPG

is the same as the weak form of the FOM. Accordingly, we conclude that W = Ψ̃.

Therefore, Eq. (86) for a ROM with r-rank is

Ψ̃(n)>Φ̃
k∑

j=0

ζjq
(n−j) + Ψ̃(n)>

(
∆t(n)

k∑

j=0

βj∇.f (n)
(
u + Φq (n−j), t(n−j),S

))
= 0. (87)

62

In implicit temporal schemes, such as Backward Differentiation Formula (BDF), the

second term on the righ-hand side of Eq. (87) is not considered, ∀j > 0: βj = 0.

Therefore, Eq. (87) can be simplified to

Ψ̃(n)>Φ̃
k∑

j=0

ζjq
(n−j) +∆t(n)β0Ψ̃

(n)>∇.f (n)
(
u +Φq (n), t(n),S

)
= 0, q̃ (0) = q̃0. (88)

Finally, we realize that Eq. (88) is a specific form of Eq. (76), when the BDF shceme

is used.

5.4 LSPG vs. Galerkin Projection

To obtain the continuous form of the LSPG, we muliply both sides of Eq. (76) by(
Ψ̃>Φ̃

)−1

∂q̃

∂t
+
(
Ψ̃>Φ̃

)−1

Ψ̃>∇.f (u + Φ̃q̃ , t,S) = 0, q̃ (0) = q̃0. (89)

Similar to Eq. (89), we use the BDF scheme to discretize Eq. (88)

k∑

j=0

ζjq
(n−j) + ∆t(n)β0

(
Ψ̃(n)>Φ̃

)−1

Ψ̃(n)>∇.f (n)
(
u + Φq (n), t(n),S

)
= 0, q̃ (0) = q̃0.

(90)

It is shown that the test basis function for either continuous or discrete form of the

LSPG is dependent on time [29]

Ψ̃ = A>A
(
ζ0I + ∆tβ0

∂∇.f
∂u

)
Φ̃, (91)

where ∂∇.f
∂u

is the Jacobian matrix. The optimality condition applied to the ROM at

all time intervals is given by

Ψ̃(n)>r (n)(u + Φq (n), t(n),S) = 0. (92)

By assuming A = I, and substituting Eq. (91) into Eq. (92), we obtain

Φ̃>r (n)(u + Φq (n), t(n),S) + ∆tβ0Φ̃
>
[
∂∇.f
∂u

]>
r (n)(u + Φq (n), t(n),S) = 0. (93)

Here, we can distinguish Eq. (93) into two distinct terms. The first term is Galerkin

projection, and the second term is for stabilization. This means that LSPG adds an

additional term to the Galerkin projection to stabilize it over ∆T. Moreover, this

63

stabilization term is proportional to residual, which means the LSPG is a residual-

based method. It is worth pointing out that the stabilization term is used to control

disorders in the ROM due to eliminating the fine-scale modes in the dynamical sys-

tem. Therefore, LSPG converts the Galerkin projection into a closure problem. Some

features of this closure model, which is developed via LSPG, are enlisted as follows

1. When ∆t→ 0, LSPG turns into a Galerkin projection. Therefore, intermediate

∆t leads to optimal accuracy [29].

2. For explicit schemes, β0 → 0, both LSPG and Galerkin projection return equiv-

alent results.

3. LSPG method is strongly dependent on temporal discretization. Therefore, a

different temporal scheme results in a different test basis function. Hence, the

stabilization term will perform differently for each scheme [108].

The relation between the residual of the ROM and that of the FOM in H and P is

R(n)(q̃ (n), t(n),S) = Ψ̃>r (n)(u + Φq (n), t(n),S), (94)

where R : Rr → Rr, and r � nu. Eq. (94) indicates that those terms in the ROM do

not necessarily need to be known. In spite of finding unknow terms in this ROM, we

can indirectly take them into account using R(n)(q̃ (n), t(n),S). We will use Eq. (94)

later to obtain a closure model, in the form of a ROM, for sensitivity analysis.

5.5 Gauss-Newton Method

The Gauss-Newton method is an iterative mathematical approach to solve non-linear

least-squares problems. The residual of a FOM at each time interval is defined as a

cost function, r
(n)
gn ∈ Rnu . This cost function in the form of minimization is defined

as

min
q̃

(n)
i

r (n)
gn (q̃

(n)
i)

subject to r (n)
gn (q̃

(n)
i) =

1

2
‖r (n)(u + Φq̃

(n)
i , t(n),S)‖2

2

= r (n)>(u + Φq̃
(n)
i , t(n),S)r (n)(u + Φq̃

(n)
i , t(n),S),

(95)

64

where index i denotes the number of inner iterations in Gauss-Newton’s minimization.

The Gauss-Newton uses the first derivative of the cost function with respect to the

solution

∇r (n)
gn (q̃

(n)
i) =

[
∂r (n)

∂q̃
(n)
i

(u + Φq̃
(n)
i , t(n),S)

]>
r (n)(u + Φq̃

(n)
i , t(n),S), (96)

and also its second derivative

∇2r (n)
gn (q̃

(n)
i) =

[
∂r (n)

∂q̃
(n)
i

(u + Φq̃
(n)
i , t(n),S)

]>
∂r (n)

∂q̃
(n)
i

(u + Φq̃
(n)
i , t(n),S)

+

(n)∑

i=1

∂2r (n)

∂2q̃
(n)
i

(u + Φq̃
(n)
i , t(n),S)r (n)(u + Φq̃

(n)
i , t(n),S),

(97)

where, the second derivative of this cost function is approximated due to its compli-

cation. Therefore, the second term in Eq. (97) is neglected, and the inner iteration

in the Gauss-Newton method is obtained by

q̃
(n)
i+1 = q̃

(n)
i + ∆q̃

(n)
i+1, ∇2r (n)

gn (q̃
(n)
i)∆q̃

(n)
i+1 = ∇r (n)

gn (q̃
(n)
i). (98)

Alternatively, the normal form of Eq. (98) can be expressed as

∆q̃
(n)
i+1 ∈ argmin

z ∈ Rr

∥∥∥∥∥
∂r (n)

∂q̃
(n)
i

(u + Φq̃
(n)
i , t(n),S)z + r (n)(u + Φq̃

(n)
i , t(n),S)

∥∥∥∥∥

2

2

. (99)

65

Chapter 6

Gradient-Based Optimization

6.1 Overview

Inspired by Koopman theory, we will apply a similar approach to develop a frame-

work for optimization of non-linear systems. Figure 27 shows a general approach for

optimization problems. Conventionally optimization problems are solved in physi-

cal space, P. Consider the left-hand side object as the initial design in Figure 27.

To optimize the shape of this object, we solve the optimization problem subject to

a Hamiltonian dynamical system defined as ∇.H(u,S). In this example, u and S
represent state and shape parameters, respectively. The right-hand side object in

P is the optimized shape. According to the properties of a Hamiltonian system,

the dynamical system for each object has a unique representation in Hilbert space

H . Usually, this representation is as a set of generalized coordinates, q, that define

the dynamical behaviour of the corresponding object in H . Therefore, in order to

find the representation of the reference object, we project its corresponding state vec-

tor from P to H using a projection function P. We assume that F is a surrogate

model that represents the exact evolution of the state vector in H , such that that

F : q × T → q with (q, t) 7→ F(q, t) in t ∈ T. Now if we apply this optimization

problem subject to F, we obtain the optimized set of generalized coordinates. In the

end, we lift-back these optimized generalized coordinates from H to P via P′, ob-

taining the same optimized object in P. It is worth mentioning that F is unknown,

and we should build a closure model with rank r ∈ R+ given by F : Rr → Rr, such

that F : q×T→ q, in the form of a ROM to approximate F. The closer F to F, the

66

� �

�.H(u, S) ∈ P

F(q, S) ∈ H

P
H

P�

P

Optimize shape

Optimize dynamics

Figure 27: Optimization of the shape of an arbitrary object with subject to a Hamil-
tonian system in physical space P versus optimization of dynamics with subject to
a surrogate model in Hilbert space H .

closer the optimization results will be to the true optimal design in P.

In gradient-based optimization, sensitivity analysis plays a significant role in ob-

taining the gradients of the objective function with respect to the design parameters.

These gradients are used in the optimizer (i.e., Newton’s methods). The general

purpose of the aforementioned concept is that gradient-based optimization often fails

in the presence of large-scale chaotic dynamical systems. On the other hand, con-

ventional LSS is extremely expensive for real-world engineering problems. Hence, we

want to develop a framework that allows us to apply this LSS to sensitivity analysis of

large-scale chaotic systems with less computational costs and memory requirements.

As a FOM, the state vector of a high-dimensional dynamical system can be decom-

posed into steady and unsteady terms. The steady term is the reference state vector,

and computed via u = 1
T

∫ �
0
u(t,S)dt. The unsteady terms, the coarse-scale and

fine-scale, can also be defined as a set of linear combinations of those orthogonal vec-

tors in the trial basis function. The reference state vector and the trial basis function

are only dependent on the design parameters, S. Although these terms are computed

from the high-dimensional unsteady dataset in the offline step (building the ROM),

they remain constant in the online step (employing the ROM for analysis). On the

contrary, the generalized coordinates in the coarse-scale and fine-scale are dependent

on both the design parameters and time. Therefore, the general form of the state

67

vector can be defined as

u(t,S) = u + Φ̃(S)q̃(t,S)︸ ︷︷ ︸
coarse−scale

+ Φ′(S)q ′(t,S)︸ ︷︷ ︸
fine−scale

, (100)

where these separated terms in Eq. (100) will help us distinguish between different

types of variables, dominant patterns, coherent structures, and the evolutionary be-

haviours of system in different subspaces. For instance, in turbulent flow, velocity

magnitude can be decomposed into different flow structures (i.e., modes), eddies (i.e.

turbulent length), vortex shedding pattern (i.e., dynamics). With this classification,

we can recognize the influence of each aforementioned term on the turbulent flow.

6.2 Gradient-Based Optimization for PDE

6.2.1 Optimization Using the Forward Sensitivity Function

In PDE-constrained optimization, the objective function, J (u ,S) : Rnu → R, is

constrained by the primal PDEs. Since the time-averaged value of the objective

function, J , is of interest in engineering problems, primal PDEs are considered in the

range of [0, T] ∈ T, where T ∈ R+ denotes the final solution time. Here x denotes the

time-averaged of x. Additionally, in order to reduce the magnitude of J , the optimizer

seeks better design parameters in the design space, S = [s1, s2, . . . sns]
> ⊂ D , at each

design cycle. This optimization problem can be defined as

minimize
u ∈ Rnu

S ∈ D

J =
1

T

∫ T

0

J (u , t,S)dt,

subject to
∂u

∂t
+∇.f (u ,∇u ,S) = 0, t ∈ T,

C(u ,S) ≤ 0,

(101)

where C represents constraint functions that can be dependent on either the state

vector or design parameters. For optimization, we need to find the sensitivity of the

state vector with respect to the set of design parameters, ∂u
∂S : Rnu × T → Rnu×ns ,

which can be obtained by dual representation of the primal PDEs

d

dS

(
∂u

∂t
+∇.f

)
= 0, t ∈ T. (102)

68

Let us suppose that the primal PDEs are the Navier-Stokes equations. In this case, a

set of the dual PDEs is the “forward sensitivity” function that describes the evolution

of the sensitivity solution with respect to the design parameters over T. Therefore,

the forward sensitivity function, in the form of dual PDEs, is given by

∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S = 0, v(0) = v 0, t ∈ T, (103)

where, v : Rnu × T → Rnu×ns is the sensitivity solution, and v 0 ∈ Rnu×ns is the

initial condition. Moreover, Eq. (103) illustrates that the sensitivity solution has its

own specific dynamical features, which are connected to those of the state vector in

Eq. (1). Additionally, Eq. (103) is advanced in time with v × 0 → v 0 as the initial

condition at time 0 ∈ T. Therefore, v is often called the forward sensitivity solution.

According to Eq. (101), in order to find the time-averaged sensitivity of the ob-

jective function with respect to S, the gradient of the objective function is computed

by
δJ
δS =

[∂J
∂u

]>
v +

∂J
∂S , (104)

where ∂J
∂u

: Rnu → Rnu×ns . Substituting Eq. (104) into Eq. (101), we can obtain the

time-averaged sensitivity of the objective function by

∆J
∆S =

1

T

∫ T

0

([∂J
∂u

]>
v +

∂J
∂S

)
dt s.t.

d

dS

(
∂u

∂t
+∇.f

)
= 0. (105)

Therefore, the final formulation of a PDE-constrained optimization using the forward

sensitivity function is

minimize
u, v ∈ Rnu

S ∈ D

J =
1

T

∫ T

0

J (u , t,S)dt,

subject to
∂u

∂t
+∇.f = 0, t ∈ T,

∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S = 0, v(0) = v 0, t ∈ T,

C(u ,S) ≤ 0.

(106)

The objective of this study is to show how to compute ∆J
∆S , which is the primary chal-

lenge in sensitivity analysis and uncertainty quantifications of chaotic problems. Note

that the minimization set in Eq. (106) requires a Hessian matrix, which can be approx-

imated via a Quasi-Newton method series, such as Broyden-Fletcher-Goldfarb-Shanno

(BFGS), and Conjugate Gradient (CG), developed for gradient-based optimizations.

69

6.2.2 Optimization Using the Backward Sensitivity Function

According to Section 6.2.1, the unsteady sensitivity solution must be computed for

all design parameters, S = [s1, s2, . . . sns]
> ⊂ D , such that a total number of ns sen-

sitivity functions must be solved. With increasing ns, optimization process becomes

computationally expensive, and sometimes for a large number of design parameters

(e.g., ns > 100) it becomes impractical to launch this optimization. Therefore, we

need to solve for the sensitivities in such a way that it becomes independent of the

number of design parameters. This approach leads to develop the backward sensi-

tivity function, referred to as adjoint method. To obtain the backward sensitivity

function, we combine Eq. (104) and Eq. (103), and rewrite it

∆J
∆S =

1

T

∫ T

0

([∂J
∂u

]>
v +

∂J
∂S

)
dt+

∫ T

0

w>
(
∂v

∂t
+
∂∇.f
∂u

v +
∂∇.f
∂S

)
dt, (107)

where w ∈ Rnu is a set of weighting factors, which is called adjoint solutions. By

applying integration-by-part and some rearrangements, we obtain

∆J
∆S =

∫ T

0

(
1

T

[∂J
∂u

]>
−∂w

>

∂t
+w>

∂∇.f
∂u

)
vdt+

∫ T

0

(
1

T

∂J
∂S +w>

∂∇.f
∂S

)
dt+w>v |T0 .

(108)

In adjoint method, we enforce w(T) = 0 to eliminate the last term in Eq. (108).

Furthermore, to get rid of v from Eq. (108), the adjoint solutions are solved in such

a way that the first expression in the first parenthesis remains zero over t ∈ T.

Therefore, the backward sensitivity function is given by

−∂w
∂t

+
[∂∇.f
∂u

]>
w +

1

T

∂J
∂u

= 0, w(T) = 0, (109)

where the initial condition is w(T) = 0, which means that we should solve Eq. (109)

for w backward in time. As seen from Eq. (109), the backward sensitivity function is

independent of S. This means that we need to solve Eq. (109) only once, regardless

of the number of design parameters. Moreover, the time-averaged sensitivity of the

objective function is obtained by

δJ
δS =

∫ T

0

(
1

T

∂J
∂S + w>

∂∇.f
∂S

)
dt. (110)

70

Therefore, the gradient-based optimization using the backward sensitivity function is

defined as

minimize
u,w ∈ Rnu

S ∈ D

J =
1

T

∫ T

0

J (u , t,S)dt

subject to
∂u

∂t
+∇.f = 0, t ∈ T,

− ∂w

∂t
+
[∂∇.f
∂u

]>
w +

1

T

∂J
∂u

= 0, w(T) = 0, t ∈ T,

C(u ,S) ≤ 0,

(111)

6.2.3 Steady-State Optimization

In Sections 6.2.1 and 6.2.2, the closed-form of the forward and the backward unsteady

sensitivity functions were discussed. To obtain the steady-state sensitivity function,

we represent the non-linear dynamical system in the form of a steady-state problem

∇.f (u ,∇.u ,S) = 0. (112)

In this formulation, solutions are only dependent on S. In fluid mechanics, this

dynamical system could be a simplified version of the Navier-Stokes equations, such

as the Reynolds-Averaged Navier-Stokes (RANS) or steady-state Euler equations.

Therefore, the forward sensitivity solution for Eq. (103) is

v = −
[
∂∇.f
∂u

]−1
∂∇.f
∂S , (113)

and the sensitivity of the objective function with respect to S is given by

∆J
∆S =

[
∂J
∂u

]>
v +

∂J
∂S . (114)

The forward sensitivity solution from Eq. (113) can be substituted into Eq. (114)

∆J
∆S = −

[
∂J
∂u

]>[
∂∇.f
∂u

]−1
∂∇.f
∂S +

∂J
∂S . (115)

Additionally, with reference to Eq. (109), the steady-state backward sensitivity solu-

tion is obtained by

w = −
[
∂∇.f
∂u

]−>
∂J
∂u

, (116)

71

and accordingly, the sensitivity of the objective function with respect to S, but for

the steady-state backward sensitivity function, is given by

∆J
∆S =

∂J
∂S + w>

∂∇.f
∂S . (117)

Finally, substituting Eq. (116) into Eq. (117), we obtain

∆J
∆S = −

[
∂J
∂u

]>[
∂∇.f
∂u

]−1
∂∇.f
∂S +

∂J
∂S . (118)

According to Eq. (115) and Eq. (118), sensitivity analysis using both the forward and

the backward functions yields the same formulation if the dynamical system is inde-

pendant of the metric directions (i.e., x, y, and z in spatial domain), but approaches

will be different. However, this adjoint method is usually preferred for sensitivity

analysis, because of its economical computational costs. The most computationally

expensive term in sensitivity analysis is the inverse of Jacobian matrix (i.e. ∂∇.f
∂u

).

To handle this issue, numerical methods, such as Jacobi or Gauss-Seidel, are used to

solve these sensitivity functions. Finally, optimization problem using the steady-state

forward sensitivity function is defined as

minimize
u, v ∈ Rnu

S ∈ D

J (u ,S)

subject to ∇.f = 0, t ∈ T,

v ∈ argmin
z ∈ Rnu

∥∥∥∥
∂∇.f
∂u

z +
∂∇.f
∂S

∥∥∥∥
2

2

, t ∈ T,

C(u ,S) ≤ 0,

(119)

where the forward sensitivity function is represented in the form of least-squares min-

imization problem. Similarly, optimizaiton problem using the steady-state backward

sensitivity function is given by

minimize
u,w ∈ Rnu

S ∈ D

J (u ,S)

subject to ∇.f = 0, t ∈ T,

w ∈ argmin
z ∈ Rnu

∥∥∥∥∥

[
∂∇.f
∂u

]>
z +

∂J
∂u

∥∥∥∥∥

2

2

, t ∈ T,

C(u ,S) ≤ 0.

(120)

Although we will not use these steady-state optimizations, their formulations will be

useful to obtain manifolds in Hilbert space, which will be discussed in Chapter 7.

72

6.3 Sensitivity Analysis Using Closure Models

6.3.1 Sensitivity of Invariants

In Section 5.1.1, the high-dimensional state vector was decomposed into three different

parts. This section describes the sensitivity of a high-dimensional state vector with

respect to a set of design parameters. Finding derivatives of Eq. (65) with respect to

S, and writting it in a discrete form yields

v (n) =
∂u (n)

∂S = v +
∂Φ̃

∂S q̃
(n) +

∂Φ′

∂S q ′(n) + Φ̃
∂q̃ (n)

∂S + Φ′
∂q ′(n)

∂S , (121)

where, the first term in the right-hand side of Eq. (121), v ∈ Rnu×ns , shows the

reference sensitivity solution. Additionally, ∂q̃(n)

∂S : Rr × T → Rr×ns and ∂q ′(n)

∂S :

R(nu−r)×T→ R(nu−r)×ns denote the sensitivity of the coarse-scale and fine-scale gen-

eralized coordinates with respect to S. Also, ∂Φ̃
∂S ∈ Rnu×r×ns and ∂Φ′

∂S ∈ Rnu×(nu−r)×ns

indicate tensors containing the sensitivity of the coarse-scale and fine-scale trial basis

functions with respect to S. The sensitivities of the trial basis function describe how

a design parameter can influence the dominant structures/modes of the dynamical

system. By defining h̃
(n)

= ∂q(n)

∂S , we can write Eq. (121) as

v (n) = v +
∂Φ̃

∂S q̃
(n) +

∂Φ′

∂S q ′(n) + Φ̃h̃
(n)

+ Φ′h ′(n), (122)

where we can define h̃ as the sensitivity of the relevant coherent stuctures that exist

in the dynamical system with respect to S. In other words, h̃ indicates how the

evolutional behaviours of a dynamical system changes in H by any perturbation, if

the manifold (i.e., spatio-stuctures) remains unchanged in P.

In this study, we want to relate the sensitivity solution of the FOM to that of the

ROM by neglecting the fine-scale trial and test basis functions. Therefore, Eq. (122)

can be summarized as follows

v (n) ≈ v +
∂Φ̃

∂S q̃
(n) + Φ̃h̃

(n)
, (123)

where the total sensitivity of a high-dimensional state vector is decomposed into three

different terms. The first and second terms in Eq. (123) are almost stable, since their

derivatives remain unchanged over time. The first term, v , is stable because it is

computed from the ensemble value of high-dimensional state datasets. Furthermore,

73

the second term ∂Φ̃
∂S is only dependent on the design parameters and does not change

over time. However, the third term could be highly unstable due to the relevant

chaotic behaviour of the FOM, which is projected into h̃
(n)

. Note that if all dominant

modes are not in the coarse-scale trial basis function, the error in Eq. (123) grows over

time. Hence, having a poor trial basis function results in a spurious dynamical system

that does not produce proper dynamics compared to the actual system. On the other

hand, developing a poor trial basis function increases the growth rate of errors in

the ROM, since transformation of the solutions between P and H frequently occurs

at each time interval. In the end, since chaotic dynamical systems have unstable

modes with positive LEs, we will observe even more severe growth of these errors in

Eq. (123).

It is worth mentioning that ∂Φ̃
∂S is a challenging term, since there is no direct

solution for it. The only possible way to approximate it is to collect data from several

FOM simulations that have different perturbations to the design parameters, i.e., δS.

Then the trial basis function for each dataset is computed. Finally, a FD method

can be applied to these trial basis functions to approximate ∂Φ̃
∂S . In this case, we need

several high-dimensional simulations, which increases computational cost. Therefore,

it is not practical to find ∂Φ̃
∂S directly. To address this issue, first we suppose that the

trial basis function can be used for many perturbed systems in the design space. In

that case, the model will approximate sensitivity solutions without computing ∂Φ̃
∂S .

With this assumption, the sensitivity solution is

v (n) ≈ v + Φ̃h̃
(n)
, (124)

and subsequently, we will train the trial basis function in such a way that it becomes

flexible to perturbations in the design space.

6.3.2 Descrete Form of Sensitivity Equation

In this section, the residual formulation of the ROM is developed as a set of ODEs, and

then its Largrange function is found. Afterward, these ODEs are discretized, which

is referred to as O∆Es. To this end, we assume that F is the exact representation of

the FOM in H , then we have F : q̃ × T→ q̃ with (q̃ , t) 7→ F(q̃ , t) over t ∈ T. As a

matter of fact, F is not available, and we can only approximate it using F : Rr → Rr

as a ROM. In this case, we suppose that F ≡ F, and can then formulate the discrete

74

form of the ROM according to Eq. (4). Hence a set of O∆Es is obtained by

R(n) :=
k∑

j=0

ζj q̃
(n−j)+∆t(n)β0F (n)(q̃ (n), t(n),S)+Ω(n), q̃(t(0,...,k)) = q̃0,...,k, t(n) ∈ ∆T,

(125)

where R : Rr → Rr is the residual of the ROM, Ω represents a source term, and q̃0,...,k

are the initial conditions, such that Φ̃q̃0,...,k 7→ u0,...,k. Note that ‖R(n)‖2 converges

to ‖r (n)‖2 when the number of subspaces in the trial and test basis functions is

sufficiently large, i.e., r → nn. Therefore, the residual of the ROM is given by

lim
r→nu

R(n)(q̃ (n), t(n),S) ≈ r (n)(u (n), t(n),S). (126)

According to the shadowing lemma, if a ROM with the reference generalized co-

ordinates, q̃ (n), is perturbed by S + δS, then there is a vector of the shadow solution,

q̃ (n)
s : T→ Rr, that satisfies Eq. (125) with another time transformation, τ (n) ∈ ∆T.

This definition for the shadow of the generalized coordinates is

lim
r→nu

lim
δS→0

lim
δτ→0
R(n)(q̃ (n)

s , τ (n),S + δS) ≈ 0, τ (n) ∈ ∆T. (127)

Recall Eq. (29), and we can find the limit of the generalized coordinates with respect

to the perturbation as

h̃
(n) ≈ lim

δS→0

q̃ (n)
s − q̃ (n)

δS , (128)

and, similar to Eq. (44), we can apply the shadowing lemma to Eq. (125). In this

case, the low-dimensional sensitivity function in the form of O∆Es can be obtained

by

lim
δS→0

dR(n)

dS :=
k∑

j=0

∂R(n)

∂q̃ (n−j) h̃
(n−j)

+
∂R(n)

∂S +
∂R(n)

∂Ω(n)
+ E (n)∆tF (n) = 0, t(n) ∈ ∆T,

(129)

where, E ∈ R is the time dilation of the generalized coordinates. Finding F in

Eq. (125) could be prohibitively expensive. However, the advantage of formulating

these O∆Es into the residual form is that we do not need to find F directly. Inter-

estingly, we can apply the Petrov-Galerkin approach to minimize ‖R(n)‖2, such that

errors, which are produced by dimensionality reduction, remain minimal over ∆T.

75

The Lagrange function for LSS minimization is given by

L =
1

mu

mu∑

n=0

[
h̃

(n)>
Kh̃

(n)
+
(
αlssE (n)

)2

]

+
mu∑

n=0

λ(n)>

[
k∑

j=0

∂R(n)

∂q̃ (n−j) h̃
(n−j)

+
∂R(n)

∂S +
∂R(n)

∂Ω(n)
+ E (n)∆tF (n)

]
,

(130)

where λ(n) is the discrete Lagrange multiplier. Also, the KKT condition is applied to

Eq. (130), which yields

∂R(n)

∂q̃ (n)
h̃

(n)
+

k∑

j=1

∂R(n)

∂q̃ (n−j) h̃
(n−j)

+
∂R(n)

∂S +
∂R(n)

∂Ω(n)
+ E (n)

(∆t

β0

R(n) −
k∑

j=0

ζj
β0

q̃ (n−j)
)

= 0,

[
∂R(n)

∂q̃ (n)

]>
λ(n) +

k∑

j=1

[
∂R(n)

∂q̃ (n+j)

]>
λ(n+j) + K>h̃

(n)
= 0, λ(0) = λ(mu) = 0,

α2
lssE (n) −muλ

>(n)
(∆t

β0

R(n) −
k∑

j=0

ζj
β0

q̃ (n−j)
)

= 0.

(131)

Since Eq. (131) is developed in the form of a low-dimensional closure model, it needs

less computational resources, which is a promising factor for applying Eq. (131) to

sensitivity analysis of large-scale chaotic systems. We can solve Eq. (131) using

Eq. (52) at which the size of multi-block matrices are reduced to B ∈ Rr(mu−k)×rmu ,

C ∈ Rrmu×mu , and D ∈ Rrmu , where r � nu.

Although we eliminated F from Eq. (131) by rewriting it as F = R− ∂q
∂t

, there is

an alternative method to find F . Additionally, there is an unknown term in Eq. (131),

which is the derivative of the residual with respect to the source term, ∂R
∂Ω

. Therefore,

in order to find F and ∂R
∂Ω

directly from the FOM, we project the first equation in

Eq. (48) into H . then the projected results should be equal to the first O∆E in

Eq. (131). Therefore, we can write

lim
δS→0

Ψ̃(n)>dr
(n)

dS =
dR(n)

dS

=
k∑

j=0

∂R(n)

∂q̃ (n−j) h̃
(n−j)

+
∂R(n)

∂S + Ψ̃(n)>
k∑

j=0

∂r (n)

∂u (n−j)v + η(n)∆tΨ̃(n)>∇.f (n),

(132)

76

and comparing Eq. (131) and Eq. (132), F and ∂R
∂Ω

can be obtained by

∂R(n)

∂Ω(n)
= Ψ̃(n)>

k∑

j=0

∂r (n)

∂u (n−j)v ,

E (n)∆tF (n) = η(n)∆tΨ̃(n)>∇.f (n).

(133)

From Eq. (133), the unknown terms in H are directly derived from the known

terms in P. Therefore, it suggests that the same procedure can be applied to remain-

ing unknown terms in H . In Petrov-Galerkin projection, the relation between the

FOM and its corresponding ROM is given by R(n) = Ψ̃(n)>r (n) at all time intervals

over ∆T. Consequently, derivatives of the residuals are

∂R(n)

∂q̃ (n)
=
([∂Ψ̃(n)

∂u (n)

]>
r (n) + Ψ̃(n)> ∂r

(n)

∂u (n)

)∂u (n)

∂q̃ (n)
,

∂R(n)

∂q̃ (p)
=
([∂Ψ̃(n)

∂u (p)

]>
r (n) + Ψ̃(n)> ∂r

(n)

∂u (p)

)∂u (p)

∂q̃ (p)
, n 6= p,

∂R(n)

∂S =
([∂Ψ̃(n)

∂S

]>
r (n) + Ψ̃(n)>∂r

(n)

∂S
)
.

(134)

Solving the low-dimensional closure model using the LSPG with enough subspaces

causes the residual of the FOM to become approximately zero, such that for all

t(n) ∈ ∆T we have limr→nu r
(n)(Φ̃q̃ (n)) ≈ 0. This definition causes the first term

in the derivatives to be negligible. On the other hand, we can unanimously assume

that ∂u(n)

∂q̃(n) = Φ̃. Hence, with regard to the definition of the test basis function,

Ψ̃(n) = ∂r (n)

∂u(n) Φ̃, we can simplify Eq. (134) as follows

∂R(n)

∂q̃ (n)
= Ψ̃(n)>Ψ̃(n),

∂R(n)

∂q̃ (p)
= ζpΨ̃

(n)>Φ̃, n 6= p,

∂R(n)

∂S = Ψ̃(n)>∂r
(n)

∂S .

(135)

In the end, substituting Eq. (135) into Eq. (131), we can find the the final form of

77

the O∆Es

Ψ̃(n)>Ψ̃(n)h̃
(n)

+
k∑

j=1

ζjΨ̃
(n)>Φ̃h̃

(n−j)
+ Ψ̃(n)>∂r

(n)

∂S

+ Ψ̃(n)>
(k∑

j=1

ζjI +
∂r (n)

∂u (n)

)
v − E (n)

k∑

j=0

ζj
β0

q̃ (n−j) = 0,

Ψ̃(n)>Ψ̃(n)λ(n) +
k∑

j=1

ζjΨ̃
(n)>Φ̃λ(n+j) + K>h̃

(n)
= 0, λ(0) = λ(mu) = 0,

α2
lssE (n) −muλ

(n)>
k∑

j=0

ζj
β0

q̃ (n−j) = 0,

(136)

which results in the final form of the sensitivity function in H . The amount of error

in Eq. (136) depends on the error bounds in LSPG [29], and the error bounds for

dimensionality reduction. The total sensitivity of the objective function with respect

to a set of design parameters can be represented as

∆J
∆S ≈

1

T

∫ T

0

[
∂J
∂u

]>
(v + Φ̃h̃)dt+

1

T

∫ T

0

E
(
J (u + Φ̃q̃ , t,S)− J

)
dt+

1

T

∫ T

0

∂J
∂S dt,

(137)

and the discrete form of Eq. (137) is given by

∆J
∆S ≈

1

mu

mu∑

n=1

[
∂J (n)

∂u (n)

]>
(v + Φ̃h̃

(n)
) +

1

mu

mu∑

n=1

E (n)
(
J (n) − J

)
+

1

mu

mu∑

n=1

∂J (n)

∂S .

(138)

As shown in Eq. (138), the first term approximates the high-dimension sensitivity

solution. The second term is the sensitivity of the time transformation. Finally, the

last term represents the sensitivity of the objective function with respect to the design

parameters, regardless of any perturbation in the state vector.

78

Chapter 7

Physics-Constrained

Reduced-Order Models

7.1 Reduced-Order Models

Conventional ROMs are usually linear, and approximate the behaviour of the dy-

namical system using a linear combination of independent flow patterns obtained by

spatio-temporal techniques (e.g., POD modes). On the other hand, it is observed

that many unsteady flows evolve on lower-dimensional manifolds [102, 103], which

indicates that the non-linear behaviour of these dynamical systems is in lower di-

mensions. This non-linearity increases for fluids with increasing Reynolds number.

This requires non-linear closure models, since linear models often fail to predict these

dynamics.

Conventional methods, which work based on data-driven approaches, usually fail

to build the exact shape of the manifolds in Hilbert space. This is because datasets are

usually limited, and may not provide all information required to build an accurate

ROM. In this study, to build a closure model in lower dimensions, we explicitly

derive the overall structures of manifolds in Hilbert space from the physical governing

equations, and then shape them via a training dataset. This strategy is called the

physics-constrained data-driven approach, and can result in an accurate prediction of

the closure model with less training data. Hence, we will leverage this approach to

address downsides of conventional approaches, making optimization more robust with

reduced requirements for the training dataset. To clarify what we seek in building

79

a closure model, some essential points in this approach are explained. If a closure

model is represented as F with a solution q̃ , then an ideal model should guarantee

four criteria, represented as follows

1. Accurate prediction of the solution, q̃ 7→ u .

2. Accurate prediction of the dynamical response, F 7→ f .

3. Strong numerical stability, ‖F‖ ≤ ε, where ε is a bounded value.

4. Representation of the derivatives in lower dimensions, ∇.F ∼= ∇.f .

The first and second items denote that the dimensionality reduction should not in-

fluence the prediction accuracy in the closure model over a finite time interval T.

This accuracy can be improved by adding an adequate number of subspaces (i.e.,

POD modes) to the ROB. In the third item, having a rich training dataset can im-

prove prediction accuracy in the closure model, but does not guarantee stability. The

Galerkin projection is represented as a continuous form of minimization in the closure

model [29]. This projection becomes highly unstable for non-linear dynamical sys-

tems (i.e. in high Reynolds number flows). The reason is that small flow structures

play an essential role in the subsequent flow evolution [95]. To overcome this issue,

other implicit projection methods, such as Least-Squares Petrov-Galerkin (LSPG),

can be employed to build a stable closure model [29, 30, 109]. In the fourth item,

derivatives of the closure model should closely approximate those of the FOM in

lower dimensions. Most ROMs (linear, auto-encoder or data-driven closure models)

are only designed to approximate the state vector over t ∈ T. In other words, there is

no general model that represents the Jacobian of the ROM. Therefore, conventional

ROMs may not be suitable for sensitivity analysis. Besides accurate prediction of the

state vector, ROMs should project the most prominent features of the Jacobian and

related derivates of the FOM (i.e., ∂r (n)

∂u(n) and ∂r (n)

∂S) into lower dimensions.

7.2 Training Strategies

The training procedure is significantly dependent on the data collected from the

results of the FOM simulations. A snapshot is a vector of the state, or other related

80

variables, that is obtained at a specific time interval. This snapshot could be multi-

dimensional, but it is often converted into a vector (i.e., stack all data in a column). If

the dataset is built from entire snapshots at all time intervals, it will often need a large

memory allocation. So these types of data are usually built by collecting snapshots,

as the samples, from a limited set of time intervals. Therefore, selecting a proper and

efficient sampling strategy is an essential matter in building an accurate ROM. The

main objective of this study is to employ the ROM for optimization purposes. Hence,

this ROM we build should approximate the sensitivity solutions over a finite time for

a different set of design parameters.

Figure 28 shows three different data sampling strategies, and their impact on

the sensitivity solution approximated via the ROM. In this case, data sampling is

provided from a 2D simulation of steady-state flow past a NACA 0012 airfoil at

Re = 1000, M∞ = 0.2, and αeff = 0◦. Let us assume that S1 is in design space,

D . We want to build a ROM that approximates the state and sensitivity solutions

in a subspace D1 ⊂ D . We start sampling the data when the FOM is not yet steady-

state, and we continue it until this FOM becomes completely steady-state. Therefore,

the corresponding dataset contains both quasi-steady and steady solutions, and it

can be applied to build the ROB. In Strategy 1, the ROM is built based on the

state dataset collected at S1, which is denoted by green colour in design space. In

this case, the sensitivity solution reflects a wrong answer compared to the sensitivity

solution computed by FOM, which is computed by v = −(∂∇.f
∂u

)−1 ∂∇.f
∂S1

. This situation

usually occurs when the dynamical system is susceptible to design parameters. In

Strategy 2, several FOMs for different design parameters, S ∈ {S1, . . . ,Sndp
} ⊂ D1,

are performed, and afterward, the ROM is built by the state datasets collected at

all S1, . . . ,Sndp
. In this case, the sensitivity solution approximated by the ROM is

notably improved, but there is still a large discrepancy between the result of the ROM

and that of the FOM. The accuracy in Strategy 2 can be increased by adding more

data into the dataset, collected from further FOM simulations at different design

parameters in D1. This strategy can be helpful to approximate those solutions in

D1 using thrust region approaches. However, it may not be economical when the

number of FOM simulations increases. As shown in Strategy 3, the ROM is built

using both the state and the sensitivity datasets. In this case, the sensitivity function

is only solved for the sensitivity solution at S1, denoted by blue colour. The sensitivity

81

D
D1

D
D1

D
D1

v

State vectorState vectorState vector

Strategy 1
(state dataset for S

1
)

v v

Strategy 2
(state dataset for S1, S2

, ..., S
ndp

)
Strategy 3

(state dataset for S1

+ sensitivity dataset for S1)

FOM
ROM

Figure 28: Evaluating different strategies for data sampling in design space.

solution computed using the ROM and the FOM are in good agreement, and they are

almost on top of each other. This is because the ROM is trained via extra information,

containing the prominent structure of the sensitivity solution. Therefore, the ROB

delivers accurate information to the ROM to approximate the sensitivity solution in

lower dimensions. Interestingly, Strategy 3 only needs one simulation of the FOM in

subspace D1. This approach indicates that we can not find dominant structures of

the sensitivity solution from those in the flow field. This finding becomes an essential

matter when the dynamical system becomes highly non-linear.

Figure 29 is also provided to compare Strategies 2 and 3 during the optimiza-

tion procedure. Let us assume that S1, as a baseline design, is optimized in design

space D . Each design cycle has its subspace, such as D1 and D2 for the first and

second iterations. In Strategy 2, we select ndp different set of design parameters,

S ∈ {S1, . . . ,Sndp
} ⊂ Di, where index i indicates the design iteration. Therefore,

ndp different FOMs are simulated, followed by building the ROB, and performing

sensitivity analysis (SA). According to Figure 28, this approach may need a large

number of FOMs if the number of design parameters in S = [s1, s2, . . . , sns] is very

large. Additionally, the updated design may not be very exact in each subspace, since

82

D

���

���

���

���

��
�

��
�

���

���

��

���

���

n
dp

n
dp

D2

D3

D4

D5

D6

D1

D

D1
D2

D3

D4

���

���

���

���

��
�

��
�

���

���

Strategy 2

(state dataset for S1, S2
, ..., S

nd
)

Strategy 3
(state dataset for S1

+ sensitivity dataset for S1)

��

��

��

��

O
pt

im
iz

at
io

n
P

ro
gr

es
s

O
pt

im
iz

at
io

n
P

ro
gr

es
s

��
�

��
�

��
�

��
�

Figure 29: Comparing the performance of Strategies 2 and 3 during the optimization
procedure.

the accuracy of the sensitivity solution increases by adding more information to the

dataset. On the other hand, Strategy 3 only needs one FOM simulation for each sub-

space, followed by building the ROB, and performing SA. In optimization problems

with many design parameters, this strategy will significantly reduce the computational

cost. Although Strategy 3 may reflect a promising improvement in the accuracy of

the ROM, this ROM may lose its accuracy for a different set of design parameters,

{S2, . . . ,Sndp
}, in the same subspace. As a matter of fact, we do not need to use this

ROM for different design parameters, since we only require those sensitivities at S1.

However, in Strategy 2, we learned that adding more information to the dataset will

help increase the accuracy of the ROB in each subspace. If we use all of the previous

datasets, from D1 to Di−1, to build the ROB for Di, we may build a more efficient

and effective ROM during the optimization procedure. Consequently, we can com-

bine these two strategies to develop more accurate models. In section 7.3.3, we use

these combinations to develop training algorithms. It is worth mentioning that we

can change the number of FOMs in each subspace according to the required accuracy

in the final design, physics of the problem, and available computational resources.

83

7.3 Physics-Constrained Data-Driven Approach

7.3.1 Architecture

Solving the weak form of the FOM, which is converted into a closure model, produces

non-physical results unless optimal trial and test basis functions are defined. There-

fore, we leverage data science techniques to find those optimal basis functions for the

closure model. To this end, we propose a novel algorithm to find the overall structure

of the manifolds, and shape them in Hilbert space. This proposed algorithm has four

major phases. The first phase is the preparing phase, and in this phase, a closure

model is developed to obtain the dynamics of the system. The second phase is the

building phase, during which different data sampling methods are taken into account

in order to generate a dataset. In the third phase, hyper-reduction, the dynamical be-

haviour of the reduced-order matrices are found by deep learning. This phase reduces

the computational costs attributed to building the closure model for the sensitivity

function. The fourth phase is the shaping phase, which refers to improvement of

the ROB in lower dimensions through an iterative process, and solving for sensitiv-

ities. Figure 30 illustrates the proposed platform architecture schematically. First,

the FOM is solved over ∆T, and snapshots are collected from it. These snapshots in

physical space, u ∈ P, are projected into Hilbert space, H1. Next, in the prepar-

ing phase, Eq. (76) is solved as a closure model via LSPG, such that q̃ ∈ H1 lies

in a lower-dimensional space. The red nodes contain the dynamics of the system in

H1. In the building phase, the ROB are created with sensitivity solutions that are

sampled at Np(n) = {ξ(1)
p , ξ

(2)
p , . . . , ξ

(mp)
p }, where ξ

(n)
p is index of each time interval

(i.e., ξ
(n)
p ∆t ∈ ∆T), and mp denotes the number of samples in the building phase.

Afterward, the overall structure and shape of manifolds in Hilbert space are obtained.

Large-scale Jacobian and relative matrices are transformed from P into H2, where

the sensitivity solutions evolve with time in this space. The second phase is optional,

while it significantly reduces the computational burden for sensitivity analysis of large-

scale chaotic problems. If the closure model does not suffer high computational cost,

we can skip this phase. In the hyper-reduction phase, costly reduced-order matrices

are only computed for a limited set of time intervals, Ns(n) = {ξ(1)
s , ξ

(2)
s , . . . , ξ

(msamp)
s },

where msamp is the number of sample intervals, and the remainder matrices are com-

puted via deep learning. Furthermore, in the shaping phase, the trial basis functions

84

are deformed in all directions in H2, and this deformation is optimized with regard

to another set of samples at Nq(n) = {ξ(1)q , ξ
(2)
q , . . . , ξ

(mq)
q }, where mq is the number of

samples in the shaping phase. Additionally, LSS minimization is solved for sensitivi-

ties in this phase. Afterward, the orange nodes contain the sensitivity solutions of the

corresponding dynamics in Hilbert space. At the end of the procedure, the solutions

are lifted back from H2 into P with a proper mapping function. The output of this

platform produces the sensitivity solution, v (n) ∈ P, which reflects the solution of

Eq. (103) over ∆T. In Sections 7.3.2 to 7.3.5, we provide further details to describe

the algorithms and related numerical approaches.

� �

t()m
u

t(0)

u

t(0)

t()m
u

v

q1

q 2

(a)

q2

q 3

(b)

q3
q 4

(c)

q4

q 5

(d)

q5

q 6

(e)

q6

q 7

(f)

q7

q 8

(g)

q8

q 9

(h)

q9

q 1
0

(i)

Dynamics Dynamics + Sensitivity

q1
q 2

(a)

−30.3

0.0

30.3

v 1

q2

q 3

(b)

−16.4

0.0

16.4

v 2

q3

q 4

(c)

−11.9

0.0

11.9

v 3

q4

q 5

(d)

−11.9

0.0

11.9

v 4
q5

q 6

(e)

−8.3

0.0

8.3

v 5

q6

q 7

(f)

−8.1

0.0

8.1

v 6

q7

q 8

(g)

−8.1

0.0

8.1

v 7

q8

q 9
(h)

−6.5

0.0

6.5

v 8

q9

q 1
0

(i)

−5.4

0.0

5.4

v 9

B
ui

ld
in

g

Sh
ap

in
g

∈P

∈H1

∈P∈P

∈H2

Hyper-reduction
∈H2

H
yp

er
-r

ed
uc

ti
on

?

No

.........

P
re

pa
ri

ng

Neural Network

Figure 30: Schematic of the platform designed for sensitivity analysis.

7.3.2 Preparing a Closure Model for the Dynamics of the

System

In model-reduction techniques, the trial basis functions are built by a set of ROB

matrices. Generally speaking, a ROB is a subset of trial basis functions, containing

prominent structures of the dynamical system. Each ROB is generated by different

85

datasets (e.g., state vector, sensitivity solution) that are collected over ∆T. Addi-

tionally, other quantities can help enrich the information we require to shape the

manifolds in H . These quantities can be the residuals, fluxes, or Krylov vectors

[148]. High-dimensional datasets can be collected for different sets of design param-

eters, S ∈ {S1,S2, ...,Sndp
} ⊂ D, where ndp denotes the total number of design sets

(i.e., sample design parameters). Therefore, snapshots for each design set are assem-

bled as follows

U(Si) =

| | |
∆u (1)(Si) ∆u (2)(Si) ... ∆u (mu)(Si)
| | |

 ∈ Rnu×mu , (139)

where ∆u (n) = u (n) − u , and i = 1, 2, ..., ndp. We build all datasets according to

Eq. (139), and then assemble all of them into a united matrix

Xstate =

ndp⊕

i=1

U(Si), (140)

where, Xstate denotes the dataset used to train the ROB. Subsequently, we build the

ROB using

Φ̃u = POD(Xstate), and U(Si) = Φ̃uQu(Si), i = 1, 2, ..., ndp, (141)

where, the POD represents a function that returns the orthogonal basis (i.e., POD

modes). This function is described in Algorithm 2. Additionally, Qu(Si) denotes the

generalized coordinates for each set of design parameters

Qu(Si) =

| | |

q̃
(1)
i q̃

(2)
i ... q̃

(mu)
i

| | |

 ∈ Rrstate×mu , (142)

where rstate is the rank of Φ̃u. Note that q̃
(n)
i ∈ Rrstate is actually the generalized

coordinates of the weak form of the FOM in Hilbert space. In order to find these

coordinates for the closure model, Eq. (76) sould be solved via LSPG to recompute

q̃
(n)
i over ∆T, such that q̃ ∈H1.

7.3.3 Building Manifolds for the Sensitivity Function

In order to improve the robustness of the trial basis function with respect to pertur-

bations in entries, the steady-state forward sensitivity function is solved for a different

86

set of design parameters. At first, snapshots of the steady-state sensitivity solutions

for all sets of design parameters are defined as

Vss(Si) =

| | |
∆v

(Np(1))
ss (Si) ∆v

(Np(2))
ss (Si) ... ∆v

(Np(mp))
ss (Si)

| | |

 ∈ Rnu×mp , (143)

where ∆v
(n)
ss = v

(n)
ss − v ss, and v ss ∈ Rnu represents a reference vector for sensitivity

snapshots, and it usually satisfies ∂vss

∂t
= 0. Therefore, the dataset for all sensitivity

solutions is represented as

Xsens =

ndp⊕

i=1

Vss(Si), (144)

and then,

Φ̃v = POD(Xsens) and Vss(Si) = Φ̃vQv(Si), i = 1, 2, ..., ndp. (145)

It is worth pointing out that the ROB obtained by the sensitivity dataset could have

a different number of subspaces, Φ̃v ∈ Rnu×rsens , where rstate is the rank of the ROB

that is built by the sensitivity data. Accordingly, the generalized coordinates for the

sensitivity solutions can be obtained by

Qv =

| | |
h̃

(Np(1))

i h̃
(Np(2))

i ... h̃
(Np(mp))

i

| | |

 ∈ Rrsens×mp , Np(n) = {ξ(1)

p , ξ(2)
p , . . . , ξ(mp)

p }.

(146)

Finally, we need to collect data for the unsteady sensitivity solutions to ensure

that errors in the ROB for chaotic problems do not grow significantly. However, as

mentioned earlier, it is impossible to solve the sensitivity function of chaotic systems

using conventional methods. On the other hand, if the dynamical system is chaotic,

the steady-state sensitivity datasets are not sufficient to build an accurate closure

model. Therefore, we propose a new approach for data collection from the unsteady

sensitivity function. The intuition behind this idea is that the solution of the steady-

state sensitivity function only gives an acceptable approximation when the system is

linear or weakly non-linear. On the other hand, detecting features of the unsteady

sensitivity function, and adding them to the trial basis function improves the predic-

tion of the closure model for strongly non-linear systems. Therefore, the unsteady

87

sensitivity solutions are collected according to a procedure provided in Algorithms

4 and 5. Let us assume that S1 is the baseline design parameter that reflects the

properties of the current problem, and the rest of design parameters {S2, . . . ,Sndp
}

are sample designs for evaluation. Algorithms 4 and 5 are only applied to S1 since

this part of data collection is computationally expensive. Keep in mind that Algo-

rithm 4 sets a proper initial condition to proceed with data sampling using Algorithm

5. Therefore, after data sampling using the aforementioned algorithms, the data are

collected and represented as

Vus(S1) =

| | |
∆v

(Nṕ(1))
us (S1) ∆v

(Nṕ(2))
us (S1) ... ∆v

(Nṕ(ḿp))
us (S1)

| | |

 ∈ Rnu×ḿp , (147)

where ∆v
(n)
us = v

(n)
us − vus, and Vus ∈ Rnu×ḿp represents the dataset for prototype of

the unsteady sensitivity solutions, ḿp ∈ R+ is the total number of samples. Moreover,

v
(n)
us ∈ Rnu and vus ∈ Rnu correspond to the discrete unsteady sensitivity solution and

its corresponding reference vector, respectively. Since we only consider the dataset for

S1 in the unsteady case, then X́sens = Vus(S1), where X́sens ∈ Rnu×ḿp represents the

dataset of the unsteady sensitivity solutions. Therefore, the ROB for the unsteady

sensitivity solutions is given by

´̃Φv = POD(X́sens) and Vus(S1) = ´̃ΦvQ́v(S1), (148)

and the generalized coordinates for Eq. (148) are

Q́v =

| | |
´̃h

(Nṕ(1))
1

´̃h
(Nṕ(2))
1 ... ´̃h

(Nṕ(ḿp))
1

| | |

 ∈ Rŕsens×ḿp , Nṕ(n) = {ξ(1)

ṕ , ξ
(2)
ṕ , . . . , ξ

(ḿp)
ṕ },

(149)

where ŕsens is the rank of ´̃Φv. The relative scale of the dataset directly influences

the effectiveness of the POD function. Therefore, the POD function can not find

the most effective trial basis function if we use POD([Xstate,Xsens, X́sens]) [32, 64].

Consequently, according to [148], a Gram-Schmidt-like procedure is suggested, such

that the ROB are embedded as a subset of trial basis function

Φ̃ = Φ̃u ⊕ Φ̃v ⊕ ´̃Φv, and Φ̃ ∈ Rnu×r, (150)

88

where, r = rstate + rsens + ŕsens. The procedure for building the trial basis functions

from a different set of ROB is explained in Algorithm 6. It is worth mentioning

that the LSPG approach, with which the solutions of the ROM are obtained in a

minimization framework at each time interval, has the minimum-residual property.

In other words, Φ̃u would not influence the results of the sensitivity functions sig-

nificantly. Furthermore, the POD modes embedded in Φ̃ can be rearranged based

on their priority. Therefore, the O∆Es in the closure model are solved based on the

priority of prominent features in the dynamical system.

7.3.4 Hyper-Reduction

Developing a closure model for a large-scale chaotic FOM is often computationally

expensive. Dimensionality reduction of the Jacobian and relative matrices needs

many scalable computational resources. Although the Jacobian of the dynamical

system is represented as a sparse matrix, the trial and test basis functions of this

dynamical system are dense matrices and, hence, their mathematical operations are

computationally expensive. Therefore, building those terms of the closure model,

given by Eq. (136), is still limited to available computational resources. These terms

are Ψ̃(n)>Ψ̃(n), Ψ̃(n)>Φ̃, Ψ̃(n)> ∂r (n)

∂S , and Ψ̃(n)>
(∑k

j=1 ζjI+ ∂r (n)

∂u(n)

)
, which are required

to solve Eq. (136) for the sensitivity solutions in Hilbert space. The remainder of this

section shows how to reduce this computational burden using another dimensionality

reduction, which is referred to as hyper-reduction.

Deep learning effectively captures non-linear patterns, and characteristics in a

dataset. We construct neural network surrogate models to predict patterns in the

aforementioned terms. To this end, we use Multi-Layer Perceptron (MLP) architec-

ture to develop a surrogate model using a neural network. First, we compute the

aforementioned terms in Eq. (136) over a limited set of time intervals, as the sample

dataset. In the next step, using dimensionality reduction techniques, the generalized

coordinates of this dataset are obtained. Later, we use these coordinates to train the

network. The training objective function, RMSE, is minimized with respect to the

sample dataset

RMSE =

√√√√ 1

msamp

msamp∑

n=1

(
q

(Ns(n))
pred − q(Ns(n))

samp

)2
, (151)

where, qsamp, and qpred are scalar generalized coordinates for sample and prediction,

89

respectively. Since the objective is an accurate prediction of the generalized coor-

dinates over ∆T, we train the surrogate model in Ns(n) = {ξ(1)
s , ξ

(2)
s , . . . , ξ

(msamp)
s }.

Consequently, developing surrogate models via deep learning allows us to predict the

aforementioned terms in the remainder of time intervals over ∆T with a minimal

computational cost.

7.3.5 Shaping the Trial Subspaces

As the FOM becomes non-linear, the mapping functions will be highly sensitive to

projection errors. This issue influences the accuracy and robustness of ROMs. Al-

though closure models developed by LSPG are unconditionally stable over ∆T, the

accuracy of the sensitivity solutions are not guaranteed. Most errors in the sensitiv-

ity solutions come from the trial basis function, which causes the sensitivity solution

diverges from the exact one, i.e., ∀t(n) ∈ ∆T : v (n) 6= v + Φ̃h̃
(n)

. Additionally, a

combination of different ROB may deviate the manifolds in H . However, we should

note that this is not the usual case.

In the shaping step, we perform LSS to compute sensitivities, and if those residuals

in LSS are large, we minimize the `2-norm of them after embedding the updated

sensitivity solution, h̃ c := h̃(ΦvΘv), where Θv ∈ Rr×r is a linear operator that

reshapes the manifolds for all sets of subspaces. In this study, we set Θv = θcorrI
to make it a scaling matrix at which θcorr ∈ R is a factor to scale the manifolds in

each subspace. The updated manifold results in changes to the mapping function,

such that ΦΘvh̃
(n)

c 7→ v (n), which indicates that changes in the updated manifolds

will influence the sensitivity solution in lower dimensions. Therefore, this numerical

procedure can be defined as a minimization problem

h̃ c,Θv ∈ argmin
z ∈ Rnu ,

Y ∈ Rr×r

mq∑

n=1

∥∥∥∥∥
∂
(
u + Φ̃uq̃

(Nq(n))
)

∂S − Φ̃Yz (Nq(n))

∥∥∥∥∥

2

2

, (152)

where Nq(n) = {ξ(1)
q , ξ

(2)
q , . . . , ξ

(mq)
q } are a set of random numbers, such that ξ(n)∆t ∈

∆T, and mq shows the number of samples chosen randomly for this minimization. We

note that z is updated using LSS after each minimization iteration in Eq. (152) to

ensure the sensitivity solution remains optimal in H . As mentioned earlier, Eq. (152)

can be considered to ensure the updated sensitivity results are not far from the ac-

tual values. The samples we use in Eq. (152) could be the steady-state sensitivity

90

solutions. We acknowledge that the steady-state sensitivity solutions are not exact

for non-linear dynamical systems. However, it gives us useful insights into what the

unsteady sensitivity solutions would be, and having these insights may improve the

final sensitivity results. Moreover, the shaping phase helps fix Φ̃v if it is contaminated

with inaccurate results. Nevertheless, we consider Eq. (152) as an optional step for

sensitivity analysis and optimization.

91

Chapter 8

Computational Platform

8.1 Overview

In Chapters 4, 5, 6, and 7, we discussed the fundamentals required to proceed with

convex or non-convex optimization in the presence of the chaotic dynamical system.

However, in this chapter, we focus on how to solve the ROM-constrained optimization

for large-scale problems. Figure 31 displays this procedure for computing sensitivities

-

s

Figure 31: Flow-chart describing the proposed platform for sensitivity analysis.

92

of the objective function with respect to all design parameters, S. At first, the high-

dimensional Navier-Stokes equations, as a set of PDEs, ∇.f a, are spatially discretized

using the FR approach, and then converted into a set of ODEs, ∇.f . To develop a

closure model using projection-based approaches, we discretize these high-dimensional

ODEs in the time domain, referred to as O∆Es, using an implicit temporal scheme,

such as BDF scheme. Next, we project O∆Es into lower-dimensional spaces, H ,

using the Petrov-Galerkin projection. This projection yields a lower-dimensional set

of O∆Es that can be used as a reference to derive the sensitivity function. Deriva-

tives of this closure model with respect to S are referred to as ∇O∆Es, which is the

main challenge in the present study. This is because the Jacobian matrices should be

significantly reduced in size, such that they provide sufficient information regarding

the dynamics of the corresponding FOM in H . Finally, applying the Lagrange func-

tion, L(∇O∆Es), accompanied by Karush-Kuhn-Tucker (KKT) conditioning leads to

KKT-∇O∆Es, which is the final set of equations that reflects the sensitivity solution

in H . Finally, these sensitivities from H are lifted back into physical space, P,

resulting in the solution of ∇O∆Es in high-dimensional space.

8.2 Discrete Forward Minimization Problem

In ROM-constrained optimization, we define different categories due to having several

inner minimization problems. The first category determines the rank of the ROB,

which impacts the computational cost, accuracy, stability of the ROM, and consis-

tency of the sensitivity solutions. Therefore, in the optimization procedure, these

minimizations are given by

rstate ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥
mu∑

n=0

u (n) − u − Φ̃uq̃
(n)

∥∥∥∥∥

2

2

)
, (153)

rsens ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥

mp∑

n=1

v (Np(n))
ss − v ss − Φ̃vh̃

(Np(n))

∥∥∥∥∥

2

2

)
, (154)

ŕsens ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥

ḿp∑

n=1

v
(Nṕ(n))
us − vus − ´̃Φv

´̃h (Nṕ(n))

∥∥∥∥∥

2

2

)
, (155)

where Np(n) = {ξ(1)
p , . . . , ξ

(mp)
p } and Nṕ(n) = {ξ(1)

ṕ , . . . , ξ
(ḿp)
ṕ } are those set of time

intervals at which data are sampled. Each minimization problem contains `2-norm

93

plus another term that represents the rank of the ROB. Moreover, β is a weighting

factor that affects the truncation. Note that `2-norm computes errors of dimension-

ality reduction. As the rank increases, `2-norm reduces, and at a specific rank, the

summation of `2-norm and βz will become minimum.

Another category that attributes the least-squares minimization to obtain the

sensitivity solution in the training procedure is defined as

v (Np(n))
ss ∈ argmin

z ∈ Rnu

∥∥∥∥
∂∇.r (Np(n))

∂u (Np(n))
z +

∂∇.r (Np(n))

∂S

∥∥∥∥
2

2

, (156)

v
(Nṕ(n))
us ∈ argmin

z ∈ Rnu

∥∥∥∥∥
∂r (Nṕ(n))

∂u (Nṕ(n))
z +

k∑

j=1

∂r (Nṕ(n))

∂u (Nṕ(n)−j)v
(Nṕ(n)−j)
us +

∂r (Nṕ(n))

∂S1

∥∥∥∥∥

2

2

, (157)

h̃ c,Θv ∈ argmin
z ∈ Rnu ,

Y ∈ Rr×r

mq∑

n=1

∥∥∥v (Nq(n))
ss − Φ̃Yz (Nq(n))

∥∥∥
2

2
, (158)

where Nq(n) = {ξ(1)
q , . . . , ξ

(mq)
q } is a set of time intervals chosen randomly for the

shaping phase. We defined this category because of its impact on the accuracy of

the solutions collected in the training step. Finally, the fully discrete form of the

ROM-constrained optimization is represented as follows

minimize
q∈Rr,S∈D

J ≈ 1

mu

mu∑

n=0

J (n)(u + Φ̃q̃ (n), t(n),S)

subject to:

Ψ̃(n)>Φ̃
k∑

j=0

ζjq
(n−j) + ∆t(n)β0Ψ̃

(n)>∇.f (n)

(
u + Φq (n), t(n),S

)
= 0,

Apply Eq. (136),

Apply Eq. (153), Eq. (154), Eq. (155),

Apply Eq. (156), Eq. (157), Eq. (158),

C(u + Φ̃q̃ (n), t(n),S) ≤ 0.

(159)

The time-averaged sensitivities can also be found by

∆J
∆S ≈

1

mu

mu∑

n=0

[
∂J (n)

∂u (n)

]>(
v + Φ̃Θvh̃

(n)

c

)
+

1

mu

mu∑

n=0

E (n)
(
J (n) − J

)

+
1

mu

mu∑

n=0

∂J (n)

∂S .

(160)

94

8.3 Platform Steps

In this section, all parts of the proposed platform are explained briefly to clarify the

essential steps taken in the ROM-constrained optimization.

8.3.1 Input

Let us suppose that we want to consider sensitivity analysis for any specific set of

design parameters, such as boundary conditions or geometry of a solid object in

the computational domain. In this case, these parameters are given manually to

the platform. However, in the optimization procedure, the optimizer delivers these

parameters automatically to the platform. The input parameters are the initial con-

ditions for the FOM, denoted via u(0,S) = u0, and a set of design parameters,

S = [s1, s2, . . . , sns]
>.

8.3.2 Simulation

In this step, the primal PDEs, in the form of a FOM simulation, are solved in time

until a desire convergence criterion (e.g., we usually solve them until 20t∗ ∼ 40t∗).

Afterward, the rest of this FOM simulation proceed with data collection. First, the

state vector is computed, converted into a snapshot, and stored to hard disk memory

for a certain number of time intervals, mu. The time-averaged objective function, J ,

is also computed, and stored.

8.3.3 POD Function

If the aforementioned FOM simulation requires a significant memory in the hard disk,

we can build Xstate at the end of the simulation, and then built the POD modes. This

attempt lets us compress these massive data, and use them with less computational

effort. As a matter of fact, we do not need these massive snapshots that are already

stored to the hard disk memory anymore, since we already compressed them using

the POD function. Therefore, we can delete them, and reconstruct the solution at

each discrete time interval, t(n) ∈ ∆T, when it is required to compute derivatives (i.e.,

Jacobian matrices). Note that rstate should be determined via Eq. (153) to ensure all

95

the information in the system is captured, such that 99% ∼ 99.9% of the total energy

of flow can be reconstructed.

8.3.4 Data Sampling

According to Chapter 7, we need to solve Eq. (156) and Eq. (157), and build other

datasets to find prominent structures that exist in the solution of the sensitivity func-

tion. These structures are a critical part of sensitivity analysis, since they determine

the final shape of the corresponding manifolds in H . Strategies for data sampling

have a significant effect on the computational cost, and those accuracies in sensitiv-

ity analysis. One of the factors that come through the experience is the number of

samples that need to be collected over ∆T. There is an optimum point between the

accuracy, and the computational cost investigated before starting any optimization

procedure. Additionally, after taking all sampling steps, Xsens and X́sens are built

to obtain the ROB using the POD function. Accordingly, Eq. (154) and Eq. (155)

are solved to minimize the number of POD modes needed to describe the accurate

sensitivity solutions. Finally, we build the trial basis function, Φ̃, using those ROB

built for all design parameters.

8.3.5 ROM

We can develop the closure model by applying the Petrov-Galerkin projection to the

discretized form of the FOM using Φ̃, yielding two sets of O∆Es and ∇O∆Es. The

residual form of the governing equations is a significant constraint to be applied to

the closure model. Therefore, considering this constraint is referred to as the physics-

constrained ROM. The residuals of O∆Es and ∇O∆Es are minimized to ensure the

optimality condition is applied to the closure model. Note that the Petrov-Galerkin

protection is applied at each discrete time interval to guarantee the minimum-residual

property over ∆T.

8.3.6 Derivatives

After developing the closure model, we compute lower-dimensional Jacobian matrices,

and other related derivatives according to Eq. (135). These derivatives are stored to

disk with a considerable reduction in memory requirements than the FOM. In the

96

next step, the KKT system in Eq. (51) is built in the form of LSS problem. This LSS

can be set into a loop with Eq. (158) to proceed with the shaping phase discussed

in Chapter 7. As mentioned before, the shaping phase is an optional step in the

optimization process. In other words, if there is any intrusive mode (i.e., poor-defined

mode due to uncertainties or poor data collection), which may influence the resulting

sensitivities significantly, this shaping phase reshape manifolds in such a way that the

corresponding errors in those sensitivities become minimum. Finally, the sensitivity

solutions in H are lifted back into physical space, P, via Φ̃. These results can be

given to the optimizer in order to update design parameters in design space, D .

97

Chapter 9

Sensitivity Analysis

9.1 Overview

In this chapter, different examples are provided to demonstrate sensitivity analysis of

large-scale fluid dynamic problems using the proposed approach. The main objective

of this chapter is to show how dimensionality reduction accelerates sensitivity analysis

of high-fidelity CFD problems. First, we provide the computational setup for each

case study, and then the results are interpreted in detail.

9.2 Computational Setup

In this section, three different case studies are selected to validate the proposed

approach for sensitivity analysis. The first case is flow past a circular cylinder at

Re = 40 ∼ 250. We chose this case since it consists of steady-state and periodic

flow regimes (non-chaotic) at different Reynolds numbers. So we can show that the

proposed approach can accurately predict the sensitivity of the non-chaotic dynam-

ical system. The second case is flow past a 2D NACA 0012 airfoil at Re = 2400,

where the airfoil is at high angles of attack, near stall and post-stall. This problem

is chaotic, which makes sensitivity analysis more challenging. The third case study

presents sensitivity analysis and uncertainty quantification of flow past a 3D NACA

0012 blade at Re = 2× 104. This problem is inherently chaotic since the flow in the

wake is fully turbulent.

98

FOM simulations are performed using the High-ORder Unstructured Solver (HO-

RUS), an in-house CFD package, for the compressible Navier-stokes equations. The

Navier-Stokes equations are discretized, and converted into a set of ODEs using the

Flux-Reconstruction (FR) approach [65]. The second-order Backward Differentiation

Formula (BDF2) is used as a temporal scheme to obtain the fully-discrete O∆Es.

The residual tolerance is set to 10−7 with a maximum of 11 inner iterations for each

time step. The O∆Es at each time interval are solved using Gauss-Newton GMRES

with a maximum of 103 iterations. The Additive Schwarz method is used for precondi-

tioning. An in-house scientific software, OPtimization Toolkit for Highly NOn-linear

Systems (OPTHiNOS), was developed to solve forward sensitivity functions using

the proposed approach. Dimensionality reduction is applied to the high-dimensional

solutions using Singular Value Decomposition (SVD). A different set of eigenvalue

problems for SVD are solved via SLEPc [59]. Furthermore, PETSc [9, 40] compiled

with OpenMPI [41] is employed to parallelize linear solvers. The test basis func-

tion is built by the Petrov-Galerkin approach with the discrete optimality condition,

achieved by finding proper directions in subspaces to minimize the residual of O∆Es.

Here the optimality condition is guaranteed by the LSPG approach. A series of least-

squares minimizations are sorted by a feed-forward auto-encoder that is accompanied

by two basic steps (i.e., building and shaping). Furthermore, sensitivity functions

are solved via conventional LSS, such that the KKT system is a large sparse multi-

block matrix. In order to reduce computational costs, this KKT system is built using

first-order BDF1. More details for each case study will be provided in the following

sections.

9.3 Test Case 1: Non-Chaotic Flow Past a Circu-

lar Cylinder

In this example, the sensitivity of aerodynamic loads are investigated for the flow

past a circular cylinder at different Reynolds numbers Re = 20 ∼ 250 and a constant

M∞ = 0.1, where M∞ indicates the free-stream Mach number. A 2D computational

domain with a multi-block structured mesh is used. Inlet and outlet boundaries are

placed at 20D and 40D, respectively, where D is diameter of the cylinder. The

time-step is set to ∆t = 0.05t∗, where t∗ is a convective time (t∗ = lc/u∞, where lc

99

and u∞ are characteristic length and free-stream velocity, respectively). Note that

the characteristic length for this example is set to lc = D. Table 6 compares the

results of the present simulation at Re = 150 with reference data [28, 66]. Lift and

drag (FL and FD) are normalized into lift and drag coefficients, CL = FL

0.5ρ∞lcu2
∞

and

CD = FD

0.5ρ∞lcu2
∞

, where ρ∞ is free-stream fluid density. Numerical simulations with

different solution polynomial degrees, ps = {1, 2, 3}, are tested to evaluate accuracy

in space. The present results with ps = 2 and ps = 3 are in good agreement with the

results of literature [28, 66]. Hence, the rest of this study continues with ps = 2, since

the results with this solution polynomial degree agree with those of ps = 3.

ps Order of accuracy DOF CD ∆CL ∆CD
1 2nd 20,256 1.219 0.331 0.008
2 3rd 45,576 1.328 0.522 0.024
3 4th 81,024 1.331 0.516 0.026

Reference [28] 5th 42,150 1.324 0.516 0.0258
Reference [66] 1.32 0.52 0.026

Table 6: Comparison of the current results with forces in other literature.

Figure 32 shows simulation results at Re = 150. Figure 32a displays a Poincare

map built by projection of CL − CD on ∂CL

∂t
= 0. A Poincare map is a technique to

detect the evolutional behaviour of dynamical systems. This Poincare map consists of

only two points, which indicates periodic behaviour of the dynamical system for this

Reynolds number. Figure 32b shows velocity contours, which appear as a von-Karman

street in the wake of the cylinder. Since the von-Karman vortex street for this circular

cylinder is symmetric, the projected points in the Poincare map are symmetric also.

Consequently, we expect that all but one of the LEs for this problem are negative.

Figure 33 displays the first five leading LEs, which indicates that theoretical and

computed LEs are asymptotic to each other.

For sensitivity analysis, we provide the time-averaged sensitivity of the aerody-

namic loads with respect to the Reynolds number. To change the Reynolds number,

the free-stream Mach number is kept constant, while the fluid viscosity, µu, is changed.

Subsequently, the sensitivity of the state vector with respect to the Reynold number,
∂u
∂Re

, is computed. For this example, the rank is set to rstate = 32 to ensure at least

%99 of flow energy is captured by Φ̃u. Additionally, Φ̃v has the same rank, and

we did not use ´̃Φv since the dynamical system in this example is not complex (i.e.,

100

� �

CL

−0.33
0.00

0.33
CD

0.00

1.36

2.72

∂
C

L

∂
t

−0.04

0.00

0.04

−0.4 −0.2 0.0 0.2 0.4
CL

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C
D

(a) Poincare map for a periodic.

� �

U

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

0 0.150.075

(b) Time-averaged aerodynamic
loads.

Figure 32: Poincare map and aerodynamic loads for a periodic (non-chaotic) flow
past a circular cylinder at Re = 150.

0 200 400 600
t/t ∗

− 0.04

− 0.02

0.00

0.02

0.04

L

Figure 33: Time-history of the first five leading LEs at Re = 150.

Φ̃ = Φ̃u ⊕ Φ̃v). The perturbation for the Reynolds number is set to ε = 1. In the

end, CD and CL,rms = (1
T

∫ T

0
(∆CL)

2dt)0.5 are selected to be objective functions for

this example.

Figure 34 shows the time-averaged sensitivity of CD curve versus Re, which is

found by ∆CD

∆Re
. The second part of Figure 34 presents the time-averaged sensitivity of

CL,rms with respect to Re, which is defined by
∆CL,rms

∆Re
. The yellow area in ∆CD and

∆C2
L indicates the range of unsteady fluctuations. As shown, the proposed approach

can precisely determine sensitivities for this weakly non-linear dynamical system. It

is worth mentioning that strong diffusion in this system, which leads to negative LEs,

dampens perturbations to the flow. Therefore, the closure model can exactly map

this dynamical system from P to H , such that F → F for all t(n) ∈ ∆T.

101

0 50 100 150 200 250 300

Re

1.25

1.50

1.75

2.00

2.25

C
D

CD

(∆ CD
∆ Re)

∆ CD

0 50 100 150 200 250 300

Re

0.0

0.2

0.4

0.6

(∆
C
L
)2

CL,rms

(
∆ CL,rms

∆ Re)

(∆ CL)2

Figure 34: Sensitivity analysis for flow past a circular cylinder.

9.4 Test Case 2: Chaotic Flow Past a 2D NACA

0012 at Re = 2400

In the second example, we show how a dynamical system’s chaoticity influences the

results of the sensitivity function. A 2D computational domain with a NACA 0012

airfoil is selected, and the flow conditions are set, such that Re = 2400 and M∞ =

0.2. The computational domain is discretized using unstructured elements, with

a clustered boundary mesh around the airfoil. The flow passes around the airfoil

until 20t∗ to ensure the flow field is fully developed in the computational domain.

Afterward, data are collected over another 20t∗. The time-step is set to ∆t = 0.01t∗.

For validation, the effective angle of attack is set to αeff = 20◦. Table 10 compares

the present results with forces available in the literature [45]. The non-dimensional

normal and tangential forces are Cn = Fn

0.5ρ∞lcu2
∞

and Ct =
Ft

0.5ρ∞lcu2
∞
, where Fn and

Ft correspond to normal and tangential forces, respectively. In this example, the

characteristic length is lc = c, where c is chord length of the airfoil. Additionally, the

Strouhal number is defined as St = fslc cos(αeff)/u∞, where fs is frequency. Please

note that lc cos(αeff) corresponds to the surface normal to u∞. As shown in Table

10, the current results are in good agreement with the reference solution.

To investigate chaoticity, the flow field should be simulated over a sufficiently

102

ps Order of accuracy DOF Cn Ct St/ cos(αeff)
2 3rd 134,784 1.138 0.097 0.26
3 4th 239,616 1.158 0.100 0.26

Reference [45] 4th 726,240 1.146 0.102 0.26

Table 7: Comparing the present results at Re = 2400 with those in [45].

large ∆T. Fig. 35 displays Poincare maps for two different solution polynomial

degrees, which indicates that the dynamics of the flow are continuously changing.

Furthermore, the Poincare map for ps = 2 shows that flow structures are not captured

properly compared to those of ps = 3. Therefore, we will consider the flow field

simulations with ps = 3 for the rest of this case. In order to compute the leading LEs,

the flow field is simulated over ∼ 150t∗ to ensure that the attractor of the dynamical

system is complete. Afterward, the first ten leading LEs are computed, as shown

in Fig. 36. There are four positive LEs, Li > 0 ∈ n+ with 1 ≤ i ≤ 4, which are

� �

CL

0.52
1.04

1.56

CD

0.2

0.4

0.6

∂
C

L

∂
t

−0.17

0.00

0.17

0.6 0.8 1.0 1.2 1.4 1.6
CL

0.35

0.40

0.45

0.50

0.55

0.60

C
D

(a) ps = 2.

� �

CL

0.55
1.10

1.65

CD

0.21

0.42

0.63

∂
C

L

∂
t

−0.21

0.00

0.21

0.25 0.50 0.75 1.00 1.25 1.50
CL

0.3

0.4

0.5

0.6

C
D

(b) ps = 3.

Figure 35: Poincare map for chaotic flow at Re = 2400 and αeff = 20◦.

responsible for strong non-linearities in this dynammical system. In this chaotic flow,

the first leading LE is L1 = 0.225, which governs exponential growth of perturbations.

Moreover, L5 ≈ 0 and all the rest are negative, Li < 0 with 6 ≤ i ≤ 10, which is in

agreement with aforementioned descriptions of chaotic systems.

Figure 37a shows the instantaneous lift and drag coefficients over 325t∗. These

values do not follow any certain cyclic pattern, which indicates the behaviour of

103

0 50 100 150 200 250
t/t ∗

− 0.4

− 0.2

0.0

0.2

0.4

L

Figure 36: Time-history of the first ten leading LEs at Re = 2400 and αeff = 20◦.

chaotic flows. Fig. 37b also displays the time-averaged lift and drag coefficients over

the same time domain. Furthermore, a Fast Fourier Transform (FFT) is applied to

the aerodynamic loads to investigate the vortex shedding frequencies. Figure 37c and

37d show the spectral amplitude versus the Strouhal number. In contrast to periodic

flows, with a constant shedding frequency, the Strouhal number for this case covers

a wide range of frequencies, St ∈ [0, 1]. However, there is one frequency with high

spectral amplitude, St ≈ 0.2, indicating the existence of a dominant vortex shedding

pattern. This type of dominant pattern also exist in chaotic flows, also observed by

[63, 147].

Sensitivity analysis for this example is done over a range of 2 × 103∆t in time

domain ∆T. Statistical analysis is also performed with 99% confidence intervals.

The sensitivity function is solved for a wide range of the effective angles of attack,

αeff ∈ [19◦, 25◦], which covers pre-stall, stall, and post-stall conditions. Figure 38

displays the time-averaged lift and drag coefficients, CL and CD, where green error-

bars denote 99% confidence intervals. Sensitivity of the lift and drag coefficients with

respect to the effective angle of attack, ∆CL

∆αeff
and ∆CD

∆αeff
, are shown by red wedges.

These results are compared with second-order FD approximations, where the objec-

tive functions are computed using FOMs. The sensitivities obtained by the present

approach reflect correctly the trend of CL and CD with αeff . The challenging part of

sensitivity analysis is usually in stall and post-stall conditions, where flow structures

are highly complex due to strong non-linearity of the dynamical system. Interestingly,

the computed sensitivities also capture the lift reduction with αeff around the stall

angle. The same trend is also reflected by the sensitivities computed for the drag

104

0 100 200 300
t/t ∗

0.0

0.5

1.0

1.5

2.0

2.5

C
L
,C

D

CL
CD

(a) Instantaneous aerodynamic loads

0 100 200 300
t/t ∗

0.0

0.5

1.0

1.5

2.0

2.5

C
L
,C

D

CL

CD

(b) Time-averaged aerodynamic loads

0.0 0.2 0.4 0.6 0.8 1.0
St

0.00

0.02

0.04

0.06

0.08

S
p

ec
tr

al

(c) Spectral versus St for CL

0.0 0.2 0.4 0.6 0.8 1.0
St

0.00

0.01

0.02

S
p

ec
tr

al

(d) Spectral versus St for CD

Figure 37: Aerodynamic loads and Fast Fourier Transform (FFT) results at Re =
2400 and α = 20◦.

coefficient. Due to this instability of the flow in stall and post-stall conditions, the

uncertainty of the computed results increases. There are some discrepancies between

the FD approximations and the present results at αeff = 21◦ and 22◦, which is around

stall angle. In this condition, computing exact sensitivities remains highly challeng-

ing. At the stall angle, the FD approximations themselves may not be suitable for

predicting sensitivities. Furthermore, as we will show later in the next example, FD

approximations completely fail when strongly non-linear dynamical systems govern

vortical structures in the wake. Therefore, we can not judge the results in these two

angles with confidence. Furthermore, small sensitivity magnitudes near transitional

conditions, such as stall, lead to statistical difficulties when approximating the exact

time-averaged values [100].

In conventional sensitivity analysis, the high-dimensional forward sensitivity func-

tion at αeff = 21◦ is directly solved over 10t∗ time domain. To this end, Eq. (103)

is discretized using a BDF2 scheme, and advanced in time with the same time-step

already used for FOM simulations. Figure 39 compares the results of the present

approach with those of a conventional method. The first column in Figure 39 shows

105

18 20 22 24 26 28
α eff

0.8

0.9

1.0

1.1

1.2

1.3

C
L

(∆ CL

∆ α eff
), FD

(∆ CL

∆ α eff
)

CL

18 20 22 24 26 28
α eff

0.45

0.50

0.55

0.60

0.65

C
D

(∆ CD
∆ α eff

), FD

(∆ CD
∆ α eff

)

CD

Figure 38: Sensitivity analysis of the aerodynamic loads with respect to αeff near
stall and post-stall regions for chaotic flow at Re = 2400.

velocity contours at different instants t = {2t∗, 6t∗, 10t∗}. The second and third

columns display contours of the sensitivity solution with respect to the effective angle

of attack, ∂u
∂αeff

, for both the conventional and present approaches. In the second

column, the sensitivity solution blows up at t = 6t∗. Moreover, at t = 10t∗, errors

propagate through the entire domain, particularly in the wake. However, in the third

column, the sensitivity solution given by the present approach remains stable over

the evaluated time domain. Here, positive eigenvalues in the Jacobian matrix of the

linearized FOM correspond to local unstable modes in the dynamical system, and im-

plicit schemes can only preserve instabilities that are caused by these unstable modes.

However, positive LEs correspond to global unstable modes in the non-linear dynam-

ical system, making the sensitivity function unconditionally unstable. However, this

example demonstrates the potential of the present approach to tackle global unsta-

ble modes, and solve for the sensitivity function for strongly non-linear dynamical

systems.

106

∂U/∂α
eff

∂U/∂α
effU

Conventional SA Present SA

t=2t* t=2t* t=2t*

t=6t* t=6t* t=6t*

t=10t* t=10t* t=10t*

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3

Multiple images

Figure 39: Contours of velocity magnitude, sensitivity solution obtained via a conven-
tional approach, and the sensitivity solution computed using the proposed approach.
Note: SA is the abreviation of sensitivity analysis.

9.5 Test Case 3: Chaotic Flow Past a 3D NACA

0020 at Re = 2× 104

In this example, sensitivity analysis of a 3D NACA 0020 airfoil in the presence of

massive flow separation at Re = 2 × 104 and M∞ = 0.1 is investigated. A C-

topology unstructured mesh with hexahedral elements is used. The aspect ratio of

the blade is set to 0.45c with periodic boundary conditions for the side-walls. The

outer boundaries at upstream and downstream are placed 15c and 24c, respectively.

The time-step is set to ∆t = 0.01t∗, where t∗. The initial FOM simulation is run to

40t∗. Then another 7.5t∗, corresponding to mu = 750, was used for data collection.

The rank of the solution in the closure model is set to r = 200, and 10% of the time

domain is dedicated to sequential sampling from steady-state sensitivity solutions.

Additionally, 100% of the time domain, mp = mu, is considered for sampling from

the unsteady sensitivity solutions.

107

For validation, three different meshes (coarse, medium and fine) are compared with

available literature, as shown in Table 8. The ILES [135] and DNS [117] results are

time-averaged without including uncertainty bounds, while we provide 99% confidence

intervals for the present time-averaged results. In general, the present results for

medium and fine meshes are in good agreement with those in the literature. The DNS

[117] results are in the range of the 99% confidence intervals for both medium and

fine meshes. Since the medium mesh yields suitable results with less computational

costs, we chose it for sensitivity analysis.

Test DOF CL CD

Coarse mesh 6.48× 105 0.74±0.08 0.40±0.033
Medium mesh 2.09× 106 0.67±0.06 0.37±0.031
Fine mesh 2.71× 106 0.65±0.09 0.37±0.038
ILES [135] - 0.59 0.33
DNS [117] - 0.64 0.35

Table 8: Comparing the aerodynamic results of a 3D NACA 0020 blade atRe = 2×104

with those in [117, 135].

To evaluate the chaoticity of this example, the first fifty leading LEs for this blade

at αeff = 20◦ are shown in Figure 40. The initial simulation is performed until

20t∗ to ensure transitional effects due to the initial condition are omitted from the

domain. Afterward, LEs are computed over 10t∗ with the 99% confidence intervals.

As shown, all of these LEs are positive, indicating dominant chaotic behaviour of the

flow. Therefore, sensitivity analysis and uncertainty quantification for this case are

challenging.

0 10 20 30 40 50
ith

0.0

0.1

0.2

0.3

0.4

L

Figure 40: The first fifty leading LEs at αeff = 20◦.

108

0.0 2.5 5.0 7.5
t/t ∗

− 2

− 1

0

1

h

0

10

20

30

40

(a) Generalized coordinates.

0.0 2.5 5.0 7.5
t/t ∗

− 200

0

200

λ

0

10

20

30

40

(b) Lagrange multiplier.

Figure 41: Instantaneous results of the sensitivity solutions obtained by the present
approach at αeff = 20◦.

Figure 41 shows instantaneous results obtained by the LSS for the first forty

modes. Figure 41a shows the sensitivity of the generalized coordinates. The colour

bar shows the rank of each mode associated with its generalized coordinate. Lower

rank solutions have more impact on the fluid physics while, as the rank increases, the

sensitivity magnitude decreases. This shows that lower rank modes are influenced

more by perturbations in the effective angle of attack. This is because these lower rank

modes contain the most energy and, hence, are the basis of the dynamical system.

Although higher rank modes, containing the small vortical structures and eddies,

could be more sensitive to perturbations, their natural effect on the dynamical system

remains small. Figure 41b displays the instantaneous Lagrange multipliers. Since LSS

solves the sensitivity function by converting it into a boundary-value problem, the

Lagrange multiplier at the initial and final time intervals is set to zero. The Lagrange

multiplier is notably high for the lower rank modes, indicating a strong relation with

the sensitivity solution.

Figure 42 shows the instantaneous sensitivities of aerodynamic loads with re-

spect to the effective angle of attack αeff = 20◦. The dynamic sensitivity solutions,(
∂CL

∂αeff

)
Dyn.

and
(

∂CD

∂αeff

)
Dyn.

, are obtained by the first two terms in Eq. (138). More-

over,
(

∂CL

∂αeff

)
Par.

and
(

∂CD

∂αeff

)
Par.

are the parametric sensitivity solutions, which are

given by the last term in Eq. (138). Finally, a summation of these dynamic and

parametric sensitivity solutions yields the total sensitivity solutions,
(

∂CL

∂αeff

)
Tot.

and(
∂CD

∂αeff

)
Tot.

. It is noteworthy that the instantaneous results do not exhibit any periodic

behaviour, which is a sign of chaotic dynamical systems.

109

0 2 4 6

t/t ∗

− 0.02

0.00

0.02

0.04

0.06

0.08

∂
C
L

∂
α
ef
f

(∂CL
∂α eff

)Tot.

(∂CL
∂α eff

)Dyn.

(∂CL
∂α eff

)Par.

(a) Sensitivity of lift coefficient

0 2 4 6

t/t ∗

0.00

0.02

0.04

0.06

0.08

∂
C
D

∂
α
ef
f

(∂CD∂α eff
)Tot.

(∂CD∂α eff
)Dyn.

(∂CD∂α eff
)Par.

(b) Sensitivity of drag coefficient

Figure 42: Instantaneous sensitivity of the aerodynamic loads with respect to a per-
turbation in the effective angle of attack at αeff = 20◦.

Figure 43 is also provided to interpret the time-averaged sensitivity of the aero-

dynamic loads at different effective angles of attack, αeff = {5◦, 10◦, 15◦, 20◦}. The

time-averaged lift and drag coefficients are shown with green errorbars, indicating

99% confidence intervals. Moreover, red wedges display 99% confidence intervals for

the present results. Furthermore, yellow wedges belong to the second-order FD ap-

proximations with 99% confidence intervals. The present sensitivities are in good

agreement with the results computed by FOMs. Additionally, the present results

reflect proper trends for the lift and drag curves with αeff . On the other hand, the

uncertainty level of the FD approximations increases significantly as the effective an-

gle of attack increases. This uncertainty becomes dominant after αeff = 10◦, and

the FD approximations completely fail to provide any practical sensitivity. These

notable augmentations in the objective function with high uncertainties are the pri-

mary challenge in non-convex optimizations. The present approach could be a good

replacement for these types of optimizations.

On the left-hand side of Figure 44, Q-criterion is obtained by the state vector.

Also, on the right-hand side, Q-criterion is given by the sensitivity solution vector at

αeff = 20◦. At an instant t = t∗, the Leading Edge Vortex (LEV) is fully developed

in size, and is about to pinch-off. At this instant, it is observed that the sensitivity

solution is not very high. At instant t = 4t∗, the Trailing Edge Vortex (TEV) rolls

up, and grows in strength. Therefore, the flow in the wake becomes highly sensitive

to the perturbations in the effective angle of attack.

Overall, each Jacobian matrix for this example allocates about 7 GB of hard disk

110

5.0 7.5 10.0 12.5 15.0 17.5 20.0
α eff

0.00

0.25

0.50

0.75

1.00

C
L

(∆ CL
∆ α eff

), FD

(∆ CL
∆ α eff

)

CL

5.0 7.5 10.0 12.5 15.0 17.5 20.0
α eff

0.0

0.1

0.2

0.3

0.4

0.5

C
D

(∆ CD
∆ α eff

), FD

(∆ CD
∆ α eff

)

CD

Figure 43: Time-averaged sensitivity of the aerodynamic loads with respect to differ-
ent angles of attack, where the flow is fully separated.

memory. Using conventional LSS, we would need to store all the Jacobian matrices

and other derivatives to disk for all time intervals, and load all of them to a comput-

ing device simultaneously. In this case, the KKT system would need 1500 residual

matrices, ∂r
∂u

∈ Rnu×nu , where nu = 2.09 × 106. Hence, solving the conventional

LSS problem would need about 10.517 TB of memory, making it prohibitively ex-

pensive. However, the present approach reduces this memory allocation to only 1.3

GB, indicating a 8, 087 times reduction. Besides remarkable dimensionality reduc-

tion, and reduced requirement in data storage, it is shown that the accuracy of the

time-averaged sensitivity approximation is still preserved.

9.6 Importance of Hyper-Reduction

In the previous examples, we showed how ROMs could be employed to perform sen-

sitivity analysis and uncertainty quantification of either chaotic or non-chaotic prob-

lems. These ROMs provided notable reductions in both computation and memory

111

� �

�u� ���ρu
i
���S�

(a)t = t*

(b)t = 4t*

(b)t = 7t*

Figure 44: Q-criterion superimposed by the velocity magnitude (left), and corre-
sponding momentum sensitivity magnitude (right) at αeff = 20◦.

requirements, and paved the way to analyze non-linear systems. In this section, we

consider the hyper-reduction only for the third case, since it requires a notable com-

putational cost compared to the other two cases. All computations were carried on

twenty Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz cores. To perform the hyper-

reduction, we selected only 10% of time intervals in ∆T, msamp = 75 with equidistance

time steps, and computed the aforementioned terms in Eq. (136) at these sample in-

tervals. The time needed to compute these terms at all of these sample intervals

is approximately 4.22hr. We now use deep learning to compute the aforementioned

terms for the remainder of time intervals (i.e., 675 out of 750).

To develop a surrogate model using a neural network, the first hidden layer has a

linear activation function with 80 neurons. This layer is followed by three consecutive

Rectified Linear Unit (ReLU) layers with 160 neurons. The last hidden layer also

has a linear activation function, containing 80 neurons. Input and output layers are

also set to the linear activation function. We used Tensorflow scientific package [1]

to develop this neural network architecture. The optimizer was set to Adam with a

learning rate of 0.001. Data compression for each term was also performed via the

POD technique. After several examinations, these configurations were found to be

appropriate for hyper-reduction, and we used this network for the rest of this study.

Table 9 shows the results of two different hyper-reduction cases, where each

112

case has different recovery criteria. We also compare these cases with the one per-

formed without hyper-reduction, Non-Hyper. The recovery criteria is calculated via
∑rh

i=1 Ei/
∑r

i=1 Ei, where Ei is eigenvalue of ith mode, and rh is the truncation rank

for hyper-reduction. As it is shown, in the Non-Hyper case, it took about 38.06hr to

prepare the aforementioned terms in Eq. (136) for the remainder of time intervals.

However, Hyper-2 with 0.99 of recovery criteria has almost the same time-averaged

dynamical sensitivities (i.e., 0.16% error for the lift), and it only needs 7.705hr to

compute these remainder terms. With decreasing the recovery criteria to 0.95, the

computational time reduces notably, while the error in the sensitivities increases to

0.49% and 0.87% for the lift and drag coefficients, respectively.

Hyper-reduction
Recovery
criteria

rh
(
∂CL

∂αeff

)
Dyn.

(
∂CD

∂αeff

)
Dyn.

Time (hr)

Hyper-1 0.95 2 0.01214 0.00454 0.45
Hyper-4 0.99 18 0.01222 0.00458 7.705

Non-Hyper - - 0.01220 0.00458 38.06

Table 9: Hyper-reduction considered for the test case 3 at αeff = 20◦.

Among the aforementioned terms in Eq. (136), we selected Ψ̃>Ψ̃ for further study

because of its importance in the evolutional behaviours of the sensitivities in Hilbert

space. Figure 45 shows the RMSE computed for each element of Ψ̃>Ψ̃. As seen,

Hyper-1 has larger errors compared to Hyper-2, and as the truncation rank increases,

these errors reduce monotonically. In general, Figure 45 indicates that most of the

prominent dynamical structures for sensitivities are embedded in lower truncation

rank modes. Consequently, we conclude that, in this case, deep learning can predict

the aforementioned terms accurately over the remainder of time intervals. This fact

causes hyper-reduction to significantly reduce computational time, with less impact

on the dominant structures embedded in the aforementioned terms.

9.7 Remarks

Conventional sensitivity analysis fails to compute sensitivities of chaotic dynamical

systems. This arises from the fact that chaotic dynamical systems have at least one

unstable mode with a positive Lyapunov exponent (LE). Therefore, any small per-

turbation to the system induces errors in the direction this mode grows exponentially

113

10−5

10−4

10−3

10−2

10−1

(a) Hyper-1

10−5

10−4

10−3

10−2

10−1

(b) Hyper-2

Figure 45: RMSE computed for each element of Ψ̃>Ψ̃ ∈ Rr×r.

in time. From a mathematical standpoint, the shadowing lemma, in the form of the

LSS minimization problem, can be employed to compute accurate sensitivity solu-

tions for chaotic systems. However, this approach is computationally expensive for

large-scale fluid systems (i.e., 104 ∼ 105 times more expensive than FOM simulations)

[20]. Although several efforts have been made to reduce the computational cost of

conventional LSS, it still suffers from a prohibitive computational burden and large

memory requirement, which make LSS impractical for large-scale chaotic problems.

In this study, we proposed a novel physics-constrained data-driven approach to

solve the sensitivity function for strongly non-linear dynamical systems. Here we ex-

plicitly derived a closure model, in the form of a ROM, from the high-dimensional

FOM. We fully discretized the Navier-Stokes equations and forward sensitivity func-

tions, and then transformed them from physical space to an unphysical space (i.e.,

Hilbert space), creating a low-dimensional model represented as a set of the O∆Es.

This transformation approach applies strong physical constraints to the developed

closure model. Also, the residual form of the O∆Es allows us to apply them as a

series of least-squares minimization problems in order to keep projection errors min-

imal. Consequently, a platform for this physics-constrained data-driven approach

was developed. The closure model leveraged from the minimum-residual property by

applying the Petrov-Galerkin approach to the weak form of the Navier-Stokes equa-

tions, such as the LSPG approach, described in [29]. Furthermore, a hyper-reduction

approach was also proposed to reduce computational burden for sensitivity analysis.

We leveraged deep learning to approximate those matrices in Hilbert space, which

114

are often costly to compute, yielding a significant reduction in computational costs.

Consequently, we implemented the proposed approach into an in-house scientific soft-

ware, called OPtimization Toolkit for Highly non-linear Systems (OPTHiNOS), with

parallel algorithms for multicore architectures.

To validate the proposed approach, three canonical fluid dynamics problems were

considered. In the first case, flow past a circular cylinder was simulated in the range

of Re = 20 ∼ 250, such that the flow is steady-state or periodic. In this case,

the present approach could accurately predict sensitivity solutions. This case was

chosen to show that the proposed approach can be considered as an efficient tool for

sensitivity analysis of weekly non-linear systems. In the second case, a 2D NACA

0012 airfoil with massive flow separations at high angles of attack, near the stall

and post-stall zones, was considered. The Reynolds number for this case was set to

Re = 2.4×103. It was shown that this problem at αeff = 20◦ has four unstable modes

with positive LEs. Sensitivity analysis of this chaotic problem using conventional

LSS needs at least 861 GB of memory. However, the current approach used only

236 MB, which indicates approximately 3, 650 times less memory usage than the

conventional LSS. In the third case, chaotic flow past a 3D NACA 0020 airfoil at

Re = 2 × 104 was investigated. It was shown that the present approach can predict

the sensitivities at stall and post-stall angles, while FD approximations completely fail

in these conditions. The present approach provides an 8, 087 times memory reduction,

from 10.517 TB to 1.3 GB. Additionally, it was shown that dimensionality reduction

has no notable effect on the accuracy of the approximated sensitivities. Interestingly,

the proposed approach can be implemented on a regular desktop, regardless of the

number of cores, and LSS can be solved with the tolerance of machine precision.

Additionally, hyper-reduction was used for the third case. It was shown that the

hyper-reduction accelerates computations approximately 5 to 90 times faster than

the case without employing it. Therefore, the utility of the present approach appears

promising for future analysis and optimization of complex systems.

115

Chapter 10

PDE-Constrained Optimization

10.1 Optimization of Stationary Airfoil

In this section, the numerical model developed for the ROM is used for unsteady

aerodynamic shape optimization. The objective is drag minimization of a NACA

0012 airfoil at Re = 1000 and M∞ = 0.1. This is performed with multiple constraints

to ensure the optimization is supervised in D . Two different effective angles of attack,

αeff , are selected to investigate the performance of the optimization procedure for pre-

stall and post-stall conditions. In this study, αeff = 8◦, and αeff = 25◦ correspond

to moderate (pre-stall) and massive (post-stall) flow separation, respectively. We

deliberately chose these conditions, where the Navier-Stokes equations show strong

non-linear dynamics, to demonstrate the robustness of the optimization approach

proposed in this study. The ROM-constrained minimization in continuous form can

116

be written as

minimize
q̃∈Rr,S∈D

J =
1

T

∫ T

0

β(CD)2dt+
1

T

∫ T

0

(
CL − CL,target

)2

dt,

subject to

R(u + Φ̃q̃, t,S) = 0,

dR
dS (u + Φ̃q̃, t,S) = 0,

h = argmin
z∈Rr

∥∥∥∥∥
∂(u + Φ̃q̃)

∂S − v− Φ̃z

∥∥∥∥∥

2

2

,

Cgeom.(S) ≤ 0,

Bl ≤ Cboud(S) ≤ Bu,

(161)

where CL = Lift/(0.5ρcu2
∞) and CD = Drag/(0.5ρcu2

∞) are the lift and drag coef-

ficients, respectively, ρ is the fluid density, u∞ is the free-stream velocity, and c is

the airfoil chord length. Moreover, Cgeom.(S) and Cboud(S) correspond to geometrical

constraints and bounds included in the constraint function C(S). Additionally, Bu

and Bl are the upper and lower limits of Cbound, respectively, and β is a weighting

factor. This weighting is important when using a united objective function. The

second term of the objective function guides the optimization toward a target lift

117

coefficient, CL,target. The fully discrete form of Eq. (161) is given by

minimize
q̃∈Rr,S∈D

J =
1

mu

mu∑

n=0

β
(
CD(u + Φ̃q̃(n), t(n),S)

)2

+
1

mu

mu∑

n=0

(
CL(u + Φ̃q̃(n), t(n),S)− CL,target

)2

,

subject to

R(n)(u + Φ̃q̃(n), t(n),S) = 0,

dR(n)

dS (u + Φ̃q̃(n), t(n),S) = 0,

v(Np(n))
ss ∈ argmin

z ∈ Rnu

∥∥∥∥
∂r(Np(n))

∂u(Np(n))
z +

∂r(Np(n))

∂S

∥∥∥∥
2

2

,

rstate ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥
mu∑

n=0

u(n) − u− Φ̃uq̃
(n)

∥∥∥∥∥

2

2

)
,

rsens ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥

mp∑

n=1

v(Np(n))
ss − vss − Φ̃vh̃

(Np(n))

∥∥∥∥∥

2

2

)
,

Cgeom.(S) ≤ 0,

Bl ≤ Cboud(S) ≤ Bu,

(162)

where argmin in Eq. (161) is expanded to show the training process and the rank

selection criteria in Eq. (162).

The shape of the airfoil is changed using “B-spline” shape functions, using control

points shown in Figure 46. These control points define smooth perturbations to

the suction and pressure surfaces of the airfoil. Additionally, three fixed points at

the leading edge, and another at the trailing edge, are used as constraints to avoid

defective geometries in these regions. These fixed points are also responsible for

keeping the angle of attack constant. As mentioned above, all of these constraints

are included in C(S).

10.1.1 Computational Setup

A 2D structured computational domain with a C-topology is used. To solve a com-

pressible flow field, an in-house CFD software, the High-ORder Unstructured Solver

(HORUS) Version 0.2.0, is used. The spatial discretization in HORUS uses the Flux

Reconstruction (FR) approach [65], and we set the solution polynomial degree to

118

� �

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.1

0.0

0.1

0.2

y

Control points Fixed points NACA 0012

34

5 6
8

7

2 1

Figure 46: Geometrical definition of the airfoil using control and fixed points.

0 5 10 15 20 25 30
α eff

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
L

Di Ilio (2018)

Kurtulus (2015)

Meena (2017)

Liu (2012)

present study

(a) Time-averaged lift coefficient.

0 5 10 15 20 25 30
α eff

0.0

0.2

0.4

0.6

0.8

1.0

C
D

Di Ilio (2018)

Kurtulus (2015)

Meena (2017)

present study

(b) Time-averaged drag coefficient.

Figure 47: Comparison of present numerical simulations with the data from literature
[42, 52, 77, 81].

ps = 2, which recovers third-order accuracy. The second-order Backward Differenti-

ation Formula (BDF2) is used for temporal discretization. The Prandtl number and

Mach number are set to Pr = 0.72 and M∞ = 0.1, respectively. Since the governing

equations are solved implicitly, the time step is chosen to be ∆t = 0.05t∗, where

t∗ = c/u∞ is the convective time.

The number of elements for the initial mesh is approximately 3.7 × 103. With

a solution polynomial degree ps = 2 the total number of solution points is nu =

1.35× 105. Figure 47 shows a comparison of time-averaged lift and drag coefficients

at several angles of attack, showing good agreement with available reference data.

The baseline NACA 0012 airfoil was then modified using Sequential Least-Squares

Programming (SLSP) as an optimizer from the Scipy package [137]. Additionally, the

SVD, as an eigenvalue problem is solved via SLEPc [59] in parallel, and PETSc [9, 40],

compiled with OpenMPI [41], is used for parallelization. We simulated each FOM

119

case until 40t∗. It was observed that this period is sufficient to obtain statistically

converged results. Data snapshots were then collected over a period of T = 15t∗.

The number of subspaces (the rank of the ROB) is a crucial parameter that should

be assessed before starting optimization. Having an inappropriate rank may cause

a bias in the ROM, creating a poor dynamical model. Therefore, a ROB was built

for the reference case (NACA 0012 airfoil at Re = 1000). Then the arrangement and

accumulation of singular values were analyzed according to Eq. (162). It is observed

that if the rank of the ROM is selected to be rstate = 50, the ROB contains most

of the interpretive information of flow structures. Additionally, mp = 20 samples for

each control point, P(1) to P(8), are collected to develop the ROB of the sensitivity

function with the rank of rsens = 80. These derivatives are computed with a second-

order central finite difference scheme. The sensitivity function is also discretized via

the first-order BDF1 scheme for sensitivity analysis. It is worth mentioning that

rsens should be modified since some modes in Φ̃v might be unnecessary, leading to

an increase in the bias of the sensitivity. On the other hand, Φ̃v should have a high

enough rank to minimize the detrimental effect of variance on the results. Therefore,

the residual of the sensitivity function was monitored to ensure it was lower than

10−4. Using this approach, we will now consider shape optimization at two different

angles of attack.

10.1.2 Shape Optimization of a NACA0012 at αeff = 8◦

Setup

A NACA 0012 airfoil at αeff = 8◦ is in the pre-stall condition with CL = 0.323 and

CD = 0.14. For drag minimization we select CL,target = 0.32 and β = 10 in Eq. (162).

We set the effective angle of attack as a variable that can be changed by unlocking

the fixed points at the leading edge. In this case, C(S) includes ten geometrical

constraints with sixteen bounds. Additionally, one extra constraint is considered to

limit CL. The minimization is then advanced for ten design iterations.

Optimization Results

Figure 48 shows the optimization results. The time-averaged objective function, J ,

continuously decreases until the fourth iteration. After that, the constraints slow

120

0 2 4 6 8 10

Optimization iterations

0.16

0.17

0.18

0.19

0.20

0.21

J

(a) Objective function

0 2 4 6 8 10

Optimization iterations

− 0.02

0.00

0.02

0.04

0.06

0.08

0.10

d
J
/d
S

(b) Gradients

0 2 4 6 8 10

Optimization iterations

0.1250

0.1275

0.1300

0.1325

0.1350

0.1375

0.1400

0.1425

0.1450

C
D

CD

0.0

0.1

0.2

0.3

0.4

0.5

C
L

(c) Lift and Drag coeffi cients

CL

Figure 48: Optimization progress in the shape optimization of the airfoil at Re = 1000
and αeff = 8◦.

down the reduction in J . Moreover, the time-averaged gradients of the objective

function are displayed in Figure 48 (b). As shown, all gradients converge to zero,

except one that remains constant at approximately 0.03. This cannot be driven lower

due to the imposed constraints. Figure 48 (c) illustrates how the time-averaged lift

and drag coefficients are changed during optimization. The drag coefficient is reduced

by approximately 9.35%, while producing 9% higher lift than the reference airfoil.

To compare the reference and optimized designs in terms of geometry and flow

characteristics, Figure 49 is provided. The pressure changes rapidly at the leading

edge of the optimized airfoil. These variations on the suction side produce additional

increased lift, while the rest of the optimized airfoil has no notable contribution to

lift generation. Furthermore, the optimized airfoil has a nose slightly lower than

the reference airfoil, which influences the effective angle of attack. Interestingly, the

optimized airfoil produces higher lift at lower effective angle of attack.

Flow Structures

The slender leading edge of the optimized airfoil has a notable role for the separation

point on the suction side. As shown in Figure 50 (a), the separation point, where

the flow detaches from the surface due to an adverse pressure gradient, is at x 	
0.5c. After the separation point, the flow confined on the suction side generates a

large pressure difference, and subsequently, higher drag. This confined area is also

directly related to the wake of the airfoil. However, the optimized airfoil’s nose induces

a sudden adverse pressure gradient near the leading edge, which leads to Laminar

Separation Bubble (LSB) formation, as shown in Figure 50 (b). Consequently, it

121

0.0 0.2 0.4 0.6 0.8 1.0

x/c

− 2.0

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

−
C
p

(a) Reference case

0.0 0.2 0.4 0.6 0.8 1.0

x/c

− 2.0

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

−
C
p

(b) Optimized case

Figure 49: The geometry of the airfoil and the time-averaged pressure coefficient
along the airfoil surface.

leads to a delayed separation point located at approximately x ∼ 0.8c. This delayed

flow separation leads to a smaller wake behind the airfoil, which reduces drag.

10.1.3 Shape Optimization of a NACA0012 at αeff = 25◦

Setup

There are different reports on the stall point of a NACA 0012 at Re = 1000. Liu et

al. [81] reported that the stall angle of attack is 27◦ with CL = 1.28. Kurtulus [77]

also showed the stall lift coefficient as CL = 1.25 with a stall angle of 26◦, and Di Ilio

et al. [42] detected the same stall angle, but with CL = 1.1. The present study shows

that stall occurs at 27◦ with CL = 1.25. Irregular vortex shedding is expected due

to massive flow separation on the airfoil’s suction side. Our objective is to minimize

the drag coefficient of the airfoil at αeff = 25◦. The lift and drag coefficients for the

NACA 0012 at this angle of attack are CL = 1.17 and CD = 0.66, respectively.

To define the optimization problem, we selected β = 2, and CL,taget = 1.25 to

force the objective function to keep the lift coefficient relatively constant while re-

ducing drag. Having a slightly higher CL,target than CL = 1.17 was found to prevent

the magnitude of the lift coefficient dropping significantly in early design iterations.

Additionally, C(S) includes twelve geometrical constraints and sixteen bounds for

the control points. Limiting the lift coefficient and the angle of attack are two other

122

� �

Velocity magnitude

Velocity magnitude

(a)

(b)

Separation point

Separation pointLSB

Figure 50: Velocity contours with superimposed streamlines for Re = 1000 and αeff =
8◦; (a) reference, and (b) optimized airfoils.

0 5 10 15

Optimization iterations

0.5

0.6

0.7

0.8

0.9

1.0

J

(a) Objective function

0 5 10 15

Optimization iterations

− 0.15

− 0.10

− 0.05

0.00

0.05

0.10

0.15

d
J
/d
S

(b) Gradients

0 5 10 15

Optimization iterations

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

C
D

CD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

C
L

(c) Lift and Drag coeffi cients

CL

Figure 51: Optimization progress in the shape optimization of the airfoil at Re = 1000
and αeff = 25◦.

constraints. Therefore, this optimization problem contains thirty constraints in total.

Optimization Results

To show how the design changes during optimization, Figure 51 and Figure 52 are

provided. In Figure 51 (a), the time-averaged objective function, J , begins to re-

duce continuously until the tenth optimization iteration. Later the objective function

reduces slightly or oscillates when the design parameters are close to the local opti-

mum point in the design space. As shown in Figure 51 (b), gradients of the objective

function either plateau or converge to zero. According to the gradient-based formu-

lation, gradients of the objective function ideally should be zero at the local/global

123

0 5 10 15

t/t ∗

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
L
(t

)

CL,ref.(t)

CL,ref. =1.174

CL,opt.(t)

CL,opt. =1.16

(a) Instantaneous lift coefficient

0 5 10 15

t/t ∗

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
D

(t
)

CD,ref.(t)

CD,ref. =0.667

CD,opt.(t)

CD,ref. =0.532

(b) Instantaneous drag coefficient

Figure 52: Instantaneous lift and drag coefficients for both reference and optimized
cases.

optimum. However, bounding the control points with geometrical constraints may

restrict gradients from reaching identically zero. Figure 51 (c) also represents the

variation of time-averaged lift and drag coefficients. The lift coefficient drops at the

first optimization iteration, and later, it rises toward the target value CL,target. The

drag coefficient diminishes significantly.

Figure 52 depicts the lift and drag coefficients versus non-dimensional time t/t∗.

From Figure 52 (a), the time-averaged lift coefficient reduces slightly from CL,ref. =

1.17 to CL,opt. = 1.16. However, a significant difference between the time-averaged

drag coefficients yields an approximately 20% reduction in drag. Figure 53 shows the

distribution of the time-averaged pressure coefficient along the airfoil surface, where

the shaded area shows pressure variations over time. From Figure 53 (a), the pressure

on the reference airfoil suction side fluctuates across the majority of the chord length,

particularly near the trailing edge. However, pressure fluctuations for the optimized

design are significantly reduced, as shown in Figure 53 (b). Because the intensity of

large-scale coherent structures in the flow field tends to amplify pressure fluctuations

on the suction side, this indicates that the optimized airfoil creates weaker wake

vortices.

The spatial integral of the time-averaged pressure on the surface yields the time-

average pressure force exerted on the airfoil. The majority of this pressure force

124

0.0 0.2 0.4 0.6 0.8 1.0

x/c

− 3

− 2

− 1

0

1

2

3

4

−
C
p

(a) Reference case

0.0 0.2 0.4 0.6 0.8 1.0

x/c

− 3

− 2

− 1

0

1

2

3

4

−
C
p

(b) Optimized case

Figure 53: The geometry of the airfoil and the time-averaged pressure coefficient (red)
along the airfoil surface. The shaded area also displays the variations of the pressure
coefficient over time.

originates in the vicinity of the leading edge. However, in the optimized case, the time-

averaged pressure force near the trailing edge is significantly reduced. The pressure

curves in this region (x/c = 0.8 ∼ 1) are similar, resulting in minimal lift and drag

production in this region. Despite generating significantly less lift near the trailing

edge, the airfoil is still able to satisfy the lift coefficient constraint. This is achieved

via the shear layer produced at the leading edge of the airfoil. As shown in Figure

53 (b), sharp variations in the pressure coefficient around the airfoil’s leading edge

arise from an intense, but relatively stable, shear layer. Furthermore, the airfoil’s

suction surface is relatively flat and tangent to the flow, leading to the enhanced lift.

In contrast, the sharp difference of the pressure coefficient at the leading edge of the

reference airfoil is less intense than the optimized one (Figure 53 (a)). The pressure

variations on the suction side near the nose of the reference airfoil fluctuate change

with a large amplitude, indicating an unstable shear layer at the leading edge.

Flow Structures

Here we will explore the behaviour of coherent structures in the wakes of the ref-

erence and optimized designs. Figure 54 and Figure 55 show time histories of the

lift and drag coefficients, and contours of vorticity at several instants during a shed-

ding cycle. Green arrows show the direction of the jet formed at the interface of

125

4 6 8 10

t/t∗

0.50

0.75

1.00

1.25

1.50

C
L
(t

),
C
D

(t
)

CL,ref.

CD,ref.

A B
C D

E

Figure 54: Flow structures around the reference airfoil.

two counter-rotating vortices. In frame “A”, the first Trailing Edge Vortex (TEV),

Γ+
1 , leaves the airfoil surface and travels downstream. Moreover, the first Leading

Edge Vortex (LEV), Γ−1 , increases in intensity and envelopes the suction surface of

the airfoil. Hence, the pressure coefficient on the suction surface reaches a minima,

yielding high lift. The shedding of LEV and TEV manifests as a von-Karman street

in the wake of the airfoil. In frame ”B”, the aerodynamic forces decrease, since Γ−2

is not strong enough to produce a notable low-pressure zone on the suction surface

of the airfoil. Furthermore, Γ+
2 does not allow Γ−2 to grow. According to Kelvin’s

circulation theorem, after Γ−1 separates, the second TEV, Γ+
2 , forms and gains energy

by absorbing the kinetic energy coming from Γ−2 , and the shear layer at the trailing

edge of the airfoil. This energy transfer indicates that if two counter-rotating vortices

are located beside each other, the low-energy vortex absorbs energy from the high-

energy vortex through shear. In frame “C”, the pair vortex, Γ∗, has developed on the

suction surface. This counter-rotating vortex reduces the connection of Γ−2 with the

airfoil surface. It is observed that Γ∗ in the reference case plays an important role in

126

5 6 7 8 9

t/t∗

0.4

0.6

0.8

1.0

1.2

1.4

C
L
(t

),
C
D

(t
)

CL,opt.

CD,opt.

A
B

C D E

A

B C

D E

Γ-
1

Γ+
1

Γ-
1 Γ+

1
Γ+

2Γ+
2

Γ+
1Γ-

1

Γ-
1 Γ+

1Γ+
2 Γ+

2

Γ-
1

Γ+
1

Γ-
2

Γ-
2Γ*Γ*

Γ*

Γ*

Figure 55: Flow structures around the optimized airfoil.

the quasi-periodic behaviour of vortical structures in the wake. Different intensities

and growth rates for Γ∗ leads to different vortex shedding patterns, which influences

the LEV and TEV dynamics. This is evident in time variations of the lift and drag

coefficients.

Figure 55 shows different instants during one shedding cycle for the optimized

design. In frame “A”, Γ+
1 has detached from the airfoil, while Γ−1 envelops the suction

surface. When Γ−1 reaches its maximum intensity, the lift is maximized. In frame “B”,

a shear layer forms a LSB, which initiates Γ∗. As Γ∗ increases in intensity, it ejects

Γ−1 away from the surface with the help of Γ+
2 (as shown in frame “C”). It is observed

that LEV and TEV enter a harmonic vortex shedding pattern for the optimized

design, where the aerodynamic loads repeat cyclically. The flow field becomes more

complicated in the post-stall region, where at least two shedding frequencies appear.

Hence, we observe that the optimized design has a simpler shedding pattern, with

harmonic interaction between the LEV and TEV.

To quantify the strength of these vortices, a control surface is placed around

127

0.0 2.5 5.0 7.5 10.0 12.5 15.0

t/t ∗

0.5

0.6

0.7

0.8

0.9

1.0

−
∫ c.

v
.(
∇
×

u
)−
d
−V/
−V

Γ −ref.

Γ −opt.

(a) Instantaneous circulation generated
by LEV.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

t/t ∗

0.5

0.6

0.7

0.8

0.9

1.0

∫ c.
v
.(
∇
×

u
)+
d
−V/
−V

Γ +
ref.

Γ +
opt.

(b) Instantaneous circulation generated
by TEV.

Figure 56: Time variation of the total strength of core vortices (i.e., LEV, and TEV)
over 15t∗ for both reference and optimized cases.

the airfoil over which an integral of ∇ × u is computed, yielding circulation. The

control surface boundaries were placed far enough away from the airfoil such that

this circulation was not sensitive to them. Figure 56a shows the total circulation

magnitude of the LEV over 15t∗ for the reference case, Γ−
ref., and the optimized case,

Γ−
opt.. The strength of Γ−

ref. is notably higher than Γ−
opt.. Furthermore, the oscillation

of Γ−
ref. is greater, while Γ

−
opt. has smaller oscillations with nearly constant peaks. The

same observation is made from Figure 56b showing the strength of Γ+
ref. and Γ+

opt..

This indicates that the optimized airfoil produces a weaker LEV. This is because

the optimized airfoil guides the flow over the surface more smoothly, which leads to

simpler interaction between the LEV and TEV structures in the wake.

Sensitivity Analysis

This section analyses the sensitivity of the state vector and the objective function

with respect to the design parameters. According to Eq. (161), the total gradient of

the objective function, J , can be written as

dJ
dS =

2

T

∫ T

0

β
dCD

dS CDdt+
2

T

∫ T

0

dCL

dS
(
CL − CL,target

)
dt, (163)

128

− 2

− 1

0

1

2

∂
C
D

∂
S

P(1)

− 2

− 1

0

1

2

∂
C
D

∂
u

v

0 10

t/t ∗

− 2

− 1

0

1

2

d
C
D

d
S

− 2

− 1

0

1

2
P(2)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(3)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(4)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(5)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(6)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(7)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

− 2

− 1

0

1

2
P(8)

− 2

− 1

0

1

2

0 10

t/t ∗

− 2

− 1

0

1

2

NACA 0012 Optimized

Figure 57: Instantaneous gradients of the drag coefficient (geometrical, state, and
total sensitivities) with respect to the control points.

where

dCL

dS =
∂CL

∂u
v+

∂CL

∂S ,

dCD

dS =
∂CD

∂u
v+

∂CD

∂S ,

(164)

and v is approximated by v ≈ v + Φ̃h̃. Since the design objective is drag min-

imization, we will isolate this term. The total sensitivity of the drag coefficient,

dCD/dS, is dependent on the geometrical sensitivity, ∂CD/∂S, and the state sensi-

tivity, (∂CD/∂S)v. The geometrical sensitivity is only dependant on the shape of the

airfoil, independent of the flow field. Also, the state sensitivity is only dependent on

the flow field, independent of perturbations in the airfoil geometry. Therefore, these

two sensitivities will be explored seperately.

Figure 57 displays the sensitivity of the drag coefficient with respect to control

points (shown in Figure 46), where each column corresponds to a control point. The

first, second, and third rows show the time variation of the geometrical sensitivity,

state sensitivity, and total sensitivity. From Figure 53, the pressure coefficient has

large fluctuations near the trailing edge, which suggests that the aerodynamic loads

are highly sensitive here (P(1) and P(8)). This implies that the trailing edge has a

significant influence on TEV formation, affecting the drag coefficient. Furthermore,

129

� �

P(1) P(2)

P(3) P(4)

P(5) P(6)

P(7) P(8)

P(1) P(2)

P(3) P(4)

P(5) P(6)

P(7) P(8)

Reference case Optimized case

ϕ
x

Figure 58: The primary modes of the solutions of the sensitivity for both reference
and optimized cases.

the drag coefficient is sensitive to the suction surface of the airfoil (P(2) to P(4)),

where sensitivities fluctuate with the flow. However, since the flow field on the pres-

sure side of the airfoil is relatively steady, the sensitivities for P(5) and P(6) are also

relatively steady. Moreover, the time variation of dCD/dS reveals that the reference

airfoil is more sensitive than the optimized design.

Figure 58 shows the primary mode of the sensitivity, which corresponds to the fluid

momentum in x direction, Φ̃x. For the reference case, P(1) has a notable effect on the

TEV and drag reduction. Also, P(1) affects a wide range of secondary structures in

the wake. For the optimized case, P(1) has less sensitivity to the TEV. On the other

hand, the optimized airfoil has higher sensitivity to the LEV. In general, for both the

reference and optimized cases, P(2) and P(3) control the shear layer at the leading

edge, which directly changes the LEV and high-pressure differences at the suction

surface of the airfoil. However, P(5) to P(7) indicate that the pressure surface of the

airfoil does not significantly affect vortical structures in the wake of the airfoil. On

the other hand, P(8) influences these vortical structures on the suction surface of the

airfoil. The conclusion drawn from Figure 58 is that control points in the vicinity of

130

0 1
St

0

4

S
p

ec
tr

u
m

0 1
St

0

4

0 1
St

0

2

0 1
St

0

2

0 1
St

0

1

0 1
St

0

5

S
p

ec
tr

u
m

0 1
St

0

5

0 1
St

0

1

0 1
St

0

1

0 1
St

0.0

0.5

St

0.00.10.20.30.40.50.6
r

0
2

4
6

8

0.0
0.5
1.0
1.5
2.0
2.5
3.0

St

0.00.10.20.30.40.50.6
r

0
2

4
6

8

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
ef
er
en
ce
 c
as
e

O
pt
im
iz
ed
 c
as
e

(a) Reference case (b) Optimized case

(c) mode 1 (d) mode 2 (e) mode 3 (f) mode 4 (g) mode 5

(h) mode 1 (i) mode 2 (j) mode 3 (k) mode 4 (l) mode 5

0.2

Sp
ec
tr
um

Sp
ec
tr
um

0.6

0.2 0.1

0.2 0.2 0.4

0.4
0.6

0.6

0.4

0.2

0.1

0.30.1

0.20.2

0.2 0.4

Figure 59: Variation of frequency for different modes in the reference and optimized
cases.

the trailing edge have a significant effect on drag minimization. On the other hand,

control points adjacent to the leading edge have a notable influence on lift.

Dynamics

In the previous sections, we explained how optimization changes the airfoil shape,

and hence, flow structures in the wake. Then, we focused on the behaviour of the

sensitivity solution to understand each control point’s effect on the flow field. Here,

we consider the optimization procedure from a different perspective in Hilbert space.

We transform the optimization problem from P to H , and then we identify the

characteristics of the underlying dynamical system.

Figure 59 shows a Discrete Fourier Transform (DFT) of the generalized coor-

dinates. Figure 59 (a) shows the Strouhal number distribution for ten subsequent

modes, indexed by their rank r. The Strouhal number is defined as St = fslc/u∞,

where fs, and lc are the frequency and characteristic length, taken here to be the

wake width, respectively. Dominant Strouhal numbers are evident in modes with

131

q1

q 2

(a)

q2

q 3

(b)

q3

q 4

(c)

q4

q 5
(d)

q5

q 6

(e)

q6

q 7

(f)

q7

q 8

(g)

q8

q 9
(h)

q9

q 1
0

(i)

Figure 60: Correlations between modes: reference (blue) and optimized (red) cases.

high spectrum magnitudes. For the reference case, several dominant shedding modes

are observed. However, the optimized case has only three dominant modes, as shown

in Figure 59 (b). This suggests that the wake is significantly simpler in nature for the

optimized case. Figures 59 (c) to (g) display the amplitude spectrum versus Strouhal

number for the first five dominant modes for the reference case. Frequencies detected

in the first four modes are St1 = 0.2 and St2 = 0.1. Figure 59 (h) and Figure 59 (i)

also show that the dominant Strouhal number is St1 = 0.2 for the optimized case.

Yarusevich et al. [147] performed an extensive experiment on the wake of the reference

airfoil, and the reported Strouhal number was St ≈ 0.2 for an airfoil at αeff = 10◦.

Additionally, similar observations can be found in the results of Huang and Lin [63].

They considered wake structures of a NACA 0012 airfoil, and mentioned that the

Strouhal number of the dominant vortex shedding for angles of attack higher than

αeff = 25◦ remains approximately constant with a value of St ≈ 0.2.

Correlations can be defined as interactions between the generalized coordinates,

132

qi ∈ q = [q1, q2, . . . , qr]
>, to understand the dynamical behaviour of the system. Fig-

ure 60 shows correlations for the first ten modes in the reference and optimized cases.

These ten modes correspond to five “pair” modes in the dynamical system. The pair

modes are two subsequent modes that show the same, or similar, dynamical behaviour

with a certain offset. Figures 60 (a), (c), (e), (g), and (i) show correlations of “pair”

modes. The remaining figures show correlations between “non-pair” modes. Each

correlation loop, specifically in “pair” modes, belongs to a specific vortical structure.

Figure 60 (a) shows that the correlation of the reference case has two loops, which

indicates that two different dominant patterns in the vortex shedding occur one after

another. However, the optimized case has only one loop indicating one dominant pat-

tern occurs cyclically. High rank correlations also contain more loops, which indicates

that each dominant pattern has different forms that repeat harmonically in different

shedding cycles. It is worth pointing out that as the dynamical system experiences

higher non-linearity, the number of loops in corresponding correlations increases. In-

terestingly, in the optimized case, high rank correlations have multiple similar loops,

indicating linear behaviour of the vortical structures in the wake of the optimized

airfoil.

Figure 61 and Figure 62 show correlations coloured by sensitivity magnitudes,

hi ∈ h = [h1, h2, . . . , hr]
>, for the reference and optimized cases, respectively. The

maximum sensitivity belongs to the first rank, and as the rank increases, the sensitiv-

ity magnitude reduces. The primary weight of the sensitivity belongs to prominent

vortical structures in the wake of the airfoil. As we discussed earlier, the sensitivity

of the optimized case is less than that of the reference case, which is observed by

comparing sensitivity magnitudes in Figure 61 and Figure 62. It is worth mentioning

that the maximum sensitivity magnitude for each mode happens when the generalized

coordinates in correlations move to another loop. This exchange occurs when a LEV

or TEV sheds downstream. Therefore, based on these observations, the sensitivity of

the generalized coordinates in Hilbert space is strongly related to the sensitivity of the

state vector in physical space. Consequently, applying optimization to the dynamical

system in Hilbert space is analogous to optimization in physical space.

133

q1
q 2

(a)

− 30.3

0.0

30.3

h
1

q2

q 3

(b)

− 16.4

0.0

16.4

h
2

q3

q 4

(c)

− 20.7

0.0

20.7

h
3

q4

q 5

(d)

− 11.9

0.0

11.9

h
4

q5

q 6

(e)

− 8.3

0.0

8.3

h
5

q6

q 7

(f)

− 6.9

0.0

6.9

h
6

q7

q 8

(g)

− 8.1

0.0

8.1

h
7

q8

q 9
(h)

− 6.5

0.0

6.5

h
8

q9

q 1
0

(i)

− 6.6

0.0

6.6

h
9

Figure 61: Correlations of modes coloured by sensitivity magnitude for the reference
case.

10.2 Optimization of Flapping Wing

One of the challenging design problems in chaotic flow belongs to Fluid-Structure In-

teraction (FSI), where flow is induced continuously by a solid object and vice versa.

For example, birds oscillate their wings, and produce complicated flow structures,

which help generate more lift than a stationary wing. This type of FSI problem

results in a dynamic stall phenomenon, an important matter in wind turbines, heli-

copters, aircraft take-off/landing, etc. Figure 63 shows one of the bio-inspired robots

manufactured by FESTO 1. This smart bird mimics the seagull’s flying pattern, and

produces thrust and lift by oscillating wings. From a mathematical standpoint, op-

timization of wings for this robot is quite challenging work due to the chaoticity of

turbulent flow, and complexity of flow structures in the wake of this robot. Therefore,

there is still no robust, and well-established framework to perform optimization in

FSI problems. Therefore, we will focus on possible ways to resolve limitations in these

complex problems.

1https://www.festo.com/group/en/cms/10238.htm

134

q1
q 2

(a)

− 11.1

0.0

11.1

h
1

q2

q 3

(b)

− 9.2

0.0

9.2

h
2

q3

q 4

(c)

− 9.2

0.0

9.2

h
3

q4

q 5

(d)

− 5.9

0.0

5.9

h
4

q5

q 6

(e)

− 3.7

0.0

3.7

h
5

q6

q 7

(f)

− 3.3

0.0

3.3

h
6

q7

q 8

(g)

− 3.9

0.0

3.9

h
7

q8

q 9
(h)

− 2.2

0.0

2.2

h
8

q9

q 1
0

(i)

− 1.9

0.0

1.9

h
9

Figure 62: Correlations of modes coloured by sensitivity magnitude for the optimized
case.

10.2.1 Kinematics & Aerodynamic Characteristics

In flapping wing problems, the reduced frequency, ka, is a non-dimensional parameter,

representing a relation between the oscillational velocity of the wing and free-stream

velocity, u∞. We can define this reduced frequency as ka = πfalc/u∞, where fa is the

flapping frequency, and lc is the characteristic length. We also define the Reynolds

number according to the chord length of the wing, c, as Re = ρ∞cu∞/µ, where ρ∞

and µ are free-stream fluid density and viscosity, respectively.

In the present work, the kinematics of a wing section, X (t,S) = {x ∈ R4 | x ⊂ D},
is considered in cartesian coordinates. The translation and pitching functions of a

wing can be defined as

X (t,S) =

x(t)

y(t)

z(t)

θ(t)

=

0

y0 sin(2πfat)

0

θm + θ0 sin(2πfat+ θs)

(165)

where, y0 is the plunging amplitude, normally represented in non-dimensional form,

135

Figure 63: Smart bird manufactured by FESTO.

up-stroke

down-stroke

y0u
�

y

x

y(t)

(a) Pure plunging

θ(t)

y0u
�

y

x

θ
m

θ
m

y(t)

θ0

(b) Plunging + pitching

Figure 64: Kinematics of a moving wing in cartesian coordinates.

y0/c. Additionally, θm denotes the mean pitching angle, θ0 is the pithing amplitude,

and θs is the shift angle between the plunging and pitching motions. The pivot

point/line is located at the center of pressure xcp = 0.25c to reduce the effect of

aerodynamic loads on the pitching moment. Figure 64 shows a schematic of the

flapping wing for two different types of motions. In Figure 64a, a pure plunging motion

is perpendicular to the free-stream velocity. This motion only contains translation

functions, including the up-stroke and down-stroke phases. In Figure 64b, the wing

uses both translation and pitching functions. A combination of the up-stroke and

down-stroke phases for one flapping cycle is given by T ∗ = 1/fa.

To investigate the aerodynamic performance of a flapping wing, aerodynamic loads

are non-dimensionalized in the form of lift and thrust coefficients

CL =
FL

0.5ρ∞lcu2
∞
,

CT =
FT

0.5ρ∞lcu2
∞
,

(166)

where FL and FT are lift and thrust, respectively. Note that thrust at very low

136

reduced frequencies turns into drag. For 2D cases, the characteristic length is lc = c,

and for 3D cases, we change it to lc = cAR, where AR denotes the aspect ratio of

the wing. Additionally, the power consumed by the flapping wing is approximated

by the power coefficient

CP ≈
FLẏ(t)

0.5ρ∞lcu3
∞
, (167)

where ẏ(t) denotes translational velocity of the wing in y direction. Here, we neglect

the power consumed by pitching moment, since the pivot point is located at the center

of pressure. Finally, using Eq. (166) and Eq. (167), the propulsive efficiency is given

by

Ep =
CT

CP
. (168)

10.2.2 Shape Optimization of a 2D Flapping Wing

Flow Setup & Validation

An unstructured mesh is used to simulate flow past a 2D symmetric flapping wing.

A NACA 0012 airfoil is placed 15c and 25c away from the upstream and downstream

boundaries, respectively. Second-order BDF2 temporal scheme with ∆t = 0.01T ∗

is chosen to solve the discretized Navier-Stokes equations. In Table 10, the time-

averaged aerodynamic results for different solution polynomial degrees, ps, are com-

pared with forces in Ref. [91]. In this problem, kinematic parameters are y0 = c,

ka = 1.41, T ∗ = 4.44c/u∞, θm = 10◦, θ0 = 30◦, and θs = 90◦. Each simulation

initially is run until 10T ∗, and then aerodynamic loads are time-averaged over the

next 7T ∗. The present numerical simulations demonstrate that all polynomial solu-

tion degrees give appropriate results, close to those in Ref. [91]. Figure 65 compares

ps Order of accuracy DOF CL CT CL,rms CD,rms
1 2rd 9.89× 104 1.7273 0.7178 2.8278 0.9459
2 3rd 2.22× 105 1.7629 0.7123 2.8405 0.9517
3 4th 3.95× 105 1.7409 0.7163 2.8332 0.9472

Ref. [91] 2th 18.4× 106 1.5507 0.7245 2.7743 0.9224

Table 10: Comparing the current results with those in Ref. [91].

velocity contours for different solution polynomial degrees. In Figure 65a, velocity

contours for ps = 1 indicate that large dissipation exists in wake of the wing, com-

pared to those with ps = 2. On the other hand, Figures 65b and 65c show identical

137

(a) ps = 1 (b) ps = 2 (c) ps = 3

Figure 65: Comparing velocity contours for different solution polynomial degrees at
the instant t/T ∗ = 0.25.

velocity contours with higher resolutions, indicating local dissipations in wake of the

wing remain minimal for these polynomial solution degrees. Since simulation with

ps = 2 is computationally cheaper, compared to ps = 3, it is decided to choose ps = 2

for the rest of this study.

Optimization Setup

This section demonstrates the application of the proposed approach to unsteady aero-

dynamic optimization. We consider a 2D NACA 0012 flapping wing at Re = 1000,

and Re = 2400, with a reduced frequency ka = 1.41. The effect of geometrical con-

straints on the design is also considered. Four different test cases were selected, as

shown in Table 11. The first two cases, “C1” and “C2”, were performed at Re = 1000,

and the last two cases, “C3” and “C4”, at Re = 2400. Geometrical constraints in

“C1” and “C2” only limit the minimum thickness. On the other hand, more geo-

metrical constraints are added to “C3” and “C4” to control the maximum/minimum

thickness of the wing at different sections alongside the chord line. Figure 66 displays

Case Re θm θ0 ns Number of constraints Number of bounds
C1 1,000 10◦ 30◦ 11 24 28
C2 1,000 10◦ 10◦ 11 24 28
C3 2,400 10◦ 30◦ 11 30 28
C4 2,400 10◦ 10◦ 11 30 28

Table 11: Test cases for optimization of a flapping wing at y0 = c, ka = 1.41, and
θs = 90◦.

the control points (CPs) assigned to define coordinates, and shape of a NACA 0012

airfoil, as the baseline design. In optimization, CP1 is frozen (i.e., stationary) for all

138

design cycles. Also, CP7, CP8, and CP9 are dependent on the coordinates of CP6

and CP10, which avoids low-quality mesh (i.e., highly skewed mesh, or sharp wall

curvatures) during the optimization procedure. In addition to these control points,

the pitching amplitude was added to design parameters. Therefore, the total number

of design parameters in this optimization reaches ns = 11.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

−0.1

0.0

0.1

0.2 Final points Optimized

14
13121110

9

8

7 6 5 4 3
2

1
y

x

Figure 66: NACA 0012 coordinates defined by control points.

In general, the objective is to increase the time-averaged thrust coefficient. We

also keep the time-averaged lift coefficient unchanged, since it balances with the

gravitational force of an external body. Therefore, we define this optimization as

minimize
q̃∈Rr,S∈D

J =
1

T ∗

∫ 3T ∗

2T ∗
−C2

T +
(
CL − CL,target

)2
dt,

subject to

X (t,S),

R(u + Φ̃q̃, t,X ,S) = 0,

dR
dS (u + Φ̃q̃, t,X ,S) = 0,

C(X ,S) ≤ 0,

(169)

were the target lift coefficient is CL,target = 1.5. This target lift guarantees additional

improvement in the propulsive efficiency as CT increases. In this optimization, the

KKT system is solved using the BDF1 scheme. In the sampling step, the steady-

state sensitivity function is solved over 10% of time intervals in ∆T for each design

parameter. Moreover, these design parameters were modified using Sequential Least-

Squares Programming (SLSP) as an optimizer.

139

0 5 10 15

Design cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
L
,C

T

CL

CT

− 1.0

− 0.9

− 0.8

− 0.7

− 0.6

− 0.5

J

J

(a) Test case “C1”

0 2 4 6 8 10 12

Design cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
L
,C

T

CL

CT

− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

0.0

J

J

(b) Test case “C2”

0 5 10 15

Design cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
L
,C

T

CL

CT

− 1.2

− 1.0

− 0.8

− 0.6

− 0.4

J

J

(c) Test case “C3”

0 5 10

Design cycle

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
L
,C

T

CL

CT

− 0.30

− 0.25

− 0.20

− 0.15

− 0.10

− 0.05

0.00

J

J

(d) Test case “C4”

Figure 67: Progressive results of optimization for different test cases.

Optimization Performance

Figure 67 shows the results of optimization for each case. In general, the time-

averaged objective function, J , decreases after each design cycle. However, we see

that the objective function increases at some design cycles. This is because the

design space is bounded, or limited, by geometrical constraints. Another reason is

also attributed to fluid physics. Ref. [43] showed that flow past a 2D NACA 0012

airfoil at R = 1000 has the potential to be chaotic at high angles of attack in post-stall.

Additionally, Ref. [45] considered chaoticity of fluid physics for the same airfoil, but at

Re = 2400, and they confirmed that flow remains chaotic beyond stall. Here, we add

more complexity to these problems by considering a moving wing in the flow field,

yielding dominant chaoticity in the fluid dynamics. Therefore, fluctuations in the

objective function are expected due to high uncertainties in these chaotic problems.

In general, CT increases progressively after each design cycle, which is the primary

objective of this optimization. According to the constraint, given by the target lift

coefficient, CL changes significantly at the early stage of the design. Afterward, the

140

optimizer, with the help of sensitivities, try to compensate losses in CL, and lead it

toward CL,target. For all cases, except “C4”, CL is in an acceptable range. However,

in “C4”, the objective function undergoes large fluctuations due to limited routes

in design space that is difficult to be found by the optimizer. It is believed that

strict constraint functions associated with high uncertainties, are responsible for this

deficiency in the design procedure. However, the optimizer provides the best possible

design in the presence of these constraints.

Overall results for all test cases are provided in Table 12. In “C1”, 32.86% of

improvement is achieved, leading to 34.4% of increment in the resulting propulsive

efficiency. In “C3”, similar performance is observed. In “C2”, CT is approximately

doubled, yielding 92.55% and 79.42% of improvements in the thrust coefficient and

propulsive efficiency, respectively. Although “C4” shows poor optimization perfor-

mance than other test cases, 12.36% and 11.4% of increments in the thrust coefficient

and propulsive efficiency are observed, respectively.

Case Design (shape) CL CT CP Ep ∆CT/CT ∆Ep/Ep
C1 NACA 0012 1.695 0.7267 2.697 0.2694 - -

Optimized 1.605 0.9655 2.665 0.3621 32.86% 34.40%
C2 NACA 0012 1.733 0.3531 4.059 0.0870 - -

Optimized 1.666 0.6799 4.354 0.1561 92.55% 79.42%
C3 NACA 0012 1.765 0.7689 2.709 0.2837 - -

Optimized 1.531 1.0545 2.653 0.3973 37.14% 40.04%
C4 NACA 0012 1.624 0.4488 4.192 0.1070 - -

Optimized 1.542 0.5043 4.229 0.1192 12.36% 11.40%

Table 12: Comparing the propulsive performance of the flapping wing for the baseline
and optimized designs.

Figure 68 shows the shape of both the baseline and optimized designs. A common

agreement among all optimized designs is that the nose is deviated downward to

produce a larger thrust coefficient. This modification decreases the effective angle of

attack, and adds more camber to the wing. It also helps produce higher aerodynamic

loads during the down-stroke phase. In “C1” and “C2” the optimized wings have

more thickness approximately at x = 0.4c. This is because there is no user-defined

constraint, or bound, to limit the maximum thickness. Cambered wings create a larger

Leading Edge Vortex (LEV) during both the up-stroke and down-stroke phases. The

141

LEV produced during the up-stroke phase yields a considerable reduction in the time-

averaged lift coefficient, which is against the objective of this optimization. Therefore,

the lower side of the wing becomes thicker to weaken this LEV during the up-stroke

phase. In “C3” and “C4”, geometrical constraints limit the maximum thickness

of the wing and, hence, the optimizer performs differently according to these new

constraints.

0.0 0.2 0.4 0.6 0.8 1.0
x

− 0.2

− 0.1

0.0

0.1

0.2

y

NACA 0012 Optimized

(a) Test case “C1”

0.0 0.2 0.4 0.6 0.8 1.0
x

− 0.2

− 0.1

0.0

0.1

0.2

y

NACA 0012 Optimized

(b) Test case “C2”

0.0 0.2 0.4 0.6 0.8 1.0
x

− 0.2

− 0.1

0.0

0.1

0.2

y

NACA 0012 Optimized

(c) Test case “C3”

0.0 0.2 0.4 0.6 0.8 1.0
x

− 0.2

− 0.1

0.0

0.1

0.2
y

NACA 0012 Optimized

(d) Test case “C4”

Figure 68: Comparing the shape of the baseline and optimized designs.

Flow Structures

Figures 69 and 70 show vorticity contours for different test cases. In Figure 69 (upper),

the optimized wing delays stall during the down-stroke phase. This delay increases

the aerodynamic loads by taking advantage of dynamic stall. At instant t/T ∗ = 0.25,

primary LEV for the baseline design is maturely developed, while this LEV for the

optimized wing is at the early stage of formation. The same situation is observed

in Figure 69 (lower). At instant t/T ∗ = 0.5, a small set of vortices, shed from the

trailing edge of the baseline wing, appears as a vortex sheet, which is often known as

a reason for lift reduction during dynamic stall [49, 71]. However, the optimized wing

breaks down this vortex sheet into a set of separated vortices, yielding larger lift. As

shown in Figure 70 (upper), at instant t/T ∗ = 0.25, the LEV for the baseline design is

fully developed. However, the optimized wing creates two LEVs simultaneously, one

142

B
as

el
in

e
de

si
gn

O
pt

im
iz

ed
 d

es
ig

n

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

1-1 0

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

B
as

el
in

e
de

si
gn

O
pt

im
iz

ed
 d

es
ig

n

Vorticity

Figure 69: Vorticity contours at different instants: “C1” (upper), and “C2” (lower).

at the leading edge, and the other one at approximately x = 0.5c. These binary LEVs

attach to the upper surface of the wing and, hence, delay stall, yielding higher lift

production. At instant t/T ∗ = 0.5, the baseline wing is beyond stall, and the LEV is

about to pinch off. However, at the same instant, the optimized wing produces larger

lift due to delayed stall. Furthermore, this optimized design breaks down the vortex

sheet into smaller separated vortices. Figure 70 (lower) presents the results of “C4”.

As it is shown, the optimized wing does not change the flow field notably. Only a few

minor modifications in the optimized shape are responsible for higher lift production.

Figure 71 shows the instantaneous lift and trust coefficients during one flapping cy-

cle. An important preference in optimizing the flapping wing is that the aerodynamic

loads, both the lift and thrust coefficients, should increase during the down-stroke

phase, and the lift coefficient should not decrease notably during the up-stroke phase.

In “C1”, the lift coefficient for the baseline and optimized wings have the same trend

during one flapping cycle, as shown in Figure 71a. However, the optimized wing

143

B
as

el
in

e
de

si
gn

O
pt

im
iz

ed
 d

es
ig

n

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

1-1 0

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

t/T=0 t/T=0.25 t/T=0.5 t/T=0.75

B
as

el
in

e
de

si
gn

O
pt

im
iz

ed
 d

es
ig

n

Vorticity

Figure 70: Vorticity contours at different instants: “C3” (upper), and “C4” (lower).

increases the thrust coefficient significantly during the down-stroke phase. In this

case, we can see the impact of dynamic stall on the aerodynamic loads. The same

observations exist in “C2”, as shown in Figure 71b. It is worth pointing out that the

baseline design has a smaller thrust coefficient during the down-stroke phase, while

the optimized wing alleviates this deficiency. Figure 71c also dictates the same ob-

servations in Figure 71a. In “C4”, the optimized wing could only improve the thrust

coefficient slightly, as seen from Figure 71d.

According to these results, we showed that shape optimization could significantly

improve the aerodynamic performance of a flapping wing. Although strict constraints

governed the optimization procedure, the optimizer could search for better parameters

in the design space, which is augmented by uncertainties. Additionally, strong non-

linearity in fluid physics makes these types of problems more challenging. In the

end, we conclude that the proposed ROM-constrained optimization has a particular

promise to tackle these kinds of complex and chaotic problems.

144

2.0 2.2 2.4 2.6 2.8 3.0

t/T

− 2

0

2

4

6

C
L
,C

T

CL, NACA 0012

CL, Optimized

CT , NACA 0012

CT , Optimized

(a) Test case “C1”

2.0 2.2 2.4 2.6 2.8 3.0

t/T

− 4

− 2

0

2

4

6

8

10

C
L
,C

T

CL, NACA 0012

CL, Optimized

CT , NACA 0012

CT , Optimized

(b) Test case “C2”

2.0 2.2 2.4 2.6 2.8 3.0

t/T

− 2

0

2

4

6

C
L
,C

T

CL, NACA 0012

CL, Optimized

CT , NACA 0012

CT , Optimized

(c) Test case “C3”

2.0 2.2 2.4 2.6 2.8 3.0

t/T

− 5.0

− 2.5

0.0

2.5

5.0

7.5

10.0

C
L
,C

T

CL, NACA 0012

CL, Optimized

CT , NACA 0012

CT , Optimized

(d) Test case “C4”

Figure 71: Instantaneous lift and thrust coefficients for both baseline and optimized
designs.

10.2.3 Kinematics Optimization of a 3D Flapping Wing

Flow Setup & Validation

In this example, an unstructured mesh with hexahedral elements for a 3D symmetric

wing is used. A NACA 0020 airfoil, with the aspect ratio of AR = 0.45, is placed 10c

and 25c away from the upstream and downstream boundaries, respectively. The peri-

odic boundary condition is also set for side-wall boundaries. The discretized Navier-

Stokes equations are solved in time using a second-order BDF2 temporal scheme, with

∆t = 1
750

T ∗ as the time-step. For validation, we consider a pure plunging motion of

the wing at Re = 20, 000, y0 = 0.5, ka = 2, and θ(t) = 0. Table 13 shows the time-

averaged thrust and power coefficients for the present simulations and those in Ref.

[3]. These simulations were run until four flapping cycles, and then the time-averaged

values are computed over the last three cycles. The results of the present simulations

are provided with 99% of confidence intervals. As it is shown, the present results are

in good agreement with those in Ref. [3]. Note that Ref. [3] used a laminar flow

solver for a 2D NACA 0020 and, hence, some discrepancies were expected. Moreover,

145

the resulting values of the medium and fine meshes are close to each other, indicating

the medium mesh can be used for the rest of this study.

Test DOF CT CP
Coarse mesh 1.98× 105 0.38± 0.06 0.85± 0.07

Medium mesh 5.9× 105 0.42± 0.07 0.84± 0.09
Fine mesh 15.9× 105 0.43± 0.06 0.84± 0.06

Ref. [3] 2.7× 105 0.44 0.87

Table 13: Comparing the time-averaged thrust and power coefficients for the present
simulations with those in Ref. [3].

Optimization Setup

Kinematics optimization of a 3D NACA 0020 wing at Re = 2 × 104, y0 = 0.5,

ka = 2, θm = 0◦, and θs = 90◦ is considered. This optimization helps increase the

time-averaged thrust coefficient of a pure plunging motion, θ0 = 0◦, by combining

it with a pitching motion, θ0 6= 0◦. Solving this problem is impossible by conven-

tional PDE-constrained optimization due to the chaoticity of flow at high Reynolds

numbers. Moreover, applying conventional LSS requires 1.5TB of memory for solving

an extensive system of equations using parallel algorithms. Therefore, here we show

the application of the proposed approach to optimization of this large-scale chaotic

problem. In this case, we define this optimization as

minimize
q̃∈Rr,S∈D

J =
1

T ∗

∫ 3T ∗

2T ∗
−
(
CT
)2
dt,

subject to

X (t,S),

R(u + Φ̃q̃, t,X ,S) = 0,

dR
dS (u + Φ̃q̃, t,X ,S) = 0,

C(X ,S) ≤ 0,

(170)

where the third flapping cycle is considered for evaluating the aerodynamic perfor-

mance. Therefore, we start optimizing the pitching angle with a set of bounds in

design space. In the sampling step, 50% of time intervals in ∆T is chosen to collect

state vectors. Moreover, 5% and 25% of time intervals in the same time domain are se-

lected to solve steady-state and unsteady sensitivity functions, respectively. Finally,

146

0 5 10
Design cycle

− 0.30

− 0.25

− 0.20

− 0.15

− 0.10

J

(a) Time-averaged objective func-
tion.

0.0 0.1 0.2 0.3
θa

0.10

0.15

0.20

0.25

0.30

C
T

Baseline

Optimized

(b) Thrust coefficient versus pitching
amplitude.

Figure 72: Optimization results for a flapping wing: The baseline design, which has
only pure plunging motion, is optimized over ten design cycle, yeilding a combination
of plunging and pitching motions with an optimum pitching angle.

the first eight dominant modes for each sensitivity dataset were kept to build the

ROB. The same optimizer in the previous examples is used to perform optimization

for ten design cycles.

Optimization Results

Figure 72 shows the optimization progress for ten design cycles. In Figure 72a, the

time-averaged objective function decreases monotonically at the early stage, and then

it starts fluctuating once the design parameter reaches around the optimum point.

Since the sensitivity of the time-averaged objective function near this point is small,

high uncertainty agitates this sensitivity value, yielding fluctuations in the objective

function, or some poor approximation in design space. Figure 72b shows the time-

averaged thrust coefficient versus the pitching angle, θ0. The baseline design starts

with pure plunging motion, θ0 = 0◦, and finally, the optimized kinematics is obtained

by θ0 = 10.54◦. This optimized kinematics elevates the time-averaged thrust coef-

ficient by 29.7%, which is noted by a red star at the peak. It is worth mentioning

that sensitivity analysis using the present approach only requires 4MB of memory,

which is achievable on a single processor. Figure 73 displays vorticity contours on a

plane passing through the middle of the wing. It is shown that the optimized design

147

0

5

0

5

0 10

0

5

0 10

0.0 0.1 0.2 0.3 0.4

Multiple images

2-2 0

(a) Baseline design

(b) Optimized design

t T/ =0 t T / = 0.25 t T / = 0.5

t T/ =0 t T / = 0.25 t T / = 0.5

Figure 73: Vorticity contours for the baseline and optimized designs.

postpones stall, which leads to higher lift compared to the baseline design.

10.3 Remarks

In this study, we proposed a new approach for PDE-constrained optimization of non-

linear systems. The intuition of this study is that, instead of directly optimizing

Full-Order Models (FOMs) in physical space, we transform the physical governing

equations into an unphysical space, where the dynamics of the system evolve on man-

ifolds. This allows us to optimize the evolutionary behaviour of dynamical systems in

lower dimensions. Hence, in optimization problems, the optimizer is able to change

the dynamical behaviour of the system, such that its effect in physical space mini-

mizes the objective function. To this end, we developed a closure model in the form

of a Reduced-Order Model (ROM). This closure model was explicitly derived from

the FOM using the Least-Squares Petrov-Galerkin (LSPG) approach, and leverages

the minimum-residual property over a discrete temporal domain. Using this ROM,

we omitted low energy unstable modes, while maintaining the accuracy of the ROM.

Additionally, sampling techniques were considered for building the trial and test basis

functions, which shapes the manifolds in Hilbert space. This procedure is referred

148

to as a physics-constrained data-driven approach. The main feature of developing a

ROM using this approach is that it provides derivatives of the FOM (i.e., Jacobian)

in lower dimensions. Furthermore, sequential least-squares minimizations were used

to solve this closure model, leading to a robust framework, specialized for unsteady

optimization.

Shape optimization of a NACA 0012 airfoil in the presence of flow separation at

Re = 1000 was then considered. It was shown that the proposed framework results

in a significant improvement in the aerodynamic performance of the airfoil, with a

drag reduction of approximately 20% observed at αeff = 25◦. Unlike the reference

case with the non-linear dynamical system, the results illustrate that the dynamical

system of the optimized case exhibit a linear-like dynamical behaviour. The present

approach was also applied to shape optimization of a 2D moving wing section at

Re = 2, 400 and reduced frequency k = 1.41, where the non-linear interaction of this

wing with fluid introduces chaotic flow structures. It was shown that the proposed

approach can significantly improve the thrust force and propulsive efficiency by 37%

and 40%, respectively. Additionally, kinematic optimization of a 3D NACA 0020

wing at Re = 2× 104, y0 = 0.5, ka = 2, and θs = 90◦ was considered. The optimized

wing increasees the thurst force by about 29.6%. Moreover, sensitivity analysis using

the present approach only requires 4MB of memory, while solving the same problem

using the conventional LSS needs 1.5TB memory requirements.

Therefore, we expect that implementing the proposed optimization approach can

be applied to large-scale non-linear problems, such as turbulent flows, and this ap-

proach significantly reduces computational cost and data storage requirements. Fu-

ture work will focus on applying this approach to larger and more complicated tur-

bulent flows. In the end, we conclude that the proposed approach can be applied to

unsteady optimization of larger, chaotic, and more complicated fluid dynamics prob-

lems. Besides the performance, and robustness of the present approach, it reduces

memory requirements significantly, making a particular promise for future engineering

design and optimization. Although the examples considered in this study are simple

canonical problems, our intention was to used them to demonstrate the feasibility

of the present approach to optimization. We will advance the proposed approach to

consider it for larger problems with more complicated flows in future work.

149

Chapter 11

Conclusions

11.1 Final Notes

Conventional sensitivity analysis often fails to compute time-averaged sensitivities of

chaotic dynamical systems over long time periods. This issue arises from the fact

that chaotic dynamical systems have at least one unstable mode with a positive Lya-

punov exponent. Therefore, any small perturbation in the direction of this unstable

mode grows exponentially in time, depending on the magnitude of the corresponding

Lyapunov exponent. From a mathematical standpoint, the shadowing lemma, in the

form of the LSS approach, can be used to compute accurate time-averaged sensitivity

solutions of chaotic systems. However, this approach is computationally expensive

for large-scale fluid mechanic problems (i.e., 104 ∼ 105 times more expensive than

the primal PDE solvers). Although several efforts have been made to reduce the

computational costs of LSS, these methods still suffer from high computational cost

and memory requirements for high-fidelity simulations, such as LES and DNS.

In this thesis, we proposed a novel approach to compute sensitivity functions

with significantly reduced computational cost. Unlike other ROM approaches, we

explicitly derived a closure model, in the form of a ROM, from the high-dimensional

governing equations. Then, we fully discretized those PDEs, and transformed them

from physical space into an unphysical space (i.e., Hilbert space), such that lower-

dimensional models are represented as O∆Es. This transformation approach applies

a significant physical constraint to the developed closure model.

The underlying sets of equations were solved via a novel architecture. It is worth

150

mentioning that the underlying equations leverage the minimum-residual property

using the Petrov-Galerkin approach, such as LSPG described in [29]. Consequently,

we implemented the proposed approach within an in-house scientific software package

called the OPtimization Toolkit for Highly NOn-linear Systems (OPTHiNOS), which

is suitable for multicore architectures.

Additionally, the application of the gradient-free Mesh Adaptive Direct Search

(MADS) method, as an optimizer, was investigated for the aerodynamic optimization

of turbulent flows. To achieve a proper time-averaged objective function, a method

was proposed to compute the sensitivity of the objective function with respect to

the simulation time. Using this algorithm, MADS launches optimization tasks on

CPU clusters. Then, each task executes corresponding CFD simulations on GPU

clusters to reduce computational costs. Dynamic Polynomial Approximation (DPA)

was also proposed to control the accuracy of each simulation at each optimization

step, significantly reducing computational costs.

We found it essential to develop methods for gradient-free and gradient-based

optimization problems, since one of them may have priority over another one. For

example, when the number of design parameters is not very large, and the optimum

point for design is demanded, MADS associated with DPA can be a good choice.

However, when the number of design variables increases, gradient-based approaches

are preferable. Finally, the developed approaches can be improved by further inves-

tigations, and we provide few comments as suggestions for future work in the next

section.

11.2 Future Work

Different avenues for future work are as follows:

1. Dimensionality reduction was applied using Proper Orthogonal Decompositions

(POD). These POD modes are usually taken into account for projection-based

reduced-order modelling because of their orthogonality properties. In Galerkin

projections, this orthogonality plays a primary role. These modes are also math-

ematically interpretable, but not physically. In other words, POD modes may

not contain the dynamical features of a physical phenomenon. Therefore, one

may investigate using other dimensionality techniques, such as Dynamic Mode

151

Decomposition (DMD), Koopman Mode Decomposition (KMD), or Spectral

Proper Orthogonal Decomposition (SPOD), to develop more accurate models.

2. In this study, we developed the weak form of the FOM using the Petrov-Galerkin

approach. Dimensionality reduction of this FOM is constrained by LSPG, which

helps the model satisfy the minimal-residual property at all time intervals. The

main disadvantage of the LSPG approach is that only implicit time integrators

can be used. However, other approaches, such as the Adjoint Petrov-Galerkin

method, can be applied to the weak form of a FOM with both implicit and

explicit time integrators. Therefore, the effectiveness of new dimensionality

reduction approaches should be explored.

3. Data collection and reconstruction for large-scale CFD problems remain com-

putationally expensive. Applying dimensionality reduction to all Jacobian ma-

trices over a finite time domain needs significant computational effort. Apply-

ing novel deep learning algorithms to approximate these Jacobians in lower-

dimensional forms might be an efficient approach. The probability of sparsity

in low-dimensional Jacobian matrices should be investigated using conventional,

or new, black-box machine learning algorithms.

4. In this study, we proposed different algorithms used to shape manifolds. Other

possible training strategies should be taken into account. Practical strategies

should reduce the computational cost, and improve the accuracy of closure

models in the optimization procedure.

5. To compute the sensitivity of a chaotic dynamical system, we need to solve

the KKT system over a finite number of time intervals. Multiple Shooting LSS

is another approach [19] to reduce the number of time intervals over which

Jacobian matrices are computed. Applying this approach may reduce compu-

tational costs for large-scale problems. Therefore, as an alternative LSS solver,

this method can be applied to large-scale LES and DNS problems.

6. The binary Dynamic Polynomial Approximation (DPA) method in the MADS

was shown to be an efficient strategy for gradient-free optimization to control

the accuracy of CFD simulation. This approach works like a controller, which

152

increases the resolution of the CFD solution once the updated design parame-

ters are close to the optimal region. More advanced DPA strategies should be

considered.

7. MADS can be combined with surrogate models to improve its prediction in the

optimization process. This will help reduce the number of function evaluations

in the design space and accelerate optimization performance. Additionally,

surrogate models can find approximated derivatives and build a hybrid opti-

mization method, leveraging gradient-free and gradient-based approaches.

8. In this project, we tried to work on problems with low Reynolds numbers to re-

duce computational costs and the complexity in design. Applying the sensitivity

analysis and optimization to aerodynamic problems at high Reynolds numbers

will be one of the future works that we plan to consider. This will help extend

the application of the proposed approaches to real-world engineering problems.

153

Appendix A

Lyapunov Solver

Algorithm 1: Lyapunov solver for computing the first nthl leading LEs.
Input: u0,mk, Ts, and nl.
Output: Γi and Li for i = 1, 2, ..., nl.
Build an empty matrix Sl ∈ Rnl×mk .
Build a random matrix U ∈ Rnu×nl .
T (0) ← 0,
u(t(0))← u0,
QR← U .
for j = 0 to mk do

T (j+1) ← T (j) + Ts,
for i = 1 to nl do

for t(n) = T (j) to T (j+1) do

vi(t
(n−1))← Q[:, i],

u(t(n))← argmin
z ∈ Rnu

∥∥∥∥∆u(t(n))
∆t

+∇.f(u(t(n)), t(n),S)

∥∥∥∥2

2

, t(n) ∈ ∆T,

Compute
∂∇.f(t(n))

∂u(t(n))
,

vi(t
(n))← argmin

z ∈ Rnu

∥∥∥∥∆vi(t
(n))

∆t
+

∂∇.f(t(n))

∂u(t(n))
vi(t

(n))

∥∥∥∥2

2

, t(n) ∈ ∆T,

end

U [:, i]← vi(T
(j+1)).

end
QR← U ,
for i = 1 to nl do

Sl[i, j]← 1
Ts

log |R[i, i]|.
end[
Γ1,Γ2, . . . ,Γnl

]
← Q, and

[
L1,L2, . . . ,Lnl

]> ← 1
mk

∑mk
j=0 Sl[:, j].

end

154

Appendix B

Developing Continuous Form of

the Forward Tangent Equation

The continuous form of a closure model is derived from a FOM, as a set of high-

dimensional ODEs. Those in the high-dimensional governing equations obtain all

low-dimensional terms in the closure model. Afterward, er apply the LSS approach

to obtain the KKT system in low-dimensional space. Finally, we apply discretization

to this KKT system. The residual of the FOM is

r(u , t,S) =
∂u

∂t
+∇.f (u , t,S), u(t = 0,S) = u0, (171)

where r and ∇.f : Rnu → Rnu . Similarly, the residual of the closure model is given

by

R(q̃ , t,S) =
∂q̃

∂t
+ F(q̃ , t,S), q̃(t = 0) = q̃0, (172)

where R and F : Rr → Rr. In the ideal case, the residual for these FOM and ROM

is zero. However, approximating the vector of the state in the FOM via dimension-

ality reduction, ũ ≈ Φ̃q̃ , will impose some non-zero value for residual. The Pertov-

Galerkin projection minimizes the residual of this FOM in high-dimensional space,

r ∈ Rnu , by projecting this residual into the that of the ROM in low-dimensional

space, R ∈ Rr, via the trial basis function. Therefore, we can write the Petrov-

Galerkin projection as

R(q̃ , t,S) = Ψ̃>r(Φ̃q̃ , t,S). (173)

Substituting Eq. (171) into Eq. (173), yields

R = Ψ̃>
(
∂(Φ̃q̃)

∂t
+∇.f (Φ̃q̃ , t,S)

)
, q̃(t = 0) = q̃0. (174)

155

We can obtain the derivative of R with respect to S as

dR
dS =

∂Ψ̃>

∂S

(
∂(Φ̃q̃)

∂t
+∇.f (Φ̃q̃ , t,S)

)
+ Ψ̃>

(
∂Φ̃

∂S
∂q̃

∂t
+ Φ̃

∂h̃

∂t

+
∂∇.f
∂u

∂Φ̃

∂S q̃ +
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S

)
, [q̃ , h̃](t = 0) = [q̃0, h̃0],

(175)

and using the test basis function, Ψ̃ = A>A
(
ζ0I + ∆tβ0

∂∇.f
∂u

)
Φ̃ = ∂r

∂u
Φ̃, we obtain

dR
dS =

(
∂Φ̃>

∂S
∂r

∂u

>
+ Φ̃>

∂

∂S
∂r

∂u

>)(
Φ̃
∂q̃

∂t
+∇.f (Φ̃q̃ , t,S)

)

+ Ψ̃>
(
∂Φ̃

∂S
∂q̃

∂t
+ Φ̃

∂h̃

∂t
+
∂∇.f
∂u

∂Φ̃

∂S q̃ +
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S

)
, [q̃ , h̃](t = 0) = [q̃0, h̃0].

(176)

Multiplying the right-hand side of Eq. (176) by
(
Ψ̃>Φ̃

)−1

dR
dS =

(
Ψ̃>Φ̃

)−1
(
∂Φ̃>

∂S
∂r

∂u

>
+ Φ̃>

∂

∂S
∂r

∂u

>)(
Φ̃
∂q̃

∂t
+∇.f (Φ̃q̃ , t,S)

)

+
dh̃

dt
+
(
Ψ̃>Φ̃

)−1

Ψ̃>
(
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S

)

+
(
Ψ̃>Φ̃

)−1

Ψ̃>
(
∂Φ̃

∂S
∂q̃

∂t
+
∂∇.f
∂u

∂Φ̃

∂S q̃
)
, [q̃ , h̃](t = 0) = [q̃0, h̃0].

(177)

If we assume ∂Φ̃/∂S = 0, we then rewrite Eq. (177) as

dR
dS ≈

∂h̃

∂t
+
(
Ψ̃>Φ̃

)−1

Ψ̃>
(
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S

)
, h̃(t = 0) = h̃0. (178)

According to Eq. (44), where the LSS approach is applied to the forward sensitivity

function, we can apply the same concept to Eq. (178)

dR
dS ≈

∂h̃

∂t
+
(
Ψ̃>Φ̃

)−1

Ψ̃>
(
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S + η∇.f

)
, h̃(t = 0) = h̃0. (179)

Therefore, the LSS problem to compute h̃ can be represented as follows

min
h̃ ,E

1

2T

∫ >

0

(
h̃
>
Kh̃ + α2

lssE2

)
dt s.t. lim

∆S→ε

dR
dS = 0. (180)

156

Using Lagrange multiplier, three systems of equations for this LSS problem is given

by

∂h̃

∂t
+
(
Ψ̃>Φ̃

)−1

Ψ̃>
(
∂∇.f
∂u

Φ̃h̃ +
∂∇.f
∂S + η∇.f

)
,

− ∂λ

∂t
+ Φ̃>

∂∇.f
∂u

>
Ψ̃
(
Φ̃>Ψ̃

)−1

λ+ Kh̃ = 0, λ(0) = λ(T) = 0,

α2
lssE + λ>

(
Ψ̃>Φ̃

)−1

Ψ̃>∇.f = 0.

(181)

157

Appendix C

Singular Value Decomposition

Algorithm 2: POD function.
Input: X, β = O(10−3), and tol = O(10−3).
Output: Φ̃, r, Q(Si), i = 1, 2, ..., nd.
Apply SVD such that X = USV>.
for j = 1 to nu do

Error ← 0,
for i = 1 to nd do

U(Si)← X[:, (i− 1)×mu : i×mu],
U(Si)

[
u(0) − u ,u(1) − u , . . . ,u(mu) − u

]
,

z ← V[: j, :]>,

Error ← Error + βj +
∥∥∑mu

n=0 u(n) − u − U[:, : j]S[: j, : j]z (n)
∥∥2

2
.

end
if Error ≤ tol then

r ← j,
Φ̃← U[:, : r],
for i = 1 to nd do

Q(Si)← S[: r, : r]V[: r, (i− 1)×mu : i×mu]>,
end
Break (exit from the loop).

end

end

158

Appendix D

Data Collection From Steady-State

Functions

Algorithm 3: Data collection from steady sensitivity function.
Input: U(S1), N, and {S1,S2, ...,Snd}.
Output: Vss(Si).
foreach Si in {S1,S2, ...,Snd} do

Build empty matrix: Vss(Si) ∈ Rnu×mp ,
c← 0,
for p in N do

Compute ∂∇.f(p)

∂u(p)
, and ∂∇.f(p)

∂Si
using U(S1)[:, p],

Vss(Si)[:, c]← argmin
z ∈ Rnu

∥∥∥ ∂∇.f(p)

∂u(p)
z + ∂∇.f(p)

∂Si

∥∥∥2

2
,

c← c+ 1.
end

end

159

Appendix E

Data Collection From Unsteady

Functions

First, we set up an algorithm for computing the initial condition using Algorithm 4.

This step is important, since we need to reduce those errors in the initial condition

to approximate the unsteady sensitivity solution over each Ts.

Algorithm 4: Initial condition approximation for unsteady data sampling
using BDF scheme.

Input: U(S1), S1, k, and p (given by Algorithm 5).
Output: v (p−k), and v (p−k+1).
Approximate I.C.:

Compute ∂∇.f (p−k)

∂u(p−k) , and ∂∇.f (p−k)

∂S1
,

v (p−k) ← argmin
z ∈ Rnu

∥∥∥ ∂∇.f (p−k)

∂u(p−k) z + ∂∇.f (p−k)

∂S1

∥∥∥2

2
.

if k > 1 then

Compute ∂∇.f (p−k+1)

∂u(p−k+1) , and ∂∇.f (p−k+1)

∂S1
,

v (p−k+1) ← argmin
z ∈ Rnu

∥∥∥(I + ∆t ∂∇.f (p−k+1)

∂u(p−k+1)

)
z − v (p−k) −∆t ∂∇.f (p−k+1)

∂S1

∥∥∥2

2
.

Note: a similar approach should be used for higher k-steps (i.e., BDF3).
end

Afterward, the main procedure is obtained via Algorithm 5 to approximate the

shape of the manifolds in Hilbert space. Note that this algorithm only approximates

those manifolds in Hilbert space, and it does not contain any practical magnitude

for the sensitivities, since these results are normalized via QR factorization at every

couple of iterations.

160

Algorithm 5: Data collection from unsteady sensitivity function using BDF
scheme.

Input: U(S1), mk, nu, ḿp,∆t, Ts,S1, and Nṕ = {ξ(1)
ṕ , ξ

(2)
ṕ , . . . , ξ

(ḿp)

ṕ }.
Output: Vus.
Build an empty matrix Vus ∈ Rnu×ḿp ,
Devide Nṕ into np parts: Nṕ = {N1

ṕ, . . . ,N
np

ṕ }, where np � ḿp,
c← 0,
ms ← ∆tTs.
foreach Ni

ṕ in Nṕ do

for p in Ni
ṕ do

Approximate initial condition using Algorithm 4
Set ḿ(0) ← p,
for l = 0 to mk do

ḿ(l+1) ← ḿ(l) +ms,
for n = ḿ(l) to ḿ(l+1) do

Compute ∂∇.f (n)

∂u(n) , and ∂∇.f (n)

∂S1
,

∂r(n)

∂u(n) ← ζ0I + β0∆t ∂∇.f (n)

∂u(n) , ∂r(n)

∂u(n−j) ← ζj , ∂r(n)

∂S1
← β0∆t ∂∇.f (n)

∂S1
,

v (n) ← argmin
z ∈ Rnu

∥∥∥ ∂r(n)

∂u(n) z +
∑k

j=1
∂r(n)

∂u(n−j) v
(n−j) + ∂r(n)

∂S1

∥∥∥2

2
.

end

Vus[:, c]← v (ḿ(l+1)),
c← c+ 1,
for j = 0 to k do

QR← v (ḿ(l+1)−k),

v (ḿ(l+1)−k) ← Q.
end

end

end

end

161

Appendix F

Trial Basis Function & ROB

This algorithm shows the way we build the trial basis functions. In the beginning,

those ROB are computed using the POD function, and then the results are arranged.

Algorithm 6: ROB and trial basis function.
Input: U, Vss, Vus, mu, mp, ḿp, r, and {Si,S2, . . . ,Sns}.
Output: Φ̃.
foreach Si in {S1,S2, ...,Snd} do

Build empty matrices: U(Si) ∈ Rnu×mu , Vss(Si) ∈ Rnu×mp , and Vus(Si) ∈ Rnu×ḿp .

Compute u ← 1
mu

∑mu
j=0 u(j), vss ← 1

mp

∑mp

j=0 v
(j)
ss , and vus ← 1

ḿp

∑ḿp

j=0 v
(j)
us .

for j = 0 to mu do

U(Si)[:, j]← u(j) − u ,
end
for j = 0 to mp do

Vss(Si)[:, j]← v
(j)
ss − vss,

end

end
for j = 0 to ḿp do

Vus(S1)[:, j]← v
(j)
us − vus,

end

Xstate ←
[
U(S1),U(S2), . . . ,U(Snd)

]
,

Xsens ←
[
Vss(S1),Vss(S2), . . . ,Vss(Snd)

]
,

X́sens ←
[
Vus(S1)

]
,

Φ̃u ← POD(Xstate) using Algorithm 2,
Φ̃v ← POD(Xsens) using Algorithm 2,
´̃Φv ← POD(X́sens) using Algorithm 2,

Φ̃←
[
Φ̃u, Φ̃v ,

˜́
Φv

]
.

162

Appendix G

Sensitivity Analysis

Algorithm 7: Time-averaged sensitivity of the objective function.
Input: U(S1), and {S1,S2, ...,Snd}.
Output: ∆J

∆S1
=
[

∆J
∆s1

, . . . , ∆J
∆sns

]>
.

Build Vss(Si) using Algorithm 3 for i = 1, 2, ..., nd,
Build Vus(S1) using Algorithm 5,
Build Φ̃ using Algorithm 6,
Solve ROM using Algorithm ?? for all q̃(n), where n = 0, 1, . . . ,mm.
for n = 0 to mu do

u(n) ← u + Φ̃q̃(n),

Compute ∂∇.f (n)

∂u(n) , and ∂J (n)

∂u(n) ,

∂r(n)

∂u(n) ← ζ0I + β0∆t ∂∇.f (n)

∂u(n) ,

Ψ̃(n) ← ∂r(n)

∂u(n) Φ̃,

∂R(n)

∂q̃(n) ← Ψ̃(n)>Ψ̃(n),

for j in k do
∂R(n)

∂q̃(n−j) ← ζn−jΨ̃
(n)>Φ̃,

end
for l = 0 in ns do

Compute ∂∇.f (n)

∂sl
, and ∂J (n)

∂sl
,

∂r(n)

∂sl
← β0∆t ∂∇.f (n)

∂sl
,

∂R(n)

∂sl
← Ψ̃(n)> ∂r(n)

∂sl
.

end

end
Build B and C in KKT system.
for s in S1 do

Build D,
Solve Eq. (53) for all λ(n), where n = 0, 1, . . . ,mm,
for n = 0 to mu do

Compute h(n) using the second set of ODE in Eq. (136),
end

Compute ∆J
∆s

using Eq. (138).

end

163

Appendix H

Sensitivity Analysis Using the

Backward Sensitivity Function

H.1 Derivations

As mentioned in Section 6.2.2, in order to derive the backward sensitivity function,

we need to get rid of the sensitivity solutions from the forward sensitivity function

using the adjoint method. Recall Eq. (109), the high-dimensional backward sensitivity

function is

−∂w
∂t

+
[∂∇.f
∂u

]>
w +

1

T

∂J
∂u

= 0, w(T) = 0, (182)

and with regard to Eq. (4), we discretize Eq. (182) using BDF scheme

(
ζ0I + β0∆t

[
∂∇.f (n)

∂u (n)

]>)
w (n) +

k∑

j=1

ζjw
(n+j) +

1

mu

∂J (n)

∂u (n)
= 0, w (mu) = 0, (183)

where w (mu) = 0 is the initial condition for the backward propagation of Eq. (183) in

discrete time. Since the present study relies on the least-squares minimization of the

residual over ∆T, we rewrite Eq. (183) in the form of the residual as follows

lim
δS→0

r̂ (n) :=

[
∂r (n)

∂u (n)

]>
w (n) +

k∑

j=1

[
∂r (n)

∂u (n+j)

]>
w (n+j) +

1

mu

∂J (n)

∂u (n)
= 0, w (mu) = 0,

(184)

where r̂ (n) ∈ Rnu is the residual of the backward sensitivity function. Let us assume

that we build Φ̃ using a dataset that includes the adjoint solutions. Therefore, Φ̃ can

164

project the adjoint solution from P to H , and vice versa. With this assumption,

we can define w (n) ≈ w + Φ̃ã (n), and substitute it in Eq. (184)

lim
δS→0

r̂ (n) :=

[
∂r (n)

∂u (n)

]>
Φ̃ã (n) +

k∑

j=1

[
∂r (n)

∂u (n+j)

]>
Φ̃ã (n+j)

+
(k∑

j=1

ζjI +

[
∂r (n)

∂u (n)

]>)
w +

1

mu

∂J (n)

∂u (n)
= 0, w (mu) = 0,

(185)

where ã ∈ Rr is the generalized coordinates of the adjoint solution. From a mathe-

matical perspective, we can define ã alternatively as F : ã × T → ã , where F is the

exact representation of the FOM in H , and ã denotes the evolutional dynamics of

the backward sensitivity function in H . Note that the third term in Eq. (185) relates

the sensitivity of the residual to source term, similar to procedure used in Eq. (133).

We use the Petrov-Galerking projection with the test basis function, ˆ̃Ψ =
[
∂r̂ (n)

∂u(n)

]>
Φ̃,

to project Eq. (185) onto H

lim
δS→0

ˆ̃Ψ(n)>r̂ (n) := ˆ̃Ψ(n)>
[
∂r (n)

∂u (n)

]>
Φ̃ã (n) + ˆ̃Ψ(n)>

k∑

j=1

[
∂r (n)

∂u (n+j)

]>
Φ̃ã (n+j)

+ ˆ̃Ψ(n)>
(k∑

j=1

ζjI +

[
∂r (n)

∂u (n)

]>)
w +

1

mu

ˆ̃Ψ(n)>∂J (n)

∂u (n)
= 0, ã (mu) = 0,

(186)

and we then rearrange it as follows

lim
δS→0

R̂(n) := ˆ̃Ψ(n)> ˆ̃Ψ(n)ã (n) +
k∑

j=1

ζj
ˆ̃Ψ(n)>Φ̃ã (n+j)

+ ˆ̃Ψ(n)>
(k∑

j=1

ζjI +

[
∂r (n)

∂u (n)

]>)
w +

1

mu

ˆ̃Ψ(n)>∂J (n)

∂u (n)
= 0, ã (mu) = 0,

(187)

where R̂ ∈ Rr is the residual of the ROM developed for the backward sensitivity

function. Subsequently, Eq. (187) is converted into the LSS problem, in the form of

165

the Lagrange function

L =
1

mu

mu∑

n=0

[
ã (n)>Kã (n) +

(
αlssE (n)

)2

]
+

mu∑

n=0

λ̂(n)>

[
ˆ̃Ψ(n)> ˆ̃Ψ(n)ã (n)

+
k∑

j=1

ζj
ˆ̃Ψ(n)>Φ̃ã (n+j) + ˆ̃Ψ(n)>

(k∑

j=1

ζjI +

[
∂r (n)

∂u (n)

]>)
w

+
1

mu

ˆ̃Ψ(n)>∂J (n)

∂u (n)
− E (n)

k∑

j=0

ζj
β0

q̃ (n+j)

]
,

(188)

where λ̂ ∈ Rr is the Lagrange multiplier. The solution of this Lagrange function is

obtained by applying the KKT condition to Eq. (188)

ˆ̃Ψ(n)> ˆ̃Ψ(n)ã (n) +
k∑

j=1

ζj
ˆ̃Ψ(n)>Φ̃ã (n+j) + ˆ̃Ψ(n)>

(k∑

j=1

ζjI +

[
∂r (n)

∂u (n)

]>)
w

+
1

mu

ˆ̃Ψ(n)>∂J (n)

∂u (n)
= 0,

ˆ̃Ψ(n)> ˆ̃Ψ(n)λ̂(n) +
k∑

j=1

ζj
ˆ̃Ψ(n)>Φ̃λ̂(n−j) + K>ã (n) = 0, λ̂0 = λ̂mu = 0,

α2
lssE (n) −muλ̂

(n)>
k∑

j=0

ζj
β0

q̃ (n+j) = 0,

(189)

where these three O∆Es are the backward sensitivity function in lower-dimensional

space. In the end, similar to Eq. (160), the time-averaged sensitivity of the objective

function with respect to S is approximated by

∆J
∆S ≈

1

mu

mu∑

n=0

[
∂r (n)

∂S

]>
(w + Φ̃ã (n)) +

1

mu

mu∑

n=0

E (n)
(
J (n) − J

)
+

1

mu

mu∑

n=0

∂J (n)

∂S .

(190)

It is worth mentioning that this lower-dimensional KKT solution of the backward

sensitivity function in Eq. (189) is not obtained by Eq. (136). This method allows us

to employ Eq. (51) for sensitivity analysis without any further modification. Although

[18] developed the adjoint formulation of the LSS problem, there is no need to use it

in this study. Otherwise, we derive a new formulation for the adjoint LSS problem,

and develop another model for this lower-dimensional KKT solution.

166

H.2 Data Collection

The same procedure can be considered if the sensitivity analysis is based on the

backward sensitivity approach (i.e., adjoint method). The steady-state backward

sensitivity function can be solved for w ∈ Rnu at different time intervals, included in

Np(n) = {ξ(1)
p , ξ

(2)
p , . . . , ξ

(mp)
p }. Moreover, instead of solving the backward sensitivity

function for different set of design parameter, we solve it for a list of the objective

functions, Ji ∈ {J1,J2, . . . ,Jnw}, where nw denotes the number of the objective

functions. Consequently, the matrix of the adjoint solutions can be represented as

Wss(Ji) =

| | |
∆w

(Np(1))
ss (Ji) ∆w

(Np(2))
ss (Ji) ... ∆w

(Np(mp))
ss (Ji)

| | |

 ∈ Rnu×mp , (191)

where ∆w
(n)
ss = w

(n)
ss − w ss, and w ss ∈ Rnu shows a reference vector for the adjoint

dataset, and it satisfies ∂wss

∂t
= 0. Therefore, the adjoint dataset is generated by

Xadj =
nw⊕

i=1

Wss(Ji), (192)

and subsequently, the ROB for the adjoint solution can be obtained by

Φ̃w = POD(Xadj) and w ss(Ji) = Φ̃wQw(Ji), i = 1, 2, ..., nw, (193)

where Φ̃w ∈ Rnu×radj . Additionally, we can define the generalized coordinates for the

adjoint solution as

Qw =

| | |
ã (Np(1)) ã (Np(2)) ... ã (Np(mp))

| | |

 ∈ Rradj×mp . (194)

The unsteady backward sensitivity function is solved, and the corresponding data

are collected using the similar approach proposed in Algorithm 5. Therefore, we

collect the snapshots of the unsteady adjoint solution as

Ẃus(Ji) =

| | |
∆w

(Nṕ(1))
us (Ji) ∆w

(Nṕ(2))
us (Ji) ... ∆w

(Nṕ(ḿp))
us (Ji)

| | |

 ∈ Rnu×ḿp , (195)

167

where ∆w
(n)
us = w

(n)
us − wus, and ḿp ∈ R+ is the total number of samples. Addi-

tionally, wus ∈ Rnu and wus ∈ Rnu are discrete unsteady adjoint solution, and its

corresponding reference vector, respectively. Also, Ẃsens ∈ Rnu×ḿp represents the

dataset of the unsteady adjoint solution in discrete form. We build this dataset using

X́adj =
nw⊕

i=1

Wus(Ji). (196)

The ROB is built by

´̃Φw = POD(X́adj) and Wus(Ji) = ´̃ΦwQ́w(Ji), i = 1, 2, ..., nw. (197)

In this case, the generalized coordinates for Eq. (197) are

Q́w =

| | |
´̃a (Nṕ(1)) ´̃a (Nṕ(2)) ... ´̃a (Nṕ(ḿp))

| | |

 ∈ Rŕadj×ḿp , Nṕ(n) = {ξ(1)

ṕ , ξ
(2)
ṕ , . . . , ξ

(ḿp)
ṕ },

(198)

where ŕadj is the rank of ´̃Φw. Finally, the trail basis functions is defnied as a linear

combination of the ROB

Φ̃ = Φ̃u ⊕ Φ̃w ⊕ ´̃Φw, and Φ̃ ∈ Rnu×r (199)

where r = rstate + radj + ŕadj.

H.3 Discrete Backward Minimization Problem

For optimization problems with the backward sensitivity function, we discretize all

set of equations similar to Section 8.2, but the minimization problems are different.

In the first category, three minimization problems are found by

rstate ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥
mu∑

n=0

u (n) − u − Φ̃uq̃
(n)

∥∥∥∥∥

2

2

)
, (200)

rsens ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥

mp∑

n=1

w (Np(n))
ss −w ss − Φ̃wã

(Np(n))

∥∥∥∥∥

2

2

)
, (201)

ŕsens ∈ argmin
z∈R+≤nu

(
βz +

∥∥∥∥∥

ḿp∑

n=1

w
(Nṕ(n))
us −wus − ´̃Φw

´̃a (Nṕ(n))

∥∥∥∥∥

2

2

)
, (202)

168

where we minimize `2-norm of the errors in the adjoint solution at selected time

intervals. Moreover, the accumulation of these errors in the training dataset can be

minimized according to

w (Np(n))
ss = argmin

z∈Rr

∥∥∥∥∥

[
∂r (Np(n))

∂u (Np(n))

]>
+
∂J (Np(n))

i

∂u (Np(n))

∥∥∥∥∥

2

2

, (203)

w
(Nṕ(n))
us ∈ argmin

z ∈ Rnu

∥∥∥∥∥

[
∂r (Nṕ(n))

∂u (Nṕ(n))

]>
w (Nṕ(n)) +

k∑

j=1

[
∂r (Nṕ(n))

∂u (Nṕ(n)+j)

]>
w (Nṕ(n)+j) +

1

mu

∂J (Nṕ(n))
i

∂u (Nṕ(n))

∥∥∥∥∥

2

2

,

(204)

ã c,Θw ∈ argmin
z ∈ Rnu ,

Y ∈ Rr×r

mq∑

n′′′=1

∥∥∥w (N(n′′′))
ss − Φ̃Yz (N(n′′′))

∥∥∥
2

2
. (205)

Finally, we can define the ROM-constrained optimization as

minimize
q∈Rr,S∈D

J ≈ 1

mu

nw∑

i=1

mu∑

n=0

J (n)
i (u + Φ̃q̃ (n), t(n),S),

subject to

Ψ̃(n)>Φ̃
k∑

j=0

ζj q̃
(n−j) + ∆t(n)β0Ψ̃

(n)>∇.f (n)

(
u + Φq̃ (n), t(n),S

)
= 0,

Apply Eq. (189),

Apply Eq. (200), Eq. (201), Eq. (202),

Apply Eq. (203), Eq. (204), Eq. (205),

C(u + Φ̃q̃ (n), t(n),S) ≤ 0.

(206)

Despite deriving the backward sensitivity function from the forward sensitivity func-

tion, we obtained the backward sensitivity function directly from the high-dimensional

forward sensitivity function, and then explicitly developed the ROM. This mathe-

matical trick leads to avoid any further error propagation due to the dimensionality

reduction throughout new derivations. Additionally, we can apply the same LSS,

derived for the forward sensitivity analysis, to this backward sensitivity function.

Consequently, the time-averaged sensitivities can be found by

∆Ji
∆S ≈

1

mu

mu∑

n=0

[
∂r (n)

∂S

]>
(w + Φ̃Θwã

(n)
c) +

1

mu

mu∑

n=0

E (n)
(
J (n)
i − Ji

)

+
1

mu

mu∑

n=0

∂J (n)
i

∂S .

(207)

169

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

[2] David Amsallem and Charbel Farhat. Interpolation method for adapt-

ing reduced-order models and application to aeroelasticity. AIAA journal,

46(7):1803–1813, 2008.

[3] MA Ashraf, J Young, and JCS Lai. Reynolds number, thickness and cam-

ber effects on flapping airfoil propulsion. Journal of Fluids and structures,

27(2):145–160, 2011.

[4] Charles Audet and John E Dennis Jr. Mesh adaptive direct search algorithms

for constrained optimization. SIAM Journal on optimization, 17(1):188–217,

2006.

[5] Charles Audet and Warren Hare. Derivative-free and blackbox optimization.

2017.

[6] Charles Audet, Gilles Savard, and Walid Zghal. A mesh adaptive direct search

170

algorithm for multiobjective optimization. European Journal of Operational

Research, 204(3):545–556, 2010.

[7] S Bahrami, C Tribes, C Devals, TC Vu, and F Guibault. Multi-fidelity shape

optimization of hydraulic turbine runner blades using a multi-objective mesh

adaptive direct search algorithm. Applied mathematical modelling, 40(2):1650–

1668, 2016.

[8] S Bahrami, C Tribes, S von Fellenberg, TC Vu, and F Guibault. Multi-fidelity

design optimization of francis turbine runner blades. In IOP Conference Series:

Earth and Environmental Science, volume 22, page 012029. IOP Publishing,

2014.

[9] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,

Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D.

Gropp, Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May,

Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick

Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc

users manual. Technical Report ANL-95/11 - Revision 3.14, Argonne National

Laboratory, 2020.

[10] Andrea D Beck, Thomas Bolemann, David Flad, Hannes Frank, Gregor J

Gassner, Florian Hindenlang, and Claus-Dieter Munz. High-order discontinuous

Galerkin spectral element methods for transitional and turbulent flow simula-

tions. International Journal for Numerical Methods in Fluids, 76(8):522–548,

2014.

[11] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strel-

cyn. Lyapunov characteristic exponents for smooth dynamical systems and for

Hamiltonian systems; a method for computing all of them. Part 1: Theory.

Meccanica, 15(1):9–20, 1980.

[12] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-

based model reduction methods for parametric dynamical systems. SIAM re-

view, 57(4):483–531, 2015.

171

[13] Michel Bergmann, C-H Bruneau, and Angelo Iollo. Enablers for robust POD

models. Journal of Computational Physics, 228(2):516–538, 2009.

[14] Michel Bergmann and Laurent Cordier. Optimal control of the cylinder wake

in the laminar regime by trust-region methods and POD reduced-order models.

Journal of Computational Physics, 227(16):7813–7840, 2008.

[15] Michel Bergmann, Laurent Cordier, and Jean-Pierre Brancher. Optimal rotary

control of the cylinder wake using proper orthogonal decomposition reduced-

order model. Physics of fluids, 17(9):097101, 2005.

[16] Thomas R Bewley, Parviz Moin, and Roger Temam. DNS-based predictive

control of turbulence: an optimal benchmark for feedback algorithms. Journal

of Fluid Mechanics, 447(2):179–225, 2001.

[17] Patrick J Blonigan, Pablo Fernandez, Scott M Murman, Qiqi Wang, Georgios

Rigas, and Luca Magri. Toward a chaotic adjoint for LES. arXiv preprint

arXiv:1702.06809, 2017.

[18] Patrick J Blonigan, Steven A Gomez, and Qiqi Wang. Least squares shadowing

for sensitivity analysis of turbulent fluid flows. In 52nd Aerospace Sciences

Meeting, page 1426, 2014.

[19] Patrick J Blonigan and Qiqi Wang. Multiple shooting shadowing for sensitiv-

ity analysis of chaotic dynamical systems. Journal of Computational Physics,

354:447–475, 2018.

[20] Patrick J Blonigan, Qiqi Wang, Eric J Nielsen, and Boris Diskin. Least-squares

shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil.

AIAA Journal, 56(2):658–672, 2018.

[21] Patrick Joseph Blonigan. Least Squares Shadowing for sensitivity analysis of

large chaotic systems and fluid flows. PhD thesis, Massachusetts Institute of

Technology, 2016.

[22] C Bogani, MG Gasparo, and A Papini. Generalized pattern search methods

for a class of nonsmooth optimization problems with structure. Journal of

Computational and Applied Mathematics, 229(1):283–293, 2009.

172

[23] Ido Bright, Guang Lin, and J Nathan Kutz. Compressive sensing based machine

learning strategy for characterizing the flow around a cylinder with limited

pressure measurements. Physics of Fluids, 25(12):127102, 2013.

[24] Steven L Brunton and J Nathan Kutz. Data-driven science and engineering:

Machine learning, dynamical systems, and control. Cambridge University Press,

2019.

[25] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning

for fluid mechanics. Annual Review of Fluid Mechanics, 52:477–508, 2020.

[26] Tan Bui-Thanh, Karen Willcox, and Omar Ghattas. Model reduction for large-

scale systems with high-dimensional parametric input space. SIAM Journal on

Scientific Computing, 30(6):3270–3288, 2008.

[27] Tan Bui-Thanh, Karen Willcox, and Omar Ghattas. Parametric reduced-order

models for probabilistic analysis of unsteady aerodynamic applications. AIAA

journal, 46(10):2520–2529, 2008.

[28] JS Cagnone, Brian C Vermeire, and S Nadarajah. A p-adaptive LCP formu-

lation for the compressible Navier–Stokes equations. Journal of Computational

Physics, 233:324–338, 2013.

[29] Kevin Carlberg, Matthew Barone, and Harbir Antil. Galerkin v. least-squares

Petrov–Galerkin projection in nonlinear model reduction. Journal of Compu-

tational Physics, 330:693–734, 2017.

[30] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat. Efficient non-linear

model reduction via a least-squares Petrov–Galerkin projection and compres-

sive tensor approximations. International Journal for Numerical Methods in

Engineering, 86(2):155–181, 2011.

[31] Kevin Carlberg, Youngsoo Choi, and Syuzanna Sargsyan. Conservative model

reduction for finite-volume models. Journal of Computational Physics, 371:280–

314, 2018.

[32] Kevin Carlberg and Charbel Farhat. A compact proper orthogonal de-

composition basis for optimization-oriented reduced-order models. In 12th

173

AIAA/ISSMO multidisciplinary analysis and optimization conference, page

5964, 2008.

[33] Kevin Carlberg and Charbel Farhat. A low-cost, goal-oriented ‘compact proper

orthogonal decomposition’ basis for model reduction of static systems. Inter-

national Journal for Numerical Methods in Engineering, 86(3):381–402, 2011.

[34] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem. The

GNAT method for nonlinear model reduction: effective implementation and

application to computational fluid dynamics and turbulent flows. Journal of

Computational Physics, 242:623–647, 2013.

[35] Gerald Carrier, D Destarac, Antoine Dumont, Michael Meheut, Itham Salah

El Din, Jacques Peter, Saloua Ben Khelil, J Brezillon, and M Pestana. Gradient-

based aerodynamic optimization with the elsA software. In 52nd Aerospace

Sciences Meeting, page 0568, 2014.

[36] Oscar Castillo, Patricia Melin, and Witold Pedrycz. Soft computing for hybrid

intelligent systems, volume 154. Springer, 2008.

[37] Tony F Chan and Michael K Ng. Galerkin projection methods for solving

multiple linear systems. SIAM Journal on Scientific Computing, 21(3):836–

850, 1999.

[38] Anindya Chatterjee. An introduction to the proper orthogonal decomposition.

Current science, pages 808–817, 2000.

[39] Ian D Coope and Christopher John Price. On the convergence of grid-based

methods for unconstrained optimization. SIAM Journal on Optimization,

11(4):859–869, 2001.

[40] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro Cosimo.

Parallel distributed computing using Python. Advances in Water Resources,

34(9):1124–1139, 2011.

[41] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. MPI for Python. Journal of

Parallel and Distributed Computing, 65(9):1108 – 1115, 2005.

174

[42] Giovanni Di Ilio, Daniele Chiappini, Stefano Ubertini, Gino Bella, and Sauro

Succi. Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with

hybrid lattice Boltzmann method. Computers & Fluids, 166:200–208, 2018.

[43] D Durante, E Rossi, and A Colagrossi. Bifurcations and chaos transition of

the flow over an airfoil at low Reynolds number varying the angle of attack.

Communications in Nonlinear Science and Numerical Simulation, 89:105285,

2020.

[44] BI Epureanu. A parametric analysis of reduced order models of viscous flows

in turbomachinery. Journal of fluids and structures, 17(7):971–982, 2003.

[45] Pablo Fernandez and Qiqi Wang. Lyapunov spectrum of the separated flow

around the NACA 0012 airfoil and its dependence on numerical discretization.

Journal of Computational Physics, 350:453–469, 2017.

[46] Franco Flandoli and Bohdan Maslowski. Ergodicity of the 2-D Navier-

Stokes equation under random perturbations. Communications in mathematical

physics, 172(1):119–141, 1995.

[47] Haotian Gao and Mingjun Wei. Domain decomposition in pod-galerkin projec-

tion for flows with moving boundary. In 54th AIAA Aerospace Sciences Meeting,

page 1102, 2016.

[48] NR Gauger and J Brezillon. The continuous adjoint approach in aerodynamic

shape optimization. In MEGAFLOW-Numerical Flow Simulation for Aircraft

Design, pages 181–193. Springer, 2005.

[49] Kobra Gharali and David A Johnson. Dynamic stall simulation of a pitching

airfoil under unsteady freestream velocity. Journal of Fluids and Structures,

42:228–244, 2013.

[50] Francesco Ginelli, Pietro Poggi, Alessio Turchi, Hugues Chaté, Roberto Livi,

and Antonio Politi. Characterizing dynamics with covariant Lyapunov vectors.

Physical review letters, 99(13):130601, 2007.

[51] David E Goldberg. Genetic Algorithms. Pearson Education India, 2006.

175

[52] Muralikrishnan Gopalakrishnan Meena, Kunihiko Taira, and Keisuke Asai.

Airfoil-wake modification with gurney flap at low reynolds number. AIAA Jour-

nal, 56(4):1348–1359, 2017.

[53] Crina Grosan, Ajith Abraham, and Monica Nicoara. Search optimization using

hybrid particle sub-swarms and evolutionary algorithms. International Journal

of Simulation Systems, Science & Technology, 6(10):60–79, 2005.

[54] Max D Gunzburger. Perspectives in flow control and optimization, volume 5.

Siam, 2003.

[55] Martin Hairer and Jonathan C Mattingly. Ergodicity of the 2D Navier-Stokes

equations with degenerate stochastic forcing. Annals of Mathematics, pages

993–1032, 2006.

[56] Rania Hassan, Babak Cohanim, Olivier De Weck, and Gerhard Venter. A

comparison of particle swarm optimization and the Genetic Algorithm. In 46th

AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials

conference, page 1897, 2005.

[57] Alexander Hay, Jeffrey T Borggaard, and Dominique Pelletier. Local improve-

ments to reduced-order models using sensitivity analysis of the proper orthog-

onal decomposition. Journal of Fluid Mechanics, 629:41–72, 2009.

[58] Ping He, Charles A Mader, Joaquim RRA Martins, and Kevin J Maki. DAfoam:

An open-source adjoint framework for multidisciplinary design optimization

with openFOAM. AIAA Journal, 58(3):1304–1319, 2020.

[59] Vicente Hernandez, Jose E Roman, and Vicente Vidal. SLEPc: A scalable and

flexible toolkit for the solution of eigenvalue problems. ACM Transactions on

Mathematical Software (TOMS), 31(3):351–362, 2005.

[60] Michael Hinze and Ulrich Matthes. Model order reduction for networks of ode

and PDE systems. In IFIP Conference on System Modeling and Optimization,

pages 92–101. Springer, 2011.

[61] Cheng Huang, Karthik Duraisamy, and Charles Merkle. Challenges in reduced

order modeling of reacting flows. In 2018 Joint Propulsion Conference, page

4675, 2018.

176

[62] Cheng Huang, Karthik Duraisamy, and Charles Merkle. Investigations and

improvement of robustness of reduced-order models of reacting flow. In AIAA

Scitech 2019 Forum, page 2012, 2019.

[63] Rong F Huang and Chih L Lin. Vortex shedding and shear-layer instability of

wing at low-Reynolds numbers. AIAA journal, 33(8):1398–1403, 1995.

[64] DBP Huynh and AT Patera. Reduced basis approximation and a posteriori

error estimation for stress intensity factors. International Journal for Numerical

Methods in Engineering, 72(10):1219–1259, 2007.

[65] Hung T Huynh. A flux reconstruction approach to high-order schemes including

discontinuous galerkin methods. In 18th AIAA Computational Fluid Dynamics

Conference, page 4079, 2007.

[66] Osamu Inoue and Nozomu Hatakeyama. Sound generation by a two-dimensional

circular cylinder in a uniform flow. Journal of Fluid Mechanics, 471:285, 2002.

[67] Antony Jameson. Aerodynamic design via control theory. Journal of scientific

computing, 3(3):233–260, 1988.

[68] Antony Jameson and Sangho Kim. Reduction of the adjoint gradient formula for

aerodynamic shape optimization problems. AIAA journal, 41(11):2114–2129,

2003.

[69] J-N Juang and Hideto Suzuki. An eigensystem realization algorithm in fre-

quency domain for modal parameter identification. 1988.

[70] Jer-Nan Juang and Richard S Pappa. An eigensystem realization algorithm

for modal parameter identification and model reduction. Journal of guidance,

control, and dynamics, 8(5):620–627, 1985.

[71] Hamid Reza Karbasian and Kyung Chun Kim. Numerical investigations on

flow structure and behavior of vortices in the dynamic stall of an oscillating

pitching hydrofoil. Ocean Engineering, 127:200–211, 2016.

[72] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of

dynamical systems, volume 54. Cambridge university press, 1997.

177

[73] Gaetan Kerschen, Jean-claude Golinval, Alexander F Vakakis, and Lawrence A

Bergman. The method of proper orthogonal decomposition for dynamical char-

acterization and order reduction of mechanical systems: an overview. Nonlinear

dynamics, 41(1-3):147–169, 2005.

[74] Bernard O Koopman. Hamiltonian systems and transformation in Hilbert space.

Proceedings of the national academy of sciences of the united states of america,

17(5):315, 1931.

[75] L Kourentis and E Konstantinidis. Uncovering large-scale coherent structures

in natural and forced turbulent wakes by combining PIV, pod, and ftle. Exper-

iments in fluids, 52(3):749–763, 2012.

[76] Karl Kunisch and Stefan Volkwein. Proper orthogonal decomposition for op-

timality systems. ESAIM: Mathematical Modelling and Numerical Analysis-

Modélisation Mathématique et Analyse Numérique, 42(1):1–23, 2008.

[77] Dilek Funda Kurtulus. On the unsteady behavior of the flow around NACA

0012 airfoil with steady external conditions at Re= 1000. International journal

of micro air vehicles, 7(3):301–326, 2015.

[78] Toni Lassila and Gianluigi Rozza. Parametric free-form shape design with PDE

models and reduced basis method. Computer Methods in Applied Mechanics

and Engineering, 199(23-24):1583–1592, 2010.

[79] François-Xavier Le Dimet and Olivier Talagrand. Variational algorithms for

analysis and assimilation of meteorological observations: theoretical aspects.

Tellus A: Dynamic Meteorology and Oceanography, 38(2):97–110, 1986.

[80] Julia Ling and J Templeton. Evaluation of machine learning algorithms for pre-

diction of regions of high Reynolds Averaged Navier Stokes uncertainty. Physics

of Fluids, 27(8):085103, 2015.

[81] Yan Liu, Kailun Li, Jiazhong Zhang, Hang Wang, and Liguang Liu. Numerical

bifurcation analysis of static stall of airfoil and dynamic stall under unsteady

perturbation. Communications in Nonlinear Science and Numerical Simulation,

17(8):3427–3434, 2012.

178

[82] Hugo FS Lui and William R Wolf. Construction of reduced order models for fluid

flows using deep feedforward neural networks. arXiv preprint arXiv:1903.05206,

2019.

[83] JiaQi Luo, JunTao Xiong, and Feng Liu. Aerodynamic design optimization

by using a continuous adjoint method. Science China Physics, Mechanics &

Astronomy, 57(7):1363–1375, 2014.

[84] Zhoujie Lyu, Gaetan KW Kenway, and Joaquim RRA Martins. Aerodynamic

shape optimization investigations of the common research model wing bench-

mark. AIAA journal, 53(4):968–985, 2015.

[85] Andrea Manzoni, Alfio Quarteroni, and Gianluigi Rozza. Shape optimization for

viscous flows by reduced basis methods and free-form deformation. International

Journal for Numerical Methods in Fluids, 70(5):646–670, 2012.

[86] Alison L Marsden, Meng Wang, JE Dennis, and Parviz Moin. Trailing-edge

noise reduction using derivative-free optimization and large-eddy simulation.

Journal of Fluid Mechanics, 572:13–36, 2007.

[87] Joaquim RRA Martins, Juan J Alonso, and James J Reuther. A coupled-adjoint

sensitivity analysis method for high-fidelity aero-structural design. Optimization

and Engineering, 6(1):33–62, 2005.

[88] R Moarref, MR Jovanović, JA Tropp, AS Sharma, and BJ McKeon. A low-

order decomposition of turbulent channel flow via resolvent analysis and convex

optimization. Physics of Fluids, 26(5):051701, 2014.

[89] M. Mohebujjaman, L.G. Rebholz, and T. Iliescu. Physically constrained data-

driven correction for reduced-order modeling of fluid flows. International Jour-

nal for Numerical Methods in Fluids, 89(3):103–122, Oct 2018.

[90] Bruce Moore. Principal component analysis in linear systems: Controllability,

observability, and model reduction. IEEE transactions on automatic control,

26(1):17–32, 1981.

[91] M. Moriche, O. Flores, and M. Garćıa-Villalba. On the aerodynamic forces

on heaving and pitching airfoils at low Reynolds number. Journal of Fluid

Mechanics, 828:395–423, 2017.

179

[92] C Mullis and RA Roberts. Synthesis of minimum roundoff noise fixed point

digital filters. IEEE Transactions on Circuits and Systems, 23(9):551–562, 1976.

[93] Takaaki Murata, Kai Fukami, and Koji Fukagata. Nonlinear mode decompo-

sition with convolutional neural networks for fluid dynamics. Journal of Fluid

Mechanics, 882, 2020.

[94] Siva Nadarajah and Antony Jameson. A comparison of the continuous and

discrete adjoint approach to automatic aerodynamic optimization. In 38th

Aerospace Sciences Meeting and Exhibit, page 667, 2000.

[95] Aditya G Nair, Chi-An Yeh, Eurika Kaiser, Bernd R Noack, Steven L Brun-

ton, and Kunihiko Taira. Cluster-based feedback control of turbulent post-stall

separated flows. Journal of Fluid Mechanics, 875:345–375, 2019.

[96] Habib N Najm. Uncertainty quantification and polynomial chaos techniques

in computational fluid dynamics. Annual review of fluid mechanics, 41:35–52,

2009.

[97] Daniel A Nelson and Gustaaf B Jacobs. High-order visualization of three-

dimensional lagrangian coherent structures with DG-FTLE. Computers & Flu-

ids, 139:197–215, 2016.

[98] James C Newman III, Arthur C Taylor III, Richard W Barnwell, Perry A New-

man, and Gene J-W Hou. Overview of sensitivity analysis and shape optimiza-

tion for complex aerodynamic configurations. Journal of Aircraft, 36(1):87–96,

1999.

[99] Angxiu Ni and Qiqi Wang. Sensitivity analysis on chaotic dynamical systems

by non-intrusive least squares shadowing (NILSS). Journal of Computational

Physics, 347:56–77, 2017.

[100] Angxiu Ni, Qiqi Wang, Pablo Fernandez, and Chaitanya Talnikar. Sensitivity

analysis on chaotic dynamical systems by finite difference non-intrusive least

squares shadowing (FD-NILSS). Journal of Computational Physics, 394:615–

631, 2019.

180

[101] S Andrew Ning and Ilan Kroo. Multidisciplinary considerations in the design

of wings and wing tip devices. Journal of aircraft, 47(2):534–543, 2010.

[102] Bernd R Noack, Konstantin Afanasiev, MAREK MORZYŃSKI, Gilead Tad-

mor, and Frank Thiele. A hierarchy of low-dimensional models for the transient

and post-transient cylinder wake. Journal of Fluid Mechanics, 497:335–363,

2003.

[103] Bernd R Noack, Marek Morzynski, and Gilead Tadmor. Reduced-order mod-

elling for flow control, volume 528. Springer Science & Business Media, 2011.

[104] IB Oliveira and AT Patera. Reduced-basis techniques for rapid reliable opti-

mization of systems described by affinely parametrized coercive elliptic partial

differential equations. Optimization and Engineering, 8(1):43–65, 2007.

[105] Carlos E Orozco and ON Ghattas. Massively parallel aerodynamic shape opti-

mization. Computing Systems in Engineering, 3(1-4):311–320, 1992.

[106] Valery Iustinovich Oseledets. A multiplicative ergodic theorem: Characteristic

Lyapunov exponents of dynamical systems. Trudy Moskovskogo Matematich-

eskogo Obshchestva, 19:179–210, 1968.

[107] Mohagna J Pandya and Oktay Baysal. Gradient-based aerodynamic shape

optimization using alternating direction implicit method. Journal of aircraft,

34(3):346–352, 1997.

[108] Eric J. Parish, Christopher Wentland, and Karthik Duraisamy. The adjoint

Petrov-Galerkin method for non-linear model reduction, 2018.

[109] Eric J Parish, Christopher R Wentland, and Karthik Duraisamy. The Adjoint

Petrov–Galerkin method for non-linear model reduction. Computer Methods in

Applied Mechanics and Engineering, 365:112991, 2020.

[110] Sina Piramoon and Mohammad A Ayoubi. An eigensystem realization algo-

rithm for modal parameter identification of a vertical-shaft high-speed centrifu-

gal machine. In ASME International Mechanical Engineering Congress and

Exposition, volume 84546, page V07AT07A032. American Society of Mechani-

cal Engineers, 2020.

181

[111] Olivier Pironneau. On optimum design in fluid mechanics. Journal of Fluid

Mechanics, 64(1):97–110, 1974.

[112] Daniel J Poole, Christian B Allen, and Thomas Rendall. Comparison of local

and global constrained aerodynamic shape optimization. In 32nd AIAA Applied

Aerodynamics Conference, page 3223, 2014.

[113] C Praveen and R Duvigneau. Low cost PSO using metamodels and inexact

pre-evaluation: Application to aerodynamic shape design. Computer Methods

in Applied Mechanics and Engineering, 198(9-12):1087–1096, 2009.

[114] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode

decomposition with control. SIAM Journal on Applied Dynamical Systems,

15(1):142–161, 2016.

[115] Maŕıa-Luisa Rapún and José M Vega. Reduced order models based on local pod

plus galerkin projection. Journal of Computational Physics, 229(8):3046–3063,

2010.

[116] SS Ravindran. Reduced-order adaptive controllers for fluid flows using POD.

Journal of scientific computing, 15(4):457–478, 2000.

[117] Marco E Rosti, Mohammad Omidyeganeh, and Alfredo Pinelli. Direct numer-

ical simulation of the flow around an aerofoil in ramp-up motion. Physics of

Fluids, 28(2):025106, 2016.

[118] Clarence W Rowley, Tim Colonius, and Richard M Murray. Model reduction for

compressible flows using POD and Galerkin projection. Physica D: Nonlinear

Phenomena, 189(1-2):115–129, 2004.

[119] Clarence W Rowley and Scott TM Dawson. Model reduction for flow analysis

and control. Annual Review of Fluid Mechanics, 49:387–417, 2017.

[120] Clarence W Rowley, Igor Mezi, Shervin Bagheri, Philipp Schlatter, DANS HEN-

NINGSON, et al. Spectral analysis of nonlinear flows. Journal of fluid mechan-

ics, 641(1):115–127, 2009.

[121] Gianluigi Rozza and Andrea Manzoni. Model order reduction by geometrical

parametrization for shape optimization in computational fluid dynamics. In

182

Proceedings of the ECCOMAS CFD, V European Conference on Computational

Fluid Dynamics, pages 1–20, 2010.

[122] Peter J Schmid. Dynamic mode decomposition of numerical and experimental

data. Journal of fluid mechanics, 656:5–28, 2010.

[123] Lothar M Schmitt. Theory of Genetic Algorithms II: Models for genetic oper-

ators over the string-tensor representation of populations and convergence to

global optima for arbitrary fitness function under scaling. Theoretical Computer

Science, 310(1-3):181–231, 2004.

[124] Michael S Selig. Summary of low speed airfoil data. SOARTECH publications,

1995.

[125] Yayun Shi, Charles A Mader, Sicheng He, Gustavo LO Halila, and

Joaquim RRA Martins. Natural laminar-flow airfoil optimization design us-

ing a discrete adjoint approach. AIAA Journal, 58(11):4702–4722, 2020.

[126] SN Sivanandam and SN Deepa. Genetic Algorithms. In Introduction to Genetic

Algorithms, pages 15–37. Springer, 2008.

[127] Shaun N Skinner and Hossein Zare-Behtash. State-of-the-art in aerodynamic

shape optimisation methods. Applied Soft Computing, 62:933–962, 2018.

[128] Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William

Gropp, Elizabeth Lurie, and Dimitri Mavriplis. CFD vision 2030 study: A path

to revolutionary computational aerosciences. 2014.

[129] Jaroslaw Sobieszczanski-Sobieski and Raphael T Haftka. Multidisciplinary

aerospace design optimization: Survey of recent developments. Structural opti-

mization, 14(1):1–23, 1997.

[130] Gregg M Streuber and David W Zingg. Evaluating the risk of local optima in

aerodynamic shape optimization. AIAA Journal, pages 1–13, 2020.

[131] M Sudharsan, Steven L Brunton, and James J Riley. Lagrangian coherent

structures and inertial particle dynamics. Physical Review E, 93(3):033108,

2016.

183

[132] Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim

Colonius, Beverley J McKeon, Oliver T Schmidt, Stanislav Gordeyev, Vassilios

Theofilis, and Lawrence S Ukeiley. Modal analysis of fluid flows: An overview.

AIAA Journal, 55(12):4013–4041, 2017.

[133] Kunihiko Taira, Maziar S Hemati, Steven L Brunton, Yiyang Sun, Karthik Du-

raisamy, Shervin Bagheri, Scott TM Dawson, and Chi-An Yeh. Modal analysis

of fluid flows: Applications and outlook. AIAA journal, 58(3):998–1022, 2020.

[134] Alejandra Uranga, Per-Olof Persson, Mark Drela, and Jaime Peraire. Implicit

large eddy simulation of transitional flows over airfoils and wings. In 19th AIAA

Computational Fluid Dynamics, page 4131. 2009.

[135] Brian C Vermeire and Siavash Hedayati Nasab. Accelerated implicit-explicit

Runge-Kutta schemes for locally stiff systems. Journal of Computational

Physics, page 110022, 2020.

[136] Brian C Vermeire, Freddie D Witherden, and Peter E Vincent. On the util-

ity of GPU accelerated high-order methods for unsteady flow simulations: A

comparison with industry-standard tools. Journal of Computational Physics,

334:497–521, 2017.

[137] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua

Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,

Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,

Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-

sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,

Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17:261–272, 2020.

[138] Sean Wakayama and Ilan Kroo. Subsonic wing planform design using multidis-

ciplinary optimization. Journal of Aircraft, 32(4):746–753, 1995.

184

[139] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least squares shadowing sensitivity

analysis of chaotic limit cycle oscillations. Journal of Computational Physics,

267:210–224, 2014.

[140] Yuan Yuan Wang, Bin Qian Zhang, and Ying Chun Chen. Robust airfoil op-

timization based on improved particle swarm optimization method. Applied

Mathematics and Mechanics, 32(10):1245, 2011.

[141] Freddie D Witherden, Antony M Farrington, and Peter E Vincent. PyFR: An

open source framework for solving advection–diffusion type problems on stream-

ing architectures using the flux reconstruction approach. Computer Physics

Communications, 185(11):3028–3040, 2014.

[142] Tobias F Wunderlich. Multidisciplinary wing optimization of commercial air-

craft with consideration of static aeroelasticity. CEAS Aeronautical Journal,

6(3):407–427, 2015.

[143] Zhaoke Xu and Jian Xia. Aerodynamic optimization based on continuous ad-

joint method for a flexible wing. International Journal of Aerospace Engineer-

ing, 2016, 2016.

[144] Nail Yamaleev, Boris Diskin, and Eric Nielsen. Adjoint-based methodology for

time-dependent optimization. In 12th AIAA/ISSMO Multidisciplinary Analysis

and Optimization Conference, page 5857, 2008.

[145] Wataru Yamazaki, Kisa Matsushima, and Kazuhiro Nakahashi. Aerodynamic

design optimization using the drag-decomposition method. AIAA journal,

46(5):1096–1106, 2008.

[146] Weiguang Yang. Surgical design for the Fontan procedure using computational

fluid dynamics and derivative-free optimization. PhD thesis, UC San Diego,

2012.

[147] Serhiy Yarusevych, Pierre E Sullivan, and John G Kawall. On vortex shedding

from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics,

632:245, 2009.

185

[148] Matthew J Zahr and Charbel Farhat. Progressive construction of a parametric

reduced-order model for PDE-constrained optimization. International Journal

for Numerical Methods in Engineering, 102(5):1111–1135, 2015.

[149] Matthew J Zahr and P-O Persson. An adjoint method for a high-order dis-

cretization of deforming domain conservation laws for optimization of flow prob-

lems. Journal of Computational Physics, 326:516–543, 2016.

[150] Yudong Zhang, Shuihua Wang, and Genlin Ji. A comprehensive survey on Parti-

cle Swarm Optimization algorithm and its applications. Mathematical Problems

in Engineering, 2015, 2015.

[151] David W Zingg, Marian Nemec, and Thomas H Pulliam. A comparative eval-

uation of genetic and gradient-based algorithms applied to aerodynamic op-

timization. European Journal of Computational Mechanics, 17(1-2):103–126,

2008.

186

