
Towards Empowering Data Lakes with Knowledge Graphs

Ahmed Helal

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

August 2021

© Ahmed Helal, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ahmed Helal

Entitled: Towards Empowering Data Lakes with Knowledge Graphs

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. René Witte

Examiner
Dr. René Witte

Examiner
Dr. Tristan Glatard

Supervisor
Dr. Essam Mansour

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2021
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Towards Empowering Data Lakes with Knowledge Graphs

Ahmed Helal

The emergence of data lakes has permitted storing a large amount of data coming in different

formats and at high speed. Data lakes are simultaneously a boon and a bane: while they are great

data stores, it is tedious to explore their content. In fact, data lakes are schema-agnostic. In other

words, they come with limited or no metadata, making consequently data discovery time-consuming

and cumbersome. In addition, some of the already existing data lakes, like the open data portals,

have few functionalities that a user can instrumentalize to look for datasets. In addition, these

functionalities merely consist of basic search coupled with some filters. These limitations are costly

because users would spend considerable time looking for data rather than working on their main

tasks. To mitigate this shortcoming, this thesis presents an approach to create metadata on top of the

content of data lakes to facilitate data discovery and data enrichment. This approach consists of two

steps: First, constructing an RDF knowledge graph (KG) as a navigational structure to model the

schema. Second, providing the user with a set of APIs to discover and enrich data. To demonstrate

this approach, this work will present a proof of concept (POC) system that captures the schema of

tabular-like data and represent it as a KG (GLac), with the means of LAC, an ontology for data

lakes. Then it will equip the practitioners with user-friendly interface services to interact with GLac

and compile a dataset for a given task. With these main contributions, the system offers promising

results in terms of the quality of the generated schema.

The main findings of this thesis have been published in two venues: as an extended abstract

named ’Data Lakes Empowered by Knowledge Graphs’ [24] and ’A Demonstration of KGLac: A

data Discovery an Enrichment Platform for Data Science’ [25]. The former, accepted to the poster

session of SIGMOD/PODS’21, presents an approach describing how to utilize KGs to facilitate

iii

leveraging the content of data lakes. The latter, accepted to the demo session of VLDB’21, provides

an overview of KGLac and illustrates the various functionalities the platform supports on top of data

lakes after processing their content.

iv

Acknowledgments

First, I would like to thank Dr. Mansour, who has helped during the 18 months I spent at

Concordia University and Concordia Data Systems (CoDS) lab specifically, on several levels. As

Dr. Mansour always says, CoDS is our startup, and I am happy that he entrusted me to contribute

to building it and being the first to graduate from it. During my masters. I had the privilege to have

a unique experience during which I learned how to conduct research, write proposals to submit to

top-tier conferences, and get motivated when they are accepted. Dr. Mansour helped me work and

put the building stones for KGLac, a dear project to me that has great potential. In addition, thanks

to CoDS, my path crossed many people who have taught me a lot about life.

Second, I would like to thank all my friends and flatmates who showed immense support re-

gardless of where they are staying and made my integration in Montreal smooth and with whom I

share incomparable memories, especially during the covid time.

Last and most importantly, I cannot find the words to thank my parents: my father Moncef

Helal, and my mother Moufida Helal. They supported me unconditionally. They always believed in

me and shared with me every single moment I lived in Montreal even though they live in Tunisia.

In addition, I would like to also thank my siblings and their partners: Mehdi, Imen, Khalil, Walid,

Kayla, and Yosra. Furthermore, my extended family also played a crucial role and they continuously

showed support. They are my uncles and Aunt: Hassan, Abdelrahman, Mohamed, Khemais, Samia,

Hafedh, and Mehrez. Lastly, I cannot forget the memory of my grandparents and how it carried me

during these years: Mhamed, Ahmed, Khdija, and Khadouja.

In the end, I would like to emphasize the fact that I could not reach this stage without the

education I have obtained in my home country, Tunisia, that I will always love.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Outline . 3

2 Related Work 4

2.1 Current Portals . 4

2.2 Functionalites and Algorithms . 6

2.3 Systems . 7

2.4 RDB to RDF . 11

3 Background 13

3.1 KG: Importance & Definitions . 14

3.1.1 KG Importance . 14

3.1.2 Several Definitions . 14

3.2 KG: Structures & Ontologies . 17

3.2.1 KG Structure . 17

3.2.2 Ontologies . 19

3.3 KG: Characteristics & Applications . 21

vi

3.3.1 KG Characteristics . 21

3.3.2 KG Applications . 23

4 A Data Lake ontology & A Proof of Concept System 26

4.1 System Overview . 27

4.1.1 Data Profiler . 27

4.1.2 LAC: Data Lake Ontology . 30

4.1.3 Glac: A Highly Interconnected KG . 34

4.1.4 GLac Builder . 36

4.1.5 Discovery Operations . 39

4.1.6 Embedding Similarity . 40

4.2 KGLac characteristics . 43

4.2.1 Apache Spark . 43

4.2.2 Elasticsearch . 45

4.2.3 RDF-star . 46

4.2.4 Pandas . 47

5 Use Case & Evaluation 48

5.1 Use Case . 48

5.1.1 Data Lake . 49

5.1.2 Scenario . 49

5.2 Evaluation . 57

5.2.1 Semantic Similarity . 57

5.2.2 Content Similarity . 59

5.2.3 PKFKs . 62

6 Conclusion & Future Work 66

A LAC schema 68

B LAC Vocabulary 70

vii

List of Figures

Figure 3.1 Cumulative number of KG publications from 1980 to 2020 on Google Scholar 14

Figure 3.2 RDF structure representing information about Concordia University 18

Figure 3.3 Reasoning engine infers foaf:knows between actors starring in the Titanic . 25

Figure 4.1 The proof of concept system architecture, where KGLac gets access to a local

data lake, e.g., sets of files or databases, to construct GLac. Then, different ML

pipeline tools can communicate with KGLac to facilitate data discovery. KGLac

tracks the use of datasets. 27

Figure 4.2 KGLac workflow: 1-Profile the raw data. 2- Store the profiles and the raw

data on a document database. 3- Load the profiles. 4- Host GLac on an RDF-star

store. 5- Query and update GLac. 6- Query the raw data. 28

Figure 4.3 Profiler Workflow: 1-Load the tables into a priority queue. 2- Each thread

loads a table. 3- Each thread determines the data type of each column and then pro-

files it. 4- Each thread loads the profiles and the raw data into a document database

on a separate index. 5- Thread waits to process another table when available. . . . 30

Figure 4.4 Schema of LAC . 35

Figure 4.5 Instance of GLac . 37

Figure 4.6 KGLac and Aurum profilers scalability. 45

Figure 5.1 Search for tables with columns having salary, pay, or earning using KGLac

search tables on API. Then sort the results in descending order based on the number

of rows. 50

viii

Figure 5.2 Search for tables with columns having gender or sex using KGLac search tables on

API. Then sort the results in descending order based on the number of rows. 51

Figure 5.3 Get the paths between the salary table and the gender one by calling KGLac

get path tables API. 52

Figure 5.4 There are two paths between the selected tables. 52

Figure 5.5 Merge the salary table with the gender one using the employee info table. . 53

Figure 5.6 Get unionable columns between the salary with gender dataframe and the

salaries san francisco one using KGLac get uninable columns. 54

Figure 5.7 Steps to union the salaries with gender and the salaries san francisco dataframe. 54

Figure 5.8 Find joinable columns with the JobTitle column belonging to the salaries

dataframe in the data lake. 55

Figure 5.9 Performance of KGLac in determing semantic similarity relationships. . . . 58

Figure 5.10 Evaluation comparision between KGLac (threshold =0.8) and Aurum (de-

fault parameters) . 59

Figure 5.11 Each row corresponds to α value starting from 0.5 and ending with 0.9 (top

to bottom). Each column corresponds to an evaluation metric: Recall, Precision,

F1-score (left to right) . 61

Figure 5.12 Evaluation of KGLac and Aurum using the ChEMBL dataset 63

ix

List of Tables

Table 2.1 Summary of the features supported by the systems 10

Table 3.1 RDF vs Property Graphs . 16

Table 4.1 LAC different classes . 33

Table 4.2 LAC different properties . 34

Table 4.3 Terms from other onotology used to build GLac 36

Table 4.4 Different APIs supported by the Interface Services 42

Table 4.5 Performance comparison between RDF-star and the other approaches 47

Table 5.1 The first five rows of the salaries tables with the highest number of rows. . . 50

Table 5.2 The first five records in employee salaries.csv 50

Table 5.3 The first five records in names gender.csv 51

Table 5.4 The first five records in salaries with gender table 52

Table 5.5 Unionable columns between the salaries with gender dataframe and the salaries

san Francisco one. 54

Table 5.6 The first five records in the salaries table after the union 55

Table 5.7 Joinable columns between with JobTitle in the salaries dataframe. 56

Table 5.8 First five records in Hourly-Rates-of-Pay-by-Classification-and-Step-FY17-

18.csv . 56

Table 5.9 Columns having PKFK relationships in the ground truth. 63

Table 5.10 Number of correctly detected and the total number of detected PKFKS by

KGLac and Aurum . 63

x

Chapter 1

Introduction

1.1 Overview

Since 2010, the amount of produced data has been exponentially increasing as it goes from 2

zettabytes in 2010 and reaches 79 in 2021. The number is estimated to reach 181 zettabytes by

2025 [27]. The colossal amount of data comes at a high rate and in different formats, structured,

semi-structured, and unstructured. Hence, several data stores have emerged to accommodate this

data characterized by its volume, velocity, and variety. For this reason, James Dixon introduced

data lakes that are adequate for this kind of data [14]. A data lake is a scalable repository that al-

lows the user to store data in different types. It also permits running analytics on top of it 1. By

adopting this data store, businesses were capable of generating 9% more in organic revenue growth

than those which did not [30]. However, with all the benefits they offer, data lakes suffer from some

challenges[38]. It is difficult for data scientists and analysts to reason about data due to its lack of

reliability 2. In addition, they do not provide insights about its content. They usually come with

limited or no metadata leading to having data swamps [38] instead, and as a consequence, data dis-

covery is a more cumbersome task [49]. For this reason, this thesis proposes empowering data lakes

with knowledge graph technologies that capture its metadata as we show in our publication [24] in

Sigmod Student Research Competition.
1https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
2https://databricks.com/discover/data-lakes/introduction

1

Our work presents a system that generates a knowledge graph on top of data lakes representing

its schema. In fact, knowledge graphs are scalable models that capture data of different formats

and are suitable to unify data and capture the relationships between them [19]. In addition, the KG

will enable to user to perform data discovery and data enrichment operations. These operations will

help users avoid spending considerable time compiling a dataset instead of analyzing it [24]. Hence,

in this thesis, we will present a proof of concept system of KGLac, a data discovery platform that

processes the content of data lakes to create a KG. This knowledge graph, called GLac, captures

data lakes metadata representing, as a consequence, a semantic layer on top of the data lake. In

addition, the system equips AI practitioners with a set of services to seamlessly interact with GLac.

1.2 Contributions

The thesis presents three contributions:

A Proof of Concept System of KGLac, a data discovery platform. It is a scalable system

capable of processing the voluminous tabular structured and semi-structured content of data lakes

thanks to cutting-edge technologies like Apache Spark and Elasticsearch. In other words, the POC

only treated tabular-like data, such as CSV and JSON files. Hence, it creates data items following a

hierarchical structure where a data lake has several datasets, where each consists of several tables,

and each table has several columns. Furthermore, the system captures data lake metadata to generate

GLac, a highly interconnected graph. The nodes represent the various data items in the data lake and

the edges reflect similarities between them. The similarities that the system establishes are content

similarity, semantic similarity, primary-key/foreign-key (PKFK), and inclusion dependency. Even

though it is not part of the contributions, the system has a comparable performance with the state-

of-art system [12]. Our system slightly outperforms it in establishing the relationships except for

the semantic ones as it gives more reliable results.

In addition, the system equips the users with a set of interface services to explore the content

of the data lakes. These services are data discovery and data enrichment operations which we show

in our demo proposal [25] accepted into VLDB’21. The operations range from basic functionalities

like searching for data entities to finding the shortest path along with a given relationship. The

2

operations allow the user to harness the latest methods to find joinable and unionable columns using

embeddings. Besides, the services promote data reusability, as the user can provide comments

on each table or dataset in addition to a project using the data. Such information is an insightful

reference for other AI practitioners in the future.

Moreover, the thesis presents LAC, an ontology conceptualizing entities and their relationships

in data lakes. Since we are in Quebec, LAC is adopted because it means lake in French. This

ontology creates a unified representation of the different concepts inherited from data lakes such

as columns, tables, and datasets. These concepts are the various classes forming the hierarchical

structure in GLac. In addition, LAC provides terms for the previously mentioned relationships,

in addition to those used to create the associated metadata like the number of distinct values and

the path to the table. Hence, GLac leverage LAC and core ontologies to create the data entities

with their relationships by means of several languages. The subsequent chapters will provide more

details about each contribution.

1.3 Outline

The thesis consists of 6 chapters where Chapter 2 presents the related works, including examples

of data lakes and how they support searching their content. Besides, it covers functionalities and

systems operating on these data stores. In the end, some approaches how to map relational data

to KGs. Chapter 3 highlights how KGs are adequate to represent metadata for data lakes and how

they empower them to support data discovery and enrichment operations. It also covers LAC how

GLac leverages to model the schema for data lakes. Chapter 4 presents a proof of concept system

of KGLac, the data discovery platform, and lists which technologies it uses to build the KG and

enables the users to interact with it. Before showing the future work and concluding in chapter 6,

chapter 5 demonstrates a use case where the proof of concept system is seamlessly integrated into

a data science pipeline. The data scientist will compile a dataset to investigate the compensation

gap based on gender. Then, the chapter will report the evaluation of the system in establishing

relationships between the nodes.

3

Chapter 2

Related Work

The emergence of data lakes has shown the limits of the current tools to process data. The

content of data lakes is heterogeneous as they contain all sorts of data, voluminous as the data is

usually in terabytes if not petabytes, and schema-less, which makes data discovery a challenging

and time-consuming task. For this reason, many works have proposed scalable technologies that

facilitate data discovery and help the users leverage the content of these data sources. In this chapter,

we will start by reporting the current efforts to organize data in data lakes. Afterward, we will cover

the different scalable functionalities that address the barriers when dealing with big data. Then we

will present various systems that encompass various of these functionalities to handle data lakes.

Finally, we will report some efforts to formalize ways to map structured datasets into KG.

2.1 Current Portals

In the last few years, we have noticed the continuous proliferation of data published on the

web. Several reasons can explain this trend: by adopting policies opting for more transparency

to the public, governments, federal1, provincial 2, and even local 3, share their data and is now

accessible via online portals. In addition, organizations publish their data for people across the

globe to run analyses and infer insights. For instance, the World Health Organization 4 (WHO),
1https://www.data.gouv.fr/fr, https://open.canada.ca/en/open-data, https://www.data.gov/
2https://www.ontario.ca/page/open-government,https://www.donneesquebec.ca/,https://data.ny.gov/
3https://data.lacity.org/, https://donnees.montreal.ca/, https://opendata.vancouver.ca/pages/home/
4https://www.who.int/data/gho/

4

regularly publishes data related to COVID-19. Democratizing such data has enabled countries to

learn more about the virus and better manage the pandemic. Furthermore, other portals like Kaggle 5

and OpenML [52] host data provided by several users. This data has enabled the improvement and

development of new technologies in Machine Learning (ML) to ameliorate and devise new models.

Other portals dedicated to specific domains also exist. The Scientific Data in Nature6 or the Inter-

university Consortium for Political and Social Research7 (ICPSR) promote research reproducibility

in the natural sciences and the social sciences respectively. These portals provide data of different

formats (CSV, JSON, HTML) and are organized in different domains (Agriculture, Military, Law).

They also include some helpful metadata such as the size of the data and the publisher. Moreover,

the maintainers of these data portals assist users looking for a specific dataset and could not find it.

The presence of such portals can be regarded as a boon as they serve many goals such as more

transparent governance and faster research reproducibility. However, dealing with big data also

comes with a bane. Data discovery is time-consuming [12]: one has to look for data and then

investigate to verify whether it suits their task. The data portals, unfortunately, do not equip the

user with adequate operations to perform data discovery. They merely provide keyword search

capabilities with some filter operations over the existing metadata, which is limited. For instance,

on Kaggle, a user can look for a dataset and filter them based on its size, or the license attached

to the data. The Canadian Open Portal provides similar functionalities. But in addition to that, it

offers the option to find comparable records. Despite the usefulness of such an operation, the user

cannot determine based on which metric the datasets are similar. Is it based on content similarity,

same publisher, or even a combination of several variables? The limited metadata available on data

portals and data lakes hinders the user’s task to find data, leading to spending considerable time

possibly ending up without finding what they look for. For this reason, by introducing KGLac, we

aim to address this limitation and leverage the data hosted on these data lakes to derive metadata.

Hence a user can perform data discovery in a faster and more effective manner.
5https://www.kaggle.com/
6https://www.nature.com/sdata/
7https://www.icpsr.umich.edu/web/pages/

5

2.2 Functionalites and Algorithms

The previous data portals represent tools to organize data lakes having basic search and filter

operations. Nevertheless, to improve the data discovery user experience, the hosts need to integrate

more adequate tools. In other words, these tools need to be scalable and fast to handle the volu-

minous data. For these reasons, several efforts have introduced new algorithms and operations to

include in these data portals.

In [37], the authors suggest a new approach to organize data in data lakes. This structure repre-

sents a navigational structure to determine if two datasets belong to the same topic. The proposed

organization utilizes a probabilistic Directed Acyclic Graph (DAG). The DAG is a Markov model

that represents the metadata. Its nodes are the attributes extracted from the data lake, and the edges

are the transitions from a parent, a set of attributes, to its children, subsets of these attributes. The

leaf nodes refer to the actual data in the data lake. By extracting the attributes for each topic, the

system calculates the corresponding embedding vector to determine how similar a given topic is to

another one and construct the organization. While this organization is a helpful tool to find data

belonging to the same topic, the construction of the model is contingent on the existence of the

attributes in the data lakes. The creation of the model is time-consuming, and it is prone to any

modification like the insertion or deletion of a dataset. On the contrary, KGLac does not depend on

such metadata; it instead creates metadata for data lakes.

JOSIE [63], an algorithm that helps users find joinable tables in data lakes based on overlap

set operations. The algorithm is scalable and optimized to quickly retrieve the top-k most similar

candidates to a given column without investigating the columns in the data lake. KGLac, however,

is a more general system. In addition to being a framework to find joinable tables, it provides

operations to find unionable ones, and explore the data lake. Plus, KGLac deals with both numerical

and textual data whereas JOSIE merely handles textual data.

D4 [41] introduces a data discovery tool dedicated to infer semantic type for columns in tabular

data. The main focus is to handle textual data posses semantics, while numerical ones can lead

to false results as they can belong to various domains. The approach groups semantically related

terms of a column and then verifies whether this grouping belongs to a given topic. In other words,

6

by investigating the values of the two columns, D4 can report if they stem from the same variable

or domain. In contrast, KGLac supports findings of semantically related columns based on the

embedding of the content and the column name. Additionally, it also reports on the existence of

primary key - foreign key between two columns which, in addition to being semantically related, an

inclusion dependency should exist. Plus, given that numerical columns are considerably pervasive

in data lakes, KGLac supports findings if two numerical columns are similar based on their contents

or the semantic of their names.

2.3 Systems

The algorithms and approaches mentioned above are valuable to integrate into more compre-

hensive systems that provide a set of functions to perform data exploration and data discovery over

data lakes. In this section, we will list several systems meant to tackle data discovery. We will

compare them based on a set of features.

Metadata: It is essential to support data discovery operations over data lakes. Even the sim-

plest operations such as keyword search and filter operations rely on the existence of such salient

information like the title of the dataset or its format. Several systems aim to leverage this metadata

to facilitate the task of finding datasets. [60] is a system to address tables relatedness. The authors

investigate the techniques dealing with data values and data domain overlap to support various op-

erations on tables. To do so, they extract metadata ranging from creating profiles for the tables,

their schema, and descriptions if available and provenance. For the provenance, they rely on the

sequential execution of the data in notebooks like Jupyter [45]. [12] collects metadata by profiling

the datasets. Based on the content, it computes several statistics and embeddings to establish links

between the data entities. [56] helps users build tables using Wikipedia and its KG DBpedia. They

rely on the schema provided by the KG to find data used to enrich a given table and build it from

scratch. [8] helps users find data based on keyword search and filters. It collects metadata by rely-

ing on markups and tags associated with the dataset when published online. In addition, the system

utilizes Google KG to extract further metadata helpful to refine the search. [22] and Amundsen8

8https://www.amundsen.io/

7

connect to data stores like relational databases from which they extract the metadata. KGLac, sim-

ilar to Aurum, extracts the metadata by leveraging the content of the data by building data profiles.

It, however, supports inferring more information conveying information about data completeness.

Data Model: After extracting the metadata, it needs to be modeled and subsequently leveraged

to support the data discovery operations. [60] stores the data on a postgreSQL [50] and models the

inferred relationships, such as the provenance, between the data, cells, and notebooks on Neo4j 9, a

property graph. [12] leverages the extracted profiles to build an in-memory graph where the nodes

are the profiled data entities, and the edges are the relationships that might exist between the entities,

such as primary key - foreign key relationships or schema similarities. Goods [22] uses HBase 10

to index its metadata as key-value tuples. Finally, Amundsen models the metadata and their rela-

tionships as a graph stored in Neo4j. KGLac models the metadata as an RDF-star [23]. To do so,

we provide an ontology to model data stemming from data lakes. [42] presents an approach for a

system capable of enriching structured and semi-structured data using external KGs both domain-

specific and cross-domain. To enable enriching data, they first determine the domain of the tables

to be treated. Then create an ontology modeling this data to match it with the domain-specific ex-

ternal ontology. In the end, they extract the module (a subset of the ontology) that contains richer

information used to enrich the initial data. Hence, this approach models the data as a KG to improve

the quality of the structured and semi-structured data. Hence, both the proposed system and KGLac

would rely on building a KG to attain data enrichment. To build the graph, [42] models a table

as an data entity with their associated columns as data properties. KGLac also structures its graph

by building a hierarchical structure having three classes: Column, Table, and Dataset. In addition,

[42] merely relies on semantic meaning while matching their KG with the external one. However,

KGLac supports in addition to semantic similarity between the different columns on content sim-

ilarity and the existence of a Primary key / Foreign key relationship which provides a richer and

more connected graph.

Functionalities: By leveraging this metadata, the systems offer various operations. [60] cre-

ates metrics to determine table relatedness. In fact, given a table query and the type of relatedness,
9https://neo4j.com/

10http://hbase.apache.org/

8

the system can report the top-k results. The table relatedness help retrieve unionable, joinable, and

cleaner versions of the given query tables. [12] allows the user to look for the data in the data lakes

through a keyword search on the level of the source dataset, file, or attribute. Since it models the

metadata as a graph, it also leverages the graph structure to discover related data through intermedi-

ate nodes along with a given relationship. Moreover, either by starting from scratch or adding a new

field, a user uses the [56] interface to build tables; It provides union and join operations. to do so,

the system internally converts the user selection of the data they are interested in from Wikipedia or

DBpedia into SPARQL queries. To abstract these functionalities, KTabulator relies on KG querying

and table transformation. [8] provides keyword search and filtering capabilities based on the ex-

tracted metadata. [22] and Amundsen also provide keyword search, but also provide user interfaces

to present the extracted metadata for a given data entity. In addition, Goods provide a monitoring

tool, where the user can track the status of a dataset across time and explore any other trend affecting

the data, such as an increase in size. KGLac provides basic search and filter operations in addition

to union and join ones. It leverages the graph structure to find the shortest path between two data

nodes along a given edge. It also allows the users to annotate the data nodes with any feedback

for users to refer back if they want to use the same data. Plus, it enables the users to write ad-hoc

SPARQL queries in case it was not already pre-defined. Furthermore, [42] support data enrichment

by matching the built ontology for the initial data with external cross-domain and domain-specific

KGs. However, KGLac supports data enrichment using the data initially parsed and reflected in the

KG.

Usability: The different systems have several interfaces to allow the end-user to perform data

discovery. For [12] introduces a new language, the Source Retrieval Query Language (SRQL) to

enable the user to interact with the graph with pre-defined operations. [8] provides a similar interface

as data portals where you can search by keyword. The results offer the option to access the web page

hosting the dataset in addition to some metadata. However, for KGLac interface services users only

need to be accustomed to technologies like Jupyter [45] notebooks and frameworks like Pandas 11

which is the case, as the system is for data practitioners.

Table 2.1 summarizes the features supported by the different systems. We can notice that most
11https://pandas.pydata.org/

9

Table 2.1: Summary of the features supported by the systems

Extracted Metadata Supported Functionalities User Interface
Model In-silo? Keyword Search Union and Join

Juneau [60] Property
Graph

✓ ✗ ✓ Notebook Ex-
tension

Aurum [12] In-memory
Graph

✓ ✓ ✓ SRQL

KTabulator [56] NA NA ✗ ✓ GUI
Google Dataset
Search [8]

RDF ✗ ✓ ✗ GUI

Goods [22] Key-Value
tuples

✓ ✓ ✗ GUI

Amundsen Property
Graph

✓ ✓ ✗ GUI

Semantic En-
richment [42]

KG ✗ NA NA NA

KGLac RDF-star ✗ ✓ ✓ Notebooks
and IDEs

of them model the metadata as a graph. This structure is adequate to capture relationships between

the data entities. In addition, it offers flexibility to add, update, and delete its nodes or edges.

Furthermore, given that these systems perform data discovery, we need to investigate the different

functionalities. It is worth mentioning that in addition to keyword search, union, and join operations,

the systems provide additional functionalities. But because each system supports a different one,

it is not feasible to reflect that in the summary table. For instance, Juneau supports the users to

find cleaner versions for a given one while the others do not. Moreover, Goods enables the users to

monitor the status of a given dataset if its size increases in a specific trend or a change in restriction.

Last, we report the user interface each system supports. The majority of systems provide a Graphical

User Interface (GUI). As this is helpful for non-technical people to use the system, they still need

to learn how to use it. For instance, KTabulator for [56], the authors had to run training sessions for

a group of users to evaluate the system. Hence, it is critical to provide an intuitive and user-friendly

interface to allow the user to perform data discovery.

10

2.4 RDB to RDF

Table 2.1 shows that only the Google Dataset Search System, the Semantic Enrichment Plat-

form, in addition to KGLac models the extracted metadata as a Resource Description Framework

(RDF). This model allows the merging of several graphs. This is possible because nodes are unique

via Uniform Resource Identifiers (URI). Hence if two nodes having the same identifier but belong-

ing to different KGs, refer to the same entity after merging the graphs. That’s why [8] leverages

its internal KG to enrich the crawled metadata. RDF graphs have triggered an interest among re-

searchers to map relational databases into RDF graphs. Tim Berners-Lee [5] suggests a simple

mapping approach where the value in a column corresponds to a node, the predicate is the name of

the column its cell value will be the value of the node in the graph. This approach can be generalized

regardless of the domain the data belongs to. That’s why it can miss semantics that these data may

convey [47]. Another approach is to perform the mapping by relying on a domain-specific ontol-

ogy. This approach requires either using a pre-existing ontology or building a new one. However,

it allows capturing more semantically-rich mappings in addition to reducing redundant triples used

to create the RDF graph [47]. The World Wide Web Consortium (W3C) formed the RDB2RDF

Working Group to formalize a standard language to map relational data and schema into RDF. To

perform the transformation, which sets the floor for more intricate ones, the group introduces Direct

Mapping [1] (DM).In addition, they formalized R2RML [13] a language to enable the customized

transformation of the relational data to RDF.

Besides, in [48], the authors report that businesses face several challenges such as accurately

answering critical questions (daily sales) or optimizing business decisions. These challenges are

due to the lack of a unified vocabulary that users across the different teams can understand without

any ambiguity. Hence to overcome such limitation, a common ontology has to be introduced. And

to do so, the authors present a methodology to build an Enterprise Knowledge Graph (EKG) from

Relational Databases. It involves multiple actors including IT Developers, Business Users, and

Knowledge Scientists. This methodology consists of three steps: Knowledge Capture when the dif-

ferent actors sit together to understand the requirements and disambiguate any notion discrepancies.

The second is Knowledge Implementation. The scientist works on formalizing the ontology and

11

the KG coupled with the various queries. Lastly, it is the Self-Service Analytics phase: Business

Users perform their tasks using the new unified model and approve its production if no problem is

encountered.

Mapping relational databases to RDF offers several benefits as capturing semantic and adopting

a more flexible schema. However, the mapping was mainly limited to mapping the actual data

records into RDF nodes. Plus, work involving capturing the schema of relational data and model it

as a KG does not exist to the best of our knowledge. So instead of mapping the column name to a

predicate, it can be modeled as a node. This node can be linked to other attributes such as the type

of the column or the total number of missing values, and the edges are the relationships between

the different nodes. KGLac adopts such an approach and builds a KG for the metadata of relational

data and provides a formal ontology to have a standard representation and a common vocabulary.

12

Chapter 3

Background

In the previous chapter, we reported several systems that work on top of the data lakes. One

could notice that the majority model their data to perform data discovery as a graph, two of them

specifically use KGs. Hence, in this chapter, we will continue this discussion to investigate KGs by

reporting why they are adequate models to for data lakes. In fact, The Google Dataset Search engine

[8] models the extracted information as a KG. To enhance the results reported to the user, the system

also leverages the Google Knowledge Graph to infer more information. Google first introduced its

KG in 2012 to improve its search engine. For instance, if you search ”Concordia University” you

will find an infobox (fact panel) on the right, summarizing all the information about the institution

like its address and notable alumni. This feature did not exist before 2012, but thanks to content

captured in its KG, it has become possible. Even though Google did not release any technical details

about the implementation of its KG, many other companies like LinkedIn, Microsoft, and Facebook,

have also adopted this structure. The adoption of KG to model the voluminous, rapidly-growing,

and various data, reflects the importance of this structure for these companies. This chapter presents

a background about KG that sets the floor for the subsequent chapter. The following sections will

present different definitions of what a KG is. Then they cover its structure and how ontology help

appoort meaning to it. Then they end with listing KG characteristics and their applications.

13

3.1 KG: Importance & Definitions

3.1.1 KG Importance

As of 2012, KGs gained more attention and popularity and became the interest of several re-

search labs and companies. Figure 3.1 shows the cumulative number of new Knowledge Graph

publications every year between 1980 and 2020. The data were manually collected from Google

Scholar using the keyword ’knowledge graph’. The figure shows that 2012 was a turning point

as, before that date, the number of citations was not significant compared to 2012 onwards as the

number exponentially increased. The graph shows that the number of publications since 2010 has

doubled every two years. This observation indicates the growing interest in Knowledge Graphs.

However, before digging deep into the importance of KG and the popularity it gained, it is crucial

to define what a KG is.

Year

N
um

be
r o

f c
ita

tio
ns

0

5000

10000

15000

20000

1980 1990 2000 2010 2020

Figure 3.1: Cumulative number of KG publications from 1980 to 2020 on Google Scholar

3.1.2 Several Definitions

Defining KGs has been contentious [26]. Some tried to present them from a technical perspec-

tive describing the underlying structure, whereas others focused on their application. Paulheim lists

four criteria to consider a system to be a knowledge graph. A knowledge graph (i) mainly describes

14

real-world entities and their inter-relations, organized in a graph, (ii) defines possible classes and

relations of entities in a schema, (iii) allows for potentially interrelating arbitrary entities with each

other, and (iv) covers various topical domains [43]. Paulheim lists these four criteria to consider

a given system to be a Knowledge Graph: it has to be a flexible graph reflecting any real-world

scenario given a defined schema. By describing real-world entities, there is a motivation to adopt

KGs to model the content of data lakes and build GLac. In addition, a KG defines the different

classes such as tables and columns and relationships such as primary-key/foreign-key between two

columns and that a column belongs to a table. By definition, KGs offer the flexibility to include

concepts to represent semi-structured data from data lakes. Details about the different supported

classes are in section 4.1.2. Furthermore, this definition highlights that KG covers several domains.

In other words, a KG can be a cross-domain one that offers the flexibility to not only model data in

data lakes but also enrich it with content from other domains. However, this definition is just a list

of characteristics of what a KG offers rather than what it is. It gives the minimum set of traits to

distinguish KGs from Knowledge Collections [16].

Additionally, [31] reports that Knowledge Graphs are large networks of entities, their semantic

types, properties, and relationships between entities. Reporting that these KGs are large means

that they are scalable to model the content of the data lakes characterized as voluminous. Yet, the

definition is vague: it misses providing details about the nature of the graph and what is meant by

”semantic types”. Other definitions gave a formal notation of KGs. For instance, [18] defines a

Knowledge Graph as a Resource Description Framework (RDF) graph. An RDF graph consists of

a set of RDF triples where each RDF triple (s,p,o) is an ordered set of the following RDF terms: a

subjects ∈ U ∪ B, a predicate p ∈ U, and an object U ∪ B ∪ L. An RDF term is either a URI u ∈ U,

a blank node b ∈ B, or a literal l ∈ L. This definition is technical as it formally presents the various

components of an RDF KG. However, it restricts KG to only being modeled as RDF. In fact, in

addition, they can be represented as property graphs, which the definition misses. Despite serving

the same purpose of modeling KG, each of these structures has its advantages and drawbacks.

Ontotext, a global leader in enterprise KG and semantic database compares these data models in

Table 3.1 1. Hence, while the adoption of either model depends on the use case, RDF is more
1https://www.ontotext.com/knowledgehub/fundamentals/rdf-vs-property-graphs/

15

Table 3.1: RDF vs Property Graphs
Feature RDF Property Graph

Expressivity
Arbitrary complex descriptions via links to
other nodes; no properties on edges. With RDF-star [23],
the model gets much more expressive than PG.

Limited expressivity, beyond the basic
directed cyclic labeled graph.
Properties (key-value pairs) for nodes and
edges balance between complexity
and utility.

Formal Semantics Yes, standard schema and model semantics
foster data reuse and inference.

No formal model representation.

Standardization Driven by W3C working groups and
standardization processes.

Different competing vendors.

Query Language
SPARQL specifications: Query Language,
Updates, Federation,
Protocol (end-point).

Cypher, PGQL, GCore, GQL (no standard).

Serialization format Multiple Serialization formats. No serialization format.
Schema Language RDFS, OWL, Shapes. None

Designed For
Linked Open Data (Semantic Web):
Publishing and linking data with formal semantic
and no central control.

Graph representation for analytics.

Processing Strenghts Set analysis operations (as in SQL, but with schema
abstraction and flexibility.

Graph traversal.
Plenty of graph analytics and ML libraries.

Data Management
Strenghts

Interoperability via global identifiers.
Interoperability via a standard: schema
language, protocol for federation, reasoning semantics.

Compact serialization.
Shorter learning curve.
Functional graph traversal language (Gremlin).

Main use cases

Master/reference data sharing in enterprises.
Knowledge representation.
Data Integration.
Metadata management

Graph analytics and path search.

expressive and standardized. In addition, the user has the flexibility to serialize the content to be

reflected in the KG without the need to learn different query languages. Yet, while Property Graphs

are more suitable for graph traversal and analytic, some of the RDF data stores like Blazegraph [51]

provide a set of analytical functionalities on top of the hosted RDF graph.

Furthermore, some other definitions highlighted how a KG potentially provides inference ca-

pabilities to extract more knowledge. [16] reports that a Knowledge Graph acquires and integrates

information into an ontology and applies a reasoner to derive new knowledge. To elaborate, the au-

thor assumes that a KG is superior and more complex than a knowledge base (KB). In other words,

for a KB to be a KG, it needs to be coupled with a reasoning engine to generate new knowledge

and integrate it into the KB. Thus, reasoning capabilities can infer more relationships between the

different KB components resulting in a richer and more connected KG. This continuous enhance-

ment leads to better data discovery results. Yet, this definition is not formal and merely provides an

overview of an architecture for a system that supports KGs. Hence several papers present various

attempts to define KGs, but each tackles them from a particular perspective. A compilation of them

illustrates the structure, schema, characteristics of KG, and some of its applications. The sections

16

will investigate these different definitions by going more in-depth by first explaining the structure of

KG that is best suited to model the data lake content. Second, address the semantic of the different

entities via the ontologies. Third, cover the numerous characteristics offered by KGa thanks to their

structure and ontologies. And forth, report the diverse data discovery-related applications supported

on top of KG via leveraging these characteristics.

3.2 KG: Structures & Ontologies

3.2.1 KG Structure

There exist two types of graphs for KG: RDF or property graphs. Table 3.1 compares between

these two structures. Despite the possibility to convert RDF to property graph or vice-versa, KGLac

will rely on RDF graphs to generate the KG. GLac is a metadata graph generated on top of data

lakes to support data discovery and data integration. These purposes match the uses cases why to

use RDF graphs. In addition, having one language query to interact with graph and having one

standardization ensured by W3C does not overwhelm the user to learn several languages to write

their queries nor understand the graph. Yet, it gives them the flexibility to import and serialize data

in several formats. As a result, in the rest of this work, KG is modeled using RDF technologies.

This section covers in more detail the various constituents of an RDF knowledge graph.

A Knowledge Graph or also a semantic network is a directed labeled graph. It consists of nodes

N, relationships R, and labels L. Nodes represent data entities like students, professors, and coun-

tries. The relationships are the edges connecting these nodes. For instance, there is a relationship

with the label ”is from” between a student and a country. This triple (subject, predicate, object)

conveys simple information such as a student S is from a country C. The set of triples (N * L * N)

constitutes the graph to model any real case situation. This simplicity is one of the reasons why

these structures are suitable to model knowledge, hence the name Knowledge Graph.

There are three types of nodes: IRI-based nodes that refer to actual entities, with IRI referring to

the Internationalized Resource Identifier. Usually, they contain an IRI for a given data entity on the

internet. For instance, on DBpedia, a KG for Wikipedia, the IRI referring to Concordia University is

https://dbpedia.org/resource/Concordia University. This IRI plays the role of an identifier allowing

17

the user to distinguish Concordia University from any other entity in the KG having the same name

such as Concordia University Chicago with the IRI https://dbpedia.org/resource/Concordia

University Chicago. The IRI-based node can be either a subject, predicate, or object. Second, nodes

can be literals; they contain attributes associated with the IRI-based nodes, such as the name or

faculty size. For instance, ”Concordia University (en)” is a string and represents the name while its

faculty size is 2419 (xsd:integer). A literal node can only be an object in the triple. Third, a node can

be blank, representing a non-distinguishable entity with no specified IRI. Technically, these blank

nodes can serve in representing containers like bags and sequences. The blank node can either

be a subject or an object. Fig 3.2 depicts the structure of the sample graph showing information

about Concordia University. The information is from DBpedia [3]. The nodes colored in blue

represent IRIs for the different data entities, like the ones corresponding to Concordia University

or its alumni. The red colors represent the literals containing the attributes like the name or the

nationality associated with the IRI nodes. It is worth mentioning that a literal comes with their

types (xsd:integer) or the language of the string values such as (en) for English. In addition, the

blank in the figure of the type bag is a container that connects the IRI node representing Concordia

University with those of its alumni.

This section illustrates the distinct constituents of KGs, what type of nodes to use to reflect

the actual data entities, their attributes, and how to establish links between them. However, [43]

mentions that KG should reflect real-world entities. So while creating several constituents to model

the various data entities, specifying their semantic is equally crucial. To do so, KGs instrumentalizes

ontologies which the next section covers.

foaf:namedbo:facultySize

dbp:nickname
dbp:uniname

is dbo:almaMater of
https://dbpedia.org/resource/Concordia_University

Concordia University (en)2419 (xsd:integer)

dbo:mascot

https://dbpedia.org/resource/Concordia_Stingers

Buzz

Concordia University (en)

rdf:type
rdf:_1

rdf:_2

rdf:_3

rdf:Bag https://dbpedia.org/resource/Karen_Hogan

https://dbpedia.org/resource/Marcelo_Coelho

dbp:nationality
https://dbpedia.org/resource/Nikki_ForrestCanadian

Figure 3.2: RDF structure representing information about Concordia University

18

3.2.2 Ontologies

Ontology is originally a branch of philosophy that studies the theory of being. It aims to develop

a system with categories and reflects the intrinsic relationships between them. KGs adopted ontolo-

gies to embed meaning to the modeled data. This section defines what an ontology is and how they

represent the being of KG by carrying semantics to the different entities in the KG.

[20] defines an ontology as an explicit formal specification of share conceptualization. This

definition can be a bit shallow and does not provide further details about what properties an ontology

can offer. Thus, one should examine this definition in detail. First, conceptualization represents the

concepts of the domain given ontology tackles and the relationships between them. In other words,

if the ontology provides terms about geography, it has to take into consideration the concepts of a

country, city, currency, language, plus the relationships between them such as capital of, located in.

Plus by being explicit, the ontology has to unambiguously convey the meaning or semantics to the

entities it describes. For instance, if you say Carthage, does it mean the city in Canada or Tunisia?

Does it even refer to the civilization in Tunisia? Or maybe Carthage the novel? An ontology

must disambiguate such confusion and provide the user with the meaning of the various entities in

the graph. Furthermore, it has to be formal. As mentioned in the previous section, a KG supports

inference via the reasoning engine. Hence, a machine does not only need to read the data but also has

to understand its meaning. For instance, if we consider data about the population of Canada stored

in CSV files without headers. The machine will be able to read the content of the different columns

but cannot tell which column represents the first name and which one is the last name. Hence, for a

machine to understand the meaning of the data, its ontology has to be formally presented. Finally,

The ontology has to be shared, meaning that others can use it to model and describe the data they

have without creating their own. For instance, to represent data about social networks in a KG, the

user does not need to come up with their terms, they can reuse the ontology foaf [9] (The Friend Of

A Friend), which is suitable as it provides terms about the concepts and relationships about people

and the interactions between them.

Furthermore, the observation shows that the terms ontology and vocabulary are used inter-

changeably. There is no quite a clear distinction between them. They both provide terms (concepts

19

and relationships) for a specific domain. However, ontology is usually associated with a more formal

and complex definition of their terms while vocabularies offer more loose ones 2. Another concept

that is also confused with ontology is taxonomy. A taxonomy represents the hierarchy between the

different classes in ontology. For example, in Figure 3.3, the dbo:Singer, dbo:musicalArtist, and

dbo:Artist represent some of the classes the DBpedia ontology defines. However, the hierarchy be-

tween these classes where dbo:Singer is a subclass of dbo:musicalArtist also a subclass of dbo:Artist

represents the taxonomy.

Hence, an ontology provides the set of terms and relationships related to a given domain. How-

ever, with this, there is the limitation of how to materialize and describe these different terms. For a

further illustration, consider the following scenario: How to specify that Canada and Tunisia belong

to the same class country. And how to specify that the predicate capital takes as a domain a city and

a range country. The limitation lies with the need to have a mechanism to describe such information

in the KG. For this reason, W3C introduced RDF Schema [21] (RDFS) as a language to describe

groups and relationships. It consists of a set of terms for data modeling and description. Hence,

RDFS is an ontology and serves the purpose of a language to specify the schema for a given on-

tology. To specify the domain and range of a predicate, RDFS provides the terms rdfs:domain and

rdfs:range. In addition, thanks to RDFS, rdfs:property specifies that a given relationship is of type

property. By including these descriptions, the KG can capture the semantics and meaning of its con-

tent. RDFS also provides a list of other terms to describe classes, such as rdfs:Class, rdfs:Resource,

or even rdfs:Literal. In addition, some terms describe the predicates, so in addition to rdfs:domain

and rdfs:range mentioned earlier, there are rdfs:subClass and rdfs:subPropertyOf. These terms de-

fine the foundation for specifying taxonomies and supporting inference. Similar to RDFS, there

exists OWL [4] the Web Ontology Language, also introduced by W3C to make web content more

accessible and interpretable to machines. In other words, it enables processing the data and not just

present it on the web. OWL differs from RDFS by being more expressive and richer as it consists

of a richer vocabulary to describe the entities in the KG. [33] presents a list of the different terms

OWL defines.

This section defines what an ontology is, its features, in addition to the languages (RDFS and
2https://www.w3.org/standards/semanticweb/ontology

20

OWL) used to describe the distinct concepts. So far, this chapter covers the structure of a KG

and how to embed meaning to its various constituents. The subsequent section lists the diverse

characteristics of KGs, illustrating why they are adequate structures to model meta-data of a data

lake content.

3.3 KG: Characteristics & Applications

3.3.1 KG Characteristics

After exploring the structure of RDF-based KGs and the ontology accompanying them, this

section lists a myriad of their characteristics. Based on the definitions in section3.1.2, it explains

how they help mitigate the different challenges faced when capturing meta-data for the content of

data lakes. The content of data lakes is voluminous and rapidly changing and presents several con-

straints that data stores have to accommodate. These challenges are The scalability of the system,

the dynamic schema, and the need to capture relationships between the data entities.

Scalable data stores: Data lakes host humongous data. The US open portal hosts approximately

300K datasets, impossible to store on a single machine. Hence for a system to accommodate this

constraint has to offer horizontal scalability. Yet, vertical scalability is not adequate because the data

is not only large but also continuously increasing. Hence, the amount of data will eventually exceed

the capacity of the host and can lead to missing data. Accounting for such constraints is significant

for companies as it enables them to meet the growing usage of their system. For example, Facebook

in 2014 reports generating 4 petabytes of data a day [54] which is equivalent to 1460 petabytes a

year, which a single machine cannot store. Schema: The data in data lakes is not homogeneous as

it comes in different formats (structured, semi-structured, or unstructured). In addition, the content

is dynamic. In other words, data keeps changing with the insertion or deletion of a data entity. Data

stores have to accommodate such constraints without performing labor-heavy and time-consuming

tasks to adjust the schema with every modification. For instance, for a relational database, the in-

sertion or the deletion of new data will potentially require resetting the constraints and redesigning

the tables. Hence, the data store has to support a malleable schema. Relationships between data

21

entities: Despite the heterogeneity of data in data lakes, there exist relationships between its enti-

ties. Such information is valuable as combining information extracted from the various sources can

be complementing and enriching. For example, [8] leverages its Knowledge Graph to enrich the

information extracted about the datasets after crawling the web pages. Hence, the adequate stores

have to model the data in a structure that preserves this inter-connection.

KGs are adequate to address these constraints. Large companies employ them to model their

data. In [40], different KGs curated by large companies were reported. All of them contain millions

of entities. For instance, Microsoft is building a graph with 2 billion entities and 55 billion facts,

while Google KG has 1 billion entities with 70 billion assertions. A single machine cannot store

such voluminous structures. More suitable distributed and scalable systems exist to address this

limitation. We will provide more details about them in section 3.3.2. As for the schema, KGs do

not impose on the user to define the schema before loading the data. It can be defined and easily

changed at any time. Unlike RDBs, when an insertion or deletion of a data entity occurs, it does

not engender costly schema updates. To define the schema, users can use some of the already

existing ontologies like RDF and schema, as detailed in 3.2.2. Lastly, to model the relationships

between the data entities, KGs capture such information and model them as predicates. Hence, KGs

appropriately address the different constraints faced when modeling data stemming from data lakes.

Plus, a KG is extendable. In fact, by identifying the same data entity with the same IRI, merging

two KGs lead to aggregating the information associated with them into a unified KG. For instance,

let us consider that ministry of higher education of Quebec models its data as a KG and refers

to Concordia University by https://dbpedia.org/resource/Concordia University. Then by linking it

with DBpedia, the ministry can enrich its knowledge base about Concordia University as the IRI

node referring to the university will have additional information that the ministry would not have

before.

This section presents the diverse characteristics of KGs used to address the different constraints

associated with representing data in data lakes. By being a flexible, scalable, and extendable model,

several companies have adopted the Knowledge Graph as a structured model to create a unified

framework supporting their multiple services.

22

3.3.2 KG Applications

By leveraging the different characteristics of KG, the development and enhancement of many

applications in Artificial Intelligence (AI) and data science have become possible. However, to

support these applications, there is a need to host these KGs on dedicated data stores to enable them

to interact with these semantic networks. Thus, this section will first cover some of the open data

stores that can host KGs and provide operations on top of them. Then, it will list several applications

in several domains like medicine, security, and finance.

To interact with the KG, users need to host it on supporting data stores like Apache Jena [11]

and Blazegraph [51]. These stores host the data and enable the users to write queries. SPARQL

is a query language for RDF KGs. It is similar to SQL yet relies on matching graph patterns to

report the results. In addition, these stores support the latest enhancement to represent KG: Both

Apache Jena and Blazegraph support RDF-star and SPARQL-star. In addition, the latter provides a

set of functions as an abstraction of writing more complex queries by supporting the traversal and

analysis of the KG. Some of the functionalities are finding the shortest path between two nodes and

reporting the intermediate nodes coupled with their associated attributes. In addition, they support

the Page Rank and finding connected components algorithms. This continuous support for KGs and

the growing community reflects the importance KGs gained in the last few years.

These structures represent the intermediate between KGs and the users to develop various ap-

plications. In fact, Similar to word embedding, now many techniques using Graph Neural Networks

[55, 61, 62], generate Knowledge Graph Embeddings (KGE). Hence, regardless of the size of the

graph, edges and vertices will be mapped into latent rich and compact vector representations of the

KG used by the models to render better results. For instance, in unsupervised learning, these repre-

sentations can be beneficial to carry node clustering. The result can be helpful to perform merging

two KGs by establishing relationships between nodes that are similar. By leveraging these embed-

dings, the user is equipped with enhanced capabilities to perform data discovery. Specifically, in the

field of biomedicine, researchers started investigating leveraging KG embeddings to perform drug

discovery techniques [6].

In addition, a KG is adequate for supporting inference which can benefit data discovery. A

23

Knowledge Graph in the literature is a knowledge-base system that is composed of a knowledge-

base and a reasoning engine to infer new information[16]. By creating rules and relying on math-

ematical logic, the reasoner uses them to infer more relationships between the nodes. To apply

inference over the KG, the user will need to specify the schema of the different entities in the

KG. Fig 3.3 present a snapshot from DBpedia showing actors starring in the movie Titanic with

some attributes associated with them. To differentiate the IRI nodes from the literals, we use the

blue and green colors respectively for the nodes. The figure shows the absence of relationships

between the different actors even though they starred in the same movie. To enrich the graph,

we can establish links between them by leveraging the inference capabilities supported on top of

KG. In a real case scenario, if two actors act in the same movie, then they should know each

other. To reflect this in the graph, by relying on the rule-based approach, the introduction of a

rule can indicate that if two actors starred in the same movie, then they know each other. For-

mally, ∀A1, A2, M if (A1 dbo : starring M) ∧ (A2 dbo : starring M) → (A1 foaf :

knows A2) ∧ (A2 foaf : knows A1). Hence, using the reasoning engine, we can create a link

between the actors in the figure to indicate that they know each other. This information can be

helpful to understand the relationships between actors. For instance, in the case of a larger sam-

ple, we can create a rule to establish stronger relationships than foaf:knows between actors who

performed in more than one movie. Another approach to further infer insights from the KG is

by leveraging the class hierarchies. In Fig 3.3 Celine Dion belongs to the class Singer and the

Singer class is also a subclass of musicalArtist, which is also a subclass of the class Artist. In

fact, by understanding this hierarchy, one can conclude that Celine Dion is also an artist. Formally,

∀A C1 C2 C3 if (A rdf:type C1) ∧ (C1 rdfs:subClassOf C2) ∧ (C2 rdfs:subClassOf C3) →

(A rdf:type C2) ∧ (A rdf:type C3). In other words, Celine Dion is also a musicalArtist and an

Artist. This information is helpful as it enhances the search results for entities belonging to the class

Artist. It can also be helpful to establish links between artists of different domains like Celine Dion

and Kathy Bates.

24

rdfs:subClassOf

dbo:Singer

rdfs:subClassOf
dbo:musicalArtist

dbo:Artist

dbp:name

dbr:Titanic_(1997_film)

dbo:starring dbo:birthName

dbr:Leonardo_DiCaprio

dbo:starring
dbp:yearsActive

dbr:Kate_Winslet

dbo:starring

dbp:birthPlace
rdf:type

dbr:Kathy_Bates
dbo:starring

dbo:birthDate

dbr:Bernard_Hill Titanic (en)

1944-12-17
(xsd:date)

Leonardo Wilhelm DiCaprio (en)

Memphis,
Tennessee, U.S.

(en)a

1991
(xsd:integer)

dbr: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/ dbp: http://dbpedia.org/property/

rdf:type
dbr:Celine_Dion

rdfs:http://www.w3.org/2000/01/rdf-schema#

dbo:wikiPageWikiLink

rdfs:subClassOf

dbo:Artist

Figure 3.3: Reasoning engine infers foaf:knows between actors starring in the Titanic

This section reports the different stores where a user can host KGs and how a user can leverage

these networks to perform several data discovery operations. In conclusion, KGs combine a mal-

leable structure with semantically rich constituents. These traits offer several characteristics used to

support many applications. All these features make KGs fit to capture meta-data for data lakes. The

next chapter will cover KGLac, the system responsible for creating the KG. It will go into detail

into the pipeline, starting from loading the raw data until loading the KG into an RDF store. In

addition, the next chapter will provide details about how the end-user can interact with GLac via

the supported interface services. In addition it will present LAC, a data lake specific ontology and

GLac, the highly interconnected KG representing the caputred schema of data lakes.

25

Chapter 4

A Data Lake ontology & A Proof of

Concept System

The previous chapter presents the importance of KGs and data lakes can benefit from them. To

capture the schema and model it as a GLac, the KG, we developed a system that processes raw data

to create the KG. To this end, this chapter presents KGLac, a proof of concept system responsible

for creating GLac and providing a set of interface services for the user to perform data discovery and

data integration on top of the KG. KGLac starts by sharding the different tabular data and create data

profiles stored on a document database. It then loads these profiles to model the data nodes in GLac.

It also instrumentalists these profiles to establish the various relationships between the different data

entities. After hosting GLac on a suitable RDF-store, KGLac equips the user with a set of APIs to

perform data discovery and data integration operations ranging from a simple keyword search to

finding the shortest path between two nodes given a specific relationship. For further details, this

chapter will start by presenting the overall architecture of KGLac and its different components. It

will also present LAC, the data lake specif ontology used to create GLac. Second, it will explain the

various technology choices used to build the components, and last, it will highlight the contributions

of KGLac.

26

4.1 System Overview

Figure 4.1 consists of two main components: the GLac construction and Interface Services. The

former is responsible for data profiling and store the results on a document store, then leverage it to

build GLac based on learned representations (embeddings). The latter provides discovery operations

based on SPARQL queries and embedding similarity. Figure 4.2 shows the workflow between these

different components. First, the profiler will load the raw data from the local data lake. It will

create profiles for the columns and then stores them on a document database. The GLac builder

will then load these profiles to generate GLac, the highly interconnect KG, and then hosts it on

RDF-star store. The last step consists of equipping the user with APIs to interact GLac to perform

data discovery and enrichment. The user can also update it by providing insights and feedback. The

user also can query the raw data if they implicitly configured the profiler to store it. This section

will go over each component in detail. It starts by presenting the data profiler, how it processes the

data, what metrics it computes to create data profiles and how it stores them.

Interface ServicesGLac Construction

Discovery
Operations

Embedding
Similarity

Data Profiler

GLac Builder

Storage

Data Lake ML Pipeline Tools

Figure 4.1: The proof of concept system architecture, where KGLac gets access to a local data
lake, e.g., sets of files or databases, to construct GLac. Then, different ML pipeline tools can
communicate with KGLac to facilitate data discovery. KGLac tracks the use of datasets.

4.1.1 Data Profiler

The data profiler is one of the essential components of KGLac: it aims to create data profiles for

tabular raw data. Data profiling refers to the activity of creating small but informative summaries

of a database. In our case, data profiling will collect statistics and information on the different

columns in the database [28]. The content of the produced profiles contains viable metrics to create

27

Profiler GLac
Builder

Document
DB

RDF-star
store

Interface
ServicesRaw Data

3

4

5
1

2

6

Figure 4.2: KGLac workflow: 1-Profile the raw data. 2- Store the profiles and the raw data on a
document database. 3- Load the profiles. 4- Host GLac on an RDF-star store. 5- Query and update
GLac. 6- Query the raw data.

the meta-data for the data lakes. These metrics range from simple statistics such as the number

of null values and distinct values in a column, its data type, or the most frequent patterns of its

values [39]. However, to profile the raw data, the user would need to specify the different datasets

to parse. To do so, the user would first need to create a YAML file where they need to provide the

name, path to the dataset in addition to the type of data it contains. For now, KGLac would require

the data type to be in a tabular format, such as CSV, JSON, or Parquet. Once the configuration file

is ready, the user can start the profiler to parse the YAML file and extract the content of this dataset.

The content encompasses numerous tables, for each KGLac creates a separate class to include its

path and data type and then appends to a queue 1.

The used array is synchronized as it supports multithreading. The profiler must be scalable to

handle the voluminous data via using multithreading. The number of threads or workers is config-

urable. In other words, the user can change the number, which is by default set to 4. The threads

dequeue a table as KGLac enqueues them while parsing the configuration file. Each worker will

perform three tasks: First, it will interpret the table. In other words, it will shard the table into a set

of columns. Then, it will infer the data type of each of these columns. Second, based on the inferred

data type, it will profile each column to extract suitable statistics and information. Last, the thread

will index the profile on the document database. KGLac can also store the raw data. However, the

user has to enable this functionality before running the profiler. Once the thread finishes with these

three tasks, it dequeues another table if the queue is not empty.

The loaded tabular data usually lacks schema. Hence, it is not straightforward to determine the
1https://docs.python.org/3/library/queue.html

28

type of data a column contains. The data type is essential because, based on it, KGLac decides

which statistics and information it needs to compute. For instance, to calculate the interquartile

range (IQR), the difference between the 75th and 25th percentiles to reflect the statistical dispersion,

the values need to be numerical. Such metric is not applicable on a textual column containing first

names, for example. Thus, KGLac parses the data to determine the data type, which is either

textual or numerical. For this, each thread will load the table in a PySpark dataframe. PySpark

serves two purposes: first, it reflects another aspect of the profiler scalability [57, 58] and second, it

determines the data type of the columns. In fact, while loading the data, a user can pass the argument

inferSchema to obtain the data type for each column. Pyspark does determine whether a column is

numerical or textual. Instead, it reports data types of a lower granularity like int, float, or smallint.

For this reason, KGLac aggregates these numeric types (int, float, double, bigint, smallint, tinyint)

under the class numerical, and all the other types will be of type textual.

After determining the data type of each column, the profiler will profile them. It is worth

mentioning that the profiling will be merely on the level of the columns. In fact, for each table,

the thread separates the numerical from the textual ones. Then it will run different analyzers to

calculate the statistics and retrieve the information that will constitute the profile. Regardless of

the column data type, the profiler determines the following attributes: the total number of values,

the number of distinct values, and the number of missing values. These metrics are insightful to

perform data discovery by telling the size of the data or its completeness. KGLac uses PySpark

to calculate these metrics. In addition, the profile will include the path of the table it belongs to,

the data type, its name, and the name of the table and the datasets. One can observe that the last

three attributes are unique. Hence, the profiler uses then to generate an id to uniquely identify the

column using the zlib 2 library. Furthermore, for numerical columns, the profiler will compute the

minimum, maximum, and mean values. In addition, it will approximately calculate the quartiles

in calculating the median and IQR with a configurable error set to 0.03. As for textual columns,

the profiler computes its column embedding using minHash using datakstch 3. These compact and

latent representations with size 512 are suitable to determine how similar two textual columns are.
2https://docs.python.org/3/library/zlib.html
3https://github.com/ekzhu/datasketch

29

After creating the profiles, the thread indexes them on a document database, namely Elastic-

search 4. This is a distributed store, which is adequate to handle the content of data lakes. For

this reason, the worker will connect to Elasticsearch, serialize the profile and then index them. In

addition, if the user enables it, the worker can store the raw data on the document database. Having

access to this information helps the users if they want to find data based on the raw data rather than

the captured schema in the profiles. Given that the columns can be large, KGLac divides the content

into smaller chunks of size equal to 1000. After indexing all the profiles, the index will handle

another table from the queue if it is not empty. In conclusion, the profiler shards the raw data into

columns, and for each, it creates a data profile and indexes it on a document database. Figure 4.3

summarises the profiler workflow. The next step consists of leveraging these profiles to create GLac,

thanks to the GLac builder component.

Thread Thread Thread Thread Thread

profile
index

raw_data
index

Docuement
Database

Queue

1

2

3

4

5

Figure 4.3: Profiler Workflow: 1-Load the tables into a priority queue. 2- Each thread loads a table.
3- Each thread determines the data type of each column and then profiles it. 4- Each thread loads the
profiles and the raw data into a document database on a separate index. 5- Thread waits to process
another table when available.

4.1.2 LAC: Data Lake Ontology

To build GLac, KGLac harness several existing ontologies such as RDF and Schema. It also

utilizes LAC, an ontology that provides terms to represent various concepts for tabular structured

and semi-structured data in data lakes which this chapter thoroughly presents.
4https://www.elastic.co/

30

To convey semantics to data, KGs leverage ontologies. Several cross-domain and domain-

specific ones exist. For instance, DBpedia [3] provided several terms to represent information

extracted from Wikipedia while foaf describes social networks and their activities concepts. For

this reason, to represent the different entities stemming from the data lakes, a set of terms reflecting

data lake concepts should be used. Such ontology does not exist. Yet several efforts have tried to

provide vocabularies to represent data entities from structured data such as R2RML [13], a language

used to map entities from relational databases to RDF resources. However, these efforts do not cover

all the concepts within data lakes, such as semi-structured and unstructured data. Thus, we intro-

duce our ontology LAC which stands for lake in French that provides terms to model schema entities

for structured and semi-structured data from data lakes. It is important to note that currently LAC

does not support unstructured data. However, given that ontologies are extendable, the ontology can

include terms for this type of data in the future.

To start formalizing LAC, we examined the different data portals mentioned in 2.1. They provide

access to several datasets containing data in different formats. Hence our terms should include the

notion of a dataset. It is a resource that contains a set of data entities that belong to a common

domain. These entities can either be a set of files of different formats or datasets. Hence, the

structure is similar to a folder in a file system where a folder contains files or folders. Furthermore,

the different files published within a dataset come in different formats that the user is responsible

for parsing if they want to explore them. Some of these types are relational data that a user can host

on a relational database management system to explore. In addition, there exist JSON files that a

user should parse to access its content or a PDF that a user would need to read or leverage Natural

Language Processing techniques to process and understand. LAC will be, for the moment, limited

to tabular-like structured and semi-structured data. Some of these data formats are relational tables,

CSV, JSON, XML files, and excel sheets. Although processing these numerous formats is different

from one to the other, they have a tabular-like structure. Even though JSON files are documents,

they offer the flexibility to be rendered and represented as tables. Hence, to simplify the ontology, all

these files of different types will be considered tables and expressed as resources of type lac:Table

in the ontology. So, LAC should represent these resources to belong to a class of type ’table’. Tables

can be further broken down into columns or rows. But since LAC intends to reflect the schema for

31

entities in data lakes, then columns are adequate to consider because a column naturally comes with

a set of attributes such as name, type of instances, which can constitute a schema. In addition, these

columns contain instances that stem from the same variable or domain that LAC needs to infer. In

addition, let us assume we reflect rows instead of columns, then the KG has to represent data on

the level of instances which is not the purpose of LAC which intends to provide terms to represent

the schema for data in data lakes and not the data itself. In addition, working on the level of rows

would require modeling hundreds if not thousands of rows which would overwhelm the KG without

bringing much semantic to reflect.

Hence, the granularity LAC would support modeling of the schema for structured and semi-

structured data consists of the classes dataset, table, and column. These classes represent a tax-

onomy where a column is part of a table, a table is part of a dataset, and a dataset can also be

self-contained KGLac will render these resources as nodes. Between these nodes, there exist sev-

eral relationships that LAC should capture. The Canadian Data Portal provides functionality to look

for similar datasets. Even though there is no indication of what kind of similarity exists between

two datasets, LAC should reflect such insightful information to create an interconnected KG. KGLac

establishes relationships between the resources based on their content and schema. For instance, by

considering two columns, there is potentially a content similarity relationship if the raw data val-

ues of the columns belong to the same domain. For example, if two columns contain names of

countries, then KGLac can establish such a relationship. In addition, each column has a name that

KGLac can harness to measure if there is a semantic relationship between two columns. For in-

stance, region and country can be semantically close. It is worth noting that these two relationships

are independent; One does not entail the existence or the absence of the other. In addition, similar

to relational databases, there can exist a primary key / foreign key (PKFK) relationship between

two columns. Thus, in addition to providing terms to model these similarity relationships, LAC can

provide terms to reflect the PKFK edge. Hence KGLac supports four types of relationships: content

similarity, semantic similarity, PKFK, and inclusionDependency. The first three relationships can

be generalized to link between tables and datasets by leveraging the edges of their columns and

tables. The last indicates that the values of a column are a subset of the content of the other. The

following chapter will provide more details about how to establish these relationships. To create

32

these various relationships, KGLac calculates several similarity metrics. These measures reflect the

certainty of establishing such links between the different data entities. To include these certainty

metrics in the KG, KGLac uses RDF-star to annotate the edges. For this reason, LAC introduces the

edge lac:certainty that accepts as domain a triple and a certainty score as a range.

Table 4.1: LAC different classes

Name Type Part Of Description

lac:Dataset rdfs:Class lac:Dataset
A class to model a dataset in data lakes. A dataset contains
a set of data that belong to the same domain.

lac:Table rdfs:Class lac:Dataset A class to model tabular-like data files such as CSV and JSON.
lac:Column rdfs:Class lac:Table A class to represent a column in a table class.

The different resources in the KG come with a set of attributes. To reflect these attributes,

KGLac uses some of the core ontologies such as RDF and SCHEMA. But for others, it is not feasible

to reflect without LAC. Some of these attributes are annotations. On data lakes, users can comment

on a dataset or annotate it, which is insightful for the community. In other words, by reading the

multiple comments and annotations, a user can understand the context of the dataset or the different

projects that used the data. To model such information, LAC provides lac:insights and lac:used in.

Each of these edges leads to a bag where to append the different annotations and usages. Even

though both of these attributes provide insightful information for research reproducibility, there is

a semantic difference between them. Lac:insight allows users to provide a short description of the

dataset based on their experience. Lac:used in allows the mention of the usage of such data, for

instance, the link to the project using it. Another useful attribute to reflect is the path of the dataset

or the table. Thus, LAC provides the term lac:path using which a user can easily load the content

of the resources and use it. LAC provides terms to model statistical attributes extracted from the

data entities. Lac:totalVCount, lac:distinctVCount, and lac:missingVCount respectively associate

the data entities with literals for the total, distinct, and missing number of values a column contains.

The metrics provide the user information on whether the data is adequate to join and union with

or even data completion. Finally, Table 4.1 and 4.2 summarise the different terms of both classes

and properties (edges) to model table-like structured and semi-structured data. In addition, Fig 4.4

provides the schema of LAC whose terms are colored.

LAC is an effort that aims to put the building stones for an ontology to model both the entities

33

Table 4.2: LAC different properties

Name Domain Range Type Description

lac:semanticSimilarity lac:Column lac:Column rdf:Property
Indicates that the two columns are semantically
similar based on their names.

lac:contentSimilarity lac:Column lac:Column rdf:Property
Indicates that the two columns have similar content
based on their instances.

lac:inclusionDependency lac:Column lac:Column rdf:Property
Indicates that the content of a column is contained
in other’s.

lac:pkfk lac:Column lac:Column rdf:Property
Indicates that a column is foreign key to primary key
column.

lac:used in
lac:Dataset
lac:Table
lac:Column

rdf:Bag rdf:Property Indicates the different usages of the data entity resource.

lac:insights
lac:Dataset
lac:Table
lac:Column

rdf:Bag rdf:Property
Indicates the different insights provided by the user on
the data entity resources.

lac:path
lac:Dataset
lac:Table

rdfs:Literal rdf:Property Provides the path of the dataset or table in the file system.

lac:totalVCount lac:Column rdfs:Literal rdf:Property Provides the total number of instances in a column.
lac:distinctVCount lac:Column rdfs:Literal rdf:Property Provides the number of distinct instances in the column.
lac:missingVCount lac:Column rdfs:Literal rdf:Property Provides the number of missing instances in the column.

lac:certainty Triple rdfs:Literal rdf:Property
Annotates a triple to reflect how certain of an similarity,
inclusion dependency, or pkfk edges to be established.

and their relationships from data lakes in a KG. This effort is prone to continuous modification and

improvement depending on the requirements and the data to represent in the graph.

4.1.3 Glac: A Highly Interconnected KG

KGLac generates GLac, a highly interconnected graph to represent the schema for the content

of data lakes. While. LAC is a core component used to create GLac, KGLac, utilizes other already

defined ontologies. Reusing them is cost-effective because there is no need to engineer and maintain

a new ontology that models terms that other efforts have already addressed. In addition, ontologies

are understood to provide a common knowledge representation. Hence all the different actors oper-

ating on the KG will have the same understanding of the content. As a result, in addition to being

cost-effective, reusing ontologies promotes the interoperability of the application [7], GLac in our

case. KGLac uses different terms provided by RDF5, RDFS6, Schema7, OWL8, and Dct9. Since

GLac captures the meta-data for the content of the data lake, SCHEMA provides several terms that

are used to associate the different core classes (column, table, and dataset) with their respective
5http://www.w3.org/1999/02/22-rdf-syntax-ns
6http://www.w3.org/2000/01/rdf-schema
7http://schema.org/
8http://www.w3.org/2002/07/owl
9http://purl.org/dc/terms/

34

dct:isPartOf

lac:path

lac:missingVCount

lac:totalVCount

lac:distinctVCount

lac:Column dct:isPartOf
lac:insights

lac:Table

lac:used_in

lac:Dataset dct:isPartOf

path(en)

integer

float

integer

lac:semanticSimilarity
lac:contentSimilarity

lac:inclusionDependency
lac:pkfk

rdf:_1

rdf:_2

rdf:type

insight1

insight2

rdf:_2rdf:_1

link2link1

lac:www.example.com/lac rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# dct:http://purl.org/dc/terms/

rdf:bag

Figure 4.4: Schema of LAC

attributes, such as the name of the column and some statistics about their content. In addition, the

relationships between the core classes in GLac constitute hierarchical relationships where a column

is part of a table and the table is itself a part of a dataset. For this, dct provides the property isPartOf.

This relationship is intended to be used with non-literal values and describes a resource in which the

described resource is physically or logically included. Furthermore, to specify the classes, KGLac

uses RDF:type. Plus, to include the cardinality of a column (the ratio of the number of unique values

and the number of total values), and create a human-readable name, owl:cardinality and rdfs:label

are used respectively. Table 4.3 summarises the terms from ontologies other than LAC used to create

the properties in GLac. Figure 4.5 provides a instance for GLac using all the different ontologies

with the terms from LAC colored in blue.

Hence, we cove GLac, a highly interconnected KG, to represent the meta-data for the content

of data lakes. GLac instrumentalizes the concepts covered several already-defined ontologies such

as RDF and Schema in addition to LAC, an ontology to model concepts captured in data lakes. To

build GLac, our system, KGLac processes and leverages the raw data. So far, we have covered

the architecture of the proof of concept system and presented the GLac in addition to the used

ontology. The next section will present GLac builder, the component responsible for creating GLac

by instrumentalizing LAC.

35

Table 4.3: Terms from other onotology used to build GLac

Property name domain range Description

schema:name
lac:column
lac:table
lac:dataset

rdfs:Literal State the name of the resources

schema:type lac:column rdfs:Literal
State the type of the column
content (Textual or Numerical)

schema:median lac:column rdfs:Literal State the median of the numerical column
schema:minValue lac:column rdfs:Literal State the minimum value in the numerical column
schema:maxValue lac:column rdfs:Literal State the maximum value in the numerical column

dct:isPartOf
lac:column
lac:table
lac:dataset

lac:column
lac:table

A related resource in which the described resource is
physically or logically included.

rdf:type
lac:column
lac:table
lac:dataset

rdfs:Literal State that a resource is an instance of a class

rdfs:label
lac:column
lac:table
lac:dataset

rdfs:Literal Provide a human-readable version of a resource’s name

owl:cardinality lac:column rdfs:Literal
Restricts a class to a data value belonging to the range of
the XML Schema datatype nonNegativeInteger

4.1.4 GLac Builder

After creating the profiles, KGLac is now ready to build GLac via the GLac builder. This

component harnesses the content of these profiles to create the various nodes and their attributes,

in addition to statistical and deep learning techniques to establish links between them. The GLac

builder starts by loading the profiles from elasticsearch. For each profile, it creates the column,

table, and dataset IRI-based nodes. The GLac builder needs to assign a unique id for each of these

nodes. That’s why it uses the id, the profiler generated for the column. As for the table, the GLac

builder generates an id using its name and the name of the dataset it belongs to using zlib. The same

applies to the dataset node with just using its name. After creating the various first-class nodes, the

component creates a hierarchy between these different classes using dct:isPartOf. In the end, for

each column, the builder associates it with its attributes such as the name, data type, and cardinality,

which reflects the uniqueness ratio; it materializes them as literal in the GLac and using the terms

covered in section 4.1.2. By the end of this step, the GLac builder creates the different vertices GLac

contains. Next, it interconnects the column nodes via establishing similarity relationships which the

remaining section covers in detail.

The GLac builder starts by creating semantic relationships between the different columns. The

existence of a semantic relationship entails that two columns names have a close meaning. To

36

dct:isPartOf

owl:cardinality

lac:Table

lac:Dataset

dct:isPartOf

lac:schemaSimilarity

lac:totalVCount schema:type

lac:distinctVCount

lac:Column

dct:isPartOf

lac:contentSimilarity

schema:name

lac:Column

dct:isPartOf
lac:insight

lac:Table

dct:isPartOf
schema:minValue

schema:type
lac:Column

lac:used_in

rdfs:label

lac:Dataset

dct:isPartOf

lac:pkfk
lac:certainty

0.92

lac:inclusionDependency
lac:missingVCount

schema:maxValueschema:median

lac:Column

dct:isPartOf
lac:path

lac:Table

4463

5000

2

rdf:_1

rdf:_2

rdf:typelink1

rdf:_2

rdf:_1

insight1
insight 2

path1

0.8

T

N

123

2500

14

label(en)

column1

link2

lac:www.example.com/lac#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

dct: http://purl.org/dc/terms/

schema: http://schema.org/

rdf:bag

Figure 4.5: Instance of GLac

determine such affinity between them, the GLac builder computes an embedding for the column

labels using the approach mention in [32]. Such techniques are adequate to apply to tabular data.

The method relies on word embedding [35, 44]. Word embedding has been to determine how

similar two words are because it takes into consideration the context of the word in the document.

The GLac builder uses the Glove 10, a pre-trained word vector using Wikipedia data with a vector

size equal to 50. In addition, to create the relationship, the affinity has to be above a particular limit.

Both the pre-trained model and the threshold are configurable. The GLac builder forms a triple

having both the subject and the object the nodes representing the column with predicate having

lac:semanticSimilarity as a label. Furthermore, The semantic affinity between the two columns

reflects the certainty of the existence of the relationship. Hence, GLac captures such metric and uses

it to annotate the predicate between the column using RDF-star, a more compact representation to

make statements about statements [2]. For instance, if we consider two columns in GLac if ids 1

and 2 having a semanticSimilarity relationships with certainty 0.75, then

<<lac:1 lac:semanticSimilarity lac:2>> lac:certainty 0.75

is how the GLac builder would serialize it in turtle-star with lac being a prefix for www.example.com/lac.
10https://nlp.stanford.edu/projects/glove/

37

The GLac builder also leverages the values in each of the profiled columns. Depending on

the data type of the column, the component utilizes a different approach. For textual columns,

the profiler computed their embedding using MinHash [10]. Hence, the GLac builder will query

the MinHash vectors from elastic search in addition to the column id. To calculate the similarity

between the column using the MinHash and the Jaccard similarity metric, comparing each column

with the rest is not scalable and is time-consuming. To mitigate this barrier, the GLac builder uses

a two-step approach: First, it uses the MinHash Local Sensitive Hashing [29] (LSH) to index the

different MinHash vectors with the corresponding column id. The LSH will cluster similar columns

by hashing the fed vectors with a high Jaccard distance into the same bucket. Second, for each

column, the builder will pass its MinHash vector as a query to the index, which will return the

ids associated with the MinHash vectors. The returned vectors have a Jaccard similarity above

a specified threshold. By using this approach, the system infers a content similarity relationship

between two textual columns. Similar to the semantic affinity between the column, the Jaccard

similarity score between the two vectors reflects the certainty behind establishing the predicate that

GLac captures through RDF-star.

Furthermore, the GLac Builder creates content similarity relationships between numerical columns.

It applies the same approach as [12]. For each, it connects to Elasticsearch to load the associated id,

the max and min, median, and IQR values. Then it approximately computes the domain the column

values cover by subtracting and adding the IQR to the median. Then, it interconnects the columns

by creating content similarity edges between them. Column A has a content similarity relationship

with column B means that the overlap between their domains is above a certain threshold. The

overlap is similar to the Jaccard similarity, as it reflects the certainty that the content similarity rela-

tionship exists. In addition, if the range of the domain is equal to 0, then the GLac builder clusters

these single points using DBSCAN 11. For all the columns in the same cluster, the GLac builder

creates a content similarity relationship with certainty equal to the overlap threshold. Hence, for

both numerical and textual columns, the GLac builder calculates the overlap between the pair to

determine if there is a content similarity between them. Yet, the approaches are different: for the

textual, it uses the Jaccard similarity coefficient, as for numerical, it computes the domain overlap.
11https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

38

Similar to relational databases, there exist primary key/foreign (PKFK) relationships between

columns. For this reason, the GLac builder will leverage the different data profiles to establish such

edges between the various column in GLac. For the GLac builder to determine such a relationship,

there are two conditions to satisfy: First, a primary key column must have a high uniqueness ratio.

Second, the foreign key column must have an inclusion dependency (IND) relationship with the pri-

mary one. An IND condition between two columns indicates that all the values of one are contained

in the values of another one [15]. For the first condition, the GLac builder initially computed this

ratio named cardinality by dividing the number of distinct values by the total number of values. The

cardinality has to be above a configurable threshold. For the second condition, the GLac builder

treats columns depending on their data type. In other words, for the textual one, it is sufficient to

check whether there is a content similarity between a pair of columns based on the MinHash. While

for the numerical values, the condition is more restrictive than the content similarity. It requires that

the range of the values of the contained column is within the container’s. In addition, the overlap

between the column domain needs to be above a certain threshold [12]. Thus, the KGBuilder needs

first to generate inclusion dependency edges between the numerical columns. Then, to have a PKFK

between a pair of numerical columns, it is sufficient to find an inclusion dependency relationship

between them to meet the second condition. To determine the inclusion dependency constraint be-

tween two columns, the GLac builder relies on these heuristics to simultaneously comply with the

definition that all the values of a column are a subset of the other one and offer a scalable sys-

tem. Like all edges, GLac also captures the certainty for PKFKs relationships which is the highest

cardinality between the two columns.

In conclusion, the GLac builder leverages the profiles to create the nodes in GLac and intercon-

nect its columns by generating four types of edges: semanticSimilairy, contentSimilarity, inclusion-

Dependency, and PKFKs. These edges are helpful to support data discovery and data enrichment

operations supported by the interface services, which the next section covers.

4.1.5 Discovery Operations

After creating GLac and hosting it on an RDF store supporting RDF-star, the user can perform-

ing data discovery and enrichment operations using the interface services component. It equips the

39

user with a set of APIs to connect with both the RDF host and Elasticsearch. These APIs include

discovery operations that query the graph based on SPARQL-star, an extension to SPARQL sup-

porting RDF-star. In addition, they support fetching data based on embeddings to enrich data via

union and join operations. For further details, this section lists the various discovery operation the

POC system supports.

Given the large size of data lakes, the user typically does not know its content. Yet, they usually

have an idea about what they need to find. That’s why they use keyword search as an initial step. For

this reason, the interface services component is not different. It provides a set of basic operations

to explore the content of the data lakes. A user can search the content of the graph on various

granularities. They can get the different datasets and all the tables or the tables in a particular

dataset. Also, they can look for a specific column. For all of these operations, the user needs only to

specify the entity name or a regular expression to obtain the matching results. In addition, if a user is

interested in looking for a table having some specific columns, they can search for a table based on

a set of conditions. These APIs return rich content containing the name of the table, which dataset

it belongs to, in addition to the number of columns and rows. As for the ones operating on columns,

the result contains several attributes, such as the number of missing values, the cardinality, or the

median. The APIs encapsulate the output in Pandas dataframes. Supporting such features serves

many objectives: Usability, Pandas is a common framework in data science, so the user does not

need to learn a new data structure to manipulate the data. For example, assume the user searches for

tables given a regex and obtains several results. Yet, they want to find the ones with the number of

rows above a particular threshold. They can, in this case, harness the dataframe APIs to sort or filter

the results. Interoperability, the user can easily convert these dataframes to others like PySpark

dataframes when the content is voluminous. Data Representation, Pandas is adequate to present

tabular data, which is the type of data KGLac. Hence, to explore data lakes, the user can utilize

these APIs as initial steps.

4.1.6 Embedding Similarity

In addition to data discovery, the interface services equip the user with APIs to enrich their data

using embedding similarity techniques. Data enrichment is crucial to the data-science life-cycle

40

because the new data contribute to uncovering new insights, highly predictive features to enable

answering interesting questions [53]. KGLac supports data enriching by finding unionable and

joinable columns in the data lakes. The former augments the content of the data by inserting more

rows, while the latter adds more features by appending more columns. To union two tables, KGLac

relies on semantic similarity between the column names [46]. In other words, there must be similar

columns to union on. As a result, KGLac offers an API that takes two dataframes and reports back a

Pandas dataframe containing pairs of the column names to conduct the union. This approach takes

into consideration semantic similarity between the names. The API does not depend on GLac to

perform this operation because the user can rename the columns. Hence, the service extracts the

column names and uses the same approach as GLac builder to create semantic similarity between

two columns. It then keeps track of the result whose affinity is above a threshold to build a dataframe

and return it to the user. Ultimately, the user chooses from the reported pairs, based on which, they

merge the two dataframes.

Furthermore, KGLac supports finding joinable columns using their content. To join two tables,

each should have a column with similar content. KGLac harnesses the content similarity and PKFKs

relationships to find such columns. For instance, assume a user has a table about world happiness

and aims to understand factors contributing to it. By looking for neighbors of the column countries

along a PKFK or content similarity edges, the user finds a table containing general information

about each country like the capital, demographics, and GDP. The last two columns can be insightful

features the user can add. However, this approach assumes that the tables are already materialized

in GLac. In other words, GLac contains only the entities or relationships modeling data the profiler

processed. To mitigate this limitation, KGLac adopts a two-step approach: First, it processes the

new data to generate embedding for the textual column or calculates the domain for the numerical

ones. Second, similar to GLac builder, it compares these computations with those of the columns

loaded from ElasticSearch to determine content similarities. The returned result consists of pairs of

columns the user can choose from to merge the dataframes. At this stage, the user needs to interfere

to enrich the tables. But the advantage KGLac offers is limiting the number of columns they need

to manually investigate. In conclusion, the union and join APIs simultaneously rely on embedding

queries and statistical measures to find matching columns.

41

Table 4.4: Different APIs supported by the Interface Services
API Description Arguments

get number of datasets Get the number of datasets in the GLac. - show query: Print SPARQL query.

get tables in Get the tables in a dataset.
- dataset name: Name of the dataset.
- show query: Print SPARQL query.

get all tables Get all the tables in GLac. - show query: Print SPARQL query.

search columns Search for columns in GLac.
- keyword: Regex for the column name.
- show query: Print SPARQL query.

search tables Search tables by name.
- table name: regex for the table name.
- show query: Print SPARQL query.

search tables on
Search tables containing specific
column names.

- conditions: List of conditions for the column names.
- show query: Print SPARQL query.

get shortest
path between columns

Get the intermediate data entities between
the starting column and the target one.
It uses the GAS service provided by
Blazegraph.

- col1 info: Pandas series representing the starting column.
- col2 info: Pandas series representing the starting column.
- via: String to specify the relationship.
- max hops: Number of maximum hops to consider.
- show query: Print SPARQL query.

get content similar to
Get columns having content similarity
with the input.

- column: Pandas Series representing the column.
- show query: Print SPARQL query.

get semantically similar to
Get columns having semantic similarity
with the input.

- column: Pandas Series representing the column.
- show query: Print SPARQL query.

get pkfk of Get columns having PKFK edge with the input.
- column: Pandas Series representing the column.
- show query: Print SPARQL query.

add dataset insight Comment on the dataset.
- dataset name: Name of the dataset to annotate.
- insight: Comment on the dataset.
- show query: Print SPARQL query.

add table insight Comment on the table.

- dataset name: Name of the dataset the table belongs to..
- table name: Name of the dataset to annotate.
- insight: Comment on the table.
- show query: Print SPARQL query.

get dataset insight List the comments on the dataset.
- dataset name: Name of the dataset to annotate.
- show query: Print SPARQL query.

get table insight List the comments on the table.
- dataset name: Name of the dataset the table belongs to.
- table name: Name of the dataset to annotate.
- show query: Print SPARQL query.

add dataset usages Add the link to the project using the dataset.
- dataset name: Name of the dataset to annotate.
- used in: the link to the project.
- show query: Print SPARQL query.

add table usages Add the link to the project using the table.

- dataset name: Name of the dataset the table belongs to.
- table name: Name of the table to annotate.
- used in: the link to the project.
- show query: Print SPARQL query.

get dataset usages List the projects that use the dataset.
- dataset name: Name of the dataset to annotate.
- show query: Print SPARQL query.

get table usages List the projects that use the table.
- dataset name: Name of the dataset the table belongs to.
- table name: Name of the table to annotate.
- show query: Print SPARQL query.

execute sparql query Execute an ad-hoc query.
- query: SPARQL query
- method: Type of the query (Get, Post)

get joinable columns between
Get all the paths between a starting
table and the target one.

- table1: Pandas dataframe representing the starting table.
- table2: Pandas dataframe representing the target table.

get joinable columns

Given data, find joinable columns
from the data GLac captured.
The input data can be new data
or already in GLac.

data: Pandas series or dataframe to find joinable columns for.

get unionable columns
Given two tables, find unionable columns
based on column name semantic affinity.

- df1: Pandas dataframe to represent the first table.
- df2: Pandas dataframe to represent the second table.
- threshold: semantic affinity threshold to consider
two column name unionable.

42

In conclusion, Table 4.4 summarises the various APIs the interface services component supports.

Using these APIs, the user can perform data discovery and data enrichment operations. Section 5.1.2

presents a use case showcasing how to use them to compile a dataset from scratch. Hence, KGLac

offers numerous APIs that operate on top of the GLac, our schema KG for data lakes. As a result,

the user can explore data lakes via functionalities that leverage the semantic and content of the data

they contain. Implementing the system could not be possible without using certain technologies.

The subsequent chapter will cover the reason behind using these technologies.

4.2 KGLac characteristics

KGLac instrumentalizes several technologies to build the GLac and allow the user to interact

with it. These technologies promote four features of the platform: scalability, reliability, compre-

hensibility, and reusability. This section will list the different technologies and show how they

contribute to these various characteristics.

4.2.1 Apache Spark

First, KGLac has a scalable profiler thanks to using PySpark. The profiler has to process the

different datasets data lakes contain. So for KGLac to handle the data, it requires adequate tools.

Hence the profiler leverage PySpark capabilities to address the scalability aspect. PySpark is a

python library supporting Apache Spark, an engine for large-scale data processing. Apache Spark

outperforms several state-of-art tools like Hadoop MapReduce to deal with big data [58]. It in-

troduces the resilient distributed dataset (RDD), a collection of objects distributed across different

machines, to process data in parallel. Hence, Apache Spark supports parallel computing by execut-

ing its two operations (transformations and actions) on each partition [59]. Additionally, Apache

Spark reports the execution of the various transformations such as map, flatMap, and union, until

an action like take, collect, and count is triggered. This Lazy Evaluation contributes to making

KGLac scalable: It reduces communication between the different workers and the driver. In ad-

dition, it optimizes these operations thanks to its Catalyst Optmizer12 when using the dataframes.
12https://databricks.com/glossary/catalyst-optimizer

43

Furthermore, Apache Spark reduces the execution time by adopting in-memory data processing.

This feature allows avoiding fetching data from the disk, which is time-consuming. Thus, thanks to

these characteristics, KGLac is scalable. Moreover, the profiler leverage Apache Spark dataframe

to interpret the data type of the different columns of the tabular data. In fact, by using the native

APIs of Apache Spark, after loading the data, by passing the inferSchema argument, PySpark can

infer the data types of the columns. Such an operation will require going over the data, which takes

time if the table is large. However, parsing the content of the columns is necessary to obtain the data

type. In this case, it is better to re-use what PySpark supports than creating our own. In conclusion,

using Apache Spark serves two objectives: scalability as it is adequate to process voluminous data,

and reliability as it supports determining the data type, crucial information to profile the columns.

To store the profiles, KGLac uses Elasticsearch. The next chapter will present the reasons behind

choosing it.

To evaluate the performance of processing the data and generating the profiles, we compare

KGLac and Aurum profilers. The setting of the experiments consists of evaluating both KGLac and

Aurum on a single machine with 16 cores. In addition, the evaluation includes running KGLac on

a cluster of 4 nodes, each with 16 cores. It is worth mentioning that, unlike KGLac, Aurum was

not assessed on a cluster of machines because it does not support it. Furthermore, since there is a

difference in what metrics each profile extracts, the evaluation merely considers the common ones.

In this case, KGLac does not extract the number of missing values in each column. Furthermore, on

the cluster of machines, the system dumps the data in a text file instead due to technical difficulties,

Compute Canada 13 support reported. The assessment includes four sets of experiments, each for

a different number of threads λ ∈ [8, 10, 12, 14]]. Figure 4.6 shows evolution of the running time

in minutes of each system and for each λ for different dataset sizes (η ∈ [1, 2, 3, 4, 5, 6]), extracted

from online portals. First, for Aurum, the runtime monotonically increases, for every λ as η grows.

For λ ∈ [12, 14] the runtime starts at 1̃1 minutes to reach 1̃5 minutes. However, for the remaining

λ values, the observation shows the existence of two phases: The runtime starts with 11 minutes,

continues to steadily increase until reaching η′ where it starts to drastically grow, attaining 25 min-

utes. η′ varies based δ (η′ = 4 and 5 for λ = 8 and 10, respectively). Second, KGLac (single
13https://www.computecanada.ca/

44

machine) outperforms Aurum. The four graphs show a monotonically increasing runtime starting

with 5 minutes at η = 1 to reach approximately 15 minutes at η = 6. Third, for KGLac (cluster),

it outperforms both Aurum and KGLac (single machine). The runtime starts at 5 minutes to end

with 9 minutes on average. Hence, these graphs show that KGLac outperforms Aurum on a single

machine, and the performance becomes greater if KGLac runs on a cluster thanks to using Apache

Spark.

Data size in GB

Ti
m

e
in

 m
in

ut
es

0

5

10

15

20

25

1 2 3 4 5 6

KGLac (single machine) Aurum KGLac (cluster)

(a) 8 cores

Data size in GB
Ti

m
e

in
 m

in
ut

es

0

5

10

15

20

25

1 2 3 4 5 6

KGLac (single machine) Aurum KGLac (cluster)

(b) 10 cores

Data size in GB

Ti
m

e
in

 m
in

ut
es

0

5

10

15

20

1 2 3 4 5 6

KGLac (single machine) Aurum KGLac (cluster)

(c) 12 cores

Data size in GB

Ti
m

e
in

 m
in

ut
es

0

5

10

15

20

1 2 3 4 5 6

KGLac (single machine) Aurum KGLac (cluster)

(d) 14 cores

Figure 4.6: KGLac and Aurum profilers scalability.

4.2.2 Elasticsearch

KGLac also uses Elasticsearch, a document database, to store the different profiles and raw

data. Elasticsearch is an integral part of KGLac because it ensures scalability on two different lev-

els: Storage and search. Elasticsearch stores data in clusters and each one of them is a set of nodes.

45

Elasticsearch is a distributed store because it accommodates adding and removing nodes and auto-

matically redistributes the data 14. The data consists of documents stored under an index, a logical

grouping composed of several shards. A shard is a self-contained index distributed across the differ-

ent nodes. Hence, Elasticsearch spread the documents into the multiple shards hosted on the various

nodes. This storage model permits housing large data, including the profiles and the raw data, the

profiler component generates. In addition, Elasticsearch offers scalable search thanks to having two

types of shards, primary and replica. Although these characteristics lead to data redundancy, they

ensure fault-tolerance and increase data query capacity [17]. As a result, Elasticsearch simultane-

ously offers scalable storage allowing the profiler to load documents computed from data lakes and

scalable data search allowing the GLac Builder to query them to build GLac. GLac is an RDF KG

that captures predicate annotations by the means of RDF-star. The next section will explain why

this technology is adequate to model GLac.

4.2.3 RDF-star

In addition, the GLac Builder generates an RDF KG to represent the schema for the content of

data lakes. In fact, to capture statement-level annotation, the build harness RDF-star as a represen-

tation to tag the edges. RDF-star is an extension to RDF to embed descriptions to the predicates.

For instance, GLac captures the certainty that relationships exist between two columns. RDF-star

is an alternative to reification techniques to model these annotations. Yet, These approaches present

shortcomings and W3C has not adopted any of them as a standard [23]. The limitations lie within

an increase in the number of statements to capture this information and the cumbersome query a

user needs to write. Ontotext15 lists these different approaches coupled with the advantages and

drawbacks they offer. They also compared the performance of each of them with RDF-star using

a benchmark subset of Wikidata. Table 4.5 summarizes the results and shows that RDF-star rep-

resents the same data with 50 million fewer statements than the best of the investigated reification

methods. In addition, it shows that even to load data, RDF-star outperforms the others by taking just

two-thirds of the time of the best one. Plus, to permit querying RDF-star, one can use SPARQL-star,
14https://www.elastic.co/guide/en/elasticsearch/reference/master/add-elasticsearch-nodes.html
15https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-star/

46

Table 4.5: Performance comparison between RDF-star and the other approaches

Modeling
Approach

Total
Statements

Loading
time (min)

Standard reification 391,652,270 52.4
N-ary relations 334,571,877 50.6
Named graphs 277,478,521 56

RDF-star 220,375,702 34

an extension to SPARQL, to seamlessly access these annotations. Hence, RDF-star supports a more

compact representation promoting, as a result, GLac comprehensibility. Next, we will explain why

this technology is adequate to model our KG.

4.2.4 Pandas

Last, the interface services leverage Pandas dataframes to report the results. Pandas is a commonly-

used tool in data science to manipulate tabular data. Hence, the user does not need to get accustomed

to using a new data structure to explore the result of the APIs. The user can use the native Pandas

functionalities to operate on the results. For instance, if the user is concerned about data complete-

ness, they can sort the result by the number of missing values. Or, if they want to find large tables

they can filter based on the total number of values. Hence, by instrumentalizing Pandas, the inter-

face service provides a user-friendly interface promoting reusability. In conclusion, this section lists

the different characteristics of the tools used to implement a scalable, reliable system that produces

a GLac, comprehensible KG using Lac whose schema and vocabulary is available in Appendix A

and Appendix B, respectively. In addition, one can interact with GLac through a user-friendly in-

terface. The next chapter will present several use cases where we ran our platform to perform data

discovery and data enrichment.

47

Chapter 5

Use Case & Evaluation

The last chapter covered KGLac different components and the pipeline on how to process raw

data, create GLac, and allow the user to interact with it. The user will merely need to call the

various APIs to perform data discovery and data enrichment. Hence, this chapter will present a

use case where KGLac could be seamlessly integrated into the data science pipelines to build a

dataset to investigate the gender-based pay gap in the Information systems field. Subsequently, the

chapter will evaluate the performance of the KGLac in determining predicates between the nodes

and compare it with Aurum, a state-of-art system using the same dataset.

5.1 Use Case

This section presents a use case where KGLac is integrated into the data science pipeline to

build data, which a data scientist can use to explore the compensation gap in the IS domain based on

gender. In this scenario, we assume that a data scientist possesses a locally stored data lake and uses

KGLac to process its content to build GLac. Additionally, KGLac will host the KG on Blazegraph 1

and the profiles and raw data on Elasticsearch. Then, the user creates a Jupyter notebook where they

will call the interface services to compile their data. Plus, we assume that the data the user aims

to form is a dataframe comprising columns about gender and salaries. But before going over the

end-to-end scenario, the section will provide details about the data lake KGLac processed.
1https://blazegraph.com/

48

5.1.1 Data Lake

Before leveraging the different APIs to explore the knowledge graph and build the data, the

user will need to specify the data lake KGLac will process. This scenario is consists of over 125

real datasets 2 containing more than 380 tables and consisting of more than 6500 columns with a

2 GB in size. The different datasets were collected from several sources, including but not limited

to Kaggle3 and open government portals. The datasets cover several topics like COVID-19, sports,

crimes, employment, and real estate. This data lake serves two objectives: First, building GLac

to investigate the pay gap between genders. Second, comparing the performance of KGLac with

Aurum in terms of inferring relationships (semantic similarity, content similarity, and PKFKs). The

generated GLac is composed of over 3.5 million statements.

5.1.2 Scenario

This chapter will cover the full pipeline a data scientist goes through to build their data using

the different APIs supported by KGLac. First, the user starts the interface services by specifying

Blazegraph endpoint and Elasticsarch to query GLac and the raw data, respectively. Second, the

user will start looking for data related to salaries. In this case, they can use the search table on

API to discover tables given a set of conditions. KGLac will match the different conditions with

the names of the columns using regular expressions. In this use case, the user is interested in

searching for tables with column names having the salary, pay, or earning tokens. The result is a

pandas dataframe with 21 rows. Each represents a table meeting the specified conditions coupled

with its dataset and the number of columns and rows. However, the user is keen on starting with

a large table with loads of rows. Thus, they leverage pandas structure to sort the values based on

the number of rows. Table 5.1 shows the first five rows where the first row corresponds to the table

‘employee salaries.csv’ with approximately 150 000 rows. The second-largest table contains only

about 40 000. With these figures, the user chooses to load the first table. Figure 5.1 shows the APIs

calls, a user would perform to get get the sorted dataframe.
2https://github.com/CoDS-GCS/KGLac materials
3https://www.kaggle.com/datasets

49

salaries_tables = KGLac.search_tables_on([['salary', 'pay', 'earning']])
salaries_tables.sort_values('number_of_rows', inplace=True, ignore_index=True, ascending=False)

Figure 5.1: Search for tables with columns having salary, pay, or earning using KGLac
search tables on API. Then sort the results in descending order based on the number of rows.

Table 5.1: The first five rows of the salaries tables with the highest number of rows.
table name dataset name number of columns number of rows path

1 employee salaries.csv san francisco county 8.0 148654.0
/data/us counties cities/san francisco county/
employee salaries.csv

2 san-francisco-2019.csv san-francisco-salaries19 13.0 41136.0
/data/transparent california/
san-francisco-salaries19/san-francisco-2019.csv

3 san-francisco-2017.csv san-francisco-salaries19 12.0 41127.0
/data/transparent california/
san-francisco-salaries19/san-francisco-2017.csv

4 san-francisco-2018.csv san-francisco-salaries19 13.0 35212.0
/data/transparent california/
san-francisco-salaries19/san-francisco-2018.csv

5 LA County Employee
Salaries.csv

la county 20.0 35196
/data/us counties cities/la county/
LA County Employee Salaries.csv

Table 5.2: The first five records in employee salaries.csv

EmployeeID JobTitle BasePay OvertimePay OtherPay Benefits TotalPay TotalPayBenefits

1 E2537827072
GENERAL MANAGER-METROPOLITAN

TRANSIT AUTHORITY
167411.18 0.0 400184.25 NaN 567595.43 567595.43

2 E8426241129 CAPTAIN III (POLICE DEPARTMENT) 155966.02 245131.88 137811.38 NaN 538909.28 538909.28

3 E5931786714 CAPTAIN III (POLICE DEPARTMENT) 212739.13 106088.18 16452.6 NaN 335279.91 335279.91

4 E2661881086
WIRE ROPE CABLE MAINTENANCE

MECHANIC
77916 56120.71 198306.9 NaN 332343.61 332343.61

5 E3902371237
DEPUTY CHIEF OF DEPARTMENT,

(FIRE DEPARTMENT)
134401.6 9737.0 182234.59 NaN 326373.19 326373.19

After finding data related to salaries, the user loads the table into a pandas dataframe using the

path pointing to its location in the data lake. Table 5.2 shows the first five rows of the table. It

contains several attributes like the ids, job titles, and the employees’ salaries. However, it misses

sex, a crucial component for investigating the gap. Hence, in the next step, the user is interested in

finding data containing information about gender. To this end, using the same API to find data with

salaries, they specify ‘gender’ and ‘sex’ as the conditions. Figure 5.2 shows the different calls the

user made to find the table. After sorting, the user loads the fourth table having more than 100 000

records, the closest to the salaries table in terms of the number of rows. Table 5.3 shows that each

row reports the name of the person, their gender, and the name count for that gender. Now, the user

has two tables, one for the employees’ salaries in San Francisco county and the other for the gender

for each name. However, there are two issues. First, for some names, the gender can map to either

50

Table 5.3: The first five records in names gender.csv
table name dataset name origin number of columns number of rows path

1 SeoulFloating.csv kimjihoo coronavirusdataset kaggle 7.0 1084800.0
/data/kaggle/kimjihoo
coronavirusdataset/SeoulFloating.csv

2 database.csv nhtsa safety-recalls kaggle 39.0 638454.0
/data/kaggle/nhtsa safety-recalls/
database.csv

3 covid.csv
tanmoyx covid19-patient
-precondition-dataset

kaggle 21.0 566602.0
/data/kaggle/tanmoyx covid19-
patient-precondition-dataset/covid.csv

4 names gender.csv names gender data world 3.0 109173.0
/data/data world/names gender/
names gender.csv

5 population.csv
xvivancos barcelona
-data-sets

kaggle 8.0 70080.0
/data/kaggle/xvivancos barcelona-
data-sets/population.csv

male or female. For instance, Aadaya is a name for both genders with 4828 males and 8 females.

Second, the user cannot concatenate the two tables because there is no common column to append

one to the other. To mitigate the first problem, we assume one name only corresponds to one gender

based on the highest count. For Aadaya, the user will consider it a name for a male. Second, the

user will further explore the data lake to discover a table that apports information about the names

of the employees.

gender_tables = KGLac.search_tables_on([['gender', 'sex']])
gender_tables.sort_values('number_of_rows', inplace=True, ignore_index=True, ascending=False)

Figure 5.2: Search for tables with columns having gender or sex using KGLac search tables on
API. Then sort the results in descending order based on the number of rows.

The user at this stage calls the API get path between table and specifies the salaries table as

a starting point and the gender one as the target with two hops, as shown in Figure 5.3. The API

returns a graph depicting the different paths between the tables. Figure 5.4 shows a snapshot of GLac

where the starting table, dataset, columns are colored in blue while the target ones are in orange.

In the graph, there are two intermediate tables, employee info.csv, and san-francisco-2019.csv. The

user is interested in concatenating both tables by finding a common column. The figure reveals that

the former belongs to the same dataset as the salaries tables, indicating that the tables are related.

Moreover, the column EmployeeID uniquely identifies the employee in both tables. So the user can

merge the tables on that column to apport the first name for each employee. Later, by using this new

information, the data scientist can determine the gender of the employee via concatenating the two

tables on the firstName and name columns. Hence, the employee info table is suitable to compile

a dataframe having the salary and gender information. Figure 5.5 shows the different steps used to

51

obtain the resultant data. The user first loads the employee-info table and then merges it with the

salaries one on the EmployeeID column. Next, the user concatenates the result with the gender table

to have a dataframe containing more than 140 000 rows. Table 5.4 shows 5 rows of the result. For

each employee, the data scientist knows their name, salary, and gender.

KGLac.get_path_between_tables(salaries_tables.iloc[0],gender_tables.iloc[3], hops=2)

Figure 5.3: Get the paths between the salary table and the gender one by calling KGLac
get path tables API.

similar

partOf

EmployeeID

similar
PartOf

JobTitle

partOf

Employee_salaries.csv

similar

similar

partOf
TotalPayBenefits

san franciso county

partOf

EmployeeID

partOf similar

FirstName

partOf

employee_info.csv similar

partOf

Gender

partOf

Job Title

partOf

Total Pay

partOf

Base Pay

partOf
san-francisco-2019.csvsan-francisco-

salaries19

partOf

Gender

partOf
Name

partOf

names_gender.csv

names_gender

Figure 5.4: There are two paths between the selected tables.

Table 5.4: The first five records in salaries with gender table

EmployeeID JobTitle BasePay OvertimePay OtherPay Benefits TotalPay TotalPayBenefits FirstName Gender

0 E2537827072

GENERAL MANAGER-

METROPOLITAN

TRANSIT AUTHORITY

167411.18 0.0 400184.25 NaN 567595.43 567595.43 christianne F

1 E2922245454
IS BUSINESS ANALYST -

SENIOR
100039.21 0.0 0.0 NaN 100039.21 100039.21 christianne F

2 E2602716442 Management Assistant 71945.8 0.0 0.0 29594.18 71945.80 101539.98 christianne F

3 E8426241129
CAPTAIN III

(POLICE DEPARTMENT)
155966.02 245131.88 137811.38 NaN 538909.28 538909.28 otoniel M

4 E1685310364

EMPLOYMENT AND

TRAINING SPECIALIST

III

60326.15 0.0 525.58 NaN 60851.73 60851.73 otoniel M

Furthermore, the user is eager to augment the data by adding more rows. To do so, they load

‘san-francisco-2019.csv’ the second largest as shown in Table 5.1. The table contains over 40 000

instances. The table has many attributes, including the full name of the employee, their sex, their

52

read employee_info.csv
employee_info_table = KGLac.search_table_by_name('employee_info.csv')
employee_info = pd.read_csv(employee_info_table.path[0])

Join salaries_kaggle and employee_info on id
salaries_with_name = salaries_kaggle.merge(employee_info[['EmployeeID', 'FirstName']],
 left_on = 'EmployeeID', right_on = 'EmployeeID')

change FirstName to lower case before joining
salaries_with_name['FirstName'] = salaries_with_name['FirstName'].str.lower()

change name to lower case and keep duplicated names with higher counts, if any.
gender_by_name['Name'] = gender_by_name['Name'].str.lower()
gender_by_name = gender_by_name.sort_values('Count').drop_duplicates('Name')

add gender to the salaries dataframe
salaries_with_gender = salaries_with_name.merge(gender_by_name[['Name', 'Gender']], left_on='FirstName',
right_on='Name').drop('Name', axis=1)

Figure 5.5: Merge the salary table with the gender one using the employee info table.

job title, and information about their salaries. In other words, the table contains core information

about investigating the compensation gap between the genders. However, to append the two tables,

the user needs to pick unionable columns. This task is cumbersome because the user needs to

manually compare all the different column pairs of both tables. In fact, the arities of the table are

ten and thirteen, resulting in a total of 130 comparisons. Hence, to mitigate this limitation, the

user intrumentalize KGLac, by calling get unionable column and passing the ‘salaries with gender

table’ along with ‘salaries in san francisco’ one as shown in Figure 5.6. KGLac will leverage

embedding to find suitable columns to union on. The result is a pandas dataframe with each row

containing a pair of columns the user can use to union the two tables. This API helps the user to

reduce the number of pairs to check to determine the unionable columns. In this case, the result

return 12 results, as Table 5.5 shows. Hence reducing the number to less than 10% of the number of

combinations they would have investigated without KGLac. To union the two tables, the user only

selects the ‘Job Title’, ‘Gender’ and ‘Total Pay’ columns. They assume that at this stage, these are

the features relevant to investigating the pay gap. After the union (Figure 5.7 shows the steps), the

new dataframe consists of more than 180 000 rows and three columns. The first five rows are shown

in Table 5.6.

53

KGLac.get_unionable_columns(salaries_with_gender, salaries_san_francisco)

Figure 5.6: Get unionable columns between the salary with gender dataframe and the
salaries san francisco one using KGLac get uninable columns.

Table 5.5: Unionable columns between the salaries with gender dataframe and the salaries san
Francisco one.

First dataframe columns Second dataframe columns

0 JobTitle Job Title

1 BasePay Base Pay

2 OvertimePay Overtime Pay

3 OtherPay Other Pay

4 Benefits Benefits

5 Benefits Total Pay & Benefits

6 TotalPay Total Pay

7 TotalPay Total Pay & Benefits

8 TotalPayBenefits Benefits

9 TotalPayBenefits Total Pay

10 TotalPayBenefits Total Pay & Benefits

11 Gender Sex

select only name, job title, year, and total pay columns
salaries_with_gender = salaries_with_gender[
 ['JobTitle', 'Gender', 'TotalPay']
]
salaries_san_francisco = salaries_san_francisco[
 ['Job Title', 'Sex', 'Total Pay']
]
rename the columns from TransparentCalifornia
salaries_san_francisco.columns = ['JobTitle', 'Gender', 'TotalPay']
salaries = pd.concat([salaries_with_gender, salaries_san_francisco])
salaries

Figure 5.7: Steps to union the salaries with gender and the salaries san francisco dataframe.

The data scientist can use the resultant dataframe to investigate the pay gap between the gender.

However, they are merely interested in exploring it in the domain of IS. For this reason, they also

included the job title column to union the two dataframe in the previous step. Yet, to only include

54

Table 5.6: The first five records in the salaries table after the union

JobTitle Gender TotalPay
0 GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY F 567595.43
1 IS BUSINESS ANALYST - SENIOR F 100039.21
2 Management Assistant F 71945.80
3 CAPTAIN III (POLICE DEPARTMENT) M 538909.28
4 EMPLOYMENT AND TRAINING SPECIALIST III M 60851.73

the rows corresponding to individuals working in IS, the user will need to filter the content of the

dataframe. Yet, to do so, the user will need to do so based on the job title. In other words, the user

will keep the rows whose title contains one of the keywords the user needs to set. Nevertheless, the

user has to set an exhaustive list which is time-consuming. As an alternative, the user can search

the data lake for tables having information, helpful to only keep the IS-related jobs. Plus, the table

the user has to find should have a column having similar content to the Job Title column obtained in

the last step. For this, KGLac equips the user with get joinable columns for which they specify the

column to join on. KGLac generates column embedding for the passed input, retrieves matching

columns, and lastly returns them to the user in the dataframe. Figure 5.8 and Table 5.7 show the API

call coupled with the returned results with selected attributes, respectively. It shows that there are

five matching columns in five different tables. The user is already using the last two. The second and

the third rows should be similar to the san-francisco-2019. The only difference is that they contain

data for 2018 and 2017. So the remaining table to explore is the first one. Table 5.8 shows the loaded

table containing several columns. But what is interesting for the user is the existence of a Job Class

for each title effective in 2017-18. This information is insightful as job titles belonging to the same

domain would have the same class. In this case, the user merges the two tables based on the job title

and filter the rows using the class ’Information System’. As a result, the data scientist has curated

data potentially used to assess the compensation gap in the Information system domain. The data

scientist avoids spending considerable time thanks to KGLac and the various APIs to perform data

discovery and data enrichment. In the end, the user can add comments about the tables they used to

compile the data. Such information can be an insightful reference for other users in the future.

columns = KGLac.get_joinable_columns(salaries['JobTitle'])

Figure 5.8: Find joinable columns with the JobTitle column belonging to the salaries dataframe in
the data lake.

55

Table 5.7: Joinable columns between with JobTitle in the salaries dataframe.
original
column

column
name table name dataset name ... number of distinct values cardinality column

data type

0 JobTitle Title
Hourly-Rates-of-Pay-
by-Classification-and-Step-FY17-18.csv

classification 961.0 0.606692 T

1 JobTitle Job Title san-francisco-2018.csv san-francisco-salaries19 975.0 0.027689 T
2 JobTitle Job Title san-francisco-2017.csv san-francisco-salaries19 1016.0 0.024704 T
3 JobTitle Job Title san-francisco-2019.csv san-francisco-salaries19 1049.0 0.025501 T
4 JobTitle JobTitle employee salaries.csv san francisco county 2159.0

Table 5.8: First five records in Hourly-Rates-of-Pay-by-Classification-and-Step-FY17-18.csv

Eff. Date Job Code Job Class Title Grade Biweekly Min Biweekly Max
Extended

Range
Step 11 ... Step 20

0 7/1/2017 140 Management Chief, Fire Department 0140N $12,208 $12,208 NaN NaN NaN

1 7/1/2017 140 Management Chief, Fire Department 0140N $12,208 $12,208 NaN NaN NaN

2 7/1/2017 381 Police Services Inspector 2 0381N $5,476 $5,476 NaN NaN NaN

3 7/1/2017 387 Police Services Crime Scene Invstgtn Mngr 3 0387N $6,134 $6,134 NaN NaN NaN

4 7/1/2017 390 Management Chief of Police 0390N $12,426 $12,426 NaN NaN NaN

This section covered a use case where a data scientist is interested in investigating the pay

gap between gender in the Information Systems field. Throughout the use case, the user leverages

the interface service component to interact with KGLac. They called several data discovery and

enrichment APIs to compile a dataset containing records about gender, salary, and job title for

several employees. In addition, the use case shows how easy and seamless to integrate KGLac in

a data science pipeline. Moreover, it shows how KGLac saves the user time as it reports different

attributes related to tables, such as the number of rows and the names of the columns. Hence, the

user does not need to open the various files to verify such information. Plus, the user does not

need to compare columns to assess if they contain the same content or belong to the same domain.

KGLac supports all of these operations in a rapid and user-friendly manner. However, several of

these functionalities depend on how well the GLac builder infers the relationships. In the section,

we use the same dataset to evaluate KGLac and compare its performance with Aurum’s [12], a

state-of-the-art data discovery system. The evaluations show that KGLac comparatively results in

promising figures in detecting the relationships.

56

5.2 Evaluation

This section reports the evaluation of KGLac using a subset of the previous dataset described in

5.1.1. In fact, there is ground truth for the data lake that includes all the different relationships. So,

we need to come up with our own. However, given the size of the data lake, it is not feasible to man-

ually generate it. Hence, the experiments are limited to the datasets used in the use case, consisting

of 4 datasets, 9 tables, and 110 columns. It consists of assessing how performance the KG builder

is in establishing relationships between the different columns in GLac. The concerned relationships

are semantic similarity, content similarity, and PKFKs. The evaluation did not take into consid-

eration the inclusion dependency one because KGLac does not explicitly support a functionality

based on it. It instead uses it to create PKFKs. Hence, the evaluation of PKFK would simplicity

provide insights about the performance of creating these predicates. In addition, the section will

compare the performance of KGLac with Aurum, a known system to perform data discovery for

each relationship.

5.2.1 Semantic Similarity

Before evaluating KGLac and comparing its performance, it is crucial to generate the ground

truth for semantic similarity relationships. First, we generated all the possible column pairs resulting

in 11556 pairs. However, if column A has a semantic similarity with column B, then B has the same

relationship with A. With this observation, the number of pairs can be halved, reaching 5778 ones to

manually check. For this reason, after generating the pair combinations, we only need to double the

number of relationships. After generating the ground truth, we evaluated KGLac on four different

thresholds: 0.2, 0.4, 0.6, 0.8. In fact, there is a semantic similarity between two columns if their

semantic similarity is equal or greater than the threshold. Then, based on the results, we retrieve an

optimal threshold using which we compare KGLac with Aurum with its default parameters.

Figure 5.9 depicts the variation of KGLac recall, precision, and F1 score with respect to the

thresholds. It shows that the recall has a decreasing trend starting at value 1 and dropping to 0.7.

However, both the precision and the f1 score increase by starting at approximately 0 for the threshold

0.2 and going above 0.75, for the 0.8 threshold. In other words, the system recovered all the semantic

57

Threshold

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

Recall Precision F1

Figure 5.9: Performance of KGLac in determing semantic similarity relationships.

similarity relationships. For the same threshold, the precision and f1 score are very low, almost 0.

These figures indicate that KGLac has no false negatives at the cost of having many false positives.

In other words, the low threshold enabled KGLac to establish relationships between columns that

are not semantically related. The graph can be divided into two intervals [0.2, 0.4] and [0.4, 0.8]

based on the trend evolution of the graphs. Between 0.2 and 0.4, the recall slightly decreases and

drops from 1 to 0.98. However, for the precision and f1 score, moderately increase to reach almost

0.1. This observation shows that the threshold is still loose as KGLac reports many false positives.

Between 0.4 and 0.8: on one hand, the recall starts to decrease at a higher rate, dropping from 0.98

to 0.7. On the other hand, the precision and f1 score increase at a higher rate to go from roughly

0.1 to 0.9 and 0.76, respectively. In fact, increasing the threshold leads to pruning a big portion of

false positives at the cost of having a few false negatives. In other words, KGLac did not report

columns with a low affinity. Hence, the f1 measure shows that with 0.8 threshold, KGLac still has

a promising performance as it balances between discovering a lot of true positives without having

a lot of true negatives. Besides, based on the f1 measure, KGLac is most performant when the

threshold is 0.8.

Next, let us compare the performance of KGLac with Aurum’s. We set the threshold to be equal

to 0.8 for the former and keep the default parameters for Aurum. Figure 5.10 shows chart showing

the recall, precision, and f1 measure for both systems. Fo the three metrics, KGLac outperforms

Aurum. Based on the recall, Aurum misses more than two-thirds of the total number of pairs, while

KGLac misses less than one-third. As for the precision, both systems have comparable results.

58

0.00

0.25

0.50

0.75

1.00

Recall Precision F1

KGLac Aurum

Figure 5.10: Evaluation comparision between KGLac (threshold =0.8) and Aurum (default param-
eters)

Yet, KGLac is slightly better as it reports fewer false positives than Aurum. As for the F1 score,

a harmonic mean of the call and precision, shows that KGLac performs better than Aurum since it

has a relatively higher recall. In fact, the recall is low for Aurum because it calculates the similarity

between two columns by computing the cosine distance between TF-IDF 4 vectors and considering

each column name to be a document. This approach does not take into consideration the context of

the word and merely calculates its frequency. For example, it does not capture a semantic similarity

between (total earnings, total compensation). In addition, Aurum does not clean the data as it misses

capturing (JobTitle, Job Title). It merely feeds the documents as extracted from the documents to

the model without parsing. However, KGLac normalizes the column names by creating labels of

the column names. A label is a cleaner version of names where both ’JobTitle’ and ’Job Title’

correspond to the single label ‘job table’. In addition, it takes into consideration the context of

each token of the label by relying on word embeddings. Hence, KGLac outperforms Aurum in

determining semantic relationships between columns.

5.2.2 Content Similarity

Similar to semantic similarity, before evaluating KGLac, we need to come up with ground truth.

For these relationships, we also limit the experiment to the same subset of datasets. Determining

the ground truth for content similarity happens in two phases after generating all the pairs. First,
4https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html

59

we manually check if the variables stem from the same variable. For instance, the ‘FirstName’ of

the employee info.csv and the ‘Name’ in the name gender.csv is a valid tuple. However, ‘BasePay’

and ‘TotalPay’ in Employee slaries.csv is not. Second, we compute the overlap between the kept

ones. Determining the overlap depends on the type of the columns. For textual, each couple is

associated with the exact Jaccard similarity. As for the numerical, the overlap between the ranges of

the columns reflects the content similarity. For both types, we filter out the pairs having an overlap

strictly less than 0.5. After the two-step approach to determining the ground truth, the final result

consists of 507 pairs, 25 textual and 482 numerical. To evaluate KGLac and compare it to Aurum,

we set 5 thresholds α, st. α ∈ (0.5, 0.6, 0.7, 0.8, 0.9) for the overlap related to the ground truth. For

each, we set 4 thresholds β s.t β ∈ (0.2. 0.4. 0.6, 0.8) associated with the overlap for Aurum and

KGLac to create a content similarity relationship. Hence, the evaluation consists of 20 experiments

summarized in Figure 5.11.

The different graphs represent a comparative evaluation between KGLac and Aurum for the

different thresholds for the ground truth (top to bottom) and the different metrics: Recall, Precision,

and F1-measure (Left to right). For the recall, both systems have the same performance regardless

of the values of α and β. All the recall graphs show that they start at a recall equal to 1 for β = 0.2

and reach to 0.5 for β = 0.8. As for the precision, the systems have comparable performances. For

all values of α, KGlac outperforms Aurum with roughly 0.025 difference on average. The majority

of the graphs have the same allure where the performances increase as β increases. They all start

at values belonging to the interval [0.04, 0.06] for Aurum and [0.06., 0.09] for KGLac at β = 0.2.

The values reach [0.1, 0.0.85] and [0.11, 0.125] respectively for β = 0.8. Last, for the F1 score,

KGLac also slightly outperforms Aurum, with a difference equal to 0.3 on average. Similarly, the

graphs have the same allure regardless of the value of α. However, the graphs increase as β but

reach a peak at β=0.6 and then decrease. For Aurum, in all the graphs, the F1 score starts at 0.1

except for α = 0.9, with a value is equal to 0.8. Then keep increasing to reach the peak. The

highest values range from 0.13 and 0.18 with highest for α = 0.6 and the lowest for α = 0.9. The

F1 score drops to 0.15 for most of the graphs. For KGLac, the F1 score starts between 0.1 and

0.15. The score keeps increasing until attaining the peak that belongs to the [0.14, 0.2] range. The

highest peak is for α = 0.6 and the lowest corresponds to α = 0.9. Then the values drop to 0.8 for

60

Overlap

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.000

0.025

0.050

0.075

0.100

0.125

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.000

0.025

0.050

0.075

0.100

0.125

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap

0.00

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.000

0.025

0.050

0.075

0.100

0.125

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.000

0.025

0.050

0.075

0.100

0.125

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.000

0.025

0.050

0.075

0.100

0.2 0.4 0.6 0.8

KGLac Aurum

Overlap
0.00

0.05

0.10

0.15

0.2 0.4 0.6 0.8

KGLac Aurum

Figure 5.11: Each row corresponds to α value starting from 0.5 and ending with 0.9 (top to bottom).
Each column corresponds to an evaluation metric: Recall, Precision, F1-score (left to right)

61

most of the graphs. In fact, despite adopting the same approach to establish the content similarity

for both types, there is a slight difference between the systems. This difference lies within the

profiler. For numerical values, Aurum approximately calculates the quartiles with a relative error

equal to 0.15, using the QDigest class 5 with 128 as compression ratio. Yet, KGLac limits the

relative error to 0.03 using Spark 6. As for the textual columns, both systems perform similarly in

terms of capturing and missing relationships. Hence, both systems compromise exactitude with a

performance by approximately calculating the quartiles. So the different relative errors explain the

difference in precision, impacting the difference in F1 measure. In conclusion, regardless of α both

KGLac and Aurum are performance for β = 0.6.

5.2.3 PKFKs

To evaluate the KGLac performance in detecting PKFKs and compare it with Aurum, we need

the ground truth. Similar to the other relationships, we generated it using the same datasets in

the use case. To determine where there is a PKFK between two columns, they need to meet two

conditions. First, all the records in the columns are unique. In other words, the ratio of the number

of distinct values and the total number of values is equal to 1. Second, all the records of the foreign

key constitute a subset of those in the primary one. First, for each column type, we create pairs

p=(potential primary column, potential foreign column) using all the columns in the dataset. Then

we filter them by keeping only those having the uniqueness ratiop[1] = 1. Hence we obtain a list

of pairs where each is p′=(primary column, potential foreign column). Next, we verify if the content

of the p′[2] is a subset of p′[1]. For the textual ones, if the ratio of the
size(p′[1] ∩ p′[2])

size(p′[2])
≥ 1−10−4,

the pair is valid, where size return the size of the set. As for the numerical ones, it is sufficient to

check if the range of the p′[2] is a subset p′[1] and the overlap is also larger or equal to 1 − 10−4.

After performing these computations, the ground truth shows only two results summarized in the

Table 5.9. For these two results, both KGLac and Aurum recovered them. Hence, this dataset does

not give enough insight about the performance of KGLac. We use another dataset, ChEMBL [34]

(22nd version), that provides the schema with a ground truth 7 for PKFKs.
5https://www.javadoc.io/doc/com.clearspring.analytics/stream/2.5.2/com/clearspring/analytics/stream/quantile/QDigest.html
6https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.approxQuantile.html
7https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl 22/archived/chembl 22 schema.png

62

Table 5.9: Columns having PKFK relationships in the ground truth.
PK FK

Table Column Table Column
employee info.csv EmployeeID employee salaries.csv EmployeeID

employee salaries.csv EmployeeID employee info.csv EmployeeID

The ChEMBL 8 dataset is a manually curated database of bioactive molecules. It consists of 68

tables. However, based on the provided schema, some tables are missing. We generated GLac 9 for

those tables and hosted it on Blazegraph. So for the evaluation, only the tables in the schema are

kept. After cleaning, the dataset contains 46 tables and 289 columns. Between the different tables

and based on the provided schema, we retrieved 32 PKFKs. To evaluate the systems, we need to

set γ, the threshold for the cardinality (uniqueness ratio), and δ, a threshold for the domain overlap

to determine inclusion dependency. For the experiments γKGLac = γAurum = 0.7 for the same

γ, we ran several experiments with a varying δ ∈ (0.2, 0.4, 0.6, 0.8). For textual columns, both

systems consider a column to have an inclusion dependency with another one, if and only if it has a

content similarity. And since the approach is the same for KGLac and Aurum, δ will only be used

to determine the existence of an inclusion dependency between two numerical columns. Table 5.10

and Figure 5.12 summarise the results of the experiments.

Table 5.10: Number of correctly detected and the total number of detected PKFKS by KGLac and
Aurum

Threshold 0.2 0.4 0.6 0.8
System KGLac Aurum KGLac Aurum KGLac Aurum KGLac Aurum

Number of correclty
detected PKFKs 23 22 22 21 22 21 17 15

Number of detected
PKFKs 662 736 408 472 304 342 158 190

Threshold

R
ec
al
l

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8

KGLac Aurum

Threshold

P
re
ci
si
on

0.0
00

0.0
25

0.0
50

0.0
75

0.1
00

0.1
25

0.2 0.4 0.6 0.8

KGLac Aurum

Threshold

F1
 s

co
re

0.
00

0.
05

0.
10

0.
15

0.
20

0.2 0.4 0.6 0.8

KGLac Aurum

Figure 5.12: Evaluation of KGLac and Aurum using the ChEMBL dataset

8https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl 22/archived/
9https://github.com/CoDS-GCS/KGLac materials

63

Table 5.10 reports the number of detected PKFKs and the number of the correctly detected

ones for each system and each δ. Figure 5.12 shows three graphs containing the evaluation of both

systems for three different metrics: Recall, Precision, F1 score (left to right). The results show that

KGLac and Aurum have comparable performances. The recall graph is decreasing while those of

the precision and f1 score are monotonously increasing. The allure for both systems for each metric

is the same, with KGLac being slightly better. For a δ = 0.2, they are capable of recovering the

highest number of PKFKs. The recall is around 0.7. However as δ increases, the recall decreases

to go below 0.6 at δ = 0.8. Moreover, the precision keeps increasing to go above 0.1 for KGLac

and 0.075 for Aurum for δ = 0.8. For the same δ value, the F1 scores are almost triple for both

systems. Despite adopting the same approach to establish PKFKs, the evaluation of both systems

show a slight difference. In fact, similar to the content similarity relationships, the difference lies

within how each system computes the quartiles. As mentioned in section 4.1.4 These statistics are

important to determine the domain of each numerical column and compute the overlap for inclusion

dependency. Hence, the difference stems from how each system profiles. Furthermore, for a low

δ, they could detect the highest number of valid PKFKs at the expense of reporting several false

positives. As a result, the recall is high while the precision is low. In contrast, for a higher δ the

systems become more restrictive. In other words, they prune out previously detected false positives,

simultaneously leading to increasing the number of false negatives. As a consequence, the recall

decreases while the precision increases. In conclusion, both systems have similar performance, and

based on the f1 score, the best value for δ is 0.8.

This chapter demonstrated a use case of how KGLac would help AI practitioners operate on

data lakes to discover and enrich data. The use case consists of compiling a dataset to help a

data scientist investigate the compensation gap between gender in the Information systems domain.

In fact, the user could discover several tables containing pertinent information to accomplish the

task. The use case shows how the system can be seamlessly integrated into a data science pipeline

thanks to its interface services. In addition, the chapter evaluated the POC performance in detecting

the various relationships in GLac. It also compared it with Aurum, a state-of-the-art system. The

comparative analysis shows that for detecting content similarity and PKFKs, they both have a similar

64

performance. However, for the semantic similarity, KGLac provides better results because it pre-

processes the raw data and leverages word embedding. The evaluation shows that there is room for

improving the performance of KGLac. Hence, the next chapter concludes and lists future work.

65

Chapter 6

Conclusion & Future Work

In this thesis, we propose an approach to leverage the content of data lakes. It consists of

two steps: First, it generates GLac, a highly interconnected RDF knowledge graph modeling the

schema. Second, it equips the user with data discovery and data enrichment operations on the

GLac. The work presents three contributions: A proof of concept system that processes the tabular-

like content of data lakes to produce data profiles in a scalable manner. Then it leverages these

profiles to build GLac using the methods based on statistics and deep learning. With the POC, the

user considerably reduces the time spent manually examining the data to extract its metadata. LAC,

a data lake ontology that conceptualizes relationships and entities in data lakes. LAC enriches GLac

by provides predicates and constraints to reflect the semantic of data entities in data lakes [24]. A

set of interface services to perform data discovery and data enrichment on top of GLac. The user

interacts with GLac by means of user-friendly pre-defined APIs. The discovery operations range

from a basic keyword search to finding paths between data entities along a given relationship. As for

the semantic similarity ones, the user can find data based on column content or name embeddings.

Even though it is not part of the contribution of this thesis, the proof of the concept system

generates promising results and GLac quality. When compared to Aurum, one of the state of the art

systems in data discovery, the POC has comparable or better performance in detecting relationships

between the entities in GLac. However, the results also show that there is room for improvement.

For this reason, in the future, several approaches will be explored to not only boost the quality of

GLac but also add more functionalities to the system. One of the venues to investigate is to support

66

more types of columns. Currently, all non-numerical types go under the umbrella of the textual

one. Hence, KGLac can break it down into sub-types. [36] proposes a method to detect whether a

column is a numerical, string (postal code or any domain-specific strings), or language (names or

other standard text fields). This work is a starting point to support more data types and attain a richer

GLac. To further enrich it, the system processes unstructured data like text documents and images.

this will require amending LAC to provide adequate terms to model these entities and reflect the

relationships that potentially govern them. In addition, the system can support more functionalities.

First, a linker, which is a tool to find possible links between two KGs [24]. In fact, the linker

serves two tasks: when presented with newly added files in the data lake, the user does not need

to generate GLac from scratch, they can separately generate the KG for the new data, and then the

linker will merge it with the existing one. In addition, it can help to link GLac with other existing

KGs such Wikidata 1 or DBpedia 2. To do so, the linker will leverage techniques like Graph Neural

Networks [55, 61, 62] and reasoning[11]. As a result, this component will incrementally build

GLac. In addition, Access Control is helpful in terms of managing whether a user is authorized

to query the graph, use the embedding, or access the actual data. Lastly, the query manager can

provide insight about the usage of the dataset by keeping track of how the user queries GLac [25].

1https://www.wikidata.org/wiki/Wikidata:Main Page
2https://www.dbpedia.org/

67

Appendix A

LAC schema

Classes
 Class: lac:Dataset
used with: lac:Table, lac:used_in, lac:insights
lac:dataset is a class to model a dataset in data lakes. A dataset contains a set of data
that belong to the same domain.

 Class: lac:Table
used with: lac:Dataset, lac:Column, lac:used_in, lac:insights
lac:table is a class to model tabular-like data files such as CSV and JSON.

 Class: lac:Column
used with: lac:Table, lac:semanticSimilarity, lac:contentSimilarity,
lac:inclusionDependency, lac:pkfk, lac:path, lac:distinctVCount, lac:totalVCount,
lac:missingVCount
A class to represent a column in a table class.

Properties
 Property: lac:semanticSimilarity

domain: lac:Column
range: lac:Column
lac:semanticSimilarity indicates that the two columns are semantically similar based on
their names.

 Property: lac:contentSimilarity
domain: lac:Column
range: lac:Column
lac:contentSimilarity indicates that the two columns have similar content based
on their instances

68

 Property: lac:inclusionDependency
domain: lac:Column
range: lac:Column
lac:inclusionDependency indicates that the content of a column is contained in other’s.

 Property: lac:pkfk
domain: lac:Column
range: lac:Column
lac:pkfk indicates that a column is foreign key to primary key column.

 Property: lac:used_in
domain: lac:Column, lac:Table, lac:Dataset
range: rdf:Bag
lac:used_in indicates the different usages of the data entity resource.

 Property: lac:insights
domain: lac:Column, lac:Table, lac:Dataset
range: rdf:Bag
lac:insights indicates the different insights provided by the user on the data entity resources.

 Property: lac:path
domain: lac:Table, lac:Dataset
range: rdfs:Literal
lac:path provides the path of the dataset or table in the file system.

 Property: lac:totalVCount
domain: lac:Column
range: rdfs:Literal
lac:totalVCount povides the total number of instances in a column.

 Property: lac:distinctVCount
domain: lac:Column
range: rdfs:Literal
lac:distinctVCount provides the number of distinct instances in the column..

 Property: lac:missingVCount
domain: lac:Column
range: rdfs:Literal
lac:missingVCount provides the number of missing instances in the column..

 Property: lac:certainty
domain: Triple
range: rdfs:Literal
lac:certainty annotates a triple to reflect how certain of a similarity, inclusion dependency, or pkfk
edges to be established.

69

Appendix B

LAC Vocabulary

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.example.com/lac#"

xml:base="http://www.example.com/lac#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:lac="http://www.example.com/lac#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<owl:Ontology rdf:about="http://www.example.com/lac#">

<dc:description>LAC RDF vocabulary, described using W3C RDF

Schema and the Web Ontology Language.</dc:description>

<dc:title>LAC vocabulary</dc:title>

</owl:Ontology>

70

<!--//

//

// Classes

//

///-->

<!-- http://www.example.com/lac#Dataset -->

<rdf:Description rdf:about="http://www.example.com/lac#Dataset">

<rdfs:label>Dataset</rdfs:label>

<rdfs:comment>A class to model a dataset in data lakes. A dataset

contains a set of data that belong to the same domain.

</rdfs:comment>

</rdf:Description>

<!-- http://www.example.com/lac#Table -->

<rdf:Description rdf:about="http://www.example.com/lac#Table">

<rdfs:label>Table</rdfs:label>

<rdfs:comment>A class to model tabular-like data files

such as CSV and JSON.</rdfs:comment>

</rdf:Description>

<!-- http://www.example.com/lac#Column -->

<rdf:Description rdf:about="http://www.example.com/lac#Column">

<rdfs:label>Column</rdfs:label>

<rdfs:comment>A class to represent a column in a table class.

</rdfs:comment>

</rdf:Description>

71

<!--//

//

// Properties

//

///-->

<!-- http://www.example.com/lac#semanticSimilarity -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#semanticSimilarity">

<rdfs:comment>Indicates that the two columns are semantically

similar based on their names.</rdfs:comment>

<rdfs:domain rdf:resource="http://www.example.com/lac#Column"/>

<rdfs:range rdf:resource="http://www.example.com/lac#Column"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Semantic Similarity</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#contentSimilarity -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#contentSimilarity">

<rdfs:comment>Indicates that the two columns have similar content

based on their instances.</rdfs:comment>

<rdfs:range rdf:resource="http://www.example.com/lac#Column"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Content Similarity</rdfs:label>

</owl:DatatypeProperty>

72

<!-- http://www.example.com/lac#inclusionDependency -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#inclusionDependency">

<rdfs:comment>Indicates that the content of a column is contained

in other’s.</rdfs:comment>

<rdfs:range rdf:resource="http://www.example.com/lac#Column"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Inclusion Dependency</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#pkfk -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#pkfk">

<rdfs:comment>Indicates that a column is foreign key

to primary key column.</rdfs:comment>

<rdfs:range rdf:resource="http://www.example.com/lac#Column"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>PKFK</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#used_in -->

<owl:DatatypeProperty rdf:about="http://www.example.com/lac#used_in">

<rdfs:comment>Indicates the different usages of the data

entity resource.</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Used in</rdfs:label>

</owl:DatatypeProperty>

73

<!-- http://www.example.com/lac#insights -->

<owl:DatatypeProperty rdf:about="http://www.example.com/lac#insights">

<rdfs:comment>Indicates the different insights provided by the user

on the data entity resources.</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Insights</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#path -->

<owl:DatatypeProperty rdf:about="http://www.example.com/lac#path">

<rdfs:comment>Provides the path of the dataset or table in the file

system.</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Path</rdfs:label>

</owl:DatatypeProperty>

74

<!-- http://www.example.com/lac#totalVCount -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#totalVCount">

<rdfs:comment>Povides the total number of instances

in a column.</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Total Value Count</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#distinctVCount -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#distinctVCount">

<rdfs:comment>Povides the number of different instances in a column.

</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Distinct Value Count</rdfs:label>

</owl:DatatypeProperty>

75

<!-- http://www.example.com/lac#missingtVCount -->

<owl:DatatypeProperty

rdf:about="http://www.example.com/lac#missingVCount">

<rdfs:comment>Povides the number of missing instances in a column.

</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Missing Value Count</rdfs:label>

</owl:DatatypeProperty>

<!-- http://www.example.com/lac#certainty -->

<owl:DatatypeProperty rdf:about="http://www.example.com/lac#certainty">

<rdfs:comment>Annotates a triple to reflect how certain of a

similarity,inclusion dependency, or pkfkedges to be established.

</rdfs:comment>

<rdfs:range

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://www.example.com/lac#"/>

<rdfs:label>Certainty</rdfs:label>

</owl:DatatypeProperty>

</rdf:RDF>

76

Bibliography

[1] M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. A direct mapping of relational

data to rdf, Sep 2012.

[2] D. Arndt, J. Broekstra, B. DuCharme, O. Lassila, P. F. Patel-Schneider, E. Prud’hommeaux,

T. Thibodeau, Jr, and B. Thompson, Jul 2021.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus

for a web of open data. In Proceedings of the 6th International The Semantic Web and 2nd

Asian Conference on Asian Semantic Web Conference, ISWC’07/ASWC’07, page 722–735,

Berlin, Heidelberg, 2007. Springer-Verlag.

[4] J. Bao, D. Calvanese, B. C. Grau, M. Dzbor, A. Fokoue, C. Golbreich, S. Hawke, I. Herman,

R. Hoekstra, I. Horrocks, E. Kendall, M. Krötzsch, C. Lutz, D. L. McGuinness, B. Motik,

J. Pan, B. Parsia, P. F. Patel-Schneider, S. Rudolph, A. Ruttenberg, U. Sattler, M. Schneider,

M. Smith, E. Wallace, Z. Wu, A. Zimmermann, J. Carroll, J. Hendler, and V. Kashyap. Owl 2

web ontology language, Dec 2012.

[5] T. Berners-Lee. Relational databases on the semantic web, Sep 1998.

[6] S. Bonner, I. P. Barrett, C. Ye, R. Swiers, O. Engkvist, C. T. Hoyt, and W. L. Hamilton.

Understanding the performance of knowledge graph embeddings in drug discovery, 2021.

[7] E. P. Bontas, M. Mochól, and R. Tolksdorf. Case studies on ontology reuse. 2005.

77

[8] D. Brickley, M. Burgess, and N. Noy. Google dataset search: Building a search engine for

datasets in an open web ecosystem. In The World Wide Web Conference, WWW ’19, page

1365–1375, New York, NY, USA, 2019. Association for Computing Machinery.

[9] D. Brickley and L. Miller. Foaf vocabulary specification 0.99, Jan 2014.

[10] A. Broder. On the resemblance and containment of documents. In Proceedings. Compression

and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages 21–29, 1997.

[11] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena:

Implementing the semantic web recommendations. WWW Alt. ’04, page 74–83, New York,

NY, USA, 2004. Association for Computing Machinery.

[12] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker. Aurum:

A data discovery system. In 2018 IEEE 34th International Conference on Data Engineering

(ICDE), pages 1001–1012, 2018.

[13] S. Das, S. Sundara, and R. Cyganiak, Sep 2012.

[14] J. Dixon. Pentaho, hadoop, and data lakes, Oct 2014.

[15] F. Dürsch, A. Stebner, F. Windheuser, M. Fischer, T. Friedrich, N. Strelow, T. Bleifuß, H. Har-

mouch, L. Jiang, T. Papenbrock, and F. Naumann. Inclusion dependency discovery: An ex-

perimental evaluation of thirteen algorithms. CIKM ’19, page 219–228, New York, NY, USA,

2019. Association for Computing Machinery.

[16] L. Ehrlinger and W. Wöß. Towards a definition of knowledge graphs. 09 2016.

[17] Elasticsearch. Scalability and resilience: clusters, nodes, and shards.

[18] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger. Linked data quality of dbpedia, free-

base, opencyc, wikidata, and yago. Semantic Web, 9:77–129, 2018.

[19] K. D. Foote. https://www.dataversity.net/enterprise-data-unification-and-knowledge-graphs-

making-complexity-simple/, Jul 2019.

78

[20] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-

tion, 5(2):199–220, 1993.

[21] R. V. Guha and B. McBride. Rdf schema 1.1, Feb 2014.

[22] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang. Goods:

Organizing google’s datasets. SIGMOD, 2016.

[23] O. Hartig. Rdf* and sparql*: An alternative approach to annotate statements in rdf. In Inter-

national Semantic Web Conference, 2017.

[24] A. Helal. Data lakes empowered by knowledge graph technologies. SIGMOD/PODS ’21,

page 2884–2886, New York, NY, USA, 2021. Association for Computing Machinery.

[25] A. Helal, M. Helali, K. Ammar, and E. Mansour. A demonstration of kglac: A data discovery

and enrichment platform for data science. Proc. VLDB Endow., 14(12), 2021.

[26] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L. Gayo,

S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo, S. M. Rashid, A. Rula,

L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. Knowledge graphs, 2020.

[27] A. Holst. Total data volume worldwide 2010-2025, Jun 2021.

[28] T. Johnson. Data Profiling, pages 604–608. Springer US, Boston, MA, 2009.

[29] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets. Cambridge

University Press, USA, 2nd edition, 2014.

[30] M. Lock. Angling for insight in today’s data lake, Oct 2017.

[31] G. W. M. Kroetsch. Special issue on knowledge graphs. Aug 2016.

[32] E. Mansour, D. Deng, R. C. Fernandez, A. A. Qahtan, W. Tao, Z. Abedjan, A. Elmagarmid,

I. F. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. Building data civilizer

pipelines with an advanced workflow engine. In 2018 IEEE 34th International Conference on

Data Engineering (ICDE), pages 1593–1596, 2018.

79

[33] D. L. McGuinness and F. van Harmelen. Owl 2 web ontology language, 02 2004.

[34] D. Mendez, A. Gaulton, A. P. Bento, J. Chambers, M. De Veij, E. Félix, M. Magariños, J. Mos-

quera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter, L. Junco, G. Mugumbate,

M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C. Radoux, A. Segura-Cabrera, A. Hersey, and

A. Leach. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research,

47(D1):D930–D940, 11 2018.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space, 2013.

[36] J. Mueller and A. Smola. Recognizing variables from their data via deep embeddings of

distributions. 2019 IEEE International Conference on Data Mining (ICDM), pages 1264–

1269, 2019.

[37] F. Nargesian, K. Q. Pu, E. Zhu, B. Ghadiri Bashardoost, and R. J. Miller. Organizing data lakes

for navigation. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’20, page 1939–1950, New York, NY, USA, 2020. Association

for Computing Machinery.

[38] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena. Data lake management:

Challenges and opportunities. Proc. VLDB Endow., 12(12):1986–1989, Aug. 2019.

[39] F. Naumann. Data profiling revisited. SIGMOD Rec., 42(4):40–49, Feb. 2014.

[40] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-scale knowledge

graphs: Lessons and challenges. Commun. ACM, 62(8):36–43, July 2019.

[41] M. Ota, H. Müller, J. Freire, and D. Srivastava. Data-driven domain discovery for structured

datasets. Proc. VLDB Endow., 13(7):953–967, Mar. 2020.

[42] F. Özcan, C. Lei, A. Quamar, and V. Efthymiou. Semantic enrichment of data for ai applica-

tions. In Proceedings of the Fifth Workshop on Data Management for End-To-End Machine

Learning, DEEM ’21, New York, NY, USA, 2021. Association for Computing Machinery.

80

[43] H. Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods.

Semantic Web, 8:489–508, 2017.

[44] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.

In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[45] F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing. Computing

in Science and Engineering, 9(3):21–29, May 2007.

[46] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. The

VLDB Journal, 10(4):334–350, Dec. 2001.

[47] S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Jr, S. Auer, J. Sequeda, and A. Ezzat. A survey

of current approaches for mapping of relational databases to rdf. W3C, 01 2009.

[48] J. F. Sequeda, W. J. Briggs, D. P. Miranker, and W. P. Heideman. A pay-as-you-go method-

ology to design and build enterprise knowledge graphs from relational databases. In C. Ghi-

dini, O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois, and

F. Gandon, editors, The Semantic Web – ISWC 2019, pages 526–545, Cham, 2019. Springer

International Publishing.

[49] S. Stardog Union. Bring actionable meaning to your data.

[50] M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of postgres. IEEE Transac-

tions on Knowledge and Data Engineering, 2(1):125–142, 1990.

[51] Systap. bigdata. Technical report, May 2013.

[52] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science in machine

learning. SIGKDD Explorations, 15(2):49–60, 2013.

[53] P. Wang, Y. He, R. Shea, J. Wang, and E. Wu. Deeper: A data enrichment system powered

by deep web. In Proceedings of the 2018 International Conference on Management of Data,

SIGMOD ’18, page 1801–1804, New York, NY, USA, 2018. Association for Computing Ma-

chinery.

81

[54] J. Weiner and N. Bronson. Facebook’s top open data problems, Oct 2014.

[55] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph

neural networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–21,

2020.

[56] S. Xia, N. Anzum, S. Salihoglu, and J. Zhao. Ktabulator: Interactive ad hoc table creation

using knowledge graphs. In Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Ma-

chinery.

[57] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,

and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, NSDI’12, page 2, USA, 2012. USENIX Association.

[58] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster comput-

ing with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud

Computing, HotCloud’10, page 10, USA, 2010. USENIX Association.

[59] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache

spark: A unified engine for big data processing. Commun. ACM, 59(11):56–65, Oct. 2016.

[60] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive data science. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’20, page 1951–1966, New York, NY, USA, 2020. Association for Computing Ma-

chinery.

[61] Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE Transactions on

Knowledge and Data Engineering, pages 1–1, 2020.

[62] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural networks: A review of

methods and applications. CoRR, abs/1812.08434, 2018.

82

[63] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller. Josie: Overlap set similarity search for

finding joinable tables in data lakes. In Proceedings of the 2019 International Conference on

Management of Data, SIGMOD ’19, page 847–864, New York, NY, USA, 2019. Association

for Computing Machinery.

83

	List of Figures
	List of Tables
	Introduction
	Overview
	Contributions
	Outline

	Related Work
	Current Portals
	Functionalites and Algorithms
	Systems
	RDB to RDF

	Background
	KG: Importance & Definitions
	KG Importance
	Several Definitions

	KG: Structures & Ontologies
	KG Structure
	Ontologies

	KG: Characteristics & Applications
	KG Characteristics
	KG Applications

	A Data Lake ontology & A Proof of Concept System
	System Overview
	Data Profiler
	LAC: Data Lake Ontology
	Glac: A Highly Interconnected KG
	GLac Builder
	Discovery Operations
	Embedding Similarity

	KGLac characteristics
	Apache Spark
	Elasticsearch
	RDF-star
	Pandas

	Use Case & Evaluation
	Use Case
	Data Lake
	Scenario

	Evaluation
	Semantic Similarity
	Content Similarity
	PKFKs

	Conclusion & Future Work
	LAC schema
	LAC Vocabulary

