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Abstract

Location Problems in Supply Chain Design: Concave Costs, Probabilistic Service
Levels, and Omnichannel Distribution

Aditya Malik, Ph.D.

Concordia University, 2021

Location of facilities such as plants, distribution centers in a supply chain plays critical role

in efficient management of logistics activities. Real-life supply chains are generally large in

size with multiple echelons, prone to disruptions and uncertainties, and constantly evolving

to meet customer demands in a fast and reliable way. Therefore, it is quite challenging to

identify these locations while balancing the trade-off between costs and service levels. In

this thesis, we investigate three supply chain design problems addressing various issues that

complicate the location of facilities in a supply chain.

The first paper investigates a multilevel capacitated facility location problem. Such prob-

lems commonly arise in large scale production-distribution supply chains with plants at one

echelon, and distribution centers / warehouse at another, and there is hierarchy of flow

between facilities and to the end customers such as retail stores. The operating costs at

facilities and transportation costs on arcs are assumed to be concave. The concave functions

model economies of scale in operations (such as production, handling, transportation) per-

formed at large scale and emission of green house gases from transportation activities. The

mathematical model for our problem is nonlinear (concave) for which we present two formu-

lations. The first formulation is a prevalent mixed-integer nonlinear program, and second is a

purely nonlinear programming problem. Extensive computations are performed to measure

the efficiency of two formulations, and managerial insights are provided to understand the

behavior of the model under different scenarios of concavities.

The second work focuses on e-commerce supply chains that have a common objective of

providing fast and reliable deliveries of customers’ orders. The order delivery time primarily

depends on the time taken to process the order at the facilities and travel time from facilities
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to customers. These two times are uncertain in practice, therefore, to capture the combined

effect of both uncertainties, we introduce a mathematical model with a requirement that all

customer orders should be delivered within a committed time with some probabilistic guar-

antee. The problem is formulated as a dynamic (multiperiod) capacitated facility location

problem with modular capacities. The probabilistic service level constraints make the prob-

lem nonconvex. We present two linear binary programming reformulations, and develop an

exact branch-and-cut algorithm utilizing the reformulations to solve large size instances. We

also include sensitivity analysis to study the change in network configuration under various

modeling parameters.

An increase in online sales every year is driving many brick-and-mortar retailers to follow

an omni-channel retailing approach that would integrate their online sales channel with

store sales. Omnichannel retailing requires a considerable change in current practices. For

instance, a retailer generally decides if there is a need of new distribution facilities, which

stores should be used as fulfillment centers as well, where to keep safety stocks, from where

to serve online demand, among others. To study these aspect, in the third paper, we propose

a novel mathematical model for the design of omnichannel distribution network along with

allocation of safety stock to the facilities. The original problem is nonlinear which can be

reformulated as conic quadratic mixed integer programming problem. The problem is solved

using a branch-and-cut solution algorithm. Further, we present several managerial insights

related to fulfillment and safety stock decisions using a small example.
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Chapter 1

Introduction

A supply chain is a network of entities such as, suppliers, manufacturers, warehouses, trans-

porters and retailers, that work in consonance to satisfy the demands for goods and services

of end customers. To stay profitable in today’s fiercely competitive economy, firms are always

looking for ways to make their supply chain more efficient. For many businesses, supply chain

costs vary as 10-20% of their revenues (OliverWyman [97]). Therefore, a lot of firms focus

on minimizing supply chain costs to increase profitability. One of the ways to reduce this

cost is through strategic placement of facilities and transportation routes in the supply chain

networks (Melo et al. [95]). Most of the literature assume that production, warehousing and

transportation costs in the supply chain are linear. However, in consideration of factors such

as economies of scale, and the fact that environmental costs from transportation activities

are known to be concave (Elhedhli and Merrick [40]), we model variable costs in the supply

chain as concave. Thus, we study a facility location model to optimize the total cost of

configuring a large scale production-distribution supply chain with concave costs.

A production-distribution system is an example of a classical supply chain in which

demand is represented by sales at large brick-and-mortar (B&M) retail stores, and customers

travel to these B&M stores to satisfy their demand. However, the advent of internet has

brought forth an e-commerce retail model, wherein businesses directly deal with individual
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customers through online retail stores (e.g., websites, mobile applications). The products

are directly delivered to customers’ homes in e-commerce business practices. For online

customers the quick, low cost (preferably free) and reliable delivery of the orders are some

important considerations while shopping online. For instance, a survey by Shipbob1 reports

that 74% of customers are more inclined towards retailers providing free shipping, and 38%

customers would not like to deal with the retailer if the orders were delayed in the past.

Therefore, to meet such expectations, location of facilities is critical in an e-commerce supply

chain. These locations not only affect the delivery time commitments but also the overall

supply chain costs. With such considerations in mind, we also present a problem that designs

an e-commerce supply chain while minimizing the total costs and providing guarantees on

delivery times.

The increasing popularity of online shopping has pushed many B&M retailers to include

online sales channel with in-store sales. This is commonly known as ‘Omnichannel Sales’

strategy. The integration of offline and online sales channels provides frictionless shopping

experience because customers can browse products online and buy in store, and vice-versa.

To improve shopping experience further, the shoppers are also provided with multiple options

to serve their demand, such as, home delivery, in-store, curb side or designated pick-up point

options. This strategy is beneficial for retailers too. They can leverage their well-established

network of B&M stores to provide multiple fulfillment options and to improve their last mile

delivery that can lead to lower delivery costs and higher customer service. Such opportunities

open several questions for the retailers to successfully implement omnichannel retailing. For

instance, B&M retailers must decide which stores to use in fulfilling online demand, whether

they need additional distribution facilities to reach online customers and what would the

impact be on costs, how much inventory should be allocated for each sales channel, and at

which locations, etc. These questions motivate us to investigate a problem for designing

distribution supply chain for an omnichannel retailer.

1https://www.shipbob.com/blog/ecommerce-shipping/
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Therefore, based on the problems studied, the contributions of this thesis can be classified

as follows.

• Problem modelling.

– To address a practical scenario of concave costs in facility location problems.

– To incorporate service level requirements for online order delivery times in e-

commerce supply chain

– To provide a new model for omnichannel distribution that integrates fulfillment

planning for in-store and online demand with home delivery option.

• Algorithmic development.

– To investigate mixed integer nonlinear and purely nonlinear programming models

to solve capaciated facility location problems with concave costs.

– To provide linear reformulations and develop branch-and-cut algorithms to solve

a dynamic capacitated facility location problem with stochastic demand and un-

certain order processing and travel times.

– To exploit underlying properties of mixed integer nonlinear model for Omnichan-

nel distribution network design problem to provide a conic quadratic mixed integer

programming reformulation.

• Managerial insights

– Analysis of impact of varying concave costs parameters on the location of manufac-

turing plants and distribution centers and allocation of customers to distribution

centers

– Evidence of potential benefits of studying dynamic capacity planning problem

from the perspective of service level commitments.
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– Showcasing the benefits of studying integrated planning (using distribution centers

and brick-and-mortar stores) to fulfill in-store and online demand with home

delivery option in an omnichannel distribution supply chain.

The rest of this thesis is organized as follows. Chapter 2 presents two formulations for a

multilevel capacitated location problem with concave costs. The first formulation is a preva-

lent mixed-integer nonlinear programming problem, whereas second one is purely nonlinear

programming problem. Extensive computations are done to compare the performance of two

formulations under different cost and capacity scenarios. In Chapter 3, we discuss a dynamic

(multiperiod) capacitated facility location problem with modular capacities and service level

restrictions on order delivery time. The problem is formulated as a binary nonconvex pro-

gram for which two linear reformulations are presented, and a branch-and-cut based exact

solution algorithm is developed. We compare the computational performance of three ver-

sions of the branch-and-cut algorithm. Chapter 4 presents an Omnichannel distribution

network design problem with integrated planning for in-store and online demand using a

common set of facilities. We exploit properties of the problem to present a conic quadratic

mixed integer programming reformulation. A branch-and-cut algorithm is developed for the

reformulated problem. Extensive computations are performed by varying model parameters

and costs. Finally, conclusions are presented in Chapter 5.
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Chapter 2

Multilevel Capacitated Discrete Location

with Concave Costs

Abstract

In this paper, we study a general class of multilevel capacitated discrete location problems

with concave costs. The concavity arises from the economies of scale in production, inventory

or handling at the facilities and from consolidation of flows for transportation and transship-

ment on the links connecting the facilities. Given the discrete nature of the problem, it is

naturally formulated as a mixed-integer nonlinear program that uses binary variables for

locational decisions and continuous variables for routing flows. We present an alternative

formulation that only uses continuous variables, resulting in a purely nonlinear program with

a concave objective function. We present an exact branch-and-bound algorithm to optimally

solve large-scale instances of the considered problems. We present algorithmic enhancements

such as alternative branching strategies and variable fixing, to improve the convergence of

the algorithm. Extensive computational experiments are performed to evaluate the strength

of the two formulations and the performance of the exact algorithms. Results obtained on

large-scale instances with up to 2,250 customers and 150 potential facilities, and two levels
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under different costs and capacity scenarios confirm the effectiveness of the purely nonlin-

ear formulation. We also present a sensitivity analysis on an instance considering the 3,109

counties in the contiguous USA, to understand the impact of varying economies of scale in

operations at the facilities and in transportation links connecting the facilities on the location

and allocation decisions.

2.1 Introduction

Discrete location problems (DLPs) are central problems in location science with applications

ranging from supply chain management (Melo et al. [94]), public policy (Salman and Yücel

[111]), health care (Ahmadi-Javid et al. [7]), and telecommunications (Fortz [49]), among

many others (Drezner and Hamacher [36], Laporte et al. [80]). Generally speaking, DLPs seek

to determine the location of facilities from a potential discrete set and to efficiently allocate

customers to open facilities to satisfy customer demands, while optimizing a given objective

function. Depending on the application and considered objective (costs, service quality,

profits), a wide range of DLPs have been studied. For instance, typical models with a cost-

based objective are: fixed-charge facility location (Kuehn and Hamburger [79], Fernández and

Landete [45]), which can be uncapacitated (Fischetti et al. [47]) or capacitated (Gadegaard

et al. [51]), p-median problems (Hakimi [61], Daskin and Maass [33]), uncapacitated p-location

problems (Ortiz-Astorquiza et al. [100]); whereas models optimizing service quality are: p-

center (Hakimi [61], Kramer et al. [77]), set covering (Toregas et al. [119], García and Marín

[55]), and maximum covering problem (Church and ReVelle [26], Máximo et al. [92]).

This paper focuses on an important class of DLPs arising in the design of hierarchical

systems. Multilevel facility location problems (MFLPs) deal with the location of interacting

facilities at different levels of a hierarchical system. Applications of MFLPs arise in a wide

variety of contexts such as production-distribution systems, health care systems, telecom-

munications systems, urban and air transportation systems, and cargo and postal delivery

6



systems. We refer to Şahin and Süral [108], Farahani et al. [43], Ortiz-Astorquiza et al. [99],

and Contreras and Ortiz-Astorquiza [29] for detailed surveys on MFLPs.

We study a general class of MFLPs denoted as multilevel capacitated facility location

problems with concave costs (MCFLP-Cs), which can be defined as follows. Let I be the set

of customers, V be the potential set of facilities partitioned into m levels, and the facilities at

every level 1 to m are assumed to be capacitated. We consider a fixed setup cost for opening

a facility and a variable operating cost at each facility modeled via a concave function of

the amount of flow passing through the facility. Transportation costs are also assumed to be

modeled with concave functions of the amount of flow routed though each link. We assume a

single-flow pattern in which flows start from facilities at the highest levelm and pass through

all levels until they arrive at their demand points at the customer level. Moreover, we consider

the possibility of transshipment flows. That is, a facility at level ` ∈ {1, 2, ..,m − 1} can

send flows to facilities located at the same level `. All customers receive shipments only

from facilities opened at the first level. We assume a multiple allocation strategy in which

customers can receive demand from more than one facility at level 1. The MCFLP-C consists

of selecting a set of facilities to open at each level, such that the incoming flow on each facility

satisfies its capacity limitations, while ensuring that all demand is met. The objective is to

minimize the total fixed and variable costs to open and operate a set of facilities, and the

variable transportation cost for all used links.

Potential applications of the MCFLP-C arise in the design and reconfiguration of pro-

duction distribution systems in which a two-level hierarchical structure is used. Let V1 and

V2 be the sets of potential locations among which production facilities and warehouses need

to be opened. Production, warehousing and distribution costs can be modeled as concave

functions of the quantities produced, stored and distributed, respectively. These concave

functions provide flexibility to the model, i.e., they can be used to represent various situa-

tions such as economies of scale in production, inventory and safety stock, and transportation,

as well as environmental costs associated with greenhouse gas emissions, supplier selection
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with quantity discount, and technology acquisition (see for instance, Elhedhli and Merrick

[40], Saif and Elhedhli [109], Soland [115], Vidyarthi et al. [123]). For the ease of exposition

and to alleviate the mathematical notation, we will focus on the particular case of m = 2,

i.e., the two-level capacitated facility location problem with concave costs (2CFLP-Cs), to il-

lustrate the proposed models and solutions algorithms. However, the models and algorithms

presented in this work can be readily extended to the more general case of m > 2.

The main contributions of this paper are as follows. First, we introduce a general class

of MFLPs in which variable operating costs at facilities and transportation costs on arcs

are concave functions of the flows. Second, we propose two mathematical programming

formulations for the 2CFLP-Cs. The first one is a prevalent mixed-integer nonlinear pro-

gram which models location decisions and fixed costs with binary variables, and flows with

continuous variables. The second formulation is a purely nonlinear program which includes

only continuous flow variables on facilities and arcs. At every facility, a fixed charge func-

tion models facility’s fixed and variable costs such that if the aggregated flow through that

facility is zero the total cost is zero, otherwise for flows greater than zero the total cost is

the sum of the fixed setup cost and variable operational cost which is concave. Third, we

develop exact branch-and-bound algorithms to solve large-scale instances using each of the

two formulations. These algorithms contain some algorithmic refinements such as an alter-

native branching strategy and a variable fixing test at the root node. We perform extensive

computational experiments to evaluate the strength of the proposed formulations and the

performance of the exact algorithms on problem instances with different cost and capacity

scenarios. Results obtained on large-scale instances with up to 2,250 customers and 150

potential facilities confirm the effectiveness of our solution approaches, in particular on the

one based on the purely nonlinear program. We also present sensitivity analysis on an in-

stance considering the 3,109 counties in the contiguous USA, to understand the impact of

economies of scale in facility operations and transportation on the location and allocation

decisions.
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The remainder of the paper is organized as follows. Section 2.2 presents a literature review

on related DLPs and MFLPs in which nonlinear objective functions are considered. Section

2.3 provides a formal definition of the 2CFLP-C and two mathematical programming formu-

lations. Section 2.4 describes the exact solution algorithms and algorithmic enhancements.

The results of extensive computational experiments are reported in Section 2.5. Conclusions

follow in Section 2.6.

2.2 Literature Review

We next provide a succinct review of the most relevant MFLPs to our work. For m = 1,

the problem reduces to a one-level DLP (Efroymson and Ray [38]). For m = 2, Kaufman

et al. [75] present a two-level uncapacitated location problem with sets of potential ware-

house and plant locations at first and second level, respectively. The customer demands are

satisfied from plants through warehouses, while minimizing the sum of fixed setup costs of

plants and warehouses, and linear variable costs which include production, warehousing, and

transportation costs. Pirkul and Jayaraman [102] consider a two-level capacitated DLP with

locational decisions at both levels. Aardal et al. [1] present an approximation algorithm for

a more general case of uncapacitated MFLPs with m ≥ 2 levels. Ortiz-Astorquiza et al. [98]

present different formulations for MFLPs considering facility location decisions and cardi-

nality constraints at each level. To the best of our knowledge, Ortiz-Astorquiza et al. [100]

study the most general class of uncapacitated MFLPs, in which not only cardinality con-

straints on the number of open facilities at each level are considered but also setup costs for

activating the links of the network. In all these MFLPs, the objective functions are assumed

to be linear functions of location, allocation, and operational decisions.

DLPs with nonlinear objective functions have also received significant attention. The

nonlinear objective functions may represent different scenarios such as congestion cost, dis-

economies/economies of scale, general setup costs, among others. Elhedhli [39] and Vidyarthi
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and Jayaswal [122] study capacitated DLPs in which congestion costs at facilities are mod-

eled with a convex function. They provide an exact solution algorithm by approximating

the convex function with a set of linear epigraph constraints (and variables) which are se-

quentially added in a cutting plane algorithm. For more discussion on DLPs with congestion

costs, we refer to Berman and Krass [17]. Harkness and ReVelle [62] assume diseconomies

of scale in production cost, where unit production cost increases with increase in production

levels. Such production cost functions represent scenarios where capacity of a facility can

be increased (e.g., by using extra workers, overtime or additional work shifts) to increase

the output, however, with each increase the per unit production cost also increases. The

authors model these costs as convex functions approximated with linear piecewise segments.

Under a more general setting, Lu et al. [85] concentrate on a problem with nonconvex terms

in the objective function. The authors argue that in the long-run, production costs follow

economies of scale (i.e., decrease in per unit cost with each additional output) to a certain

level of outputs, and after that these costs observe diseconomies of scale. Such features in

their work are captured with an inverse S-shaped function, which is first concave to a point

and then convex afterwards. Fischetti et al. [46] study a congested multiple allocation DLP

in which congestion costs are modeled with non-separable convex quadratic functions of ag-

gregated load at facilities. To obtain a tighter perspective reformulation, quadratic terms

are replaced with linear terms at the expense of adding second-order conic constraints. The

proposed reformulation is then solved with a generalized Benders decomposition using a

branch-and-cut algorithm.

The study of DLPs with concave terms in the objective function started with the work

of Feldman et al. [44], in which costs to locate and operate warehouses are included in sep-

arable concave functions representing economies of scale, whereas transportation costs are

assumed to be linear. They consider a one-level uncapacitated DLP, and develop a heuris-

tic approach to find near optimal solutions. Zangwill [128] models certain special cases of

uncapacitated concave DLPs as a single commodity minimum concave cost network flow
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problem. For these cases, this work proposes an efficient algorithm based on dynamic pro-

gramming and on the property that an optimal solution of a concave problem can be found

in an extreme point of the feasible region. Soland [115] considers a one-level capacitated

DLP in which transportation costs are modeled with separable concave functions, and devel-

ops a branch-and-bound algorithm to solve the problem. Lower and upper bounds at every

node of the tree are obtained by solving a linear transportation problem, in which linear

approximations of the concave functions are considered. Kelly and Khumawala [76] focus

on mixed-integer programming (MIP) formulation to model one-level DLPs with concave

warehousing costs. Their solution approach is based on linear under- and over-estimates of

concave functions, and it iteratively solves linear transportation problems to find optimal

solutions. Kubo and Kasugai [78] consider the same model as in Soland [115]. They argue

that the branch-and-bound algorithm of Soland [115] is mainly effective in problems with

a relatively small number of concave functions, otherwise the enumeration algorithm may

require a considerable amount of memory and computational time to converge to an optimal

solution. The authors present instead an algorithm based on Lagrangian relaxation to pro-

vide tighter lower and upper bounds. The algorithm is particularly effective in single-level

problems as the Lagrangian subproblems can be further decomposed into smaller indepen-

dent subproblems, which are easy to tackle. Their upper bounding procedure considers

locational decisions obtained from the Lagrangian subproblems to heuristically generate fea-

sible solutions. Aboolian et al. [4] also study a single uncapacitated facility location problem,

and develop a Search-and-Cut algorithm in which lower bound is continually improved and

upper bound is obtained heuristically.

Cohen and Moon [28] study a multiproduct supply chain problem with a set of potential

plant locations. The decisions include assignment of product lines to plants, and shipment

volumes from suppliers to plants, and plants to warehouses (acting as demand points). The

plants have fixed capacities for each product, and the production cost at each plant-product

combination is a piecewise concave function while the transportation costs are linear. Lin
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et al. [83] address a distribution network problem with uncapacitated facilities and location

decisions at two levels. The distribution network consists of plants (fixed locations), potential

sets of consolidation and distribution centers, and retailers. They assume linear facility

variable costs, concave transportation costs, and solve the concave problem heuristically.

Baumgartner et al. [12] focus on an uncapacitated DLP with economies of scale in production

at plants, in storage at tanks and in transportation. The design decisions in their model

include location of storage tanks and selection of transportation routes. The various concave

costs are interpreted as piecewise segments, where the first segment represents a flat rate

(fixed charge) up to a certain volume, and afterwards each segment represents per unit

cost charged for additional volume. They solve the resulting MIP with a standard branch-

and-bound algorithm and develop a heuristic algorithm for providing feasible solutions to

large-scale instances. Elhedhli and Merrick [40] consider a sustainable supply chain network

design problem with a known set of uncapacitated plants, a potential set of capacitated

warehouses, and a set of customers. They assume that transportation activities in the

supply chain lead to emissions of green house gases. The amount of emissions, and hence the

emission costs are a concave function of the weight of the shipments on the arcs. The problem

seeks to optimize traditional supply chain costs and nonlinear emission costs. They use a

Lagrangian relaxation to decompose the problem into two subproblems, and the nonlinear

concave functions are tackled in one of the subproblem that is further decomposed into linear

knapsack problems.

Concave functions find applications in other DLPs as well. Hajiaghayi et al. [60] deal

with general setup cost functions. These functions arise in applications where multiple types

of facilities are to be co-located, for instance, the problem of placing servers on the Internet.

Their objective function comprises of site setup costs (fixed) and facility setup costs, which

are concave functions of the number of customers assigned or the number of facilities co-

located at each site. In the context of production-inventory-distribution systems, Vidyarthi

et al. [123], Daskin et al. [34], Shen et al. [113], and Shen and Daskin [112] use a concave
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expression to model inventory levels and corresponding inventory costs at facilities. Saif and

Elhedhli [109] consider a facility location problem in which costs to acquire the technology

are concave.

2.3 Problem Definition and Formulations

The 2CFLP-C is defined as follows. Let G = (V,E) be a directed graph with vertex set

V = V1 ∪ V2 ∪ I, where V1 and V2 are the set of potential facilities at level 1 (intermediate

facilities) and level 2 (origin facilities), respectively, and I is the set of customers. We define

the directed arc set E = E1 ∪ E2 ∪ Et, where E1 = {{j, i} : j ∈ V1, i ∈ I} is the set of arcs

connecting the intermediate facilities (level 1) to customers, E2 = {{k, j} : k ∈ V2, j ∈ V1}

is the set of arcs representing the flows from the origin facilities (level 2) to the intermediate

facilities (level 1), and Et = {{j, j′} : j ∈ V1, j
′ ∈ V1, j 6= j′} is the set of transshipment

arcs interconnecting the intermediate facilities. Let Di be the customer’s demand at node

i ∈ I. For r = 1, 2, let frj denote the nonnegative fixed cost associated with locating/opening

facility at node j ∈ Vr and brj be its capacity. Following the literature (Vidyarthi et al. [123])

of the facility location problem, we further assume that the maximum capacity value at each

node is fixed and known in advance.

We define binary location variables z1j and z2k equal to one if and only if facility is

located at node j ∈ V1 and k ∈ V2, respectively. Also, vj and uk are continuous flow

variables at node j ∈ V1 and k ∈ V2, respectively, and Wj(vj) and Pk(uk) are their respective

operating cost functions. The functions Wj(vj) and Pk(uk) modeling operating costs at the

first-level and second-level facilities, respectively, are assumed to be univariate and separable

concave functions. Moreover, for each e ∈ E we define and classify set of continuous flow

variables on the arcs as follows: x1 = {x1ji : {j, i} ∈ E1}, x2 = {x2kj : {k, j} ∈ E2} and

y = {yjj′ : {j, j′} ∈ Et}. Similarly, we define C1(x1), C2(x2) and C(y) as concave cost

functions on arc sets E1, E2 and Et, respectively. The 2CFLP-Cs consists of selecting sets of
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facilities to open at each level, determining the flows through the facilities at the two levels,

and assigning each customer to a set of open facilities, while minimizing the sum of fixed

location costs and variable operating and transportation costs. With the above notations, we

first present a mixed-integer nonlinear programming (MINLP) formulation for the 2CFLP-C

as follows:

(MINLP) minimize
∑
j∈V1

f1jz1j +Wj(vj) +
∑
j′∈V1
:j′ 6=j

Cjj′(yjj′) +
∑
i∈I

C1ji(x1ji)


+
∑
k∈V2

(
f2kz2k + Pk(uk) +

∑
j∈V1

C2kj(x2kj)

)
(2.1)

subject to
∑
j∈V1

x2kj = uk ≤ b2kz2k ∀ k ∈ V2 (2.2)

∑
k∈V2

x2kj +
∑
j′∈V1
:j′ 6=j

yj′j = vj ≤ b1jz1j ∀ j ∈ V1 (2.3)

∑
k∈V2

x2kj +
∑
j′∈V1
:j′ 6=j

yj′j =
∑
j′∈V1
:j′ 6=j

yjj′ +
∑
i∈I

x1ji ∀ j ∈ V1 (2.4)

∑
j∈V1

x1ji = Di ∀ i ∈ I (2.5)

z ∈ {0, 1},u ≥ 0,v ≥ 0,x1 ≥ 0,x2 ≥ 0,y ≥ 0. (2.6)

The objective function consists of two sets of costs. The first set comprises of the fixed

costs of opening and variable costs of operating the first-level facilities, transshipment costs

between the first-level facilities, and flow costs from the first-level facilities to the customers.

The second set consists of the fixed costs of opening and variable costs of operating the

second-level facilities, and the flow costs from the second- to first-level facilities. Constraint

sets (2.2) and (2.3) are linking and capacity restrictions for facilities at the second and

first levels, respectively. Constraints (2.4) are flow balance constraints at the intermediate

facilities. Constraints (2.5) ensure that the customers’ demands are met. Constraint (2.6)
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are standard non-negativity and integrality restrictions on the decision variables.

Observe that in the above formulation, fixed costs at both levels are modeled using the

binary variables z1j and z2k in the objective function. We next present a purely continuous

nonlinear formulation of the 2CFLP-C that does not require the use of binary variables.

This nonlinear programming (NLP) formulation is based on the following concave functions:

Θj(vj) =


0 if vj = 0

f1j +Wj(vj) if vj >0,
Ωk(uk) =


0 if uk = 0

f2k + Pk(uk) if uk >0.
(2.7)

Given that the fixed costs are embedded into the modified operational functions Θj(vj)

and Ωk(uk), there is no need to consider binary variables to represent them (as it is often

done when modeling DLPs). Combining Θj(vj) and Ωk(uk) with the continuous variables

used in MINLP, the 2CFLP-C can be reformulated as:

(NLP) minimize
∑
j∈V1

Θj(vj) +
∑
j′∈V1
:j′ 6=j

Cjj′(yjj′) +
∑
i∈I

C1ji(x1ji)

+

∑
k∈V2

(
Ωk(uk) +

∑
j∈V1

C2kj(x2kj)

)
(2.8)

subject to (2.4)− (2.5)∑
j∈V1

x1kj = uk ≤ b2k ∀ k ∈ V2 (2.9)

∑
k∈V2

x2kj +
∑
j′∈V1
:j′ 6=j

yj′j = vj ≤ b1j ∀ j ∈ V1 (2.10)

u ≥ 0,v ≥ 0,x1 ≥ 0,x2 ≥ 0,y ≥ 0 (2.11)

The objective function consists of the concave functions Θj(vj) and Ωj(vj) that capture the

fixed opening and variable operating costs of the first-level and second-level facilities, respec-

tively. Constraint sets (2.9) and (2.10) are capacity constraints at the facilities. Constraints
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(2.11) are standard non-negativity restrictions on continuous variables.

2.4 Exact Solution Algorithms

We next present two exact algorithms for the 2CFLP-C. They are based on the branch-and-

bound (BB) algorithms introduced in Falk and Soland [41] and Soland [115] for continuous

separable concave minimization problems. This BB algorithm is an iterative procedure that

solves a convex relaxation of the original problem at every node of the enumeration tree.

The optimal solution value of the relaxed problem provides a valid lower bound on the

original problem. At each node, an upper bound is obtained either heuristically or simply by

evaluating the original nonlinear objective function using the solution of the current node.

If the desired optimality tolerance has not been achieved, a node is selected from a list of

unexplored nodes and two child nodes are created by branching (i.e., partitioning) on the

domain of a continuous decision variable.

The tightest convex relaxation of a concave univariate function is the line segment joining

the end points of the concave function on the domain of the variable. This is the relaxation

that we follow in this work. Other approaches specific to concave minimization problems

are broadly based on cutting planes, e.g., Hoffman [64], Tuy et al. [120], and on piecewise

inner-approximations of concave functions (Baumgartner et al. [12]). Manousiouthakis et al.

[87] present a method to linearize concave power law function resulting in an optimization

problem with linear and convex constraints. Ryoo and Sahinidis [106] introduce a branch-

and-reduce algorithm which enforces strong domain reduction rules in addition to standard

domain reduction techniques commonly used in BB algorithms. This algorithm is available in

BARON, a state-of-the-art global optimization solver for nonconvex optimization problems.

In Section 2.5, we compare BARON with our proposed BB algorithms.

In what follows, we provide a succinct overview of a generic BB algorithm used to solve

continuous separable concave minimization problems. For more details on this algorithm,
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we refer readers to Lawler and Wood [81], Falk and Soland [41], and Soland [115]. For a

survey on different solution algorithms for convex and nonconvex MINLPs, we refer to Burer

and Letchford [20], Lee and Leyffer [82], and D’Ambrosio and Lodi [32]. We then describe

how this algorithm can be used to solve MINLP and NLP. We also present a preprocessing

phase to efficiently fix some location decisions before branching on the continuous flow vari-

ables. Finally, we describe two approaches to select the considered partitioning point when

branching on the flow variables.

2.4.1 A BB Algorithm for Separable Concave Minimization Prob-

lems

Consider the following concave minimization problem:

(P) minimize
n∑
i=1

fi(xi)

subject to x ∈ D

Li ≤ xi ≤ Ui ∀i = 1, .., n,

where we assume D is a polyhedral set, and each fi(xi) is univariate and concave over the

set Gi = {xi|Li ≤ xi ≤ Ui}, where Li ≥ 0 and Ui are finite. We define G =
n⋃
i=1

Gi. P is

a concave minimization problem whose optimal solution lies at some extreme point of the

polytope D
⋂
G. Further, let N0, N1, ..... be the nodes of the enumeration tree. We denote

N0 as the root node of the enumeration tree with the concave minimization problem at N0

equals to P. The problem at any node Na is defined over the feasible region D
⋂
Ga, where

Ga ⊂ G, i.e.,

Ga
i = {xi|Li ≤ Lai ≤ xi ≤ Ua

i ≤ Ui} ∀i = 1, .., n.

We first describe the bounding step of the algorithm. The concave problem at node Na
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is relaxed using φai as the underestimator of fi(xi). The function φai (xi) is the equation

associated with the line segment joining the points (Lai , fi(L
a
i )) and (Ua

i , fi(U
a
i )). Given

that fi(xi) is concave, for xi ∈ [Lai , U
a
i ], we have φai (xi) ≤ fi(xi), and for x ∈ Ga, we have∑n

i=1 φ
a
i (xi) ≤

∑n
i=1 fi(xi) (see, Figure 2.2a). Therefore, the lower bound LB(Na) at node

Na is obtained by solving the following optimization problem:

(Pa
L) LB(Na) = minimize

n∑
i=1

φai (xi)

subject to x ∈ D

Lai ≤ xi ≤ Ua
i ∀i = 1, .., n.

Let x̂a be the optimal solution of Pa
L. The value of upper bound, UBa(Na) at node Na is

equal to
∑n

i=1 fi(x̂
a
i ). From now on, we refer to φi(xi) as the linear underestimation function

(LUF) of fi(xi), and Pa
L as the linear underestimation problem (LUP) at node Na.

At iteration r, the branching step partitions a selected node N s into two child nodes

N2r+1 (left node) and N2r+2 (right node), with rectangles G2r+1, G2r+2 ⊂ Gs, such that

Gs = G2r+1
⋃
G2r+2. The branching step further consist of three sub-steps: (1) node selection

(best bound), (2) variable selection (worst approximation), and (3) branching point selection

to create rectangles. Note that we create two new rectangles by branching on single dimension

i.e. the variable selected for branching. Let π = {Np, N q, ...} be the list of available nodes

at iteration rth, i.e., the nodes from which no branching has been performed yet. We use a

best bound strategy to select the node for branching, therefore N s = πn, where

n ∈ arg min {LB(πt) : t = 1, .., |π|} .

Given that N s is the node with lowest lower bound value in the set π, the best lower

bound (BestLB) of P is equal to LB(N s). The index of the variable for branching is selected
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as

j ∈ arg max {fi(x̂si )− φ(x̂si ) : i = 1, .., n} ,

i.e., a concave function with the worst underestimation in solution x̂s of Ps
L at node N s.

The solution value of the variable xj lies in the interval [Lsj , U
s
j ]. We divide this interval

into two intervals: [Lsj , Sj] and [Sj, U
s
j ] and create their associated nodes N2r+1 and N2r+2,

respectively. The performance of the algorithm is further dependent on how point Sj is

selected. Note that the concave subproblems at nodes N2r+1 and N2r+2 differ from each

other and from the subproblem at node N s only in the interval limits of variable xj, while

the limits for all other variables xi ∀i = {1, .., n} \ {j} are same in these subproblems. The

overall BB algorithm is depicted in Algorithm 3 in the Appendix.

2.4.2 Using MINLP as Bounding Procedure

We next describe how Algorithm 1 can be adapted to solve 2CFLP-Cs using MINLP. For

each node Na, we define pak(uk) and waj (vj) as LUFs for the univariate concave functions

Pk(uk) and Wj(vj), respectively. Similarly, ca1ji(x1ji), ca2kj(x2kj) and cajj′(yjj′) are LUFs for

Ca
1ji(x1ji), Ca

2kj(x2kj), and Ca
jj′(yjj′), respectively. Therefore, the LUP for MINLP at node

Na is:

(MPa
L) minimize

∑
j∈V1

f1jz1j + waj (vj) +
∑
j′∈V1
:j′ 6=j

cajj′(yjj′) +
∑
i∈I

ca1ji(x1ji)

+

∑
k∈V2

(
f2kz2k + pak(uk) +

∑
j∈V1

ca2kj(x2kj)

)
(2.12)

subject to (2.2)− (2.6)

La2k ≤ uk ≤ Ua
2k ∀ k ∈ V2 (2.13)

La1j ≤ vj ≤ Ua
1j ∀ j ∈ V1 (2.14)

La2kj ≤ x2kj ≤ Ua
2kj ∀ k ∈ V2, j ∈ V1 (2.15)
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Lajj′ ≤ yjj′ ≤ Ua
jj′ ∀ j ∈ V1, j

′ ∈ V1 : j′ 6= j (2.16)

La1ji ≤ x1ji ≤ Ua
1ji ∀ j ∈ V1, i ∈ I. (2.17)

The objective function (2.12) is linear, and constraints (2.13) – (2.17) impose lower and

upper limits on continuous variables at node Na. At root node, lower limits of all variables

in MP0
L are set to 0, and the upper limits are given in Table 2.1.

Table 2.1: Upper limits at root node

Data Parameter Value

U0
2k ∀k ∈ V2 min{b2k,

∑
i∈I Di}

U0
1j ∀j ∈ V1 min{b1j ,

∑
i∈I Di}

U0
2kj ∀k ∈ V2, j ∈ V1 min{b2k, b1j ,

∑
1∈I Di}

U0
jj′ ∀j ∈ V1, j

′ ∈ V1 min{b1j , b1j′ ,
∑

1∈I Di}

U0
1ji ∀j ∈ V1, i ∈ I min{b1j , Di}

Note that MPa
L is an MILP in which integrality conditions on the z variables are kept.

Therefore, similar to BB algorithms based on Lagrangean relaxations (Contreras et al. [e.g.,

30]), we use an MILP as a bounding procedure at each node of the enumeration tree. The

advantage is that MPa
L provide stronger bounds as compared to a continuous linear relaxation

whereas the disadvantage is clearly the increased computational time to solve MPa
L. In

Section 2.5, we assess the computational benefits of using MILPs as bounding procedures as

compared to continuous relaxations.

2.4.3 Using NLP as Bounding Procedure

We now describe how Algorithm 1 can be adapted to solve 2CFLP-Cs using NLP. For each

node Na, we define θaj (vj) ∀j ∈ V1 and ωak(uk) ∀k ∈ V2 as LUFs for concave operating cost

functions Θj(vj) and Ωk(uk), respectively, whereas, the LUFs for transportation costs are
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the same as in MINLP. The LUP for NLP at node Na is:

(NPa
L) minimize

∑
j∈V1

θaj (vj) +
∑
j′∈V1:
j′ 6=j

cajj′(yjj′) +
∑
i∈I

ca1ji(x1ji)

+

∑
k∈V2

(
ωak(uk) +

∑
j∈V1

ca2kj(x2kj)

)
(2.18)

subject to (2.9)− (2.11)

Lr2k ≤ uk ≤ U r
2k ∀ k ∈ V2 (2.19)

Lr1j ≤ vj ≤ U r
1j ∀ j ∈ V1 (2.20)

La2kj ≤ x2kj ≤ Ua
2kj ∀ k ∈ V2, j ∈ V1 (2.21)

Lajj′ ≤ yjj′ ≤ Ua
jj′ ∀ j ∈ V1, j

′ ∈ V1 : j′ 6= j (2.22)

La1ji ≤ x1ji ≤ Ua
1j1 ∀ j ∈ V1, i ∈ I. (2.23)

Objective function (2.18) is linear, and constraints (2.19)–(2.23) define lower and upper

limits (reduced domain) on variables corresponding to univariate concave functions. At root

node N0, all lower limits are set to zero, while upper limits are derived from data as shown

in Table 2.1.

Note that NPa
L is a (continuous) two-level transportation problem with no binary variables

for the location decisions. Therefore, we can state NPa
L as a minimum cost network flow

problem (MCNFLP). This allows us to use highly efficient network solvers which are much

faster when compared to a general purpose linear programming (LP) commercial solvers. In

what follows, we provide the details of the transformation of NPa
L into an MCNFLP.

Let node sets V2, V1 and I of graph G be the supply nodes, intermediate nodes and

sink nodes, respectively. To transform NPa
L into an MCNFLP, we augment G with sets of

dummy supply nodes V ′2 , dummy intermediate nodes V ′1 , and a dummy sink node i′. Let

d(k) and d′(k′) be the mapping functions for supply nodes such that ∀k ∈ V2, k
′ = d(k), and

∀k′ ∈ V ′2 , k = d′(k′). Similarly, let e(j) and e′(j′) be the mapping functions for intermediate
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nodes such that ∀j ∈ V1, j
′ = e(j), and ∀j′ ∈ V ′1 , k = e′(j′). Supply and demand are balanced

by setting the demand at dummy sink node i′ as
∑

k∈V2 b2k−
∑

i∈I Di. The augmented graph

GN for the network flow representation is depicted in Figure 2.1.

1

V2

1′

V ′2

k=d(k′) k′=d(k)

Supply Nodes

1

V1

V1

V ′1

j=e(j′) j′=e(j)
Intermediate Nodes

1

I

i′

Sink Nodes

Dummy Sink Node

Figure 2.1: Network flow representation of [LUNLP ](Graph : GN)

Dummy node i′ receives all its inflow directly from supply nodes set V2 with zero link

operating cost. A dummy supply node k′ ∈ V ′2 is linked only to its original supply node

k = d′(k′). Flow and capacity on an arc {k, k′}∀k ∈ V2, k
′ = d(k) represent operational

quantity decision uk and upper limit restriction on uk at facility k ∈ V2, respectively. An

intermediate node j ∈ V1 receives inflow from dummy supply nodes set V ′2 and dummy

intermediate nodes set V ′1 \ {j′}, where j′ = e(j). Also, dummy intermediate node j′ ∈ V ′1

has only one inflow arc from original intermediate node j = e′(j′), and the operational

quantity decision vj and upper limit restriction on vj at facility j ∈ V1 are represented

through flow on arc {j, e(j)}. Also, a sink node i ∈ I receives all its inflow from dummy

intermediate nodes set V ′1 . We define flow variables on arcs as: (i) u′kk′ ∀k ∈ V2, k
′ = d(k),

(ii) v′jj′ ∀j ∈ V1, j
′ = e(j), (iii) x′2k′j ∀k′ ∈ V ′2 , j ∈ V1, (iv) y′j′j ∀j′ ∈ V ′1 , j ∈ V1 \ {e′(j′)},

(v) x′1j′i ∀j′ ∈ V ′1 , i ∈ I, and (vi) x′ki′ ∀k ∈ V2. The NPa
L can be equivalently stated as the
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following MCNFLP:

(FPa
L) minimize

∑
j∈V1
j′=e(j)

θaj (v′jj′) +
∑
j′′∈V1
j′′ 6=j

caj′j′′(y
′
j′j′′) +

∑
i∈I

ca1j′i(x
′
1j′i)

+

∑
k∈V2
k′=d(k)

(
ωak(u

′
kk′) +

∑
j∈V1

ca2k′j(x
′
2k′j)

)
(2.24)

subject to u′kk′ + x′ki′ = b2k ∀ k ∈ V2, k
′ = d(k) (2.25)

u′kk′ =
∑
j∈V1

x′2k′j ∀ k′ ∈ V ′2 , k = d′(k′) (2.26)

∑
k′∈V ′

2

x′2k′j +
∑
j′′∈V ′

2 :
j′′ 6=j′

y′j′′j = v′jj′ ∀ j ∈ V1, j
′ = e(j) (2.27)

v′jj′ =
∑
j′′∈V1:
j′′ 6=j

y′j′j′′ +
∑
i∈I

x′1j′i ∀ j′ ∈ V ′1 , j = e′(j′) (2.28)

∑
j′∈V ′

1

x′1j′i = Di ∀ i ∈ I (2.29)

∑
k∈V2

x′ki′ = Di′ (2.30)

Lakk′ ≤ u′kk′ ≤ Ua
kk′ ∀ k ∈ V2, k

′ = d(k) (2.31)

Lajj′ ≤ v′jj′ ≤ Ua
jj′ ∀ j ∈ V1, j

′ = e(j) (2.32)

La2k′j ≤ x′2k′j ≤ Ua
2k′j ∀ k′ ∈ V ′2 , j ∈ V1 (2.33)

Laj′j ≤ y′j′j ≤ Ua
j′j ∀ j′ ∈ V ′1 , j ∈ V1 : j 6= e′(j′) (2.34)

La1j′i ≤ x′1j′i ≤ Ua
1j′i ∀ j′ ∈ V ′1 , i ∈ I (2.35)

u′, v′, x′
2, x

′
1, x

′, y′ ≥ 0. (2.36)

The costs terms in objective function (2.24) are in the same order as in (2.18). Constraints

(2.25)–(2.30) are flow conservation at node sets V2, V
′

2 , V1, V
′

1 , I and i′, respectively. Limits

on variables associated with concave functions are imposed in (2.31)–(2.35). Finally, (2.36)
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impose non-negativity restriction on flow variables.

The main advantage of MINLP over NLP, when used in Algorithm 1, is the strength of

its associated lower bounds at each node of the enumeration tree. From Figures 2.2a and

2.2b, we note that at any point x̂, the error deviation δN = F +f(x̂)−θN x̂ in NLP is greater

than the error deviation δM = f(x̂) − θM x̂ in MINLP. This difference arises given that the

fixed cost of opening a facility is included in the LUF of NLP but not in the LUF of MINLP.

The main disadvantage of MINLP over NLP is that to get these stronger bounds we need

to solve an MILP at each node, which is significantly more time consuming as compared to

solving the associated MCNFLPs of NLP with the network simplex algorithm of CPLEX.

In Section 2.5, we perform an extensive comparison of both approaches to determine under

which configuration of input parameters one bounding procedure may dominate the other.

(x̂, f(x̂))

δM θM

(a) MINLP

F

(x̂, F +f(x̂))

δN θN

(b) NLP

F

(x̂, F +f(x̂))

δNPP θNPP

(c) NLP after preprocessing

Figure 2.2: Underestimation of formulation at node Na
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2.4.4 Preprocessing Phase

Observe that MPa
L at a node Na corresponds to a discrete two-level capacitated facility

location problem which is challenging to solve for large-size instances. One way to reduce

the computational time of MPa
L is by fixing as many binary location variables as possible

before enumeration begins. Fixing facilities also reduces the computation time of FPa
L. In

this case, when a facility is fixed to zero, we can eliminate all the inflow/outflow from that

facility, whereas if a facility is fixed to one, the cost functions in equation (2.7) at that facility

reduces to Θj(vj) = f1j + Wj(vj) and Ωk(uk) = f2k + Pk(uk). That is, the constant terms

in the LUFs (θaj (vj) and ωak(uk)) always include the fixed costs of facilities, and the slope is

calculated on the concave operating cost only. On a fixed interval, the slope value at such

a facility is lesser than that when a facility is not fixed (see for instance, Figures 2.2b and

2.2c). Fixing facility location decisions to one tend to improve the linear underestimation at

each node, thus providing stronger lower bounds.

The preprocessing phase begins with solving MPa
L with no variables fixed, to give a valid

upper bound UB(N0) and location decision vector ẑ. Next, fix a facility decision variable z

= 1 (or 0) if ẑ = 0 (or 1) and reoptimize MPa
L. If the lower bound LB(N0) obtained after

reoptimizing is greater than UB(N0), then we permanently fix z = 0 (or 1) in subsequent

problems of the preprocessing phase. Let zF1j ∀ j ∈ V1 and zF2k ∀k ∈ V2 be the decision vectors

for fixing facilities at first and second level, respectively. The preprocessing phase is depicted

in Algorithm 1.

2.4.5 Partitioning Point Selection

At rth iteration of Algorithm 1, the node selected for branching is partitioned into two child

nodes that differ from their parent node and from each other in terms of the lower and

upper limits to be set on the variable selected for branching. We have empirically tested two

strategies to select the branching point Sj. The first strategy is the one described in Section

2.4.1, in which Sj = x̂j, where j is the index of variable x that gives maximum deviation, and

25



Algorithm 1: Preprocessing Phase
1: Solve MPa

L to give UB(N0), ẑ2k ∀ k ∈ V2 and ẑ1j∀ j ∈ V1.
2: for k = 1 to |V2| do
3: Temporarily set z2k = 1 (0) if ẑ2k = 0 (1).
4: Reoptimize MPa

L by considering zF2k′ ∀k′ = {1, ..., k − 1} that are already fixed.
5: if (LB(N0) > UB(N0)) then update zF2k = 0 (1)
6: end for
7: for j = 1 to |V1| do
8: Temporarily set z1j = 1 (0) if ẑ1j = 0 (1).
9: Reoptimize MPa

L by considering zF2k and zF1j′ ∀j′ = {1, ..., j − 1} that are already
fixed.

10: if(LB(N0) > UB(N0)) then update zF1j = 0 (1)
11: end for

x̂j is solution value of variable xj in the LUP at parent node. We denote it as the solution

point (SP) strategy. The advantage of this branching strategy is that when the solution of

the two child problems are close to that of the parent problem, it has a positive impact in

improving the lower bound quickly. We consider a second branching strategy in which we

select a point such that the sum of the area between a concave function and its respective

linear underestimation of the resulting child problems is minimum (Liu et al. [84]). This is

denoted as the minimum area point (MAP) strategy (see, Figure 2.3).

Lj Sj Uj

A1

A2

A3 A4

A5

Figure 2.3: Minimum area point strategy

This point can be obtained by solving following continuous optimization problem:

min
Sj

{A1 + A2 : Lj ≤ Sj ≤ Uj} ≡ max
Sj

{A3 + A4 + A5 : Lj ≤ Sj ≤ Uj} .

26



In Section 2.5, we perform an extensive comparison of both partitioning strategies to

determine under which configuration of input parameters one strategy may dominate the

other.

2.5 Computational Experiments

We present the results of our extensive computational experiments comparing the traditional

MINLP formulation and the purely continuous NLP formulation for the 2CFLP-C. We ana-

lyze the performance of the two branching strategies, preprocessing, and the BB algorithm

for the two formulations over problem instances under different cost structures and capacity

scenarios. All algorithms were coded in C++ and executed on an Intel Xeon E5-2687W

v3 processor at 3.10 GHz in a Linux environment. The algorithms were implemented using

CPLEX 12.6 Concert Technology with its default settings using one thread. In what follows,

we present the summary of the results of our experiments, whereas the detailed tables of the

results appear in the Appendix. We also present a sensitivity analysis using real location

data from the 3,109 counties of the contiguous United States to analyze the solution output

of our model under different concave costs.

2.5.1 Benchmark Instances

The first set of test problems are generated using the scheme proposed in Vidyarthi et al.

[123]. The coordinates for facilities and customers are generated uniformly as U [10,100].

Customer demand Di is randomly generated with U [50,300]. The capacities of the poten-

tial facilities at the first level (b1j) and second level (b2k) are first generated uniformly on

U [10,160] and then scaled such that
∑

j∈V1
b1j∑

i∈I Di
=

∑
k∈V2

b2k∑
i∈I Di

= κ, where, κ ≥ 0 is a scaling

parameter varied to represent different capacity scenarios (e.g. tight capacity and excess

capacity). Fixed costs of the first and second level facilities are set to f1j = α1× (U [0, 250] +

U [10, 100] × (b1j)
0.5) and f2k = α2 × (U [0, 250] + U [10, 100] × (b2k)

0.5), respectively, where
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α1 ≥ 0 and α2 ≥ 0 are scaling parameters. We model various concave costs with power law

function f(x) = Axλ, where A is a non-negative constant, and exponent λ ∈ (0, 1) ensures

that f(x) is concave over it’s domain. We set λ = 0.5 in our computational experiments

unless otherwise stated. Thus, transportation costs on the links are captured using the fol-

lowing concave functions: C1ji(x1ji) = β × (0.2× d1ji)x
λ
1ji, C2kj(x2kj) = β × (0.2× d2kj)x

λ
2kj

and Cjj′(yjj′) = β×(0.2×djj′)yλjj′ , where, d1ji, d2kj, and djj′ are euclidean distances between

nodes: i ∈ I, j, j′ ∈ V1, k ∈ V2, and β ≥ 0 is a scaling parameter. Variable costs at the first

and second level facilities are Wj(vj) = γ1×U [10, 50]× vλj and Pk(uk) = γ2×U [10, 50]× uλk ,

respectively, where γ1 ≥ 0 and γ2 ≥ 0 are scaling parameters. The scaling parameters

(β, α1, α2, γ1, γ2, and κ) are varied to generate instances with balanced cost, dominant fixed

cost, dominant variable cost, tight capacity, and excess capacity scenarios. Balanced cost

scenario refers to instances in which the facility fixed cost (FFC), facility variable cost (FVC),

and transportation cost (TrC) are fairly evenly distributed. In dominant fixed cost scenario,

the FFC accounts for more than 50% of the total cost (FFC+FVC+TrC). In dominant vari-

able cost scenario, the (FVC+TrC) accounts for more than 50% of the total cost. In tight

capacity scenario, the sum of the capacities of the potential facilities at each level is three

times the total demand. In excess capacity scenario, the sum of the capacities of the poten-

tial facilities at each level is seven times the total demand. We vary the scaling parameters

to generate instances under different scenarios as follows:

• Balanced Cost (BC): β = 1, α1 = 1, α2 = 1, γ1 = 1, γ2 = 1, and κ = 5

• Tight Capacity (TC): β = 1, α1 = 1, α2 = 1, γ1 = 1, γ2 = 1, and κ = 3

• Excess Capacity (EC): β = 1, α1 = 1, α2 = 1, γ1 = 1, γ2 = 1, and κ = 7

• Dominant Fixed Cost (DFC): β = 1, α1 ∼ U [4,6], α2 ∼ U [4,6], γ1 = 1, γ2 = 1, and

κ = 5

• Dominant Variable Cost (DVC): β ∼ U [4,6], α1 = 1, α2 = 1, γ1 ∼ U [4,6], γ2 ∼ U [4,6]

and κ = 5
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Table 2.2 provides the details of the test instances such as the number of potential

facilities at the first and second levels as well as the number of customers for every problem

instance. These instances are categorised into five sets. For example, Set I comprises of

fours instances in which the number of potential facilities at first level and second level are

40 and 10, respectively, whereas the number of customers vary from 200 in instance 1, 300 in

instance 2, 400 in instance 3 to 500 in instance 4. The largest problem instance #20 (Set V)

comprises of 100 potential facilities at the first level, 50 potential facilities at the second level

and 2,250 customers. Thus, our set of test problems comprises of a total of 100 instances as

a result of the combination of five scenarios (BC, TC, EC, DFC, and DVC) and 20 instances

(Set I to V).

Table 2.2: Details of Test Instances

No. of Potential Facilities
Set Instance Level 1 Level 2 No. of Customers
I 1, 2, 3, 4 40 10 200, 300, 400, 500
II 5, 6, 7, 8 55 20 600, 700, 800, 900
III 9, 10, 11, 12 70 30 1000, 1100, 1200, 1300
IV 13, 14, 15, 16 85 40 1400, 1500, 1625, 1750
V 17, 18, 19, 20 100 50 1875, 2000, 2125, 2250

2.5.2 Computational Performance

In our preliminary computational experiments, we used BARON, a state-of-the-art solver

for nonconvex optimization problems to solve the MINLP formulation to global optimality.

The obtained results indicated that BARON takes excessive time to solve even a small

size problem to optimality. Furthermore, even for instances in Set I, BARON yields huge

optimality gaps within a time limit of one day of computation time.

In the remainder of this section, we report the results of the computational experiments

with the proposed exact solution algorithm. In the first set of experiments, we compare the
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performance of two branching strategies. We then analyze the impact of preprocessing on

the MINLP and NLP formulations. Finally, we report the performance of the BB algorithm

on the MINLP and NLP formulations under a variety of cost structures.

2.5.2.1 Performance of Branching Strategies

We compare the performance of the two branching strategies using both MINLP and NLP

formulations. For this set of experiments, we select six medium-size instances (#9 to #14),

and solve them using the proposed BB algorithm under various scenarios. The termination

criteria is set to an optimality gap of 0.1% and a time limit of 86,400 secs (24 hours). A

summary of the results is presented in Table 2.3, whereas the detailed results are reported

in Tables A.1 and A.2 in the Appendix. The columns SPg and MAPg report the aver-

age optimality gap (%) obtained from the SP and MAP branching strategies, respectively,

whereas columns SPt and MAPt report average CPU time in seconds. The reduction in the

computational time is reported in the column %Reduction, which is computed as follows:

%Reduction = (SPt−MAPt)×100
SPt

. For instances where the BB algorithm did not converge to an

optimality gap of 0.1% within prescribed time limit, we write ‘time’ in the corresponding

entry of the table. Next two columns lists number of instances out of six that are solved

to the desired optimiality gap within time limit using each strategy. Finally, in the last

column SP/MAP, we report the number of instance on which SP outperformed MAP and

MAP outperformed SP. We use the notation n/m to indicate that out of (n+m) instances,

SP outperformed MAP on n instances and MAP outperformed SP on m instances.

From Table 2.3, we observe that the SP strategy performs slightly better than the MAP

strategy on four (out of six) instances using the MINLP formulation as SP reports an average

optimality gap of 0.15% (as compared to 0.16% by MAP) at termination. Moreover, using

the NLP formulation, the SP strategy outperforms the MAP strategy in all six instances with

an average optimality gap of 0.11% (compared to 0.14%) and a 36% reduction in average

CPU time.
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Table 2.3: Summary of Performance of Branching Strategies on MINLP and NLP Formula-
tions

Average Gap (%) Average Time (s) # Inst Opt
Formulation Scenario SPg MAPg SPt MAPt %Reduction SP MAP SP/MAP
MINLP BC 0.15 0.16 time time - 0 0 4/2

DFC 0.11 0.10 34,409 24,271 29 4 5 1/5
DVC 0.20 0.19 79,476 time -9 1 0 3/3
EC 0.15 0.14 50,115 52,208 -4 3 3 2/4
TC 0.40 0.39 time time - 0 0 2/4

NLP BC 0.11 0.14 63,697 time -36 2 0 6/0
DFC 0.10 0.10 12,056 1,699 86 6 6 0/6
DVC 0.13 0.14 61,433 time -41 3 0 5/1
EC 0.10 0.11 33,257 42,846 -29 5 4 5/1
TC 0.30 0.29 time time - 0 0 4/2

Under the DFC scenario, using the MINLP formulation, we were able to solve four (out

of six) instances with the SP strategy and five (out of six) instances with the MAP strategy

to optimality. However, using the NLP formulation and the two branching strategies, the

BB algorithm was able to solve all six instances to optimality with an average gap of 0.10%.

The average optimality gap of the MINLP formulation under the SP and MAP strategies

are 0.11% and 0.10% respectively. However, note that the average CPU times of the two

strategies are significantly different under both formulations. The MAP strategy is com-

putationally efficient compared to SP as it reduces the CPU time by 86% using the NLP

formulation and 29% with the MINLP formulation.

Under the DVC scenario, we observe that using the MINLP formulation and the SP

strategy, we were able to solve one (out of six) instance to optimality compared to none

with the MAP strategy. Using the NLP formulation, we were able to solve two (out of six)

instances to optimality with the SP strategy and none with the MAP strategy. The average

gaps of the MINLP formulation under the SP and MAP strategies are 0.20% and 0.19%,

respectively. The average gaps of the NLP formulation under the SP and MAP strategies are

0.13% and 0.14%, respectively. Hence, under the DVC scenario, using the NLP formulation,

SP outperforms MAP on five (out of six) instances with a 41% reduction in average CPU

time.

Under the EC scenario, using the NLP formulation, five (out of six) instances were solved
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to optimality with the SP strategy and four (out of six) instances with the MAP strategy.

Furthermore, SP outperforms MAP on five (out of six) instances especially in the case of

the NLP formulation with a 29% reduction in average CPU time. Finally, under the TC

scenario, there is no clear distinction between the performance of the two strategies as none

of the instances were solved to optimality within the time limit and the average optimality

gaps at terminations are also similar.

From these results, we observe that the right branching strategy for an instance is de-

pendent on the cost and capacity structures of the instance (i.e. the type of scenario). In

the rest of the experiments, we use a mix of both strategies as follows. We first categorize

every instance into a scenario. To do so, we use the upper bound information obtained at

the root node. More specifically, we determine the percentage of the facility fixed costs in

the upper bound value, and if that percentage is greater than 50% , the instance is then

categorized as DFC, and hence we use MAP branching strategy otherwise we use the SP

branching strategy.

2.5.2.2 Performance of Preprocessing

In the next set of experiments, we analyze the performance of preprocessing on the strength of

MINLP and NLP formulations. For this, we solve the medium-size instances #9 to #14 using

the MINLP and NLP formulations under every cost and capacity scenarios. We use the same

termination criteria as in the previous experiments. The results are summarized in Table

2.4 and the detailed results are provided in Tables A.3 and A.4 in the Appendix. Columns

WoPg and WoPt report the average optimality gap and CPU time without preprocessing,

respectively. Similarly, columns WPg and WPt report the average optimality gap and CPU

time with preprocessing, respectively. The column “%Reduction" reports the percentage

reduction obtained in CPU time as a result of preprocessing and is computed as: %Reduction(
= (WoPt−WPt)×100

WoPt

)
. In the last column WoP/WP, we use n/m notation to indicate that

out of (n+m) instances, n instances performed better without preprocessing and m with
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preprocessing.

From Table 2.4, we observe that under the BC scenario, preprocessing reduces the average

CPU time significantly using both the formulations. The reduction in average CPU time is

17% using the MINLP and 21% using the NLP formulations. Also, with preprocessing, the

average optimality gap is slightly lower with the MINLP formulation, i.e, 0.14% compared

to 0.15% without preprocessing. Under the DFC scenario, we observe that the average

optimality gaps with preprocessing are similar to those without preprocessing using both the

formulations. However, it is interesting to note that preprocessing reduces the average CPU

time significantly using the MINLP formulation (64%), but there is an increase of 43% in

average CPU time using the NLP formulation. Under the DVC scenarios, the preprocessing

increases the computational time for both the formulations. Under the EC scenario, using

the MINLP formulation, the preprocessing reduces the average optimality gap from 0.15%

to 0.12% and the average CPU time by 6%. With the NLP formulation, the preprocessing

reduces the average CPU time by 21%, however there is no impact on optimality gaps. We

note that none of the six instances under the TC scenario were solved to optimality gap of

0.1% under the time limit using any of the formulations. However, with preprocessing, we do

observe slight reduction in the optimality gap at termination in both the formulations. From

these results, we observe that preprocessing is recommended as it reduces the optimality gap

and/or the CPU time under BC, DFC, EC, and TC scenarios.

Additionally, in Table 2.5, we report the percentage of facilities fixed out of (|V1| + |V2|)

facilities at the root node. Note that our results indicate that preprocessing fixes an average

of 93% of the facilities under the DFC scenario. Also, as a result of preprocessing, we were

able to fix 66%, 64% and 48% of facilities under EC, BC and TC scenarios, respectively.

However, we were able to fix only 6% of the facilities under the DVC scenario. Furthermore,

in this scenario preprocessing is computationally inefficient in both the MINLP and NLP

formulations. Hence, we recommend preprocessing in all these scenarios except DVC. To

decide whether to perform preprocessing in our implementation, we first solve the root node

33



problem. If the percentage of fixed cost in the upper bound value from the root node solution

is less than 20% then we categorize the instance as DVC, and do not consider preprocessing

for that instance.

Table 2.4: Summary of Performance of Preprocessing on MINLP and NLP Formulations

Average Gap (%) Average Time (s)
Formulation Scenario WoPg WPg WoPt WPt %Reduction WoP/WP
MINLP BC 0.15 0.14 time 71,834 17 0/6

DFC 0.10 0.10 24,271 8,847 64 1/5
DVC 0.20 0.20 79,476 81,610 -3 3/3
EC 0.15 0.12 50,115 47,203 6 0/6
TC 0.40 0.38 time time - 0/6

NLP BC 0.11 0.11 63,697 50,043 21 1/5
DFC 0.10 0.10 1,699 2,428 -43 4/2
DVC 0.13 0.14 61,433 71,883 -17 6/0
EC 0.10 0.09 33,257 26,341 21 3/3
TC 0.30 0.29 time time - 2/4

Table 2.5: Effect of Preprocessing on the Percentage of Facilities Fixed at the Root Node

Percentage of Facilities Fixed under Scenario
Instance BC (%) DFC (%) DVC (%) EC (%) TC (%)

9 59 98 4 70 50
10 62 98 18 59 62
11 83 95 2 59 53
12 68 90 0 86 49
13 39 90 11 54 26
14 70 85 2 66 46

Average 64 93 6 66 48

2.5.2.3 Performance of BB Algorithm

In this set of computational experiment, we compare the performance of the BB algorithm

using the MINLP and NLP formulations along with the efficient branching strategy and

(with/without) preprocessing for various scenarios as identified from our previous computa-

tional results.

First, we establish a limit on the stopping criteria in terms of desired optimality gap to

make the final comparison between the performance of the two formulations. We analyze

the CPU time required to obtain solutions with different optimality gaps: 1%, 0.5%, 0.2%

and 0.1%. For this, we choose MINLP formulation because from the previous results (to
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establish the criterion for branching strategy and preprocessing) we realized that in those

subset of instances MINLP formulation is comparatively slower. The results for the medium-

size instances #9 to #14 under various scenarios and efficient branching and preprocessing

strategies are shown in Table 2.6.

From these results, it is evident that these instances converge to an optimality gap of 1%

in less than an hour. However, as we attempt to close this optimality gap further, the CPU

time increases many folds. For example, in the BC scenario, the average CPU time to reach

0.2% and 0.1% optimality gaps are 12 and 30 times higher, respectively, compared to the

time to reach 1% optimality gap. Under the DVC scenario, the average CPU time to reach

0.2% and 0.1% optimality gaps are 23 and 37 times higher, respectively, compared to the

time to reach 1% optimality gap. We observe similar multifold increase in CPU times in the

other scenarios as well. Also, we note that, under TC scenario, no optimal solutions were

found within a gap of 0.2% and 0.1% in time limit of 86,400 secs. Thus, in the remainder

of the experiments, we set the termination criteria to an optimality gap of 0.2% and a time

limit of 86,400 secs.

Table 2.6: CPU Times to Reach Different Optimality Gaps using MINLP Formulation

Branching With or Without Average Time (s)
Scenario Strategy Preprocessing Gap = 1 % Gap = 0.5% Gap = 0.2 % Gap = 0.1 %
BC SP WP 2,348 2,913 29,132 71,816
DFC MAP WP 1,352 1,353 1,585 8,847
DVC SP WoP 2,211 7,823 52,072 81,598
EC SP WP 2,837 4,721 19,816 47,199
TC SP WP 1,496 10,900 time time

Average 2,049 5,542 37,801 59,712

The performance of the BB algorithms is summarized in Table 2.7, whereas the detailed

results are provided in Tables A.5-A.9 in the Appendix. In Table 2.7, the first and the

second columns give the scenarios and sets of instances respectively. The next four columns

report the quality of the root node solution for both the formulations. Column MINLPrg

and NLPrg are root node gaps, and MINLPrt and NLPrt are CPU times needed to obtain

root node solution for the two formulations, respectively. We also report the performance
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of the BB algorithm on the two formulations based on the final optimality gap obtained at

termination or the time taken to converge to optimality gap of 0.2%. The next four columns

report the average optimality gaps (MINLPg, NLPg) and CPU times (MINLPt, NLPt) at

termination. The column “%Red" refers to the percentage reduction in CPU time of the

NLP formulation compared to the MINLP formulation. In the last column “MINLP/NLP”,

we use n/m notation to report the number of instances on which MINLP outperforms NLP

(n) and NLP outperforms MINLP (m) out of (n+m) instances.

Results in Table 2.7 indicate that under all the scenarios, the average optimality gap at

the root node for the MINLP formulation is lower than that of the NLP formulation. Note

that the average optimally gap at the root node for the MINLP formulation is 0.86% whereas

that of the NLP formulation is 2.40 %. However, the average CPU time to solve the root

node of the problem is lower for the NLP formulation. While it takes on average of 21 sec

to solve the problem using the MINLP formulation, it takes less than 1 sec using the NLP

formulation.

The performance of the BB algorithm at termination indicates that, on average, the

NLP formulation takes 30% less CPU time than the MINLP counterpart. The significant

reduction in CPU times using NLP formulation are obtained in EC (71%) and DFC scenarios

(59%) followed by BC scenario (40%), whereas in case of TC (20%) and DVC scenarios

(16%) the reductions are comparatively moderate. We also observe that NLP formulation

is particularly faster on large-size instances. For example, in the instances belonging to Set

V, NLP reduces CPU times by 78%, 62% and 25% under the EC, DFC, and BC scenarios,

respectively. Similar savings in CPU time are also observed in Set IV instances, where

the reductions are 68%, 57%, 50% and 29% under the EC, BC, DFC and DVC scenarios,

respectively.

The results in this table indicates that, out of 20 instances, the NLP outperforms MINLP

formulation on 19 instances each under the BC and TC scenarios, and on 16 instances under

the DFC scenario. Furthermore, the NLP formulation outperforms MINLP formulation on
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Table 2.7: Summary Results of Performance of BB Algorithm using MINLP and NLP For-
mulations

Root Node Performance Performance at Termination
Avg. Gap (%) Avg. Time(s) Avg. Gap (%) Avg. Time(s)

Scenario Set MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Red MINLP/NLP
BC I 1.21 2.93 < 1 < 1 0.18 0.20 90 78 13 1/3

II 0.94 2.32 1 < 1 0.20 0.19 689 467 32 0/4
III 0.90 2.53 6 < 1 0.20 0.20 7,564 3,774 50 0/4
IV 0.75 2.11 45 < 1 0.23 0.20 76,646 32,960 57 0/4
V 0.65 1.7 82 < 1 0.41 0.28 time 64,853 25 0/4
Avg. 0.89 2.32 27 <1 0.24 0.21 34,289 20,426 40 1/19

DFC I 0.55 2.83 < 1 < 1 0.19 0.19 22 23 -5 3/1
II 0.46 1.03 < 1 < 1 0.19 0.19 236 226 4 0/4
III 0.41 1.11 < 1 < 1 0.20 0.20 668 647 3 1/3
IV 0.35 2.27 6 < 1 0.20 0.20 5,797 2,885 50 0/4
V 0.29 1.4 28 < 1 0.20 0.20 38,411 14,625 62 0/4
Avg. 0.41 1.73 7 <1 0.20 0.20 9,027 3,681 59 4/16

DVC I 1.77 4.9 1 < 1 0.20 0.20 175 87 50 0/4
II 1.53 4.52 7 < 1 0.20 0.19 2,104 2,241 -7 2/2
III 1.31 3.23 10 < 1 0.19 0.19 34,887 26,218 25 1/3
IV 0.84 2.49 59 < 1 0.31 0.22 time 61,100 29 0/4
V 1.14 2.6 75 < 1 0.58 1.04 time time - 3/1
Avg. 1.32 3.55 30 <1 0.29 0.36 42,003 35,210 16 6/14

EC I 1.24 2.8 0 < 1 0.18 0.19 34 34 0 3/1
II 1.31 4.37 1 < 1 0.19 0.19 386 396 -3 3/1
III 1.08 3.08 9 < 1 0.20 0.18 4,339 3,577 18 1/3
IV 0.68 2.09 21 < 1 0.20 0.20 24,354 7,813 68 1/3
V 0.67 2.05 29 1 0.21 0.20 45,841 10,210 78 0/4
Avg. 0.99 2.88 12 <1 0.20 0.19 14,991 4,406 71 8/12

TC I 1.13 2.37 < 1 < 1 0.19 0.20 2,708 638 76 1/3
II 0.52 1.73 4 < 1 0.20 0.20 71,761 24,236 66 0/4
III 0.59 1.44 14 < 1 0.37 0.29 time 68,889 20 0/4
IV 0.54 1.07 33 < 1 0.40 0.33 time time - 0/4
V 0.61 0.96 88 1 0.52 0.42 time time - 0/4
Avg. 0.68 1.51 28 <1 0.34 0.29 66,749 53,314 20 1/19
Avg. 0.86 2.40 21 <1 0.25 0.25 33,406 23,407 30 20/80

14 and 12 instances (out of 20) under DVC and EC scenarios, respectively. In summary, the

NLP outperforms MINLP formulation on 80 out of 100 instances comprised of varying cost

and capacity structures. Thus, for large-size instances, using the NLP formulation in the

BB algorithm seems to be a better choice compared to its MINLP counterpart.
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2.5.3 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the proposed model to changes in the

input parameters, especially the economies of scale in operations at the facilities and trans-

portation. We also provide insights by comparing the solutions (locations and allocation

decisions) across various scenarios. For this analysis, we consider a large-size instance using

real location data available on the demographic information of the 3,109 counties in the

contiguous United States. For every county, we obtain its population, latitude/longitude

information from the United States Census Bureau (ht tp s: // ww w2 .c en su s. go v/

ge o/ do cs /r ef er en ce /c en po p2 01 0/ co un ty ), and its average housing price from

ht tp s: // ww w. ce ns us .g ov /s up po rt /U SA Cd at aD ow nl oa ds .h tm l#H SG . Each

county represents an aggregate set of customers (demand points) and hence there are 3,109

demand points (|I| = 3109). We consider a two-level production-distribution system, where

the first level represents distribution centers (DCs) and the second level represents plants.

Thirty most populated counties are used as potential sites for DCs (|V1|=30), and ten most

populated counties are used as potential sites for plants (|V2|=10). The demand at every

customer node (Di) is obtained by dividing the county’s population by 1,000. The fixed

cost of opening plants are set proportional to the average residential prices as: f2k = 0.5

× (County’s Average Residential Price), similarly the fixed cost of opening DCs are set

proportional to the average residential prices as: f1j = 0.2 × (County’s Average Residen-

tial Price). Plant’s capacity b2k and DC’s capacity b1j are randomly generated as U [1.0,1.5]

×f2k and U [1.0,1.5] ×f1j, respectively. These capacities are then scaled such that total plant

capacities is 10 times the total demand, and also total DC capacities is 10 times the total

demand. The transportation costs between two nodes are set as C1ji(x1ji) = [0.2× d1ji]x
λ
1ji,

C2kj(x2kj) = [0.2 × d2kj]x
λ
2kj and Cjj′(yjj′) = [0.2 × djj′ ]y

λ
jj′ , where, d1ji, d2kj, and djj′

are obtained by dividing the spherical distance between nodes by 100. Finally, we set

production cost at facilities to Pk(uK) = U[5, 36] × uλk , and handling cost at the DC to

Wj(vj) = U[5, 36] × vλj . The economies of scale in operations at facilities and/or in trans-
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portation are captured using concave cost functions that are modeled as power law functions

f(x) = A(x)λ, where 0 ≤ λ ≤ 1 as described in Section 2.5.1.

We have conducted sensitivity analysis by varying λ under three scenarios. In the first

scenario (referred as EOS-F ), we assume that production cost Pk(uk) and handling cost

Wj(vj) are concave function of the flow, while transportation costs are linear. In second

scenario (referred as EOS-T ), we assume concave transportation costs: C2kj(x2kj), Cjj′(yjj′)

and C1ji(x1ji) while facility variable costs are linear. And in third scenario (referred as

EOS-FT ), both facility variable costs and transportation costs are considered to be concave

functions of flow. For every scenario, we vary λ from 0.2 to 1.0 at an interval of 0.1. The

network configurations for these scenarios are depicted in Figures 2.4 and 2.5a - 2.5f. In

Table 2.8, we provide the plants and DC locations, and the cost structure of the network for

varying levels of economies of scale.

Figure 2.6a and 2.6b depicts the percentage discount in the per unit facility variable

and transportation costs in the optimal value as we solve the problems with different values

of economies of scale (λ). These percentage discounts are calculated with respect to the

values of cf and ct in the basecase scenario (λ = 1). Figure 2.6c shows the effect of varying

economies of scale on the average utilization (ρ̄) of the facilities (plants and DCs) in the

network. The effect of economies of scale on the average shipping distance from plants to

customers in the network is shown in Figure 2.6d. In the remainder of the section, we

compare the solution under different scenarios.

Basecase Scenario (No Economies of Scale in Operations and Transportation)

Figure 2.4 depicts the configuration of the two-level production-distribution network without

any economies of scale in facilities operations and/or transportation (i.e. λ = 1 for all the

facility variables costs at the plants and DCs and transportation costs between facilities). In

this case, the optimal solution consists of 11 facilities, i.e. 5 plants and 6 DCs. The plant

locations are Queens (NY), Cook (IL), San Bernadino (CA), Dallas (TX) and Miami-Dade
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Effect of Economies of Scale in Facility Operations:

We analyze the effect of economies of scale in facility operations, i.e. production at plants

and handling at the DCs, on the configuration of the network. As a result of the economies

of scale, the unit facility variable cost at facilities decreases. In the basecase scenario (where

λ = 1), unit variable cost cf is $2.51/unit. When λ is set to 0.9, cf (=$0.88/unit) is

discounted by 65%. When λ is set to 0.8, cf=$0.37/unit corresponds to a discount of 85%.

Figures 2.5a and 2.5b show the configuration of the network for λ = 0.9 and λ = 0.8

respectively. At λ = 0.9, the optimal solution locates 10 facilities, 5 plants: Queens (NY),

Cook (IL), Clark (NV), Dallas (TX), Miami-Dade (FL) and 5 DCs: Suffolk (NY), Cook

(IL), Clark (NV), Dallas (TX), Broward (FL). Compared to the basecase scenario, where

the network has 6 DCs, we now have 5 DCs only as the DC in Tarrant (TX) is closed. Note

that one of the plant and DC locations changes from San Bernardino (CA) to Clark (NV).

The total cost of the configuration is 2,522,567, where the facility fixed cost is 984,100 (39%),

the facility variable cost is 271,727 (11%), and the transportation cost is 1,232,170 (50%).

The reduction in facility variable costs at plants and DCs compensates for the opening of

higher capacity plants and DCs that are now farther from the customers, and hence an

increase in transportation cost. As a result of the consolidation, the average outbound

shipping distance increases to 412 km/unit of demand. The average DC utilization increases

to 76% however the average plant utilization remains unchanged at 37%.

When λ is further decreased from 0.9 to 0.8, location of plants and their capacities

remained unchanged, however, the DCs in Suffolk (NY) and Broward (FL) are now relocated

to Bronx (NY) and Palm Beach (FL) respectively. As a result of the further reduction in

facility variable costs, flows are consolidated at DCs, and hence the model prescribes higher

capacity DCs at Bronx (NY) and Palm Beach (FL). The average DC utilization increases to

77% as a result of consolidation. However, the average plant utilization remained unchanged

at 37%.

41



Effect of Economies of Scale in Transportation:

By decreasing λ on the transportation arcs, we incorporate economies of scale in transporta-

tion. For instance, when λ=0.8, the unit transportation cost is ct=$2.39, which corresponds

to a discount of 25% compared to the base case scenario (λ = 1). Similarly, for λ=0.5,

ct=$0.44 amounts to a discount of 89%.

Figures 2.5c and 2.5d show the production-distribution network for λ=0.8 and 0.5 re-

spectively. At λ = 0.8, the model recommends a total of nine facilities, i.e. three plants

and six DCs. The plant locations are Cook (IL), Dallas (TX), Miami-Dade (FL) and the

DCs locations are Cook (IL), Broward (FL), Sacramento (CA), Philadelphia (PA), Wayne

(MI), Tarrant (TX). With discounts in transportation costs, the model recommends locating

facilities that are farther from customers as this decreases the total facility fixed cost from

$1,052,260 (in the baseline scenario) to $588,660.

When λ is further decreased to 0.5, although the location and utilization of plants in

the new network (Figure 2.5d) do not change, the solution recommends closing the DC in

Wayne (MI), improving the average DC utilization to 92%. This results in an increase in the

average inbound and outbound shipping distances to 493 kms and 625 kms, respectively.

Effect of Economies of Scale in Facility Operations and Transportation:

Finally, we analyze the effect of economies of scale in facility operations and transportation

on the configuration of the network. We note that when economies of scale is introduced

in both, the solution changes significantly. Figures 2.5e and 2.5f illustrate the network

configuration for λ = 0.8 and 0.3, respectively. At λ = 0.8, the network comprises of four

plants and six DCs. The four plant locations are Cook (IL), Dallas (TX), Wayne (MI), and

Clark (NV) and the six DC locations are Cook (IL), Clark (NV), Philadelphia (PA), Dallas

(TX), Cuyahoga (OH), and Hillsborough (FL). The cost of the network is $ 1,260,069, where

the fixed facility cost (627,880) accounts for 50% of the total cost. The transportation cost

is 524,829 (41%) and the facility variable cost is 107,360 (9%). Consolidation of facility
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operations and inbound transportation leads to fewer plants (with large capacity) in the

network. The average plant utilization is 71%. At λ = 0.3, the network has two plants and

five DCs; plant locations are Clark (NV) and Maricopa (AZ), and the DC locations are San

Bernardino (CA), Cook (IL), Philadelphia (PA), Dallas (TX), and Wayne (MI). The cost of

the network is $ 518,857, where the fixed facility cost (458,600) accounts for 88% of the total

cost. Further consolidation of facility operations and transportation leads to fewer plants in

the network, resulting in an average plant utilization of 90%.

Figure 2.6c shows that as a result of consolidation of flows at plants and DCs due to

economies of scale on facility operations and transportation (EOS-FT), the average facility

utilization is higher compared to that in other scenarios where the economies are scale

are realized either on the facility operations (EOS-F) or the transportation (EOS-T). For

instance, under the EOS-FT scenario, the average facility utilization at λ = 0.6 is 94%.

Similarly, Figure 2.6d depicts that as a result of consolidation of flows at plants and DCs,

the average shipping distance also increases. For example, at λ = 0.6, the average inbound

and outbound shipping distances for the network are 787 kms and 1,650 kms (per unit of

demand) respectively.

Table 2.8: Sensitivity Analysis: Facilities locations and average utilization, and cost structure
for various λs

Economies λ Locations Total FFC FVC TrC Facility

of Scale Cost($) Util.

None 1 Plants: Queens (NY), Cook (IL), San Bernadino (CA), Dallas (TX), Maimi-Dada (FL) 3,060,741 34% 25% 40% 41

DCs Suffolk (NY), Cook (IL), San Bernadino (CA), Dallas (TX), Broward (FL) 68

Operations 0.9 Plants: Queens (NY), Cook (IL), Clark (NV), Dallas (TX), Miami-Dade (FL) 2,522,567 39% 11% 50% 39

DCs Suffolk (NY), Cook (IL), Clark (NV), Dallas (TX), Broward (FL) 80

Operations 0.8 Plants: Queens (NY), Cook (IL), Clark (NV), Dallas (TX), Miami-Dade (FL) 2,321,305 42% 5% 38% 39

DCs Bronx (NY), Cook(IL), Clark (NV), Dallas (TX), Palm Beach (FL) 80

Transportation 0.8 Plants: Cook (IL), Dallas (TX), Miami-Dade (FL) 1,908,767 31% 31% 38% 87

DCs Cook (IL), Broward (FL), Sacramento (CA), Philadelphia (PA), Wayne (MI), Tarrant (TX) 89

Transportation 0.5 Plants: Cook (IL), Dallas (TX), Miami-Dade (FL) 1,261,084 45% 45% 11% 87

DCs Cook (IL), Sacramento (CA), Broward (FL), Philadelphia (PA), Tarrant (TX) 95

Both 0.8 Plants: Cook (IL), Dallas (TX), Wayne (MI), Clark (NV) 1,260,069 50% 9% 42% 72

DCs Cook (IL), Clark (NV), Philadelphia (PA), Dallas (TX), Cuyahoga (OH), Hillsborough (FL) 92

Both 0.3 Plants: Clark (NV), Maricopa (AZ) 518,857 88% 0% 12% 90

DCs San Bernardino (CA), Cook (IL), Philadelphia (PA), Dallas (TX), Wayne (MI) 99
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Figure 2.6: Effect of Varying Economies of Scale on Average Facility Utilization, Shipping
Distance, and Percentages Discounts in Facility Variables Cost and Transportation Cost

2.6 Conclusions

We studied a general class of multilevel capacitated facility location problems with concave

costs, where the concavity arises due to economies of scale in production and handling at

the facilities and/or transportation between levels of facilities. We present an alternative

mathematical formulation that uses continuous decision variables in which facility location

decisions are embedded in a fixed charged function. The resulting nonlinear programming

model is compared with prevalent mixed-integer programming formulation that uses binary
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variables for location decisions and continuous variables for flows. A branch-and-bound al-

gorithm improvised with enhancements such as alternative branching strategies and variable

fixing at the root node via preprocessing was presented to solve the problem efficiently. In-

stances with up to 2,250 customers and 150 potential facilities, and two levels of hierarchy

were solved to an optimality gap near to 0.2% under varying costs and capacity structures.

The results of extensive computational experiments confirm that the continuous nonlinear

programming formulation outperforms the traditional mixed-integer nonlinear formulation

on 80 out of 100 instances, especially on medium to large-size instances. A 30% reduction

of average CPU time was obtained with the nonlinear formulation compared to the mixed-

integer nonlinear formulation. We also analyse the impact of varying economies of scale in

the operations at the facilities and/or transportation on the facility location and customer

allocation decisions by conducting a sensitivity analysis on instances based on the 3,109

counties in the contiguous United States.
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Chapter 3

Stochastic Facility Location with

Probabilistic Service Level Constraints

on Delivery Times

Abstract

We study a general class of stochastic dynamic capacitated facility location problems arising

in the design and reconfiguration of e-commerce supply chains. It considers probabilistic

service level constraints to ensure the stochastic delivery times of customers’ orders, defined

as the sum of waiting time (including service time) at the processing facility plus shipping

time to reach the customer location, is within a prescribed time limit with a probability

greater or equal to a threshold value. We provide alternative polyhedral representations

of these highly nonlinear and non-convex probabilistic constraints, and develop an exact

branch-and-cut algorithm for solving the resulting reformulations. The proposed algorithm

is enhanced with several algorithmic refinements to accelerate its convergence. We perform

extensive computational experiments based on real location data from the United States to

evaluate the performance of our algorithm and to provide insights on the optimal structure
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of solution networks. Results obtained on large-scale instances with up to 2,500 customers

and 225 potential facilities under different service level scenarios confirm the effectiveness of

the proposed algorithm.

3.1 Introduction

Supply chain network design involve many interrelated decisions regarding the number, lo-

cations, and capacities of different types of facilities, the assignment of retailers to facilities,

and the routing of products through the supply chain, among others. Traditionally, such

decisions are primarily centered around minimizing the total design and operational costs.

With increasing popularity of electronic retailing (e-tailing), the time taken to fulfill cus-

tomer demand (i.e., delivery time) has also become a prominent factor for businesses when

designing their supply chain. In fact, in e-commerce industries response time and shipping

charges are important attributes of good customer service and repeat business. Through a

global survey, Shopify reports that 59% of customers value free shipping, and 37% are not

happy with retailers when orders are delayed (Shopify [114]). The online retailer Amazon

meets such expectations through its ‘Amazon Prime Program’ in which customer orders

are delivered within two days (DigitalCommerce360 [35]). Before the COVID-19 pandemic

started, Amazon had 118 million Prime members in the US, which has increased to 147 mil-

lion by the end of first quarter of 2021. To fulfill delivery commitments for growing Prime

Memberships, Amazon plans to add 50 new fulfillment facilities in the US in 2021 (Freightos

[50]).

The recent growth of omnichannel retailing further emphasizes the importance of strategic

network design and capacity planing in e-commerce supply chains to meet delivery time

commitments. A rapidly growing number of retailers have started to use warehouses for

replenishing stores as well as fulfilling online demand (Hübner et al. [67]). This creates the

need to open warehouses closer to densely populated areas to reduce delivery times to their
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retail stores and online customers. Another application where fast delivery is a necessity

is in fresh produce supply chains. As the quality of the food produce rapidly diminishes

over time, quick delivery not only improves customer experiences but also reduces waste

(Gokarn and Kuthambalayan [56]). Response time is critical in industries that follow make-

to-order and assemble-to-order (ATO) strategies (Vidyarthi et al. [124], Aboolian et al. [5]).

Although ATO eliminates finished goods inventory and thus, reduces cost and obsolescence,

the assembly of finished goods starts only after an order is received thereby making ATO

supply chains prone to order delays, high levels of congestion and long response times.

Among several factors, order processing and shipping to customers are two crucial factors

that impact the service time needed to deliver orders to customers. The order processing

takes place at the facilities and shipping is done by using the company’s own fleet of ve-

hicles, a third-party logistics provider, or a mix of both. The order processing comprises

of picking items from the shelves, sorting, packing and labeling for delivery. In practice,

order processing times at facilities are uncertain due to stochastic demand, variability in

orders, and limited order-picking capacity. The order is then picked up by a shipper for the

delivery, where shipment time from a facility to a customer is also uncertain due to several

factors such as dynamic traffic and weather conditions. Therefore, committing to a short

delivery time to customers poses important challenges. Although, it is possible to design a

supply chain without taking into account both sources of uncertainty, the obtained network

configurations may be sub-optimal from a customer service perspective.

In this paper, we study a general class of stochastic dynamic capacitated facility location

problems (DCFLP) arising in the design and reconfiguration of e-commerce supply chains.

We consider a situation in which customers generate stochastic streams of demand modeled

via a Poisson process with dynamic but known arrival rates. Customer orders are allocated

by a centralized management system to predetermined facilities for processing and shipment

to customers. We consider immobile facilities, each modeled as a single server infinite buffer

queue with limited capacities and stochastic order processing times, thereby causing con-
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gestion and delays in response times. We consider service level commitments on delivery

times defined as the time taken to satisfy a customer demand. Delivery time starts from the

moment an order is placed until it is received by the customer. Travel times from facilities

to customers are assumed to be uncertain, and we model them as random variables with

known probability distribution functions. Therefore, delivery time is the sum of time spent

at the facility to process the order and shipment time to customer location. Given that both

processing and travel times are uncertain parameters, delivery time is uncertain as well.

We incorporate probabilistic service level constraints to guarantee each customer order is

delivered within a prescribed time limit, with a probability greater or equal to a threshold

value.

The DCFLP considers a dynamic setting with a finite planning horizon in which arrival

rates of customer demands change from one period to another and as a consequence, capacity

installed at facilities may be modified as needed. A finite set of capacity levels for each

potential facility in each period is considered. The change in capacity level is relevant when

a retailer can increase processing capacity by hiring part time workers to process the orders

during the periods with high demand. The number of opened facilities in each period and

their capacity levels are not known a priori, but a fixed set-up cost for each facility and each

size is considered. Depending on demand fluctuation between periods, an existing facility

may increase, decrease, or even shut down operations from one period to the next. Also, a

new facility may be opened in any period and its capacity updated in subsequent periods. The

DCFLP seeks to minimize the sum of the facilities fixed costs and variable transportation

costs over a finite time planning horizon, while ensuring all demand is satisfied in each

period. DCFLPs can also model cases in which there already exists an open set of facilities

operating at various capacity levels at the beginning of the planning horizon. However, a

limitation of our model is that it abstracts away from few aspects of supply chain planning

such as inventory control and positioning, and economies of scale in facility operating and

transportation costs, among others.
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The main contribution of this work is threefold.

1. We introduce DCFLPs, a general class of stochastic location problems applicable to

the design and reconfiguration of e-commerce supply chains. DCFLPs consider a

multi-period setting to model the stochastic and dynamic nature of customer demands,

stochastic travel times, and service level constraints on delivery times.

2. The problem can be naturally stated as an integer nonlinear program (INLP). We

propose two integer linear programming (ILP) formulations containing either an ex-

ponential number of cover-like inequality constraints or a compact number of residual

service capacity constraints. These constraints provide a polyhedral representation of

the probabilistic service level constraints.

3. We develop an exact branch-and-cut algorithm to solve large-scale instances of the

DCFLP. To the best of our knowledge, this is the first paper to present an exact algo-

rithm to address probabilistic service level constraints that account for the stochastic

shipping time from the facility to the customer’s location as well as waiting time

(including service times) at the facility. Our algorithm contains several algorithmic

refinements to accelerate its convergence. These include: i) exact and heuristic sep-

aration routines that efficiently generate cover inequalities at integer and fractional

points, ii) a preprocessing phase to fix variables, iii) a matheuristic to provide initial

feasible solutions, iv) an in-tree local search heuristic, and v) additional valid inequal-

ities that strengthen the formulation and help improve the overall performance of the

enumeration algorithm.

We report the results of extensive computational experiments based on real location data

from the USA to evaluate the efficiency and limitations of the proposed solution algorithm.

Results obtained on large-scale instances under different service level scenarios confirm the

effectiveness of our exact algorithm. We also provide detailed sensitivity analyzes to assess

the optimal structure of solutions under different input parameter settings.
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The remainder of the paper is organized as follows. In Section 3.2, we present relevant

literature to our work, followed by a formal definition of the problem in Section 3.3. Section

3.4 describes two ILP formulations for the DCFLP. Section 3.5 describes the details of our

branch-and-cut algorithm, and several enhancements to improve its convergence. The results

of extensive computational experiments and sensitivity analyzes are presented in Section 3.6.

Conclusions follow in Section 3.7.

3.2 Literature Review

E-commerce companies must consider several aspects while designing and reconfiguring their

supply chain networks. In what follows, we present the literature relevant to the factors

considered in this paper: i) stochastic demand and travel times, ii) dynamic location, and

ii) congestion and probabilistic service level constraints. We refer to Cordeau et al. [31] for

an extensive review of other important factors relevant to the design of supply chains not

considered below.

Discrete location problems (DLP) are fundamental to the design of supply chains. DLPs

with immobile facilities, stochastic demands and congestion capture the trade-off between

fixed set-up costs for installing/modifying facilities, variable transportation costs, and cus-

tomer expectations on service time. This trade-off has been studied from different per-

spectives. Some works explicitly include probabilistic constraints ensuring, with a desired

probability, that customers are served within a threshold time limit. The total cost increases

for systems with higher probabilities and/or lower threshold wait times. Others studies im-

plicitly model waiting time as a cost in the objective function. These problems seek a balance

between other logistics and wait time costs to improve customer experience. Whereas opti-

mizing wait time cost improves the overall system-wide service level, it does not guarantee

a minimum service level. For a comprehensive review on this challenging class of location

problems, we refer to Berman and Krass [17] and for earlier works, we refer to Berman and
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Krass [16] and Boffey et al. [18].

Marianov and Serra [88], Marianov and Serra [89], and Marianov and Serra [90] consider

probabilistic constraints to restrict wait time/queue length at a facility to a predetermined

value. They model a multi-server queuing system at each facility with service request as

a random Poisson process, and service time as exponentially distributed random variable.

The assumptions allow to state the probabilistic constraints in a tractable linear form. The

resulting mixed integer linear programs are solved using Lagrangian relaxation and heuristics.

Although uncertainty in waiting time is addressed in the form of constraints in these works,

they do not explicitly study the impact of travel times uncertainties between customers and

facilities on the order delivery time for every customer.

Travel times are also critical in location-allocation decisions to ensure minimum service

guarantee. In a study on vehicle inspection stations and health clinics, Grossman and Bran-

deau [59] report that users’ decision to patronize a facility depends on both travel time

and waiting time at facilities. However, few studies have investigated the effect of jointly

considering waiting times and stochastic travel times. Wang et al. [126] study the location

of immobile facilities with the objective of minimizing system wide customers’ waiting time

costs and travel costs. A generalized version of this problem with a fixed number of servers to

locate among open facilities is studied in Berman and Drezner [15]. This work is then further

extended in Aboolian et al. [2] by including fixed cost to open facilities and variable cost

of servers, in addition to travel and waiting costs. To locate hospitals and medical centers,

Aboolian et al. [3] work with similar problem settings. It is assumed that facilities are fixed,

customers choose nearest facility, and demand and service times are stochastic. However,

the considered objective is to minimize the maximum travel time and waiting time at the

facility. Baron et al. [11] consider a continuous facility location problem in which demand is

assumed to be spatially distributed, and arrival processes and service times follow a general

distribution. To reduce congestion and ensure adequate service, they consider either de-

terministic maximum coverage distance constraints or probabilistic service level constraints
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to limit waiting time at a facility to a maximum value. However, our model is different

from these works in the way we consider probabilistic constraints that jointly capture uncer-

tainties from both waiting and travel times to ensure minimum service level with a desired

probability. The work of Aboolian et al. [5] is most closely related to our problem. The

response time in their problem is also the sum of waiting time at facilities and travel time

from facilities to customers. However, a major difference between their and ours is that we

consider travel time to be uncertain, whereas they assume deterministic travel times. We

also generalize their model by considering planning over multiple time periods, and capacity

at facilities can be adjusted according to the demand in that period.

Most stochastic DLPs assume that facilities once opened would be operational in many

future periods and their capacity levels would not change. However, such assumptions may

not be suitable in some applications. For instance, in e-commerce supply chains, the current

network may become sub-optimal (or capacities may not be sufficient) to handle a decrease

(or increase) in demand. In the case of mergers and acquisitions, it may be optimal to

close existing facilities and/or open new ones in the future. Dynamic variants of capacitated

DLPs can be classified into two forms: capacity expansion via addition of extra capacity in a

period, and choice of capacity type at a facility in each period. Jena et al. [74] study a rather

general class of dynamic DLPs with modular capacities in which at any time of the planning

horizon, their model allows (re)opening, (re)closing of facilities, and increasing/decreasing

their capacity levels. These problems generalize a large set of models in the dynamic DLPs

literature. Our proposed DCFLP is a further generalization of the deterministic model

presented in Jena et al. [74] in which stochasticity in customers’ demand and travel times

are considered, in combination with probabilistic service level constraints on delivery times.

We refer to Farahani and Hekmatfar [42] and Saldanha-da Gama and Nickel [110] (and

references therein) for detailed discussion on dynamic DLPs.
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3.3 Problem Definition and Formulation

Let V1 be the set of potential facility locations, I be the set of customer nodes, T =

{1, 2, .., |T |} be the set of time periods in the planning horizon, and L = {0, 1, 2, .., |L|}

be the set of potential capacity levels for each facility. Let cijlt denote the unit cost to serve

demand of node i ∈ I from facility j ∈ V1 opened at capacity level l ∈ L in period t ∈ T .

The parameter cijlt is composed of two components: (i) transportation cost from facility j

to customer i, and (ii) production cost at level l at facility j in period t. Moreover, fjl1l2t

represents the fixed cost of changing the capacity level at facility j ∈ V1 from l1 ∈ L to

l2 ∈ L at the beginning of period t ∈ T , and it also includes the cost of operating the facility

j at level l2 during entire period t. Depending on the values of l1 and l2, fjl1l2t (where, fj00t

= 0) captures various scenarios related to capacity levels and facility decisions at j at the

beginning of each period t. For instance, for l1 = 0 and l2 ∈ L\{0}, fjl1l2t represents the sum

of opening and operating costs of a new facility opened at level l2 in period t. However, when

l1 ∈ L\{0} and l2 = 0, fjl1l2t corresponds to the closing cost of facility j. In other situations

where l1 and l2 are nonzeroes, for l1 < l2, fjl1l2t represents the sum of capacity expansion

and operating costs of facility j; whereas for l1 > l2, it represents the capacity reduction and

operating costs of facility j; and for l1 = l2, fjl1l2t, it corresponds to the operational cost.

We consider an inelastic demand where the demand rate for each customer i ∈ I and

period t ∈ T follows a Poisson process with constant mean rate λit (Aboolian et al. [5],

Berman and Krass [17]). A period can be interpreted as a long duration for which planning

needs to be done. For example, t ∈ T can be a month, which is a resonable assumption

because many companies forecast monthly demand (Nahmias and Olsen [96]), and we assume

that λit is the daily average demand from customer i during month t. Similarly, the service

rate is also defined as average number of daily orders that can be processed at facility

j ∈ V1 during entire period t ∈ T . We assume independent inter-arrival times of the

demand processes generated by customers. Moreover, each potential facility is considered to

be single-server with limited capacity (Baron et al. [11], Vidyarthi and Jayaswal [122]). If
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facility j ∈ V1 is opened at period t ∈ T , we must decide its service capacity Ωjt, which can

be interpreted as its average processing rate. Similar to [122], we assume the capacity Ωjt

can be selected from a predetermined finite set of values, i.e., Ωjt ∈
{
µ1
jt, · · · , µ

|L|
jt

}
, where

µljt, l ∈ L corresponds to the discrete set of available choices for service levels for facility

j during any period t. We consider stochastic service (or order-processing) times at each

opened facility and a first-come-first-serve (FCFS) service discipline. Also, service times

are assumed to be independent and identically distributed random variables that follow an

exponential distribution. Since ecommerce supply chain is similar to make-to-order supply

chain, as in both of them order processing starts after orders are received. Therefore, we

can model each facility in our problem as a queuing system. And, similar to the paper by

Aboolian et al. [5], we also consider M/M/1 queuing system at every open facility in each

period t ∈ T . Under steady-state conditions, the waiting time Wjt in this system (including

service time) follows exponential distribution.

The DCFLP consists of selecting the location and service capacity of a set of facilities and

the assignment of each customer to exactly one opened facility (i.e., single sourcing) for each

period of the planning horizon. The objective is to minimize the total setup, operational

and servicing cost. More importantly, the DCFLP considers independent probabilistic service

level constraints for each customer i ∈ I and period t ∈ T to guarantee that the (stochastic)

delivery time DTit, defined as the sum of waiting time at its assigned facility plus the

shipping time from such facility to node i, does not exceed a threshold value τit with a

minimum probability of θit.

We define the binary variable zjl1l2t equal to one if and only if facility j ∈ V1 changes its

capacity level from l1 ∈ L to l2 ∈ L at the beginning of period t ∈ T , and operates at l2

during period t. We also define the binary assignment variable xijlt equal to one if and only

if the customer node i ∈ I is allocated to facility at node j ∈ V1 operating at capacity level

l ∈ L in period t ∈ T .

Each opened facility observes aggregate demand from a subset of nodes assigned to it.
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Due to the superposition principle of Poisson processes, the demand arrival rate at facility

j ∈ V1 in period t ∈ T is also a Poisson process with mean rate Λjt(x) =
∑

i∈I
∑

l∈L λitxijlt.

Given that capacity levels at each facility are represented using a discrete set L, and we

select only one capacity level at each facility, the service rate of facility j in period t can be

stated as, Ωjt(z) =
∑

l1∈L
∑

l∈L µ
l
jtzjl1lt.

Under system stability conditions, i.e., Λjt(x) ≤ Ωjt(z), j ∈ V1, t ∈ T , the steady-

state system waiting time Wjt(x, z) follows an exponential distribution. We recall that the

exponential distribution is a special case of the Gamma distribution with shape parameter

α1jt = 1 and scale parameter β1jt = 1
Ωjt(z)−Λjt(x)

. Similar to Polus [103], for each shipping

arc (i, j) ∈ I × V1 we assume the shipping time STij to be a random variable that follows a

gamma distribution. For each (i, j) ∈ I × V1, let E[STij] be the mean travel time (in days),

and CVij be the coefficient of variation of travel time. The shape and scale parameters

for STij are α2ij = 1
CV 2

ij
and β2ij =

E[STij ]

αij
, respectively. For each i ∈ I and t ∈ T , the

delivery time is given by DTit (x, z) =
∑

j∈V1
∑

l∈L (Wjt(x, z) + STij)xijlt, and its associated

probabilistic service level constraints can then be stated as:

Pit(DTit (x, z) ≤ τit) ≥ θit, (3.1)

where Pit(·) is the steady-state distribution of DTit, τit is the specified threshold for the

delivery time, and θit is the minimum acceptable probability of delivery times smaller or

equal to τit. The parameter θit can be interpreted as the minimum acceptable proportion of

customers requests originating at node i in period t for which their orders will be received

within the promised delivery times. For each i ∈ I and t ∈ T , the random variable DTit

is defined as the sum of two gamma random variables. The shipping activities begin only

after the orders are prepared, therefore, the two sources of uncertainty are assumed to be
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independent. Therefore, the steady-state distribution Pit(·) of DTit is given as (Mathai [91]):

Pit(DTit (x, z) ≤ τit) =

(
β1

β2

)α2 ∞∑
k=0

(
α2 + k − 1

k

)(
1− β1

β2

)k
G

(
τ

β1

; k + γ

)
DTit, (3.2)

where G
(
τit
β1

; k+γ

)
is the cumulative distribution function (CDF) of a gamma random vari-

able with shape parameter equal to k+ γ, scale parameter equal to 1, γ = (α1jt +α2ij), and

(α1, β1, α2, β2) = (α1jt, β1jt, α2ij, β2ij), if β1jt ≤ β2ij, and (α1, β1, α2, β2) = (α2ij, β2ij, α1jt, β1jt),

otherwise. For a detailed derivation of distribution (3.2), we refer to Mathai [91] and Hu

et al. [65]. For a given solution (x, z), the steady-state distribution Pit(·) of DTit can be

evaluated using the algorithm of Hu et al. [65]. Finally, we can state the DCFLP as the

following INLP:

(INLP) minimize
∑
j∈V1

∑
l1∈L

∑
l2∈L

∑
t∈T

fjl1l2tzjl1l2t +
∑
i∈I

∑
j∈V1

∑
l∈L

∑
t∈T

cijltλitxijlt (3.3)

subject to
∑
j∈V1

∑
l∈L

xijlt = 1 ∀i ∈ I, t ∈ T (3.4)

∑
i∈I

λitxijlt ≤ µljt
∑
l1∈L

zjl1lt ∀j ∈ V1, l ∈ L, t ∈ T (3.5)

∑
l1∈L

zjl1l(t−1) =
∑
l2∈L

zjll2t ∀j ∈ V1, l ∈ L, t ∈ T \ {1} (3.6)

∑
l2∈L

zjlj l21 = 1 ∀j ∈ V1 (3.7)

Pit(DTit (x, z) ≤ τit) ≥ θit, ∀i ∈ I, t ∈ T (3.8)

xijlt ∈ {0, 1} ∀i ∈ I, j ∈ V1, l ∈ L, t ∈ T (3.9)

zjl1l2t ∈ {0, 1} ∀j ∈ V1, l1 ∈ L, l2 ∈ L, t ∈ T. (3.10)

The objective (3.3) minimizes the total cost of opening, closing, and changing the capacity

levels of facilities, of operating the facilities, and of serving the customers. Constraints (3.4)

are the demand satisfaction constraints which guarantee that all demand generated at each
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node i will be met at each period t. Constraints (3.5) are the disaggregated version of the

system stability conditions, i.e., Λjt(x) ≤ Ωjt(z), j ∈ V1, t ∈ T . Constraints (3.6) and (3.7)

are flow balance constraints that model the change in capacity levels from one time period

to another and ensure that, for each facility exactly one capacity level is selected at each

period. Constraints (3.8) are the probabilistic service level constraints to guarantee that the

probability of the delivery time within τit units of time is at least θit. Finally, constraints

(3.9) and (3.10) are standard integrality restrictions.

In the following section, we introduce two sets of linear constraints which are equiva-

lent to the probabilistic constraints (3.8). These inequalities can be used to derive valid

reformulations of the DCFLP in which the feasible region (3.4)–(3.10) is characterized with

a polyhedron. Baron et al. [11] and Berman and Krass [17] suggest the use of tractable

approximations for probabilistic service level constraints when considering only wait times

at facilities.

3.4 Polyhedral Representations of Probabilistic Service

Level Constraints

We next present two alternative ILP reformulations for the DCFLP that exploit the single-

sourcing assumption and the fact that steady-state probabilities Pit(DTit (x, z) ≤ τit) can be

evaluated if the values of the decision variables (x, z) are known.

For each j ∈ V1, l ∈ L, and t ∈ T , we denote as Cjlt the set of subsets of customers such

that if assigned to facility j using capacity level l in period t, would lead to at least one

violated probabilistic service level constraint, i.e.,

Cjlt =
{
C ⊆ I : ∃i ∈ C,Pit(W jt(C, l) + STij ≤ τit) < θit,

}
,

where W jt(C, l) is the steady-state waiting time of an M/M/1 queuing system with demand
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arrival rate Λjt(C) =
∑

i∈C λit and service rate Ωjt = µljt. A simple but useful observation

is that any infeasible solution (x, z) in which the subset of customers C ∈ Cjlt is assigned to

facility j in period t can be removed from the feasible region by the following cover inequality

(CI):

∑
i∈C

xijlt ≤ (|C| − 1)
∑
l1∈L

zjl1lt.

The following result shows that CIs are sufficient to provide a valid formulation for the

DCFLP.

Proposition 1. The following ILP1 is a valid formulation for the DCFLP:

(ILP1) minimize
∑
j∈V1

∑
l1∈L

∑
l2∈L

∑
t∈T

fjl1l2tzjl1l2t +
∑
i∈I

∑
j∈V1

∑
l∈L

∑
t∈T

cijltλitxijlt

subject to (3.4)− (3.7), (3.9), (3.10)∑
i∈C

xijlt ≤ (|C| − 1)
∑
l1∈L

zjl1lt ∀j ∈ V1, l ∈ L, t ∈ T,C ∈ Cjlt. (3.11)

Proof. See Section B.1 in the Appendix. �

The second ILP reformulation is based on the following observation. If facility j ∈ V1

is opened at level l ∈ L in period t ∈ T , i.e., zjl1lt = 1 for some l1, and customer i ∈ I

is assigned to it, i.e., xijlt = 1, then the residual service capacity available to assign other

customers i′ ∈ I \ {i} to j is µljt − λit ≥ 0. However, this residual service capacity does

not take into account that the probabilistic constraint of customer i at period t must be

satisfied. We can estimate the maximum demand ∆ijlt from one or several customer nodes

i′ ∈ I \ {i} that can be assigned to facility j at level l in period t (in addition to the demand

λit) such that the probabilistic constraint remains feasible, i.e., Pit(W ∗
jt + STij ≤ τit) = θit,

where W ∗
jt is the waiting time with mean demand arrival rate Λjt = λit + ∆ijlt and service

rate Ωjt = µljt. For each i ∈ I, j ∈ V1, l ∈ L, and t ∈ T , we can use ∆ijlt to derive the
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following valid inequality:

∑
i′∈I\{i}

λi′txi′jlt ≤ ∆ijlt,

where 0 ≤ ∆ijlt ≤ µljt−λit. The following result shows how these inequalities can be extended

to provide a valid formulation for the DCFLP.

Proposition 2. The following ILP2 is a valid formulation for the DCFLP:

(ILP2) minimize
∑
j∈V1

∑
l1∈L

∑
l2∈L

∑
t∈T

fjl1l2tzjl1l2t +
∑
i∈I

∑
j∈V1

∑
l∈L

∑
t∈T

cijltλitxijlt

subject to (3.4)− (3.7), (3.9), (3.10)∑
i′∈I\{i}

λi′txi′jlt ≤ µljt
∑
l1∈L

zjl1lt −
(
µljt −∆ijlt

)
xijlt

∀i ∈ I, j ∈ V1, l ∈ L, t ∈ T, µljt −∆ijlt > λit,

(3.12)

where ∆ijlt is the maximum demand that can be assigned to facility j at level l in period t

(in addition to the demand λit) such that Pit(W ∗
jt + STij ≤ τit) = θit for customer i.

Proof. See Section B.2 in the Appendix. �

From now on, we denote constraints (3.12) as residual service capacity (RSC) constraints.

Finally, note that none of these new inequalities (CI and RSC) dominate the other.

3.5 Exact Solution Algorithm

We now present an exact branch-and-cut algorithm that exploits both sets of CI and RSC

constraints. To speed up its convergence, we propose the following refinement strategies:

(i) we include some additional families of valid inequalities that help strengthen the linear

programming (LP) relaxation bounds, (ii) we use heuristic separation routines at fractional
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solutions to efficiently derive violated CIs, (iii) we employ a pre-processing step to eliminate

a subset of the assignment variables xijlt, (iv) we solve a perturbed version of the DCFLP to

provide a good initial upper bound at the root node, and (v) we use a local search heuristic

to improve the feasible integer solutions obtained at the nodes of the enumeration tree.

3.5.1 Valid Inequalities

A natural extension of the CIs introduced in Section 3.4 is to define an extended cover. To

do so, we must consider the stochastic nature of demands and travel times when defining

the extended cover. The following result on the steady-state distribution of waiting times is

needed to identify feasible extended covers.

Lemma 3.5.1. For each i ∈ I and t ∈ T , Pit(DTit (x, z) ≤ τit) is monotonically nonde-

creasing with respect to the residual service capacity (Ωjt(z)− Λjt(x)) at any facility j ∈ V1

in period t ∈ T .

Proof. See Section B.3 in the Appendix. �

Using the above property, we next provide two families of extended cover inequalities

(ECIs) which differ in the way extended covers are defined.

Proposition 3. For each j ∈ V1, l ∈ L and t ∈ T , if C ∈ Cjlt and E(C) = C ∪ i, where i ∈

I \C, such that: (1) λit ≥ maxi′∈C λi′t, and (2) for any i′ ∈ C : Pi′t(DTi′t(x, z) ≤ τi′t) < θi′t,

E[STij] ≥ E[STi′j] and CVij ≥ CVi′j, the ECI

(ECI1)
∑

i∈E(C)

xijlt ≤ (|C| − 1)
∑
l1∈L

zjl1lt, (3.13)

is valid for X, where X denotes the set of feasible solutions of the DCFLP. Furthermore,

(ECI1) dominates the cover inequality (3.11).
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Proof. See Section B.4 in the Appendix. �

Proposition 4. For j ∈ V1, l ∈ L and t ∈ T , if

C ∈ Cjlt and E(C) = C ∪ {i ∈ I : λit ≥ maxi′∈C λi′t} , the following ECI is valid for X:

(ECI2)
∑

i∈E(C)

l∑
l′=1

xijlt ≤ |C| − 1. (3.14)

Proof. See Section B.5 in the Appendix. �

The third set of valid inequalities are an adaptation of the inequalities given in Marianov

and Serra [88] to linearize probabilistic service level constraints. If we ignore travel times in

INLP and consider only waiting times at facilities, while assuming all τ and θ parameters to

be equal (i.e., do not depend on i and t), the probabilistic constraints (3.8) reduce to

P(Wjt ≤ τ) ≥ θ ∀j ∈ V1, t ∈ T, (3.15)

where P(Wjt ≤ τit) is the steady-state distribution of the waiting time Wjt. Thus, for any

l > 0, the following inequalities are valid (Marianov and Serra [88]):

∑
i∈I

λitxijlt ≤ µljt +
1

τ
ln(1− θ) ∀j ∈ V1, l ∈ L \ {0}, t ∈ T. (3.16)

Given that in INLP we consider that service probability (θit) and delivery time (τit)

depend on i and t, we must modify the second term of the right-hand-side of (3.16) as

follows:

∑
i∈I

λitxijlt ≤ µljt + max
i∈I

{
1

τit
ln(1− θit)

}
∀j ∈ V1, l ∈ L \ {0}, t ∈ T. (3.17)

We note that the second term must consider the customer giving the most conservative
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reduction of service rate in order to guarantee validity.

The last two types of inequalities are given in Jena et al. [74] for the deterministic DCFLP:

xijlt ≤
∑
l1∈L

zjl1lt ∀i ∈ I,∀j ∈ V1,∀l ∈ L,∀t ∈ T (3.18)

∑
j∈V1

∑
l1∈L

∑
l2∈L

µl2jtzjl1l2t ≥
∑
i∈I

λit ∀t ∈ T. (3.19)

Constraints (3.18) are known to strengthen the LP bounds, whereas (3.19) are particu-

larly useful when used with commercial solvers to derive cover cuts to further improve LP

bounds.

3.5.2 Separation Problem for Cover Inequalities

Given a fractional point (x̂, ẑ), the separation problem determines whether this point satisfies

all CIs (3.11) or if there exists at least one violated cover. We rewrite (3.11) as:

∑
i∈C

(∑
l1∈L

zjl1lt − xijlt
)
≥
∑
l1∈L

zjl1lt ∀j ∈ V1, ∀l ∈ L,∀t ∈ T,C ∈ Cjlt. (3.20)

For every j ∈ V1, l ∈ L, t ∈ T , given (x̂, ẑ), the separation problem seeks to find a set C ∈

Cjlt such that Pit < θit for at least one i ∈ C, and
∑

i∈C

(∑
l1∈L ẑjl1lt − x̂ijlt

)
<
∑

l1∈L ẑjl1lt.

For each j ∈ V1, l ∈ L, t ∈ T , we solve an independent separation problem. For each i ∈ I,

let variable vi be equal to one if and only if i ∈ C, and let p′i and pi be the auxiliary variables

for evaluating probabilities. The separation problem of CIs can be stated as follows:

(SPjlt) ζjlt = minimize
∑
i∈I

(∑
l1∈L

ẑjl1lt − x̂ijlt
)
vi (3.21)

subject to
∑
i∈I

p′i <
(∑

i∈I

viθit

)
(3.22)
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p′i =


pi , if pi < θit

θit , if pi ≥ θit

(3.23)

pi = Pit
(
Wjt + STij ≤ τit

)
vi ∀i ∈ I (3.24)

vi ∈ {0, 1}, pi,≥ 0, p′i ≥ 0 ∀i ∈ I. (3.25)

Constraint (3.24) determines the probability of serving a customer. The value of variable

Wjt is based on the assignment variable vi. If there exists an optimal solution, at least one

probabilistic constraint is violated, otherwise problem SPjlt is infeasible. To show this, we

observe that variable p′i equals to θit from constraint (3.23) only when desired probability to

serve customer i ∈ C on time is met. If every customer i ∈ C is satisfied with its desired

probability, then constraint
∑

i∈C p
′
i <

(∑
i∈C viθit

)
is violated. Therefore, to satisfy (3.22)

at least one of the customers have to be served with probability strictly smaller than θit,

otherwise the problem SPjlt is infeasible. Since SPjlt is still an integer non-convex program,

we solve the this problem heuristically. The proposed heuristic is depicted in Section B.6 in

the Appendix.

3.5.3 Separation Problem for Residual Service Capacity Constraints

Given a fractional point (x̂, ẑ), we check for the violation of inequalities (3.12). If for any

i ∈ I, j ∈ V1, l ∈ L, t ∈ T ,
∑

i′∈I\{i} λi′tx̂i′jlt +
(
µljt −∆ijlt

)
x̂ijlt − µljt

∑
l1∈L ẑjl1lt > ST,

we add the respective inequality. To compute ∆ijlt, we need to know for which value of

Λjt, we have Pit = θit. We define the demand arrival rate as Λjt = λit + ∆ijlt and the

service rate as Ωjt = µljt. Therefore, the net residual service capacity in that case is given

as φijlt = µljt − λit −∆ijlt. We use a line search method to calculate the value of φijlt, and

subsequently ∆ijlt. For a given i ∈ I, j ∈ V1, l ∈ L, t ∈ T , we initialize φmin = 0.0001, φ = 5

and φmax = (0.975) ∗ µjl, and calculate the value of Pit. If Pit < θit − ε then φmin = φ

and φ = (φmin + φmax)/2; whereas if Pit > θit then φmax = φ and φ = (φmin + φmax)/2. In
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either case Pit is recalculated, and the procedure continues until Pit ∈ [θit − ε, θit]. We do

not separate RSC constraints at integer solutions given that the separation of CIs and ECIs

at integer solutions is faster than the separation of RSC constraints.

3.5.4 Preprocessing Phase

One way to speedup the convergence of the branch-and-cut algorithm is to reduce the size of

ILP1. To do so, we propose a preprocessing step capable of eliminating assignment variables

that are strictly zero in any optimal solution of the problem. If customer i ∈ I is the only

customer assigned to facility j ∈ V1 operating at level l ∈ L in period t ∈ T , we have

Λjt = λit and Ωjt = µljt. If Pit(DTit) < θit, then variable xijlt = 0 in any optimal solution

of ILP1. For every combination of i ∈ I, j ∈ V1, l ∈ L, t ∈ T , we check this condition at the

beginning of our algorithm.

3.5.5 Perturbing the Problem to Compute Initial Upper Bounds

We present a procedure to generate initial upper bounds to be used as an input to the

branch-and-cut algorithm at the root node. Observe that the PDF of the random variable

Wjt depends on the difference between facility capacity (µljt) and total demand assigned

to it (Λjt). If an integer solution leads to assignment decisions such that total demand

assigned at a facility is near to the facility’s capacity, chances of that integer solution violating

probabilistic constraints increases. One of the negative aspects of this phenomena is that

our algorithm may take a substantial amount of time (and branching) before a good feasible

solution is found. Our proposed heuristic is based on the idea of solving a perturbed version

of ILP1 in which the service level of each facility are reduced by a factor SF ∈ (0, 1). The

perturbed ILP1 can be stated as follows:

(ILP1R) minimize
∑
j∈V1

∑
l1∈L

∑
l2∈L

∑
t∈T

fjl1l2tzjl1l2t +
∑
i∈I

∑
j∈V1

∑
l∈L

∑
t∈T

cijltλitxijlt
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subject to (3.4), (3.6), (3.7), (3.9), (3.10), (3.11), (3.17), (3.18), (3.19)∑
i∈I

λitxijlt ≤ SF × µljt
∑
l1∈L

zjl1llt ∀j ∈ V1,∀l ∈ L,∀t ∈ T. (3.26)

ILP1R is solved using a branch-and-cut algorithm in which cover inequalities are sepa-

rated only at integer points. Constraints (3.26) prevent algorithm from going to solution

spaces in which many integer solutions would have later been rejected. Thus, preliminary

experiments showed ILP1R provides much more quickly a good feasible solution as compared

to solving ILP1. Evidently, the quality of the feasible solution improves as the value of SF

increases. However, the computational time for solving ILP1R also increases.

3.5.6 Local Search Heuristic

In our implementation of a local search heuristic, we use two types of neighborhood struc-

tures: Swap and Shift. In Swap neighborhood, we take a pair of two demand nodes

(i, i′ : i 6= i′) of the incumbent solution (ẑ, x̂), and exchange their assignment to create

a new solution (ẑ, x̂′). In the new solution, we check feasibility of constraints (3.5) and (3.8).

If solution (ẑ, x̂′) satisfies these two constraints, and the objective function value v(ẑ, x̂′) is

lower than that of v(ẑ, x̂), then (ẑ, x̂′) becomes the incumbent. We use a first improvement

strategy to explore the neighborhoods in sequential order. We start with swapping the as-

signments of first and second demand nodes until we obtain the first improvement. Similarly,

the shift neighborhood is applied to each demand node sequentially until the first improved

solution is found. The local search is implemented using a heuristic callback function. The

heuristic function is called after every 50 nodes. The pseudo code of local search heuristic is

provided in Section B.7 in the Appendix.
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3.5.7 A Branch-and-Cut Algorithm

Our exact algorithm uses features from both reformulations. ILP1 has an exponential number

of constraints that can be efficiently handled via a cutting plane algorithm. We use this

formulation to check the validity of solution vector (x̄, z̄) at some nodes of the enumeration

tree. In the case of ILP2, although inequalities (3.12) are not exponential in size and can

be identified apriori, they are still large in number (|I| × |V1| × |L| × |T |) to be explicitly

included in the formulation. For this reason, we add them only if violated at some nodes of

the enumeration tree. For every i ∈ I, j ∈ V1, l ∈ L, t ∈ T , we approximate ∆ijlt such that

Pit ∈ [(θit − ε), θit], where ε ∈ (0, 1).

We use cutcallback functions of CPLEX to separate these inequalities. We begin the enu-

meration tree with constraints (3.4)–(3.7), (3.9), (3.10), and (3.17)–(3.19), and CIs (3.11),

ECIs (3.13), and RSC inequalities (3.12) are added on the fly at some nodes of the enumera-

tion tree during the search process. In order to find these inequalities, we use lazycutcallback

(LAZYC ) and usercutcallback (USERC ) functions. The LAZYC function is invoked at in-

teger nodes and a cover inequality is added if it is violated by the current integer solution.

The USERC takes the fractional solution of the current node and (heuristically) solves the

separation problem described in Section 3.5.2 and 3.5.3 to generate violated inequalities. In

the next section, we compare the performance of three variants of our branch-and-cut algo-

rithm: B&C-B, B&C-R1, and B&C-R2. These variants differ from each other with respect

to the types of inequalities included and when these are separated.

Finally, we do not include inequalities presented in Proposition 4 in any of the above

versions. During our preliminary computational experiments, we noted that adding these

inequalities has, on average, a negative impact on both the final optimality gap and compu-

tational times.
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3.6 Computational Experiments

We conduct extensive computational experiments to assess the performance of the different

variants of our branch-and-cut algorithm. All versions of the algorithm were coded in C and

run on an Intel Xeon E5-2687W v3 processor at 3.10 GHz in a Linux environment. The

algorithms were implemented using the Callable Library of CPLEX 12.9. To compute the

probabilities of the service level constraints, we used the algorithm described in Hu et al. [65]

and the GSL scientific library. In the subsequent sections, we present the summary of the

results of our experiments, and sensitivity analyses to understand the impact of service level

constraints and different values of input parameters on the structure of optimal solutions.

3.6.1 Test Instances

Our test bed comprises 400 problem instances (i.e., 5 scenarios × 4 classes × 20 instances)

categorized into four classes: A, B, C and D, based on the source of potential facility locations

(Amazon and US Counties), and type of the model (Static-Single and Dynamic-Modular

capacities). We refer to Table B.1 in the Appendix for additional details. The potential

locations in Amazon instances (classes A and B) are derived from actual locations of Amazon

fulfillment centers, located in 111 unique counties in the US. The potential locations in US

Counties instances (classes C and D) are obtained by evenly dividing 3,109 US counties

into 9 regions based on the maximum and minimum latitude/longitude. From each region,

we randomly select equal number of counties as potential locations (Ortiz-Astorquiza et al.

[100]). Each class consists of 20 instances categorized into four to five sets based on the

number of potential facilities and demand nodes. Table B.1 also provides the number of

potential facilities (|V1|) and demand nodes (|I|) for various instances in each class and set.

For example, class A set I has five instances with 30 most populous counties in Amazon

data as locations for potential facilities and {125, 250, 375, 500, 625} most populous counties,

respectively, from 3,109 US counties as aggregated demand nodes. Further, we vary the
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parameters τ , θ, CV , and κ (parameter to control service capacity) to generate various

scenarios for each class as follows: Base case (Scenario 1): τ = 1.5, θ = 0.90, CV = 0.5, κ

= 10; High response time (Scenario 2): τ = 2.5, θ = 0.90, CV = 0.5, κ = 10; High service

probability (Scenario 3): τ = 1.5, θ = 0.95, CV = 0.5, κ = 10; High travel time variability

(Scenario 4): τ = 1.5, θ = 0.90, CV = 0.8, κ = 10; Tight capacity (Scenario 5): τ = 1.5, θ

= 0.90, CV = 0.5, κ = 5. The remainder of the parameters are detailed in Section B.8 in

the Appendix. Also, in Section B.9 in the Appendix, we present few CPLEX and separation

algorithm parameters that are fine tuned to improve the convergence of the solution method.

3.6.2 Performance of Branch-and-Cut Algorithms

We report the performance of three variants of our branch-and-cut algorithm. The first

variant, B&C-B uses separation routine at integer solutions for CIs (3.11), whereas the second

variant, B&C-R1 employs separation routine at both integer and fractional solutions for CIs

(3.11) and the initial and local search heuristics described in Sections 3.5.5 and in Appendix

3.5.6, respectively. The third variant, B&C-R2 includes initial and local search heuristics.

Additionally, in separation routines at fractional solutions, we first add inequalities (3.12)

and subsequently (3.13), provided (3.12) are not violated. At integer solutions, we add ECI1

inequalities (3.13). Note that all three variants of the algorithm also include preprocessing

(Section 3.5.4), and valid inequalities (3.17), (3.18) and (3.19). For every problem instance,

the execution time limit was set to 86,400 secs (24 hours). The results are presented in Table

3.1 for sets I and II (small size instances) and in Table 3.2 for sets III, IV and V (large size

instances). We summarize the results over 381 (out of 400) instances in which every variant

of the algorithm provided a feasible solution. The tables report the average optimality

gap, the average computation times and the number of instances solved to optimality. In

these tables, the column B/R1/R2 reports the number of instances on which one variant

of the algorithm outperforms the others. For example, the first entry reports the number

of instances on which B&C-B algorithm outperformed others out of a total of (B+R1+R2)
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instances. Similarly, the second and third entries report the number of instances on which

B&C-R1 and B&C-R2 algorithms outperformed other variants.

Table 3.1: Performance of Variants of Branch-and-Cut Algorithm for Sets I and II Instances
(Small Size)

Average Gap (%) Average Time (s) No. of Opt. Instances
Scenario Class B&C-B B&C-R1 B&C-R2 B&C-B B&C-R1 B&C-R2 B&C-B B&C-R1 B&C-R2 B / R1 / R2

1 A 0.17 0.17 0.06 43,317 43,415 21,166 5 5 8 3 / - / 7
B 0.16 0.14 0.03 53,170 42,699 27,758 6 6 8 2 / 2 / 6
C 0.01 0.01 0.01 20,644 22,426 11,703 7 6 7 4 / 1 / 3
D 0.08 0.10 0.07 57,935 49,532 41,994 5 7 7 2 / 1 / 7

2 A 0.01 0.01 0.01 18,717 2,594 1,403 8 10 10 4 / 1 / 5
B 0.02 0.01 0.01 42,098 28,697 20,356 6 7 9 4 / 2 / 4
C 0.01 0.01 0.01 11,233 12,151 3,002 7 7 8 7 / - / 1
D 0.04 0.10 0.11 55,084 48,828 47,744 4 7 6 4 / 5 / 1

3 A 0.08 0.25 0.01 27,364 17,001 14,833 5 5 5 3 / - / 3
B 1.03 0.62 0.31 68,377 59,879 53,844 3 4 5 1 / - / 9
C 0.03 0.02 0.01 44,342 36,488 7,544 4 5 8 2 / 1 / 5
D 1.07 0.72 0.51 64,375 57,589 49,984 4 4 6 2 / 2 / 6

4 A 0.02 0.01 0.01 21,668 21,733 692 3 3 4 2 / 1 / 1
B 1.10 0.19 0.12 60,921 51,174 37,132 3 5 6 - / - / 10
C 0.19 0.17 0.01 41,818 37,357 12,535 5 5 7 2 / 1 / 5
D 0.87 0.41 0.16 64,513 57,033 47,086 4 4 6 2 / - / 8

5 A 0.26 0.27 0.09 60,487 52,042 24,508 3 4 8 3 / 1 / 6
B 0.61 0.19 0.01 60,700 50,539 32,462 3 5 9 2 / - / 8
C 0.10 0.08 0.13 54,071 44,052 23,520 3 4 6 1 / 2 / 5
D 0.83 0.27 0.28 73,074 66,723 66,073 2 3 3 2 / 1 / 7

Average 0.37 0.20 0.11 49,197 41,756 29,296 90 106 136 52 / 21 / 107

Table 3.2: Performance of Variants of Branch-and-Cut Algorithm for Sets III, IV and V
Instances (Large Size)

Average Gap (%) Average Time (s) No. of Opt. Instances
Scenario Class B&C-B B&C-R1 B&C-R2 B&C-B B&C-R1 B&C-R2 B&C-B B&C-R1 B&C-R2 B / R1 / R2

1 A 2.72 0.51 0.23 86,400 78,843 60,406 0 1 4 - / 2 / 8
B 2.36 0.81 0.77 86,400 78,268 78,378 0 2 2 1 / 4 / 5
C 1.24 0.94 0.85 86,400 81,451 79,259 0 1 2 1 / 6 / 5
D 2.17 1.14 1.40 86,400 86,400 82,468 0 0 1 2 / 6 / 2

2 A 0.68 0.27 0.22 65,738 62,129 65,785 4 4 5 - / 5 / 5
B 0.85 0.35 0.36 68,786 70,135 70,664 3 3 3 2 / 5 / 3
C 0.57 0.75 0.69 85,016 79,593 80,697 1 2 2 6 / 3 / 3
D 1.10 0.73 0.70 69,949 76,810 78,555 4 3 3 4 / 2 / 4

3 A 2.88 0.88 0.81 86,400 86,400 86,400 0 0 0 - / 2 / 7
B 3.56 1.28 0.81 82,439 78,650 67,876 1 1 3 - / 1 / 8
C 2.33 1.47 1.34 86,400 86,400 82,476 0 0 2 2 / 3 / 7
D 3.41 1.35 1.27 86,400 86,400 86,400 0 0 0 - / 2 / 7

4 A 3.21 0.53 0.39 86,400 86,400 80,879 0 0 2 1 / - / 9
B 3.33 1.34 1.32 71,796 68,835 68,174 1 1 1 1 / 1 / 2
C 2.22 1.26 1.12 86,400 86,400 80,303 0 0 2 2 / 3 / 7
D 2.74 1.67 1.88 82,962 83,357 85,311 1 1 1 2 / 8 / -

5 A 2.02 0.88 0.63 86,400 86,400 82,960 0 0 2 1 / 4 / 5
B 3.78 2.09 2.81 86,400 86,400 86,400 0 0 0 1 / 5 / 4
C 1.65 0.84 0.86 86,400 86,400 86,400 0 0 0 3 / 6 / 3
D 2.16 1.04 1.24 86,400 86,400 86,400 0 0 0 1 / 7 / 2

Average 2.17 1.00 0.97 82,857 81,523 79,244 15 19 35 30 / 75 / 96

The selected feature configuration of each of these variants allows us to evaluate the

usefulness of the proposed valid inequalities and the most important algorithmic refinements

of our branch-and-cut algorithm. The results show that B&C-R1 solves 16 more instances
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for small-size and four for large-size to optimality over B&C-B. It also reduces optimality

gap by 0.17% and 1.17% for small- and large-size instances, respectively. When compared

to B&C-B, the average CPU time in B&C-R1 is 15% lower for small-size instances, and it

outperforms B&C-B in 45 more large-size instances. It seems that B&C-R1 improves the

overall performance of the basic version B&C-B.

We next asses the incremental benefits of including ECIs and RSC constraints in B&C-

R2 over B&C-R1. We observe that B&C-R2 reduces on average CPU times by nearly 30%

in Set I and II instances, particularly, in 4-A and 3-C where reductions are 97% and 79%,

respectively. Over all, B&C-R2 solves 46 instances more to optimality and provides better

result in 107 (86 small-size and 21 large-size) more instances over B&C-R1.

From Tables B.2 and B.3 given in the Appendix, we observe the average number of

added CIs are maximum for B&C-B. As we start separating CIs at fractional solutions,

and providing initial upper bounds, the number of CIs in B&C-R1 decrease to nearly one-

half and one-third of the inequalities required in B&C-B for small- and large-size instances,

respectively. This shows that B&C-R1 is able to reject many infeasible solutions. Also,

a good quality initial upper bound deemed many nodes infeasible. We observe a similar

behavior when ECIs and RSCs are included in B&C-R2 algorithm. When considering a low

value of ε (e.g., 0.001), the RSC inequalities provide a very good approximation, and ECIs

(being stronger than CIs) are helpful in eliminating many solutions at early stages of the

enumeration tree.

3.6.2.1 Effect of varying service level requirements.

We next analyze the impact of varying service level requirements on the network configura-

tions. We consider a static version with a single capacity level. The set of potential facilities

and customer nodes obtained from the states of US: Washington, Oregon, California, Nevada,

Idaho, Utah, Arizona, New Mexico, and Texas. We randomly select two counties from each

state as potential facility locations, and every county in these states correspond to customer
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nodes. The changes in network configuration by varying the parameters are analyzed using

the following three scenarios.

We first vary the minimum acceptable probability θ while τ and CV are fixed to 1.5

and 0.75, respectively. The effect on location decisions and its impact on total cost with

respect to the solution without any service level requirements (base case) are depicted in

Figure 3.2 and Figure 3.3, respectively. The change in colors in the US map represents the

change in location decisions from one scenario to another, and all counties that are of same

color are assigned to the same facility. In the base case, the solution opens two facilities,

one in Carson City, NV and another in Real, TX (Figure 3.1). By increasing the minimum

acceptable probability, the problem becomes more constrained which increase the number

of opened facilities thereby increasing the total costs. For instance, when θ = 0.9, three

facilities are now opened, the location of facilities changes to Humboldt, NV, and McKinley,

NM, the number of counties allocated to the facility in Real, TX decreases (Figure 3.2a).

This increases the network cost by 4%. When θ is further set to 0.95, a total of five facilities

are opened, shipping distance decreases, and the cost required to operate this network is

9% higher compared to the base case. Upon increasing θ to 0.975, a total of six facilities

are opened, shipping distance decreases substantially, and the corresponding network cost is

22% higher from base case (Figure 3.2c). A service probability of 0.99 can be achieved at the

expense of 40% increase in total network cost. Therefore, from the left portion of the plot

in Figure 3.3 we observe that a significant increase in service level can be achieved with a

small increase in total cost (e.g. varying θ = 0.80 to 0.925 results in 4% increase). However,

after a certain point (θ = 0.975 and above), substantial investments are required for higher

service level guarantees.

We next vary the committed delivery time τ while θ and CV are fixed to 0.9 and 0.75,

respectively. The impact of changing τ on location-allocation decisions is shown in Figure

3.4. In the base case, there is no restriction on delivery time, hence the model recommends

shipping to distant customer nodes. For instance, in Figure 3.1, the facility in Real, TX is
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Figure 3.3: Percentage increase in total cost from no service level scenario to the scenarios
with different value of θ (τ=1.5, CV=0.75)

Finally, we vary the coefficient of variation of travel times CV whereas θ and τ are held

constant at 0.9 and 1.5, respectively. An increase in CV leads to a change in location and

allocation decisions (Figure 3.6), and an increase in total cost (Figure 3.7). As we introduce

service level constraints with CV = 0.5, the model changes the location of facility by closing

the facility at Carson city, NV and opening one in Humboldt, NV (Figure 3.6a). As we

further increase CV to 1.0, the model recommends opening another facility in McKinley,

MN (Figure 3.6b). When CV to 1.5, the model opens two facilities, one in Wheeler, OR

and the other in Carson City, NV while closing the Humboldt, NV facility (Figure 3.6c).

An increase in the value of CV increases the uncertainty in the travel time, therefore model

opens more facility for service guarantee, which increases the network cost, as shown in

Figure 3.7. The left portion of this plot indicates that a small variability in travel time

results in a small increase in network cost. However, increase in variability (CV = 1.25 and

above) results in a substantial increase in total cost.
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Osage (MO). The variability in processing times and travel times has led facilities in Sutton,

TX and Fountain, IN to move to Dona Ana, NM and Osage, MO, respectively in the last

scenario thereby increasing the total cost by 5.7% .

Sutton, TX

Shenandoah, VA

Washoe, NV

Brantley, GA

Fountain, IN

(a) Without Service Level Constraints

Sutton, TX

Shenandoah, VA

Washoe, NV

Brantley, GA

Fountain, IN

(b) With Stochastic Processing Times (↑ 0%)

Sutton, TX

Shenandoah, VA

Washoe, NV

Brantley, GA

Wapello, IA

Fountain, IN

(c) With Stochastic Travel Times (↑ 1.6%)

Shenandoah, VA
Osage, MO

Washoe, NV

Dona Ana, NM
Brantley, GA

(d) With Stochastic Processing and
Travel times (↑ 5.7%)

Figure 3.8: Network configurations with different service level constraints (θ=0.90. τ=1.0,
and CV = 0.25)

Finally, Section B.11 in the Appendix provides a sensitivity analysis on the impact in

network configuration when varying demand in a dynamic setting.

3.7 Conclusion

We studied a general class of dynamic and modular capacitated facility location problems

with probabilistic service level constraints on delivery times. These constraints ensure that

every customer is served within τ units of times after an order is placed with a minimum
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acceptable probability of θ. The total time to serve a customer is dependent on stochastic

order processing time at facilities as well as the stochastic travel time from facilities to

customers. We provided two integer linear reformulations and proposed an exact branch-

and-cut algorithm along with several algorithmic refinements to improve its convergence.

Instance with up to 225 facilities and 2,500 customers for static and single capacity variants,

and 54 facilities and 700 customers for dynamic and multiple capacity variants were solved

efficiently. To the best of our knowledge, these instances are by far the largest ever solved for

any type of stochastic capacitated facility location problem with probabilistic service level

constraints.

The proposed polyhedral representations of probabilistic service level constraints can be

used to develop tractable representations of other challenging classes of stochastic prob-

lems with service level constraints, as long as the steady-state distribution of delivery times

(involving stochastic wait, service and travel times) can be evaluated.
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Chapter 4

Demand Allocation, Inventory

Positioning and Distribution Network

Design in Omnichannel Retailing

Abstract

With the emergence of e-commerce and the growing trend of online shopping, many retailers

are adding online sales channel to their traditional brick-and-mortar stores. In this paper,

we study the problem of demand allocation, inventory positioning, and distribution net-

work design for a retailer that seeks to integrate online sales channel into their traditional

brick-and-mortar retail channel. The proposed analytical model seeks to locate distribution

centers, select stores for online demand fulfillment, assign stores to fulfillment centers, and

allocate safety stocks at distribution centers and stores to deal with variability in demands

and lead time. Using the model, we show the benefits of integrating distribution centers in

the omnichannel network to serve in-store demand as well as online demand. The model

also determines if the safety stock inventory should be pooled at the distribution centers

(i.e. centralized inventory) or held at the stores (i.e. decentralized inventory). We present a
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second-order cone mixed integer programming formulation and an exact branch-and-cut al-

gorithm, based on this formulation,in which extended polymatroid inequalities are separated.

Extensive computations under different cost scenarios and parameter settings confirm the

efficiency of our exact algorithm. We conduct sensitivity analyses to understand the impact

of variation in cost and model parameters and present managerial insights.

4.1 Introduction

The retail industry has seen a phenomenal growth in recent years with the advances in mobile

technologies and digital disruptions, accompanied by increasing consumer expectations of

convenience. In 2020, retail e-commerce sales worldwide amounted to 4.28 trillion US dollars

and e-retail revenues are projected to grow to 5.4 trillion US dollars in 2022 (Statista, 2021).

The outbreak of the COVID-19 pandemic and the closure of brick-and-mortar stores has

fueled the surge in retail e-commerce. Factors such as ease of shopping, wider range of

products, quick home delivery of orders, (e.g., within hours, or one to two days of placing

the order) have motivated customers to shop online. Retailers are facing mounting pressures

as a result of the explosion of smartphone-driven shopping, the concept of physical show-

rooms, and the popularity of free returns with no-questions asked among others. Many

retailers are responding to this pressure by adapting to the new paradigm of “omnichannel

retailing”, which seeks to fully integrate the traditional brick-and-mortar stores with several

online channels seamlessly.

While e-commerce is gaining popularity, in-store shopping is also desirable, as many cus-

tomers like to physically interact with the product before buying, the products are available

immediately, the returns are easy and hassle free, and there are no shipping costs involved.

Thus, to capture the best of both, brick-and-mortar (B&M) retailers have started to intro-

duce online sales channel (websites, mobile apps etc.) along with their traditional in-store
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options. For example, Walmart launched its e-commerce channel in the year 2011 (Walmart

[125]). In the third quarter of 2020, Walmart’s online sales in the US increased by 79% mak-

ing it the second highest e-commerce retailer in 2020 (IndigoDigital [70]). Similarly, Target

committed nearly $7 billion in the year 2017 to improve customer’s digital shopping experi-

ence (Target [117]). At the same time, pure e-commerce retailers are also in the process of

establishing physical stores to serve their customers (Verhoef et al. [121]).

To fulfill the demand arising from different channels, retailers use an omnichannel distri-

bution strategy. Under that strategy, stores are no longer only a last point of sales (in-store

demand), but also function as fulfillment centers (FCs), wherein store’s inventory is used to

meet online demand in several ways. For instance, customers can buy online and pick up

their orders at store/curb-side (BOPS); customers also have an option of home delivery of

their orders which can originate from the stores. Stores also provide ‘showroom’ experience,

where customers physically experience the product in the store and have the items (ordered

online or in the store) delivered to their preferred location. Additionally, traditional distri-

bution centers and warehouses are being used as drop shipping facilities from which online

orders can be directly shipped to the customers.

For the ease of operations, many retailers plan logistics activities for in-store demand and

online demand using separate distribution centers, which results in higher inventory levels

and cost of operations (Hübner et al. [69]). Retailers that attempt deliveries of the online

orders using their current distribution network are faced with delayed deliveries, particularly

in case of orders with same day and one-day delivery commitments (Arslan et al. [9]). Om-

nichannel strategy can be an efficient approach to facilitate sales and distributions through

various channels and to improve customer satisfaction. Stores play an integral role in online

demand fulfillment under omnichannel strategy. To use stores as fulfillment centers, retailers

need extra floor space and extra workers, and new contracts with 3PLs for faster deliveries.

Thus, such integrated approach requires significant investments affecting the profitability

of the retailer. Another common issue with omnichannel distribution revolves around im-
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balanced inventory at facilities which leads to stockouts at some facilities and/or excess

inventory levels at others. A survey of 350 major retailers, conducted by JDA and PwC in

2017, points out that only 10% of the retailers managed to run their omnichannel network

profitably (Businesswire [21]).

Motivated by the growing need for integrated design of distribution networks for om-

nichannel retailing, in this paper, we focus on the following research questions that would

assist retailers in building an efficient omnichannel distribution network: (i) What are the

benefits of integrating distribution centers in the omnichannel network to serve in-store as

well as online demand? (ii) How would the configuration of the logistics network change if we

use stores as well as distribution centers in the distribution planning of omnichannel retail

chains? Should the online demand be allocated to (and served from) fulfillment centers, or

retail stores, or both? (iii) Where should the inventory be positioned in the logistics net-

work? Should we pool the safety stock inventory at the distribution centers (i.e. centralized

inventory policy) or should we hold the safety stock inventory at the stores (i.e. decentralized

inventory policy)?

In this paper, we consider a distribution network with three sets of nodes: customer zones,

B&M stores, and fulfillment centers (FCs). Each customer zone has online demand orders for

multiple products with home delivery requirements. The B&M store locations are already

established and operational, and the model selects stores from this set for expansion to

keep inventory for fulfilling online demand. However, expansion of store incurs fixed cost for

creating additional space and hiring extra labor. In our problem, however, the objective is to

determine the location of FCs. Our model also provides flexibility to incorporate scenarios

where FCs are already established, and a retailer is looking to use existing FCs or open

additional FCs. We model two fulfillment strategies to satisfy online demand, namely, ship-

from-FC (SFFC) and ship-from-store (SFS), whereas a store is always assigned to FC. There

is no transshipment of products between stores. We also determine safety stock inventory

at selected stores and FCs based on the demand assigned to these facilities.
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Potential application of our proposed model include the design of omnichannel distribu-

tion network for retailers in general merchandise, consumer electronics, and fashion indus-

tries, among others. These retailers frequently use stores for home delivery of online orders.

For example, Best Buy started shipment of online orders from stores in 2014. In the third

quarter of 2020, Best Buy used 250 stores as fulfillment hubs, and had plans to add another

90 stores to this list in the fourth quarter (SupplychainDive [116]). The primary reason for

such a strategy is the already well established network of Best Buy stores that are within

15 minutes drive of 70% of US population (Forbes [48]). Our model also determines which

stores to use as fulfillment hubs from an existing set of stores. Additionally, in 2019, Best

Buy added three new metro e-commerce centers (CNBC [27]): Compton, California (a sub-

urb of Los Angeles), Chicago and Piscataway, New Jersey. The committed time to deliver

online orders is an important aspect customers keep in mind while shopping online. For

Best Buy, the delivery of majority of its orders matches Amazon Prime’s two-days delivery

commitment (Radial [104]). To ensure such service guarantees, we include service distance

restrictions in our model, which stipulate that an online order can only be served from a

facility (FC / store) located within a specified distance from the customer.

The main contribution of this paper is outlined as follows:

• Modeling contribution: We present an analytical model that captures the trade-off

among logistics cost (i.e. facility fixed costs, transportation costs, inventory holding

costs), safety stock inventory (risk pooling), and service time commitments arising in

the design of distribution networks for an onmnichannel retail environment.

• Methodological contribution: We formulate the model as a second-order cone mixed

integer program (CQMIP). We present a branch-and-cut algorithm in which this for-

mulation is strengthened with polymatroid inequalities. These inequalities are heuristi-

cally separated at fractional nodes of the enumeration tree. We also conduct extensive

computational experiments under different cost scenarios and parameter settings to

test the efficiency of our solution algorithm. In particular, we generate instances to
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capture scenarios with balanced cost, dominant fixed cost, dominant transportation

cost, dominant safety stock cost, service distance restriction, tight capacities and loose

capacities of the facilities (FCs and stores).

• Case study contribution: The applicability of the model and solution approach is

illustrated using the case study of Best Buy, a major electronics retailer in USA. We

use the thirteen actual locations of Best Buy as B&M stores and 50 zip codes from

the city of New York, Newark, and Jersey City as customer zones. Through the case,

we show the benefits of an integrated distribution channel over dedicated distribution

channels. We also analyze the benefits of partially integrated distribution channels

(i.e. online demand fulfilled either from FCs or store) over fully integrated distribution

channels (i.e. online demand can be fulfilled from FCs and/or store). We conduct a

series of sensitivity analyses to understand the impact of variation in model parameters.

We also present sensitivity analyses of the model to parameters such as service distance

restrictions and inventory holding costs.

The remainder of the paper is organized as follows. Section 4.2 presents a brief review of

literature relevant to our work, followed by a formal definition and mathematical model in

Section 4.3. Section 4.4 provides details on solution method, and the experimentation and

computational analysis of the methodology are presented in Section 4.5. In Section 4.6, we

present case study and managerial insights, followed by conclusions in Section 4.7.

4.2 Literature Review

The growing trend and impact of adopting an omnichannel strategy on operations has re-

ceived significant attention in the academic literature. Rigby [105] emphasizes the effect of

digital revolution on retailing and the need of adopting omnichannel strategy. Brynjolfsson

et al. [19] provide new strategies for successful omnichannel environment such as pricing

decision, emphasize on building interactive shopping experience, and building customer re-
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lationships. Bell et al. [14] provide four categories of retail environment: traditional retail

(in-store sales), showroom based retailers with home delivery, pure e-commerce retailers, and

retailers who sell online and fulfill demand from stores. More recently, Chopra [25] identifies

the challenges that omnichannel retailing poses and opportunities it can provide. The au-

thor also discusses the relative variation in various supply chain costs based on the channels

adopted, and presents a framework to select appropriate channel based on product portfolio

and customer characteristics.

The literature on omnichannel retailing is broadly classified into two streams: empiri-

cal studies and modeling of operations. Ansari et al. [8] develop an empirical model that

evaluates the impact of web-based channels on long term demand, and identifies the factors

that affect the migration of customers to these channels. Gallino and Moreno [52] empiri-

cally analyze the impact of buy online, pick-up in the store option (BOPS). Their analysis

show that BOPS increases store traffic, and hence, in-store sales. This is due to cross-selling

i.e. customers buy additional products when visit the stores, and due to channel-shift effect

converting non-store customers to store patrons. Gao and Su [53] further provides evidence

for channel-shift effect in BOPS option, and shows that this option is not profitable for in-

store fast selling items. Hübner et al. [67] conducted an exploratory study to identify the

distribution practices in omnichannel retailing. Hübner et al. [68] analyze empirical data

and conducted personal interviews to provide a framework for last mile delivery in grocery

retail business. Hübner et al. [69] surveyed 24 German retailers to show that BOPS channel

is particularly useful in high density areas.

From prescriptive modeling point of view, prevalent research questions in operations of

omnichannel practice are from the perspective of pricing, returns, inventory management,

and fulfillment. Based on different product and customer characteristics, Cao et al. [23]

present an analytical framework to determine the products to sell online, their pricing, and

demand allocation. Harsha et al. [63] solve a dynamic price optimization problem and par-

tition inventories for in-store and online demand while maximizing profits in deterministic
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settings and worst-case scenario. Mandal et al. [86] develop a model that suggests appro-

priate omnichannel environment for different product classes and recommend strategies on

managing returns. Gao et al. [54] suggest a model to identify the number and size of the

stores, and also study the impact of using stores as showrooms, allowing returns at the stores,

and allowing flexible fulfillment from the stores. Park et al. [101] investigate a problem of

selecting products to display in the stores (used as showrooms), by including product value

and showroom capacity in planning.

Chen and Graves [24] solve an inventory placement problem at fulfillment centers that

are already opened, capacitated and there is a fixed cost of placing an item while minimizing

the total cost. Saha and Bhattacharya [107] develop various inventory control policies at

stores for BOPS option under single and separate ownership (franchise) of physical store

and online channel. The impact on inventory levels is also studied by Hu et al. [66], who

set forth conditions under which BOPS option leads to pooling or depooling of inventory

at stores. Another important aspect of omnichannel strategy is the fulfillment of online

demand. Acimovic and Graves [6] develop a heuristic that makes fulfillment decisions based

on immediate and future expected outbound shipment costs. Torabi et al. [118] also con-

sider an order fulfillment problem, which allows transshipment of inventories between stores

and transfer of orders from one store to another in case of shortages. Govindarajan et al.

[57] study a multi-period planning problem in which inventory decisions are made at the

beginning of the horizon and fulfillment decisions are made in every time period. Bayram

and Cesaret [13] consider separate inventory for online demand orders, and their model de-

cides whether to use DC or a store to fulfill online demand. Yang and Zhang [127] optimize

retailer’s profit in ship-from-store option by including customer utility function in the model.

The current network of stores play a crucial role in last mile delivery in omnichannel

retailing, as showcased by Ishfaq et al. [72]. Some papers have studied the problems that

include location decisions, in addition to inventory and allocation decisions. For example,

Ishfaq and Bajwa [71] includes binary decision of locating only direct-to-customers distribu-
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tion centers, along with an option of fulfilling demand from existing stores, DC, and vendors.

Their model also assumes linear inventory cost at every supply node and a convex demand

function. Arslan et al. [9] include the decision of selecting stores as fulfillment centers and

opening FCs with inventory decisions at both locations. Their problem utilizes a scenario

based approach to model uncertainty in demand. We refer readers to Melacini et al. [93] and

Cai and Lo [22] for detailed reviews on omnichannel strategy, and to Jasin et al. [73] for the

review on modeling practices.

This paper focuses on the integrated design of a distribution network to fulfill in-store

and online demand while maintaining safety stocks at FCs and stores. In our work, we

also include the decisions of opening new FCs, selecting stores for online order fulfillment.

However, we assume that demand is normally distributed with a mean and variance, and

use basic inventory theory to calculate required safety stocks at stores and FCs.

4.3 Problem Description and Model Formulation

Let I be the set of customer zones, V1 be the set of existing locations of B&M stores, and

V2 be the set of potential FC locations. We assume that a store j ∈ V1 is supplied from

FC k ∈ V2, whereas a customer zone i ∈ I is supplied either from a FC k or a store j.

Also, let P be the set of product categories and D be the demand type originated from each

customer zone. The demand type represents different service level commitments in terms of

order delivery time. For example, in case of Amazon, prime and non-prime customers/orders

are two types of demand with different delivery commitments for the same product. The

stochastic demand for every product-demand type combination from each customer zone is

assumed to follow a normal distribution with known mean and variance. Similarly, in-store

stochastic demand for every product is assumed to follow a normal distribution with known

mean and variance. To prevent the risk of stockouts during lead time or due to variation in

demand, we consider pooling safety stock inventory at stores and at opened FC locations.
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We also introduce service distance restrictions to ensure that customer located in zone i with

demand type d is assigned to a facility within a specified distance from i. The notations are

listed in Table 4.1.

To compute the safety stock at facilities, let us assume for a moment that the assignment

of customer zones and stores to FCs are known a priori. We consider a single period model,

and assume that demand from a customer zone i, for product p and demand type d is

normally distributed, with a mean of µidp and standard deviation of σidp. Also assume that

the in-store demand for a product p at store j is normally distributed, with a mean of αjp

and standard deviation of βjp. From basic inventory theory, we know that if the demands

from customer zones are uncorrelated, then the demand of product p during the lead time

at FC k is normally distributed with mean
(
L2k

∑
j αjp + L2k

∑
i

∑
d∈D µidp

)
and variance(

L2k

∑
j β

2
jp + L2k

∑
i∈I
∑

d∈D σ
2
idp

)
. The safety stock level for product p ∈ P at FC k ∈ V2

is given by

zθ

√√√√L2k

(∑
j∈V1

β2
jp +

∑
i∈I

∑
d∈D

σ2
idp

)
.

Let I ′ ⊆ I and V ′1 ⊆ V1 be the set of customers and the set of stores, respectively

that are assigned to an open FC k ∈ V2 (z2k = 1). We further assume that the stores

belonging to set V ′1 are not selected to fulfill customer zones i.e. z1j = 0 ∀j ∈ V ′1 . In

that case, the demand during the lead time at FC k is normally distributed with mean

of L2k

(∑
j∈V ′

1
αjp +

∑
i∈I′
∑

d∈D µidp

)
and variance of L2k

(∑
j∈V ′

1
β2
jp +

∑
i∈I′
∑

d∈D σ
2
idp

)
,

hence, the safety stock level at FC k is given by

zθ

√√√√√L2k

∑
j∈V ′

1

β2
jp +

∑
i∈I′

∑
d∈D

σ2
idp

.
If the decisions regarding the assignment of customer zones to stores (vkj), assignment of

customer zones to FCs (x2kid), and store selection (z1j) are to be determined endogenously,
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then the expression for total safety stock levels at FC k ∈ V2 is given by
∑

p∈P zθr2kp, where,

r2kp =

√√√√L2k

(∑
j∈V1

β2
jpvkj(1− z1j) +

∑
i∈I

∑
d∈D

σ2
idpx2kid

)
(4.1)

and zθ is the standard score (or z-score) corresponding to the desired service level θ.

Table 4.1: Table of Notations
Indices
i Index for customer zones, i ∈ I
j Index for B & M Stores, j ∈ V1

k Index for fullfilment centers (FCs), k ∈ V2

d Index for demand types at customer zones, d ∈ D
p Index for product categories, p ∈ P
Parameters
F1j Fixed cost to use store j as a fulfillment center
F2k Fixed cost of opening a FC at location k
h1jp per unit inventory holding cost for product p at store j
h2kp per unit inventory holding cost for product p at FC k

L1j Lead time at store j
L2k Lead time at FC k

µidp, σidp Mean and standard deviation of online demand of product p and demand type d at customer zone i
αjp, βjp Mean and standard deviation of in-store demand for product p at store j
t1ji, t2ki travel times from store j to customer zone i, and FC k to customer zone i, respectively
M1j Capacities at store j
M2k Capacities at FC k

χ1(d) Service distance restriction from stores for demand type d
χ2(d) Service distance restriction from FCs for demand type d
ckj per unit transportation cost from FC k to store j
c2kidp per unit transportation cost for product p from FC k to customer i for demand type d
c1jidp per unit transportation cost for product p from store j to customer i for demand type d
θ service level requirement
Decision Variables
z1j 1, if store j is selected (for expansion) to be used as a fulfillment center; 0, otherwise
z2k 1, if FC k is opened; 0, otherwise.
x1jid 1, if customer zone i for demand type d is assigned to store j; 0, otherwise
x2kid 1, if customer zone i for demand type d is assigned to FC k; 0, otherwise.
vkj 1, if store j is assigned to FC k; 0, otherwise
wkjp amount of product p shipped from FC k to store j.
r1jp auxiliary variable for product p at store j
r2kp auxiliary variable for product p at FC k

Similarly, the amount of safety stock to be held at those stores j ∈ V1 that are selected
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for expansion (i.e. z1j = 1) to fulfill online demand is given by
∑

p∈P zθr1jp, where,

r1jp =

√√√√L1j

(
β2
jpz1j +

∑
i∈I

∑
d∈D

σ2
idpx1jid

)
(4.2)

Note that in cases where store j ∈ V1 is assigned to FC k ∈ V2 i.e. vkj = 1 and the

store j is also selected for expansion to fulfill online customer demand i.e., z1j = 1, the

term β2
jpvkj(1− z1j) in equation (4.1) is equal to zero. This is to avoid the double counting

of safety stock for the variation in demand originating from store j. Also, due to single

assignment assumption of online customer demand, safety stock corresponding to variation

in online demand for any customer i for demand type d is allocated to only one facility (a

FC or store).

With the above settings, the distribution network design model seeks to simultaneously

select stores (from an existing set) to operate as fulfillment centers as well, to locate FCs,

assign stores to FCs, and assign online customer demand to stores/FCs while minimizing

fixed costs, transportation costs and safety stock inventory holding costs at facilities. The

model can be stated as the following mixed integer nonlinear program:

(P) min
∑
k∈V2

F2kz2k +
∑
j∈V1

F1jz1j +
∑
k∈V2

∑
p∈P

∑
j∈V1

ckj wkjp +
∑
k∈V2

∑
p∈P

∑
i∈I

∑
d∈D

c2kidp µidp x2kid+

∑
j∈V1

∑
i∈I

∑
d∈D

∑
p∈P

c1jidpµidpx1jid +
∑
k∈V2

∑
p∈P

h2kpzθr2kp +
∑
j∈V1

∑
p∈P

h1jpzθr1jp (4.3)

s.t.
∑
p∈P

(∑
j∈V1

wkjp +
∑
i∈I

∑
d∈D

µidpx2kid + zθr2kp

)
≤M2kz2k ∀k ∈ V2 (4.4)√√√√L2k

(∑
j∈V1

β2
jpvkj(1− z1j) +

∑
i∈I

∑
d∈D

σ2
idpx2kid

)
= r2kp ∀k ∈ V2, p ∈ P (4.5)

∑
p∈P

(∑
i∈I

∑
d∈D

µidpx1jid + zθr1jp

)
≤M1jz1j ∀j ∈ V1 (4.6)
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√√√√L1j

(
β2
jpz1j +

∑
i∈I

∑
d∈D

σ2
idpx1jid

)
= r1jp ∀j ∈ V1 (4.7)

∑
k∈V2

wkjp = αjp +
∑
i∈I

∑
d∈D

µidpx1jid + zθr1jp ∀j ∈ V1, p ∈ P (4.8)

wkjp ≤ min{M2k,M1j}vkj ∀k ∈ V2, j ∈ V1, p ∈ P (4.9)

vkj ≤ z2k ∀k ∈ V2, j ∈ V1 (4.10)∑
k∈V2

vkj = 1 ∀j ∈ V1 (4.11)

∑
k∈V2

x2kid +
∑
j∈V1

x1jid = 1 ∀i ∈ I, d ∈ D (4.12)

x1jid = 0 if t1ji > χ1(d) ∀j ∈ V1, i ∈ I, d ∈ D (4.13)

x2kid = 0 if t2ik > χ2(d) ∀k ∈ V2, i ∈ I, d ∈ D (4.14)

z2k, z1j, vkj, x2kidp, x1jidp ∈ {0, 1}, wkjp ≥ 0 (4.15)

The first term in the objective function is the fixed cost of opening new FCs whereas the

second term is the fixed cost to use an existing B&M store as a fulfillment center. The third

and fourth terms represent transportation costs from FCs to stores and from FCs to online

customer demand zones, respectively. Similarly, the fifth term represents the cost to ship

from stores to customer zones. The sixth and seventh terms are inventory holding costs at

FCs and stores, respectively. Equations (4.5) and (4.7) are auxiliary constraints for safety

stock at FCs and stores, respectively.

Constraints (4.4) and (4.6) are capacity restrictions at FCs and stores, respectively. Con-

straints (4.8) are flow conservation at stores, which ensures that for every product that flows

through the store, a part of it is held in safety stock and the rest is used to satisfy cus-

tomer demand. Constraints (4.9) and (4.10) link flows between FCs and stores. Constraints

(4.11) and (4.12) are the demand satisfaction constraints that also model single assignment

requirement at stores and customer zones, respectively. Constraints (4.13) and (4.14) guar-

antee service distance restriction for online demand arising from customer zones. Constraint

92



(4.15) are standard integrality and non-negativity restrictions.

4.4 Solution Method

For problem P, we can use any approach that is valid for concave minimization problems, for

instance Branch and Bound (Soland [115]). However, in this case we exploit the properties

of the model to reformulate P as a conic quadratic mixed integer programming problem that

can be solved directly using any state-of-the-art commercial solver (that can solve second

order conic problems).

4.4.1 Conic Quadratic Mixed Integer Reformulation

To reformulate (P), we exploit following properties: (i) in constraint (4.5), we let skj be an

auxiliary binary variable, such that skj = vkj(1− z1j), (ii) as x2kid is a binary variable, thus

x2kid = x2
2kid (similar is the case with z1j, x1jid, and skj), and (iii) since we are minimizing

over variables r2kp and r1jp in the objective function (4.3), the constraints (4.5) and (4.7) can

be expressed in less than equal to form. With these transformations and linearization of the

product of binary variables, the reformulated conic quadratic mixed integer programming

(CQMIP) problem is stated as follows.

(CQMIP) min
∑
k∈V2

F2kz2k +
∑
j∈V1

F1jz1j +
∑
k∈V2

∑
p∈P

∑
j∈V1

ckj wkjp +
∑
i∈I

∑
d∈D

c2kidp µidp x2kid

+

∑
j∈V1

∑
i∈I

∑
d∈D

∑
p∈P

c1jidpµidpx1jid +
∑
k∈V2

∑
p∈P

h2kpzθr2kp +
∑
j∈V1

∑
p∈P

h1jpzθr1jp

s.t. (4.4), (4.6), (4.8)− (4.14)

L2k

(∑
j∈V1

β2
jps

2
kj +

∑
i∈I

∑
d∈D

σ2
idpx

2
2kid

)
≤ r2

2kp ∀k ∈ V2, p ∈ P (4.16)

L1j

(
β2
jpz

2
1j +

∑
i∈I

∑
d∈D

σ2
idpx

2
1jid

)
≤ r2

1jp ∀j ∈ V1 (4.17)
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skj ≤ vkj ∀k ∈ V2, j ∈ V1 (4.18)

skj ≤ (1− z1j) ∀k ∈ V2, j ∈ V1 (4.19)

skj ≥ vkj − z1j ∀k ∈ V2, j ∈ V1 (4.20)

z2k, z1j , vkj , x2kid, x1jid, skj ,∈ {0, 1} ∀i, j, k, d, p (4.21)

wkjp, r2kp, r1jp ≥ 0 ∀i, j, k, d, p (4.22)

Constraints (4.16) and (4.17) are conic quadratic constraints, and (4.18)-(4.20) linearize the

product of binary variables.

4.4.2 Polymatroids Inequalities

We next describe polymatroid inequalities which can be obtained from constraints (4.16)

and (4.17) to strengthen the (CQMIP) formulation. To do that, we provide few additional

definitions. First, let N be a finite set, and f : 2N → R be a real-valued set function on N .

Definition 1. The set function f : 2N → R is a submodular function if f(K ∪ k)− f(K) ≥

f(M ∪ k)− f(M), ∀K ⊆M ⊆ N , and k ∈ N \K.

Definition 2. For any set function f on N , the polyhedron EPf is defined as

EPf := {π ∈ RN : π(T ) ≤ f(T ) ∀T ⊆ N},

where π(T ) =
∑

1≤i≤|T | πi. If the set function f is submodular, then EPf is the extended

polymatroid of f .

Definition 3. For any set function f on N , the problem we seek to optimize is defined as

min
T⊆N

f(T ). (4.23)

Further, let y ∈ {0, 1}|N | be the indicator vector that is supported by the set Sy ⊆ N . Then,
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the problem in (4.23) can be rewritten as:

min
(y,t)∈Θf

t, (4.24)

where, Θf is the convex lower envelop of f , i.e.,

Θf := conv{(y, t) ∈ {0, 1}|N | × R : f(y) ≤ t}. (4.25)

Atamtürk and Narayanan [10] show that inequality

πy ≤ t, (4.26)

is valid for Θf if and only if π ∈ EPf . These inequalities are the so-called extended polyma-

troid inequalities of Θf .

In constraint (4.16), since the coefficients L2k, βjp and σidp are non-negative, s2
kj = skj

and x2
kid = xkid, the function

f(s, x) =

√√√√L2k

(∑
j∈V1

β2
jpskj +

∑
i∈I

∑
d∈D

σ2
idpx2kid

)

is submodular, where (s, x) represents the indicator vector and variable r2kp is analogous to

variable t in equation (4.26). Using similar arguments for equation (4.17), we can reformulate

these constraints using the extended polymatroid inequalities (4.26).

4.4.3 A Branch-and-cut algorithm

We next present a branch-and-but (B&C) algorithm to solve (CQMIP). To improve the

convergence of this algorithm, we use the extended polymatroid inequalities described in the

previous section. Although extended polymatroid inequalities are exponential in size, we

only need to add in practice a small subset of them during the enumeration process. In
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the B&C algorithm, we separate these inequalities at selected fractional solutions using the

usercutcallback (UCC) function of CPLEX Callable library. To check whether a fractional

solution (ȳ, t̄) violates one of these inequalities requires solving the optimization problem

[PT], ξ := max{πȳ : π ∈ EPf}. Let π∗ be the optimal solution of [PT], and if ξ > t̄ then

the inequality π∗y ≤ t separates the point (ȳ, t̄). We adopt the greedy procedure (Algorithm

(2)) of Edmonds [37] to separate these inequalities.

Algorithm 2: A greedy heuristic algorithm to find polymatroid inequalities
Data: Fractional point ȳ and t̄

1 At a fractional solution ȳ ∈ [0, 1]|N | and t̄, sort ȳ in nonincreasing order
ȳ(1) ≥ ȳ(2) ≥ ... ≥ ȳ(|N |) .

2 Let Ti = {(1), (2), ..., (|N |)}, and π̄i = f(T(i))− f(T(i−1)) ∀ 1 ≤ i ≤ |N | and f(∅) = 0.
3 If ξ = π̄ȳ > t̄, we add the extended polymatroid inequality π̄y ≤ t.

We assume f(∅) = 0 without loss of generality (Atamtürk and Narayanan [10])

4.5 Computational Experiments

We perform a set of extensive computational experiments to assess the performance of our

algorithm under different cost settings and capacity scenarios. All the algorithms are coded

in C and ran on an Intel Xeon E5-2687W v3 processor at 3.10 GHz in a Linux environment.

The algorithm is implemented using CPLEX 12.9 Callable Library using a single thread.

Next, we present the summary of the results of experiments. We also study the change in

network configuration and safety stock allocation under different cost and capacity scenarios.

4.5.1 Test Instances

To create test instances, we use thirteen locations (currently supporting home delivery chan-

nel) of Best Buy Stores as B&M stores. For FCs, we use two potential locations: Piscataway,

New Jersey, where Best Buy has an already operational FC, which is nearly 30 miles from

Newark, and Yonkers, a town outside of New York City. Therefore, in every instance, we

have total 15 facilities: 13 stores and 2 FCs. The latitude and longitude information of these
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facilities is obtained from a search on google map, and in-store demand at the stores is based

on the population (PB) of the borough (Manhatttan, Bronx, Brookly, Queens, and Staten

Island) or city (Newark and Jersey City) in which the store is located1. For customers zones,

we consider all the zip codes from New York City, Newark and Jersey City. With this our

data consists of 197 customer locations with population (PC), latitude and longitude based

on the zip code of each location1. We consider |I| most populous locations as customer zones.

Finally, at every B&M store and customer location, we assume that there is a demand for

every product p ∈ P with every demand type d ∈ D.

The data is generated based on the scheme used in Vidyarthi et al. [123]. In every

instance, we set µidp = PCi × U [0.0001, 0.0005] + U [50, 100], σidp = µidp × U [0.01, 0.10],

αjp = PBj × U [0.004, 0.008] + U [100, 500], and βjp = αjp × U [0.001, 0.1]. The capacities

at B&M stores and FCs are first generated randomly on U [500, 1000] and then scaled such

that
∑

j M1j

Total Demand
=

∑
kM2k

Total Demand
= κ, where Total Demand =

∑
jp αjp +

∑
idp µidp and κ

is capacity factor. The fixed costs to expand a store and to open a FC are F1j = f c1 ×

10× U [0.5, 1.0]×M0.75
1j and F2k = f c2 × 10× U [0.5, 1.0]×M0.75

2k , respectively, where f c1 ≥ 0

and f c2 ≥ 0 are scaling constants. The holding costs for every product at stores and FCs

are h1jp = hc1 × 2 × U [5, 20] and h2kp = hc2 × 1.5 × U [5, 20], respectively, where hc1 ≥ 0

and hc2 ≥ 0 are scaling constants. The transportation costs from: (i) FC k to store j,

ckj = tc × 0.005 × U [5, 10] × tkj, (ii) store j to customer i for product p and demand type

d = 1, c1jidp = tc1×0.01×U [5, 10]× t1ji, and for d > 1, c1jidp = 1.25×c1ji(d−1)p, and (iii) FC k

to customer i for product p and demand type d = 1, c2kidp = tc2× 0.025×U [5, 10]× t2ki, and

for d > 1, c2kidp = 1.25 × c2ki(d−1)p, where tkj, t1ji, and t2ki, are distance between two nodes

calculated using greater circle distance formula and tc ≥ 0, tc1 ≥ 0, and tc2 ≥ 0 are scaling

constants.

We generate twenty problem instances, where the largest instance consists of 2 FCs (|V2|),

13 B&M stores (|V1|), 60 customers zones (|I|), 2 demand types (|D|) and 100 product

1 http://zipatlas.com/us/ny/zip-code-comparison/population-density.htm
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Table 4.2: Specifics of the Instances Used in the Computational Experiments

Set Instance# |V2| |V1| |I| |D| |P |
I 1, 2, 3, 4 2 13 20 2 25, 50, 75, 100
II 5, 6, 7, 8 2 13 30 2 25, 50, 75, 100
III 9, 10, 11, 12 2 13 40 2 25, 50, 75, 100
IV 13, 14, 15, 16 2 13 50 2 25, 50, 75, 100
V 17, 18, 19, 20 2 13 60 2 25, 50, 75, 100

categories (|P |). Details about the test instances are provided in Table 4.2. Further, we

vary model parameters to include seven scenarios that captures different cost and capacity

settings in the computational analysis. The scenarios are obtained by setting the parameters

as follows:

• Balanced Cost (BC) scenario: Under this scenario, κ = 5 whereas all scaling constants

are set to their default value of 1. There are no restrictions on χ2(d) and χ1(d1),

whereas χ1(d2) = 15 miles.

• Dominant Fixed Cost (DFC) scenario: Under this scenario, f c1 and f c2 are set to 5, and

κ = 5 whereas all scaling constants are set to their default value of 1.

• Dominant Safety Stock Cost (DSC) scenario: Under this scenario, we set hc1 and hc2 to

4, and κ = 5 whereas all scaling constants are set to their default value of 1.

• Dominant Transportation Cost (DTC) scenario: We set tc = tc1 = tc2 = 4 and κ = 5

whereas all scaling constants are set to their default value of 1.

• Service Distance (SD) scenario: We set χ2(d2) = 15 miles. There are no service distance

restrictions on χ1(d1) and χ2(d1). κ = 5. All other scaling constants are set to their

default value of 1.

• Tight Capacity (TCap) Scenario: The instances are generated by setting κ = 3 whereas

all other scaling constants are set to their default value of 1.
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• Loose Capacity (LCap) Scenario: The instances are generated by setting κ = 10

whereas all other scaling constants are set to their default value of 1.

4.5.2 Computational Results

In this section, we compare the performance of the proposed solution approach with CPLEX,

where (CQMIP) is directly solved using the SOCP solver of CPLEX with its default set-

tings. In the proposed solution method, referred as B&C, we solve (CQMIP) by adding

extended polymatroid inequalities at fractional solutions.

In our experiments, we observed that the performance of B&C algorithm is sensitive to

various parameters used in the implementation of UCC function. The parameters tuned to

improve the convergence of the B&C algorithm are described as follows. We first define,

separation tolerance (ST) as the tolerance value for violation of inequalities by the fractional

solution. Also, we control the number of cuts to be added at a node in the enumeration tree

using two parameters: (i) CSN, which is defined as the limit on number of calls to be made

to UCC function from the same node, and (ii) EPSOBJ, which defines that UCC is called

again only if the improvement in the lower bound is above a fixed percentage after adding

cuts. Finally, the parameter Depth is defined to control how frequently cuts be added in the

enumeration tree. Based on our preliminary experiment, we set the parameters as follows:

ST = 0.001, CSN = 10, EPSOBJ = 0.1, and Depth = 10.

The summary of results are presented in Table 4.3 for all five sets of instances under seven

scenarios that provided reasonable feasible solution using CPLEX and B&C algorithm. The

detailed results of 140 instances are provided in Tables C.1 - C.7 in the Appendix. In all

our experiments, we solve each instance to the optimality gap of 0.005% within a time limit

of 86,400 seconds. In the table, column headings “Gap (%)", “# Inst.Opt." and “Time

(sec)" are average optimality gap, number of instances solved up to desired optimality gap

and average computation time, respectively, for every Scenario-Set. In column “%Red", we

compare the savings in computational time of the B&C algorithm over CPLEX. Finally, we
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use the notation NCPLEX/NB&C in the last column, where NCPLEX represents the number

of instances out of (NCPLEX + NB&C) in which CPLEX outperformed B&C, and similarly,

NB&C represents the number of instances where B&C outperformed CPLEX.

First, we compare the performance of two solution approaches in terms of average opti-

mality gap and number of instances solved to optimality. Results in Table 4.3 indicate that

the overall average optimality gap provided by B&C is 0.23% lower than that by CPLEX.

The optimality gap is significantly lower in SD scenario (0.74%) followed by TCap (0.4%)

and BC (0.33%) scenarios, whereas the reduction in optimality gap is moderate for DSC

(0.15%) scenario. The optimality gaps obtained in DTC, DFC and LCap are approximately

equal. This lower gap provided by B&C is particularly due to better performance of B&C

method in large size instances of Sets III, IV and V. For instance, in SD-III (Scenario-Set)

the optimality gap from CPLEX is 2.89% higher than that by B&C. Similarly, the reduc-

tion in optimality gap by B&C is 1.49% in TCap-IV, 1.31% in BC-IV, 0.72% in TCap-V

and 0.34% in DSC-V scenarios. Additionally, B&C solves 109 of the 140 instances whereas

CPLEX solves 101 of the 140 instances to the desired optimality gap.

Next, we compare the average computation times taken to solve the instances. Over all

scenarios and set sizes, B&C takes 35% less computational time than CPLEX. Primarily,

lower computation times by B&C are observed in DTC scenario with 52% reduction, followed

by 48% in LCap, 45% reduction for DSC, and 29% in SD. Whereas in case of DFC (17%) the

reduction is moderate, and in TCap the average computation times are almost same. We

observe that B&C is particularly faster for large size instances. For example, in the instances

belonging to DFC-IV, SD-IV, and DTC-IV, using B&C algorithm reduces computational

time by 92%, 73% and 61%, respectively.

In Table 4.4, we compare the average performances of B&C and CPLEX by instance

sizes. We observe that B&C method performs well for all five sets in terms of providing

lower optimality gap and reducing computational times. E.g., in large size instances of Sets

III, IV and V, the average reduction in computational time by B&C is 23%, 28% and 28%,
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Table 4.3: Summary of Performance of Branch-and-Cut Algorithm and CPLEX under dif-
ferent cost and capacity scenarios

Gap (%) # Inst. Opt. Time (sec)

Scenario Set CPLEX B&C CPLEX B&C CPLEX B&C %Red. NCPLEX / NB&C

BC I 0.00 0.00 4 4 21,156 14,220 33 0 / 4
II 0.00 0.00 4 4 21,262 13,369 37 0 / 4
III 0.48 0.00 2 3 38,936 32,619 16 1 / 2
IV 1.36 0.05 2 2 33,808 30,531 10 0 / 3
V 0.00 0.00 2 2 25,982 25,811 1 0 / 2

Average 0.34 0.01 14 15 27,492 21,964 20 1 / 15

DFC I 0.00 0.00 4 4 314 1117 -72 3 / 1
II 0.00 0.00 4 4 697 278 60 0 / 4
III 0.00 0.01 4 3 12,915 27,188 -52 2 / 2
IV 0.00 0.00 4 4 14,972 1,163 92 0 / 4
V 0.05 0.00 2 3 38,159 23,703 38 0 / 3

Average 0.01 0.00 18 18 12,109 10,005 17 5 / 14

DSC I 0.21 0.00 3 4 35,284 20,507 42 0 / 4
II 0.00 0.00 4 4 36,587 22,650 38 0 / 4
III 0.31 0.00 1 2 56,050 33,887 40 0 / 2
IV 0.00 0.00 2 2 15,831 9,299 41 0 / 2
V 0.34 0.00 0 2 86,278 37,627 56 0 / 2

Average 0.15 0.00 10 14 43,129 23,875 45 0 / 14

DTC I 0.00 0.00 4 4 4,346 2,020 54 0 / 4
II 0.00 0.00 4 4 5,596 1,741 69 0 / 4
III 0.00 0.00 4 4 25,898 12,876 50 1 / 3
IV 0.00 0.00 4 4 23,241 8,991 61 0 / 4
V 0.09 0.00 3 4 34,594 19,081 45 0 / 4

Average 0.02 0.00 19 20 18,735 8,942 52 1 / 19

SD I 0.00 0.00 4 4 16,145 10,885 33 0 / 4
II 0.00 0.00 4 4 18,068 12,667 30 0 / 4
III 3.10 0.21 3 3 41,860 40,094 4 1 / 3
IV 0.00 0.00 2 2 22,048 6,063 73 0 / 2
V 0.14 0.00 1 2 43,867 20,826 53 0 / 2

Average 0.79 0.05 14 15 27,258 19,272 29 1 / 15

TCap I 0.00 0.29 4 3 19,112 27,943 -32 2 / 2
II 0.35 0.22 3 3 28,559 29,687 -4 2 / 2
III 0.41 0.01 2 2 63,549 50,530 20 0 / 3
IV 1.94 0.45 1 2 65,916 69,407 -5 1 / 2
V 2.12 1.40 0 0 85,466 85,757 0 1 / 1

Average 0.79 0.39 10 10 46,876 47,615 -2 6 / 10

LCap I 0.00 0.00 4 4 1,047 419 60 0 / 4
II 0.00 0.00 4 4 21,961 924 96 1 / 3
III 0.03 0.00 2 3 30,974 95,93 69 0 / 3
IV 0.00 0.00 3 3 5,346 4,334 19 0 / 3
V 0.00 0.00 3 3 30,881 35,522 -13 1 / 2

Average 0.01 0.00 16 17 17,273 9,042 48 2 / 15
Average 0.30 0.07 101 109 27,553 20,102 27 16 / 102

respectively. Also, for instances in Sets III and IV, the average optimality gap provided by

B&C version is 0.58%, and 0.4% lower than that of CPLEX, respectively.
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The results from the column ‘NCPLEX / NB&C ’ in Table 4.3 show that B&C outperforms

CPLEX on 19 out of 20 instances under DTC, and on all 14 instances in DSC scenario.

B&C also performs better than CPLEX on 15 out of 17 and 14 out of 19 instances under

LCap and DFC scenarios respectively. Furthermore, out of 16 instance, B&C performs

better on 15 instances each under BC and SD scenarios, and on 10 instance under TCap. In

summary, B&C outperforms CPLES on 102 out of 118 instances. The performance of B&C

is particularly better for large size instances (Table 4.4), where B&C outperforms CPLEX

in 54 out of 62 instances belonging to Sets III, IV, and V.

While gauging the ability of the solution method to solve instances under different sce-

narios, we note that instances under DFC and DTC scenarios are easy to solve in comparison

to those under BC, SD, and DSC scenarios. Not only the average optimality gaps provided

by DFC and DTC are near to optimality, but also these two scenarios have among the low-

est average computational times. Additionally, in both these scenarios almost all instances

are solved to optimality. Whereas, both average optimality gap and computational time in-

creased in BC and SD scenario, followed by DSC. Additionally, we measure the performance

of our solution method under different capacity scenarios. For this we compare results of

BC, LCap and TCap scenarios. As expected, instances with loose capacity scenario are

comparatively easy of solve, followed by BC in which average CPU time is twice of LCap.

Whereas, TCap instance are most difficult with average CPU time nearly five times of LCap

and 2 times of BC, and with significant increase in average optimality gap.

Table 4.4: Summary of performance of branch-and-cut algorithm and CPLEX by Instance
sets

Gap(%) # Inst. Opt. Time (sec)

Set CPLEX B&C CPLEX B&C CPLEX B&C %Red. NCPLEX / NB&C

I 0.03 0.04 27 27 13,915 11,016 21 5 / 23
II 0.05 0.03 27 27 18,962 11,617 39 3 / 25
III 0.62 0.04 18 20 38,597 29,541 23 5 / 18
IV 0.47 0.07 18 19 25,880 18,541 28 1 / 20
V 0.39 0.20 11 16 49,318 35,475 28 2 / 16
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4.6 Sensitivity Analysis and Managerial Insights

In this section, we address our research questions and provide some managerial insights. We

also vary scaling constants related to safety stock costs to analyze how sensitive the model

is with respect to this cost parameters.

4.6.1 Benefits of Channel Integration: Dedicated Channels vs. In-

tegrated Distribution Channel

Many retailers use dedicated distribution centers for in-store and online sales channels due

to ease of operations. In fact, many retailers consider online demand channel as another

business entity (or store) for the purpose of planning (Hübner et al. [67]). However, in-

tegrating distribution channels offer the potential for lowering inventory requirements due

to risk pooling and reducing overall network costs. We analyze the benefits of using inte-

grated distribution channels over dedicated distribution channels. To show these benefits,

we compare two scenarios. The first scenario is the dedicated channel, where the planning

for in-store and online demand is done separately using different sets of potential FCs for

both demands, and the second one is integrated channel in which two demand types and

their respective sets of potential FCs are combined as one set, and the logistic activities

are planned jointly. We consider four potential locations for FCs: Piscataway (NJ), Monsey

(NY), Freeport (NY), and Yonkers (NY), where Piscataway and Monsey are a set of potential

FCs to satisfy in-store demand only, and Freeport and Yonkers are a potential set to fulfill

online demand. Further, we use thirteen locations of Best Buy as B&M stores and 50 zip

codes from the city of New York, Newark, and Jersey City as customer zones. Additionally,

we assume that both demands are to be served directly from FCs only. Table 4.5 shows the

difference between the results of dedicated distribution channels and integrated distribution

channel. This leads to the following observation:
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Observation 1: Integrated distribution channel is cost effective compared to the dedicated

distribution channels mainly due to risk pooling and reduction in safety stock and the asso-

ciated holding costs.

In the dedicated channels scenario, to satisfy in-store demand, model opens a FC at

Monsey, with total network cost of $49,550 and safety stock of 401 units. Similarly, to serve

online demand, a FC is opened at Yonkers with the optimal cost of $62,607, and safety stock

level of 220 units. Therefore, the total costs to serve both demands in the dedicated channels

scenario is $112,157, and total safety stock is 621 units. Next, we consider both in-store and

online demands, and all four potential locations for FCs as a set for the integrated channels

scenario. The optimal cost in this scenario is $70,437, and safety stock is 359 units. Thus,

integrated channels offer a savings of 37% in total costs, and 42% reduction in safety stock.

The major savings in costs are attributed to facility fixed cost, as dedicated channel locates

FCs at Monsey and Yonkers, whereas in integrated channel all the distribution activities are

carried out from FC opened at Yonkers, thus it reduces fixed cost by 69%, safety stock cost

by 13% and transportation cost by 9%. The reduction in safety stock is due to the fact that

inventory is now pooled only at one location. The transportation cost is reduced because

Yonkers is closer to the stores and customer zones than other locations for FCs, and it also

has sufficient capacity to serve both types of demands.

Table 4.5: Dedicated Distribution Channels vs. Integrated Distribution Channel

Dedicated Channel Integrated Channel
In-Store Demand Online Demand In-Store and Online Demand

FC Location Monsey Yonkers Yonkers
Safety Stock Levels 401 220 359
Facility Fixed Cost ($) 35,980 16,253 16,253
Transportation Cost ($) 9,251 41,452 46,197
Safety Stock Cost ($) 4,319 4,902 7,987
Total Cost ($) 49,550 62,607 70,437
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4.6.2 Benefits of Integrating FCs and Stores to Fulfill Online De-

mand

In the previous subsection 4.6.1, we studied the benefits of jointly planning for in-store

and online demand using integrated FCs assuming that only FCs can be used to serve

both demands. Next, we evaluate whether is it beneficial to integrate stores as well in

distribution activities to fulfill online demand. We consider an integrated model with same

instance used in Section 4.6.1, and compare the performance of three scenarios in Table

4.6. In partial integration-FC (PI-FC) scenario, online demand is served only from FCs; in

partial integration-Store (PI-Store) scenario, online demand is served only from stores, and

in full integration (FI), online demand can be allocated to both stores and FCs. In all three

scenarios, in-store demand is served from store only.

Table 4.6: Analysis of integrating FCs and Stores in omnichannel distribution

Scenario

Partial Integration, PI-FC Partial Integration, PI-Store Full Integration

Locations of FCs Yonkers Yonkers Yonkers

Locations of Stores 5102 Ave, Brooklyn 5102 Ave, Brooklyn

N. Blvd, Queens

Online Demand Assigned to FCs (% ) 100 0 31

Online Demand Assigned to Stores (% ) 0 100 69

Facility Fixed Cost 16,253 39,477 27,727

Transportation Cost 46,197 20,559 26,002

Safety Stock Cost 7,987 17,820 13,009

Total Cost ($) 70,437 77,856 66,738

Safety Stock at FCs (Units) 359 272 305

Safety Stock at Stores (Units) 660 378

Total Safety Stock (Units) 359 932 683
1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost

Note that none of the store has sufficient capacity to satisfy all the online demand.

Therefore, in PI-Store scenario, the model is forced to open two stores (5102 Ave, Brooklyn

and N. Blvd, Queens) and one FC, thereby making it the scenario with highest fixed cost.

Also, in this scenario, the safety stock is highest, and subsequently, safety stock holding
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cost is very high. Thus, decentralization of safety stock for the variation in online demand

is the most expensive strategy with network cost of $77,856 (Table 4.6). An alternative to

this strategy is the centralization of safety stock at FCs (scenario PI-FC). This reduces the

network cost by 10%. Since, Yonkers FC has sufficient capacity to satisfy both in-store and

online demand, therefore model suggest opening only Yonkers, which reduces fixed cost by

59%. Also, due to risk pooling, safety stock and the corresponding costs are decreased by

61% and 55%, respectively. However, transportation cost in PI-FC scenario is 2.25 times

higher than that in PI-Store because Yonkers is comparatively far from customer zones

(Figure 4.1a).

The best strategy in terms of network cost is scenario FI, when model can choose to

allocate online demand to both stores and FCs. The network cost in FI scenario is 5% and

14% lower than that from PI-FC and PI-Store scenarios, respectively. Due to the partitioning

of online demand between stores and FCs in scenario FI, the fixed cost is higher and the

benefits of risk pooling are not realized as much in comparison to PI-FC. Hence, FI, leads to

47% higher safety stock (39% higher safety stock cost) than PI-FC. But due to assignment

of 61% of demand to store, transportation cost in scenario FI is reduced by 44%. On the

contrary, when compared with PI-Store scenario, the major reduction in network cost in FI

is mainly due to fixed cost (30%), and safety stock cost (27%).

In addition to the network costs and safety stock levels, we also compare the performance

of three scenarios in terms of their service distance at it effects delivery time commitments.

Figure 4.1a shows the location of opened FC and selected stores, and Figure 4.1b depicts

the percentage of customers served within various distances in every setting. For instance,

in scenario PI-FC, 2% customers are assigned to facilities that are within 5 miles of these

customers. We observe that scenario PI-Store provides best service in terms of delivery times

as 74%, 92% and 100% customers are within 10, 15 and 20 miles of any facility (FC / Store)

respectively. For the same distances i.e. 10, 15 and 20 miles, scenario FI serves 56%, 78%

and 96% customers, respectively, and PI-FC scenario serves 12%, 26% and 60% customers.
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4.6.3 Sensitivity of the model to service distance requirements for

online demand

In this set of experiment, we study the change in location and allocation decisions, and

network costs to different service distance (SD) requirement. A service distance is defined

as the maximum distance between a customer and a facility (FC or store) from which on-

line customer demand is satisfied. We begin with no restrictions on service distance, and

gradually decrease this distance from 20 miles to 11 miles (beyond 11 miles the model is

infeasible). The outputs of this analysis are presented in Figure 4.2 (percentage increase

in total cost with respect to no SD scenario) and Table 4.7 (distribution of various costs,

FC: Fixed cost, TrC: Transportation cost, SsC: Safety stock cost, and SS: amount of safety

stock). We consider Piscataway and Yonerks as potential locations for FC, thirteen Best

Buy stores as potential location to select stores for fulfilment, and fifty zip codes (depicted

in Figure 4.3a) from the city of New York, Newark, and Jersey City. Also, in Figures 4.3b

- 4.3f, we show the change in location and allocation decisions to satisfy online customer

demand for various SD restrictions. This leads to the following observation:

Observation 3: As the service distance requirements are tightened, more stores are required

to fulfill online demand and the assignment of customers become more clustered due to dis-

tance restrictions. This decreases the utilization of facilities as percentage share of online

demand served by each store decreases with increase in SD restriction. Also, the total safety

stock in the system increases.

In the no SD scenario, a store is opened at 5th Ave, Manhattan because it has lowest per

unit safety stock cost and it is in the center of demand points, therefore, the transportation

costs is reduced as well. The store operates at 99.9% of its capacity, and satisfies 75% of online

demand. The remaining 25% online demand is satisfied from Yonkers FC. The maximum SD

obtained in None SD scenario is 20 miles. When SD is decreased, the locations remain the
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Figure 4.2: Effect of Changing Service Distance Restriction on Network Cost

Table 4.7: Impact of varying SD restriction on the network cost and safety stock levels

Service Distance Facility Fixed Transportation Safety Stock Total Safety Stock
(Miles) Cost ($) Cost ($) Cost ($) Cost ($) Level (Units)
None 22,286 18,064 11,672 52,022 856
20 22,286 18,064 11,672 52,022 856
19, 18, 17 22,286 18,069 11,843 52,198 858
16 22,286 18,126 11,858 52,270 858
15,14 19,777 22,406 14,181 56,364 913
13 21,076 20,482 15,576 57,134 956
12 25,100 15,341 20,131 60,572 970
11 31,197 16,724 22,971 70,892 1,080

same till SD restrictions up to 16 miles with minor increase in total cost due to reassignment

of online demand (Figure 4.2). Note that in no SD scenario, the two customers in Brooklyn

region that are served by Yonkers are 17 and 20 miles away from the facility. Therefore, when

SD is reduced to 15 miles, the model recommends opening a store at 14th Street Manhattan.

However, its per unit safety stock cost is twice that of 5th Ave store. Therefore, 5th Ave

store satisfies 75% demand and 25% is satisfied by 14th Street Manhattan. In Table 4.7,

from None to 15 miles restriction, fixed cost decreases because Yonkers location is closed,

and Piscataway is opened to satisfy in-store demand. The total fixed cost of Piscataway and

14th street store is lower than that of Yonkers. Thus, increase in 8.3% of total network cost

is primarily due to transportation and safety stock costs. As Piscataway does not satisfy

any online customer, this facility does note appear in the Figure 4.3c.

109





Next, at SD restriction of 13 miles, a store at Richmond Avenue, Staten Island is selected

mainly to serve farther customer in Newark region. The increase in total cost from SD 15

miles to 13 miles is only 1.4% because the increase in total cost due to higher fixed cost and

per unit safety stock cost at Richmond Ave store is offset by decrease in transportation cost.

In this scenario (Figure 4.3d), four customers on the edge of Brooklyn and one customer

in Newark are 13 miles away from 5th Ave store. Thus when we set SD as 12 miles, the

selected store shifts to 14th street and Yonkers FC is reopened to reach out to the customers

in Bronx borough. We observe similar pattern when SD is 11 miles. Additional stores are

selected at 18th Street, Jersey and 5102 Ave, Brooklyn, thereby increasing the total cost by

36.3%. The major increase is due to fixed cost as model needs more stores to reach out the

customers. Also, the amount of safety stock is 21% higher (856 to 1,080 units in Table 4.7)

in comparison to safety stock in no SD scenario.

4.6.4 Sensitivity of the model to safety stock cost parameter

In Section 4.6.2 we observe that introduction of stores for fulfillment recommends partial

decentralization of safety stock. Thus, we further tests the sensitivity of our results to per

unit safety stock cost parameter. In particular, we are interested in observing the level of

centralization vs. decentralization of safety stock, and changes in the location decisions as

a result of this. For this we consider integrated planning model with two FCs (Piscataway

and Yonkers), thirteen locations of Best Buy stores and fifty most populous zip codes from

the city of New York, Newark and Jersey City. We vary scaling cost constant hc1 from 0.1 to

1.2. The results are presented in Table 4.8, in which second and third columns are location

of opened FC and selected store for expansion to assign online demand. Next two columns

depict the percentage assignment of online demand to FC and store, and last three columns

are safety stock units at facilities.

We observe that as hc1 decreases, the model reduces the percentage of online demand

allocated to FC. Since, the higher value of hc1 means higher per unit safety stock holding cost
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at stores, therefore to reduce the total cost (particularly safety stock holding cost), at hc1 =

1.2, 100% of online demand is assigned to FC. With further decrease in per unit safety stock

cost at stores, the model recommends assigning more online demand to the stores. At hc1

= 0.8, this assignment to the stores is 48% which has also resulted in the increase in safety

stock by 15% (711 to 819 units). Similarly, at hc1 = 0.1, it becomes economical to allocate

100% of the online demand to the stores only. Also, the location of FC changes to Piscataway

because the fixed cost of Piscataway is nearly 23% lower than that of Yonekrs. However,

this has increased the safety stock by another 58% (from 822 to 1,298 units) because to cater

100% of online demand model needs to open two stores, and it leads to the decentralization

of inventory. Note that for the value of hc1 from 0.2 to 0.6, the solution is nearly the same

to that at hc1 = 0.1, and then suddenly changes at hc1 = 0.7. These results for every step

of hc1 are also presented in Figure 4.4, where the allocated demand and amount of safety

stock stay constant for a range, then suddenly change due to single assignment assumption

of customer zones. This leads to the following observation:

Observation 4: As the safety stock holding cost at stores decreases, the model allocates

more demand to stores. Thus, the safety stock at stores increases, thereby recommending

decentralization of inventory. However, it increases the fixed cost as more stores are required

to accommodate an increase online demand allocation to the stores.

Table 4.8: Effect of varying safety stock holding cost (hc1) on the optimal solutions

Facility Location % Online Demand Assigned Safety Stock Level (Units)

hc1 FC Stores FC Stores FC Stores Total
1.2 Yonkers - 100 0 711 0 711
0.8 Yonkers 40th Road Queens 48 52 644 175 819
0.7 Yonkers Gateway dr, Brooklyn 37 63 617 205 822
0.1 Piscataway Parkway, Brooklyn; 0 100 493 805 1,298

5102 Ave, Brooklyn
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Figure 4.4: Analysis of decrease in per unit safety stock cost at stores by decreasing scaling
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4.7 Conclusions

This chapter presents a novel omnichannel distribution network design model for retailers

aiming to integrated online sales channel with traditional store sales. We consider a settings

where the online orders can be fulfilled from both stores and FCs, whereas in-store demand

is fulfilled only from FCs. The model considers both demands together for distribution

planning and for the allocation of safety stock to the stores and FCs. The original model is

nonlinear for which, we present a conic quadratic mixed integer programming reformulation.

The reformulated problem was be solved directly using CPLEX. We also presents a B&C

algorithm that includes extended polymatroid inequalities added at fractional solutions. The

B&C algorithm reduces computation time by 35%, provides lower optimality gap by 0.25%

and performs well on 90% of large size instances. Finally, we present several managerial

insights related to network configuration and inventory positioning, using a small example

drawn from actual locations of Best Buy stores and FC in the city of New York, Newark and

Jersey City.

113



Chapter 5

Conclusions

This thesis addressed three prominent features that appears frequently while designing sup-

ply chains. First, we studied concave costs that model economies of scale in variable facility

operating and transportation costs, and environmental costs from transportation activities

in a typical production-distribution system supply chains where goods and services are pro-

duced and shipped at a large scale to satisfy customer (e.g., large retail stores) demands.

Second, we focused on designing e-commerce supply chain while considering order delivery

time, which we assume to be uncertain. Third aspect is Omnichannel distribution that

entails fulfilling both -online and offline- demands through integrated channels to improve

customer experience with minimal costs. All these three supply chains are mathematically

stated using facility location models and as mixed-integer nonlinear programming problems.

In Chapter 2, we studied two formulations for a multilevel capacitated facility location

problem with concave costs. The first formulation is a traditional mixed integer program-

ming problem in which facility opening decisions and fixed costs are associated with binary

variables. In the second formulation, we considered discontinuous fixed-charge functions

for facility decision, facility fixed and operating costs, which makes the formulation purely

nonlinear. For these two formulations, we developed a branch-and-bound based solution

method. The results from extensive computations showed that purely nonlinear model re-
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duces computation times by 30% and performs well in 80 out of 100 test instances.

Chapter 3 addressed a capacitated facility location problem while considering the service

level requirements for customers in a dynamic (multiperiod) setting. The service level re-

quirements are presented as time taken to fulfill online orders. This order fulfillment time

is dependent on the sum of time spent at facilities for order preparation (waiting time) and

time taken to ship order from facilities to customers (travel time). These times are uncertain

in practice, however, can be modeled using known probability distributions. Thus, we ensure

that customers are served within committed time with some fixed probabilistic guarantee.

The mathematical model for the problem is nonconvex due to probabilisitic constraints. We

provided two linear reformulations and a branch-and-cut exact solution algorithm to solve

the large sizes instance. The computational analysis showed that the best version of our

problem provides average optimality gap of 0.11% in 29,296 secs (nearly 8 hours) and 0.97%

in 79,244 secs (nearly 22 hours)for small and large size instances, respectively.

Finally, Chapter 4 presented a novel model for omnichannel distribution network design

that incorporates fulfillment center location and store selection decisions to fulfill online

demand, assignment of online customer demand and safety stock allocation to fulfillment

centers and stores. A conic quadratic mixed integer programming based reformulation was

presented. We developed a branch-and-cut algorithm using extended polymatroids inequal-

ities for the reformulated problem. The branch-and-cut algorithm clearly showed computa-

tional benefits in obtaining lower optimality gaps and reducing solution time.

In addition to their contributions, the three problems studied in this thesis present new

research avenues for facility location in supply chain design. For the first problem, exploring

a more general variant with network design decisions and their impact on the performance

is an important research direction. The exact solution method in the Chapter 3 is based

on the fact that the convolution of Exponential (waiting time) and Gamma distributions

(travel time) can be computed exactly to give probability values. Many researchers have

modeled waiting using general distribution and travel time with lognormal distribution. It
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would be interesting to investigate the possibilities of finding exact probability values using

different distribution for two sources of uncertainty, and how these assumptions related to the

distributions would affect the solution quality in terms of computational time and optimality

gaps. In Omnichannel distribution network problem in Chapter 4 our focus is only on home

delivery channel for online order. A logical forward step in this area could be the inclusion of

other channels as well, for instance, use of stores and lockers for the pick-up of online orders.

Another line of research could be to model service distance restrictions using stochastic

constraints.
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Appendix A

Detailed Tables of Computational

Results: Chapter 2

Algorithm 3: Branch-and-Bound Algorithm
1: Input: Problem P
2: Initialize r=0; ε (small value); endFlag = 0; π = {}; N s = N0

3: Find LB(N0) and UB(N0) by solving P0
L at node N0.

4: BestLB = LB(N0); BestUB = UB(N0); x̂B = x̂0; OptGap = (BestUB - BestLB)
BestUB

5: if (OptGap ≤ ε) then endFlag = 1
6: while (endFlag == 0) do
7: Branch N s to create N2r+1 and N2r+2

8: Process Left Node N2r+1:
Find LB(N2r+1) and UB(N2r+1) by solving P2r+1

L
if (UB(N2r+1) < BestUB) then BestUB = UB(N2r+1) and x̂B = x̂2r+1

if (LB(N2r+1) < BestUB) then update π = π ∪ {N2r+1}
9: Process Right Node N2r+2:

Find LB(N2r+2) and UB(N2r+2) by solving P2r+2
L

if (UB(N2r+2) < BestUB) then BestUB = UB(N2r+2) and x̂B = x̂2r+2

if (LB(N2r+2) < BestUB) then update π = π ∪ {N2r+2}
10: Select node N s from the set π
11: Update: π = π \ {N s}, BestLB = LB(N s), OptGap and r = r + 1
12: if (OptGap ≤ ε) then endFlag = 1
13: end while
14: Output: Optimal Solution Value = BestUB, and solution vector = x̂B.
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Table A.1: Comparison of Branching Strategies for MINLP Formulation

Gap(%) Time(s) Efficient
Scenario Instance FFC(%)1 SPg MAPg SPt MAPt %Reduction Strategy
BC 9 33 0.13 0.15 time time - SP (gap)

10 35 0.10 0.15 time time - SP (gap)
11 32 0.13 0.14 time time - SP (gap)
12 27 0.11 0.12 time time - SP (gap)
13 30 0.23 0.19 time time - MAP (gap)
14 37 0.20 0.18 time time - MAP (gap)

Average 32 0.15 0.16 time time - 4/2
DFC 9 65 0.10 0.10 18,293 14,813 19 MAP (time)

10 66 0.10 0.10 6,383 2,199 66 MAP (time)
11 66 0.10 0.10 6,755 7,033 -4 SP (time)
12 61 0.09 0.10 2,108 1,643 22 MAP (time)
13 65 0.13 0.13 time time - MAP (gap)
14 68 0.13 0.10 time 33,481 61 MAP (time,gap)

Average 65 0.11 0.10 34409 24271 29 1/5
DVC 9 14 0.11 0.13 time time - SP (gap)

10 15 0.10 0.14 44,740 time -93 SP (time,gap)
11 13 0.16 0.15 time time - MAP (gap)
12 14 0.13 0.16 time time - SP (gap)
13 13 0.35 0.33 time time - MAP (gap)
14 15 0.34 0.23 time time - MAP (gap)

Average 14 0.20 0.19 79476 time -9 3/3
EC 9 30 0.10 0.10 13,135 6,706 49 MAP (time)

10 28 0.10 0.10 5,565 4,192 25 MAP (time)
11 30 0.10 0.10 22,685 43,119 -90 SP (time)
12 32 0.12 0.18 time time - SP (gap)
13 25 0.24 0.16 time time - MAP (gap)
14 28 0.22 0.19 time time - MAP (gap)

Average 29 0.15 0.14 50115 52208 -4 2/4
TC 9 41 0.39 0.37 time time - MAP (gap)

10 34 0.32 0.28 time time - MAP (gap)
11 39 0.48 0.48 time time - MAP (gap)
12 38 0.40 0.40 time time - MAP (gap)
13 40 0.35 0.36 time time - SP (gap)
14 38 0.46 0.47 time time - SP (gap)

Average 38 0.40 0.39 time time - 2/4
1 FFC: Facility fixed cost is expressed as percentage of the objective function value.
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Table A.2: Comparison of Branching Strategies for NLP Formulation

Gap(%) Time(s) Efficient
Scenario Instance FFC(%)1 SPg MAPg SPt MAPt %Reduction Strategy
BC 9 33 0.13 0.14 time time - SP (gap)

10 33 0.10 0.14 11,928 time -624 SP (time,gap)
11 32 0.10 0.13 time time - SP (gap)
12 27 0.10 0.12 25,381 time -240 SP (time,gap)
13 30 0.11 0.14 time time - SP (gap)
14 37 0.15 0.18 time time - SP (gap)

Average 32 0.11 0.14 63697 time -36 6/0
DFC 9 65 0.10 0.10 11,034 2,191 80 MAP (time)

10 66 0.10 0.10 814 171 79 MAP (time)
11 66 0.10 0.10 1,109 842 24 MAP (time)
12 61 0.10 0.10 714 341 52 MAP (time)
13 65 0.10 0.09 22,154 2,328 89 MAP (time)
14 68 0.10 0.10 36,512 4,318 88 MAP (time)

Average 65 0.10 0.10 12056 1699 -86 0/6
DVC 9 14 0.10 0.12 28,943 time -199 SP (time,gap)

10 15 0.10 0.11 8,081 time -969 SP (time,gap)
11 13 0.11 0.14 time time - SP (gap)
12 14 0.10 0.13 72,368 time -19 SP (time,gap)
13 13 0.24 0.19 time time - MAP (gap)
14 15 0.14 0.16 time time - SP (gap)

Average 14 0.13 0.14 61433 time -41 5/1
EC 9 30 0.10 0.10 2,821 13,479 -378 SP (time)

10 28 0.10 0.09 7,712 11,169 -45 SP (time)
11 30 0.10 0.10 3,460 3,536 -2 SP (time)
12 32 0.10 0.14 time time - SP (gap)
13 25 0.10 0.11 27,611 time -213 SP (time,gap)
14 28 0.10 0.10 71,533 56,085 22 MAP (time)

Average 29 0.10 0.11 33257 42846 -29 5/1
TC 9 41 0.35 0.33 time time - MAP (gap)

10 34 0.13 0.14 time time - SP (gap)
11 39 0.37 0.38 time time - SP (gap)
12 38 0.29 0.25 time time - MAP (gap)
13 40 0.27 0.27 time time - SP (gap)
14 38 0.38 0.38 time time - SP (gap)

Average 38 0.30 0.29 time time - 4/2
1 FFC: Facility fixed cost is expressed as percentage of the objective function value.
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Table A.3: Performance of Preprocessing on MINLP Formulation

Gap(%) Time(s) Preprocessing
Scenario Instance FFC(%)1 WoPg WPg WoPt WPt %Reduction Without/With
BC 9 33 0.13 0.12 time time - With (gap)

10 35 0.10 0.09 time 39,257 55 With (time,gap)
11 32 0.13 0.13 time time - With (gap)
12 27 0.11 0.10 time 46,037 47 With (time,gap)
13 30 0.23 0.22 time time - With (gap)
14 37 0.20 0.17 time time - With (gap)

Average 32 0.15 0.14 time 71834 17 0/6
DFC 9 65 0.10 0.10 14,813 1,745 88 With (time)

10 66 0.10 0.10 2,199 737 66 With (time)
11 66 0.10 0.09 7,033 2,176 69 With (time)
12 61 0.10 0.10 1,643 1,761 -7 Without (time)
13 65 0.13 0.10 time 35,000 59 With (time,gap)
14 68 0.10 0.10 33,481 11,662 65 With (time)

Average 65 0.10 0.10 24271 8847 64 1/5
DVC 9 14 0.11 0.11 time time - Without (gap)

10 15 0.10 0.10 44,740 57,588 -29 Without (time)
11 13 0.16 0.16 time time - With (gap)
12 14 0.13 0.13 time time - With (gap)
13 13 0.35 0.34 time time - With (gap)
14 15 0.34 0.34 time time - Without (gap)

Average 14 0.20 0.20 79476 81610 -3 3/3
EC 9 30 0.10 0.09 13135 6007 54 With (time)

10 28 0.10 0.08 5,565 4,788 14 With (time)
11 30 0.10 0.10 22,685 13,201 42 With (time)
12 32 0.12 0.12 time time - With (gap)
13 25 0.24 0.16 time time - With (gap)
14 28 0.22 0.15 time time - With (gap)

Average 29 0.15 0.12 50115 47203 6 0/6
TC 9 41 0.39 0.36 time time - With (gap)

10 34 0.32 0.26 time time - With (gap)
11 39 0.48 0.46 time time - With (gap)
12 38 0.40 0.40 time time - With (gap)
13 40 0.35 0.33 time time - With (gap)
14 38 0.46 0.45 time time - With (gap)

Average 38 0.40 0.38 time time - 0/6
1 FFC: Facility fixed cost is expressed as percentage of the objective function value.
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Table A.4: Performance of Preprocessing on NLP Formulation

Gap(%) Time(s) Preprocessing
Scenario Instance FFC(%)1 WoPg WPg WoPt WPt %Reduction Without/With
BC 9 33 0.13 0.11 time time - With (gap)

10 35 0.10 0.10 11,928 7,073 41 With (time)
11 32 0.10 0.10 85,670 20,896 76 With (time)
12 27 0.10 0.10 25,381 13,085 48 With (time)
13 30 0.11 0.12 time time - Without (gap)
14 37 0.15 0.13 time time - With (gap)

Average 32 0.11 0.11 63697 50043 21 1/5
DFC 9 65 0.10 0.10 2,191 1,431 35 With (time)

10 66 0.10 0.10 171 625 -265 Without (time)
11 66 0.10 0.10 842 1,542 -83 Without (time)
12 61 0.10 0.10 341 1,031 -202 Without (time)
13 65 0.09 0.10 2,328 7,397 -218 Without (time)
14 68 0.10 0.09 4,318 2,544 41 With (time)

Average 65 0.10 0.10 1699 2428 -43 4/2
DVC 9 14 0.10 0.10 28,943 74,333 -157 Without (time)

10 15 0.10 0.10 8,081 11,358 -41 Without (time)
11 13 0.11 0.11 time time - Without (gap)
12 14 0.10 0.14 72,368 time -19 Without (time,gap)
13 13 0.24 0.26 time time - Without (gap)
14 15 0.14 0.15 time time - Without (gap)

Average 14 0.13 0.14 61433 71883 -17 6/0
EC 9 30 0.10 0.08 2,821 2,873 -2 Without (time)

10 28 0.10 0.07 7,712 7,661 1 With (time)
11 30 0.10 0.10 3,460 4,213 -22 Without (time)
12 32 0.10 0.11 time time - Without (gap)
13 25 0.10 0.10 27,611 18,919 31 With (time)
14 28 0.10 0.10 71,533 37,979 47 With (time)

Average 29 0.10 0.10 33257 26341 21 3/3
TC 9 41 0.35 0.32 time time - With (gap)

10 34 0.13 0.12 time time - With (gap)
11 39 0.37 0.35 time time - With (gap)
12 38 0.29 0.29 time time - With (gap)
13 40 0.27 0.27 time time - Without (gap)
14 38 0.38 0.38 time time - Without (gap)

Average 38 0.30 0.30 time time - 2/4
1 FFC: Facility fixed cost is expressed as percentage of the objective function value.
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Table A.5: Computational Results for MINLP and NLP under Balanced Cost Scenario

Root Node Performance Performance at Termination
Gap(%) Time(s) Gap(%) Time(s) Efficient Cost(%)1

Instance MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Reduction Formulation FFC FVC TrC
1 1.43 2.38 < 1 < 1 0.18 0.20 39 35 10 NLP (time) 38 29 33
2 2.29 3.57 < 1 < 1 0.20 0.20 120 65 46 NLP (time) 32 31 37
3 0.66 2.61 < 1 < 1 0.15 0.20 70 87 -24 MINLP (time) 39 26 35
4 0.49 3.15 < 1 < 1 0.20 0.19 133 124 7 NLP (time) 31 28 41
5 1.24 3.79 1 < 1 0.18 0.19 422 346 18 NLP (time) 39 25 36
6 0.64 1.51 < 1 < 1 0.20 0.19 347 341 2 NLP (time) 35 31 34
7 0.87 2.31 < 1 < 1 0.20 0.20 1,438 687 52 NLP (time) 33 29 38
8 1.01 1.65 2 < 1 0.20 0.20 548 494 10 NLP (time) 25 35 40
9 0.91 2.02 4 < 1 0.20 0.20 9,897 5,963 40 NLP (time) 34 26 39
10 0.69 2.49 9 < 1 0.20 0.20 7,089 3,559 50 NLP (time) 33 31 36
11 0.47 2.22 4 < 1 0.20 0.20 1,886 1,527 19 NLP (time) 32 25 43
12 1.54 3.40 5 < 1 0.20 0.20 11,385 4,046 64 NLP (time) 27 33 40
13 1.07 2.80 150 < 1 0.21 0.20 time 28,892 67 NLP (time,gap) 30 32 38
14 0.51 1.90 11 < 1 0.20 0.20 54,642 7,017 87 NLP (time) 35 25 40
15 0.69 2.12 14 < 1 0.30 0.22 time time - NLP (gap) 37 27 36
16 0.73 1.62 6 < 1 0.20 0.20 78,960 9,530 88 NLP (time) 30 26 44
17 0.68 1.73 96 < 1 0.38 0.20 time 55,481 36 NLP (time,gap) 28 31 41
18 0.55 1.45 80 < 1 0.28 0.20 time 31,124 64 NLP (time,gap) 36 25 38
19 0.67 2.03 57 < 1 0.36 0.26 time time - NLP (gap) 32 29 39
20 0.68 1.57 93 < 1 0.60 0.46 time time - NLP (gap) 29 29 42

Average 0.89 2.32 27 <1 0.24 0.22 34269 20426 40 33 29 39
1 FFC: Facility fixed cost; FVC: Facility variable cost; TrC: Transportation cost. All these costs are expressed as percentage of the objective function
value.

Table A.6: Computational Results for MINLP and NLP under Dominant Fixed Cost Scenario

Root Node Performance Performance at Termination
Gap(%) Time(s) Gap(%) Time(s) Efficient Cost(%)1

Instance MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Reduction Formulation FFC FVC TrC
1 0.78 1.92 < 1 < 1 0.18 0.18 15 14 7 NLP (time) 68 16 15
2 0.67 4.11 < 1 < 1 0.20 0.19 17 17 0 MINLP (time) 65 16 19
3 0.34 4.02 < 1 < 1 0.20 0.20 25 27 -8 MINLP (time) 73 11 15
4 0.42 1.25 < 1 < 1 0.20 0.20 33 34 -3 MINLP (time) 61 20 19
5 0.44 1.46 < 1 < 1 0.20 0.19 157 146 7 NLP (time) 68 15 18
6 0.35 0.35 < 1 < 1 0.20 0.20 223 223 0 NLP (time) 65 17 17
7 0.41 0.41 < 1 < 1 0.19 0.19 181 177 2 NLP (time) 68 14 18
8 0.63 1.88 2 < 1 0.19 0.19 383 358 7 NLP (time) 55 19 26
9 0.29 0.40 < 1 < 1 0.20 0.20 653 658 -1 MINLP (time) 65 16 19
10 0.22 0.36 < 1 < 1 0.19 0.20 461 458 1 NLP (time) 66 17 17
11 0.46 1.55 1 < 1 0.20 0.20 885 808 9 NLP (time) 66 13 21
12 0.68 2.13 2 < 1 0.20 0.20 673 666 1 NLP (time) 61 17 22
13 0.23 1.20 4 < 1 0.20 0.20 3,857 3,339 13 NLP (time) 65 16 19
14 0.46 2.78 5 < 1 0.20 0.20 1,832 1,666 9 NLP (time) 68 12 20
15 0.35 3.10 6 < 1 0.20 0.20 7,089 2,648 63 NLP (time) 71 13 16
16 0.36 2.02 10 < 1 0.20 0.20 10,410 3,887 63 NLP (time) 65 14 21
17 0.28 1.18 30 < 1 0.20 0.20 18,107 7,509 59 NLP (time) 63 16 21
18 0.27 0.80 8 < 1 0.21 0.19 time 19,725 77 NLP (time,gap) 67 16 18
19 0.31 2.04 11 < 1 0.20 0.20 13,732 11,969 13 NLP (time) 61 18 21
20 0.31 1.59 65 < 1 0.20 0.20 35,397 19,297 45 NLP (time) 64 16 21

Average 0.41 1.73 8 <1 0.20 0.20 9027 3681 59 65 16 19
1 FFC: Facility fixed cost; FVC: Facility variable cost; TrC: Transportation cost. All these costs are expressed as percentage of the objective function
value.
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Table A.7: Computational Results for MINLP and NLP under Dominant Variable Cost
Scenario

Root Node Performance Performance at Termination
Gap(%) Time(s) Gap(%) Time(s) Efficient Cost(%)1

Instance MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Reduction Formulation FFC FVC TrC
1 2.93 5.26 < 1 < 1 0.20 0.16 127 93 27 NLP (time) 17 38 45
2 1.29 5.22 2 < 1 0.19 0.19 116 34 71 NLP (time) 15 40 46
3 0.78 2.86 1 < 1 0.20 0.20 50 28 44 NLP (time) 17 29 53
4 2.10 6.23 2 < 1 0.20 0.20 405 196 52 NLP (time) 12 37 51
5 2.19 4.40 4 < 1 0.19 0.20 1,312 1,193 9 NLP (time) 15 34 51
6 0.92 4.18 12 < 1 0.17 0.19 224 1,680 -650 MINLP (time) 18 33 49
7 1.81 6.31 5 < 1 0.20 0.18 3,237 1,757 46 NLP (time) 15 33 52
8 1.19 3.18 8 < 1 0.20 0.20 3,644 4,333 -19 MINLP (time) 11 41 48
9 1.12 2.81 9 < 1 0.20 0.20 17,289 15,228 12 NLP (time) 15 34 51
10 1.15 2.87 9 < 1 0.18 0.17 17,381 8,297 52 NLP (time) 16 31 53
11 1.12 3.18 14 < 1 0.20 0.20 61,744 16,815 73 NLP (time) 12 31 57
12 1.84 4.06 10 < 1 0.20 0.20 43,136 64,532 -50 MINLP (time) 14 32 54
13 0.71 2.40 49 < 1 0.34 0.26 time time - NLP (gap) 13 39 48
14 1.02 2.76 39 < 1 0.33 0.19 time 34,961 60 NLP (time,gap) 14 31 54
15 0.73 2.57 133 < 1 0.28 0.21 time time - NLP (gap) 20 29 52
16 0.89 2.21 14 < 1 0.29 0.20 time 36,634 58 NLP (time,gap) 12 30 58
17 1.40 2.70 68 1 0.82 1.07 time time - MINLP (gap) 13 33 55
18 0.65 2.00 50 1 0.33 0.24 time time - NLP (gap) 18 29 54
19 1.29 2.74 63 < 1 0.43 1.21 time time - MINLP (gap) 16 31 54
20 1.21 2.95 117 < 1 0.74 1.63 time time - MINLP (gap) 18 29 53

Average 1.32 3.54 31 <1 0.29 0.37 41993 35209 16 15 33 52
1 FFC: Facility fixed cost; FVC: Facility variable cost; TrC: Transportation cost. All these costs are expressed as percentage of the objective function
value.

Table A.8: Computational Results for MINLP and NLP under Excess Capacity Scenario

Root Node Performance Performance at Termination
Gap(%) Time(s) Gap(%) Time(s) Efficient Cost(%)1

Instance MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Reduction Formulation FFC FVC TrC
1 3.21 7.52 <1 <1 0.20 0.20 32 26 18 NLP (time) 34 32 33
2 0.86 0.86 <1 <1 0.20 0.20 24 26 -4 MINLP (time) 38 29 33
3 0.65 2.59 <1 <1 0.20 0.20 48 53 -9 MINLP (time) 29 24 47
4 0.24 0.24 1 <1 0.20 0.20 30 32 -6 MINLP (time) 29 28 43
5 1.74 7.09 2 <1 0.20 0.20 771 629 18 NLP (time) 37 27 36
6 1.58 4.05 <1 <1 0.20 0.20 146 189 -23 MINLP (time) 28 25 47
7 0.86 2.50 1 <1 0.20 0.20 264 295 -10 MINLP (time) 31 27 42
8 1.04 3.82 2 <1 0.20 0.20 362 471 -23 MINLP (time) 28 27 45
9 0.97 2.38 4 <1 0.20 0.20 3,232 2,564 21 NLP (time) 30 27 43
10 1.19 3.51 17 <1 0.20 0.10 3,969 6,523 -39 MINLP (time) 26 31 43
11 1.76 4.94 11 <1 0.20 0.20 6,567 3,102 53 NLP (time) 31 25 44
12 0.38 1.48 4 <1 0.20 0.20 3,588 2,117 41 NLP (time) 32 27 41
13 0.81 2.82 37 <1 0.20 0.20 58,291 15,011 74 NLP (time) 26 27 47
14 0.74 2.17 32 <1 0.20 0.20 34,133 11,077 68 NLP (time) 28 27 45
15 0.58 1.22 6 <1 0.20 0.20 2,061 1,807 12 NLP (time) 28 25 46
16 0.59 2.15 9 <1 0.20 0.20 2,930 3,356 -13 MINLP (time) 27 27 46
17 0.48 2.44 40 <1 0.20 0.20 24,597 12,767 48 NLP (time) 33 23 44
18 0.63 1.42 5 <1 0.20 0.20 6,491 2,573 60 NLP (time) 22 30 48
19 0.61 1.67 19 <1 0.20 0.20 65,860 8,659 87 NLP (time) 22 30 47
20 0.96 2.69 52 <1 0.20 0.20 time 16,840 81 NLP (time,gap) 30 23 47

Average 0.99 2.88 12 <1 0.20 0.20 14990 4406 71 29 27 43
1 FFC: Facility fixed cost; FVC: Facility variable cost; TrC: Transportation cost. All these costs are expressed as percentage of the objective function
value.
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Table A.9: Computational Results for MINLP and NLP under Tight Capacity Scenario

Root Node Performance Performance at Termination
Gap(%) Time(s) Gap(%) Time(s) Efficient Cost(%)1

Instance MINLPrg NLPrg MINLPrt NLPrt MINLPg NLPg MINLPt NLPt %Reduction Formulation FFC FVC TrC
1 1.19 1.66 < 1 < 1 0.20 0.20 82 266 -224 MINLP (time) 42 31 27
2 0.96 2.83 < 1 < 1 0.20 0.20 10,340 2,060 80 NLP (time) 42 31 27
3 0.94 1.46 < 1 < 1 0.20 0.20 155 131 15 NLP (time) 37 36 27
4 1.41 3.53 < 1 < 1 0.20 0.20 255 94 63 NLP (time) 37 32 31
5 0.57 1.25 2 < 1 0.21 0.20 time time - NLP (gap) 37 34 29
6 0.44 1.63 3 < 1 0.19 0.20 35,311 2,983 92 NLP (time) 40 30 30
7 0.69 2.68 3 < 1 0.20 0.20 78,928 6,183 92 NLP (time) 37 31 32
8 0.39 1.35 7 < 1 0.21 0.20 time 1,375 98 NLP (time,gap) 37 30 32
9 0.60 1.29 8 < 1 0.36 0.32 time time - NLP (gap) 40 31 29
10 0.45 1.16 22 < 1 0.26 0.20 time 16,350 81 NLP (time,gap) 35 35 31
11 0.71 2.25 18 < 1 0.46 0.35 time time - NLP (gap) 40 28 33
12 0.59 1.05 9 < 1 0.40 0.29 time time - NLP (gap) 38 31 31
13 0.53 0.88 28 < 1 0.33 0.27 time time - NLP (gap) 39 32 29
14 0.66 1.25 13 < 1 0.45 0.38 time time - NLP (gap) 38 29 33
15 0.44 0.90 34 < 1 0.33 0.31 time time - NLP (gap) 38 30 31
16 0.54 1.28 58 < 1 0.48 0.37 time time - NLP (gap) 39 27 34
17 0.56 1.02 44 < 1 0.43 0.32 time time - NLP (gap) 37 32 32
18 0.69 0.99 32 < 1 0.67 0.55 time time - NLP (gap) 34 33 33
19 0.66 1.02 236 1 0.54 0.42 time time - NLP (gap) 42 26 31
20 0.51 0.81 40 1 0.50 0.39 time time - NLP (gap) 37 31 32

Average 0.68 1.51 28 <1 0.34 0.29 66734 53312 20 38 31 31
1 FFC: Facility fixed cost; FVC: Facility variable cost; TrC: Transportation cost. All these costs are expressed as percentage of the objective function
value.
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Appendix B

Proof of Proposition: Chapter 3

B.1 Proof of Proposition 1

Proof. We first prove the validity of constraints (3.11) by showing that if a binary vector

(x̄, z̄) does not satisfy these inequalities for at least one set C ∈ Cjlt, then (x̄, z̄) /∈ X. For a

given C ∈ Cjlt, j ∈ V1, l ∈ L, t ∈ T , if
∑

l1∈L z̄jl1lt = 0 and
∑

i∈C x̄ijlt > 0, then (x̄, z̄) /∈ X

given that customers cannot be assigned to facility j at level l if this level is not open. If∑
l1∈L z̄jl1lt = 1 and

∑
i∈C x̄ijlt = |C|, then the set of customers R assigned to facility j at

level l in (x̄, z̄) satisfies |R∩C| = |C| and thus C ⊆ R. Then, by definition of C there exists

at least one customer i ∈ C such that Pit(W jt(C, l) + STij ≤ τit) < θit, and thus (x̄, z̄) /∈ X.

Now, to prove that ILP1 is a vaid formulation, we show that inequalities (3.11) provide

sufficient conditions for feasibility for the DCFLP. This can be done by noting that any

solution satisfying (3.4)–(3.7), (3.9), (3.10) but violating at least one probabilistic constraint

(3.8) can be removed by at least one cover inequality given that the sets Cjlt, j ∈ V1, l ∈ L,

t ∈ T , contain all infeasible assignments with respect to (3.8). Therefore, the result follows.

�

140



B.2 Proof of Proposition 2

Proof. We first prove the validity of constraints (3.12) by showing that if (x̄, z̄) ∈ X, then

it must satisfy constraint (3.12). For any i ∈ I, j ∈ V1, l ∈ L, t ∈ T , if
∑

l1∈L zjl1lt = 0 and

xijlt = 1 then (x̄, z̄) /∈ X because a customer i can not be assigned to a facility j at level l

if it is not open at that level. If
∑

l1∈L zjl1lt = 1 and xijlt = 0, then (3.12) is equivalent to

(3.5), and in that case (x̄, z̄) ∈ X. Whereas, for
∑

l1∈L zjl1lt = 1 and xijlt = 1, if (3.12) is

violated then

∑
i′∈I\{i}

λi′txi′jlt > ∆ijlt.

and thus, Pit(W̄jt + STij ≤ τit) < θit by definition of ∆ijlt. Hence, (x̄, z̄) /∈ X.

We now show that inequalities (3.12) are sufficient to reformulate INLP. Note that any

(x̄, z̄) satisfying (3.4)–(3.7), (3.9), (3.10) must also satisfy (3.12) for (x̄, z̄) ∈ X. As, we add

(3.12) for every i ∈ I, j ∈ V1, l ∈ L, t ∈ T , this ensures that in period t customer i is served

with probability greater or equal to θit. Therefore, such (x̄, z̄) is a feasible solution to INLP.

This completes the proof. �

B.3 Proof of Lemma 1

Proof. Lets assume that in period t ∈ T , a customer i is assigned to facility j opened at

level l ∈ L\{0}. As a facility j can be opened only at one level, therefore, in the expression,

DTit (x, z) =
∑
j∈V1

∑
l∈L

(Wjt(x, z) + STij)xijlt
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we drop the summations and set xijlt = 1 (due to single assignment assumption) to give

DTit (x, z) = (Wjt(x, z) + STij)

Let X be the random variable for gamma distributed travel time STit, Y be the random

variable for exponentially distributed waiting time Wjt, and Z be the random variable for

delivery time Dit. Also, let X and Y are independent with probability density functions fX

and fY , respectively. Then FZ(τit) = Pit(DTit (x, z) ≤ τit) for random variable DTit can be

given as follows [see Theorem 7.1, 58].

FZ(τ) = P(X + Y ≤ τ) =

∫ ∞
−∞

fX(a)FY (τ − a) da (B.1)

(for simplification we drop the subscripts from the notations.) where, FY (τ − a) is the

cumulative distribution function (cdf) of Y, and

FY (τ − a) =
(

1− exp−λ
′(τ−a)

)
(B.2)

where, λ′ is the rate of the exponential distribution which is equal to the residual service

capacity (Ω− Λ) at the facility. As, fX(a) is defined for a ≥ 0, and FY (τ − a) is defined for

τ − a ≥ 0 =⇒ a ∈ [0, τ ], and

FZ(τ) =

∫ τ

0

fX(a)(1− exp−λ
′(τ−a))da (B.3)

We know that integration is area under the curve, which is computed as the sum of the

values of the function at every point between the limits of the integration. At any fixed

point a ∈ [0, τ ], the value of fX(a) is independent of λ′. However, with increasing λ′ (by de-

creasing the rate of demand arrival Λ at the facility), the cdf of exponential distribution i.e.
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(
1−exp−λ

′(τ−a)

)
is nondecreasing, and hence, the probability. This completes the proof. �

B.4 Proof of Proposition 3

Proof. We show that if a binary vector (x̄, z̄) does not satisfy these inequalities for at least

one set C ∈ Cjlt, then (x̄, z̄) /∈ X. For a given C ∈ Cjlt, j ∈ V1, l ∈ L, t ∈ T , if
∑

l1∈L z̄jl1lt = 0

and
∑

i∈E(C) x̄ijlt > 0, then (x̄, z̄) /∈ X given that customers cannot be assigned to facility

j at level l if this level is not open. If
∑

l1∈L z̄jl1lt = 1 and
∑

i∈E(C) x̄ijlt ≥ |C|, then the set

of customers R assigned to facility j at level l in (x̄, z̄) satisfies |R| ≥ |C|. There exists two

possible relationships between C and R, either C ⊆ R or C * R. If C ⊆ R, by definition of

C there exists at least one customer i ∈ C such that Pit(W jt(C, l) + STij ≤ τit) < θit,

and thus (x̄, z̄) /∈ X. If C * R, there exists at least one customer i ∈ R such that

Pit(W jt(R, l) + STij ≤ τit) ≤ Pit(W jt(C, l) + STij ≤ τit) < θit, where the first inequal-

ity holds given that
∑

i∈R λit ≥
∑

i∈C λit (refer to Lemma 3.5.1), and that for any i ∈ R \C

the expected travel time and coefficient of variation of i are greater than the expected travel

time and coefficient of variation of any customer in C that cannot be satisfied with desired

probability, and thus (x̄, z̄) /∈ X. �

B.5 Proof of Proposition 4

Proof. For a given C ∈ Cjlt, j ∈ V1, l ∈ L, t ∈ T , from the previous proposition, we know

that ∑
i∈E(C)

xijlt ≤ (|C| − 1),

is valid for X, and when we combine this with the fact that, if a cover C is infeasible for

capacity level l it will also be infeasible for each level l = 1 · · · , l, e.i., Cjlt ⊆ Cjl−1t, the result
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follows. �

B.6 Pseudocode for Separation Algorithm for SPjlt

Algorithm 4: A heuristic separation algorithm for SPjlt
Data: Fractional point x̂ and ẑ

1 for j ∈ V1, l ∈ L \ {0}, t ∈ T do

2 if
∑

l1∈L ẑjl1lt > 0 then

3 Create vectors {CustWti} ← x̂ijltλit ∀i ∈ I and {CustPosi} ← i ∀i ∈ I;

4 Arrange [CustWt] in the descending order of values, and arrange [CustPos]

according to the order of [CustWt];

5 DmdAssigned← 0, V iolationF lag ← 0;

6 for i ∈ I do

7 if CustWti > 0 then

8 DmdAssigned+ = λit;

9 Λ = µljt −DmdAssigned;

10 int i′ ← 0;

11 for i′ = 1 to i do

12 Prob← CalculateProbability(Λ, E[tCustPosi′j]);

13 if Prob < θit then

14 V iolationF lag ← 1 and goto line 15;

15 if V iolationF lag = 1 then

16 ζ =
∑i

i′=1(ẑjl1lt − x̂CustPosi′jlt);

17 if (ẑjl1lt − ζ) > ST then // ST

> 0

18 Add violated cover inequality, and goto line 1;
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B.7 Pseudocode for Local Search Heuristic

Let x̂ be the incumbent solution, f(x̂) be the objective function value, and the set of decision

vectors that are neighbors of x̂ is denoted as N (x̂) = {x̂1, x̂2, .., x̂t}. Moreover, N1 and N2

represent the Swap and Shift neighborhoods, respectively.
Algorithm 5: Pseudocode for local search heuristic
Data: Integer solution x̂

1 ImprovementF lag ← 0;

2 i ← 1;

3 while i ≤ |N1(x̂)| do

4 if (x̂i is feasible and f(x̂i) < f(x̂)) then

5 x̂ ← x̂i;

6 i← |N1(x̂)|+ 1;

7 ImprovementF lag ← 1;

8 i ← 1;

9 while i ≤ |N2(x̂)| do

10 if (x̂i is feasible and f(x̂i) < f(x̂i)) then

11 x̂i ← x̂i;

12 i← |N2(x̂i)|+ 1;

13 ImprovementF lag ← 1;
Output: Integer Solution x̂

Output: ImprovementF lag

B.8 Details of Test Instances

We generate the parameters based on the scheme used in [74], and use the population,

latitude/longitude from the United States Census Bureau (https://www2.census.gov/

geo/docs/reference/cenpop2010/county), along with average housing price (https:

//www.census.gov/support/USACdataDownloads.html#HSG) for every county in the
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US. For t = 1, the arrival rate is set to λit = 0.0001 × pi, where pi is the population

of county i, and for t ≥ 2, λit = (1 ± U [0.1, 0.4]) × λi(t−1). We assume same value of

capacity levels in every period t ∈ T . Therefore, for any t ∈ T , the service rates µLjt, at

the highest capacity level L are first generated uniformly on U [10, 160], and then scaled

such that (|T | ×
∑

j∈V1 µ
L
jt)/(

∑
i∈I
∑

t∈T λit) = κ, where κ ≥ 0 is an scaling parameter

varied to represent different capacity scenarios. The service rates at lower levels are set as:

µljt = l/|L| × µLjt ∀j ∈ V1,∀l = {0, 1, .., |L| − 1}. The fixed cost of a facility consists of cost

to open/close, change the capacity level as well as the maintenance cost of the facility at

current level. We use f ojl to denote the cost of increasing the capacity at facility j by l levels

and f cjl to denote the cost to decrease the capacity at facility j by l levels. f ojl is computed as

f ojl = f oj(l−1) + 0.9×
(
f oj(l−1)− f oj(l−2)

)
, and f cjl = 0.05× f ojl. We set f oj0 = 0 and f oj1 = 0.1×hi,

where hi is the average housing price of county i. Similarly, the cost to maintain a facility j

at level l is computed as Fjl = Fj(l−1) + 0.9×
(
Fj(l−1) − Fj(l−2)

)
, and we assume Fjl = 0 and

Fj1 = 20× µj1. Therefore, the fixed cost coefficient fjl1l2t, is given by:

fjl1l2t =


f oj(l2−l1) + Fjl2 , if l1 < l2

f oj(l1−l2) + Fjl2 , if l1 > l2

Fjl2 , if l1 = l2 6= 0.

The variable cost cijlt depends on the transportation cost between two nodes and the

production cost at the facility. Transportation cost from facility j ∈ V1 to demand node

i ∈ I is dij = 0.03 × distanceij, where distanceij is the spherical distance between nodes i

and j. Production cost at facility j ∈ V1 operating at level l = 1 is set to Pj1 = 150/(µj1)0.25,

and for higher levels l ≥ 2, Pjl = 0.9 × Pj(l−1). Therefore, the variable cost is given by

cijlt = (dij + Pjl). The expected number of days, E[STij], to ship from facility j ∈ V1

to customer i ∈ I is computed by dividing the spherical distance between facility j and

customer i by the average travel speed of 60 kmph.
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Table B.1: Specifics of Test Instances used in the Computational Experiments

Class Data Model Set |V1| |I|
A Amazon Static and Single capacity I 30 125, 250, 375, 500, 625

(L=1, T=1) II 55 750, 875, 1000, 1125, 1250
III 80 1375, 1500, 1625, 1750, 1875
IV 111 2000, 2125, 2250, 2375, 2500

B Amazon Dynamic and Modular capacities I 20 130, 160, 190, 220, 250
(L=3, T=4) II 30 280, 310, 340, 370, 400

III 40 430, 460, 490, 520, 550
IV 50 580, 610, 640, 670, 700

C US Counties Static and Single capacity I 45 125, 250, 375, 500
(L=1, T=1) II 90 625, 750, 875, 1000

III 135 1125, 1250, 1375, 1500
IV 180 1625, 1750, 1875, 2000
V 225 2125, 2250, 2375, 2500

D US Counties Dynamic and Modular capacities I 27 130, 160, 190, 220, 250
(L=3, T=4) II 36 280, 310, 340, 370, 400

III 45 430, 460, 490, 520, 550
IV 54 580, 610, 640, 670, 700

B.9 Parameter Tuning

In additional to the proposed algorithmic enhancements, we fine-tune some of the CPLEX

parameters for all the three variants of our exact algorithm and the ILP1R. We focus mainly

on parameters that are helpful in finding feasible solutions quickly. Therefore, the branching

is first performed on location and capacity selection variables z and then on allocation vari-

ables x. The heuristic (CPXPARAM_MIP_Strategy_HeuristicFreq) and relaxation induced

neighborhood search (RINS) heuristic (CPX_PARAM_RINSHEUR) parameters are set to

5. We also fine-tune MIP Emphasis parameter separately for every variant of our algorithm.

Based on that CPX_PARAM_MIPEMPHASIS is set to 1 (emphasize feasibility over op-

timality) in B&C-B version and LBPR, and to 2 (emphasize optimality over feasibility) in

B&C-R1 and B&C-R2.

For an efficient implementation of USERC, we define a separation tolerance (ST ) pa-

rameter on the violation of inequalities by the fractional solution. In B&C-R1, ST is set to

0.01, whereas in B&C-R2, ST equals to 0.05 and 0.1 for cover and residual service capacity

inequalities, respectively. Also, we control the number of cuts to be added at a node in the

enumeration tree using parameters (i) CSN, which defines the number of times the USERC

function is called from the same node, and (ii) EPSOBJ, which is defined as the minimum
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improvement in lower bound value after adding cuts. If improvement in lower bound is

less than EPSOBJ then no further iterations of USERC function are performed. We adopt

different settings at root node and child nodes to control the number of cuts. For cover

inequalities, at the root node we use EPSOBJ = 0.1% , and at child nodes we use CNS

≤ 2. Whereas for RSC inequalities, at the root node EPSOBJ is set to 0, and CNS ≤ 20;

and at child nodes we use CNS ≤ 20. Parameter Depth is used to control the frequency in

which USERC function is called in the enumeration tree. Depth is set to 200 and 75 for

cover inequalities in B&C-R1 and B&C-R2, respectively, and for RSC constraints, a value

of Depth=40 is used. Finally, the parameter ε used to approximate ∆ijlt is set to 0.001.

B.10 Detailed Results of Branch-and-Cut Algorithms

Table B.2: Average number of CIs, ECIs and RSCs for Sets I and II

Scenario Class B&C-B CIs B&C-R1 CIs B&C-R2 ECIs B&C-R2 RSCs
1 A 6,263 5,071 142 1,361

B 1,074 463 37 2,767
C 570 413 58 1,254
D 511 172 50 3,092

2 A 1,306 130 7 1,307
B 62 83 34 2,323
C 660 205 9 1,180
D 172 167 27 2,331

3 A 9,664 6,053 509 262
B 1,592 696 222 3,537
C 4,132 1,985 301 1,121
D 850 275 92 3,549

4 A 4,204 952 7 322
B 1,173 952 125 3,144
C 6,158 2,679 70 1,113
D 860 263 103 3,320

5 A 9,689 4,125 344 1,709
B 743 300 83 2,996
C 4,857 1,676 394 1,284
D 1,611 739 188 3,914

Average 2,808 1,370 140 2,094
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Table B.3: Average number of CIs, ECIs and RSCs for Sets III, IV and V

Scenario Class B&C-B CIs B&C-R1 CIs B&C-R2 ECIs B&C-R2 RSCs
1 A 7,088 3,008 78 5,747

B 610 232 40 5,795
C 4,028 1,477 148 5,910
D 789 254 49 6,765

2 A 2,136 1,451 39 4,873
B 128 85 24 5,169
C 2,505 1,099 173 4,587
D 205 128 27 5,004

3 A 10,793 4,102 126 4,848
B 2,252 505 57 6,338
C 7,705 1,682 213 7,149
D 868 411 45 7,164

4 A 4,097 1,986 232 4,213
B 1,372 203 34 7,455
C 8,107 1,987 273 6,319
D 1,543 173 58 7,753

5 A 17,222 9,424 584 4,806
B 1,152 492 113 8,009
C 4,900 998 505 4,459
D 1,001 263 191 5,435

Average 3,925 1,498 150 5,890

B.11 Sensitivity Analysis: Effect of Varying Demand in

Multiple Periods on Network Configuration

We analyze the effect of varying demand on location and allocation decisions for a problem

instance with dynamic and modular capacities (T = 4, L = 3) and θ = 0.9, τ = 1.5, and

CV = 0.5. The set of potential facilities, V1 and customers I are drawn from the following

states: Washington, Oregon, California, Nevada, Idaho, Utah, Arizona, and New Mexico.

From each state, we randomly choose two counties as potential facility locations (as set

V1), and every county in these states belongs to set I. The demand in multiple periods,

λFit is generated as follows: λFi1 = 0.0001× County Population; λFi2 = U [1.3, 1.4] × λFi1;

λFi3 = U [0.8, 0.9]× λFi2; and λFi4 = U [1.75, 2.0]× λFi3. Figures B.1c-B.1f represent the location

and allocation decisions for the four time periods. In the first time period, the model opens

facilities in Cowlitz, WA and Imperial, CA at capacity level 3. In the second time period,

with the increase in demand, the model opens an additional facility in Storey, NV at capacity

level 1. In the third time period, as the demand decrease, the model prescribes the same
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facilities and capacity levels, however, the allocations change. In the last scenario, where

the demand increase substantially, model opens an additional facility in Roosevelt, NM at

capacity level 3 besides changing the capacity of the existing facility at Storey, NV from 1

to 3. These results highlight the importance of dynamic location and capacity planning to

meet the varying customer demand and probabilities service level constraints.
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Appendix C

Detailed Tables of Computational

Results: Chapter 4
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Table C.1: Comparison of the branch-and-cut algorithm and CPLEX under balanced cost
scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 6,479 284 96 950 B&C (time) 26 38 36

2 0.00 0.00 3,213 2,140 33 2,050 B&C (time) 22 32 46
3 0.00 0.00 37,483 32,618 13 1,050 B&C (time) 18 35 48
4 0.00 0.00 37,450 21,838 42 1,400 B&C (time) 17 33 50

II 5 0.00 0.00 2,763 2,217 20 1,375 B&C (time) 25 39 36
6 0.00 0.00 1,554 808 48 250 B&C (time) 29 43 28
7 0.00 0.00 51,281 37,939 26 3,000 B&C (time) 16 39 45
8 0.00 0.00 29,449 12,514 58 2,155 B&C (time) 26 39 35

III 9 0.00 0.00 7,494 8,230 -9 550 CPLEX (time) 28 38 34
10 0.00 0.00 23,014 17,302 25 3,150 B&C (time) 23 39 37
11 1.42 0.00 limit2 72,325 16 24,143 B&C (time, gap) 25 45 29
12 26.31 26.31 - - - - - - - -

IV 13 0.00 0.00 1,883 653 65 1,700 B&C (time) 31 47 22
14 0.00 0.00 13,247 4,598 65 1,847 B&C (time) 28 47 26
15 4.06 0.14 limit limit - 12,607 B&C (gap) 28 45 27
16 29.49 29.49 - - - - - - - -

V 17 0.00 0.00 1,508 1,368 9 2,525 B&C (time) 34 42 24
18 0.00 0.00 50,456 50,255 0 11,884 B&C (time) 28 47 25
19 - - - - - - - - - -
20 33.31 33.31 - - - - - - - -

Min.2 0.00 0.00 1,508 284 -9 250 16 32 22
Avg. 0.34 0.01 27,492 21,964 20 4,415 25 41 34
Max. 4.06 0.14 limit limit 96 24,143 34 47 50

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as
percentage of the objective function value (total cost).
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.2: Comparison of the branch-and-cut algorithm and CPLEX under dominant fixed
cost scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 58 59 -1 1,955 CPLEX (time) 52 32 16

2 0.00 0.00 223 219 2 2,950 B&C (time) 47 31 22
3 0.00 0.00 375 377 -1 6,075 CPLEX (time) 52 20 28
4 0.00 0.00 598 3,812 -84 7,967 CPLEX (time) 46 20 34

II 5 0.00 0.00 83 82 1 2,200 B&C (time) 50 34 16
6 0.00 0.00 605 115 81 1,350 B&C (time) 67 20 13
7 0.00 0.00 342 288 16 7,125 B&C (time) 49 23 27
8 0.00 0.00 1,760 626 64 5,900 B&C (time) 64 19 17

III 9 0.00 0.00 1,118 425 62 2,400 B&C (time) 66 18 16
10 0.00 0.00 23,463 7,356 69 2,300 B&C (time) 56 23 21
11 0.00 0.00 9,739 14,642 -33 3,900 CPLEX (time) 63 22 14
12 0.00 0.02 17,339 limit2 -80 7,699 CPLEX (time, gap) 61 23 16

IV 13 0.00 0.00 314 192 39 2,125 B&C (time) 67 21 12
14 0.00 0.00 4,931 249 95 2,900 B&C (time) 66 22 12
15 0.00 0.00 1,341 1,131 16 10,248 B&C (time) 65 22 13
16 0.00 0.00 53,300 3,082 94 2,700 B&C (time) 59 21 20

V 17 0.00 0.00 1,525 613 60 1,894 B&C (time) 68 23 9
18 0.00 0.00 26,857 641 98 3,850 B&C (time) 62 25 12
19 0.14 0.00 limit 69,856 19 32,921 B&C (time, gap) 50 30 20
20 21.12 21.12 - - - - - - - -

Min.2 0.00 0.00 58 59 -84 1,350 46 18 9
Avg. 0.01 0.00 12,109 10,005 17 5,708 58 24 18
Max. 0.14 0.02 limit limit 98 32,921 68 34 34

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as percentage
of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.3: Comparison of the branch-and-cut algorithm and CPLEX under dominant safety
stock cost scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 1,990 563 72 300 B&C (time) 10 31 59

2 0.00 0.00 249 219 12 2,950 B&C (time) 7 24 69
3 0.00 0.00 52,575 32,402 38 1,938 B&C (time) 6 26 68
4 0.86 0.00 limit 48,842 43 4,953 B&C (time, gap) 5 25 70

II 5 0.00 0.00 3,356 1,615 52 650 B&C (time) 12 19 69
6 0.00 0.00 8,668 1,502 83 300 B&C (time) 16 24 61
7 0.00 0.00 69,093 53,075 23 1,425 B&C (time) 6 31 64
8 0.00 0.00 65,232 34,409 47 600 B&C (time) 13 19 68

III 9 0.00 0.00 25,827 15,451 40 1,724 B&C (time) 13 23 64
10 30.25 30.25 - - - - - - - -
11 0.62 0.00 limit2 52,324 39 2,400 B&C (time, gap) 14 27 59
12 - - - - - - - - - -

IV 13 0.00 0.00 7,929 904 89 1,637 B&C (time) 19 29 52
14 0.00 0.00 23,734 17,694 25 1,550 B&C (time) 17 30 53
15 - - - - - - - - - -
16 - - - - - - - - - -

V 17 0.16 0.00 limit 1,895 98 2,163 B&C (time, gap) 18 31 51
18 0.52 0.00 limit 73,358 15 1,611 B&C (time, gap) 16 27 57
19 - - - - - - - - - -
20 - - - - - - - - - -

Min.2 0.00 0.00 249 219 12 300 5 19 51
Avg. 0.15 0.00 43,129 23,875 45 1,729 12 26 62
Max. 0.86 0.00 limit 73,358 98 4,953 19 31 70

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as
percentage of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.4: Comparison of the branch-and-cut algorithm and CPLEX under dominant trans-
portation cost scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 585 228 61 1,775 B&C (time) 14 69 17

2 0.00 0.00 528 465 12 2,050 B&C (time) 11 65 24
3 0.00 0.00 4,765 1,921 60 3,300 B&C (time) 9 68 23
4 0.00 0.00 11,504 5,466 52 5,500 B&C (time) 8 67 25

II 5 0.00 0.00 1,059 420 60 1,686 B&C (time) 13 66 20
6 0.00 0.00 2,023 949 53 1,119 B&C (time) 13 75 12
7 0.00 0.00 15,112 3,684 76 5,562 B&C (time) 8 68 24
8 0.00 0.00 4,192 1,910 54 4,627 B&C (time) 12 72 16

III 9 0.00 0.00 1,919 793 59 1,784 B&C (time) 14 69 16
10 0.00 0.00 3,580 5,593 -36 17,670 CPLEX (time) 12 65 22
11 0.00 0.00 54,975 23,275 58 6,282 B&C (time) 13 72 15
12 0.00 0.00 43,118 21,842 49 5,914 B&C (time) 12 70 17

IV 13 0.00 0.00 1,441 797 45 1,575 B&C (time) 16 73 11
14 0.00 0.00 10,392 2,440 77 4,050 B&C (time) 11 78 11
15 0.00 0.00 39,752 11,501 71 7,078 B&C (time) 15 67 18
16 0.00 0.00 41,380 21,227 49 4,300 B&C (time) 12 67 20

V 17 0.00 0.00 838 570 32 1,775 B&C (time) 15 74 11
18 0.00 0.00 10,406 9,941 4 8,550 B&C (time) 14 71 15
19 0.36 0.00 limit2 34,506 60 55,385 B&C (time, gap) 10 68 22
20 0.00 0.00 41,008 31,309 24 5,990 B&C (time) 12 68 20

Min.2 0.00 0.00 528 228 -36 1,119 8 65 11
Avg. 0.02 0.00 18,735 8,942 52 7,299 12 70 18
Max. 0.36 0.00 limit 34,506 77 55,385 16 78 25

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as
percentage of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.5: Comparison of the branch-and-cut algorithm and CPLEX under service distance
scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 837 719 14 1,489 B&C (time) 26 37 37

2 0.00 0.00 4,140 877 79 1,550 B&C (time) 20 32 48
3 0.00 0.00 41,070 32,136 22 2,015 B&C (time) 18 37 45
4 0.00 0.00 18,534 9,808 47 3,880 B&C (time) 17 33 50

II 5 0.00 0.00 5,055 2,607 48 775 B&C (time) 25 39 36
6 0.00 0.00 2,530 1,533 39 2,060 B&C (time) 26 43 31
7 0.00 0.00 39,716 36,455 8 3,826 B&C (time) 16 35 50
8 0.00 0.00 24,969 10,071 60 5,400 B&C (time) 23 36 41

III 9 0.00 0.00 7,279 4,670 36 2,325 B&C (time) 26 43 31
10 0.00 0.00 26,394 32,983 -20 7,938 CPLEX (time) 22 41 37
11 0.00 0.00 47,462 36,415 23 2,846 B&C (time) 25 45 29
12 12.39 0.84 limit2 limit - 2,999 B&C (gap) 24 44 32

IV 13 0.00 0.00 2,231 915 59 1,251 B&C (time) 31 47 22
14 0.00 0.00 41,864 11,211 73 2,486 B&C (time) 28 49 22
15 28.04 28.04 - - - - - - - -
16 36.06 36.06 - - - - - - - -

V 17 0.00 0.00 1,416 1,018 28 1,775 B&C (time) 30 45 25
18 0.27 0.00 limit 40,635 53 5,745 B&C (time, gap) 32 41 27
19 - - - - - - - - - -
20 33.39 33.39 - - - - - - - -

Min.2 0.00 0.00 837 719 -20 775 16 32 22
Avg. 0.79 0.05 27,258 19,272 29 3,023 24 41 35
Max. 12.39 0.84 limit limit 79 7,938 32 49 50

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as
percentage of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.6: Comparison of the branch-and-cut algorithm and CPLEX under under tight
capacity scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 587 3,146 -81 1,050 CPLEX (time) 25 37 38

2 0.00 0.00 15,098 14,658 3 29,028 B&C (time) 19 44 37
3 0.00 0.00 24,167 8,179 66 22,821 B&C (time) 21 40 40
4 0.00 1.15 36,596 limit2 -58 28,557 CPLEX (time, gap) 19 35 46

II 5 0.00 0.00 2,231 5,223 -57 17,597 CPLEX (time) 23 40 37
6 0.00 0.00 2,225 1,340 40 1,100 B&C (time) 24 41 35
7 1.38 0.87 limit limit - 136,538 B&C (gap) 23 38 39
8 0.00 0.00 25,131 26,523 -5 13,612 CPLEX (time) 20 51 29

III 9 1.21 0.04 limit limit - 52,475 B&C (gap) 22 43 35
10 0.00 0.00 46,226 21,581 53 32,918 B&C (time) 17 47 36
11 0.00 0.00 59,860 43,854 27 18,730 B&C (time) 17 45 39
12 44.76 44.76 - - - - - - - -

IV 13 0.00 0.00 26,297 51,812 -49 72,272 CPLEX (time) 20 46 33
14 2.65 1.35 limit limit - 18,230 B&C (gap) 22 38 39
15 3.15 0.00 limit 70,490 18 56,063 B&C (time, gap) 18 52 31
16 41.11 41.11 - - - - - - - -

V 17 2.46 0.06 limit limit - 78,282 B&C (gap) 26 36 38
18 1.78 2.74 limit limit - 12,591 CPLEX (gap) 19 46 34
19 13.69 13.69 - - - - - - - -
20 - - - - - - - - - -

Min.2 0.00 0.00 587 1,340 -81 1,050 17 35 29
Avg. 0.79 0.39 46,876 47,615 -2 36,992 21 42 37
Max. 3.15 2.74 limit limit 66 136,538 26 52 46

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as percentage
of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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Table C.7: Comparison of the branch-and-cut algorithm and CPLEX under loose capacity
scenario

Gap(%) Tim(sec) Cost(%)1

Set Instance CPLEX B&C CPLEX B&C %Red # UserCuts BestVersion FC TrC SsC
I 1 0.00 0.00 112 109 2 2,475 B&C (time) 39 26 35

2 0.00 0.00 416 393 5 5,113 B&C (time) 39 28 33
3 0.00 0.00 567 530 6 6,375 B&C (time) 38 34 28
4 0.00 0.00 3,095 641 79 10,298 B&C (time) 33 33 34

II 5 0.00 0.00 148 139 6 2,400 B&C (time) 46 28 25
6 0.00 0.00 540 555 -3 3,100 CPLEX (time) 36 31 33
7 0.00 0.00 80,445 982 99 7,425 B&C (time) 37 32 32
8 0.00 0.00 6,712 2,021 70 7,000 B&C (time) 28 38 34

III 9 0.00 0.00 5,578 263 95 2,350 B&C (time) 41 33 26
10 0.00 0.00 819 805 2 5,144 B&C (time) 40 28 31
11 0.07 0.00 limit2 27,709 68 5,925 B&C (time, gap) 35 34 30
12 - - - - - - - - - -

IV 13 0.00 0.00 616 470 24 2,375 B&C (time) 30 35 35
14 0.00 0.00 1,732 1,465 15 4,950 B&C (time) 42 31 27
15 0.00 0.00 13,689 11,067 19 21,454 B&C (time) 21 57 22
16 - - - - - - - - - -

V 17 0.00 0.00 1,002 874 13 3,016 B&C (time) 36 34 30
18 0.00 0.00 81,482 50,995 37 3,347 B&C (time) 33 38 28
19 0.00 0.00 10,158 54,698 -81 6,750 CPLEX (time) 36 33 31
20 - - - - - - - - - -

Min.2 0.00 0.00 112 109 -81 2,350 21 26 22
Avg. 0.01 0.00 17,273 9,042 48 5,853 36 34 30
Max. 0.07 0.00 limit 54,698 99 21,454 46 57 35

1 FFC: Facility fixed cost; TrC: Transportation cost; SsC: Safety stock cost. All these costs are expressed as
percentage of the objective function value.
2 Avg., Min. and Max. values are reported over instances that was solved using B&C and CPLEX; limit = 86,400
sec (1 day)
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