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Abstract

Inverse Parametric Optimization For Learning Utility

Functions From Optimal and Satisficing Decisions

Elaheh Hosseiniiraj, Ph.D.

Concordia University, 2021

Inverse optimization is a method to determine optimization model parameters
from observed decisions. Despite being a learning method, inverse optimization is
not part of a data scientist’s toolkit in practice, especially as many general-purpose
machine learning packages are widely available as an alternative. In this dissertation,
we examine and remedy two aspects of inverse optimization that prevent it from
becoming more used by practitioners. These aspects include the alternative-based
approach in inverse optimization modeling and the assumption that observations
should be optimal.

In the first part of the dissertation, we position inverse optimization as a learning
method in analogy to supervised machine learning. The first part of this dissertation
provides a starting point toward identifying the characteristics that make inverse
optimization more efficient compared to general out-of-the-box supervised machine
learning approaches, focusing on the problem of imputing the objective function of a
parametric convex optimization problem.

The second part of this dissertation provides an attribute-based perspective to
inverse optimization modeling. Inverse attribute-based optimization imputes the
importance of the decision attributes that result in minimally suboptimal decisions
instead of imputing the importance of decisions. This perspective expands the range
of inverse optimization applicability. We demonstrate that it facilitates the application
of inverse optimization in assortment optimization, where changing product selections
is a defining feature and accurate predictions of demand are essential.

Finally, in the third part of the dissertation, we expand inverse parametric opti-
mization to a more general setting where the assumption that the observations are
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optimal is relaxed to requiring only feasibility. The proposed inverse satisfaction
method can deal with both feasible and minimally suboptimal solutions. We mathe-
matically prove that the inverse satisfaction method provides statistically consistent
estimates of the unknown parameters and can learn from both optimal and feasible
decisions.
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Chapter 1

Introduction

Inverse problems involve finding the parameters that define a forward model given

observations of the forward model solutions(s). Inverse problems are important when

the solution(s) of a forward model is available but the model itself is not fully known —a

common setting in numerous disciplines such as geology, medical imaging, and decision

science (Tarantola, 2005). Inverse optimization (IO) is a class of inverse problems whose

forward model is an optimization model. IO aims to impute missing optimization

model parameters given observations of minimally sub-optimal observations ,i.e.,

observations of optimum or near optimum solutions of an optimization problem. To

do so, inverse optimization uses some form of optimality conditions to leverage the

prior knowledge about the data (i.e., the knowledge that the data was generated

by an optimization process) and to ensure that the observations become minimally

sub-optimal solutions of the imputed forward optimization problem (FOP). A review

of inverse optimization methods is presented in Chapter 2.

In this dissertation, we study a particular type of inverse optimization problem,

inverse parametric optimization. Inverse parametric optimization is the problem
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of learning unknown parameters of a parametric forward optimization problem. A

parametric (forward) optimization problem (also referred to as a multi-parametric

programming problem) is a family of optimization problems parametrized by an

independent parameter; this problem involves finding a function that would map values

of the independent parameter to optimal solutions (Hempel et al., 2014; Pistikopoulos

et al., 2011). In this sense, inverse parametric optimization fits within the broader

conceptual framework of “learning” which is the capability to acquire knowledge

by extracting patterns from raw data (Goodfellow et al., 2016); we are acquiring

knowledge about an optimization process that generated the data we observe. The

parametric setting is especially advantageous in practice as it is capable of reflecting

the situations where decisions depend on external parameters, e.g., customers make

decisions regarding the number of items to buy by solving a utility optimization

problem where the price of items is an external parameter.

1.1 Motivating Examples

Inverse optimization applications occur in settings where an optimization process

generates decisions, decisions are observable, but the parameters of the decision

generation problem are unknown or could vary. While early developments of inverse

optimization methodologies assume that those decisions should be optimal, recently

the inverse optimization methodology is expanded to settings where the decisions

are near to optimal. Examples of the optimization process that generated data are

automated decision support systems where a designed optimization problem generates

decisions; experts that can usually make good decisions in their area of expertise;

and agents/users whose decisions maximize their utility (or give them an acceptable
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level of utility). Given observations of decisions, inverse optimization can be used

to tune the parameters of an automated decision system and find parameter values

to make a decision optimal. For the experts and optimizing agents/users example,

the decision making problem is usually vague as experts and users cannot explicitly

reveal the value of some of their decision making model parameters. Therefore, inverse

optimization can be used to impute such parameters from observations of their (near to)

optimal decisions. Other applications of inverse optimization studied in the literature

include shortest path, assignment and minimum cut problems (Ahuja and Orlin, 2001),

health related decision making where decisions by health experts are available but

the expert decision making parameters are unavailable (Chan et al., 2019), finance

(Bertsimas et al., 2012; Beil and Wein, 2003) and market bidding in electricity trading

(Saez-Gallego and Morales, 2017).

This dissertation is mainly motivated by the problem of learning the decision

making parameters of optimizing agents/users. Learning such parameters enables

a third party (e.g., firms and recommender systems) to predict future decisions.

Predicting future decisions of users has significant benefits for service providers as

they can improve their services and offerings by tailoring them to the user’s interest.

It also benefits the users as they can get customized services. The inverse optimization

models we propose leverage the idea of attributes from multi-attribute decision-making

(MADM) and this dissertation provide frameworks and methods to impute the weights

of decision attributes.
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1.2 The Practice of Inverse Optimization

In this dissertation, we position inverse optimization as a learning method and aim

to address two main questions: 1) when, or even whether, investing in developing IO

methods is worthwhile? 2) how can we make inverse optimization more practical as a

learning method?

To address the first question, we start by establishing an analogy between inverse

optimization and machine learning (ML). Viewing an inverse (parametric) optimization

problem as a learning problem brings up topics that have previously not been explored

in the literature and are of practical interest. The first one is the comparison of

ML and IO performance on data generated by an optimization process. The second

topic is identifying the characteristics that would make a problem challenging for

classic machine learning methods and require a more specialized methods of inverse

optimization. In general, problem difficulty from a learning perspective is not well

understood for problems where data is generated by an optimization process. It

is unclear exactly which problems can be solved with machine learning tools and

which problems need inverse optimization methods. We experimentally address these

questions and bring together ideas and concepts from machine learning and operations

research.

To address the second question, we noticed that there are settings in practice

where previously-developed inverse optimization models are not fully applicable. One

such setting is when we use inverse optimization to fit an optimization model that

needs to predict the future decisions of optimizing agents. The majority of inverse

optimization literature implicitly assumes an “alternative-based” approach, i.e., they
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impute objective function coefficients corresponding to a set of previously seen decisions

which makes inverse optimization incapable of predicting future unseen decisions.

We propose an “attribute-based” perspective in forward and inverse modeling to

address this limitation of inverse optimization. Instead of imputing the weights of

decisions, attribute-based IO imputes the weights of attributes of those decisions; thus,

when the set of decisions changes, weights imputed from past data can be utilized to

parameterize an optimization problem given a new set of alternatives, as long as both

past and current alternatives can be expressed in terms of the same attributes.

Another setting in which inverse optimization cannot be applied is when the

assumption of the optimality of observations is not satisfied. This setting is common

in practice as many non-expert human agents cannot make optimal or near to optimal

decisions due to cognitive and time limitations and opt to make only satisficing

decisions (Simon, 1979). Even though an optimization process is not involved in

such a setting, decisions are usually subject to constraints and the decision making

problem is a feasibility problem instead of an optimization problem. To make inverse

optimization applicable for such a setting, we relax the optimality assumption and

propose an inverse satisfaction method. Inverse satisfaction expands the applicability

of inverse optimization to a broader set of problems in practice.

This dissertation contributes to building a bridge between IO methodology and

IO practice. We extend the applicability of inverse optimization to more general

settings by demonstrating characteristics where inverse optimization could be a strong

alternative to classical machine learning methods, applying inverse optimization to

attribute-based formulations, and developing inverse optimization-like formulations

for satisficing decisions.
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1.3 Contributions

The main contributions of this dissertation are as follows:

1. We position inverse parametric optimization as a learning problem and experimen-

tally compare the performance of a classic IO method with three out-of-the-box

machine learning (ML) methods, namely Gaussian process regression, random

forest, and support vector regression.

2. We identify the characteristics that would make a problem challenging for inverse

optimization and machine learning methods and conduct experiments on random

parametric optimization problems (POPs). To the best of our knowledge, no

previous papers have compared IO and ML methods on this class of problems.

Our experiments with randomly-generated POPs demonstrate that the choice of

an ML or IO approach should depend on (i) the size of the training set, (ii) the

nature of the dependence of the optimization problem on external parameters,

(iii) the level of confidence with regards to the correctness optimization prior,

(iv) the number of critical regions in the solution space of the POP.

3. We propose a new perspective on inverse optimization based on attributes.

Inverse attribute-based optimization aims to impute the weights of attributes

that lead to an optimal decision instead of imputing the decision’s weight. This

perspective expands the range of IO applicability and facilitates the application

of IO in assortment optimization, where changing product selections is a defining

feature, and accurate predictions of demand are essential.
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4. We relax the assumption of near-optimality of observations in inverse optimiza-

tion and propose an inverse satisfaction method to jointly estimate the weight

of the satisficer’s decision attributes and their acceptable threshold for decisions.

We experimentally show that our proposed model can learn from both optimizer

and satisficer decisions compared to previous models in inverse optimization

literature that are capable of learning only from optimizers.

5. We mathematically prove that the proposed inverse satisfaction model is es-

timation consistent, meaning that with enough number of observations, the

estimation of weights and acceptable threshold converge to their true values.

1.4 Outline of the Dissertation

The structure of the dissertation is as follows. In Chapter 2 we review the literature

of inverse optimization methods and related research in other disciplines.

In Chapter 3 we discuss the positioning of inverse parametric problems as a

learning problem. In this chapter, we focus on the problem of imputing the objective

function coefficients of a parametric convex optimization problem. We compare the pre-

dictive performance of three standard supervised machine learning algorithms, namely

random forest (RF), support vector regression (SVR), and Gaussian process regression

(GP) to the performance of the IO model of Keshavarz et al. (2011). To identify the

strengths and weaknesses of machine learning and inverse optimization methods, we

conduct experiments with multiple settings mainly based on the complexity of the

data generation process and the number of observations.

In Chapter 4 we address one of the limitations of inverse optimization in practice
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which is its alternative-based approach in modeling which limits the applicability of

inverse optimization for prediction purposes. In this chapter, we propose a new per-

spective on modeling based on decision attributes. We study the problem of imputing

the weights of attributes instead of imputing the coefficients of the decision. The

inverse attribute-based perspective enables inverse optimization to predict decisions

that are not present in the training set as long as the set of decision attributes remains

unchanged.

In Chapter 5, we further expand the applicability of inverse optimization. We

relax one key but limiting assumption in inverse optimization, which is the assumption

that the observations are optimal. In many situations, decisions are only acceptable

decisions. However, the decision making process is usually subject to some constraints.

This chapter proposes an inverse model for imputing the unknown parameters of a

feasibility problem, given observations of its feasible solutions. We call this method

inverse satisfaction and mathematically prove that the proposed inverse satisfaction

method is statistically data consistent, i.e., its estimate of the feasibility model

parameters converges to the actual values of the parameters in probability.

Finally, Chapter 6 concludes the dissertation with a summary of contributions

and future work.
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Chapter 2

Literature Review

This chapter briefly reviews the inverse optimization preliminaries and then reviews

the inverse optimization developments in methodology and applications. At the end

of the chapter, we address how this dissertation contributes to the current inverse

optimization literature.

2.1 Preliminaries

Inverse optimization models vary based on their choice of the loss function. In the

literature, loss functions are generally defined over either the decision space or objective

space (Babier et al., 2021). However, in this review, we consider another classification

of loss functions. We classify loss functions either on parameter space, decision space

or objective space. We define the forward optimization problem as:

FOP(c) : minimize
x∈S

f(x, c) (1)

where x ∈ Rn are the decision variables, c ∈ Rn are the coefficients of the objective
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function f , and S is the feasible region of the forward problem. Given an observed

solution of problem (1) denoted x̂, we define the three classes of inverse optimization

as follows.

Parameter space:

The corresponding classic inverse optimization problem, i.e., the problem of finding

missing objective function coefficients, can be defined in parameter space as:

min
c

{
L(c,d) | x̂ ∈ arg min

x∈X
f(x, c)

}
(2)

where d is an estimate of unknown vector c and L is a loss function that measures the

error between a known and an imputed parameter vector. As there might be multiple

feasible c vectors, the function L is used to find a single solution closest to the given

estimate of c. Various forms of loss function L have been studied in the literature.

Ahuja and Orlin (2001) use the L1 and L∞ norm. They show that if a forward

problem is polynomially solvable for each linear cost function, then the corresponding

inverse problems under L1 and L∞ are polynomially solvable too. Iyengar and Kang

(2005) and Burton and Toint (1992) consider L2 norm as the loss function. Hamming

distance is also considered in some studies (e.g., Duin and Volgenant (2006)). While

in some studies prior information about the value of c is available, some others assume

situations when there is no prior information on the missing parameters (e.g., Chan

et al. (2019)). In this case, c does not need to be close to a given prior but only has

to be imputed to make the observation optimal for the forward solution.
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Decision space:

Representation (2) of the inverse optimization problem denotes the early developments

of the literature when the loss functions are mostly defined on the parameter space.

Other studies define the loss function over the decision variables (e.g., Aswani et al.

(2018, 2019b); Esfahani et al. (2018)). The corresponding inverse optimization problem

with such loss function can be defined as:

minimize
c

{
L(x̂,xpred) | xpred ∈ arg min

x∈X
f(x, c)

}
(3)

where xpred is an optimal solution to the fitted forward optimization model and L

is any given loss between x̂ and xpred. Some examples of the loss function in the

literature are the average discrepancy between the measured data and the estimated

data (Aswani et al., 2018) and the mismatch between the predicted and true optimal

decisions (Esfahani et al., 2018) such as a 2-norm as:

L(x̂,xpred) = ‖x̂− xpred‖2. (4)

Objective space:

The loss function of inverse optimization can also measure the loss in objective space.

In this case, formulation (3) can be modified in a way that the loss function minimizes

some form of optimality condition. One commonly used loss in objective function

space is the absolute duality gap which measures the objective function values incurred

by observations x̂ and xpred (Saez-Gallego and Morales, 2017; Chan et al., 2019).

Another loss function used in objective space is the relative duality gap that measures
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the relative value instead of the absolute value of loss (Chan et al., 2014a; Babier et al.,

2018; Chan et al., 2019). Other loss functions in objective space have been studied that

consider the residulas of some form of optimality conditions. For instance, Keshavarz

et al. (2011) and Bertsimas et al. (2015) propose a loss function on residuals of

optimality conditions including KKT conditions and variational inequality conditions,

respectively.

2.2 Review of the Literature

Inverse optimization models in the literature can be generally categorized based on (i)

number of observations: single or multiple observations, (ii) observations setting with

regard to noise: noisy or noise-free, (iii) inverse continuous or inverse integer programs

and (iv) non-parametric or parametric setting.

Early developments of inverse optimization are mainly focused on single and noise-

free observations (i.e., observations for which there exist values of missing parameters

that can make them optimal solutions of the forward optimization problem (Ahuja

and Orlin, 2001; Iyengar and Kang, 2005; Burton and Toint, 1992)). However, recent

studies in inverse optimization incorporate noise in the observations (Keshavarz et al.,

2011; Aswani et al., 2018; Esfahani et al., 2018).

While most of the studies in inverse optimization are continuous programs, some

investigate the integer setting in inverse optimization too (e.g., Schaefer (2009); Wang

(2009); Bulut and Ralphs (2015); Moghaddass and Terekhov (2020)).

Until recently, the majority of the literature centered around the non-parametric

setting. However, recently the inverse parametric optimization has drawn more
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attention in the literature (e.g., (Keshavarz et al., 2011; Aswani et al., 2018; Saez-

Gallego and Morales, 2017)).

This dissertation focuses on the inverse continuous optimization problems with

multiple noisy observations in a parametric setting. Hence, below we provide a review

of the literature in this setting specifically.

2.2.1 Inverse Continuous Optimization with Noisy Observa-

tions

In inverse optimization models with a noise-free setting, it is assumed that there

exist parameter values that make a given solution optimal; however, in practice

it might be impossible to find such parameter values. This happens because of

several reasons such as the error in data collecting, deviation of decision makers

from optimality –phenomena referred to as bounded rationality–and the mismatch

between the mathematical model and the actual decision making process (we refer

readers to Esfahani et al. (2018) for a review on the possible sources of noise in inverse

optimization). Accordingly, new inverse optimization studies have been done with

noisy data and non-optimal candidate solutions to render meaningful solutions for

noisy observations and make them ε_optimal. In this family of inverse optimization

problems, usually a loss function measures the slack of some form of optimality

conditions such as KKT conditions (Keshavarz et al., 2011), variational inequality

(Bertsimas et al., 2015) and strong duality (Chan et al., 2019) and convexity for both

the feasible region of the parametrized optimization model and the objective function

is inherently assumed. Recently other studies have been done dealing with more

complex systems with non-convex decision domain that only rely on access to an
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LP oracle using learning algorithms with no convexity assumptions (Bärmann et al.,

2017).

While most of the noise-free setting papers have primarily focused on single

point observation problems, both single point and multiple point settings have been

considered in noisy settings. Some studies consider a single noisy observation which is

feasible (e.g., Keshavarz et al. (2011); Chan et al. (2019); Bertsimas et al. (2012)) and

some consider both feasible and infeasible observations (Boutilier et al. (2015); Chan

et al. (2014a)) to the forward problem. Inverse optimization with noisy data has been

mostly studied with multiple observations of the solutions of forward optimization

problem (Troutt (1995); Troutt et al. (2005); Keshavarz et al. (2011); Aswani et al.

(2018); Bertsimas et al. (2012); Esfahani et al. (2018)).

In most inverse optimization literature with noisy observations, even though

observations are not candidate optimal, they are assumed to be a feasible point for

the forward problem. Chan et al. (2014a) propose a generalized inverse optimization

model in which observations could be on the boundary, inside the feasible region of the

forward problem or even be an infeasible point in a multiobjective linear optimization

context.

Recently a few studies have been done using robust and inverse optimization

concepts either to solve robust optimization problems with a perspective of inverse

optimization (Bertsimas et al. (2012); Chassein and Goerigk (2018)) or to use robust

optimization 1 approaches in the course of solving inverse optimization problems

(Esfahani et al., 2018; Ghobadi et al., 2018).
1Robust optimization is an area in operations research which addresses optimization problems

with uncertain parameters (Bertsimas and Sim, 2004).
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2.2.2 Inverse Parametric Optimization

This dissertation is based on the idea that the parametric setting of inverse optimization,

i.e., learning model parameters of a parametric optimization problem (POP), can be

viewed as a learning problem where the goal is to learn optimization model parameters

from a sequence of external parameters and their corresponding parametric optimal

decisions. The inverse parametric optimization problem has been studied by many

authors (Keshavarz et al., 2011; Chow and Recker, 2012; Aswani et al., 2018; Esfahani

et al., 2018; Saez-Gallego and Morales, 2017; Kovács, 2019; Tan et al., 2019, 2020).

Inverse parametric optimization was initially studied by Keshavarz et al. (2011)

where an inverse optimization model was proposed to learn a convex objective function

of a parametric optimization problem from pairs of external parameter and their

corresponding optimal decisions. The parametric setting has been studied in the

literature to learn from optimizing agent’s decisions, i.e., optimal decisions with

response to an external parameter in the environment (Chow and Recker, 2012;

Aswani et al., 2018; Esfahani et al., 2018; Saez-Gallego and Morales, 2017; Kovács,

2019). Saez-Gallego and Morales (2017) propose an inverse parametric method to

learn the electricity marginal utility parameters and the power consumption limits

from the consumer’s electricity demand parametrized by the electricity price and

estimate their future electricity load under different levels of price. Aswani et al.

(2018) propose an inverse parametric optimization method to learn an optimizing

user utility function from decisions parametrized by temperature with application in

energy and decisions. The similar problem of learning optimizing agent’s utility is

studied by Esfahani et al. (2018); in this study decisions are parametrized by price in

the context of consumer behaviour. Recently, Tan et al. (2019, 2020) have studied
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the methodology and modeling aspects of inverse parametric optimization. They

propose a deep learning method based on back propagation for learning parametric

optimization problems (Tan et al., 2019) and a gradient-based framework for learning

parametric linear programs from optimal decisions (Tan et al., 2020).

2.3 Connection to Other Disciplines

Inverse optimization as a problem of imputing model parameters from observations can

be interpreted as a learning method. More specifically, inverse parametric optimization

can be seen as a from of supervised learning method of machine learning literature

(e.g., random forest and decision tree (Breiman, 1996, 2001), support vector regression

(Drucker et al., 1997) and Gaussian process regression (Rasmussen, 2004)) 2 where the

external parameters of the forward optimization problem are the input (independent

variable, feature) and the observations of the decisions are output (dependent variable,

target). More related work in the machine learning literature includes, most notably,

structured prediction (Taskar et al., 2005). Despite this related machine learning-based

work, a comparison of classic machine learning methods on general parametric inverse

optimization problems has not previously been done in the literature.

From the perspective of learning from optimal decisions, inverse optimization has

also connection to the literature around the utility elicitation problem (Keeney et al.,

1993; Mármol et al., 1998; Boutilier, 2002; Chajewska et al., 2000; Abdellaoui, 2000)

as the observations in this problem are assumed to be utility-optimizing. However,

until recently, there has been little interest in the problem of finding preferences

of users that solve constrained optimization problems and incorporating the prior
2We refer the readers to Section 4.5.1 for the definition of these methods with more detail.
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knowledge that the user’s decisions are solutions of an optimization problem. Inverse

optimization as a method for imputing optimization model parameters is capable

of using the prior knowledge that the user’s decisions are obtained from solving an

optimization problem.

Modeling user’s decisions in the literature is usually represented as a multi-

attribute decision making problem. Given that decisions are associated with some

attributes, inverse optimization can be used to find the weight of attributes when

observations of user’s decisions are available. Though MADM literature has been

more focused on finding the decisions given the attribute weights, some studies

proposed methods to assign weights given observations of the decisions (Stillwell et al.,

1981). From this perspective, inverse optimization can be an alternate to such weight

assignment methods and solve the inverse problem of an MADM problem under the

assumption of optimizing decision-makers.

2.4 Contributions of This Dissertation to the Litera-

ture

The inverse optimization methodology studied in this dissertation is similar to of

Keshavarz et al. (2011); Aswani et al. (2018); Esfahani et al. (2018) given that they

also studied inverse optimization in the parametric setting considering multiple noisy

observations. In this dissertation, we first position the inverse parametric optimization

problem in general as a form of learning. Though previous works have established an

analogy between inverse optimization and regression (Chan et al., 2019), and some

provide a comparison of an IO approach to several ML algorithms in the context
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of a particular application (Fernández-Blanco et al., 2019; Aswani et al., 2019a);

comparing the performance of supervised machine learning methods with inverse

parametric optimization for general problems such as POPs have not been previously

addressed in the literature. In this dissertation, we identify the characteristics of

a parametric optimization data/decision generation process that make the task of

learning challenging for inverse optimization and machine learning methods. The

problem characteristics studied in this dissertation can contribute valuable insights

to the practitioners on why, whether and when they should opt for using a more

specialized learning method such as inverse optimization instead of conventional

machine learning methods.

Motivated by the practice of machine learning, this dissertation also proposes a

new perspective in forward and inverse optimization modeling based on attributes that

can further expand the applicability of inverse optimization. As mentioned earlier,

inverse parametric optimization can be analogous to supervised machine learning (i.e.,

observable parameters to be considered as features and decisions as targets), therefore

inverse parametric optimization can be used within a prediction framework to predict

future decisions based on observations of parameters. However, to the best of our

knowledge, all the studies in the literature have an “alternative-based” approach in

inverse modeling (e.g., Keshavarz et al. (2011); Bertsimas et al. (2015); Aswani et al.

(2018)), which limits the applicability of inverse optimization in settings when the

set of decisions are subject to change with regard to the external parameters. This

dissertation provides a new perspective that makes inverse parametric optimization

more fitting for the parametric prediction problems.

One key assumption in inverse optimization is the optimality of the observations.
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Even though recent studies relax the optimality assumption and incorporate noise

in the observations (e.g., Chan et al. (2019)), the observations are still assumed

to be ε−optimal for the forward problem. However, the optimality assumption is

not always guaranteed in many settings, especially where decision makers suffer

from bounded rationality and make decisions to reach an acceptable level of utility

instead of optimizing it (Simon, 1979). To further expand the applicability of inverse

optimization, we relax the optimality assumption to only feasibility. We propose

an inverse satisfaction model for imputing a feasibility problem’s parameters, given

observations of feasible solutions. To the best of our knowledge, this setting has not

been studied before in the literature. Similar to the statistical inference perspective

previously provided by Aswani et al. (2018) for minimally suboptimal observations,

we also prove that the proposed inverse satisfaction model is statistically consistent in

estimating the unknown parameters of the forward feasibility problem given feasible

observations.
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Chapter 3

Comparing Inverse Optimization and

Machine Learning Methods for

Imputing a Convex Objective

Function

Inverse optimization aims to determine optimization model parameters from observed

decisions. However, IO is not part of a data scientist’s toolkit in practice, especially as

many general-purpose machine learning packages are widely available as an alternative.

When encountering IO, practitioners face the question of when, or even whether,

investing in developing IO methods is worthwhile. This chapter provides a starting

point toward answering these questions, focusing on the problem of imputing the

objective function of a parametric convex optimization problem. We compare the

predictive performance of three standard supervised machine learning (ML) algorithms

(random forest, support vector regression and Gaussian process regression) to the
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performance of the IO model of Keshavarz et al. (2011). While the IO literature

focuses on the development of methods tailored to particular problem classes, our

goal is to evaluate general ‘out-of-the-box’ approaches. Our experiments suggest that

determining whether to use an ML or IO approach requires considering (i) the training

set size, (ii) the dependence of the optimization problem on external parameters, (iii)

the level of confidence with regards to the correctness of the optimization prior, and

(iv) the number of critical regions in the solution space.

3.1 Introduction

Inverse optimization imputes missing optimization model parameters from data that

represents minimally sub-optimal solutions of that unknown optimization problem

(e.g., past decisions of an optimizing agent). In the academic literature, IO has been

shown successful in a variety of problems, including medical decision making (Chan

et al., 2014a), electricity demand forecasting (Saez-Gallego and Morales, 2017), the

household activity pattern problem (Chow and Recker, 2012) and economic lot-sizing

(Egri et al., 2014). However, IO is rarely used by practitioners.

Previous work has established an analogy between IO and regression (Chan et al.,

2019), and provided a statistical inference perspective on IO (Aswani et al., 2018).

More generally, one can notice that imputing parameter values from data can be

viewed as a machine learning problem (Tan et al., 2019), a perspective that we adopt

and explore in this chapter. Viewing an inverse (parametric) optimization problem

as a learning problem raises questions that have previously not been explored in the

literature and that are of practical interest. First, how well would classic machine

learning methods perform on such problems? Second, what characteristics would
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make a problem challenging for classic machine learning methods and would require

the more specialized methods of IO? Our interactions with data science teams of two

large companies have led us to believe that answering these questions is essential if a

data scientist wants to consider adding IO to their toolkit. In this study, we have used

synthetic data by generating instances of the forward optimization problem. Using

synthetic data give us more control on generating instances with certain properties

that are important in the postulated hypotheses about the behaviour of the inverse

optimization method which helps us to assess these hypotheses.

While most of the IO literature develops specialized approaches, our goal is to

compare fairly general methods, as we believe these are more likely to be used by

practitioners. After establishing our perspective on inverse parametric optimization as

a learning problem, we experimentally compare the performance of a classic IO method

with three out-of-the-box machine learning (ML) methods, namely Gaussian process

regression, random forest and support vector regression. We use the IO method of

Keshavarz et al. (2011) as it is well suited and easy to apply to inverse parametric

convex optimization problems. We show that the chosen ML methods can indeed

perform well on a problem that has been well-studied in the IO literature. To identify

the characteristics that would make an IO problem challenging for ML (highlighting

the need for sophisticated IO models), we conduct experiments on random parametric

optimization problems (POPs) generated using the parametric optimization toolbox

of Oberdieck et al. (2016). To the best of our knowledge, no previous papers have

compared IO and ML methods on this class of problems. Our experiments with

randomly-generated POPs demonstrate that the choice of an ML or IO approach

should depend on (i) the size of the training set, (ii) the nature of the dependence of
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the optimization problem on external parameters, (iii) the level of confidence with

regards to the correctness optimization prior, (iv) the number of critical regions in

the solution space of the POP.

3.2 Background and Related Work

To define an IO problem, we first need to postulate a forward optimization problem,

i.e., the problem whose solutions, perhaps corrupted by noise, we observe. The initial

focus of the IO literature was to impute coefficients of forward optimization problems

that do not have any dependence on an external parameter (non-parametric). Burton

and Toint (1992, 1994) study the inverse shortest path problem in which the goal

is to find a minimal perturbation of the arc costs to make an observed set of paths

optimal. Given an observed value for decision variables x, Ahuja and Orlin (2001)

find a c vector of minimal distance to a known vector ĉ that would make x optimal.

Chan et al. (2014a) and Chan et al. (2019) study the inverse linear programming

problem when the observed data is noisy and no prior ĉ is given. Tavaslıoğlu et al.

(2018) characterize the inverse feasible region: the set of objectives that would make a

given set of feasible solutions to a linear program optimal. Shahmoradi and Lee (2020)

introduce a way to measure how sensitive the set of optimal cost vectors is to changes

in a given data set.

A parametric optimization problem (also known as a multi-parametric program-

ming problem) is a family of optimization problems parametrized by an independent

parameter; the forward parametric problem involves finding a function that would

map values of the independent parameter to optimal solutions (Pistikopoulos et al.,
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2011). As an example, consider the following parameteric linear program with inde-

pendent parameters (u1, u2): min(c1 + c2u1)x1 + (c3 + c4u2)x2 s.t. a1x1 + a2x2 ≥ b1,

where instantiating u1 and u2 leads to a standard (non-parametric) optimization

problem. There is substantial interest in the inverse parametric optimization problem

(Keshavarz et al., 2011; Chow and Recker, 2012; Aswani et al., 2018; Esfahani et al.,

2018; Saez-Gallego and Morales, 2017; Kovács, 2019; Tan et al., 2019, 2020). In such

a problem, pairs (uk,xk) where uk is an independent parameter for observation k

and xk is an observed value for the decision variables x are given; the goal is to

impute objective function and/or constraint coefficients that would make the observed

points optimal or near-optimal solutions of the given parametric forward optimization

problem.

Classic IO methods (Burton and Toint, 1992; Ahuja and Orlin, 2001; Keshavarz

et al., 2011) rely on some form of optimality conditions, such as the Karush-Kuhn-

Tucker (KKT) conditions. More recently, methods based on a combination of ML and

IO have emerged (Tan et al., 2019, 2020; Babier et al., 2021). Aswani et al. (2019a)

and Fernández-Blanco et al. (2019) include comparison of an IO approach to several

ML algorithms in the context of a particular application. Related work in the ML

literature includes, most notably, structured prediction (Taskar et al., 2005). Despite

this related ML-based work, a comparison of classic methods on general parametric

IO problems has not previously been done and the questions posed in the introduction

have not been answered.
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3.3 Problem Definition

We study the inverse of parametric optimization problems (POPs). POPs are mathe-

matical programs where the objective function and constraints are functions of one or

multiple external parameters (Pistikopoulos et al., 2011; Oberdieck et al., 2016). The

inverse of POPs are inverse parametric optimization problems which are ‘compatible’

with an ML perspective (specifically supervised learning) as they use pairs of external

parameters (features in machine learning literature) and decisions (targets in machine

learning literature), unlike non-parametric optimization problems where the training

data consists only of near optimal decisions. The forward parametric optimization

problem (FOP) of interest to us is:

FOP(u, c) : minimize
x

f(u,x, c)

s.t. g(u,x) ≤ 0,
(5)

where x ∈ Rn are the decision variables, u ∈ Rv are the independent parameters

(‘features’ in ML parlance), and c ∈ Rn are the coefficients of the objective function f .

We assume f and g are differentiable and convex in x for each value of u. We let J

be the index set of variables with |J | = n, and I be the index set of constraints with

|I | = m; we let 0 denote the column vector of zeros of the required dimension.

In an inverse parametric optimization problem, observations of pairs

D = {(x̂1, û1), . . . , (x̂K , ûK)} are given; the goal is to find a c that would make x̂k

as close to optimal as possible for the corresponding FOP(ûk, c), for each k ∈ K =
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{1, . . . , K}:

minimize
c

{∑
k∈K

L(x̂k,x
pred
k ) | xpredk ∈ arg min

x∈Xûk

f(ûk,x, c)
}

(6)

where L is any given loss function, xpredk is an optimal solution to the fitted forward

optimization model instantiated at u = ûk, and Xûk
= {x | g(ûk,x) ≤ 0} is the

feasible region corresponding to ûk. There are various ways to reformulate (6); the

particular model we use here is the model proposed by Keshavarz et al. (2011), which

formulates the optimality criterion via KKT optimality conditions as:

IO(D) : minimize
λ,c

∑
k∈K

φ(rstatk , rcompk )

s.t. rstat
j
k =

∂f(u,x, c)

∂xj
+

m∑
i=1

λki
∂gi(u,x)

∂xj
∀j ∈ J , k ∈ K

rcompik = −λikgi(u,x) ∀i ∈ I , k ∈ K

λ ≥ 0,

where φ is some norm, rstat and rcomp represent the complementary slackness and

stationarity residuals, respectively, of the KKT conditions; λ is the dual variable.

The missing objective function coefficient vector c is a decision variable and pairs of

(x̂k, ûk) are the inputs.

The goal of IO could be explanatory, i.e., we aim to characterize the process

that generated the data, or predictive, i.e., we want to fit a model that will predict

the actions of an optimizing agent/process. That is, having imputed c and given

unew we could use FOP(unew, c) to predict xnew. Fitting a model to data can

also result in better prescriptive performance, i.e., if instead of predicting what an
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optimizing agent/process would do, we want to prescribe an optimal decision under

new circumstances unew (this latter perspective being more consistent with classical

optimization).

3.4 Inverse Optimization Problem as a Learning Prob-

lem

Learning is the capability to acquire knowledge by extracting patterns from raw

data (Goodfellow et al., 2016); in this sense, IO fits within the broader conceptual

framework of learning, i.e., we are acquiring knowledge about an optimization process

that generated the data we observe. Applied to the IO problem described in Section

3.3, supervised ML would aim to find a vector-valued function h(u,β) from u (input

variable or feature) to x (target variable) such that the loss function L is minimized

(Russell and Norvig, 2016). Once h(u,β) is imputed, it can be used for prediction

given new feature observations unew. Figure 1 illustrates this observation: in the left

panel, we shown that IO takes pairs of (û, x̂) (i.e., data) as input, imputes the value of

c (i.e., knowledge) and then, given unew and an imputed c, makes a prediction xnew; in

the right panel, we show that the same happens in a typical supervised ML framework,

with the difference being the actual models and methods used to impute the unknown

parameters and, consequently, the learned model that is used for prediction.
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Figure 1: IO and ML perspectives applied to an IO problem.

The fundamental assumption in IO is that the observations of decisions x̂ are

near-optimal or optimal solutions to an optimization problem, whereas general ML

methods do not require such an assumption. Based on the description above, an IO

problem can be seen as part of the same conceptual framework as machine learning –

the main difference being that in IO data is assumed to come from an optimization

process. Viewed another way, we can say that IO assumes a strong prior that the

input data is coming from an optimization process, and IO methods leverage this

prior knowledge.

Consider Figure 2 (a); suppose that points A to D are given data and our goal is

to predict the next observation; point E is an unseen test point for which we want

to evaluate the quality of prediction. Given no additional information, a natural

idea would be to fit a curve using simple linear or polynomial regression, as shown

in panels (b) and (c), respectively. In this particular example, the training error for

these models is low but the test error is high, which would normally signal over-fitting

to the training data. However, in this case the problem is not over-fitting — rather,

the issue is that the data is not coming from a linear or a polynomial relationship
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between x1 and x2 and also not from a linear or polynomial relationship between a

feature u and each of the xi. In reality, A, B, C and D are optimal solutions to the

parametric optimization problem P (u) : max (−6 + 5u)x1− (3 + 10u)x2 subject to the

convex hull of (A,B,C,D,E), shown in Figure 2 (d), with P (−0.96 ≤ u ≤ 0.16) = A,

P (−0.16 ≤ u ≤ 1.25) = B, P (1.25 ≤ u ≤ 17.7) = C, P (17.7 ≤ u ≤ 20) = D and

P (−20 ≤ u ≤ −0.96) = E. This example was generated using the Wolfram Parametric

Linear Programming app (Bunduchi and Mandric, 2011).

Just like we aim to fit a linear regression model when we conjecture the relationship

is linear, or a polynomial one when we conjecture it is polynomial, we can fit an

optimization model when we think the data is coming from an optimization problem.

Figure 2: A data set and the fitted optimization model (points A to D are the training
set, point E is the test set).
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Prior knowledge of the process that generated the data can have a substantial impact

on the ability to fit a good model; the above example illustrates specifically the

effect of incorporating an optimization model prior. Next, we compare the predictive

performance of IO methods, which assume an optimization prior, and ML methods,

which do not, when data is generated from parametric convex optimization problems.

3.5 Experiments

3.5.1 Preliminaries

Our goal is to evaluate ‘out-of-the-box’ approaches that can be easily implemented in

practice: a KKT-based IO model (Keshavarz et al., 2011), random forest (Breiman,

2001), support vector regression (Drucker et al., 1997) and Gaussian process regression

(Rasmussen, 2004). We use the scikit-learn (Pedregosa et al., 2011) implementation

of the ML methods. Keshavarz et al. (2011)’s KKT-based IO model is solved using

Concert Technology of IBM ILOG CPLEX v.12.7.0. All experiments are run on an

HP server with 20 Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz processors and

512 GB RAM under Linux environment.

To show the value of prior knowledge for IO, we consider two types of IO models.

In IO-perfect, we have perfect information about the form of the unknown objective

function (but do not know its parameters). In IO-imperfect, the objective function is

misspecified, and so differs from the true one due to modeling error. Pairs (ûk, x̂k)

are generated using Algorithm 1 and divided into a training set and a test set. In

Algorithm 1, K refers to the number of observations and xtruek refers to the optimum

decisions of FOPtrue; from the perspective of data generation, these optimal solutions
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become observations, denoted x̂k in the set of data D. We use leave-one-out cross-

validation on the training set for the ML methods: we pick one point as our validation

set, fit a model to the remaining data and evaluate the error on the single held-out

point. A validation error estimate is obtained by repeating this procedure for each of

the training points and averaging the results. Doing so with several hyperparameter

settings enables us to choose the hyperparameter setting with the lowest average cross-

validation error. All of the ML experimental results presented below show the error

on the test set for the best hyper-parameter setting found during the leave-one-out

cross-validation procedure.

We measure the deviation between the predicted x and xtrue (the true values

of the decisins in the test set) in the test set (of size M) using mean relative error

(MRE):

MRE =
1

M

M∑
m=1

‖x− xtrue‖2
‖xtrue‖2

. (7)

3.5.2 Experiment 1: Utility Function Estimation

Consider imputing a customer’s unknown utility function given observations of their

past purchases (Keshavarz et al., 2011; Bärmann et al., 2017). We assume that

customers solve an internal optimization problem in the course of purchasing goods

to maximize their utility function. This is the same problem as the one addressed

Algorithm 1 Data Generation
for k ← 1 to K do

generate uk from uniform distribution
solve FOPtrue(uk, c

true) and get xtruek

k ← k + 1
end for
D ← {(x̂1, û1), (x̂2, û2), ..., (x̂K , ûK)}
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by Keshavarz et al. (2011):

UFOP (p) : minimize
x

pTx− U(x)

subject to x ≥ 0,

(8)

where x ∈ Rn and p ∈ Rn are the vectors of consumer demand and the associated

price1, respectively. Problem (8) is a relatively simple representation of the consumer’s

utility optimizing problem when the objective function is minimizing the total spending

minus their gained utility. This model can be used to predict the the consumer’s

demand under different values of price. In this section, the external parameter of the

POP (previously indicated by u) is parameter p. Similarly to Keshavarz et al. (2011),

we assume that the function U(x) is a concave utility function which is non-decreasing

over [0,xmax], xmax being the maximum demand level found from past observations.

Since U(x) is concave, the objective function of (8) is convex.

We generate pi ∼ Uniform[5, 20] i.e., the parameters are generated from the

uniform distribution. The true utility function is Utrue(x) =
∑n

i=1

√
xi. We use

Uperfect(x) = ci
√
xi in implementing IO-perfect (i.e., the model is correctly specified

so that all observations can be made optimal solutions for their corresponding pi).

For IO-imperfect, we use Uimperfect(x) =
∑n

i=1 qx
2
i + 2rxi. Since this function is

different from Uperfect, the inverse optimization model with this function has imperfect

information. We chose a concave quadratic function for the Uimperfect.
1We do not consider any specific currency for the parameter p in this problem. As we do not have

specific constraints on the utility function (e.g., upper and lower bound on the value of the utility
function), the currency of the price p does not change the value of unknown parameters of the utility
function as the relative magnitude of p and the utility function unknown parameters would be the
same regardless of the currency.
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Based on the results of our hyper-parameter search during leave-one-out cross-

validation, we use the scikit-learn implementation of random forest with

n_estimators=50, max_depth=None, max_feature=None, support vector regression

with c=0.1, gamma="auto", kernel=RBF and Gaussian process with kernel=RBF,

alpha=1e-10, normalized_y=False, optimizer="fmin_1_bfgs_b" and

n_restarts_optimizer=10.

Figure 3 shows how the relative test error of IO-perfect, IO-imperfect, RF, SVR

and GP changes when we increase the training size. Whereas RF, SVR and GP

performance improves, the performance of IO-imperfect and IO-perfect is not affected.

GP achieves performance similar to that of IO-imperfect with only 20 observations,

while RF and SVR get close to IO-imperfect at 60 and 100 points, respectively. The

ML methods perform well because the underlying optimization process (resulting from

model (8)) is constrained by only non-negativity constraints and is parametric only in

the objective function – the relationship between the input and output of this process

can be captured (learned) without knowledge of the underlying optimization model.

In the next experiment, we aim to identify IO problems which would be more difficult

for these ML methods and would require knowledge of the underlying optimization

structure to make good predictions.

3.5.3 Experiment 2: Randomly-Generated Parametric Opti-

mization Problems

In this experiment, we compare the performance of inverse optimization and machine

learning methods using near optimal solutions of general parametric optimization

problems. Using the POP toolbox (Oberdieck et al., 2016), we generate POPs of the
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Figure 3: Comparing IO-imperfect, IO-perfect, RF, SVR, and GP for utility function
estimation; each point is an average over 15 randomly-generated problems, pi ∼
Uniform[5, 20]. Mean relative error is calculated by formulation (7).

following form:

TPOP (u) : min
x

(Qx + Hu + c)Tx

s.t. Ax ≤ b + Fu

x ∈ Rn

u ∈ U := {u ∈ Rq |CRAu ≤ CRb},

(9)

where Q ∈ Rn×n � 0, H ∈ Rn×q and c ∈ Rn×1 and CR represents critical regions. In

the inequality constraints, A ∈ Rm×n, b ∈ Rm×1 and F ∈ Rm×q. The last constraint

of (9) restricts the parameter space, i.e., the admissible values of external parameter

(feature) u, where CRA ∈ R2q×q and CRb ∈ R2q×1 allow for representations of

constraints on u (in particular, lower and upper bounds – hence the number of rows
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Figure 4: A POP instance defined over two parameters u1 and u2 generated using
the POP toolbox of Oberdieck et al. (2016). The left panel shows 21 critical regions
of the parameter space, while the right panel shows the piecewise quadratic optimal
objective function z(u). Each critical region on the left corresponds to a quadratic
‘piece’ of z(u) on the right.

is 2q), and q denotes the dimensionality of u. We assume q = 2 in our experiments.

To study (forward) POPs, it is standard to view the space of feasible parameters u

as being partitioned into polyhedrons called critical regions, each of which is uniquely

defined by a set of optimal active constraints (Ahmadi-Moshkenani et al., 2018;

Oberdieck et al., 2016). It is known that if Q is positive definite and U is convex,

the optimal objective value of TPOP(u), z(u) is continuous and piecewise quadratic,

while if the problem is reduced to a multi-parametric linear program, then the optimal

objective function z(u) is continuous, convex, and piecewise affine (see Oberdieck et al.

(2016) and the references therein). Figure 4 shows an example of one of the instances

we generate using the POP toolbox of Oberdieck et al. (2016) with 21 critical regions

and a two-dimensional u; the critical regions are shown in the left panel while the

corresponding optimal value function z(u) is shown on the right.
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As the objective function z(u) is piecewise affine over the space of external

parameter u, having more critical regions means having more pieces of z(u) and as it

is not known where one piece of function z(u) transitions to another, the performance

of the learning methods can be affected. Therefore, in this section, we conduct

experiments varying the number of critical regions. To be able to control the number

of critical regions in our experiments, we manually pre-process the instances generated

from the toolbox to define problems over smaller regions of the parameter space with

a particular number of critical regions. For instance, from the example in Figure 4,

we can generate a one-region, a three-region and a five-region problems by selecting

the regions indicated by the black rectangle borders. Throughout this process, care

is taken to select intervals where each critical region has close to a “fair share” of

the region; in preliminary experiments, it was noted that the difficulty of learning

over a parameter space interval that covers, say, five regions but is dominated by one

particular region is similar to the case of one critical region (more discussion on the

effect of critical regions on learning performance appears later in this section).

Varying the Training Set Size (Data Efficiency)

We compare the predictive performance of IO-perfect, IO-imperfect, SVR, RF and GP

varying the training size from 1 to 500 on 20 randomly generated POPs of type (9)

with two parameters u1 and u2, with 1 and 3 critical regions. For IO-imperfect we

use the mean of selected intervals of u in the (Hu)Tx term in the objective function

instead of a parametric term.

Figures 5(a) and 5(b) illustrate the predictive (i.e., test set) performance of

these methods (averaged over 20 instances) given data sets from one critical region
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and three critical regions, respectively. As expected, ML performance improves with

increasing training set size in both cases. On the contrary, IO methods are not affected:

IO-perfect has nearly zero error while IO-imperfect incurs around 8% error, regardless

of the training set size. Since IO is able to achieve low prediction error (in terms of

predicting x) with a much smaller training size, we see that IO methods with correctly

specified priors i.e., the correct parametric form of the objective function, can be

more data efficient than ML algorithms for problems where data is generated by an

optimization process.

Because the IO approach we chose solves an optimization model, no matter

how many points are given, IO-perfect is able to recover the parameters that make

the observations optimal while IO-imperfect will maintain the same level of mis-

specification. Insensitivity to the training set size is consistent with Aswani et al.

(2018)’s results, which showed that Keshavarz et al. (2011)’s method is in general not

risk consistent, i.e., it is not guaranteed to asymptotically provide the best possible

predictions of the decisions. However, we emphasize that despite being risk inconsistent,

given the right prior, the Keshavarz et al. (2011) approach performs well, and can be

the method of choice due to its data efficiency.

The test error for ML methods increases for all training set sizes as we move from

one critical region (Figure 5(a)) to three critical regions (Figure 5(b)). Comparing

Figures 5(a) and 5(b), the curves for GP and RF in 5(a) intersect IO-imperfect after

200 points, but in 5(b) they require more points to be comparable to IO-imperfect.

This observation suggests that the number of critical regions in the parameter space

may be a factor that makes these problems more difficult for standard ML approaches,

motivating the next experimental comparison.
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Figure 5: Comparing IO-perfect, IO-imperfect, SVR, RF and GP varying training
sample size and critical regions.

Increasing the Number of Critical Regions

Figure 6 shows the average predictive performance of IO-imperfect and the three ML

methods over 20 randomly generated POPs given a training set of 200 observations.

For each of the 20 problem instances, we choose one interval of u with one critical

region, one with three critical regions and one with five, keeping the chosen range of

both u1 and u2 equal to two, as in Figure 4. We can see that IO-imperfect is not

sensitive to the number of critical regions while for all employed ML methods the

test error increases with the number of critical regions. As mentioned above, every

critical region is a polyhedron of u values over which the optimal objective function

z(u) is quadratic (a quadratic ‘piece’ of the overall piecewise quadratic function) while

the optimizer function x∗(u) i.e., the optimal solution of the POP, is piecewise-affine

(Oberdieck et al., 2016). It is not surprising that some of the ML methods can perform

well with 200 points over one critical region as they only have to learn one quadratic
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Figure 6: Comparing IO-imperfect, SVR, RF and GP as the number of critical regions
increases; training set size = 200, test set size = 200.

function. When the number of critical regions increases, the task for the chosen ML

methods becomes more challenging: they have to learn multiple quadratic functions

without any prior knowledge about when the transition from one region to another will

occur. We do not rule out the possibility of creating new, custom learning algorithms

to overcome this issue but doing so is beyond the scope of this chapter.

Varying the Functional Dependence of the Objective Function on u

Next, we investigate how the relationship between the TPOP objective function and

the feature u affects the performance of ML and IO. We investigate this question in
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Figure 7: Problem (10) critical regions (left) and parametric objective function (right)
generated using the POP Toolbox of Oberdieck et al. (2016).

the context of one randomly generated POP (see Figure 7):

z(u) : minimize
x

1.3040x21 + (1 + u1)x1 + 19.4545x22 + (u2 − u1 + 1)x2

s.t. 0.2294x1 ≤ 2.5237− 0.9733u2

0.1890x2 ≤ 4.2679− 0.8658u1 − 0.4634u2

0.5436x1 − 0.5889x2 ≤ 2.8088− 0.4757u1 − 0.3624u2

0.2210x1 ≤ 3.2535− 0.9753u1.

(10)

We consider three objective functions for problem (10) defined through functions

Ψ1(u) and Ψ2(u), which set the coefficients of x1 and x2:

f = 1.3040x21 + Ψ1(u)x1 + 19.4545x22 + Ψ2(u)x2. (11)
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We start with a linear Ψ(u) followed by changing it to a multi-variate rational function

and subsequently increasing the degree of the polynomials forming the rational function

to create a relationship that could lead to a more challenging learning problem.

As shown in Table 1, the test error of GP, SVR and RF increases as we move

from the ‘simple’ (linear) dependence on u to making the coefficient of x1 and x2

multi-variate rational functions of u. Since ML methods aim to find a mapping from

u to x, a more complex Ψ(u) indeed makes learning more difficult. On the other hand,

IO is not sensitive to the nature of Ψ(u) as this function is just the coefficient of x in

the IO mathematical model.

Investigating the Impact of Correctness of Prior Knowledge

Above, we show that IO-perfect and IO-imperfect are insensitive to problem charac-

teristics which significantly impact the performance of ML (training set size, number

of critical regions and the nature of the dependence on u). However, a difference

between IO-perfect and IO-imperfect was observable. To investigate the impact of the

correctness of objective function prior, we consider five objective function choices for

problem (10) which encode different degrees of correctness (or mis-specification) of a

prior.

In Table 2, given D, we aim to impute c1 and c2. The first objective function

is the exact objective function of problem (10), i.e., the IO-perfect method. The

subsequent functions deviate from the true function in the coefficients of x1 and x2

(but the goal is still to impute c1 and c2 from the data generated by the true objective

function of problem (10)). Besides parametric objective functions (i.e., objective

functions defined over u), we also consider two non-parametric choices. In the first

41



Table 1: Comparing the predictive performance of ML and IO varying the form of
the true objective function, with û1 ∼ U(4, 6) and û2 ∼ U(−6,−4). Recall that K is
training set size. The test set size is set to be equal to the training set size.

True Objective Function Method MRE %
(K = 100)

MRE %
(K = 200)

1.3040x21 + (1 + u1)x1
+19.4545x22 + (u2 − u1 + 1)x2

IO-perfect ∼ 0 ∼ 0

IO-imperfect 3.85 3.79

GP 9.75 6.03

RF 6.75 5.74

SVR 19.03 18.04

1.3040x21 + 1+u1
1−u1x1

+19.4545x22 + (u2−u1+1)3

(u2−1)2 x2

IO-perfect ∼ 0 ∼ 0

IO-imperfect 7.80 7.11

GP 10.85 8.59

RF 9.77 7.07

SVR 24.94 23.30

1.3040x21 + u1
(1−2u1)4x1

+19.4545x22 + (u2−u1)3
(3u2−5)5x2

IO-perfect ∼ 0 ∼ 0

IO-imperfect 7.78 7.62

GP 15.28 10.29

RF 22.24 17.75

SVR 38.76 34.80

non-parametric objective, we use the mean of 1 + û1 and û2 − û1 + 1 from the given

training set û1 and û2; in the second non-parametric function, we completely eliminate

the linear terms.

We see that even slight differences in the chosen objective function structure

increase IO test error, although the differences are smaller in the category of parametric
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Table 2: Different parametrizations of the objective function of problem (10) and the
corresponding test error, given û1 ∼ U(4, 6) and û2 ∼ U(−6,−4).

Objective Function MRE %
(K = 100)

Parametric
c1x

2
1 + (1 + u1)x1 + c2x2 + (u2 − u1 + 1)x2 ∼ 0
c1x

2
1 + x1 + c2x2 + (u2 − u1)x2 0.38
c1x

2
1 + x1 + c2x2 − u1x2 3.56

Non-Parametric c1x
2
1 + 6x1 + c2x2 − 9x2 3.88

c1x
2
1 + c2x2 52.28

functions as compared to the non-parametric functions because the parametric category

uses the values of the external parameter while the non-parametric category uses

the mean of the interval of the external parameter which is not always an accurate

estimate. The non-parametric mean-based function also does not lead to a significant

increase, but this could change if a larger range of û is considered. Removing any

encoding of the parametric parts of the objective function drastically increases the

prediction error from 3.88% to 52.28%. These observations confirm the sensitivity of

IO to the correctness of objective function prior.

3.5.4 Insights

Our experiments with randomly-generated POPs illustrate the importance of four

characteristics as determinants of the difficulty of objective function learning: (i) size

of the training set, (ii) nature of the dependence of the optimization problem on the

external parameters, (iii) level of confidence with regards to the correctness of the

optimization prior, (iv) number of critical regions in the parameter space of a POP.

Increasing the size of the training set favours ML methods but not necessarily

the IO methods. The contrast in performance between the problem in experiment

43



Table 3: Problem Characteristics and Suggested Methods.

Low/Small High/Large
Size of Training Set IO ML

Dependence on External Parameter ML IO
Confidence in Correctness of Prior ML IO

Number of Critical Regions ML IO

1 and the randomly-generated POPs suggests that ML methods are more likely to

be successful on problems with no or few (parametric) constraints. Increasing the

complexity of the relationship between u and the objective function also makes the

problem more difficult for ML. On the other hand, the performance of IO is strongly

dependent on the correctness of the objective function prior.

Perhaps the most important characteristic determining the difficulty of the

objective function learning tasks is the number of critical regions. Over 20 randomly-

generated POPs, we found a substantial increase in the relative test error for all

three ML methods as the number of critical regions increased. In fact, we conjecture

that the underlying reason why adding parametric constraints and/or increasing the

complexity of the dependence on u made learning more difficult is because doing so

also increased the number of critical regions.

Given these observations, a summary of recommendations of when to use ML

or IO for learning the coefficients of a convex POP is needed. We summarize our

recommendations in Table 3. In each combination of a criterion and its value (low/high

or small/large), we state whether we expect the classic ML methods or an IO method

to be a better choice (or at least a better starting point) for solving the learning

problem, while holding other criteria fixed. For example, when training set size is

small, we expect IO to be a better option due to its data efficiency.
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The relative performance of the methods considered may not be the same for

other types of learning problems where data was generated by an optimization problem

(e.g., learning constraints, learning in discrete optimization problems). However, we

conjecture that the analysis of the underlying structure of the value function or

the optimizer function in terms of the external parameters u (i.e., analysis of the

problem in terms the critical regions) will be important in both gaining additional

understanding of the challenges of learning from optimization data and developing

more sophisticated learning methods for such problems.

3.6 Conclusion

In this chapter, we view inverse optimization as a problem of learning from decisions

that are made through an unknown optimization process. We specifically focus on the

problem of learning a convex objective function of a parametric optimization problem.

We experimentally compare the predictive performance of an inverse optimization

method with perfect and imperfect priors with three well-known machine learning

algorithms: support vector regression, random forest and Gaussian processes. While we

show that some inverse optimization problems can be tackled through classic machine

learning approaches, we highlight the need for sophisticated inverse optimization

models for problems where at least one of the following characteristics holds: (i) the

size of the training set is small, (ii) both the constraints and the objective function of

the problem in question are dependent on an external parameter (feature), particularly

when that dependence is non-linear, (iii) we have high confidence that our knowledge of

the parametric nature of the constraints and objective is correct, and (iv) the number

of critical regions of the POP is large with no one region dominating. We believe that
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these observations provide practitioners with guidance on when to consider employing

inverse optimization instead of, or in addition to, classical machine learning when

learning the unknown parameters of a parametric optimization problem objective

function.
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Chapter 4

Inverse Attribute-based Optimization

with an Application in Assortment

Optimization

Many applications of inverse optimization arise in settings where the goal is to predict

the future actions of an optimizing agent (e.g., an optimizing customer’s future

purchases). The majority of papers in this area implicitly assume an alternative-based

modelling approach: the forward model finds an optimal set of actions (decisions) from

among a given set of alternatives, while the inverse model imputes objective function

coefficients corresponding to these alternatives. Since the imputed weights correspond

only to alternatives existing in the training set, alternative-based modelling is limited

to applications where the set of options does not change when a prediction is needed.

In this chapter, we apply an attribute-based perspective, which allows IO to impute

the weights of attributes that lead to an optimal decision instead of imputing the

weight of the decision itself. This perspective expands the range of IO applicability; we
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demonstrate that it facilitates the application of IO in assortment optimization, where

changing product selections is a defining feature and accurate predictions of demand

are important. We compare IAO with rank-based and machine learning methods. We

show that since inverse optimization encodes the utility optimizing behaviour of the

consumer into the preference learning process, it results in lower assortment regret for

the store and a lower utility gap for the consumers.

4.1 Introduction

Multi-attribute decision-making problems arise in situations where decisions/alter-

natives can be described through attributes (Yoon and Hwang, 1995; Yeh, 2002).

A practical challenge with many existing MADM methods is the quantification of

attribute importance to represent decision maker preferences. It is known that asking

the decision maker to make exemplary decisions could be a better strategy than asking

them to specify preferences or weights (Greco et al., 2002). While methodologies

such as rough sets theory exist for extracting information from exemplary decisions,

MADM methods usually do not distinguish the setting where the decision maker is an

optimizer, which warrants special treatment.

Inverse optimization is a method that imputes missing optimization model param-

eters from data that represents optimal or near-optimal decisions of the underlying

unknown optimization problem. IO has been successfully applied in many areas,

including finance (Bertsimas et al., 2015), health care (Chan et al., 2019), electricity

demand forecasting (Saez-Gallego and Morales, 2017) and the household activity

pattern problem (Chow and Recker, 2012). The majority of the IO literature looks

at imputing missing objective function parameters. In single-objective optimization
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problems, these parameters are coefficients associated with particular decision vari-

ables, frequently interpreted to represent the importance, value or cost of the decisions

or alternatives represented by those decision variables. In inverse multi-objective

optimization (Ajayi et al., 2020; Chan and Lee, 2018; Dong and Zeng, 2020) the goal

is typically to infer the weights of different sub-objectives from observed decisions.

Motivated by an application in assortment optimization, this chapter is based on

the observation that current IO modelling approaches are limited to applications where

the set of decisions (or alternatives) stays the same; the weights imputed from past

data represent decision maker preferences among a previous set of alternatives – if this

set changes, the imputed weights become unusable. To remedy this issue, we propose

to apply IO not to alternative-based models but, borrowing from MADM, to their

attribute-based reformulations. We refer to this application of IO to attribute-based

forward problems as inverse attribute-based optimization (IAO). Instead of imputing

the weights of decisions, IAO imputes the weights of attributes of those decisions; thus,

when the set of decisions changes, weights imputed from past data can be utilized to

parameterize an optimization problem given a new set of alternatives, as long as both

past and current alternatives can be expressed in terms of the same attributes.

Combining IO with an attribute-based perspective expands the applicability

of IO in practice. One application to which we could not previously apply IO

is assortment optimization. Assortment optimization deals with finding the best

assortment (usually for a retail environment) given budget constraints (costs of buying

products, transportation, inventory) and space constraints (Farias et al., 2017). To

make assortment decisions, the firm must accurately predict future consumer demand

(e.g., for the next season), which is a challenging task due to the variety of the offered
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products and the relatively small number of purchases by individual consumers. In

this chapter, we use IAO precisely for this prediction task, under the assumption that

consumers are optimizers. Since classical alternative-based modelling does not allow for

predicting customer choices given a new set of items, we compare IAO to other methods

that are applicable in attribute-based settings but are not inverse optimization models.

In this way, we capture the value of specifically inverse attribute-based optimization

as opposed to other attribute-based approaches.

Importantly, potential applications outside of customer behaviour are numerous.

In transportation, prior IO work imputes costs of specific arcs in a given network;

given these imputed costs, it is possible to predict the behaviour of a driver under

new conditions (e.g., time of day or weather) on the same graph because the set of

alternatives (arc choices) remains the same (Bertsimas et al., 2015; Bärmann et al.,

2017; Tan et al., 2020).1 However, the learned arc costs are not usable on a new

graph, where the set of arc choices is different. The attribute-based perspective we

propose would overcome this issue and is important, for instance, for autonomous

vehicles (Caballero et al., 2021), which requires models that generalize to new graphs.

Similarly, in diet planning, which has been of interest in IO (Ghobadi et al., 2018;

Shahmoradi and Lee, 2020; Ghobadi and Mahmoudzadeh, 2020a), it is important to

be able to recommend to a client new meals or recipes that are consistent with their

diet restrictions and food preferences; yet the recommendations based on current,

alternative-based, methods for learning the objective function are limited to the same

food items. Expressing each food item in terms of attributes such as their vitamin,
1We note that one particular example of a cost function used by Tan et al. (2020) in their

minimum-cost multi-commodity flow experiment is consistent with the attribute-based perspective,
since there is a weight assigned to an arc’s length. However, the importance of this modelling choice
and its impact on generalizing to new graphs is not discussed.
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mineral or calorie content would greatly enhance the applicability of inversely-optimized

plans. In addition, while in this chapter we focus on the “batch” setting, where we

are learning parameters from a given set of past observations, we see room for future

study in combining our perspective with the online setting, where observations arrive

over time. The online setting has been receiving an increasing amount of attention

in the IO literature (Bärmann et al., 2017; Dong et al., 2018; Bärmann et al., 2020)

but has focused on problems where only the set of constraints changes over time; our

attribute-based perspective facilitates future application of IO to online problems

where the set of alternatives may change as well.

Contributions

The main contributions of this chapter are as follows. We propose a new perspective

on inverse optimization based on attributes. Inverse attribute-based optimization

aims to impute the weights of attributes that lead to an optimal decision instead of

imputing the weight of the decision itself. This perspective expands the range of IO

applicability; we demonstrate that it facilitates the application of IO in assortment

optimization, where changing product selections is a defining feature and accurate

predictions of demand are important. We compare the performance of the proposed

inverse attribute-based optimization method with a range of methods, including

rank-based weight assigning methods and three supervised learning algorithms. We

show that since inverse optimization encodes the utility optimizing behaviour of the

consumer into the preference learning process, it results in lower assortment regret for

the store as well as higher consumer satisfaction.
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This chapter is organized as follows. Section 4.2 reviews the relevant literature.

Section 4.3 explains the forward and inverse attribute-based approach presented in this

chapter. Section 4.4 illustrates the application of the inverse attribute-based approach

in the context of customer behaviour and the subsequent value of the predictions for

assortment optimization. Section 4.5 presents the experimental results and Section

4.6 concludes the chapter.

4.2 Literature Review

Below, we survey work from several areas of research related to our approach. First,

we highlight the most closely-related work in inverse optimization, which has been

dominated by alternative-based modelling. Next, we contrast our work with multi-

objective and inverse multi-objective optimization. Finally, we mention related work

in multi-criteria decision-making.

We do not provide a literature review for assortment optimization; for further

reading on assortment optimization, we refer the reader to the papers of Kök and

Fisher (2007) and Kök et al. (2008).

4.2.1 Inverse Optimization

Inverse optimization finds unknown parameters of an optimization problem such that

the observed solutions of a forward problem become optimal under the imputed con-

figuration. Numerous inverse optimization methods have been developed considering

various assumptions mostly about the forward optimization problem type and the

characteristics of the observations (Ahuja and Orlin, 2001; Iyengar and Kang, 2005;

Schaefer, 2009; Wang, 2009; Chan et al., 2019; Babier et al., 2021). There has recently
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been an increasing interest in parametric problems (Keshavarz et al., 2011; Bertsimas

et al., 2012; Aswani et al., 2018; Esfahani et al., 2018; Tan et al., 2019, 2020).

Esfahani et al. (2018), Aswani et al. (2018) and Keshavarz et al. (2011) consider

the problem of imputing a decision maker utility function, which is the problem we

use for illustrative purposes. Esfahani et al. (2018) propose an inverse optimization

method to learn the preferences of an agent who solves a parametric optimization

problem depending on an exogenous signal. They consider that the observer has

imperfect information and study three sources of error in data which include modelling

error, measurement error and bounded rationality. They formalize this problem as

a distributionally robust optimization program minimizing the worst case risk that

the predicted decision differs from the agent’s actual response. Aswani et al. (2018)

study a similar problem. They propose an inverse optimization method for estimating

an agent utility function capturing the trade-off between maintaining a comfortable

indoor temperature versus the air conditioning energy costs. Keshavarz et al. (2011)

propose a general framework of inverse optimization for imputing convex objective

functions based on KKT optimality conditions. They study the problem of imputing a

consumer’s utility function while the consumer solves a convex parametric optimization

problem with price being the hyper-parameter (i.e., the parameter that changes the

optimization problem) and observations being consumer’s demand level for different

price levels. To the best of our knowledge, all studies of decision maker behaviour in

the inverse optimization literature focus on imputing the preferences of decisions; we

are not aware of any study in inverse optimization that considers attributes of the

optimal decisions.

Recent studies have also proposed to view IO from a machine learning (ML)
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perspective (Tan et al., 2020). Chapter 3 showed that learning decision-making model

parameters can be viewed from both an inverse optimization and a supervised learning

perspective. They showed that when a more complex optimization process generates

the data, inverse optimization is more data-efficient than supervised learning methods.

However, they also showed that it is possible for classical machine learning methods

to be applied to inverse optimization models such as utility function estimation.

Since the machine learning concept of a feature can encapsulate the notion of a

decisional attribute, classical supervised learning methods are applicable to the type of

problems we study in this chapter. Thus, in the current chapter, similarly to Chapter

3 we compare the inverse attribute-based approach with Gaussian process regression,

random forest and a decision tree regression (Breiman, 1996, 2001; Rasmussen, 2004).

4.2.2 Multi-Objective Optimization

It is important to contrast our attribute-based perspective with the perspective taken

by multi-objective (or multi-criteria) optimization (Ehrgott and Gandibleux, 2000;

Ehrgott, 2005). The main difference is in fact in the forward problem: in a multi-

objective formulation, each sub-objective represents the value of a criterion (which

could indeed have the same interpretation as an attribute) calculated over a subset of

the decision variables, while our definition of a multi-attribute problem is a single-

objective formulation where the objective coefficients of each decision variable are a

function of various attributes; in short, in a multi-objective formulation, we aggregate

the total value of an attribute over all available options while in our attribute-based

formulation, we aggregate the value over all attributes for each option. These two

formulations may be equivalent under some assumptions but will be different in
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general.

Consequently, the goal of inverse multi-objective optimization has been on imput-

ing the weights of different sub-objectives (i.e., the relative importance of an attribute

calculated over all options), while our aim is to impute the weight of an attribute with

respect to a particular option.

Inverse multi-objective optimization has focused on imputing the weights of

sub-objectives under different assumptions on Pareto optimality or feasibility of

observations and availability of a prior weight vector (Roland et al., 2013; Chan and

Lee, 2018; Naghavi et al., 2019; Ajayi et al., 2020; Dong and Zeng, 2020; Gebken

and Peitz, 2020). If an attribute-based forward problem can be reformulated as a

multi-objective problem, then, under the appropriate assumptions, the methods of

inverse multi-objective optimization can be applied to solving inverse attribute-based

optimization problems as well.

4.2.3 Multi-Criteria Decision-Making

The problem of evaluating the weights of decision attributes has been intensively

studied in multi-criteria decision-making (Greco et al., 2016). Eisenführ et al. (2009)

provides an overview of weight elicitation procedures for additive models. To select

the best multi-attribute alternative and impute the weight of attributes based on past

decisions, a variety of approaches based on no information or partial information about

the rank of the attributes are found in the literature. Some of the most widely-used

methods include 1) assigning equal weights (Dawes and Corrigan, 1974), 2) ranking

attributes based on importance then selecting one of the rank weight formulas such

as rank sum, rank reciprocal and rank exponent (Stillwell et al., 1981), and 3) using
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partial information as constraints in an optimization model with a particular objective

function to find the set of weights (Barron, 1988).

The use of attributes has been widely studied in the areas of multi attribute

decision making and multi-attribute utility theory (MUAT) (Wallenius et al., 2008;

Dyer, 2005). However, the perspective of the study in this chapter differs from those

studies in that we use attributes for the purpose of solving inverse optimization

problems. Although this study is inspired by the concept of attributes in these areas,

we did not compare our proposed inverse optimization method with the state of the

art in MADM and MUAT (Siskos et al., 2016).

4.3 Attribute-Based Forward and Inverse Optimiza-

tion

We consider a multi-attribute optimization problem where the decision maker (a user,

consumer, system or any process capable of making decisions) is an optimizer, i.e., its

decisions are results of solving an optimization problem. Below, we formulate both the

forward and inverse optimization problems through an attribute-based perspective.

4.3.1 Attribute-Based Forward Optimization

Assume that we are studying an optimizing decision maker (DM) who is consistent

in their preferences when making decisions over alternatives that are characterized

by multiple attributes. The index set of alternatives/decisions I(t) and the index set

of constraintsM(t) change as a function of external parameter t ∈ T where T is a

countable set (although this parameter can be a vector, we will assume, for simplicity,
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a scalar t). We define a family of forward attribute-based optimization problems of

selecting the best set of alternatives from the set I(t) as:

max
x

∑
i∈I(t)

ci(νi,w)Th(xi)

subject to gm(x) ≤ 0 ∀m ∈M(t),

(12)

where x = [x1 . . . x|I(t)|] is a vector of decision variables xi corresponding to

alternative i. Alternative i is described in terms of |J | attributes via the vector of

attributes νi = [νi1 νi2 . . . νi|J |], where νij represents the “quantity” of attribute j

in alternative i. In many applications, νij will be 0 or 1, i.e., alternative i will either

possess or not possess attribute j. The vector-valued function ci(νi,w) calculates

the total attribute value corresponding to each option i based on the vector νi and

the weights w. The vector-valued function h(xi) consists of known basis functions.

This forward formulation can be seen as an extension of the representation used by

Keshavarz et al. (2011) where the forward objective function was assumed to be a

weighted combination of basis functions; the main difference is that in our case, each

basis function is a function of the attributes νi. For the purposes of this chapter, all

functions in (12) are assumed convex and differentiable, although the idea of weights

expressed in terms of attributes does not depend on this assumption. We also note

that special cases of formulation (12) can be equivalent to a weighted sum of multiple

objectives, in which case inverse multi-objective methods would be applicable.

Effectively, the attribute-based formulation (12) allows the set of alternatives

to change from one t to another, while the objective function, expressed in terms of

ν and w, stays the same (assuming the decisions are dependent on the same set of

attributes in the same way). This characteristic of the formulation allows us to model
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situations where the set of options changes, e.g., over time.

4.3.2 Inverse Attribute-Based Optimization

The inverse optimization problem is to learn unknown parameters w given observations

of x, νi and I(t); we will denote observations of x by a hat, e.g., x̂. The parametric

structure of problem (12) allows us to use the imputed w for predicting future decisions

given a new set of alternatives I(tnew). We adapt the IO model of Keshavarz et al.

(2011) to the attribute-based setting as shown in Equation (13). Instead of imputing

the “weight” corresponding to each basis function (as was done by Keshavarz et al.

(2011)), we are imputing the weight of each attribute.

min
w,λ

∑
k∈K

φ(rstatk, rcomplsk)

s.t. rstat
k
i =

∂ci(νi,w)′h(xi)

∂xi

∣∣∣
x=x̂k

+

|M(t)|∑
m=1

λkm
∂gm(x)

∂xi

∣∣∣
x=x̂k

∀i ∈ I(t), k ∈ K

rcompls
k

m = −λkm(gm(x̂k)) ∀m ∈M(t), k ∈ K

w ∈W , λ ≥ 0,
(13)

where x̂k is an observed decision vector, k ∈ K, and K is the index set of observations;

φ is a non-negative convex penalty function, and λ is the dual variable associated with

KKT complementary slackness and stationarity residuals which are rcompls and rstat,

respectively. This model will compute w such that past decisions become minimally

sub-optimal solutions to model (12). A minimally sub-optimal decision in terms of the

KKT optimality conditions is a decision for which the stationary and complementary

slackness residuals are minimized (zero if exactly optimal). Due to the attribute-based

nature of the model, given a new I(t), we are then able to predict DM’s decisions by
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solving (12) with the imputed w and I(tnew).

In multi-attribute decision-making problems, we may have prior information

about the unknown weights of the attributes (e.g., pairwise comparison, ranking

information, interval numbers, non-negativity, etc.). If we have such information, this

information can be represented via the set W in the last line of problem (13); note

that such a representation of assumptions on prior knowledge is also used by Chan

et al. (2014b) and Keshavarz et al. (2011).

Classical IO models, such as the original model of Keshavarz et al. (2011), are

used when the set of decisions (e.g., product choices) is static. In the next section,

we will demonstrate that an attribute-based perspective facilitates the application of

inverse optimization in assortment optimization, where product offerings, and hence

the set of decisions a customer can make, change over time. In general, any existing

inverse optimization method can be applied to an attribute-based forward formulation;

we chose to demonstrate the value of the attribute-based perspective via the approach

of Keshavarz et al. (2011) as it is easily applicable to parametric convex optimization

problems.

4.4 Application in Assortment Optimization

Given past decisions of a consumer whom we assume to make near-optimal decisions

(maximizing their utility function), we are interested in predicting their future pur-

chases. Having this information enables firms and stores to plan for a better allocation

of offerings (e.g., shelf items, advertisements, promotions) and deliver personalized

offers and experiences in brick-and-mortar and online businesses. We specifically aim

to predict decisions of users who aim to (implicitly) solve an optimization problem for
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Figure 8: Using inverse attribute-based optimization for applications in consumer
behaviour given point of sale (POS) transaction data.

their decisions but may suffer from bounded rationality.

Figure 8 illustrates the data-driven perspective of this study. We assume that

consumers make decisions based on a predefined set of attributes related to their

alternatives. While consumers may know the attributes they are seeking, they may

not be able to quantify the importance of one attribute over another. Given a

consumer’s past decisions, inverse attribute-based optimization imputes the weights,

i.e., the importance of attributes. We then use the imputed weights in the forward

optimization model representing the consumer’s decision-making process to predict

their future decisions. We can then use this information in various downstream uses
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Figure 9: Using inverse attribute-based optimization for applications in online and
in-app advertising for apparel industry.

such as recommending products to customers or planning better assortments.

4.4.1 An Illustrative Example: Online and In-App Advertis-

ing for Apparel Industry

Considering an apparel store, Figure 9 demonstrates how inverse attribute-based

optimization can be used to offer consumers the best possible items matched to

their taste. The store has access to the purchase history of each consumer through
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transaction data which represents customer decisions from each time they have shopped

at the store. We assume that the set of items changes each time the customers shop,

but the set of attributes stays the same. In this example, we define a relevant set of

attributes in clothing shopping (e.g., size, colour, fabric pattern); inverse attribute-

based optimization can then be used to impute the importance of these attributes.

Having the importance of the attributes and an estimation of the consumer’s budget

from previous purchases enables us to solve a model that is an approximation of

the consumer’s decision-making problem. An attribute-based approach helps us

understand how attributes contribute to the decisions and consequently to solve the

consumer decision-making problem for a new set of items.

After predicting consumer preferences among the items in inventory, stores can

offer these options to consumers. However, mobile applications and web banner

displays have limited space in which only a few items could fit. Therefore, an

assortment optimization problem needs to be solved to select the best items to put in

the advertisement to maximize store profit.

4.4.2 Customer Forward Problem

We assume that an optimizing consumer solves an internal optimization problem

maximizing their utility function while minimizing their total spending. The decisions

are usually constrained by budget and non-negativity of the quantity of items bought

by the consumer. In particular, we study an extension of the utility optimizing problem
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considered by Keshavarz et al. (2011) in problem (8):

trueFOP(t,w) : minimize
x

∑
i∈I(t)

[pixi −
∑
j∈J

wjνij(qx
2
i + 2rxi)]

subject to
∑
i∈I(t)

pixi ≤ B

x ≥ 0,

(14)

where xi is the share of item i acquired by the consumer, pi is the price of each unit of

item i, and B is the consumer’s budget.
∑

j∈J wjνij(qx
2
i + 2rxi) is an attribute-based

quadratic utility function which captures the attribute-based utility of purchasing xi

units of product i, and where q and r are scaling parameters which are set to -0.01 and

1 in our experiments. Problem (14) is an attribute-based forward optimization model

which is a special case of formulation (12) with ci(νi,w) = [(pi −
∑

j∈J wjνij2r) −∑
j∈J wjνijq] ∀i and h(xi) = [xi x2i ] ∀i.

Formulation (14) represents the problem that would be solved by a truly rational

and optimizing decision maker, i.e., a utility maximizer. In practice, however, cus-

tomers may be affected by bounded rationality (Aswani et al., 2018; Esfahani et al.,

2018). Since we did not have access to real consumer data, below we present a variant

of (14) that we use for the purpose of generating synthetic data that is realistic, i.e.,

that is representing an optimizing consumer affected by bounded rationality. This

formulation is based on the bounded rationality loss definition from the paper by
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Esfahani et al. (2018):

FOP(t,w) : min
x

max

{∑
i∈I(t)

(pixi −
∑
j∈J

wjνij(qx
2
i + 2rxi))− z? − σ, 0

}

subject to
∑
i∈I(t)

pixi ≤ B

x ≥ 0,

(15)

where σ is the degree of bounded rationality (which we assume to be fixed for each

consumer) and z? is the optimal value of problem (14). To be able to solve this

problem more efficiently and generate suboptimal decisions we linearize model (15)

using standard techniques and solve the linearized version.

We also note that in practice, we would not know the true objective function (or

utility function) but rather would postulate a particular model, fit it and evaluate its

goodness-of-fit; thus, in reality, the fitting an inverse optimization model should be

embedded in a model selection framework (Chan et al., 2019). While in particular

cases in practice, information about the true objective function might be available,

in most of the problem such information is not available. The inverse optimization

method proposed in this chapter assumes that only an approximation of the true

objective function is available for inverse modeling.

4.4.3 Assortment Optimization

Given predictions of future consumer demand obtained by solving problem (14), we are

able to solve an assortment optimization problem to offer products that are specifically

tailored to consumer preferences. Doing so benefits both the consumer and the store,

helping the consumer obtain a set of products matched to their taste and helping the
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store improve its sales and profit by stocking items that eventually will be bought.

Current practice for assortment optimization consists of the following steps: (a)

selecting the items the firm should carry for the next season; (b) predicting consumer

demand for the next season; and (c) deciding the corresponding order quantities

regarding the firm’s constraints (e.g., inventory, dollar budget). Addressing these

steps varies from firm to firm. In practice, firms usually make decisions for (a) and

(b) without a model and mostly based on past observations and expert judgment

and intuition-based analysis (Farias et al., 2017). However, recently there has been

an interest in developing predictive models. Finding the weights of attributes rather

than alternatives enables inverse attribute-based optimization to provide necessary

information to respond to (a) and (b) jointly by solving consumer decision-making

model with imputed parameters coming from inverse optimization. After that, the

predicted demand can be used to solve an assortment optimization problem to respond

to (c).

Similar to Farias et al. (2017), we use the following model as the assortment

optimization model:

AO(d, a) : max
y

∑
i∈I(t)

eiyi

subject to
∑
i∈I(t)

biyi ≤ Cap [Budget Constraint]

yi ≤ di ∀i ∈ I(t) [Demand Constraint]

yi ≤ ai ∀i ∈ I(t) [Inventory Constraint]

y ≥ 0 & integer,

(16)

where yi is the recommended number of item i that should be placed in the shelves, di
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is the predicted consumer demand for item i from solving (14) with weights imputed

by solving (13), ai is the available inventory of item i, ei is the revenue from selling

each item i, bi be the space item i occupies in the store and Cap the capacity of the

store (could also be monetary capacity like budget).

4.5 Experimental Results

In this section, we present a set of experimental results that illustrates that attribute-

based modelling combined with inverse optimization enables the prediction of op-

timizing customer behaviour in the context of assortment optimization, which was

not possible with alternative-based modelling. Thus, these results can be seen as

a proof-of-concept for attribute-based modelling in IO. Since direct comparison to

alternative-based approaches is not possible, we compare our method to other methods

that are applicable in attribute-based settings but are not IO models/methods. In

this way, we capture the value of specifically inverse attribute-based optimization as

opposed to other attribute-based approaches.

First, we evaluate the ability of IAO to predict future demand (including of

items not present in the training set). Second, since the true value in this application

is captured through the subsequent usage of the demand forecast, we evaluate the

monetary value of the store’s assortment regret as well as the utility gained by the

consumer. We compare our proposed approach to three machine learning methods

(Gaussian process regression, random forest and classification and regression tree

(CART)) and four weight assignment methods from Stillwell et al. (1981) (equal

weights, rank sum, rank reciprocal and rank exponent). This comparison allows us

to capture the value of using specifically IO to predict the behaviour of optimizing
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agents when the set of alternatives is subject to change.

4.5.1 Comparison Methods

In this section we provide details of the weight assignment methods and the chosen

machine learning methods.

Rank based weight assignment methods

Given J attributes, let’s assume that the decision maker identified the weights of

attributes as w1 ≥ w2 ≥ ... ≥ wJ and we have
∑J

j=1wj = 1 and wj ≥ 0. Stillwell et al.

(1981) proposed two weight assignment methods, rank sum (RS) and rank reciprocal

(RR). We chose these methods because when we are given with observations from

near optimal decisions of users, we do not have prior knowledge about the distribution

of the weights of the attributes. Therefore, we picked three methods that represent

three different weight distribution. We note that when the prior knowledge about

the distribution of the weights is available, the weight assignment methods should

be based on the provided distribution. The rank based methods assign weights to

the attributes based on the importance rank of the attributes. The importance rank

of attributes, θj, is obtained by multiplying the user’s matrix of decisions (i.e., the

quantity of each item bought by the customer) by the items matrix (i.e., the matrix

of items attribute values). The attribute j with the highest rank is considered to have

θj = 1, the attribute j with the second highest rank is assigned θj = 2, etc. The rank

sum approach assigns weights as follows:

wRSj =
J − θj + 1∑J

j=1(J − θj + 1)
. (17)
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In RR, instead of considering the actual rank of the attributes, the inverted rank

is formulated into the ranking method as:

wRRj =

1
θj∑J
i=1

1
θi

. (18)

Another weight assigning method proposed by Stillwell et al. (1981) is rank

exponent (REx) which is a generalization of the RS method as:

wRExj =
(J − θj + 1)z∑J
j=1(J − θj + 1)z

, (19)

where parameter 0 ≤ z ≤ 1 reduces to equal weight when z = 0 and RS weights when

z = 1. In our experiments, we consider z = 0.3.

Finally, we also use rank equal (REq) weights due to this method’s simplicity,

with weights defined as:

wREqj =
1

J
. (20)

Machine learning methods

Random Forest:

Bootstrap aggregation or bagging is a method in machine learning that aggregates

multiple learning models in order to reduce the prediction variance (Breiman, 1996).

Given inputs U = {p1,p2, ...,pK} and targets X = {x1,x2, ...,xK}, bootstrap repeat-

edly selects a random subset of training data with replacement and fits the same

learning model with the bootstrap-sampled data. In regression problems, it averages

the results of the prediction. Random forests (Breiman, 2001) is a modified version

of bootstrap that consists of multiple de-correlated regression trees. In regression
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problems random forest averages the prediction of all trees in the forest for the final

prediction. The prediction function is f̂ = 1
B

∑B
b=1 fb(p

new), where B is the total

number of trees in the forest and fb is a regression tree on the bth bootstrap sample.

Gaussian process regression:

Given inputs U = {p1,p2, ...,pK} and targets X = {x1,x2, ...,xK}, Gaussian Process

Regression aims to learn a distribution of function f(pk) + εk = xk as p(f) such that

f ∼ GP(µ, σ) and εk ∼ GP(0, σ′). Gaussian process regression defines a covariance

of a prior distribution on the target function and uses the training data to define a

likelihood function. It defines a posterior distribution over the target and uses its

mean for the prediction (Rasmussen, 2004).

Decision tree regression:

As one of the most used algorithms in machine learning introduced by Breiman (1996),

a decision tree can be used both for classification and regression problems. A decision

tree builds a tree like prediction model that splits the input data through multiple

rounds according to a certain cutting values in the data features. This creates multiple

subsets with the last subset being called leaf nodes. To predict the outcome in each

leaf node, the average outcome of the training data in this node is used.

4.5.2 Experimental Setup

We use the scikit-learn (Pedregosa et al., 2011) implementation of random forest,

decision tree regression and Gaussian process regression. All optimization models are

solved using Concert Technology of IBM ILOG CPLEX v.12.7.0. All experiments
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were run on an HP server with 20 Intel(R)Xeon(R) CPU E5-2687W v3 @ 3.10GHz

processors and 512 GB RAM under Linux environment.

Following machine learning practices, we consider two sets of data: a training

set and a test set. We use leave-one-out cross-validation on the training set for the

machine learning methods. To do so, we pick only one point as our validation set from

the whole data. We then build a model on all the remaining data and evaluate the

single held out point error. A validation error estimate is obtained by repeating this

procedure for each of the training points available and averaging the results. Doing so

with several hyperparameter settings enables us to choose the hyperparameter setting

with the lowest average cross-validation error. The experimental results presented

below show the error on the test set for the best hyper-parameter setting found during

the leave-one-out cross-validation process.

In this study we have used synthetic data to be able to easily assess the validity

of the proposed approach and to be able to control the degree of optimality in the

data. To do so, all the parameters of the problem (14) are drawn from uniform

distributions. Algorithm (2) explains the training data generation process where p̂k

and x̂k are the kth instances of prices and the corresponding decisions in the training

data set. We generate random values for the parameters of the problem (14) from

uniform distribution to get a global optimum decision and use this solution in problem

(15) where σ = z? × S where S ∼ Uniform(0.1, 0.2). In fact, we consider 10%− 20%

deviation for problem (15) solution from the global optimum value z? due to the

customer’s bounded rationality. The quadratic concave utility function used for solving

problems (14) and (15) is U(x) = −0.01x2 + 2x (see Section 4.4.2) which satisfies

the concavity and non-decreasing characteristics of a classic utility function. As we
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Algorithm 2 Simulating optimal observations
1: generate ν ∼ Uniform[2, 10] and wreal ∼ Uniform[0, 1].
2: B ← 350 . Initialization
3: for k ← 1 to K do
4: generate p̂k ∼ Uniform[5, 25]

5: z? ← trueFOP (wreal,ν, p̂k, B) . Training Instances Generation
6: solve FOP (wreal, z

?, B) and get x̂k

7: k ← k + 1

8: end for
9: D ← {(x̂1, p̂1), (x̂2, p̂2), ..., (x̂K , p̂K)}

have assumed that the data represents an agent’s rationally bounded decisions, we

use problem (14) optimum solutions and solve problem (15) to mimic the behaviour

of a customer affected by bounded rationality.

The same process is used with new value for the parameters to generate a test

set for testing the performance of the proposed inverse attribute-based optimization.

We define G = [x̃1, x̃2, ..., x̃N ] and O = [p̃1, p̃2, ..., p̃N ], the optimal decisions and the

corresponding prices, respectively, in the test data set where N is the size of the test

set, which is 200 in our experiments.

Algorithm (3) explains the weight elicitation, demand prediction and assortment

Algorithm 3 Weight elicitation via IAO and weight assignments methods and as-
sortment optimization

w← w_elicitation_method(D) . Imputing Unknown Weights
2: for m← 1 to M do

solve trueFOP (w,νnew, p̃m) and get xmpred . Prediction
4: m← m+ 1

end for
6: d← [x1

pred,x
2
pred, ...,x

M
pred]

y← assort(d) . Assortment Optimization
8: regret← R(y,G)
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Algorithm 4 Weight elicitation via machine learning methods and assortment opti-
mization
1: ML_method(D).f it . ML training session
2: d← ML_method(O).predict . ML predicting session
3: y← assort(d) . Assortment Optimization
4: regret← R(y,G)

optimization process using inverse attribute-based optimization and weight assigning

method. w_elicitation_method represents inverse attribute-based optimization, rank

sum, rank reciprocal, rank exponent and equal weights. After finding the value of

unknown parameter w using one of these methods, the imputed w can be used to solve

problem (14) to predict the upcoming demand for new items. Solving the assortment

optimization problem considering new item demand, an optimum assortment decision

is specified which can be assessed with the real demand by a regret function.

Algorithm (4) explains a similar process as Algorithm (3) for the machine learning

methods. The function ML_method represents Gaussian process regression, random

forest or regression decision tree. Unlike the methods in Algorithm (3), machine

learning methods do not directly impute the value of parameter w. They instead

impute the value of a surrogate parameter which fits their own learning model to

the data. Moreover, unlike the Algorithm (3) methods which require solving another

optimization problem to predict the demand (which later will be used to compute the

regret), machine learning methods do not need to solve any optimization problem,

instead these methods use their own prediction model.

We use the attribute weights elicited by inverse attribute-based optimization,

Gaussian process, random forest, regression decision tree and rank sum, rank exponen-

tial, rank reciprocal and equal weights in the agent’s bounded rationality optimization

problem (15) to finally estimate the arriving demand for a new set of items. Thereafter,
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we use the estimated demand in the assortment optimization problem (16) to find the

recommended quantity of each item to be stocked in the store.

4.5.3 Results

Figure 10 shows the accuracy of the proposed IAO method (labelled as “att-IO” in

the figure), Gaussian process, random forest, regression decision tree (CART) and the

weight assignment methods including equal weights, rank sum, rank reciprocal and

rank exponent in predicting the upcoming demand. We calculate the prediction error

as MRE = 1
N

∑N
n=1

‖xn−x̃n‖2
‖x̃n‖2 where N is the size of test set, which may include items

that have not been seen in the training set; xn and x̃n are the predicted demand and

the actual demand value of nth item.

Figure 10: Demand prediction error for σ ∼ Uniform[10, 20]% deviation from z?

.
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We can see that the prediction accuracy of inverse attribute-based optimization

with around 12% mean relative prediction error is the lowest among the evaluated

methods. This is due to the fact that IAO considers the consumer utility maximizing

behaviour while other methods do not. We see that IAO and machine learning

approaches have lower mean relative error as well as lower variance compared to the

weight assignment methods.

We use the estimated demand in the assortment optimization problem (16) to

find the recommended amount of each item to be stocked in the store. To compare

the performance of the mentioned weight assignment methods in the assortment

optimization problem, we define the following regret function:

R(t,y, x̃) =
∑
i∈I(t)

[
oi(max{yi − x̃i, 0}) + ni(max x̃i − yi, 0})

]
, (21)

where R is the regret at time t, x̃i and yi are the real demand and the available quantity

of item i in the store, respectively. The proposed regret function captures both under-

stock and over-stock in the store due to the inaccuracy in demand prediction with

parameters o and n. From the perspective of the store, Figure 11 shows that the store

has lower assortment regret (defined by Equation (21)) when using inverse attribute-

based optimization method. Similarly to Figure 10, machine learning methods are

close to inverse attribute-based optimization and weight assigning methods have the

largest assortment regret values.

Next, we consider the advantage of using inverse attribute-based optimization,

machine learning algorithms and weight assigning methods in increasing the utility

obtained by the consumer. To do so, we calculate the utility gained by consumers when

the offered assortments are planned based on demands predicted by these methods.
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Figure 11: Store assortment regret for o and n ∼ Uniform[5, 10].

Then, we solve the problem (15) with decision variable x bounded by the available

items in the assortment and calculate the gained utility. We then calculate the utility

when the quantity of items that can be bought by the consumer are not bounded by

any assortment limits. We define the consumer’s utility gap as Utility Gap = |U?−UAO|
|U?| ,

where U? is the global optimum utility and UAO is the utility gained bounded by the

offered assortment. Figure 12 demonstrates the consumer’s utility gap for different

demand estimation methods. We can see that IAO results in the lowest utility gap,

followed by random forest, Gaussian process and decision tree regression. Similar to

other figures, weight assigning methods underperform as compared to the IAO and

machine learning methods. Comparing Figure 10 and 12, we can see that a small

difference in demand prediction leads to a relatively bigger gap in consumer utility.

For instance, an error in the demand prediction of about 5% between IAO and decision
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Figure 12: Consumer utility gap.

tree regression leads to a more than 10% difference in a consumer’s utility gap.

Table 4 provides an overview of the computational times for IO and ML methods.

We note that IAO does not have hyper-parameters that need tuning via cross validation,

unlike the chosen ML methods. We also do not include the weight assignment methods

in this table as training time was negligible and cross-validation was not required.

As expected, the table demonstrates a trade-off between the IO and ML methods:

IO is more time efficient during the training phase while ML is more time efficient

Table 4: Mean cross validation, training and prediction computational time (s) over
20 instances.

att-IO GP RF CART

Cross validation NA 378.46 96.24 9.38
Training <1 7.61 1.85 <1
Prediction 10.73 4.55 1.10 <1
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during the prediction phase. The efficiency of IO training is mostly dependent on how

efficiently the IO model can be solved – in our case it is convex and can be solved

quickly. The efficiency of IO prediction is dependent on the complexity of the forward

optimization model – in our experimental study, since the forward problem is convex,

the run time is still reasonable; however, in general, the efficiency of the forward

problem can hamper the use of the model for prediction purposes.

4.6 Conclusion

In this chapter, we consider the problem of predicting the behaviour of optimizers

(e.g., optimizing consumers, systems) from observations of their choices (e.g., products,

decisions) via inverse optimization. In contrast to the current usage of IO in alternative-

based models, we introduce inverse attribute-based optimization, where each decision is

described in terms of its attributes. This modelling approach expands the applicability

of IO to settings where the set of alternatives (e.g., products, decisions) changes. We

demonstrate the value of our approach in assortment optimization, an application

where previous IO modelling could not be used due to the need to predict consumer

behaviour given a new set of items. We compare inverse attribute-based optimization

to other attribute-based methods, including rank-based methods and supervised

machine learning, showing that using inverse attribute-based optimization leads to

higher prediction accuracy, lower assortment regret for the store and a lower utility

gap for the consumer. We believe that utilizing the attribute-based perspective can

help make IO applicable in many more settings where there is a need to learn from

observations of optimizing agents or systems.
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Chapter 5

Inverse Satisfaction

Inverse optimization as a method for imputing optimization model parameters uses

observations of minimally suboptimal decisions to learn such parameters. The subop-

timality assumption of the observations is a key assumption in inverse optimization

when the problem is to learn the optimizer’s decision making problem. However,

this assumption is not always a valid assumption, for instance, for satisficer decision

makers. In this chapter, we relax the suboptimality assumption of the observations and

propose an inverse method that imputes unknown parameters of a feasibility problem

given observations of the feasible decisions of that problem. In analogy to inverse

optimization, we call this problem inverse satisfaction. We mathematically prove

that the proposed inverse satisfaction method is estimation consistent and show its

estimation and prediction performance. We also compare the prediction performance

of the proposed inverse satisfaction method with the inverse optimization method

proposed by Keshavarz et al. (2011) and random forest from the machine learning

literature on observations of optimizers and satisficers decisions.
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5.1 Introduction

Inverse optimization is a method for imputing missing values of an optimization

problem parameters given observations of that problem’s minimally suboptimal de-

cisions. IO methods have been developed for both optimal (Ahuja and Orlin, 2001)

and suboptimal (Keshavarz et al., 2011; Bertsimas et al., 2012; Esfahani et al., 2018;

Aswani et al., 2018) observations. Radiation therapy (Chan et al., 2019), auction

mechanism (Beil and Wein, 2003) and electricity demand estimation (Saez-Gallego

and Morales, 2017) are among some of the IO applications that have been studied in

the literature.

Even though the applications of inverse optimization have been expanded through

the development of models that incorporate noisy and near to optimal observations

(Keshavarz et al., 2011; Aswani et al., 2018; Esfahani et al., 2018; Chan et al., 2019),

there are still problems where the suboptimality assumption of the observations is not

valid and classic inverse optimization methods cannot address such problems.

Motivated by the problem of learning user preferences from observations of their

satisfactory (as opposed to optimal) decisions, we propose an inverse satisfaction

model to impute parameters of user decision making problem given their satisficing

decisions, i.e., decisions that satisfy an acceptable threshold rather than optimizing

an objective function (Simon, 1979).

The assumption that decision makers (DM) make rational choices to gain the

highest possible utility has been criticized because DMs generally possess limited

cognition and effort to search through all possible alternatives (Simon, 1979). Although

it is possible that DMs make optimal or near to optimal decisions, in practice DMs
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decision making paradigm may be similar to a heuristic search for finding a “good"

choice rather than (explicitly or implicitly) examining all possible options in an opti-

mization framework. They can have different rules for their search (e.g., lexicographic,

elimination, conjunctive and disjunctive, etc.) (Gigerenzer and Todd, 1999), which

can be incorporated into a mathematical representation of decision making problems.

As the current methods in the inverse optimization literature cannot necessarily

capture a non-optimizer’s behavior because such methods usually have optimality

assumption about the observations, we propose an inverse satisfaction model to impute

unknown parameters of a feasibility problem that represents a satisficer ’s decision

making problem. We relax the assumptions that the observations are optimal to a

more realistic assumption of only feasibility. This assumption is different than the

assumption that observations are noisy as in this assumption does not require near

optimality of the observations and feasibility is the only condition. Doing so expands

the applicability of the proposed method to settings where decision makers cannot

necessarily find the optimal decision but still make feasible decisions, a setting with

numerous applications in practice. Even though the proposed inverse satisfaction

model assumes observations are feasible, optimal decisions can also be used as input

as they are a special case of feasible decisions.

We assume that the satisficing decisions are defined over a pre-defined set of

attributes to reach a certain acceptability level. In this setting, instead of optimizing an

objective function (e.g., score function, utility function, etc.), the satisficing decisions

should only satisfy an acceptable threshold (often referred to as aspiration level (Cyert

et al., 1963)). The acceptable threshold is influenced by a user’s socio-demographic
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characteristics (e.g., income) and similar to the importance of the attributes is user-

specific. While the satisficing decisions are assumed to be available, the weight of the

attributes attached to them and the user’s acceptable threshold are usually unknown.

Our proposed inverse satisfaction method imputes such weights jointly with the

acceptable threshold given the user’s satisficing decisions.

Chapter 4 has shown that the attribute-based modelling approach can expand the

applicability of IO in practice. Therefore we use the attribute-based modeling in this

chapter to impute the importance of attributes that make a decision satisficing. Such

information can be further used in settings where decisions (satisficing or minimally

suboptimal) change, but the underlying attributes of the decisions are the same. The

connection of the inverse attribute based optimization to multi attribute decision

making problems has been addressed in Chapter 4. In general, the forward model

used in this chapter can be seen as an MADM model and the proposed inverse model

imputes the weights of the decision attributes. While MADM studies have been more

focused on solving the forward problems rather than solving the inverse problem, there

have been methods for assigning weights to attributes (Stillwell et al., 1981; Keeney

et al., 1993). Unlike the weight assignment methods in the literature, our proposed

method takes into account that the decisions are the solutions of a feasibility problem.

Machine learning (ML) methods do a similar task of finding unknown parameters

from observations. However, in problems usually addressed with machine learning,

the observations are not coming from a constrained problem and observations are not

usually assumed to be solutions to optimization or feasibility problems. While machine

learning can be applied to the problem defined in this chapter, we conjecture that

machine learning methods are not going to necessarily perform as well as methods that
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take the prior knowledge about the data generation problem into the consideration as

the information about the data generation process is valuable prior knowledge.

Finding a function that separates two differently labeled sets of observations (i.e.,

satisficing and unsatisficing decisions) is a classification problem and methods such as

support vector machines (SVM) can solve it. However, the problem defined in this

chapter cannot be solved with SVM as the problem in this chapter has two levels of

outputs (i.e., decisions regarding the number of items bought by the customer and

whether the decisions are satisficing or unsatisficing). The first level corresponds to

a regression problem and the second level corresponds to a classification problem.

Therefore, SVM as a classification method cannot solve such problems as there is no

mapping function from the inputs to the two leveled outputs. In fact, two different and

independent mapping functions are needed for this problem, the first one to map the

inputs to the actual decisions and a second mapping function to map decisions to their

labels. Moreover, classification problems such as SVM do not provide information

about the value of the acceptable threshold.

The main contributions of this chapter are:

1. We propose an inverse satisfaction method to jointly estimate the weight of the

satisficer’s decision attributes and their acceptable threshold given observations

of their satisficed decisions. This setting has not been addressed previously.

2. We mathematically prove that the proposed inverse satisfaction model is estima-

tion consistent, meaning with enough number of observations, the estimation

of weights and acceptable threshold provided by the inverse satisfaction model

converge to their true values.

3. We experimentally show that our proposed model is capable of learning from
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both optimizers and satisficer’s decisions compared to previous models in inverse

optimization literature capable of learning only from optimizers.

The rest of the chapter is organized as follows. Section 5.2 provides a review on the

literature. Section 5.3 defines the problem of interest and Section 5.4 mathematically

define the forward and inverse problems. In Section 5.5 we mathematically prove the

estimation consistency of the proposed inverse satisfaction method. In Section 5.6 we

present and discuss the experimental results and finally Section 5.7 concludes this

chapter.

5.2 Literature Review

Imputing optimization model parameters from observations of that model’s optimal

decisions was first introduced by the seminal paper of Burton and Toint (1992). In

most of the studies in inverse optimization, unknown parameters are assumed to

occur in the objective function and are imputed from optimal (Ahuja and Orlin, 2001;

Iyengar and Kang, 2005) and near-optimal (Keshavarz et al., 2011; Chan et al., 2019;

Aswani et al., 2018; Esfahani et al., 2018; Bärmann et al., 2017) decisions.

Multiple studies also investigated imputing unknown parameters occurring in the

constraints of a linear program whether using a single observation (Chan and Kaw,

2020; Chow and Recker, 2012) or multiple observations (Tan et al., 2019; Ghobadi and

Mahmoudzadeh, 2020b; Troutt et al., 2008). More related to our proposed framework

are Tan et al. (2019) and Ghobadi and Mahmoudzadeh (2020b) where unknown

parameters in both left and right hand sides of the constraints can be imputed. While

these studies propose more general frameworks for the special case of inverse linear
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programming, the method proposed in this chapter does not have linearity assumption

and is tailored to the specific problem of learning the behaviour of satisficing users.

The unknown parameters of user’s decision making problems are usually utility

function parameters that are commonly referred to as user preferences. The preference

elicitation process for a user could be based on observations from that specific user

(e.g., Aswani et al. (2018); Horvitz et al. (2013); Lee et al. (2004)) or from observations

of other similar users (e.g., as in collaborative filtering (Konstan et al., 1997)). In

this chapter, we focus on the problem of imputing preferences of one or a group of

homogeneous users (with the same preference distribution) from observations of their

own decisions.

The preference elicitation methods usually do not have an explicit assumption

regarding whether the user is a satisficer or an optimizer, though they often implicitly

assume that users try to maximize their utility function (Lahaie and Parkes, 2004;

Braziunas and Boutilier, 2006). These methods often require a considerable amount

of data which are usually costly to acquire and not always available. Chajewska et al.

(2000) and Boutilier et al. (2006) investigated the elicitation effort in data querying

and the impact it has on the elicitation accuracy and showed that there is a trade-off

between elicitation accuracy and the effort spent on acquiring data.

The problem of learning constraint parameters has been studied in other areas

such constraint programming (CP) and constraint satisfaction problem (CSP) (Lallouet

et al., 2010; Bessiere et al., 2016; Beldiceanu and Simonis, 2016). However, the problem

of interest in these areas is learning global and logic constraints with discrete decision

variables. In this chapter we are interested in learning constraints of a feasibility

problem (not global constraints used in constraint programming) and we do not have
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any specific assumption about the integrality of the decision variables.

To the best of our knowledge, this work is the first in the literature that uses

inverse optimization principles to learn parameters of constraints that define the

behaviour of satisficing users. The proposed inverse satisfaction model has lower error

in estimating the preferences and in learning satisficing user behavior than inverse

optimization and machine learning methods.

5.3 Problem Definition

Rational decision makers, i.e., optimizers, always make decisions that maximize their

utility function (Simon, 1979). We represent an optimizer decision-making process as

solving the following optimization problem:

max
x∈X

f(x) (22)

where x is a vector of their decision, f(x) is a real valued function measuring their

satisfaction and X is the feasible region specified by the user’s constraints. In contrast

to optimizers, satisficer decision makers avoid engaging in solving an optimization

problem as searching for the best decision among all possible choices is a time-

consuming and/or resource-intensive process. Instead, they settle for an “acceptable”

decision. Satisficer users behavior has been mathematically modeled with different

approaches such as goal programming (Ignizio, 1976), chance constraint programming

(Charnes and Cooper, 1963) and robust optimization (Jaillet et al., 2016). In this

chapter, we use a deterministic feasibility problem to represent a satisficer’s decision
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making problem:

max
x∈X

{
0 | C

}
(23)

where the aim is to find a decision vector x that is a feasible solution with respect to

a set of hard constraints X and satisfices, i.e., meeting an acceptable threshold, the

constraints C.

Figure 13 contrasts the decision-making problems of optimizers and satisficers.

Figure 13 (a) illustrates an optimizer’s decision making problem where the polyhedron

X represents the feasible region of decisions specified by the decision making constraints

and x? is the optimum solution. Figure 13 (b) shows the same problem but for satisficer

decision makers where an acceptable solution x̂ is found with respect to a constraint

C.

Problems in Figures 13 (a) and 13 (b) are the optimizer and satisficer forward

optimization problems, respectively. The inverse problem can therefore be defined

as: given observations of decisions of these problems, what are the value of unknown

parameters of models (22) and (23). We define the satisficer’s inverse problem, i.e.,

Figure 13: Optimizer v.s. Satisficer Decision Making Problem
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Figure 14: Satisficer’s Inverse Problem

the inverse of problem shown in Figure 13 (a), as given the set of satisficed decisions

X̂S and the set of unsatisficed decisions X̂U what is the constraint C? In analogy to

inverse optimization where the problem is to impute missing values of an optimization

model parameters, we call this problem inverse satisfaction as this is the problem of

imputing a satisfaction model parameters. Figure 14 shows the inverse satisfaction

problem of the forward feasibility problem (23).

Unlike optimization problems whose solutions are optimal, any solution that

satisfies the feasibility conditions is an acceptable solution for the satisfaction problems.

However, users get different satisfaction (i.e., utility) values for different solutions.

Though users cannot reveal their utility function parameters they can rank their

choices based on the utility they get from them. Therefore, we assume that users

can provide such ranking information. Figure 15 illustrates how the information and

data obtained from users and observations of their decisions maps to the proposed

inverse attribute based satisfaction method. We assume that we have access to the

observations of both satisficing and unsatisficing offers by the user along with the

ranking of the satisficing decisions obtained from a user’s feedback. We use the

inverse satisfaction method to impute the weights of decision attributes and use such
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Figure 15: Problem Framework: data generation process, inverse satisfaction problem
and the forward feasibility problem for new items.

parameters to solve the user’s forward feasibility problem given a new set of items to

suggest the best-matched items to the users in the next interaction with the user.

5.4 Modeling

In this chapter, we view two ends of the decision making strategies spectrum namely

making random and optimized decisions and we assume that satisficing behavior lies

between these two strategies. Mathematically this behavior can be interpreted as

satisfying certain constraints. In this case, the user is not involved in optimizing

functions of decisions such as maximizing utility functions or minimizing costs. Instead,

an acceptable threshold for the decisions should be met in terms of the level of utility.
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Below, we discuss the satisficing attribute based forward feasibility problem and the

proposed inverse attribute based satisfaction model.

5.4.1 Satisficer Forward Problem

Assume that I is the set of alternatives and J is the set of attributes associated with

the alternatives, consider the following problem:

FOP (w,ν, α) : min
x

0Tx

subject to: gm(x) ≤ 0 ∀m ∈M∑
i∈I

f(xi, c(νi,w)) ≥ α

(24)

where xi is a decision variable corresponding to the recommended quantity of alternative

i. Each alternative i can be described in terms of |J | attributes via the vector of

attribute values νi = [νi1, νi2, ..., νi|J |], where νij represents the “quantity” of attribute j

in alternative i. The function c(νi,w) is a weighted aggregate function that calculates

the total attribute value within each decision xi based on the vector νi and the

attribute weights w. This function is a general convex function. The function f

captures the relation between the decision variables and the total attribute value and

is a valuation function of decisions in attribute space. In the optimization problem

(24), we can see that the objective function is a constant, meaning that no optimization

process is involved in making decisions x and this problem is a feasibility problem.

The functions gm(x) represent the decision making hard constraints such as customer’s

budget. The function f(x, c(ν,w)) represents the decision making criteria for which a

threshold α should be met. In fact satisficers implicitly define an acceptable threshold

in terms of their satisfaction represented by function f(x, c(ν,w)) while optimizers
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aim to optimize this function.

Problem (24) demonstrates the decision-making problem on a predefined set of

items I . However, the set I or the constraints may themselves be subject to change,

dependent on an exogenous parameter t which changes the set of available alternatives

as I(t) and constraints asM(t). A parametric version of the problem (24) is:

FOP (w,ν, α, t) : min
x

0Tx

subject to: gm(x) ≤ 0 ∀m ∈M(t)∑
i∈I(t)

f(xi, c(νi,w)) ≥ α

(25)

Formulation (25) allows the set of alternatives to change from one t to another.

In practice, solving the forward problems (24) and (25) is not always possible as

decision makers usually cannot specify the attribute weights w and information about

the acceptable threshold α is not always attainable. On the other hand, in some

applications (retail for instance) observations of the satisficing decisions and sometimes

unsatisficing decisions are available. Therefore, we introduce inverse satisfaction to

obtain the unknown parameters of problem (25) from observations of solutions to

problem (25).

5.4.2 Satisficer Inverse Problem

In satisfaction problems any solution that satisfies the decision maker’s constraints

counts as a satisficing solution. However, users get a different level of satisfaction or

utility for different solutions. Although users cannot reveal the weights of their decision

attributes and their acceptable threshold, they usually can rank their choices based on

the utility they get from them meaning that they can compare the satisfaction they

90



get from making different decisions; which is called ordinal utility.

Recall that X̂S is the set of satisficing decisions and X̂U is the set of unsatisficing

decisions. Let Dtrue be the set of observations with true labels of satisficing and

unsatisficing defined based on the true forward feasibility problem (25) and D be the

set of observations that are provided to the inverse satisfaction problem (32). We know

that Dtrue = X̂S true∪ X̂U true, D = X̂S ∪ X̂U and X̂S true∩ X̂U true = ∅ and X̂S ∩ X̂U = ∅.

Considering D• and D◦ as the sets of noisy and noise-free observations respectively,

an observation x̂ ∈ D• is a noisy observation if


x̂ ∈ X̂U true and x̂ ∈ X̂S or

x̂ ∈ X̂S true and x̂ ∈ X̂U
(26)

and observation x̂ ∈ D◦ is a noise-free observation if


x̂ ∈ X̂U true and x̂ ∈ X̂U or

x̂ ∈ X̂S true and x̂ ∈ X̂S .
(27)

In this chapter, we assume that the set of observations D only consist of noise-

free observations (i.e., observations that are not mislabelled). Therefore, the sets of

satisficing observations X̂S and unsatisficing observations X̂U are:

X̂S ⊆ argmin
x
{0Tx |

∑
i∈I(t)

f(xi, c(νi,wtrue)) ≥ αtrue} (28)

and

X̂U ⊆ argmin
x
{0Tx |

∑
i∈I(t)

f(xi, c(νi,wtrue)) + ε ≤ αtrue} (29)
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when wtrue here is the parameter value that the users use to solve their forward

problem to make their satisficing and unsatisficing decisions and ε is a small positive

number. We define a set of preferential order of decisions based on the level of utility

they provide with respect to the constraint
∑

i∈I(t) f(xi, c(νi,w)) ≥ α defined as:

O(w) =
{

(x̂r, x̂k) |
∑
i∈I(t)

f(x̂ri , c(ν
r
i ,w)) ≥

∑
i∈I(t)

f(x̂ki , c(ν
k
i ,w))

}
r,k∈{1,...,|X̂S |},(r 6=k)

(30)

where x̂r, x̂k ∈ X̂S and O(w) ⊆ X̂S×X̂S . The ordered pair of (x̂r, x̂k) ∈ O(w) denotes

that under the preference function f , the user gained the same or more satisfaction

from decisions x̂r compared to decision x̂k. We then define a loss function as:

l(w) =
∣∣∣{(r, k) : 1{(x̂r, x̂k) ∈ O(w)} 6= 1{(x̂r, x̂k) ∈ O(wtrue)}

∀r, k ∈ {1, ..., |X̂S |}, (r 6= k)
}∣∣∣ (31)

where 1 is an indicator function and wtrue is the unknown true weights of the

satisfaction constraint for which we already have the observed customer preferences.

This function captures the number of pairs whose order with an imputed weight does

not correspond to the real order with the true weights. We propose the following
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inverse attribute-based formulation for imputing the parameters of constraint C:

IS(x̂,ν) : min
w,α

l(w)/2

subject to:
∑
i∈I(t)

f(x̂i, c(νi,w)) ≥ α ∀x̂ ∈ X̂S

∑
i∈I(t)

f(x̂i, c(νi,w)) + ε ≤ α ∀x̂ ∈ X̂U

w ∈W

α ∈ A

(32)

where x̂ is the vector of observed decisions and the sets W and A include any prior

knowledge about the parameters w and α respectively (e.g., upper and lower bounds,

normalized weights, ordinal ranking of weights, etc.).

Unlike inverse optimization methods that assume observations are minimally sub-

optimal solutions of the forward problem, a feasibility problem’s solutions do not have

optimality characteristics and only are feasible. Therefore, in the inverse satisfaction

model, we impose constraints on the feasibility and infeasibility of observations (see

the first and second constraint of problem (32), respectively).

To capture the discrepancy loss function l(w), there could be various formulation

of problem (32) which could lead to different run time efficiency. We use the following
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model to solve this problem:

IS(x̂,ν) : min
w,α

∑
q∈{1,...,|Owtrue |}

zq

subject to:∑
i∈I(t)

f(x̂i, c(νi,w)) ≥ α ∀x̂ ∈ X̂S

∑
i∈I(t)

f(x̂i, c(νi,w)) + ε ≤ α ∀x̂ ∈ X̂U

∑
i∈I(t)

f(x̂ri , c(νi,w)) ≥
∑
i∈I(t)

f(x̂ki , c(νi,w))−Mzq ∀(x̂r, x̂k) ∈ Owtrue

∑
i∈I(t)

f(x̂ri , c(νi,w)) ≤
∑
i∈I(t)

f(x̂ki , c(νi,w)) +M −Mzq ∀(x̂r, x̂k) ∈ Owtrue

w ∈W

α ∈ A

(33)

where Owtrue is the ranking of the decisions from the satisficer decision maker, z is the

vector of binary decision variables that specify the preferential order of observations

and M is a big number. Note that Owtrue does not contain any information about

the parameter wtrue and only has information about the ranking of the observations

under wtrue.

5.5 Estimation Consistency

The proposed inverse satisfaction model provides an estimate for the forward feasibility

problem parameter w. We assume that wtrue is the true value of w and the parameter

value that a satisficer decision maker implicitly uses to make decisions. Based on

Aswani et al. (2018) definition of estimation consistency which has been previously
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introduced by Bickel and Doksum (2015), the proposed inverse satisfaction model is

estimation consistent if its estimate of w converges in probability to the true value

wtrue. As inverse satisfaction model gives different estimates with different number of

satisficing and unsatisficing observations, we use wkl as the estimate of w by inverse

satisfaction problem with k satisficing and l unsatisficing observations. Therefore:

Definition 1. The estimate wkl is consistent if:

wkl p−−−−→ wtrue (34)

In the context of our problem, an estimate wkl is consistent if with increasing

the number of observations, k and l, the estimate wkl obtained from the inverse

satisfaction problem (32) approaches to wtrue and its value converges to wtrue. We

can restate Exp. (34) as:

lim
k,l−→∞

P(d(wkl,wtrue) > σ) = 0 (35)

where d is any distance measure (e.g., Euclidean distance) and σ is any positive

number.

In this proof we show Exp. (34) and Eq. (35) by showing that any sample path

of the estimates wkl converges to wtrue. To proceed with the proof of estimation

consistency we make the following assumptions:

A1. Let X (w,ν) denote the forward problem feasible region. We assume that X (w,ν)

is convex, bounded and has a non-empty interior, i.e, X (w,ν) 6= ∅ . Therefore Slater’s

condition holds because the feasible region is non-empty.

A2. W and A are convex, bounded and non-empty and wtrue ∈W and αtrue ∈ A.
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A3. X̂S 6= ∅ and X̂U 6= ∅.

A4. We assume that ε in problem (32) is a small enough number to ensure that any

observation x̂ ∈ X̂ true
U violates the satisficing constraint as

∑
i∈I(t) f(x̂i, c(νi,w)) ≥

α + ε and counts as an unsatisficing decision.

A1 states that the feasible region of the forward problem is non-empty which is

necessary to ensure that the forward feasibility problem has a solution. A2 is to ensure

that the inverse satisfaction search spaceW and A are well-posed and contain the true

values to ensure the possibility of estimation consistency of the inverse satisfaction

model. A3 is to ensure that there are observations available for the inverse satisfaction

model. Finally, A4 is to ensure that all observations are noise-free.

Following the notation of Aswani et al. (2018), we define notation for a sequential

set as [r] = {1, 2, ..., r}. We define sequential sets [|X̂S |] = {1, 2, ..., |X̂S |} and [|X̂U |] =

{1, 2, ..., |X̂U |} as the set of satisficing and unsatisficing observations, respectively.

These sets are used as input the proposed inverse satisfaction model.

Following the notation of Aswani et al. (2018), we define Ckl(x̂, ε) as the feasible

region of the inverse optimization problem with k satisficing and l unsatisficing

observations as:

Ckl(x̂, ε) = {w ∈W , α ∈ A |
∑
i∈I(t)

f(x̂k
′

i , c(ν
k′

i ,w)) ≥ α,

∑
i∈I(t)

f(x̂l
′

i , c(ν
l′

i ,w)) + ε ≤ α ∀k′ ∈ [k] & ∀l′ ∈ [l]} (36)

We define the imputed w and α from solving the proposed inverse satisfaction
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problem (32) as:

Θkl = {wkl, αkl | (wkl, αkl) ∈ arg min
(w,α)∈Ckl

l(w)/2} ∀k ∈ [|X̂S |] & ∀l ∈ [|X̂U |] (37)

where wkl and αkl are the imputed values of parameters w and α from solving

the inverse satisfaction problem with k satisficing and l unsatisficing observations,

respectively. Note that the formulation (32) can have multiple solutions and Θkl can

represent more than one pair of wkl and αkl. As Θkl is also a feasible solution of

inverse satisfaction problem, we have:

Θkl ∈ Ckl(x̂, ε) ∀k ∈ [|X̂S |] & ∀l ∈ [|X̂U |] (38)

Remark 1. As previously defined, we have assumed that we only deal with noise-free

observations set of D◦. We also assume that when we increase the size of the data set

D◦, we add new observations to the previous observations present in the data set.

Proposition 1. Suppose A2 and A3 hold. wtrue and αtrue are the feasible solutions

for inverse satisfaction problem (32) with any subsets of any size of satisficing and

unsatisficing observation sets:

(wtrue, αtrue) ∈ Ckl(x̂, ε) ∀k ∈ [|X̂S |] & ∀l ∈ [|X̂U |].

Proof. The observations were originally generated by satisficers using wtrue and

αtrue in their forward feasibility problem. The satisficing observations of the forward
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problem X̂S are:

X̂S ⊆ argmin
x
{0Tx |

∑
i∈I(t)

f(xi, c(νi,wtrue)) ≥ αtrue}. (39)

And the unsatisficing observations are

X̂U ⊆ argmin
x
{0Tx |

∑
i∈I(t)

f(xi, c(νi,wtrue)) + ε ≤ αtrue}. (40)

By the definition of the inverse satisfaction problem (32), the feasible region of

this problem is: ∑
i∈I(t)

f(x̂i, c(νi,w)) ≥ α ∀x̂ ∈ X̂S

∑
i∈I(t)

f(x̂i, c(νi,w)) + ε ≤ α ∀x̂ ∈ X̂U

w ∈W

α ∈ A

(41)

As mentioned in Remark 1, In this study, we assume that we do not have mislabeled

observations in sets X̂S and X̂U (i.e., we do not have noisy observations). Therefore,

wtrue and αtrue satisfy the first two constraints of the feasible region for all x̂ ∈ X̂S

and x̂ ∈ X̂U as showed in Exp. (39) and (40). From A2 we have wtrue ∈ W and

αtrue ∈ A. Therefore, wtrue and αtrue satisfy the last two constraints as well. Thus,

we can conclude that:

(wtrue, αtrue) ∈ Ckl(x̂, ε) ∀k ∈ [|X̂S |] & ∀l ∈ [|X̂U |].

�

In order to show the estimation consistency of formulation (32), we need to show
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that the added constraints to the inverse satisfaction model resulting from adding

more satisficing and unsatisficing observations cannot remove wtrue from the inverse

satisfaction feasible region and that wkl the estimate that the inverse satisfaction

problem provides generally become closer to the wtrue with adding more observations

to the data set.

By the definition of inverse satisfaction problem (32), adding new observations

to the sets X̂S and X̂U means adding more constraints to the inverse optimization

problem. As having more constraints leads to a smaller feasible region, then we have

nested convex subsets of feasible regions as:

C11(x̂, ε) ⊇
(
C21(x̂, ε), C12(x̂, ε)

)
⊇ C22(x̂, ε) ⊇ ... (42)

Exp. (42) means that the sets C21(x̂, ε) and C12(x̂, ε) are both subsets of the set

C11(x̂, ε) which are in turn subsets of C22(x̂, ε), and so on.

Theorem 1. Suppose A2 and A3 hold. Given i.i.d sampling of observations, for

any distance function d : R|J | −→ R+,

∃ (wkl, αkl) ∈ Ckl(x̂, ε) ∀k ∈ [|X̂S |], l ∈ [|X̂U |]

such that

d(w1,1,wtrue) ≥
(
d(w2,1,wtrue), d(w1,2,wtrue)

)
≥

... ≥ d(w|X̂S |,|X̂U |,wtrue) ≥ ... ≥ 0. (43)

Proof. We will prove Theorem 1 by induction.
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Base case: Starting with |X̂S | = 1 and |X̂U | = 1, by adding another observation

to either X̂S or X̂U , from Exp.(42) we have:

C11(x̂, ε) ⊇ C21(x̂, ε)

C11(x̂, ε) ⊇ C12(x̂, ε)
(44)

where subsets C11(x̂, ε), C12(x̂, ε) and C21(x̂, ε) are feasible regions of the decision

variable w. From Proposition (1) we know that adding more observations to the

data set cannot remove wtrue from the feasible regions of inverse satisfaction problem

(32). Therefore as W is bounded based on assumption A2 and it always contain

wtrue, among the solutions of the inverse satisfaction problem (32) (in case of multiple

solutions) there is at least one solution for which we have:

d(w1,1,wtrue) ≥ d(w2,1,wtrue)

d(w1,1,wtrue) ≥ d(w1,2,wtrue)

(45)

Induction step: Assume the result holds for |X̂S| = n and |X̂U | = m. Let x̂n+1

and x̂m+1 be new observations that are added to the set of satisficing and unsatisficing

observations X̂S and X̂U respectively. By the definition of the inverse satisfaction

problem (32), adding x̂n+1 and x̂m+1 to X̂S and X̂U is equivalent to adding the

constraints f(x̂n+1, c(νn+1,w)) ≥ α and f(x̂m+1, c(νm+1,w)) + ε ≤ α to the inverse

satisfaction problem (32).

Adding such constraints removes some of the feasible solutions of the inverse

satisfaction problem (32). However, the added constraints cannot remove wtrue from

the feasible region as it is always a feasible solution for all inverse satisfaction problem

instances with any k and l from Proposition 1. Also, from Exp.(42) we know that the
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feasible region of the inverse satisfaction problem is a non-increasing nested convex set

and from A2 we know that W is bounded. Therefore the distance function defined

on this non-increasing nested convex set is itself non-increasing. Therefore we have:

d(wn,m,wtrue) ≥
(
d(wn+1,m,wtrue), d(wn,m+1,wtrue)

)
≥ 0. (46)

Thus, by the principle of mathematical induction, Exp.(43) holds. �

Theorem 2. Suppose A1, A2, A3 and A4 hold, given i.i.d sampling of observations,

then we have: if |X̂S | −→ ∞, then ∃ k ∈ [|X̂S |] , for which

d(wkl,wtrue) = 0 ∀l ∈ [|X̂U |]. (47)

Proof. Let’s call the observations x̂ ∈ X̂S that satisfy the forward feasibility

problem constraint in equality as
∑

i∈I(t) f(x̂i, c(νi,wtrue)) = αtrue, binding decisions.

Given the i.i.d sampling of the observations, when |X̂S| −→ ∞ we are guaranteed to

have binding observations in X̂S. By solving the inverse satisfaction problem, we are

finding estimates of wtrue and αtrue which are parameters of the unknown constraint

f(x, c(ν,wtrue)). Let f̃n be the estimate of function f with n binding observations. We

know that f(x, c(ν,wtrue)) is continuous and differentiable with respect to x for any

w and ν. Because of A1 and continuity of the function f(x, c(ν,wtrue)), this function

is bounded on its domain X and on its range. As the function f(x, c(ν,wtrue)) is

bounded both on its domain and its range and because of its differentiability we can

say:

∃n ∈ N such that f̃n = f (48)
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Expression (48) is equivalent to:

lim
|X̂S |−→∞

d(wkl,wtrue) = 0 ∀l ∈ [|X̂U |]. (49)

�

From Theorem 1 and Theorem 2, we can say that the distance between wkl

and wtrue has a non-increasing sequence with a tight lower bound of 0 for any sample

path on the sets X̂S and X̂U . Therefore we can conclude that:

lim
k,l−→∞

P(d(wkl,wtrue) > σ) = 0

And consequently:

wkl p−−−−→ wtrue

�

We could take the same proof steps for α and show that inverse satisfaction

problem (32) provides a consistent estimation for α too.

5.5.1 Insights into the Estimation Consistency of Inverse Op-

timization

We conjecture that the estimation consistency of inverse optimization models in general

can be proven if these three conditions are met by the model and the data: i) the

prior knowledge, if there is any, contains the true value of the unknown parameters,

ii) the observations are noise-free, and iii) the inverse optimization model is designed

in a way that adding new observations generates valid inequalities that reduce the
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search space of the unknown parameter of the forward model. The first condition is

necessary since the prior knowledge about the value of the parameters defines the

search space, if the search space does not contain the true values of the forward model

unknown parameters then it is not possible to prove estimation consistency. In practice,

the first condition cannot be verified. However, in cases where the prior knowledge

contains a broad range for parameter values, or when the unknown parameter has

some known properties (e.g., physical properties), the assumption that prior knowledge

contains the true parameter values is valid. The second condition is not a necessary

condition for proving estimation consistency in general, however in the presence of

noise the inverse model needs some form of penalizing to compensate the effect of the

noise in observations in estimating of the unknown parameters. Previous study on

estimation consistency in inverse optimization by Aswani et al. (2018) investigated the

estimation consistency of methods proposed by Keshavarz et al. (2011). They proved

that the method proposed by Keshavarz et al. (2011) is not estimation consistent

when observations of the decisions are corrupted by noise primarily because their

choice of loss function minimizes residuals of optimality condition in objective function

space rather than decision space. However, our experiments in Chapter 3 and this

chapter suggest that the method proposed by Keshavarz et al. (2011) is estimation

consistent when observations are noise-free. The third condition is also necessary

condition to ensure that the inverse model converges to the true values and avoids

converging to local optimums. To reach the true values of the parameters the inverse

optimization model should be able to use observations to reduce some of the search

space and if adding observations does not provide such cuts in the search space, there

is no guarantee that the inverse optimization estimate of the unknown parameters

103



converges to the true values.

5.6 Experimental Results

This section experimentally shows the performance of the proposed inverse satisfaction

method in estimating the value of the unknown model parameters and predicting

model decisions under multiple settings. In this section, we provide three sets of

experiments which include the estimation accuracy of the inverse satisfaction method,

the prediction accuracy of the inverse satisfaction method and the comparison of

the proposed inverse satisfaction problem with the inverse optimization method of

Keshavarz et al. (2011) and random forest (Breiman, 2001) from the machine learning

literature for optimizer’s and satisficer’s decisions.

All the inverse satisfaction formulations are coded in C++ and all associated

optimization problems are solved using Concert Technology of IBM ILOG CPLEX

v.12.7.0. All experiments were run on an HP server with 20 Intel(R)Xeon(R) CPU

E5-2687W v3 @ 3.10GHz processors and 512 GB RAM under a Linux environment.

All the experiments were run on 30 randomly generated instances using POP toolbox

(Oberdieck et al., 2016) to generate constraints. As we solve with feasibility problems

in this study, we discarded the objective functions on POP generated instances. All

the errors including mean relative error (MRE) and discrepancy rates are the average

of all the instances. For all the experiments we chose linear f and c functions. w and

ν are drawn from uniform distribution as w ∼ U [0, 1] and ν ∼ U [5, 20]. To generate

values of parameter α we solved the formulation (25) and optimized the function f

and obtained fmin and fmax and generated α as α ∼ U [fmin, f
max]. The first and the

third experiments show the prediction performance of the chosen models and the size
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of the training data is equal to the number of observations used in these experiments.

The second experiment shows the prediction accuracy of inverse satisfaction model.

Therefore, a test with 100 observations is used for each of the 30 samples.

Experiment1: Estimation accuracy

In these experiments we show the accuracy in predicting the unknown parameters

w and α by inverse satisfaction method for various problem sizes. Figure 16 shows

how the performance of the proposed inverse satisfaction method changes when we

increase the size of the sets of satisficing and unsatisficing observations. We show

the performance of the inverse satisfaction method based on the size of the sets of

the satisficing and unsatisficing observations for different decision size I and decision

attributes size J . As we mathematically proved in Section 5.5 that the proposed

inverse satisfaction method is estimation consistent, its behavior demonstrated in

Figure 16 is consistent with the mathematical proof in Section 5.5. Figure 16(a), 16(b),

16(c) and 16(d) show that with increasing the size of satisficing and unsatisficing

observations in inverse modeling, the MRE of estimates of w and α decrease.

Figure 17 shows how increasing the size of the set of attributes J changes the

estimation accuracy of w and α. This figure demonstrates the estimation accuracy

of inverse satisfaction decreases when the number of observations is the same but

problem size (i.e., the number of attributes) increases. Therefore, more observations

are needed when there are more attributes involved in decision making.
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(a) (b)

(c) (d)

Figure 16: MRE(w) and MRE(α) v.s. the size of satisficing and unsatisficing observa-
tions where c is a linear function, S1 = |I | = 25, |J | = 15 and S2 = |I | = 20, |J | = 30.
(a) and (b): |X̂U | = 15, (c) and (d): |X̂S | = 15.

Experiment 2: Prediction accuracy

In this experiment we show the accuracy of the proposed inverse satisfaction method

in predicting the decisions. We used a test set of 100 decisions for each of the

30 samples we used in each problem size. Figure 18 shows the performance of the

inverse satisfaction method in predicting users future decisions. Inverse satisfaction

problem finds unknown parameters w and α of the users satisficing constraints∑
i∈I(t) f(xi, c(νi,w)) ≥ α of the problem (25), given observations of the users past
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Figure 17: MRE(w) and MRE(α) v.s. the size of attributes J with |I | = 5, |X̂S | = 15,
|X̂U | = 10 and |O| = 10 with linear c.

decisions. We use the imputed parameters wkl and αkl in the satisficing constraint as∑
i∈I(t) f(xi, c(νi,wkl)) ≥ αkl with a new set of items to predict whether those items

Figure 18: Infeasibility rate v.s. the size of attributes J with |X̂S | = 15, |X̂U | = 10
and |O| = 10 with linear c.
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are satisficing for the user (i.e.,
∑

i∈I(t) f(xi, c(νi,wkl)) ≥ αkl) or unsatisficing (i.e.,∑
i∈I(t) f(xi, c(νi,wkl)) � αkl) and compare the estimated set of satisficing X̂S and

unsatisficing X̂U decisions with X̂S true and X̂U true. We capture the discrepancy as

follows:

Discrepancy Rate =
|X̂S true∆X̂S |+ |X̂U true∆X̂U |

|X̂S true|+ |X̂U true|
× 100 (50)

where ∆ is an operator that captures the symmetric difference of two sets.

The discrepancy rate shows the predictive performance of the proposed inverse

satisfaction method on test data. We see that with the same number of observations,

the problems that have bigger decision attributes have higher discrepancy. Figure 18

suggests that when the size of the set of attributes is bigger, more observations are

needed to obtain the same level of predictive performance.

Experiment 3: Learning from satisficer’s and optimizer’s decisions

In this experiment we investigate the learnability of inverse satisfaction given opti-

mizer’s and satisficer’s decisions. We compare the performance of inverse satisfaction

with the inverse optimization method proposed by Keshavarz et al. (2011). More-

over, since the problem we are considering falls within the realm of learning, we

also compare these inverse methods with random forest regression from the machine

learning literature. We used the scikit-learn citepscikit implementation of random

forest. Figure 19 compares the performance of the inverse satisficing method with and

without prior knowledge about the value of αtrue, i.e., one that know the value of α and

only estimates the value of w and one that estimates both w and α, Keshavarz et al.

(2011) inverse optimization method (K-IO) and random forest (RF) from machine

learning literature on observations from optimizers and satisficer users. We consider
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(a) Optimizers (b) Satisficers

Figure 19: Inverse satisficing (IS) method with and without prior knowledge about
αtrue compared to random forest (RF) and Keshavarz et al. (2011) inverse optimization
(K-IO) method for optimizing and satisficing decisions for |I | = 15, |J | = 10 with
X̂U = ∅, O = ∅.

optimizers as an extreme case of satisficers. While satisficers want to make decisions

to satisfy their utility function to a certain acceptable threshold, optimizers aim to

optimize its value. Therefore, any optimized decision is a satisficed decision too. From

Figure 19(a) we see that K-IO outperforms other methods. That is because K-IO has

prior knowledge about the optimality of the decisions. We see that inverse satisfaction

methods have lower MRE than random forest because even though inverse satisfaction

methods do not consider the optimality of the decisions, they still fit the optimized

observations to a feasibility problem. In contrast, random forest uses a decision tree

model. Figure 19(b) shows that for satisficing decisions inverse satisfaction methods

perform better than random forest and K-IO as both these methods use the wrong

prior knowledge (i.e., optimality for K-IO and a tree-like decision model for random

forest) for satisficing decisions. Comparing inverse satisfaction and inverse optimiza-

tion methods performance in Figure 19 suggests that inverse satisfaction can learn
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from both satisficers and optimizers decisions (though with different rates). However,

the inverse optimization method can only learn from the optimizer’s decisions due to

its assumption regarding the observations optimality.

In this section, we showed the performance of the proposed inverse satisfaction

method under various configurations. In conclusion, inverse satisfaction in both

estimating the value of unknown parameters and predicting the future decisions

depend on the number of observations and the size of the set of attributes. We also

showed the unlike the inverse optimization methods in the literature that can only

learn from optimizer’s decisions, the proposed inverse satisfaction method can learn

from both optimizer’s and satisficer’s decisions.

5.7 Conclusion

In this chapter, we consider the problem of learning the behaviour of satisficers, i.e.,

decision makers that choose decisions to satisfy their utility up to an acceptable

threshold, given observations of their satisficing and unsatisficing decisions. We

proposed an inverse satisfaction model to estimate the attribute weights and satisficers

acceptable threshold jointly. We assumed that satisficers solve a feasibility problem

and proposed IS to estimate unknown parameters of a feasibility problem. We

mathematically proved that our proposed method has estimation consistency, i.e.,

the estimation provided by IS converges to its real value in probability. We also

experimentally showed the proposed method performance in estimating the value of

feasibility decision model unknown parameters and predicting the model decisions

under various settings. We showed that with increasing the size of satisficing and

unsatisficing observations, the mean relative error (MRE) of the parameters estimation
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and discrepancy rate of the predicted decisions decreases. We also compared the

performance of the proposed inverse satisfaction method with one inverse optimization

method and one machine learning method (random forest). We showed that inverse

satisfaction can learn from both satisficer and optimizer decisions as optimizers are a

special case of satisficers. Inverse optimization method performance is better than

inverse satisfaction on optimizer data. However, inverse optimization cannot learn

from satisficers because of its assumption about the optimality of the observations. In

contrast, as inverse satisfaction relaxes the optimality assumption of the data, it is

capable of learning from satiisficer’s decisions.
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Chapter 6

Conclusion

6.1 Conclusion

In this dissertation, we study inverse optimization in two folds. First, we position

inverse optimization as a learning method and identify the strengths and weaknesses of

inverse optimization in the context of learning from parametric optimization problem

solutions compared to out-of-the-box machine learning methods. Second, we address

the challenges that inverse optimization methods suffer in practice when used for the

purpose of prediction.

Chapter 3 connects inverse optimization and machine learning methods by posi-

tioning inverse optimization as a learning method and studies the performance of the

inverse optimization method proposed by Keshavarz et al. (2011) compared to machine

learning methods. We experimentally show that data generated from a more complex

optimization process e.g., data generated with parametric optimization problems with

piecewise objective function and more constraints, could be learned in a more data-

efficient manner as inverse optimization considers the optimality of the data in the
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process of learning model parameters. We also identify the difficulties of the learning

problem as (i) the training set size, (ii) the dependence of the optimization problem

on external parameters, (iii) the level of confidence with regards to the correctness of

the optimization prior, and (iv) the number of critical regions in the solution space.

Inverse optimization methods in the literature usually assume an alternative-

based perspective in learning model parameters, i.e., learning the importance of

alternatives/decisions. This assumption implicitly assumes that the set of decisions

that inverse optimization learns from is fixed, making inverse optimization methods

not applicable for settings where the set of decisions changes. In Chapter 4, we

propose an attribute-perspective for inverse optimization modeling which imputes the

importance of the attributes that make a decision optimal instead of imputing the

weight of decisions over each other. The new attribute-based perspective provides

a framework for looking at the decisions attributes, a more realistic and applicable

approach in practice.

One main assumption in the inverse optimization literature is the optimality

of the observations (with the exception of Boutilier et al. (2015) and Chan et al.

(2014a) which consider infeasible observations as well). In Chapter 5, we relax the

optimality assumption for the observations and propose an inverse satisfaction method

for learning from feasible and infeasible solutions. The proposed inverse satisfaction

method extends the inverse optimization literature to settings more general than before.

Also, we mathematically prove that the proposed inverse satisfaction method provides

statistically consistent estimation for the forward feasibility model parameters.
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6.2 Future Work

Positioned as a learning problem, studying the statistical properties of inverse opti-

mization problems can be a future research direction. Statistical measures similar to

R2 and properties such as consistency of the inverse optimization models have been

previously studied by Chan et al. (2019) and Aswani et al. (2018); in Chapter 5 of

this dissertation, we also established statistical consistency of the proposed inverse

satisfaction problem. However, specific tests and measures for model-data fitness and

model selection have not been studied which can be useful especially when dealing

with big noisy data sets. Model selection is essential especially when the optimality

(or sub-optimality) of observations is not guaranteed and inverse optimization is one of

the proposed methods along with other learning methods such as supervised machine

learning.

Inverse optimization as a parameter estimation method has been studied only for

point estimation (i.e., estimating a single value for the parameters). However, another

direction for future studies could be to expand inverse optimization as an interval

estimation method when an acceptable interval for the parameters is estimated to keep

observations minimally suboptimal. The only related study to interval estimation is

done by Chassein and Goerigk (2018) where a variable-sized uncertainty is considered

for the parameters. They focused on finding the largest possible size of uncertainty

for which a nominal solution still remains optimal for the forward linear robust

optimization problem.

So far, inverse optimization models have been more focused on offline and batch

settings (except for Bärmann et al. (2017, 2020); Dong et al. (2018)). Given the
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data efficiency of inverse optimization methods which is showed in Chapter 3, inverse

optimization could be an ideal learning method for online learning. The online setting

that has been previously studied by Bärmann et al. (2017, 2020); Dong et al. (2018)

is also well compatible with the proposed attribute-based perspective of Chapter 4.

Therefore, another future direction for inverse optimization could be to study inverse

attribute based optimization methods that learn parameters in an online fashion.

Another issue with real data in practice is that data can be incomplete and

only partial observations of decisions be available. Inverse optimization with partial

observations has been briefly addressed in the literature by Kim and Kececioglu (2008)

and Yang and Zhang (2007). However, this setting can still be extended to more

general frameworks and models such as convex optimization problems. Also, inverse

optimization with partial observations has applications in learning user’s parameters

where obtaining complete observations is usually costly or not possible in practice.

The computational complexity of learning from partial observations in comparison to

complete observations could be another direction for the future research in inverse

optimization.
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