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ABSTRACT 

 

 

Seismic Evaluation of Existing Stone Unreinforced Masonry Walls Using 

 

Predictive Parameters for Strengthening Interventions 

 

 

 

Hassan Ayoubi 

 

 

The seismic evaluation of existing unreinforced masonry (URM) structures is deemed essential 

due to their historical value and the vulnerability they present when subjected to earthquake 

shaking. Most of these buildings, constructed in the last century, do not comply with the current 

seismic codes and masonry standard. This study focusses on the assessment of URM walls 

subjected to lateral loading and more in detail to the behaviour of structural components such as 

the piers and spandrels. The behavior of structural elements, comprising the shear and bending 

failure modes, are investigated; these failure modes can be detected through the crack propagation 

initiated in building’s masonry walls. Then, a parametric study on a series of capacity formulations 

of piers and spandrels is performed and each failure mode is investigated independently in the aim 

of assessing the accuracy in capturing their strength. Three experimental test data are used to 

validate the efficiency of formulations for diagonal shear and data from five testing programs are 

used to validate the proposed formulations used to predict the maximum shear force resulting from 

flexural behavior of piers. Subsequently, a deterministic model for piers is built using an open-

source software to generate data required to build a linear relationship between different 

parameters and the performance criteria expressed in terms of strength and ductility. A case study 

comprising an URM facade wall of an existing 2-storey school building in Montreal is also 

conducted and certain strengthening interventions are presented. Further, the generated data is used 

to build probabilistic models that operates on Bayesian Networks. Nonlinear analysis using the 

target and the predictive variables are carried out. Machine learning algorithms are applied to 

acquire the entropy reduction factors which helps determining the most predictive variables used 

to assess the performance of piers. 
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Chapter 1:  Introduction 

1.1 General / Background 

Understanding the lateral response of stone masonry structures under ground shaking events is a 

complex procedure. Experimental testing of stone masonry elements is expensive and structural 

modeling using advanced software requires experimental test results to calibrate numerical 

models. The factors that contribute to the structure’s behaviour are the material quality, the 

construction type and year, the site class, and the ground motions characteristics. Analysing the 

behavior of masonry structures subjected to previous earthquake events, it helps to understand the 

probable failure mechanisms of these buildings. To preserve the simplicity of the analysis, macro- 

modeling techniques such as the equivalent frame method has proven to be a great substitute for 

more complex and time demanding procedures such as the finite element analysis or the micro-

modeling techniques.  

The motivation behind this work is to generate characteristic indices that describes the influence 

of certain parameters on the behavior of the structural elements in URM buildings.  

1.2 Objective and Scope 

The work in this thesis will cover the following areas: 

• Performing a parametric study on the relationship between the available capacity formulations 

for unreinforced masonry walls (URM) and their characteristics to assess their performance 

on capturing the maximum base shear. 
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• Linear data assessment using correlation factors on URM piers to build a relationship between 

the wall characteristics and its performance. 

• Nonlinear data assessment using mutual information factors and machine learning 

formulations through Bayesian networks applied to URM piers as an expansion of linear 

analysis. 

An URM pier model is developed and calibrated based on experimental test results using the 

OpenSees software(McKenna et al., 2000) . The numerical model was particularly developed to 

replicate the in-plane cyclic behavior on stone masonry elements. The numerical model is the 

bases for data generation used in both the linear and nonlinear analysis, as well as, to investigate 

the impact of factors that influence the model behaviour. A case study of a low-rise stone masonry 

building located in Montreal is presented.   

1.3 Methodology in Brief 

For attaining the objectives, the following tasks would be performed: 

• The information about piers is collected from a series of experimental tests used to extract 

parameters that influence the behavior. Four formulations for estimating the capacity 

representing the shear dominant behavior, and five formulations representing the flexural 

dominant behavior are collected from the literature and used for model calibration. Values 

extracted from the formulations are averaged and compared to the experimental values 

through ratio factors. The same work pattern is applied on spandrels, but no major conclusions 

are returned due to the shortage in the tests done on these elements. 

• A model of two piers with a shear dominant behavior and flexural dominant behavior, 

respectively, are calibrated based on experimental tests using an equivalent frame method 
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with distributed plasticity. The two behavioral types are captured within the confinement of 

fiber element defined in OpenSees. Then, the models are used to generate data considering 

random variations of the characteristics of the walls under assessment which are utilized for 

the linear and nonlinear data analysis of the wall behavior. 

• The linear analysis of the data uses a limited number of data points which is dependent only 

on the target variable, while the other parameters are fixed. As the correlation factors are 

extracted, it is feasible to extract the more influential variables on the performance of the piers 

measured in terms of base shear and displacement. 

• The nonlinear analysis uses a large data set with many variables related to the target variable. 

After the discretization of the data, supervised machine learning algorithms dependent on the 

Bayesian networks are used to interpolate the connections between the variables and the 

corresponding mutual information that indicates the strength of their relationship. Those 

factors will indicate the most influential variables on the performance of the piers measured 

in terms of base shear and displacement. The advantage of the nonlinear data analysis is the 

more realistic approach due to the connections between those variables which are neglected  

in the linear data analysis. 

1.4 Thesis Organization 

The research work is arranged in six chapters. The first chapter in a brief introduction including 

the scope of work and the methodology. The second chapter is the literature review that explains 

about the existing unreinforced masonry structures and their complexity. It is given a summary of 

analysis types used in this study and reason behind the selection of the equivalent frame method. 

It also covers the seismic hazard for Montreal and the types of failure mechanisms of URM walls 
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(piers). Chapter three covers the parametric study performed on capacity formulations for the shear 

and flexural dominant behaviors in piers and spandrels. It shows comparison indices between the 

accuracy of those formulations and major characteristics of the structural elements. Chapter four 

presents the model calibration of two piers each experiencing a different mode of failure using 

OpenSees. The whole procedure used in the calibration and the determination of different 

parameters is presented.  Using linear analysis, the most influential characteristic of the wall are 

identified. In the same chapter, a case study on Villa Maria School building in Montreal is shown 

including experimental testing on the mortar used to extract the compressive strength of the walls 

and the selection of the capacity formulation explained in chapter three. Chapter five includes the 

nonlinear data analysis conducted on two piers of different dimensions. A large data set was 

generated to apply the Bayesian networks needed to assess the mutual information and entropy 

reduction factors between the wall characteristics and the wall performance.  Finally, chapter six 

presents conclusions based on the research presented below, and the future work. 
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Chapter 2:  Literature Review  

From the literature, an overview of the types of existing unreinforced masonry structures (URM) 

is presented along with the modeling approaches and collapse mechanisms associated with such 

buildings. It also describes the seismic hazard in Montreal with direct relevance to URM buildings 

of short period associated with low-rise construction. A detailed summary of equivalent frame 

models is presented showing all the failure modes. Different examples of surveys and experimental 

campaigns are presented to aid the descriptions and provide evidence for the findings of the 

presented research.  

2.1 General review 

2.1.1 Complexity of Historical Masonry Buildings 

Masonry buildings are complex structures that have been used historically through subsequent 

centuries up to date. A wide variety of applications of masonry constructions span from small 

residential buildings to schools, museums, and churches. Over the time, these building structures 

survived environmental loads, as well as, human interventions caused by changes of occupancy or 

architectural interventions that, in general, reduce the number of interior walls and increase the 

number of walls with openings. Environmental exposure and lack of maintenance may have led to 

major changes in the properties of the material as well as the behavior of the whole structure. For 

example, earthquakes, settlements, storms, and structural modifications such as adding stories, 

extending floor areas, and partial reconstructions may lead to the use of different materials and 

methods of construction in the same building. Adding to the complexity issue, multi-leaf walls 

encompass hidden masonry stones which are not visible during site inspections or non-destructive 

tests and might vary from one wall to another due to the inadequacy of the construction. This will 
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impose many errors in the analysis of the building specially that the destructive tests are very 

limited due to the low capacity or due to the historical significance of masonry structures.  

Another important parameter to be considered is the structure of wall’s cross sections. According 

to a study in Italy, Binda et al., (2005) have emphasized the role of cross section in determining 

the response of the structure and the type of the failure associated with it.  The study provides a 

classification of different cross sections including the mortar contribution with enhanced 

demonstration of the model shape, which stresses the importance of such study on the selection of 

repair procedures. Examples of masonry wall sections are illustrated in Fig. 2.1. 

 

Figure 2.1: Cross sections of different masonry walls in Italy showing the complexity of stone types, mortar, 

number of layers, and the thickness of wall (Penna, 2015). 

Many types of stones are used in masonry constructions. As such, three main stone categories are 

identified according to the source: 1) field stones that are random in shape and sizes and are usually 

used for infill between two walls; 2) rubble stones that are strong rocks (e.g., granite) and are used 

in undressed walls with irregular texture and thick mortar joints, and; 3) quarry stones that are 

more workable (e.g. sandstones) and are used in walls with regular texture and thin mortar joints. 

Stones perform well in compression but are weak in tension. Usually, they show a wide-ranging 

of mechanical properties that depends on the type and age of elements. 
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2.1.2 Levels of Experimental Testing on Masonry Walls 

The variations of construction types of masonry buildings lead to the necessity for performing a 

wide set of experimental tests on masonry walls to determine the properties of each material used, 

and the behavior of structural elements within the building that contributes to the overall response 

mechanism. Tests on bricks and mortar conducted according to MKS standards were performed 

by Churilov & Dumova-Jovanoska, (2012). Geometrical measurements of brick units were done 

to calculate the unit weight and degree of porosity. A compression test on two bricks glued with 

cement was performed considering four array sets shown in Figure 2.2. An average compression 

strength of 10.8MPa, 4MPa, 6.4MPa and 6.1MPa on, respectively was obtained. Another test was 

conducted on cube shaped units and higher compression resistance was shown. A flexural tensile 

strength test is also carried out, but very low values reaching 0.9MPa mean average resulted from 

the four sets tested. For these tests, the mortar specimens were cured for 28 days and tested for 

tensile and compressive strengths using lime mortar as a common material for historical buildings, 

and cement mortar as reference samples. A significant difference in the results showing a very 

weak strength in tension and compression for lime mortar samples was obtained.   

 

Figure 2.2: Prism test using two bricks (Churilov et al., 2012). 

As part of the EUCENTRE project, characterization tests (Magenes et al., 2010) were conducted 

on specimens replicating the undressed double-leaf stone masonry walls that were typical for full-

scale buildings. These tests included the vertical compression test and diagonal compression test 
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that were used to extract the elastic and plastic properties of the wall due to flexural and shear 

forces, respectively. The mechanical properties vary according to the through-wall connections, 

the material properties, and the construction quality considering the heterogeneity of the geometry 

and the material. Six specimens were chosen for each test with different dimensions after being 

cut from a large wall cured for 75 days (according to strength tests done on mortar cured for 

different days). Transducers were installed on specimens to calculate the strain in different 

direction (horizontal, vertical, transverse), while some specimens were set-up for compression 

forces applied vertical (vertical compression tests) and others for lateral forces to measure the 

diagonal compression. It was noticed that the test results were scattered, but still plausible in terms 

of comparison with other tests and codes such as Eurocode 8 and the Italian code. Within the same 

experimental campaign on masonry walls, an in-plane cyclic shear test (Magenes et al., 2010) have 

been conducted on five sample walls divided between two slenderness ratios corresponding to 

slender and squat piers, and two levels of axial loads corresponding to different number of stories. 

The diagonal shear failure was dominantly controlling the crack formations in most of the 

prototypes. Strength parameters, displacement capacities, and hysteretic energy dissipation 

properties were extracted to quantify the behavior of the piers. A bending rocking behavior 

occurred in the first slender specimen built with stronger mortar, without any evidence for sliding 

phenomenon taking place in any wall. Also cracks where correlated with the drift ratios showed 

an almost linear relation with an ultimate failure at a crack of 4-5mm.  

A quasi-static cyclic load test was performed on two types of spandrels to compare their behavior 

(Graziotti et al., 2014). A test set-up was prepared to simulate the boundary conditions in the real 

prototypes. A full-scale H-specimen was loaded vertically and uplifted at the right pier to provide 

a statically determined model of a base rotation specimen. A compression force was provided to 
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the spandrel to simulate the action of steel ties. Two specimens were recognized one with thick 

and one with thin lintel beneath the spandrel. By increasing the drift (uplifting the pier) and 

applying a quasi-static cyclic load it resulted data to plot the shear-displacement diagram as well 

as the failure mechanism realized. In the first specimen (thick lintel) the spandrel showed diagonal 

shear failure with increase of shear forces till the end of the test. An elasto-plastic behavior was 

stated with well-defined yielding point. In the second specimen (thin lintel) a more diffusive 

diagonal shear failure was observed, with a sudden drop in the shear forces due to the dislocation 

of units which continued to a 70% drop at the end of the test. Obviously, the think lintel helped 

increased the energy dissipation in the spandrel beam. 

In addition to the work done on spandrel samples under quasi-static cyclic loading and using the 

same set-up, two H specimen walls were tested to observe their behavior under seismic load                

(Graziotti et al., 2012). Both H walls have the same thick lintel beneath the spandrel. The first 

specimen was tested without any horizontal compression forces on the spandrel, while the second 

H wall specimen was tested considering a compression force applied on the spandrel that was 

decreased during the test. The first H wall showed flexural failure during the monotonic increase 

of drifts with cracks distributed along the interface between the spandrel and the piers. Plotting the 

shear force-displacement diagram, it shows a sudden drop in the forces at a certain point after 

starting the quasi-static cyclic loads due to the deboning of the lintel after reaching its friction 

limit. After that, the shear demands remained constant till the end of the test. The second H wall 

showed a diagonal shear failure with increase in the shear demands indicating a higher strength 

and more energy dissipation. 
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2.2 Modeling and Analysis of Masonry Buildings under Seismic Loads 

2.2.1 Modelling Approaches 

Stone masonry buildings are known for their vulnerability when subjected to ground motions as 

they lack the required seismic design and suffer from random architecture, which leads to irregular 

load distribution and induced eccentricity. All these experimental lab tests are used to determine 

the elastic and plastic properties of the masonry elements that will be assigned to the structural 

model while simulating the behavior of a full-scale masonry building. It is important to build such 

models to study the seismic response of masonry structures. These results will contribute to 

enhancements in the design codes, rehabilitation decisions, and prediction of seismic responses   

during future events. Using data from experimental tests the numerical model can be calibrated for 

analysing real masonry building structures. Many modeling approaches were proposed through 

the years (Lourenco, 2002). It is important to stress that each method has an advantage over the 

others. Examples of potentials models are: 

• Discontinuum models include detailed micro-modeling or simplified micro-modeling that is 

carried on through interface finite elements or discrete elements. This approach holds a large 

quantification burden due to the large amount of data assigned to the model, which means time 

consumption, and large probability of error; however, it can be used for small structures when 

all the data are available and good software is used.  

• Continuum models include finite elements where detailed mesh is utilized to better simulate  

the behavior of structural elements and the failure mechanism. This method uses lumped 

masses, beam elements (equivalent frames), and macro-elements as 2D and 3D models, 

respectively. This method can be used for practitioners to obtain good response estimation if 
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the model is adequately calibrated though it has some uncertainties due to many assumptions 

taken.  

Lourenco (2002) proposed to model parts of the structure rather than the full structure; to avoid 

the use of 3D modeling for the whole structure as it might impose several uncertainties, and to skip 

the linear elastic analysis that does not describe the plastic deformation of masonry buildings. The 

discontinuum modeling techniques are rarely used in practice as it requires detailed information. 

In the following chapters, the continuum modeling techniques will be used. 

2.2.2 Collapse Mechanisms in Masonry Buildings  

Observing the types of failure in the stone masonry structures subjected to lateral loads, (Andrea, 

2015) and (Magenes, 2006) distinguished three failure modes that occur due to a structural 

composition of the building: 

• The first mode is the partial failure of multi-leaf masonry walls due to the poor connection 

between the layers which is normally associated with the collapse of the external leaf.  

• The second mode is the local failure, which is due to out-of-plane stresses in a particular 

member of the structure. This happens when a good bond between the layers of the multi-leaf 

wall exists; however, bad connections (wall-wall & wall-floor/roof) between the members 

exist. 

• The third mode is the global failure that is activated due to the connections between the 

members that allows in-plane stresses to develop, which is transferred through the elements.  
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The global response of the masonry building can show a complex behavior which involves the 

interaction between the walls and the diaphragms and thus requires advanced knowledge on 

modeling procedures followed to simulate such output. 

2.2.3 Types of Analysis  

There are four types of analysis defined for the design and assessment of masonry buildings using 

the displacement-based procedures (Abrams, 2001): 

• Linear Static analysis: application of equivalent static loads through calculating the demand 

base shear on the building corresponding to the fundamental period. It allows only the elastic 

behavior of the material. This is the simplest method used which does not account for the non-

linear behavior of the structure thus overestimating the loads that will provide the same 

maximum displacement. 

• Linear Dynamic analysis: application of dynamic loads using modal response spectrum and 

calculating the peak responses using the CQC methods. It allows only the elastic behavior of 

the material, which does not account for the non-linear behavior of the structure thus 

overestimating the loads that will provide the same maximum displacement. 

• Non-linear Static analysis (Pushover): application of equivalent static loads described above 

while allowing the response to reach the plastic behavior of the material until failure. The 

fundamental period will change during the plastic behavior that can be accounted for using 

different types of load distribution. A control node must be selected. A final load displacement 

curve is obtained that allows to determine the displacements at yielding and failure 

corresponding to the base shear.    
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• Non-linear Dynamic (Time History) analysis: application of dynamic loads using time history 

ground motions which make the response highly sensitive to the changes in these records (that 

is why the use of multiple records is recommended). A precise simulation of the degradation 

parameters during the loading and unloading cycles must be assigned to the model to perform 

such analysis. If the input criteria are assigned correctly to the model, an accurate response is 

generated. 

From the literature, several studies considered the pushover and time history analyses to 

investigate the response of masonry structures. 

2.2.4 Modeling Examples and Comparisons  

To build an accurate model, one should be able to simulate the response of the masonry structure 

expressed in terms of lateral displacement / interstorey drift, floor acceleration, and types of failure 

mechanisms as follows: 

• Floor accelerations and displacements at positions determined within the building height such 

as the top floor level and other floors. These data allow to build the force-displacement curve 

that determines the limits and the stiffness degradation due to energy dissipation. 

• Limits and failure loads experienced by the structures causing the yielding displacements, 

usually correlated with the first initiation of cracks and ultimate displacements. 

•  Failure mechanism that defines the crack initiation and propagation through the structural 

elements representing different mechanisms within the global response such as the 

bending/rocking, diagonal shear, and sliding shear according to their location in the elements. 
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Finite elements modeling is based on the idea of providing a continuum mesh of elements using a 

homogenization technique to transfer the diversity of masonry wall materials into similar particles 

with connections. Betti et al. (2014) used the ANSYS code to build a FE (finite element) model 

representing a two-story masonry building with wood diaphragm. The non-linear behavior 

simulates an elasto-plastic curve with brittle failure in tension resulted from non-linear static 

pushover analysis. The method was able to simulate the cracking initiating load, the failure 

mechanism, and the failure load, which provides important criteria about the stiffness degradation. 

However, the FE model could not reproduce the floor accelerations at the top of the building 

leaving a gap in the modal characteristics of the structure. This deficiency in the results is mainly 

due to the complications in the input data, which requires a high level of accuracy in the finite 

element modeling procedures. For the same building, a macro-element model was built assuming 

a rigid spandrel beam where the deformations are only allowed in the piers while rotations at the 

level of the floors are restrained. This type of macro-modeling technique overestimates the 

resistance due to the existence of flexible diaphragm which allow rotations in the real case 

scenario. The model was able to capture the failure loads and the accelerations at the top of the 

building; however, it could not simulate the failure mechanism. The study thus suggested to use 

both the FE model and the macro-model to attain a full response simulation data. 

In the guidelines for the PERPETUATE project (Lagomarsino and Cattari, 2015) in Europe that 

focused on historical buildings, a pushover analysis was suggested using the macro-element 

modeling as a global approach for simulating the behavior of these structures. Major points are 

presented for the modeling procedures:  
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• Proper choices of the seismic load patterns such as: uniform (proportional to the mass), 

proportional to mode shapes, pseudo triangular (proportional to mass x height), adaptive load 

pattern (load updated at each step according to the non-linear response). 

• Control node selection to determine the convergence of numerical results. 

• Identification of representative displacement curve (pushover curve) that determines the 

capacity of the structure with respect to the base shear. 

Special recommendations were given in case of flexible diaphragms and the use of time history 

analysis is recommended for confirming the results. A study conducted on a six-story unreinforced 

masonry building in Bosnia and Herzegovina (Ademović & Oliveira, 2012) aimed to simulate the 

response of this typical construction built in the 1960’s, using finite element and macro-element 

modeling techniques. The building has concrete bearing walls in the underground basement level 

which opens the door to mixed construction simulation models that is still beyond the scope of this 

research. Providing the mechanical and geometrical properties, the two models were built using 

two different commercial software and studied by means of pushover and time history analysis. 

The building experienced a damage initiation at the ground floor due to stiffness difference 

between the concrete and the masonry elements that was simulated using both models. Comparing 

the capacity curves, the macro-models showed a little bit higher stiffness and ultimate force within 

a reasonable difference. Presenting the large computational burden required by the finite element 

model with respect to the slight difference in response and dynamic properties shows that the 

macro-modeling is a plausible approach to be used in the modeling of masonry buildings. 

Cardoso et al. (2005) studied the Pambalino building structure located in Lisbon downtown. The 

building was made with internal wooden truss member representing interior walls and the floors, 
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and exterior walls were irregular calcareous masonry walls. Two types of nonlinear deformations 

are modelled to simulate the response of the structure. The cracking of the masonry leading to a 

ductile behavior, and the failure of the connections between the wooden truss and the exterior floor 

leading to brittle behavior. An iterative method was performed using 3D linear dynamic analysis 

in SAP2000. In each step, the stiffness was changed and reductions in the connections is applied 

with respect to the anticipated collapse mode. Using a long period ground motion, the building 

showed failure in the connections starting from the upper floor, which resulted in a local failure of 

the facade. This technique is adequate to locate the weak links responsible for local failure 

mechanism. However, inaccurate results might be obtained because the ground motion duration/ 

the number of ground motion cycles were not captured in the analysis and the energy dissipation 

by members cannot be calculated using the hysteretic loops because of the iterative procedure. 

This method cannot be used for regular masonry texture where the nonlinear behavior of the joints 

must be considered. 

2.2.5 Example of damage assessment of URM churches  

A study conducted on 700 churches in the L’Aquila after the earthquake in 2009 (Lagomarsino, 

2012) showed good results in terms of detection of failure mechanisms and pointing out the 

vulnerability of masonry structures. This vulnerability assessment mainly allows for building a 

relationship between the input seismic forces and the occurring damage in a way to make a 

common phenomenon or failure mechanism between a common type of construction. This study 

yields a damage index that helps in the comparison between similar buildings and provides a direct 

hint about the collapse severity. Identifying the macro-elements based on the crack propagation in 

the façade, roof, apse, and the belfry of investigated churches is an important step for modeling 

these structures. In illustration of failure mechanisms, it was necessary to provide a damage grade 
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ranging between 0 (least damage) to 5 (complete damage) that reflects the condition of the macro-

element. Separating each failure mechanism alone and adding the damage on macro-elements due 

to all possible failure modes yields the damage index ranging between 0 (least damage) to 1 

(complete damage) which displays the average damage condition of each church. Using the survey 

records from many structures and adding the data to a specialized database allowed for the 

generation of the vulnerability index Iv ranging between 0 (least damage) to 1 (complete damage) 

that forms a correlation between the damage level of the building and the macro-seismic intensity 

of the ground record thus building the vulnerability curves and matrices. These data are used for 

emergency condition assessment of buildings and the decision making considering the future 

retrofitting procedures with the help of built structural models. Results from macro-seismic 

intensity effects shows the vulnerability of churches for high intensity ground motions as well as 

for low intensity ground records indicating the spread of damage even for areas far from the 

epicenter of the earthquake.  

The ground motion of L’Aquila earthquake showed a short duration with 95% release of energy 

within less than 10 seconds. The fault shaking hit at a shallow depth of 10 km, which caused an 

intense shaking limited to certain zones of the region where local seismic amplifications are 

realized affected by the soil texture and the site conditions. Also, the vertical component of the 

earthquake appears in such cases which can cause crushing of the vertical piers in the churches 

and the loss of stability in the domes that are damaged in more than 80% of the cases.  

Most of the churches under the survey goes back to the Middle Ages mainly formed of a single 

nave and a rectangular façade. After the 1703 earthquake in the same area, simple repairs took 

place for these structures including partial reconstruction of certain members, partial 

reconstruction using material familiar at that time, enlargements in the internal and external rooms, 
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or even performing an entire rebuilt project of the churches due to extreme damage. These 

modifications lead to increased vulnerability of the building due to the formed discontinuities 

between different members because of the enlargements, and reduced stiffness with the amplified 

height of the walls. Another type of construction for latter buildings was realized to include 

wooden ties inserted within the masonry units and anchored externally using metal plates to 

prevent the local failure of the connections and the central parts of long span walls weakened by 

openings and characterized by their medium sized irregular layout. Also, the roofs were fixed to 

the walls by means of wooden keys to activate the in-plane behavior. However, a major 

deterioration problem appears to invade the structures due to decay in wood elements and the effect 

of mass amplification resulting from reinforced concrete and steel constructions that increases the 

vertical demand and causes uneven distribution of stresses on the walls. In Summary, the most 

common failure mechanisms observed are as follows (Lagomarsino, 2012): 

• Overturning mechanism of facade walls is usually characterized by local out-of-plane behavior 

that happens at any height of the wall. In case of many churches in L’Aquila, the failure occurs 

in the unconnected regions either due to lack of internal lateral or roof external wooden ties. 

Another common phenomenon is the collapse at the upper portion such as gables due to the 

less friction resistant because of less compression forces. Although a discontinuity between 

lateral walls is realized due to difference is the masonry types used at the corners which 

prevents the transfer of forces, the lateral wooden ties still activate in-plane stresses within the 

wall where fractures lines are realized. However, this resistance system is deteriorated enough 

with short overlaps in some cases causing it to lose its affectivity before the overturning of the 

whole wall in one shot. Some walls are strengthened used concrete covering that increases the 
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stiffness and prevent partial failure of the wall transferring the stresses into the base columns 

that could either take the lateral loads or overturn. 

• Roof strengthening interventions using solid, thick, and rigid concrete slabs replacing the 

wooden trusses has negative effects on the behavior of structures. Heavy slabs have the 

tendency to slide over the walls, causing dynamic amplifications with the increase of the 

demand especially at the top of the building. Thus, the activated in-plane stresses are 

transferred to the lateral walls and the facade, which might not be able to carry these loads and 

leads to wider damage area. Usually, this damage is limited to local area in the case of weaker 

connections and prevents the uplift of the gable adding compressive stresses that might crush 

the masonry units. For these reasons it is recommended to substitute this strengthening 

technique with less rigid and lighter trusses. 

• Collapse in apses that represent the oldest part of the church built with large, squared stones, 

is quiet a common technique in such structures. An external leaf failure mechanism was 

activated in certain cases due to the followings: i) the weak connections with the internal 

leaves, ii) the presence of pilasters that divided the wall in different portions, reducing the bond 

and creating discontinuities, and iii) the addition of vertical stresses due to concrete 

interventions at the roof. 

• Belfries that could be either plane or 3D bell cells formed of piers and arches are the most 

vulnerable elements in churches due to their positioning at the highest location of the building 

which provide high sensitivity for seismic shakings. Limited strengthening interventions in 

such structural elements can lead to hinge formations while preventing the overturning, 

however using stiffer strengthening can lead to rigid behavior and concentrate the damage in 

the piers which is not recommended.  
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An important asset of this survey (Lagomarsino, 2012) was to determine the macro-elements that 

are activated during ground motion events. These elements with the material tests performed in 

the lab or on site will contribute to calibrate or develop software that is able to model such 

structures to assess the behaviour and quantify the damage from a performance-based evaluation 

approach. The classification of structural elements is an important step to determine the 

appropriate modeling technique considered. 

2.3 Probabilistic Model Using Bayesian Networks and Machine Learning 

2.3.1 Probability in machine learning 

The aim of machine learning is to automate the process of understanding and predicting data with 

minimal human interference. Basically, the process relies on a general function with different 

parameters and variables that need to be inferred in the best fit approach to explain our data. 

Probability  in machine learning is deemed efficient due to the large uncertainty level in the 

information  about an engineering problem (Ang and Tang, 1975). The less we know about our 

subject, the more useful the probabilistic approach in acquiring that information. In the field of 

unreinforced stone masonry structures, the degree of uncertainty substantially increases due to the 

higher number of unknown factors needed to construct the model. Therefore, it is very reasonable 

to seek this approach in solving this problem whether to validate predictive capacity formulations 

or to enhance the seismic performance of URM walls. 

2.3.2 Bayesian Interpretation  

Bayesian interpretation (Pearl, 1988) of the probability of an event depends on prior data which 

allows the modification of the outcome with the obtainment of new information. A useful tool that 

relies on this concept is BayesiaLab Software (Conrady and Jouffe, 2015) which utilizes the 
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probabilistic approach in Bayesian networks to create acyclic models (Nielsen and Jensen, 2009). 

To understand the Bayes Rule (Gelman et al., 2013), it is important to get familiar with the 

conditional probability, marginal probability, and joint probability.  

Pr (
𝐸1

𝐸2
) =

Pr⁡(𝐸1𝐸2)
Pr⁡(𝐸2)

⁄ ,⁡⁡⁡⁡⁡⁡⁡Pr⁡(𝐸2) ≠ 0.                                                                         (2.1) 

 

This relationship can be derived from a simple Venn diagram illustrated in Figure 2.3 that shows 

the connection between two sets of events within a common sample space. The probability of 

occurrence of event E1 conditioned on E2 is thus inferred as the probability of intersection between 

these two events divided by the probability of E2. This is also referred to as the Product Rule.  

 

Figure 2.3: Venn diagrams for two set of events E1 and E2 

Expanding the Product Rule will give us the Bayes Rule. The relationship between any two 

variables in the Bayesian network will thus follow this rule. The probability of Ei and the 

probability of A are the marginal probabilities based on the collected data whether directly from 

the field or through a calibrated deterministic model. Once the connection is established between 

the variables it develops the conditional probabilities that can be interpreted in both directions. 

 

 

E1 E2 

Conditional Prob. Joint Prob. Marginal Prob. 
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Pr (
𝐸𝑖

𝐴
) =

Pr (
𝐴

𝐸𝑖
) . Pr⁡(𝐸𝑖)

Pr⁡(𝐴)
⁄                                                                                                (2.2) 

 

 

Figure 2.4: The connection between parent and child nodes creating the conditional probability. 

In Figure 2.4, a connection is drawn between the two variable Ei and A. Referring to Ei as the 

parent node, it shall contain the marginal probabilities of Ei. A is the child node, which is 

dependent on the parent node Ei, thus it will contain the conditional probabilities of A/Ei. P(Ei) & 

P(A/Ei) are collected based on given data and human expertise. In most cases the desired 

information is the probability of Ei/A or P(Ei/A) which is calculated using the Bayes Rule shown 

previously. The marginal probability of A or P(A) can be calculated using the following 

mathematical procedure: 

Pr(𝐴) = ∑ Pr (
𝐴

𝐸𝑖
) . Pr⁡(𝐸𝑖)

𝑛
𝑖=1                                                                                                    (2.3) 

 

The Summation Rule stated above, which is also referred to as the marginalization constant, can 

be inferred from the Venn diagram in Figure 2.5 containing the two set Ei and A. 

Ei A 

Posterior Prob. Evidence 

Conditional Prob. Prior Prob. 

Pr⁡(𝐴𝐸𝑖) 
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Figure 2.5: The intersection of the two sets Ei and A and the application of product rule 

According to Fig. 2.5, the probability of A can be stated as: 

P(A) = P(A∩Ei) + P(A∩~Ei)                                                                                                       (2.4) 

given that set ~Ei = 1 – Ei or the complementary set to Ei. We can also express the joint 

probabilities as follows: 

P(A∩Ei) = P(A/Ei) x P(Ei)                                                                                                          (2.5) 

P(A∩~Ei) = P(A/~Ei) x P(~Ei)                                                                                                    (2.6)                                                              

Substituting the equations, we can get the probability of A as: 

P(A) = P(A/Ei) x P(Ei) + P(A/~Ei) x P(~Ei)                                                                               (2.7) 

Those values can be easily calculated relying on the Complementary Rule in probability given that 

the sets are collectively exhaustive. 

2.3.3 Independency and the Chain Rule 

Correlation does not mean causation. More factors should be considered to validate the causality 

between the variables under examination. For any interpretation of information within a set of 

data, to be valid, it must pass the non-bias check through the random selection of samples and the 

independency of the events through conditional ignorability. To elaborate on that, the Neyman 

Rubin model (Sekhon, 2009) explains this phenomenon in more details. The random selection of 

Ei A 
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different data can eliminate the bias which might appear if the sample is big enough to represent 

the actual variable. However, this will only create association between the data and not causality. 

A further step is required to form independency between the variables through conditioning on 

certain parameters are selected based on expertise opinion. Independent associated variables can 

thus be said to have causality that is formed by the fact of isolating the testing data set and making 

sure that the variable is changing without any external influence similar to a scientific lab 

experiment.  

This can be represented in the following equation: 

(Yo, Y1)Ʇ T/X                                                                                                                                  (2.8) 

given that Yo and Y1 are the outcomes, T is the input and X is the condition. 

Having satisfied these conditions to ensure the upgrade from association to causation, the Chain 

Rule can now be applied which in terms expresses the joint probability of the set of variables 

within the sample space as the product of the conditional probabilities of each variable. 

Pr(𝐸1𝐸2… . 𝐸𝑛) = Pr(𝐸1 𝐸2⁄ …𝐸𝑛) Pr(𝐸2… . 𝐸𝑛) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= Pr(𝐸1 𝐸2⁄ …𝐸𝑛) Pr(𝐸2 𝐸3⁄ …𝐸𝑛) Pr⁡(𝐸3… . 𝐸𝑛) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= Pr(𝐸1 𝐸2⁄ …𝐸𝑛) Pr(𝐸2 𝐸3⁄ …𝐸𝑛)…Pr(𝐸𝑛−1 𝐸𝑛⁄ ) Pr⁡(𝐸𝑛)                          (2.9) 

In a more practical perspective, the Chain Rule can yield the probability of a set of incidences or 

the applicability of a set of parameters simultaneously. This accounts for a specific condition where 

we know all the observations in our model at a certain time or state. 
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2.3.4 Random Variables: Discrete, Continuous, and Density Functions 

We can identify two types of random variables (Davenport and Root, 1987) within the set of 

observations. The first one is discrete random variables that announce themselves as categorical. 

They represent a finite set of variations that describe each state and can be represented by a 

probability mass function. Another type is the continuous random variables that are a series of 

numbers that are not bounded by determined states and can be represented by a probability density 

function. Relying on the mean and the standard deviation of the set of data, the following equation 

represents the probability density function (PDF) of a univariate normal random variable x and 

parameterized by the mean value µ and the standard deviation σ. This function will be used to 

discretize the data in later stages. 

𝑓𝑥(𝑥) = 𝑁(𝑥; 𝜇, 𝜎2) =
1

√2𝜋𝜎
exp (−

1

2
(
𝑥−𝜇

𝜎
)
2

)                  (2.10) 

Another representation of the continuous data is through the cumulative density function (CDF) 

which sums the probabilities to a maximum value of 1. It is simply the integration of the PDF as 

given in the equation below. 

𝐹𝑥(𝑥) = ∫
1

√2𝜋𝜎
exp (−

1

2
(
𝑥′−𝜇

𝜎
)
2

) 𝑑𝑥′
𝑥

−∞
                   (2.11) 

2.3.5 Discretization Functions 

The analysis of the data is dependent on the discretization process which transform continuous 

variables into a finite number of intervals (Dash et al., 2011). Thus, it would be possible to limit 

the data to a certain number of conditions that is less computationally exhaustive and sufficiently 

representative for the information in the system. Each of the methods listed below has its 
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advantages and disadvantages and therefore its utility depending on the task required to be 

accomplished. 

Equal Distance: it discretizes the data to equal intervals regardless of the amount of information 

present in each. It is a useful tool for variables with same domain variation where the classification 

can be attributed equally over the full range of data. However, this could be a problem in 

representing anomalies due to glitches in the records that needs to be filtered. A more satisfying 

tool in this case could be the Normalized Equal Distance method that removes outliers. 

Equal Frequency: it discretizes the data to intervals with equal amount of information. This is a 

state of absence of knowledge about the conditions characterized by maximum entropy. For this 

reason, this method is only recommended after the structure of the data is already learned. 

K-Means: it discretizes the data using only the targeted variable through generated random K 

means and clustering the data to the nearest mean. The actual mean is then selected based on the 

formed clusters. Then the process is repeated until the generated and the selected means overlap. 

This method is useful when we do not have a target variable such as the case of unsupervised 

learning. 

Tree:  it discretizes the data while taking into consideration the variable at hand and the target 

variable. Therefore, this method creates bias towards the target variable and is useful for supervised 

learning. The thresholds are selected based on the best utility that serves in that direction. 

Those methods will be used in the model to assess the data generated by the deterministic model 

of the pier. The discretization process can highly influence the results of the probabilistic model 

and thus the testing of several trails is important to ensure the use of most practical data based on 

our expertise in the civil engineering structural domain. 
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2.3.6 Mutual Information and Entropy Reduction 

Calculating mutual information (Paninski, 2003) rather than mere correlation overcomes the linear 

limitation of the commonality between the variables. Thus, the relationship does not have to be a 

factor measuring the slope of variation between the information, it can now create a relationship 

for any type of correlation between data depending on the entropy level and the degree to which it 

reduces the uncertainty in the next variable. Then the influence of the variables on a certain target 

node can be specified with less limitations and better representations of the actual data. 

Correlation coefficients describes the linear relationship between two or more variables. If those 

coefficients are zero however, it does not mean that the variables are independent as there are 

nonlinear forms of relationships that can be established. The mutual information coefficients based 

on the calculations of entropy is independent of the type of the relationship and is thus able to 

represent linearity and nonlinearity without any limitations in that regard. The limitations are found 

within the capacity of each probability cell which requires a minimum number of observations per 

variable to produce valid information. There are some tools available in the BayesiaLab software 

to overcome such limitations. The entropy is calculated as: 

𝐻(𝑋) = −∑ 𝑃(𝑥)𝑙𝑜𝑔2𝑃(𝑥)𝑥∈𝑋                      (2.12) 

Here, x is the interval within the selected variable and P(x) is the probability of the interval. The 

second base logarithm is used as the unit of information the software is bit. The Entropy is thus a 

random number that lays on a scale between zero entropy where one interval has all the data and 

maximum entropy where the data is distributed equally between all the discretized intervals. In the 

same manner the conditional entropy for the target variable is calculated as: 

𝐻(𝑋/𝑌) = −∑ 𝑃(𝑥𝑖).𝐻(𝑥𝑖/𝑦𝑖)𝑥𝑖∈𝑋&𝑦𝑖∈𝑌                    (2.13) 
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Using the entropy level determined at the level for variable, it can be used to predict its influence 

on the target variable through calculating the mutual information as: 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 𝑌⁄ )                     (2.14) 

Now simply by dividing the mutual information to the marginal entropy for the predictive and the 

targeted variables, it is possible to calculate the gain in information about the variables and 

therefore estimate the predictive importance of the variables regarding the targeted goal of the 

study. 

2.3.7  Supervised Machine Learning Algorithms 

Supervised machine (Maglogiannis, 2007) learning is focused on a particular direction where the 

purpose of the algorithms is to generate a causal relationship between a number of predictive 

variables and the target variable. Once the model is built, it would be possible to predict the target 

based on the new observations we receive. The are several algorithms that are specific to 

supervised machine learning which differs in the way it handles the variables and their subsequent 

relationships within the network. In here, we will define three functions that are used to study the 

data from the piers. 

Naïve Bayes Network (Chen et al., 2020): the basic function in the Bayesian network that is formed 

of one parent node which is the target node and a set of child nodes which are the predictive nodes. 

This algorithm simply connects the target variable to all the other variables found in the graph. It 

is considered as a first step in understanding the data and acquiring a global view of the model. 

Markov Blanket (Fu and Desmarais, 2010): a function that concentrates on the nodes that predicts 

the behavior of the target variable shown in Figure 2.6. In other words, it contains the nodes that 

can isolate the target node or make it independent by having knowledge of their states. Those 
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nodes are usually the direct parent nodes, the child nodes, and the other parents of the child nodes. 

In this way, Markov Blanket highlights the most predictive nodes thus maintaining the simplicity 

of the acyclic model without having to include the full data set. This could save time and remove 

computational burden off the system. 

Augmented Markov Blanket: it is considered as an extension to the Markov Blanket algorithm that 

applies an additional learning to the connected nodes in the Markov Blanket. This will create 

additional connections between the predictive nodes that are used to identify the target variable 

which will enhance the performance in the model. 

 

Figure 2.6: The nodes included within the Markov Blanket for the target variable shown within the 

circumference of the circle. 

2.4 URM structures in Montreal and Failure Mechanisms 

Stone masonry buildings form the aesthetic of cities and mark the city heritage. Many of these 

building structures are located in active seismic zones and are prone to damage due to their high 

vulnerability to lateral loads and the lack of design criteria at the time of construction (Elmenshawi 

& Shrive, 2015). To rise the safety requirements, building codes are updated regularly and the 

seismic hazard level in many regions of Canada has been increased. For example, only in the last 
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decades, the seismic risk was increased from 10% in 50 years probability of exceedance (NBCC 

1995) to 2% in 50 years probability of exceedance (NBCC 2005). Hence, a significant number of 

existing stone masonry structures are deficient and at risk under potential seismic loading.  

2.4.1 Seismic Data in Montreal 

The Western Quebec region had experienced several major earthquakes distributed as shown in 

Figure 2.7 (NRC, 2015). Most of the larger magnitude shakings ranges between a magnitude of 5 

and 6 on Richter Scale. An earthquake of magnitude 5.9 occurred in Saguenay in 1988 that was 

also felt in Montreal and produced minor damages. The average occurrence of small earthquakes 

(< M4) for this region is estimated to be once every 5 days. 

 

Figure 2.7: The Western Quebec Seismic Zone showing the historical seismic activity in the region 

(NBCC 2015). 

Brought by the industrial revolution in the mid-1800s, more than 54% of the construction in 

Montreal took place between the years 1860 and 1913 with 45% of the available stock having 3 to 

5 stories classified as low-rise structures (Nollet et al., 2004). Most of these buildings consisted of 
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exterior bearing walls and flexible wooden diaphragms. Among Canadian cities, Montreal has a 

great number of stone masonry buildings which are typically low-rise structures built in the 19th 

and the 20th century. According to a study conducted in the Old Montreal area, it was shown that 

more than 44% of buildings are unreinforced masonry structures and represent the dominant 

category among steel and concrete materials (Nollet et al., 2004). Even though Montreal is in a 

moderate seismic zone located on the North American plate, it has witnessed several earthquakes 

in the past and will potentially experience them again in the future.  

According to a study conducted on eight URM walls of 2 meters high and 0.54 meters thick 

(Elmenshawi et al., 2010), the natural period ranges between 0.08 seconds to 0.12 seconds. In 

general, low-rise URM buildings in Quebec can have an average fundamental period of 0.18 

seconds (Abo-El-Ezz et al., 2013). 

The soil classification in Montreal is shown in Figure 2.8. Dominated by Site classes B and C, 

which indicate rock and dense soil sublayers of the earth, some locations in the north of Montreal 

are Site class D (stiff soil). Buildings built on Site classes B and C are less vulnerable to ground 

shaking. 
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Figure 2.8: Soil classifications for Montreal area (Rosset & Chouinard, 2009) 

The low-rise URM building structures are amongst the most vulnerable to the seismic hazards. It 

is evident that the threat from such ground shakings is noticeable on certain spots along the river 

creeks close to Quebec City and Montreal (Figure 2.9). Cities in Canada and particularly in Quebec 

are known for their existing stone masonry buildings and heritage structures.  
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Figure 2.9: Relative seismic hazard in Quebec for 1-2 story structures (NBCC 2015). 

2.4.2 Assessment of Existing Structures Using Macro Modeling Approaches 

2.4.2.1 Modeling Discretization 

Unreinforced masonry (URM) building structures are complex structures due to several reasons. 

The multiple construction phases and the diversity of walls cross sections makes it a large 

challenge to identify the exact mechanical and dynamic properties of those panels (Binda et al., 

2005). Even though destructive and non-destructive tests have been conducted, it is still difficult 

to gather comprehensive data for all the structural components. Thus, using detailed models such 

as micro modeling and finite element techniques will still embed errors in the model that might 

lead to misinterpretation of the results. For this reason such sophisticated models are only 

recommended for small number of masonry constructions (Lourenco, 2002). On the other hand, 

macro models reveal a very useful approach to eliminate the complex details, where most of the 

errors occur, and provide a simplified method to deal with such tasks given that a proper calibration 

has been achieved. Several studies show that macro modeling techniques that use the equivalent 

frame methods are deemed successful to capture the behavior of masonry elements. The equivalent 
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frame method was first proposed by (Tomazevic, 1978). Then, this method was developed into the 

Simplified Analysis Method (SAM) that was proposed by (Magenes and Calvi, 1997b) and refined 

later by (Magenes and Della Fontana, 1998). Figure 2.11 shows a 2D equivalent frame model 

where piers and spandrels follow a predefined constitutive law that is exemplified through bilinear 

up to multi-linear curves depending on the level of precision. Further, Magenes (1999) proposed 

a 3D model to analyse the stone masonry structures. 

 
Figure 2.10: Equivalent frame discretization 

 

The SAM is applicable to masonry walls with regular openings which allows to extract distinctive 

structural elements required to develop the equivalent frame model. The discretization of a 

masonry wall in the effective zones follows the original dimensions of structural elements centered 

within the masonry panels. The length of the element is determined following the method proposed 

by Dolce (1991). The plastic zones are allowed to occur in piers and spandrel beams under the 

gravity load in combination with lateral forces. Illustrated in Figure 2.10, Piers (section BB) are 

the vertical elements considered as the main force resistance components in a masonry wall. 

Spandrels (section AA) are the horizontal beams connecting to adjacent piers responsible for the 
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coupling effect. The connections between piers and spandrels are considered as rigid (section CC) 

as no failure is expected (Bucchi et al., 2013). 

2.4.2.2 Equivalent Frame Modeling Approaches  

Different modeling approaches has been considered to build an equivalent frame that is able to 

simulate the behavior of masonry piers. They can all be summed into two categories: the lumped 

plasticity models and the distributed plasticity models.  Lumped plasticity models tend to define 

the nonlinear properties of the material within a defined hinge that is positioned at a certain fraction 

of the element length. The location is determined based on the mode of behavior associated with 

the element and the stiffness of the section. This could also be affected by the calibration procedure 

following a particular experimental test. For example, a single failure mode interaction surface is 

used to represent the combined failure mechanism defined in hinges located at the center and both 

ends of the elements with an application in SAP2000 (Petrovčič and Kilar, 2013).  Another model 

considers a shear behavior in a hinge defined in the middle of the element and the flexural behavior 

defined at the ends of the element connected with rigid links and utilizing tailored hysteretic laws 

with an application in ABAQUS (Rinaldin et al., 2016). 

The distributed plasticity models disperse the nonlinear properties throughout the element where 

the flexural and shear responses are overlapped within the same section. (Raka et al., 2015) applied 

the force-based element to capture the behavior of URM walls using a fiber section to couple the 

moment-axial interaction with the shear behavior. The force-based element has an advantage of 

preserving the equilibrium between the forces generated from both modes, and limiting the model 

into one element what reduces the number of degrees of freedom (Marini and Spacone, 2006). 

With decent application in OpenSees, the fiber elements account for the moment-axial force 
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interactions while a shear phenomenological law is implemented and coupled with the force-based 

element (Martino et al., 2000).  

2.4.2.3 Modes of Failure 

Failure modes in typical masonry walls fall into two major categories. The shear behavior 

illustrated in diagonal tension failure and the sliding shear failure. The second one is the flexural 

behavior illustrated in rocking failure and the toe crushing phenomenon (Pasticier et al., 2008). 

Demonstrated in Figure 2.12 are the cracking patterns associated with each mode of failure.  

Figure 2.12.a shows the diagonal cracks along the head and bed joints at the interface of mortar 

and unit masonry. Another type is the diagonal cracks through the unit stones that does not happen 

often due to the very weak properties of the used mortar. Diagonal cracks usually take place in 

squat specimens with high level of pre-stress. Figure 2.12.b represents the horizontal cracks along 

the bed joints that is more likely to happen with squat specimens with low level of pre-stress. 

Tianyi et al., (2006) conducted experimental tests on a full-scale two-story building subjected to 

cyclic loads applied on walls with large and small openings. It is noted that shear mechanism 

experienced by squat piers is characterized by brittle behavior with high maximum strength, low 

displacements, and high energy dissipation. 

Rocking failure shown in Figure 2.12.c demonstrates how gaps are formed at the opposite corners 

against the application of the lateral load. This mode of failure occurs with slender specimens at 

low level of pre-stress before the loss of tension resistance due to bending. Toe crushing failure in 

Figure 2.12.d occurs due to high levels of pre-stress on the slender specimen causing it to crush at 

the bottom toe opposite the lateral load. Also, horizontal cracks due to tension and spalling of 

masonry units due to compression can happen. Full scale tests on piers with different aspect rations 

are subjected to in-plane cyclic loads (Magenes et al., 2010). Flexural behavior experienced by 
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slender piers exhibits large displacements, low maximum strength, and most importantly low 

energy dissipation throughout the hysteretic loop.  

 

Figure 2.11: Failure mechanisms that occur in masonry piers due to lateral and vertical loads. a-

Diagonal shear, b-Sliding shear, c-Flexural rocking, d-Toe crushing. 

Masonry panels are characterized with several parameters that contribute to their seismic behavior. 

Small or large openings in walls results in different aspect ratios for piers defined as squat or 

slender specimens as mentioned earlier. The texture of the masonry units can also play an 

important role in the lateral response whether it is shown with smooth surface, irregular with 

partially worked surface, or rubble stones placed irregularly within thick layers of mortar. The 

third parameter is the cross-section of the walls that can range between single-leaf and multi-leaf 

construction with different properties of internal and external layers (Binda et al., 2005). Several 

types of stone masonry are available in the existing historical buildings such as the sedimentary 

rocks being the most popular including sandstones, limestones, clay-stones, etc. Another type is 

igneous rocks including granite-stones (Como, 2013). Mortar influences the strength of masonry 

panels substantially. Tests on rubble masonry panels (Milosevic et al., 2012) showed that the shear 

strength was magnified up to ten times in samples with hydraulic lime compared to those with air 

lime mortar. Dry joints are also used in some construction practices. The influence of scaled 

specimens with different boundary conditions including cantilever or fixed-fixed restrains is also 
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considered (Tomaževič, 2000). Those parameters are controlled by the relative stiffness between 

piers and spandrels. It is more likely to find structures with boundary conditions in between those 

extremities, however it is simpler to adjust the tests for either one. The variations in the number of 

stories in masonry buildings imposes different gravity loads on the wall under examination. Thus, 

a set of pre-stress levels are established for experimental tests. 

2.4.2.4 Example for Equivalent Frame Modal Calibration Using Experimental Tests on Full 

Scale Structures 

Rota et al., (2011) conducted a study based on fragility curves to determine the vulnerability of 

low-rise masonry buildings to earthquakes by comparing the annual probability of damage for 

different prototypes. This work was also reported by Penna (2015). The values of average annual 

damage factor in the descending order where the masonry stone layout, floor condition, and the 

presence/absence of connections between planes is displayed. Masonry buildings with regular 

layout, rigid floors, and with the presence of connections showed the least damage factor indicating 

better resistance to earthquake shakings. Considering these issues in the construction of such 

masonry buildings, the EUCENTER and University of Pavia performed several tests on three full-

scale two-story buildings strengthened in three different levels, using an irregular layout double 

leaf walls with flexible diaphragms. The behaviour of these prototypes is described below. 

• The first prototype, made without any proper strengthening, showed an out-of-plane failure 

that can be fixed using simple procedures for enhancing the connections between the structural 

members. This can be modeled using simple analysis methods where parts of the structure can 

behave separately after being identified through observed cracks or a certain 3D laser scanning 

technique. The material properties are set to be elastic while the plastic behavior is limited to 

the contact interfaces between masonry elements and timber using friction laws during plastic 
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deformation. The out-of-plane behavior seems to be highly controlled by the opening 

distributions and locations. 

• The second prototype was partially strengthened to prevent the local failure mechanism 

activated in the first test. The strengthening included the addition of a steel ring beam at the 

floor level improving slab-walls connections, addition of reinforced masonry beam at the roof 

level improving the roof-walls connections and adding another layer of timber to the roof. This 

strengthening intervention increases the in-plane behavior of the building but still allows for 

flexibility in the horizontal diaphragm.  

• The third prototype was strongly strengthened by casting a concrete slab at the floor level and 

adding anchors through the walls attached to the slab, adding a concrete beam at the roof level, 

and adding multiple layers of plywood to the roof diaphragm. This method allowed for rigid 

behavior of the building. The ground motion selected for the three sample structures was the 

same record of 1979 Montenegro earthquake applied gradually until reaching the ultimate 

response allowing for comparison through different steps.  

The modeling of the 2nd and the 3rd buildings was performed using the Tremuri software launched 

in 2001 by the University of Genoa (Lagomarsino et al., 2013).  Tremuri is a specialized program 

for modeling of masonry structures with flexible diaphragms. Using the concept of equivalent 

frame model implemented in different seismic codes such as Eurocode 8, ASCE/SEI and NTC 

2008 (Italian Building Code), a clear definition of spandrels and piers is presented and used to 

define the 2D wall elements that were assembled with special nodal connections to from the 3D 

model of the building. Also, a versatile modeling of the diaphragm allows the simulation of stress 

and strain distribution that affect the stiffness and the deformations in the floors and the connected 

walls as well. 
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The equivalent frame modelling approach  utilized in the software divides the structural members 

into spandrel beams, piers, and rigid nodes that form the connections between the latter elements 

(Penna et al., 2014). The geometrical discretization used is calibrated based on damage patterns 

from experimental tests where the piers appeared to have the same height of the adjacent opening. 

For the 2nd building, uniform distribution seems to fairly match the initial stiffness, while keeping 

the maximum base shear underestimated. For the 3rd building, uniform distribution overestimates 

both the initial stiffness and maximum base shear in the negative branch. Modal and adaptive 

patterns better estimate the behavior in the 3rd building with almost similar response due to 

existence of only 2 stories that decrease the effect of higher modes.  

2.4.2.5 Application of Equivalent Frame Modal Evaluation for Masonry Building using SAP2000  

The equivalent frame method is a simplified modeling technique that tends to define a micro-

structure such as masonry buildings formed of separated units (masonry and mortar) as macro-

elements connected to form a frame that acts simultaneously with other defined frames to reflect 

the global behavior of the structure. Although the process appears to simplify the complexity of 

the materials, it has been proven valid due to the matching results with experimental simulation 

campaigns performed using this technique. The SAM method appears to have a proper 

implementation in the commercial SAP2000 software (Pasticier et al., 2008) which provides 

facilities for engineers to use it in designs.  

Two main structural elements can be defined within the masonry walls that can form the equivalent 

frame in the model (Bucchi et al., 2013). The vertical piers that represent the principal resistance 

for dead load and seismic load located between the openings, and the horizontal spandrels that 

represents the coupling effect between piers playing a major role in the seismic resistance. 

Different configurations are then executed which depends on the spandrel’s strength in tension. 



 

41 

 

Weak spandrels give cantilever piers, strut spandrels with one tension resisting member gives 

partially coupled piers, and beam spandrels give shear type piers. Considering the global in-plane 

behavior of the structural members in the masonry building, the third configuration is considered 

in the modeling. In SAM modeling method, the piers and spandrels are deformable allowing for 

displacement and rotation which considers the flexibility of the diaphragms giving it an advantage 

over other proposed methods, with rigid connections as no displacements are expected to take 

place in that location. The technique is accepted in various international codes such as 

EUROCODE 8 and the Italian Codes NTC08.  

In a study released by Magenes and Della Fontana (1998), a simplified analysis method for 

modeling masonry walls using spandrels and piers is provided. The modeling technique showed 

good simulation of results obtained from a non-linear finite element analysis proven 

experimentally. Deformable piers and spandrels were assumed with rigid connections. The results 

were able to fairly match the internal forces distribution, the failure mechanism, and the 

displacements especially when a brittle behavior of the spandrels was considered. Using ANSR 

software (Mondkar and Powell, 1977), a limit to rotation was also provided where the load carrying 

capacity is lost beyond it. SAM was proven a good modeling method for brick walls with weak 

mortar joints, which can be used for 3D buildings in the case where no out-of-plane failure is 

expected to happen. However, cyclic tests are required for spandrel beams to extract their 

properties. 

The force displacement behavior of the elements is defined through assigned hinges that simulates 

the plastic deformations while the elastic part is covered by defining the elastic properties to the 

elements directly (Pasticier et al., 2008). Pushover and the time-history analysis are performed 

with two different positioning of hinges along the elements. Shear hinges in the piers are located 
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at the mid-span while the rocking hinges are located at both ends of the piers. In the pushover 

analysis the force displacement curves for the piers are selected to be elastic perfectly plastic with 

brittle failure. For spandrels, the curves are selected to be elastic with brittle failure reaching a 

residual strength equal to quarter the original strength without any limit for displacement. In the 

time-history analysis, the force-deformation backbone is used to represent the behavior of the non-

linear link. The parameters for stiffness degradation are defined based on a separate simulation 

analysis performed experimentally on a brick wall using SAP2000.  

Inter-story drift limits (ISD) where determined based on the EUROCODE on the pushover curve: 

• Yielding point (Limited Damage): ISD/h = 0.007% 

• ¾ of Ultimate displacement (Significant Damage): ISD/h = 0.2% 

• 20% reduction in ultimate strength (Near Collapse): ISD/h = 0.3% 

The limit states have low values due to the brittle properties assigned to the hinges. Considering 

the time history analysis, 14 response spectra are chosen as ground motion input (Pasticier et al., 

2008). There is a big difference in the response between different earthquakes due to different 

response spectra utilized in the analysis. The incremental dynamic analysis (IDA) curves have 

higher shear strength than the pushover curves due to the use of real recorded shaking. The failure 

mechanism captures a weak story in the ground level. 

In summary, several types of existing unreinforced masonry structures (URM) are presented 

showing the different characteristics associated with such buildings. In Montreal, a direct 

association is made with the popularity of low-rise existing structures and the ground records that 

can have major detriment on its lifetime. A brief description of machine learning approaches using 

the Bayesian Networks is presented showing the importance of such tools in data analysis. With 
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the aid of some examples, major failure modes and collapse mechanisms in URM structures are 

identified. Those will be utilized in the next chapters to help understand the behavior of some 

elements and to justify the methods followed to analyze the performance.  
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Chapter 3: Preliminary Parametric Study on the Shear and Flexural 

Capacity Simplified Formulations for URM Walls 

The complexity of analysing the existing unreinforced masonry (URM) structures and the 

uncertainty factor associated with modeling practice makes it difficult to accurately simulate the 

behavior of this structure subjected to earthquake ground motions. A parametric study on the shear 

and flexural behavior of unreinforced masonry elements is performed in the aim of developing a 

correlation between the different characteristics of masonry piers responses and their seismic 

capacity equations. Then, the study focuses on defining the accuracy of the proposed formulations 

used to compute the strength of masonry panels regarding their dominant mode of failure. Four 

shear formulations and five flexural formulations for masonry piers, and seven shear formulations 

for spandrels are utilized to generate the in-plane cyclic experimental data and compare the results 

in terms of divergence ratios. It was found that each proposed equation can specialize in 

determining the lateral shear capacity of URM piers based on a variation of a set of major 

parameters that can highly influence its performance. Data collected from the literature was used 

to model the behaviour and validate the outcomes resulted from analysis to ensure the reliability 

of the formulations and the capability of modelling any type of URM piers and spandrels. 

3.1 Shear and Flexure Dominant Behavior in Masonry Pier Elements  

Simplified capacity formulations for flexural and shear behaviors are used to capture the strength 

of masonry piers. The formulations are tested against the different parameters to evaluate their 

competency for providing accurate results when compared to experimental data. In this work, 

sliding shear behavior is neglected, as the diagonal tension dominates the mode of failure 

associated with shear. In the first part, four diagonal shear formulations are introduced. In the 

second part five flexural formulations are used. Note that rocking and toe crushing are 



 

45 

 

complementary in many scenarios and both formulations are generally used for all cases. Each 

formulation is calibrated based on different experimental setups and leans on a certain factor 

derived from the mechanical properties of assemblages used to estimate the compression, tension, 

and shear strengths. The samples are masonry units assembled in a specific way to serve the 

purpose of the test. The outcomes of those tests function as the characterizations assigned to each 

masonry panel. It is noted that the special signs in the formulas are modified from their sources as 

to unify the equations. 

3.1.1 Diagonal Shear Mode 

The Canadian standard for masonry buildings CSA-S304 (CSA, 2014) suggests a formulation for 

diagonal shear capacity originally for brick and concrete masonry materials. However, the 

effectiveness of this formula, Eq. (3.1), to predict the shear strength in stone masonry will be 

examined.  

𝑉𝑢,1 = (𝑓𝑣𝑏𝑤𝑑𝑣 + 0.25𝑃𝑑)𝛾𝑔                                                                                                                                (3.1) 

Herein, bw is the wall thickness, dv is the effective depth of the piers but should not be less than 

0.8Lw, where Lw is the length of the wall. In addition, ϒg= Ae/Ag is a factor to account for partially 

grouted walls or non-solid units which was considered as 1.0 here because we have solid masonry 

units with full mortar joints where Ae and Ag are the effective and gross cross-sectional area of the 

pier respectively, Pd is the axial compression load on piers equal to 0.9x(dead load + axial load 

due to bending in the coupling beams if is the case). It is important to note here that the effect of 

bending in the beams was neglected in this paper as the additional axial load is minor in low-rise 

structures; however, in must be considered in a more detailed analysis; fv is the shear strength of 

wall assemblages. 
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Turnsek and Cacovic (Turnšek & Čačovič, 1971) suggested another formulation for diagonal shear 

that accounts for the maximum tensile strength at the middle of the pier. It is calibrated based on 

experimental tests performed in Ljubljana, Slovenia, on doubly fixed specimens with single leaf 

walls: 

𝑉𝑢,2 =
𝑓𝑡𝐿𝑤𝑏𝑤

ξ
√1 +

𝜎𝑜

𝑓𝑡
                       (3.2) 

Here, ft is the principal tensile strength, σo is the vertical stress, ξ is a parameter that depends on 

the aspect ratio h/Lw where h is height and Lw is the pier length. The variation of ξ is as follows:  ξ 

=1.0 for h/Lw≤1.0, ξ =1.5 for h/Lw≥1.5, and ξ =h/Lw for 1<h/Lw<1.5.  

Other expression for diagonal shear account on Coulomb criterion where a correction factor 

(Magenes & Calvi, 1997a) which refers to failure in piers with irregular texture that occurs at the 

interface between the mortar and the masonry units is added: 

𝑉𝑢,3 =
𝑐+𝜇𝑠𝜎𝑜

1+𝛼𝑣
(𝐿𝑤𝑏𝑤)                                       (3.3) 

Here, c is the cohesion strength; μs is the friction coefficient; (1+αv) is a correction factor that 

accounts for the boundary conditions at the global behavior of the pier where αv = Ho/Lw and Ho 

is the effective height of the pier to the location of zero moment and σo is the vertical stress 

Lourenco (Lourenço et al., 2005) suggests another formulation for diagonal shear, calibrated based 

on dry-joints regular texture in single-leaf stone masonry walls. The specimens used in the tests 

had a 1000x1000x200mm dimension and were loaded monotonically, while applying different 

vertical load scenarios ranging from 0.15 to 1.25 MPa. The stone units are known as Montjuic 

(locally available in Barcelona) and have the following characteristics: fm = 82.7 MPa, E = 15500 
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MPa, ρ = 25 KN/m3, ft = 3.7 MPa, where fm is the compressive strength of the assemblage and ft 

is the principle tensile strength. 

𝑉𝑢,4 = 𝑃 tan∅ [1 −
ℎ

2𝐿𝑤
tan∅ (

1

1−𝑣
)]                       (3.4) 

Here, P is the vertical force applied on the pier including its own weight; tanØ = μs; v = σo/fm; Ø 

is the angle of the stress lines formed within the pier. 

3.1.2 Rocking and Toe Crushing Flexural Modes 

Using equilibrium at the plastic state of the column behavior, the following equation can be derived 

to account for the rocking flexural mode. The equation is given bellow (Magenes & Calvi, 1997b):  

𝑉𝑢,5 = 𝜎𝑜
𝐿𝑤
2 𝑏𝑤

2𝐻0
[1 −

𝜎𝑜

0.85𝑓𝑚
]                                                                                                                                            (3.5) 

where Lw, bw and Ho are the pier dimensions defined above and σo and fm are the pier’s mechanical 

characteristics. 

For Rocking and Toe-Crushing the following two equations given bellow are provided in FEMA 

356, (2000).  

𝑉𝑢,6 = 0.9𝛼
𝐿𝑤

ℎ
𝑃                                                                                                                                                           (3.6) 

𝑉𝑢,7 = 𝛼𝑃
𝐿𝑤

ℎ
[1 −

𝜎𝑜

0.7𝑓𝑚
]                                                                                                                                              (3.7) 

Here, α = 0.5 for cantilever and α = 1 for fixed-fixed boundary conditions. P is the axial vertical 

force applied on the pier and the other parameters:  Lw, h, σo and fm were defined above. 

Using regression analysis, Lee et al., (2008) modified Eq. (3.7) and derived the following equation 

to capture the toe crushing failure mode:  
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𝑉𝑢,8 = 560𝛼𝑃
𝐿𝑤

ℎ
[1 +

𝜎𝑜

0.5𝑓𝑚
]                                                                                                                                      (3.8) 

Then, Benedetti & Steli, (2008) suggest Eq. (3.9) for capturing the toe crushing failure mode, based 

on the equilibrium of the stresses at the plastic state of the pier. The formulation relies on the 

compressive strength and the ductility index of masonry samples under axial compression to 

compute the width of the compressed zone at the ultimate limit state.  

 𝑉𝑢,9 =
𝑃

𝐻0
[
𝐿𝑤

2
− 𝑗𝛽𝑢]                                                                                                                                                    (3.9) 

where 𝑗 =
3𝐷2−3𝐷+1

6𝐷2−3𝐷
 ,  𝛽𝑢 = 𝜇

𝑃

𝑏𝑤𝑓𝑚
  and  𝜇 =

1

1−0.5𝐷−1 

Here, j is the non-dimensional distance of the stress block centroid to the compressed side 

expressed in terms of D, where D is the ductility index for compressive strength, Βu is the width 

of the compressed zone dependent on the factor µ which is limited to the interval [1 to 2].  

It is noted that the capacity formulations for flexural behavior are expressed in terms of 

compressive strength of masonry samples, unlike the ones for shear behavior that rely on various 

factors such as the shear strength, tensile strength, compressive strength, and the friction 

parameter. 

3.2 Validation of the Formulations 

Experimental data from several tests are utilized to serve as a validation for the formulations 

suggested by the codes and literature. The process for choosing the experiments depends on the 

availability of the data and its ability to serve the purpose of the study. It is required to test the 

effectiveness of the formulations in representing the behavior of masonry panels in terms of 

maximum strength along with the variations of the parameters. Thus, a correlation between the 
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efficiency of each formulation provided above which optimizes the results and increases the 

accuracy of the overall simulation of masonry structures is presented. In-plane cyclic tests are 

utilized as experimental data to extract the maximum shear force capacity of the piers, which is 

generally characterized by shear or flexural cracking patterns. Both failure modes are analyzed in 

the next two sections.  

3.2.1 Experimental Data for Testing the Shear Capacity 

Three following three tests are used to validate the efficiency of formulations for diagonal shear.  

• The 1st  testing data set was collected from experimental tests conducted at the University 

of Pavia and EUCENTRE (Magenes, Penna, Galasco, & Da Paré, 2010). From these tests, 

samples named as A and B were collected.  

• The 2nd  experimental data set was selected from tests conducted at the University of Minho 

Vasconcelos & Lourenço, (2006), where the lateral response of three different typologies 

of walls, labelled WS, WI and WR, were investigated, where WS represents dry walls i.e., 

sawn stones without any mortar, WI represents irregular stones with applied weak mortar, 

and WR sample represents rubble stones with applied weak mortar.  

• The 3rd experimental data set consists of experimental tests on dry-joints masonry panels, 

conducted at the Structural Technology Laboratory of the Technical University of 

Catalonia, Barcelona Lourenço et al., (2005), using samples labeled as SW, was selected.  

A summary of the preliminary mechanical properties of the aforementioned samples are listed 

in Table 3.1. As mentioned before the values must refer to masonry assemblages or masonry 

wallets. For this reason, modified values for the compressive strength are calculated to obtain 

the correction values from prism tests. 
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Table 3.1: Preliminary mechanical parameters for masonry assemblages 

Specimen fm [MPa] Modified fm [MPa] fv [MPa] ft [MPa] µ c [MPa] 

A, B 3.28 3.28 0.197 0.137 0.65 0.35 

WS 73.00 65.7 N/A N/A 0.65 0.00 

WI 7.00 7.00 0.17 0.12 0.63 0.36 

WR 5.00 5.00 0.16 0.11 N/A N/A 

SW 52.00 36.62 N/A N/A 0.62 0.00 

Regarding the 1st experimental data set, for samples A and B, the values of the cohesion strength, 

c, and the friction coefficient, μs were chosen based on Elmenshawi & Shrive, (2015). In-plane 

cyclic shear tests were performed on squat pier A1 and A2 with aspect ratio h/Lw = 1 and slender 

piers B1 and B2 with aspect ratio h/Lw =2. Two vertical stresses values as 0.2MPa and 0.5MPa 

were applied to represent different number of stories. The boundary conditions on the piers 

resembles those in the full-scale tests, thus calculations will be relevant to its position in the full-

scale building. The value of the effective pier height Ho is calculated following the work of Lang 

Lang, (2002), who used the relative stiffness between the piers and spandrels. Note that Ho is equal 

to 0.5h in case of cantilever and equal to h in case of fixed-fixed boundary conditions. Samples A 

and B use double leaf wall sections with some through stones resembling a typical construction in 

Italy using partially worked natural stones from Bergamo, originating from calcareous sedimentary 

sandstones, having fm = 165-172 MPa, ρ = 2579 Kg/m3, ff (flexural strength) = 19 MPa and 

modified mortar from a pre-mixed natural hydraulic lime by adding sand at a ratio of 2 Kg sand to 

11 Kg mortar resulting in an average fm = 1.71-1.78 MPa after 28 days curing. 

Regarding the 2nd experimental data set, samples WS, WI and WR have the same geometry 

obtained from the average of 24 samples. The unit masonry used to build the walls are two-mica 

medium coarse granite meant to represent the ancient constructions in Northern Portugal. Three 

settings of vertical stresses are used on each type of the piers, for reflecting different loading 

scenarios listed as: 0.5MPa, 0.875MPa and 1.25MPa. Boundary conditions are set as cantilever 
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using steel rollers resulting in Ho = h. The values for fm are based on prism tests Vasconcelos & 

Lourenço, (2009) for WS prototypes and modified for WI and WR to fit the numerical simulation. 

Using correction factors from (CSA, 2014) gives a new  diagonal shear value of 65.7MPa for WS 

prototype. Values for shear and tensile strengths are calculated according to the formulas extracted 

from diagonal shear tests based on the maximum shear and principle stresses fv = 0.707xP/Ag and 

ft = 0.5xP/Ag (ASTM 519-02, 2002) and (RILEM, 1994). It is important to note that the pier 

samples are scaled 1:3 of the actual walls found in heritage buildings which can affect the results. 

Regarding the 3rd experimental data set, samples SW are composed of 7 walls with 4 different 

vertical stress levels: 0.15PMa, 0.5MPa, 1MPa and 1.25MPa. The stone units used are Montjuic 

Stone being a local material of Catalonia and characterized by a homogenous surface with unit 

compressive strength of 82.7 MPa, density of 25 KN/m3, and unit tensile strength of 3.7MPa. A 

monotonic loading was applied on all the specimens with fixed-fixed boundary conditions limiting 

the effective height Ho to 0.5h = 500mm. Two walls were tested for each vertical stress level except 

the highest one. The friction parameter was extracted from direct shear tests applied on the same 

unit stones (Lourenço & Ramos, 2004) to be 0.62 and the cohesion strength was taken as zero due 

to the absence of mortar. The compressive strength of prisms built using the same unit stones 

(Oliveira, 2003) are used to obtain the compressive strength of the walls depending on the 

correlation made by Krefeld, (1938) that defines correction factors for compressive strength of 

solid brick masonry due to the variation in the height/thickness ratio of the samples used. The four 

stones prisms with hp/bw = 2 have an average compressive strength of 52MPa while the tested 

walls have an h/bw = 5 which gives a correction factor of 1.42 that modifies the compressive 

strength of the walls to fm = 52/1.42 = 36.62MPa.  
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For all aforementioned tests, the specimens’ geometry (Lw x h x bw) and vertical stresses (not 

including own weight) are given in Table 3.2. The results from experimental tests for maximum 

shear capacity, Vu, yielding displacement (Δy1) and ultimate lateral displacements (Δu1) are also 

presented. All the samples are loaded using the displacement-based mode until failure occurred; 

Δu1 is the ultimate displacement of the pier and Δy1 is the yielding displacement of the pier extracted 

from experimental data. In specimens A and B, the only variables are the geometry and the vertical 

stresses which makes it valid to limit the comparisons for those two. 

Table 3.2: Geometry, vertical stresses, and capacity results from the experimental tests on piers 

Specimen Geometry 

[mm] 

Vertical 

Stress 

[MPa] 

Vu 

[KN] 

Failure Mode Δy1 [mm] Δu1 

[mm] 

A1 2500x2500x320 0.2 126.0 DS 
(diagonal shear) 1.62 9.60 

A2 2500x2500x320 0.5 202.0 DS 1.82 7.85 

B1 1250x2500x320 0.2 44.0 DS 1.22 17.00 

B2 1250x2500x320 0.5 83.0 DS 2.96 9.35 

WS1 1000x1200x200 0.5 36.9 DS 2.87 32.70 

WS2 1000x1200x200 0.875 62.9 DS 3.36 32.31 

WS3 1000x1200x200 1.25 86.3 DS 4.29 32.31 

WI1 1000x1200x200 0.5 37.6 DS 2.83 37.40 

WI2 1000x1200x200 0.875 55.7 DS 3.29 29.20 

WI3 1000x1200x200 1.25 83.0 DS 3.59 25.66 

WR1 1000x1200x200 0.5 36.4 DS 2.71 33.97 

WR2 1000x1200x200 0.875 63.8 DS 3.81 24.15 

WR3 1000x1200x200 1.25 66.0 DS 2.94 10.28 

SW30.1 1000x1000x200 0.15 22.0 DS 3.00 17.00 

SW30.2 1000x1000x200 0.15 23.0 DS 3.00 17.00 

SW100.1 1000x1000x200 0.50 42.0 DS 2.50 13.00 

SW100.2 1000x1000x200 0.50 49.0 DS 2.50 12.50 

SW200.1 1000x1000x200 1.00 72.0 DS 4.00 16.00 

SW200.2 1000x1000x200 1.00 69.0 DS 4.00 12.50 

SW250 1000x1000x200 1.25 102.0 DS 2.50 9.00 

The results from the experimental loading tests are then transformed into bilinear curve properties 

to facilitate the modeling procedure of these piers. In samples WS, WI and WR the texture and 

the vertical stresses are the main variables and thus their influence on the lateral behavior will be 
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considered. Specimens SW have four different levels of vertical stresses using same texture as WS 

thus it will be used as a confirmation for the results. 

To determine the displacements of the piers, drift ratio limits from recent design codes for masonry 

construction are used to evaluate their accuracy and their practicality in terms of representing the 

masonry lateral behavior. The yielding displacement values, Δy1, are calculated from FEMA 356, 

(2000) using drift limit 0.075-0.1%, while the ultimate displacements Δu1 are calculated using drift 

limit 0.4% for shear failures extracted from NTC08, (2008) and EN08-3, (2005). Using the 

mentioned codes, specimens A and B of 2500mm heights show yielding displacement of Δy = 

2.5mm and ultimate displacement of Δu = 10mm. Samples WS, WI and WR of 1200mm height 

show Δy = 1.2mm and Δu = 4.8mm. The approximate experimental displacements of the piers in 

samples SW are extracted from the graphs (Oliveira, 2003) where the yielding values corresponds 

to the end of the linear phase and the ultimate values corresponds to shear capacities after 20% 

decay from the maximum shear developed in the wall. Following the codes mentioned earlier and 

given the height of 1000mm, it results Δy = 1.0mm and Δu = 4.0mm.  

Applying the preliminary mechanical properties on the four formulations provided in Eqs. (3.1), 

(3.2), (3.3) and (3.4), the results obtained for all specimens are shown in Table 3.3. The 

displacement ratios are calculated from dividing the experimental results by the ones obtained 

from the codes. The divergence index values obtained through dividing the experimental shear 

capacities by the numerical ones are also presented. 
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Table 3.3: Results of maximum shear, ultimate and yielding displacement ratios and shear capacity ratios 

resulting from the formulations. 

Specimen Vu,1 

[KN] 

Vu,2 

[KN] 

Vu,3 

[KN] 

Vu,4 

[KN] 

Vu/Vu,1 Vu/Vu,2 Vu/Vu,3 Vu/Vu,4 Δy1/Δy   Δu1/Δu 

A1 123.10 188.20 145.68 89.72 1.02 0.67 0.86 1.40 0.65 0.96 

A2 155.80 248.40 199.94 178.99 1.30 0.81 1.01 1.12 0.73 0.79 

B1 76.10 62.74 75.01 20.29 0.58 0.70 0.58 2.17 0.49 1.70 

B2 108.50 82.82 102.94 31.57 0.76 1.00 0.81 2.60 1.18 0.94 

WS1 N/A N/A 31.39 41.93 N/A N/A 1.18 0.88 2.39 6.81 

WS2 N/A N/A 53.55 71.28 N/A N/A 1.17 0.88 2.80 6.73 

WS3 N/A N/A 75.71 100.44 N/A N/A 1.14 0.86 3.58 6.73 

WI1 34.70 46.59 63.15 39.55 1.08 0.81 0.60 0.95 2.36 7.79 

WI2 44.83 58.49 84.63 64.60 1.24 0.95 0.66 0.86 2.74 6.08 

WI3 54.95 68.34 106.11 86.74 1.51 1.21 0.78 0.96 2.99 5.35 

WR1 33.01 44.26 N/A N/A 1.10 0.82 N/A N/A 2.26 7.08 

WR2 43.13 55.72 N/A N/A 1.46 1.15 N/A N/A 3.18 5.03 

WR3 53.26 65.20 N/A N/A 1.24 1.01 N/A N/A 2.45 2.14 

SW30 N/A N/A 14.47 14.94 N/A N/A 1.55 1.51 3 4.25 

SW100 N/A N/A 43.40 44.63 N/A N/A 1.05 1.02 2.5 3.19 

SW200 N/A N/A 84.72 86.56 N/A N/A 0.83 0.81 4 3.56 

SW250 N/A N/A 105.40 107.32 N/A N/A 0.97 0.95 2.5 2.25 

Samples A and B show good correlation to some extent regarding the displacement ratios where 

most of the numbers are close to one validating the drift limits offered by the codes except in 

specimen B1 which diverge from the experimental results by extra 70% for ultimate displacement 

and 50% short for the yielding displacement. This could be justified by the fact that this slender 

specimen experienced a flexural behavior at the beginning of the lateral shaking before 

transforming into shear behavior and failing as so. Flexural behavior tends to be more flexible and 

allows more displacement estimated by the codes to have drift limit of 0.6%. Substituting this 

value will give a drift limit at ultimate displacement Δu = 15mm which is a more reasonable answer 

compared to the experimental results. The divergence values from the CSA formulation in Eq. 

(3.1) show good correlation with squat piers especially for low vertical stresses; hence providing 

a feasibility index of 1.02. Eq. (3.2) shows excellent correlation with the slender pier with high 

vertical stresses with an index of 1.00. Eq. (3.3) can simulate good values for the squat pier with 

high vertical stresses with an index of 1.01. Finally, Eq. (3.4) has better simulation for the shear 

capacities for the squat piers especially for high vertical stresses with an index of 1.12. 
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Samples WS, WI and WR are numerated 1 to 3 referring to the increased level of vertical stresses 

on the piers. The dominating failure mode is in the form of stepped diagonal cracks along the 

masonry-mortar interface which is the mode represented by the proposed formulations. Some of 

the specimens develop mixed failure modes including diagonal shear and flexural rocking at the 

bottom which will be tackled in the case of divergence of the results. The flexural failure in certain 

specimens is considered as outliers and their values were neglected. Some missing values for 

masonry assemblages limit the analysis to certain formulations depending on the required 

parameters. A substantial divergence index value in the results of yielding and ultimate 

displacements are noticed, which could be due to the scaling factor. Regarding the divergence 

index for shear capacity ratios, Eq. (3.4) shows fair correlation with the WS prototypes with a 

maximum of 14% difference from the experimental results. It also shows better simulation for the 

WI prototypes reaching a maximum of 96%. Not much difference was observed between different 

levels of vertical stresses on the piers. Eq. (3.3) shows fair results for the WS prototypes with a 

maximum divergence index of 18% and less fair results for the WI prototypes reaching 40% 

divergence index for lower level of stresses and 22% divergence index for the maximum level of 

stress. Eq. (3.1) shows a big variation within the levels of stresses imposed on the piers. For WI 

prototypes, the divergence index increases with the increase of the vertical stresses ranging 

between 8% and 51%. As for the WR prototypes, the best simulation is obtained for the lowest 

vertical stress and the weaker is obtained with the second level of vertical stress. Equation (3.2) 

shows similar divergence index for the lowest and highest vertical stress levels corresponding to 

WI prototype, while it shows a good simulation for the middle level reaching the index of 95%. 

As for the WR prototype the best simulation is for the highest level of vertical stress. 
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For WS samples, a step diagonal crack indicating a diagonal shear failure was observed in all the 

specimens. Coulomb criterion and Lourenco formulation have very similar values of capacity 

shears through the different vertical stress levels available. A 50% divergence index is realized at 

0.15MPa vertical stress level and a 20% divergence index for 1.00MPa vertical stress level. The 

simulation of shear stress level at 0.5MPa and 1.25MPa, respectively, showed good matching, 

reaching 97% in some samples. As for the displacement ratios, again a large divergence in the 

results was obtained like the previous tests due to the scaled dimensions of the available specimens.  

Graphical representation of the data acquired by the tests versus the ones obtained from the shear 

capacity formulations are plotted to enhance the visualization of the information. The comparisons 

will take place within each graph individually assessing the influence of vertical stress variations. 

Another comparison is between similar graphs with one variable to understand its influence on the 

results. Also, comparisons between graphs from different experiments if justified with enough 

similarities is used to include additional parameters.    

Samples A1 and A2 represent the full-scale squat piers with irregular or partially worked texture. 

According to Fig. 3.1a, Coulomb criterion seems to have the best simulation for the experimental 

data (samples A1 and A2) with perfect match at 0.5MPa vertical stress. Equation (3.2) shows 

higher values while Equation (3.4) shows lower results. CSA formulation gives a good match for 

0.2 MPa vertical stress followed by a low slope of variation in shear capacity compared to the rest 

of the data. In Fig. 3.1b is depicted the response of samples B1 and B2, representing the full-scale 

slender piers with irregular texture. CSA and Coulomb criterion show similar results both being 

higher than the experimental data. Equation (3.4) appears to have a wide divergence in the results 

being lower than the experimental data. Equation (3.2) shows a good match at 0.5 MPa but higher 

values at 0.2 MPa vertical stress on the pier. It is noticeable that the formulations perform better 
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with squat piers since those with more slenderness lean towards the flexural behavior which is 

evident in sample B1. 

The samples WS, WI and WR represent scaled squat piers with sawn, irregular and rubble textures, 

respectively. In Fig. 3.1c is depicted the shear and tensile strength of WS dry walls (stones without 

any mortar) using Coulomb and Lourenco et al. equations; the other equations are not used due to 

the limit for dry stones pier. Both formulations deviated from the experimental curve with values 

more accurate at 0.2MPa. 

Figure 3.1d shows the variation of shear capacities of proposed formulations in comparison to the 

experimental values for the for WI specimens. As depicted, the shear capacity using Eq. (3.4) 

provides good values compared to the experimental for vertical stresses of 0.5MPa and 1.25MPa. 

Conversely, Eq. (3.2) simulates well the results for the middle vertical stress level at 0.875MPa. 

Meanwhile, Eq. (3.1) also gives good shear results at 0.5MPa vertical shear, while it diverges for 

high stress values. Then, the shear computed using Eq. (3.3) provides much greater value than 

experimental data. 

Figure 3.1e shows shear capacity of specimens WR computed according with Eqs. (3.1) and (3.2) 

against the shear capacity resulted from experimental tests. The other equations are not used due 

to the lack of friction criteria and compressive strength of rubble textures in the literature. As 

depicted, Eq. (3.1) gives good simulation for shear at 0.5MPa and less accurate for 1.25MPa and 

0.875MPa in comparison with the experimental values. Conversely, the shear computed with Eq. 

(3.2) gives good results for 1.25MPa and diverges for 0.875MPa and 0.5MPa stress values. 

Figure 3.1f displays the graph for SW samples that are scale with sawn texture and dry joints. Eqs. 

(3.3) and (3.4) provide close results for shear capacities when comparing with shear values from 
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experimental tests associated with 0.5MPa and 1.25MPa vertical stresses, while it diverges slightly 

for 0.15MPa and 1MPa stresses. 

The information regarding the most common parameters collected based on the selected samples, 

as well as the ratios of shear resulted experimentally and that calculated using equations are 

presented in Table 3.4. The first four parameters provided in columns (1) – (4) are labeled primary 

parameters and these parameters are: (1) aspect ratio = pier height, h, divided by the width, Lw, (2) 

TR = texture of the unit stones used in the piers, (3) VS = Vertical Stress excluding the own weight 

and, (4) SC = scale of pier specimen. The following set of four parameters from (5) to (8), labeled 

secondary parameters, are: (5) BC = boundary conditions, (6) CS = cross section of the wall 

sample, (7) UST = unit stone material type depending on the origin and, (8) MT = mortar type 

depending on its strength. Although these parameters are considered as minor, they will be 

accounted in the analysis even if the conclusion about their influence is not conclusive. The last 

four columns represent the ratio of shear of sample from test to that resulted from the perspective 

of each formulation. The divergence factor (DF) is used to assess the overall performance of each 

equation regarding a major parameter, while the equation is provided below. 

𝐷𝐹 = ∑ |𝑉𝑢 𝑉𝑢,𝑖 − 1⁄ |𝑛
1 /𝑛                                                                                     (3.10)                       

where n is the number of samples and i is the number of the equation. 
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(a)  

 
(b)  

 
(c) 

 
d) 

 

e)  

 

f)  

Figure 3.1: a) Shear capacities versus vertical stresses for specimens A1 and A2 b) B1 and B2 c) WS 

prototypes d) WI prototypes e) WR prototypes f) SW prototypes. 

Using Eq. (3.1), given in CSA/S304, it shows better results with lower vertical stress levels based 

on the comparison of the major set A1 and A2 for an aspect ratio of 1.0, as per column (1). 

However, for an aspect ratio of 2 associated with samples B1 and B2, the formulation shows better 
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results with higher stress levels. Beholding the major sets A1 and B1, as well as, A2 and B2 

suggests that the CSA/S304 equation, Eq. (3.1), provides better results for aspect ratio of 1, 

especially at lower levels of stress.  

Table 3.4: Variation of capacity shear indices and divergence factors in terms of the different parameters 

for each specimen 

Spec. h/Lw
 TR VS SC BC CS UST MT Vu/Vu1 Vu/Vu2 Vu/Vu3 Vu/Vu4 

(1) (2) (3) (4) (5) (6) (7) (8) (9.1) (9.2) (9.3) (9.4) 

 Primary Secondary Indices 

A1 1 IR1 0.2 FS4 RL6 DL9 SS11 W14 1.02 0.67 0.86 1.40 

A2 1 IR 0.5 FS RL DL SS W 1.30 0.81 1.01 1.12 

DF         0.16 0.26 0.08 0.26 

B1 2 IR 0.2 FS RL DL SS W 0.58 0.70 0.58 2.17 

B2 2 IR 0.5 FS RL DL SS W 0.76 1.00 0.81 2.60 

DF         0.33 0.15 0.31 1.39 

WS1 1.2 SW2 0.5 S5 C7 SL10 G12 DJ15 N/A N/A 1.18 0.88 

WS2 1.2 SW 0.875 S C SL G DJ N/A N/A 1.17 0.88 

WS3 1.2 SW 1.25 S C SL G DJ N/A N/A 1.14 0.86 

DF         - - 0.16 0.13 

WI1 1.2 IR 0.5 S C SL G W 1.08 0.81 0.60 0.95 

WI2 1.2 IR 0.875 S C SL G W 1.24 0.95 0.66 0.86 

WI3 1.2 IR 1.25 S C SL G W 1.51 1.21 0.78 0.96 

DF         0.28 0.15 0.32 0.08 

WR1 1.2 RB3 0.5 S C SL G W 1.10 0.82 N/A N/A 

WR2 1.2 RB 0.875 S C SL G W 1.46 1.15 N/A N/A 

WR3 1.2 RB 1.25 S C SL G W 1.24 1.01 N/A N/A 

DF         0.27 0.11 - - 

SW30 1 SW 0.15 S FF8 SL SR13 DJ N/A N/A 1.55 1.51 

SW100 1 SW 0.5 S FF SL SR DJ N/A N/A 1.05 1.02 

SW200 1 SW 1 S FF SL SR DJ N/A N/A 0.83 0.81 

SW250 1 SW 1.25 S FF SL SR DJ N/A N/A 0.97 0.95 

DF         - - 0.2 0.19 
1 Irregular texture referring to unit stones partially worked. 
2 

Sawn texture referring to unit stones fully worked. 
3 

Rubble texture referring to random shape unit stones.  
4 

Full scale specimen based on a typical stone masonry construction. 
5 

Scaled specimen based on a typical stone masonry construction. 
6 

Boundary conditions resembling actual construction practices. 
7 

Cantilever or fixed-free boundary conditions and 8 Fixed-fixed boundary conditions. 
9 

Double-leaf cross section wall and 10 Single-leaf cross section wall.  
11 

Sandstone; 12 Granite and 13 Siliceous rocks. 
14     

Weak mortar and 15 Dry joints. 

Referring to samples: WI1, WI2, WI3, WR1, WR2, and WR3 that have an aspect ratio of 1.2, it 

shows that Eq. (3.1) provides better results as the level of vertical stresses decreases. Major sets 
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such as: WI1 and WR1; WI2 and WR2; WI3 and WR3, where the variations between irregular and 

rubble textures is considered, indicate very similar results at lower stress levels and divergence in 

the results at higher stress levels with no privilege for any category. 

Observing the set A2 and WI1 with irregular texture and close aspect ratios, it allows an 

enhancement in the results for the WI1 sample from a 1.3 to 1.08 shear ratio index. This shows 

that the secondary parameters can influence the results. The DF = 0.16 for samples A1 and A2 

which shows that Eq. (3.1) given in CSA/S304 better represents the full-scale squat piers. 

The major sets A1-A2 and B1-B2 illustrate that Eq. (3.2) shows better results with higher vertical 

stress levels. Moving to major sets A1-B1 and A2-B2, the results are enhanced for samples with 

an aspect ratio of 2 versus aspect ratio of 1 especially at high vertical stress levels. Major set WI1, 

WI2, WI3 shows good correlation of results at mid vertical stress levels while the major set WR1, 

WR2, WR3 indicates better results at high pre-stress levels. Major sets WI1-WR1, WI2-WR2 

and WI3-WR3, considering the variations between irregular and rubble textures have very similar 

behavior as Eq. (3.1). Observing the minor set A2-WI1 it shows the same results indicating minor 

effect of secondary parameters when using Eq. (3.2). The DF = 0.11 for the samples WR indicates 

that it best represents the rubble texture. 

Eq. (3.3) gives better results for higher vertical stress levels referring to the major sets A1-A2 and 

B1-B2. While comparing the major sets A1-B1 and A2-B2 it is evident that the performance of 

Eq. (3.3) is more compelling for aspect ratio of 1. For major set WS1, WS2, WS3 the performance 

is better as the level of vertical stress increases. The same behavior is associated with the major 

sample WI1, WI2, WI3. Observing the major sets WS1-WI1, WS2-WI2 and WS3-WI3 it 

imposes a better performance of the formulation regarding the sawn samples versus the irregular 
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samples. The major set SW30-SW100-SW200-SW250 shows good results for 0.5MPa and 

1.25MPa vertical stress levels, fair performance for 1MPa and poor performance for 0.15MPa. The 

minor set A2-WI1 illustrates a big advantage to the sample A2. Minor sets WI1-SW100 and WI3-

SW250 shows better results for the SW samples. This indicates that the secondary parameters have 

great influence on the performance of the Coulomb criterion. The DF = 0.08 for samples A1 and 

A2 shows a good correlation with the squat piers. 

Eq. (3.4) has more accurate results at high vertical stress levels referring to the major set A1-A2. 

A greater divergence in the results is indicated by the major samples A1-B1 and A2-B2 that shows 

a poor performance with slender piers. Major sets WI1, WI2, WI3 and WR1, WR2, WR3 shows 

very similar shear ratio indices for different vertical stress levels on the piers. Observing the major 

sets WS1-WI1, WS2-WI2 and WS3-WI3 imposes a better performance for the irregular texture 

compared to the sawn texture. The major set SW30, SW100, SW200, SW250 shows similar 

behavior to Eq. (3.3). The minor set A2-WI1 indicates a slight advantage for the sample WI1. The 

minor sets WI1-SW100 and WI3-SW250 shows better results for the SW samples. This indicates 

that the secondary parameters have a small influence on the performance of the Coulomb criterion. 

The DF = 0.08 for the WI samples shows a good correlation with the irregular texture. 

3.2.2 Experimental Campaign for Flexural Capacity 

Experiments from five testing programs are used to validate the proposed formulations used to 

predict the maximum shear force resulting from flexural behavior of the piers. The first data 

collection is from tests conducted at the University of Brescia, Italy (Silva et al., 2014); hence 16 

samples split between FS-NI and FS-I series were collected. The second testing program selected 

was conducted by Lee et al., (2008) using 7 samples referred to as the H series in this work. The 

third experiment program selected was performed at the École Polytechnique Federale de 
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Lausanne laboratory (Petry & Beyer, 2015a) using two samples named as the P series. The fourth 

are ten samples selected from the experimental campaign at the ZAG Laboratory (Bosiljkov et al., 

2003) that are averaged into four samples named as Sample 10 series and Sample 11 series 

(Bosiljkov & Tomaževič, 2006). The last samples are selected from the EUCENTRE and Pavia 

University Lab experimental campaign (Magenes et al., 2008b) as part of the ESECMaSE Project 

(Magenes et al., 2008a) regarded as the CL and CS series. The mechanical properties of the 

samples are extracted from preliminary characterization tests associated directly with the main 

campaign or inferred from similar typologies found in the literature. The results are listed in Table 

3.5 including the compressive strength of the masonry walls wallets fm and the densities of the 

masonry units ρs used in the construction of the walls. 

Table 3.5: Preliminary mechanical parameters for masonry assemblages 

Specimen fm 

 [MPa] 

ρs 

 [kg/m3] 

ρf1  

[kg/m3] 

ρf2 

 [kg/m3] 
FS-NI (Silva et al. 2014) 2.49 2660 2263 - 

FS-I    (Silva et al. 2014) 4.89 2660 2263 - 

S-NI   (Silva et al. 2014) 2.41 2660 - 2216 

S-I     (Silva et al. 2014) 4.28 2660 - 2216 

H       (Lee et al. 2008) 4.38 - - - 

P      (Petry & Beyer, 2015) 5.87 901 - - 

10A, 10B (Bosilijkov et al.2003) 4.05 901 - - 

10C  (Bosilijkov et al.2003) 4.25 901 - - 

11A  (Bosilijkov & Tomazevic 2006) 4.21 901 - - 

CL6 (Magenes et al., 2008a) 10 901 - - 

CS    (Magenes et al., 2008b) 6.2 1852 - - 

Three-leaf specimens from the first campaign are used to assess the effect of mortar injection or 

strengthening on the behavior of the masonry piers. Thus FS-I samples denote the full-scale 

injected piers while the FS-NI stands for the full scale non-injected piers as a control. Same 

samples are scaled to a factor of 2:3 represented by the S-NI and S-I referring to the scaled non-

injected and scaled injected piers respectively. Each series has four samples, each with different 
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vertical stress level. The outer layers of the walls are built using three types of stones with irregular 

texture: red stone, regular white and irregular white where their average density ρs = 2660 kg/m3. 

A natural hydraulic lime (NHL) weak mortar is initially used to fill the head and bed joints then a 

stronger NHL mortar is used for the strengthening through injection. The inner layer is made of 

limestone fragments and mortar with a density ρf1 = 2263 kg/m3 for the non-injected specimens 

and ρf2 = 2216 kg/m3 for the injected specimens. The boundary condition of all the samples is 

cantilever or fixed-free with a generally consider low aspect ratio. The major parameters that can 

be analyzed are the vertical stress level, the scaling factor and the effect of the mortar injection. 

Seven H samples are built in the second campaign using clay masonry units or bricks. Three 

different cross sections are utilized differing between 1 leaf, 2 leaf and half-leaf walls. Cement 

mortar with medium strength is used in the head and bed joints. All the samples have a cantilever 

boundary condition. Prism test within the same experimental tests yielded an fm = 6.18MPa which 

is then modified for a wallet sample using modification factors (Krefeld, 1938) to give fm = 4.38 

MPa. Two vertical stress levels are used on the piers to account for the floor levels in the buildings 

under examination. Four aspect ratios are available in those samples: squat, two slender and flat.  

Specimens P3 and P4 are built using Swiss hollow clay masonry and cement based mortar (Petry 

& Beyer, 2015b). Two levels of vertical stress levels are used with a boundary condition 

resembling weak coupling due to weak restraints applied by the relatively low stiff spandrel on the 

adjacent piers. In this case Ho = 1.5h and the pier is considered as a cantilever (Petry & Beyer, 

2014a). The 1-leaf walls are built with masonry units of density ρs = 901 kg/m3 (Petry & Beyer, 

2014b) using the full scale scheme.  

At the ZAG Laboratory two typologies are considered in the case study. Samples 10-A, 10-B and 

11-A are fully mortared which indicates the placement of the medium strength mortar throughout 
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the head and bed joints. Sample 10-C has only applied mortar in the bed joints. All samples are 

full scale built using clay brick masonry units. The boundary conditions are cantilever. The main 

parameters that can be analyzed from those samples are the vertical stress levels and the typology 

(Frumento et al., 2009). 

At the EUCENTRE Laboratory sample CL6 is selected. The sample was built using clay masonry 

with doubly fixed boundary conditions thus making Ho = 0.5h. The pier has a slender aspect ratio 

with a compressive strength fm = 10MPa. Another four samples are selected built using calcium-

silicate masonry units iterated between two aspect ratios (slender – squat) and two boundary 

conditions (cantilever – doubly fixed). The walls have a compressive strength fm = 6.2MPa and 

density ρs = 1852 Kg/m3 (Graziotti et al., 2016). The parameters regarding the vertical stress levels, 

boundary conditions for slender and squat piers and the aspect ratio for cantilever and doubly fixed 

piers can be inferred from this experiment.  

The geometry of the specimens and the experimental results for the shear and ultimate 

displacement capacities are presented in Table 3.6. It is important to note that the gravity loads 

exclude the own weight of the walls that needs to be calculated using the densities of the masonry 

units mentioned earlier, except for the H series where the own weight of the walls is already 

included in the given values. Most of the specimens had the rocking failure mode followed by toe 

crushing mode, while some samples experience both modes. Another case is when the pier 

experiences flexural and shear failure patterns due to sudden loss in strength during the lateral 

shaking. Those samples are indicated to have a hybrid cracking pattern as illustrated in Table 3.6. 

The geometry of the piers is listed as Lw x h x bw that are used to calculate the volume and the 

aspect ratio. The ultimate displacements was compared to the values proposed by (EN08-3, 2005) 

for the flexural behavior of the piers. The following equation Δu = (0.008Ho/Lw) x h is utilized to 
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calculate the ultimate displacement for all the selected samples in this study. The ratios of the 

experimental to the numerical ultimate displacements are presented in Table 3.7 along with the 

maximum shear capacity generated from the Eqs. (3.5), (3.6), (3.7), (3.8) and (3.9). Also, the ratios 

of the experimental to numerical maximum shear capacities are listed below to highlight the 

accuracy of the formulations. Values closer to one have the best correlations. Ratios that are within  

Table 3.6: Geometry, vertical stresses, and capacity results from the experimental tests on piers 

Specimen Geometry [mm] Stress [MPa] Vu [KN] Failure Mode Δu1 [mm] 

FS-NI-0.5 1000x1200x500 0.50 74.67 R1 10.50 

FS-NI-0.75 1000x1200x500 0.75 76.00 H2 4.00 

FS-NI-1 1000x1200x500 1.00 116.00 H 7.00 

FS-NI-1.25 1000x1200x500 1.25 104.00 TC3 3.00 

FS-I-1 1000x1200x500 1.00 172.00 R 22.00 

FS-I-1.25 1000x1200x500 1.25 208.00 R 18.00 

FS-I-1.5 1000x1200x500 1.50 214.67 R 7.00 

FS-I-2 1000x1200x500 2.00 257.33 R 7.80 

S-NI-0.5 800x1000x330 0.50 28.00 R 5.50 

S-NI-0.75 800x1000x330 0.75 68.00 R 7.00 

S-NI-1 800x1000x330 1.00 53.33 R 7.00 

S-NI-1.25 800x1000x330 1.25 73.33 R 6.50 

S-I-1 800x1000x330 1.00 89.30 R 19.00 

S-I-1.25 800x1000x330 1.25 102.67 R 14.00 

S-I-1.5 800x1000x330 1.50 102.67 R 8.90 

S-I-2 800x1000x330 2.00 117.30 TC 6.20 

H1 2700x2700x190 0.086* 84.14 R 50.72 

H2 2700x2700x190 0.250* 136.12 R, TC 43.92 

H3 2700x2700x90 0.250* 103.75 R, TC 29.70 

H4 2700x2700x250 0.250* 138.57 R, TC 59.12 

H5 1200x2700x190 0.250* 35.89 R 77.55 

H6 1800x2700x190 0.250* 63.43 R, TC 53.35 

H7 3600x2700x190 0.250* 195.84 R, TC, SL4 40.70 

P3 2010x2250x200 1.04 121.00 R 15.53 

P4 2010x2250x200 1.54 145.00 H 7.88 

10-A 1028x1511x300 0.60 59.00 R 26.90 

10-B 1028x1511x300 1.19 107.00 R 11.79 

10-C 985x1508x300 1.19 109.99 R 12.37 

11-A 2567x1750x297 0.59 290.00 R 23.98 

CL6 1250x2600x300 0.50 84.5 R 50.70 

CS5 1250x2500x175 1.00 96.2 R 43.20 

CS6 1250x2500x175 1.00 41.3 R 44.20 

CS7 2500x2500x175 1.00 218.8 R 30.10 

CS8 2500x2500x175 1.00 155 R 21.00 

1R: Rocking    2H: Hybrid   3TC: Toe Crushing   4SL: Sliding 

*Pre-stress values for H specimens include the own weight of the walls. 
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20% divergence from the experimental results are present in samples FS-NI-0.5, S-I-1.5, CS6 and 

CS8. Only a small portion out of the 34 samples available in this study gave good results, which 

indicates that the estimation provided by EC8 is limited to certain application and cannot be 

generalized for most unreinforced masonry lateral displacements.   

Table 3.7: Results of maximum shear, ultimate and yielding displacement ratios and shear capacity ratios 

resulting from the formulations. 

Specimen 
Vu,5 

[kN] 

Vu,6 

[kN] 

Vu,7 

[kN] 

Vu,8 

[kN] 

Vu,9 

[kN] 
Vu/Vu5 Vu/Vu6 Vu/Vu7 Vu/Vu8 Vu/Vu9 Δu1/Δu 

FS-NI-0.5 85.8 99.5 79.1 178.8 85.0 0.87 0.75 0.94 0.42 0.88 0.91 

FS-NI-0.75 104.1 146.4 86.6 244.9 107.4 0.73 0.52 0.88 0.31 0.71 0.35 

FS-NI-1 110.2 193.2 90.3 314.2 118.4 1.05 0.60 1.28 0.37 0.98 0.61 

FS-NI-1.25 104.0 240.1 67.9 387.3 118.4 1.00 0.43 1.53 0.27 0.88 0.26 

FS-I-1 164.4 193.2 152.4 243.3 165.7 1.05 0.89 1.13 0.71 1.04 1.91 

FS-I-1.25 186.8 240.1 168.4 289.8 191.1 1.11 0.87 1.24 0.72 1.09 1.56 

FS-I-1.5 203.0 287.0 176.9 337.4 210.7 1.06 0.75 1.21 0.64 1.02 0.61 

FS-I-2 216.5 380.7 170.9 436.1 232.7 1.19 0.68 1.51 0.59 1.11 0.68 

S-NI-0.5 42.5 49.9 39.1 124.1 42.3 0.66 0.56 0.72 0.23 0.66 0.55 

S-NI-0.75 51.5 73.7 44.4 171.0 53.3 1.32 0.92 1.53 0.40 1.28 0.70 

S-NI-1 54.0 97.5 41.9 220.0 58.4 0.99 0.55 1.27 0.24 0.91 0.70 

S-NI-1.25 50.2 121.2 31.5 272.5 57.5 1.46 0.61 2.33 0.27 1.28 0.65 

S-I-1 78.8 97.5 72 175.6 80.2 1.13 0.92 1.24 0.51 1.11 1.90 

S-I-1.25 88.2 121.2 77.7 210.7 91.2 1.16 0.85 1.32 0.49 1.13 1.40 

S-I-1.5 93.9 145.0 79.0 246.8 98.9 1.09 0.71 1.30 0.42 1.04 0.89 

S-I-2 94.5 192.5 68.4 322.4 104.2 1.24 0.61 1.71 0.36 1.13 0.62 

H1 21.6 19.85 21.4 61.1 21.6 3.90 4.24 3.92 1.38 3.90 2.35 

H2 59.8 57.7 58.9 111.7 60.2 2.27 2.36 2.31 1.22 2.26 2.03 

H3 28.3 27.3 27.9 76.9 28.5 3.66 3.79 3.72 1.35 3.64 1.38 

H4 78.3 75.9 77.5 128.1 79.2 1.77 1.82 1.79 1.08 1.75 2.74 

H5 11.8 11.4 11.6 33.1 11.9 3.04 3.15 3.08 1.08 3.02 1.60 

H6 26.6 25.7 26.2 60.8 26.8 2.39 2.47 2.42 1.04 2.37 1.65 

H7 106.4 102.6 104.8 171.9 107.0 1.84 1.91 1.87 1.14 1.83 2.51 

P3 150.0 171.3 141.1 222.3 153.1 0.81 0.71 0.86 0.54 0.79 0.51 

P4 192.6 252.2 173.8 303.4 199.5 0.75 0.58 0.83 0.48 0.73 0.26 

10-A 52.9 57.9 50.4 108.0 53.8 1.12 1.02 1.17 0.55 1.10 1.51 

10-B 82.1 113.6 72.7 185.1 85.6 1.30 0.94 1.47 0.58 1.25 0.66 

10-C 77.5 104.5 69.2 170.9 80.5 1.41 1.04 1.58 0.64 1.35 0.67 

11-A 284.3 304.9 269.1 359.4 285.9 1.02 0.95 1.08 0.81 1.01 2.51 

CL6 88.6 84.9 87.31 131.8 89.0 0.95 0.99 0.97 0.64 0.95 2.34 

CS5 91.7 103.0 86.9 179.2 93.5 1.05 0.93 1.11 0.54 1.03 2.16 

CS6 45.9 51.5 43.4 89.6 46.8 0.90 0.80 0.95 0.46 0.88 1.11 

CS7 366.9 412.0 347.4 506.8 374.1 0.60 0.53 0.63 0.43 0.58 3.01 

CS8 183.4 206.0 173.7 253.4 187.0 0.84 0.75 0.89 0.61 0.83 1.05 
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Regarding the FS-NI full scale non-injected specimens, Eq. (3.7) gives good simulations for low 

vertical stress levels at 0.5MPa and 0.75MPa. For higher vertical stress levels at 1.0MPa and 

1.25MPa Eqs. (3.5) and (3.9) provide suited ratios with less than 5% divergence from the 

experimental results. Equation (3.6) provides results with around 50% divergent, while this 

percentage increase as the vertical stress levels increase. Eq. (3.8) is not able to simulate the 

experimental results. Full scale injected specimens FS-I had better ratios in general compared to 

non-injected ones. It is noted that Eq. (3.9) is suitable at all vertical stress levels with a divergence 

factor ranging between 2%-11%. Then, Eq. (3.5) provides a good match for vertical stress levels 

1.0MPa, 1.25MPa and 1.5MPa, while Eqs. (3.6) and (3.7) show fair ratios for vertical stress level 

1.0MPa and divergence factor increases as the vertical stress levels increase. Herein, Eq. (3.8) 

shows better match than previous samples. 

Moving to the scaled non-injected specimens S-NI, hardly any formulation is able to capture the 

shear capacity at 0.5MPa vertical stress level with Eq. (3.8) having the closest result with a 

divergence of 28%. At 0.75MPa vertical stress level, Eq. (3.6) gives the best ratio of 0.92. Then, 

Eqs. (3.5) and (3.9) show good simulation of the experimental results at 1.0MPa vertical stress 

level with ratios 0.99 and 0.91 respectively, while Eq. (3.8) is not able to provide good simulation. 

For the scaled injected specimens S-I, Eq. (3.9) provides good match at all vertical stress levels 

and Eq. (3.5) shows good simulation at all vertical stress levels except for 2.0MPa, where the 

divergence reaches 24%. Further, Eqs. (3.6) and (3.7) gave fair results for 1.0MPa and 1.25MPa, 

while the divergence increases as the pre-stress levels increase. However, Eq. (3.8) shows high 

divergence in comparison to the experimental values.  

It is important to note that the experimental campaign from which the H samples are selected is 

the one used for the calibration of Eq. (3.8); thus, it is expected to give good results in regard to 
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this portion. As deemed evident from the ratios in Table 3.7, all the formulations provide high 

divergence ratios except for Eq. (3.8) that gives fair results for samples H1, H2 and H3 and very 

good simulations for samples H4, H5, H6 and H7. The experimental values selected for this work 

are based on the positive displacements of the piers during the in-plane cyclic tests which are 

clearly higher than the shear capacities in the negative displacements. Regarding the P3 and P4 

samples, most of the formulations provided fair simulations with divergence around 25% except 

for Eq. (3.6) at 619kN gravity load and Eq. (3.8) at both loading levels. 

Moreover, Eq. (3.6) provides very good simulation of the experimental results in all the samples 

from the ZAG Laboratory: 10-A, 10-B, 10-C and 11-A. Then, Eqs. (3.5), (3.7) and (3.9) gave good 

shear ratio indices for the samples 10-A and 11-A, while Eq. (3.8) gives fair results only for the 

11-A sample and high divergence for the other piers. On the other hand, the slender samples from 

the EUCENTRE Laboratory show good simulation of the experimental results. For samples CL6, 

CS5 and CS6, Eqs. (3.50, (3.6), (3.7) and (3.9) show very good results, while for the squat samples 

CS7 and CS8 the divergence increase reaching up to 45%. Nonetheless, Eq. (3.8) was not able to 

provide good simulation for any sample. 

Figure 3.2a is used to assess the influence of the vertical stress variation on the shear capacity 

simulation regarding full scale non-injected piers. It shows that Eqs. (3.5), (3.7) and (3.9) were 

able to simulate the experimental results well. On the other hand, Eq. (3.6) only gives fair results 

for low vertical stress levels and Eq. (3.8) gives much higher values than the experimental ones. 

The same pattern seems to repeat itself in Figs 3.2b, 3.2c and 3.2d with slight variation in the 

accuracy of the formulations. The scaling factor of the tested walls and the presence or the absence 

of the strengthening mortar through injection has no major effect on the functionality of the five 

equations under examination.  
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Figure 3.2e shows the influence of the vertical stress variation between sample H1 and H2 that has 

similar geometry on the accuracy of the formulations. Only Eq. (3.8) provides close results to the 

experimental ones, while the other four equations gave very low values. No evident improvement 

was noticed with the increase in the vertical stress level. In the same manner, Figs. 3.2f and 3.2g 

show the influence of the wall thicknesses and aspect ratios on the accuracy of the formulations. 

Thus, Eq. (3.8) provides the most accurate results in comparison to the experimental ones. As the 

thickness of the walls increases and the aspect ratios increases indicating more slenderness, the 

results became more precise. 

Figure 3.3a shows the influence of vertical stress levels on the formulations using the samples P3 

and P4, characterized by a squat geometry and an effective height Ho = 1.5h. Using Eq. (3.7), 

reasonable results were obtained in comparison to the experimental ones. Then, Eqs. (3.5) and 

(3.9) show also reasonable results. There is a general tendency to have better simulations at lower 

pre-stress levels mostly evident when using Eq. (3.6).  

The variation of vertical stress between samples 10-A and 10-B is also examined in Fig. 3.3b. 

Herein, Eq. (3.6) gave the best simulation of the experimental values with very high precision, 

while Eqs. (3.5), (3.7) and (3.9) give fair results with divergence at the high vertical stress level. 

The variation of the typology between samples 10-B that is fully mortared and 10-C where the 

mortar is only applied to the bed joints is presented in Fig. 3.3c. As depicted, Eq. (3.6) keeps its 

good record of simulation in those samples followed by Eqs. (3.5), (3.7) and (3.9). No apparent 

improvement in the results is realized due to the change in typology. The last set of tested piers is 

utilized in several setups to account for different parameters that are analyzed for their influence 

on the accuracy of the formulations. Figure 3.3d presents the pre-stress variation in samples CL6 

and CS5. 
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Figure 3.2: a) The variation of shear capacities with the vertical stress levels for samples FS-NI b) FS-I c) 

S-NI d) S-I e) H1 and H2 f) H2, H3 and H4 g) H2, H5, H6 and H7. 
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From this figure, it is shown that Eq. (3.6) can capture the slope of the graph where it starts with 

fair simulation at low vertical -stress level and diverges at the higher vertical stress level, while 

Eqs. (3.5) and (3.9) give better results at higher vertical stress level. It is noted that Eq. (3.8) is not 

included in the graphical representation due to its high divergence. Figure 3.3e shows the effect of 

the boundary conditions on the slender specimens CS5 and CS6. All the formulations present good 

correlation with the experimental results with no evident improvement with the variation in the 

boundary conditions from doubly fixed to cantilever except for Eq. (3.7). Again, Eq. (3.8) was 

excluded from the graph due to its high divergence. On the other hand, the squat samples CS7 and 

CS8 in Fig. 3.3f shows great improvement in the results of the formulations for cantilever 

boundary condition when compared to the doubly fixed condition. The divergence is reduced 

immensely with best performance for Eq. (3.7). Then, in Fig. 3.3g, samples CS5 and CS7 with 

doubly fixed boundary conditions and different aspect ratios are analyzed. Apart from Eq. (3.8), 

all formulations show good correlation at the higher aspect ratio of 2 indicating a slender geometry 

and more divergence with lower aspect ratio of 1 referring to squat geometry. A very similar 

pattern is realized in Fig. 3.3h for samples CS6 and CS8 except for less divergence happening at 

the low aspect ratio of 1. 
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Figure 3.3: a) Shear capacities versus the vertical stresses in samples P3 and P4 b) 10-A and 10-B c) 10-

B & 10-C d) CL6 and CS5 e) CS5 and CS6 f) CS7 and CS8 g) CS5 and CS7 h) CS6 & CS8. 
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Table 3.8: Variation of capacity shear indices and divergence factors in terms of the different parameters 

of the piers 

ID h/Lw
1 BC5 VS3 TP25 WT15 SC4 CS6 UST7 MT8 TR2 Vu/Vu5 Vu/Vu,6 Vu/Vu,7 Vu/Vu,8 Vu/Vu,9 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11.1) (11.2) (11.3) (11.4) (11.5) 

 Primary Secondary Indices 

FS-NI 1.2 C16 0.50 FM26 500 FS13 TL27 CS21 W23 IR10 0.87 0.75 0.94 0.42 0.88 

FS-NI 1.2 C 0.75 FM 500 FS TL CS W IR 0.73 0.52 0.88 0.31 0.71 

FS-NI 1.2 C 1.00 FM 500 FS TL CS W IR 1.05 0.60 1.28 0.37 0.98 

FS-NI 1.2 C 1.25 FM 500 FS TL CS W IR 1.00 0.43 1.53 0.27 0.88 

DF9           0.11 0.43 0.25 0.66 0.14 

FS-I 1.2 C 1.00 FM 500 FS TL CS M24 IR 1.05 0.89 1.13 0.71 1.04 

FS-I 1.2 C 1.25 FM 500 FS TL CS M IR 1.11 0.87 1.24 0.72 1.09 

FS-I 1.2 C 1.50 FM 500 FS TL CS M IR 1.06 0.75 1.21 0.64 1.02 

FS-I 1.2 C 2.00 FM 500 FS TL CS  M IR 1.19 0.68 1.51 0.59 1.11 

DF           0.10 0.20 0.27 0.34 0.07 

S-NI 1.25 C 0.50 FM 330 S14 TL CS W IR 0.66 0.56 0.72 0.23 0.66 

S-NI 1.25 C 0.75 FM 330 S TL CS W IR 1.32 0.92 1.53 0.40 1.28 

S-NI 1.25 C 1.00 FM 330 S TL CS W IR 0.99 0.55 1.27 0.24 0.91 

S-NI 1.25 C 1.25 FM 330 S TL CS W IR 1.46 0.61 2.33 0.27 1.28 

DF           0.28 0.34 0.60 0.72 0.25 

S-I 1.25 C 1.00 FM 330 S TL CS M IR 1.13 0.92 1.24 0.51 1.11 

S-I 1.25 C 1.25 FM 330 S TL CS M IR 1.16 0.85 1.32 0.49 1.13 

S-I 1.25 C 1.50 FM 330 S TL CS M IR 1.09 0.71 1.30 0.42 1.04 

S-I 1.25 C 2.00 FM 330 S TL CS M IR 1.24 0.61 1.71 0.36 1.13 

DF           0.16 0.23 0.39 0.56 0.10 

H1 1 C 0.086* FM 190 FS SL19 CB20 M SW 3.90 4.24 3.92 1.38 3.90 

H2 1 C 0.250* FM 190 FS SL CB M SW 2.27 2.36 2.31 1.22 2.26 

H3 1 C 0.250* FM 90 FS HL28 CB M SW 3.66 3.79 3.72 1.35 3.64 

H4 1 C 0.250* FM 250 FS DL CB M SW 1.77 1.82 1.79 1.08 1.75 

H5 2.5 C 0.250* FM 190 FS SL CB M SW 3.04 3.15 3.08 1.08 3.02 

H6 1.5 C 0.250* FM 190 FS SL CB M SW 2.39 2.47 2.42 1.04 2.37 

H7 0.75 C 0.250* FM 190 FS SL CB M SW 1.84 1.91 1.87 1.14 1.83 

DF           1.70 1.82 1.73 0.18 1.68 

P3 1.12 C 1.04 FM 200 FS SL CB M SW 0.81 0.71 0.86 0.54 0.79 

P4 1.12 C 1.54 FM 200 FS SL CB M SW 0.75 0.58 0.83 0.48 0.73 

DF           0.22 0.36 0.16 0.49 0.24 

10-A 1.47 C 0.60 FM 300 FS SL CB M SW 1.12 1.02 1.17 0.55 1.10 

10-B 1.47 C 1.19 FM 300 FS SL CB M SW 1.30 0.94 1.47 0.58 1.25 

10-C 1.53 C 1.19 BM22 300 FS SL CB M SW 1.41 1.04 1.58 0.64 1.35 

DF           0.28 0.04 0.41 0.41 0.23 

11-A 0.68 C 0.59 FM 297 FS SL CB M SW 1.02 0.95 1.08 0.81 1.01 

CL6 2.08 FF 0.50 FM 300 FS SL CB M SW 0.95 0.99 0.97 0.64 0.95 

CS5 2 FF 1.00 FM 175 FS SL CM12 M SW 1.05 0.93 1.11 0.54 1.03 

CS6 2 C 1.00 BM 175 FS SL CM M SW 0.90 0.80 0.95 0.46 0.88 

CS7 1 FF 1.00 BM 175 FS SL CM M SW 0.60 0.53 0.63 0.43 0.58 

CS8 1 C 1.00 BM 175 FS SL CM M SW 0.84 0.75 0.89 0.61 0.83 

DF           0.18 0.25 0.16 0.49 0.19 
1 Aspect ratios define as height divided by the width 15 Wall thickness regardless of the number of wythes  
2 Texture of the unit stones used in the piers 16 Cantilever or fixed-free boundary conditions 
3 Vertical Stress excluding the own weight 17 Fixed-fixed boundary conditions 
4 Scale of the pier specimen 18 Double-leaf cross section wall 
5 Boundary conditions 19 Single-leaf cross section wall 
6 Cross section of the wall 20 Clay brick masonry 
7 Unit stone material type depending on the origin 21 Calcareous stone: red, regular white, irregular white 
8 Mortar type depending on its strength 22 Only bed joints mortared 
9 Divergence factor = ∑ |𝑉𝑢 𝑉𝑢,𝑖 − 1⁄ |𝑛

1 /𝑛 23 Weak mortar with fm < 5MPa 
10 Irregular texture referring to unit stones partially worked 24 Medium strength mortar with 5MPa<fm<15MPa 
11 Sawn texture referring to unit stones fully worked 25 Typology regarding the placement of mortar 
12 Calcium silicate masonry 26 Fully mortared including bed and head joints 
13 Full scale specimen based on a typical stone masonry construction  27 Three-leaf cross section wall 
14 Scaled specimen based on a typical stone masonry construction 28 Half-leaf cross section wall 
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To understand the effect of different parameters on the formulations, major and minor sets are 

defined based on data available in Table 3.8 in the same way done for shear analysis in the previous 

section. 

Starting with Eqs. (3.5) and (3.9), the major sample set FS-NI shows that the formulations perform 

better for higher vertical stress levels at 1.0MPa and 1.25 MPa. Considering the major set FS-I, 

Eqs. (3.5) and (3.9) give good results for vertical stress levels 1.0MPa, 1.25MPa and 1.5MPa, 

while their accuracy declines for 2.0MPa. The major sample set S-NI indicates a good performance 

at 1.0MPa while the major set S-I shows good ratios at 1.0MPa, 1.25MPa and 1.5MPa. Despite 

the scaling and the injection factors, Eqs. (3.5) and (3.9) perform well for a range of 1.0 MPa and 

1.25MPa. The major sample sets FS-NI-1 & FS-I-1; FS-NI-1.25 & FS-I-1.25; S-NI-1 & S-I-1; 

S-NI-1.25 & S-I-1.25 can hardly indicate any improvement in the results due to injection. 

Regarding the minor sets FS-NI & S-NI and FS-I & S-I with close aspect ratios, they show a 

better performance for the full-scale specimens at all the vertical stress levels. This result is 

clarified by the smaller divergence factors DF = 0.11 and DF = 0.10 for the full-scale piers. The 

major set H1- H2 shows better performance for Eqs. (3.5) and (3.9) at higher vertical stress level 

0.25MPa, while the major set H2, H3, H4 indicates better results as increasing thickness of the 

wall. Moreover, the major set H2, H5, H6 and H7 shows that the ratios are enhanced as the aspect 

ratio decreases thus moving into a squatter shaped pier. The divergence factor for the H series is 

very high indicating weak performance with this series which could be justified by the general low 

vertical stress levels. Considering the major set P3 and P4, the formulation acts better with vertical 

stress level around 1.0 MPa as proven earlier. Then, the major set 10-A and 10-B shows that the 

ratios are closer to 1 for lower vertical stress level 0.6MPa than that of 1.19MPa, while the major 

set 10-B and 10-C indicates better performance for fully mortared specimen with only 10% and 
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11%, respectively, difference in the results. The last set piers indicates that Eqs. (3.5) and (3.9) 

perform better with a cantilever boundary condition as inferred from major set CS7 and CS8 

despite the similar results that are illustrated by the minor set CS5 and CS6. Taking into 

consideration the major set CS6 and CS8 and the minor set CS5 and CS7, it clearly indicates an 

advantage for the higher aspect ratio of 2. The divergence factor for this set DF = 0.18 and 0.19, 

respectively, indicates a fair representation of the equations for the experimental values. 

Analyzing Eq. (3.6) it is evident from the first three major sets FS-NI; FS-I; S-I that the 

performance of the formulation declines with the increase in pre-stress levels. Major sets FS-NI-

1 and FS-I-1, as well as FS-NI-1.25 and FS-I-1.25 indicates clearly that the injected specimens 

outperform the non-injected ones. The same conclusion can be made from the scaled major  sets 

S-NI-1 and S-I-1, as well as, S-NI-1.25 and S-I-1.25. Those results are illustrated in the lower 

divergence factors for both injected samples. Regarding the major sets FS-NI and S-NI, as well as 

FS-I and S-I there is no clear indication for the influence of scaling on the performance of the 

formulation. The major set H1, H2 indicates better performance for higher pre-stress level at 

0.25MPa, while the major set H2, H3, H4 shows improvement in the results with the increase in 

the thicknesses of the walls. The major set H2, H5, H6, H7 indicates an increase in the divergence 

as the aspect ratio of the piers increases or become slenderer. The divergence factor of the H series 

is DF = 1.82 which is very high; thus making Eq. (3.6) less representative of such samples. The 

major set P3 and P4 shows that the formulation had a better ratio with lower pre-stress level. 

Hence, the major set 10-A and 10-B shows good results for both vertical stress levels of 0.6MPa 

and 1.19MPa, respectively, while the major set 10-B and 10-C also provides good values for both 

typologies of mortar application. No clear advantage can be withdrawn from those mentioned sets; 

however, it is obvious that Eq. (3.6) works well with this kind of samples that are characterized by 
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an average aspect ratio of 1.5 and cantilever boundary conditions represented in the very low 

divergence factor DF= 0.04. In the last set of piers, the minor set CS5 and CS6 shows that the 

simulation acts better for doubly fixed boundary conditions regarding the slender piers while the 

major set CS7 and CS8 shows that the cantilever boundary condition has better advantage for 

squat piers. Regarding the major sets CS5, CS7, as well as CS6, CS8, the slender piers with aspect 

ratio of 2 has better results. 

Evaluating Eq. (3.7) using the major sets FS-NI; FS-I; S-I, is shown that the simulation becomes 

more divergent with the increase of vertical stress level going through a plateau at the mid-levels 

of pre-stresses at 1.25MPa and 1.5MPa for the injected specimens. The major sets FS-NI-1 and 

FS-I-1; FS-NI-1.25 and FS-I-1.25; S-NI-1 and S-I-1; S-NI-1.25 and S-I-1.25 indicate better 

performance of the injected piers for both full scaled and scaled samples. As for the major sets FS-

NI & S-NI and FS-I & S-I it is noticed that the full-scale specimens have better simulation to the 

experimental results which is illustrated by the higher divergence factors for the scaled piers. The 

sets from the H series behaves similarly to the previous formulations with DF = 1.73 making the 

representation not very reliable. The major set P3, P4 and the sets from samples 10-A, 10-B and 

10-C has similar simulation as Eq. (3.5). However, the DF = 0.41 is more divergent than the 

previous results. The major sets CS7, CS8 and CS5, CS6 shows that the formulations act better 

with cantilever boundary conditions for both slender and squat piers. Slender piers with aspect 

ratio of 2 has clear advantage as demonstrated in the previous formulations. 

Equation (3.8) only performs well with the experimental campaign H series that is used for its 

calibration the first place. This can indicate that this formulation provides good results for low pre-

stress levels that are used in those tests. The major set H1, H2 shows better performance for Eq. 

(3.8) at higher pre-stress level 0.25MPa, while the major set H2, H3, H4 indicates better results as 
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increasing thickness of the wall. Meanwhile, the major set H2, H5, H6, H7 gives very good 

correlations with aspect ratios of 1.5 and 2.5 and fair results for the aspect ratio 0.75. The 

divergence factor for this set DF = 0.18 is a clear indication for the advantage of this formulation. 

Comparing the equation to the rest of the major sets it performs in a very similar manner to the 

previous formulations about FS-NI; FS-I; S-NI; S-I; P3; P4. Regarding the samples 10-A, 10-B 

and 10-C the values are very close thus showing no clear advantage for any pre-stress level or 

typology. The major set CS5, CS6 shows a better performance for doubly fixed boundary 

condition in slender piers, while the major set CS7, CS8 indicates an advantage for the cantilever 

boundary condition in squat piers. 

3.3 Shear and Flexural dominant behavior in Spandrels Elements 

Spandrels are considered as secondary elements in URM walls; however, they significantly 

contribute to the overall seismic response. Through the connective joints, spandrels form a 

coupling effect on the adjacent piers determining their boundary conditions and the stress 

distribution along their spans (Foraboschi, 2009). In many codes, simplified equivalent frame 

models are allowed to utilize the “weak spandrel - strong piers” approach which ignores the 

spandrels; thus considering the piers as cantilevers and “strong spandrels - weak piers” approach 

which models the spandrel as a rigid element; thus considering the piers as fixed-fixed elements 

(Cattari & Lagomarsino, 2008). The two approaches do not fully represent the actual behavior of 

spandrels that can experience a variation of strength and ductility throughout the ground motion 

application. Therefore, modeling the strength capacities and the displacements of masonry 

spandrels is essential for the overall results of the wall, as the stiffness degradation in the spandrels 

is reflected on the coupling of the piers.  
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The typical mechanisms in spandrels observed in post-earthquake surveys are the flexural and 

shear failures. Shear failure shown in Fig. 3.4b is more common in squat geometries and laterally 

strengthened spandrels. It is characterized with more strength that continue to build up until failure 

within the range of the ultimate displacement. This means that more energy dissipation is 

associated with the hysteretic cyclic loop representing the motion during lateral shaking. Cracks 

propagation has the cross-X shape, passing through bed and head joints at the interface between 

masonry units and mortar (Beyer, 2012). Flexure on the other hand shown in Fig. 3.4a is common 

in slender geometries and spandrels with less or no lateral support. The strength endures a sudden 

drop at a very small displacement before it settles to the residual strength that can withstand most 

of the displacement in the spandrel until failure. Less energy dissipation is allied with this behavior 

due to the small hysteretic cyclic loops in the force-displacement graphs. Cracks form 

perpendicular to the span of the spandrel right at the corners of the opening passing through the 

head joints (Beyer, 2012). Hybrid cracking failure can also take place in spandrels as the formation 

of weak points can alter the behavior of the element. 
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Figure 3.4: a) Flexural cracks in a spandrel and b) Shear cracks in a spandrel 

Equivalent frame modeling represented in Fig. 3.5b has proven to be a useful modeling technique 

that can simplify the complexity of masonry structures through reducing the number of degrees of 

freedom and allowing for more sophisticated analysis such as the time-history to take place 

(Tomazevic, 1978) and (Magenes & Della Fontana, 1998). With proper calibration of the strength 

formulations in the hinges, sophisticated results can be delivered. Proper positioning of the flexural 

and shear hinges is also required as part of the model. Shear hinges are placed in the middle of the 

spandrel as to account for the formation of cracks at the center of element, as for the flexural hinges 

they are placed next to the support at the end of the rigid node following the formation of cracks 

at that particular zone (Pasticier et al., 2008). The moment and shear distributions along the 

spandrels are illustrated in Fig. 3.5a. Zero moment is assigned in the middle of the element 

following the assumption that the spandrel is subjected to double bending.  

a

 

b
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Figure 3.5: a) Shear and moment diagrams following the force distribution in spandrels b) Distribution of 

plastic hinges in an equivalent frame model. 

3.3.1 Parameters for Masonry Spandrels 

The behavior of spandrels is influenced by the various parameters that characterize the spandrels. 

Mentioned in the previous sections are some parameters that determine the type of failure. 

However, within each category, several strength formulations are proposed throughout the 

literature that determine the capacity of those structural elements. The accuracy of those criterion 

is dependent on major parameters used in designing spandrels (Beyer & Mangalathu, 2013). The 

construction type of spandrels for typical practices such as using wooden lintels or masonry arches 

can influence the lateral behavior. Also using thick versus thin timber lintels can alter the stiffness 

of the element and thus the simulation results. The presence of tie rods or other lateral restricting 

elements can determine the magnitude of horizontal compression forces on the spandrel. Those 

forces have significant implications on the type of response and developed strength within the 

element itself. 

We can also identify minor parameters that has indirect effect on the behavior of the spandrels. 

They are used to justify the variations in the results that might arise between the numerical and 

experimental calculations. Such parameters can include the texture of the unit masonry stones, 

a

 

b
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their arrangement and material type, the thickness of the wall and the number of layers, and the 

type of mortar used in the construction. Also, the aspect ratio of the spandrel and the scaling factors 

should be considered in the assessment. 

An important thing to consider in the analysis is the boundary conditions that is linked to the stress 

distributions for shear and flexural behaviors. Since spandrels act as the connection between piers 

this can also affect their response as well in which reflects on the interaction between those two 

members and the coupling effect induced. This will be considered in the full-scale model of an 

entire masonry wall. Instead of simplifying the model to the ones proposed by the codes mentioned 

earlier, it would be more satisfactory to include three cases that covers the proper connection at 

the peak strength of the spandrel, the weak connection at the residual strength of the spandrel and 

the finally the lost connection at the failure of the spandrel. Thus, the piers will have fixed-fixed, 

intermediate and cantilever boundaries, respectively. 

3.3.2 Capacity Equations for Shear Dominant Failure 

The Italian codes (OPCM 3431, 2005) suggests the following shear criterion for the peak strength 

of the spandrel. 

𝑉𝑢,1 = ℎ. 𝑡. 𝑓𝑣𝑜                                                                                                                              (3.11) 

Herein, t is the spandrel thickness, h is the height of the spandrel and fvo is the shear strength of 

wall assemblages without considering any compression thus relying mainly on the cohesive 

strength of the mortar c. 

Turnsek and Cacovic (Turnšek & Čačovič, 1971) suggested another formulation that accounts for 

the maximum tensile strength at the middle of the spandrel. The equation is borrowed from the 

shear strength of piers with some modifications in the parameters.  
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𝑉𝑢,2 = 𝑓𝑣 . ℎ. 𝑡. 𝛽√1 +
𝜎𝑠

𝑓𝑣
                                                                   (3.12) 

Herein, fv is the diagonal tensile strength; σs is the axial compressive stress; β is the aspect ratio 

(height/length=h/l) where 0.67 ≤ β ≤ 1.0. 

Magenes and Della Fontana (Magenes & Della Fontana, 1998) suggested the follow criterion 

which influenced the one provided by the Italian codes OPCM 3431. A modification of the 

cohesion parameter, as suggested by (Mann & Müller, 1982) is used in the calculations.  

𝑉𝑢,3 = ℎ. 𝑡. 𝑐𝑟                                                                                                                              (3.13) 

where 𝑐𝑟 = 𝑐.
1

1+2(ℎ𝑏+ℎ𝑗) (𝑙𝑏+𝑙𝑗)⁄
 is the reduced cohesion stress; hb and hj is are the height of the 

brick and the joint respectively; lb and lj are the length of the brick and the joint, respectively.  

3.3.3 Capacity Equations for Flexure Dominant Failure 

Adopted by the Italian codes OPCM 3431, the maximum shear force in a flexural governed 

behavior is captured by the following formulation. 

𝑉𝑢,4 = 𝑃.
ℎ

𝑙
. [1 −

𝑃

0.85𝑓𝑚ℎ𝑡
]                                                                                                          (3.14) 

where fm is the compressive strength of the masonry; P is the axial force applied on the spandrel 

from external load. If P was unknown it can be replaced by the minimum of [fte ; 0.4htfm], where 

fte is the tensile strength of the horizontal tension elements such as steel ties and ring beams. 

FEMA 306 (FEMA 306, 1998) adopts the following equation for the flexural behavior of masonry 

spandrels that ignores the axial force.  

𝑉𝑢,5 =
2

𝑙
.
2

3
ℎ. 𝑓𝑝,𝑡𝑜𝑡.

ℎ

4(ℎ𝑗+ℎ𝑏)
                                                                                                        (3.15) 
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where the total tensile force 𝑓𝑝,𝑡𝑜𝑡 = 𝑓𝑡,𝑏𝑥𝑡𝑏𝑥
𝑙𝑏

2
+ 𝑓𝑡,𝑠𝑥ℎ𝑏𝑥

𝑙𝑏

2
𝑥(𝑁𝐵 − 1). The tensile strength due 

to friction in the bed-joints is 𝑓𝑡,𝑏 = 0.5(0.75𝑐 + 𝛾𝑠𝑝𝜎𝑝) and the tensile strength due to cohesion 

on the side faces of the bricks is 𝑓𝑡,𝑠 = 0.5(0.75𝑐). Herein, ϒsp is a ratio to determine the effective 

vertical stress on adjacent piers suggested as 0.5, σp is the vertical stress on the adjacent pier, NB 

is the number of wythes and tb is the thickness of the brick. 

Cattari and Lagomarsino (Cattari & Lagomarsino, 2008) used the following equation that includes 

the tensile criterion at the level of the brick units.  

𝑉𝑢,6 =
2

𝑙
. 𝑡 [0.85. 𝑓𝑚. ℎ𝑐 (

ℎ

2
−

ℎ𝑐

2
) + 𝑓𝑡𝑢(ℎ − ℎ𝑐)

ℎ𝑐

2
]                                                                   (3.16) 

where 𝑓𝑡𝑢 = min (𝜇. 𝛾𝑠𝑝𝜎𝑝.
𝑙𝑏

2(ℎ𝑗+ℎ𝑏)
; ⁡
𝑓𝑏𝑡

2
) is the equivalent tensile strength in the mortar joints and 

the brick; fbt is the limited tensile strength of the brick; ϒsp is suggested as 0.65; µ is the friction 

coefficient; ℎ𝑐 =
𝜎𝑠+𝑓𝑡𝑢

0.85𝑓𝑚+𝑓𝑡𝑢
. ℎ is the depth of compressive zone. 

Betti et al. (Betti et al., 2008) also provides an equation for ultimate flexural strength in spandrels. 

It varies the parameters between large axial forces and small axial forces on the element shown 

below. 

𝑉𝑢,7 =
2

𝑙
.
ℎ2𝑡

6
. (𝑘𝑓𝑡𝑚 + 𝜎𝑠)                                                                                                          (3.17) 

where ftm = c/2μ is the tensile strength of mortar joints. 

3.3.4 Parametric Analysis of the Shear Failure Mode 

In the aim of verifying the accuracy of each formulation about certain parameters, different 

experimental campaigns conducted on spandrels are selected to compare the numerical results to 

the experimental ones. A study held in Pavia, Italy, focuses on two different aspects in the 
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construction of the spandrel using full scale specimens. The samples have boundary conditions 

resembling the real case scenario of a spandrel in a wall built using a double-leaf Credaro stones. 

The preliminary characterization of the elements are represented in Table 3.9 (Magenes, Penna, 

Galasco, & Rota, 2010). Lime mortar with weak strength is used to fill the head and bed joints. 

Table 3.9: Preliminary characterizations of the spandrels used in the full-scale experiment. 

Parameters fm fv ft E G Density 

Mean Values [MPa] 3.28 0.197 0.137 2550 840 2680 kg/m3 

In the first experiment (Graziotti et al., 2012), the parameter tested is the presence and absence of 

lateral support. Two samples are built with dimensions l x h x t (length; height; thickness) = 

1200x1080x320mm with a thick lintel with height of 120mm using two wythes. The first sample 

named W1 has no lateral support while the other sample W2 has a lateral support exerting an axial 

force F=38KN. The second experiment (Graziotti et al., 2014), aiming to test the variation in the 

size of the lintels used to support the masonry units at the bottom of the structural element, while 

considering an initial axial force of 28kN. The spandrels have dimensions l x h x t = 

1200x780x320mm. The first sample of 2nd experiment considered, W3, has a thick wooden lintel 

with 120mm depth, while the second sample W4 has a thin wooden lintel with depth of 25mm. 

The type of failure associated with each parameter the maximum and residual strength obtained 

are summarized in Table 3.10. It must be noted that there was a problem with the actuator while 

testing W4 that might alter the results. Herein,Vu represent the maximum shear force reached by 

the spandrel. Specimen W1 exhibit a flexural failure mode and thus would be excluded from this 

analysis. 

Table 3.10: Experimental results from the in-plane cyclic tests on the piers 

Specimens  Vu [kN] Failure Mode 

W2 60 Diagonal Shear 

W3 38 Diagonal Shear 

W4 23 Hybrid 
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The values of the cohesion strength c and the friction coefficient μs are chosen to be 0.35 MPa and 

0.65 respectively, based on (Elmenshawi & Shrive, 2015). The irregular stones have a length of 

200-350mm and height of 100-150mm with mortar joints thickness ranging between 20-30mm. 

Average values are used. The height of the wooden lintel is not considered in the calculation of 

the spandrel’s height. The results of maximum shear forces estimated by the simplified equations 

are provided in Table 3.11. 

Table 3.11: Results of maximum shear from the simplified formulations 

Specimens Vu,1 from Eq. (3.11) Vu,2 from Eq. (3.12) Vu,3 from Eq. (3.13) 

          [kN]  [kN]  [kN] 

W2 120.9 61.3 60.5 

W3 87.4 32.0 43.7 

W4 87.4 32.0 43.7 

In another study, (Knox et al., 2017) tested six URM brick masonry frames for in-plane cyclic 

behavior. Full scale specimens are constructed using 80 years old bricks with typical dimensions 

of 225x108x75mm for length, width, and height respectively and weak lime mortar of 2.9MPa 

compressive strength and 10mm thickness of mortar joints. The mechanical properties of the panel 

are mentioned in Table 3.12. 

Table 3.12: Mechanical properties of the masonry panels 

Parameters fv ft μ c 

Mean Values [MPa] 0.262 0.185 0.7 0.3 

Different dimensions l x h x t of the spandrels summarized in Table 3.13 are varied between the 

samples with some variations in the axial stresses on the piers holding the spandrels along with the 

experimental shear forces and the failure modes. Sample S3 and S5 has same dimensions but the 

axial stresses on the adjacent piers are higher in S3. The mechanical properties of the materials are 

listed in Table 3.12. Zero axial forces are applied on the spandrels. It should be noted that the 

height of the piers in specimen S6 is less than the rest of the samples. 
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Table 3.13: Experimental results from the in-plane cyclic tests on the piers 

Specimens  Dimensions [mm] Vu [KN] Failure Mode 

S1 1240x590x230 83.6 Diagonal Shear 

S2 1740x590x230 49.3 Diagonal Shear 

S3 1240x940x230 83.2 Diagonal Shear 

S4 1240x1260x230 89.7 Diagonal Shear 

S5 1240x940x230 48.6 Diagonal Shear 

S6 1240x1450x230 24.9 Diagonal Shear 

Applying the parameters to the simplified equations, different estimations of the maximum shear 

forces are extracted and summarized in Table 3.14. 

Table 3.14: Results of maximum shear from the simplified formulations 

 Specimens Vu,1 from Eq. (3.11) Vu,2 from Eq. (3.12) Vu,3 from Eq. (3.13) 

 [KN]  [kN]  [kN] 

S1 40.7 16.8 23.6 

S2 40.7 12.0 23.6 

S3 64.9 42.6 37.6 

S4 86.9 76.6 50.4 

S5 64.9 42.6 37.6 

S6 100.1 101.4 58.1 

To compare the experimental and numerical results of maximum shear forces attained by the 

spandrels, the ratios of experimental to numerical forces are displayed in Table 3.15 for all the 

previous samples considered in this study. The values of experimental to computed shear ratios 

closer to 1 shows good correlations. 

Table 3.15: Ratio of experimental to the numerical shear capacity values 

Specimens  Vu/Vu,1 Vu/Vu,2 Vu/Vu,3 

W2 0.50 0.98 0.99 

W3 0.43 1.19 0.87 

W4 0.26 0.72 0.53 

S1 2.05 4.98 3.54 

S2 1.21 4.11 2.09 

S3 1.28 1.95 2.21 

S4 1.03 1.17 1.78 

S5 0.75 1.14 1.29 

S6 0.25 0.25 0.43 
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It is evident from the shear ratios that Eqs. (3.12) and (3.13) can simulate the experimental results 

to a very good extent while Eq. (3.11) overestimates the forces by almost double the values. Figure 

3.6a shows that the equations better represent the values at lower axial forces. The shear forces in 

Fig. 3.6b are similar in both thick and thin lintels which indicates the deficiency of the formulations 

in considering such a variable in the calculations. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3.6: a) Variation of shear force w.r.t. axial force in spandrels W2 & W3 b) thickness of lintels in 

spandrels W3 & W4 c) length of spandrels S1 & S2 d) height of spandrels S1, S3, S4 & S6. 

Observing the shear ratios for the second campaign, a significant divergence in the results is 

recognized for most of the samples. Equation (3.11) gives good correlation for specimen S4 while 

Eq. (3.12) gives fair correlation to specimen S5 with 14% divergence. In Fig. 3.6c, Eqs. (3.11) and 

(3.13) provide the same shear force values at both lengths of the spandrels indicating a deficiency 

in including this variable. In general, the results are better simulated for higher length of the 

spandrels. Observing Fig. 3.6d, the equations are yielding better results with the increase in the 
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height of the spandrels apart from the last value at 1450mm which experiences a sudden drop in 

the experimental shear forces that can be justified by the variations in the pier length used in that 

sample. In general Eq. (3.11) had better results than the other equations. It should be noted that the 

variation in the vertical stresses on the adjacent piers represented in samples S3 and S5 cannot be 

captured by the suggested equations in the literature.  

3.3.5 Parametric Analysis of the Flexural Failure Mode 

Three specimens from three different experimental campaigns with flexural failure are selected to 

conduct the comparisons. Due to the scarcity of data related to flexural behavior in spandrels the 

parameters are chosen roughly for the most convenient representation. Sample W1 from the 

previous section will be used (Graziotti et al., 2012). Another sample, M1 is utilized constructed 

using a thick lintel of 120mm height and no axial forces. It is constructed using brick masonry 

with dimensions 250x120x55mm. Finally, a third sample T1 is selected (Beyer & Dazio, 2012); 

the sample was constructed using a thick lintel of 140mm height and brick masonry with typical 

dimensions of 250x120x60mm. A variable axial force is applied on the spandrel depending on the 

horizontal elongation starting with 5 kN as initial force and reaching 67 kN at the final failure with 

maximum crack. All the dimensions of the specimens and the experimental shear capacities are 

listed in Table 3.16. 

Table 3.16: Data from the in-plane cyclic tests on the piers 

Specimens  Dimensions [mm] Vu [kN] Failure Mode 

W1 1200x1080x320 32 Flexural Failure 

M1 1000x1080x380 70 Flexural Failure 

T1 1180x1120x380 82 Flexural Failure 

The mechanical properties of all three samples are summarized in Table 3.17. The data needed to 

apply the formulations are inferred from the same experimental campaigns, where the specimens 
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are tested or from similar samples from other sources when the data is missing (Brignola et al., 

2008). 

Table 3.17: Mechanical parameters for the selected samples 

Samples fm  

[MPa] 

μ c  

[MPa] 

NB fbt 

[MPa] 

hj 

[mm] 

σp 

[MPa] 

σs 

[MPa] 

W1 3.28 0.65 0.35 2 19 25 0.17 0 

M1 4 0.85 0.35 3 7 10 0.5 0 

T1 4 0.85 0.35 2 7 10 0.33 0.16 

The parameters are defined previously along with the formulations. In the same manner, for shear 

capacity analysis, the numerical capacity values associated with flexural failure are viewed in 

Table 3.18.  

Table 3.18: Numerical capacity values for spandrels associated with flexural failure. 

Samples Vu,4; Eq. (3.14) Vu,5; Eq. (3.15) Vu,6; Eq. (3.16) Vu,7; Eq. (3.17) 

 [kN]  [kN]  [kN]  [kN] 

W1 - 12.6 20.0 27.9 

M1 - 30.6 203.7 30.4 

T1 63.6 21.2 170.6 49.3 

To compare the numerical to the experimental values the ratios shown in Table 3.19 are derived.  

Table 3.19: Ratio of experimental to the numerical shear capacity values 

Samples Vu/Vu,4 Vu/Vu,5 Vu/Vu,6 Vu/Vu,7 

W1 - 2.54 1.6 1.15 

M1 - 2.29 0.34 2.30 

T1 1.29 4.01 0.48 1.66 

Based on the limited data, it is not possible to determine whether the formulations can represent 

the experimental tests. While Eq. (3.17) provides fair simulation for sample W1 with 15% 

divergence, in all other cases there is a significant difference in the capacity results obtained from 

the equations. The parameters involved in this study are: i) the variations in the height of the 

spandrel between W1 and M1, ii) the variation in the material type of the stone units between W1 

and T1, and iii) the application of axial force in case of T1. Given the limitations in the information 

due to the small number of samples it can be derived that the performance of the equations must 
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be revised. The divergence reaching more than 100% in certain cases raises red flags on the 

competency of those formulation and their ability to compute the capacity of spandrels. 

3.4 Results 

3.4.1 Pier Analysis 

Four major parameters are identified for the shear capacity comparisons such as:  the aspect ratio, 

the texture of the walls, the vertical stresses, and the scale of the specimens, respectively. The 

summary of findings are as follows (Figures 3.7a, 3.7b, 3.7c, and 3.7d):  

• The shear capacity provided by Equation (3.1) works well with: i) full scale specimens,  ii) 

irregular texture and iii) vertical stress levels between 0.25MPa and 0.5MPa.  

• The shear capacity provided by Equation (3.2) works well for: i) scaled samples (1.2 aspect 

ratio), ii) rubble texture and iii) pre-stress level between 0.5MPa and 1.0MPa. 

•  The shear capacity provided by Equation (3.3) provides good simulations for: i) scaled 

samples (aspect ratio of 1 and 1.2), ii) sawn dry joint texture and iii) pre-stress levels less 

than 0.25MPa.  

• The shear capacity provided by Equation (3.4) can simulate: i) scaled samples with aspect 

ratio of 1 and 1.2, ii) sawn dry joint texture and iii) pre-stress levels between 1.0MPa and 

1.2MPa. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 3.7: a) Indices for the four capacity formulations regarding aspect ratios b) stone textures c) vertical 

stresses d) scale factors 

Seven major parameters were selected for the capacity formulations for flexure dominant behavior 

such as: the aspect ratio, the boundary conditions, the vertical stresses, the typology, the wall 

thickness, the scale, and the strengthening through injection. The findings are (Figures 3.8a, 3.8b, 

3.9a, 3.9b, 3.9c, 3.9d, and 3.9e): 

• Equation (3.5) shows good simulation for: i) scaled specimens and piers with aspect ratios 

between 1 and 1.5, ii) fixed boundary condition, iii) pre-stress levels between 0.5MPa and 

1.0MPa, iv) bed joint mortared typologies, v) 330mm to 500mm wall thickness and vi) 

non-injected samples.  
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• Equation (3.9) shows similar results as that given by Equation (3.5) with more advantage 

for strengthened injected specimens.  

• Equation (3.6) works well for: i) piers with 1 to 1.5 aspect ratios, ii) cantilever boundary 

conditions, iii) pre-stresses levels between 0.5MPa and 1.0MPa, iv) 200-330mm wall 

thicknesses and v) injected specimens.  

• Equation (3.7) has good simulation for:  i) piers with 1 to 1.5 aspect ratios, ii) fixed 

boundary conditions, iii) vertical stresses between 0.5MPa and 1.0MPa, iv) 330 to 500mm 

wall thicknesses and v) bed joints mortared specimens. 

•  Equation (3.8) works well for: i) full scale samples and pier aspect ratios ≤ 1.0, ii) pre-

stresses level ≤ 0.5MPa and iii) wall thicknesses ≤ 200mm. 

 

a) 

 

b) 

Figure 3.8: a) Indices for the five capacity formulations regarding the aspect ratios b) boundary conditions 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 3.9: a) Indices for the five capacity formulations regarding the vertical stresses b) typology c) wall 

thicknesses d) scale factors e) mortar injection 

0.00

1.00

2.00

3.00

≤0.5 ≤1 ≤1.5

In
d

ex

Vertical Stress (MPa)

Eq. 5 Eq. 6 Eq. 7

Eq. 8 Eq. 9 Datum

0.00

0.50

1.00

1.50

2.00

FM BM

In
d

ex

Typology

Eq. 5 Eq. 6 Eq. 7

Eq. 8 Eq. 9 Datum

0.00

0.50

1.00

1.50

2.00

≤200 ≤330 ≤500

In
d

ex

Wall Thickness

Eq. 5 Eq. 6 Eq. 7

Eq. 8 Eq. 9 Datum

0.00

0.50

1.00

1.50

2.00

FS S

In
d

ex

Scale Category

Eq. 5 Eq. 6 Eq. 7

Eq. 8 Eq. 9 Datum

0.00

0.50

1.00

1.50

NI I

In
d

ex

Mortar Injction Category

Eq. 5 Eq. 6 Eq. 7

Eq. 8 Eq. 9 Datum



 

95 

 

3.4.2 Spandrel Analysis 

The variation in the parameters between unreinforced masonry constructions indicates the 

necessity to verify their influence on the behavior of the elements in seismic action. It is realized 

from the literature of performed experimental data collection that the failures in spandrels 

associated with shear cracks are more common than those associated with flexural cracks. This 

explains the fact that the parametric study in this work has more data to evaluate the shear 

formulations. Each equation from different codes or suggested by researchers is yielding different 

results showing that the calibration process to which the equations are proposed has a significant 

impact on its performance. 

Regarding the shear failure mode of spandrels, the parameters to consider are: the axial force, lintel 

thickness, length and height of the spandrel. It is shown that the simulations are better at lower 

axial forces, lower lintel thicknesses and higher heights of spandrels, while it remains indifferent 

for the length of the spandrels. It is also derived that Equations (3.11) and (3.12) perform better 

for stone unit samples in comparison to the brick unit samples, while the relations swaps for 

Equation (3.10).  

Regarding the flexural failure mode of spandrels, the number of samples found in the literature 

was not enough to yield any deduction which shows the need for more experimental tests on 

spandrels. In general, there is a high divergence in the results for all the parameters involved. Also, 

Equation (3.13) is not reliable for samples without axial forces. As more data are acquired it would 

reveal a better connection between the different parameters of spandrels and the suggested 

equations which will help in refining the modeling approach utilized by decreasing the size of the 

error generated and encompassing a bigger number of parameters. 
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In summary, the parametric study on URM elements is used to develop correlation factors between 

their characteristics and a group of seismic capacity equations. Indices are generated for both shear 

and flexural dominant behavior modes that show the accuracy of such correlations.  Four shear 

formulations and five flexural formulations for masonry piers, and seven shear formulations for 

spandrels are utilized to generate the in-plane cyclic experimental data and compare the results in 

terms of divergence ratios. It was found that each proposed equation can specialize in determining 

the lateral shear capacity of URM piers based on a variation of a set of major parameters that can 

highly influence its performance. More data is required to give better results for the spandrels. 
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Chapter 4: URM Capacity Estimation Using Distributed Plasticity 

Models for Linear Data Correlations 

The behavior of masonry piers is well understood using more detailed models that are built with 

the objective of analyzing the data and predicting the future performance of those structural 

elements during the horizontal shaking.  For this reason, a deterministic model is created using the 

open-source software OpenSees (McKenna et al., 2000) using the distributed plasticity applied 

through an equivalent frame macro modeling technique. The model had to be calibrated against 

experimental tests on piers representing the behavior dominated by shear and flexure. Once the 

calibration is accomplished, it is then possible to generate data based on multiple variations in the 

parameters which are assessed for their influence on the performance and the strengthening criteria 

of the piers. Thus, making a useful tool for predicting strengthening interventions that can have 

the optimal impact on the walls. It is realized that some parameters as the length of the piers has 

the highest influence on the piers making the openings in the walls a critical issue to be discussed 

in any future strengthening interventions.  

4.1 Distributed Plasticity Model  

4.1.1 Numerical Model Using OpenSees 

The application of the modeling is performed in the open source computational platform 

(McKenna et al., 2000) due to its flexibility in incorporating constitutive laws that are able to 

simulate the in-plane behavior of URM walls using macro-element approach. One force-based 

element is used to represent the piers and thus ensuring the equilibrium at the force level between 

flexure and shear that is essential for determining the dominant type of failure. The cross section 

is discretized in fibers elements that accounts for the interaction between the moment and axial 

forces automatically represented in Fig. 4.1. A phenomenological (based on experimental work) 



 

98 

 

law is used to represent the cyclic response of shear which is coupled with the fiber section in the 

framework of Timoshenko beam theory (considering both the shear deformation and the axial 

force-moment interaction) as demonstrated in Fig. 4.2. 

 

Figure 4.1:Fiber section discretization 

 

Figure 4.2: Coupling of shear law into the fiber section 

Borrowed from the OpenSees uniaxial material library, the concrete material Concrete02 is used 

to represent the flexural behavior in the piers (Mohd Yassin, 1994). This material is characterized 

with linear tension softening, which is important in the stabilization of the material during the 

lateral shaking due to the absence of reinforcement in the section.  Shown in Fig. 4.3, the material 

captures the unconfined behavior (Kent & Park, 1971) in compression expressed in the negative 

side of the graph and considering the unloading path for the cyclic response. The positive quadrant 

represents the tension behavior with the maximum tensile strength and the tension softening 

stiffness (not to scale).  
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Figure 4.3: Concrete02 material as defined in OpenSees (McKenna et al., 2000) 

Additional elastic fibers at the corners of the pier section are added with very small cross-section 

and high stiffness to help with the convergence of the analysis without having any effect on the 

response. A 20 mm2 area and 1000 MPa modulus of elasticity are used as suggested by (Peruch et 

al., 2019).  

For the representation of the shear behavior of unreinforced masonry, a hysteretic uniaxial material 

in OpenSees known as Hysteretic is used. The constitutive law is representative of the whole 

element through shear force and shear strain points, unlike the previous one which is a 

characteristic of the material itself. Shown in Fig. 4.4, it is a trilinear curve in both the positive and 

negative direction of force application. The material also covers the force and deformation 

pinching, the damage due to ductility and energy and degraded unloaded stiffness. 

The failure of the pier is determined by the dominat type of the materials established by the 

minimum force capacity that varies depending in the characteristics of the wall. Throughout the 
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analysis, the shear strenght is not affected by the vertical force. Also the vertical force resulting 

from the self weight of the pier and the carried weight from the upper floors is set to be constant.  

 

Figure 4.4: Hysteretic material as defined in OpenSees (McKenna et al., 2000) 

4.1.2 Model Calibration & Validation 

In order to validate the model, a simulation for quasi-cyclic experimental tests on two masonry 

piers, led by (Anthoine et al., 1994), was utilized for the demonstration. The piers A and B has 

different aspect ratios of 1.35 m and 2 m respectively which are typical for existing masonry 

construction in Italy. Both piers have similar length and thickness of 1.0 m and 0.25 m as 

demonstrated in Fig. 4.5. Throughout the experiment, a constant vertical force N = 150 kN is 

applied through a hydraulic jack with double bending boundary conditions replicated in the models 

by fixing the rotation at the top of the panel. Quasi-static loading with predetermined displacement 

increments is performed.  
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Figure 4.5: A) squat pier; B) slender pier as tested after Anthoine et al.(1994) 

The parameters for Concrete02 material are calibrated based on experimental tests made of 

masonry prisms with maximum compressive strength fm = 2.7 MPa and maximum tensile strength 

ft = 0.18 MPa. The maximum and ultimate strain are calibrated to fit the experimental response.  

The resulting constitutive law is represented in Fig. 4.6. 

 

Figure 4.6: Constitutive law for Concrete02 for piers A and B 

A B 
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The force parameters for the Hysteretic material are calculated based on the simplified capacity 

formulations associated with diagonal shear failure presented in Table 4.1. The formulation with 

the most accurate predictability of the maximum strength of the pier is used to calculate the 

maximum shear force Vm. For the squat sample, the maximum experimental strength associated 

with shear behavior is Vm = 82 kN (That associated with flexural behavior cannot be known 

experimentally but it should be larger than 82 kN). As for the slender sample, the maximum 

experimental strength associated with flexural behavior is 71 kN (That associated with shear 

behavior cannot be known experimentally but it should larger than 71 kN). Shown in Table 4.1 are 

four capacity formulations for unreinforced masonry walls associated with shear behavior that are 

used to calibrate the hysteretic material. The most accurate is Equation (3.1) (Turnšek & Čačovič, 

1971) to a factor of 1.18. This will represent the floating point V2 in Fig. 4.4. 

Table 4.1: Unreinforced masonry capacity formulations associated with shear behavior used to calibrate 

the numerical model. 

Formulation Source Vm (kN) Squat Vm(kN) Slender 

𝑉𝑚,1 = (𝑓𝑣𝑏𝑤𝐿𝑤 + 0.25𝑁)𝛾𝑔      Clause 7.10.1.1. (CSA S304.1-
04, R2010) 

101.1 101.1 

𝑉𝑚,2 =
𝑓𝑡𝐿𝑤𝑏𝑤

ξ
√1 +

𝜎𝑜
𝑓𝑡

 

(Turnšek & Čačovič``, 1971) 69.4 62.5 

𝑉𝑚,3 =
𝑐 + 𝜇𝑠𝜎𝑜
1 + 𝛼𝑣

(𝐿𝑤𝑏𝑤) 
Coulomb criterion corrected 

by (Magenes & Calvi, 1997b) 
51.3 43 

𝑉𝑚,4 = 𝑃 tan∅ [1 −
ℎ

2𝐿𝑤
tan∅ (

1

1 − 𝑣
)] (Lourenço et al., 2005) 12.6 12.1 

The remaining floating points are determined as a percentage of the maximum strength. Point V1 

that designates the end of the elastic behavior of the material is taken as 90% of V2 (Magenes & 

Calvi, 1997b) and (Tomazevic, 1996). Other literature based on experimental work suggest a value 

of 60% of V2 (Peruch et al., 2019) and (Peruch Matteo et al., 2019). Point V3 designates the end 

of the plastic behavior of the material and is specified as 50% of V2. The deformation parameters 
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can be determined through subtracting the flexural displacement due to the Concrete02 material 

alone from the total displacement response found in the experiment and then dividing by the height 

of the panel. This method is justified using the force-based element that ensures the equilibrium 

of forces between shear and flexural at the fiber section level. Therefore, as the lower force will 

dominate the response of the element, the displacement from both behaviors will add up. Shown 

in Fig. 4.7 the difference in displacement between the total response envelope of the experiment 

on the squat pier and the flexural response envelope after applying a cyclic load on the element 

with Concrete02 material only. The deformations are then obtained by dividing the difference in 

displacement by the height of the squat pier. 

 

Figure 4.7: The difference between the total response and the flexural response in the squat pier 

The Hysteretic parameters for shear forces and shear deformations are thus presented in Table 4.2. 

It is important to note that at the ultimate displacement, the deformation of the pier is governed by 
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shear deformation only because the force associated with flexural response is higher than the total 

response. The constitutive law for shear behavior is then represented in Fig. 4.8.  

Table 4.2: Hysteretic parameters after calibration to represent the shear behavior of the pier. 

V1 (kN) V2 (kN) V3 (kN) ϒ1 ϒ2 ϒ3 

76 82 45 0.00085 0.0014 0.0055 

Using the Aggregator command in OpenSees, the two constitutive laws are coupled within the 

fiber section. The cyclic load is applied based on displacement increments reaching up to 7.5mm 

for failures associated with shear and 12.5mm with failures associated with flexure to match the 

experiment. The loading is shown in Table 4.3. 

 

Figure 4.8: Constitutive law for Hysteretic material after calibration 

Table 4.3: Incremental displacements for the quasi-cyclic loading on the top of the pier 

Disp (m) 0 0 3 -3 4.5 - 4.5 6 -6 7.5 -7.5 10 -10 12.5 -12.5 0 

Steps 0 20 30 30 30 30 30 30 30 30 40 40 40 40 30 
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The squat pier response is presented in Fig. 4.9. The behavior is dominated by shear mode as the 

Hysteretic material is activated to capture the lateral response. 

The model captures the positive and negative envelope to a very good precision. The initiail 

stiffness is underestimated. However, the elastic displacement, the maximum strength and the 

strength degradation is well simulted. It also shows that the energy dissipation and the pinching 

behavior is well capture as well. 

In Fig. 4.10, the slender pier response is presented. The behavior is dominated by flexural mode 

where the Concrete02 material is activated. It is worth noting that in both cases the total response 

of the pier is influenced by the non-dominant material at the displacement level as to preserve the 

equiliberium in the force-based element as explained in previous sections. Thus the total reponse 

will accumulate additional displacements up to the level of the maximum force of the non-

dominant material. In Fig. 4.10 the stiffness of the model is captured to a good extent along with 

the envelope on the positive and negative sides. The maximum strength and the strength 

degradation is well simulated. The energy dissipation and the pinching of the material is fairly 

representative of the experimental response. 
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Figure 4.9: Response of the squat pier to the cyclic loading dominated by shear behavior. 

 

Figure 4.10: Figure 4.10: Response of the slender pier to cyclic loading dominated by flexural behavior. 
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4.2 Data Generation and Linear Correlation of Parameters for Strengthening 

Interventions 

In the attempt to understand the influence of different parameters on the behavior of the piers, a 

linear parametric analysis is conducted for both the shear and flexure dominant type of failures. 

The information about the pier is defined through its base shear capacity and its displacement. For 

the shear dominant behavior, the height, length, thickness, and the vertical forces on the pier are 

evaluated. While for the flexural dominant behavior, the same parameters are considered in 

addition to the tensile modulus of elasticity. The method followed for such evaluation is to fix all 

the parameters except for the variable being tested, then determining the strength of the pier along 

with the variation. The method will apply separately for each dominant type of failure through 

limiting the variable into a range that will induce the needed mode. Enough data is generated to be 

able to construct a correlation between the variables. More information on the shape of the 

hysteretic loops showing the response of the piers due to the cyclic loadings applied is presented 

in the Appendix A. 

4.2.1 Correlations for Shear Dominant Failure Mode 

The parameters that are found to directly influence the strength criteria of the piers dominated with 

shear behavior are the height h, the vertical forces N, the length L and the thickness t presented as 

independent variables in Table 4.4. The ranges for the independent parameters are limited to the 

values that induce a shear failure. The strength criteria are the maximum displacement Dmax 

(displacement at maximum base shear strength), the ultimate displacement Dult (displacement at 

the failure of the pier), and the maximum base shear strength Vmax. Those are listed as the 

dependent variables in the table below. 
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Table 4.4: The correlation values between the major parameters and the strength criteria of the piers with 

shear dominant behavior 

Independent Variable  Range Dependent Var. R2 Linear Equation 

Height H 0.5 – 1.5 (m) Dmax  0.9245 y = 3.63x – 1.56 

Height H 0.5 – 1.5 (m) Dult 0.9779 y = 6.27x – 0.66 

Vertical Force N 60 – 300 (kN) Vmax 0.9898 y = 0.20x – 53.9 

Length L 0.9 – 2 (m) Dmax  0.8459 y = -x + 3.83 

Length L 0.9 – 2 (m) Vmax 0.9995 y = 48.5x + 36.0 

Thickness t 200 – 600 (mm) Dmax 0.6577 y = 0.003x – 2.3 

Thickness t 200 – 600 (mm) Vmax 0.9976 y = 0.2x + 38.8 

The statistical variable R2 representing the degree to which the data points for a particular 

distribution have the tendency of forming a linear relationship. The equation of the linear line is 

then calculated and stated in the table representing the potential linear relationship between the 

independent and dependent variables. Thus, those equations constitute preliminary correlation 

between the parameters of the piers under analysis and the strength criteria to be predicted by the 

model. This linear relationship is generated using the graphs shown in Figs. 4.11a to 4.11f. Those 

graphs are constructed using the random data generated by the calibrated model and limited to the 

ranges assigned above. Those will serve a critical role in understanding the influence of altering 

those parameters on the strength of the piers. Figure 4.11a shows that increasing the height of the 

specimen will increase both the maximum and ultimate displacements indicating the additional 

flexibility associated with taller piers. The slope of Dult is double the slope of Dmax which indicates 

that the rate of gaining flexibility towards the failure of the piers is higher than the gain towards 

the maximum shear strength. Figure 4.11b shows that the increase in the vertical forces on the 

piers will increase the maximum shear strength due to the stability induced by the vertical stresses 

thus reducing the tensile vulnerability at the weak bond between the stones and the mortar.  
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 

 

Figure 4.11: a) Variation of Dmax and Dult w.r.t the height b) Vmax w.r.t. vertical forces c) Dmax w.r.t. 

length d) Vmax w.r.t. length e) Dmax w.r.t. thickness f) Vmax w.r.t. thickness 
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Figures 4.11c and 4.11d shows the correlation between the displacement, strength, and the length 

of the piers. Increasing the length of the pier is adding stiffness which reduces the displacement 

and increases the strength. It is good to note that the R2 value for the linear relationship between 

the length and displacement is 0.8459 due to the plateauing in the data observed in the graph. The 

slope of linear relationship between the length and the shear strength is 48.5 indicating a high gain 

in the strength. This shows the strong influence of such intervention on the behavior of the pier 

and thus could be considered as potential parameter to work on for rehabilitation projects. Figures 

4.11e and 4.11f shows the relationship between the thickness of the piers, displacement, and 

strength. The R2 value for the linear relationship between the displacement and the thickness is 

0.6577 indicating a discrepancy in the data reflected in the spikes and plateauing of the data 

observed in the graph. In general, increasing the thickness increases the maximum displacements. 

However, the actual influence appears after a thickness of 450 mm and the slope of the linear line 

is low at 0.0028. The increase in the thickness increases the strength of the piers with a slope of 

0.1962 and good data correlation. The thickness parameter could be good starting point, despite 

the inconsistency of the data in Figure 66, to increase the strength of the element without 

sacrificing the stiffness to a great extent. A strengthening intervention that serves in this direction 

is of great benefit to the URM structures. 

4.2.2 Correlations for Flexural Dominant Failure Mode 

In the same manner, data is generated for the piers with flexural dominant behavior using the major 

parameters using the specified ranges shown in Table 4.5. The strength criterion is limited to the 

maximum and ultimate based shear extracted from the cyclic loops due to the limited variations in 

the displacements. This is due to the flexibility associated with flexural behavior. Figure 4.12a 
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shows the correlation between the Vmax and the height H of the pier with the lowest R2 value in the 

list equal to 0.88. The negative slope of the linear relationship between the data is -10.3 indicating 

the increase in the height of the pier will lower it base shear strength. A good practice in such case 

it to ensure the rigidity of the connection at the top of the pier which limits the height of the pier 

to the first adjacent opening without extending to upper floors.  

Table 4.5: The correlation values between the major parameters and the strength criteria of the piers with 

flexural dominant behavior 

Independent Variable  Range Dependent 

Variable 

R2 Linear Line 

Equation 

Height H 1.9 – 7 (m) Vmax  0.8793 y = -10.3x + 75 
Compressive Strength fm 1.4 – 4.7 (MPa) Vmax 0.9648 y = 6.1x + 50.95 

Tensile Strength ft 0.07 – 0.3 (MPa) Vmax 1 y = 62.3x + 56.9 

Tensile Modulus Et 1 – 10 (MPa) Vmax 0.9872 y = -0.4x + 67.9 

Tensile Modulus Et 1 – 10 (MPa) Vult  0.9890 y = -0.9x + 68.6 

Vertical Force N 10 – 175 (kN) Vmax 0.9896 y = 0.33x + 20.8 

Length L 0.5 – 1 (m) Vmax 0.9996 y = 94.8x + 27 

Thickness t 200 – 800 (mm) Vmax 0.9888 y = 0.09x + 46 

Figure 4.12b shows the correlation between the maximum shear strength and compressive strength 

of the pier. Increasing the compressive strength has increased the strength of the pier with a slope 

of 6.1 for linear data and good R2 value of 0.96. Increasing the compressive strength is dependent 

on the strength of mortar being the weakest material in the wall which can crush under the vertical 

pressure from gravity loads. A good practice for rehabilitation intervention is the injection of 

hydraulic mortar into the wall. Figure 4.13a shows a perfect correlation between the maximum 

shear strength and tensile strength of the pier. The slope for the linear relationship is 62.3 which 

indicates high influence of the parameter on the strengthening of the pier. The tensile strength of 

the pier is increased through improving the bond between the mortar and the stone units to enhance 

the cohesion and friction parameters. A careful replacement of the existing lime mortar in such 

wall with newer hydraulic or cement-based mortar can improve the performance considerably.  
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(a) 

 
(b) 

Figure 4.12: a) Variation of Vmax w.r.t. height b) Vmax w.r.t. compressive strength. 

Figure 4.13b shows the correlation between the maximum and ultimate shear strength and the 

elastic tensile modulus of the pier. In general, the influence of this parameter is low on the strength 

criteria which is almost three time larger towards the ultimate strength at failure compared to the 

maximum shear strength. Figure 4.13c shows the correlation between the maximum shear strength 

and the vertical forces exerted on the top of the piers. There is a good correlation of the data but a 

low slope for the linear relationship indicating low influence in the strengthening criteria. The 

vertical forces are usually controlled by the number of stories above the intended pier and 

increasing such parameter for the intent of improving the strength could be on the detriment of the 

vertical capacity of the bearing walls. However, the improvement in the strength is due to tensile 

cracks closing phenomena that occurs through the vertical forces.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.13: a) Variation of Vmax w.r.t. tensile strength b) Vmax and Vult w.r.t. elastic tension modulus c) 

Vmax w.r.t. vertical forces d) Vmax w.r.t. length 

Figure 4.13d is the correlation between the maximum shear strength and the length of the pier. 

With almost perfect correlated data and high slope for the linear relationship, it proves to be as a 

great influence on the strengthening criteria. For this reason, the size of the openings in the URM 

walls has a major effect on the performance of the walls. One practical intervention could be 
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situation. Figure 4.14 shows the correlation between the maximum shear strength and the thickness 
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of the pier. The slope of the linear relationship is very low indicating a low influence on the 

strengthening criteria. 

 
Figure 4.14: Variation of maximum base shear 

strength Vmax with the thickness of the pier 

 

4.3 Case Study - Piers Extracted from the Facade Wall of Villa Maria School 

Building 

A case study in the city of Montreal is considered to study the behaviour of the URM piers in 
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analysis on those formulations, the best fit is selected to calculate the strength of the pier while the 

deformation is determined using the calibrated ratios for shear displacements in Chapter 3. Using 

the available maps of the building, the dimensions of the facade wall is extracted and two piers 

from the first and second floors are selected for the analysis. One pier showed a dominant shear 

behavior, and another pier showed a flexural dominant behavior. Referring to those two modes of 

responses, it was possible to use the probabilistic model presented in Chapter 4 to evaluate the 

most influencing predictive parameters that can be used to strengthen the wall to improve the 

building response.   

4.3.1 Villa Maria School - Extraction of Parameters Using Available Resources  

 

Figure 4.15: The central building of Villa Maria high school (main facade) 

The case study is conducted on the central building of Villa Marie high school shown in Fig. 4.15.  

This stone masonry building was originally a convent and was built in 1804 (Parks Canada 

Agency, 1998). Recognized by its Neo-Palladian style, this building was the official residence for 
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the General Governor of Canada in the year 1844. To accommodate the change of building 

occupancy type, the building was renovated in the same year by the architect George Browne. 

Hence, the case study is a two-story stone masonry building with basement. The stone masonry is 

classified as limestone originated from sedimentary rocks. 

All plans of the building were obtained from the owner and the Congregation de Notre-Dame and 

are shown in Figs. 4.16, 4.17, and 4.18. From the building plans it results the following wall 

thicknesses: 519mm for the basement, 500mm for the first floor, and 432mm for the second floor.  

 

Figure 4.16: Villa-Maria school elevation 
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Figure 4.17: Main floor plan for Villa Maria school 

 

Figure 4.18: Second floor plan for the Villa Maria school 
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Using extrapolation method from the maps and actual measuring taken on site, the dimensions of 

the facade wall are extracted as shown in Fig. 4.19. Pier 1 at the second floor and Pier 2 at the 

first floor are selected to be analysed using the deterministic model in Chapter 3.  

 

Figure 4.19: Facade wall of the Villa Maria school with extracted dimensions in meters 

4.3.2 Preliminary Experimental Tests on Lime Mortar 

In the aim of extracting the compressive strength of the masonry wallets used as parameters in 

defining the properties of the piers under examination, a set of compression tests are performed on 

mortar cubes selected based on different lime to sand ratios extracted from the literature shown in 

Figs. 4.20a and 4.20b. The sand specific density is 2702 Kg/m³ while the lime specific density is 

2370 kg/m³. For existing URM buildings, lime mortar was commonly used in the bed joints and 

head joints between the unit stones.  
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Figure 4.20: a) NHL hydraulic lime used in the mix of mortar b) Sand used in the mortar 

Three different ratios are selected and presented in Table 4.6 based on mass proportions. Tests are 

done according to ASTM C109 (ASTM International, 2020) using 50 mm cubic molds and EN 

1015-11 (EN 1015-11, 2019) for curing. Nine samples are taken from each batch to be tested at 7 

and 50 days. Water is added in each batch until obtaining the same consistence. The resulting water 

to lime ratios is presented in Table 4.6 as well. The average of compressive strength obtained from 

all batches at 50 days are considered for further analysis as the ones obtained at 7 days are only 

used as a control.  

Table 4.6: Different mortar to sand ratios used in the mix with their associated water to mortar ratios. 

Batch  Proportions (L:S) W/L ratios 

A (1-2) 1 : 1.25 0.663 

B (1-2) 1 : 1.75 0.573 

C (1-2) 3.5 : 1 0.439 

The whole preparation process for mixing the material, molding, and curing is presented in 

Fig.4.21. ASTM requirements are satisfied at every step of the tests (ASTM C 109), while also 

some conditions from the European norms are used guidance (EN 1015-11). After the cubes are 

ready, the molds are placed in plastic bags and stored for 2 days at room temperature after which  

a b 
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a)  

 
b)  

 
c) 

 
d)  

 
e)  

 
f)  

Figure 4.21: a) Mixing the mortar using a mechanical turbine b) ASTM certified molds c) Tapping the 

mortar at half the portion d) Finishing the surface of the mortar e) Curing f) Weight measuring. 

they are removed from the molds and placed in plastic bags to finish the 7 days period at which 

the first set is tested. The remaining cubes are left without any bags at room temperature up to 50 

days when the second set has been tested. Once the curing part is over, the mortar cubes are 

prepared for testing starting by measure the weight using a sensitive scale. 

Typical testing procedure is presented in Fig. 4.22. The dimensions are taken using a calibrated 

caliper, then the cubes are placed under the crushing disks in the compression machine while the 
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load is applied gradually using a manual handle. A typical failure of the cubes is a split towards 

the edge due to weak tensile strength.  

 
a)  

 
b)  

 
c)  

 
d)  

Figure 4.22: a) Measuring the dimensions b), c) Compressive strength test d) Typical failure in the mortar 

cubes. 

The results of each batch with their equivalent average are presented in Table 4.7 at 7 days and in 

Table 4.8 at 50 days. The averages at day 7 are 1.1, 2, and 3.1 for batches A1, B1, and C1, 

respectively resulting in a total average of 2.1 MPa. The averages at 50 days are 2.6, 5.9, and 8.6 

for batches A2, B2, and C2, respectively with a total average of 5.7 MPa. In a study on the ageing 

of lime mortar due to various conditions of exposure (Izaguirre et al., 2010), it is shown that the 

mortar suffers a 13.5% decrease in compressive strength due to climate exposure which includes 

changes in temperatures and humidity, and a 25% decrease in compressive strength due to freeze-
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and-thawing phenomenon that is very common in Montreal. This will result in a total of 38.5% 

decay in the compressive strength in the compressive strength of the lime mortar existing in the 

Villa Maria building. Thus, the compressive strength is 3.5 MPa. This number will be used for 

further numerical investigations on the compressive strength of URM prisms and wallets.  

Table 4.7: Compressive strength for the three batches at 7 days 

A1 1 2 3 Average 

Cross-sectional area (mm) 50.25x50.46 50.21x50.17 49.48x50.12 
 

Weight (g) 246.12 247.05 245.06 
 

Force P (KN) 2.65 2.61 3.14 
 

Strength Fm (Mpa) 1.1 1.0 1.3 1.1 

B1 1 2 3 Average 

Cross-sectional area (mm) 50.94x50.11 50.47x51.09 50.68x50.14 
 

Weight (g) 263.69 269.23 261.72 
 

Force P (KN) 5.14 5.08 5.40 
 

Strength Fm (Mpa) 2.0 2.0 2.1 2.0 

C1 1 2 3 Average 

Cross-sectional area (mm) 51.55x50.49 50.87x50.43 51.50x50.60 
 

Weight (g) 240.57 237.82 239.44 
 

Force P (KN) 7.78 8.14 7.70 
 

Strength Fm (Mpa) 3.0 3.2 3.0 3.1 

Table 4.8: Compressive strength results for three batches at 50 days 

A2 1 2 3 Average 

Cross-sectional area (mm) 51.19x50.75 51.01x51.06 50.67x51.34 
 

Weight (g) 211.91 211.86 212.37 
 

Force P (KN) 6.55 6.62 7.26 
 

Strength Fm (Mpa) 2.5 2.5 2.8 2.6 

B2 1 2 3 Average 

Cross-sectional area (mm) 50.53x51.44 51.43x50.42 51.22x50.41 
 

Weight (g) 239.84 240.84 237.65 
 

Force P (KN) 14.74 16.75 14.03 
 

Strength Fm (Mpa) 5.7 6.5 5.4 5.9 

C2 1 2 3 Average 

Cross-sectional area (mm) 50.90x51.80 50.94x51.38 50.89x51.50 
 

Weight (g) 199.90 198.77 199.93 
 

Force P (KN) 23.14 22.34 22.45 
 

Strength Fm (Mpa) 8.8 8.5 8.6 8.6 
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In a study on the correlation between the compressive strength, thickness of mortar bed joints, and 

the compressive strength of URM prisms (Lima et al., 2012), an equation is extracted from the 

experimental tests: 

𝑓𝑝 = 4.7 + 2.3 ln(𝑓𝑎) + 0.23𝑒𝑎 ± 0.42                                                                                         (4.1) 

Herein, fp is the compressive strength of the prism, fa = 3.5 MPa is the compressive strength of the 

mortar, and ea = 8 mm is the thickness of the bed joint. This equation is used to deduce the prism 

compressive strength from a sample of the Villa Maria building walls. Using the equation, the 

compressive strength of an equivalent prism is fp = 9 MPa. In another experimental study on the 

correlation between the prism and wallette compressive strength (Thamboo & Dhanasekar, 2019), 

an equation is developed in the following form with correlation coefficient R2 = 0.94: 

𝑓𝑚,𝑤𝑎𝑙𝑙𝑒𝑡𝑒 = 0.75 × 𝑓𝑚,𝑝𝑟𝑖𝑠𝑚                                                                                                         (4.2) 

Using the equation, fm,wallette = 6.75 MPa. This value will be used as a parameter in the pier model. 

4.3.3 Villa Maria School - Extraction of Parameters Using Available Resources  

The stone masonry is classified as limestone originated from sedimentary rocks. A density test was 

performed in Concordia lab to identify its category. Weight measurements in the field conditions 

of two stone samples with different sizes that were made in water (wwater) and in air (wair) and are 

illustrated in Figs. 4.23a and 4.23b. The density was calculated based on the following formula: 
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Figure 4.23: a) Limestone masonry samples collected from the field near the building prepared for 

density test b) Measurement of the weight in water using a chain hooked to the weight balance. 

𝜌𝑠𝑡𝑜𝑛𝑒 = 𝑤𝑎𝑖𝑟 (𝑤𝑎𝑖𝑟 −𝑤𝑤𝑎𝑡𝑒𝑟)⁄                                                                                                    (3) 

The measurement yielded a density of 26.9 kN/m3 which is classified into compact limestone with 

unit compressive strength ranges between 78 – 186 MPa and unit elastic modulus ranges between 

39000 – 68000 MPa (Mario Como, 2013). Another study on the physical properties of the Lindsay-

Cobourg Limestone conducted at McGill University (Hekimi, 2012) shows similar values 

(saturated density of 26.9 kN/m3 and a dry density of 26.8 kN/m3) to those obtained in Concordia 

lab. The stone material is classified as argillaceous limestone with visible heterogeneity ranging 

between light to dark grey color that are formed as a sub-division of the Middle Ordovician 

Limestone in Southern Ontario bedrock. The uniaxial compressive strength of the unit stone ranges 

between 22MPa and 140 MPa. Scanning the literature to find experimental tests conducted on 

stone masonry assemblages to extract the initial shear and compressive strength of small wallets, 

it was found that a diagonal shear test was performed using Credaro sandstone originating from 

sedimentary rocks with density of 25.79 kN/m3 and a unit compressive strength ranging between 

165MPa and 172 MPa.  

Thus, the values extracted from these experimental tests were used to develop the shear strength 

formulations in this paper. The preliminary mechanical properties considered for the stone 

a b 
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masonry assemblage are: Em = 2550 MPa; ft = 0.137 MPa tensile strength; and G = 840 MPa 

(Magenes, Penna, Galasco, & Rota, 2010).  

4.3.4 Distributed Plasticity Model in OpenSees  

Pier 1 at the second floor and Pier 2 at the first floor marked in Fig. 4.24 are selected to be analysed 

using the deterministic model presented in Chapter 3. The piers vertical loads are calculated based 

on the density of the stone masonry and the volume of the tributary area carried by each pier. A 

sketch of each one is shown in Fig. 4.40. The height of the piers is determined using the 30 degrees 

angles method (Dolce, 1991).  

 

Figure 4.24: Illustration of pier1 (left) and pier2 (right) selected from the facade wall. 

To calculate the capacity of the wall for the shear dominant behavior, the Eqs. (3.1), (3.2), (3.3) 

and (3.4) are used presented in Table 4.9. The calculations for the capacities of the piers are 

presented in the table. Based on the analysis from the parametric study presented in Chapter 3, Eq. 

(3.2) of (Turnšek & Čačovič, 1971) has the best fit for representing the capacity with better indices 

for the aspect ratio and vertical stress, in addition to fair values for the vertical stress and full scale.  
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Table 4.9: Capacity formulations for shear dominant behavior 

Formulation Source Pier1 Vmax (kN)  Pier 2 Vmax (kN)  

𝑉𝑚,1 = (𝑓𝑣𝑏𝑤𝐿𝑤 + 0.25𝑁)𝛾𝑔      Clause 7.10.1.1. (CSA S304.1-
04, R2010) 

204.6 239.1 

𝑉𝑚,2 =
𝑓𝑡𝐿𝑤𝑏𝑤

ξ
√1 +

𝜎𝑜
𝑓𝑡

 

(Turnšek & Čačovič``, 1971) 163.3 182.6 

𝑉𝑚,3 =
𝑐 + 𝜇𝑠𝜎𝑜
1 + 𝛼𝑣

(𝐿𝑤𝑏𝑤) 
Coulomb Criterion corrected 

by (Magenes & Calvi, 1997b) 
180.7 161.4 

𝑉𝑚,4 = 𝑃 tan∅ [1 −
ℎ

2𝐿𝑤
tan∅ (

1

1 − 𝑣
)] (Lourenço et al., 2005) 69.2 62.2 

Therefore, Vmax = 119.8kN and Vmax = 146.1kN will be used in the model for Pier1 and Pier2, 

respectively. To build the model in OpenSees, we present the summary of all the calculated 

parameters to be used for both the shear and flexural dominant behaviors in Table 4.10. The value 

of V′ = 0.9Vmax and Vult = 0.5Vmax based on the calibration in Chapter 3.  

Table 4.10: Parameters needed to build the distributed plastic model in OpenSees 

Sample fm ft L 

(m) 

H 

(m) 

t 

(m) 

V′ 

(kN) 

Vmax 

(kN) 

Vult 

(kN) 

N 

(kN) 

Pier1 6.75 0.137 1.62 1.97 0.5 107.8 163.3 59.9 180 

Pier2 6.75 0.137 1.62 3.48 0.43 131.5 182.6 73.1 405 

The aspect ratio of Pier1 is H/L = 1.22 which predicts a shear dominant behavior. This was evident 

from the cyclic behavior in Fig. 4.25 showing a wide area under the curve due to energy 

dissipation. The shear capacity of the pier in the Vmax=161kN at 3.25mm and an ultimate capacity 

of 84.5kN at 10.25mm. Thus, the displacement ductility factor is µ = 3.15. The elastic shear 

capacity is reached at 1.5 mm with 149 kN.  

On the other hand, the aspect ratio of Pier 2 is H/L = 2.15 which predicts a flexural dominant 

behavior. Evident in Fig. 4.26 is the narrow shape of the curve indicating low energy dissipation 

due to more flexibility in the slender pier. The maximum shear capacity is Vmax=183 kN with a 

plateau in the curve showing at about 7.5mm. The reason the capacity of the pier with flexural 

dominant behavior is higher than the one with shear dominant behavior is due to the high vertical 
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forces on Pier 2 associated with its location on the first floor thus carrying more loads. Also, it was 

noticed a decrease in the stiffness as the lateral deformation reached 3.25mm and the shear is 

139kN. 

 

Figure 4.25: The cyclic behavior of Pier1 
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Figure 4.26: The cyclic behavior of Pier2 

 

 

In Summary, the deterministic equivalent frame model calibrated using experimental data is used 

to generated data between curtained ranges. The ranges are based on the common practice and 

limited dimensions of the structural elements. Using linear data analysis tools such as statistical 

correlation values and slopes, a preliminary relationship between the characteristics of the walls 

and their influence on the behavior is built. Those factors are the first step for more comprehensive 

nonlinear data analysis presented in the next chapter.  

-200

-150

-100

-50

0

50

100

150

200

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5C
ap

ac
it

y 
(k

N
)

Displacment (mm)



 

129 

 

Chapter 5:  Nonlinear Probabilistic Model and Machine Learning 

Approach to Parameter Identification for URM Piers Strengthening 

The performance of URM piers is reliable on many parameters that can influence its strength and 

deformation. In the previous chapter, a linear correlation method was used to assess the effect of 

those parameters. However, in this chapter, a more advance technique is used which can measure 

the nonlinear relationship between the parameters. The work includes both dominant modes of 

failure: the shear and flexure. Using the deterministic model developed before to generate data of 

all the parameters includes the target variables, it was possible to develop a probability-based 

model using Bayesian networks (A. Goulet, 2020) which can assess the flow of information. 

Utilizing a software named BayesiaLab (Conrady & Jouffe, 2015), it is possible to import the data 

files and discretize the variables using several available methods, then learn the connections using 

supervised machine learning algorithms. Those models are validated using a cross validation 

method that provides the precision and the reliability of the connections. Finally, several indices 

are produced that shows the influence of predictive variables on the strength and ductility of the 

piers which will play a major role in any strengthening intervention applied on URM walls. 

5.1 Data generation and curation 

Using the calibrated deterministic model in Chapter 3, a random data was generated for the both 

the shear and flexure dominated behaviors of the piers. However, the difference in this time is the 

randomization of the all the variables available in the model that can influence response within 

limited ranges that will yield the sought modes of failure.  Herein, 513 observations for 10 variables 

are used for the shear dominant mode of failure with the shear strength, maximum displacement, 

and the ultimate displacement, as the three target variables in the model. In addition, data on 

ductility is generated using the ratios between displacement values relevant to each data point 
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which could be helpful to understand the response of the piers from different perspective. The 896 

observations for 8 variables are generated for the flexure dominant mode of failure with the shear 

strength representing the target variable of the model. Figures 5.1a, 5.1b, and 5.1c show the data 

distribution of the target variable Vmax for the shear dominant behavior. This normal distribution 

will help in the discretization process to determine the intervals required for better analyzing the 

information in the model. Figures 5.1d, 5.1e, and 5.1f show the data distribution for the target 

variable Vmax for the flexural dominant behavior with normal distribution. It is noted that the data 

has been generated and edited to fit the normal distribution curve as it serves a mark for random 

selection of data and thus eliminates any bias in the analysis. A manual discretization of the target 

variable is made to set the place of other predictive variables to be discretized using the automated 

functions explained in the previous sections.  
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(a) 

 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.1: a) Frequency of Vmax in terms of specified intervals b) PDF of Vmax c) CDF of Vmax d) 

Frequency of Vmax for the specified intervals e) PDF of Vmax f) CDF of Vmax. 

The list of the predictive and the target variables generated are listed in Tables 5.1 and 5.2 for the 

shear and the flexural dominant mode of behavior, respectively. The aspect ratio H/L and the 

ductility factor µ (Dult/Dmax) are only ratios extracted from the data and was not generated by the 

model originally. After the data has been curated, it is imported to the BayesiaLab Software for 
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the analysis. It is to be noted that µ (Dult/Dmax) is a ratio that expresses ductility particularly for 

the purpose of this work. The aim is to combine the maximum and the ultimate displacement 

information to form a relationship showing the behavior if the piers. Therefore, ductility can be 

defined differently in other work where more factors such as the stress can be included. 

Table 5.1: Generated variables for the shear dominant behavior 

Predictive Variables Target Variables 

N fm ft Et L t H H/L Vmax Dmax Dult µ (Dult/Dmax) 

Table 5.2: Generated variables for the flexural dominant behavior 

Predictive Variables Target Variable 

N fm ft Et L t H H/L Vmax 

Figures 5.2a, 5.2b, and 5.2c shows the scatter data points for the most relevant predictive variables 

N, t, and ft versus the target variable Vmax for the shear dominant behavior. Figures 5.2d and 5.2e 

are the scatter data points for the N and H/L predictive variables versus the target variable Vmax 

for the flexural dominant beahvior. The reason the data points are presented is to understand their 

relationship to the mutual information that will be generated later using the probabilistic model. 

For the typical correlation in regression, the shape of the data can predict the level of correlation. 

As the scattering leans towards a circular shape it will predicit low levels of correlation. It will 

observed that nonlinear correlations can capture a different level of relationship between the data 

without having to depend on the linearity of the distribution. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.2: a) Data scatter for Vmax versus N for the shear dominant behavior b) vs t for the shear 

dominant behavior c) vs ft for the shear dominant behavior d) vs N for the flexural dominant behavior e) 

vs H/L for the flexural dominant behavior 
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5.2 Nonlinear Probability Model and Acyclic Graphs 

An application of the probabilistic model is done in the BayesiaLab Software to perform a 

nonlinear analysis of the data generated by the calibrated deterministic model. After the curation 

of the data and distinguishing the input variables from the output variables, it is then possible to 

import the files into the software and start the discretization process. The work will be divided 

between the shear and the flexural dominant behaviors witnessed in the piers. 

5.2.1 Model of the Shear dominant Behavior in Piers 

After applying several trials of discretization methods on the data set, the most optimized intervals 

were selected for the analysis based on the modal validation and tuning of the numbers to enhance 

the performance. A summary of the intervals selected for each of the variables are presented in the 

report in Fig. 5.3. 
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Figure 5.3: Discretization of the variables and the different functions used. 

In the first trail, the Naïve Bayes network is used to have a general idea on the influence of all the 

predictive variables on the target variable Vmax. Figure 5.4 shows the connections and the mutual 

information for all the variables. The values in blue represent the percentages of reduction of 

entropy of the target variable on the predictive variables while the red values are the opposite. This 



 

136 

 

value is simply obtained by dividing the mutual information by the marginal entropy of the 

variable. In other words, those values determine how much information we can know about target 

variable by revealing the predictive variables. Thus, we are interested in the red values that are 

aligned in increasing order reflected in the increased thickness of the arrows. The least influence 

seems to be the compressive strength of the pier fm with mutual information I = 0.0073 and 

0.3789% entropy reduction on Vmax. On the other end, the thickness t has the highest influence 

on Vmax with I = 0.2184 and entropy reduction of 11.2376%. In Fig. 5.5a is shown the application 

of the Markov Blanket algorithm, which selects only the most influential variables t, ft, N, and L 

with slight increase in the mutual information compared to the Naïve Bayes Network. Figure 5.5b 

is the model constructed using the Augmented Markov Blanket Algorithm. This resulted in 

considering one less variable limiting the predictive variables to t, ft, and N with slight 

improvement in the mutual information for the variable t and slight reduction in the mutual 

information for ft and N.  

Additional computational effort is applied to enhance the performance of the models using the 

Structural Coefficient SC (Richardson, 1968). This parameter is a tool that permits to change 

the internal number of observations made from the model in a way that affects the complexity 

associated with the connection drawn between the variables. The internal number of 

observations is defined as N′ = N / SC where N is the original number of observations from the 

imported data file, thus changing the value of SC between the range (0;1), leads to increase in 

the number of internal observations and thus the complexity of the structure. However, this 

increase in complexity may come at the expense of the precision due to overfitting of the model 

to the data. Figures 5.5c and 5.5d show the graph for SC versus the normalized values of the 
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structure/target precision ratios for both Markov Blanket and Augmented Markov Blanket 

models. The structure refers to the complexity of the model which increases as the SC increases. 

The target precision however keeps increasing up to a certain limit where we observe a spike in 

the graph. At this point, the increase in the structure exceeds the increase in the precision 

indicating the inadequacy of the data past this SC. Relying on this information, for the Markov 

Blanket model an SC = 0.22 is selected and for the Augmented Markov Blanket an SC = 0.175 

is selected.  Figures 5.5e and 5.5f shows the models after the alteration of the SC to the new 

values extracted from the graphs.  

 

Figure 5.4: Model using Naive Bayes Network with the mutual information. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 5.5: a) Markov Blanket b) Aug. Markov Blanket c) SC vs structure/target precision ration for the 

Markov Blanket d) SC vs structure/target precision ration for the Aug. Markov Blanket model e) Markov 

Blanket with SC=0.22 f) Aug. Markov Blanket with SC=0.175 
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 Only a slight change in the values of the mutual information is observed in the Markov Blanket 

model. For the Augmented Markov Blanket model additional connections between the predictive 

variables appeared between t and L, t and ft, and finally between ft and N. Those additional arrows 

can justify the connectivity between those variables and the influence on each other as extracted 

from the data set. This in fact reflects the realistic approach in determining the values of the 

predictive variables against the fixity applied on the all the variables while changing only one in 

the linear analysis of the data performed in the previous chapter. It is an expected reduction in 

connective arrows in the Markov and Augmented Markov Blanket compared to the Naïve Bayes 

Network due to their tendencies to limit the nodes to direct connections. However, the validity of 

the model is yet to be tested to understand which model is more reliable and assess the degree of 

precision in each. 

The model validation is done through the K-Folds Cross Validation method (Rodriguez et al., 

2010) that incorporates a K number of test samples from the original data and utilize it in the 

purpose of learning the networks. The results from all the learned networks are then combined to 

give the final validation of the model in terms of reliability and precision percentages. The 

advantage of K-Fold is the shuffling of the selected test samples which eliminates any bias and 

randomize the data. For this model, K = 10 samples are chosen with a test sample with size of 51 

observations leaving the 462 observations for the learning sample. Figures 5.6a, 5.6b, and 5.6c 

show the performance of the generated models from the Naïve Bayes Network, Markov Blanket, 

and Augmented Markov Blanket, respectively. The first row represents the actual values extracted 

from the data file imported to the software while the first column represents the predicted values 

by the model after the aggregation of the results from the 10 folds test samples. The occurrences 

are then represented in the middle of the table. Dividing the occurrences by the actual values yields 
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the precision percentages, while dividing the occurrences by the prediction values yields the 

reliability percentages. 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 5.6: a) Performance of Naive Bayes model b) Markov Blanket c) Aug. Markov Blanket d) Marginal 

probabilities for the variables in the Markov Blanket 

Observing the values for the three models, the Markov Blanket in Figure 5.5e provides the best 

precision values. Also, it performs better across all the intervals regarding the reliability meter. 

Since the complexity of the Augmented Markov Blanket model did not improve the performance 
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of the model, it will be discarded. Figure 5.6d shows the marginal probabilities of all the variables 

in the Markov Blanket in addition to the target variable Vmax. This reflects the distribution of the 

intervals amongst the variables at any moment given the data provided. This can be used to predict 

the performance of the piers from a general perspective, which can then be narrowed down to more 

specific values as we our information about the parameters increases. As the values from the 

Markov Blanket model are considered in the analysis, the variables with the most influence on the 

strength of the pier are the thickness t and the tensile strength ft with mutual information values I 

= 0.25 and I = 0.2, respectively.  

Now we shift the target variable to the ductility factor µ = Dult/Dmax to study the response of the 

piers in the perspective of lateral displacements. Dult is the ultimate displacement at failure, while 

Dmax is the displacement at the maximum base shear strength achieved extracted form the 

response curves of the cyclic behavior of the piers. The data scatter points between ductility factor 

and the height H and the length L of the piers is shown in Figs 5.7a and 5.7b, respectively. 

 
a) 

 
b) 

Figure 5.7: a) Scatter points for ductility factor and H b) ductility factor and L 
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Similarly, the discretization criteria are selected, and the acyclic graph is generated. The model is 

then learned through the Naïve Bayes Network, the Markov Blanket, and the Augmented Markov 

Blanket algorithms using a structural coefficient SC = 0.27667 extracted from the structure/target 

precision ratio graphs. The manual discretization of the target variable and the SC for the Markov 

Blanket are shown in Figs. 5.8a and 5.8b, respectively.  

The best performance is attributed to the Markov Blanket model based on a 10 Folds Cross 

Validation method using 10 testing samples aggregating into precision and reliability percentages. 

The model presented a connection between the ductility factor and the predictive variables, the 

height H, the length L, and the tensile strength ft with mutual information values I = 0.187, I = 

0.0602, and I = 0.0306, respectively. The results are shown in Fig. 5.9a representing the acyclic 

graph. In Fig. 5.9b, the performance analysis criteria are presented. In comparison to the model for 

the shear strength capacity, the values for reliability and precision are generally lower indicating a 

weak connection between the predictive variables and the target variable.  

 
a) 

 
b) 

Figure 5.8: Manual discretization of the ductility factor using the PDF b) SC for Markov Blanket vs 

structure/target precision. 
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a)  

b) 

Figure 5.9: Acyclic graph for the Markov Blanket model b) Performance of the Markov Blanket model 

5.2.2 Model of the Flexural dominant Behavior in Piers 

Like the first analysis, the flexural dominant behavior of the piers is also analyzed with the target 

variable as the maximum shear strength Vmax. The optimum discretization is shown in Fig. 5.10 

including nine nodes. Then, Vmax is discretized manually while the rest of the variables are 

discretized using the normalized equal distance function. 
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Figure 5.10: Discretization of the variables for the flexural dominant behavior of the piers 

The Naïve Bayes network in Fig. 5.11 is generated to have an overlook on the connections and 

their strength with the target variable Vmax. The height of the pier has the highest influence with 

mutual information I = 0.3779 giving a 20.87% reduction of entropy to the target variable. The 
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elastic tensile modulus has the least influence with I = 0.0049 and only 0.27% reduction of entropy 

on the target variable. Figures 5.12a and 5.12b shows the Markov Blanket models with SC = 1 and 

SC = 0.2125, respectively. The aspect ratio H/L, the tensile strength ft, the thickness t, and the 

vertical forces N, are selected by the model. However, with the increase in the internal number of 

observations, the length L is added to the model. There is not a major change in the mutual 

information compared to the Naïve Bayes network. 

 

Figure 5.11: Naive Bayes Network 
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a) 

 
b) 

Figure 5.12: a) Markov Blanket model b) Markov Blanket model with SC=0.2125 

Figures 5.13a and 5.13b shows the Augmented Markov Blanket models with SC = 1 and SC = 

0.24, respectively. With the increase in the internal number of observations, the complexity of the 

model increased adding connections to between the predictive and the target variable, in addition 

to the connections between the predictive variables themselves. When we compare the results to 

the original model, there is no major change in the mutual information. The structural coefficients 

extracted using the structure/target precision graphs are shown in Figs. 5.14a and 5.14b for the 

Markov Blanket and the Augmented Markov Blanket, respectively. 
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a) 

 

b) 

Figure 5.13: a) Augmented Markov Blanket model b) Augmented Markov Blanket model with SC = 0.24 

 

a) 

 

b) 

Figure 5.14: a) SC for the Markov Blanket model b) SC for the Aug. Markov Blanket model. 

The performance of the models is measured using a 10 Folds cross validation method with 10 

testing samples where the aggregated results are presented in Figs. 5.15a, 5.15b and 5.15c for the 

Naïve Bayes network, Markov Blanket, and the Augmented Markov Blanket models, respectively. 

Reading the reliability and the precision percentages, the enhanced Augmented Markov Blanket 
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model performed the best with overall precision of 75.3% and overall reliability of 75.8%. Figure 

15.d shows the marginal probabilities of the main variables in the model presenting a general 

observation of probability distribution using the provided data set.  Using the acyclic graph in Fig. 

5.41, we can deduce that the best two predictors for the base shear capacity of the piers in the 

flexural dominant behavior are the aspect ratio, H/L, and the length of the pier, L, with mutual 

information I = 0.3728 and I = 0.2039, respectively. The H/L and L are connected at a mutual 

information I = 0.2527 which should be an obvious connection since the length L is part of the 

aspect ratio. The next two influencing predictors on the strength of the piers are the tensile strength, 

ft, and the thickness of the pier, t, with I = 0.1316 and I = 0.1187, respectively. The ft and t are 

connected at a mutual information I = 0.0055 which does not constitute a major influence between 

the variables. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 5.15: a) Performance of the Naive Bayes b) Markov Blanket c) Aug. Markov Blanket d) Marginal 

probabilities for Aug. Markov Blanket model 

5.3 Nonlinear Data Analysis and Wall Performance 

Once the best performing models are selected, the indices of connection that are dependent on the 

mutual information and entropy reduction ratios are selected. The results for the shear dominant 

mode regarding the target variable Vmax are shown in Table 5.3 and Figure 5.16, while those 

regarding µ are shown in Table 5.4 and Figure 5.17. 
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Table 5.3: Indices based on mutual information for entropy reduction of the target variable Vmax for the 

shear dominant behavior. 

Predictive Var. t ft N L 

MI 0.2509 0.0655 0.2044 0.1433 

Ent. Red % 12.980 3.390 10.570 7.410 

Indices 0.1298 0.0339 0.1057 0.0741 

 

 

Figure 5.16: Indices for entropy reduction for the target variable Vmax for shear dominant behavior 

Table 5.4: Indices based on mutual information for entropy reduction of the target variable µ for the shear 

dominant behavior. 

Predictive Var. H L ft 

MI 0.187 0.0602 0.0306 

Ent. Red % 12.29 3.95 2.01 

Indices 0.1229 0.0395 0.0201 
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Figure 5.17: Indices for entropy reduction for the target variable µ for shear dominant behavior 

The marginal entropy of Vmax calculated using Equation (2.12), is H(Vmax) = 1.93. Using this 

value, it was possible to extract the indices presented. It is realized that the most influential 

parameter on the strength of the pier is the thickness t, followed by the tensile strength ft. The 

marginal entropy for µ is H(µ) = 1.52. The most influential parameter on the ductility of the pier 

is the height H followed by the length L. For any strengthening intervention that takes place, those 

parameters must be considered as primary targets.  

Looking on the flexural dominant mode of failure, the target variable selected is the maximum 

strength Vmax. The results are shown in Table 5.5 and Figure 5.18. The marginal entropy of Vmax 

is H(Vmax) = 1.81. When extracting the indices, it is noticed that the most influential parameters 

on the strength of the pier is the aspect ratio H/L followed by the length L. The length of the piers 

is determined by the size of the openings in the URM walls, which could be a way to tackle the 

problem during strengthening interventions.  
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Table 5.5: Indices based on mutual information for entropy reduction of the target variable Vmax for the 

flexure dominant behavior. 

Predictive Var. H/L L ft t N fm 

MI 0.3728 0.2039 0.1316 0.1187 0.0635 0.0112 

Ent. Red % 20.6108 11.2767 7.2763 6.5617 3.5093 0.6198 

Indices 0.206108 0.112767 0.072763 0.065617 0.035093 0.006198 

 

 

Figure 5.18: Indices for entropy reduction for the target variable Vmax for flexural dominant behavior 

It is worth mentioning that in the last model, there is some established connections between the 

predictive variables. The most reliable ones between H/L and L with I = 0.2525 and reduction in 

entropy on the length L parameter of 12.67%. This relation is developed due to the length being 

part of the aspect ratio. The next connection is between H/L and t with I = 0.0106 and reduction 

in entropy on the thickness t parameter of 0.5284 %. The fact that those connections exist reflects 

the realistic factor in determining the probabilities and the influence of certain parameters on the 

target variable which could be ignored in the linear correlation study. 
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5.4 Case Study: Performance Analysis of the Piers Based on the Linear and 

Nonlinear Data Analysis Models 

In the light of Chapter 4, an attempt to propose an improvement in the performance of the piers is 

made relying on the linear data analysis for single parameters and the nonlinear data analysis for 

multiple parameters. The data for the shear dominant behavior are used to assess Pier1 while the 

data for the flexural dominant behavior are used to assess Pier2.  

5.4.1 Information for Pier1 with Shear Dominant Behavior 

To start with the more comprehensive nonlinear data analysis model, it is evident that the most 

influential parameters are thickness t, tensile strength ft, Vertical stresses N, and length L. 

Observing the current values for Pier1, it puts the pier in the high end in terms of t and L. Also, N 

is not usually a factor that can be controlled in strengthening interventions. Therefore, the ft 

parameter seems like a reasonable way to strengthen the pier given the room for improvement and 

the feasibility of the application in practice. It is worth noting that the ft factor showed negligible 

effect on the strength of the pier in the linear data analysis model. This indicates that the linear 

model is not capable of capturing the full range of influence of this parameter which may influence 

other parameters that in turn can improve the strength. Figure 5.19a shows the probability 

distribution of the capacity Vmax of Pier1 using the fixed values extracted from the existing 

parameters of the pier. Figure 5.19b shows the variation in the probability distribution of Vmax after 

improving the tensile strength of the pier from less than 0.173MPa to less than 0.243MPa. The 

probability the pier will have a strength more than 165kN increase from 20.49% to 70.45%. This 

is considered as a major improvement on the performance which could be achieved using injection 

of hydraulic mortar into the wall. 
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a) 

 

b) 

Figure 5.19: a) Probability distribution for Vmax with the existing parameters extracted from Pier1 b) after 

the improvement of the factor ft. 

We also must check the effect of this alteration of the range of tensile strength on the ductility 

factor µ = Dult/Dmax. From Figs. 5.20a and 5.20b we can see a decrease in the ductility larger 

than 3.6 from 28.24% to 16.76% after moving ft from less than 0.173MPa to less than 0.243MPa. 

Since the gain is strength is larger than the loss in ductility, it is reasonable to say that this 

compromise in the tensile strength is an acceptable strengthening intervention. 

 

a) 

 

b) 

Figure 5.20: a) Probability distribution of µ with the existing parameters extracted from Pier1 b) after the 

improvement of the factor ft. 



 

155 

 

5.4.2 Information for Pier2 with Flexural Dominant Behavior  

From the nonlinear data analysis model, it is shown that the most predictive parameters are the 

aspect ratio H/L, length L, tensile strength ft, thickness t, vertical stress N, and the compressive 

strength fm. Since H/L is only relevant through the variation of L, it would not be included in the 

analysis of Pier2. The L, N, and fm are already in the high end of the probability distribution, thus 

they would be subject to alteration. In Figs. 5.21a, 5.21b, 5.21c, and 5.21d we will see the 

predictive influence of the variables, ft and t on the strength of the pier Vmax. 

With increasing the range of ft from less than 0.17MPa to less than 0.24MPa, an increase in the 

probability of Vmax to be higher than 80kN increases by 26.45%. Another addition to the range of 

ft to be less than 0.31MPa pushes the probability of Vmax at higher than 80kN to 64.02%. 

On the other hand, an increase in the range of t from less than 550mm to less than 675mm increases 

the probability of Vmax to be higher than 80kN by 54.19%. Given the limitations on the thickness 

of the walls in the existing URM structures, increasing ft also sounds like a reasonable 

strengthening intervention that can be achieved through hydraulic mortar injections into the wall. 

From the linear data analysis model for ft, it shows the relationship between Vmax and ft is 

developed through the following equation: y = 62.3x + 56.9. The high slope value is also an 

indication of the great influence of this predictive variable on the strength of the pier.  
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a) 

 

b) 

 

c) 

 

d)  

Figure 5.21: a) Probability distribution of the variable Vmax with the existing parameters of Pier2 b), c) 

after the improvement of ft d) after the improvement of t. 

In summary, using a sophisticated nonlinear data analysis approach, a more comprehensive 

evaluation of the influence of certain characteristics of the URM piers is achieved.  Probability 

based models are built using the Bayesian Networks to find relationships between the different 

parameters and the performance of the walls. Those models are validated using a cross validation 

method that provides the precision and the reliability of the connections. Indices generated 

represent the influence on the maximum shear capacities and displacements of the piers.  
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Chapter 6: Conclusions, Limitations and Scope for Future Work 

 

6.1 Summary and Conclusions  

Several formulations in the codes and scientific research are proposed to recognize the shear and 

flexural capacities in piers which could be easily assigned to the force-displacement back-bone 

curves in the model. Four shear formulations and five flexural formulations are selected in this 

work to be analyzed. A parametric study is performed to identify the performance of the capacity 

formulations for piers in respect to the multiple parameters available within the complex masonry 

walls where the degree of precision is important. Thus, in this study the number of parameters 

identified are:  

• Four major parameters are identified for the shear capacity comparisons such as:  the aspect 

ratio, the texture of the walls, the vertical stresses, and the scale of the specimens, respectively.  

• Seven major parameters were selected for the capacity formulations for flexure dominant 

behavior such as: the aspect ratio, the boundary conditions, the vertical stresses, the typology, 

the wall thickness, the scale, and the strengthening through injection.  

To simulate the URM piers response under lateral loading, deterministic model is created using 

the open-source software OpenSees. The model uses distributed plasticity applied through an 

equivalent frame macro modeling technique and the model was calibrated against experimental 

tests on piers representing the behavior dominated by shear and flexure. A feasible model was 

developed, and the simulated hysteresis loops can overlap that from experimental tests. 
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After the calibration of the deterministic model for the pier, based on experimental testing, the 

linear data for the major parameters that influence the behavior in the shear and flexural dominant 

modes of failure was generated and presented hereafter.  

• Four parameters were tested for the shear dominant mode of failure represented as the height 

H, the vertical forces N, the length L and the thickness t.  

• The results show that the length of the pier has the most influence on the performance of the 

pier. Thus, increasing the length of the pier which can be achieved through the limiting of the 

wall openings could be a good start point for improving the strength.  

• Seven parameters are tested for the flexural dominant mode of failure represented as the height 

of the pier H, the compressive strength fm, the tensile strength ft, the tensile modulus of 

elasticity Et, the vertical forces N, the length of the pier L, and the thickness of the pier t.  

• The results show that the length of the pier and the tensile strength of the pier has the most 

influence effect on the nonlinear response.  

To understand the influence of predictive variables on the strength and deformation capacity of 

the URM piers under examination, it is important to extract comparative indices that represent 

their connection to the target variables. In this case the target variables are the maximum shear 

strength Vmax and the lateral displacement expressed in terms of displacement ductility µ defined 

for the purpose of this study. However, the second parameter is not representative because the 

URM piers are designed to behave elastically. The failure modes of piers are divided between the 

shear and flexural mode. Using a probabilistic machine learning tool that relies on Bayes theorem, 

a nonlinear correlation is developed through building acyclic models that is validated through K-

Folds Cross validation method.  
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The façade wall of a building in Montreal is used herein as a case study. Two piers are extracted 

from the wall each from different floor to represent the major two modes of behavior of URM 

piers. Pier1 from the second floor experiences a shear dominant behavior due to its squat nature 

with an aspect ratio H/L = 1.22. This is associated with some energy dissipation and high elastic 

stiffness, shown in the hysteretic loop developed for the in-plane cyclic loading. The maximum 

shear capacity of the pier is Vmax=161 kN and the associated lateral deflection is 3.25 mm. Then, 

the ultimate shear capacity reaches 84.5kN at 10.25mm leading to µ = 3.15. It is worth mentioning 

that pier’s failure is considered when 20% of shear strength is lost, however the analysis can be 

conducted beyond this value. However, the response of building may be completely different in 

terms of ductility and experimental studies are required. More data from this analysis are: 

• From the probability model, it was shown that the small tensile strength of the Pier1 is a major 

predictor of the maximum shear capacity Vmax of the pier. By shifting the tensile strength from 

the range less than 0.173MPa to less than 0.243MPa may lead to 50% probability of increasing 

the maximum shear capacity above 161kN.  

• Analyzing the lateral displacement of Pier1 due to improving the tensile strength, shows a 

decrease of 11.5% in the probability of having µ larger than 3.6.   

Pier 2 from the first floor experiences a flexural dominant behavior due to its slender nature with 

aspect ratio of 2.15. This is associated with low energy dissipation and lower elastic stiffness 

compared to the squat pier. The maximum shear capacity is 183kN with a plateau in the curve 

showing at about 7.5mm with a decrease in the stiffness as the elastic capacity is reached at 

3.25mm with a value of 139kN:  
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• From the probability model, it is shown that the tensile strength has good predictive influence 

on the performance of Pier2. An increase of 64% in the probability of achieving a strength 

Vmax higher than 80kN is achieved by shifting the range of tensile strength from 0.17MPa to 

0.24MPa.  

• Another predictor is the thickness of the wall which showed an increase of 54% in the 

probability of achieving a strength Vmax higher than 80kN by shifting the range of thickness 

from less than 550mm to less than 675mm. 

6.2 Limitations  

Existing URM structures are very complex type of construction that require detailed studies to 

understand its seismic behavior and provide accurate analysis of results. Unlike concrete and steel 

structures, there is not an established practice able to tackle the nonlinear response of URM 

elements even though several techniques are suggested in the literature. Micro-modeling 

techniques show limited utility for small sized elements due to the enormous amount of details 

that need to be covered and the unknown parameters required to be extracted from existing 

structures without imposing any damage. Conversely, macro-models are simple in their approach 

and useful in representing the behavior of URM if calibrated properly. The main assumption to 

consider is the box behavior that can be accomplished after the elimination of any local failure in 

the masonry walls and spandrels.  

The purpose of this work was to identify the parameters that contributes to the response of URM 

building components and no to the whole response of buildings. In addition, this work does not 

address retrofit techniques for existing URM buildings. It is known that the seismic activity in 

Montreal shows high demand in low-period ranges that affect the low-rise buildings with URM 
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structures. Among the existing low-rise buildings in Montreal, a low-to-moderate percentage are 

URMs, which are especially located in the historical sites of Montreal city.  

Regarding modelling, the equivalent frame models can be used. Hence, under the category of 

macro-modeling approaches, two main subcategories can be defined: the lumped plasticity models 

and the distributed plasticity models. The failure modes are classified as shear dominant and 

flexural dominant types depending on the crack propagation within the elements exhibiting failure. 

It is important to capture both modes in the nonlinear models since they can influence the plasticity 

and the capacity to great extent. Based on experimental expertise, it is determined that yielding of 

masonry elements mostly occur at 0.007% interstorey drift ratio, displacement prior failure at 0.2% 

interstorey drift ratio, and complete failure at 20% decrease in the strength at 0.3% interstorey drift 

ratio. Those values are a good starting point for calibration.  

In the aim of simplifying the modeling procedure for unreinforced masonry structures, utilizing 

the equivalent frame method with identified hinges at known positions has proven to be valid 

approach in capturing the capacities of major structural elements in typical masonry walls. 

However, identifying and assigning hinges in a model may be aleatory. Attention should be given 

in the modelling procedure and interpretation of results. Experimental testing of URM components 

is required for properly assigning the input parameters. The 2D analyses have limitations and 3D 

analyses are more complex. Caution should be given in the selected approach. 

In the performed parametric study on capacity formulations, the data available in the literature for 

the spandrels was not enough to amount for conclusive results regarding their performance and its 

correlation with the suggested formulations. The conducted parametric study can be used to future 

simplified models. Such models will be able to run time history analysis without any time burden 

due to the limited number of degrees of freedom required. More data are required to yield 
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comprehensive and precise results on the use of the formulations which indicate the need for more 

experimental campaigns.  

Herein, the calibrated model for the pier is 2D. The potential out-of-plane response due to forces 

that might act simultaneously due to the connection with perpendicular walls is not captured. Also, 

the effect of flexible horizontal diaphragms that are commonly found in the URM structures is not 

considered in this work. Extending the nonlinear analysis techniques from 2D to 3D, including 

flexible horizontal diaphragm is part of the future work. 

The linear data analysis of the pier characteristics was a good preliminary approach. However, it 

lacks the realistic aspect of the conducted study due to the inevitable influence of the parameters 

on each other. Nevertheless, it can be suggested that implementing strengthening interventions that 

enhance those factors could be of great benefit to the strength. For example, the replacement of 

the mortar with newer ones will improve the cohesion and friction of the mortar to the stone units, 

thus increasing the tensile strength. This technique is expensive and has limits concerning the 

adherence of new material to the old material. As aforementioned, retrofit techniques are not part 

of this research work. 

The nonlinear data analysis performed using the Bayesian Network is a more realistic approach 

for understanding the behavior of the URM piers. However, some limitations for such method 

include the complexity of the data curation that requires a trial-and-error approach and expert 

opinion to be utilized. This may lead to variation in the data and the yielded indices depending on 

the preconditions of the study. For future work, it is required to implement such analysis on 

different projects and use the commonalities to inhibit a more generalized approach that works 

better for URM structures. From the case study, different recommendations can be made. The 

thickness of the walls could have some limitations in the practice of strengthening interventions 
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due to the limited space in the existing structures and the impracticality of adding additional layers 

to the wall that might not be compatible with the existing layers. More advanced strengthening 

interventions that have the same influence on the walls can be applied. Those practices should be 

tested to yield their efficiency. 

6.3 Scope for Future Work  

In future work, more data can be collected to expand the range of information included for this 

conducted parametric study. The wall characteristics used in the study would be more 

comprehensive to allow more precision in determining the preferable capacity formulation for 

predicting wall strength.  The study can expand to include more elaborated analysis of the 

spandrels which demand more experimental campaigns in that domain.  

The calibrated pier model can be expanded to a full scaled wall. Understanding the connections 

between the piers and the spandrels and the stiffness relationship between those elements is 

important in capturing the behavior of the wall along the building height. A dynamic seismic 

analysis could be conducted for a more realistic assessment. Calibration is required for such 2D 

structures. Analysing models as 3D need experimental data.  

The nonlinear data analysis using the machine learning algorithms must be scaled for larger data 

sets. Based on the trial-and-error approach in the data discretization, the conduction of repetitive 

studies would be important. Such repetition would form a benchmark that may be used to 

understand the validity of yielded information. The data distribution, the calibration methods and 

the algorithms used to learn the connections between the predictive variables can vary to a great 

extent depending on the given models. 
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Appendix A 

Cyclic Response for Piers with Dominant Shear Failure 

 

Figure A-1: Shear force vs displacement with height variation 

 

Figure A-2: Shear force vs displacement with length variation 
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Figure A-3: Shear force vs displacement with thickness variation 

 

Figure A-4: Shear force vs displacement with vertical force variation 
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Cyclic Response for Piers with Dominant Flexural Failure 

 

Figure A-5: Shear force vs displacement with height variation 

 

Figure A-6: Shear force vs displacement with length variation 
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Figure A-7: Shear force vs displacement with thickness variation 

 

Figure A-8: Shear force vs displacement with vertical force variation 
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Figure A-9: Shear force vs displacement with tensile modulus variation 

 

 


