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ABSTRACT

A Study of Building Thermal Dynamics from Large Data Sets:

An Application for Residential Smart Thermostats

Camille John

This thesis focuses on identifying the Thermal Time Constant (TTC), a thermal perfor-

mance indicator related the building’s effective thermal insulation, airtightness, and thermal

storage capacity. Using data from over 15,000 smart thermostats, data mining is applied to iden-

tify patterns in the short-term transient thermal response of Canadian and American dwellings.

The data used consist of contextual information (i.e. metadata) and one year of measurements

recorded at 5-minute intervals (i.e. indoor air temperature, outdoor air temperature, and Heat-

ing, Ventilation and Air-Conditioning (HVAC) equipment run times). The TTC is captured

from the data by tracking the indoor temperature response of the free-running dwelling over a

specific time period, and by also assuming this response can be accurately described by the char-

acteristic exponential decay (or growth) of a first-order resistance-capacitance thermal model.

Consequently, the results show significant differences between estimated TTC values for the

summer and winter months across ASHRAE climate zones 1 through 7. In winter, the mean

TTC related to these climate zones ranges from 7 to 47 hours. In contrast, the summer mean

values vary between a lower and narrower range of 6 to 19 hours which can presumably be

attributed to occupants opening the windows, and thus effectively reducing their dwelling’s

overall thermal resistance. Towards the larger objectives of thermal resilience, energy savings

and grid reliability, the estimated TTC values can be used in the residential sector to quickly

identify buildings eligible for building enclosure retrofits or to rapidly generate a simple model

to inform thermal load estimation and management.
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Chapter 1

Introduction

Canadians and Americans spend approximately 90% of their time indoors [1]; they find

themselves aware of this fact now more than ever as the present COVID-19 pandemic has ac-

celerated the trend toward telecommuting. The elevated amount of time that North Americans

are spending in their residential buildings may extend past the current pandemic into their regu-

lar routines and permanently change the way many individuals interact with their homes. Using

residential smart thermostat data and Data Mining (DM), this thesis seeks to provide an inno-

vative, scalable, and timely methodology to estimating a dwelling’s Thermal Time Constant

(TTC); a thermal property that could help characterize a dwelling’s passive transient response.

The estimated TTC could be used to rate the passive thermal performance of dwellings and

provide valuable insights related to energy conservation in the residential sector.

1.1 Background

1.1.1 Energy Use in the Canadian and US Residential Sectors

The operation of buildings, homes in particular, is a major contributor to the national energy

consumption of both Canada and the United States (US). The Canadian and US building sectors

are responsible for approximately 28% and 40% of their national secondary energy use, and

22% and 21% of their greenhouse gas (GHG) emissions, respectively [2]–[4]. Over 15 million

Canadian and approximately 118 million US households [5] use energy everyday – to heat or

cool spaces, heat water, operate lighting, power appliances, electronics and more. Consequently,

the Canadian and US residential sectors respectively make up 59% and 53% of the secondary

energy use in their corresponding building sectors. Typically, more than half of a household’s

annual energy consumption is just used to heat and cool occupied spaces. In Canada, heating
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and cooling the residential market’s nearly 2 billion square meters of floor space accounts for

62% of annual residential energy use. Meanwhile, the US residential market represents over 22

billion square meters of floor space and space conditioning consumes 51% of annual residential

energy use. Moreover, more than 40% of both Canadian and US households use natural gas

as their main source of heating [6]. As the building industry strives to conserve energy for

environmental and economic reasons, energy-efficient building assemblies and space heating

equipment, as well as optimized building operation are increasingly recognized as priorities.

Over the next several decades, the majority of opportunities to improve energy efficiency in

the residential sector will be in the existing building stock. Although new buildings are being

constructed to higher performance standards than ever before, existing buildings — homes in

particular — are lagging behind on energy efficiency. Despite the efficiency efforts made in

new constructions, the total end-use energy demand and costs are expected to continue trending

upwards as a consequence of (i) extreme weather conditions due to climate change, (ii) pop-

ulation growth, (iii) increases in the residential floor space per occupant and (iv) increases in

household plug loads [6]–[8]. In both Canada and the US, less than 1% of the residential floor

space is newly constructed each year and more than 70% belongs to buildings over 20 years

old [2], [5]. The energy reduction potential of the existing housing stock is severely restricted

by old equipment, aging infrastructure, improper maintenance and inefficient operation prac-

tices. A widespread improvement of thermal performance in existing residential buildings —

through building retrofitting and other energy conservation measures- represents a high-volume

approach with significant reductions in operation costs and greenhouse gas emissions for both

the Canadian and US building sectors. Moreover, protecting and upgrading existing building

infrastructure not only improves energy efficiency but also tackles issues of thermal resilience

and indoor environmental quality. Considering that more than half of the 2050 building stock

has already been built, these buildings should not be allowed to spend the next 30 years: wasting

resources, generating pollution that destabilizes our climate, and jeopardizing occupant health

and comfort. The challenge of future-proofing residential buildings over the coming decades

is a formidable one, but it also represents an amazing opportunity to revitalize the economy

post-pandemic as well as the spaces where we both live and work.

Two clear incentives for homeowners to adopt energy conservation measures are rising en-

ergy costs and health concerns. In both Canada and the US, a household spends an average

of about 3% of their total income on utilities. Energy plays a large role in the lives of the

average Canadian and American for whom current annual energy expenses per dwelling are

approximately $2,460 CAD and $1,836 USD, respectively [5], [9]. However, there are many

households that are limited by their ability to afford the rising costs of energy services. A house-

hold may be described as experiencing energy poverty when it allocates more than 10% of its

total income to energy expenditures [10], [11]. By this measure, the burden of energy poverty,
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also known as household energy insecurity, is carried by an estimated 8% (1.2 million) of Cana-

dian and 31% (37 million) of US households. Unable to afford basic household energy needs,

these individuals often turn to coping methods (e.g. extreme reductions in space conditioning)

that can result in negative health consequences [12]. In addition to financial incentives from the

government, the uptake of energy conservation strategies by existing dwellings would be fa-

cilitated by providing homeowners and other building stakeholders with simple and accessible

indicators for eligibility.

1.1.2 The Built Environment and the Internet of Things

Driven by economic and environmental concerns, both Canada and the US are searching for

ways to facilitate a major evolution of their energy infrastructures — from outdated, centralized

and carbon-intensive to resilient, distributed and renewable [13]. The rising energy needs of a

growing digital economy and the ever-changing effects of climate change have pushed the North

American energy infrastructure to perform beyond its original design capabilities [14]. The

next-generation energy system, commonly referred to as the smart grid, is part of the Internet of

Things (IoT) framework; IoT refers to a system of physical objects, connected via the internet

and communication protocols (e.g. bluetooth, BACnet), that can collect, exchange and act

on data acquired from their environment. Geared toward providing the reliable, resilient and

sustainable energy services needed for future generations, the smart grid is being developed to:

• support bi-directional flow which allows both electricity and information to be exchanged

between a utility and its consumers [15];

• manage energy demand and supply, in real time, using a network of controls, computers,

meters, sensors, and other IoT applications;

• accommodate the electrification of the energy system and the integration of renewable

energy, thermal storage and energy-efficient technologies.

Low-energy buildings play a foundational role in the effective implementation of the smart

grid. To address energy insecurity and improve grid stability, provincial and federal govern-

ments have introduced rebates and financial incentives to encourage the adoption of energy

conservation measures. Over the years, a number of innovative Demand Side Management

(DSM) strategies have been deployed in an effort to minimize the energy use, operating costs

and environmental impact of buildings without compromising functionality and occupant com-

fort. For example, the lower cost and improved performance of sensors and controllers have

lead to the development of smart building features such as continuous performance monitor-

ing, automated diagnostics, and optimized controls. Just over a decade has passed since the
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introduction of the Smart Thermostat (ST); one of many IoT applications that have inspired

visions of a very different future in the built environment - particularly homes. An ST allows

homeowners to monitor and automatically regulate the temperature of their dwellings while re-

ducing both their energy consumption and operating costs [16]. As a component of a Building

Automation System (BAS), an ST relies on user-defined setpoint schedules, remote sensors and

web-enabled data to minimize a building’s energy demand; it operates the space conditioning

system only as needed to maintain the building’s desired indoor temperature. In addition, an

ST can also coordinate with utilities to avoid operation during peak demand times and the data

it collects could provide insights into a building’s thermal performance. Developing a more

automated framework for building controls and diagnostics in residential buildings could have

a significant impact not only on their operation but on their design and the associated costs as

well.

As IoT capabilities become increasingly more affordable and available in the built environ-

ment, home automation applications, such as STs, are becoming a popular energy management

option among homeowners [17], [18]. A recent study predicted that, by 2025, IoT would offer

a potential economic impact of $200-350 billion a year in relation to the residential sector alone

[8]. With this increased adoption of IoT applications, sources of high-volume data are becoming

more prominent - like in Ecobee’s “Donate Your Data” program. Launched in 2016, Ecobee’s

smart thermostat users started donating anonymized operational data from their buildings for

research purposes. Data collection and (shared) access could progressively become the norm.

As a result, the building industry will face both opportunities and challenges, as it determines

how data from potentially thousands — or even millions — of buildings will be reasonably in-

tegrated into the design and energy management of the built environment. Using data science,

actionable insights derived from this unprecedented level of data access could guide the build-

ing industry on how to improve a number of building aspects related to the development of the

smart grid, including a building’s passive thermal performance [19].

1.1.3 The Need for Dynamic Thermal Characterization

A building’s passive thermal response is a key consideration for reducing the energy re-

quired for space conditioning. The energy demand related to heating or cooling a building is

not only linked to the operation of its HVAC system; energy demand is also strongly linked to a

building’s geographic location and the thermal performance of its construction [20]. The use of

high-performing HVAC equipment or a well-tuned BAS is far from optimal if used in a building

that is poorly insulated and drafty; the inefficiency of such a building can obscure the untapped

potential of these technologies for energy and GHG reductions. The North American housing

stock is very large and represents a wide range of dwelling types and construction methods
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spread across a number of different climate zones. How does one quickly identify the existing

buildings which are wasting energy due to their aging or damaged infrastructure?

At present, one of the most common and accessible thermal performance indicators used in

the building industry is the apparent (or nominal) R-value but it does not provide the full picture

in regards to a building’s thermal behaviour [21]. The R-value represents the thermal insulation

provided by a building enclosure component (such as a wall, roof or floor) and therefore its

ability to resist one-dimensional conductive heat flow, under steady heat flow conditions. As a

metric that is simple to find and widely accepted, the R-values of a building’s materials are often

the only information provided to reflect the thermal behavior of a building. However, relying on

the apparent R-value as the only means of characterizing thermal behavior fails to encompass

the effects of thermal bridging, building enclosure defects, thermal mass, and air leakage [22].

Using real building performance data, the estimated TTC provides an indication of the time

required for the building (or building suite) — without the influence of a space conditioning

system — to cool down or heat up in response to a temperature change in its surroundings. The

estimated TTC is an indicator of a thermal zone’s passive thermal response as a result of the

building’s effective thermal insulation, airtightness, and thermal mass (i.e. the interior layer of

building envelope, internal partitions, furniture and zone air). The TTC is a thermal property

whose value is less commonly known and more difficult to determine when time, budget and

information are limited; however, knowing the TTC can provide a better understanding of a

building’s thermal behavior under real conditions.

A simple and scalable TTC estimation method would provide building stakeholders with: (i)

a convenient and reliable method of comparing the natural thermal response between buildings,

and (ii) the foundations for quantifying poor passive thermal performance if standards are set for

TTC values. Buildings with poor passive thermal control could be quickly targeted for energy

conservation measures which could make them easier to heat and cool as well as less costly to

operate. In addition, understanding the natural thermal response of a dwelling can also help to:

(i) determine how long a dwelling can maintain comfortable thermal conditions after a power

cut, and (ii) determine which dwellings can act as short-term thermal storage units for load

shifting purposes. Moreover, identifying the distribution of TTC values for a particular climate

zone (i.e. buildings built for similar thermal conditions) provides energy modellers and policy

makers with a reference for setting standards related to the TTC and facilitating the comparison

of thermal performance on a larger scale.
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1.2 Motivation

A ST generates a large dataset which creates new opportunities towards facilitating the

characterization and evaluation of a building’s natural thermal response. With little effort and

building information required, the collected ST data can be computationally analyzed to re-

veal patterns, trends, and associations related to a building’s transient thermal performance.

Normally, a detailed investigation of the thermal behavior of just one building would require

extensive on-site monitoring and analysis which, in practice, would only be applicable to a

small fraction of the total existing building stock. However, the prospective increase in avail-

able ST data from the residential sector could provide a less expensive, less time-consuming,

and more scalable manner of characterizing the thermal performance of homes. Due to practical

constraints, previous studies related to the TTC have been restricted by a lack of available field

data. Nowadays, STs can now be used as a non-intrusive and convenient solution to provide: (i)

larger sample sizes, (ii) longer observation periods, and (iii) easier data collection at an urban

scale.

Using smart thermostat data from thousands of real homes across North America, this study

presents a simple data-driven method for the characterization of a dwelling’s natural thermal

response; the proposed method uses a simplified grey-box model in order to the estimate of the

TTC of a dwelling. To the best of the author’s knowledge, no study has yet attempted to use

a source of field data this large to estimate the TTC, or to investigate its dependency on local

construction practices and time of year. When time and available information are limited, the

methodology provided can use large sources of data to:

• provide useful insights into the thermal performance and thermal resilience of dwellings;

• quantify the effective passive response of a dwelling under transient heat flow conditions;

• assist in the development or adoption of energy conservation strategies for dwellings.

1.3 Thesis Objectives

Using smart thermostat data from over 15,000 real homes, recorded over the period of one

year, the objectives of this study are as follows:

• To develop a data-driven statistical methodology to estimate the TTC of a dwelling based

on low-order Resistance-Capacitance (RC) thermal networks;
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• To investigate the dependence of the TTC on other variables such as geographical location

and time of year for Canadian and American dwellings;

• To identify the distribution of TTC values for Canadian and American dwellings in order

to provide building stakeholders with a reference for decision-making at an urban scale;

• To start a discussion about the TTC and the possible implications surrounding its use as

a thermal performance and thermal resilience indicator in DSM strategies (e.g. building

retrofits, Model-based Predictive Control (MPC), and Demand Response (DR)).

The results of this thesis are limited to dwellings in various climate zones across Canada

and US. However, the proposed methodology is applicable to dwellings in climate zones that

fall outside the scope of this thesis under the assumption that similar datasets are available to

researchers or building engineers through STs or BASs, in general. In addition, The exploration

of the TTC as a thermal resilience indicator is limited to cold-weather habitability. Finally, the

impact assessment of the model developed in this methodology on DSM strategies is beyond

the scope of this study.

1.4 Thesis Overview

The thesis is structured as follows; Chapter 2 provides a review of the relevant literature on

the dynamic thermal response of a building, building modelling approaches, how time constants

have been estimated previously, the evolution of thermostat functionality, and how to approach

data mining. Chapter 3 provides a description of the large residential ST dataset used in the

study and the data preparation process. This chapter also describes the data mining techniques

implemented to estimate the TTC value for each Canadian and US dwelling in the study sample.

Chapter 4 presents the data mining results and illustrates the dependence of estimated TTC

values for single-family detached homes on local construction practices and time of year. This

chapter also explores the possible uses of the building thermal time constant as an indicator

of both thermal performance and thermal resilience for existing buildings. Finally, Chapter 6

summarizes the main conclusions from the study.
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Chapter 2

Literature Review

This thesis investigates how time-series data collected from thousands of residential smart

thermostats can be used to develop a simplified and scalable method for estimating the Thermal

Time Constant (TTC) of a dwelling. Valuable information can be extracted from this large data

source in order to characterize the passive thermal response of a North American dwelling and

inform decision-making regarding its Demand Side Management (DSM) strategies (e.g. build-

ing retrofits, Model-based Predictive Control (MPC), and Demand Response (DR)). In order to

develop the methodology, the following specific research questions (RQ) must be considered:

• RQ1 What are the factors affecting the flow of sensible heat into and out of a dwelling?

• RQ2 What is the appropriate modelling approach to estimate a dwelling’s TTC?

• RQ3 What steps must be followed in order to uncover the patterns, trends, and correla-

tions within a large dataset?

The investigation into the first question (RQ1), regarding the factors influencing the ther-

mal behaviour of a dwelling, is explored in 2.1. Meanwhile, the investigation into the second

question (RQ2), found in sections 2.2, focuses on the different approaches used for modelling

building thermal zones, and previous studies related to TTC estimation. Finally, in response to

the third question (RQ3), 2.4 reviews the steps that a data mining process will typically consist

of.
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2.1 Thermal Dynamics: Understanding Heat Loss And Gain

This section offers a basic overview of heat transfer and the thermal control systems used to

manage the heat gains and losses in a building.

2.1.1 Heat transfer in Buildings

Heat transfer is defined as the exchange of thermal energy between two physical systems

(e.g. a building/ thermal zone and its surroundings) as a result of a temperature difference [23].

Heat naturally flows in the direction of decreasing temperature — from an area of higher tem-

perature to one with a lower temperature. For example, on cold winter’s day, a heated building

will naturally lose heat to the outdoors. Temperature difference is the driving force of heat trans-

fer and as such a larger temperature difference corresponds to a higher heat transfer rate. The

temperature difference across a building enclosure — in the case of both heat gain and loss —

can manifest itself in response to external weather and climate conditions (e.g. indoor-outdoor

temperature difference, solar radiation, and wind speed). Interior heat generation can also affect

temperature difference and therefore the flow of heat across the building envelope; these inter-

nal heat gains are generated inside a building space by the occupants and their activities (e.g.

exercising and cooking) as well as by the operation of lighting and equipment (e.g. comput-

ers and appliances). Over time, the temperature difference between two systems will naturally

decay; as the two systems approach the same temperature, the rate of heat transfer decreases.

Once a state of equilibrium has been reached (i.e when the temperature difference equals zero),

the net heat transfer between the two systems will cease to exist.

In regards to time, heat flow can occur under either transient or steady state conditions.

Under steady state conditions, both the temperature at any particular point in the physical system

and the heat flow remain constant with respect to time [23]. An example of steady state heat

flow conditions is a building on a cold winter’s day whose rate of heat loss is equal to the

rate at which it is heated, therefore its indoor temperature is maintained. In contrast, heat

flow is described as transient when its magnitude or direction changes with respect to time.

Under transient conditions, heat enters and exits the physical system at different rates, and the

spatial distribution of temperature within the physical system also keeps changing with time. An

example of transient heat flow conditions is the thermal response of the previously mentioned

building in free-running mode (i.e. with its heating system now switched off); the temperature

continuously decreasing before reaching the ambient temperature at equilibrium.

The thermal behaviour of a building or one of its thermal zones is a function of the dynamic

relationship between the different heat transfer mechanisms [23]. Sensible heat is the thermal
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energy — independent of phase changes — needed to increase or decrease the temperature of

some substance; it is transferred to, from, and within the system by three different mechanisms,

acting separately or in combination: conduction, convection and radiation.

Heat enters, leaves, and moves within a building in many different ways; however, as it

travels from one place to another, heat will always flow along the easiest path available and

use the most efficient transfer method [23]. During the process of heat flow through and within

building systems, the mode of heat transfer can change frequently [24]. For example, the sun

transmits heat by radiation to the earth, where it can be absorbed by the building’s opaque

exterior walls or transmitted through a window to interior surfaces. From the exterior surface

of the opaque wall, the heat then travels by conduction through the wall assembly where it is

transferred to the indoor air by convection or to the indoor surfaces by radiation. Moreover,

heat can also be directly transferred into the building through the infiltration of outdoor air or

out of the building through the exfiltration of indoor air; air leakage can occur through openings

in a building enclosure (e.g. gaps, cracks and holes). Understanding the fundamentals of how

heat is gained and lost is critical when assessing the efficacy of a building’s thermal control

systems; effective thermal control is achieved by matching the appropriate measures to the heat

flow observed. Arguably, the primary concerns of building owners, architects, engineers and

utilities is providing thermal comfort to building occupants without excessive energy use and

space conditioning costs; thermal control systems are therefore an integral part of virtually all

buildings.

2.1.2 Thermal Control: Passive Versus Active Systems

Over the useful life of the building, thermal control is used to maintain the indoor tem-

perature within a range required for the personal comfort, productivity and health of the occu-

pants[25]. There are two common approaches to managing heat flows in buildings: passive and

active systems.

The passive systems use the external environment and the inherent properties of the building

to moderate the indoor temperature [25]. A building’s passive thermal performance is almost

entirely determined by the degree of thermal control provided by the building enclosure; it

is responsible for passively managing the exchanges of heat, air, moisture and solar radiation

that occur between the indoor and outdoor environment. Examples of passive thermal controls

include the building’s orientation, geometry, effective thermal insulation, thermal capacitance,

airtightness, fenestration and shading devices.

The active systems are energy-consuming technologies (e.g. HVAC systems using fans and

pumps) that provide auxiliary heating or cooling [25]. Examples of active systems include,
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air-conditioning, heat pumps, radiant heating, heat recovery ventilators, solar electric and solar

thermal panels, and geothermal energy exchangers. Normally found within boundaries of the

building enclosure, they are used to extend or augment the thermal performance of the building’s

passive systems. Most modern buildings employ a complex combination of both passive and

active thermal control systems in order to efficiently deliver the desired level of control and

functionality to the indoor environment. The proper coordination of a building’s passive and

active systems is crucial not only to thermal comfort but energy efficiency, thermal resilience

and durability as well.

Higher levels of energy efficiency can be achieved when using passive systems to the great-

est practical extent and only employing active systems to supplement them [25]. Before the

Industrial Revolution, the thermal control of buildings was rooted in passive systems; however,

the abundance of affordable fossil fuels and the invention of powerful space conditioning sys-

tems, in the 1900s, led to the heavy reliance of buildings on active thermal control systems. In

recent years, the scarcity of fossil fuels, volatile energy costs and climate change have made

this approach obsolete. A more powerful HVAC system is not a sustainable substitute when the

building fabric provides a poor passive thermal control; active systems should only be practi-

cally used to close the energy deficit gaps that cannot be managed through passive measures.

Passive measures — when properly incorporated — can conserve the energy sources used to

power active systems.

Today’s buildings are being designed with energy conservation and efficiency in mind in

order to: (a) provide better level of energy security if supply issues were to occur, (b) extend

the useful capacity of the grid and (c) positively impact climate change mitigation. As a result,

building designers are reevaluating how passive and active measures are to be best applied in

new buildings and retrofits.

The thermal resilience and durability of a building are also best served when passive mea-

sures are the foundation of the building thermal design [25]. In the event that active systems

for space conditioning have been disabled (e.g. due to an extended power outage), the build-

ing thermal resilience is the measure of how long its occupants can safely inhabit it before the

indoor temperature becomes too cold or too hot. In both Canada and the US, extended power

outages are often the result of a strained energy infrastructure, extreme weather events or nat-

ural disasters [12], [14], [26]. Taking into account that extreme weather events are expected to

become more frequent and more intense, thermal resilience is becoming an increasingly impor-

tant design consideration — particularly for residential buildings. Moreover, a poorly insulated

and drafty building would not only be uncomfortable to its occupants, but be vulnerable to a

number of durability issues, due to large fluctuations in temperature and the uncontrolled en-

try of humid air (e.g. mold growth, decay, corrosion, cracks, frost damage and freezing water

pipes). Furthermore, the proper operation of the HVAC system can also be affected by the poor
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performance of passive measures such as an inferior enclosure, therefore requiring increased

equipment run times which can translate to a shorter service life and higher maintenance costs.

2.2 Modelling Heat Transfer in Buildings

Whether in the name of the occupant thermal comfort or the performance of building sys-

tems, Building Energy Modeling (BEM) is often used to get a better grasp on the heat transfer

between a thermal system and its surroundings; models help assess the impact of the complex

synergistic relationship between a building’s passive and active systems.

At all stages of a building’s life-cycle, BEM is used to facilitate the design, analysis and op-

timization of modern buildings systems. In this section, BEM is reviewed, with the estimation

of the TTC and the other study objectives in mind. The thermal model required for the TTC

estimation needs to be simple enough so that it can be found with the limited building informa-

tion from smart thermostats yet accurate enough to inform decision-making in the early design

stages of a retrofit, or during the building’s operation.. The following three categories of build-

ing energy models are defined and their suitability is discussed: white-box models, black-box

models and grey-box models.

2.2.1 White-box Model

A white-box model is a very detailed physics-based description of a thermal system and can

provide an accurate prediction of a building energy system by explicitly modelling all physical

processes that play a significant role in its energy balance [17]. By incorporating a comprehen-

sive set of parameters, white-box models consider a building’s physical properties, its systems

and its environmental conditions. Due to their accuracy, there are numerous examples of build-

ing simulation software tools that rely on a white-box modeling approach including TRNSYS

[27], EnergyPlus [28], and DOE-2 [29].

White-box models can achieve a high level of detail in their predictions; these models re-

quire numerous inputs, extensive computational power, and high development and implemen-

tation costs [30]. The model inputs required can normally be found using design plans, manu-

facturing catalogues or on-site inspections; however, some of these inputs can often be difficult

to obtain or even unavailable at times. White-box models are favored during the design of a

new building - when the required building specifications are more accessible and performance

data is not yet available [17]. With the model inputs in hand, a significant amount of time is

still required for building professionals and energy modellers to develop the white-box model
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for a particular building. Due to their exhaustive examination of a building, white-box models

are impractical for a large-scale application on the existing housing stock.

2.2.2 Black Box Model

Black-box models use a data-driven (or inverse) approach to model development, relying

solely on data science techniques and performance data from the building considered [30].

With a very short development time, black-box models can develop a mathematical representa-

tion that captures the relationship between known input and output variables (i.e. important in-

fluencing variables and the observed building behavior, respectively); this mathematical model

and its estimated coefficients can be used to reproduce the building system behaviour for future

inputs.

Although they have proven to produce accurate results, black-box models cannot offer any

insight into the physical processes that drives those results, and are also limited by the quantity

and quality of the data provided [17]. The lack of any definitive link to the physical environment

means that black-box models are building-specific and cannot be used determine the effect

of design or operational changes [30]. Lacking generality, black-box models would therefore

not be suitable for comparing thermal behaviour across the wide variety of buildings found

in the existing housing stock. There are several examples reported in literature of data-driven

modelling techniques used for BEM including multiple linear regression [31], neural networks,

and support vector machines [32].

2.2.3 Grey Box Model

Grey-box models represent a compromise between white-box and black-box models. They

are simplified physics-based models that use an inverse modelling approach in order to estimate

key system parameters based on measured building data [17]. Once their parameters have been

identified, the system can be solved numerically. Grey-box models exploit the physical knowl-

edge of a building energy system, similar to a white-box model, but are simplified versions with

shorter development times due to the incorporation of building performance data. Due to their

hybrid nature, grey-box models can be used to make comparisons between buildings in a large

housing stock but only in relation to the key physical parameters being estimated. [30].

For the development of grey-box models, the Resistance-Capacitance (RC) method is a very

widely used approach. An RC model is established based on an electrical analogy and therefore

treats heat flow as a current Q̇ in a thermal network. As heat flows through a physical element
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in a thermal system, its ability to resist the flow of heat to and from its surroundings is modelled

by an electrical resistor with a thermal resistance R. Meanwhile, its ability to store heat (if

applicable) is modelled by an electrical capacitor with a thermal capacitance C.

The order of a model is an indication of its complexity and is defined by the number of

capacitances used in its thermal network; a higher model order indicates a higher resolution (or

complexity). Referring to a grey-box model as simplified generally implies the use of a low-

order RC model because reducing the model order decreases, in turn, the number of differential

heat equations to solve and the number parameters to be identified [33].

The thermal network method often uses a number of approximations and assumptions in

order to simplify and solve the otherwise complex differential heat equations representing the

thermal processes and properties linked to a building energy system [34]. For example, an RC

model, also known as a lumped-parameter model, aggregates physical elements of the thermal

system into discrete “lumps” (or groupings); the underlying assumption being that inside each

lump the temperature differences and rates of heat transfer between the physical elements are

negligible [23]. As heat flows through the lump, the distributed thermal resistances and thermal

capacitances of its physical elements are represented in the thermal network by an equivalent

resistance and an equivalent capacitance, respectively.

With a long history in BEM [35], RC networks have frequently been used to accurately

model the thermal behaviour of buildings. The literature presents vastly different answers to

the question of which model type and resolution is most suitable in regards to the data-driven

thermal characterization of buildings [36]–[38]. The mixed conclusions could potentially arise

due to the fact that each model has a suitable place in real-world applications. For example, the

level of detail required to represent a geographical region on a map also varies, according to the

map’s intended purpose; a simple diagram of Montreal’s metro system will not help a tourist to

navigate through the city’s streets, but its simplicity is useful when identifying where to transfer

from one metro line to another. As observed by statistician George Box [39]: “All models

are wrong, but some are useful”. Even the most detailed models are just an approximation

of real-world processes; they are built on assumptions and contain some degree of error. In

contrast, even rather limited models can provide useful approximations and their structures can

help develop a conceptual understanding of how dynamic thermal systems operate. The model

resolution (or degree of detail and complexity) required depends on the intended application

of the model, the level of accuracy the application requires and the performance data used to

identify the model’s key parameters [34].
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2.2.4 Thermal Time Constant Estimation

In addition to defining the TTC, a useful building characteristic, the next section reviews

previous studies that have attempted to estimate and employ it while investigating the transient

thermal behavior of buildings.

The Thermal Time Constant

The TTC is a thermal performance indicator that characterizes the transient thermal re-

sponse of a free-running building zone’s indoor space as a result of the outdoor temperature

variations [36]. Isolated from the heat gains due to HVAC system, the solar radiation and occu-

pant behaviour, the natural thermal response of each building to outdoor temperature variations

is different and varies based on their passive thermal control systems. In its simplest form, the

thermal time constant of a thermal system, τ , is defined as the product of its effective thermal

resistance Reff and its effective thermal capacitance Ceff that is

τ = ReffCeff (2.1)

This equation displays that TTC has a positive relationship with both Reff and Ceff; as these

parameters increase in value, the TTC also increases and therefore makes changes in Tin slower

to achieve.

The Reff represents both the thermal insulation and airtightness of the thermal zone. The

thermal insulation of a building enclosure limits the amount of heat that enters or exits the

occupied spaces by conduction (which is the predominant heat transfer mechanism through the

opaque sections of the building enclosure). In addition, the airtightness of the building enclosure

minimizes the heat and moisture flows due to the air leakage across the building enclosure (both

infiltration and exfiltration). A number of previous studies have proven the effects of air leakage

and ventilation on the τ to be considerable. Air infiltration or exfiltration — whether controlled

and uncontrolled — have proven to decrease a building’s thermal resistance; its Reff is therefore

lower than its apparent (or nominal) thermal resistance and, as a result, its τ is reduced as well

[22], [36].

In addition, the Ceff represents the zone’s thermal mass which includes the building en-

closure’s interior layer, its internal mass (i.e. internal partitions and furnishings) and its zone

air; thermal mass provides thermal stability to a building space by dampening the indoor tem-

perature fluctuations. Apart from the zone air thermal capacitance, the thermal capacitance

attributable to the rest of a building zone’s thermal mass is important but difficult to measure in
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practice, and is therefore an uncertain input parameter in white-box models [40]. As a result,

building simulation tool EnergyPlus estimates Ceff in the following form:

Ceff = Cair · ZCM

= cp,air · ρair · Vair · ZCM
(2.2)

where cp,air is the specific heat of the zone air, ρair is the density of the zone air, Vair is total the

zone air volume, and ZCM is the zone air thermal capacitance multiplier. The multiplier ZCM

is an equivalent adjustment to the zone air thermal capacitance which required to incorporate

the thermal capacitance attributable to the interior layer of building envelope, internal partitions,

and furniture.

Consequently, the key passive thermal control features represented by the TTC are as fol-

lows:

• Thermal Insulation and Airtightness;

• Thermal Mass.

These building-integrated features all contribute to decreasing heating and cooling loads and

providing thermal resilience, and the TTC can serve as an indication of when these features are

poorly incorporated.

Previous Studies

The following studies have estimated the TTC for use as a thermal performance indicator

and explored a number of important factors that affect it.

First, Antonopoulous and Tzivanidis [41], [42] developed a numerical procedure for calcu-

lating the transient indoor temperature; using an implicit finite-difference method, it expresses

the indoor energy balance and the transient heat conduction in all the building envelope ele-

ments. Using the above procedure, the TTCs of Greek buildings, ranging from 30-3000 m2 in

size, were systematically generated for 21 building types, 18 different wall constructions, and

10 different roof constructions. The results showed that the most important factors affecting

the TTC were the wall and roof construction, the size of the building, the surface area exposed

to the ambient environment, and the level of ventilation and air leakage. In addition, buildings

with different construction characteristics and sizes but with the same TTC were found to have

a similar response to the same outdoor temperature variation.
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In addition, Antonopoulos and Koronaki[36], using the simulated data from the previous

study, split the total TTC into components, examining the contributions of the insulated enve-

lope, the interior partitions and the furnishings. The effects of the internal mass on the TTC

of buildings proved to be significant. For example, the indoor partitions of a typical Greek

single-story house may increase the TTC up to about 25% and its furnishings would do so up to

about 15%. In addition, it was observed that ventilation and air leakage also have considerable

effects on the TTC; typically it may decrease it by about 25% except, in some cases, where

high ventilation may cause the drop to reach closer to 90%. Moreover, concerning the transient

indoor temperature response, the results from the time-consuming and rigorous numerical pro-

cedure from the previous study are fitted using a least-squares regression analysis to a simple

and flexible first-order RC model. The authors state that the simple model displayed satisfactory

accuracy in practice.

Next, Catalina et al. [43] developed regression models to serve as easy and efficient load

forecasting tools in the early stages of design for single-family residential buildings in France.

The model is obtained by using multiple regression analysis and simulated data generated using

TRNSYS. The model inputs included the TTC, the envelope’s overall heat loss coefficient, the

window-to-floor-area ratio, and the climatic conditions. The results showed a strong relation-

ship between the energy demands linked to space-conditioning (i.e monthly and annual heating

demands) and variables such as the building morphology and the TTC.

Moreover, Karlsson et al. [44] developed a conceptual model in order to explore the impli-

cations of changing the thermal capacitance of building materials. Programmed in MATLAB,

the numerical thermal model represented a wall made up of an exterior wall, an indoor air vol-

ume and an internally thermally heavy wall. Six different simulation cases were analyzed over

a period of 20 days, varying the external temperature, solar gains and heating. Outputs such as

energy consumption, peak power consumption and thermal comfort parameters were analyzed

with respect to the thermal capacity and heat loss coefficient of the walls. Using the thermal

properties defined for each case, the TTC was calculated for comparison purposes. The TTC

grew larger in value with every increase in the volume and/or volumetric heat capacity of the

wall. Tested under cold-climate conditions, the results showed the passive storage of sensi-

ble heat in the thermally heavy inner wall can significantly change the consumption pattern;

this offered significant benefits in shifting thermal loads but not in reducing the total energy

consumption.

Finally, Harb et al. [38] developed and compared 4 different RC model structures of varying

in complexity (i.e. 1R1C, 3R2C, 4R2C and 8R3C) to forecast the thermal response of occu-

pied buildings. The models are used to reproduce and approximate the thermal behavior of 3

different buildings in normal operation, after estimating their building-specific parameters us-

ing historical data. The 3 building case studies, which varied in type, size and heating system,
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included: one German office building, one Swedish office building and one Swedish residential

building. The inputs for the models consisted of measurement time-series data for the out-

door temperature, solar irradiation, building heat consumption and indoor dry air temperature.

The prediction error was quantified using Root-Mean-Square Error (RMSE) as a model perfor-

mance criteria. The TTC, the heat losses, the internal wall capacity, external wall capacity and

heat transfer resistances were all calculated and compared. Although, the second order (4R2C)

model performed with the most accuracy (with a mean forecast error of 0.2K), a model com-

parison revealed that all models gave physically reasonable estimates of the building properties.

The temperature simulation provided by the simplest model structure (i.e. 1R1C) delivered a

dampened reproduction of the measured temperature fluctuations used as a reference.

In brief, previous studies have estimated the TTC for buildings but mainly using simulated

building data and for European locations. Those studies that did use real building data were

had small sample sizes and short observation periods. Previous research also confirmed that

important factors affecting the TTC include the wall and roof construction, the building size,

the surface area exposed to the ambient environment, and the level of ventilation and air leakage.

In addition, a strong relationship was observed between the TTC and the energy demands linked

to space conditioning. Another pertinent observation was that buildings sharing the same TTC

— despite their differences in construction and size — were found to have a similar response

to the same outdoor temperature variation. Moreover, it was shown that a first-order model

can represent – with sufficient accuracy – the indoor temperature response of a simulated free-

running dwelling. Finally, previous research also displayed, under cold-climate conditions, that

a building’s thermal mass can be used to shift its thermal loads and its energy consumption

patterns.

Although the operational data used to calibrate grey-box models can be derived from sim-

ulated buildings or real ones, most of the previously mentioned studies relied on simulated

building data; until recent years, sizable and quality sources of real building data have been less

accessible [17]. Sources of high-volume data from real buildings are becoming more prominent

as IoT capabilities become increasingly more affordable and available in the built environment

[8]. In particular, a significant increase in the availability of smart thermostat data has been

observed in recent years and is expected to continue trending upwards. The arrival and growing

presence of the ST can serve as an unprecedented source of data-derived insights for TTC es-

timation and ZCM estimation in EnergyPlus, and can also change the way we deliver thermal

comfort to homes in the future.
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2.3 Evolution of Thermostats: From Manual to Smart

A thermostat is a device used to regulate the temperature of a physical system (e.g. a build-

ing or a specific space within a building); it activates the heating or cooling equipment in order

to maintain the system’s temperature near a setpoint (i.e. a desired temperature). For example,

in heating mode, if the system’s temperature falls below the set point then the thermostat runs

the heating equipment to reach and maintain that temperature; alternatively, if the temperature

rises above the set point then the thermostat would simply turn off the heating system. The three

existing thermostat types are discussed in this section and their features can be seen at a glance

in Table 2.1.

Table 2.1: The three thermostat types and their corresponding features at a glance

Manual

Thermostat

Programmable

Thermostat

Smart

Thermostat

Regulates Temperature Yes Yes Yes

Programs Setpoint Schedule N/A Yes Yes

Controlled Remotely N/A N/A Yes

Considers Web-enabled Data N/A N/A Yes

Considers Occupant Behaviour N/A N/A Yes

The Smart Thermostat (ST) emerged in part as a market response to usability problems of

its predecessors — the Manual Thermostat (MT) and the Programmable Thermostat (PT) —

but also due to the growing trend of connectivity and automation in buildings [16]. Just over a

decade has passed since the introduction of the ST whose automation, connectivity and central-

ized data collection are inspiring visions of a very different future for the built environment. It is

the combination of its automation, programmable set-point schedule, web-enabled features, and

consideration of occupant behavior that have made the data collection for this study possible.

2.3.1 Manual Thermostats

Having once been the most common thermostat type available, the manual thermostat (see

Figure 2.1) is quickly being replaced and phased out by its more energy-efficient counterparts:

the Programmable Thermostat (PT) and the Smart Thermostat (ST) [45].
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(a) (b)

Figure 2.1: Two examples of manual thermostats [46], [47].

The Manual Thermostat (MT) can only retain one setpoint at a time and offers very basic

control of building HVAC systems. If a different setpoint is required for a specific activity or a

period of anticipated vacancy, all adjustments must be made manually by the user. If connected

to both the heating and cooling systems, these thermostats must also be manually switched

from heating mode to cooling mode, and vice versa. Due to the potential energy savings, some

building codes and government programs began promoting the use of more convenient and

efficient thermostat types.

2.3.2 Programmable Thermostats

Unlike the MT, the PT functionality enables the user to operate their HVAC systems based

on a custom setpoint schedule and independently carries out setpoint adjustments; users can set

schedules in advance, and identify a different setpoint for different times of the day and different

days of the week [45]. In addition to the convenience and customization, PTs can provide the

benefit of energy savings.

PTs were demonstrated to be capable of achieving up to 30% in energy savings through

optimized thermostat setpoint schedules [16]. For example, a temperature setback is a simple

strategy to help save on utility costs by reducing how often the heating or cooling system oper-

ates; this is achieved by lowering setpoints in heating mode or by raising setpoints in cooling

mode (see Figure 2.2). Setbacks can be used during periods where a building can be hotter

or colder than the normal setpoint without compromising comfort or functionality (i.e. when

dwellings are unoccupied or when the occupants are asleep). The larger the setback — meaning

the lower (in heating mode) or the higher (in cooling mode) the setpoint is compared to normal

— the more the user can potentially save.

20



C. John CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Two examples of a thermostat setpoint profile with setbacks; one example for a day

in heating mode (top) and another for a day in cooling mode (bottom).

Unfortunately, although many homeowners acknowledge that a PT can save them money,

they still use their PT like a MT — by raising and lowering the temperature manually — and/or

use it without setbacks therefore missing out on the potential benefits. Frustrated by the process

of programming a setpoint schedule, many consumers either misuse, override or abandon the

programmable functionality altogether [48].

2.3.3 Smart Thermostats

In an attempt to mitigate the issues with human error involved with PTs, STs have cap-

italized on advancements in information and communications technologies, and have rapidly

expanded their capabilities (see Figure 2.3). Similar to PTs, STs can help users save money,

energy and time by controlling HVAC systems through a flexible setpoint schedule. In addition,

STs are also web-enabled; they can therefore be controlled and scheduled remotely (via a web

portal) using smartphones, tablets and computers.
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Figure 2.3: Examples of smart thermostats currently on the market [49]–[53].

As part of the Internet of Things (IoT) market, STs incorporate the use of remote sensors,

web-enabled data (e.g. forecast weather from weather stations), algorithms, machine learn-

ing, and cloud computing to achieve the optimal balance between comfort and efficiency [16].

Marked by rapid growth and innovation, IoT is a network of internet-connected objects able to

collect and exchange data [8]. STs can therefore record and track the building’s performance

data over time, and send reports regularly informing the user of their energy consumption and

savings. Remote sensors are used to monitor a building’s temperature, humidity, HVAC equip-

ment, and occupancy. Unlike its predecessors, the ST uses data collection and connectivity to

guide its management of set-point schedules and its adjustments to HVAC equipment runtimes.

The ST can therefore also identify any consistent modifications made manually to a user-defined

setpoint schedule and modify the schedule automatically to incorporate the new patterns of be-

haviour. As a result, STs have been increasingly used to reduce the electricity demands on the

grid in addition to lowering the consumer’s energy bills.

Through the use of grey-box models and data mining techniques, the large datasets gener-

ated by STs create new opportunities to discover patterns, trends, and correlations related to a

building’s intrinsic thermal performance. The connectivity and the centralized data collection of

an ST permits experimental studies to be performed on a larger scale, for a number of different

locations across the globe, and for a far more diverse sample of residential buildings than was

previously practical.
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2.4 Data Mining: Exploring Large Datasets and Information
Extraction

Heavily reliant on information technology, Data Mining (DM) is the systematic extraction

of patterns, trends and relationships hidden among large and complex datasets [54], [55]. Over

the years, DM has proved useful in many fields including engineering, medicine, finance and

marketing. In recent years, DM has been introduced into the field of building science in response

to the widespread adoption of building automation systems (BASs) in modern buildings; BASs

generate and store vast amounts of data (related to system operation, occupant behavior, power

consumption, climatic conditions, etc.) that can be analyzed in order to predict or describe

building performance [56]. Regardless of the field, the Cross-Industry Standard Process for

Data Mining (CRISP-DM) is a methodology commonly applied to data science projects that

has proven to be highly practical, flexible and useful. CRISP-DM consists of six phases placed

in an idealized sequence [57], [58]:

1. Domain understanding (or business understanding) is the first phase of the process and

focuses on building the foundations of the data science project — a clear understanding of

the domain being researched, setting the objectives, determining the project requirements,

and defining the success criteria [57], [58].

2. Data Understanding, the second phase, involves the identification and collection of task-

relevant data, and preliminary analysis of the dataset [57], [58]. Once acquired, it is

important to develop a familiarity with the data by examining and documenting its current

state including quality issues and organization. At this stage, preliminary attempts are

made to explore the data using visualization tools and basic statistical methods in order

to identify relationships.

3. Data Preparation is a very time-consuming process but arguably the most important part

of the procedure; this phase readies the dataset for modelling [57], [58]. In an attempt

to improve the final modelling results, common practices during this phase are to include

new attributes helpful to analysis, to exclude or correct erroneous data, to combine mul-

tiple sources or divide the data into subsets, and to reformat as necessary.

4. Modelling is a phase that involves the selection of the modelling technique(s) that apply

to the set objectives, the development and assessment of the model(s), and the interpreta-

tion of the modelling results based on the domain knowledge; this phase may consist of

multiple iterations [57], [58]. Well-known DM techniques commonly linked to building

science include: regression analysis, clustering analysis, association rule mining (ARM),

artificial neural networks (ANN), decision trees, and support vector machines (SVM)

23



CHAPTER 2. LITERATURE REVIEW C. John

[56]. Larose and Larose as well as Jiawei et al. provide detailed information on a number

of commonly used DM techniques including those previously mentioned [55], [58].

5. The Evaluation of the modelling results is a review of the tasks accomplished and a

summary of all findings; an opportune time to determine whether or not to proceed to

deployment, reiterate an old task, or initiate a new task [57], [58].

6. Deployment can either be as simple as generating of a report that clearly communicates

the final data mining results or as complex as developing a plan to implement the findings

in a new project [57], [58]. Anything of note regarding the data mining process such as

successes, failures and improvements to be implemented in the future can also be relayed

through the report. The knowledge derived from large datasets can be used to inform

decision-making and problem-solving tasks linked to the field in question.

In practice, CRISP-DM may involve performing these steps in a different order than pre-

scribed, backtracking to previous steps, and/ or even repeating several iterations of a step.
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Methodology

3.1 Data Mining Approach

The methodology developed for this Data Mining (DM) project can be broken down into the

following phases: Domain Understanding, Data Understanding, Data Preparation, Modelling,

Evaluation and Deployment. Figure 3.1 provides a flow chart of the approach used to guide this

study, inspired by the Cross-Industry Standard Process for Data Mining (CRISP-DM).

Figure 3.1: A flow chart representing the steps in this study based on CRISP-DM.

The first phase of the DM process, Domain Understanding, can be found in Chapters 1

and 2, and the last phase, Deployment, can be found in Chapter 4. This chapter provides a
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description of phases 2 through 5. Section 3.2 describes the original format and content of the

large dataset used for the study. Next, Section 3.3 provides a basic overview of how the raw

data is cleaned and transformed in order to act as an effective DM input. Finally, Section 3.4

goes on to discuss the DM modelling techniques and the performance criteria used to evaluate

them. All of the Python scripts developed to perform the study are accessible through the link

provided in section B.1.

3.2 Data Understanding

ecobee, a Canadian home automation company, has established the Donate Your Data (DYD)

program for its ST users to donate the operational data from their residential HVAC systems to

science. Within two years of the program’s 2016 launch, the ecobee database grew to over

70,000 participating dwellings worldwide with up to 36 months of data recorded at 5-minute

intervals. The measured data used in this study was gathered during normal occupied operation

from the beginning of September 2015 to the end of August 2018.

The scope of the data collected from each registered ecobee thermostat user consists of the

measured time series data acquired through the connected ecobee devices (see Figure 3.2) and

the user-reported contextual information about the dwelling. The ecobee thermostat is wall-

mounted and connects to the dwelling’s HVAC system in the same manner as a conventional

thermostat [59]. The thermostat’s accompanying remote sensors are independent devices that

are both wireless and battery operated; their recommended placement is on a flat surface in

the dwelling less than 13.7 m from the thermostat and at a height of 1.5 m. The DYD program

participant data is pulled from Ecobee’s servers, and then anonymized to remove any personally-

identifiable information.

Figure 3.2: The ecobee 3 (left), a smart thermostat model, and its remote sensor (right). Photo

courtesy of ecobee inc.
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When the participating thermostat users opt into the DYD program, they are agreeing to

make all of the data collected by their thermostat and remote sensors (since the time of instal-

lation) available for research purposes. Every month since its installation date, each thermostat

saves the data it has recorded (for the month) in an individual CSV file with a consistent and

uniquely generated filename. The data files from all registered DYD thermostats worldwide are

organized in folders corresponding to the month and year when the data was collected. Listed

and described in the Table A.1, the 20 variables provided in each data file are recorded at 5-

minute intervals. Each observation in the dataset is stamped with a date and time, beginning

from the first instance of use. The thermostat records indoor measurements for temperature,

humidity and motion detection. In addition, other recorded variables include HVAC equipment

runtimes, scheduled setpoints for temperature (and humidity, if applicable), user-defined de-

scriptors for the setpoints (i.e. sleep, away, etc.), the outdoor temperature and outdoor humidity.

The values associated to weather conditions are provided based on the nearest weather stations.

Any modifications to the schedule made by the user, by the thermostat based on sensors, or by

a third party in a demand response event are also recorded.

Outside the monthly folders, one CSV file titled metadata contains an overview of dwelling

characteristics for every participating residence. Listed and described in the Table A.2, there are

19 dwelling characteristics provided in the metadata file. The metadata file includes basic con-

textual information for all dwellings such as the geographic location (e.g. city, province/state

and country), the age, the total floor area, the style, and the number of occupants. For each

dwelling, the following additional information is also provided: the thermostat model, the

unique filename, the number of floors, the number of installed heat stages, the number of in-

stalled cool stages, the number of remote sensors, the fuel type for auxiliary heat, the presence

of a heat pump.

Finally, in regards to data access, the metadata file and the monthly folders of data are shared

directly with research partners and securely downloaded through a Secure File Transfer Protocol

(SFTP), under the understanding that all resulting research findings will be shared publicly for

everyone’s benefit.

3.3 Data Preparation

All data preparation tasks discussed in this section are accomplished using Pandas, an open-

source data analysis library developed for the Python programming language [60]. The prelim-

inary data preparation tasks include: addressing duplicated metadata entries, addressing errors

and inconsistencies in the metadata, determining the study duration and sample size, and meta-

data reduction.
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Duplicated Metadata Entries

Considering that each thermostat was given a uniquely generated filename, the first step in

this study’s data preparation process is the removal of any duplicated entries in the metadata

and monthly folders. Duplicated entries were only present in the metadata. The total number of

registered thermostats, as provided in the metadata file, is 76,003 worldwide. Among the listed

filenames, there are two types of duplicated entries:

• The first type of duplicated entry has the identical filename and the identical contextual

information of another entry. In this case, the originals were kept and a total of 4,485

duplicated entries were removed from the study.

• The second type of duplicated entry has the identical filename of another entry but with

different contextual information. In this case, there is no way to identify the correct

corresponding contextual inputs for the filename therefore 152 listed thermostats were

removed from the study including the 43 originals.

After the removal of the duplicated entries, the total number of remaining registered ther-

mostats is 71,366.

Errors and Inconsistencies in Metadata

The second step in this data preparation process involves tackling entries in the metadata

file with discrepancies in their contextual information. Unlike the data in the monthly folders,

the metadata is user-reported and subject to erroneous entries due to human error, efforts to

conserve privacy, efforts to incorporate levity, etc. The observed discrepancies include imagi-

nary locations, zero floors, zero occupants, floor areas of zero units, dwellings with more than

4 floors, dwellings with more than 8 occupants, etc. These unrealistic inputs are removed and

changed to not available in order to improve the results for any future data analysis involving

their associated variables.

In addition, all spelling errors and inconsistencies in city, province/state and country entries

are located and corrected in order to simplify the data analysis at later stages in the study.

Determining Study Duration and Sample Size

The third step in the study’s data preparation is the determination of the study duration and

its sample size. In order to analyze the impact of seasonality on thermal response of a building,
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at least one full year will need to be considered, and all dwellings belonging to the sample will

be required to have a data file for each month of the selected study duration.

The maximum sample size possible can be determined by examining the number of data

files provided by ecobee on a monthly basis. Figure 3.3 shows, from September 2015 to August

2018, the total number of data files provided by ecobee in each monthly folder. As previ-

ously mentioned, the data collected was organized by month and year. In a monthly folder,

each data file corresponds to an individual dwelling in the DYD program and contains all the

data recorded from its ecobee devices over the course of the corresponding month. During this

three-year period, Figure 3.3 illustrates a consistent increase in the total number of data files

from month to month; therefore the number of participating thermostat users in the DYD pro-

gram are increasing over time. In the last month of provided data, August 2018, the number of

files observed is 64,488 - nearly 7,000 dwellings less than the total registered dwellings in the

metadata file. This difference reflects that, over the course of the three years, DYD participants

have been lost as well as gained; some thermostat users may have discontinued their participa-

tion in the program or their services with the automation company. Consequently, due to either

a late registration or a departure from the program, not all dwellings will have a data file present

in each monthly folder. With this consideration in mind, the largest possible sample size would

be 39,652 dwellings for a study duration of 1 year, 15,246 for 2 years, and 4,594 for 3 years

(see Figure 3.3).

Figure 3.3: The number of data files available per month, from September 2015 to August 2018.

Considering that each data file represents one dwelling, the largest possible sample size for a

study duration of a 1-year, 2-year and 3-year period are indicated.
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Considering the possibility of departures from and late registrations to the DYD program,

each study duration was analyzed to determine the filenames common to each month. For a fair

comparison of a dwelling’s thermal response over the course of a year, the households selected

for the study are required to have a data file available for every month in the considered study

duration. As a result, Figure 3.4 shows that, among the 71,366 DYD participants worldwide,

35,470 homes consistently have data for a full year, 12,580 homes for two consecutive years

and 3,445 homes for three consecutive years. Out of the 35,470 residences that have one year

of data, more than 35,000 are located in Canada and the US (see Figure 3.5).

Figure 3.4: The number of DYD dwellings with a full set of monthly data files for a 1-year,

2-year and 3-year sample periods.

Figure 3.5: The sample considered for the study consists of the 439 cities, with the most DYD

thermostat users, out of the total 6,620 cities across Canada and the US
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A new dwelling characteristic, climate zone, was assigned using the geographical location

of the dwellings. The impact of local construction practices on the time constant will be ana-

lyzed by comparing the thermal response of dwellings according to climate zones defined by

the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).

Different building materials and techniques are required in different climate zones in order to

ensure the durability and efficiency of a building enclosure. The ASHRAE climate zones dis-

played in Figure 3.6 are defined based on temperature and moisture, and can be found in Table

Annex1-4 of the ASHRAE Standard 90.2 [61].

Figure 3.6: The ASHRAE international climate zone definitions

The number of each climate zone is an indication of temperature conditions and space con-

ditioning requirements — zone 0 being the warmest and zone 8 being to coldest. The cooling

degree days (CDD) and heating deegree days (HDD) are measurements designed to quantify

the energy demand needed for space-conditioning. Based on the average cooling and heating

degree days in Figure 3.6, climate zones 1 through 3 are typically cooling-dominated and 4

through 8 are typically heating-dominated.

A total of 439 cities across Canada and the US were sorted manually into 8 temperature divi-

sions of the ASHRAE climate zones (see Figure 3.7). The climate zone assignments are based

on information provided by Table Annex1-1, Table Annex1-2, Figure Annex1-1 and Figure

Annex1-2 of ASHRAE Standard 90.2, as well as an online database developed by the National

Renewable Energy Laboratory (NREL) [61], [62]. Due to the time constraints in relation to

manually sorting the cities, only 439 cities out of a total of 6,620 were given a climate zone

assignment (see Figures 3.4, 3.5 and 3.8). Examples of cities for each climate zone number are

provided in Table 3.1.
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Figure 3.7: A map showing the boundaries of each ASHRAE climate zone found within Canada

and the US [63].

Table 3.1: City examples for each climate zone number

Zone

Number
United States Canada

1 Honolulu, HI; Miami, FL N/A

2 Phoenix, AZ; Orlando, FL N/A

3 Los Angeles, CA; Atlanta, GA N/A

4 Seattle, WA; Washington, DC Victoria, BC

5 Columbus, OH; Chicago, IL Kelowna, BC; Niagara Falls, ON

6 Minneapolis, MN; Madison, WI
Lethbridge, AB; Toronto, ON;

Montreal, QC

7 Anchorage, AK Edmonton, AB; Trois-Rivières, QC

8 Fairbanks, AK Yellowknife, NT; Kuujjuaq, QC

In regards to selection, cities with the largest number of residences were given precedence

over others in order to provide the largest available sample for the study. Cities belonging
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to climate zones with less registered dwellings were also given priority in order to build up a

balanced more representative sample. All the missing metadata entries for geographical location

were filtered out in the city selection process. For a better understanding of the climate zone

distribution, Figure 3.8 shows the number of dwellings according to each climate zone. Climate

zones 1, 7, and 8 have significantly less data available which may impact the study’s ability to

offer a fair comparison for these climates.

Figure 3.8: The distribution of the DYD dwellings based on ASHRAE climate zone and country.

In order to consider the largest sample of Canadian and US dwellings for this study, the

group of 15,363 dwellings is selected and one year of operational data between September

2017 and August 2018 will be analyzed.

Metadata Reduction

Finally, the clean metadata is reduced in volume by eliminating the dwelling characteristics

that will not be further investigated. Among the characteristics found in Table A.2, those re-

tained for further analysis include: identifier, country, ASHRAE climate zone, dwelling type,

number of floors, number of occupants, construction age and floor area. An exploratory data

analysis for the study sample is provided in AppendixA.3.
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3.4 Identification of Models through Data Mining

3.4.1 Estimating the Thermal Time Constant of a Dwelling

Building Energy Model

In order to determine the TTC, the first step is to approximate every dwelling as a single-

zone thermal space represented by a first-order resistance-capacitance (RC) model (see Figure

3.9). For the purpose of this study, a dwelling is a residential unit, such as a building or part of a

building, used by one household as a home. While the first-order model is a very simple model,

it can provide a useful characterization of the dynamic thermal behaviour of a dwelling [64].

Figure 3.9: A simple diagram of a dwelling approximated as a single thermal zone and the

first-order RC thermal network used to represent it.

The first-order model in this study uses a single node to represent the dwelling’s indoor

environment and summarizes its thermal response using only two parameters: the effective

values for its overall thermal resistance (Rin,ext) and its overall thermal capacitance (Cin). When

a temperature difference exists between a dwelling and its surroundings, heat continues to flow

between the two until equilibrium is achieved; at which time, the indoor temperature (Tin) will

assume the same value as the outdoor temperature (Text). Between the dwelling and the outdoor

environment, heat flow is modelled as a current that travels through a resistor with the thermal

resistance Rin,ext. Heat will either flow out of the dwelling into its colder surroundings (i.e.

cool-down mode) or into the dwelling from its warmer surroundings (i.e. warm-up mode); the

dwelling’s thermal resistance limits these heat exchanges with the surroundings. In cool-down

mode, the heat flow travels from the interior to the exterior, discharging the dwelling’s thermal

mass, modelled as capacitor with the thermal capacitance Cin. In contrast, in warm-up mode,
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the heat flow travels in the opposite direction, charging the capacitor. With respect to time (t),

the relationship between the change in the dwelling’s total internal energy (Ei) and the change

in its indoor temperature is given by:

dEi

dt
= ρcpV

dTin

dt

= Cin
dTin

dt

(3.1)

where ρ is the dwelling’s effective density, cp is the dwelling’s effective specific heat capacity,

V is the dwelling’s total volume.

As seen in Figure 3.9, the thermal needs of most dwellings are satisfied by a symbiotic

application of both active and passive thermal control systems. With the active systems (Q̇hvac)

shut off, a dwelling operates under free-running conditions; the net heat transfer rate (Q̇net)

into the dwelling depends on heat gains and losses linked to the indoor-outdoor temperature

difference, the sun (Q̇sol), and the indoor environment (i.e the occupants, the appliances and the

lighting) (Q̇ig). Under free-running conditions, its indoor temperature, assumed to be uniform

throughout the space, is regulated by the performance of the passive thermal control systems

represented in the 1R1C model by the Rin,ext and Cin. When the dwelling’s passive systems are

unable to maintain the indoor temperature within an ideal range for the dwelling’s needs —

whether occupied or unoccupied — the active systems are run to supplement them. Applying

the first law of thermodynamics to the node representing the dwelling’s indoor environment

gives the following relationship between the dwelling’s change in internal energy and its heat

flow into the system:

Q̇net =
dEi

dt

= Cin
dTin

dt

(3.2)

where Q̇net is net heat transfer rate into the dwelling considering all heat gains (i.e. from the

sun, internal gains and indoor-outdoor temperature difference). The sign convention for Q̇net as

heat is flowing into the dwelling is positive.

Developing Equation 3.2 further, the heat dynamics for the 1R1C model in Figure 3.9 are

expressed by the following differential equation:

35



CHAPTER 3. METHODOLOGY C. John

Cin
dTin

dt
=
A

R′
(Text − Tin) +

dQsol

dt
+
dQig

dt
+
dQhvac

dt

=
1

Rin,ext
(Text − Tin) + Q̇sol + Q̇ig + Q̇hvac

(3.3)

where A represents the heat transfer surface area, t represents time elapsed in seconds and R′ is

the effective R-value.

Operating under free-running conditions (i.e. Q̇hvac = 0) at night (i.e Q̇sol = 0) when the

internal heat gains at night are assumed to be negligible, the dwelling’s natural thermal re-

sponse can be described using the curves shown in Figure 3.10. The natural thermal response

of the free-running dwelling represents the performance of inherent properties (i.e. its insula-

tion, airtightness, and thermal mass) in response to outdoor temperature conditions, and can be

expressed by rewriting Equation 3.3 in the following manner:

dTin

dt
=
Text − Tin(t)

Rin,extCin

=
Text − Tin(t)

τ

(3.4)

where τ is the TTC and is the product of Rin,ext and Cin (see Equation 2.1).

Using the initial condition Tin(0) = Tin,o, the solution of Equation 3.4 is as follows:

Tin(t) = Text + (Tin,o − Text) · e−t/τ

= Text + ∆To · e−t/τ
(3.5)

where Tin,o is the initial indoor temperature and ∆To is the initial indoor-outdoor temperature

difference. The derivation of this equation can be found in Section B.2.

When t = τ , Equation 3.5 therefore gives:

Tin(τ) = Text + (Tin,o − Text) · e−1

= Text + ∆To· ∼ 0.368
(3.6)

This equation shows that the indoor-outdoor temperature difference at t = τ is equal to

36.8% of ∆To. As depicted in Figure 3.10, the TTC is therefore the time required for the indoor
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temperature of a free-running dwelling to move 63.2% (i.e. 1 − e−1) of the way from its initial

temperature towards its final temperature (i.e. the temperature of its surroundings).

(a) Indoor temperature decay curve

in response to a colder environment.

(b) Indoor temperature growth curve

in response to a warmer environment.

Figure 3.10: Modelled by a 1R1C model, the exponential thermal response of a free-running

dwelling to a sudden step change in the outdoor temperature.

Criteria for Selection of Analysis Periods

Since the first-order model is an approximation of reality built upon assumptions, the second

step is the identification of suitable time periods for analysis which satisfy these assumptions.

The analysis periods used for the estimation of TTC will be limited to the nighttime; when

the sun is down, occupants are less likely to be very active, and equipment (such as appliances

and lighting) are less likely to be running. Without the heat losses and gains due to space

conditioning and solar, and with negligible internal heat sources, the TTC estimated in the

study represents the performance of the insulation, airtightness and thermal mass of a dwelling

in response to outdoor temperature conditions.

In this study, analysis periods are therefore selected according to following basic criteria:

1. the analysis periods occur at night (i.e. between sunset and sunrise);

2. the house is under free-running conditions (i.e. when the HVAC system is switched off)

for more than one hour;

3. the outdoor temperature remains relatively constant (i.e. the change in outdoor tempera-

ture is smaller than or equal to 2◦C).

As previously mentioned, the data is organized by month for the study duration. For each

location, a monthly sunset and sunrise time are determined based on the longest day of the
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month. A reference CSV file of these sunrise and sunset times, according to location and

month, is created using the Python function geopy.geocoders.Nominatim, Geopy, and a Python

package for time zone identification, timezonefinder. The measured time series data for HVAC

equipment runtimes and the outdoor temperature are used to determine if the criteria are met

during each analysis period.

Estimation of Non-Linear Model Parameters Using Least Squares Regression

The third step is the estimation of a TTC value for each identified analysis period, assuming

the indoor temperature variations would follow the characteristic exponential curve of a first

order system. Based on Equation 3.5, the indoor temperature of dwelling with respect to time

may be determined using:

Tin(t) = (Text)j,k + (∆To)j,k · e−t/τj,k (3.7)

where k is the index for each individual dwelling (k= 1, 2, 3, ..., 15363), j is the index for each

analysis period (j= 1, 2, 3, ..., n), and n is the total number of analysis periods over the course of

one month for dwelling k. Based on the indoor temperature observations from analysis period

j, (Text)j,k is the estimated outdoor temperature, (∆To)j,k is the estimated initial indoor-outdoor

temperature difference, τj,k represents the estimated TTC value.

Using measured time-series data for indoor temperature and non-linear regression analy-

sis, the following three parameters of the regression equation are calculated with the use of a

Python optimization function scipy.optimize.curve fit: (a) (Text)j,k, (b) (∆To)j,k, and (c) τj,k.

This function uses non-linear least squares to fit Equation 3.7 to the observed indoor tempera-

ture measurements by determining the set of input parameters that minimizes the residuals. The

optimization cost function used is as follows:

costi = Yi − Ŷi (3.8)

where i is the index for each observation in the analysis period j, Yi is the predicted value for

observation i, and Ŷi is the actual value for observation i.

The optimization requires the input of initial values for the parameter set as a mere starting

points for the optimization process. For (Text)j,k, the initial input is the average of the recorded

outdoor temperature values over the analysis period j. For (∆To)j,k, the initial input is the

difference between Tin0 and and the initial input for Text. For τj,k, a arbitrary value of 50 is used
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as the initial input and it is based on previous experimentation with the Python function with a

smaller sample of data [65].

Figures 3.11 and 3.12 illustrate examples of curve fitting performed using Equation 3.7 on

data during a winter analysis period and a summer analysis period, respectively.

Figure 3.11: A curve fitting example for free-running indoor temperature data from an analysis

period in winter.

Figure 3.12: A curve fitting example for free-running indoor temperature data from an analysis

period in summer.

39



CHAPTER 3. METHODOLOGY C. John

Model Performance Criteria

The fourth step is to detect and eliminate the estimated τj,k values that may be considered

inaccurate and/or outliers. The inaccurate τj,k values are detected according to their correspond-

ing Root-Mean-Square Error RMSEj value and corresponding calculated (Text)j,k value. The

outliers are found using the Interquartile Range (IQR) method.

The RMSE is a criterion commonly used to evaluate the fit of regression models using least

squares. For every estimation of the τj,k, the RMSEj is a measure of how close the regres-

sion model’s predicted values are to the empirical indoor temperature values. The RMSEj is

calculated using the following equation:

RMSEj =

√∑n
i=1(Yi − Ŷi)2

n
(3.9)

where j is the index for each analysis period, i is the index of each observation (i= 1, 2, 3, ...,

n), n is the total number of observations in the analysis period j, Yi is the predicted value for

observation i, and Ŷi is the actual value for observation i. The lower the value of the RMSEj

the better the fit of the model to the indoor temperature measurements. The estimated τj,k

values retained are those with Root-Mean-Square Error (RMSE) values equal to and lower than

0.50◦C. The selected maximum RMSEj value of 0.50◦C was determined with the use of data

visualizations and based on the accuracy of the smart thermostats. Next, the calculated (Text)j,k

value of each τj,k value are monitored to ensure that unexpected internal gains are not driving

the indoor temperature fluctuations. If the calculated (Text)j,k value lies more than 5 ◦C away

from the initial input of (Text)j,k value, its associated τj,k value is removed from the dataset.

The remaining estimated τj,k values are inspected to determine whether any of them are

outliers. Within the context of a dataset, an outlier is a extreme value that differs significantly

from the other observations. According to the IQR method, a value that lies further than 1.5

times IQR away from the mean (i.e. about 3 standard deviations) on either side can be classified

as an outlier and eliminated from the dataset [54].

3.4.2 Identification of Typical Thermal Time Constants

Monthly Thermal Time Constants

In section 3.4.1, multiple analysis periods are found for each dwelling k over the course of

one month. For each month mth, a weighted average is calculated for each dwelling k using
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their corresponding τj,k values; the weighted average, τmth,k is calculated using the following

equation:

τmth,k =

∑n
j=1wjτj,k∑n
j=1wj

(3.10)

where mth is the index for each month of the year (mth= Jan, Feb, ..., Dec), k is the index for

each individual dwelling (k= 1, 2, 3,..., 15363), j is the index for each analysis period (j= 1, 2,

3, ..., n), n is the total number of analysis periods in month mth for dwelling k, and weighting

factor wj is simply the reciprocal of RMSEj . The use of wj gives more weight to τj,k values

that are more reliable. For each residence, potentially 12 τmth,k values can be calculated.

Distribution Fitting

Distribution fitting is used to determine whether typical τmth,k values for a dwelling can be

identified based on the season and its ASHRAE climate zone. For the purposes of the study, the

seasons start on first day of the months that include the equinoxes and solstices:

• Fall runs from September 1 to November 30;

• Winter runs from December 1 to February 28 (or 29);

• Spring runs from March 1 to May 31;

• Summer runs from June 1 to August 31.

Fitting a Probability Density Function (PDF) to the data offers a simpler way of approxi-

mating how many dwellings would have a given value of τmth,k using only a few parameters.

The PDF is a statistical distribution often represented by a line graph that displays probability

versus the variable. The probability represented in the PDF is what percentage of the sample

observations for a variable, such as τmth,k, are expected to occur at a given value of the vari-

able. Statistical distributions are often used as theoretical models of real-world data; they do

not necessarily fit the data perfectly but they provide a reasonable representation of data.

First, for each combination of climate zone and season with more than 60 τmth,k values

[54], a range of different statistical distributions are fit to the observed distribution of values

using scipy.stats.rv continuous.fit, a function from the Python’s SciPy library which performs a

Maximum Likelihood Estimate.
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Second, a summary of statistics for each climate-season combination is calculated including

the median, standard deviation and a 95% confidence interval range for the mean, τssn,cl. The

ssn is the index for each season (ssn= fal, win, spr, sum) and the cl is the index for the ASHRAE

climate zone (cl= 1, 2,... , 8).

Model Performance Criteria

Next, when fitting a statistical model to observed data, the chi-squared value (χ2) is a mea-

sure used to compare the goodness of fit of each theoretical distribution to the observed distri-

bution [54]. In order to calculate χ2 the data for each climate-season combination are binned

into 20 bins based on percentiles so that each bin contains approximately an equal number of

data observations. The χ2 is calculated as follows:

χ2
ssn,cl =

n∑
h=1

(Sh − Ŝh)
2

Sh
(3.11)

where h is the index of each bin (h= 1, 2, 3,..., n), n is the total number of bins for each climate-

season combination, Sh is the cumulative sum of predicted frequencies for bin range 1 through

h, and Ŝh is the cumulative sum of observed frequencies for bin range 1 through h.

In addition, the Kolmogorov-Smirnov (KS) test is performed using the function scipy.stats.kstest

from the Python’s SciPy library [66]. The KS test is used to evaluate the suitability of the theo-

retical distribution and determine if there are any significant differences between observed and

fitted distribution. Ideally, a p-value of greater than 0.05 is obtained which means that the fitted

distribution is not significantly different to the observed distribution of the data.
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Results and Discussion

In this section, the results of the parameter estimation using regression analysis are ex-

plored and the effect of the following variables on a dwelling’s thermal response is investi-

gated: ASHRAE climate zone and season. Using data mining and statistical methods, patterns

and trends are identified in the thermal responses of 15,363 Canadian and U.S. dwellings mon-

itored over the course of one year. Data visualizations are used to display the distribution of the

estimated monthly Thermal Time Constant (TTC)s (τmth,k) and the sample subset that yielded

them, in relation to the previously mentioned variables.

4.1 Exploratory Data Analysis: Estimated Thermal Time Con-
stants for Dwellings

Respecting the criteria set for the regression model and the performance criteria (see Sec-

tion 3.4.1), the τj,k was calculated for only night periods in order to diminish the influence of

solar gains and occupant behaviour on the dwelling’s thermal response to outdoor temperature

fluctuations. With over 15,000 dwellings being considered, the algorithm that estimated the τj,k
values for each month was computationally intense. For one full year of data, τj,k was calcu-

lated for 235,024 analysis periods. The average duration of an analysis period is 7.14 hours and

Figure 4.1 shows that the analysis periods vary in length from 1.00 to 17.92 hours. For each

analysis period, the indoor temperature response curve of the free-running dwelling is repre-

sented by a first-order model and its characteristic exponential curve (see Equation 3.7) is fit to

the measured indoor temperature data. Each regression analysis performed has a correspond-

ing RMSEj value; the average of this performance indicator is 0.11◦C and its distribution is

presented in Figure 4.2.
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Figure 4.1: The distribution of duration for over 235,000 analysis periods.

Figure 4.2: The distribution of RMSEj which is a performance criterion provided for each

analysis period j.

In addition, Figure 4.3 demonstrates that the distribution of the estimated τj,k values is

positively skewed with values ranging from 3.00 to 239.85 hours; the majority of the values fall

toward the lower side of the scale, with an average value of 18.40 hours and a median of 7.67

hours. The TTC value significantly depends on season and climate; these relationships will be

further explained later in this chapter.

For each dwelling, a monthly weighted average of the τj,k values (τmth,k) was calculated for

the months where analysis periods were found. The 41,289 estimated τmth,k values represent

11,740 dwellings from the original sample and their distribution is also positively-skewed as

seen in Figure 4.4. The analysis of these values can be found in the following section.
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Figure 4.3: The distribution of the τj,k values resulting from the regression analyses.

Figure 4.4: The distribution of over 41,000 monthly TTC values, τmth,k, estimated over the

course of one year for over 11,000 dwellings.

4.1.1 The Effects of Location and Seasonality

This section covers the analysis of the monthly TTC values, τmth,k, in relation to climate

zone and season. A number of insights have been found related to the impact of location and

seasonality on the passive thermal performance of the Canadian and US dwellings.
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Data Distribution across Climate Zones

First, it is important to note that the number of dwellings that provided data is not evenly

distributed across all climate zones. As seen previously in Figure 3.8, Climate zones 1, 7, and

8 make up less than 5% of the dwellings yielding τmth,k values and consequently these zones

have significantly less data available than the other zones. As a result, climate zone 8 will not be

considered when analyzing the impact of season and climate on the TTC values. In regards to

climate zones 1 and 7, the study’s ability to offer a fair representation of the average dwelling’s

thermal response may be limited. Tables C.1, C.2, through C.5 offer a summary of key statistics

for the τmth,k values organized according to climate zone, for full year as all for each individual

season.

Likelihood of Finding Free-running Conditions

Second, the results suggest that the likelihood of a dwelling entering free-running mode

can be linked to its climate zone and season. Figure 4.5 compares the percentage of dwellings

from the original sample (i.e. 15,363), according to climate zone, that yielded at least one

τmth,k value. For cooling-dominated zones, the percentage of dwellings increases (from about

83% to 85%) from zone 1 to 3. For the heating-dominated zones, this percentage steadily

decreases (from about 80% to 50%) from climate zone 4 to 7. This observed pattern reasonably

suggests that the greater the temperature differences occurring between the indoor and outdoor

environment the lower the chances of finding a dwelling under free-running conditions.

Figure 4.5: A comparison of the dwelling count of the sample subset that yielded monthly TTC

values (τmth,k) to the original sample, organized according to climate zone.
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For each climate zone, Figure 4.6 provides, the percentage of the τmth,k values estimated

in each season. For each climate zone, the season providing the highest percentage of τmth,k
values reflects the most favorable time of year for finding appropriate analysis periods, and the

season providing the lowest percentage of τmth,k values reflects the season dominated by the

use of the HVAC system.

Concerning the summer months, the percentage of τmth,k values extracted during this sea-

son consistently increases from zone 1 to zone 6. In contrast, the percentage of τmth,k values

extracted from the winter months shows decreasing pattern from zone 1 to zone 6. In regards

to fall and spring, the cooling-dominated zones show no significant differences between the

two seasons, however, for a reason unknown to the author, the heating-dominated zones consis-

tently have a higher percentage of τmth,k values in the fall. As expected, finding free-running

conditions for cooling-dominated zones is least likely in the summer months and for heating-

dominated zones least likely in the winter months.

Figure 4.6: A count of monthly TTC values, τmth,k, according to climate zone and season.

Climate-based and Seasonal Patterns in Thermal Time Constants

Third, a climate-based pattern is observed in the τmth,k values themselves that reflects the

expected differences in insulation requirements based on location. Figure 4.7 displays an in-

creasing trend in both the annual mean and median values of τmth,k from zone 1 to zone 7 (i.e.

from warmer to colder climates). The dwellings built in colder climates therefore generally

have longer estimated TTC than those built in warmer climates; these results reflect that the

dwellings built in colder climates are usually prescribed higher thermal resistances.
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Figure 4.7: The annual mean and median values of the monthly TTCs (τmth,k) with respect to

ASHRAE climate zone (zones 1 through 7).

Next, Figure 4.8 provides both the mean and median values of τmth,k based on the season

in which they were estimated in. From fall to summer, the mean and median values for τmth,k
both follow an inverted U-shape pattern peaking in winter with the two low limits -one in fall

and the other in summer. The lowest seasonal mean and median value for τmth,k occur in

summer. The fact that the TTC of one building varies this significantly throughout the year is

expected; this seasonal change in the value of τmth,k can be linked to the behavioural patterns of

occupants in regards to opening their windows. During the summer months, it is reasonable to

expect occupants to have their windows open at night and to leave them open for long periods

of time due to more favorable weather conditions. Open windows increase the infiltration (or

exfiltration) of air, decrease a building’s ability to resist thermal changes in its surroundings,

and thus reduces its overall effective thermal resistance (Rin,ext). The TTC is the product of the

effective thermal resistance and the thermal capacitance of the dwelling (see Equation 2.1); the

lower the Rin,ext the faster heat can cross the boundary between the indoor and outdoor spaces,

and the smaller the TTC will be. This is a seasonal pattern that is reflected not only in the

overall sample but in each individual climate zone.

Finally, visualizing the combined effects of climate zone and season are even more telling;

the influence of location and seasonality can be seen clearly in Figures 4.9 and 4.10 where

the winter and summer values for τmth,k are compared across climate zones 1 through 7. For

each zone, the winter and summer months – when the coldest or hottest temperatures occur,

respectively – show significant differences between their resulting τmth,k distributions; the mean

summer values range from 26% to 55% of their corresponding winter means.
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Figure 4.8: The mean and median values of the monthly TTCs (τmth,k) with respect to season.

Figure 4.9: The annual mean and median values of the monthly TTCs (τmth,k) for the winter

and summer seasons with respect to climate zone.

49



CHAPTER 4. RESULTS AND DISCUSSION C. John

Figure 4.10: Comparing the winter and summer distributions of monthly TTCs, τmth,k, accord-

ing to climate zone.

The comparison of the distributions of τmth,k for all four seasons across climate zones 1

through 7 is also available (see Figure C.1). While the seasonal pattern of τmth,k is consistent in

all climate zones, the cause of this pattern (i.e. occupants tending to have their windows open

in the summer months) can only be speculated. Through the data provided by ecobee, it is not

possible to test this hypothesis.

4.2 Typical Thermal Time Constants of Dwellings based on
Climate and Season

Based on the data available and the observations made in section 4.1, statistical distributions

may be used as a means of providing a snapshot of the current TTCs in the Canadian and US

residential sectors; this thermal characterization of dwellings will be provided across climate

zones 1 through 7 for each season. A total of 28 different climate-season combinations are

represented in this study and the large amounts of τmth,k data associated to them have been

simplified into a few parameters using distribution fitting.

For each climate-season combination, the best fit distribution for the data from the follow-
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ing statistical models were found and compared: Normal, Lognormal, Johnson SB, Gamma,

Exponential, Beta, Chi-Square, F, and Weibull. Although 10 out of the 28 combinations had

p-values lower than 0.05, the Johnson SB distribution provides the most acceptable fit for each

climate-season combination, among the distributions considered (see Table C.6 and Figures C.2

through C.11).

Johnson SB is a lognormal distribution which is often used to represent continuous variables

with a non-negative nature whose distributions are skewed [54]. This specific lognormal dis-

tribution has 4 parameters making it extremely flexible and therefore capable of fitting a wide

range of distribution shapes. The PDF of the Johnson SB distribution is defined by the following

equation [67]:

f(x; a, b) =
b

x(1 − x)
· φ · (a+ b · log x

1 − x
) (4.1)

where x is a value between 0 and 1 that represents the quantile (i.e. one of the cut points

dividing the observations of the non-negative independent variable (e.g.τmth,k) into continuous

intervals of the same size). The a and b (a non-negative value) are the two shape parameters,

and φ is the normal PDF. The two other parameters, loc and scale are used to shift and scale

the distribution, respectively. In order to use loc and scale, the standard form of the Johnson

SB PDF is transformed by replacing x with the following variable m:

m =
(x− loc)

scale
(4.2)

In this section, the seasonal variations for climate zone 6 will be presented whereas the

results for the remaining climate zones may be found in section C.2; two of the most populated

cities in Canada, Montreal and Toronto, are located in climate zone 6. Figures 4.11 through

4.13 display the seasonal variations in climate zone 6 for the τmth,k values. The mean (τssn,cl)

and median value associated to each best fit distribution are provided in Table 4.1. Based on the

fitted distribution of summer TTCs, the 95% confidence interval for the mean (τsum,6) is 10.43±
0.58 hours - which is the lowest of all 4 seasons. The mean of winter TTCs (τwin,6) is 40.17±
2.89 hours and nearly 4 times the value of τsum,6. Finally, the seasonal mean values calculated

for fall and spring (τfal,6 and τspr,6) are 25.54± 2.90 hours and 30.42± 3.36 hours, respectively

— approximately 2.5-3 times the value of τsum,6.

The fitted distributions for fall, spring and summer are significantly more skewed than that

of winter. In the summer, 50% of the values are below 10.43 hours, but the distribution spreads

widely to higher TTCs. In the fall and spring, the values shift to the right with higher medians of

about 16.11 and 24.01 hours, respectively. There is a dramatic difference is observed between
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the winter distribution and the other seasonal distributions because it is significantly less skewed

and bears a higher resemblance to a normal distribution. From summer to winter, a similar shift

occurs across all climate zones towards higher TTC values.

Figure 4.11: For climate zone 6 dwellings in fall, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure 4.12: For climate zone 6 dwellings in spring, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure 4.13: For climate zone 6 dwellings in summer, a best fit distribution curve for the

monthly TTCs (τmth,k) and its associated mean (τssn,cl).

Figure 4.14: For climate zone 6 dwellings in winter, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Table 4.1: Climate zone 6: Statistics for the best fit climate-season distributions.

95% confidence interval for the mean

Zone Season Mean Median Std Lower Limit Upper Limit Length

6 Fall 25.54 16.11 23.42 24.09 26.99 2.90

6 Winter 40.17 38.11 18.01 38.72 41.62 2.90

6 Spring 30.42 24.01 22.77 28.75 32.10 3.35

6 Summer 10.43 6.04 11.38 9.85 11.01 1.16

4.2.1 Indicators of Thermal Performance and Resilience

The TTC can be used as an indication of both thermal performance and thermal resilience for

a dwelling. The interval data collected from thousands of residential smart thermostats helped

to develop a simplified and scalable method for estimating the TTC of a dwelling. In turn, the

estimated TTCs can also help to characterize the thermal response of a free-running Canadian or

American dwelling, providing insight into the passive thermal performance provided its thermal

insulation, its airtightness, and its thermal mass. As seen in Figure 4.15, the TTC can also

inform decision-making regarding Demand Side Management (DSM) strategies (e.g. building

retrofits and Demand Response (DR)) related to the existing housing stock. Being aware of

a dwelling’s TTC offers building shareholders an idea of how long a free-running dwelling

can passively maintain a habitable indoor temperature for occupants or how long before the

dwelling would be vulnerable to a number of temperature-related durability issues.

Figure 4.15: The TTC can offer valuable insights regarding thermal performance and resilience.
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To the benefit of utilities and homeowners alike, the TTC characterizes a building’s capacity

to store and transfer heat. By providing short-term sensible heat storage, a building’s thermal

inertia could help optimize building energy management [68]. The TTC also offers valuable

insights into the thermal flexibility provided by the dwelling’s construction, and where elec-

trical heating is used, electrical flexibility. These insights can contribute to two important and

intervention approaches: DSM and Model-based Predictive Control (MPC).

Applications Towards Grid Operation

The first approach, DSM, consists of optimal operating strategies designed to efficiently

manage on-site energy consumption with the aim of reducing energy costs, improving grid reli-

ability and maintaining occupant comfort [69]. These strategies include matching demand load

profiles to electricity generation profiles, reducing or interrupting consumption, and shifting

consumption away to different time periods.

For example, in both Canada and the US, the cost of delivering power often depends on

the time of day it is used. Utilities have a responsibility to meet the varying energy demands

of their consumers, at any instant in time. Sharp rises in energy demand at peak times make

electricity more costly to deliver; utilities must either operate additional and often less efficient

power plants or purchase the missing electricity from the power market [15]. When power is

not readily available, load shedding is required which often results in power outages.

Smart grids will create opportunities for new solutions to energy challenges not only on the

supply side but also on the demand side. Being able to identify a typical TTC value from oper-

ational data can provide utilities and home automation companies with a better understanding

of a home’s thermal resilience. This understanding can inform decisions about their selection

and use of DSM strategies for existing dwellings. Moreover, power outages due to emergency

load reduction, extreme weather events and physical failures in the energy infrastructure have

left large numbers of homes without power in the past. For example, most recently, a severe

winter storm left millions of Texans without power, heat and running water for several days

[70]. During power outages, access to TTC values also inform utilities on how long a typical

North American house could go without power, under different outdoor temperature conditions,

before compromising thermal comfort and safety levels.

Applications Towards Building Operation

The second approach, MPC, uses a building energy model to select the HVAC control inputs

that result in the best predicted energy performance; the optimal performance is determined
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by minimizing the energy costs and maintaining occupant comfort [17]. The emergence of

large volumes of residential data and the modernization of the energy infrastructure provide an

opportunity to consider the use of more advanced building control strategies in the residential

sector.

North America represents a number of different climate zones and a widely diverse housing

stock. Traditional detailed investigations of each home’s thermal performance would be imprac-

tical due to cost and realistic time expectations. With IoT capabilities being more affordable and

available, optimizing building operation through the use of building control technologies, like

smart thermostats, has become a convenient and non-invasive solution for homeowners to re-

duce their energy costs. Using the smart thermostat data available, simple low-order Resistance-

Capacitance (RC) thermal networks could be rapidly generated to represent the thermal perfor-

mance of a dwelling and improve thermostat performance. With smart thermostats gaining in

popularity, their presence in the home and the data they provide creates, in turn, an opportunity

to rapidly calculate thermal loads, and potentially introduce a more advanced building control

strategies to the residential sector.

For more than two decades, grey-box modelling using low-order RC-models has been used

successfully in advanced building control strategies such as Model-based Predictive Control

(MPC) in commercial buildings [17], [71]. Due to time and cost constraints, the application

of MPC in the residential sector has previously been limited. With a more advanced building

control strategy in the residential sector, the run-time of HVAC homes could be optimized to

reduce energy costs without comprising comfort. In the future, the introduction of MPC could

help flatten the energy use of a neighborhood during peak periods by coordinating the run-

times of several HVAC systems. Derived from smart thermostat data and a simplified grey-box

model, a TTC estimated in this study could be paired with knowledge of the total heat gains to

test its accuracy when representing the thermal dynamics of North American dwellings for use

in MPC; testing the TTC in this manner is outside the scope of this study.

Estimating the Thermal Delay

As a thermal performance and resilience indicator, one disadvantage of the TTC is that

it does not readily communicate to building stakeholders the time until a dwelling becomes

uncomfortable to live in. The TTC is a mathematically convenient measure for expressing the

dwelling’s thermal inertia but its physical meaning can be difficult to grasp for homeowners

despite being a time-based metric. Figure 3.10 offers a visual example of how the TTC relates

to the indoor temperature response curve of a dwelling when exposed to both a colder and a

warmer surrounding environment. A more accessible measure is the thermal delay (td); this

measure can be defined as the estimated time required for the indoor temperature to fall (or
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rise) by a specific temperature difference (∆Tin) after the dwelling enters into free-running

conditions [36]. The thermal delay can offer for insight regarding thermal comfort or durability

issues after a power outage or the failure of an HVAC system (e.g. how long the dwelling will

remain habitable or how long before the pipes may freeze).

Due to time constraints and the lack of information available regarding the solar and internal

gains, this study limits the exploration of the thermal delay to cold-weather conditions. In warm-

weather conditions, the fluctuations of the solar or internal heat gains throughout the day are

very important factors in addition to the TTC for determining how quickly a dwelling may

become uncomfortable. The focus will therefore be on the link between the TTC and cold-

weather thermal resilience (i.e. how long a free-running dwellings in cool-down mode can

remain habitable).

The thermal delay can be useful in providing building stakeholders with an idea of how

quickly the indoor temperature of a dwelling can drop, in cold-weather conditions, to any tem-

perature of interest (e.g. the acceptable minimum for occupant comfort). The difference be-

tween the indoor temperature at the beginning of the free-running period (Tin,o) and the selected

temperature of interest (Tin(td)) can be expressed as follows:

∆Tin = Tin(td) − Tin,o (4.3)

Using Equation 3.7 where t= td, Tin(td) may be defined as:

Tin(td) = Text + (Tin,o − Text)e
−td/τ (4.4)

The substitution of Tin(td) from Equation 4.4 into Equation 4.3 therefore yields:

∆Tin = Text + (Tin,o − Text)e
−td/τ − Tin,o (4.5)

and td can therefore be represented as a function of ∆Tin, the initial indoor-outdoor temperature

difference ∆To and τ :

td = f(∆Tin,∆To, τ)

= −τ · ln(1 − ∆Tin

∆To
)

(4.6)

Figures 4.16 and 4.17 illustrate the times expected for typical dwellings to reach its mini-

mum acceptable temperature, assuming an initial indoor temperature (Tin,o) of 21◦C and a Text
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of -5◦C. In each figure, the equation 3.7 is used to plot the indoor temperature response of the

typical dwellings considered. The comfort ranges applied in the figures are based those used by

Henao et al. (in accordance with the Canadian Center for Occupational Health and Safety, and

the ASHRAE Standard 55) [72].

Figure 4.16: Tin vs. t where Text=-5◦C and different time constants (i.e. typical dwellings in

climate zones 4 through 7).

Figure 4.17: Tin vs. t for a typical climate zone 6 dwelling (τ = 40 hr.) where Tin= 21◦C, and

different Text varying from 0 to -25◦C.
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In Figure 4.16, the cooling response of free-running dwellings in different heating-dominated

zones is displayed using τwin,4, τwin,5, τwin,6, and τwin,7, assuming an outdoor temperature (Text)

of -5◦C. Comparing the thermal response of different climate zones, the curve estimating Tin(t)

becomes steeper as the the τ decreases in value and the time until the dwelling becomes un-

comfortable is shortened.

In Figure 4.17, the focus shifts to the cooling response of a typical climate zone 6 dwelling

under different outdoor temperature conditions between 0 and -25◦C, assuming a τwin,6 of 40

hours and a Tin,o of 21◦C. As the indoor-outdoor temperature difference increases in value, the

curve estimating Tin(t) becomes steeper.

Effect of Natural Ventilation and Air Leakage

Acceptable thermal comfort and indoor air quality is achieved in part by considering air

exchange between the outdoor environment and indoor environment; air exchange can be clas-

sified as either ventilation if intentional or air leakage (e.g infiltration and exfiltration) if unin-

tentional [73].

For a free-running dwelling, the combined effect of natural ventilation, infiltration, and

exfiltration have a significant impact on monthly and seasonal τ values, and therefore its indoor

temperature response. These three types of air exchanges can be hard to predict because they

depend on a number of factors including weather conditions, building construction, occupants

and maintenance [73]. Figure 4.18 shows how the Rin,ext of a free-running dwelling is variable

and can broken down into two parallel resistors. One resistor represents the heat transmission

through the physical components of the building envelope (i.e. the walls, windows, doors, floors

and ceilings), and the other, a variable resistor, represents the heat transfer through its openings

(i.e. doors, windows, cracks and gaps); the thermal resistances for each resistor is equal to the

reciprocal of its corresponding thermal conductance (Us and Uinf, respectively).

Tin
Rin,ext Text

(a) Overall thermal resistance

Tin

1/Us

1/Uinf

Text

(b) Equivalent pair of parallel thermal resistances

Figure 4.18: Overall thermal resistance broken down to represent heat transfer across the build-

ing envelope’s physical components and through its openings.

59



CHAPTER 4. RESULTS AND DISCUSSION C. John

The Rin,ext of a free-running dwelling can therefore be expressed in the following form by

adding the parallel resistors:

Rin,ext =
1

Us + Uinf

=
1

Us + (cp,air · ρair · ACH · 1hr
3600s

· Vair)

(4.7)

where cp,air is the specific heat of air, ρair is the density of air, ACH is the number of air changes

per hour (i.e. how many times the total volume of interior air is replaced per hour), and Vair is

total air volume in the dwelling.

A building with a high Uinf value from occupants opening their windows or poor construc-

tion can result in a reduced Rin,ext value; this can be demonstrated using Equation 4.7 in the

following example. Consider a dwelling located in Quebec, Canada for which Date et al. de-

veloped a 1R1C model and identified its model parameters using training data from winter; the

dwelling has a TTC of 31 hours, a Rin,ext of 0.0064 K/W , and a Cin of 17.2 MJ/K [74]. For

the dwelling in question, the Uinf andACH are estimated in Table 4.2 for the case of both winter

and summer; the calculations are carried out assuming that there is a negligible difference for

Cin between the two cases, and that the dwelling has a summer TTC value of 6.2 hours, a total

surface area (A) of 350 m2, a Vair of 500 m3 and an enclosure R-value (R′) of 3.5 m2K/W .

Table 4.2: Example of the seasonal effects related to natural ventilation and air leakage

Winter
(i.e. when windows are

mainly closed)

Summer
(i.e. when windows are

opened for longer periods)

Rin,ext [K · W-1] 0.0064 0.0013
Cin [MJ · K-1] 17.2 17.2

τ = Rin,extCin [hr] 31 6.2
R′ [m2 · K · W-1] 3.5 3.5

A [m2] 350 350

Rs = R′/A [K · W-1] 0.010 0.010
Us = 1/Rs [W · K-1] 98 98

Uinf = (1/Rin,ext) − Us [W · K-1] 62 702
Vair [m3] 500 500

cp,air [J · kg-1 · K-1] 1.2 1.2

ρair [kg · m-3] 1000 1000

ACH 0.37 4.2

As a result, the example shows the maximum Rin,ext of 0.0064 K/W would occur in winter
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(i.e. when the windows are mainly closed) when the Uinf and ACH are low. In contrast, in the

summer, the windows are more likely to be open during free-running conditions; the Uinf and

ACH are therefore higher in value, and the Rin,ext is reduced to 0.0013 K/W . The relationship

displayed between the estimated TTC, Uinf andACH could play an important role in identifying

a building’s potential for summer peak load reductions; pre-cooling a building at night through

natural ventilation can help shift thermal loads related to cooling [75], [76].
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Conclusion

As a result of the increased popularity of Internet of Things (IoT) devices, the research in

the field of building sciences is adapting to take advantage of the growing availability of build-

ing performance datasets. When dealing with large datasets, Data Mining (DM) is an effective,

scalable and flexible method for discovering valuable patterns and trends, pertaining to many

aspects of a building’s operation including its thermal behaviour. Based on increasingly avail-

able smart thermostat data, this thesis proposes a framework for using DM and a Reduced-Order

Model (ROM) to estimate the effective Thermal Time Constant (TTC) of a dwelling [77]. The

TTC is an indicator of the passive thermal performance of a building; with no influence from a

heating or cooling system, it provides an indication of the time required for a building space to

cool down or heat up in response to a thermal change in its surroundings. The TTC represents

the combined influence of effective thermal insulation, airtightness and thermal capacitance

provided by a building’s enclosure and internal mass on its thermal response.

The proposed methodology permits the thermal performance of a building to be described

and compared in terms of the TTC; a thermal performance indicator which is not as popular or as

readily available as the R-value. At present, the R-value is often the only information provided

to reflect the thermal performance of a building however relying on the R-value alone fails to

encompass the effects of thermal bridging, building enclosure defects, thermal mass, and air

leakage. Estimated using real building performance data, the TTC can provide insight into the

effective thermal capacitance of the dwelling, however it is, unfortunately, a building property

whose value is not commonly known and difficult to determine when limited in time, cost and

information. Where previous studies related to the TTC may have been restricted by a lack of

available field data due to practical constraints, the methodology described in this thesis uses

smart thermostat data to provide efficiency in time and effort; this method can estimate the TTC

of thousands of dwellings across North America at once and is not limited by study duration.

Building professionals and stakeholders could therefore easily use the TTC, in addition to the
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widely accepted R-value, to provide a better indication of the thermal performance and thermal

resiliency of a building.

The estimation of the TTC is achieved by using building operational data to calibrate simple

Resistance-Capacitance (RC) models. Collected over a one year period from September 2017

to August 2018, the smart thermostat data used in this study includes measured time series

data recorded at 5-minute intervals (i.e. the indoor temperature readings, the outdoor tempera-

ture readings and the HVAC equipment runtimes) and background information for over 15,000

Canadian and US dwellings. The indoor temperature response of the dwellings was tracked

only during periods when (a) solar and internal gains could be assumed negligible (i.e. between

sunset and sunrise), (b) the house is under free-running conditions (i.e. when the Heating, Ven-

tilation and Air-Conditioning (HVAC) system is switched off) for more than one hour, and (c)

the outdoor temperature remains relatively constant (i.e. the change in outdoor temperature is

smaller than or equal to 2◦C). Next, the individual TTCs are estimated by fitting a temperature

response curve of a first-order model to building-specific measured data. Finally, a statistical

analysis is applied to identify a typical range of effective TTC values in the North American

housing stock, according to climate zone (i.e location) and season; this additional step provides

provides building stakeholders with a reference for comparing the natural thermal response be-

tween buildings and the foundations for developing standards in relation to TTC values.

The results of the study suggest that TTC values are affected by location-based construction

practices and seasonality. As expected, an increasing trend was observed in the TTC values

from warmer to colder climate zones. The ASHRAE climate zones with sufficient data to

yield accurate results are zones 1 through 7. The dwellings in colder climates have longer

TTCs which reflect the higher thermal resistances and heavier constructions than those found

in warmer climates whose TTCs are shorter. There are also significant differences between

estimated values for the summer and winter months across all climate zones, which may be

attributed to the interaction of occupants with the building envelope. In winter, the mean TTC

according to climate zone ranges from about 7 to 47 hours. In contrast, the summer values vary

over a smaller and lower range of 6 to 19 hours presumably due to occupants opening windows

in more favourable weather. The combined effects of climate and seasonality are significant and

show that seasonality should be considered in the future considerations of the TTC as a building

parameter.

The estimated TTC can be applied in the following three ways to support a future towards

more resilient and sustainable buildings as a:

1. thermal performance indicator permitting the rapid identification of homes in need of

building envelope retrofits;

63



CHAPTER 5. CONCLUSION C. John

2. parameter in simple RC models, providing a less costly and less timely way of introduc-

ing of a large -scale application of model-based energy load estimation and management

to the existing housing stock;

3. thermal resilience indicator providing insight into the suitability of certain Demand Side

Management (DSM) strategies.

Moreover, future studies may expand upon the presented methodology by focusing on:

• The incorporation of solar gains and internal gains into the simplified model;

• Further investigation into the TTC’s dependency on other building-specific variables (e.g.

age, floor area);

• The determination of when and how much windows are opened by analyzing the mea-

sured indoor temperature data and measured relative humidity data;

• The identification of threshold TTC values associated with poor and high performance

buildings;

• The applied use of the TTC in building control strategies and the prediction of indoor

temperature;

• The applied use of the TTC in energy management strategies and shifting energy demand

profiles.

In brief, this thesis presents a novel approach that uses smart thermostat data and a ROM

to estimate the TTC - a lesser known dynamic building characteristic. The method and Python

code developed for estimating the TTC is more efficient in time and cost than the typical de-

tailed building simulation and applicable particularly when little building information is avail-

able. The ease and flexibility provided by the data mining approach makes the estimation of

the TTC possible for thousands of real North American residential buildings. The analysis of

the TTC values shed light on important seasonal and geographic differences regarding a build-

ing’s thermal behaviour under transient heat flow conditions; these insights are helpful in the

assessing thermal comfort, energy efficiency and thermal resilience. The scalable methodology

can be expanded to millions of buildings in the North American housing stock, and exploited

towards the larger objective of more resilient and sustainable buildings and communities.
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A.1 Data File Description

Table A.1: A list of the variables contained in each data file.

Field Name Variable Data Type

DateTime Date and time (YYYY-MM-DD HH:MM)

that the reading was taken

Metric

HvacMode Indicates whether space conditioning

system is set to heat, cool, auto or off

Categorical

Event Anything that modifies the schedule (e.g.

temperature hold, demand response,

Vacation, SmartRecovery)

Categorical

Schedule User-defined descriptors for desired set points

against activity/behaviour (e.g.

Vacation, Sleep, Away, Nap)

Categorical

T ctrl Average indoor temperature (in Fahrenheit)

based on readings from relevant sensors (as

defined by the schedule or mode the user);

This temperature value used to guide the

operation of the HVAC system.

Metric

T stp cool Indoor cool setpoint (in Fahrenheit) Metric

T stp heat Indoor heat setpoint (in Fahrenheit) Metric

Humidity Indoor humidity (in RH%) Metric

HumidityExpectedLow Setpoint (for users who have a Humidifier) (in

RH%)

Metric

HumidityExpectedHigh Setpoint (for users who have a Humidifier) (in

RH%)

Metric

auxHeat1,2,3 Runtime (seconds) for any heat source other

than a heat pump (where 1,2,3 are the stages

of the equipment)

Metric

compCool1,2,3 Runtime (seconds) for any cooling (where

1,2,3 are the stages of the equipment)

Metric

compHeat1,2,3 Runtime (seconds) for heat-pumps used in

heating

Metric

fan Runtime (seconds) for fan Metric

Continued on next page
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Table A.1 – continued from previous page

Field Name — Variable Data Type

Thermostat Temperature Indoor temperature measurement

(in Fahrenheit) at the thermostat (i.e. not

remote sensor); The ecobee temperature sen-

sor has a +/- 1.0◦C accuracy [78].

Metric

Thermostat Motion Detects motion at that date/time Binary

Remote Sensor 1,2,3 Temperature Indoor temperature measurement

(in Fahrenheit) at the remote sensor (where

1,2,3 denotes different sensors); The ecobee

temperature sensor has a +/- 1.0◦C accuracy

[78].

Metric

Remote Sensor 1,2,3 Motion Detects motion at that date/time at the

remote sensor (where 1,2,3 denotes

different sensors)

Binary

T out Outdoor temperature, for the specific

location of the dwelling, estimated using data

from the closest weather stations

Metric

RH out Outdoor humidity (in RH%), for the

specific location of the dwelling, estimated

using data from the closest weather stations

Metric
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A.2 Metadata File Description

Table A.2: A list of the dwelling characteristics contained in the metadata file.

Field Name Dwelling Characteristic Data Type

Identifier Label assigned to thermostat (unique,

alphanumeric, 40 characters long)

Categorical

Model Label indicating the available

thermostat features

Categorical

UserID Label assigned to thermostat user

(unique, alphanumeric, 40 characters

long)

Categorical

Country Country where thermostat installed Categorical

ProvinceState Province or state where thermostat

installed

Categorical

City City where thermostat installed Categorical

Floor Area [ft2] Floor area of dwelling Metric

Style Type of dwelling (e.g. detached, row-

house, apartment, etc.)

Categorical

Number of Floors Number of floors in the dwelling Count

Age of Home [years] Age of the dwelling Count

Number of Occupants Number of occupants in the dwelling Count

installedCoolStages Levels of cooling output available (up

to 4 based on equipment)

Count

installedHeatStages Levels of heating output available (up

to 4 based on equipment)

Count

allowCompWithAux Indicates whether the heat pump and

auxiliary heat may run at the same time

Binary

Has Electric Indicates if space conditioning

equipment powered by electricity

Binary

Has a Heat Pump Indicates if heat pump is installed Binary

AuxilliaryHeatFuelType Indicates fuel type used to power

auxilliary heat

Categorical

Number of Remote Sensors Number of remote sensors connected

to the thermostat

Count

filename A filename used for the monthly CSV

data files consisting of the thermostat

identifier

Categorical
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A.3 Study Sample

A.3.1 Initial Data Analysis

As previously mentioned, for the purpose of the study, the 15,363 Canadian and U.S.

dwellings will be analyzed over the course of one year in order to identify patterns and trends

in their thermal response. Upon the completion of the data preparation, data visualizations are

used to display the distribution of the dwellings in relation to the following dwelling charac-

teristics: country, climate zone, dwelling type, number of floors, number of occupants, age

and floor area. In this section, the goal is to become familiar with how the selected dwelling

characteristics are represented in the study sample.

Considering the study sample, a summary of statistics for number of floors, floor area, age,

and number of occupants is provided in Table A.3.

Table A.3: Study Sample - Summary of statistics for values of dwelling characteristics

No. of Floors Floor Area [m2] Age [yr] No. of Occupants

Count 14611 14364 15363 8304

Average 2.07 248.50 26.29 2.93

Standard deviation 0.79 114.86 27.79 1.27

Mode 2 N/A 0 2

Minimum 1 37.16 0 1

Lower quartile

(25%)
2 185.81 5 2

Median (50%) 2 232.26 20 3

Upper quartile

(75%)
3 297.29 40 4

Maximum 4 1393.55 120 7

Dwelling Type

In regards to dwelling type, Figures A.1 and A.2 depict the distribution of single-family and

multi-family residential in the sample, respectively. Approximately 13% of the study sample -

1,998 dwellings exactly- have no available entry for dwelling type.
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Figure A.1: The distribution of the single-family dwellings in the study sample, based on

dwelling type and climate zone.

Figure A.2: The distribution of the multi-family residential in the sample study, based on

dwelling type and climate zone.

With over 10,000 detached dwellings, there is significantly more dwellings in the study that

can be classed as single-family residential in comparison to the multi-family residential. The

dwelling types with the highest percentage of dwellings are detached houses(65%), townhouses

(7%) and condominiums (5%).
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Number of Floors

The number of floors based on dwelling type can be observed in Figures A.3 and A.4. The

number of floors range between 1 and 4, with the most common entry being 2 floors. There are

only 752 dwellings with no available entry for the number of floors - which is about 5% of the

sample study.

Figure A.3: The distribution of the single-family dwellings in the study sample, based on

dwelling type and the number of floors.

Figure A.4: The distribution of the multi-family dwellings in the study sample, based on

dwelling type and the number of floors.
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Floor Area

In relation to floor area, a dwelling in the study sample can fall into one of the following 6

intervals: 0-150 m2, 150-200 m2, 200-250 m2, 300-350 m2 and larger than 350 m2. The inter-

vals were chosen as such in order to create a relatively balanced distribution across all intervals.

Figure A.5 shows the number of dwellings by climate zone for every floor-area interval. The

floor-area intervals with the highest percentage of dwellings are 0-150 m2 (20%), 150-200 m2

(19%) and 200-250 m2 (18%), respectively- showing that the majority of dwellings are smaller

than 250 m2. All missing entries for floor area account for about 4% of the study sample with

a count of 603 dwellings.

Figure A.5: The distribution of dwellings in the study sample, based on floor area and climate

zone.

Year of Construction

Concerning year of construction, a dwelling in the study sample can belong to one of fol-

lowing 8 intervals: 2016-2018 (0-2 years), 2011-2015 (3-7 years), 2006-2010 (8-12 years),

2001-2005 (13-17 years), 1991-2000 (18-27 years), 1981-1990 (28-37 years), 1961-1980 (38-

57 years) and before 1960 (older than 58 years). The year-of-construction intervals were se-

lected as such in order to get a relatively balanced distribution across all intervals. Figure A.6

gives a dwelling count for each climate zone per year-of-construction interval. No missing en-

tries were observed for age. Although there are dwellings present in the study sample that date

back to 1900, more than 50% of the dwellings were constructed after 2000 and are therefore

less than 18 years old.
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Figure A.6: The distribution of dwellings in the study sample, based on year of construction

and climate zone.

Number of Occupants

With over 7,000 missing entries for number for occupants, it is concluded that this dwelling

characteristic may lack the data required to produce useful or accurate findings.
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B.1 Access to Python Code

In this study, data manipulations and visualizations are performed through the use of Python,

a programming language, and Spyder, a scientific Python development environment commonly

used in computer programming. All of the files required for the study are accessible using the

following url : https://github.com/camjjohn/CJohn_Thesis.git. This section

provides an account of all the python scripts provided and their purposes.

The data preparation is performed using the code from the following scripts:

• assignLatLongTz.py;

• assignSuntime.py;

• functions assignSuntime.py;

• metadataDataframe.py;

• functions metadataDataframe.py.

In addition, the estimation of the Thermal Time Constant values is achieved using the code

from:

• timeCstEstimation.py;

• functions timeCstEstimation.py.

Moreover, the filtering of the inaccurate values and the outliers as well as the creation of all

figures are accomplished using the following scripts:

• analysisDataframeNb.py;

• functions analysisDataframeNb.py;

• dataAnalysisNb.py;

• functions dataAnalysisNb.py;

• plotDataPresentation.py.

Finally, the identification of the typical time constant values and the creation of their related

figures are performed using the scripts beginning with distFitData.
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B.2 Derivation of Equation 3.5

Solve

dTin
dt

=
Text − Tin(t)

τ
(B.1)

such that Tin(0) = Tin,o.

First, rewrite Equation B.1.

dTin
dt

+
Tin(t)

τ
=
Text
τ

(B.2)

Let µ(t) = e
∫
1/τ dt = et/τ , and multiply both sides by µ(t):

et/τ · dTin
dt

+
et/τ

τ
· Tin(t) =

Text · et/τ

τ
(B.3)

Substitute et/τ = d
dt

(et/τ ):

et/τ · dTin
dt

+
d

dt
(et/τ ) · Tin(t) =

Text · et/τ

τ
(B.4)

Apply the reverse product rule to the left-hand side:

d

dt
(et/τ · Tin(t)) =

Text · et/τ

τ
(B.5)

Integrate both sides with respect to t:∫
d

dt
(et/τ · Tin(t)) =

∫
Text · et/τ

τ

et/τTin(t) = Text · et/τ + c1

(B.6)

where c1 is an arbitrary constant.

Divide both sides by µ(t) = et/τ :

Tin(t) = Text + c1 · e−t/τ (B.7)

Solve for c1 by substituting Tin(0) = Tin,o:

Tin,o = Text + c1 · e0

Tin,o = Text + c1 · 1

c1 = Tin,o − Text

(B.8)
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The solution to Equation B.1, using the initial conditions Tin(0) = Tin,o is as follows:

Tin(t) = Text + (Tin,o − Text) · e−t/τ

= Text + ∆To · e−t/τ
(B.9)
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C.1 The Effects of Location and Seasonality

Table C.1: Summary of statistics for one full year of monthly TTC values based on climate

zone.

Monthly Thermal Time Constant, τmth,k [hr]

Climate Zone All 1 2 3 4 5 6 7 8

Count 41,289 1,403 7,672 13,502 8,155 6,331 3,807 413 6

Arithmetic

Mean
12.85 6.50 7.34 10.51 13.15 17.96 23.07 34.27 74.84

Standard

deviation
12.74 3.36 4.60 7.88 11.35 15.73 20.80 24.25 83.73

Minimum 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01 3.60

Lower

Whisker
3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01 3.60

Lower quartile

(25%)
4.51 3.95 4.05 4.55 4.62 5.07 5.43 12.10 10.52

Median (50%) 7.44 5.33 5.56 7.37 7.99 11.12 14.53 32.14 44.76

Upper quartile

(75%)
16.40 8.16 8.97 14.16 18.85 27.88 37.49 49.14 121.34

Upper Whisker 34.23 14.44 16.33 28.58 40.17 61.96 85.41 102.79 209.97

Maximum 209.97 18.01 23.38 36.20 49.41 68.94 93.13 111.26 209.97

Interquartile

Range (IQR)
11.89 4.21 4.92 9.61 14.22 22.81 32.06 37.04 110.82
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Figure C.1: The distributions of the monthly Thermal Time Constants based on season with

respect to ASHRAE climate zone (zones 1 through 7).
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Table C.2: Summary of statistics for monthly TTC values (τmth,k) for fall according to on

climate zone.

Monthly Thermal Time Constant, τmth,k [hr]

Climate Zone All 1 2 3 4 5 6 7 8

Count 10,856 366 2,060 3,284 2,266 1,757 1,004 119 N/A

Arithmetic

Mean
12.87 6.20 6.38 9.24 13.07 19.26 26.00 36.68 N/A

Standard

deviation
13.42 3.09 3.79 7.21 11.45 16.33 21.62 22.49 N/A

Minimum 3.00 3.00 3.00 3.00 3.00 3.01 3.02 3.11 N/A

Lower

Whisker
3.00 3.00 3.00 3.00 3.00 3.01 3.02 3.11 N/A

Lower quartile

(25%)
4.34 4.03 3.85 4.20 4.61 5.46 6.91 20.05 N/A

Median (50%) 6.96 5.34 5.04 6.18 8.01 13.01 19.04 32.34 N/A

Upper quartile

(75%)
15.95 7.37 7.28 11.55 18.20 29.49 41.26 53.73 N/A

Upper Whisker 33.35 12.13 12.41 22.58 38.57 64.75 92.14 86.57 N/A

Maximum 111.26 17.97 23.33 36.19 49.41 68.37 93.13 111.26 N/A

Interquartile

Range (IQR)
11.60 3.34 3.43 7.36 13.58 24.04 34.35 33.68 N/A
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Table C.3: Summary of statistics for monthly TTC values (τmth,k) for winter according to on

climate zone.

Monthly Thermal Time Constant, τmth,k [hr]

Climate Zone All 1 2 3 4 5 6 7 8

Count 9,332 460 1,862 3,449 1,719 1,157 597 85 3

Arithmetic

Mean
17.44 7.41 9.68 13.71 19.47 27.88 40.17 46.51 140.06

Standard

deviation
14.03 3.82 5.62 8.5 12.32 14.95 17.99 19.68 68.70

Minimum 3.00 3.01 3.00 3.00 3.00 3.02 3.16 5.81 72.63

Lower

Whisker
3.00 3.01 3.00 3.00 3.00 3.02 3.16 5.81 72.63

Lower quartile

(25%)
6.65 4.25 4.75 6.55 8.21 16.18 26.99 33.54 105.10

Median (50%) 13.38 6.32 8.10 11.53 17.96 27.84 39.09 44.86 137.58

Upper quartile

(75%)
24.21 9.67 13.84 19.41 28.30 38.01 49.85 60.06 173.77

Upper Whisker 50.48 17.44 23.37 36.20 49.29 68.94 84.11 98.69 209.97

Maximum 209.97 17.94 23.37 36.20 49.29 68.94 92.35 98.69 209.97

Interquartile

Range (IQR)
17.57 5.43 9.09 12.85 20.09 21.83 22.86 26.51 68.67
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Table C.4: Summary of statistics for monthly TTC values (τmth,k) for spring according to on

climate zone.

Estimated Thermal Time Constant, τmth,k [hr]

Climate Zone All 1 2 3 4 5 6 7 8

Count 9,894 355 2,156 3,391 1,927 1,257 710 98 N/A

Arithmetic

Mean
13.84 6.07 7.07 11.16 14.37 22.49 31.05 37.61 N/A

Standard

deviation
13.31 3.06 4.39 8.22 11.75 16.51 20.82 24.76 N/A

Minimum 3.00 3.01 3.00 3.01 3.00 3.00 3.01 3.01 N/A

Lower

Whisker
3.00 3.01 3.00 3.01 3.00 3.00 3.01 3.01 N/A

Lower quartile

(25%)
4.65 3.82 4.01 4.72 4.95 7.28 12.61 18.61 N/A

Median (50%) 8.20 5.05 5.39 8.01 9.66 19.69 29.33 36.90 N/A

Upper quartile

(75%)
18.50 7.37 8.54 15.48 21.08 34.01 45.12 50.47 N/A

Upper Whisker 39.25 12.41 15.27 31.60 45.13 68.26 92.79 90.31 N/A

Maximum 108.13 18.01 23.38 36.20 49.17 68.26 92.79 108.13 N/A

Interquartile

Range (IQR)
13.85 3.55 4.53 10.77 16.13 26.73 32.51 31.86 N/A

90



Table C.5: Summary of statistics for monthly TTC values (τmth,k) for summer according to on

climate zone.

Estimated Thermal Time Constant, τmth,k [hr]

Climate Zone All 1 2 3 4 5 6 7 8

Count 11,207 222 1,594 3,378 2,243 2,160 1,496 111 3

Arithmetic

Mean
8.15 5.78 6.23 7.83 7.33 8.96 10.49 19.39 9.62

Standard

deviation
7.90 2.80 3.40 5.97 5.96 9.15 11.94 21.64 6.73

Minimum 3.00 3.01 3.00 3.00 3.00 3.00 3.01 3.03 3.60

Lower

Whisker
3.00 3.01 3.00 3.00 3.00 3.00 3.01 3.03 3.60

Lower quartile

(25%)
4.03 3.71 3.89 4.11 4.06 3.98 4.10 4.25 6.00

Median (50%) 5.48 4.83 5.13 5.56 5.24 5.70 6.00 9.48 8.39

Upper quartile

(75%)
8.69 6.99 7.28 8.86 7.93 24.259.58 10.94 27.09 12.64

Upper Whisker 15.65 11.96 12.29 15.98 13.59 17.98 21.07 59.46 16.88

Maximum 102.79 17.75 22.79 36.06 46.89 66.73 85.18 102.79 16.88

Interquartile

Range (IQR)
4.66 3.28 3.39 4.75 3.87 5.60 6.84 22.85 6.64
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C.2 Typical Thermal Time Constants Dwellings based on Cli-
mate and Season

Table C.6: Performance Criteria for Best Fit Johnson SB PDF curves

Zone Season χ2 p-value

1 Fall 7.80 0.520

1 Winter 1.56 0.984

1 Spring 1.40 0.966

1 Summer 1.70 0.986

2 Fall 19.4 0.148

2 Winter 2.28 0.942

2 Spring 18.4 0.172

2 Summer 10.5 0.302

3 Fall 18.0 0.243

3 Winter 38.5 0.0129

3 Spring 7.70 0.410

3 Summer 24.3 0.0372

4 Fall 15.1 0.317

4 Winter 57.2 0.00017

4 Spring 5.36 0.499

4 Summer 39.2 0.0279

5 Fall 20.4 0.00291

5 Winter 70.2 0.00106

5 Spring 91.2 0.00

5 Summer 25.2 0.115

6 Fall 52.5 0.00014

6 Winter 9.30 0.129

6 Spring 95.1 0.00014

6 Summer 8.78 0.442

7 Fall 11.16 0.831

7 Winter 1.40 0.947

7 Spring 29.5 0.00425

7 Summer 4.51 0.734
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Figure C.2: For climate zone 3 τmth,k values dwellings in winter, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

Figure C.3: For climate zone 3 τmth,k values dwellings in summer, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.
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Figure C.4: For climate zone 4 τmth,k values dwellings in winter, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

Figure C.5: For climate zone 4 τmth,k values dwellings in summer, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.
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Figure C.6: For climate zone 5 τmth,k values dwellings in Fall, a Quantile-Quantile (Q-Q) plot

and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

Figure C.7: For climate zone 5 τmth,k values dwellings in winter, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.
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Figure C.8: For climate zone 5 τmth,k values dwellings in spring, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

Figure C.9: For climate zone 6 τmth,k values dwellings in Fall, a Quantile-Quantile (Q-Q) plot

and a Probability-Probability (P-P) comparing the observed and theoretical distributions.
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Figure C.10: For climate zone 6 τmth,k values dwellings in spring, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

Figure C.11: For climate zone 7 τmth,k values dwellings in spring, a Quantile-Quantile (Q-Q)

plot and a Probability-Probability (P-P) comparing the observed and theoretical distributions.

97



Figure C.12: For climate zone 2 dwellings in fall, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.13: For climate zone 2 dwellings in winter, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.14: For climate zone 2 dwellings in spring, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.15: For climate zone 2 dwellings in summer, a best fit distribution curve for the

monthly TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.16: For climate zone 3 dwellings in fall, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.17: For climate zone 3 dwellings in winter, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.18: For climate zone 3 dwellings in spring, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.19: For climate zone 3 dwellings in summer, a best fit distribution curve for the

monthly TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.20: For climate zone 4 dwellings in fall, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.21: For climate zone 4 dwellings in winter, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.22: For climate zone 4 dwellings in spring, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.23: For climate zone 4 dwellings in summer, a best fit distribution curve for the

monthly TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.24: For climate zone 5 dwellings in fall, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.25: For climate zone 5 dwellings in winter, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).
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Figure C.26: For climate zone 5 dwellings in spring, a best fit distribution curve for the monthly

TTCs (τmth,k) and its associated mean (τssn,cl).

Figure C.27: For climate zone 5 dwellings in summer, a best fit distribution curve for the

monthly TTCs (τmth,k) and its associated mean (τssn,cl).
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Table C.7: Statistics for the best fit distributions for all climate-season combinations

95% confidence interval for the mean

Zone Season Mean Median Std Lower Limit Upper Limit Length

1 Fall 6.23 5.16 3.12 5.91 6.55 0.64

1 Winter 7.39 6.17 3.84 7.03 7.74 0.70

1 Spring 6.09 4.99 3.08 5.77 6.41 0.64

1 Summer 5.79 4.71 2.90 5.40 6.17 0.77

2 Fall 6.39 5.01 3.73 6.23 6.56 0.32

2 Winter 9.67 8.00 5.67 9.42 9.93 0.52

2 Spring 7.09 5.45 4.32 6.90 7.27 0.37

2 Summer 6.26 5.03 3.43 6.09 6.42 0.34

3 Fall 9.27 6.39 7.10 9.03 9.52 0.49

3 Winter 13.74 11.31 8.77 13.44 14.03 0.59

3 Spring 11.21 8.06 8.24 10.94 11.49 0.56

3 Summer 7.82 5.64 5.74 7.63 8.02 0.39

4 Fall 13.11 8.32 11.31 12.65 13.58 0.93

4 Winter 19.23 16.07 12.78 18.62 19.83 1.21

4 Spring 14.35 9.67 11.76 13.83 14.88 1.05

4 Summer 7.31 5.27 5.76 7.08 7.55 0.48

5 Fall 19.06 12.07 16.99 18.26 19.85 1.59

5 Winter 27.72 25.78 15.38 26.84 28.61 1.77

5 Spring 22.07 15.86 17.74 21.09 23.05 1.96

5 Summer 9.00 5.58 8.91 8.63 9.38 0.75

6 Fall 25.54 16.11 23.42 24.09 26.99 2.90

6 Winter 40.17 38.12 18.01 38.72 41.62 2.89

6 Spring 30.42 24.01 22.77 28.75 32.10 3.36

6 Summer 10.43 6.04 11.38 9.85 11.01 1.15

7 Fall 36.58 32.42 23.08 32.39 40.76 8.38

7 Winter 46.51 44.63 19.50 42.30 50.72 8.41

7 Spring 37.23 29.93 27.79 31.66 42.80 11.14

7 Summer 19.23 9.17 22.07 15.07 23.38 8.30
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