
Formalising Solutions to REST API Practices as Design
(Anti)patterns

Van Tuan Tran

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Ful�llment of the Requirements

for the Degree of

Master of Applied Science (Computer Science) at

Concordia University

Montr éal, Qúebec, Canada

August 2021

© Van Tuan Tran, 2021



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Van Tuan Tran

Entitled: Formalising Solutions to REST API Practices as Design (Anti)patterns

and submitted in partial ful�llment of the requirements for the degree of

Master of Applied Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Joey Paquet

Examiner
Dr. Brigitte Jaumard

Supervisor
Dr. Yann-Gäel Gúeh́eneuc

Approved by
Lata Narayanan, Chair
Department of Computer Science and Software Engineering

August 10th, 2021
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Formalising Solutions to REST API Practices as Design (Anti)patterns

Van Tuan Tran

REST APIs are nowadays the de-facto standard for Web applications. However, as more systems

and services adopt the REST architectural style, many problems arise regularly. To avoid these

repetitive problems, developers should follow good practices and avoid bad ones. Thus, research

on best and bad practices and how to design simple but effective REST APIs is important. Yet,

to the best of our knowledge, only a few recurring REST API practices have been codi�ed in the

form of design (anti)patterns, which include a name, an intent, a context, and some solutions. There

are works on de�ning or detecting some practices, but not on codifying these practices as patterns.

In this thesis, we present the most up-to-date list of REST API practices and formalise them in

the form of design (anti)patterns to ease their use by developers. During this formalisation, we

also devise and formalise solutions to these practices. Finally, we validate our design (anti)patterns

with a survey and interviews of 55 developers, which con�rm that our solutions are acceptable by

practitioners and re�ect real problems and solutions.

iii



Acknowledgments

This research work is funded by the Natural Science and Engineering Research Council (NSERC)

and Concordia University. My sincere thank you to all academic personnel who made this research

possible.

I want to give a special thank you to my supervisor, Professor Yann-Gaël Gúeh́eneuc, for the

guidance, support, and advice he has provided throughout my time as his student. In addition, I

would like to thank Dr. Manel Abdellatif for her help with this research.

I want to express my gratitude to my committee members, Dr. Joey Paquet and Dr. Brigitte

Jaumard, for their time and guidance through the thesis review.

A warm thank you to those who helped with the surveys and interviews that validate this re-

search.

I would also like to thank my colleagues in the Ptidej lab for their friendship, guidance, and

weekly discussion that sparkled new ideas and questions.

Finally, I would like to thank my family and friends, who always supported me while I worked

on this research.

iv



Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Related Work 4

2.1 Practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Solutions to Good and Bad Practices. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 REST API Anti-patterns 10

3.1 Categories of Good and Bad Practices of REST APIs. . . . . . . . . . . . . . . . 10

3.2 Content Negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.4 Source code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Endpoint redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Entity Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.4.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 API Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Server Timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 POST-PUT-PATCH Return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Response caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 List Pagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.2 Expected result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Evaluations 34

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Survey Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Participants Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



4.4 Survey Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Participants' Demographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Quantitative Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Qualitative Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Discussions 44

5.1 Threats to Validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Developers' Feedback on Solutions. . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Endpoint Redirection Good Practice. . . . . . . . . . . . . . . . . . . . . 46

5.2.2 API Versioning Good Practice. . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.3 Server Timeout Good Practice. . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.4 POST-PUT-PATCH Return Good Practice. . . . . . . . . . . . . . . . . . 48

5.3 Developers and Bad Practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Discussion on “Server Timeout” Good Practice. . . . . . . . . . . . . . . . . . . 49

5.5 Solutions Consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 51

Appendix A API Versioning Approaches for including the version in request 53

A.1 Approach 1: Versioning in the URI segment. . . . . . . . . . . . . . . . . . . . . 53

A.2 Approach 2: Versioning in the Accept header of request. . . . . . . . . . . . . . . 53

A.3 Approach 3: Versioning in the query string. . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

vii



List of Figures

Figure 3.1 Class diagram for Content Negotiation solution. . . . . . . . . . . . . . . 13

Figure 3.2 Class diagram for Extend from a Redirector class. . . . . . . . . . . . . . 16

Figure 3.3 Class diagram for Nested redirector. . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.4 Class diagram for Entity Linking solution. . . . . . . . . . . . . . . . . . 20

Figure 3.5 Class diagram API Versioning solution. . . . . . . . . . . . . . . . . . . . 23

Figure 3.6 Asynchronous Request-Reply process. . . . . . . . . . . . . . . . . . . . 25

Figure 3.7 Combined solution with HTTP Polling and Server timeout. . . . . . . . . 27

Figure 3.8 Repository pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.1 Participant's age groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.2 Participant's education. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.3 Participant's profession. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.4 Participant's years of experience. . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.5 Participant's country of origin. . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.6 Developer choices for List Pagination implementation. . . . . . . . . . . . 41

Figure 4.7 Developer choices for Server Caching mechanisms. . . . . . . . . . . . . 41

Figure 4.8 Developer choices for Server Caching Implementation. . . . . . . . . . . . 42

viii



List of Tables

Table 2.1 List of good and bad practices in REST API systems. . . . . . . . . . . . . 6

Table 3.1 Categorizing REST API practices. . . . . . . . . . . . . . . . . . . . . . . 11

Table 3.2 Content Negotiation feature comparison. . . . . . . . . . . . . . . . . . . . 14

Table 3.3 Comparison of two solutions for Endpoint Redirection good practice. . . . . 18

Table 3.4 Comparison between Timeout and Asynchronous Request-Reply. . . . . . . 26

Table 4.1 The positive results statistics of the survey. . . . . . . . . . . . . . . . . . . 40

ix



Chapter 1

Introduction

In the last decade, the information presented on the Internet moved from simple static Web

pages to sophisticated interactive Web applications that can be customized by and react to user

actions. Users expect to �nd in their Web browsers the same applications that they run on their local

computers, making these Web applications more complicated than ever.

More and more Web applications use the REpresentational State Transfer (REST) architectural

style, which separates the concerns of the server (store, process, and serve resources) with that of

the client application (present information). Simple Object Access Protocol (SOAP) used to be used

to expose services to clients. However, starting from the 2000s, many companies and organizations

migrated their services from SOAP to REST to ease the development of Web applications and

simplify developers' access to data. For example, in 2006, Google deprecated SOAP for its Search

API and moved to REST1. Another evidence of this trend is that the number of REST APIs increases

every year, from 445 APIs in 2007 to over 24,000 in 20212.

As with any other architectural style, REST APIs can be more or less “well” de�ned and used.

They are subjects to good and bad practices. To evaluate how good a REST system is, Richardson3

proposed a maturity model for REST APIs. Other researchers also proposed good practices to make

REST APIs more understandable and reusable (Masse, 2011; Petrillo, Merle, Moha, & Gúeh́eneuc,

2016).

1https://groups.google.com/g/google.public.web-apis/c/YOHPWSqcFBA
2https://www.programmableweb.com/apis/directory
3http://martinfowler.com/articles/richardsonMaturityModel.html

1



The academic and gray literature report 14 problems related to REST APIs and their uses. For

example,Rodŕ�guez et al.(2016) reported that only a few Web services reach maturity level 3,

which is “Hypermedia as the engine of state”. In another example, cloud providers reached a low

but acceptable level of maturity in REST API design thanks to strict and precise speci�cations

(Petrillo et al., 2016).

Still, the literature has so far not systematically described these good and bad practices in the

form of design (anti)patterns: either a context, a problem, and its solution or a context, a recurring

design with bad consequences, and an alternative design with more positive outcomes.

In practice, we examine two popular web frameworks in the industry: ASP.NET core4 and

Java Spring5. These web frameworks are open source with huge community contributions and

discussions. Both of them are mature and in active development. Multiple good practices are

already supported, or partially supported, as we will discuss in Chapter3.

In general, we propose three contributions:

(1) We review the academic and gray literature related to REST APIs and identify eight good

practices and 12 bad practices.

(2) We propose practical solutions to these problems and formalize them in the form of REST

API design (anti)patterns.

(3) We validate our solutions via a survey of 55 participants and four interviews, which shows

that our solutions and resulting patterns are generally well accepted by developers.

The rest of the paper is as follows. Chapter2summarises the related work. Chapter3.1describes

our approach. Chapter3 discusses REST API practices and their concrete solutions. Chapter4

explains how we evaluated our patterns by surveying developers. Chapter5 discusses threats to the

validity of our patterns as well as our approach in general. Chapter6 concludes with future work.

Each chapter includes a summary section at the end for quick review of the thesis.

Part of this thesis has been submitted for publication to the19th International Conference on

Service-Oriented Computing (ICSOC), the top conference on the topic of services. We submitted

4https://dotnet.microsoft.com/apps/aspnet
5https://spring.io/projects

2



the �rst draft and received positive comments. Therefore, we will submit a revised version in Mid

August 2021.

Unrelated to the topic of this thesis, we also published a short paper in the New Ideas and

Emerging Results track of the9th Working conference on Software Visualisation (VISSOFT).

3



Chapter 2

Related Work

To search for related works, we start with the list of REST API practices. Then, we look

into its original de�nition and references for each practice to see if there is already a solution.

Next, we search Google Scholar with the practice's name as the keyword to �nd any paper and

publication that provides a solution. Finally, we use a search engine to search for any technical

blog, tutorial, frameworks documentation to see if any solution existed but was not published as

papers or publications.

We summarise the few works that identi�ed/de�ned good and bad practices in the development

of REST APIs in Section2.1. Then we describe the solutions proposed for some of these practices

in Section2.2. Thus, we show that many practices have no solutions or that their solutions have not

been validated. We also show that practices and solutions are scattered and argue that developers

would bene�t from explicit design (anti)patterns that formalize these practices and their solutions.

2.1 Practices

Few academic works attempted to identify and formalize good and bad practices for the design

of REST APIs.

Rodriguez, Crasso, Zunino, and Campo(2010) proposed the “Content negotiation” good prac-

tice, which suggests that servers should serve different formats of the same resources on request. It

was one of the �rst good REST API practices studied in the literature.

4



Masse(2011), in the book “REST API Design Rulebook”, de�ned 84 rules to design a consistent

REST API, some of which becamede factostandard, e.g., “Amorphous URIs” or “CRUD function

name should not be used in URIs” (also called “CRUDy URIs”). The good practice suggests the

four verbs and their variancesCREATE, READ, UPDATE andDELETE should not be presented

in the URI. Evdemon provides examples of the “CRUDy URIs” bad practice, where CRUD verbs

are included in the URI1.

In addition, we could combine multiple rules to produce a single good practice. For example,

conforming to all the rules related to “Request Methods” could become a good practice “Use the

correct HTTP Verbs”. On the other hand, violations of these rules could lead to the bad practice of

“Use the wrong HTTP Verbs”. Another example, violations of the rules related to “Message Body

Format” could become a bad practice “Ignoring MIME type”.

Fredrich(2012) de�ned three bad practices, including “Context-less resource name”, “Non-

hierarchical nodes”, “Singularized and Pluralized Nodes”. He also gave two good practices, which

are “List pagination” and “API Versioning”. “Context-less resource name” is when URIs are com-

posed of nodes that are not in the same semantic context. “Non-hierarchical nodes” is when the

nodes are not hierarchically ordered. “Singularized and Pluralized Nodes” are a set of rules for

naming the URI's nodes. “List pagination” suggests that all lists should be paginated, no matter

how short the list is. Finally, “API Versioning” suggests the REST APIs should be versioned, even

if this is the �rst version.

Palma et al.(2017) de�ne the “Non-pertinent documentation” bad practice when the documen-

tation is not matching the existing REST APIs.

Tilkov (Tilkov, 2008) de�nes and explains seven REST API bad practices, including “Break-

ing self-descriptiveness”, “Forgetting Hypermedia” (bad practice of “Entity Linking”), “Ignoring

MIME type” (bad practice of “Content negotiation”), “Ignoring status code”, and “Misusing cook-

ies”. For the bad practice “Tunnel everything through GET” and “Tunnel everything through

POST”, we combine them with other misuses of HTTP Verbs as “Use the wrong HTTP Verbs”

for simplicity. “Breaking self-descriptiveness” means developers ignore standardized headers, for-

mats, protocols and using non-standard ones. “Ignoring status code” happens when a server does

1https://bit.ly/3i5CIsc

5



not use status codes or use the wrong ones; “Misusing cookies” when a server store the session's

state or cookies, breaking the statelessness of REST APIs.

In addition to these practices, we propose two new good practices: “Server Timeout” and

“POST-PUT-PATCH Return”, which we discuss in Section3. Table2.1 list out all the good and

bad practices in both academia and gray literature.

Table 2.1: List of good and bad practices in REST API systems

G
oo

d
pr

ac
tic

es Content negotiation (Rodriguez et al., 2010)
End-point redirection
Entity linking
Response caching
List Pagination (Fredrich, 2012)
API Versioning (Fredrich, 2012)

B
ad

pr
ac

tic
es

Li
ng

ui
st

ic

Context-less resource name (Fredrich, 2012)
Non-hierarchical nodes (Fredrich, 2012)
Amorphous URIs (Masse, 2011)
CRUDy URIs (Evdemon, 2016; Masse, 2011)
Singularized and Pluralized Nodes (Fredrich, 2012)
Non-pertinent documentation (Palma et al., 2017)

R
E

S
T

Ignoring MIME type (Tilkov, 2008)
(bad practice of Content negotiation)
Ignoring status code (Tilkov, 2008)
Forgetting Hypermedia (Tilkov, 2008)
(bad practice of Entity Linking)
Misusing cookies (Tilkov, 2008)
Use the wrong HTTP verbs (Masse, 2011; Tilkov, 2008)
Breaking self-descriptiveness (Tilkov, 2008)
Server Timeout
POST-PUT-PATCH Return

2.2 Solutions to Good and Bad Practices

Researchers proposed solutions for some good practices, which are “Content Negotiation”, “En-

tity Linking”, “API Versioning”, “Server Timeout”, and “Response Caching”. Popular web frame-

works also often provide some support for some practices, which are “Content Negotiation”, “Re-

sponse Caching”, “POST-PUT-PATCH Return”, and “List Pagination”. In the following section, we

will discuss each of these solutions.

6



For “Content negotiation” , Lemlouma and Layä�da(2001) proposed a “Negotiation and adap-

tation core” (NAC) that works as a proxy between media servers and consuming clients. Based on

the clients' pro�les, the NAC converts responses into appropriate formats. However, NAC is a gen-

eral architecture, and the authors do not discuss any concrete implementation.Butler (2001) using

if else conditional constructs to perform content negotiation, which is obviously not scalable.

In addition, the author uses an XML �le for con�gurations of the matched nodes and properties. The

�le can be extended later to be compatible with new conditions. They also admitted that the match-

ing algorithms are too simple and may need a more complex algorithm and more complex ways of

grouping attributes. The examined web frameworks have built-in supports for content negotiation.

We will discuss these built-in solutions in Section3.2.

For “Endpoint Redirection (URL Redirection)” , we could not �nd any academic solution.

The gray literature only explains the concept of URL redirection and how to set them up in some

servers. Popular servers, like Microsoft IIS2 or Apache Tomcat3, implement URL redirection with

some con�gurations. These built-in solutions solve problems like redirecting HTTP to HTTPS,

removing or adding the “www” pre�x to the root URL, but not for a complex resource mapping

mechanism.

For “Entity Linking” (or its corresponding bad practice “Forgetting Hypermedia”),Liskin,

Singer, and Schneider(2011) describe using a wrapper module to convert a normal response to

a response that conforms to “Entity Linking”. This approach improves old REST systems not

supporting Entity Linking and reaching level three in Richardson's Maturity Model.

For the“POST-PUT-PATCH return” good practice, user “iswinky” on StackExchange asked

the question on the Software Engineering sub-forum4. The answers and discussion reached a gen-

eral acceptance that the server should return the created/updated object or the object's ID. Develop-

ers can also return the URL to request the object, conforming to the “Entity Linking” good practice.

The same related questions were asked on StackOver�ow and had the same answers5.

“API Versioning” is a common problem of REST API systems.Kaminski, Litoiu, and M̈uller

2https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-the
-url-rewrite-module

3https://tomcat.apache.org/tomcat-10.0-doc/rewrite.html
4https://softwareengineering.stackexchange.com/q/314066/243384
5https://stackoverflow.com/a/1829913/4506315

7



(2006) proposed the “Chain of Adapters” design technique. The technique uses an adapter to adapt

the previous version to the next version. Suppose there are three versions, and the latest is version

three; it will need two adapters; �rst, to adapt version one to version two, then to adapt it again to

version three, creating a “Chain of Adapters”. However, the more versions the REST API system

support, the slower and more complex it gets to use the adapters.Leitner, Michlmayr, Rosenberg,

and Dustdar(2008) present an approach that puts an additional service between a client and a

REST API. In this service, developers implement selection strategies to redirect the client request

to the correct REST API version of the server support. However, this approach needs a stand-alone

service deployed, not integrated with the REST API source code. We will discuss our solution in

comparison with these solutions in Section3.5.

For “Server Timeout” , Eastbury et al. proposed a design6, which we extend to maximize its

bene�t for REST API developers in Section3.6. Also, this good practice could solve the problems

mentioned byDai, He, Gu, and Lu(2018), which includes misused timeout, improper timeout

handling, unnecessary timeout, and clock drifting in various cloud systems.

“Response caching”is a common good practice.Rabinovich and Spatscheck(2002) explained

the basic concept and architectural solution of Web caching.Wessels(2001) explained the caching

mechanism using a proxy server. Both of the examined Web frameworks have multiple built-in

caching techniques, which we discuss in Section3.8.

For “List Pagination” , both Google7 and Microsoft8 suggest that REST APIs returning lists

should use pagination.Masse(2011) also states that collections should be returned in chunk.Mur-

phy, Alliyu, Macvean, Kery, and Myers(2017) shows that pagination was proposed in 24 over 32

REST API company guidelines. Both of the examined Web frameworks have partial support for

pagination, which we discuss in Section3.9.

6https://docs.microsoft.com/en-us/azure/architecture/patterns/async-request
-reply

7https://cloud.google.com/apis/design/design patterns#list pagination
8https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#98

-pagination

8



2.3 Summary

In general, previous work primarily de�ned and detected good and bad REST API practices.

Only a few authors proposed and validated solutions to these practices, with some limitations. For

each practice, we summarise and compare these solutions with our own. In addition, we also provide

concrete implementations in two popular frameworks (ASP.NET and Java Spring). Finally, we

provide sample implementations and supplements for “Response Caching” and “List Pagination”

good practice, supported by the frameworks.

9



Chapter 3

REST API Anti-patterns

3.1 Categories of Good and Bad Practices of REST APIs

We categorize practices into two categories: technical and non-technical. The technical category

includes practices that can be solved by or made conformed via a programmatic solution or some

Web framework's features. The non-technical category includes practices that require developers'

effort to conform. Usually, these practices are domain- or business-speci�c. For example, the URI

structures represent the relationships between the nodes to avoid the “Non-hierarchical Nodes” bad

practice. Yet, companies disagree on constructing URIs showing this relationship and even discour-

age nesting structures. Another example, for the “Using the wrong HTTP Verbs” bad practice, IBM

only mentions the verbsGETandPOSTwhile Google usesGET, POST, PUT, DELETEand invents

some new verbs, likeLIST andMOVE(Murphy et al., 2017). Therefore, we focus only on technical

practices.

For each practice in the technical category, we propose an architectural solution in Section3,

which should be simple but guarantee conformance to the good practice and require little effort to

implement.

Table3.1shows the division between technical and non-technical practices. The practices with

(+) have built-in (partial) solutions in the examined frameworks, which we discuss and compare to

our solutions in Section3.

10



Table 3.1: Categorizing REST API practices
Technical Non-technical

Content negotiation (+) Entity Endpoint
Endpoint redirection Contextless Resource name
Entity Linking Non-hierarchical Nodes
Response caching (+) Amorphous URIs
API Versioning CRUDy URIs
Server Timeout Singularized & Pluralized Nodes
POST-PUT-PATCH Return (+) Non-pertinent Documentation
List Pagination (+) Breaking Self-descriptiveness

Ignoring status code
Using the wrong HTTP Verbs
Misusing Cookies

Besides existing solutions, we examined 23 software design patterns for object-oriented pro-

gramming (Gamma, Helm, Johnson, & Vlissides, 1993) to reuse their practical implementations

for each of the eight good practices in the technical category when possible. In some REST API

practices, we need to modify the selected design pattern to �t with the REST API frameworks. If

no design pattern could solve the problems, we extend the search to other resources and the gray

literature (i.e., blog posts, technical tutorials, StackOver�ow, etc.).

The examined Web Frameworks already have built-in features for “Response Caching” and “List

Pagination”. Therefore, we only present these solutions and provide sample usages. For “Content

negotiation”, we compare our solutions with the built-in features. Developers can choose to use the

solutions that �t with their projects based on their advantages and disadvantages.

We present each of the practices following the same pattern:

(1) Practice name

(2) Problem statement

(3) Expected result/output

(4) Solution

(5) Sample implementation/source code

Visit the GitHub repository1 to explore the sample source code implementations.
1https://github.com/huntertran/restapi-practices-impl

11



3.2 Content Negotiation

3.2.1 Problem

The client can only process and manipulate the resources in some formats. An example is the

JSON and XML format that the server should support. JSON is faster to parse and smaller to

transport over the internet, but XML format supports namespaces, comments, and metadata.

3.2.2 Expected result

We expect:

• The resources of the same type should be served in various formats (e.g., JSON and XML,

image �le formats and Base64 encoded).

• The server should set a default format if the client does not specify the requested format.

• The implementation of each data format should be easily modi�able. Developers can add a

new implementation for a new data format easily.

3.2.3 Solution

Based on the request header, the server prepares the data in the requested format and then returns

the data in the response body. We could use factory design patterns (Gamma et al., 1993) to initiate

the object in the required format. For each set of required formats, there should be a corresponding

concrete Factory (i.e., XML and JSON will have a concrete factory. PNG, JPG and Base64 will

have another concrete factory). Figure3.1 illustrates this solution.

12



BaseObject

String serialize()

XmlObject

serialize():String

JsonObject

serialize():String

ObjectFactory

BaseObject getObject()

extendsextends

Figure 3.1: Class diagram for Content Negotiation solution

In theObjectFactory class, developer could set the default format by using thedefault:

clause of theswitch statement.

3.2.4 Source code

Abstract class for all formats of object

1 public abstract class BaseObject {
2 public abstract serialize ();
3 }

Classes for the object with the preferred format:

1 import BaseObject ;
2

3 public class XmlObject extends BaseObject {
4 @Override
5 public String serialize () {
6 String result = "" ;
7 // XML serialization logic
8 return result ;
9 }

10 }
11

12 public class JsonObject extends BaseObject {
13 @Override
14 public String serialize () {
15 String result = "" ;
16 // JSON serialization logic
17 return result ;
18 }
19 }

Factory class:

13



1 public class ObjectFactory {
2 public static BaseObject getObject ( String type ) {
3 switch ( type ) {
4 case "application/xml" : {
5 return new XmlObject ();
6 }
7 case "application/json" :
8 default : {
9 return new JsonObject ();

10 }
11 }
12 }
13 }

Usage:

1 import ObjectFactory ;
2 import BaseObject ;
3

4 public class Controller {
5 public String requestHandler ( String requestedMIMEType ) {
6 BaseObject result = ObjectFactory . getObject ( requestedMIMEType );
7 // compute the result
8 return result . serialize ();
9 }

10 }

Both Java Spring and ASP.NET core support content negotiation with the default set toJSON

format. Table3.2compares content negotiation implementation in popular frameworks.

Java Spring ASP.NET core Our approach

Common media types Yes Yes Yes

Customizable serializer No Yes Yes

Do not require data annotation on modelNo Yes Yes

Built-in support ignorable Yes Yes N/A

Table 3.2: Content Negotiation feature comparison

ASP.NET Core has the most �exible support for Content Negotiation. Developers can override

the format serializer to better �t with their business. For Java Spring, developers cannot override the

serializer, but they can combine multiple approaches to achieve the desired effect. The XML format

in Java requires data annotation to be added to the model class to work correctly. This limitation

sometimes changes the designed data structure.

14



3.3 Endpoint redirection

3.3.1 Problem

When the data structure changes or developers refactor the URI structure, resources can be

moved to new locations. However, a client could request the resource using the old URIs. Then the

server should return these requests with HTTP code 3xx and the new location.

The most obvious way to resolve this problem is to modify the old controller class to return

the new location with a 3xx status code. This action will violate theopen-closed principle(Martin,

2002). In addition, developers cannot roll back to the previous version of the API quickly if they do

not have backups like a source control system or a container ready to be deployed.

3.3.2 Expected result

Most of the REST APIs frameworks use the Model-View-Controller (MVC) pattern. The solu-

tion should be on top of or integrated with the MVC pattern. In addition, the solution should satisfy

the following:

• There should be a class that handles redirection logic, separated from other classes or con-

trollers.

• The redirection logic class should have the same interface as the old controller class.

• The new controller class should extend or include the redirection logic but still conforming to

theSingle Responsibility Principle.

3.3.3 Solution

There are two possible solutions for this good practice. Each solution will have advantages and

disadvantages.

Solution 1: Extend from a Redirector class

In this solution, the old controller and the redirector will implement the same interface. The

new controller will extend the redirector class. The methods in the new controller and the redirector

15



will be exposed as API endpoints to clients. The solution is illustrated in Figure3.2.

v2

implement
resource mapping
mechanism

V1Redirector

actionA()
actionB()

V2Logic

actionC()
actionD()

Client
v1

IV1Logic

actionA()
actionB()

V1Logic

actionA()
actionB()

implement

implement

extends

call API

Figure 3.2: Class diagram for Extend from a Redirector class

Solution 2: Nested class inside the new controller

The redirection logic is still separated into a stand-alone class, implementing the interface of the

old controller class. The difference is that the redirection logic class is a nested class inside the new

controller. This solution allows the redirector to access methods and variables in the new controller.

The new controller implements the interface of the old controller and contains a private instance

of the redirector class. The interface implementation makes sure all the old methods were handled

correctly. The private instance works as a proxy to the actual logic of the redirector class. The

solution is illustrated in Figure3.3.

16



Api

v 1

v 2

implement
resource mapping
mechanism

IV1Logic

actionA()
actionB()

V1Logic

actionA()
actionB()

V1Redirector

actionA()
actionB()

V2Logic

v1Redirector:V1Redirector

actionA()
actionB()

call method from redirector

actionC()
actionD()

v2 only method

Client

implementimplement

implement

call API

Figure 3.3: Class diagram for Nested redirector

Comparison between both solutions

Table3.3depicts the comparison for both solutions. Developers can choose to implement either

one of them based on the business of the system.

17



Extend Nested

P
ro

s Redirection logic were separated in class

and �le

Allow the outer class (the main class) be in-

herited from another class

Easier to implementation. Can be imple-

mented in multiple languages.

The Redirector has access to resources in the

main class

C
on

s The Redirector cannot access resources in

the main class

Redirection logics are coded inside the main

class

The main class cannot inherit from other

class (if the language did not support mul-

tiple inheritance)

Not all languages support nested classes

Table 3.3: Comparison of two solutions for Endpoint Redirection good practice

3.4 Entity Linking

3.4.1 Problem

Entity Linking good practice has a corresponding bad practice called Forgetting Hypermedia

(Palma, Dubois, Moha, & Gúeh́eneuc, 2014; Tilkov, 2008). Developers need to �nd out program-

matically the link to the resources that are related to the current request. For example, when de-

signing service for the content management system (CMS), after sending aGETrequest to retrieve

a post, in case of conforming Entity Linking good practice, the server should return the post details,

including the link to comment and likes.

1 {
2 "post" : {
3 "title" : "Lorem ipsum" ,
4 "content" : "Lorem ipsum" ,
5 "links" : [
6 {
7 "rel" : "comment" ,
8 "method" : "post" ,
9 "uri" : "/post/123/comment"

10 },
11 {
12 "rel" : "like" ,
13 "method" : "get" ,
14 "uri" : "/post/123/like"
15 }
16 ]}}

18



By examining the response above, developers know that that they can make a request to post a

new comment or to get the like of the post. In case ofForgetting Hypermedia bad practice,

the objectlinks in the response is not available. Therefore, developers do not know if they can

post a new comment or get the like of the post or not. They have to make these requests to the server

to �nd out. If they cannot due to some reason, e.g., the client was not authenticated, the server will

refuse the request with 4xx HTTP codes.

3.4.2 Expected result

The solution should allow the system to do the following:

• The current action should have access to the instance of other controllers that contain the

related resources so that the system can check the availability of these resources.

• The current action should have access to class and method information (e.g., name, annota-

tion, public and private variable). This is required to construct the URI since popular REST

API frameworks use naming conventions or annotation to construct the URIs of the API.

3.4.3 Solution

The method that handles the current request will have a list of related classes containing the

related resources. To loop through the list, all these classes should be an implementation of an

interface. Accessing methods implementing the same interfaces in different classes, based on the

type of the class (i.e., dynamic biding), is calleddouble-dispatch(Paepcke, 1993). Unfortunately,

mainstream programming languages that were used by REST API frameworks did not support this

mechanism. To address this problem, we could use a modi�ed version of Visitor pattern (Martin,

2002) with language re�ection features to access data annotation.

All the controllers that are intended to be used for populating links for the related resources

will be the implementation of theLinkedResource interface. This interface has a method

accept() that accept a visitor instance of typeResourceVisitor . For each logic to select the

resource to be included, a separated concreteVisitor will be created. These visitors could share

19



the common logic in abstract classCommonResourceVisitor . Developers can hide the com-

plexity of language refection logic here. Figure3.4 illustrates the solution in UML class diagram.

CommonResourceVisitor
ResourceVisitor

visit(e)

LogicABResourceVisitor

// logic for AB resources

visit(e)

LogicCDResourceVisitor

// logic for CD resouces

visit(e)

LinkedResource

accept(resourceVisitor)

RelatedResource1

a
b
c
d

accept(resourceVisitor)

RelatedResource2

a
b
c
d

accept(resourceVisitor)

Client use array of LinkedResource

Client

implementsimplements extendsextends

implements implements

visit

Figure 3.4: Class diagram for Entity Linking solution

However, this solution is only applicable with programming languages that support re�ection.

If a language does not support re�ection, then, based on the way Web frameworks construct URIs,

developers must �nd a way to programmatically extract the URIs to satisfy the expected results, as

mentioned in Section3.4.2

The sample implementation with re�ection is available for Java Spring and ASP.NET Core (see

https://git.io/JGRWW andhttps://git.io/JGRW8 ).

20



3.5 API Versioning

3.5.1 Problem

REST API systems, or more generally software, evolve. In traditional software, the developers

can distribute the new version while the old ones continue working well. However, when changes

were deployed to a REST API system, they may break the client applications. The client application

developers may not be aware of it nor have enough time to adapt to the changes.

In addition to communicating and advertising the new version of the API, the REST API devel-

opers need to support the old API for a time in parallel with the new one. It allows the coexistence of

multiple versions of the API. To separate the old API from the new one, the developers can choose

one of these approaches:

• Include the version of the API in the URI:

� Version the API globally for all resources

� Version the API separately for each type of the resources (e.g., a school API, the student

resources can be at version 3, while the teacher resources are in version 2)

• Include the version in the header(s). It could be theaccept header or a custom header

invented by the REST API developer.

There are some challenges when evolving a REST API system, such as transformation between

JSON and XML, M to N Mapping, delete method, authorization protocol change, rate limit, and

authorization of API access (Li, Xiong, Liu, & Zhang, 2013)

3.5.2 Expected result

We expect that:

• The URIs of a version should not change over time. The client application will always have

the expected result when requesting a resource during the lifetime of that version.

• Client applications can access multiple versions of the API. In other words, the REST API

system can support multiple versions at the same time.

21



• The REST API system can use a single database. If there are breaking changes in the database,

there should be a mechanism to translate the changes to an understandable object for the old

version.

3.5.3 Solution

Kaminski et al.(2006) proposed the “Chain of Adapters” design technique to address this prob-

lem, as we mentioned in Section2.2. We present our solution in the following.

We propose using the Proxy design pattern to redirect/convert the request to the old version of

the API. For each version of the exposed API, there should be a corresponding interface. The inter-

face does not serve a purpose in the current version but will be the contract for the next version. The

class will contain a private instance of each old API class that supports this next version. Thus, all

the API versions share some common logic that won't change over time. This logic can be separated

into an abstract class. The API controllers inherit from it. Figure3.5 illustrate this solution.

The REST API developers could use this solution in multiple scenarios. For example, when

there is a security �x that was implemented in the new version. The developers can capture the

request to the old version and convert the parameters to be compatible with the latest version. They

then use these converted parameters to execute the �xed method in the new version and return the

result. Another scenario is that when most of the logic of the latest version is the same as the old

one. There are only a few changes that were implemented in new methods. Developers could call

the methods in the old version by using the private instance of the old class declared in the new

class.

One advantage of our solution is that the new version only implements the interfaces of the

old version if that version needs to be supported. For example, if there is version three, and this

version should support both versions two and one, then controllers of the version three class will

implement the interfaces of versions two and one. This approach eliminates the need of “chain of

adapter” and allow developers to support versions that are not ordered in time, e.g., version four

can choose to support version one and three, remove the support for version two, compared to the

solution proposed in (Kaminski et al., 2006). Furthermore, our solution is implemented inside the

application, differently from the solution proposed in (Leitner et al., 2008).

22



Figure 3.5: Class diagram API Versioning solution

3.6 Server Timeout

3.6.1 Problem

When there is a long-running operation on the REST API server, the client needs to wait to

receive a response. In a traditional system, the communication between the running operation and

the object that consumes the operation result is permanent. However, in a REST API system, the

servers communicate with the consumers (the client applications) through the network. This intro-

duces some potential problems: if the client and the server disconnected, the operation continues to

run on the server, but the result is no longer needed. The same if the client cancels or abandons the

request. These problems will waste the server's resources.

23



3.6.2 Expected result

The long-running operation should have a mechanism to cancel itself if the result was not

needed. To indicate the cancellation, the server could use a timeout or the client request to can-

cel the operation. By doing so, the server could release the resources held by the process.

3.6.3 Solutions

Two solutions could solve the problems. The combined implementation of both solutions pro-

duces the best result but with additional complexity.

Solution 1: Timeout

The long-running operation will have a timeout prede�ned by the developer. When the time is

up, the operation will be canceled. However, the developers need to set the time for the operation

to run. In some cases where there are unpredictable factors, this is not practical. For example, if the

operation depended on the data retrieved through the network, but the speed is not stable, it will be

challenging to set a �xed time.

In Java, developer could useExecutorService to start a new single thread executor. Then

they can submit a long running operation wrapped in aCallable , since Java 1.5. In ASP.NET

Core, developers could useTimeOutAfter 2 orCancellationTokenSource.CancelAfter 3

in .NET 5.0 or later

Solution 2: Asynchronous Request-Reply pattern (HTTP Polling)

This solution was proposed byEastbury(2019). The solution will require some extra work from

both server and client developers. Developers need to implement an operation status checker and a

cache system to store the operation result on the server. On the client side, the developers need to

implement a polling mechanism to periodically get the operation status and �nally get the response

from theResource Endpoint . Figure3.6 illustrates this process.

2https://git.io/JGRWB
3https://bit.ly/3vDwdB1

24



Client API Endpoint Status Endpoint Resource Endpoint

POST

HTTP 202

GET

HTTP 202

GET

HTTP 202

GET

HTTP 202

Figure 3.6: Asynchronous Request-Reply process

(1) When the client sends the request that triggers a long-running operation, the server will re-

spond as quickly as possible with202 Accepted HTTP code.

(2) The server continues its long-running operation while the client is periodically polling for the

result.

(3) When the result is available, the polling will return with302 Found HTTP code with the

URI for the result.

(4) The client sends aGETrequest to get the result.

Comparisons between the two solutions

Each solution has some advantages and disadvantages. These points were listed in table3.4

25



Table 3.4: Comparison between Timeout and Asynchronous Request-Reply

Timeout Async request-reply
P

ro
s

No requirement for client side Client and server can re-establish connection

after disconnected

Easier to implementation The same result can be served instantly

Single system involved

C
on

s Risk of incorrect prede�ned timeout value Need implementation in both client/server

Need a mechanism to store calculated data

If the client disconnect early, the server still wasting resources until timeout

Combination of both solutions

Developers can choose to combine both approaches to maximize the bene�ts, especially when

they choose to follow the Asynchronous Request-Reply pattern since they only need to add a bit

extra work to combine both solutions. There are three stages:

(1) Initiate.

(2) Polling.

(3) Termination.

In the Initiate stage, the client sends a request to trigger the long-running operation. In addition

to the HTTP Polling process, the server registers the operation status. In the Polling stage, the

client periodically polls the long-running operation. With each polling request, the server resets the

timeout counter. In case of disconnection between client and server, the server timeouts and aborts

the long-running operation and releases any resources. Figure3.7 illustrates this process.

26



Client API Endpoint Status Endpoint Resource Endpoint

initiate

POST

HTTP 202

register for status

polling

GET (polling)

HTTP 202

GET (polling)

HTTP 202

GET (polling)

HTTP 202

termination

polling timeout

Terminate operation

Figure 3.7: Combined solution with HTTP Polling and Server timeout

This pattern is only suitable for long-running operations because it adds complexity to the code.

In addition, developers must implement a mechanism to store the computed results. The storage

could be a database, a cache, or in the local memory of the server.

3.7 POST-PUT-PATCH Return

3.7.1 Problem

When the client application sends a request to modify the database (Create, Update, Delete),

usually the server only returns a simple result indicating successful request like HTTP status code

27



200 OK. There is no way for the client application to know the added/modi�ed object was correctly

committed to the database unless the client makes a new request for the object.

For example, when there is a mismatch datatype between the model classes and the data posted

by the client application, the server may still work by simply ignoring any mismatched data and

write everything else to the database. Then, the server signaled that the writing process was suc-

cessful. However, the client has false information, where the data it posted was not the data written

to the database. In any case, sending the created/modi�ed object in the response body sometimes

could cost valuable transmission time and network bandwidth, especially when the client indicated

that it would not need to con�rm the committed data in the database.

The name “POST-PUT-PATCH return” is based on the HTTP verbsPOST, PUTandPATCH.

These verbs should be used when a request can add or modify an object in the database. We do not

addDELETEbecause after the object is deleted, the client only needs a simple success status.

3.7.2 Expected result

We expect that:

• A client side mechanism to control the response if it only needs a200 OKHTTP Status code.

• Separation of database manipulation logic with business logic.

• Minimal requests to the database.

3.7.3 Solution

To separate the database manipulation logic from business logic, we could use the Repository

pattern. To make sure a database transaction was successfully executed before return the result to

the user, we could use the Unit of Work pattern4.

After implementing these services, the system will use them frequently. To avoid the usage of

the Singleton pattern, developers could implement Dependency Injection. The Singleton pattern

could be bene�cial for some speci�c use-cases in traditional software systems. For example, the

map of a game could implement the Singleton pattern. However, in a Web application, in which
4https://bit.ly/3uCO9du

28



multiple users interact with a server, using the Singleton pattern could lead to con�icts or unex-

pected behaviors. In general, there should be a repository class that handles CRUD operations for

each resource or a group of related resources. This class will be injected into Controllers using

Dependency Injection. In addition, the Unit of Work pattern will be integrated into each repository.

Figure3.8 illustrate this solution.

Unit of Work Unit of Work

RepositoryA RepositoryB

Controller

DatabaseConnector

SQL

inject inject

Figure 3.8: Repository pattern

Java Spring has a Repository pattern built-in with the basic CRUD operations (seehttps://

bit.ly/3c6GFcs ). ASP.NET Core does not have this function built-in. Still, there is an in-

struction on how to implement them (seehttps://bit.ly/3uCO9du ). In addition, both

frameworks support Dependency Injection and Unit of Work. The Unit of Work with ASP.NET

framework was supported in a separate library called Entity Framework that works like an Ob-

ject Relational Mapping (ORM) framework. Sample implementations exist for Java Spring (see

https://git.io/JGRWE ) and ASP.NET Core (seehttps://git.io/JGRWg ).

29



3.8 Response caching

3.8.1 Problem

Response to a request in a REST API system can be expensive in terms of resources. For

example, the client can request a complex object that must be retrieved by joining multiple tables in

the database and extensive calculations that take a long time. Another example is when the clients

request an image that they frequently use in the client application. There are some resources speci�c

to the application's domain, like decoding and encoding in real-time trading systems (Kohlhoff &

Steele, 2003), or images and videos in social networking systems.

In general, to increase the performance of a REST system, objects often needed but not changed

frequently should be stored in a fast place: easy to retrieve and serve to the client, usually a cache

system.

3.8.2 Expected result

• Fast and easy to set or retrieve a cached record.

• The cache system should have expiration management.

• There are mechanisms to forward the requests to the actual server in case of the object is not

cacheable or not existed or expired in the cache (Iyer, Rowstron, & Druschel, 2002).

3.8.3 Solutions

Developers could put the caching on the server-side or client-side. We will discuss server-side

caching only in the scope of this thesis. There are multiple ways to implement server-side caching:

In-memory caching andProxy server caching. Depending on the business requirement of the

REST API system, the developers could choose to implement one of them. A mixed implementation

is possible but would be challenging to maintain.

30



In memory caching

In-memory caching puts the cache implementation directly in the application server. This cache

mechanism is fast (Narumoto, n.d.), but the size of the cache memory is usually minor compared to

other caching implementations since the cache uses the server memory directly. In-memory caching

is dif�cult to scale because it will require scaling up the whole REST API system server.

Proxy server caching

Developers implement caching in the proxy server. This approach is easier to scale because of

the loose coupling between the proxy server and the REST API server. In addition, developers could

choose/swap multiple caching technologies based on their needs. However, proxy server caching is

more complicated to deploy because it involves multiple servers and con�gurations.

Framework supports

Popular web frameworks support the implementation of caching for both In-memory caching

and proxy server caching. The frameworks make implementing caching much simpler. The cache

logic usually is implemented using the Repository pattern. Developers use the same source code

but choose the cache techniques (In-memory or proxy server) by a con�guration �le.

For example, Java Spring, developer can implement a simple, auto caching by just adding

spring-boot-starter-cache maven package, and annotate the methods in repositories with

@Cacheable and@EnableCaching in the main class5. For ASP.NET Core, there are detail in-

struction6 on how to implement caching by usingIMemoryCache andIDistributedCache

interfaces.
5https://spring.io/guides/gs/caching/
6https://bit.ly/3p9rCUM

31



3.9 List Pagination

3.9.1 Problem

In the REST API system, any API endpoint that returns data type as a list should support pag-

ination, even if the list is typically small. Developers do not know if a list will grow in the future.

Adding pagination support for a list after the API was published is not a good idea since the clients

already assumed they have all items, while they only have the �rst page (Google, n.d.).

3.9.2 Expected result

Pagination in the REST API system should be:

• Easy to implement

• Only need two parameters: number of items per page and page number

3.9.3 Solution

Only READoperation inCRUDneed pagination. The developers could hide the complexity

of pagination using the Repository pattern proposed in (Lalanda, 1998). Fortunately, the popular

frameworks already support pagination in some ways. For example, Java Spring has

PagingAndSortingRepository interface that helps developers quickly implement pagina-

tion with the help ofPageable interface.

1 Pageable pageable = PageRequest . of ( pageNumber , itemPerPage );

2 Page<your_model_class > page = transactionRepository . findAll ( pageable );

3 return page . getContent ();

For ASP.NET, the pagination capability was built-in with Entity Framework Core, the open

source ORM by Microsoft, by usingSkip andTake methods on a collection of typeIQuerytable .

The use of these method require some conversion of the parameters:Skip(itemPerPage *

pageNumber) andTake(itemPerPage) . Then developers can use it as follow:

32



1 var result = _dbContext.transaction

2 .Skip(itemPerPage * pageNumber)

3 .Take(itemPerPage);

For other frameworks that do not have ORM libraries, the developers could use theLIMIT and

OFFSETclause of SQL, depending on the database technology. For example, for SQL Server:

1 SELECT *
2 FROMyour_table

3 ORDER BY column_name ASC

4 OFFSET number_of_skipped_row ROWS FETCH NEXTmax_number_of_row ROWS ONLY;

3.10 Summary

In this chapter, we classi�ed the REST API practices into technical and non-technical cate-

gories. Using an architectural design can ensure the conformation of implementations to the prac-

tices in the technical category. Therefore, we proposed solutions to six of the eight practices

in this category, except for “Response Caching” and “List Pagination”, as the Web frameworks

fully support them already. For each practice, we presented them using the structure: (1) Practice

name, (2) Problem statement, (3) Expected result/output, (4) Solution, and (5) Sample implementa-

tion/source code. Please visit the GitHub repository athttps://github.com/huntertran/

restapi-practices-impl to explore the sample source code implementations.

33



Chapter 4

Evaluations

Like other practices, e.g., design patterns, code smells, etc., the eight technical practices are

partly subjective due to the lack of agreed-upon quality models for software systems in general and

service-oriented systems in particular.

Therefore, although these practices come from a consensus in the academic/professional com-

munities, our solutions must be validated by professional developers, who only can con�rm that our

solutions:

(1) Solve the bad practices.

(2) Conform to the good practice.

(3) Are acceptable in practice.

Consequently, we designed a validation survey and administrated it to 55 professional REST

API developers. We explain the following method that we followed and the results that we obtained,

which show that our solutions indeed remove the bad practices and are acceptable by professional

developers. (We received an ethics certi�cate from the Of�ce of Research of Concordia University,

number30015039.)

34



4.1 Overview

We follow the “Questionnaire Survey” empirical standard proposed by the ACM (Ralph et al.,

2020). All the material for this study is available for analysis and replication at one of the following

locations:

• http://www.ptidej.net/downloads/replications/icsoc21/

• https://github.com/huntertran/restapi-practices-impl

We build the survey in sections. Each section contains a single practice, with problem identi�-

cation, a short explanation for the good practice and the concrete implementation in ASP.NET core

and Java Spring. Section4.2below will explain in detail the survey design.

According toDeutskens, De Ruyter, Wetzels, and Oosterveld(2004), we expected 17% response

rates for the survey. To increase the response rates, we split the survey into two Parts A and B. In

each part, we include only questions for four good practices. To maximize the chance for each good

practice to be evaluated, we randomize the order of the good practices in each part.

To attract more participants, we include a lottery incentive in the survey, in the form of a lucky

draw for the prize of two $50 Amazon gift cards, four $10 Starbucks gift cards in Canada, or

equivalent prizes in other countries.

4.2 Survey Design

At the beginning of the surveys, we ask for demographic information, which are all optional

questions: age group, education, current profession, and employment status.

For each of the good practices in the technical category, except “Response caching” and “List

Pagination” (see below), we present the problem, the good practice to avoid the problem, and the

concrete, practical implementation. Then, we ask two questions:

(1) Did you face this/these problem(s) in some of your projects?

(Multiple choices: Yes/No/Other (Please specify)).

35



(2) Is the proposed solutions a good solution?

(Multiple choices: Yes/No/Other, I have some suggestions or another solution)

Using these two questions, we can know:

(1) Popularity of the problem in the industry.

(2) How good is the proposed concrete implementation of the good practice.

(3) Is there any other implementations.

For “Response Caching” and “List Pagination”, because the popular Web Frameworks support

them, we ask the following questions:

Response Caching:

(1) What caching strategy your projects are using?

(Multiple checkboxes: In-memory caching/Distributed caching/None/Other)

(2) Do you follow the caching mechanism instruction or modify the mechanism to better �t with

your business?

(Multiple choices: Modi�ed to �t with business/Follow instruction/No caching/Other)

Using these two questions, we can know (1) The most popular caching mechanism and (2) How

well the web framework supports caching mechanism.

List Pagination:

(1) Do you implement List Pagination in API endpoints that return list or collection?

(Multiple choices: Yes, in all endpoints/Yes, in some endpoints with a long list or collec-

tion/No, I don't implement list pagination).

(2) Please explain your choice.

(Multiple rows textbox, optional)

Using these two questions, we can know:

(1) If List Pagination good practices are generally accepted by developers

(2) The rationale behind their choice.

36



4.3 Participants Selection

We selected the participants who are:

• Adult.

• Developers or students in CS/SE.

• Using OOP languages.

• Working or used to work in the industry.

We recruited the participants to the studies through the convenient sampling of software devel-

opers and engineers through e-mail lists, social media (LinkedIn, GitHub, Facebook, and Twitter).

4.4 Survey Administration

The survey's answers are anonymous, and we only discuss aggregated results below to support

our research. The course students' participation is voluntary only. They are anonymous or coded

as for other participants. The involvement of students does not affect their academic standing or

course grades. This information is indicated in the recruitment material. If a participant withdraws

before the end of the survey, there are no consequences. The data is collected electronically through

an online questionnaire using SurveyMonkey.

The collected data is thus �rst stored in the database of the online survey tool. Then, we down-

loaded the data on the computer of one (and only one) of the research assistants and erased it from

the online survey tool. Then, we analyzed the data following the research procedures established

before creating the questionnaire, recruiting participants, and collecting the data. Finally, we trans-

ferred the data to the principal investigator's of�ce computer for storage and safekeeping for �ve

years.

The information is stored on international servers and housed by service providers in the USA.

Therefore, we can assure con�dentiality only when data is accessed/requested by local authorities.

We send our survey to 55 professional developers. Out of 55, 51 developers completed at least

one of the surveys. We received 68 completed surveys (Parts A and B). The number of completed

37



surveys is greater than the number of participants because some participants completed Parts A and

B. We received 17 incomplete responses. Because of the randomized orders, we can still extract

valuable data from 17 incomplete responses. Thus, the average completion rate of both surveys is

76%.

We extracted and analyzed the completed parts for incomplete survey responses, whose ques-

tions were all answered by the participants. In addition, our survey design allows separating between

parts easily.

We use the formula ofStandard deviation for the binomial distribution for calculating the

Standard deviation, described as following:

� =
p

n � p � (1 � p)

wheren is sample size,p is “Yes” answer proportion.

4.5 Participants' Demographics

Figure4.1, 4.2, 4.3, 4.4and4.5summarise the demographic information from the participants.

17 or younger
3.8%

18-29

53.8%

30-39

42.3%

Figure 4.1: Participant's age groups

Bachelor degree

64.5%

Up to high school degree

9.6%
Graduate degree

25.8%

Figure 4.2: Participant's education

38



Fullstack Developer

25.8%

Back-end Developer

32.3%

Front-end Developer

12.9%

Software Architect

6.5%

Project Manager

3.2%
Others

19.4%

Figure 4.3: Participant's profession

0 2 4 6 8 10 12 14
0

2

4

6

Years of experience

C
ou

nt

Figure 4.4: Participant's years of experience

The other professions are Product Manager, Data Engineer, Network Engineer, and Project

Associate.

39



Vietnam

45.5%

Canada

41.8%

New Zealand

1.8% Germany

7.3%

USA
3.6%

Figure 4.5: Participant's country of origin

4.6 Quantitative Analyses

Table4.1shows the percentage of positive responses, excluding “Response Caching” and “List

Pagination”.

Table 4.1: The positive results statistics of the survey
Face this problem Std. dev. Good solution Std. dev.

Content Negotiation 52.4% 2.289 76.2% 1.952
Endpoint Redirection 45% 2.225 75% 1.936
Entity Linking 47.4% 2.177 57.9% 2.152
API Versioning 72.2% 1.901 72.2% 1.901
Server Timeout 77.8% 1.763 66.7% 1.999
POST-PUT-PATCH return 58.8% 2.029 82.4% 1.570

For “List Pagination”, despite the suggestion that all API endpoints that return a list should be

paginated, the developers' majority choose to implement “List Pagination” in some endpoints only.

Figure4.6 illustrates the percentage of these choices.

For “Server Caching”, most of the developers use both of the caching mechanisms. In addition,

40



Some endpoints
63.2%

All endpoints
15.8%

None
21.1%

Figure 4.6: Developer choices for List Pagination implementation

more than half of the developers modify the caching mechanisms provided by the frameworks to

better �t with the application business. Figure4.7 illustrates the usage percentage of each mecha-

nism. Figure4.8 illustrates the developers' choices on each implementation of server caching.

Modi�ed to �t with business
57.9%

Follow instruction
26.3%

No Caching
10.5%

Other
5.3%

Figure 4.7: Developer choices for Server Caching mechanisms

41



0 10 20 30 40 50 60 70

Other

None

Distributed caching

In-memory caching

Usage Percentage

Figure 4.8: Developer choices for Server Caching Implementation

Some participants do not use the frameworks mentioned by the survey but different ones, like

nodejs with JavaScript orFlask with Python. The good practices proposed by the research did

not apply to these frameworks. Therefore, they answered the survey questions with the “Other”

option.

4.7 Qualitative Analyses

Landis and Koch(1977) proposed a scale for the strength of agreement, with 61% - 80% labeled

as “Substantial”. We decided to use the average value of 70% to determine which good practices

are acceptable or require further analysis.

For Content Negotiation, Endpoint Redirection, API Versioning andPOST-PUT-PATCH

Return good practices, more than 70% developers agreed that the proposed solutions are good.

Further interviews with some of the developers also con�rm that the solution forContent Negotia-

tion is being used in the industrial but was not publicly published as a good practice.

Two good practices have positive answers below 70%. We interviewed �ve participants who

answered “No” and “Other” to understand the reasons behind their choices. In addition, we also

asked their opinions on other practices which they give positive responses.

ForEntity Linking , there is an alternative approach that avoids the problem of entity linking. In

42



the �rst login, the server sends a set of allowed permission to the client, including the API endpoints

related to these permissions. Therefore, the client can look up this set of authorization and endpoints

to know if it can make requests to speci�c resources or not. This approach liberates the servers from

calculating the related resources (hence linked entity) and endpoints of these resources. In addition,

this approach is easier to implement. Companies that allow third-parties developers to register which

permission they need, avoiding providing too much information that could raise privacy concerns.

For Server Timeout, the participant's company used the solution we proposed. However, due

to the speci�c circumstance of the business, the solution is still not good enough. The task that is

running on the server could take several hours to complete and return the results. The �rst-party

clients did not know about this processing time, resulting in continuously polling for the results,

throttling the server resources. Furthermore, the endpoint for HTTP polling was implemented in the

same server as the endpoint for registering the long-running task, which was not recommended by

the original solution of the good practice. In the end, the developers useWebSocket communica-

tion protocol, creating a tunnel between the client and the server. This tunnel allows the server to

“send” a message to the client when the task is completed. Yet, there is one case that cannot use this

protocol, which is uploading large �les. Usually, a dedicated server will be used for this speci�c

case, which HTTP polling or job queue.

4.8 Summary

In this chapter, we evaluated our solutions to REST API practices by survey 55 professional

developers. In addition, we interviewed �ve of them to understand what is the reason behind their

choices. In general, most of the participants agreed that our solution is good. However, for the

“Entity Linking” and “Server Timeout” practice, the positive percentage is lower compare to other

practices, which was explained after the interviews with the participants.

For demographic, most of the participants are Backend or Fullstack developers, whose has Bach-

elor or Graduate degree and has more than three years work experiences. Half of them came from

Canada, another half came from Vietnam.

43



Chapter 5

Discussions

5.1 Threats to Validity

While most developers agreed with our solutions, there are some threats to the validity of our

solutions and their validation that we must discuss.

5.1.1 Internal Validity

Our solutions assume that the developers are using object-oriented programming languages, like

Java or C#. However, there are other languages for backend programming that are trending in recent

years. For example, JavaScript with Nodejs, Go Lang with Gin, etc. We only examined two web

frameworks, which are ASP.NET Core and Java Spring. There are other Web frameworks from the

community for C#, like OpenRasta, NancyFx, but they are not popular compared to ASP.NET. For

Java, besides Spring, there are multiple Web frameworks, like Grails and Struts. These frameworks

could have different approaches to the good and bad practices.

We looked for the existing solutions in both academia and gray literature conforming to the good

practices. However, we may have missed some results in academia due to inconsistencies between

the research title and abstract and the content.

44



5.1.2 External Validity

We proposed six solutions to practically implement the REST API practices. To evaluate these

solutions, we surveyed developers. However, due to the number of proposed solutions, the survey

was quite long. The participants could get tired of the questionnaire and answer some questions with

lower attention. These responses could bias our analyses. To minimize this threat, we tried to be

as concise as possible. We also put the questions of the “Response Caching” and “List Pagination”

good practices at the end of the survey, as they are (partially) supported by the Web frameworks. We

also randomized the order of the questions. If a participant abandoned the questionnaire, we could

still use the partial responses for analysis. In addition, we split the survey into two questionnaires.

Each one contains four practices. Some participants answered both of the questionnaires.

For the demographic analysis, because some participants answered both parts of the survey, we

used the participant's ID (provided by SurveyMonkey), IP address, age group, profession, company

name, and email to count distinguish participants. If the participant use different networks for each

parts of the survey, and they do not answer the optional questions about company name and email,

then we could mistakenly count them twice. For example, the participant open the survey part A

on his work computer using the company network. Later he open the survey part B on his personal

computer at home. In both surveys he does not answer the questions about profession, email and

company name. To minimize this threat, we send part A and part B of the survey to different group

of participants. We note anyone asking to do the other part for counting them later.

Developers depend on their experiences and domain knowledge to concretely implement good

practices and avoid bad practices. Therefore, the participant's level of experience affects our survey

results. For example, more experienced developers could see potential problems in our solutions

or evaluate these more thoroughly. Less experienced developers may favor our solutions and may

have never faced the problems presented with each practice yet. We tried to minimize this threat

by asking for age groups, education level, and current profession. The survey results showed that

most of the participants have at least bachelor degree, and they are working as Fullstack or Backend

developers for more than three years. Also, we interviewed some of the participants to get a better

understanding of their responses.

45



In general, we could minimize the internal threats in future works by examining more Web

frameworks and programming languages. In addition, we could conduct more one-on-one inter-

views with developers to �nd out their experience level and ask for their feedback on our solutions

for external threats.

5.2 Developers' Feedback on Solutions

As presented in Section4, for “Content Negotiation”, “Endpoint Redirection”, “API Version-

ing”, and “POST-PUT-PATCH return”, we received more than 70% positive responses. However,

some developers have comments and other solutions for these good practices. In the following sec-

tion, we cite and analyze each comment to see if they are good potential solutions to the practices.

5.2.1 Endpoint Redirection Good Practice

Comment 1: It is better to use a proxy or a service broker to manage URL routing.

Using a proxy server or service could solve the problem. However, the proxy/service must im-

plement the exact resource mapping mechanism proposed by the good practice solution. In addition,

the proxy/service must implement mechanisms to “catch” the request that needs redirecting.

5.2.2 API Versioning Good Practice

Comment 1: At least with the version in URI, I don't have to modify my code as long as that

version is available. For the suggested design, I'll have to modify my code and still have to rely on

the availability of the old version.

The suggested solution does not force the developers to choose a speci�c versioning type (see

Section3.5.1). Instead, it provides an architectural design that helps developers to reuse the business

logic code. In addition, the developers should apply the good practice when designing the project,

not when refactoring or introducing a new feature to the old codebase.

Comment 2: Don't Need to support v1 in v2.

Follow up interview with the participant allowed us to understand this comment. The company

where the participant work does not publish REST APIs for third-party developers. Therefore, they

46



have a more straightforward, simple approach to API Versioning. Instead of supporting multiple

versions of the same REST APIs, they force the client applications, which they fully control, to use

always the latest version.

5.2.3 Server Timeout Good Practice

Comment 1: Use http2, Web socket for request from frontend, use grpc or a pub/sub if request

from back-end

The participant's company used the proposed good practice. However, the speci�c business of

the company makes the system perform poorly. For example, a single task could run for hours. The

polling backend was implemented in the same server running the lengthy process. To address the

issues, the developers at that company used multiple approaches, including:

• http2: The major next revision of the current HTTP network protocol. It supports a single

connection from the browser to the backend.1

• WebSocket:A new communication protocol support two-way communication channels over

a single TCP connection.2

• gRPC: Google Remote Procedure Calls, an open-source remote procedure call framework

that usehttp2 underline. Its complex usability makes it impossible to implement gRPC in

any current browser without a proxy.3

• publisher/subscriber pattern: A messaging pattern allows the publisher to emit multiple

events. The subscriber subscribes to the interesting events only. However, the pattern could

introduce security and scheduling problems.4

The participant's company has the advantage of controlling both backend and front-end applica-

tions. Therefore, they can use new technologies that are still in beta development or require complex

implementations.

1https://datatracker.ietf.org/doc/html/rfc7540
2https://html.spec.whatwg.org/multipage/web-sockets.html
3https://grpc.io/blog/state-of-grpc-web/
4https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher

-subscriber

47



5.2.4 POST-PUT-PATCH Return Good Practice

Comment 1: If DB doesn't return data for create and update operation, we need to make an

additional get operation to DB.

The focus of the good practice solution is on the backend application. The participant raised a

good idea. We stated in Section3.7.2that there should be a mechanism to control the response if

it only needs a200 OK HTTP status code. In that case, the additional request to the database is

not necessary. Both target Web frameworks optimize database requests in an approach called “Lazy

Loading”. The application only query database when the data is needed.

Comment 2: Depends on the type of requirement. Clean Architecture and applying CQRS is

better with a solution that is complex and needs scaling.

Clean Architecture (Martin, Grenning, & Brown, 2018) is an architectural style that split the

concerns of the application into a central domain logic and multiple “add-ons”, like caching, au-

thentication, authorization, persistence, Web rendering. Clean Architecture is the combination of

multiple architectural paradigms5, which are Hexagonal Architecture (a.k.a. Ports and Adapters),

Onion Architecture, Screaming Architecture, Data Context Interaction and Boundary Control En-

tity. The components work with each other via interfaces. However, this architectural style is not

related to the issues proposed by the good practice.

CQRS stands for Command Query Responsibility Segregation pattern6. The pattern states that

the developer should use a different model to update the information than the model for reading

information. This pattern arose when the application became so complicated that keeping a single

model for CRUD is not possible. For example, when creating the object, a lot of validation rules

must be performed. However, when reading the object from database, these rules are not necessary.

This pattern is not directly related to the issue and the good practice.

5https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
6https://www.martinfowler.com/bliki/CQRS.html

48



5.3 Developers and Bad Practices

All the bad practices in the Non-technical category require constant review by experienced

developers. For example, the “CRUDy URIs” bad practice is not solvable via an architectural

design but by continuously watching the API endpoints in development. Therefore, there is a need

to develop tools to support developers during development. Thus, this tool is out of scope for this

paper.

Another approach to tackle these bad practices is the usage of machine learning. With big

enough labeled data, we could train a machine-learning model that learns good and bad practices

and constantly monitors the source code to avoid bad practices. For example, a recent project that

supports developers converting from the requirement to code is GitHub Copilot7. The tool uses

code snippets from Github and StackOver�ow to insert into the developers' source code. However,

the tool stopped at inserting the functional source code for a single requirement but not monitoring

the developers' potential bad practices.

5.4 Discussion on “Server Timeout” Good Practice

The design for the “Server Timeout” good practice involves both client and server. The root

cause of the problem is the connection between these two parties. We observed that all the practices

involved with multiple parties might not be solvable by the 23 design patterns of object-oriented

programming. However, this observation needs further research and validation to be con�rmed and

develop a general approach.

5.5 Solutions Consequences

We use the OOP design patterns to design the solution for the “Content Negotiation”, “Entity

Linking”, “API Versioning”, and “POST-PUT-PATCH return” practices. However, these design

patterns came with consequences. For example, the Proxy Design pattern used in “API Versioning”

introduces another layer of abstraction to the controller class. As a result, calling the original method

7https://copilot.github.com/

49



directly may have different behavior from calling them through the proxy methods.

When using these solutions, developers must understand the consequences to minimize the

harmful effect. In future work, we will explore these consequences with in-depth research for each

solution of the practices.

5.6 Summary

In this chapter, we discussed the internal and external threats to our study and how we tried

to minimize these threats. We also listed all the comments from the survey's participants and our

response to these comments. We analysed these comments carefully to see if they proposed rea-

sonable alternative solutions to the REST API practices. We observed that the case of “Server

Timeout” practice is quite interesting. The approach to this practice could be generalized but would

need further research and validation. In addition, we discussed the practices in the non-technical

category and how we could tackle them in the future. Finally, we discussed some consequences of

the solutions, which will need further research to explore.

50



Chapter 6

Conclusion

In recent years, more and more companies adopted REST API as a primary technology for their

services to reach more developers and serve more clients altogether. During the adoption process,

many good and bad practices emerged. Researchers and developers together de�ne rules to follow

for creating a good REST API system. As a result, books, researches, and technical documentation

are published to help developers. However, bad practices also arise from developers who did not

follow or know the design rules. To avoid bad practices, developers rely on their experience and

domain knowledge.

In general, researchers divide REST API design rules into good and bad practices. Develop-

ers, when developing REST API systems, should conform to these good practices and avoid bad

practices.

A few solutions were proposed to concretely implement the four most common good practices,

partially �lling in the gap: NAC module and simple if-else for “Content negotiation”, an additional

proxy for “Entity Linking”, a chain of adapters for “API Versioning”, and URL redirections for

“Endpoint Redirection”. Yet, all of these solutions have some limitations. Besides, the solutions for

“Content Negotiation” and “Entity Linking” good practices were designed to improve the deployed,

in-production REST API systems, not to avoid the bad practices in the �rst place. Also, there are

many other practices documented in the academic and gray literature.

In this thesis, we presented an up-to-date list of good and bad practices to design REST API

systems. We divided the practices into eight technical and 11 non-technical practices. For each

51



technical practice, we proposed and discussed practical solutions and their concrete implementa-

tions. Finally, we compared/supplemented the existing solutions with new ones that increase their

bene�ts for the four most common practices: Content Negotiation, Response Caching, POST-PUT-

PATCH return, and List Pagination.

To determine how good our solutions were and how well they could be applied to industrial

source code, we surveyed and interviewed 55 developers with qualitative questions. The results

showed that most of the developers agreed with our solutions. Developers also con�rmed that their

companies use some good practices and other approaches that �t their speci�c business. Hence, we

contributed by:

(1) Surveying practices in REST APIs in the academic and gray literature.

(2) Providing concrete solutions (designs and implementations) to these practices.

(3) Validating our solutions with professional developers.

We conclude that our solutions could bene�t and be relevant to developers and researchers: to

developers to avoid bad practices and ease their applications of good practices; to researchers who

could study these solutions, their impact on various quality characteristics, etc.

In future works, we could extend our approach to provide concrete implementation for Service

Oriented Architecture (SOA). For example, the trend of using Microservices Architecture could

lead to many new good and bad practices. We will also seek to de�ne practices and patterns to

detect them in the source code of Web applications and study their prevalence quantitatively. The

approach can be generalized, applying it to new good practices or to avoiding new bad practices.

For the practices that cannot apply the general approach, we could do further research to categorize

them based on metrics like the number of parties involved or the server architectural style. We could

also explore the consequences of each practice solution to prevent the harmful effects.

52



Appendix A

API Versioning Approaches for

including the version in request

A.1 Approach 1: Versioning in the URI segment

This approach is more practical. Front-end developers could immediately acknowledge the

version of the REST API they are using. However, when developers need to upgrade to a new

version, the URI must be changed.

For example:

1 https://localhost.com/api/v2.0/customers/123
2 https://localhost.com/api/v1/customers/123

A.2 Approach 2: Versioning in the Accept header of request

This approach has more freedom for both front-end and back-end developers. The version infor-

mation is included in the “Accept” header of the request. The server con�rmed with the “Content-

type” header. However, this approach uses a non-standard “Accept” and “Content-type” header,

which is not suggested.

For example:

53



1 # REST API endpoint
2 https://localhost.com/api/customers/123
3

4 # Request ==>
5 HTTP method: GET
6 Accept: application/json+v3
7

8 # Response <==
9 HTTP/1.1 200 OK

10 Content-Type: application/json+v3
11 Body:
12 {
13 "test" : "test data"
14 }

A.3 Approach 3: Versioning in the query string

In this approach, the version information is send to the server as a parameter in query string.

One major disadvantage is every REST API endpoint must handle the versioning parameter. This

approach is not recommended.

For example:

1 https://localhost.com/api/customers/123?version =1

54



References

Butler, M. H. (2001). Implementing content negotiation using cc/pp and wap uaprof.HP Labora-

tories Technical Report HPL, 2001(190).

Dai, T., He, J., Gu, X., & Lu, S. (2018). Understanding real-world timeout problems in cloud server

systems. In2018 ieee international conference on cloud engineering (ic2e)(pp. 1–11).

Deutskens, E., De Ruyter, K., Wetzels, M., & Oosterveld, P. (2004). Response rate and response

quality of internet-based surveys: an experimental study.Marketing letters, 15(1), 21–36.

Eastbury, W. (2019, Oct).Asynchronous request-reply pattern.https://docs.microsoft

.com/en-us/azure/architecture/patterns/async-request-reply . Mi-

crosoft.

Evdemon, J. (2016, Aug). Principles of service design: Service patterns and anti-

patterns. http://web.archive.org/web/20160807191653/https://msdn

.microsoft.com/en-us/library/ms954638.aspx . Microsoft.

Fredrich, T. (2012). Restful service best practices.Recommendations for Creating Web Services,

1–34.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and

reuse of object-oriented design. InEuropean conference on object-oriented programming

(pp. 406–431).

Google. (n.d.).Common design patterns.https://cloud.google.com/apis/design/

design patterns . Author.

Iyer, S., Rowstron, A., & Druschel, P. (2002). Squirrel: A decentralized peer-to-peer web cache. In

Proceedings of the twenty-�rst annual symposium on principles of distributed computing(pp.

55



213–222).

Kaminski, P., Litoiu, M., & Müller, H. (2006). A design technique for evolving web services.

In Proceedings of the 2006 conference of the center for advanced studies on collaborative

research(pp. 23–es).

Kohlhoff, C., & Steele, R. (2003). Evaluating soap for high performance business applications:

Real-time trading systems. InInternational world wide web conference.

Lalanda, P. (1998). Shared repository pattern. InProc. 5th annual conference on the pattern

languages of programs.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data.

biometrics, 159–174.

Leitner, P., Michlmayr, A., Rosenberg, F., & Dustdar, S. (2008). End-to-end versioning support

for web services. In2008 ieee international conference on services computing(Vol. 1, pp.

59–66).

Lemlouma, T., & Layä�da, N. (2001). Nac: A basic core for the adaptation and negotiation of

multimedia services.Opera Project, INRIA.

Li, J., Xiong, Y., Liu, X., & Zhang, L. (2013). How does web service api evolution affect clients?

In 2013 ieee 20th international conference on web services(pp. 300–307).

Liskin, O., Singer, L., & Schneider, K. (2011). Teaching old services new tricks: adding hateoas

support as an afterthought. InProceedings of the second international workshop on restful

design(pp. 3–10).

Martin, R. C. (2002).Agile software development: principles, patterns, and practices. Prentice

Hall.

Martin, R. C., Grenning, J., & Brown, S. (2018).Clean architecture: a craftsman's guide to

software structure and design. Prentice Hall.

Masse, M. (2011).Rest api design rulebook: Designing consistent restful web service interfaces. ”

O'Reilly Media, Inc.”.

Murphy, L., Alliyu, T., Macvean, A., Kery, M. B., & Myers, B. A. (2017). Preliminary analysis of

rest api style guidelines.Ann Arbor, 1001, 48109.

Narumoto, M. (n.d.). Caching. https://docs.microsoft.com/en-us/azure/

56



architecture/best-practices/caching . Microsoft.

Paepcke, A. (1993).Object-oriented programming: the clos perspective. MIT Press.

Palma, F., Dubois, J., Moha, N., & Guéh́eneuc, Y.-G. (2014). Detection of rest patterns and

antipatterns: a heuristics-based approach. InInternational conference on service-oriented

computing(pp. 230–244).

Palma, F., Gonzalez-Huerta, J., Founi, M., Moha, N., Tremblay, G., & Guéh́eneuc, Y.-G. (2017).

Semantic analysis of restful apis for the detection of linguistic patterns and antipatterns.In-

ternational Journal of Cooperative Information Systems, 26(02), 1742001.

Petrillo, F., Merle, P., Moha, N., & Gúeh́eneuc, Y.-G. (2016). Are rest apis for cloud comput-

ing well-designed? an exploratory study. InInternational conference on service-oriented

computing(pp. 157–170).

Rabinovich, M., & Spatscheck, O. (2002).Web caching and replication(Vol. 67). Addison-Wesley

Boston, USA.

Ralph, P., Baltes, S., Bianculli, D., Dittrich, Y., Felderer, M., Feldt, R., . . . others (2020). Acm

sigsoft empirical standards.ACM SIGSOFT.

Rodŕ�guez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J. C., Canali, L., & Percannella, G.

(2016). Rest apis: a large-scale analysis of compliance with principles and best practices. In

International conference on web engineering(pp. 21–39).

Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. (2010). Automatically detecting opportu-

nities for web service descriptions improvement. InConference on e-business, e-services and

e-society(pp. 139–150).

Tilkov, S. (2008, Jul). Rest anti-patterns.https://www.infoq.com/articles/rest

-anti-patterns/ . InfoQ.

Wessels, D. (2001).Web caching. ” O'Reilly Media, Inc.”.

57


	List of Figures
	List of Tables
	Introduction
	Related Work
	Practices
	Solutions to Good and Bad Practices
	Summary

	REST API Anti-patterns
	Categories of Good and Bad Practices of REST APIs
	Content Negotiation
	Problem
	Expected result
	Solution
	Source code

	Endpoint redirection
	Problem
	Expected result
	Solution

	Entity Linking
	Problem
	Expected result
	Solution

	API Versioning
	Problem
	Expected result
	Solution

	Server Timeout
	Problem
	Expected result
	Solutions

	POST-PUT-PATCH Return
	Problem
	Expected result
	Solution

	Response caching
	Problem
	Expected result
	Solutions

	List Pagination
	Problem
	Expected result
	Solution

	Summary

	Evaluations
	Overview
	Survey Design
	Participants Selection
	Survey Administration
	Participants' Demographics
	Quantitative Analyses
	Qualitative Analyses
	Summary

	Discussions
	Threats to Validity
	Internal Validity
	External Validity

	Developers' Feedback on Solutions
	Endpoint Redirection Good Practice
	API Versioning Good Practice
	Server Timeout Good Practice
	POST-PUT-PATCH Return Good Practice

	Developers and Bad Practices
	Discussion on ``Server Timeout'' Good Practice
	Solutions Consequences
	Summary

	Conclusion
	Appendix API Versioning Approaches for including the version in request
	Approach 1: Versioning in the URI segment
	Approach 2: Versioning in the Accept header of request
	Approach 3: Versioning in the query string


