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ABSTRACT 

What Do We Grasp At A Glance? Investigating Conceptual Representations Through Rapid 

Object Categorization 

Caitlyn Antal 

We report on two experiments investigating the nature of conceptual tokening—whether 

concepts are accessed via the content of lexical labels representing whole objects or constituent  

conceptual properties—using a picture-word masked priming congruency task with brief 

exposures (50/60 ms or 190/200 ms). In Experiment 1, participants were presented with picture-

word pairs and had to judge whether the stimuli were related to each other. In Experiment 2, 

participants completed the same task while wearing red-blue anaglyph glasses—allowing us to 

control for the potential overlap between retinal projections, and investigate the role of visual 

pathways and early posterior visual projections during object and word recognition. For each 

picture (e.g., a dog), one of four word probes was presented for congruency decision: the basic 

level category label of the picture (e.g., dog), a superordinate label (e.g., animal), a high-

prototypical (e.g., bark), or low-prototypical feature (e.g., fur). Response times and accuracy to 

congruency decisions were analyzed through linear mixed effects models. Results showed that 

(a) at 50/60 ms, pictures paired with superordinate labels engendered faster and more accurate 

responses than those paired with high- and low-prototypical features—but no differences with 

basic level labels, and (b) at 190/200 ms, superordinate and basic level labels yielded faster and 

more accurate responses than high- and low-prototypical features. We suggest that object 

concepts are represented in the brain by non-decompositional abstract atomic symbols carrying 

information about their superordinate categories or information akin to their most generic lexical 

labels, not through their constituent or salient features. 
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What Do We Grasp At A Glance?  Investigating Conceptual Representations 

Through Rapid Object Categorization 

How do we understand what we see? Given the ubiquity of our visual experiences, the 

complexity of the mental machinery that underlies our ability to interpret what we see is often 

taken for granted. For instance, despite variations in viewing conditions (e.g., luminance, 

orientation, degree of occlusion), humans effortlessly recognize and categorize objects within 

about 150 milliseconds (ms; VanRullen & Thorpe, 2001a, 2001b; Rousselet, Macé, & Fabre-

Thorpe, 2003; Delorme, Richard, & Fabre-Thorpe, 2000; Thorpe, Fize, & Marlot, 1996). What 

seems clear is that visually decoding an object—that is, computing its natural-kind properties—

must quickly token its stored representation, independent of its viewpoint. Similarly, 

categorizing an object must, at some stage of processing, also involve the tokening of an abstract, 

conceptual representation—one that is common to all token objects of the same category. Thus, 

taken together, it seems that for an object to be recognized, it needs to access its stored 

representation or concept—the basic unit of meaning in the brain (Fodor, 1998). However, the 

nature of the representations that enable object recognition and categorization remains unclear. 

That is, the underlying conceptual representations and computations that enable the process of 

binding information into categories of objects remain unclear. In the present paper, we report on 

two experiments investigating the cognitive mechanisms underlying the representation of object 

concepts. Specifically, we investigated two overarching questions: (1) What kind of information 

is accessed when we token object concepts: do we gain access to object concepts ‘holistically’, 

or do we gain access to their constituent conceptual properties?1 And (2) when is that 

 
1 We use holistically in quotation marks because we do not refer to its meaning in the sense of 
Quine’s (1953) holism, that is, in the sense that semantic information about a word or object 



 
 

 
 
 

2 

information accessed—that is, what is the time course of conceptual access for objects?  

Research on the recognition and conceptualization of objects—that is, on how the 

meanings of objects are attained—has generally focused on two main issues: (a) the timing of 

recognition, with many studies suggesting a decoupling between object detection and recognition 

(Mack & Palmeri, 2010; 2011; 2015; Mack, Gauthier, Sadr, & Palmeri, 2008; Potter, 1976; 

Thorpe, Fize, & Marlot, 1996; de la Rosa, Choudhery, & Chatziastros, 2011; Bowers & Jones, 

2008; Li, Zhong, Chen, & Mo, 2013—but see Grill-Spector & Kanwisher, 2005), and (b) the 

nature of what is recognized (Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Mack, 

Gauthier, Sadr, & Palmeri, 2008; Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2015; Poncet & Fabre-

Thorpe, 2014)—with some studies suggesting that we understand the nature of the basic-level 

exemplar (e.g., dog) before we recognize the superordinate category (e.g., animal; Murphy & 

Brownell, 1985; Jolicoeur, Gluck, & Kosslyn, 1984; Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976). However, the opposite pattern has also been found (Wu, Crouzet, Thorpe, & 

Fabre-Thorpe, 2014; Poncet & Fabre-Thorpe, 2014; Rogers & Patterson, 2007; Large, Kiss, & 

McMullen, 2004), that is, recognizing the superordinate category before the basic-level 

exemplar, in particular when responses are obtained under ultra-rapid categorization conditions 

(i.e., with stimulus presentations times below 30 ms; Fabre-Thorpe et al., 2003; Thorpe, Fize, & 

Marlot, 1996; Macé et al., 2009; VanRullen & Thorpe, 2001a, 2001b). Additionally, other 

studies have suggested that experts can categorize stimuli within their domain of expertise (e.g., 

bird experts) at the subordinate level (e.g., robin) as fast and as accurately as they can categorize 

it at the basic level (e.g., bird; Tanaka & Taylor, 1991; Johnson & Mervis, 1997), and that 

 
cannot be individuated. Rather, the idea that we are highlighting here is that of recognizing an 
object through its ‘holistic essence’ (e.g., shape), and not through its constituent features.  
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atypical members of basic-level categories can be categorized faster at the subordinate level 

(e.g., penguin) than at the basic level (Jolicoeur et al., 1984). Thus, the nature and speed of object 

categorization is still subject to much debate. 

Beyond (a) the timing and (b) the nature of object recognition and categorization, four 

other issues have also been important in determining conceptual representations for objects: (c) 

the nature of the properties or features that might constitute object meanings (e.g., whether or not 

dogs are constituted of fur, tail, etc.; Moss, Tyler, & Taylor, 2007; Tyler et al., 2013; Martinovic, 

Gruber, & Müller, 2008), (d) the nature of the neuronal representation of these features in the 

brain (e.g., their neuroanatomical organization; Tyler et al., 2013; Clarke & Tyler, 2015; Smith et 

al., 2012; Martin, 2007), (e) what the patterns of semantic deficits in individuals who have 

suffered traumas or diseases tell us about the nature of the representation of concepts (Perri, 

Carlesimo, Monaco, Caltagirone, & Zannino, 2019; Mahon & Caramazza, 2009; Merck, Jonin, 

Laisney, Vichard, & Belliard, 2014; Hauk et al., 2007), and (f) computational models of rapid 

object categorization aiming to elucidate the visual features underlying rapid object recognition 

(Crouzet & Serre, 2011; Serre, 2016). 

While some of these questions closely parallel the two overarching questions of the 

present study, they have been somewhat dissociated from one another. One reason for this 

dissociation is that many studies have employed experimental paradigms that are not well-suited 

for investigating the nature of object concepts at the earliest moments of conceptual tokening. 

For instance, some of the studies investigating the timing and nature of object recognition have 

employed go/no-go tasks (VanRullen & Thorpe, 2001a, 2001b; Macé, Joubert, Nespoulous, & 

Fabre-Thorpe, 2009; Poncet & Fabre-Thorpe, 2014), categorization tasks (Mack & Palmeri, 

2010; 2015; Mack, Gauthier, Sadr, & Palmeri, 2008; Grill-Spector & Kanwisher, 2005), or 
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saccadic choice tasks (Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2014), requiring participants to 

make decisions based on a pre-determined criterion (e.g., whether a presented item is an instance 

of a vehicle or animal category). However, employing such tasks casts doubts on the validity of 

the results, given that participants are primed to lock into pre-determined categories. Simply put, 

object recognition and categorization in the real-world do not occur as a function of being 

explicitly told what categories to ‘look for’. Rather, object categorization relies on tokening 

conceptual representations from amongst all of the representations stored in the conceptual 

system (Fodor, 1998; Fodor & Pylyshyn, 2015, Pylyshyn, 2018). Other studies have employed 

stimulus presentations with long duration latencies (e.g., 400-2000 ms; Rosch, 1975; Smith et al., 

2012; Costa, Alario, & Caramazza, 2005; Rogers & Patterson, 2007; Wu, Crouzet, Thorpe, & 

Fabre-Thorpe, 2014). However, given the rapidity of the recognition system, it is thus of utmost 

importance that studies investigating the nature of object concepts employ research paradigms 

that are sensitive to the earliest stages of processing. This allows for a distinction between 

elucidating what kind of information arises at the moment objects are recognized (i.e., at the 

moment of concept tokening), from information that arises as a function of inferences or 

associations that are triggered by the concept, but which may not be part of the concept itself 

(e.g., knowing that dogs bark; Fodor, 1983; de Almeida & Antal, 2021; de Almeida & Lepore, 

2018, de Almeida, 2018). Crucially, understanding what kind of information we entertain about 

an object requires a concerted effort—one that addresses the two questions (what, when) 

simultaneously, while employing research paradigms that are ecologically and externally valid as 

well as sensitive to the timing of perceptual encoding. Thus, tackling these problems requires 

deploying a combination of psychophysical methods, together with theoretical insights from 

areas such as vision, language, and categorization. 
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Theoretical Approach 

Representing two polar opposites on the nature of conceptual representations are theories 

that either postulate that concepts are decomposable into constituent features (e.g., the Prototype 

Theory: Rosch, 1973a, 1973b; Rosch, 1975; Rosch, 1978; Rosch, 1999; Rosch & Mervis, 1975; 

Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Rosch & Lloyd, 1978; Smith & Medin, 

1981; Medin & Smith, 1984; Mervis & Rosch, 1981; Embodied Cognition: Barsalou, 1999, 

2008; Theory-Theory: Carey, 2009) or that concepts are ‘atomic’ (i.e., they are not 

decomposable into features; e.g., Atomism; Fodor, 1998; Fodor & Pylyshyn, 2015). Prominent 

within the camp of decompositional theories is the Prototype Theory. According to this theory, 

object concepts are represented through sets of weighted features that are averaged over time. 

When encountering objects in the world, their salient properties (i.e., unique and essential 

features for concept identification or learning (Rosch, 1973a, 1973b)) are statistically weighted, 

their cue validities are adjusted, modifying the prototype (a measure of central tendency) that 

stands for the concept (Smith & Medin, 1981; Rosch & Mervis, 1975).2 For instance, when 

encountering instances of dogs in the world, the brain records their properties, the likes of bark, 

four-legs, furry, and tail. Some properties (e.g., bark) will be more salient and unique to dogs, 

whereas other properties will be highly shared across categories (e.g., four-legs). As such, each 

property is a predictive cue for a given category. Namely, the validity of a given cue x (e.g., 

bark) as a predictor of a given category y (e.g., dog) increases as the frequency of cue x occurs 

 
2 While it is true that Rosch (1978) states that “prototypes do not constitute a theory of 
representation of categories” (p. 15), she does argue that what comes to mind when we encounter 
the object or the word dog in the world is that of the prototype DOG. Thus, if what comes to 
mind are prototypes, and that prototypes “operate” during the classification and recognition of 
objects, then her theory is necessarily on the nature of concepts because the prototype is taken to 
be what stands in the mind for the meaning of the object or word. Ultimately, if what stands for 
the concept is a prototype, then her theory is a theory of concepts. 
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uniquely in category y, and decreases as the frequency of cue x occurs in categories other than y. 

The cue validity of a given category, then, is defined as the sum of all cue validities, for all 

properties, for that category (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Rosch & 

Lloyd, 1978; Rosch, 1999). Thus, property x with high cue validity for category y should be a 

better predictor for that category than property z with lower cue validity. Taken together, given 

that concepts are formed through weighting clusters of features, conceptual tokening—via both, 

visual and linguistic inputs—is, by hypothesis, dependent on accessing the content of these 

features (see Figure 1a).  

Atomism, on the other hand, stands at the opposite end of the spectrum. Its main 

postulate is that concepts are object-based—in the sense that concepts individuate referents as a 

whole and not through their semantic properties—given that each individualized property in the 

world stands for a concept in the mind (Fodor, 1998; Fodor & Pylyshyn, 2015). According to 

this view, the representation of object concepts relies on a nomological mind-world relation that 

takes meaning representation as a link to a referent. That is, concepts are tokened through the 

establishment of a link obtained via object/word recognition, whereby low-level visual 

mechanisms (e.g., motion, edges, and figure-ground detection) individualize objects in the world. 

Thus, concepts are non-decompositional primitive representations that do not rely on relations to 

other concepts or features by necessity—similar to the notion that face recognition may rely on 

holistic processing, rather than on the computation of its parts (see Richler, Palmeri, & Gauthier, 

2012; Richler & Gauthier, 2014). All other kinds of knowledge that one might have about 

properties related to the object (e.g., knowing that dogs bark) are a function of synthetic 

inferences in the form of meaning postulates (de Almeida & Antal, 2021; see Figure 1b). In other 

words, these relations are contingent on experience (e.g., world knowledge) rather than being 
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necessary constituents of the concept. If these properties were to be constituents of the concept, 

one would need to have a criterion for determining which features are taken to be “analytic” 

properties bearing on the content of concepts from those that are taken to be “synthetic” or 

contingent on experience—see Quine (1953). But, there is no specific criterion for determining 

which properties are analytic and which ones are synthetic. 

 

 

Figure 1. Schematic representation of conceptual tokening, according to (a) the decompositional 

theories, with access to concepts via features; and (b) the non-decompositional theories, with 

token concepts preceding inferences to other concepts (‘features’).3  

 

  

 
3 The circles represent different concepts/features. The sizes of the circles for the 
decompositional theories represent the set of features along with their associated cue validities. 
 

(a) (b) 
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The goals of the present study are set against this theoretical background: by 

investigating the early moments of the conceptual processes—the perceptual input of token 

objects—we can gain knowledge on the nature of the information that gives access to conceptual 

representation. It is at those early moments where the information about an object first makes 

contact with stored information in the conceptual system, which is at the core of other cognitive 

abilities.  

What is accessed when we token an object concept? 

Crucial to determining the nature of the information accessed during the retrieval of 

object concepts is to employ methods that are sensitive to the timing of perceptual encoding. 

Given the rapidity of the recognition system, it is thus of utmost importance that studies aiming 

to investigate the nature of object concepts employ research paradigms that are sensitive to the 

earliest moments cognitive processing. One such paradigm has been semantic priming (Rosch, 

1975; Kahlaoui, Baccino, Joanette, Magnié, 2007; Lam, Dijkstra, & Rueschemeyer, 2015; 

Llyod-Jones & Humphreys, 1997), which capitalizes on the relationship between a word (e.g., 

the name of an object feature, such as tail) and an object (e.g., dog). The rationale for using 

semantic priming is that a prime should only facilitate a response when its semantic 

representation contains within it part of the mental code that is generated by the stimulus to 

which one must respond. For instance, if the representation triggered by a category name (e.g., 

dog) includes information about its internal structure, such as a list of properties (e.g., bark, four-

legs), then responses to those properties should be facilitated by the priming of the category 

name. Conversely, if the representation triggered by a category name does not include internal 

structure, then responses should not be facilitated by the prime.  
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The picture-word interference (PWI) paradigm has been a prominently used method to 

investigate whether conceptual retrieval is facilitated or hindered by the relation between a target 

picture and a word prime.4 In this paradigm, participants are instructed to name target pictures 

while ignoring a superimposed visual (e.g., Sailor, Brooks, Bruening, Seiger-Gardner, & 

Guterman, 2009; Vieth, McMahon, & Zubicaray, 2014; Caramazza & Costa, 2000; Costa, 

Alario, & Caramazza, 2005; Sailor & Brooks, 2014; Mahon, Costa, Peterson, Vargas, & 

Caramazza, 2007) or concomitantly presented auditory (e.g., Mädebach, Wöhner, Kieseler, & 

Jescheniak, 2017; Chen & Spence, 2018; Wöhner, Jeschenkiak, & Mädebach, 2020) distractor. 

While there are many variants of this paradigm, distractors are usually within-category 

coordinates (e.g., the word cat paired with the picture of a dog), category associates (e.g., the 

word leash paired with the picture of a dog), associated parts (e.g., the word tail paired with the 

picture of a dog), or unassociated parts of the picture (e.g., the word nose paired with the picture 

of a dog).  

Additionally, the onset asynchronies for distractor-target pairings varies greatly across 

studies, with some studies presenting distractor-target pairings for one duration time (e.g., 2000 

or 3000 ms; Costa, Alario, & Caramazza, 2005; Mahon, Costa, Peterson, Vargas, & Caramazza, 

2007), or at various onset asynchronies, before and after the presentation of the target (Sailor & 

Brooks, 2014; Mädebach, Wöhner, Kieseler, & Jescheniak, 2017; Vieth, McMahon, & 

Zubicaray, 2014; Chen & Spence, 2018; Wöhner, Jescheniak, & Mädebach, 2020). Results 

typically show that participants are faster at naming target pictures (e.g., car) when they are 

paired with (a) distractors that are close within-category coordinates (e.g., truck) than distractors 

 
4 It is important to mention that this paradigm has been used predominantly to investigate the 
mechanism underlying lexical selection during spoken word production; however, the nature of 
the various distractor-target pairs can also be taken to elucidate the nature of object concepts. 
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that are far within-category coordinates (e.g., wagon; Mahon et al., 2007; Janssen, Schirm, 

Mahon, & Caramazza, 2008)—an effect known as the semantic interference effect (Lupker, 

1979)—(b) category associates (e.g., truck) than unrelated distractors (e.g., table; Finkbeiner & 

Caramazza, 2006), or (c) associated parts to the target (e.g., bumper) than unrelated distractors 

(e.g., parrot; Costa, Alario, & Caramazza, 2005).  

What is particularly interesting about these results in the context of the present study—

and on the representation of object concepts, more broadly—is the nature of results obtained 

from studies employing ‘associated parts to the target’ as a distractor condition (e.g., the picture 

of a car paired with the lexical target bumper). While some studies suggest that naming is 

facilitated by distractors that are associated parts to the target object—in particular when there is 

a long delay between the presentation of distractor-target pairs, or when distractor-target pairs 

are simultaneously presented for long duration times—this effect seems to decrease over time. 

That is, when distractor-target pairs are simultaneously presented for short duration times (e.g., 

100-300 ms; Sailor & Brooks, 2014; Mädebach, Wöhner, Kieseler, & Jescheniak, 2017—

presentation times which are arguably long given that objects can be recognized following 

durations as short as 20 ms (VanRullen & Thorpe, 2001a)—presenting distractors that are 

associated parts to the target picture does not lead to a naming advantage. Rather, it leads to a 

semantic interference effect, that is, longer response latencies to pairs that are ‘related’ in 

comparison with those that are not. Therefore, the lack of naming facilitation for target pictures 

(a) when they are simultaneously presented with distractors from the ‘associated parts to the 

target’ condition, and (b) when target-‘associated parts’ distractor pairs are presented for short 

duration times—which is arguably the time point when concepts are tokened—cast doubts on the 

proposal that features are constituents of object representations.  
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Beyond these theoretical concerns, there are also several methodological issues tied to the 

PWI paradigm. For one, studies employing auditory stimuli do not always control for the 

duration of sounds (which often last between 702 and 1572 ms; Mädebach, Wöhner, Kieseler, & 

Jescheniak, 2017). This may lead to a greater naming advantage, in particular if the target picture 

was presented with a congruent sound. Additionally, for studies employing visual distractors, it 

is likely that the overlapping presentation of distractor-target pairs created a cluttered visual 

experience for participants, which may have artificially led to longer naming latencies in general. 

But more importantly, given the rapidity of the recognition system, it is thus of utmost 

importance that studies aiming to investigate the nature of object concepts employ research 

paradigms that are sensitive to early cognitive processes. That is, in order to properly distinguish 

between the kind of information represented in the core of concepts from that which arises as a 

function of inferences triggered by the tokening of the concept, it is of utmost importance that 

studies employ paradigms that (a) do not prime participants to identify or recognize 

predetermined categories, (b) use short presentation duration times—timepoints which are 

sensitive to the timing of perceptual encoding—and (c) present stimuli in a non-cluttered visual 

space.  

The Present Study 

In the present study, we addressed the overarching questions—what and when—in two 

experiments, relying on a novel psychophysical method. For both experiments, described in 

detail below, participants were presented with a picture-word priming congruency (PWPC) task. 

In this task, participants are presented with picture-word pairs and have to judge whether the 

items are related to each other. Pictures and target words are presented simultaneously with a 10 

ms asynchrony accounting for their different recognition times: objects are presented for 50 or 



 
 

 
 
 

12 

190 ms, while words are presented for either 60 or 200 ms. This manipulation is crucial because 

repetition priming for words (e.g., dog-DOG) seems to occur minimally around 50 ms, 

suggesting that lexical properties—rather than letter features—are available for words within that 

time frame (Forster, 1999). In the case of objects, however, studies suggest that objects can be 

successfully categorized following presentations as short as 20-40 ms (Potter & Faulkoner, 1975; 

Potter, 2012, 2018; VanRullen & Thorpe, 2001a, 2001b; Thorpe, Fize, & Marlot, 1996). Given 

that objects seem to have faster recognition times than words, lexical stimuli are given a 10 ms 

advantage, over the presentation time of the pictured object. For each picture, one of four word 

probes is presented for congruency decision: the basic level category label of the picture (dog), a 

high-prototypical (most frequent: bark), a low-prototypical (less frequent: fur), or a 

superordinate feature (animal). Pictures are presented in the right and left visual fields. These 

pictures (line drawings) were taken from Snodgrass and Vanderwart’s (1980) standardized set. 

Besides their original norms—which include naming agreement, image agreement, familiarity, 

and visual complexity—the 260 original pictures have been extensively normed in a study we 

conducted with 100 participants, yielding 78,000 features, in addition to category information, 

and object name (Antal & de Almeida, 2021). Given that some objects lack distinctive features 

(e.g., ashtray), for they encompass features that are shared by many objects and categories (e.g., 

round), the presentation of those features in the PWPC task might not signal strong category 

membership, and thus, may engender slower congruency decisions (Smith & Medin, 1981; 

Medin & Smith, 1984). As such, based on Antal and de Almeida’s (2021) norms, cue validity 
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and distinctiveness values were computed for each feature, and were entered as predictors in 

exploratory regression analyses.5  

We hypothesized that, if object concepts are accessed via features, high-prototypical 

features would yield faster response times (RTs) and greater accuracy, at both presentation 

timepoints, given that high-prototypical features supposedly give privileged access to concepts 

(e.g., bark for the picture of a dog). However, if object concepts are primarily accessed via labels 

representing the whole object, we hypothesized that category labels (e.g., dog) would yield faster 

RTs and greater accuracy at both presentation timepoints. Further, we predicted that 

prototypicality effects would only arise in the longer presentation condition (i.e., 200 ms), given 

that a concept first needs to be tokened before its features can be accessed. 

The first experiment employed the PWPC task using stimuli displayed in black (pictures 

and words), whereas the second experiment presented the picture-word stimuli pairs in red and 

blue, while participants wore red-blue anaglyph glasses. This manipulation was introduced to 

avoid the potential overlap between retinal projections during early stages of processing (e.g., 1°  

at V1; see Pettigrew, 2001), in case there is no complete foveal split (e.g., see Lavidor & Walsh, 

2004; Jordan, Paterson, Stachurski, 2008). Moreover, by using dichoptic presentation, we aimed 

to take advantage of binocular rivalry to understand the potential differences between 

 
5 Cue validity was calculated by diving the sum of the production frequency for a given feature 
for a particular picture (e.g., fur for dog) by the total production frequency for that feature, across 
all 260 pictures (Rosch, 1978; Rosch & Mervis, 1975; Rosch & Llyod, 1978; Reed, 1972). 
Distinctiveness was defined as the inverse of the total number of pictures that a given features 
appears in (Tyler et al., 2013; Randall, Moss, Rodd, Greer, & Tyler, 2004; Devereux, Taylor, 
Randall, Geertzen, & Tyler, 2016). 
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hemispheric representations of word labels and objects, via ipsilateral and contralateral visual 

pathways and their anatomical projections. 

It is well established that, during the early stages of visual processing—namely, when 

retinotopic information is projected onto V1—visual input is processed contralaterally: 

information presented in the left visual field (LVF) is processed in the right hemisphere, and 

information presented in the right visual field (RVF) is processed in the left hemisphere. As these 

hemispheric projections undergo further visual computations (i.e., from posterior areas in the 

visual cortex to temporal and frontal cortices), they will rely on the inter-hemispheric exchange 

of information, via the corpus callosum. Moreover, this early division of retinotopic projections 

in area V1 is said to engender processing differences, with some studies suggesting hemispheric 

dominance for certain classes of stimuli (e.g., words, visual objects) in early stages of 

processing, before full inter-hemispheric transfer takes place. For instance, it is well known that 

there is a strong RVF advantage for visual word recognition due to words being projected into 

the language-dominant left hemisphere (e.g., Finkbeiner, Almeida & Caramazza, 2006; Bub & 

Lewine, 1988; Hunter & Brysbaert, 2008), in particular, due to the visual word form area 

(VWFA)—a region in the left fusiform gyrus that has been shown to selectively respond to word 

forms (Cohen et al., 2000, 2002; Cohen & Dehaene, 2004). Further, while it is often difficult to 

dissociate “word” processing (e.g., graphemic sequences and morphological representations) 

from their meanings (concepts), a review of several studies contrasting meaningful versus 

nonmeaningful linguistic stimuli (e.g., words vs. nonwords, random words vs. sentences) found a 

wide cortical distribution for meaningful stimuli, primarily in the left hemisphere (Binder et al., 

2009). The cortical organization of visual objects, on the other hand, seems to be more category-

specific, with particular regions being dedicated to classes of visual stimuli, in both the right and 
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left hemispheres (see Kanwisher, 2010). For instance, studies have shown that there seems to be 

cortical regions dedicated to the recognition of particular stimuli such as faces (e.g., Grill-

Spector, Knouf, & Kanwisher, 2004), places (e.g., Epstein & Kanwisher, 1998), and body parts 

(Bracci, Caramazza, & Peelen, 2015). Taken together, this division in retinotopic information 

projected onto V1 may engender processing differences in accuracy and RTs for the processing 

of picture-word pairs. These hemispheric differences were manipulated in Experiment 2 aiming 

to understand the role of early projections in the processing of conceptual representations 

obtained from words and objects. 
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Experiment 1: Picture-Word Masked Priming Congruency Task with Black Stimuli 

Method 

Participants 

A total of 71 participants (F = 52), between the ages of 18 and 53 (M = 25, SD = 8) were 

recruited from Concordia University’s psychology participant pool, and from the Montreal, 

Ottawa, and Toronto communities through a Kijiji add. All participants were native speakers of 

English (i.e., learned English before the age of 5 and used it as a dominant language), had 

normal, or corrected-to-normal vision, no history of psychiatric or cognitive impairments, and no 

diagnosis of colorblindness. They were either compensated with 3 course credits or with $ 25 

CAD for their participation. All participants were treated in accordance to the ethical standards 

adhered by Concordia University’s Human Research Ethics Committee (certification number 

10000023). 

Materials 

A total of 256 pictures (128 experimental and 128 fillers) were included in the study. 

These pictures consisted of the Snodgrass and Vanderwart (1980) line drawings with the highest 

naming agreement, as determined through the Antal and de Almeida (2021) norming study. Half 

of the pictures represented images of living things (e.g., animals, vegetables, fruits), while the 

other half represented images of non-living things (e.g., furniture, tools, clothing). This 

distinction was included for several reasons. First, living things are said to be visually more 

complex and more difficult to process than non-living things—in particular because living things 

are assumed (a) to be more similar to one-another, and (b) to encompass a larger number of 

features than non-living categories (Farah, McMullen, & Meyer, 1991; Moss, Tyler, & Taylor, 

2007). Second, the distinction between living and non-living superordinate categories allows for 
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generalizations across major concept categories. Third, impairments to living or non-living 

categories is one of the most well-documented kinds of double dissociations in cases such as 

Alzheimer’s (e.g., de Almeida, Mobayyen, Antal, Kehayia, Nair, & Schwartz, 2021; Silveri, 

Daniele, Giustolisi, & Gainotti, 1991; Moss, Tyler, & Devlin, 2005; Laws et al., 2007; 

Whatmough & Chertkow, 2002; Zannino, Perri, Caltagirone, & Carlesimo, 2007) and brain 

lesions due to vascular accidents or traumas (e.g., Blundo, Ricci, & Miller, 2006; Borgo & 

Shallice, 2001; Capitani, Chieppa, & Laicona, 2010; Hillis & Caramazza, 1991; Massullo et al., 

2012; Rosazza et al., 2003; Schweizer, Dixon, Westwood, & Piskopos, 2001). Although the 

present study did not investigate participants drawn from neuropsychological populations, the 

pattern of dissociations obtained from patients with different aetiologies suggests that the 

functional architecture of the unimpaired conceptual system takes living and non-living things as 

representing a major distinction between the representation of categories in the brain. Further, 

results from neuropsychological populations also suggest that the visual system may have 

separate subsystems, which are specialized for the recognition of living and non-living things 

(Farah, McMullen, & Meyer, 1991). Taken together, these major categories may engender 

different response patterns, thus motivating a distinction in experimental materials.  

Following Snodgrass and Vanderwart’s (1980) norms, the experimental pictures for 

living and non-living categories were matched in image agreement, t (126) = 1.32, p = 0.19, d = 

0.23, 95% CI = [-0.06, 0.30], but they were not matched in visual complexity, t (126) = 4.20, p < 

0.001, d = 0.63, 95% CI = [-0.95, -0.34]. Thus, visual complexity was entered as a random factor 

during statistical analyses. 

Based on the results from Antal and de Almeida’s (2021) norming study, four types of 

target labels were generated: (1) the category label of the picture at the basic level, (2) a high-
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prototypical feature, (3) a low-prototypical feature, or (4) a high-prototypical feature at the 

superordinate level. The lexical labels representing these types were individually presented with 

each picture (see examples in Table 1).  

  



 
 

 
 
 

19 

Table 1 

Sample lexical labels for each condition presented with the picture of a dog. 

Label Type Sample Target 
Target Name DOG 
High Prototypical BARK 
Low Prototypical FUR 
Superordinate ANIMAL 
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 Based on these norms, a weighted scoring system was devised to determine the target 

lexical labels for each category. The basic level and superordinate feature labels were taken to be 

the target words with the highest naming agreement (i.e., the object name most frequently listed 

for each picture). Specifically, for responses at the basic and superordinate levels, naming 

agreement was devised by dividing the number of individuals responding a given target name by 

the total number of participants. For instance, in response to the picture ‘cat’, 99 individuals 

responded cat, while one individual responded kitty. As such, cat was chosen as the target feature 

for the basic level and was given a naming agreement value of 0.99. The same procedure was 

applied to determine the target and naming agreement values for superordinate features. 

 A different method was employed to calculate the naming agreement of high- and low-

prototypical features. Given that Antal and de Almeida’s norming study required participants to 

list three features, using one word, for all objects presented to them, a ranked weighted response 

system was employed to determine the high- and low-prototypical target labels. Specifically, the 

feature that was listed first by a given participant received a score of 3, the second feature 

received a score of 2, and the last feature a score of 1. These scores were then multiplied by the 

number of participants responding a given feature in their ranked position. Finally, their products 

were summed across all ranked positions and divided by the total number of participants. This 

yielded the final naming agreement for a given target feature. For instance, in response to the 

picture ‘banana’, 87 individuals responded yellow as the first feature, 12 as the second feature, 

and 1 as the third feature. As such, 87 was multiplied by 3, 12 was multiplied by 2, and 1 was 

multiplied by 1. Their products were then summed (i.e., 286) and divided by the total number of 

participants (i.e., 100), for a naming agreement value of 2.86. Low-prototypical targets were 

determined by taking the feature corresponding to half of the naming agreement value of the 
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high-prototypical feature. In cases where no feature precisely matched that naming agreement 

value, the feature with the closest lower value was taken to be the target. Furthermore, in cases of 

a tie between two features (i.e., those corresponding to precisely half of the naming agreement 

value of the high-prototypical feature), the feature that was a constituent part of the object 

depicted in the picture was taken to be the target. 

 Lastly, for all features, we then calculated cue validity and distinctiveness values. The 

reasoning for using these values is that, given that some objects are less associated with 

distinctive features (e.g., bear), this might engender slower responses from participants. As such, 

we conducted exploratory multiple regression analyses, regressing cue validity and 

distinctiveness values on participants’ accuracy to congruency decisions (see Appendix D). Cue 

validity scores were devised by dividing the sum of the production frequency for a given feature 

for a particular picture (e.g., fur for the dog picture) by the total production frequency for that 

feature, across all 260 pictures (Rosch, 1978; Rosch & Mervis, 1975; Rosch & Llyod, 1978; 

Reed, 1972). Distinctiveness was defined as the inverse of the total number of pictures in which 

a given feature appeared (Tyler et al., 2013; Randall, Moss, Rodd, Greer, & Tyler, 2004). 

 Following these calculations, the 128 pictures with the highest naming agreement at the 

basic level were chosen as experimental items: 64 represented objects in the living category, and 

64 represented objects within the non-living category. See Appendix A for the full list of 

experimental materials as well as the cue validity, distinctiveness, and naming agreement values 

associated with each picture. 

 In addition to obtaining lexical labels, Antal and de Almeida’s norming study also 

allowed us to classify all lexical labels for the high and low prototypical features according to 12 

properties that the labels express about the target object: dimension, quality, body-part, part-to-
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whole, function, temperature, substance, visual, olfactory, acoustic, tactile, and concept-

association (see Table 2 for their definitions). Participants’ responses on the PWPC tasks as a 

function of these feature classifications constitute a separate study. 
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Table 2 
 
Definitions for the classes of properties expressed by the features of objects. 
 

Feature Subcategory                                        Definition 

Dimension 
Applies to measurable properties (e.g., long for the property of length 
and small for the property of size)  

Quality 

 
Applies to intrinsic (e.g., smart for monkey) or extrinsic properties (e.g., 
soft for bed), including aesthetical ones (e.g., beautiful for peacock)  

Part-to-Whole 
 
Parts of inanimate/non-living things (e.g., leg for chair)  

Body-Part 

 
Equivalent to 'part-to-whole' but for animate/living things (e.g., pupil for 
eye and whisker for tiger)  

Function Applies to purpose (i.e., 'telic' role; e.g., fly for airplane)  

Temperature 

 
Similar to dimension, but specific to temperature (e.g., hot for iron and 
cold for refrigerator)  

Substance 

 
What the object/thing is made of, mostly in its appearance (e.g., fur for 
bear)  

Visual 
 
Properties that include color and patterns (e.g., stripes for zebra)  

Olfactory 
 
Properties related to the sense of smell (e.g., stink for skunk)  

Acoustic 
 
Any reference to sound, including onomatopoeic (e.g., purr for cat)  

Tactile  

 
Any property that is tactile or related to the sense of touch (e.g., grip for 
pliers)   

Concept-Association 
  

 
Refers to relations that are none of the above, but reflect frequency of 
association (e.g., water for fish) 
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Design 
Participants were presented with the picture-word priming congruency (PWPC) task, as  

described in the introduction. 

Experiment 1 consisted of a factorial design with 16 conditions: presentation times (2): 

50/60 ms, 190/200 ms; picture-word hemispheric projection (2): left-right, right-left; and target 

type (4): basic level label, high-prototypical feature, low-prototypical feature, or superordinate 

feature. There were 128 experimental picture-word pairs for each of the 16 conditions, for a total 

of 2048 picture-word combinations. The 2048 items were counterbalanced among 16 lists, such 

that each list contained 8 items from the 16 conditions. Participants completed two lists, in a 

random sequence. 

Procedure 

Once participants were deemed eligible to participate in the experiment (i.e., they met the 

inclusion criteria outlined in participants section), they were sent a follow-up email outlining a 

detailed list of what their participation entailed.6 After having carefully read the details of this 

email, participants indicated whether they accept to participate in the study. Furthermore, given 

that the second experiment required the use of anaglyph glasses (see Experiment 2, below), the 

glasses needed to be delivered to participants. As such, participants were required to provide a 

delivery address. Based on their preference and location, glasses were either mailed, or dropped 

off at their residence. The glasses were part of a kit containing all the necessary materials for 

experiment participation. In this kit, participants received: (a) the anaglyph glasses, (b) a 

measuring tape to measure the distance between them and their computer screen, (c) written 

 
6 It is important to mention that this experiment was paired with a separate, unrelated 
experiment. All participants completed three tasks: Experiments 1 and 2, described here, as well 
as the unrelated experiment. Participants completed the three experiments over the course of 
three days, completing one experiment per day, in a counterbalanced order. 
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instructions for each experiment (these were also presented on screen prior to the beginning of 

the experiment), and (d) general guidelines and a checklist for their participation in each task 

(see Appendix B). Due to the COVID-19 pandemic, the materials were not required to be 

returned upon completing the experiment. 

Upon receiving packages, participants were then sent an email containing a link to a 

Qualtrics (2015) survey, as well as the individual links to each of the three tasks. The Qualtrics 

survey presented participants with: (a) the consent form, (b) a language background 

questionnaire, and (c) a computer and internet configuration questionnaire. The language 

background questionnaire measured participants’ self-reported language history and proficiency, 

while the computer and internet questionnaire gathered information regarding participants’ 

computer hardware specifications and internet resources (see Appendix C for the internet 

questionnaire). Given that the experiment relied on time-sensitive measures, the computer and 

internet configuration questionnaire provided crucial information for analyzing participants’ 

responses by taking into account computer processing speed, memory configuration, type of 

operating system, monitor resolution and refresh rate, and internet speed—factors that are shown 

to affect stimulus presentation and data collection via online platforms (Anwyl-Irvine, Dalmaijer, 

Hodges, & Evershed, 2020; Bridges, Pitiot, MacAskill, & Peirce, 2020).  

In each trial, participants were presented with picture-word pairs, and their task was to 

judge whether or not the two items are related to each other. They were instructed to complete 

the experiment individually, in a dimly lit room, while being seated at a viewing distance of 60 

cm from the screen. Each trial consisted of the following sequence: (1) participants were 

prompted to press the SPACEBAR when they are ready to begin; (2) they were then presented 

with a centrally located fixation cross (+), for 1000 ms; (3) the presentation of the picture-word 
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pair then appeared for either 50/60 or 190/200 ms, depending on the condition; and (4) a 

subsequent 100 ms backwards-mask in the form of random dots was presented (see Figure 2). 

The backward-mask was used to prevent visual processing beyond the presentation duration of 

stimuli (e.g., see Breitmeyer & Ogmen, 2000; Keysers, Xiao, Foldiak, & Perrett, 2001). Given 

that there was much variability in the stimuli in terms of size and complexity, the backward-

mask we employed had greater spatial frequency than the stimuli. Participants were instructed to 

respond, as quickly and as accurately as possible, whether the pictures and words were related to 

each other. If so, they were instructed to press the ‘yes’ key, or to press ‘no’ otherwise. Due to 

the variation in participants’ monitor size (M = 14.4 inches; SD = 2.70 inches; Mode = 13.3 

inches), resolution (M = 2005  x 1238 pixels; SD = 624 x 388 pixels; Mode = 2560 x 1600 

pixels), and refresh rate (M = 61 Hz; SD = 16 Hz; Mode = 60 Hz), the position of pictures and 

words were normalized, subtending about 3° of visual arc from the fixation cross.  

The experiment began with 10 practice trials and was followed by the 128 experimental 

items interspersed with 128 picture-word fillers. Items were presented randomly, and no list 

contained more than one token item from a given experimental minimal pair. The experiment 

was programmed in PsychoPy3 (Peirce et al., 2019) and distributed online through Pavlovia 

(2020). Participants completed two lists. They were instructed to take breaks when needed, by 

delaying the start of the following trial (i.e., by not immediately pressing the spacebar). Without 

breaks, each list lasted approximately 15 minutes. 
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Figure 2. Time-course of events for each trial in the picture-word priming congruency task. 
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Data Analyses 

For both experiments, we conducted linear mixed effects (LME) models (Baayen, 

Davidson, & Bates, 2008) using the lme4 package (Bates, Maechler, & Bolker, 2013) for the R 

statistical programming environment (R Dev. Core Team, 2012; 2014). For all analyses, stimulus 

presentation time, target type, and picture-word hemispheric projection were entered as fixed 

factors. Experiment 2 included the addition of a new factor: visual pathway. The models 

analyzed the effects of stimulus presentation time, target type, picture-word hemispheric 

projection, and pathway (Experiment 2), on participants’ accuracy and RTs to congruency 

decisions. All models included random intercepts for subjects, items, target word production 

frequency, and visual complexity values for Snodgrass and Vanderwart’s (1980) images, as 

justified by the likelihood tests. Our fully fitted models included random intercepts for 

participants, items, target word production frequency, visual complexity, and the interaction 

between stimulus presentation time, feature type, picture-word hemispheric projection, and 

pathway (Experiment 2) as fixed effects.7 We derived p-values for all main effects and 

interactions using the Likelihood Ratio Test by comparing the full model to a reduced model 

excluding the relevant term (Winter 2013, 2019). Planned comparisons were conducted using the 

emmeans package with Tukey’s correction (Lenth et al., 2018). The pooled standard deviation 

between two groups was used as the standardizer for all reports of Cohen’s d values. Inspection 

 
7 Regression equation for accuracy analyses: ModelName <- glmer(accuracy ~ 
presentation_time_condition * feature_type * hemispheric_projection * pathways + 
(1|participant) + (1|item) + (1|picture_visual_complexity) + 
(1|word_target_production_frequency), data=FILE, family = binomial). Regression equation for 
response times analyses: ModelName <- lmer(rt_log ~ presentation_time_condition * 
feature_type * hemispheric_projection * pathways+ (1|participant) + (1|item) + 
(1|picture_visual_complexity) + (1|word_target_production_frequency), data=FILE). 
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of residual plots showed deviations from homoscedasticity and normality for response times. As 

such, those analyses relied on log-transformed data (Winter, 2013, 2019; Osborne, 2002, but see 

Lo & Andrews, 2015). All figures were created using the ggplot2 package (Wickham, 2016). 

Additionally, for both experiments, we also conducted two sets of exploratory multiple 

regression analyses. In the first set, we estimated the effect of feature cue validity and feature 

distinctiveness values on participants’ accuracy on congruency decisions, for high- and low-

prototypical features. In the second set, we regressed participants’ general accuracy on 

congruency decisions as a function of feature cue validity and feature distinctiveness values, for 

living and non-living categories. Results from these analyses, for both experiments, can be found 

in Appendix D.  
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Results and Discussion 

Prior to conducting analyses, participants’ overall accuracy to congruency decisions was 

screened. All participants scored above chance (i.e., above 50%) and were thus kept for all 

analyses. Further, response latencies below 200 ms and greater than 2500 ms (0.71 % of 

responses) were removed because they were considered either anticipations or they were deemed 

too long to reflect perceptual processes (see VanRullen & Thorpe, 2001b). Subsequently, 

participants’ responses that were 2.5 standard deviations above or below their respective means 

(2.82 % of responses) were replaced by their upper or lower standard deviation cut-off values 

(see Osborne & Overbay, 2004). 

Congruency Decision Accuracy 

The full model was compared to a null model consisting of only random predictors and 

was found to provide a statistically significant better fit to the data, χ2(15) = 773.32, p < 0.001. 

There were also significant main effects of stimulus presentation time, feature type, and 

hemispheric projection, as well as all two-way and three-way interactions (see Table 3). As 

predicted, participants were more accurate when stimuli were presented for 190/200 ms rather 

than 50/60 ms (p < 0.001, d = 0.54). Further, participants were more accurate when pictures were 

projected to the right hemisphere and words were projected to the left hemisphere, as opposed to 

when pictures and words were projected to the left and right hemispheres, respectively (p < 

0.001, d = 0.49)—supporting the hypothesis of a processing advantage for words projected in the 

VWFA, in the LH.   
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Table 3  

Logistic regression of accuracy to congruency decisions as a function of feature type and hemispheric 

projection at the two presentation time points. 

   Accuracy   
Predictor β SE β z-value 95% CI of β Null Comparison  
 
Constant -0.56 0.54 -1.04 [2.46, 4.61]  
      
Presentation Time 1.03 0.36 2.85 [2.81, 4.88] χ2(1) = 502.99, p < 0.001 

      
Feature Type -0.24 0.19 -1.24 [0.55, 0.99] χ2(3) = 28.46, p < 0.001 
      
Hemispheric Projection 0.50 0.35 1.43 [1.63, 2.64]  χ2(1) = 204.22, p < 0.001 
      
Presentation Time x 
Feature Type 0.14 0.13 1.08 [0.58, 1.19] χ2(3) = 13.27, p = 0.004 
      
Presentation Time x 
Hemispheric Projection -0.03 0.24 -0.11 [0.47, 1.11] χ2(1) = 11.63, p = 0.001 
      
Feature Type x 
Hemispheric Projection 0.21 0.13 1.65 [0.79, 1.51] χ2(3) = 14.08, p = 0.003 
      
Presentation Time x 
Feature Type x 
Hemispheric Projection -0.11 0.09 -1.24 [0.60, 1.76] χ2(10) = 43.57, p < 0.001 
      



 
 

 
 
 

32 
 

Surprisingly, planned comparisons revealed that in the 50/60 ms presentation time 

condition, participants were more accurate when they were presented with superordinate 

features, in comparison to high-prototypical (p = 0.05, d = 0.42) and low-prototypical features (p 

< 0.001, d = 0.44). Further, still in the 50/60 ms presentation time condition, while participants’ 

responses were more accurate for basic level labels than for low-prototypical features (p = 0.007, 

d = 0.42), there were no differences in accuracy between basic level labels and high-prototypical 

features (p = 0.33, d = 0.71), as well as between basic level labels and superordinate features (p = 

0.44, d = 0.18). Thus, it seems that pairing pictures of objects (e.g., a dog) with a label 

representing superordinate category information about that object (e.g., ANIMAL) yields greater 

accuracy than pictures that are paired with labels representing the object’s features (e.g., BARK, 

FUR). This suggests that category information may be accessed prior to the identification of the 

token object or its properties. We return to this issue in the general discussion. 

We found slightly different results in the 190/200 ms presentation time condition. While 

superordinate features still yielded greater accuracy than high-prototypical (p < 0.001, d = 0.32) 

and low-prototypical features (p < 0.001, d = 0.35), basic level labels now also yielded greater 

accuracy than high-prototypical (p = 0.005, d = 0.30) and low-prototypical features (p < 0.001, d 

= 0.33). Nevertheless, there were still no differences in accuracy between superordinate features 

and basic level labels (p = 1.00, d = 0.26). See Figure 3a for participants’ accuracy to congruency 

decisions when pictures are projected to the left hemisphere and for words projected to the right 

hemisphere, and Figure 3b for when pictures are projected to the right hemisphere and for words 

projected to the left hemisphere. 

 

 



 
 

 
 
 

33 
 

 

Figure 3. Participants’ mean accuracy to congruency decisions (a) for pictures projected to the 

left hemisphere and for words projected to the right hemisphere, and (b) for pictures projected to 

the right hemisphere and for words projected to the left hemisphere. The x-axis represents the 

four target type labels (with examples corresponding to the dog picture), and the y-axis 

represents accuracy in percentage. Error bars represent one standard error of the mean. 
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Overall, participants’ responses were more accurate (1) when images were paired with 

superordinate features, in the 50/60 ms presentation time condition, (2) when images were paired 

with superordinate or basic level labels, in the 190/200 ms presentation time condition, (3) when 

stimuli were presented for 190/200 ms rather than 50/60 ms, and (4) when images and words 

were projected to the right and left hemispheres, respectively. Crucially, these results suggest 

that the time-course of conceptual tokening seems to rely on an early access to category 

information at the superordinate level, which may then be followed by basic level information 

and features of concepts. 

Response Times 

Only correct responses to the congruency decisions were included in the model. The full 

model was compared to a null model consisting of only random predictors and was found to 

provide a statistically significant better fit to the data, χ2(17) = 877.47, p < 0.001. There were 

also significant main effects of stimulus presentation time, feature type, and hemispheric 

projection, in addition to a presentation time by feature type interaction. Furthermore, while there 

was a marginally significant three-way interaction, there was no presentation time by 

hemispheric interaction, nor was there a feature type by hemispheric projection interaction (see 

Table 4). We also found that participants’ responses were significantly faster when stimuli were 

presented for 190/200 ms, rather than 50/60 ms (p = 0.03, d = 0.10). Additionally, participants 

were faster when pictures and words were projected to the right and left hemisphere, respectively 

(p < 0.001, d = 0.12). These results replicate those obtained in the analyses of participants’ 

congruency accuracy. 
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Table 4 

Planned comparisons of the linear regression of response times to congruency decisions as a function of 

feature type and presentation time points. 

                               Response Times 
Predictor β SE β t-value 95% CI of β Null Comparison  

Constant 

 
873.79 
(2.92) 

63.51 
(3.09) 13.76 [749.30, 998.27]  

      

Presentation Time 
-6.90 
(4.32) 

37.93 
(1.83) -0.18 [-81.23, 67.44] χ2(1) = 5.40, p = 0.02 

      

Feature Type 
-2.43 
(6.56) 

22.53 
(1.09) -0.11 [-46.58, 41.73] χ2(3) = 84.64, p < 0.001 

      

Hemispheric Projection 
-14.05  
(-4.65) 

23.79 
(1.15) -0.59 [-60.67, 32.57]  χ2(1) = 125.4, p < 0.001 

      
Presentation Time x 
Feature Type 

0.48  
(-1.45) 

13.90 
(6.72) 0.03 [-26.77, 27.72] χ2(3) = 12.79, p = 0.005 

      
Presentation Time x 
Hemispheric Projection 

-8.51  
(-6.81) 

14.76 
(7.14) -0.58 [-37.43, 20.42] χ2(1) = 0.26, p = 0.61 

      
Feature Type x 
Hemispheric Projection 

-5.97  
(-3.89) 

8.72 
(4.21) -0.69 [-23.05, 11.11] χ2(3) = 2.55, p = 0.47 

      
Presentation Time x 
Feature Type x 
Hemispheric Projection 

2.86 
(2.07) 

5.40 
(2.61) 0.53 [-7.73, 13.45] χ2(10) = 17.63, p = 0.06 

      
 
Note. Parentheses represent linear regression values in log transformation. 
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The results of planned comparisons, however, were slightly different than those of participants’ 

accuracy. Namely, at both presentation times—rather than only in the 190/200 ms presentation 

time condition—participants were significantly faster when pictures were paired with basic level 

labels and superordinate features, in comparison to high- and low-prototypical features (see 

Table 5). Similar to accuracy results, there were no differences in RTs between basic level labels 

and superordinate features across the two presentation times (see Figure 4).  
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Table 5 

Linear regression of response times to congruency decisions as a function of feature type and 

hemispheric projection at the two presentation time points. 

Predictor β t-value p-value  Cohen’s d 95% CI of β 
                                                         Presentation Time 1 (50/60 ms) 
      

Basic Level x 
High-Prototypical 

-37.04  
(-0.02) -4.39 p = 0.003 -0.26 [-62.61, -11.46] 

Basic Level x 
Low-Prototypical 

-57.30  
(-0.03) 

-5.73 p < 0.001 -0.29 [-87.60, -26.99] 

Basic Level x 
Superordinate 

13.12 
(0.01) 

1.75 p = 0.65 0.04 [-9.55, -35.78] 

Superordinate x 
High-Prototypical 

-50.15 
(-0.03) 

-6.88 p < 0.001 -0.29 [28.04, 72.27] 

Superordinate x 
Low-Prototypical 

-70.41 
(-0.04) 

-7.61 p < 0.001 -0.33 [42.37, 98.45] 

High-Prototypical x 
Low-Prototypical 

-20.26 
(-0.01) 

-2.24 p = 0.33 -0.03 [-47.68, 7.17] 

      
Presentation Time 2 (190/200 ms) 

      
Basic Level x 
High-Prototypical 

-34.42  
(-0.02) -4.26 p < 0.001 -0.25 [-58.88, -9.95] 

Basic Level x 
Low-Prototypical 

-81.95  
(-0.04) -8.50 p < 0.001 -0.41 [-111.19, -52.71] 

Basic Level x  
Superordinate 

4.39 
(0.001) 0.62 p = 1.00 0.03 [-25.96, 17.17] 

Superordinate x 
High-Prototypical 

-47.54 
(-0.02) -5.51 p < 0.001 -0.22 [9.28, 50.77] 

Superordinate x 
Low-Prototypical 

 -77.56 
(-0.04) -8.77 p < 0.001 -0.37 [50.76, 104, 36] 

High-Prototypical x 
Low-Prototypical 

 -47.54 
(-0.02) 

-5.51 p < 0.001  
-0.17 

 
[-73.67, -21.40] 

 
Note. Parentheses represent linear regression values in log transformation.
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Figure 4. Participants’ mean response times to congruency decisions (a) for pictures projected to 

the left hemisphere and for words projected to the right hemisphere, and (b) for pictures 

projected to the right hemisphere and for words projected to the left hemisphere. 
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Overall, participants’ congruency decisions were faster (1) when images were paired with 

basic level or superordinate labels, across both presentation times, (2) when stimuli were 

presented for 190/200 ms instead of 50/60 ms, and (3) when images and words were projected to 

the right and left hemispheres, respectively.  

While these results are overall very similar to those obtained in the analyses of 

participants accuracy, there was one important difference. Namely, in the 50/60 ms presentation 

time condition, although participants responded faster to basic level labels than high-prototypical 

features, there were no differences in accuracy between these two target types. Differences in 

accuracy between basic level labels and high-prototypical features were only observed in the 

190/200 ms presentation time condition. At first glance, these results could be taken to support 

the idea that, at the earliest moments of concept tokening, high-prototypical features provide an 

equally good entry level as basic level labels. However, there are two observations that prevent 

us from fully endorsing this view. First, our results do not show prototypicality effects (i.e., 

shortest RTs and greatest accuracy for high-prototypical features) at either presentation 

timepoints. If object concepts are represented through constituent features, we would have 

expected results to reflect prototypicality effects in the 50/60 ms—the timepoint of concept 

tokening. Second—and perhaps more importantly—participants’ were significantly more 

accurate when pictures were paired with superordinate features, at both presentation timepoints. 

Thus, taken together, the results obtained from participants’ accuracy and RTs seem to suggest 

that, at the earliest moments of object concept tokening, what might be accessed is information 

pertaining to their superordinate categories or information akin to their most generic lexical 

labels.  
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 It is important to mention that, although the position of each stimulus was carefully 

controlled to correspond to approximately 3° of visual arc, their actual presentation position 

could have been affected by the variation in participants' monitor sizes. Consequently, presenting 

stimuli in positions that are slightly askew could have led to overlapping retinal projections. As 

such, Experiment 2 was conceived as a follow-up to Experiment 1 in order to control for the 

potential overlapping retinal projections with the use of anaglyph glasses.  
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Experiment 2: Picture-Word Masked Priming Congruency Task with Anaglyphs 

Whereas Experiment 1 investigated the what and when questions—namely, the time-

course and relative contribution of object labels and features to concept tokening—the main goal 

of Experiment 2 was to further investigate these processes while controlling the potential 

overlapping retinal projections during the early stages of processing—in case there is no 

complete foveal split.8 In particular, Experiment 2 controlled for hemispheric projections by 

employing a novel, purely psychophysical manipulation using anaglyph glasses. Specifically, the 

use of anaglyphs allowed us to take advantage of binocular rivalry to investigate the potential 

differences between hemispheric representations of word labels and objects. A secondary goal of 

Experiment 2 was to further investigate the potential differences in hemispheric representations 

across ipsilateral and contralateral visual pathways, during the early stages of word and object 

processing.  

 While several studies have focused on the role of hemispheric representations during 

word and object recognition, less is known about the role of visual pathways during recognition. 

A study using functional magnetic resonance imagining found an asymmetry in the density of 

retinal ganglion cells across the two visual pathways (Toosy et al., 2001), whereby contralateral 

visual pathways contained a larger cell density than ipsilateral visual pathways—an asymmetry 

also found in macaque monkeys (Perry & Cowey, 1985). As a result, one might expect this 

anatomical asymmetry to be reflected functionally as a processing advantage for information 

 
8 Although the foveal split theory is by no means consensus (see Ellis & Brysbaert, 2010a, for a 
recent discussion on the debate between the split fovea theory and bilateral projection theory), 
several studies investigating visual word recognition have been taken to support this proposal 
(Ellis & Brysbaert, 2010b; Shillcock, Ellison, & Monaghan, 2000; Brysbaert, Cai, & Van der 
Haegan, 2012; Lavidor & Walsh, 2003, 2004; Martin, Thierry, Démonet, Roberts, & Nazir, 
2007). 
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projected through contralateral visual pathways. However, psychophysical studies have yielded 

mixed results. For instance, in a study conducted by Obregón and Shillcock (2012), the authors 

found that, when using a haploscope in a perceptual recognition task, four-letter words or letter 

sequences presented through contralateral visual pathways engendered greater accuracy than 

those presented via ipsilateral visual pathways. However, in another study, de Almeida, 

Dumassais, and Antal (2020) investigated the recognition of compounds (e.g., football), pseudo-

compounds (e.g., carpet), and other monomorphemic words (e.g., elephant), while manipulating 

visual pathways with the use of anaglyphs, and found that compounds presented through 

ipsilateral, rather than contralateral, pathways engendered greater accuracy in a lexical decision 

task. One possible interpretation for the conflicting results may be in the nature of the stimuli and 

tasks employed by both studies. 

Taken together, although the main goal of Experiment 2 was to replicate Experiment 1 

while employing a method that controlled for the potential overlap between retinal projections 

during early stages of processing, the use of anaglyphs also allowed us to take advantage of 

binocular rivalry to investigate the differences between hemispheric representations of word 

labels and objects, via ipsilateral and contralateral visual pathways, and their anatomical 

projections into the occipito-temporal lobes. That is, by using anaglyphs, the presentation of 

objects and feature-related words were separated into ipsilateral and contralateral visual 

hemifields and visual pathways. As such, in addition to the questions explored in Experiment 1, 

the manipulation of colour combinations (presenting pictures and words in either blue or red, and 

either in the RVF or LFV) in Experiment 2 allowed us to simultaneously investigate the relative 

contribution of visual hemifields and visual pathways on the time-course of object concept 

tokening and feature processing.   
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Method 

Participants 

The same sample of 71 participants recruited for Experiment 1 participated in Experiment 

2.  

Materials, Design, and Procedure 

Experiment 2 employed the same 128 picture-word pairs as those employed in 

Experiment 1. Participants completed the PWPC task outlined in Experiment 1, while wearing 

red-blue anaglyph glasses (Retsing Eyewear Co., Hangzhou, China), with picture-word pairs 

presented in red and blue (see Figure 5). The Snodgrass and Vanderwart’s (1980) pictures were 

modified using Photoshop (Adobe, 2019, version 21.0.2) to match the hue that corresponds to the 

anaglyph glasses (red: RGB 1-0-0; blue: RGB: 0-0-1). This was tested by the experimenters in 

three computers, under different brightness and resolution conditions. Pictures were cropped 

such that the size of the image corresponded to the same width of the word stimuli. 

Experiment 2 consisted of a 2 x 2 x 2 x 4 factorial design yielding 32 distinct conditions. 

In addition to the factors manipulated in Experiment 1 (stimulus presentation times, picture-word 

hemispheric projection, and target type), a new factor, pathway (2 levels: ipsilateral, 

contralateral), was introduced. There was a total of 128 experimental picture-word pairs for each 

of the 32 conditions, for a total of 4096 token items. The 4096 items were counterbalanced 

among 32 lists, such that each list contained 4 items from each of the 32 conditions. The list 

combinations were counterbalanced, such that no participant viewed the same picture-word 

combination twice. Participants were instructed to wear the anaglyph glasses before the 

beginning of the experiment, after having completed the set of questionnaires. Similar to 

Experiment 1, they were instructed to take breaks when needed, by delaying the start of the 
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following trial. Participants completed two lists, in random order, in a given testing session. 

Without breaks, each list lasted approximately 15 minutes. See Figure 6 for the time-course of 

events in a sample trial.  
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Figure 5. Example of stimuli with the information being projected in the two hemispheres 

through the contralateral (a, b) and ipsilateral (c, d) visual pathways, as indicated by the arrows. 

The patch of red or blue in the schematic retina represents the stimulus color that was processed 

by each eye at the portion of the retina relative to the fovea, whose location is represented by the 

dotted line and corresponds to the fixation cross (+). RH: Right Hemisphere; LH: Left 

Hemisphere.  

 

(a) 
 

(b) 
 

(c) 
 

(d) 
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Figure 6. Time-course of events in each trial, in Experiment 2, with participants wearing 

anaglyph glasses. 
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Results and Discussion 

Prior to conducting analyses, participants’ overall accuracy to the congruency decision was 

screened. One participant scored below chance (i.e., below 50%) and was thus removed from all 

analyses. Similarly to Experiment 1, RTs below 200 ms and greater than 2500 ms (0.01 % of 

responses) were removed. Subsequently, participants’ responses that were 2.5 standard 

deviations above or below their respective means (3.19 % of responses) were replaced by their 

upper or lower standard deviation cut-off values. 

Congruency Decision Accuracy 

The full model was compared to a null model consisting of only random predictors and 

was found to provide a statistically significant better fit to the data, χ2(31) = 1173.30, p < 0.001. 

There were also significant main effects of stimulus presentation time, feature type, hemispheric 

projection, and pathway, as well as several two-, three- and four-way interactions (see Table 6 

for results from all main effect and interaction analyses). Furthermore, as found in Experiment 1, 

participants’ responses were more accurate (a) when picture-word pairs were presented for 

190/200 ms rather than 50/60 ms (p < 0.001, d = 0.62), and (b) when pictures were projected to 

the right hemisphere and words were projected to the left hemisphere, as opposed to when 

pictures and words were projected to the left and right hemispheres, respectively (p < 0.001, d = 

0.51). Similarly to de Almeida, Dumassais, and Antal (2020), but contrary to Obregón and 

Schillcock (2020), participants were more accurate when picture-word pairs were projected 

through ipsilateral visual pathways, instead of contralateral visual pathways (p < 0.001, d = 

0.41).  
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Table 6  

Logistic regression of accuracy to congruency decisions as a function of feature type, hemispheric 

projection, and pathway, at the two presentation time points. 

                               Accuracy 
Predictor β SE β z-value 95% CI of β Null Comparison  
 
Constant 2.32 1.55 1.49 [0.48, 10.19]  
      
Presentation Time -0.48 1.08 -0.44 [0.08, 0.62] χ2(1) = 826.68, p < 0.001 

      
Feature Type -1.14 0.56 -2.03 [0.11, 0.32] χ2(3) = 25.68, p < 0.001 
      
Hemispheric Projection -1.60 1.02 -1.57 [0.03, 0.20]  χ2(1) = 232.74, p < 0.001 
      
Pathway -2.61 0.99 -2.64 [0.01, 0.07] χ2(1) = 10.13, p = 0.002 
      
Presentation Time x 
Feature Type 0.41 0.39 1.06 [0.71, 1.51] χ2(3) = 39.18, p < 0.001 
      
Presentation Time x 
Hemispheric Projection 0.84 0.72 1.17 [0.57, 1.32] χ2(1) = 0.14, p = 0.71 
      
Presentation Time x 
Pathway 1.25 0.69 1.80 [0.89, 1.47] χ2(1) = 2.95, p = 0.085 
      
Feature Type x 
Hemispheric Projection 0.72 0.37 1.94 [0.99, 1.06] χ2(3) = 7.12, p = 0.068 
      
Feature Type x 
Pathway 0.87 0.36 2.42 [1.18, 1.38] χ2(3) = 2.44, p = 0.49 
      
Hemispheric Projection x 
Pathway 1.36 0.66 2.08 [1.08, 1.88] χ2(1) = 0.03, p = 0.87 
      
Presentation Time x 
Feature Type x 
Hemispheric Projection -0.22 0.26 -0.87 [0.48, 0.80] χ2(10) = 50.79, p < 0.001 
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Presentation Time x 
Feature Type x 
Pathway -0.35 0.25 -1.39 [0.43, 0.71] 

 
 
χ2(10) = 50.86, p < 0.001 

      
Presentation Time x 
Hemispheric Projection x 
Pathway -0.51 0.46 -1.10 [0.24, 0.60] χ2(4) = 4.32, p = 0.37 
      
Feature Type x 
Hemispheric Projection x 
Pathway -0.44 0.24 -1.87 [0.40, 0.64] χ2(10) = 19.67, p = 0.03 
      
Presentation Time x 
Feature Type x 
Hemispheric Projection x 
Pathway 0.14 0.17 0.83 [0.83, 1.15] χ2(25) = 77.27, p < 0.001 
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One possible interpretation for these conflicting results may be in the nature of the stimuli 

and techniques employed by our study and that of Obregón and Schillcock (2002). As such, we 

need to be cautious when directly comparing the results obtained from both studies. We return to 

this issue in the General Discussion. 

Crucially, results from planned comparisons replicated those obtained in Experiment 1. 

That is, in the 50/60 ms presentation time condition, participants were more accurate when 

images where paired with superordinate features, in comparison to high-prototypical (p = 0.03, d 

= 0.46) and low-prototypical features (p = 0.007, d = 0.47). There were still no differences in 

accuracy between basic level labels and superordinate features (p = 0.44, d = 0.04), nor were 

there differences between basic level labels and high-prototypical (p = 1.00, d = 0.78) and low-

prototypical features (p = 0.64, d = 0.77). Rather, as obtained in Experiment 1, differences 

between basic level labels and high- and low-prototypical features only occurred in the 190/200 

ms presentation time condition (high-prototypical: p = 0.003, d = 0.35; low-prototypical: p < 

0.001, d = 0.51; see Figure 7). Thus, it seems that in the early stages of concept tokening, 

pictures (e.g., dog) that are paired with a superordinate label (e.g., animal) lead to more accurate 

responses than pictures that are paired with a frequent feature (e.g., bark; high-prototypical) or a 

less frequent feature (e.g., fur; low-prototypical) associated with that picture. However, as 

presentation times increase, pictures that are paired with their basic-level labels (e.g., dog) yield 

the same level of accuracy as those that are paired with a superordinate label (e.g., animal). 

Together, these results suggest that the content that is accessed by object concepts might be 

relative to the timing of their presentation durations. Namely, during the early moments of 

concept tokening, what might first be accessed is information related to objects at the 

superordinate level. Then, as presentation time increases, information about object categories at 
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the superordinate and basic levels is tokened—but the early analysis of the stimuli may not rely 

on the tokening of an objects’ high- and low-prototypical features. These issues are further 

addressed in the General Discussion. 
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Figure 7. Participants’ mean accuracy to congruency decisions (a) for pictures projected to the 

left hemisphere and for words projected to the right hemisphere, and (b) for pictures projected to 

the right hemisphere and for words projected to the left hemisphere. 
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Response Times 

Similar to Experiment 1, only correct congruency decisions were included in the model. 

The full model was compared to a null model consisting of only random predictors and was 

found to provide a statistically significant better fit to the data, χ2(31) = 238.99, p < 0.001. There 

were also significant main effects of stimulus presentation time, feature type, and hemispheric 

projection, as well as a marginal presentation time by feature type interaction. Further, 

participants’ responses were faster (a) when stimuli were presented for 190/200 ms, rather than 

50/60 ms (p < 0.001, d = 0.30), and (b) when pictures and words were projected to the right and 

left hemisphere, respectively (p < 0.001, d = 0.17; see Table 7). It is important to note that these 

results have been consistently replicated across accuracy and RT analyses, in both experiments.  

Results from planned comparisons are also consistent with those of Experiment 1. 

Specifically, at both presentation times, participants’ RTs were significantly faster when pictures 

were paired with basic level labels and superordinate features, in comparison to high- and low-

prototypical features (see Table 8 for results to all planned comparisons). There were also no 

differences in RTs between basic level labels and superordinate features across the two 

presentation times (see Figure 8).  
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Table 7 

Logistic regression of response times to congruency decisions as a function of feature type, hemispheric 

projection, and pathway, at the two presentation time points. 

                                   Accuracy 
Predictor β SE β t-value 95% CI of β Null Comparison  

Constant 
826.03 
(2.91) 

62.32 
(2.95) 13.26 [703.88, 948.18]  

      

Presentation Time 
24.03 
(5.54) 

36.70 
(1.73) 4.67 [-47.90, 95.96] χ2(1) = 21.49, p < 0.001 

      

Feature Type 
7.98 

(8.54) 
22.10 
(1.04) 3.36 [-35.33, 51.30] χ2(3) = 54.48, p < 0.001 

 
     

Hemispheric 
Projection 

30.51 
(8.03) 

37.25 
(1.75) 3.82 [-42.51, 103.52] χ2(1) = 135.16, p < 0.001 

      

Pathway 
133.23 
(6.56) 

84.87 
(4.00) 1.57 [-33.11, 299.58] χ2(1) = 0.05, p = 0.82 

      
Presentation Time x 
Feature Type 

-5.41 
(-1.61) 

13.51 
(1.08) -0.40 [-31.89, 21.07] χ2(3) = 6.55, p = 0.087 

      
Presentation Time x 
Hemispheric 
Projection 

-33.36 
(-1.15) 

22.90 
(1.08) -1.46 [-78.25, 11.52] χ2(1) = 0.96, p = 0.33 

      
Presentation Time x 
Pathway 

-81.83 
(-5.23) 

51.87 
(6.43) -1.58 [-183.50, 19.84] χ2(1) = 0.24, p = 0.63 

      
Feature Type x 
Hemispheric 
Projection 

-14.10 
(-3.79) 

13.66 
(2.44) -1.03 [-40.88, 12.67] χ2(3) = 4.45, p = 0.22 

      
Feature Type x 
Pathway 

-29.12 
(-1.59) 

31.00 
(1.46) -0.94 [-89.89, 31.64] χ2(3) = 3.22, p = 0.36 

      
Hemispheric 
Projection x 
Pathway 

-78.61 
(-3.76) 

52.65 
(2.48) -1.49 [-181.81, 24.58] χ2(1) = 1.21, p = 0.27 
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Presentation Time x 
Feature Type x 
Hemispheric 
Projection 

5.92 
(1.52) 

8.40 
(3.95) 0.71 [-10.54, 22.37] χ2(10) = 12.56, p = 0.25 

      
Presentation Time x 
Feature Type x 
Pathway 

19.53 
(1.01) 

18.98 
(8.94) 1.03 [-17.66, 56.73] χ2(10) = 12.73, p = 0.24 

      
Presentation Time x 
Hemispheric 
Projection x 
Pathway 

44.71 
(1.95) 

32.29 
(1.52) 1.39 [-18.58, 107.99] χ2(4) = 4.28, p = 0.37 

      
Feature Type x 
Hemispheric 
Projection x 
Pathway 

15.15 
(7.85) 

19.22 
(9.05) 0.79 [-22.51, 52.82] χ2(10) = 11.38, p = 0.33 

      
Presentation Time x 
Feature Type x 
Hemispheric 
Projection x 
Pathway 

-8.71 
(-4.15) 

19.22 
(5.56) 0.74 [-31.84, 14.42] χ2(25) = 27.29, p = 0.34 

      
 
Note. Parentheses represent linear regression values in log transformation. 
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Table 8 

Linear regression of response times to congruency decisions as a function of feature type and 

hemispheric projection at the two presentation time points. 

Predictor β t-value p-value Cohen’s d 95% CI of β 
                                                        Presentation Time 1 (50/60 ms) 
      

Basic Level x 
High-Prototypical 

-34.60 
(-1.52) -3.69 p = 0.006 -0.26 [-63.06, -6.14] 

Basic Level x 
Low-Prototypical 

-49.19 
(-2.21) -4.43 p < 0.003 -0.32 [-82.87, -15.52] 

Basic Level x 
Superordinate 

14.43 
(0.73) 1.74 p = 0.66 0.06 [-10.67, 39.52] 

Superordinate x 
High-Prototypical 

-49.03 
(-2.49) -6.03 p < 0.001 -0.32 [24.38, 73.67] 

Superordinate x 
Low-Prototypical 

-63.62 
(-3.12) -6.19 p < 0.001 -0.38 [32.45, 94.79] 

High-Prototypical x 
Low-Prototypical 

-14.59 
(-2.95) -1.44 p = 0.84 -0.05 [-45.27, 16.08] 

      

Presentation Time 2 (190/200 ms) 

      
Basic Level x 
High-Prototypical 

-39.24  
(-1.82) -4.49 p < 0.001 -0.28 [-65.74, -12.75] 

Basic Level x 
Low-Prototypical 

-64.70  
(-3.12) -6.12 p < 0.001 -0.38 [-96.76, -32.65] 

Basic Level x  
Superordinate 

  4.49 
(0.53) 0.59 p = 1.00 0.02 [-27.72, 18.73] 

Superordinate x 
High-Prototypical 

 -34.75 
(-1.82) -4.69 p < 0.001 -0.25 [12.27, 57.23] 

Superordinate x 
Low-Prototypical 

  -60.21 
 (-3.12) -6.19 p < 0.001 -0.36 [30.74, 89.68] 

High-Prototypical x 
Low-Prototypical 

  -25.46  
 (-1.30) -2.68 p = 0.13 -0.10 [-54.22, 3.30] 

 
Note. Parentheses represent linear regression values in log transformation. 
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Figure 8. Participants’ mean response times to congruency decisions (a) for pictures projected to 

the left hemisphere and for words projected to the right hemisphere, and (b) for pictures 

projected to the right hemisphere and for words projected to the left hemisphere. 
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Altogether, results are a replication of those obtained in Experiment 1: participants’ RTs 

were faster (a) when pictures were paired with superordinate features or basic level labels, across 

both presentation times, (b) when picture-word pairs were presented for 190/200 ms, and (c) 

when pictures and words were projected to the right and left hemispheres, respectively. 

Moreover, regarding visual pathways, responses were faster when picture-word pairs were 

projected through ipsilateral visual pathways. These results suggest that the content which gives 

access to object concepts may rely on ‘whole’ objects or lexical labels representing whole 

objects at the superordinate or basic level, not constituent features. 
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General Discussion 

The goal of the present study was to investigate the nature of object concepts by probing 

what kind of information is accessed at the moment of concept tokening. In particular, we sought 

to investigate two overarching questions: (1) what kind of information is accessed when we 

token object concepts—do we gain access to object concepts ‘holistically’, or do we gain access 

to their constituent properties; and (2) when is that information accessed—that is, what is the 

time course of conceptual access for objects?  

In Experiment 1, we investigated these questions by employing a PWPC task with short 

presentation duration times (50/60 ms or 190/200 ms), thus probing at relatively “early” and  

“late” points in the time course of conceptual processing. In Experiment 2, we further 

investigated the two overarching questions while controlling for potentially overlapping retinal 

projections during early stages of processing, by employing a novel psychophysical method 

using anaglyph glasses. This method allowed us to investigate the potential differences in 

hemispheric representations for word labels and objects, across ipsilateral and visual pathways.  

We hypothesized that, if object concepts are represented through sets of constituent 

features, participants should give more accurate and faster responses when presented with high-

prototypical features, regardless of the presentation duration. Conversely, if concepts are 

represented through ‘atomic’, non-decompositional primitive representations, participants should 

give more accurate and faster responses when presented with basic level labels. Further, we 

hypothesized that high-prototypical features would yield the greatest accuracy and shortest RTs 

only in the longer presentation duration condition (i.e., 190/200 ms)—given that features should 

only be accessed after concept tokening.  
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Regarding congruency decisions, in both Experiment 1 and 2, participants responded 

with greater accuracy when stimuli were presented for 190/200 ms, rather than 50/60 ms. But 

more importantly, in the short presentation time condition (i.e., 50/60 ms), pictures presented 

with superordinate features were judged with greater accuracy than those paired with high- or 

low-prototypical features. A similar effect was also found in the longer presentation time 

condition (i.e., 190/190 ms), whereby participants responded with greater accuracy to 

superordinate and basic level word targets, in comparison to high- and low-prototypical feature 

targets. It is important to mention that, while accuracy to basic level labels was numerically 

much greater than that of high-prototypical features in the short presentation time condition 

(mean difference of  approximately 13%)—which is arguably the timepoint of concept 

tokening—they did not differ from each other statistically. This could be taken to suggest that the 

content represented by object labels and high-prototypical feature labels are equally good entry 

levels for concept tokening. However, given that effect size between the two target types was 

appreciable (Experiment 1: d = 0.71; Experiment 2: d = 0.78), this may nevertheless suggest that 

basic level labels engender a slight conceptual access advantage over high-prototypical features. 

Crucially, given that participants were statistically more accurate when pictures were paired with 

superordinate features, at both presentation timepoints, this suggests that what might first be 

accessed during concept tokening is content related to ‘whole’ objects (e.g., basic shape). The 

lack of statistical difference in congruency accuracy, and the relatively small effect size measures 

between superordinate and basic level labels (Experiment 1: d = 0.18; Experiment 2: d = 0.04) 

could also be taken to support this idea—especially since both arguably represent ‘whole’ 

objects or whole classes of objects rather than a particular property of an object. What seems to 

be clear from the data is that no prototypicality effects were observed in either presentation time 
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conditions. Moreover, if concepts were represented through sets of features, we should have 

observed greater accuracy for pictures that were paired with high-prototypical features, 

regardless of presentation time condition, given that the picture-word pair supposedly points to 

the same concept (e.g., BARK  DOG). However, the results we obtained do not support this 

idea. Rather, during the earliest moments of concept tokening, participants’ responses are more 

accurate when pictures are paired with superordinate features. This effect was also found in the 

longer presentation time condition (i.e., 190/200 ms), with basic level labels also engendering 

greater accuracy than pictures paired with high- and low-prototypical features.  

Regarding decision latencies, results obtained from both experiments also warrant similar 

interpretations. As predicted, participants RTs were faster when picture-word pairs were 

presented for 190/200 ms, rather than 50/60 ms. More importantly, across both presentation time 

conditions, participants RTs were faster when pictures were paired with superordinate or basic 

level labels, in comparison to high- or low-prototypical features. There were no differences in 

RTs between superordinate and basic level labels, at both presentation timepoints. It is important 

to mention, however, that the effect sizes obtained from all RTs analyses are relatively small 

(range: 0.02-0.48). Thus, although presentation times and target types seem to significantly affect 

participants RTs to congruency decisions, the magnitude of this effect may be minimal. 

Moreover, it is also important to mention that causation should ensue when interpreting results 

stemming from decision latencies, given that the log-transformations changed the metric of the 

variable (see Osborne, 2002).  
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Overall, our results seem to suggest that the time-course of concept tokening may first 

rely on an early access to category information at the superordinate level (e.g., ANIMAL), which 

is then followed by information related to the objects’ basic-level label (DOG) and its features 

(BARK, FUR, etc.). Moreover, although our study employed a picture-word congruency task—

which is arguably more externally and ecologically valid than other paradigms, whereby 

participants were not primed to lock into pre-determined categories—the superordinate 

advantage obtained in our study has also been found in other studies employing go/no-go and 

categorization tasks (Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2014; Poncet & Fabre-Thorpe, 

2014; Rogers & Patterson, 2007; Large, Kiss, & McMullen, 2004), and under ultra-rapid 

categorization conditions (Fabre-Thorpe et al., 2003; Thorpe, Fize, & Marlot, 1996; Macé et al., 

2009; VanRullen & Thorpe, 2001a, 2001b). 

One possible interpretation for why high- and low-prototypical features did not lead to 

greater accuracy and shorter RTs than superordinate and basic level labels may be that different 

feature subcategories (e.g., dimension, part-to-whole, body-part, visual, concept-association—

see Table 2) preferentially token particular kinds of concepts. The differences in feature 

subcategories preferentially triggering different kinds of concepts may also vary across abstract 

and concrete concepts (e.g., see Wiemer-Hastings & Xu, 2005). In the approach taken here, all 

objects were concrete and the most important feature was taken to be the high-prototypical one—

viz., the one most frequently listed for that object. However, it is possible that DOG is primarily 

accessed via body-parts, such as TAIL, or PAWS, or through a particular quality, such as 

LOYAL. Thus, by collapsing all feature subcategories across the four target types (i.e., basic 

level, superordinate, high-prototypical, and low-prototypical), this may have reduced any 

advantage brought about the high- and low-prototypical features. An analysis of participants 
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accuracy and RTs by feature type could help clarify whether concept tokening varies as a 

function of feature kind (e.g., the feature tail or paw may preferentially token DOG). This would 

potentially allow us to determine whether the content represented at the superordinate and basic 

level always gives preferential access to concept tokening, or whether concept tokening varies as 

a function of feature kinds—whereby some object concepts (e.g., man-made objects, CHAIR) 

may be preferentially tokened by some feature subcategory (e.g., functional, for-sitting).  

Another possible interpretation is that pictures paired with superordinate and basic level 

labels may trigger the same ‘holistic’ concept (e.g., ANIMAL and DOG  DOG), and thus lead 

to a priming advantage. Conversely, pictures presented with high- and low-prototypical features 

may not point to the same concept (e.g., the feature bark tokens BARK, not DOG). As a result, 

when pictures are presented with high- or low-prototypical features, there is a cost in congruency 

decisions—both in terms of accuracy and RTs—associated with having to generate and inference 

to determine how the feature and picture are related to each other.  

It is also possible that the superordinate and basic level labels trigger their own 

conceptual representations (i.e., animal  ANIMAL, and dog  DOG), but the time-course of 

tokening is relative to the quality and availability of the perceptual features that are required for 

congruency decisions, across the four target types (see Mack & Palmeri, 2011). That is, akin to 

ultra-rapid categorization paradigms, it is possible that the paradigm we employed—and the brief 

presentation times—limited the quality and amount of perceptual information required for 

participants to judge the congruency of categories that may depend on the processing of finer 

perceptual details. As such, it is plausible that superordinate labels yielded a greater accuracy and 

RT advantage over other target types because tokening concepts at the superordinate level 

requires less perceptual processing, and thus gives a faster direct entry to the representation. 
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However, in the case of basic level labels, high-prototypical, and low-prototypical features, 

additional exposure time may be required for participants to encode finer perceptual details that 

might be necessary for congruency decisions—with basic level labels requiring less additional 

time than features. The idea that more perceptual time would be required may be supported by 

the fact that, across both experiments, accuracy and RTs to basic-level labels were greater than 

high-prototypical features, only in the longer presentation time condition. No differences were 

found in the shorter presentation duration condition.  

Taken together, this pattern of results would suggest that the perceptual information 

available during the early moments of object recognition may preferentially token object 

representations at the superordinate level, whereby an initial stage of superordinate-level 

categorization precedes categorization at other levels (e.g., Thorpe et al., 1996). However, we are 

cautious with this interpretation—in particular because results from both experiments failed to 

reveal differences in accuracy and RTs between superordinate and basic level labels, in either 

presentation time conditions. Perhaps, the presentation times employed in the short condition 

(i.e., 50/60 ms) hovered the timepoint at which perceptual information first began to make 

contact with object representations at the basic-level—while superordinate representations were 

already tokened after about 30 ms. This might explain why superordinate features always yielded 

greater accuracy and RTs over high- and low-prototypical features, whereas basic-level labels 

only reached that advantage in the longer presentation condition. That said, one important 

direction for future research would be to employ the present paradigm across multiple 

presentation times—ranging, e.g., from 30 ms to 5000 ms. Nevertheless, what seems to be clear 

is that our results do not support the proposal that an initial stage of basic-level categorization 

precedes categorization at other levels (e.g., Grill-Spector & Kanwisher, 2005).  
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Regarding hemispheric projections, both experiments yielded the same results: 

participants’ responses were faster and more accurate when picture-word pairs were projected to 

the right and left hemisphere, respectively. It is important to note that these results were obtained 

even after controlling for the potential overlap between retinal projections during early stages of 

processing, in Experiment 2. Altogether, these results suggest that, contra to the bilateral 

projection theory (Lavidor & Walsh, 2004; Jordan, Paterson, Stachurski, 2008), there may not be 

an area of substantial overlap around the fovea, whereby information is simultaneously projected 

to both hemispheres. Rather, the strong LH advantage found for word targets—an effect amply 

shown in the literature (e.g., Finkbeiner, Almeida & Caramazza, 2006; Bub & Lewine, 1988; 

Hunter & Brysbaert, 2008)—suggests that there may be a perfect vertical split at the fovea. The 

accuracy and RT advantage for words and pictures projected to the LH and RH, respectively, 

might also be due to the words’ supposedly direct access to the VWFA—the area specialized for 

word forms in the LH (Cohen et al., 2000, 2002; Cohen & Dehaene, 2004). Consequently, words 

projected to the RH may have engendered lower accuracy and longer RTs due to the required 

inter-hemispheric transfer of information—a transfer that is hypothesized to take minimally 10 

ms (Cohen et al., 2000).  

Moreover, the use of anaglyph glasses in Experiment 2 also brought about a novel 

methodological contribution. Namely, combining anaglyphs with dichoptic presentations 

allowed us to take advantage of binocular rivalry to investigate the relative contribution of visual 

pathways on the hemispheric representations of objects and word labels. Results showed that 

participants were significantly more accurate when picture-word pairs were presented through 

ipsilateral visual pathways. While our results are similar to those obtained by de Almeida and 

colleagues (2020), they are at odds with those obtained by Obregón and Schillcock (2002).  
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One interpretation for these conflicting results may be attributed to differences in the 

tasks employed. While our study employed a congruency judgment task, Obregón and Schillcock 

(2002) used a perceptual task, instructing participants to ‘name any word or letters they saw’ (p. 

3281). Arguably, recalling a sequence of letters—in trials when participants chose to respond in 

that manner—can be achieved without necessarily tokening a conceptual representation. In our 

task, however, participants must token the representation of both, pictures and words, in order to 

make their congruency decisions. Moreover, our results may be congruent with those obtained 

by de Almeida et al. (2020) because the task they employed—namely, a lexical decision task—

also relies on the tokening of word representations. As such, it is possible that the results 

obtained by Obregón and Schillcock (2002) reflect different underlying cognitive processes than 

those obtained by de Almeida et al. (2020) as well as those obtained in the present study. 

Another possible interpretation for the discrepancy between our results and those 

obtained by Obregón and Schillcock (2002) may be in the nature of the stimuli that both studies 

employed. For instance, Obregón and Schillcock separated four-letter words into two halves, 

which consequently always projected two ‘non-words’ to each hemisphere. In our study, 

however, each hemisphere was always projected a real word of English. This was also the case in 

the main experimental manipulations of de Almeida et al.’s (2020) study (e.g., legally split 

compounds: BLUE-BERRY; legally split pseudo-compounds: SHAM-ROCK). Thus, it is 

possible that during the earliest moments of visual word recognition, the conceptual system is 

attuned to detect morphemes—rather than letter features (e.g., lines). Consequently, and perhaps 

more importantly, it may be the case that words (i.e., morphemes) projected through ipsilateral 

pathways engender greater accuracy because the temporal hemiretina of the left eye directly 

projects its representations to area V1 in the LH—and its higher projections, including the 
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VWFA—whereas projections from the contralateral pathways do not directly project their 

representations to the LH. Rather, projections from contralateral pathways require information to 

cross-over at the optic chiasm, which may engender a cost. Further, this cost may be exacerbated 

when word representations are projected to the RH via contralateral pathways, requiring an 

additional inter-hemispheric transfer at the corpus callosum. Altogether, it seems that the relative 

contribution of visual pathways on the hemispheric representations of objects and word labels is 

dependent on the content of the stimuli that is being projected—not on the sheer density of 

ganglion cells in the contralateral visual pathway.  

In summary, we conducted two experiments to investigate the nature of conceptual 

tokening—whether concepts are accessed via the content of lexical labels representing whole 

objects or through the content of lexical labels representing their constituent conceptual 

properties—using a picture-word masked priming congruency task with brief exposures (i.e., 

60/60 ms or 190/200 ms). In Experiment 1, participants were presented with picture-word pairs 

and had to judge whether the stimuli were related to each other. In Experiment 2, we employed a 

novel psychophysical method using anaglyphs, whereby participants completed the same 

picture-word masked priming congruency task while wearing anaglyph glasses. The use of 

anaglyphs allowed us to address functional and neuroanatomical questions, during the earliest 

moments of conceptual tokening. That is, this manipulation allowed us to control for the 

potential overlap between retinal projections during early stages of processing. Crucially, 

combining anaglyphs with dichoptic presentations allowed us to take advantage of binocular 

rivalry to investigate the hemispheric projection of objects and word labels at different levels of 

representation (i.e., basic, superordinate, high-prototypical, and low-prototypical). Results from 

both experiments suggest that, during the earliest moments of recognition, object concepts are 
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tokened ‘holistically’ through lexical labels representing whole objects at the superordinate level, 

not through their constituent features. Importantly, this superordinate advantage was robust 

across both presentation time conditions (i.e., 50/60 ms and 190/200 ms). Also, results from both 

experiments showed greater accuracy for picture-word pairs projected to the right and left 

hemisphere, respectively, supporting a body of literature claiming a RH advantage for visual 

word recognition. These results persisted even after controlling for the potential of spillover 

information at the fovea, in Experiment 2. Furthermore, results revealed greater accuracy for 

stimuli projected through ipsilateral visual pathways—casting doubts on the proposal that 

contralateral pathways lead to processing advantages due to containing a larger density of retinal 

ganglion cells.  

In light of these results, it would be important to briefly revisit the predictions of the 

theories we presented in the introduction and how they fare. We postulated that a theory of 

concepts, which relies on accessing constituent features—in particular, features that are taken to 

carry greater weight, akin to the Prototype theory—should lead to greater accuracy and faster 

responses when pictures are paired with a high-prototypical feature, regardless of the 

presentation duration. Conversely, at the other end of the spectrum, we postulated that theories 

relying on a direct link between an ‘atomic’ concept and full object referents should lead to 

greater accuracy and faster responses to picture-word pairs when words represent whole object 

referents—namely, to pictures paired with basic level labels (e.g., dog  DOG). The pattern of 

results we obtained partially support the atomism view. While we did not predict that 

superordinate labels would yield greater accuracy and shorter RTs than the other target types, in 

the 50/60 ms presentation time condition, these results nevertheless support the atomism view of 

concept representation. In particular, our results seem to suggest that what is represented at the 
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core of concepts is non-decompositional information, given that superordinate and basic level 

labels both select whole objects as their referent. Otherwise, one would have expected 

participants’ responses to be faster and more accurate when pictures were paired with high-

prototypical features at both presentation time conditions. Additionally, since superordinate and 

basic level labels led to faster and more accurate responses than high-prototypical features, at 

both presentation timepoints, it is unclear what is the role features given that they did not seem to 

aid the process of conceptual tokening. It is also difficult for concept theories relying on features 

to establish an analytic/synthetic distinction—that is, to determine which features are tokened as 

a function of the core concept, from those that arise as a function of synthetic entailments, that is, 

those that are contingent on experience. While we cannot determine whether the high-

prototypical (e.g., BARK) and low-prototypical features (e.g., FUR) employed in the present 

study are analytic or synthetic features of the concept (e.g., DOG), it could be the case that a 

concept is a bundle of features, and that one such ‘feature’ is the essential property, viz., that of 

being a dog, or the dogness property. Thus, we can conceive of a conceptual system that has 

DOG as the triggering referent and as the entry point of a set of features (e.g., BARK, TAIL, 

FUR, PAWS). If this were the case, we should have observed prototypicality effects (i.e., greater 

accuracy and short RTs for high-prototypical features) in the 190/200 ms presentation time 

condition. However, the results do not support this interpretation. Rather, basic level (e.g., dog) 

and superordinate labels (e.g., animal) still yielded the greatest accuracy and the shortest RTs, in 

the 190/200 ms presentation time condition.  

Finally, we should return to the main overarching question of the present study: what 

kind of information is accessed when we token object concepts? This question bears on the 

nature of the representation that is accessed when tokening a concept. Altogether, results of the 
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present study seem to support a view of conceptual representation that is, in principle, atomistic. 

We make this proposal because, according to the main brand of atomism (Fodor, 1998), concepts 

are individuated by their referents through some form of ‘nomic, mind-world relation’ (Fodor, 

1998, p. 121). That is, there is a lawful, causal link between a representation and its referent, say, 

an object or event in the world. Consequently, conceptual representations are said to have no 

constituent structure—no necessary properties. The results we obtained are partially in line with 

this view: pictures that are paired with lexical labels representing ‘whole’ referent objects—

namely, superordinate and basic level labels—seem to have preferential access over labels 

representing conceptual features. Interestingly, our results also seem to suggest that the initial 

access to object concepts does not seem to be specific to the token object (e.g., DOG). Rather, 

the content that is initially accessed by object concepts seems to relate, more broadly, to object 

type—that is, category information. Together, this would suggest that conceptual tokening may 

prioritize category information (i.e., type), with information specific to the object (i.e., token) 

immediately following, and information relating to concept features only being accessed once 

object token information is entertained—to wit, ANIMAL > DOG> {DOG PROPERTIES}. It is 

important to note that we do not take these properties—the likes of ANIMAL, DOG, and {DOG 

PROPERTIES}—to be analytic entailments, in the sense that they are not proper inferences 

whose consequent is by necessity entailed by the antecedent. Rather, we take them to be 

conceptual relations, which may be accessed through a system of inferential links. We propose 

that these inferential links may be principled through quasi-logical inferences in the form of 

meaning postulates (see (1); de Almeida & Antal, 2021; de Almeida, 1999).   
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(1)  dog picture  ANIMAL  {visual properties}  DOG 
[ANIMAL(x)] → [DOG(x)]9  
[ANIMAL(x)] → [LIVING THING(x)] 
[DOG(x)] → [BARK(x)] 
[DOG(x)] → [FUR(x)]  
(∀x [P(x)] → [Q(x)])n 

 
As such, while there may be privileged access to type information, whereby dog may first trigger 

ANIMAL—a general property of the referent—it is possible that the token DOG is subsequently 

quickly accessed through a referential link that is more informed on the nature of the referent, 

due to having encoded more perceptual information. This process, we propose, is similar to the 

computation of object representations in structural theories such as Biederman’s (1987), in which 

low-level visual features give rise to the computation of a generalized layout (a type) and only 

then the actual object (token) is identified. Moreover, once ANIMAL and DOG are tokened, 

other properties (e.g., LIVING, ANIMATE, BARK, FUR) may then be accessed through 

meaning postulates, given that these properties may be within the inferential domain of 

ANIMAL and DOG.  

While it is not clear how referential links between an object and its representation—

whether it be type or token—can be extended to non-perceptual content (e.g., JUSTICE, 

BEAUTY, FRIEND), we speculate that these representations too can be grounded through 

inferential links, that is, by chains of referential and inferential connections, not unlike concepts 

attained by historical reference (MOSES, MESOPOTAMIA), beyond the perceptual circle (see 

Fodor & Pylyshyn, 2015). A similar problem arises for concepts that are lexicalized by verbs 

(KILL, RUN, EAT), which are perceptually unbounded and may involve the triggering of 

numerous type/token inferences.  

 
9 Notice that this is not a logical entailment but a representation of the link between ANIMAL 
and DOG triggered upon the computation of more detailed visual features of the object. 
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In summary, the results stemming from our study suggest that concept tokening may rely 

on non-decompositional processes tokening ‘whole’ objects at the superordinate level, and that 

conceptual feature may be processed only after concepts have been accessed. Moreover, we 

suggest that object concepts are represented in the brain by abstract atomic symbols carrying 

information about their superordinate categories or information akin to their generic lexical 

labels, not through their constituent or salient features. While objects might first be accessed via 

their primitive visual properties (i.e., lines, vertices, colour, texture, shape), these properties may 

not be semantically active: they contribute to the object file compilation but not to the 

representation of the concept to which the object file is linked initially. It is only after a general 

property type is established that the token object concept is accessed. Thus, we see ANIMAL 

before we know it is DOG.  

The results of our study also contribute to an understanding of the neuro-cognitive 

resources underlying our ability to interpret what we see, thus providing us with crucial insights 

on how concepts are organized in the brain, and how they interact with other cognitive systems. 

Given that concepts are the basic elements of meaning, understanding their nature and role in 

cognitive processes is key to understanding how the brain stores and processes information.  
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Appendix A 
List of Experimental Materials as well as the Cue Validity, Distinctiveness, and Naming 

Agreement Values Associated with Each Picture 
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ITEM BASIC LEVEL LABEL COUNT SUPERORDINATE FEATURE COUNT HIGH_PROTOTYPICAL FEATURE FEATURE_TYPE COUNT CV DISTINCT LOW_PROTOTYPICAL FEATURE FEATURE_TYPE COUNT CV DISTINCT L/NL

accordion accordion 90 instrument 86 key part-to-whole 36 0.224 0.100 sound sound 14 0.091 0.050 NL

airplane plane 93 transport 47 fly function 43 0.121 0.038 engine part-to-whole 19 0.275 0.143 NL

ant ant 96 insect 86 small dimension 43 0.026 0.006 black colour 18 0.073 0.017 L

apple apple 100 fruit 91 red colour 61 0.086 0.023 juicy taste 26 0.070 0.048 L

asparagus asparagus 83 vegetable 74 green colour 83 0.100 0.027 long dimension 31 0.025 0.008 L

axe axe 91 tool 89 sharp tactile/shape 66 0.110 0.020 metal substance 31 0.014 0.010 NL

ball ball 100 toy 88 round shape 59 0.049 0.007 rubber substance 30 0.309 0.333 NL

balloon balloon 100 toy 57 rubber substance 35 0.361 0.067 light quality 17 0.033 0.009 NL

banana banana 100 fruit 91 yellow colour 87 0.184 0.024 peel part-to-whole 41 0.506 0.091 L

bear bear 100 animal 88 fur substance 49 0.084 0.025 danger quality 18 0.066 0.019 L

bed bed 100 furniture 87 soft quality 40 0.052 0.009 pillow concept-association 20 0.870 0.500 NL

bee bee 91 insect 85 wing body part 38 0.094 0.050 yellow colour 18 0.038 0.024 L

belt belt 92 clothing 48 leather substance 59 0.176 0.037 long dimension 24 0.019 0.008 NL

bicycle bicycle 63 transport 45 wheel part-to-whole 61 0.126 0.059 seat part-to-whole 27 0.144 0.067 NL

bird bird 69 animal 66 small dimension 50 0.030 0.006 chirp sound 12 0.462 0.250 L

boot boot 97 clothing 53 zipper part-to-whole 41 0.621 0.200 warm function 17 0.028 0.019 NL

bottle bottle 98 container 38 glass substance 79 0.167 0.045 clear quality 23 0.173 0.043 NL

bread bread 99 food 97 soft tactile 41 0.053 0.009 loaf substance 18 1.000 1.000 NL

broom broom 100 tool 39 bristle part-to-whole 50 0.230 0.200 wooden material/substance? 18 0.021 0.019 NL

brush brush 100 tool 35 bristle part-to-whole 71 0.327 0.200 hair part-to-whole 23 0.097 0.023 NL

bus bus 100 vehicle 46 wheel part-to-whole 32 0.066 0.059 driver concept-association 15 0.882 0.333 NL

butterfly butterfly 100 insect 83 wing body part 55 0.136 0.050 antenna body part 27 0.208 0.083 L

cake cake 100 food 71 sweet taste 56 0.099 0.032 frost part-to-whole 25 0.926 0.500 NL

camel camel 99 animal 91 hump body part 67 0.971 0.333 tall dimension 21 0.052 0.019 L

candle candle 100 light 41 wax substance 70 0.814 0.200 light function 32 0.062 0.009 NL

cannon cannon 98 weapon 81 wheel part-to-whole 34 0.070 0.059 danger quality 16 0.058 0.019 NL

car car 98 vehicle 52 wheel part-to-whole 42 0.087 0.059 fast quality 20 0.033 0.012 NL

carrot carrot 100 vegetable 81 orange colour 90 0.336 0.048 long dimension 21 0.017 0.008 L

cat cat 99 animal 83 fur substance 40 0.069 0.025 purr sound 14 0.933 0.500 L

celery celery 83 vegetable 76 green colour 84 0.102 0.027 crunch sound 26 0.211 0.053 L

chair chair 100 furniture 89 leg part-to-whole 41 0.062 0.015 back part-to-whole 21 0.538 0.125 NL

cherry cherry 97 fruit 90 red colour 80 0.113 0.023 stem part-to-whole 34 0.126 0.032 L

chicken chicken 81 animal 55 feather substance 57 0.126 0.091 beak body part 25 0.102 0.077 L

church church 93 building 78 steeple part-to-whole 30 0.968 0.500 worship function 14 0.933 0.500 NL

coat coat 64 clothing 94 warm function 50 0.083 0.019 sleeve part-to-whole 12 0.098 0.143 NL

corn corn 99 vegetable 63 yellow colour 68 0.143 0.024 sweet taste 25 0.044 0.032 L

cow cow 95 animal 87 milk function 49 0.605 0.091 udder body part 25 1.000 1.000 L

deer deer 97 animal 88 antler body part 49 0.925 0.250 hoof body part 22 0.125 0.100 L

dog dog 100 animal 84 bark sound 38 0.066 0.025 fur substance 14 0.269 0.038 L

doll doll 74 toy 72 small dimension 29 0.017 0.006 cute quality 15 0.107 0.026 NL

donkey donkey 89 animal 89 tail body part 25 0.039 0.024 gray colour 13 0.087 0.026 L

dress dress 94 clothing 96 long dimension 36 0.029 0.008 woman concept-association 16 0.035 0.111 NL

dresser dresser 76 furniture 85 drawer part-to-whole 46 0.465 0.333 heavy quality 20 0.026 0.009 NL

drum drum 99 instrument 86 loud sound 49 0.082 0.016 music sound 23 0.076 0.067 NL

duck duck 96 bird 52 feather substance 56 0.124 0.091 webbed body part 20 0.408 0.125 L

eagle eagle 85 bird 68 feather substance 36 0.080 0.091 talon body part 16 0.762 0.500 L

ear ear 100 body 58 hear function 54 0.931 0.250 lobe body part 21 0.913 0.333 L

elephant elephant 100 animal 87 large dimension 49 0.057 0.008 big dimension 18 0.043 0.009 L

eye eye 100 body 51 pupil body part 29 1.000 1.000 vision function 14 0.452 0.200 L

fish fish 94 animal 67 fin body part 44 0.629 0.200 water concept-association 15 0.047 0.022 L

flower flower 97 plant 65 petal part-to-whole 47 0.922 0.333 pretty quality 17 0.131 0.026 L

flute flute 87 instrument 90 metal substance 44 0.020 0.010 key part-to-whole 14 0.087 0.100 NL

fly fly 95 insect 83 wing body part 48 0.119 0.050 annoy quality 24 0.436 0.050 L

foot foot 96 body 63 toe body part 58 0.707 0.125 ankle body part 26 0.722 0.250 L

fork fork 100 utensil 55 metal substance 53 0.024 0.010 prong part-to-whole 24 0.333 0.167 NL

fox fox 79 animal 86 fur substance 43 0.074 0.025 sly quality 18 0.900 0.333 L

frog frog 97 animal 55 green colour 52 0.063 0.027 jump motion 24 0.203 0.067 L

giraffe giraffe 98 animal 89 tall dimension 75 0.187 0.019 neck body part 37 0.339 0.071 L

glove glove 100 clothing 66 warm function 53 0.088 0.019 hand function 19 0.110 0.048 NL

goat goat 97 animal 86 horn body part 50 0.242 0.067 hoof body part 25 0.143 0.100 L

gorilla gorilla 77 animal 80 strong quality 44 0.142 0.014 black colour 22 0.089 0.017 L

grapes grapes 100 fruit 91 sweet taste 39 0.069 0.032 vine concept-association 11 0.579 0.167 L

guitar guitar 100 instrument 90 string part-to-whole 78 0.192 0.043 music sound 33 0.110 0.067 NL
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ITEM BASIC LEVEL LABEL COUNT SUPERORDINATE FEATURE COUNT HIGH_PROTOTYPICAL FEATURE FEATURE_TYPE COUNT CV DISTINCT LOW_PROTOTYPICAL FEATURE FEATURE_TYPE COUNT CV DISTINCT L/NL

gun gun 71 weapon 69 metal substance 44 0.020 0.010 barrel part-to-whole 15 0.625 0.200 NL

hammer hammer 99 tool 97 metal substance 47 0.021 0.010 nail concept-association 20 0.081 0.071 NL

hand hand 99 body 64 finger body part 62 0.380 0.067 skin body part 14 0.058 0.027 L

harp harp 96 instrument 87 string part-to-whole 65 0.160 0.043 music sound 29 0.096 0.067 NL

horse horse 99 animal 88 mane body part 35 0.347 0.200 tall dimension 18 0.045 0.019 L

iron iron 99 appliance 44 hot temperature 66 0.207 0.036 metal substance 33 0.015 0.010 NL

kangaroo kangaroo 100 animal 81 pouch body part 50 0.943 0.333 tail body part 23 0.036 0.024 L

kite kite 100 toy 72 string part-to-whole 57 0.140 0.043 light quality 17 0.033 0.009 NL

ladder ladder 98 tool 76 tall dimension 38 0.095 0.019 long substance 16 0.013 0.008 NL

leaf leaf 99 plant 45 green colour 45 0.054 0.027 fall concept-association 21 0.656 0.111 L

lemon lemon 95 fruit 89 yellow colour 77 0.162 0.024 juicy taste 20 0.054 0.048 L

lion lion 99 animal 86 mane body part 45 0.446 0.200 fur substance 20 0.034 0.025 L

mitten mitt 81 clothing 68 warm function 83 0.138 0.019 soft tactile 27 0.035 0.009 NL

monkey monkey 91 animal 79 tail body part 44 0.068 0.024 smart quality 15 0.192 0.030 L

motorcycle motorcycle 93 vehicle 51 wheel part-to-whole 46 0.095 0.059 danger quality 18 0.066 0.019 NL

nail nail 98 tool 55 metal substance 60 0.027 0.010 small dimension 22 0.013 0.006 NL

necklace necklace 91 jewelry 73 pearl concept-association 42 0.808 0.500 expensive quality 20 0.175 0.027 NL

onion onion 99 vegetable 80 round shape 24 0.020 0.008 root part-to-whole 10 0.204 0.143 L

orange orange 87 fruit 88 orange colour 49 0.183 0.048 peel part-to-whole 15 0.185 0.091 L

ostrich ostrich 90 bird 61 feather substance 46 0.102 0.091 beak part-to-whole 20 0.082 0.077 L

owl owl 100 bird 61 feather substance 46 0.102 0.091 beak body part 22 0.090 0.077 L

pants pants 98 clothing 98 long dimension 47 0.038 0.008 leg part-to-whole 18 0.027 0.015 NL

peach peach 84 fruit 86 sweet taste 53 0.093 0.032 round shape 23 0.019 0.008 L

peacock peacock 96 bird 62 color visual 65 0.136 0.014 beautiful quality 17 0.130 0.019 L

pear pear 97 fruit 86 green colour 52 0.063 0.027 stem part-to-whole 14 0.052 0.032 L

penguin penguin 100 animal 57 black colour 32 0.130 0.017 flightless motion 16 0.533 0.250 L

pepper pepper 94 vegetable 72 green colour 49 0.059 0.027 red colour 21 0.030 0.023 L

piano piano 100 instrument 87 key part-to-whole 55 0.342 0.100 music sound 28 0.093 0.067 NL

pig pig 96 animal 88 pink colour 34 0.327 0.043 heavy dimension 12 0.016 0.009 L

pineapple pineapple 100 fruit 89 sweet taste 51 0.090 0.032 juicy taste 25 0.068 0.048 L

pliers pliers 83 tool 98 metal substance 70 0.031 0.010 grip tactile 27 0.338 0.053 NL

plug plug 92 electric 58 prong part-to-whole 44 0.611 0.167 cord concept-association 22 0.293 0.111 NL

rabbit rabbit 89 animal 89 ear body part 42 0.255 0.036 hop motion 21 0.273 0.200 L

raccoon raccoon 96 animal 90 fur substance 31 0.053 0.025 small dimension 13 0.008 0.006 L

refrigerator fridge 100 appliance 77 cold temperature 71 0.297 0.020 food concept-association 22 0.104 0.018 NL

rhino rhino 100 animal 89 horn body part 74 0.357 0.067 large dimension 34 0.039 0.008 L

ring ring 100 jewelry 75 round shape 38 0.031 0.008 expensive quality 16 0.140 0.027 NL

rocking chair 81 furniture 88 rock function 55 0.705 0.167 wood substance 28 0.036 0.015 NL

sandwich sandwich 99 food 99 bread part-to-whole 58 0.682 0.167 taste taste 28 0.088 0.023 NL

saw saw 100 tool 96 sharp tactile/shape 67 0.112 0.020 handle part-to-whole 31 0.028 0.015 NL

sheep sheep 79 animal 86 wool substance 64 0.451 0.059 white colour 27 0.051 0.014 L

shirt shirt 99 clothing 100 button part-to-whole 47 0.159 0.048 soft quality 13 0.017 0.009 NL

shoe shoe 98 clothing 68 lace part-to-whole 52 0.732 0.111 heel part-to-whole 24 0.348 0.167 NL

skirt skirt 74 clothing 95 long dimension 51 0.041 0.008 fabric substance 19 0.113 0.037 NL

skunk skunk 99 animal 88 smell smell 43 0.173 0.023 stripe visual 22 0.087 0.063 L

snail snail 97 animal 55 slime quality 71 0.573 0.071 small dimension 18 0.011 0.006 L

sock sock 100 clothing 95 warm function 57 0.095 0.019 cotton material/substance? 25 0.214 0.043 NL

spoon spoon 100 utensil 46 metal substance 61 0.027 0.010 handle part-to-whole 22 0.020 0.015 NL

squirrel squirrel 99 animal 86 fur substance 36 0.062 0.025 cute quality 11 0.079 0.026 L

sweater sweater 79 clothing 97 warm function 77 0.128 0.019 soft tactile 27 0.035 0.009 NL

table table 99 furniture 91 leg part-to-whole 45 0.068 0.015 sturdy quality 17 0.071 0.012 NL

tennis racket 97 sport 59 handle part-to-whole 36 0.032 0.015 net concept-association 16 0.889 0.333 NL

tie tie 100 clothing 76 stripe visual 36 0.142 0.063 business concept-association 12 0.571 0.250 NL

tiger tiger 98 animal 86 stripe visual 65 0.256 0.063 whisker body part 18 0.122 0.077 L

toaster toaster 99 appliance 69 electric quality 38 0.178 0.059 bread concept-association 19 0.224 0.167 NL

tree tree 97 plant 59 leaf part-to-whole 39 0.225 0.059 branch part-to-whole 20 0.714 0.250 L

trumpet trumpet 88 instrument 88 loud sound 50 0.084 0.016 horn part-to-whole 16 0.077 0.067 NL

turtle turtle 97 animal 67 shell body part 65 0.328 0.100 hard quality 9 0.016 0.007 L

vest vest 95 clothing 99 button part-to-whole 61 0.206 0.048 pocket part-to-whole 30 0.213 0.125 NL

violin violin 78 instrument 86 string part-to-whole 72 0.177 0.043 music sound 28 0.093 0.067 NL

wagon wagon 88 toy 66 wheel part-to-whole 63 0.130 0.059 metal substance 22 0.010 0.010 NL

watch watch 100 accessory 49 time dimension 42 0.506 0.111 hand part-to-whole 18 0.104 0.048 NL

watermelon melon 90 fruit 84 seed part-to-whole 51 0.271 0.063 green colour 13 0.016 0.027 L

wheel wheel 100 transport 33 round shape 68 0.056 0.008 wood substance 23 0.030 0.015 NL

zebra zebra 100 animal 89 stripe visual 81 0.319 0.063 hoof body part 29 0.166 0.100 L
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Appendix B 
General Guidelines and Checklist for Participating in Experiments at Home 
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Participating in experiments at home 
General Instructions 

 
First, we would like to thank you very much for agreeing to participate in our experiments. It is thanks 
to the dedication of thousands of individuals like you that we are able to advance knowledge on how 
language and other cognitive systems work in the brain.  
 
We normally conduct our experiments in the lab. However, due to COVID-19, we are trying to adapt 
to new safety measures by mimicking as much as possible the conditions under which our experiments 
are normally run. 
 
The series of tasks you agreed to participate in require full compliance with the instructions you see 
before each task begins. But they also require adherence to some general guidelines on how you set 
up your workspace (computer, chair, desk, ambient light, etc.) and how you prepare yourself to 
participate in the tasks.  
 
The usual setup of a testing station in the lab includes a desk with a computer monitor and a response 
box (with just a few buttons) or a keyboard, in a dark or dimly-lit room. Different experiments require 
other equipment such as noise-cancelling headphones, microphone, a chin/head rest, etc. For the tasks 
you will be participating in, we strongly suggest you follow the few simple guidelines we provide 
here. This is important because they will allow us to collect data with the least variability across 
individuals as possible. Of course, different participants will have different set ups but adherence to 
these guidelines assure us that the data we collect reflect as much as possible the experimental 
conditions, not those related to your particular setting. 
 
You will be participating in a series of three tasks. Each task takes roughly 20 to 45 minutes to 
complete. You will have to complete these tasks over the course of three days, completing one 
task per day. 
  
These tasks will require you to look at words, pictures, or words and pictures simultaneously. For two 
of the three tasks, you will need to complete the tasks, while wearing anaglyph glasses. Anaglyph 
glasses are similar to 3D glasses, with one blue lens and one red lens. 
  
 
The series of tasks that you would participate in will require full compliance with some general 
guidelines on how you set up your workspace (computer, desk, light, etc.) and how you prepare 
yourself to participate in the tasks. All of the guidelines are clearly detailed in the set of instructions 
below: 
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1. Dark, quiet room.  It is important that you set up your computer in a dimly-lit, if not dark room, 
away from direct light sources such as lamps or windows. The darker the room, the better. The room 
should also be quiet, away from other distractions (people, TV, phone, etc.). Please put your phone in 
do-not-disturb. 
 
2. Sit comfortably; hands comfortably reaching your keyboard.  It is important that you sit in a 
comfortable position. The tasks may last from 20 min to about 45 min. During this time it is important 
that you avoid fatigue or leg cramps or any other physical discomfort that may be caused by prolonged 
sitting in an improper position.  
 
3. Proper position in relation to your computer.  The tasks require that you sit in front of your 
computer screen such that the tip of your nose is at about the same height as the center of your screen. 
The distance may vary. If your screen is between 13 and 16’’ (inches) diagonally, the tip of your nose 
should be about 40 cm (16 inches) from the screen. For larger computer screens this distance should 
be larger--from about 45 cm to a maximum of 56 cm--again, measured from the tip of your nose to the 
center of the screen. 
 
4. Only your Internet browser (Chrome, Safari, Firefox, etc.) should be on. These tasks are time-
sensitive and having other applications running together with your browser may affect the presentation 
rate of stimuli as well as your responses. So, please, quit all applications except your browser. Also 
put your computer in ‘do not disturb’ mode so that you don’t get notifications during the experiment. 
Please make sure that your internet is active because the browser will be fetching stimuli to be 
presented to you in real time. 
 
5. Before you begin.  As we mentioned, each task will have its own instructions. But it is important 
that you prepare in advance for these tasks, in addition to complying with the three guidelines above. 
 
5.1 Computer/Internet information. Please have a pencil or pen with you and fill-out the Computer 
and Internet Resources form that you received in your kit. It’s important that you fill out that 
information before you start the tasks. In the beginning of the first task you will be required to enter 
that information on the electronic form, so you can copy that information from the printed form you 
received. You will not have the opportunity to gather that information once the tasks begin. 
 
5.2 Restroom! The task may take from 20 min to 1 hour. And once it begins, ideally you should not 
take a ‘bathroom break’, though you may have the opportunity to do so if needed during short breaks 
programmed within the tasks. 
 
5.3 Anaglyph glasses with you; and how to wear them. For the tasks that require you to wear the 
included anaglyph glasses, please make sure that they are on your desk. You will be prompted with 
instructions on when to wear them. And when you do wear them, please make sure that they are firmly 
positioned such that the top edges touch your eyebrows. If you wear corrective glasses, the anaglyph 
glasses can go over them (most models) comfortably, though you may not be able to push them all the 
way against your eyebrows. Just make sure that they are comfortable throughout the tasks. 
 
Note about safety: The anaglyph glasses are perfectly safe to wear for several hours. They simply 
filter different light waves (‘colors’) from each eye. They have been used in experiments and, more 
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famously, in movie theaters and science centers for over a century. The tasks we designed have short 
breaks and you are free to take the glasses off during those breaks, putting them on again before you 
continue. However, if at any time you experience any discomfort, you should discontinue the 
experiment. 
 
After you completed all three tasks: We will assign credits at the end of every week. Therefore, you 
can expect a delay before receiving your credit. 
 
If, at any moment, have questions regarding the experiment, please feel free to contact us at 
concordia.coglab@gmail.com. Once again, we thank you for your participation! 
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Participating in experiments at home 
Checklist 

 
Here is a checklist of the things you will need to complete for this experiment.  

Please be sure to do them in this order. 
__________________________________________________________________________ 
 
 
1. Fill out the Computer and Internet Configuration Questionnaire.  
It is important that you complete this first as you will need to enter these values in the consent form.  
 
I confirm that I have filled out the Computer and Internet Configuration Questionnaire:_____  
 
2. Fill out the Consent Form.  
The link to the consent form has been provided to you in the email we sent you.  
Should there be any issues, you can access the consent form by typing this address: 
https://yalesurvey.ca1.qualtrics.com/jfe/form/SV_enBBib5veEaLDOC 
 
I confirm that I have filled out the Consent Form: ______ 
 
3. Participate in the first task.  
The two links for this task will have also been provided to you in the email we sent you. Specifically, 
under “TASK ONE”, be sure to click “LINK 1”. 
This will send you to the first part of the first task.  
Once you have completed “LINK 1”, please click “LINK 2”.  
Once you have completed both links, take a break and complete the second task the following day.  
 
I confirm verifying in the email whether this task requires the use of anaglyphs glasses:_____  
 
I confirm that I have completed both, LINK 1 and LINK 2: ______ 

 
4. Participate in the second task.  
The second task requires you to complete one link.  
This link has also been provided to you in the email we sent you.  
Specifically, under “TASK TWO”, be sure to click “LINK 3”.  
This will send you to the second task.  
It is important that you wear the anaglyph glasses for this task.  
Once you have completed the second task, take a break and complete the last task the following day.  
 
I confirm that I am wearing the anaglyph glasses to complete the second task: _____ 
I confirm that I have completed LINK 3: ______ 

https://yalesurvey.ca1.qualtrics.com/jfe/form/SV_enBBib5veEaLDOC
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5. Participate in the third task.  
The last task requires you to complete two links.  
These links have been provided to you in the email we sent you.  
Specifically, under “TASK THREE”, be sure to click “LINK 4”.  
This will send you to the first part of the third task.  
Once you have completed “LINK 4”, please click “LINK 5”.  
Once you have completed both links, you have completed the experiment.  
 
I confirm verifying in the email whether this task requires the use of anaglyphs glasses:_____ 
 
I confirm that I have completed both, LINK 4 and LINK 5: ______ 
 
You have now completed the experiment. Your SONA credit will be assigned to you on the 
weekend (Saturday or Sunday) following the day you completed the experiment. 
 
 If you have questions regarding the experiment, please feel free to contact us at 
concordia.coglab@gmail.com. Once again, we thank you for your participation! 
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Appendix C 
Computer and Internet Configuration Questionnaire 
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Computer and Internet Configuration Questionnaire 
 

Thank you for agreeing to participate in our study. 

 

This experiment relies on time-sensitive measures (e.g., the time it takes to press a button, fast 

presentation of words and pictures). Therefore, we need to gather information about your 

computer hardware specifications and your internet resources. This will allow us to analyze the 

responses of all participants taking into account their computer, screen, and internet speeds.  

 

Please take a moment to answer the following questions to the best of your knowledge. You may 

need some time to gather this information. But it is essential that you have these answers with 

you before the beginning of the experiment. Notice that, as stated in the consent form, your 

answers to these and other questions will be coded and they won’t be traced back to you in 

particular. Again, this information will allow us to analyze the data from the study more 

accurately. If you do not know the answer to a particular question, please write “NA”.  

 

Section 1: Computer Hardware Specifications 

 
(a) What is the make and model of your computer (e.g., “Macbook Pro 13 early 2020”, “Acer 

Swift 3”, “Dell Inspiron 15 7000”, “Lenovo thinkPad X”) 

___________________________________________________________________ 

 

(b) What is the current RAM (memory) configuration of your computer ? (e.g., 4, 8, 16 GB) 

___________________________________________________________________ 

 

(c) What is your computer’s operating system? (e.g., Windows 10, Linux Ubuntu 20, MacOS 

10.15.7) 
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___________________________________________________________________ 

 

(d) What is the built-in display size of your monitor? (e.g., 13.3, 15 inches) 

___________________________________________________________________ 

 

(e) What is the resolution of your monitor display? (e.g., 2560 x 1600) 

___________________________________________________________________ 

 

(f) What is the refresh rate of your monitor (60Hz)?  

___________________________________________________________________ 

 

(g) If you use a laptop, do you connect it to an external monitor? If so, what is the make and 

model of this external monitor? 

___________________________________________________________________ 

 

Section 2: Internet Resources 
(a) Which internet company and download speed do you use? (e.g., Videotron, 100 MBPS) 

___________________________________________________________________ 

 

(b) Which internet browser do you use? (e.g., Chrome, Firefox, Safari) We recommend using 

Google Chrome for this experiment. 

___________________________________________________________________ 

 

If there are any special circumstances regarding your computer (e.g., failing keys, flickering 

images) or your internet connection (e.g., intermittent connection, under 20 MBPS speeds), 

please describe below. 

_______________________________ 
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Appendix D 
Exploratory Analyses 
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Experiment 1: Multiple regressions for cue validity and feature distinctiveness values, for 

high- and low prototypical features 

Results from the first set of analyses showed that, across high-prototypical feature types, a model 

containing cue validity and feature distinctiveness values significantly predicted participants’ 

accuracy on congruency decisions (F(2, 127) = 6.13, p = 0.003)—although they accounted for 

only 8% of the variability in participants’ accuracy (adjR2 = 0.075). Further, feature 

distinctiveness was found to be a marginally significant predictor for participants’ accuracy (β = 

-0.26, p = 0.06), accounting for approximately 16% of the variability. However, cue validity 

accounted for only 3% of the variability observed in participants’ accuracy (β = -0.05, p = 0.71), 

and was thus not a statistically significant predictor. Conversely, a model containing the same 

predictors, across low-prototypical features, was shown not to significantly predict participants 

accuracy (F(2, 127) = 1.69, p = 0.19), accounting for only 1% of the variability (adjR2 = 0.011). 

Further, results also showed that cue validity and feature distinctiveness values were not 

statistically significant individual predictors for participants’ congruency accuracy (β = -0.05, p 

= 0.77; β = -0.11, p = 0.49, respectively; see Figures 9 and 10). 
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Figure 9. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features, as a function of feature cue 

validity values. The x-axis represents the cue validity values for target items, and the y-axis represents accuracy in percentage.  
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Figure 10. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features, as a function of feature 

distinctiveness values. 
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Experiment 1: Multiple regressions for cue validity and feature distinctiveness values, for 

living and non-living categories 

Results from the second set of analyses showed that, across both categories of living and non-

living things, the models containing cue validity and feature distinctiveness values did not 

significantly predict participants’ accuracy on congruency decisions. Further, feature cue validity 

and feature distinctiveness were not found to be statistically significant individual predictors for 

participants’ congruency (see Figures 11 and 12).
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Figure 11. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features collapsed across living and 

nonliving categories, as a function of feature cue validity values. 
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Figure 12. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features collapsed across living and 

nonliving categories, as a function of feature distinctiveness values.
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Experiment 2: Multiple regressions for cue validity and feature distinctiveness values, for 

high- and low prototypical features 

Results from the first set of analyses showed that, across high-prototypical feature types, a model 

containing cue validity and feature distinctiveness values significantly predicted participants’ 

accuracy on congruency decisions (F(2, 127) = 3.72, p = 0.03)—although accounted for only 4% 

of the variability in participants’ accuracy (adjR2 = 0.041). Further, cue validity and feature 

distinctiveness were not found to be significant individual predictors for participants’ accuracy. 

Similarly, a model containing the same predictors, across low-prototypical features, was shown 

to significantly predict participants accuracy (F(2, 127) = 5.35, p = 0.006), but accounted for 

only 6% of the variability (adjR2 = 0.064). Further, results also showed that cue validity and 

feature distinctiveness values were not statistically significant individual predictors for 

participants’ congruency accuracy (see Figures 13 and 14). 
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Figure 13. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features, as a function of feature cue 

validity values.  
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Figure 14. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features, as a function of feature 

distinctiveness values.  
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Experiment 2: Multiple regressions for cue validity and feature distinctiveness values, for 

living and non-living categories 

Results from the second set of analyses showed that, across both categories of living and non-

living things, the models containing cue validity and feature distinctiveness values did not 

significantly predict participants’ accuracy on congruency decisions. Further, feature cue validity 

and feature distinctiveness were not found to be statistically significant individual predictors for 

participants’ congruency (see Figures 15 and 16).
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Figure 15. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features collapsed across living and 

nonliving categories, as a function of feature cue validity values. 
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Figure 16. Participants’ mean accuracy to congruency decisions for high- and low-prototypical features collapsed across living and 

nonliving categories, as a function of feature distinctiveness values.  
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