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Abstract

Accurate and Real-Time Granular Flow Modeling of Robot-Terrain

Interactions

Amin Haeri, Ph.D.

Concordia University, 2021

An important challenge in robotics is understanding the interactions between robots

and deformable terrains that consist of granular material. Granular flows and their

interactions with rigid bodies still pose several open questions. A promising direction

for accurate, yet efficient, modeling is using continuum methods. Also, a new direction

for real-time physics modeling is the use of geometric machine learning. This research

advances continuum and machine learning methods for modeling rigid body-driven

granular flows, for application to space robotics (where the effect of gravity is an

important factor) as well as terrestrial industrial machines.

For accurate and efficient design applications, this research develops a continuum

method comprising a modern constitutive model, nonlocal granular fluidity (NGF),

and a state-of-the-art numerical solver, material point method (MPM). We design a

numerical approach, within a hyperelasticity framework, to implement the dynamical

form of the viscoplastic NGF constitutive model in three-dimensional MPM. This

approach is thermodynamically consistent, and the dynamical form includes the non-

local effect of flow cessation. This is verified by both quantitative measurements and

qualitative visualization of our excavation and wheel experiments. Furthermore, this

research explores the gravity sensitivity of continuum numerical solvers. It explains

why MPM is an appropriate continuum solver to model granular flows under different

gravity.

For real-time control applications, this research considers the development of a

subspace machine learning simulation approach. To generate training datasets, we

utilize our high-fidelity MPM-NGF method. Principal component analysis (PCA) is

used to reduce the dimensionality of data. This research shows that the first few

principal components of our high-dimensional data keep almost the entire variance in
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data. A graph network simulator (GNS) is trained to learn the underlying subspace

dynamics. The learned GNS is then able to predict particle positions and interaction

forces with good accuracy. More importantly, PCA significantly enhances the time

and memory efficiency of GNS in both training and rollout. This enables GNS to be

trained using a single desktop Graphics Processing Unit (GPU) with moderate Video-

RAM. This also makes the GNS real-time on large-scale 3D physics configurations

(and 700x faster than our MPM-NGF).
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Chapter 1

Introduction

1.1 Motivation

Planetary rovers are space exploration robots designed to move over the surface of ex-

traterrestrial bodies. Some rovers have been driven by astronauts while others have

been partially autonomous robots. Rovers are made to collect scientific data and

samples; they are extremely helpful for exploring the solar system. The Global Ex-

ploration Roadmap identifies Mars, the Moon, and asteroids as priority destinations

[ISEC, 2013]. The terrains of Mars and the Moon consist of fine granular regolith with

embedded rocks, as do those of a recently discovered class of “rubble-pile” asteroids

[Fujiwara et al., 2006, Rozitis et al., 2014]. Understanding the nature of interactions

with granular terrains is, thus, crucial to exploring these high priority destinations.

Although rovers are advanced technologies, they have still encountered setbacks. The

entrapment of the Mars Exploration Rover Spirit in soft regolith and the tears and

punctures in the Mars Science Laboratory Curiosity rover’s wheels demonstrate some

of the current challenges of such granular terrains.

On Earth, also, construction vehicles are extensively in contact with granular ma-

terials, both with their wheels or tracks and their digging implements. Modeling

these interactions can be very useful for training operators or for eventually automat-

ing aspects of these operations. This work include a collaboration with CM Labs

Simulations, who develops training simulators for heavy equipment operation, which

1



1.1. MOTIVATION

includes construction equipment and vehicles of all types. Their simulators are de-

ployed at numerous sites and training facilities throughout Canada and the world.

Accurate and real-time modeling of machine-terrain interactions is crucial to the fi-

delity of such training simulators.

A deeper understanding of robot-granular flow interactions can contribute to the

design and control of robots. An important factor to study issues encountered in robot

design and control is the effect of gravity. Recent work [Kovács et al., 2020] shows this

can have significant impacts on rover traction. Repeated empirical experiments to

study various aspects of each new robot-terrain interaction might be difficult and/or

expensive, so computer modeling can contribute to this end. However, the accurate

and efficient modeling of granular flows is still an area of open research.

Granular flows and their interactions with rigid bodies still pose several open ques-

tions. In fact, their modeling is complex as they can experience various solid-like,

fluid-like and gas-like deformations in time. Current robot-terrain interaction models

have insufficient predictive power for robot wheel design and mobility control, depend

on many difficult to measure parameters, and/or have very high computational com-

plexity. In terms of accuracy, one current direction of research is the discrete element

method (DEM), which simulates contact mechanics for millions of individual granular

particles. This state-of-the-art approach demonstrates promise in modeling planetary

rover interactions. But it is so computationally intensive as to be infeasible to imple-

ment on a rover for online mobility control [Zhu et al., 2005], and for large physical

domains can be untenably expensive even in offline design applications [Dunatunga

and Kamrin, 2017]. On the other end of the complexity spectrum, several researchers

today highlight the insufficient predictive power of classical terramechanics models

as applied to planetary rover wheel design [Kumar et al., 2003, Lun et al., 1984],

and their limitations to specific flow geometries [Haeri et al., 2020], though they are

computationally efficient.

2



1.2. PROBLEM STATEMENT

1.2 Problem Statement

A promising direction for modeling granular flows in robot-terrain interactions is using

methods from continuum mechanics [Dunatunga and Kamrin, 2015] which compro-

mise between computational efficiency and accuracy. Furthermore, a new direction in

physics simulations is the use of geometric machine learning in real-time approaches

[Sanchez-Gonzalez et al., 2018]. An efficient and accurate continuum method could

provide extensive training data for such approaches. The objective of this research

is to advance continuum and machine learning methods for modeling rigid body-

driven granular flows, for application to space robotics as well as terrestrial industrial

machines. For offline design applications, this research aims to develop a continuum-

based modeling approach that captures reaction forces and the effect of gravity on

granular flows, with accuracy and modest computational complexity. Also, for real-

time control applications, this work considers the development of a subspace machine

learning simulation approach.

1.3 Related Work

This section presents high-level related work from the literature on continuum meth-

ods for granular flow modeling and then on real-time physics modeling.

1.3.1 Continuum Modeling of Granular Flows

The two main aspects of continuum methods affecting their accuracy and efficiency

are the choices of constitutive model and numerical solver which are investigated here.

Constitutive Models. Constitutive models are used to calculate the material

internal forces. They relate stress and strain in continuum material modeling. The

best models accurately represent such complex systems of physical interactions with

reduced-dimensionality representations. For granular materials, they should gener-

ally cover quasi-static elastic (solid-like), intermediate (visco) plastic (fluid-like), and

inertial disconnected (gas-like) regimes [Kamrin, 2010]. Thus, it is first important to

determine the flow regimes and categorize them with regard to flow characteristics

[Tardos et al., 2003]. A survey of past and present rovers and their corresponding

3



1.3. RELATED WORK

Body Rover
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Figure 1.1: Flow regimes survey of Martian and Lunar rovers with different grain
diameters, gravities and driving speed (qs and inter stand for quasi-static and inter-
mediate regimes).

flow regimes is shown in Figure 1.1. The information is based on measuring the min-

imum and maximum dimensionless shear rate presented in [Tardos et al., 2003]. It

depicts that all Mars rovers from 1997 to 2020 have been designed to work in the

quasi-static regime. It also shows that some Lunar rovers move in the intermediate

regime. Therefore, the most important regimes in planetary applications are quasi-

static and intermediate regimes. A combination of the aforementioned flow regimes

is also applicable to industrial excavation operations [Haeri et al., 2020].

For the two extreme regimes, elastic and disconnected, models have been devel-

oped based on soil mechanics [Schoefield and Wroth, 1968, Nedderman, 1992, Elaskar

and Godoy, 1998, Lagrée and Lhuillier, 2006] and the kinetic theory of gases [Lun

et al., 1984], respectively. However, the middle (visco) plastic regime is more chal-

lenging where the granular material flows most like a liquid. For many years, for this

regime, plastic models have been developed by combining various yield criteria and

plastic flow rules [Drucker and Prager, 1952, Bonet et al., 2016, Klár et al., 2016].

In contrast, recently, from fluid mechanics literature, viscoplastic models have been

made progress invoking a fluid-like flow approach with an appropriate yield criterion

[Jop et al., 2006, Henann and Kamrin, 2013, Chen and Baladi, 1985].

In fact, for the elastic regime, Cauchy elasticity, hyperelasticity and hypoelastic-

ity are the general techniques used and can be considered as a framework for the

development of (visco) plasticity techniques. In Cauchy elasticity, the current state

of stress depends only on the current state of deformation, and it must be combined

4



1.3. RELATED WORK

with a yield criterion (e.g. Mohr-Coulomb, Drucker-Prager, etc.). While this is the

most common framework for granular materials (especially for soils) [Chen and Bal-

adi, 1985], one issue with this linear model is that it may violate the energy equation

of thermodynamics. In hyperelasticity, the nonlinear constitutive model is based on

the existence of a strain energy function where thermodynamics laws are always sat-

isfied. This framework keeps track of the deformation gradient and is widely used in

the material point method (MPM) [Jiang et al., 2016]. Conversely in Hypoelasticity,

the stress is a function of the current state of stresses and strains as well as their

rates. Thus, hypoelastic models consider reversibility but they typically can not be

formulated in a thermodynamically consistent manner [Dunatunga, 2014]. For the

inertial regime, while models based on kinetic theory for gases can be used, it is also

possible to define some saturation density functions to make granular particles free

of stress [Dunatunga and Kamrin, 2015].

For the plastic part of constitutive modeling, incremental theory and/or the de-

formation theory [Chen and Baladi, 1985] can be used. In deformation theory, the

relationship is between the plastic strain and the stress, while in incremental theory it

is between the plastic strain rate and the stress and stress rate. Both theories assume

the soil is elastic until the stress satisfies a yield criterion. Within the incremental

theory, materials are divided into elastic-perfectly plastic and strain hardening ones.

While the yield criterion in the former is a function of stress only, in the latter it is

a function of plastic strain as well. In the flow theory in plasticity, the incremental

change in plastic strain, dγ, is defined to include an elastic and a plastic part (denoted

with e and p superscripts, respectively) as dγ = dγe + dγp.

For the plastic regime, flow theory provides a plastic flow rule relating the current

stress and plastic strain and their incremental changes. This relation is generally

assumed to be homogeneous and linear in the incremental changes of stress and

plastic strain. This assumption ignores viscosity effects and makes the behavior time-

independent [Chen and Baladi, 1985]. In this regime, however, granular materials

have similarities with viscoplastic fluids such as Bingham and Herschel-Bulkley fluids

[Jop et al., 2006] which are time- (or rate-) dependent as

dγ

dt
=

dγe

dt
+

dγp

dt
= γ̇e + γ̇p. (1.1)

In summary, plastic models can suffer from rate-independency [Chen and Baladi,
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Models
Features Hardening Rate-dependency 

(viscosity)
Size-dependency 

(grain diameter)
Secondary rheology 

(quasi-static flow)
Flow 

cessation

Plastic e.g. DP with Projection   ✓*

Viscoplastic

Local ✓ ✓

Nonlocal 
(NGF)

Steady ✓ ✓ ✓ ✓

Dynamical ✓ ✓ ✓ ✓ ✓

Figure 1.2: Comparison of constitutive models for intermediate regime. The *-symbol
indicates that the feature is an addition to the base model.

1985] and in some cases, they may have issues with modeling strain hardening [Klár

et al., 2016]. Viscoplastic models eliminate some numerical difficulties associated with

plastic models, such as hardening [Abdullah, 2011]. Among viscoplastic constitutive

models, although local models (e.g. [Jop et al., 2006]) lack robustness in their ability

to predict all flow phenomena, the nonlocal models are accepted as highly predictive in

different flow regimes [Kamrin, 2019]. Nonlocality brings the grain size effect [Kamrin,

2020], secondary rheology (where flow induces flow), and flow cessation (where flow

stops even though the stress appears to be above the yield limit) into granular flows.

Based on three criteria, discussed in [Kamrin, 2019], including ease of implementation,

physical motivation, and predictive capability, the nonlocal granular fluidity (NGF)

model [Kamrin and Koval, 2012, Henann and Kamrin, 2013, Henann and Kamrin,

2014] outweighs the other nonlocal models (partial fluidization theory [Aranson and

Tsimring, 2001, Aranson and Tsimring, 2002, Volfson et al., 2003], I-gradient model

[Bouzid et al., 2013, Bouzid et al., 2015], and self-activation model [Pouliquen and

Forterre, 2009]). A feature comparison of the models for the intermediate regime is

shown in Figure 1.2.

The hyperelastic three-dimensional FEM [Henann and Kamrin, 2016] and hypoe-

lastic two-dimensional MPM [Dunatunga, 2014, Dunatunga, 2017] implementations

of the viscoplastic steady NGF model have already provided promising results in var-

ious flow configurations. A hyperelastic numerical approach of the unsteady (also

called dynamical) form of this model developed for MPM ensures the conservation of

energy and the occurrence of flow cessation, respectively.

Numerical Solvers. In continuum mechanics, analytical methods (AM) such as

[Lagrée and Lhuillier, 2006] seem to be efficient alternatives to numerical methods.
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However, they might be inaccurate depending on the model simplification assump-

tions. These assumptions can even make the model inflexible to different conditions

and configurations. Among the several continuum-based numerical methods to solve

the governing equations of granular flows, finite difference, for fluid-like behavior, and

finite element, for solid-like behavior, are the common base methods. Both methods

can yield good results in certain cases. However, the finite difference method (FDM)

has difficulties with extensional disconnection and static regimes, while the finite el-

ement method (FEM) has issues when mesh distortion becomes large [Dunatunga

and Kamrin, 2015]. A feature comparison of the methods for granular flow modeling

is shown in Figure 1.3. Note that there exist variants of these methods that can

alleviate their issue(s) at the cost of additional computations and/or accuracy reduc-

tion. For instance, the mesh distortion issue in FEM can be addressed by re-meshing

techniques [Khoei, 2005, Trädeg̊ard et al., 1998, Habraken and Cescotto, 1990].

MPM is a modern approach that combines the advantages of both FDM and FEM

[Zhang et al., 2014] without having their disadvantages. In other words, MPM is sim-

ilar to the FEM, but also incorporates the complementary advantage of FDM by

keeping an undeformed Cartesian background grid appropriate for large-deformation

problems as well [Zhang et al., 2014]. In addition to the grid, MPM consists of par-

ticles which carry information (mass and momentum) during the simulation. The

particles can freely deform and, at the end of each time step, transfer the information

to the grid nodes and vice versa. The governing equations in the weak form can be

solved on the active grid nodes (the ones that have mass), identical to FEM. The

grid, then, transfers the updated information back to the particles while it remains

undeformed. Some recent lines of research have proved MPM as one of the most

accurate and efficient methods for granular flow modeling [Dunatunga and Kamrin,

2017, Dunatunga and Kamrin, 2015, Hu et al., 2018, Klár et al., 2016]. Furthermore,

instability and non-conserved (angular) momentum issues observed in the earlier vari-

ants including smoothed particle hydrodynamics (SPH) [Monaghan, 1992], reproduc-

ing kernel particle method (RKPM) [Liu et al., 1995], fluid implicit particle (FLIP)

[Bridson, 2015], and particle-in-cell (PIC) [Harlow, 1964] are addressed and fixed in

MPM by using proper particle-grid transfer schemes [Jiang et al., 2015, Fu et al.,

2017].
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Methods

Features Accuracy Efficiency Flexibility

Disconnection handling Distorsion handling

Terramechanics Models ✓

DEM ✓ ✓

Continuum Methods

FDM ✓ ✓ ✓

FEM ✓ ✓ ✓

MPM ✓ ✓ ✓ ✓

Figure 1.3: Comparison of methods for granular flow modeling, indicating which
feature(s) each method has.

From the efficiency point of view, MPM has two additional steps for transferring

properties from particles to grid and vice versa. Furthermore, MPM can have more

than one Gauss quadrature at each grid element (particles which are not attached to

the grid). Thus, in MPM, computational cost per time step is higher than in FEM.

However, MPM, by having constant grid element size (i.e. characteristic element

length), requires less number of time steps for large-deformation problems, making

MPM more efficient for these particular problems. In terms of accuracy, there might

be some loss (dissipation error) in MPM transfer steps (it can be vanished using

higher-order transfer schemes [Fu et al., 2017] while sacrificing efficiency). However,

by not suffering from grid distortion, MPM can achieve higher accuracy for large-

deformation problems in which static regimes may also possibly exist.

1.3.2 Real-Time Physics Modeling

Although continuum methods can be simultaneously accurate and efficient, they may

not be real-time for 3D configurations with existing computer processors, especially in

hardware-constrained applications like planetary rovers. Machine learning has begun

to be applied to the problem of reducing the run time of simulating complex physics.

A lower-dimensional representation for a mapping from inputs to simulation outputs

can be obtained via dimensionality reduction methods. Further, deep learning neural

networks are being used to learn such mappings. In the following, three important

aspects of such approaches are reviewed.

Data. Since machine learning-based physics simulation methods require hours of
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data at various initial and boundary conditions, numerical methods will be needed

to complement and may even outweigh the use of experiments. To generate fluid

simulations as training data, several lines of work have utilized smoothed particle

hydrodynamics (SPH [Monaghan, 1992]) [Sanchez-Gonzalez et al., 2018], fluid implicit

particle (FLIP [Bridson, 2015]) [Kim et al., 2019, Um et al., 2018], finite volume

method (FVM) [Thuerey et al., 2020], or finite difference method (FDM) [Özbay

et al., 2019]. Also, some general methods such as position based dynamics (PBD

[Macklin et al., 2014]) [Holden et al., 2019, Li et al., 2019], and projective dynamics

(PD [Bouaziz et al., 2014]) [Narain et al., 2016, Weiler et al., 2016] can be used for

different types of material simulation (e.g. sand, snow, jelly). However, the continuum

force-based MPM, has already been discussed in §1.3.1 as one of the most accurate

and efficient methods for our purpose i.e. granular flow modeling. MPM [Hu et al.,

2018] has also been recently used to produce sand simulations for the purpose of

training a simulator [Sanchez-Gonzalez et al., 2018].

Reduced Data. In physics simulations, model reduction methods are utilized to

capture the effective degrees of freedom of a physics system [Harmon and Zorin, 2013,

Huang et al., 2011, Sifakis and Barbic, 2012, von Radziewsky et al., 2016]. This is

with the hope to reduce both processing time and memory space usage corresponding

to the system. Some work has also applied subspace methods to the equations of

motion in FEM solvers [An et al., 2008, Pan et al., 2015]. However, it is difficult

to handle collisions in such approaches, and further modifications [Teng et al., 2015]

significantly reduce its efficiency. Recent literature [Holden et al., 2019] has shown

that principal component analysis (PCA) could be an effective choice to capture the

primary modes of elastic object deformations.

Learning. Machine learning (ML) approaches have been recently shown as real-

time alternatives to traditional numerical methods to learn from data [Holden et al.,

2019, Ladicky et al., 2017]. One crucial challenge here is to overcome the understand-

ing of the underlying dynamics principles in the physical systems automatically. Some

ML approaches have been applied to differential equations such as Poisson equation

[Özbay et al., 2019]. Several recent ML-based approaches have also been utilized for

fluid simulations, including: regression forest [Ladicky et al., 2017, Ladický et al.,
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2015], multi layer perceptron (MLP) [Wiewel et al., 2019, Um et al., 2018], autoen-

coder (AE) [Thuerey et al., 2020, Wang et al., 2020, Morton et al., 2018] convolutional

neural network (CNN) [Kim et al., 2019, Tompson et al., 2017], continuous convolu-

tion (CConv) [Ummenhofer et al., 2020], generative adversarial network (GAN) [Xie

et al., 2018], and loss function-based method [Prantl et al., 2020].

These ML-based approaches are useful for a specific state of materials (gas-like,

solid-like, or specifically fluid-like). To make them work in the other states, they

need extra investigations and usually more different types of data. However, graph

networks (GN) [Battaglia et al., 2018], a type of graph neural network [Scarselli

et al., 2008], have been shown to be capable of simulating different states of materials

while being simple to implement. Dynamic interaction network [Li et al., 2019], as

a GN variant, has been proposed for general simulations including elastic and rigid

objects. But, it also requires additional computations and data to simulate elasto-

plastic materials. In fact, the current position and velocity are no longer sufficient

as inputs; additionally, the resting position and an extra network type (hierarchi-

cal modeling) are required. A very recent work on graph network simulator (GNS)

[Sanchez-Gonzalez et al., 2018], has outperformed some other recent approaches [Li

et al., 2019, Ummenhofer et al., 2020] in terms of accuracy and ease of implementa-

tion.

1.4 Contributions

The thesis makes the following principal contributions:

• Develops an accurate and efficient continuummethod, 3D material point method

(MPM) with hyperelastic dynamical nonlocal granular fluidity (NGF), for mod-

eling granular flows.

• Identifies MPM as an appropriate numerical solver for the non-trivial task of

capturing the effect of gravity, and explains why MPM can accomplish it.

• Generates experimental data via robotic equipment to quantitatively and quali-

tatively validate MPM, and generates large training datasets using this validated

MPM.
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• Enhances a real-time and high-accuracy machine learning approach, graph net-

work simulator (GNS) with principal component analysis (PCA), for simulating

large-scale rigid body-driven granular flows and predicting the interaction forces,

while being trainable via single desktop GPU with moderate VRAM.

1.5 Thesis Outline

This thesis is organized in the following manner: Chapter 2 will first present a back-

ground on the nonlocal theory and material point method. Next, it will develop

a hyperelastic numerical approach of the dynamical nonlocal granular fluidity for

material point method (MPM). Then, the approach will be validated by multiple

experimental test cases. The chapter will end by evaluating continuum numerical

solvers in capturing the effect of gravity. Chapter 3 will first provide a background

on graph neural networks (GNN), and principal component analysis (PCA). Then,

it will develop various modules in the training phase of the subspace graph network

simulator (GNS). The chapter will end by providing quantitative and qualitative roll-

out results compared with the ground truth MPM results. Chapter 4.1 will conclude

the thesis by summarizing the approaches presented in this thesis and suggesting

potential further research topics. The source codes of the developed algorithms are

available on GitHub as referred in the context.

Chapters 2 and 3 are meant to be stand-alone. These chapters will each present

their own relevant background, theory, and result sections. Also, some symbols are re-

used and mean different things in each of these chapters. The symbols are hyperlinked

in the context, and are summarized alongside their definitions in the List of Notations.

1.6 Publications

This thesis contains materials which were or will be published in the following (avail-

able here1).

• Journal Papers

1aminhaeri.com/publications
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Chapter 2

Continuum Modeling of Granular

Flows

2.1 Introduction and Background

This section introduces the nonlocal theory and then derives the governing equations

and procedure of material point method.

2.1.1 Nonlocal Granular Fluidity

A constitutive model known as the local model, introduced by [Jop et al., 2006],

captures some characteristics of dense granular flows - including yield criterion and

shear rate dependency - by an analogy to viscoplastic fluids (e.g. Bingham fluids).

The local model proposes a relation for the friction coefficient as a function of the

inertial number, I, for fast (10−3 ≲ I ≲ 10−1) and dense granular flows, given by

µ = µ(I) = µs +
µ2 − µs

I0/I + 1
(2.1)

where µs is the static (minimum) friction coefficient that causes flow to happen, µ2

and I0 are the friction coefficient saturation value and a material constant to describe

the material rheology, respectively. The inertial number, I, is given by

I = γ̇p

√︄
ρsd

2

p
(2.2)
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where γ̇p, d, p, and ρs are the equivalent plastic shear strain rate, grain diameter,

mean normal stress and grain density, respectively. Note that the volume fraction

ϕ depends linearly on the inertial number ϕ = ϕ(I) [Jop et al., 2005], but can be

assumed to be constant for a large range of low I. This is a simplifying assumption

for well-developed Lagrangian steady-state flows [Henann and Kamrin, 2013].

The inertial number can also be computed by the inverse of (2.1) and the lin-

earization around µs [Dunatunga, 2014] given by

I = I0
µ− µs

µ2 − µs

. (2.3)

Using (2.2) and (2.3) gives the local equivalent plastic shear strain rate

γ̇p = γ̇p
loc(p, µ) =

⎧⎨⎩
√︁
p/(ρsd2)(µ− µs)/b, µ ≥ µs

0, µ < µs.
(2.4)

This relation will be used in the NGF model presented in the following, where b =

(µ2−µs)/I0. Also, it shows that the yield criterion for having flow in the local model

takes the form of Drucker-Prager criterion.

The local model works well in the intermediate regime (µ ≥ µs); however, it cap-

tures no flow in the quasi-static regime (µ < µs), and has problems for slow (I ≲ 10−3)

flows [Henann and Kamrin, 2013]. To capture flows in the quasi-static regime, a non-

local granular rheology is proposed in [Henann and Kamrin, 2014] consistent with

modern continuum thermodynamics in an elasto-viscoplastic context. In contrast to

the previous constitutive models, in this model the stress depends on the strain and

the gradient of strain as well. To consider the effect of nonlocality, this introduces a

new scalar variable, g, called granular fluidity and is governed by the partial differen-

tial equation shown in (2.5). The granular fluidity (g) relates the equivalent plastic

shear strain rate (γ̇p) to the friction coefficient (µ) via g = γ̇p/µ.

t0ġ = A2d2∇2g − (µs − µ)g − b

√︄
ρsd

2

p
µg2 (2.5)

where ∇2g =
∑︁3

i=1
∂2g
∂x2

i
and for a constant time-scale t0, a dimensionless material

parameter called nonlocal amplitude A, the time domain t, the i-th component of the

spatial domain xi.
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This model can also be used in a steady-state form, proposed in [Kamrin and

Koval, 2012] and [Henann and Kamrin, 2013] and shown in (2.6). It can be considered

as an extension of the local model with modifications addressing its deficiencies.

∇2g =
1

ξ2
(g − gloc) (2.6)

where gloc = γ̇p
loc/µ, µ = τ/p and

ξ(µ) =
A√︁
|µ− µs|

d (2.7)

for shear stress τ , and the cooperativity length ξ which should be calibrated for each

flow geometry by A. The cooperativity length is for plastic rearrangement, thereby

imposing a length scale (d, i.e. grain diameter) on the flow.

The microscopic basis of the model is that flow induces flow; i.e., plastic deforma-

tions cause stress fluctuations that can induce plastic events in neighboring material.

It makes the model work in the quasi-static flow regime in addition to the interme-

diate regime. An important feature to note is that when µ is very close to µs, the

cooperativity length is very large. This suggests that when a granular material is in

the quasi-static regime (µ ≤ µs), but shear loaded, motion will diffuse over a large

range through the network of granular contacts. A small perturbation at one location

can be transmitted through this network and through force rearrangement of many

of its neighbors [Henann and Kamrin, 2013].

The generic dynamical form of NGF is derived based upon some fundamental

assumptions. The elastic strain is assumed to be small. This, as a kinematical

restriction, assumes the rotation tensor Re is the dominant part of the polar decom-

position of the elastic deformation gradient, as opposed to the stretch tensor U e,

F e = ReU e ≈ Re. The deformation gradient is defined by F = ∂x
∂X

where x = χ(X, t)

is the mapping function between the undeformed and deformed states. The position

of points in the undeformed and deformed states is denoted by X and x, respectively.

Furthermore, the plastic flow is assumed to be incompressible and irrotational. It

considers the critical state of materials and ignores the transient dilations and com-

pactions.
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2.1.2 Material Point Method

Governing Equations. Among the conservation laws, mass conservation is au-

tomatically satisfied in MPM. Also, the symmetric stress tensor and hyperelastic-

ity will satisfy the angular momentum and energy conservations, respectively. The

strong-form unsteady conservation of linear momentum is considered as the governing

equation given by

ϕρv̇ = divT + ϕρG (2.8)

where v̇ is the material derivative1 of velocity, T is Cauchy stress tensor, ϕ is volume

fraction, G is gravitational acceleration, and ρ is again bulk density. MPM uses

the weak formulation of the governing equation. It can be obtained by multiplying

the strong form by the test function q and integrating by parts over the material

(undeformed) domain Ω; given by

1

∆t

∫︂
Ω

ρ∆vq dV =

∫︂
Ω

ρGq dV −
∫︂
Ω

T∇q dV (2.9)

Here, the traction on the boundary is ignored by assuming zero first-order bound-

ary conditions. In order to discretize the spatial terms in the governing equation, the

Moving Least Squares (MLS) shape function [Hu et al., 2018] is used. It can speed up

MPM by eliminating the need for explicitly calculating the weighting function deriva-

tive. Furthermore, it is consistent with the APIC (affine particle-in-cell [Jiang et al.,

2015]) particle-grid transfer scheme in a way that MLS-MPM uses the ∂v
∂x

quantity

from APIC, required in the deformation gradient update, to reduce computational

complexity.

The left hand side of equation (2.9) is first transferred from the continuum domain

Ω to the particle domain Ωp by∫︂
Ω

ρvq dV =
∑︂
p

∫︂
Ωp

ρvq dV (2.10)

Using the shape function, the continuous functions (v and q) are approximated by

1D(.)/Dt = d(.)/dt+ v∇(.)
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the grid node information and it converts to the following form∑︂
p

∫︂
Ωp

ρvq dV ≈
∑︂
p,i,j

mpΦi(xp)Φj(xp)vjqi

≈
∑︂
p,i

mpΦi(xp)viqi

(2.11)

where i, j and p are the nodal and particle indexes, and Φi(x) is MLS shape function

given by

Φi(x) = κi(xp)P
T (x− xp)M

−1(xp)P (xi − xp) (2.12)

with P and κi as the polynomial basis and localized weighting function, respectively,

and M defined as

M(xp) =
∑︂
i∈Bx

κi(xp)P (xi − xp)P
T (xi − xp) (2.13)

where Bx is a set of grid nodes satisfying κi(xp) ̸= 0. Here, the density function was

simplified as
∫︁
Ωp

ρ dV = mp. Mass lumping approximation [Jiang et al., 2016] was

also used to eliminate Φj(xp) by summing it over node j where
∑︁

j Φj(xp) = 1.

The derivative of the test function is required to be computed in the right hand

side of the governing equation. Hence, adopting a linear polynomial basis P (x−xp) =

[1, x − xp] and quadratic B-splines as the weighting function κi = N i, will give the

test function derivative

∇q = M−1
p N i(xp)(xi − xp) (2.14)

Similarly, the right hand side can also be expressed in the particle domain.∫︂
Ω

ρGq dV−
∫︂
Ω

T∇q dV =∑︂
p

(

∫︂
Ωp

ρGq dV −
∫︂
Ωp

T∇q dV )
(2.15)

By substituting (2.14) in (2.15) and using the mass lumping, the following is obtained

∑︂
p

(

∫︂
Ωp

ρGq dV −
∫︂
Ωp

T∇q dV ) =∑︂
p,i

[mpGqi − V pM
−1
p T pN i(xp)(xi − xp)]

(2.16)
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Figure 2.1: Simulation procedure (i.e. algorithm) overview for material point method
(MPM) with nonlocal granular fluidity (NGF) model.

where V p is the particle volume, for the quadratic B-splines M−1
p = 4/∆x2, and a

one-point quadrature rule is used to express stress continuous function T at a particle

(T p).

Simulation Procedure. Figure 2.1 shows the procedure used to generate the

MPM results. While Step 7 is not strictly required by the MPM procedure itself, it

is introduced to compute the Laplacian term used in NGF model. Step 9, the calcu-

lation of particle internal forces via NGF model, will be explained in detail in §2.2.
Upon initialization, after setting initial values: i) The 3D background is discretized

by an Eulerian grid using a sparse paged grid [Setaluri et al., 2014] which stores the

grid on a 1D memory span and uses Virtual Memory to avoid allocating unused re-

gions. ii) Rigid bodies (e.g. inner and outer cylinders) are meshed and the elements

get occupied by particles (at least one per element). iii) Deformable materials (e.g.

granular material) are discretized by Lagrangian particles using Poisson Disk Sam-

pler [Bridson, 2007], an efficient algorithm with linear time complexity (O(n)) that

guarantees particles are no closer than a set distance.

Rigid body interaction (Steps 1 and 2). After initialization, the algorithm enters

a loop which repeats every timestep (e.g. 1e4 times per second). First, the center of

mass (COM) and attitude of the rigid bodies are articulated using dynamics equa-

tions given either the scripted linear and angular velocities (as inputs) or the current
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state of dynamic rigid bodies, alongside rigid collisions detection (if any). Then the

contacts between rigid bodies and deformable materials’ particles are detected using

CPIC (Compatible Particle-In-Cell) [Hu et al., 2018]. This algorithm constructs a

narrow-band colored unsigned distance field (CDF) around a rigid body to recognize

whether grid nodes in near-boundary particle’s support kernel are outside the rigid

body (compatible) or not. Hence, the near-boundary particle normal vectors and

their distances to rigid body are also estimated via the first-order MLS on the CDF

constructed. With this, two-way particle-rigid body interactions are handled by ap-

plying relative impulses both on particles and on the COM of rigid bodies based on

the Coulomb model of friction. For instance, equations (2.17) to (2.19) compute the

impulse from a particle (mp∆vcp) on a rigid body as shown in Figure 2.2(left). The

opposite impulses from a rigid body (mr∆vcr) can be derived with a similar approach

for various contact conditions (e.g. sticky, slip, etc.).

∆vcp =N i(xp)[vp − (vr(xi)+

max(0, |vrp,t|+ µvrp · np)vrp,t/|vrp,t|)]
(2.17)

where µ and np are the external friction coefficient and the normal vector from the

surface of the rigid body to the particle, respectively; the subscripts p, i and r denote

particle, grid node, and rigid body indices, and

vrp = vp − vr(xi)

vrp,t = vrp − (vrp · np)np (2.18)

vr(xi) = vcom + ωr × (xi − xcom)

This impulse and also the particle internal force (computed in step 10) then contribute

to the linear and angular velocity of the rigid body via

∆vcom = m−1
r

[︁
mp∆vcp + fp∆t

]︁
∆ωr = I−1

r

[︁
(xi − xcom)× (mp∆vcp + fp∆t)

]︁ (2.19)

Particle momentum contribution (Step 3). Next, gravitational forces, contact

forces, plus the internal forces which have been computed in the previous timestep,

contribute to the momentum of particles via (mv)p +mp∆vp for

∆vp = (G∆t+∆vcr + (fp/mp)∆t) (2.20)
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where the mass of a particle is neglected against the mass of the rigid body. This is

a valid assumption for our applications where the flow is not highly dynamic.

Particle-to-grid transfer (Step 4). The background Cartesian grid is essential for

accurately solving the momentum equation, calculating spatial derivatives (e.g. veloc-

ity spatial gradient and Laplacian term in unsteady nonlocal model), and detecting

collisions. Thus, momentums should be transferred from particles to grid nodes.

This is done by APIC (i.e. first-order PolyPIC, also called PolyPIC-4 in 3D) transfer

scheme. The particle granular fluidity (g) introduced in [Henann and Kamrin, 2014]

is also directly transferred via a zero-order scheme. This newly introduced scalar

variable relates the equivalent plastic shear strain rate (γ ṗ) to the friction coefficient

(µ) via g = γ ṗ/µ.

PolyPIC with a quadratic grid interpolation in 3D, shown in 2D in Figure 2.2(right),

transfers momentums (with nl = 4) and granular fluidities (with nl = 1) as follows

(mv)i =
∑︂
p

N ipmp

nl=4∑︂
l

slCpl, gi =
∑︂
p

N ipgp (2.21)

where for simplicity in using quadratic B-Spline function N i(xp) ≡ N ip. In contrast to

FLIP (Fluid Implicit Particle) and PIC, APIC is stable and has smaller dissipation,

respectively [Jiang et al., 2015]. While APIC may suffer from numerical friction,

higher number of scalar modes nl makes the transfer less dissipative and even lossless

with nl = (nb + 1)d where nb = 2 for the quadratic interpolation [Fu et al., 2017].

The generalized velocity modes sl for APIC in 3D are given by

s1 = 1, s2:4 = x1:3,i − x1:3,p (2.22)

and the mode coefficients Cpl are calculated via equation (2.25) (from previous timestep)

in grid-to-particle transfer section (for APIC). Note that the granular fluidity of open-

state particles are not transferred.

Grid momentum update (Step 5) and Laplacian calculation (Step 6). During solv-

ing the momentum equation, the second-order derivative (Laplacian) term in the

unsteady nonlocal model can be calculated with the help of background grid and

a finite difference (FD) scheme. This technique has also been used in [Dunatunga,

2017, Stomakhin et al., 2014] as an alternative to the weak form of the finite element

method (FEM). In fact, the FD scheme is used to reduce the stencil size and to avoid
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Figure 2.2: Left: Near-rigid-boundary particle (blue square) with compatible (black
circles) and incompatible (red circles) grid nodes in its kernel support in 2D. Red
squares and red unfilled square are rigid body’s particles and COM. Blue area repre-
sents area of particles with the same kernel. Right: Transferring particle information
to grid nodes inside particle’s kernel (9 nodes for quadratic B-Spline interpolation in
2D)

checkerboard-type modes observed in FEM causing oscillations in the granular flu-

idity field. This term is obtained using a second-order central difference scheme as

follows

∇2gi,j,k =
1

∆x2
(gi+1,j,k + gi,j+1,k + gi,j,k+1−

6gi,j,k + gi−1,j,k + gi,j−1,k + gi,j,k−1)
(2.23)

For better consistency with the transfer scheme, a 27-point FD scheme can be used

[Cheng et al., 2019] instead. It should also be mentioned that, for efficiency, this

value is identical for each particle inside a grid element with the center node at (i, j,

k).

Grid-to-particle transfer (Step 7). Next, the boundary conditions can be applied

to the boundary grid nodes, and the information on them is transferred back to

particles via

{mv, g}p =
∑︂
i

N ip{mv, g}i (2.24)

Here, the APIC mode coefficients are also computed for the next particle-to-grid
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transfer as follows

Cp1 =

nk∑︂
k=1

N ikpvik

Cp2:4 = (

nk∑︂
k=1

N ikpvik(x1:3,ik − x1:3,p))
4

∆x2

(2.25)

where number of grid nodes in the kernel of a particle nk = 27 for quadratic in-

terpolation in 3D. Given equation (2.25), the gradient of quadratic B-Spline can be

approximated by Cpapic =
∑︁4

l=2 Cpl as follows

∇N ip =
Cpapic∑︁

i vi
=

4

∆x2
(xi − xp)N ip (2.26)

This gradient is reused in equation (2.14). It is also used as the velocity spatial

gradient L so that

L = ∇vp =
∑︂
i

vi∇N ip = Cpapic (2.27)

where this algorithmic optimization reduces the computational load [Hu et al., 2018].

Particle and rigid body advection (Step 8). At this point, particle positions are

updated based on the updated velocities by xn+1
p = xn

p + vn+1
p ∆t. Also, dynamic rigid

bodies are advected given their scripted motions and/or impulses from particles.

Particle viscoplasticity (Step 9). Now, while being in the particle loop, the internal

forces between deformable material particles can be obtained via a constitutive model.

For granular materials, the constitutive model can be the plastic Drucker-Prager

model, the viscoplastic nonlocal granular fluidity (NGF) model, etc. Here, we aim

to use the NGF model in MPM. It is due to the fact that NGF is more capable in

modeling flows (due to viscoplasticity), and in capturing quasi-static regimes (due to

nonlocality) than plastic and local models. The procedure and the TC flow results

using both Drucker-Prager (DP) and NGF constitutive models are presented in §2.2.
Note that in both models, the particles with negative pressure (i.e. tension) are set

to be stress-free which turned out to be very important as will be discussed in §2.3.
The similarity of the results shows that MPM ability to capture the gravity effect is

invariant to the constitutive models.
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2.2 Numerical Approach of Nonlocal Constitutive

Model

In the case where inertial number I ≳ 10−3, plastic models and FEM have problems

in modeling the rate-dependent intermediate flows. Also, the viscoplastic local model

has difficulty in modeling rate-independent quasi-static flows where I ≲ 10−3. There-

fore, MPM with viscoplastic nonlocal granular fluidity (NGF) model can be a good

candidate approach to model the entire flow.

Here, we develop a hyperelastic numerical approach for the implementation of

the dynamical NGF in three-dimensional MPM. The hyperelasticity and dynamical

form ensure the conservation of energy and the occurrence of flow cessation, respec-

tively. This approach also includes the rules for modeling material particles in the

inertial disconnected regime. The hyperelasticity framework and the finite difference

(FD)-based NGF Laplacian term calculation emulate [Henann and Kamrin, 2016]

and [Dunatunga, 2017], respectively. However, to be more accurate and consistent

with our MPM particle-grid transfer scheme, we recommend a 27-point FD scheme

for the Laplacian term. Additionally, some aspects of the handling of disconnected

particles are from [Dunatunga, 2017] while we customize them for the hyperelasticity

framework. The MPM code package utilized for generating the results is primarily

from [Hu et al., 2018], combined in novel ways with additional elements from [Jiang

et al., 2015, Setaluri et al., 2014, Bridson, 2007] written in C++ and Python. We im-

plement our approach as an extension within this MPM for modeling granular flows

and their interactions with rigid bodies. Our code is publicly available on GitHub

here2.

2.2.1 Implementation

One novelty in this research is the accurate calculation of internal forces via the

dynamical form of viscoplastic Nonlocal Granular Fluidity (NGF) model [Henann and

Kamrin, 2014] with hyperelasticity. In fact, this is a thermodynamically consistent

version of the nonlocal theory for three-dimensional MPM. Hyperelasticity requires

keeping track of the deformation gradient, which is multiplicatively decomposed into

2github.com/haeriamin/MPM-NGF
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Figure 2.3: Possible states for a particle. Red (1): under compression, light blue (2):
newly stress-free, blue (3): stress-free, light red (4): newly under compression. Gray
area represents granular material.

elastic and plastic parts. The change rate of deformation gradient can be obtained

by

Ḟ = LF (2.28)

where L = ∂v
∂x

is approximated by the APIC transfer scheme. Thus, the total deforma-

tion gradient is updated by (2.28), and the elastic deformation gradient is calculated

by F e = F (F p)−1. The NGF constitutive model is hence utilized to calculate F p. By

assuming that the viscosity (1/g) is time-dependent, the PDE of the dynamical NGF

model, shown in (2.5), should be solved for g. Then the equivalent plastic shear strain

rate can be obtained via γ̇p = gµ. Note that the friction coefficient µ is computable

using the stress tensor, as shown in the details of (2.6).

Since in MPM granular materials can be separated, the disconnected particles

should also be modeled. While kinetic theory of gases is capable of this modeling, in

most cases it is accurate enough to handle granular gas via pure kinematics (stress-

free). To detect this regime, pressure (mean normal stress) should be tracked for every

individual particle. Figure 2.3 shows four possible states that can occur for a particle

in the next timestep: 1) positive pressure (under compression) 2) first-time negative
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pressure 3) negative pressure 4) first-time positive pressure. Particles in states 1

and 4 are under elasto-viscoplastic deformations (based on the NGF model); whereas

particles with the states 2 and 3 are behaved as stress-free particles. However, as

state 1 is distinguishable from state 4 based on prior state, and similarly 2 is from 3,

the way particles separate from or return to the material should be modeled. Here,

our focus is on the return phase, however, the algorithm is extendable for customizing

the separation phase.

As depicted in Figure 2.4, first, the following steps are taken for particles in any

state. The total deformation gradient is updated via the solution from the first-order

forward Euler method applied to equation (2.28) – while one can use the analytical

solution exp(∆tL)F – as follows (1 is unity matrix)

F n+1 = F n(1+∆tLn+1). (2.29)

Now, with the current (i.e. at timestep n+1) total deformation gradient and

by calling the previous (i.e. at timestep n) plastic deformation gradient, the elastic

deformation gradient can be computed at trial timestep via

F e
tr = F n+1F

p,−1
n . (2.30)

where the trial timestep refers to a middle timestep (i.e. between n and n+1) when

the plastic deformation is frozen. Consequently, the trial shear stress differs from the

current shear stress as shown in Figure 2.5(left) [Askari and Kamrin, 2016]. Now

from the right polar decomposition of elastic deformation gradient, one can use the

stretch part U e to compute the Hencky elastic strain at the trial timestep, given by

Ee
tr = ln(U e

tr). (2.31)

This logarithmic mapping, also shown in Figure 2.5(right), considers only parti-

cles with small elastic strain to be under elasto-viscoplastic deformation. Otherwise,

it causes particles with large strain to be stress-free. This is consistent with the

assumption made in the nonlocal theory as small elastic strain described before.

As suggested in [Henann and Kamrin, 2016], it is convenient to use an elastic

Gibbs free energy; Mandel stress M e is hence utilized to construct pressure p, shear

stress τ , direction of plastic flow Np, and Cauchy stress T . Trial Mandel stress is

25



2.2. NUMERICAL APPROACH OF NONLOCAL CONSTITUTIVE MODEL
13

Algorithm 1: Dynamical NGF Model with Hyperelasticity for MPM
Data : (, ⌫, q, `s, `2, �, C0, 3, �0, ds
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equations, our numerical approach does not significantly increase the simulation run-time432
(⇡ 5%, relative to algebraic or parametric models).433

The NGF parameters shown in table 1 are set based on the physical properties in our434
experiments and previous work (Dunatunga & Kamrin 2015) except when noted otherwise.435
Some of the parameters are subject to the Von Neumann stability condition of the NGF436
model’s PDE (Poisson equation) where �C < (�G2C0)/(2�232) (Dunatunga 2017). Also, the437
computational time spent in all the MPM-NGF simulation models are provided in table 2.438
MPM runs can be substantially sped up by reducing the number of particles per cell (ppc)439
and/or increasing the grid spacing (�G), which all result in a lower particle count. Using440

Figure 2.4: Overview (left) and pseudo code (right) of our nonlocal granular fluidity
numerical approach for MPM.

computed by a common constitutive law in non-linear elasticity known as generalized

Hookean law [Papadopoulos, 2017]

M e
tr = 2SEe

0,tr +BtrEe
tr1 (2.32)

where E0 is the deviatoric part of Hencky strain, and S and B are shear and bulk

moduli. The current (and trial) pressure is finally computed by

pn+1 = ptr = −trM e
tr/3. (2.33)

Now depending on the updated pressure pn+1, and the density change given by

J = det(F n+1), (2.34)
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Figure 2.5: Top: Trial timestep illustration while plastic flow is frozen. Bottom:
Particle state illustration with logarithmic Hencky elastic strain in 1D.

the state of the particle is determined. If the pressure is negative or the current density

is below the bulk density (J−1 < ϕ), the particle is in state 2 or 3. Thus, setting zero

Cauchy stress tensor makes the particle stress-free and the motion is purely given by

kinematics. In addition, as there would be no elastic deformation here, the current

plastic deformation gradient is updated via the current total deformation gradient,

F p
n+1 = F n+1. Note, resetting the current pressure to zero is only for tagging the

particle.

Otherwise, it means that the particle is in state 1 or 4. In the case that the

previous state of the particle was stress-free (pn = 0), the particle is now in state 4;

and the granular fluidity should be calculated via kinematics given by

gn+1 =
√
2|Dn+1|/µ2 (2.35)

where an additive decomposition of the velocity spatial gradient L = D +W results

in the stretch part D = (L + LT)/2. In addition, the current friction coefficient is

set to the friction coefficient saturation value (µ2) [Dunatunga, 2017] based on the

µ(I)-rheology [Jop et al., 2006].

However, if the previous pressure was non-zero (state 1), the granular fluidity is

normally updated using equation (2.5) and the value of Laplacian term obtained from
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equation (2.23) as follows

gn+1 = gn +∆t[A2d2∇2gn − (µs − µn)gn−

(µ2 − µs)

I0

√︄
ρsd

2

pn
µng

2
n]/t0.

(2.36)

Then, the remaining associated trial quantities are calculated as follows

τ tr = |M e
0,tr|/
√
2

Np
tr =

M e
0,tr√
2τ tr

.
(2.37)

It is assumed that the deviator of Mandel stress and the direction of plastic flow

are codirectional. Hence, the plastic flow rule is non-associated and prevents plastic

volume change.

In order to compute the Cauchy stress, it is required to update shear stress via

the updated granular fluidity, and then update Mandel stress by

τn+1 =
τ trpn+1

pn+1 + S∆tgn+1

M e
n+1 = M e

tr −
√
2(τ tr − τn+1)N

p
tr.

(2.38)

Finally, the Cauchy stress is computed for particles in state 1 or 4 as follows

T n+1 = J−1Re
trM

e
n+1R

e,T
tr (2.39)

where Re is the rotation tensor of the polar decomposition of the elastic deformation

gradient. Now with the non-zero previous pressure the current friction coefficient is

updated via

µn+1 = τn+1/pn+1, (2.40)

otherwise, it remains µ2. The equivalent plastic shear strain rate is then calculated

via

γ̇p
n+1 = µn+1gn+1 (2.41)

which results in the plastic part of velocity spatial gradient [Henann and Kamrin,

2016] known as (visco)plastic flow rule given by

Lp
n+1 =

1√
2
γ̇p

n+1N
p
tr. (2.42)
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Therefore, the updated plastic deformation gradient is given by the forward Euler

solution of equation (2.28) as follows

F p
n+1 = F p

n(1+∆tLp
n+1). (2.43)

After all, the particle internal force can be calculated via the updated Cauchy

stress tensor as fp = V p divT p. There are some extra instructions in the pseudo

code shown in Figure 2.4(right) regarding programming limitations which were not

included in the aforementioned steps.

2.2.2 Validation

In this section, the implemented NGF model is validated by our excavation exper-

iments. We also compare the NGF results with the results from a recent modified

Drucker-Prager plasticity model [Klár et al., 2016] for the excavation case. In ad-

dition, we model an industrial excavator and explain the three states the granular

material simultaneously experiences in a practical case. Moreover, 3D wheel-soil and

silo are modeled to further verify the behavior of the granular flow governed by this

constitutive equation. Another validation is also done by simulations to compare to

microgravity Taylor-Couette (TC) flow experiments [Murdoch et al., 2013a, Murdoch

et al., 2013b, Murdoch et al., 2013c] (for more details see [Haeri and Skonieczny, ]).

The simulations were performed on an Intel Core i7-6700 3.4GHz Quad-Core pro-

cessor. Houdini Apprentice [SideFX, 2020] is utilized for the visualizations. From a

high performance computing (HPC) point of view, multi-threading (via Intel TBB)

and vectorization (via explicit SIMD) were utilized in the code, in addition to some

algorithmic improvements explained in §2.1.2. These techniques make the current

MPM 2x faster than a traditional MPM [Hu et al., 2018]. Although the NGF model

appends an extra PDE to the governing equations, our numerical approach does not

significantly increase the simulation run-time (≈ 5%, relative to algebraic or para-

metric models).

The NGF parameters shown in table 2.1 are set based on the physical properties

in our experiments and previous work [Dunatunga and Kamrin, 2015] except when

noted otherwise. Some of the parameters are subject to the Von Neumann stability

condition of the NGF model’s PDE (Poisson equation) where ∆t < (∆x2t0)/(2A
2d2)
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S [MPa] B [MPa] ρs [kg/m
3] d [mm] t0 [s] µs µ2

{5.8, 1} {12.5, 10} {2583, 2550} {0.3, 4} 1e-4 {0.70, 0.38} {0.96, 0.64}

Table 2.1: Material parameters for NGF model. First set members are for excavation,
industrial excavator, wheel and silo models (unless otherwise noted), and second ones
are for Taylor-Couette flow model. Also, A = 0.48 and I0 = 0.278.

Model
E ∆t ∆x Particle Runtime MPE

[MPa] [s] [m] # (ppc) [sec/sec] [%]

Excav. 15.00 4.0e-5 3.3e-3 230K (8) 770 -0.5
Excav.* 0.15 3.5e-4 4.0e-3 15K (1) 11 15.8
Indust. 0.15 1.0e-4 3.3e-3 256K (8) 1300 –
Wheel 15.00 1.0e-5 3.3e-3 50K (4) 2522 5.2
Silo 0.15 1.0e-4 4.0e-3 32K (8) 857 –
TC 3.00 1.0e-4 4.0e-3 500K (4) 1565 0.9

Table 2.2: Specifications for simulations of 20-sec 5-cm depth excavation, 6-sec indus-
trial excavator, 20-sec 20% slip wheel, 12-sec silo, and 22-sec One-G Taylor-Couette
(TC) flow. Mean percentage errors (MPE) in excavation forward force, wheel load,
and TC flow angular velocity are specified relative to experiments. * indicates exca-
vation model with relaxed Young’s modulus for significant computational efficiency
yet acceptable accuracy.

[Dunatunga, 2017]. Also, the computational time spent in all the MPM-NGF sim-

ulation models are provided in table 2.2. MPM runs can be substantially sped up

by reducing the number of particles per cell (ppc) and/or increasing the grid spacing

(∆x), which all result in a lower particle count. Using a relaxed Young’s modulus

and a larger timestep (∆t) would also contribute to this while satisfying the sta-

bility conditions of elasticity and the NGF model’s PDE [Dunatunga and Kamrin,

2015, Dunatunga and Kamrin, 2017, Henann and Kamrin, 2016]. An implicit MPM

solver could rectify this and is a possible direction of future work. The mean percent-

age error (MPE) of the excavation forward force, wheel load, and TC flow angular

velocity are also specified relative to the experiments.

Wheel. We validated the model via wheel-on-soil experiments. To this end, our
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Figure 2.6: Left: Robotic equipment and experiment setup. Right: Wheel-soil
model in MPM (right).

specialized robotic single-wheel apparatus was utilized [Niksirat et al., 2020]. The

rover wheel is driven via synchronized control of a horizontal linear actuator (Macron

Dynamics R6S driven by a Kollmorgen AKM23C motor and AKD-P00306 driver) and

a wheel motor (Maxon RE35 with a MaxPos 50/5 driver) in an instrumented soil bin

with a dimension of 90 x 19.3 x 35 cm. A vertical load is applied to the wheel while

allowing free vertical motion. Data collection includes forces in the forward (drawbar

pull, DP, i.e. net traction) and vertical (wheel load, W) directions via an ATI Delta

IP60 sensor, and vertical wheel displacement via an ALPS slide potentiometer. The

wheel is located against a transparent window in the soil bin. A high-speed 4 MP

monochrome camera with 16 mm EFL lens and Core2 digital video recorder observes

wheel–soil interactions through a glass sidewall in the soil bin via a mirror tilted at

45 degrees. The images are captured, processed, and analyzed using the Soil Optical

Flow Technique (SOFT) [Skonieczny et al., 2014]. Experiment setup in the apparatus

and its model in MPM is shown in Figure 2.6.

The smooth wheel is 30 cm in diameter and 12.5 cm in width. The soil in the

experiment is a NASA Glenn Research Center lunar soil simulant GRC-1. The relative

density used is 44.6 +/- 7.2%. This is calculated based on the cone index gradient

of 5.30 +/- 0.6 kPa/mm using the correlation in [Oravec et al., 2010]. Thus, the

corresponding internal friction angle can be obtained as 35 deg. The median grain

diameter and density are 0.3 mm and 2583 kg/m3. Using the triaxial test performed

by [Oravec et al., 2010] the estimated Young’s and shear moduli are 15 MPa and 5.8

MPa, respectively. Also, the measured external friction coefficient between the wheel

and soil is approximately 0.4. The amount of traction a wheel produces is related to
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Figure 2.7: Average normalized subsurface soil velocity magnitude between 5 and 6
second marks from experiment (left) and MPM-NGF (right) with 20% (top) and 70%
(bottom) slips.

how much it slips. Thus, we tested with three different slips including s = 20%, 40%,

and 70% where s = 100(1− v/rω) is a function of wheel radius r, horizontal speed v,

and rotational speed ω. Here, we varied the horizontal velocity to change the amount

of slip. Moreover, we exerted a normal load of 164 N on the wheel. This load consists

of the wheel unit weight plus applied force on the wheel unit.

A visual quantitative comparison is shown in Figure 2.7. This shows the aver-

age subsurface soil motion between the 5 and 6 second marks in the experiment and

simulation (MPM-NGF) with 20% and 70% slips. The grain/particle velocities are

normalized with the tangential velocity of the wheel rim. The velocities visualized in

colors clearly depict the static (blue) and highly dynamic (red) parts. The soil defor-

mation underneath and behind the wheel (right side) from experiment and simulation

are comparable.

Furthermore, the wheel-soil interactions from simulation here are evaluated by the

forces measured in the experiments. Figure 2.8(left) compares the drawbar pull and

wheel load forces from MPM-NGF and experiment with 20% slip. The quantitative

force values are in good agreement with the experimental forces in both the forward

and vertical directions. The MPE of the wheel load force in the simulation compared

to the experimental result, provided in table 2.2, does not exceed 6% magnitude. In

addition to the overall trend here, as mentioned, MPM-NGF is also able to capture

drops and rises in force at various timesteps. The NGF parameters are set based
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Figure 2.8: Left: Interaction forces (drawbar pull and wheel load) and sinkage from
experiment and MPM-NGF with 20% slip. Right: Average drawbar pull to wheel
load ratio and maximum sinkage at different slips from experiment and MPM-NGF.

on the physical properties in the experiment. In the simulation, to settle the wheel

quickly and prevent wheel vertical bouncing, we applied an exponential damping to

the vertical motion of the wheel for one second prior to start. The wheel upward

motion was also significantly damped out during the wheel forward motion. This

means, the wheel could move only downward (but not upward) freely.

Moreover, Figure 2.8(right) compares the average drawbar pull to wheel load ratio

(DP/W) and maximum sinkage at different slips from experiment and MPM-NGF.

The DP/W ratio is a common metric in the field of terramechanics that refers to

the load a vehicle can tow relative to vertical load. Wheel sinkage, as a function

of slip, is also a measure of the response of the terrain to a specific loading, and

affects wheel performance. The simulation DP/W ratio is in a very good agreement

with the experiment. Also, due to the implementation of the wheel upward damping,

the maximum sinkage is slightly higher in the simulation than in the experiment.

However, MPM-NGF has been able to capture the overall trends.

Excavation. We also set up an excavation experiment to validate the MPM

with NGF model. It consists of a sandbox positioned under a 3-degree-of-freedom

motorized unit to which an excavation tool is attached. For this experiment and for

the numerical simulation presented here, the excavation tool is a flat plate (blade)

as depicted in Figure 2.9. The rake angle of the blade can be set manually and

it remains constant during the run. The excavator can be moved horizontally and
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Figure 2.9: Robotic equipment and experiment setup.

Figure 2.10: Geometries of soil deformations in MPM-NGF and experiment for 5-cm
depth.

vertically independently. The motors are controlled such that the impulses from the

soil flow do not affect the trajectory of the excavator. The excavator is installed on a

Delta IP60 (ATI Industrial Automation Inc.) 6-axis force-torque sensor. The blade

trajectory is composed of three segments: first, a downward ramped motion at the

start to dive into the soil to a specific depth, then a long-duration horizontal motion,

and finally an upward ramp at the very end. Two tests were done based on this

trajectory but at different (2-cm and 5-cm) depths.

The soil in the experiment is the GRC-1 with the aforementioned properties. Also,

the measured external friction angle between the blade and soil is ∼30 deg. The setup
of the experiment is shown in Figure 2.9(left).

A qualitative and visual comparison is shown in Figure 2.10. This shows the soil

geometry in the end of the second trajectory segment in the 5-cm MPM-NGF and
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Figure 2.11: Interaction forces from MPM-NGF and experiment for 2-cm (left) and
5-cm (right) depths.

experiment. Four visual criteria are emphasized for a better analogy. In general, the

soil behavior in MPM-NGF is predicted similar to the one in the experiment. The

particle velocities visualized in colors clearly depict the static (gray) and dynamic

(red) parts. The MPM-NGF velocity field corresponds well with the experiment.

Furthermore, the tool-soil interactions in the simulations here are evaluated by

the forces measured in the experiments. Figure 2.11 compares all the forces from

MPM-NGF and experiment. The quantitative force values are in good agreement

with the experimental forces in the three (forward, vertical and lateral) directions.

The MPE of the forward force of the 5-cm depth case in the simulation compared

to the experimental result is provided in table 2.2. The errors do not exceed 1%

and 16% magnitude for the original and faster simulations, respectively. Due to the

dimensional analysis used to model the large experimental cases, the scaled MPM-

NGF results seem to have slightly boosted oscillation amplitude. However, in addition

to the overall trend, MPM-NGF is able to capture drops and rises in force at various

timesteps of the two experiments. This can highlight the unsteady form of the MPM

solver as well as the NGF constitutive model.

Also, we tried modeling the excavation case with a recent modified Drucker-Prager

(DP) plasticity model (with projection) [Klár et al., 2016]. This model showed its

capability in modeling the Taylor-Couette flow [Haeri and Skonieczny, ]. In addition

to the material parameters mentioned before, the hardening parameters were set as

h0 = 44, h1 = 9, h2 = 0.2, and h3 = 9. Parameters h0 and h3 are responsible for the

minimum and maximum friction angle relative to the plastic deformation (here 35

and 44 degrees, respectively). Also, h1 and h2 define the change rate of the friction
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Figure 2.12: Excavation modeling with MPM-NGF (left) and MPM-DP (right). Soil
modeled with DP experiences unexpected fluid-like behaviors in untouched areas with
no accumulating pile.

Figure 2.13: Industrial excavator modeled via MPM-NGF.

angle [Mast et al., 2015]. We found the model insensitive to the depths we were

interested in (i.e. 2 cm and 5 cm). The fluid-like behavior of the soil modeled with

this plastic model is shown in Figure 2.12(right) compared to the soil deformation

modeled with the viscoplastic NGF model (left). It seems that the DP model has

issue with the hardening part, because as soon as we increased the depth, the soil

started to pile up in front of the excavator yet with unexpected fluid-like behaviors in

very distant areas, and to the sides of the blade even reflected soil flow in the opposite

direction. With the help of visualization of the particle velocities from black (0 m/s)

to white (0.0125 m/s) and red (0.0250 m/s), the deformations are clearly visible in

Figure 2.12. MPM with DP plasticity would clearly require further development in

future work, if there is a chance for it to properly capture the experimental results.

We further modeled an industrial excavation with MPM-NGF shown in Figure

2.13. It demonstrates the ability of MPM-NGF to model the three states that a

granular material can experience during soil cutting operations [Haeri et al., 2020].
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Figure 2.14: Top: Velocity filed in 3D silo. Bottom: Plastic shear strain rate field
shown in a thin layer of 3D silo.

The colors indicate the equivalent plastic shear strain rate (γ̇p) from black (0 s−1) to

light green (5 s−1) for each particle. This enables us to track the soil deformations in

the particle’s body frame as opposed to the velocity magnitude in the global frame.

At the 6 second mark, the soil inside the bucket and untouched areas are under solid-

like elastic deformation. The separated particles leaking from the bucket are under

gas-like stress-free deformation. Finally, the particles piled up after returning to the

bin are under fluid-like viscoplastic deformation.

Silo. Similar to recent work in the literature [Dunatunga and Kamrin, 2015], we

modeled drainage of a silo here but via the NGF model and in 3D. The material

parameters are given in table 2.1 except for µs = 0.3819. The bottom boundary is

rough and sides are smooth. This case again demonstrates the fact that the model

can capture the three states of matter. Figure 2.14(top), a perspective 3D view of the

silo, shows the velocity magnitude of each individual particle from white (0 m/s) to

red (0.2 m/s) at 0, 1, 5, and 12 second marks. Also, a side 2D view of a thin layer in
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the middle is shown in Figure 2.14(bottom); it visualizes the equivalent plastic shear

strain rate from white (0 s−1) to blue (10 s−1). The slope of the soil pile at the 12

second mark matching the friction angle provides further evidence of the accuracy of

the model.

Taylor-Couette Flow. We also validated the model via the experimental results

that have been produced by flying a TC flow apparatus (shown in Figure 2.15(left))

aboard a reduced gravity aircraft [Murdoch et al., 2013a]. The results will be pre-

sented and discussed in §2.3.

2.3 Gravity Sensitivity of Continuum Numerical

Solvers

FEM and MPM are chosen to be studied for granular materials under varying gravity.

The nonlocal granular fluidity (NGF) model [Haeri and Skonieczny, 2021, Henann and

Kamrin, 2014] is utilized as the constitutive model. These choices ensure capturing

both quasi-static and intermediate regimes which are crucial in the current research.

Also, for reference, a simple and computationally efficient analytical method that

does not require numerical solvers is also considered.

A candidate theoretical framework for understanding rover wheel-soil interaction

under different gravity conditions, is Taylor Couette (TC) flow, which models vis-

cous granular flow between a rotating inner and stationary outer concentric cylinder,

shown in Figure 2.15. Parallels can be drawn between the rotating inner cylinder

and a rotating wheel [Higgs et al., 2006]. This approach is justified by similarities

to rotational aspects of wheel motion observed experimentally in [Skonieczny et al.,

2014]; in particular, velocity gradients in the granular terrain resemble viscous flow.

The goal in this section is to explore the best solver that can successfully model ex-

perimental results that have been produced by flying a TC flow apparatus aboard

a reduced gravity aircraft [Murdoch et al., 2013a]. Note that the simulation condi-

tions (e.g. cell dimensions, boundary conditions, etc.) are all from the experiment

[Murdoch et al., 2013a].
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Figure 2.15: Taylor Couette cell, with chosen top (blue) and bottom (red) reference
surfaces. The inner cylinder is moving and the outer cylinder is fixed.

2.3.1 Reduced-gravity TC flow experiment

In [Murdoch et al., 2013a] a TC shear cell was designed to investigate granular flow

due to rotational shear forces in reduced-gravity environments. As of 2013, it was

mentioned that nothing was known regarding TC flow in weak gravity. To reduce

gravity during the experiments, a microgravity condition on a parabolic flight was

utilized. There were 93 parabolas (each 22 sec) in one flight giving ≈ 30 minutes of

microgravity (≤ 0.05gEarth) in total. Two high-speed cameras, imaging the top and

bottom of the transparent cell, and image processing tools were used to collect and

process data in a specific region.

The TC geometry is shown in Figure 2.15 and consists of two cylinders; the outer

cylinder has a radius (ro) of 195 mm, the inner one has a radius (ri) of 100 mm, and

both are rough with a layer of particles while the floor is smooth. The gap between

the two cylinders is filled to a height (H) of 100 mm with 4-mm diameter (d) spherical

beads. The inner cylinder angular velocity (ωi) is 0.025 rad/sec. Thus, the maximum

dimensionless shear rate (DSR), where shear rate γ̇ is equal to inner cylinder angular

velocity ωi, can be obtained for both One-G and Micro-G conditions. DSRs reveal

that the flows are in the quasi-static regime (i.e. DSR < 0.15 [Tardos et al., 2003]).

max(DSR) = ωi

√︁
d/G =

⎧⎨⎩0.0005, One-G

0.0020+, Micro-G
(2.44)
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Figure 2.16: Comparison of normalized angular velocity profiles for the top and bot-
tom surfaces in One-G (left) and Micro-G (right). The velocity profiles shown only
extend up to 10 particle diameters from the inner cylinder as further away there is
very little particle motion [Murdoch et al., 2013a].

Figure 2.16 shows a comparison between the angular velocity profiles on the top

and bottom surfaces in One-G and Micro-G conditions [Murdoch et al., 2013a]. On

the ground, the top surface speed is higher than bottom surface speed, while in micro-

gravity the top and bottom surface speeds are similar. However, in both conditions

the bottom surface speed decays faster indicating it has a narrower shear band (a

narrow zone of large relative particle motion bounded by static regions). Also, in

One-G the shear band is much smaller in the ordered grains on the bottom surface

than in the disordered grains of the top surface (see Figure 2.23). Moreover, the bot-

tom surface velocity in One-G is notably lower than in Micro-G. In different gravity,

the bottom surface is under the influence of different overburden weight from the

particles above (m = 13.5 kg).

Based upon these results, two relative trends are defined by us: (1) The velocity

difference between top and bottom surfaces, which is larger in One-G than in Micro-

G; (2) The shear band length difference between top and bottom surfaces, which is

again larger in One-G than in Micro-G. In addition to capturing these trends, an

accurate model should achieve the correct velocity profile values quantitatively as

well.
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2.3.2 Analytical Method for reduced-gravity TC flow

An analytical method (AM) put forward by [Lagrée and Lhuillier, 2006] proposes two

constitutive equations for two elements in the stress tensor: σrr and σrθ (expressed

in cylindrical coordinates). The assumptions of this constitutive model are valid for

dry and dense (i.e. high, but strictly less than maximum, volume fractions) granular

TC flows. The equation for σrr considers the effects of the disorder pressure P ∗F (ϕ)

(where ϕ is volume fraction), and the impact pressure. The equation for σrθ also

includes these same two effects plus the influence of the friction coefficient µ(ϕ) and

the sliding contact dissipation µT (ϕ). Ultimately, they are a function of grain density

ρs, grain diameter d, dilatancy µN(ϕ), angular velocity rate ∂ω
∂r
, and radial distance

to the moving inner cylinder as well. Some parts contain constants that are obtained

from previous experiments.

σrr = P ∗F (ϕ) + ρsd
2µN(ϕ)(r

∂ω

∂r
)2

σrθ = µ(ϕ)σrr + ρsd
2µT (ϕ)(r

∂ω

∂r
)2

(2.45)

where

F (ϕ) = log(1/(1− φ)), µN(ϕ) = µN0/(1− φ)2

µT (ϕ) = µT0/(1− φ)2, µ(ϕ) = µ0

φ = (ϕ− ϕm)/(ϕM − ϕm)

with ϕm and ϕM being the minimum and maximum volume fractions, considered as

random loose and close packings, respectively. Note that µN0 and µT0 represent the

dilatancy and contact dissipation, respectively, at minimum volume fraction. Because

of the very slow motion (ω < 1 rad/sec), the model is appropriate for quasi-static and

intermediate regimes given the grain diameters and gravity considered in the survey

(shown in Figure 1.1).

In the AM, using the proposed constitutive models for the two elements in the

stress tensor, and applying simplifying assumptions on momentum equations [Lagrée

and Lhuillier, 2006], gives an integral relation for calculating the angular velocity at
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Figure 2.17: Normalized angular velocity versus normalized distance from inner cylin-
der in One-G and Micro-G from AM and experiment for top and bottom surfaces.

each vertical position, z, in the TC flow as follows

ω(r′) =

∫︂ r′0

r′

√︄
P ∗

µN0ρsd
2
(q(x)+

q(x)e−P (z)/P ∗
eq

2(x))dx/x

(2.46)

where

P (z) = K(Pc + ρG(H − z)),

q(x) =

√︃
µN0

µT0P
∗

√︁
τ i/x2 − µ0P (z)

for r′ = r/ri, r
′
o = ro/ri and where K is coefficient of earth pressure at rest (i.e. the

ratio of the horizontal normal stress to the vertical normal stress), Pc is confining

pressure applied by the top plate, ρ is bulk density, G is gravitational acceleration

in z-direction, P ∗ is a constant, and τ i is shear stress applied to the inner cylinder.

Recall from above that ri is inner cylinder radius, ro is outer cylinder radius, and H

is the height of the TC filled with granular material.

Figure 2.17 shows the normalized angular velocity ω∗ = ω/ωi versus normalized

distance from inner cylinder d∗ = (r− ri)/d in different gravity conditions for the top

and bottom surfaces compared with the experiment. It reveals that it is possible to

achieve some qualitative correspondence to the experiment in terms of the relative

trends defined earlier, as larger differences between top and bottom velocities are
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Figure 2.18: Normalized angular velocity profiles in One-G and Micro-G from FEM
and experiment for top and bottom surfaces

observed in One-G than in Micro-G. However, in terms of absolute angular velocity

the results do not correspond to the experimental results.

2.3.3 Finite Element Method for reduced-gravity TC flow

Here, FEM is used to model the steady-state TC flow by allowing a small rotation

of the inner cylinder (4 degrees) in the TC cell. The code used here to generate

the results is provided by [Henann and Kamrin, 2016], written in Fortran within the

Abaqus User Element subroutine, and accompanied by the steady form of Nonlocal

Granular Fluidity model. Figure 2.18 compares results of the FEM versus the exper-

iment. In contrast to the AM, in terms of absolute velocity, FEM is accurate and, on

average, consistent with the experimental results. However, it captures little to no

discrepancy among velocity profiles in varying gravity and vertical position.

A study in [Henann and Kamrin, 2016] emphasizes that high Froude numbers

(Fr ≈ 1, rate-dependent) cause differences in the velocity profiles at different vertical

positions (z), and the velocity profile in rate-independent cases (Fr ≤ 10−3) shows no

z-dependence. In both cases the pressure is only z-dependent. In accordance with

this, the Froude numbers (Fr = riωi(Gd)−0.5) of 0.013 and 0.056 for the One-G and

Micro-G experiments, reveal the flows are not quite rate-independent, but also not

large enough to be strongly z-dependent. The lack of z-dependence in the velocities

is evident in the FEM results shown in Figure 2.19.
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Figure 2.19: Tangential velocity (vθ = rω) in r-z plane in both One-G (left) and
Micro-G (right) conditions from FEM

2.3.4 Material Point Method for reduced-gravity TC flow

Figure 2.20 compares the velocity profiles between the MPM and the experiment

(introduced in §2.3.1), similarly to how the AM and FEM were compared in §2.3.2
and §2.3.3. MPM captures absolute values, shear band lengths and relative curves at

different vertical positions and gravity conditions. Figure 2.21 shows the normalized

angular velocity profiles for the top and bottom surfaces in One-G and Micro-G

from MPM and the experiment separately. In that, error bounds (MPM) and error

bars (experiment) show one standard deviation. Also, the radial velocity for the top

surface in One-G, shown in Figure 2.22, is only three percent of the inner cylinder

velocity in MPM; the experimental result is also very low (approximately 0 after

d∗=5, considering experimental error).

Particle motions at the top and bottom surfaces in One-G at the 22 second mark

(i.e. near the end of the Micro-G parabola) are shown in Figure 2.23(left). Colors

from white to red represent normalized velocity magnitude. Two small images in the

middle are long exposure images from the experiment with blurred areas indicating

moving grains. In both MPM and the experiment, the shear band at top is larger

than at the bottom in One-G. Figure 2.23(right) shows similar results but in Micro-G.

Shear band lengths are close to equal at top and bottom in Micro-G.

Furthermore, the shear band lengths at different vertical positions of the cell can

be seen in Figure 2.24 showing moving areas in red. In contrast to FEM (Figure 2.19),

in MPM (and also the experiment) there is clearly more deformation at top near the
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Figure 2.20: Normalized angular velocity profiles in One-G and Micro-G from MPM
with NGF model and experiment for top and bottom surfaces.

inner cylinder in One-G, and similar deformation at top and bottom in Micro-G.

The plastic Drucker-Prager (DP) constitutive model (with projection) [Klár et al.,

2016] is also used to show the MPM gravity sensitivity to constitutive models. The

same as before, Figure 2.25 compares the normalized angular velocity profiles but this

time between MPM with DP model and the experiment. The results are again in a

good agreement with the experiment. Further, the mean absolute percentage errors

(MAPE) of the both constitutive models relative to the experiment in One-G and

Micro-G for top and bottom surfaces are shown in Table 2.3. This can emphasize the

MPM capability in capturing the gravity effect regardless of the constitutive model.

In order to examine the steadiness of the flow, the shear reversal case in the

experimental reference was also modeled. This case examines TC flow while the

inner cylinder changes its rotation direction at the middle of the experiment (at 11

sec). Figure 2.26 represents a time track of normalized mean angular velocity of three

near-inner cylinder radial bins (1, 2, and 3) and one near-outer cylinder radial bin

(10) for top surface in One-G and Micro-G. The results reach the steady state very

soon (after ∼ 2 sec); while there is a brief transient state just after the shear reversal.

This transient weakening is stronger in Micro-G in both the MPM and experiment.
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Figure 2.21: Normalized angular velocity profiles in One-G (left) and Micro-G (right)
from MPM versus experiment for top and bottom surfaces.
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Figure 2.22: Comparison of normalized radial velocity in One-G from MPM with
experiment for top surface. No data is available from microgravity experiment.
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Figure 2.23: Shear band illustration in One-G (left pair) and Micro-G (right pair),
based on particle normalized velocity magnitude at top (left) and bottom (right) at
the 22 second mark from MPM versus experimental images [Murdoch et al., 2013a].

Figure 2.24: Moving areas in vertical plane, in One-G (left) and Micro-G (right) from
MPM.
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Figure 2.25: Normalized angular velocity profiles in One-G and Micro-G from MPM
with DP model and experiment for top and bottom surfaces.
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Figure 2.26: Shear reversal results for top surface in One-G (top) and Micro-G (bot-
tom).

Table 2.3: Mean absolute percentage error (MAPE) of velocity field in TC flow from
DP and NGF models relative to experiment in One-G and Micro-G for top and bottom
surfaces.

Model One-G Top One-G Bottom Micro-G Top Micro-G Bottom
NGF 0.88% 0.92% 1.50% 1.85%
DP 0.93% 0.99% 1.24% 1.28%
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2.3.5 Discussion

Gravity, in MPM, is first applied on particles. The constitutive model calculates

particle stress and the transfer scheme transfers momentum and stress from particles

to grid nodes. By solving the momentum equation, grid information is updated, and

affects particle momentum and deformation through the transfer scheme. In this way,

gravity influences particle velocity, grid velocity, and finally particle deformations.

Gravity might cause z-dependency in the Taylor-Couette (TC) flow velocity field

as observed in the aforementioned experimental and MPM results. Although there

exist experiments reporting a height-invariant flow field in TC flow [MiDi, 2004, Boc-

quet et al., 2001], for some conditions and within the resolution of the measurements

[Mueth et al., 2000], some experimental conditions result in a clear z-dependence in

the velocity field [Murdoch et al., 2013a, Murdoch et al., 2013b]. We speculate that

some of the factors that may influence the degree of z-dependence in an experiment

could include floor friction (as it can’t be totally frictionless in reality), TC cell aspect

ratio, properties of particular granular materials, etc. In MPM, the results agree with

the experiment in [Murdoch et al., 2013a] as shown in Figures 2.20 and 2.21 using the

nonlocal granular fluidity model and Figure 2.25 using the Drucker-Prager model.

Whether a simulation develops a z-dependency or not appears to be driven by the

presence of z- and r-dependence in the pressure field. Most of the particles in the

shear band are under negative pressure (i.e. tension) in MPM3. As mentioned, these

particles are set to be stress-free (i.e. zero pressure). In contrast, FEM [Henann and

Kamrin, 2016] does not experience the negative pressure field in the shear band with

the specified rotation angle (4 degrees). The effects of this can be observed in the

normalized mean pressure field of the vertical plane shown in Figure 2.27 for both

MPM and FEM in One-G. In these cases, only the MPM pressure field is both z- and

r-dependent. This can also be observed using Drucker-Prager in MPM.

As a result, the (z- and r-dependent) pressure field can affect the inertial number

field. The resulting MPM and FEM inertial number fields are shown in Figure 2.28.

3The MPM pressure field may have some analogy to viscous fluid where flow near a moving inner
cylinder is under negative pressure [Vittoz et al., 2019].
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Figure 2.27: Normalized mean pressure field in vertical (i.e. r-z) plane in MPM and
FEM.
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Figure 2.28: Mean inertial number field in vertical (i.e. r-z) plane in MPM and FEM.

Unlike FEM, The rate-dependent MPM flow near the inner cylinder makes the ve-

locity field z-dependent similar to the way that a high Froude number can cause this

[Henann and Kamrin, 2016].

Given the z-dependent experimental velocity field, it seems that the MPM, unlike

FEM, is capable of producing the true inertial number field. In the TC flow, most of

the zones experience slow flows (I ≲ 10−3), but some do experience flow with higher

I. In the case where I ≳ 10−3, FEM has problems in modeling the rate-dependent

intermediate flows. Therefore, MPM is shown to be a good candidate to model the
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entire flow in various gravity conditions.
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Chapter 3

Real-Time Physics Modeling

Offline, yet efficient, modeling of the interaction of robots and granular flows is so

far made possible by a continuum method comprising a modern constitutive model,

nonlocal granular fluidity (NGF), and a state-of-the-art numerical solver, material

point method (MPM). This could contribute to the robot design applications includ-

ing wheel and sample bucket design, as well as computer graphics applications such as

animation production. As an example, Autodesk Maya’s Bifrost is recently equipped

with an embedded MPM engine for visual effect creation. Online simulation, how-

ever, is essential for training operators in the construction and space industry. For

instance, Lunar exploration rovers can be controlled (with a 4-second delay) by these

on-ground operators. Moreover, maintaining traction remains one of the challenges

that semi-autonomous Mars exploration rovers encounter while roving on Martian

deformable terrains. Such terrains consist of granular regolith under reduced gravity

conditions. The real-time simulation of wheel-soil interactions, that accurately takes

gravity effects into account, can improve rovers’ online mobility control as well.

Data-driven methods have begun to be applied to similar (specially fluid) simula-

tions. Some researchers [Holden et al., 2019, Harmon and Zorin, 2013, Huang et al.,

2011, Sifakis and Barbic, 2012, von Radziewsky et al., 2016] are applying dimen-

sionality reduction methods, such as principal component analysis (PCA) [Hotelling,

1933], to get a lower-dimensional representation of the physics data. Others [Sanchez-

Gonzalez et al., 2018, Li et al., 2019] are using graph neural networks (GNNs) [Gori

et al., 2005, Scarselli et al., 2008, Scarselli et al., 2009, Li et al., 2016], such as graph
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networks (GNs) [Battaglia et al., 2018], to learn the underlying physical dynamics

more accurately. Metrics of success for these methods have to date focused on qual-

itative visual appearance. In this chapter, we first provide a background on GNs

and PCA. Then, we develop a real-time learning simulation approach for granular

flow modeling of robot-terrain interactions. Finally, we present the results of two

configurations including Excavation and Wheel. There are two distinctions here: (1)

extensive training data will be generated via our accurate MPM-NGF verified by

experimental data, and (2) the training and rollout runtime and memory usage of

GNs will be significantly reduced by learning the subspace dynamics (i.e. subspace

learning [Champion et al., 2019]) using the reduced data obtained by applying PCA

to high-dimensional physics data.

3.1 Introduction and Background

First, §3.1.1 provides a background on graph neural networks (GNNs). We introduce

graph machine learning, and explain the GNNs (under the field of graph machine

learning) and their necessity. Furthermore, we discuss the expressive power of GNNs

and introduce graph network as generalized GNNs. We also explain one limitation of

GNNs and why a non-learning model reduction method can help. Then, §3.1.2 pro-

vides a background on the principal component analysis (PCA) [Brunton and Kutz,

2019] and the dimensionality reduction aspect of it. We emphasize that although we

select GNNs and PCA for our implementation, other neural network architectures

and model reduction methods could potentially be used, respectively.

3.1.1 Graph Neural Networks

Graphs are general data structures for describing complex systems. Graphs are com-

posed of entities (also known as nodes) and pairwise interactions (edges). In many

cases, nodes and edges can have attribute (feature) information differentiating them

from each other. Node-level features can be structure-based (capturing topological

properties of the local neighbourhood) and importance-based (capturing the impor-

tance of nodes). In addition, edge-level features can be distance-based and neighbour-

hood overlap-based. There are also graph kernel methods for defining graph-level
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Figure 3.1: A sample graph with nodes, directed edges, and features.

features such as graphlets [Shervashidze and Borgwardt, 2009], Weisfeiler-Lehman

(WL) kernels [Shervashidze et al., 2011, Weisfeiler and Lehman, 1968], and random

walk kernels [Kashima et al., 2003]. A sample graph is shown in Figure 3.1.

Machine learning with graphs enables us to do different node-, edge-, and graph-

level tasks on graph data. These include, but are not limited to, node classifi-

cation [Jumper et al., 2020], relation prediction [Ying et al., 2018, Zitnik et al.,

2018], graph generation [Konaklieva, 2014, Stokes et al., 2020], and graph evolu-

tion [Sanchez-Gonzalez et al., 2018]. Traditional machine learning pipelines require

hand-engineered features extracted based on manually computed graph statistics and

kernels (e.g. node degree, neighborhood overlap). These hand-engineered features

are non-adaptive through a learning process, and time-consuming to process [Hamil-

ton, 2020]. Graph representation learning is an alternative approach to learning over

graphs. In this approach, the aim is to automatically learn the features from encoded

graph structural information.

Shallow embedding approaches are one way to learn the features [Hamilton et al.,

2017b]. In a shallow Encoder-Decoder framework, the Encoder maps nodes (i.e. their

IDs) to a latent space called vector embeddings. Then, the decoder reconstructs

graph statistics from the node embeddings. The Encoder-Decoder framework can

be optimized by random walk approaches. In other words, these approaches can

provide reference values for minimizing the Decoder loss (by measuring graph-based

similarities). DeepWalk [Perozzi et al., 2014] and node2vec [Grover and Leskovec,

2016] are two examples of random walk approaches with different decoders, similarity
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measures, and loss functions. The shallow embedding approaches, however, have the

following drawbacks:

1. No parameter sharing: Every node has its own unique embedding which is

computationally inefficient.

2. No node feature incorporation: They cannot leverage node features in the En-

coder.

3. No generalization: They cannot generate embeddings for unseen nodes –those

nodes not observed in training. This means they are inherently transductive

[Hamilton et al., 2017b]).

Graph neural networks (GNNs), on the other hand, overcome the aforementioned

limitations. GNNs also use embeddings, but are more generalized. A basic GNN is

the generalization of convolutional neural network (CNN) beyond structured grid and

sequence data to non-Euclidean data [Bruna et al., 2014]. In fact, GNNs can handle

data with arbitrary size and complex topological structure, varying node ordering,

and often dynamic features. In a deep message-passing framework, GNNs determine

a node’s computational graph and propagate information through the graph. Below,

we summarize how to propagate information across a graph to compute node features

using a neural network.

Message-Passing Framework. In this framework, a graph is defined as G =

(E, V , u). The u is a global feature. The V = {vi}i=1:Nv is a set of nodes where

vi are node features. The E = {(ei, ri, si)}i=1:Ne is a set of edges where ei are edge

features, ri is the index of receiver node, and si is the index of sender node. Also, N e

and N v are the number of edges and nodes, respectively. Here the global, node and

edge feature embeddings are hu = fu(u), hvi = fv(vi) and hei = fe(ei), respectively,

where f(.)’s are arbitrary functions. Note that the global and edge embeddings are

only used in the graph network as a generalized message-passing framework.

Every node has its own computational graph based on its local neighbourhood.

The computational graph forms a tree structure by unfolding the neighborhood

around the target node [Hamilton, 2020]. It can have arbitrary depth (i.e. message-

passing steps). A one-step computational graph for a single node is shown in Figure

3.2 (given the graph shown in Figure 3.1).
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Figure 3.2: Illustration of one-step computational graph of node A in graph shown
in Figure 3.1.

The message-passing framework is defined upon the computational graph. A basic

framework consists of arbitrary differentiable node Update and Aggregate functions

as follows

hv
(k+1)
i = Update(k)

(︂
hvi

(k),message
(k)
N(vi)

)︂
(3.1)

for

message
(k)
N(vi)

= Aggregate(k)
(︂
{hv

(k)
j |∀vj ∈ N(vi)}

)︂
(3.2)

where message
(k)
N(vi)

is the message that is aggregated from node vi’s graph neigh-

borhood, N(vi), at message-passing step k. Also, the Update function combines the

aggregated message with the previous target node embeddings.

The Update and Aggregate functions are applied per node. The Update function

can be defined via a neural network (with nonlinear activation(s) to add expressive-

ness) in the GNN message-passing framework. There are different ways to aggregate

the features, such as mean pooling in graph convolutional network (GCN) [Kipf and

Welling, 2016], and max pooling in GraphSage [Hamilton et al., 2017a]. Also, since

the Aggregate function takes a set as input, the framework is permutation equiv-

ariant by design. This means that the Aggregate function output is permuted in a

consistent way in response to permutations of the input [Hamilton, 2020]. The ex-

pressiveness power of the Update function and the choice of the Aggregate function

will be discussed later in the current section.

In this framework GNN is inductive: (1) the parameters are shared, (2) the number
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of parameters is sublinear within the size of graph (e.g. node features size, |V |), and
(3) it can be generalized to unseen nodes. Specifically, GNNs are a certain class of

general neural architectures. It means that graph structure is the input to the neural

architecture (instead of being part of it), and the model parameters are shared to

respect the invariance properties of the input graph [You et al., 2020]. GNN examples

include GCN, GraphSage, and Graph Attention Network (GAT) [Veličković et al.,

2018] with different message-passing architectures.

Expressiveness (Theory). It is desirable for GNNs to have a high level of

expressiveness. The expressive power of GNNs is specified as the ability to distinguish

different computational graphs (i.e. graph structures).

Isomorphic nodes are defined as the nodes that have the same computational

graphs (i.e. same features and neighbourhood structure). GNNs are unable to distin-

guish two isomorphic nodes since they consider node features, not node IDs/indexes.

Also, an injective function maps every unique input to a different output. The most

expressive GNN maps every computational graph into different node embeddings,

injectively.

Hence, the Aggregate function should be injective. That is, the expressiveness

of GNNs can be characterized by the expressiveness of the Aggregate function over

multisets (i.e. sets with repeating elements). For instance, GCN and GraphSage

are not maximally powerful GNNs as they use non-injective mean and max pooling

functions for aggregation, respectively. Theorem 1 recently proposed by [Xu et al.,

2019] indicates that a sum pooling operation is an injective function over multisets.

Theorem 1 Assume X is countable. There exists a function f : X → Rn so that

h(X) =
∑︁

x∈X f(x) is unique for each multiset X ⊂ X of bounded size. Moreover, any

multiset function g can be decomposed as g(X) = Φ
(︁∑︁

x∈X f(x)
)︁
for some function

Φ.

Also, the universal approximation theorem [Hornik et al., 1989] states that a multi-

layer perceptron (MLP) with sufficiently large hidden dimensionality (i.e. from 100 to

500 nodes) and appropriate non-linearity (e.g. ReLU activation) can approximate any

continuous function with an arbitrary accuracy. The Graph Isomorphism Network

(GIN), developed based on the aforementioned theorems [Xu et al., 2019], is one of the

most expressive GNNs in the class of message-passing GNNs, where its expressiveness

57



3.1. INTRODUCTION AND BACKGROUND

Figure 3.3: Algorithm overview of full graph network [Battaglia et al., 2018].

is upper bounded by WL test. It has the following relation:

hv
(k+1)
i = MLP(k)

(︃
hv

(k)
i , Sum(k)

(︂
{hv

(k)
j |∀vj ∈ N(vi)}

)︂)︃
(3.3)

Therefore, sum pooling (Sum) and MLP will be used in a generalized message-

passing framework. Note that we can also add rich node features to improve the

expressiveness of the GNNs.

Graph Networks. A generalized message-passing framework is known as a graph

network (GN) [Battaglia et al., 2018]. The important aspect in graph networks is that,

during message passing, in addition to node embeddings hvi, we generate the edge

embeddings hei, as well as a global embedding hu corresponding to the entire graph.

This allows the framework to easily integrate edge- and graph-level features. Also,

recent work [Barceló et al., 2020] has shown GN to have benefits in terms of ex-

pressiveness compared to a standard GNN. Generating edge and global embeddings

during message-passing also makes it trivial to define loss functions based on graph

or edge-level classification tasks [Hamilton, 2020].

The algorithm overview of a one-step full GN architecture is shown in Figure

3.3 and Algorithm 1. Multi-layer perceptrons (MLPs) and element-wise sum pooling

(Sum) are used as the Update and Aggregate functions for maximal expressiveness.

The message-passing neural network (MPNN, also called interaction network) archi-

tecture [Gilmer et al., 2017], a simplified version of the full GN architecture, will be

used for the physics simulator explained in §3.2.3.

58



3.1. INTRODUCTION AND BACKGROUND

Algorithm 1: Full graph network [Battaglia et al., 2018]

Input : E(k), V (k), u(k)

Output : E(k+1), V (k+1), u(k+1)

for i = 1 to N e do

he
(k+1)
i ← MLPe

(︂
he

(k)
i , hv

(k)
ri
, hv

(k)
si

)︂
for i = 1 to N v do

hē
(k+1)
i ← Sum

(︂
{(he

(k+1)
j , i, s

(k+1)
j )}j=1:Ne

)︂
hv

(k+1)
i ← MLPv

(︂
hē

(k+1)
i , hv

(k)
i , hu

(k)
)︂

hē
(k+1) ← Sum

(︁
{(he

(k+1), ri
(k+1), si

(k+1))}i=1:Ne

)︁
hv̄

(k+1) ← Sum
(︂
{(hv

(k+1)
i )}i=1:Nv

)︂
h
(k+1)
u ← MLPu

(︂
hē

(k+1)
, hv̄

(k+1)
, hu

(k)
)︂

Limitation. GNNs might be infeasible for large-scale applications on a GPU

with mid-level limits on memory (i.e. VRAM of 10-20GB). Aside from mini-batch,

one solution to this is to consider linear activation functions in GNNs. This has

worked well for node classification benchmark [Wu et al., 2019]. Using this, one can

pre-process graph features on a CPU (with large memory capability) offline.

However, this will limit the expressive power of GNNs due to the lack of non-

linearity in generating the embeddings. In this research, we propose applying a non-

learning, CPU-runnable dimensionality reduction method, PCA, to physics graph

data in order to:

1. Significantly reduce the size of graph data,

2. Reduce the required message-passing steps to only one, and

3. Eliminate the need for computationally expensive edge construction algorithms.

3.1.2 Principal Component Analysis

Principal Component Analysis (PCA) is a non-parametric linear dimensionality re-

duction method [Pearson, 1901, Hotelling, 1933]. It provides a data-driven, hierarchi-

cal coordinate system to re-express high-dimensional correlated data. The resulting
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coordinate system geometry is determined by principal components. These are some-

times called bases, modes or latent variables of the data. These modes are uncorre-

lated (orthogonal) to each other, but have maximal correlation with the observations

[Brunton and Kutz, 2019]. Particularly, the goal of this method is to compute a

subset of ranked principal components to summarize the high-dimensional data while

retaining trends and patterns.

In PCA, dimensionality reduction mapping is defined as f : S → S ′. The matrix

S ∈ Rm×n includes m observations of n fullspace dimensions. And the matrix S ′ ∈
Rm×r is m observations of r subspace modes. This method is under the following

assumptions:

1. Linearity: f(S) = S U where U ∈ Rn×r is transformation matrix (or loadings).

2. The first two moments of data are sufficient statistics: The only probability

distribution class that can be fully described by the mean and variance are

exponential distributions (e.g. normal distribution). Thus, the probability of

dimensions must be exponentially distributed.

3. Large variances represent important dynamics: The modes with larger associ-

ated variances have interesting dynamics.

4. The principal components are orthogonal: The dot products of the columns of

the reduced data are zero, S ′
∗i · S ′

∗j = 0.

There are two approaches to obtaining the reduced data using PCA: (1) singular

value decomposition (SVD), and (2) eigenvalue decomposition (EVD). Here, we will

use the EVD approach since we can have an easier access to the indexes of the modes

in the full data if required.

First, the mean value s̄ over all elements of the full data Sm×n is computed via

s̄ =
1

mn

m∑︂
i=1

n∑︂
j=1

Sij (3.4)

and the mean matrix is S̄m×n = s̄Jm×n where Jm×n is an all-one matrix. The mean-

subtracted data Bm×n is then given by

Bm×n = Sm×n − S̄m×n. (3.5)
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Now covariance matrix Cn×n of the mean-subtracted data B is

Cn×n =
1

n− 1
BTB (3.6)

where it measures the degree of the linear relationship between two dimensions. In the

covariance matrix, large values on the diagonal correspond to interesting dynamics.

Large off-diagonal values correspond to high redundancy.

Next, the eigenvalues λi and eigenvectors wi of Cn×n are calculated by solving the

following equations

|C − λiIn| = 0 (3.7)

C wi = λiwi. (3.8)

which are guaranteed to exist, since Cn×n is Hermitian.

Now we obtain the sorted eigenvector matrix W = [w1 . . . wn]n×n based on the

sorted eigenvalues in descending order. The transformation matrix Un×r is then given

by

U =
[︂
w1 . . . wn

]︂
n×r

(3.9)

where the reduced data matrix is finally calculated via S ′
m×r = (Sm×n − S̄m×n)Un×r.

It should be noted that both the strength and weakness of PCA is that it is a

non-parametric method. In cases where standard PCA fails due to the existence of

non-linearly in data, kernel PCA [Schölkopf et al., 1998] can be used. Compared to an

autoencoder neural network, kernel PCA still does not require learning/optimization

and prior specification of size of the latent space.

3.2 Subspace Graph Network Simulator

For engineering applications, the underlying physics govern the system response. A

learning physics simulation can be discussed and assessed in terms of the following

factors:

1. Accuracy: An accurate method ideally learns from clean and accurate datasets

(§3.2.1).
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Figure 3.4: Training in our subspace GNS. Data X includes time series of flow states
S, rigid states R, and interaction forces F . Also, S ′ and Z are reduced flow states
and reduced system states. Here, states are particle positions.

2. Speed: A fast method can be achieved via reduced, memory-efficient data

and/or by using reusable modules that can be run on modern accelerator hard-

ware such as GPU (§3.2.2).

3. Generalization: Strong generalization is achievable by imposing relational in-

ductive bias on the learning model. Models with strong inductive biases are

more data efficient and can generalize much better to unseen scenarios (§3.2.3).

4. Differentiability: Differentiable models such as neural networks are appropriate

for inverse problems (e.g. control systems).

In this section, we develop a real-time learning simulation approach for modeling

rigid body-driven elasto-viscoplastic (and sometimes stress-free) granular flows. Focus

on this application does not limit its potential applicability to other materials, not

considered here. The approach will benefit from material point method (MPM),

principal component analysis (PCA), and graph network simulator (GNS), and is

decomposed to a training phase and a rollout phase. Such an approach has not been

developed for granular flows before.

The training phase is illustrated in Figure 3.4. First, we generate training datasets

via MPM verified by experiments. Then, we apply PCA to the full data in a pre-

processing step (on CPU). As a result, depending on the application, a desired quality
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Figure 3.5: Rollout in our subspace GNS. Initial Data X(0) includes initial flow states
S0 and (initial) rigid states R(0). Also, S ′

0 and Z(0) are reduced initial flow states
and reduced (initial) system states. In the end, results X include time series of flow
states S, rigid states R, and interaction forces F . Also, S ′ and Z are reduced flow
states and reduced system states. Here, states are particle positions.

(i.e. considering both accuracy and memory-efficiency) can determine the number of

PCA modes. Finally, we train GNS (a GN model with Encoder-Processor-Decoder

scheme on GPU) using data representing subspace elasto-viscoplastic granular flow.

The modules shown in the figure including Data (§3.2.1), Reduced Data (§3.2.2), and
Learning (§3.2.3) will be elaborated in the following sections.

In the rollout phase, depicted in Figure 3.5, we use the learned subspace model to

compute the granular flow-rigid body interaction forces (on CPU). Also, the fullspace

granular flows are computed in a post-processing step (on GPU) which is useful for

visualization purposes. Rollout is equivalent to a testing phase. The rollout phase

will be explained in §3.2.4.

3.2.1 Data

In the previous chapter, MPM was validated by experimental configurations including

wheel-soil, excavation, and Taylor-Couette flow. This has been shown to provide good

matching with experimental results with runtime on the order of 10 to hundreds of

times real-time. Now, hundreds of numerical simulations can be produced for the

proposed machine learning approach.
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Table 3.1: Datasets specifications. Motion types include (1) a discrete ramp-
horizontal-ramp motion, and (2) a continuous curved motion. Also, Grav., Fric.,
and Dia. stand for gravity, soil internal friction angle, and wheel diameter.

Dataset Variables

Excavation
Angle [deg] Depth [cm] Speed [cm/s] Motion
{0,4,10,31,45} {2,4,5,8,10} {1,4,8,10,15} {1,2}

Wheel
Grav. [m/s2] Fric. [deg] Load [N] Dia. [cm] Slip [%]
{1.62,3.72,9.81} {30,37,43} {100,164,225} {5,15,30} {20,40,70}

Here, we generate two datasets: Excavation and Wheel. Each dataset has ∼ 75000

data frames gathered with 60 Hz of data acquisition rate (as temporal discretization

is not constrained by stability conditions, in data-driven methods). The Excavation

dataset contains 250 examples with a single soil type and a blade cutting at vari-

ous depths, speeds, rake angles (i.e. relative to vertical), and motion types. The

Wheel dataset is slightly more complex. This includes 243 examples with soils having

different internal friction angles, and wheels with various diameters operating at var-

ious normal load and slip (percentage of the wheel’s rotary motion not translating to

forward linear motion). There are also multiple gravity conditions representing the

Moon, Mars, and Earth. These variables are summarized in Table 3.1. Moreover,

some examples are shown in Figure 3.6.

A dataset X = {X i}i=1:c includes c examples of X i = {Si, Ri, F i} consisting of a

time series of the positions of granular flow Si and the rigid body Ri interacting with

it, and a time series of the total interaction forces F i (applied to the center of mass

of the rigid body), where

Si =

⎡⎢⎢⎢⎢⎢⎣
x1
1 y11 z11 . . . xm

1 ym1 zm1

x1
2 y12 z12 . . . xm

2 ym2 zm2
...

. . .
...

x1
n y1n z1n . . . xm

n ymn zmn

⎤⎥⎥⎥⎥⎥⎦
T

3m×n

(3.10)

with m and n as the numbers of timesteps (frames) and flow particles, respectively.
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Excavation  

Wheel

Figure 3.6: Side view (cross-section) of some Excavation and Wheel training examples
with various initial and boundary conditions generated via MPM.

In fact, each column in Si represents a time series of particle positions in 3D. The Ri

has also a similar structure. Moreover, the interaction forces F i are given by

F i =

⎡⎢⎢⎣
F 1
x F 2

x . . . Fm
x

F 1
y F 2

y . . . Fm
y

F 1
z F 2

z . . . Fm
z

⎤⎥⎥⎦
T

m×3

. (3.11)

We divide the dataset into two subsets: the training split including 90% and

test split including 10% of the examples. We work with the training split in the

training phase, and with the test split in the rollout phase. Also, a validation split is

not required as we will use already tuned model hyperparameters [Sanchez-Gonzalez

et al., 2018].

Note that as we separately construct the Si and Ri data matrices, the particle
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types (i.e. flow, rigid/boundary, etc.) are recognizable. They are used as node

features in the graph network explained in §3.2.3.

3.2.2 Reduced Data

Physical systems in MPM can be described by particles each with three coordinates

(degrees of freedom) in 3D. The minimum number of particles are subject to stability

conditions (discussed in §2.2.2). Thus, such systems are often high-dimensional for

large scale problems. Note, to conserve the particle coordinates, we define the di-

mensions by the particles rather than the system’s degrees of freedom. However, the

effective dimensions of a physical system can be far smaller than the system dimen-

sionality. PCA, as a model reduction method, can capture the effective dimensions

of the physicals system. In fact, PCA enables us to calculate the complexity of the

system.

Reduced Data Computation. We aim to apply PCA to the granular flow data,

and pass the rigid body as is ([Holden et al., 2019]). Therefore, we compute the PCA

transformation matrix Un×r using the procedure described in §3.1.2 where r is the

number of modes we select, and the data matrix is Strain including the flow states of

each example in the training split as follows

Strain =
[︂
S1 S2 . . . Sctrain

]︂T
3ctrainm×n

, (3.12)

where ctrain is the number of examples in the training split.

Now we can compute the reduced flow states S ′ = {S ′
i}i=1:c by applying the PCA

transformation Un×r separately to each example in S = {Si}i=1:c as follows

S ′
i = (Si − S̄train)U. (3.13)

Finally, we construct the system states Z = {Zi}i=1:c, where

Zi =
[︂
S ′

i Ri

]︂
. (3.14)

We omit the subscript i hereinafter for simplicity, and decompose the states for each

example, Zi, into multiple (d + 1) timestep windows of states Zt−(d−1),...,t,t+1 as the

inputs to the Learning module (in §3.2.3). Note, the Zt+1 are as the target (or label)

states. The F t+1 is also passed to the Learning module as the target interaction force.
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Figure 3.7: Outset: Normalized cumulative sum of the transformation matrix eigen-
values (modes) representing their energy. Inset: Position MSE between original full
data and mapped-back full data. Errors bar represent one standard deviation.

Mode Number Selection. Each example in the Excavation and Wheel datasets

is composed of 27000 and 6000 particles (or dimensions), respectively. To quanti-

tatively determine the complexity of the physics data, we compute the normalized

cumulative sum of the (sorted) eigenvalues corresponding to the columns (i.e. modes)

of the transformation matrix U via

Energy =

∑︁r
i=1 λi∑︁n
i=1 λi

. (3.15)

This is used to select an appropriate number of modes, (r), that can capture most of

the Energy (i.e. variance) of the data [Brunton and Kutz, 2019]. Figure 3.7(outset)

shows that the very first modes (< 10 out of 27K and 6K dimensions) can be used to

construct the Excavation and Wheel data in subspace (i.e. PCA space) while keeping

more than 99% of the data variance.

Moreover, to measure the position mean squared error (MSE), we (1) map the data

to the subspace using different numbers of modes (r = 1, 2, 4, . . . , 256), (2) map back

the reduced data to the fullspace, and (3) compare the mapped-back data with the

original data. Based upon the results shown in Figure 3.7(inset), we choose 8 modes

to use as inputs to the graph network (discussed in §3.2.3) for learning the subspace
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dynamics of the granular flows. This will reduce the time and memory complexity

of the graph network in both the training and rollout phases, while keeping position

MSE below 10−4.

3.2.3 Learning

Graph neural networks (GNNs) should “express” as many inductive biases as possi-

ble. Inductive biases allow learning algorithms to prioritize one solution over another,

independent of the observed data [Mitchell, 1980]. Also, relational reasoning involves

manipulating structured representations (graphs) of entities (nodes) and relations

(edges), using rules (functions) for how they can be composed [Battaglia et al., 2018].

Graph networks (GNs) carry strong relational inductive biases which guide their ap-

proach towards learning about entities and relations [Battaglia et al., 2018]. They,

in fact, impose constraints on relationships among graph nodes in a learning process.

Furthermore, some non-relational inductive biases are used in deep learning, includ-

ing non-linear activations, dropout [Srivastava et al., 2014], normalization [Ioffe and

Szegedy, 2015], etc. all imposing constraints on the outcome of learning.

The inductive biases can improve the combinatorial generalization of GNs, an im-

portant aspect of a learning physics simulation approaches (factor 3 listed in §3.2).
The principle of combinatorial generalization is constructing new predictions from

known observation. This has been at the heart of the broader field of artificial in-

telligence [Chomsky, 1957]. In addition, the GNs’ node- and edge-level functions

are shared across all edges and nodes, respectively. This means GNs automatically

support a form of combinatorial generalization [Battaglia et al., 2018].

In terms of physics modeling, GNs have analogies with physical systems (in New-

tonian mechanics) [Shlomi et al., 2021, Cranmer et al., 2020]. If we assume that the

graph nodes are like particles, then the particle internal forces, net internal forces,

and accelerations, are analogous to the graph edges, Sum functions, and node Up-

date function, respectively. These can be used iteratively to compute the positions

in the next timestep. Here we aim to learn the subspace dynamics of the physical

systems via graph network simulator (GNS) proposed by [Sanchez-Gonzalez et al.,

2018]. GNS has an Encoder-Processor-Decoder scheme which is a combination of the

Encoder-Decoder and message-passing frameworks introduced in §3.1.1.
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GNS is a simulator sθ : Zt−(d−1),...,t−1,t → Zt+1 with learning parameters θ. It

predicts the future states of a physical system Ẑt+1 given a finite time history (d

timesteps) of the states Zt−(d−1),...,t−1,t. As mentioned in §3.2.2, Z includes subspace

particle positions and particle type information. GNS modules including Encoder,

Processor, and Decoder will be described below along with minor but effective cus-

tomization given our reduced data. Afterwards, the training specifications will be

detailed.

Encoder. The Encoder : Zt−(d−1),...,t−1,t → G(0) embeds the particle states

Zt−(d−1),...,t−1,t as an initial latent graph G(0) = (E(0), V (0)) in the current timestep t.

The V (0) = {hv
(0)
i }i=1:Nv is a set of node embeddings hv

(0)
i = MLPenc,v

(︁
v
(0)
i

)︁
where

v
(0)
i are node features. The E(0) = {(he

(0)
i , ri, si)}i=1:Ne is a set of edge embeddings

he
(0)
i = MLPenc,e

(︁
e
(0)
i

)︁
where ri is the index of receiver node, si is the index of sender

node, and eti are edge features. Note that the global feature u (such as gravity and

internal friction angle) has been omitted, as all required features can be incorporated

into the node embeddings in our application.

Here, particle types and a finite time history of particle velocities (d−1; velocities

computed from particle positions) are considered as the node features vi. Also, rela-

tive positions between the sender and receiver nodes are added as the edge features ei.

This choice of feature augmentation makes the position encoding spatial equivariant.

In other words, this causes GNNs to perform better in position-aware tasks as GNNs

have limited power in capturing the position of a given node with respect to all other

nodes of the graph [You et al., 2019]. The general solution is to construct the relative

position by anchoring a point as a reference. In GNS, the anchoring points are also

chosen to be relative (e.g. sender nodes).

In the current approach, we construct a complete graph (i.e. all nodes are con-

nected with all other nodes via two-way directed edges). This is because we are using

physics particles as nodes in subspace and their relationships in this space might not

be proximity-based (this is an open question for us). As a result, it eliminates the

need to use a nearest neighbor algorithm for edge construction.

Processor. The Processor : G(0) → G(1) is used as a message-passing step to

compute the updated latent graph G(1) = (E(1), V (1)) given the initial latent graph

G(0) . This uses interaction network architecture [Gilmer et al., 2017] – a simplified
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Algorithm 2: Interaction network

Input : E(0), V (0)

Output : E(1), V (1)

for i = 1 to N e do

he
(1)
i ← MLPproc,e

(︂
he

(0)
i , hv

(0)
ri
, hv

(0)
si

)︂
for i = 1 to N v do

hē
(1)
i ← Sum

(︂
{(he

(1)
j , i, sj)}j=1:Ne

)︂
hv

(1)
i ← MLPproc,v

(︂
hv

(0)
i , hē

(1)
i

)︂

version of the full GN architecture. The equations in the interaction network are

shown in Algorithm 2.

In addition to the spatial equivariance inductive bias (in the Encoder, already

described above), the Processor introduces other physics-informed inductive biases in

the processor including:

1. Permutation equivariance: The Update functions (MLPs) are over a set of em-

beddings. The set representation does not impose ordering (whereas a vector

does).

2. Pairwise interactions: The edge Update function (MLPproc,e) captures the pair-

wise interactions between nodes (inter-particle forces in physics).

3. Superposition principle: The sum pooling as the Aggregate function behaves

similar to superposition (superposition principle in physics).

4. Local interactions: The node Update function (MLPproc,v) captures the local

interaction. It means that the effects of nearby nodes are larger than the farther

nodes on a target node (nonlocality in physics).

5. Universal rules: The node and edge Update functions (MLPs) are shared for

each node and edge, respectively. Hence they can learn the underlying universal

rules (the laws of physics).

Also, another inductive bias (inertial motion) will be incorporated in the Decoder.

These physics-informed inductive biases make GNS as general-purpose as possible

for physics simulations. Note that, as a customization specific to modeling subspace
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physics, we use one message-passing step (Nk = 1) since our graph is complete and

thus messages can reach any node from any other node in a single step.

Decoder. The Decoder : G(1) → ôt+1 extracts the dynamics information ôt+1

from the updated latent graph G(1). We define and compute the output ôt+1 via

ôt+1 :=

[︄
ât+1
1 . . . ât+1

Nv

F̂
t+1

1 . . . F̂
t+1

Nv

]︄
6×Nv

= MLPdec

(︁
G(1)

)︁
(3.16)

as a combination of particle (node) accelerations ât+1
i and particle interaction force

contributions F̂
t+1

i to the total interaction force F̂
t+1

=
∑︁Nv

i=1 F̂
t+1

i applied to the

center of mass of the rigid body. The MLPdec is applied to each particle separately.

Also, the predicted particle states Ẑ
t+1

can then be computed based on the predicted

particle positions ẑt+1
i given by

ẑt+1
i = zti +∆t żti +∆t2 z̈̂t+1

i (3.17)

where żti = (zti − zt−1
i )/∆t, z̈̂t+1

i = ât+1
i , and ∆t = 1. Basically, GNS focuses on

the non-trivial, higher-order term (i.e. particle acceleration z̈) of equation (3.17). In

fact, this term is a function of the particle internal force f (as f = mz̈, with m here

being mass). And f is a function of particle stress tensor T including the effect of

all elasto-visco-plastic (or sometimes stress-free) deformations (as f = V divT , with

constant particle mass and volume, V ; not to be confused with the set of nodes V ).

In GNS, it is also possible to include the effect of external forces by adding gravity,

external friction coefficient, etc. to the node features. With these, GNS fundamentally

becomes a force-based simulator like MPM by predicting the right hand-side of the

momentum equation (as opposed to position-based methods like PBD).

From another point of view, GNS predicts the deviation from the current position

leading to a more stable prediction. Note that here, the accelerations are assumed to

be constant between the timesteps. So the accelerations between timesteps t and t+1

are shown by z̈̂t+1
i (or ât+1

i ). Also in equation (3.17), it is not necessary to include

the 1/2 coefficient since z̈̂t+1
i is the output of an MLP that can learn this coefficient.

Specifications. As explained above, five MLPs are used as the Update functions

in GNS. These include MLPenc,e, MLPenc,v, MLPproc,e, MLPproc,v, and MLPdec whose

parameters (i.e. weights) θ should be optimized. Each MLP has two hidden layers

(with ReLU activations) and an output layer each with size of 128, except for the
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Figure 3.8: Training loss convergence in ∼ 15M steps (left) and steady-state rollout
error of positions for both Excavation and Wheel.

MLPdec whose output layer size is 6 given our defined output vector (i.e. concatenated

vector of particle acceleration and interaction force contribution).

We define the loss function L as the sum of the mean squared error (MSE) of the

accelerations a and squared error of the interaction force F given by

L(Zt, Zt+1; θ) =

(︃ Nv∑︂
i=1

||ât+1
i − at+1

i ||2
)︃
/N v + ||F̂

t+1
− F t+1||2 (3.18)

where F t+1 is the target interaction force, and the target accelerations at+1
i are ap-

proximated using a temporal second-order central finite difference scheme on the

positions given by

at+1
i = z̈t+1

i =
zt−1
i − 2zti + zt+1

i

∆t2
(3.19)

where zt+1
i are the target positions and ∆t = 1. Adam optimizer [Kingma and Ba,

2017] is used to minimize the loss function over a mini-batch of size 2. The exponential

learning rate is set to decay from 10−4 to 10−6 through a maximum of 20M training

steps. We used the tuned model hyperparameters from [Sanchez-Gonzalez et al.,

2018].

To accelerate the training process, the data is element-wise normalized to zero

mean and unit variance with pre-computed means and variances of the training split.

Also, a random-walk noise, Normal(0, 0.0003), is applied to the node positions and

velocities [Sanchez-Gonzalez et al., 2018]. This can resolve error accumulation is-

sues; a roughly steady-state rollout Position MSE was achieved, as shown in Figure

3.8(right), for both Excavation and Wheel. The training loss convergence achieved in

∼ 15M steps is also shown in Figure 3.8(left).
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The training was performed on an NVIDIA GeForce RTX 3080 10GB GDDR6X

graphics card. The post-processing visualizations that will be described in §3.2.4,
were done in Python. The open-source code of the GNS model has been developed

primarily via TensorFlow [Abadi et al., 2016] and Graph Nets library [Battaglia et al.,

2018] and published by Google DeepMind [Sanchez-Gonzalez et al., 2018]. We have,

however, customized it in a way to be feasible and appropriate for robotics appli-

cations by adding real-time 3D force prediction functionality. Our code is publicly

available on GitHub here1.

3.2.4 Rollout

The training phase described in the previous section prepares the model for the rollout

phase depicted in Figure 3.5. The rollout consists of the Initial Data, pre-processing

Reduced Data, Learned Model, and post-processing Results modules.

Initial Data includes an initial d-timestep history of flow states S0. Also, the

rigid states should be included. The rigid states can be either initialized (R0) or

scripted/interactive (R). The former means that the model will predict the trajectory

of the rigid body interacting with flow as well; this choice should be consistent with

the model already trained. Next, in Reduced Data, the initial flow states is reduced

to a subspace representation (S ′
0) using PCA (see equation (3.13)). The flow and

rigid states Z(0) = {S ′
0, R(0)} are then input to the learned GNS model. This model

predicts reduced flow states S ′ and full interaction forces F applied to the center of

mass of the rigid body (and full rigid states R if applicable). The reduced flow states

can then be mapped back (S) using PCA Inverse as follows

S = (S ′ UT ) + S̄train. (3.20)

For interactive applications, the pre-processing PCA and post-processing PCA Inverse

steps can be performed using GPU, and the subspace GNS using CPU [Holden et al.,

2019]. Note that here states include particle positions.

In the following, we will examine the efficiency and accuracy of our approach using

an example in the test split of the Excavation and Wheel datasets. Then, we present

1github.com/haeriamin/Subspace-Graph-Physics
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Table 3.2: MPM (Physics), subspace GNS (Ours) and fullspace GNS (Ref) runtime
comparison. GPU1, GPU2, CPU1, and CPU2 are NVIDIA GeForce RTX 3080 10GB,
NVIDIA Tesla P6 16GB, Intel Core i7-10700 2.9GHz 8-Core, and Intel Core i7-6700
3.4GHz Quad-Core, respectively. One CPU1 core and four CPU2 cores are used.

Dataset Method
Training Rollout Simulation
[sec/step] [sec/sec] [sec/sec]

GPU1 GPU2 CPU1 GPU1 CPU2

Excavation
Physics – – – – 270
Ref OOM 1.000 – OOM –
Ours 0.016 0.064 0.350 0.440 –

Wheel
Physics – – – – 240
Ref OOM 0.500 – OOM –
Ours 0.017 0.068 0.380 0.460 –

some further results to compare the ground truths and predictions in subspace and

over multiple examples in the test split.

Efficiency. Table 3.2 provides the runtime of our approach, subspace GNS, in

training and rollout phases using CPU (with one core) and GPU (including TFRecord

file deserialization). It also includes the fullspace GNS runtime as reference. Due to

out-of-memory (OOM) issue, the fullspace GNS with our large-scale configurations

was not trainable on the aforementioned GPU (RTX 3080 10GB). However, using an

NVIDIA Tesla P6 16GB graphics card, we were able to measure the fullspace GNS

runtime on the Excavation and Wheel datasets. The results show that our approach

is real-time (also ∼700x faster than MPM) whereas the fullspace GNS is not even

feasible for large-scale 3D physics configurations.

Accuracy. We separately assess the accuracy of PCA and GNS. To this end,

we compare the distribution of PCA and GNS position MSEs in Excavation and

Wheel configurations. Particularly, we compute the MSE of each particle’s positions

through time (using 8 PCA modes). To obtain the PCA error, we (1) apply PCA

to the original MPM data, (2) apply PCA Inverse to the resulting reduced MPM

data, and (3) compute the MSE between the resulting mapped-back data (i.e. PCA

Inverse(PCA(MPM))) and original MPM data. To obtain the GNS error, we (1)

perform GNS using the reduced MPM data (one example in test split), (2) apply
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Figure 3.9: Distribution of PCA and GNS position MSEs in Excavation and Wheel
configurations. Note that the varying width of bars is only due to logarithmic scaling
of the x-axis.

PCA Inverse to the resulting predicted reduced GNS data, and the reduced data,

and (3) compute the MSE between resulting mapped-back predicted data (i.e. PCA

Inverse(predicted GNS); recall GNS works in the reduced subspace) and mapped-back

data (i.e. PCA Inverse(PCA(MPM))). Thus they are separate errors.

The histograms shown in Figure 3.9 indicate that the position MSE ranges from

10−6 to 10−2 in PCA, and from 10−9 to 10−5 in GNS. But most particles have the

lowest error in these ranges. This is somehow expected as most of the particles are

stationary in both the Excavation and Wheel configurations. However, the notable

point here is that the order of PCA error is higher than the GNS error. This suggests

that a more accurate dimensionality reduction method with the same mode number

can improve the accuracy of the final particle positions. The rest of the current section

will focus on the accuracy of GNS in predicting the reduced data (i.e. in subspace

learning).

The specifications of each example chosen from the Excavation and Wheel test

splits are shown in Table 3.3. Note that in the Wheel configuration, the model learns

the motion of the rigid body (i.e. wheel) as well. Also, the properties of flow (i.e. soil)

and rigid body in the Wheel dataset are varying. These make the Wheel configuration

more challenging for the GNS to learn.

Now we assess the GNS accuracy in predicting particle positions and velocities in

subspace. Figure 3.10 shows side views of the Excavation and Wheel ground truth

and predicted simulations in time (using the test examples introduced above). Red

to black colors indicate the particle velocity magnitudes. There is a good agreement
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Table 3.3: Test example specifications. Motion type 2 indicates blade has continuous
curved motion. Also, Grav., Fric., and Dia. stand for gravity, soil internal friction
angle, and wheel diameter.

Dataset Variables

Excavation
Angle [deg] Depth [cm] Speed [cm/s] Motion

45 10 10 2

Wheel
Grav. [m/s2] Fric. [deg] Load [N] Dia. [cm] Slip [%]

3.72 30 100 15 40

between the ground truth and predicted elasto-viscoplastic flows.

Excavation Wheel

Figure 3.11: Ground truth and predicted Excavation and Wheel interaction forces.

They are plotted in forward (drawbar pull), vertical (wheel load), and lateral direc-

tions.

Note that the results have been mapped back by PCA Inverse. Also, arrows with blue

to green colors represent the directions and magnitudes of interaction forces applied

to the center of mass of the blade or wheel.

We further assess the GNS accuracy in predicting interaction forces in subspace

through time. It should be noted that the PCA accuracy does not directly affect

the GNS force prediction accuracy as the force prediction is done in subspace via

GNS. In other words, as long as the GNS learns the subspace dynamics accurately

the force prediction will be accurate as well. Figure 3.11 shows the ground truth and

prediction interaction forces in the aforementioned test examples of the Excavation

and Wheel datasets. The GNS model has predicted the Excavation forces more
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3 sec

5 sec

1 sec

Figure 3.10: Side views of the Excavation and Wheel (cross-section) ground truth
and predicted simulations in time (at 1, 3, and 5 second marks). Red to black colors
indicate the particle velocity magnitudes. Arrows with blue to green colors represent
directions and magnitudes of interaction forces.

accurately than the Wheel forces (see Table 3.4). As mentioned the Wheel dataset is

more non-trivial to learn. Therefore, we suggest training multiple Wheel GNS models

separately by datasets each with the same soil properties and/or gravity condition

(like the Excavation dataset).

More Results. Here, we visualize GNS subspace prediction in 3D. Figure 3.12

reveals the underlying subspace dynamics predicted by GNS in time (at 1, 3, and

5 second marks) for both the Excavation and Wheel configurations. The subspace

velocities of the 8 particles as well as the fullspace interaction forces are shown. This

demonstrates the existence of dynamics in subspace that GNS has been able to learn.

Such subspace dynamics have also been discussed in [Champion et al., 2019]. Methods

such as symbolic regression can be used to extract the potential subspace parametric

governing equation for further analysis [Cranmer et al., 2020]. In addition, the 3D

mapped-back results (by PCA Inverse) are shown in Figure 3.13. As already explained

and shown in these figures, the forces themselves are not reduced by PCA. The forces

are not inputs to the GNS model; they are predicted based on the learned subspace

dynamics.

We also provide the results of multiple examples in test splits. Figures 3.14 and
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Wheel

1 sec

3 sec

5 sec

Excavation

Figure 3.12: Underlying subspace dynamics predicted by GNS in time for both the
Excavation and Wheel configurations (vs ground truth). Subspace particle velocity
magnitudes and fullspace interaction forces are visualized.

Excavation

Wheel

Figure 3.13: Underlying fullspace dynamics predicted by GNS at 3 second mark for
both the Excavation and Wheel configurations (vs ground truth). Fullspace particle
velocity magnitudes and interaction forces are visualized.
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3.15 show the mapped-back particle positions and velocities, and interaction forces

at 3 second mark of 6 test examples in Excavation and Wheel datasets, respectively.

As observed in the Excavation results, we can even change the discretization of the

rigid body and still achieve accurate results (there are 20 rigid particles in number

2 and 4 whereas 15 in others). Although this should be examined further, in the

current research this could be an indication that GNS models the particle interactions

similarly to how a physics simulation approach such as MPM does. More research on

this has been detailed in [Sanchez-Gonzalez et al., 2018].

Furthermore, the time history of Excavation and Wheel interaction forces in 9 test

examples are shown in Figures 3.16 and 3.17, respectively. Each plot of the figures

include forces in forward, vertical and lateral directions. In most of the examples, the

predictions are very well matched with the ground truths (in the test split).

Finally, we summarize each example’s position and force prediction errors in Table

3.4. It includes position MSE and force MPE (mean percentage error) of the 9

examples in the test split. Also, MPM force MPEs (relative to experiment) are

provided for reference. Forces are in forward and vertical directions in the Excavation

and Wheel configurations, respectively. As already discussed, force prediction is more

accurate in the Excavation dataset due to no variation in the soil and blade properties

in this dataset (i.e. only the blade motion is varying). Also, because of higher motion

in the Excavation dataset, the mean position MSE is higher in Excavation than in

Wheel.
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Table 3.4: Position MSE and force MPE of test examples in subspace GNS rollout.
MSEs (mean squared error) and MPEs (mean percentage errors) are specified relative
to MPM. Also, MPM force MPEs are relative to experiment. Forces are in forward
and vertical directions in Excavation and Wheel respectively.

Test Position MSE ×10−4 Force MPE [%]
Example Excavation Wheel Excavation Wheel

1 0.01 0.01 4.5 10.9
2 0.01 0.02 −5.3 −16.2
3 0.00 0.00 0.3 −18.5
4 0.02 0.03 −10.5 −22.8
5 2.41 0.05 11.6 −21.7
6 0.02 0.09 −2.4 −5.1
7 2.86 0.03 −17.2 0.2
8 0.01 0.02 −1.9 26.6
9 0.03 0.03 −5.1 −31.0

Mean 0.60 0.03 — —

MPM — — −0.5 5.2
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1 2

3 4

5 6

Figure 3.14: Side views of 6 Excavation test examples at 3 second mark. Red to
black colors indicate the particle velocity magnitudes. Arrows with blue to green
colors represent directions and magnitudes of interaction forces.

1 2

3 4

5 6

Figure 3.15: Side views of 6 Wheel test examples at 3 second mark. Red to black
colors indicate the particle velocity magnitudes. Arrows with blue to green colors
represent directions and magnitudes of interaction forces.
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Figure 3.16: Interactions forces in 9 Excavation test examples. Each plot contains
forces in forward, vertical and lateral directions.
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Figure 3.17: Interactions forces in 9 Wheel test examples. Each plot contains forces
in forward, vertical and lateral directions.
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Chapter 4

Conclusion

This research has addressed existing challenges in robot-terrain interactions by ad-

vancing continuum modeling of granular flows as well as real-time physics modeling.

It arrives at a novel methodology for predicting complex rigid body-driven granular

flows, along with key engineering values such as the interaction forces, in real-time

on GPU-enabled computer systems. This work achieves state-of-the-art accuracy in

predicting wheel-soil and excavation interactions, and it is the first to the best of our

knowledge to successfully apply machine learning accelerations (using graph neural

networks in conjunction with a model reduction method) to these classes of problems.

For offline design applications, this research aimed to develop a continuum-based

modeling approach that captures interaction forces and the effect of gravity on granu-

lar flows, with accuracy and modest computational complexity. To this end, we devel-

oped a continuum method comprising a modern constitutive model, nonlocal granu-

lar fluidity (NGF), and a state-of-the-art numerical solver, material point method

(MPM). Specifically, we designed a numerical approach, within a hyperelasticity

framework, to implement the dynamical form of the viscoplastic NGF constitutive

model in three-dimensional MPM. This approach is thermodynamically consistent

which satisfies the conservation of energy. Also, the dynamical form includes the

nonlocal effect of flow cessation. Excavation and Wheel data, both quantitative mea-

surements and qualitative visualization, are collected experimentally via our robotic

equipment to evaluate the model with respect to the flow geometry as well as inter-

action forces. The granular flow deformations including solid-like elastic, fluid-like
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viscoplastic, and gas-like stress-free from experiments and simulations were compa-

rable. Moreover, the MPEs (mean percentage errors) of the Excavation and Wheel

forces in the simulation compared to the experimental result, did not exceed 1% and

6% magnitude, respectively. In addition to the overall force trends, MPM-NGF was

able to capture drops and rises in forces at various timesteps.

Furthermore, this research considered Taylor Couette (TC) flow geometry as a the-

oretical framework to explore the gravity sensitivity of continuum numerical solvers

including finite element method and MPM, as well as an analytical method. It com-

pared these against an experiment done by flying a TC flow apparatus aboard a

reduced gravity aircraft presented in literature. It finally identified MPM as an ap-

propriate continuum solver to model granular flows under differing gravity. In fact,

the modeling of stress-free particles allowed MPM to accurately generate a z- and

r-dependent pressure field in TC flow (vertical and radial directions, respectively).

As a result, this realistic pressure field could affect the inertial number field. Unlike

finite element method (FEM), the rate-dependent MPM flow made the velocity field

z-dependent. This led MPM to be able to model the the TC flow with under 2%

MAPE (mean absolute percentage error). These results and observations can benefit

the modeling of granular flows in robot-terrain interactions in reduced gravity.

For real-time physics modeling, this work considered the development of a sub-

space machine learning simulation approach. To generate training datasets, we uti-

lized our high-fidelity (non-real-time) continuum method comprising MPM and NGF

verified by experiments. Principal component analysis (PCA) was used to reduce the

dimensionality of data. This showed that the first few principal components (< 10

out of thousands of dimensions) can be used to construct the physics data in sub-

space while keeping more than 99% of the data variance. A graph network simulator

(GNS) was trained to learn the underlying subspace dynamics. In subspace GNS, we

constructed a complete graph due to the fact that the relationship between physics

particles as nodes in subspace might not be proximity-based. The complete graph

allowed us to use only one message-passing step, and to omit the use of a time-

consuming nearest neighbor algorithm for edge construction. The learned subspace

GNS was then able to predict subspace particle accelerations and fullspace interac-

tion forces with good accuracy and roughly steady-state rollout error (position MSE
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below 10−4). Force prediction was more accurate in the Excavation dataset due to

no variation in the flow and rigid body properties in this dataset. More importantly,

PCA significantly enhanced the time and memory efficiency of GNS in both training

and rollout. That is, using 8 principal components enabled GNS to be trained using

a single desktop GPU with moderate 10GB of VRAM. This also made the GNS real-

time on large-scale 3D physics configurations (i.e. 700x faster than our continuum

method which were used to produce the datasets).

4.1 Limitations and Future Work

Although significant progress has been made in accurate and real-time simulation of

rigid-body driven granular flows, several improvements can still be made for more

accurate and efficient approaches.

• Continuum Modeling of Granular Flows

1. Implementation of an implicit and coupled MPM approach for solving the

governing PDEs (i.e. momentum and nonlocal equations) would lead to the

numerical approach being unconditionally stable. This could potentially

allow for larger timesteps and consequently faster runtime. However, large

timesteps might still cause instability due to the cell-crossing issue in MPM

[Dunatunga, 2017].

2. Appending the recently developed transient granular rheology (via ex-

tended fabric tensor relations) [Parra and Kamrin, 2019] would enable

MPM to model the unsteady pre-critical state behaviors in granular flows.

3. Capturing sub-grid level contacts between rigid body and flow particles

in MPM could more accurately result in two-way interactions as done by

[Azevedo et al., 2016]. Moreover, an implicit rigid body articulation-MPM

coupling would be desirable.

4. Further research on the MPM and nonlocal model parameters, and on

the cell-crossing issue in the current MPM (moving least squares) could

provide more in-depth insights for future MPM accuracy improvements.
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Furthermore, higher-order MPM schemes and a double-precision C++ im-

plementation will increase the accuracy of MPM results [Hu et al., 2018].

This, with all the accuracy-related directions mentioned above, would lead

to better GNS predictions for real-time applications.

• Real-Time Physics Modeling

1. An autoencoder can be used to reduce the dimensionality of data while

capturing non-linearity in data. However, it requires learning procedure

and an a priori defined size of latent space. These are important limiting

factors for high-dimensional data using limited-memory GPU hardware.

As an alternative, kernel PCA can be employed to capture non-linearity

in data without the above-mentioned restrictions [Schölkopf et al., 1998].

2. Since particle relations might not be proximity-based in subspace, a com-

plete graph is constructed in subspace GNS. However, it may be more

memory-efficient to find the potential relations between the selected prin-

cipal components and construct the effective edges e.g. using the neural

relational inference (NRI) model proposed by [Kipf et al., 2018]. It can be

even more computationally efficient if one can find an analytical relation

between the (sorted) principal components (as the time complexity of GNS

edge update is proportional to edge number, O(N e)).

3. The existence of subspace dynamics has recently been discussed in [Cham-

pion et al., 2019]. Also, a combination of fullspace GNS and symbolic

regression has recently been proposed to extract dynamics equations us-

ing pure data [Cranmer et al., 2020]. So such approaches can be used

to capture the potential subspace analytical governing equation for further

analysis, and for potentially even better generalization than subspace GNS

[Cranmer et al., 2020].

4. More research should be done to explore the generalization of subspace

GNS. For instance, we might be able to (1) train the subspace GNS using

a specific number of principal components, and then (2) perform rollouts

with different number of principal components depending on the accuracy

required.
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5. To potentially further reduce the GNS steady-state rollout error, a loss

function over a finite next time horizon can be used as suggested by [Holden

et al., 2019].

6. Combining GNS with numerical solvers and/or physics-informed loss func-

tions will also be a promising direction for even better generalization in

specific applications. Such approaches have already been developed with

classical deep learning architectures [Karniadakis et al., 2021, Raissi et al.,

2019, Haghighat et al., 2021, Lu et al., 2019].
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γ Shear strain

γ̇p Equivalent plastic shear strain rate

κ Localized weighting function

λ Eigenvalue

µ Friction coefficient

µ2 Maximum friction coefficient (saturation value)

µs Minimum (static) friction coefficient

ϕ Volume fraction

Φ Shape function

ρ Density

ρs Grain density

τ Shear stress

θ GNS model parameters

a Node/subspace particle acceleration

A Nonlocal amplitude

B Material bulk modulus (Chapter 2)

Mean-subtracted data (Chapter 3)

c Number of examples in each dataset

C APIC mode coefficient (Chapter 2)

Covariance (Chapter 3)

104



List of Notations

d Grain diameter (Chapter 2)

Number of history timesteps (Chapter 3)

D Stretch part of velocity spatial gradient

e Graph edge features

E Hencky elastic strain (Chapter 2)

Set of graph edge features or embeddings (Chapter 3)

f Particle internal force

F Deformation gradient (Chapter 2)

Interaction force applied to COM of rigid body (Chapter 3)

g Granular fluidity

G Gravitational acceleration (Chapter 2)

Graph (Chapter 3)

he Graph edge embeddings

hu Graph global embeddings

hv Graph node embeddings

I Inertial number

L Velocity spatial gradient (Chapter 2)

Loss function (Chapter 3)

m Particle mass (Chapter 2)

Number of observations in data (Chapter 3)

M Mandel stress

n Number of dimensions in data

105



List of Notations

N Quadratic B-splines (Chapter 2)

Graph node neighborhood (Chapter 3)

N e Number of graph edges

Nk Number of message-passing steps

N v Number of graph nodes

o GNS Decoder output

p Mean normal stress

P Polynomial basis

q Test function

ri Index of graph receiver node of edge i

r Number of subspace modes

R Rotation part of deformation gradient (Chapter 2)

Rigid states (Chapter 3)

si Index of graph sender node of edge i

S Material shear modulus (Chapter 2)

Flow states (Chapter 3)

S̄ Mean of flow states

S ′ Reduced flow states

T Cauchy stress

u Graph global feature

U Stretch part of deformation gradient (Chapter 2)

PCA transformation (Chapter 3)

v Velocity (Chapter 2)

Graph node features (Chapter 3)
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List of Notations

V Particle volume (Chapter 2)

Set of graph node features or embeddings (Chapter 3)

x Position in deformed state, material coordinate

X Position in undeformed state, spatial coordinate (Chapter 2)

MPM Data (Chapter 3)

z Node/subspace particle position

Z Reduced flow and rigid states
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