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ABSTRACT

Galois representations associated to
some simple Shimura varieties

Dhruva Kelkar

The aim of this thesis is to present the paper [1] of Kottwitz with the same
title. The first 4 chapters are a rapid review of the prerequisites and the
main result of the paper is presented in chapter 5 and some ideas of the
proof are given in chapter 6.

The objective of the paper [1] is to construct Galois representations asso-
ciated to cohomological automorphic representations i.e. automorphic rep-
resentations occuring in the cohomology of a certain Shimura variety. The
difficult part lies in proving that this association matches up the local Sa-
take parameter of the automorphic representations with the local Frobenius
conjugacy class of the galois representation at places of good reduction.

We try to present the material with as much detail as possible, except
at some places we either restrict ourselves to providing references for further
details or work instead with the case of GL2, where the associated Shimura
varieties (modular curves) have a much simpler moduli interpretation.
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Chapter 1

Linear Algebraic Groups

This chapter is meant to be a collection of facts about algebraic groups which
we will need and not meant to be an introduction to the theory of algebraic
groups in itself. The treatment of this subject is kept as brief as possible for
this thesis.

1.1 Algebraic Groups

The chapter on algebraic groups in [2] gives a rapid introduction to the sub-
ject with a view towards the theory of automorphic representations, which
will be our primary concern. The books [3] and [4] provide a more detailed
treatment of the topic addressing the more subtle aspects.

In this chapter, let k denote a commutative Noetherian ring with identity,
unless specified otherwise.

Definition 1 (Affine group schemes). An affine group scheme G over k is a
functor

G : k-alg −→ Grp

that is representable by a finite type k-alg i.e. a finite type k-algebra A such
that G(R) = Homk(A,R). For a k-alg R, the group G(R) is also referred to
as the R-points of the group scheme G.

If A is the k-alg representing the functor G, by abuse of notation we
will also use G to denote Spec(A). We say that the affine group schemes
G is smooth (resp. connected) if the the corresponding scheme Spec(A) is
smooth (resp. connected). In the case when k is a field and G is smooth, G
is called an affine algebraic group. We will often refer to an affine algebraic
group also as just an algebraic group, omitting the word affine.

A morphism of affine group schemes H −→ G is a natural transformation
of functors and, by Yoneda’s lemma, thus induces a map H −→ G of affine
schemes.
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Moreover we defineH to be a subgroup scheme ofG if there is a morphism
H −→ G such that H(R) is a subgroup of G(R) for all k-algebras R. We also
remark that if k is a field then the affine group subschemes are also closed.

We say an affine group scheme H is a normal subgroup of G if H(R) is a
normal subgroup of G(R) for every k-algebra R.

If H g−→ G is a map of affine group schemes, we define ker(f) to be the
affine group scheme whose R points are given by ker(H(R) −→ G(R)).

Example 1 (Multiplicative group Gm). The multiplicative group Gm is a
functor assigning to each k-alg R its multiplicative group R×. It is repre-
sented by k[x, y]/(xy − 1).

Example 2. Let V be a rank n, free k-module. For a k-algebra R, we define
the functor GLV (R) := {R-module automorphisms V ⊗kR −→ V ⊗kR}. This
functor is representable by (k[xij ]1≤i,j≤n)[y]/(det(xij).y − 1).

Definition 2 (Representations of affine group schemes). A representation
of an affine group scheme G over k is a morphism of affine groups schemes
r : G −→ GLV for some V (a finte, free module over k). A representation is
faithful if r is a closed embedding.

Definition 3. An affine group scheme G is said to be linear if it is smooth
and admits a faithful representation G −→ GLV , for some V .

It is a theorem that all affine algebraic groups are linear. We let LAGk
denote the category of linear algebraic groups over k.

Let k′/k be an extension of rings. If G is an affine group scheme over k,
then we define the extension of scalars Gk′ by the functor:

Gk′ : k′-alg −→ Grp

A 7→ G(A).

If the representing object for G is given by the k-alg A then the representing
object for Gk′ is given by the k′-alg A⊗k k′.

If G is an affine group scheme over k′ then we define the restriction of
scalars Resk

′
k G by the functor:

Resk
′
k G : k-alg −→ Grp

A 7→ G(A⊗k k′).

To show that this functor is representable, one needs additional hypothesis
on the extension k′/k. For example, assuming that k′/k is a finite extension
of fields suffices.
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1.2 Reductive groups

Definition 4. Let k be a perfect field. An element x ∈Mn(k) is said to be
semisimple if there exists g ∈ GLn(k) such that g−1xg is diagonal, nilpotent
if there exists a positive integer n such that xn = 0 and unipotent if (x−I) is
nilpotent. For an arbitrary linear group G, we say that x ∈ G(k) is unipotent
if r(x) is so for some faithful representation r : G −→ GLV .

It turns out that the above properties of being semisimple or unipotent
do not depend on the choice of the faithful representation r. These properties
are also functorial, in the sense that if f : H −→ G is a morphism of algebraic
groups and x ∈ H(k) is semisimple (resp. unipotent), then f(x) ∈ G(k) is
also semisimple (resp. unipotent).

Theorem 1 (Jordan Decomposition). Let G be an algebraic group over a
perfect field k. Given x ∈ G(k), there exists unique xs, xu ∈ G(k) such that
xs is semisimple, xu is unipotent and x = xsxu = xuxs.

The Jordan decomposition is also functorial in the sense that, if f : H −→
G is a morphism of algebraic groups with x ∈ H(k) then f(xs) = f(x)s and
f(xu) = f(x)u.

With this theorem in mind, we can make the following definition:

Definition 5 (Unipotent group). A smooth algebraic group G over a perfect
field k is said to be unipotent, if every x ∈ G(k) is unipotent i.e. x = xu.

Definition 6. Let G be a smooth algebraic group. The unipotent radical
Ru(G) is the maximal connected unipotent normal subgroup of G.

Further details regarding the existence of a maximal connected unipotent
normal subgroup are explained on Pg. 10 of [3].

Now we arrive at the most important definition of this subsection.

Definition 7 (Reductive algebraic group). A smooth connected algebraic
group G is said to be reductive if Ru(G) = {1}.

1.3 Derived subgroup and solvable groups

In this section we let k denote a perfect field.

Definition 8. Let G be an algebraic group over k. The derived subgroup
of G, denoted by Gder or DG, is defined as the intersection of all normal
subgroups N ⊂ G such that G/N is commutative.

Note that, we have not yet discussed the notion of a quotient of two
algebraic groups, which we take as a black box for the above definition. We
can also inductively define DnG := D(Dn−1G).

Definition 9 (Solvable groups). A group G over k is said to be solvable if
DnG is the trivial group for sufficiently large n.
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1.4 Maximal tori and Borel subgroups

In this section, we use k to denote a perfect field.

Definition 10 (Torus). A torus is a linear algebraic group T over k such
that Tk ' Gn

m for some n. The integer n is known as the rank of the torus.

Next, we want to explain the notion of a split algebraic group. But first,
we need to make some more definitions.

Definition 11. A torus T over a field k is said to be split if T ' Gn
m (here

the isomorphism is over k).

Definition 12 (Maximal torus). Let G be an algebraic group over k. A
torus T ⊂ G is said to be a maximal torus of G if Tk is maximal among all
tori of Gk.

Finally we state the following fundamental theorem regarding existence
of maximal tori:

Theorem 2. Every connected algebraic group admits a maximal torus. All
maximal tori in Gk are conjugate under G(k).

Finally, we come to the definition of a split group:

Definition 13. An algebraic group G over k is said to be split if there exists
a maximal torus of G that is split.

Analogously, the group G over k is said to be split over an extension k′

if the group Gk′ is split.
Next, we come to the definition of parabolic subgroups:

Definition 14. A closed subgroup B ⊂ G is a Borel subgroup if Bk is a
maximal smooth connected solvable subgroup of Gk. A smooth subgroup
P ⊂ G is said to be a parabolic subgroup if Pk contains a Borel subgroup of
Gk.

Unlike maximal tori, Borel subgroups may not exist in a general reductive
algebraic group G. Hence, we make the following definition:

Definition 15. A reductive group G is quasi-split if it contains a Borel
subgroup.

We remark here that the notion of being quasi-split is weaker than the
notion of being split i.e. quasi-split groups are also split.
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1.5 Lie algebra of a Lie group

Definition 16 (Lie algebra). Let k be a ring. A Lie algebra over k is a free
k-module g together with a bilinear pairing (called the Lie bracket)

[·, ·] : g× g −→ g

satisfying the following assumptions:

1. [X,X] = 0 for all X ∈ g.

2. For X,Y, Z ∈ g, [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Morphisms of Lie algebras are k-module maps preserving [·, ·]. We let
LieAlgk denote the category of Lie algebras over k.

The "tangent space" at identity element of a linear algebraic group (LAGk)
has the natural structure of a Lie algebra. This is the content of the following
theorem:

Theorem 3. Let k be a field. There exists a functor Lie : LAGk
t 7→0−−→ LieAlgk

defined by:
LieG = ker(G(k[t]/(t2)) −→ G(k)).

Note that the theorem doesn’t specify the Lie bracket structure on LieG
and we will omit this.

LetG be an algebraic group over k. We will now describe a representation
of G, known as the adjoint representation.

Let R be a k-algebra. Define

g(R) := ker(G(R[t]/(t2))
t 7→0−−→ G(R)).

Hence, g(k) = LieG. Note that the group G(R[t]/(t2)) acts on g(R) by
conjugation. As G(R) is a subgroup of G(R[t]/(t2)), it also acts on g(R) and
thus we have a map:

G(R) −→ Aut(g(R)).

This map is functorial in R and hence defines a representation Ad : G −→
GLg, which is the adjoint representation.

1.6 Hyperspecial subgroups and models

In this section, we want to restrict our attention to algebraic groups G over
a p-adic field F . We want to highlight certain aspects of this particular type
of algebraic groups.

We want to explore the possibility of the group G arising as a restriction
of an algebraic group defined over O, where O denotes the ring of integers
in F . Hence, we first start with the following definition.
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Definition 17. Let Y be an affine scheme over F . A model Y of Y over
O is an affine scheme, say Spec(A), of finite type over O, such that Y '
Spec(A⊗O F ).

If Y is a scheme over O, then we call Y ×Spec(O) Spec(F ) as the generic
fibre and Y ×Spec(O) Spec(O/m) as the special fibre, where m denotes the
maximal ideal of O (recall that O is a DVR). Hence, according to this ter-
minology, in Definition 17, Y is the generic fibre of Y.

Next we have the notion of a group G over a p-adic field F being unram-
ified:

Definition 18 (Unramified group). The reductive group G over F is called
unramified if there exists a model G of G over O such that the special fibre
of G is reductive.

The nice thing about being unramified is the existence of a canonical
maximal compact subgroup, which is as follows:

Definition 19 (Hyperspecial subgroup). Let the reductive group G over
the p-adic field F be unramified. Let G be a model of G over O. Then
the subgroup G(O) ⊂ G(F ) is a maximal compact subgroup of G(F ) and is
called a hyperspecial subgroup.

We also remark that we have the following theorem, which is sometimes
also taken as the definition of an unramified group:

Theorem 4. A reductive group G over a p-adic field F is unramified if and
only if it is quasi-split and there is a finite degree unramified extension E/F
over which G is split.
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Chapter 2

Shimura Varieties

Here we will use [5] as the primary reference. We will treat this topic in
more detail that what is needed to understand the paper [1], for the purpose
of enriching our understanding of this interesting topic.

2.1 Hermitian symmetric domains

First, we recall some notions from differential geometry, assuming familiarity
with the notions of smooth and complex manifolds and their tangent bundles.
Let M be a smooth manifold. Let T (M)

p−→ M denote the tangent bundle
of M and T p(M) denote the tangent space of M at point p. A vector field
on an open subset U ⊂M is a section of the map p.

A Riemannian manifold is a smooth manifold M endowed with a Rie-
mannian metric i.e. a family (gp)p∈M of symmetric, positive definite billinear
maps gp : T p(M) × T p(M) −→ R such that for smooth vector fields X1, X2

on any open subset U ⊂M , p 7→ gp(X1, X2) is a smooth function on U .
If M additionally has the structure of a complex manifold, then T (M)

gets an additional structure of a family (Jp)p∈M of maps Jp : T p(M) −→
T p(M) such that J2

p = −1 for all p ∈ M . Then (T p(M), Jp) becomes
a complex vector space (i ∈ C acts via Jp). We want to define a notion
of a metric on this complex manifold which is compatible with this extra
structure on T (M). This motivates the following definition.

Definition 20 (Hermitian forms). Let V be a R-vector space with an en-
domorphism J : V −→ V such that J2 = − Id. A Hermitian form on (V, J)
is an R-bilinear mapping (|) : V × V −→ C such that (Ju|v) = i(u|v) and
(v|u) = (u|v).

We can write (u|v) = φ(u, v) − iψ(u, v). We call φ as the real part of
the Hermitian form (|). Note that φ is symmetric and satisfies φ(Ju, Jv) =
φ(u, v). Also, observe that ψ(u, v) = −φ(u, Jv).
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Conversely, if we have a bilinear mapping φ : V ×V −→ R that is symmet-
ric and satisfies φ(Ju, Jv) = φ(u, v), then setting (u|v) = φ(u, v) + iφ(u, Jv)
defines a Hermitian form.

Definition 21 (Hermitian manifolds). A Hermitian metric on a complex
manifold is a Riemannian matric g such that g(JX, JY ) = g(X,Y ) for all
vector fields X,Y . Hence, at each p ∈M , gp is the real park of a unique Her-
mitian form on T p(M). A Hermitian manifold (M, g) is a complex manifold
M with a Hermitian metric g.

Now we turn our attention to the concept of a Hermitian symmetric
space. A connected (Hermitian) manifold M (with a metric g) is said to
be homogeneous if its automorphism group (automorphisms preserving the
complex structure and the Hermitian metric) acts transitively on M i.e. for
every p, q ∈M there exist an automorphism sending p to q.

Definition 22 ((Hermitian) symmetric spaces). A connected (Hermitian)
manifold M (with a metric g) is symmetric if it is homogeneous and at some
point p there is an involution sp (i.e. an automorphism satisfying s2p = 1)
having p as an isolated fixed point. sp is called as the symmetry at p. By
homogeneity, there is then a symmetry at every point of M .

We finally give a family of examples, which will of particular interest to
us, of Hermitian symmetric spaces.

Let D ⊂ Cn be a bounded domain. By a theorem of Bergmann, every
bounded domain has a canonical hermitian metric, called the Bergmann
metric.

Now further assume that D is such that the group of holomorphic au-
tomorphisms Hol(D) of D acts transitively and for some point there exists
a holomorphic symmetry i.e. D is a bounded symmetric domain. As the
Bergmann metric is canonical, it is invariant under the action of Hol(D) and
henceD becomes a Hermitian symmetric space with respect to the Bergmann
metric.

We are only interested in the Hermitian symmetric spaces which are iso-
morphic to bounded symmetric domains. Such Hermitian symmetric spaces
are called Hermitian symmetric domains. We remark that there is an alter-
native way of defining Hermitian symmetric domains, as is done in [5], as
the Hermitian symmetric spaces of negative curvature.

Example 3 (Upper half plane h). The upper half plane h is isomorphic
to the punctured open unit disc and hence is a bounded domain. SL2(R)
acts transitively on h via Mobius transformation ( a bc d ).z = az+b

cz+d . The map
z 7→ 1/z is a symmetry at i. Hence, h is a bounded symmetric domain. The
Bergmann metric on h is given by the hyperbolic metric dxdy

y2
.
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2.2 Automorphisms of Hermitian symmetric domain

An interesting aspect about the theory of Hermitian symmetric domains
lies in its connections with the theory of algebraic groups. This is what
we want to explain next. Let (M, g) be a Hermitian symmetric domain.
Let Is(M, g) denote the group of holomorphic automorphisms of M which
preserve g. It is a theorem that Is(M, g) has the natural structure of a Lie
group and its connected component containing identity Is(M, g)+ has the
following properties:

1. Is(M, g)+ acts transitively on M .

2. The stabilizer Kp of p ∈M is compact.

3. Is(M, g)+ is non-compact.

Theorem 5. Let (M, g) be a Hermitian symmetric domain, and let h denote
the Lie algebra of Is(M, g)+. There is a unique connected algebraic subgroup
G of GL(h) such that

G(R)+ = Is(M, g)+ ⊂ GL(h) via the adjoint representation.

2.3 The homomorphism up

Recall that U1 = {z ∈ C || z |= 1}. We have the following result.

Theorem 6. Let D be a Hermitian symmetric domain. For each p ∈ D,
there exists a unique homomorphism up : U1 −→ Hol(D) such that up(z) fixes
p and acts on T p(D) as multiplication by z.

We need one more definition before we can state the main result of this
section.

Definition 23 (Cartan involution). Let G be a connected algebraic group
over R and let g 7→ g denote the complex conjugation on G(C). An involution
θ of G is said to be Cartan if the group

G(θ)(R) := {g ∈ G(C) | g = θ(g)}

is compact.

Now we state the main result of this section.

Theorem 7. Let D be a Hermitian symmetric domain, and let G be the
associated real adjoint algebraic group. The homomorphism up : U1 −→ G
attached to a point p of D has the following properties:

9



1. only the characters z, 1, z−1 occur in the representation of U1 on Lie(G)C
defined by Ad ◦up.

2. Ad(up(−1)) is a Cartan involution.

3. up(−1) does not project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group, and let u : U1 −→ G satisfy
the above three conditions. Then the set D of conjugates of u by elements of
G(R)+ has a natural structure of a Hermitian symmetric domain for which
G(R)+ = Hol(D)+ and u(−1) is the symmetry at u (regarded as a point of
D).

This theorem is the motivation for the following definition of a Shimura
datum.

2.4 Shimura Datum

We let S := ResCRGm. S will be referred to as the Deligne torus.

Definition 24 (Shimura Datum). A Shimura datum is a pair (G,X) con-
sisting of a reductive algebraic group G defined over Q and X to be a G(R)-
conjugacy class of homomorphisms h : S −→ GR satisfying the following
properties:

1. For any h ∈ X only the weights (0, 0), (1. − 1), (−1, 1) may occur in
gC := g⊗R C i.e. we have the following decomposition

gC = l⊕ p+ ⊕ p−

where for z ∈ S, h(z) acts trivially on l, via z/z (resp. z/z) on p+

(resp. p−).

2. The adjoint action of h(i) induces a Cartan involution on the adjoint
group of GR.

3. The adjoint group of GR does not admit a factor H defined over Q
such that the projection of h on H is trivial.

It follows from the additional conditions that X has a canonical structure
of a complex manifold and it has a natural action of G(R).

If (G,X) is a Shimura datum then we can define for each compact open
subgroup K ⊂ G(Af ) consider the following complex algebraic variety

SK(C) := G(Q)\X ×G(Af )/K.

The left action of g ∈ G(Q) on (x, g′) ∈ X × G(Af ) is given by g.(x, g′) =
(g.x, gg′) where in the first component we interpret g ∈ G(Q) as an element of

10



G(R) and use the natural action of G(R) on X, and in the second component
we view g ∈ G(Q) as an element of G(Af ) and use the group operation of
G(Af ). The right action of k ∈ K on (x, g′) ∈ X × G(Af ) is given by
(x, g′).k = (x, g′k). Moreover, we have that SK is defined over a finite
extension E of Q and E is independent of K. The field E is called the reflex
field.
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Chapter 3

Representations of td groups

We want to study the representation theory of groups like G(F ) where G
is an algebraic group over Q and F = Qp or F = A∞, where A∞ denotes
the ring of finite adeles over Q. We will encounter such representations
mainly while studying the cohomology of Shimura varieties associated with
the group G. The main reference for this chapter is [2].

First, the following allows us to define a topology on G(F ):

Fact 1. Let R be a topological ring. There exists a unique way to topologize
X(R) for all affine schemes X of finite type over R such that:

1. For a morphism X −→ Y of affine schemes of finite type over R, the
induced map on points X(R) −→ Y (R) is continuous.

2. If X −→ Y and Z −→ Y are morphisms of affine schemes of finite type
over R, then the topology on (X ×Y Z)(R) ' X(R) ×Y (R) Z(R) is
exactly the fibre product product topology.

3. If X ↪→ Y is a closed immersion of affine schemes of finite type over
R, then the induced map X(R) −→ Y (R) is a topological embedding.

4. If X = Spec(R[t]) then X(R) is homeomorphic with R under the
natural identification X(R) ' R.

The following definition captures the essence of the topology on G(F ):

Definition 25. A topological group is td if every neighbourhood of the
identity contains a compact open subgroup.

A td group is totally disconnected (i.e. connected components are single-
tons), hence the terminology. They are also Hausdorff and locally compact.

Fact 2. Let G be an algebraic group over Q and F = Qp or F = AS where
AS is the ring of adeles away from the finite set S of places containing ∞.
Then G(F ), according to the topology defined by Fact 1 is td.
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3.1 Hecke algebras

We want to study representations of groups like G(F ) as described above.
Recall that, in the representation theory of finite groups G, there is an equiv-
alence between representations of G over C with modules over the group
algebra C[G]. We want to have an analogue of the group algebra for groups
like G(F ). This analogue is known as the Hecke algebra, which is what we
want to introduce next.

Let G be a td group in everthing that follows in this section.

Definition 26 (Smooth functions). A function f : G −→ C is smooth if it is
locally constant. The complex vector subspace of C-valued functions on G
consisting of compactly supported smooth functions is denoted by C∞c (G).

We want to C∞c (G) into an algebra. Note that, if G is reductive, then
G(F ) is unimodular i.e. the left and right Haar measures coincide. We define
convolution of two smooth functions as the following integral w.r.t. a Haar
measure: Let f1, f2 ∈ C∞c (G), then we define:

(f1 ∗ f2)(g) =
∫
G(F ) f1(gh

−1)f2(h)dh.
Thus, C∞c (G) is an algebra under convolution and it is known as the

Hecke algebra of G. However, note that this algebra does not have an identity
element.

For K ⊂ G a compact open subgroup, we define the following subalgebra
of the Hecke algebra consisting of K bi-invariant functions:

C∞c (G//K) = {f ∈ C∞c (G) | f(k1gk2) = f(g) for all k1, k2 ∈ K}.

The function eK := 1
meas(K)1K is the identity element of C∞(G//K) and

moreover we have:

Theorem 8. Any element f ∈ C∞c is in C∞c (G//K) for some compact open
subgrpup K. If f ∈ C∞c (G//K), then f is a finite C linear combination of
elements of the form 1KγK for γ ∈ G.

3.2 Smooth representations

In this section, we will describe the kind of representations of td groups that
we will be interested in. Let G be a td group.

Definition 27. A representation (π, V ) of G on a complex vector space V
is smooth if the stabilizer of any vector in V is open in G.

Note that V is smooth if and only if V =
⋃
K⊂G V

K where the union is
over all compact open K ⊂ G and V K denotes the subspace of V fixed by
elements of K.
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Now, we want to justify our earlier claim of how a smooth representation
V can be given the the structure of a module over the Hecke algebra of G.

Consider f ∈ C∞c (G) and v ∈ V . We want to explain the action of f on v.
As V is smooth, V =

⋃
V K and hence v ∈ V K1 for some K1. By Theorem

8, we also have that f ∈ C∞c (G//K2) for some K2. Define the compact open
subset K := K1 ∩K2, then v ∈ V K and f ∈ C∞c (G//K).

Again, by Theorem 8 we have that f =
∑

γ 1KγK and hence it suffices
to define the action of 1KγK on v. We define 1KγK · v := γv. Note that this
is well defined as v ∈ V K . In this way, we now can view V as a module over
C∞c (G).

We can now ask the converse question of which C∞c (G)-modules arise from
a smooth representation of G. For this, we need the following definition:

Definition 28. A module M over an algebra A is non-degenerate if every
element of M can be written as a finite sum a1m1 + a2m2 + · · · anmn for
ai ∈ A and mi ∈M .

This definition is a triviality if the algebra A contains an identity, but we
want to set A to be the Hecke algebra of G which does not have the identity
element.

Theorem 9. There is an equivalence of categories between nondegenerate
C∞c (G)-modules and smooth representations of G.

Note that if V is a C∞c (G)-module then V K is a C∞c (G//K)-module. This
is because C∞c (G//K) = eK ∗ C∞c (G) ∗ eK and V K = eKV where we recall
that eK = 1

meas(K)1K .

3.3 Admissible representations

We do not want to study all the smooth representations of a td gorup G as
they can be quite big. We want to restrict to a smaller class of representa-
tions known as the admissible representations, by imposing certain finiteness
conditions. The key point to have in mind, is that all irreducible smooth
representations of G(F ) are admissible and hence restricting by restricting
attention to admissible representations does not exclude any irreducible ob-
jects.

Definition 29 (Admissible representations). A representation V of G is
admissible if it is smooth and V K is finite dimensional for every compact
open subgroup K ⊂ G. Analogously, a C∞c (G)-module is admissible if it is
non degenerate and eKV is finite dimensional.

We once again reiterate the statement made in the opening of this section:

Theorem 10. Let F be a p-adic field and let G be a reductive algebraic
group over F . Then an irreducible, smooth representation of G(F ) is admis-
sible.

14



3.4 Unramified Hecke algebra

In general, C∞c (G//K) may not be commutative, as convolutions of arbitrary
functions do not commute. But in this section, we turn our attention to a
particular case of interest when this does happen.

Let G be an unramified reductive group over a p-adic field F . Hence,
as discussed earlier, we have a hyperspecial subgroup K ⊂ G(F ). Then we
have that:

Theorem 11. If G is unramified over F , and K is a hyperspecial subgroup
then C∞c (G(F )//K) is commutative. The algebra C∞c (G(F )//K) is also
known as the spherical Hecke algebra.

The spherical Hecke algebra can be made more explicit in the case when
G is split over F as follows:

Theorem 12 (Satake Isomorphism). If G is unramified and split over F ,
then we have an isomorphism of algebras (where K is a hyperspecial sub-
group)

C∞c (G(F )//K) ' C[T̂ ]W (Ĝ,T̂ )(C)

where Ĝ is the complex dual of G and T̂ ⊂ Ĝ is a maximal torus. C[T̂ ]
denotes the ring of of global regular functions on the algebraic variety T̂ (C)
and hence has an action of W (Ĝ, T̂ )(C) (the superscript denotes taking in-
variants).

We can state this in another equivalent way, we which now go on to
describe.

Definition 30. Assume that G is unramified with hyperspecial subgroup
K ⊂ G(F ). An irreducible admissible representation (π, V ) of G(F ) is un-
ramified if V K 6= 0.

Theorem 13 (Satake Isomorphism). If G is unramified and split over F ,
then we have a bijection:

{isom. classes of unramified representations of Weil group WF −→ Ĝ(C)}

{isom. classes of unramified representations of G(F )}

15



Chapter 4

Automorphic Representations

4.1 Motivation for automorphic forms

We first recall the classical definition of a modular form. Let h denote the
upper half plane and let f : h −→ C be a function. Recall the notation of the
slash-k operator :

(f |k γ)(z) := (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ SL2(Z) and z ∈ h.

Recall the congruence subgroup:

Γ1(N) := {
(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N).

Definition 31 (Modular forms). We have a function f : h −→ C. Let k be an
integer and Γ1(N) be as before. We say that f is a modular form of weight
k and level Γ1(N) if the following conditions are satisfied:

1. (Differential equation.) f is holomorphic. We think about holomorphic
functions on h as smooth functions satisfying the Cauchy-Riemann
equations.

2. (Transformation property.) f |k γ = f for all γ ∈ Γ1(N).

3. (Growth condition.) f |k γ is holomorphic at infinity for all γ ∈
SL2(Z).

To motivate automorphic forms, we start by giving an alternative de-
scription of modular forms. Let f be a cuspidal modular form of weight k
and level Γ1(N), for N ≥ 3 and let s ∈ C. Let

K1(N) = {g ∈ GL2(Ẑ) | g ≡
(

1 ∗
0 ∗

)
(mod N)}.
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It is a fact that we have the following decomposition

GL2(A) = GL2(Q)K1(N) GL+
2 (R).

Define
φf,s : GL2(Q)\GL2(A) −→ C

φf,s(γk1h) = (f |k h)(i)× (deth)s

where γ ∈ GL2(Q), k1 ∈ K1(N) and h ∈ GL+
2 (R).

Next, note that the function φf,s is smooth and has the following prop-
erties:

1. φf,s(gk1) = φf,s(g) for all k1 ∈ K1(N). The right K1(N) invariance of
the function φf,s encodes that the function φf,s comes from a modular
form f of level Γ1(N).

2. For k∞ ∈ O2(R) (a maximal compact subgroup of GL2(R)) φ(gk∞) =
χ(k∞)φ(g), where χ is the character O2(R) −→ C∗. The weight of the
modular form f can be recovered from this character χ.

An automorphic form will vaguely be a smooth function

ψ : GL2(Q)\GL2(A) −→ C

such that for some compact open Kf ⊂ G(Af ) we have ψ(gkf ) = ψ(g)
for all k ∈ Kf and for a maximal compact subgroup K∞ ⊂ G(R) we have
{φ(gk∞) | k∞ ∈ K∞} spans a finite dimensional space. Automorphic forms
also need to satisfy additional conditions (differential equation, growth con-
dition). Moreover, we restrict attention to cuspidal automorphic forms.

If ψ is an automorphic form, and g ∈ G(Af ) then γ 7→ ψ(γg) is also an
automorphic form. Hence, the space of automorphic forms is a representation
of G(Af ). An automorphic representation will vaguely be an irreducible
G(Af ) subrepresentation of the space of automorphic forms. In the next
section, we will give more precise definitions of these concepts.

4.2 Automorphic forms

LetG be an algebraic group over Q. LetK∞ be a maximal compact subgroup
of G(R). An function φ : G(Q)\G(A)

C−→ is called an automorphic form if it
satisfies the following conditions:

1. φ is smooth. We recall that this means the following: write (x, y) ∈
G(A) = G(Af ) × G(R), then for a fixed x, φ is smooth function of y
and for a fixed y, φ as a function of x is locally constant.

2. There exists some compact open subgroup K ⊂ G(Af ) such that
φ(gk) = φ(g) for all k ∈ K.
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3. The C-vector space spanned by g 7→ φ(gk∞) is finite dimensional as
k∞ ∈ K∞.

4. There exists an ideal I ⊂ Z(U(gC)) of finite codimension such that it
annhilates the function y 7→ φ(x, y) for all x ∈ G(Af ).

5. For each x ∈ G(Af ), the function on G(R) defined by y 7→ f(xy) is
slowly increasing. Where we say that a function α : G(R) −→ C is
slowly increasing if there exists C and n such that for all y ∈ G(R) we
have | α(y) |≤ C || y ||n.

Next, we want to define the notion of an automorphic representation.
For this, we consider the space A(G) of automorphic forms on G. Note that
G(Af ) acts on the left on A(G) as (g ∗ φ)(γ) = φ(γg). Similarly, K∞ acts
on A(G) and also gC acts, thus making A(G) a (g,K∞)-module.

Hence, A(G) is a G(Af )× (g,K)-module. However, A(G) is still too big
to work with. We need to impose some further conditions, which we will
now explain.

Let us first define the notion of a cuspidal automorphic form. Let P be
a maximal proper parabolic subgroup of G. Let P = M ⊗ N where M is
a Levi subgroup and N is unipotent. We say that an automorphic form
φ : G(Q)\G(A) −→ C is cuspidal if∫

N(Q)\N(A
φ(xn)dn = 0.

Let us denote by Z, the centre of G. Fix some central character χ :
Z(Q)\Z(A) −→ C∗.

We now define A0(G,χ) := {φ ∈ A(G) | φ is cuspidal and φ(gz) =
χ(z)φ(g), ∀z ∈ Z(A), ∀g ∈ G(A)}. We finally arrive at our main definition.

Definition 32 (Cuspidal automorphic representation). A cuspidal automor-
phic representation π of G(A) is an irreducible subrepresentation of A0(G,χ)
for some χ. We also denote by m(π) the multiplicity with which π occurs in
the space A0(G,χ).
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Chapter 5

Main Theorem

5.1 A particular algebraic group

Let F0 be a totally real number field and let F be a totally imaginary
quadratic extension of F0.

Let D be a division algebra with centre F of dimension, say n2, equipped
with an involution ∗ which restricts to the non trivial automorphism of F/F0.

We define an algebraic group G over Q whose points over any commuta-
tive Q-algebra R are given by:

G(R) = {x ∈ D ⊗Q R | xx∗ ∈ 1⊗R×}.
We will continue to denote by G the group defined above throughout this

chapter.

Example 4. For drawing an analogy, consider the algebra Mn(R) with an
involution ∗ defined as taking the transpose of a matrix. Then, the group of
unitary similitudes GU(n) can be described as

GU(n)(R) = {x ∈M2(R)⊗Q R | xx∗ ∈ 1⊗R×}.

Later, we will define a Shimura datum associated to this group G which
will give Shiumra variety over a relfex field, which we denote by E. Post-
poning the discussion of the Shimura datum to the later section, right now
we will give a way of determining the reflex field E from the group G.

We consider a morphism of algebraic groups c : G −→ Gm over Q given
by the following map on points:

For a Q-algebra R we consider x ∈ G(R). We have the map from G(R) −→
R× given by sending x 7→ xx∗. This defines a natural transformation from
G to Gm, which is the desired map.

Let Go denote the kernel of the map c. Then G0 '
∏
j U(n(i), n(i′)),

where j runs over the set of Q- embeddings of j : F0 −→ R and i, i′ are
two embeddings F −→ C that extend j. The map i 7→ n(i) defines a map
I −→ N where I is the of Q-embeddings of F . The Galois group Gal(Q/Q)
naturally acts continuously on I and hence also on the set of functions I −→ N.
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The stabilizer of the function i −→ n(i) is closed in Gal(Q/Q) and hence
corresponds to an intermediates field extension, which is the reflex field E.

5.2 A particular Shimura datum

A Shimura datum consists of a pair (G,X) where G is a reductive algebraic
group and X is a G(R) conjugacy class of homomorphisms h : S −→ GR.
They should satisfy certain additional conditions which we have explained
in the chapter on Shimura varieties.

It follows from the additional conditions that X has a canonical structure
of a complex manifold and it has a natural action of G(R). The important
consequence of having a Shimura datum is that it associates to each compact
open K ⊂ G(Af ), a variety SK over the reflex field E such that SK(C) =
G(Q)\X ×G(Af )/K.. The field E is a finite extension of Q.

In the previous section, we described what G we want to take. We now
describe the map h. To begin with, choose an R-algebra homomorphism

h0 : C −→ D ⊗ R

satisfying the property that h0(z)∗ = h0(z) for z ∈ C. Note that here the
involution ∗ is an involution on D⊗R which is induced by the involution on
D (and acts trivially on R).

We now want to define a map

h : ResCRGm −→ GR.

Consider an R-algebra R. For z⊗ r ∈ (C⊗R)∗ then h is defined by the map
z ⊗ r 7→ h0(z

−1)⊗ r ∈ (D ⊗R)∗.
Let X∞ denote the G(R) conjugacy class of h. We need to impose one

final condition which will make (G,X∞) a Shimura datum.
Using h0 we define the following involution on D ⊗ R

x 7→ h0(i)
−1x∗h0(i).

We need to assume that this involution is positive and this gives us a Shimura
datum.

It is interesting to give yet another way of describing the reflex field E
of the Shimura variety in terms of the map h, which we do now.

From h0 we get a C-algebra homomorphism

h0,C : C⊗R C −→ D ⊗Q C.

Recall that we have the totally real field F0 and a totally imaginary
quadratic extension F as in the earlier section. Once again, let I denote the
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set of embeddings of F in C and for i ∈ I, denote by i′ the composition of i
with the non trivial automorphism of F/F0. Then

D ⊗Q C =
∏
i∈I

D ⊗F,i C

and hence for i ∈ I we have the maps:

hi : C⊗ C
h0,C−−→ D ⊗Q C −→ D ⊗F,i C.

Choose a simple D⊗F,iC module V , then dimC V = n. The map hi gives
D the structure of a C ⊗R C module. Note that C⊗R C ' C × C via the
isomorphism z1⊗z2 7→ (z1z2, z1z2. Hence, as a C×C module, V decomposes
as V = V1 ⊕ V2. We let n(i) = dimC V1 and once again E is the fixed field
of the stabilizer in Gal(Q/Q of the function i 7→ n(i).

5.3 Local systems on SK(C)

Let L be a number field. Let ζ : G −→ GLV be a representation of G, where V
is a L-vector space (we again denote by G the group defined at the beginning
of the chapter). Assume that ζ is irreducible over L.

Consider the vector bundle:

G(Q)\X × V ×G(Af )/K −→ G(Q)\X ×G(Af )/K = SK(C)

where the actions defining the double quotients are as defined before in
addition to the G(Q) acting on V via ζ and K acting trivially on V .

We denote by F to be sheaf of section of this bundle. Then F is a local
system (i.e. locally constant sheaf) on SK(C) of L vector spaces.

In our case, SK(C) is in fact compact and hence H i(SK(C),F) are finite
dimensional L vector spaces.

Additionally, note that for every finite place λ of L the local system
F ⊗ Lλ on SK(C) comes from a smooth Lλ sheaf on SK over E, which we
will denote by Fλ.

For the variety SK over the reflex field E and a smooth Lλ sheaf of
abelian groups Fλ, the Etale cohomology H i

et(SK ,Fλ) has the structure of
a Gal(E/E) representation, which we will now describe.

For g ∈ Gal(E/E) the action on the cohomology is given by:

H i
et(SK ×Spec(E) Spec(E),Fλ ⊗ Lλ)

H i
et(SK ×Spec(E) Spec(E), (1× g)∗Fλ ⊗ Lλ)

H i
et(SK ×Spec(E) Spec(E),Fλ ⊗ Lλ)

1×g

'
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It is a standard fact that once we fix an isomorphism of Lλ ' C we have
the following isomorphism:

H i
et(SK ,Fλ) ' H i(SK(C),F ⊗ Lλ).

Hence, via this isomorphism, H i(SK(C),F ⊗ Lλ) also gets the structure
of a Gal(E/E) representation.

5.4 Hecke correspondences

Let K ⊂ G(Af ) be a compact open subgroup as before. For g ∈ G(Af ),
define K ′ = K ∩ gKg−1.

A diagram of the form X ←− Y
'−→ X is called a correspondence on

X. We have the following correspondence on SK(C) defined by g: (Recall:
SK(C) = G(Q)\(X × (G(Af )/K)).)

SK(C)

SK′(C)

SK(C)

(x,hK′)7→(x,hK)

(x,hK′)7→(x,hgK)

We can check that g, g′ define the equivalent correspondences if KgK =
Kg′K. Moreover, Hecke correspondence defined by the double coset KgK
induces an endomorphism of H i(SK(C),C).

Let C∞(G(Af )//K)L denote the Hecke algebra of compactly supported
K-bi-invariant functions L-valued functions on G(Af ). Note that, as ex-
plained before, every f ∈ C∞(G(Af )//K)L is of the form f =

∑n
i=1 1KgiK .

Hence, using the above Hecke correspondences, by linear extension we have
an action of the Hecke algebra C∞(G(Af )//K)L acts on H i(SK(C),F).

5.5 Construction of the Galois representation

We have now described actions of Gal(E/E) on H i(SK(C),F ⊗ Lλ) for a
finite place λ of L and the action of C∞(G(Af )//K)L on H i(SK(C),F) (and
hence the induced action on H i(SK(C),F ⊗ Lλ)). Note that these actions
commute, making H i(SK(C),F ⊗ Lλ) into a C∞(G(Af )//K)L ×Gal(E/E)
module.

Next, fix an admissible representation πf of G(Af ) and define the L-
vector space:

W i(πf ) := HomC∞(G(Af )//K)L(πKf , H
i(SK(C),F))
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where, recall that by πKf we mean the subspace of K-invariants of πf . Note
that we have omitted K from our notation W i(πf ), although W i(πf ) as
defined above a priori depends on K. However, there is an equivalent way to
define W i(πf ) using the Shimura variety at infinite level, which makes the
independence on K more explicit.

As H i(SK(C),F ⊗ Lλ) is a C∞(G(Af )//K)L × Gal(E/E) module, we
get that the Lλ-vector space W i(πf )λ := W i(πf ) ⊗ Lλ has the structure of
a Gal(E/E) representation. We want to describe W i(πf )λ in terms of the
automorphic representations of G(A), at places of good reduction. We now
proceed to define the places of good reduction in this context.

5.6 Places of good reduction

As our Shimura varieties are compact, we recall that H i(SK(C),F) is a fi-
nite dimensional representation of C∞(G(Af )//K)L and that H i(SK(C),F)
is zero unless 0 ≤ i ≤ 2 dimSK . Hence, there exists f∞ ∈ C∞(G(Af )//K)L
such that f∞ acts by 0 on all the irreducible subrepresentations ofH i(SK(C),F)
(for all i) except those isomorphic to πKf , where it acts by a non-zero scalar
(only finitely many classes of irreducible representations can occur in these
cohomologies). Further, after a suitable normalization, we may assume that
trπKf (f∞) = 1 (to be interpreted as the trace of the operator f∞ acting on
the vector space πKf ).

Now, we are ready to describe the cofinite set of primes Sgood, which will
be our places of good reduction. A prime p ∈ Sgood if the following three
conditions hold:

1. the group G is quasi-split over Qp and split over an unramified exten-
sion of Qp OR EQUIVALENTLY G as a group over Qp is unramified.

2. the compact open subgroup K of G(Af ) is a product KpKp, where
Kp is a compact open subgroup of G(Apf ) (the finite adeles away from
the prime p) and Kp is a hyperspecial maximal compact subgroup of
G(Qp).

3. the function f∞ can be written as the product of a function fp ∈
C∞(G(Apf )//Kp)L times the unit element of C∞(G(Qp)//Kp)L.

We can now state more precisely the goal of the main theorem. For all p ∈
Sgood and all places v of E over p and all places λ of L over primes different
from p, we want to describe the representations W i(πf )λ of Gal(Ev/Ev) in
terms of automorphic representations of G(A).
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5.7 Satake isomorphism

By Flath’s theorem, we can decompose the irreducible admissible representa-
tion πf as a restricted tensor product πf =

⊗′
p πp, where πp is an irreducible

admissible representation of G(Qp). Following our first assumption, we know
that πp is an unramified representation of G(Qp). Now, we describe how to
associate an unramified L representation V (πp, Ev) of the Weil group WEv

to πp.
Note that the Satake isomorphism associates an unramified admissible

L-parameter φ(πp) : WQp −→L (GQp), where L(GQp) denotes the Langlands
dual of GQp .

Next, we note that the homomorphism h : ResCR(Gm) −→ GR gives rise to
a conjugacy class of co-characters µ : Gm −→ GEv . Referring to Lemma 2.1.2
of [6], we have a L representation r of L(GQp) such that as a Ĝ representation,
r is irreducible with highest weight µ̂ : Ĝ −→ Gm (the dual of µ).

The unramified representation V (πp, Ev) of WEv is defined as:

V (πp, Ev) = (r ◦ φ(πp))⊗ χ

where χ is the unramified quasi-character of WEv whose value on geometric
Frobenius element Φv of W unr

Ev
is (
√
p)[Ev :Qp] dimSK (we assume that there

exist a square root of p in L and we choose one of them and denote it by√
p). The χ is only present to take care of certain normalizations.
We denote by P (πp, Ev) the characteristic polynomial of Φv acting on

V (πp, Ev).

5.8 Statement of the main theorem

Recall that we started with the local system ζ : G −→ GLV and an ir-
reducible admissible representation πf of G(Af ). Let ζC = ζ ⊗L C and
πf,C = πf ⊗L C. Choose a discrete series representation π0∞ of G(R) having
the same central and infinitesimal character as the contragradient of ζC and
let f∞ be (−1)dimSK times a pseudo-coefficient for π0∞. For an automor-
phic representation π with central character χπ of G(A) we introduce the
notation m(π) to denote the multiplicity of π in the space of automorphic
forms on G(Q)\G(A) transforming by χπ under the center of G(A). We also
introduce the integer a(πf ) which is defined as follows:

a(πf ) =
∑
π∞

m(πf,C ⊗ π∞) trπ∞(f∞).

As in [7], the map h : ResCRGm −→ G determines a weight, which we
denote by w : Gm −→ Center(G). The composition ζ ◦ w determines a scalar
(element of center of GLV ), which we denote by w(ζ).
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Recalling that we have the decomposition πf =
⊗′

p πp, we are now ready
to state the main theorem:

Theorem 14. 1. The integer a(πf ) is non-zero iff W i(πf ) is non zero for
some i.

2. Suppose a(πf ) is nono-zero. Let v be a place of E lying over a prime
p ∈ Sgood. Then πp is unramified. Let α be a root of P (πp, Ev). If
a(πf ) is positive (resp. negative), there exists an even (resp. odd)
integer i between 0 and 2 dimSK such that α is an algebraic number
all of whose complex absolute values are equal to q(i+w(ζ))/2v (where qv
is the carinality of the residue field of Ev). The polynomial P (πp, Ev)
can be written uniquely as a product

2 dimSK∏
i=0

P i(πp, Ev)

of monic polynomials with coefficients in L having the property that
every root of P i(πp, Ev) has weight i+w(ζ). Let λ be a place of L lying
over a prime other than p. Then W i(πf )λ is an unramified representa-
tion of Gal(Ev/Ev) and the characteristic polynomial of the Frobenius
Φv on W i(πf )λ is equal to the | a(πf ) |-th power of pi(πp, Ev).
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Chapter 6

Proof of Main Theorem

6.1 Outline of the proof

We continue with the notation of the previous chapter, where we recall that
λ was a place of L above a prime p ∈ Sgood and v was a place of E above a
prime l 6= p.

We letW (πf )λ denote the virtual representation
⊕2 dimSK

i=0 (−1)iW i(πf )λ
of Gal(E/E) and similarly define Hλ. To prove our main theorem that:

P (W (πf )) = P (πp, Ev)
a(πf )

it suffices to show that:

tr(Φi
v;W (πf )) = a(πf ) tr(Φi

v;V (πp, Ev)).

Recall that we chose f∞ ∈ C∞(G//K)L such that:

tr(Φv;W (πf )λ) = tr(f∞ × Φj
v;Hλ).

Outline of the point counting method of [8]. The Shimura varieties
SK have a moduli interpretation as the moduli space of abelian varieties
with certain extra structures (which we do not make precise). Using this
moduli interpretation, one can show that SK is defined over (oE)v (i.e. the
ring of integers of E localized at the place v). Once we have this, we can
base change to Spec rv where rv is the residue field of (oE)v and obtain the
Shimura variety "mod v" SK (a variety over the finite field rv). Using the
Grothendieck-Lefschetz trace formula, computation of tr(f∞ × Φj

v;Hλ) can
be reduced to computing the rv points on SK , the Shimura variety mod v.
Invoking the moduli interpretation once again, counting points is equivalent
to counting the number of (isomorphism classes of) abelian varieties over rv
with certain extra structures.

This counting is done in [8], and the final result is that tr(f∞ ×Φj
v;Hλ)

equals the following (we won’t explain all the terms involved in this formula,
but instead explain later the analogous formula for the group G = GL2):
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τ(G)
∑
γ0

∑
(γ,δ)

e(γ, δ)Oγ(f∞,pC )TOδ(φj) tr ζC(γ0) · vol(AG(R)0\I(∞)(R)−1)

(6.1)
where the first sum is over a set of representatives γ0 for the stable conjugacy
classes inG(Q) and the second sum is over equivalence classes of pairs (γ, δ) ∈
G(Apf )×G(Ej) satisfying certain conditions.

In this formula, φj denotes an element of C∞(G(Ej)//Kj)L where Ej is
the unramified extension of Ev of degree j and Kj is a hyperspecial subgroup
G(Ej) lying over Kp. We can apply the base change homomorphism as given
in [6] to obtain a function fj ∈ C∞(G(Qp)//Kp)L which has the property
that:

trπp(fj) = tr(Φj
v;V (πp, Ev)).

Applying the fundamental lemma of Clozel [9], we get that for every
semisimple γp ∈ G(Qp) we have:

SOγp(fj) =
∑
δ

e(δ)TOδ(φj) (6.2)

where δ runs over a set of representatives for the σ conjugacy classes of G(Ej)
such that δσ(δ) · · ·σr−1(δ) is conjugate to γp ∈ G(Qp) (where r := [Ej : Qp]).

Along with the above, we need to know the computation of another
orbital integral, of the function f∞ defined in the earlier section:

SOγ∞(f∞) = tr ζC(γ∞) · vol(AG(R)0\I(∞)(R)−1) · e(I) (6.3)

Plugging 6.2 and 6.3 into the expression 6.1 we see that it simplifies to:

τ(G)
∑
γ0

SOγ0(fpC · fj · f∞). (6.4)

Next, we recall the Arthur-Selberg trace formula for a smooth function
f on G(A): ∑

γ

τ(Gγ)Oγ(f) =
∑
π

m(π) trπ(f)

and also the stabilized Arthur-Selberg trace formula as given in [10]:∑
γ0

τ(G)SOγ(f) =
∑
π

m(π) trπ(f).

Apply the stabilized Arthur-Selberg trace formula to the function fpC ·fj ·
f∞ we obtain that 6.4 equals:∑

π

m(π) trπ(fpC · fj · f∞).

27



We temporarily change the notation for our fixed representation πf in
the previous chapter to π0f . From the definition of a(πf ) as given in the
previous chapter, we get that the above expression further simplifies to:∑

πf

trπf (fpCfj)a(πf ) (6.5)

(here the sum ranges over all irreducible representations of G(Af )).
Since fj is bi-invarriant underKp, the number trπf (fpCfj) vanishes unless

the component πp of πf at Qp is unramified, in which case:

trπf (fpCfj) = trπf (fpC) trπp(fj).

From this, we see that every summand of 6.5 vanishes except the one indexed
by πf = π0f ⊗ C.

Now, we can drop the superscript on π0f and denote it once again by πf .
Since tr(Φj

v;W (πf )λ) = 0 unless the p-adic component πp of πf is unramified,
we get our desired result:

tr(Φi
v;W (πf )) = a(πf ) tr(Φi

v;V (πp, Ev)).

The formula 6.1 simplifies for the group G = GL2 and becomes easier
to work with. The ideas used to prove the formula for the group G in
consideration in the paper [8] are analogous to the case of GL2. In the next
few sections, we will turn our attention to the GL2 case for obtaining a better
understanding of the situation. Our main reference is [11].

6.2 Modular curves as moduli spaces

The Shimura variety associated to the group GL2 is the modular curve.
We proceed to describe the modular curve as the moduli of elliptic curves
with level structure. Note that the Shimura variety in consideration in the
paper [1] also can be described as the moduli of abelian varieties with extra
structures, however this description is much more technical.

Definition 33 (Elliptic curve). A morphism p : E −→ S of schemes with a
section e : S −→ E is said to be an elliptic curve over S if p is proper, flat
and all geometric fibres are elliptic curves with zero section given by e.

Definition 34 (level-m-structure). A level-m-structure on an elliptic curve
E/S is an isomorphism of group schemes over S

α : (Z/mZ)2S −→ E[m]

where (Z/mZ)2S is a constant group scheme over S and E[m] is the base
change of the closed embedding e under the multiplication-by-m map E ×m−−→
E.
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It follows that if E/S has a level-m-structure then m is invertible in S
(i.e. invertible in the ring of global sections).

Theorem 15. Consider the following functor for m ≥ 3

Mm : Sch /Z[m−1] −→ Sets

S −→ {(E/S, α) elliptic curve E over S with level-m-structure α, upto isomorphism}.

Then this functor is representable by a smooth affine curve over Z[m−1],
which we again denote byMm.

As m will be fixed from now on, by abuse of notation, we will omit the
subscript and writeMm simply asM.

Recall from the overview of the point counting method of previous section
that we want to count the isomorphism classes of elliptic curves over a finite
field k with level-m-structure, where char k - m.

6.3 Tate module and Dieudonne module

Tate module.
Let E be an elliptic curve over a finite field k of order q = pr. Let l 6= p

be a prime.
Define Tl(E) := lim←−nEk[l

n], where we recall that Ek[l
n] = {P ∈ E(k) |

N ·p = 0}. Note that as Ek[l
n] is a free Z/lnZ module of rank 2, we get that

Tl(E) is a free Zl module of rank 2.
The Zl module Tl(E) is also equipped with a Gal(k/k) action as follow:

Gal(k/k) acts on E(k) and hence also acts on Ek[ln] for all n. Thus, we have
an induced action of Gal(k/k) on Tl(E).

Note that a map of elliptic curves f : E −→ E′ over k induces a map of
Tate modules f∗;Tl(E) −→ Tl(E

′).
We also define Vl(E) := Tl(E) ⊗Zl

Ql. The Gal(k/k) action on Tl(E)
induces an action on Vl(E).

A fundamental property of the Tate module is the following:

Theorem 16 (Tate Isogeny theorem). The induced map

φ : Homk(E,E
′)⊗Z Zl −→ HomGal(k/k(Tl(E), Tl(E

′))

is an isomorphism.

Dieudonne module. The Tate module Tl(E) uniquely characterizes
the inverse system of finite group schemes lim←−E[ln] only when l 6= p (as in
this case the finite group schemes are etale). For dealing with the inverse
system of group schemes lim←−E[pn], we need a different approach. This leads
us to the notion of the Dieudonne module D(E) of the elliptic curve E.
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We will not provide a construction of the Dieudonne module, but restrict
ourselves to stating some properties of it.

Recall that E is defined over a finite field k or order q = pr. We denote
by Zpr the ring of integers of Qpr , the degree r unramified extension of Zp.
The Dieudonne module D(E) is a free module of rank 2 over Zpr .

Additionally, note that as Qpr is an unramified extension of Qp, we have
that Gal(Qpr/Qp) ' Gal(k/Fp). We denote by σ the element of Gal(Qpr/Qp)
corresponding to the Frobenius x 7→ xp under this isomorphism.

Analogous to the Galois action on the Tate module, we have some extra
structures on D(G). We have a σ semilinear operator F ("Frobenius") and a
σ−1 semilinear operator V ("Verschiebung") on the Zpr -module D(E), such
that FV = V F = (p) (multiplication-by-p). Thus, we may define a ring Dk

as the Zpr algebra generated by F and V subject to the relations:

1. FV = V F = p.

2. Fw = σ(w)F for all w ∈ Zpr .

3. wV = V σ(w) for all w ∈ Zpr .

Thus, we have that D(G) has an action of Dk.
A map of elliptic curves f : E −→ E′ induces a map f∗ : D(E) −→ D(E′).
We also define Vp(E) := D(E)⊗Zpr

Qpr .
Similar to the Tate Isogeny theorem, we have that:

Theorem 17. The natural map is an isomorphism:

Homk(E,E
′)⊗Z Zp −→ HomDk

(D(E), D(E′)).

6.4 Point counting

Fix an elliptic curve E0 over Fpr . We want to count the number of elements
of:

M(k)(E0) := {x ∈M(k) | E0 is k-isogenous to Ex}.

Denote by Hp :=
∏
l 6=p Tl(E) ⊗ Apf , a Apf -module and by Hp := Vp(E), a

Qpr -module. Choosing a k-isogeny f : Ex −→ E0 we get the following:

1. A Gal(k/k) invariant Ẑp lattice

L = f∗(
∏
l 6=p

Tl(Ex)) ⊂ Hp.

2. A F, V -invariant Zpr -lattice

Λ = f∗(D(Ex)).
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3. Finally, the level structure: a Gal(k/k) invariant map

φ : Z/mZ −→ L⊗ Z/mZ

where Z/mZ has the trivial Gal(k/k) action.

Let Y p denote the set of pairs (L, φ) satisfying the first and the third
conditions and let Yp be the set Λ satisfying the second condition. Dividing
by the choice of f we get a map:

M(k)(E0) −→ Γ\Y p × Yp

where Γ = (End(E0) ⊗ Q)×. We state the following whose proof can be
found in [11].

Theorem 18. This map is a bijection.

Hence, it remains to count the cardinality of Γ\Y p×Yp and express it in
terms of orbital integrals.

We know that Hp is a two dimensional Apf vector space and that Hp

is a two dimensional Qpr vector space. Choose bases for both these vector
spaces.

Note that from the Gal(k)/k) action on the Tate modules, we have that
the Frobenius of k (x 7→ xp

r) acts on Hp. Let γ ∈ GL2(Apf ) be this Frobenius
endomorphism w.r.t. the chosen basis. Note that changing the basis of Hp,
doesn’t change the conjugacy class of γ.

Recall the notation from the section on Dieudonne modules: σ is the
Frobenius on Qpr and F is the σ semi-linear operator on Hp = D(E)⊗Qpr

(induced from F on D(E)).
From the chosen basis of Hp we have an isomorphism Hp ' Q2

pr . We next
define an element δ ∈ GL2(Qpr) such that the following diagram commutes.

Hp Q2
pr

Hp Q2
pr

Hp Q2
pr

'

F

σ

'

δ

'

From this definition, it can indeed be checked that δ defines a linear map.
It can also be checked that that changing the basis of Hp doesn’t change the
σ-conjugacy class of δ.

Next we define the following:

1. Gγ(Apf ) = {g ∈ GL2(Apf ) | g−1γg = γ}.
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2. Gδ,σ(Qp) = {h ∈ GL2(Qpr) | h−1δhσ = δ}.

3. fp is the characteristic function of the following set devided by its
volume

Kp = {g ∈ GL2(Ẑp) | g ≡ 1 mod m}.

4. φp,0 is the characteristic function of the following set divided by the
volume of GL2(Zpr)

GL2(Zpr)

(
p 0
0 1

)
GL2(Zpr).

We finally arrive at the expression for the number of points in terms of
orbital integrals:

Theorem 19. The cardinality ofM(k)(E0) is

vol(Γ\Gγ(Apf )×Gδ,σ(Qp))Oγ(fp)TOδ,σ(φp,0).
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