
Measurement Framework for Assessing Quality of Big Data 
(MEGA) in Big Data Pipelines 

 
Dave Bhardwaj 

 
 
 
 

A Thesis 
In the Department of 

Computer Science and Software Engineering 
 
 
 
 
 

Presented in Partial Fulfillment of the Requirements 
For the Degree of 

Computer Science and Software Engineering at  
Concordia University 

Montreal, Quebec, Canada 
 
 
 

 
 
 
 
 
 
 
 
 
 

August 2021 
 
 
 

©Dave Bhardwaj, 2021



 
 

 
CONCORDIA UNIVERSITY 

School of Graduate Studies 
 
 
This is to certify that the thesis prepared 
 
By:                           Dave Bhardwaj 
 
Entitled:                   Measurement Framework for Assessing Quality of Big Data (MEGA) in Big 

Data Pipelines 
 
And submitted in fulfillment of the requirements of the degree 
 

Master of Computer Science 
 
Complies with the regulations of the university and meets the accepted standards with respect to 
originality and quality 
 
Signed by the final examining committee: 
 

__________________________________________ Chair 
Dr. Tristan Glatard 

__________________________________________ Examiner 
Dr. Tse-Hsun (Peter) Chen 

__________________________________________ Examiner 
Dr.Tristan Glatard 

__________________________________________ Supervisor 
Dr. O. Ormandjieva 

 
 
Approved by:  _________________________________________________ 

Chair of Department or Graduate Program Director 
 

 
 
 

___________ 2021         _____________________________________________________ 
Dean of Faculty 

 
 
 
 
 



 
 

iii 

Abstract For Masters 
 

Measurement Framework for Assessing Quality of Big Data (MEGA) in Big Data Pipelines 
 

Dave Bhardwaj 
 
Big Data is used widely in the decision-making process and businesses have seen just how 

powerful data can be, especially for areas such as advertising and marketing. As institutions begin 

relying on their Big Data systems to make more informed and strategic business decisions, the 

importance of the underlying data quality becomes extremely significant. In our research this is 

accomplished through studying and automating the quality characteristics of Big Data, more 

specifically, through the V’s of Big Data. 

 

In this thesis, our aim is to not only present researchers with useful Big Data quality measurements, 

but to bridge the gap between theoretical measurement models of Big Data quality characteristics 

and the application of these metrics to real world Big Data Systems. Therefore, our thesis proposes 

a framework (The MEGA Framework) that can be applied to Big Data Pipelines in order to 

facilitate the extraction and interpretation of Big Data V’s measurement indicators.  The proposed 

framework allows the application of Big Data V’s measurements at any phase of the architecture 

process in order to flag quality anomalies of the underlying data, before they can negatively impact 

the decision-making process. The theoretical quality measurement models for six of the Big Data 

V’s, namely Volume, Variety, Velocity, Veracity, Validity, and Vincularity, are currently 

automated.  

 

The novelty of the MEGA approach includes the ability to: i) process both structured and 

unstructured data, ii) track a variety of quality indicators defined for the V’s, iii) flag datasets that 

pass a certain quality threshold, and iv) define a general infrastructure for collecting, analyzing, 

and reporting the V's measurement indicators for trustworthy and meaningful decision-making.    
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Chapter 1 Introduction 

Big data has fundamentally changed how businesses leverage both their own data and that of 

others. Consequently, this has given businesses the ability to make better and more data-driven 

decisions, gain a deeper understanding of their customers and focus their resources to improve 

both productivity and profits (Walker, 2015) (Lee, 2013) Big data isn’t just for businesses though. 

A large variety of sectors and industries benefit greatly from the use of big data, from the healthcare 

industry to even agriculture and farming. Big data can be used as one of many tools to solve some 

of the most important problems in industries like healthcare and agriculture (Andreu-Perez, Poon, 

Merrifield, Wong, & Yang, 2015) (Yu & Song, 2016) (Kelly & Knezevic, 2016). Being able to 

model and predict health assessment from electronic health records is one the many (Andreu-

Perez, Poon, Merrifield, Wong, & Yang, 2015) (Bates, Saria, Ohno-Machado, Shah, & Escobar, 

2014) kinds of advancements that can be made, by leveraging data.  

 

While Big Data can allow industries that have access to a vast amount of data the ability to make 

critical decisions, data isn’t always necessarily perfect itself. Data scientists and software engineers 

spend large amounts of time and effort developing complex architectures to capture, process and 

store data so that it can be ready to be used for analysis and decision-making.  However, models 

built on even processed data may still be imperfect and even less than ideal if developers can’t be 

sure of the quality of their data (Gudivada, Apon, & Ding, 2017).  

 

The objective of this thesis is to bridge the gap between Big Data Quality Measurements and Big 

Data Systems. More specifically, there exists known characteristics that help us understand the 

underlying data quality. We wish to build measures for these existing characteristics and have a 

framework that can be used to apply them on systems.  We present a reference framework that can 

be applied to a variety of Big Data Systems for on-going Big Data quality measurements. In this 

framework, developers and users can collect metrics on the underlying data to be evaluated by 

measures chosen by them. They can then use this information to determine the meaningfulness of 

the underlying data.  
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1.2 Motivation of This Research 

Big Data scientists and engineers invest large amounts of resources developing complex 

architectures to capture, process and store Big Data so that it can be used for strategic decision-

making. Yet, while Big Data allows critical decisions to be made based on the analysis of vast 

amounts of data, the underlying data isn’t always perfect and thus can lead to costly mistakes 

(Gudivada, Apon, Ding 2017). Hence, models built on processed Big Data are as good as the 

quality of the underlying data. Consequently, the visibility of the underlying data quality is 

becoming increasingly important.   

 

Although there have been advancements in measuring the Big Data V’s ((Ormandjieva, 

Omidbakhsh, & Trudel, 2020), (Ormandjieva, Omidbakhsh, & Trudel, 2021)) we still lack a 

coherent framework in which these measurements can be applied to real Big Data systems.  The 

main contribution of this thesis is the proposed architectural solution for providing continuous 

measurement feedback on quality characteristics of Big Data (the V’s), including visualization and 

interpretation of the measurement results, in a manner that is flexible and easy to use. Big Data 

users can use the V’s measurement results in order to assess the quality of their underlying data 

and determine its suitability for their purposes.  

 

The problems we are attempting to solve here include the ability to: i) process both structured and 

unstructured data, ii) track a variety of base measures depending on the quality indicators defined 

for the V’s, iii) flag datasets that pass a certain quality threshold, and iv) define a general 

infrastructure for collecting, analyzing, and reporting the V’s measurement results for trustworthy 

and meaningful decision-making.   

1.3 Challenges 
 

According to the U.S. National Institute of Science and Technology (NIST) Big Data Public 

Working Group (NIST Big Data Interoperability Framework: Volume 1, Definitions. Volume2, 

Big Data Taxonomies, 2018) Big Data does not only refer to the increasingly large multiple 

datasets, but also to the fundamental improvements in the architecture needed to manage the 
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quality of this data. Recent publications have proposed frameworks and architectures to address 

the different needs for data quality analysis ((Pääkkönen & Ovaska 2015), (Taleb, Dssouli & 

Serhani 2015), (Ramaswamy, Lawson & Gogineni, 2013), (Veiga, Saraiva, Chapman, et al. 2017), 

(Merino, Caballero, Rivas, Serrano & Piattini 2017)). However, as Big Data Systems handle larger 

and larger amounts of data, with more and more automation, the need for monitoring quality 

becomes indispensable for the users of Big Data. 

1.4 Approach and Novelty 
 

Approach. In this thesis we address this need by proposing a novel quality measurement 

framework for Big Data (MEGA) where data issues can be identified and analyzed continuously 

by integrating data quality measurement procedures within Big Data Pipelines phases. The goal is 

to flag data quality issues before they propagate into the decision-making process. 

In this research we focus on ten of the intrinsic Big Data quality characteristics referred to as V’s, 

namely: Volume, Variety, Velocity, Veracity, Vincularity, Validity, Value, Volatility, Valence and 

Vitality (Omidbakhsh & Ormandjieva 2020). Measurement information models were proposed 

previously for Volume, Velocity, Variety and Veracity ((Ormandjieva, Omidbakhsh, & Trudel, 

2020), (Ormandjieva, Omidbakhsh, & Trudel, 2021)). The remaining 6 V’s (Vincularity, Validity, 

Value, Volatility, Valence and Vitality) that lack properly defined valid measurements and will be 

tackled in our future work. 

 

Novelty. Although there have been advancements in measuring the Big Data V’s ((Ormandjieva, 

Omidbakhsh, & Trudel, 2020), (Ormandjieva, Omidbakhsh, & Trudel, 2021)), we still lack a 

coherent framework in which these measurements can be applied to real Big Data Systems.  The 

main contribution of this thesis is the proposed architectural solution for providing continuous 

measurement feedback on quality characteristics of Big Data (the 10V’s), including visualization 

and interpretation of the measurement results, in a manner that is flexible and easy to use. Big Data 

users can use the V’s measurement results to assess the quality of their underlying data and 

determine its suitability for their purposes. The problems we are attempting to solve here include 

the ability to: i) process both structured and unstructured data, ii) track a variety of base measures 

depending on the quality indicators defined for the V’s, iii) flag datasets that pass a certain quality 
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threshold, and iv) define a general infrastructure for collecting, analyzing and reporting the V's 

measurement results for trustworthy and meaningful decision-making.  

1.5 Overview of the Contributions 
 

The specific contributions of this research are listed as follows: 

 

Measurement of Validity. The derived measures include more specifically Accuracy, Credibility 

and Compliance and used to build the vector for Validity. It’s important to note that the measure 

of Accuracy was defined in (Ormandjieva, Omidbakhsh & Trudel 2021) however it has been 

redefined in for Validity and this new definition will be used for Veracity as well, as the old one 

would yield negative values after testing. The measure for Credibility remains the same as the one 

introduced in (Ormandjieva, Omidbakhsh & Trudel 2021). Compliance is a new derived measure, 

first introduced in Validity and for this thesis.  

 

Measurement of Vincularity. The derived measure, Traceability is first introduced here and is 

originally developed for the use of Vincularity.  

The MEGA Framework. Originally, built upon the ideas from (Social Media Data) the MEGA 

framework is its own framework developed to be compatible with the measurement V’s of Big 

Data Quality characteristics.  
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1.6 Outline of the Thesis 
 
This thesis is broken into seven chapters. Chapter 2 focuses on some of the required knowledge 

needed to fully understand the methods and processes used to develop the measurements found in 

this paper. In chapter 3, we discuss the approach to the MEGA framework and some background 

knowledge for the framework. Chapter 4 discusses the development of the Validity indicator. 

Chapter 5 discusses the development of the Vincularity indicator. Chapter 6 discusses the MEGA 

framework and provides a Case Study to show it works on real data. Finally, Chapter 7 provides a 

conclusion and discusses the future work of what we’re studying.  
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Chapter 2 Background 
 

Here we discuss the knowledge and information needed to fully grasp later concepts when we 

discuss the development of Big Data Indicators. Here we discuss the role measurements have in 

Software Engineering and how development needs are related to our goals. 

2.1 Basics of Software Measurement  

2.1.1 5W’s of Measurement 

The five W’s of software engineering are questions that we ask to help us gain a better 

understanding of why we take measurements and to determine what the goals are for those 

measurements.  

 

There are many reasons to take measurements, but these measurements may differ depending on 

each stakeholder. From a Software Engineering perspective, managers may need to understand 

their business performance, while an engineer may want to understand their productivity and the 

quality of their product.  

 

The five W’s include:  

- Why should we measure? 

- Who are we measuring for? 

- What are we measuring? 

- When should we measure? 

- What measures should we use? 
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These questions can help us more concretely understand the reasons for why we take a 

measurement and it’s the approach we use to build measurements for Big Data Quality. 

2.1.2 Goal-Driven Approach to Measurement 

To build a foundation for the measurement of quality of big data at its different levels of granularity 

(elements, records, datasets, and multiple datasets), we adopted the Goal Question (Indicator) 

Model (GQ(I)M) top-down approach to align the measurement process with the business goals of 

big data. In the GQ(I)M approach, we define the measurement goal, and we generate questions to 

identify quality characteristics on that basis, then we define the indicators and measurement 

procedures required for answering those questions. Indicators can be derived from multiple base 

or derived measures.   

 

  
 
 

Figure 2.1 GQ(I)M 
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2.1.3 Representational Approach to Theoretical Validation of Measurement 

Validation is critical to the success of Big Data measurement. Measurement validation is “the act 

or process of ensuring that (a measure) reliably predicts or assesses a quality factor”. In other 

words, a given measure is valid if it reflects the real meaning of the concept under consideration 

and is based on the representational theory of measurement.   

Two approaches to validation have been prescribed and practised in software engineering: (a) 

theoretical validation, and (b) empirical validation. These two types of validation are respectively 

used to demonstrate that a measure is really measuring the attribute it is purporting to measure.   

 

The Validity measures are theoretically validated using the Representational Theory of 

measurement (Fenton, Bieman 2014) with respect to Tracking and Consistency criteria introduced 

in (IEEE Std 1061, 1998), as described below: 

 

The Tracking Criterion. This criterion assesses whether a measurement is capable of tracking 

changes in product or process quality over the life cycle of that product or process. A change in 

the attributes at different times should be accompanied by a corresponding change in the 

measurement data.  It can be expressed formally as follows: 

 

If a measure M is directly related to a quality characteristic F, for a given product or process, then 

a change in a quality characteristic value from FT1 to FT2, at times T1 and T2, shall be accompanied 

by a change in the measurement value from MT1 to MT2.This change shall be in the same direction 

(e.g., if F increases, M increases). If M is inversely related to F, then a change in F shall be 

accompanied by a change in M in the opposite direction (e.g., if F increases, M decreases). 

 

The Consistency Criterion. This criterion assesses whether there is a consistency between the 

ranks of the characteristics of big data quality (3V’s) and the ranks of the measurement values of 

the corresponding indicator for the same set. It is used to determine whether or not a measurement 

can accurately rank, by quality, a set of products or processes. The   change of ranks should be in 

the same direction in both quality characteristics and measurement values, that is, the order of 

preference of the 3V’s will be preserved in the measurement data and can be expressed as follows:  
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If quality characteristic values F1, F2, …, Fn, corresponding to MDS 1 … n, have the relationship 

F1≻ F2≻… ≻ Fn, then the corresponding indicator values shall have the relationship M1>M2 > … 

> Mn. 

 

This preservation of the relationship means that the measure must be objective and subjective at 

the same time: objective in that it does not vary with the measurer, but subjective in that it reflects 

the intuition of the measurer. Tracking and consistency are a way to validate the representational 

condition without collecting and analyzing large amounts of measurement data, which can be done 

manually.  

 

Empirical validation is a process for establishing software measurement accuracy by empirical 

means.   

 

Ultimately, both theoretical and empirical validation are necessary and complementary. 
 

2.2 Related ISO Standards 

2.2.1 ISO/IEC/IEEE 15939 
 

The ISO/IEC/IEEE Std. 15939 establishes many of the common processes and frameworks for the 

measurement of systems and software. We use this as a basis of building our mathematical models. 

The document defines many important engineering terminologies that will be used throughout this 

thesis. (ISO/IEC/IEEE 15939 2017.) These include the following: 

Base Measures. A base measure is defined in ISO/IEC/IEEE Std. 15939 as functionally 

independent of other measures (ISO/IEC/IEEE 15939 2017). 

Derived Measures and Indicators. Derived measure is defined as a measurement function of two 

or more values of base and derived measures (ISO/IEC/IEEE 15939 2017).  
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Entity. Object that is to be characterized by measuring its attributes. (ISO/IEC/IEEE 15939 2017.) 

Attribute: Property or characteristic of an entity that can be distinguished quantitatively or 

qualitatively by humans or automated means. (ISO/IEC/IEEE 15939 2017.) 

 

 
Figure 2.2 Relations in the Measurement Information Model (ISO 15939)  
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As seen in Figure 2.2. Attributes are properties that are relevant to the information needs. These 

attributes are qualified against a scale (Measurement Method) and measured (Base Measure). The 

Measurement Function is an algorithm that combines two or more base measures to produce what 

is called a derived measure. The Analysis Model is another algorithm that combines measures and 

decision criteria to produce an Indicator, which itself is an estimate or evaluation that provides the 

basis for decision-making. (ISO/IEC/IEEE 15939 2019.) 
 

2.2.2 ISO/IEC/IEEE 25012 
 
Quantitative assessment of Big Data V’s requires an establishment of data quality characteristics 

that must be considered when specifying Big Data quality requirements and evaluating data 

quality. Comprehensive data quality characteristics are proposed in the ISO/IEC international 

standard ISO/IEC 25012 (ISO/IEC 25012:2008). The data quality model defined in the standard 

ISO/IEC 25012 is composed of 15 characteristics that reflect two points of view: i) inherent data 

quality (refers to the degree to which data quality characteristics satisfy data requirements), and ii) 

system dependent data quality (degree to which data quality is reached and preserved when data 

is used under specified conditions) (ISO/IEC 25012:2008). 

 
The characteristics proposed in ISO 25012 include the following: 

- Inherent Data Quality: 

- Accuracy: Degree to which data has attributes that correctly represent the true 

value of the intended attribute of a concept or event in a specific context of use. 

(ISO/IEC 25012, 2008.) 

- Completeness: Degree to which subject data associated with an entity has values 

for all expected attributes and related entity instances in a specific context of use. 

(ISO/IEC 25012, 2008.) 

- Consistency: Degree to which data has attributes that are free from contradiction 

and are coherent with other data in a specific context of use. It can be either or both 

among data regarding one entity and across similar data for comparable entities. 

(ISO/IEC 25012, 2008.) 



12 
 

- Credibility: Degree to which data has attributes that are regarded as true and 

believable by users in a specific context of use. Credibility includes the concept of 

authenticity (the truthfulness of origins, attributions, commitments). (ISO/IEC 

25012, 2008.) 

- Currentness: Degree to which data has attributes that are of the right age in a 

specific context of use. (ISO/IEC 25012, 2008.) 

- Inherent and System-Dependent Data Quality:  

- Accessibility: degree to which data can be accessed in a specific context of use, 

particularly by people who need supporting technology or special configuration 

because of some disability. (ISO/IEC 25012, 2008.) 

- Compliance: degree to which data has attributes that adhere to standards, 

conventions or regulations in force and similar rules relating to data quality in a 

specific context of use. (ISO/IEC 25012, 2008.) 

- Confidentiality: Degree to which data has attributes that ensure that it is only 

accessible and interpretable by authorized users in a specific context of use. 

Confidentiality is an aspect of information security (together with availability, 

integrity) as defined in ISO/IEC 13335-1:2004. (ISO/IEC 25012, 2008.) 

- Efficiency: Degree to which data has attributes that can be processed and provide 

the expected levels of performance by using the appropriate amounts and types of 

resources in a specific context of use. (ISO/IEC 25012, 2008.)  

- Precision: Degree to which data has attributes that are exact or that provide 

discrimination in a specific context of use. (ISO/IEC 25012, 2008.) 

- Traceability: degree to which data has attributes that provide an audit trail of 

access to the data and of any changes made to the data in a specific context of use. 

(ISO/IEC 25012, 2008.) 

- Understandability: degree to which data has attributes that enable it to be read and 

interpreted by users, and are expressed in appropriate languages, symbols and units 

in a specific context of use. (ISO/IEC 25012, 2008.) 

- System-Dependent Data Quality 



13 
 

- Availability: Degree to which data has attributes that enable it to be retrieved by 

authorized users and/or applications in a specific context of use. (ISO/IEC 25012, 

2008.) 

- Portability: Degree to which data has attributes that enable it to be installed, 

replaced or moved from one system to another preserving the existing quality in a 

specific context of use. (ISO/IEC 25012, 2008.) 

- Recoverability: Degree to which data has attributes that enable it to maintain and 

preserve a specified level of operations and quality, even in the event of failure, in 

a specific context of use. (ISO/IEC 25012, 2008.) 

2.2.3 ISO/IEC/IEEE 25024 
 
ISO/IEC 25024 provides measures, including associated measurement methods and quality 

measure elements for the quality characteristics in the data quality model.  The definition of 

some of the measures from ISO/IEC DIC 25024 is as follows:  

 

Accuracy measures provide the degree to which data has attributes that correctly represent the 

true value of the intended attribute of a concept or event in a specific context of use. 

(ISO/IEC/IEEE 25024, 2015.) 

 

Credibility measures provide the degree to which data has attributes that are regarded as true and 

believable by users in a specific context of use. Credibility can be measured from the “Inherent” 

point of view only. (ISO/IEC/IEEE 25024, 2015.) 

 

Compliance measures provide the degree to which data has attributes that adhere to standards, 

conventions or regulations in force and similar rules relating to data quality in a specific context 

of use. Compliance is measured both from “Inherent” and “System dependent” point of view. 

(ISO/IEC/IEEE 25024, 2015.) 
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Traceability measures provide the degree to which data has attributes that provide an audit trail 

of access to the data and of any changes made to the data in a specific context of use. Traceability 

is measured both from “Inherent” and “System dependent” point of view. (ISO/IEC/IEEE 25024, 

2015.) 

 

However, no specific guidelines or models exist for characterizing the quality of Big Data. 

In this research we propose a new hierarchical goal-driven quality model for ten Big Data 

characteristics (V’s) at its different levels of granularity built on the basis of: i) the ISO/IEC 

standard data terminology and measurements, and ii) NIST (National Institute of Standards and 

Technology) definitions and taxonomies for Big Data, which is introduced next.   

 

2.3 National Institute of Standards and Technology (NIST) 
 
NIST (National Institute of Standards and Technology) has stimulated collaboration among 

professionals to secure the effective adoption of Big Data techniques and technology and 

developed Big Data standards roadmap to this aim. NIST clarified the definitions and taxonomies 

for Big Data interoperability framework that we will adopt in our study. The taxonomy consists of 

a hierarchy of roles/actors and activities that visit the characteristics of data at different levels of 

granularity, namely, element, record which is a group of related elements, datasets which is a group 

of records and subsequently multiple datasets, as depicted in Figure 2.3. 
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Figure 3.1 Overview of Approach to Big Data Quality Modeling  
 

NIST Taxonomy is used as a foundation for building the proposed new hierarchical measurement 

model of Big Data’s quality at its different levels of granularity (that is, elements, records, datasets 

and multiple datasets). 
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Chapter 3 MEGA Approach to Big Data Quality 

Modeling and Measurement  

3.1 Big Data V’s  
 
There’s a need for developing a standardized quality measurement model in order to achieve 

measurements that can accurately and objectively model, analyze and interpret the underlying data 

behind Big Data. (Omidbakhsh & Ormandjieva 2020) outlines such a model by proposing to use 

a new hierarchical goal-driven quality model for the 10 V’s of Big Data, built on the NIST 

definitions and taxonomies for Big Data as well as the ISO/IEC standard data terminology and 

measurements.   

 

This approach or one similar is necessary in the development of Big Data because it allows us to 

more accurately predict the usefulness of the data that's being interpreted. By having a set of 

indicators, in this case the V’s of Big Data, we can, in the future, build models with tools like Deep 

Learning or Machine Learning in order to effectively understand data.  

While it would have been optimal for this thesis to have had mathematical models developed for 

all 10 V’s, there’s currently very little research done on progressing the quality characteristics of 

Big Data. The understanding of the V’s started in 2001 with the introduction of the 3 V’s defined 

by Doug Laney in his paper (Doug, D., 2001) which include: 

- Volume: The vast amount of data generated by the world 

- Velocity: The speed at which data is being generated and can even include the speed at 

which data is being processed or handled. 

- Variety: Refers to the ever-increasing different forms that data can come in. This includes 

formats such as text, images, sound, videos, 3d models and much more. 
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Even today, the 3 V’s of Big Data are seen as the foundation of Big Data quality and these 

characteristics are used widely.  

But over the years researchers have come to understand more Big Data Quality Characteristics 

(Gupta, U., Gupta, A., 2016) (Demchenko, Y., et al., 2013) (Soupal, V., 2015) (Staff, B., 2013) 

(Normandeau, K., 2013) (Mahshewari, R., 2015) and we now have over 10 Big Data Quality 

Characteristics. These include the 3 V’s as well as the following: 

- Veracity: This quality characteristic refers to the quality of the data, which can vary 

greatly. This definition, however, isn’t that overly general and since the culmination of the 

characteristics of Big Data refer to the overall quality of Big Data this can make Veracity 

confusing. Which is why it’s expanded in the following paper (Ormandjieva, Omidbakhsh, 

& Trudel, 2021) where it is more precisely defined. 

- Valence: Refers to how Big Data can connect with one another. 

- Value: The insight gained from the processing of Big Data. 

- Volatility: How long the data is valid for and how much time it should be stored for 

(Normandeau, K., 2013) 

- Vitality: Refers to the criticality of the data (Mahshewari, R., 2015) 

- Validity: The accuracy and correctness of the data for the purpose of usage 

- Vinculairty: Refers to the connectivity or linkage of data 

The aim is to eventually assess (quantitatively) the 10 V’s of Big Data and integrate them into the 

MEGA approach of assessing the Big Data quality. At this moment, however, we’ve chosen to 

focus on four quality characteristics (Volume, Velocity, Variety, Veracity) that have been 

developed in past works (Ormandjieva, Omidbakhsh, & Trudel, 2020) (Ormandjieva, Omidbakhsh 

& Trudel 2021) and the ones developed in this thesis (Validity and Vincularity). These V’s have 

been fleshed out to have objective measures based on the approach outlined in the paper 

(Omidbakhsh & Ormandjieva 2020), making them the ideal candidates for a framework that can 

be applied to an existing Big Data Pipeline and used to continuously take measurements on the 

underlying data.  



 
 

18 

3.2 Approach to Modeling the V’s.   
 
We can map the notion of a Big Data Quality Characteristic (any of the 10 V’s) to the ISO/IEC 

DIC 25024 data quality characteristics by following what was proposed in the paper (Omidbakhsh 

& Ormandjieva 2020): 

 

Figure 3.2 Overview of the MEGA Approach 

We first need to understand the comprehensive data quality characteristics proposed in ISO/IE 

international standard ISO/IEC 25012 (ISO/IEC 25012:2008) (see Sections 2.2.2 and 2.2.3). 

These characteristics can be mapped to specific Big Data Quality Characteristics and be used to 

derive them. To do this we use the Goal Question (indicator) Metrics (GQ(I)M, see section 2.1.2) 

top-down approach discussed in earlier sections of this thesis. In essence, questions are generated 

and then analyzed to identify the quality characteristics, indicators and measurement procedures 

needed to answer the questions.  

For example, for the Big Data Quality Characteristic, Vincularity, we can generate a question such 

as: “What is the Vincularity of Big Data?” We can then define the Indicator as Vincularity (Mvinc). 
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The characteristics from ISO/IEC 25012 can then be mapped onto Vincularity based on the 

GQ(I)M. Vincularity, as previously defined, is the connectivity or linkage of data. Studying the 15 

characteristics defined by ISO/IEC 25012, we can map the characteristic of Traceability to 

Vincularity. In this case, only a single characteristic was mapped to a Vincularity, but as we’ll see 

in future sections, several characteristics can be mapped to the V’s. These measures (the 

characteristics of ISO/IEC 25012) can correspond to any level of the NIST hierarchy of big data, 

which includes element, records, datasets, and multiple datasets (see section 2.3). 

3.3 MEGA Foundation of Big Data V’s Measurement: Formal Model of 
NIST Entities 
 
Theoretically valid measure is founded on the mathematical modeling of the entities of interest. 

According to the ISO/IEC/IEEE Std. 15939, an object that is to be characterized by measuring its 

attributes is named “entity” (ISO/IEC/IEEE 15939 2017). In this work, the entities of interest 

correspond to the hierarchical levels of the NIST hierarchy (data element, record, dataset, and 

multiple datasets). We undertake a set-theoretical approach to modeling these NIST hierarchy 

elements, as described next: 

Data Elements. Data elements in big data originate in heterogeneous nature, including attributes 

from traditional databases, and newer, for instance, text from social media and sensors data. To be 

able to model a collection of heterogeneous data elements as a set, we first label each data element 

with a unique identifier (UIDE). We state as universe a fixed set of all distinct data elements in the 

multiple datasets and form a set we refer as DE of the UIDEs of all distinct data elements. Every 

reference to a data element below is to be interpreted as an indication of its UIDE.  

Record. Data elements are stored in records. Informally, a record can be seen as a collection of 

data elements. Every record is referred to by a unique record ID (UIDR). Records in big data can 

originate in heterogeneous sources, including traditional databases, and newer, less structured 

sources like social media, etc. therefore records can refer to a phrase or entire document data in 

context of unstructured data. We model mathematically a record r as a multiset, which may be 

formally defined as a two-tuple (DEr, m) where DEr is the underlying set of the multiset formed 

from its distinct elements (DEr Í DE). The multiplicity m: DEr à N + is a function from DEr to 
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the set of the positive integers, giving the number of occurrences of each element el  ∈ DEr as the 

number m(el). 

Dataset. The term dataset refers to a collection of one or more records. We model a dataset DS as 

a set of records’ unique identifiers (UIDR). Every unique dataset is referred to by a unique dataset 

ID (UIDDST). 

Multiple datasets. Big data is viewed as multiple datasets and thus can be formally modeled as a 

set of datasets MDS (in mathematical terms, as a set of multisets). An approach like this is justified 

by the fact that mathematical models would greatly simplify the automation of the measurement 

procedures. 

3.4 MEGA Framework 
 
The aim of the framework is to process and analyze data that follows through each step of the 

Big Data Pipeline in an attempt to collect important quality metrics and provide insight on the 

quality status of each step in the pipeline.  

 

Figure 1 Overview of the MEGA Approach 
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The processing is done by retrieving data after each step of the pipeline and following a set of rules 

described by the data practitioners. These include which measurements to take and what thresholds 

to look for. The measurements themselves, however, are the one’s presented in this thesis and is 

purpose built to objective for the use of data quality collection. Graphs and Illustrations are 

generated by the MEGA framework as a report to allow stakeholders the ability to gain quick 

insight into their product and to gain trust on the fact that if their system fails, they can catch it 

when it does and look back at the reports generated to understand what happened. 

3.5 Conclusion 
 
In the following chapters we will be discussing in further details the indicators used and how 

they have been implemented. This includes the ones that I have developed in collaboration with 

Dr. Olga Ormandjieva, which are Vincularity and Validity as well the ones developed in past 

works that include Volume, Velocity, Variety and Veracity. And then a case study will be 

presented showing how these indicators are used in a simulated user case based on real-world 

stock data from Yahoo’s API.  
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Chapter 4 Measurement Information Model for Validity 

of Big Data  

4.1 Introduction 
 
In this chapter we propose a new hierarchical measurement of the Big Data quality characteristic 

referred to as Validity, which was published in (Bhardwaj, Ormandjieva, IDEAS’21, 2021). The 

proposed measurement model is built upon; i) the NIST (National Institute of Standards and 

Technology) taxonomy towards to the standardization of big data technology (NIST 2018), ii) 

measurement principles described in ISO/IEC/IEEE Std. 15939 (ISO/IEC/IEEE 15939, 2017), and 

iii) the hierarchical measurement models discussed in (Ormandjieva, Omidbakhsh & Trudel 2020) 

and (Ormandjieva, Omidbakhsh & Trudel 2021). The newly proposed Validity measurements are 

validated theoretically using the representational theory of measurement (Fenton, Bieman 2014).  

4.2 Background and Related Work 

4.2.1 Overview of Volume, Velocity, Variety and Veracity Measurements 
 
The MEGA framework automates the 3V’s measurement information model proposed to quantify 

three aspects of Big Data – Volume, Velocity and Variety. Four levels of entities have been 

considered, derived from the underlying Big Data interoperability framework NIST (National 

Institute of Standards and Technology) standard hierarchy of roles/actors and activities (NIST 

2018).  This hierarchy includes data elements, records, datasets and multiple datasets at different 

levels. The model elements are compliant with ISO/IEC/IEEE Std. 15939 guidelines 

(ISO/IEC/IEEE 15939, 2017) for their definitions, where four base measures are first defined, 

assembled into two derived measures, evolving into three indicators - the 3V’s.  The 3V’s measures 

were validated theoretically based on the representational theory of measurement. For more 

details, please refer to (Ormandjieva, Omidbakhsh & Trudel 2020). Veracity is one of the 

characteristics of big data that complements the 3V’s of Big Data and refers to availability, 
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accuracy, credibility, correctness and currentness quality characteristics of data defined in ISO/IEC 

DIS 25024 (ISO/IEC DIS 25024, 2015). A new measurement information model for Veracity of 

big data was built upon (Ormandjieva, Omidbakhsh & Trudel 2020) and published in 

(Ormandjieva, Omidbakhsh & Trudel 2021). The proposed Veracity measurement model is 

defined as a hierarchy of 6 indicators, 3 derived measures and 13 base measures, as described in 

(Ormandjieva, Omidbakhsh & Trudel 2021).   

4.3 Measurement Information Model for the Validity of Big Data 
 
Validity of Big Data is defined in terms of its accuracy and correctness for the purpose of usage 

(ISO/IEC DIS 25024, 2015). However, few studies have been done on the evaluation of data 

validity.  

4.3.1 Comparison with Related Work 
 
Big Data validity is measured in (Zhou, Huang & Zhong, 2018) from the perspective of 

completeness, correctness, and compatibility. It is used to indicate whether data meets the user-

defined condition or falls within a user-defined range. The model proposed in (Zhou, Huang & 

Zhong, 2018) for measuring Validity is based on medium logic. In contrast, in our work we 

consider a 3-fold root cause of Validity inspired by the notions of ISO/ 25024 data quality 

characteristic accuracy, credibility and compliance: i) the accuracy of data in MDS, ii) the 

credibility of DS in MDS, and iii) the compliance of data elements in records, compliance of 

records in DS, and compliance of DS in MDS.  

4.3.2 Mapping of Validity to the ISO/IEC DIC 25024 Data Quality Characteristics 
 
Big Data validity is measured in this thesis from the perspective of accuracy, credibility, and 

compliance, which are adapted and refined in order to provide an evaluation of the Big Data 

Validity with respect to defined information needs of its measurement model (see Figure 4.0). 
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Figure 4.0 Big Data Validity Mapping to ISO25024 Data Quality Characteristics 

The measurement information model for the Validity of Big Data defines 3 indicators for 

measuring accuracy, credibility, and compliance. 

4.4 Accuracy Indicator (Acc) 
 
Big data accuracy is essential for the Validity of Big Data. The users of big data sets require the 

highest validity of their data, but it’s a well-known fact that big data is never 100% accurate. 

4.4.1 Notion of Accuracy 
 
According to the dictionary definition, accuracy means “the quality or state of being correct or 

precise”. ISO/IEC DIC 25024 defines data accuracy as a degree to which “data has attributes that 

correctly represent the true value of the intended attribute of a concept or event in a specific context 

of use”. It also states that accuracy can be measured from the “inherent” point of view only. 

One of the ways to increase the accuracy is to match records and merge them if they relate to the 

common values of the data attributes. Consequently, we define accuracy as a measure of the 

common information in DS relationships within MDS.  

 

To measure Accuracy, we propose using the idea presented by Van Emden (Emden, 1971), known 

as entropy, to determine and calculate the diversity of data that exists in a dataset. This is because, 

in the case of Big Data, the diversity of data plays a large role in being able to properly analyse 

data and is one of the avenues in which we can purse accuracy.  



25 
 

4.4.2 Base Measures and Derived Measures  
 
To quantify objectively the common information within the multiple datasets (MDS), we use 

Emden’s information theory model (Emden, 1971): we first abstract the MDS as an Attribute-

Record table, where the rows represent all data elements in MDS, and the columns represent the 

records in MDS. The value of a cellij of the resulting Attribute-Record table is set to ‘1’, if the 

data element is included in the record; otherwise, the value of the cell is ’0’. 

Base Measures H_acc and Hmax. We use the notion of entropy H to objectively quantify the 

common information (Emden, 1971). The measurement formula for calculating the entropy H_acc 

in the Accuracy measurement model is as follows: 

𝐻!"" =
#$%!('())+	-

'()∗∑ 0" #$%!(0")"#[%…']
    

where Lbd is the count of the total number of records in the MDS, k is the number of different 

columns configurations in the Attribute-Record table corresponding to MDS, and pj is the number 

of columns with the same configuration so that, 

𝐿𝑏𝑑 = 	' 𝑝1
12[-…5]

 

The value of H_acc varies according to the diversity of the column configurations: common 

(repeated) configurations in the Attribute-Record table (representing duplicated records with the 

same values of the data attributes) will lower the entropy H_acc, while diversity of the records will 

increase H_acc . 

H_acc  =  0 when all records in MDS contain all values of all data attributes. That is, k = 1 and p1 

= Lbd. The values of H_acc for a given DS vary between 0 and Hmax calculated for a specific 

MDS, where Hmax represents the maximum entropy for that MDS when all records are different 

and thus there is no common information within MDS.  Hmax = log2(Lbd) when all records in 

MDS are distinct, corresponding to the best-case scenario where there is no need to merge records: 

Lbd = k , pj = 1, and " j= [1...k] 
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The unit of measurement is the information bit. 

Derived Measure Acc. In order to measure accuracy independently of the volume of the MDS, 

we propose to normalize the entropy H_acc measure with Hmax, Hence, the measurement function 

for the Accuracy indicator is: 

𝐴𝑐𝑐	(𝑀𝐷𝑆) =
𝐻!""
𝐻_𝑚𝑎𝑥

 

Acc (MDS) normalizes entropy by the best-case scenario Hmax, thus normalization will allow data 

users to objectively compare different DS within the MDS in terms of their common information. 

Acc value is a number between 0 and 1, 0 meaning the worst case (all data elements are common 

for all records), and 1 corresponding to the best-case scenario when all records in MDS are distinct. 

When calculating accuracy its important to note that because we meaure Pj and Lbd as our base 

measures the time complexity of this measure remains linear.  

4.4.3 Theoretical Validation of Accuracy  
 
The Accuracy measures are assessed in this section with respect to the Tracking and Consistency 

criteria introduced in section 2.3. To illustrate the Acc indicator, we use an example of MDS at 

different time frames T1 and T2. MDST1 shown in Figure 4.1, is a representation of data at T1 

that will be used as an example of real-life Big Data. This will also be used to show how we can 

measure data elements in Big Data. 

For the purposes of theoretical validation, we present a modified case of MDST1 where new records 

were added at time T2 (MDST2, see Figure 4), T2>T1. In both cases, there are no duplicate records 

in the multiple datasets MDST1 or MDST2. All records were mapped to Attribute-Record tables 

similar to the method described in (Emden, 1971) and the entropy was calculated based on the 

method described in section 4.2. 
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Figure 4.1: : Big Dataset Illustration of Accuracy at T1 

Intuitively, we expect the value of Accuracy for both multiple datasets MDST1 and MDST2 due to 

the fact that both correspond to the best-case scenario of maximum accuracy, where there is no 

need to merge records. From our intuitive understanding, we expect the entropy H_accT2 of the 

DS depicted in Figure 4.4 to be higher than H_accT1. We also expect the values of the based 

measure Hmax for MDST2 to be higher than the corresponding values in MDST1 due to the 

increased size of the DS at time T2. 

The values of the variables Lbd, k and p at time T1 are: 

Lbd =  9, k =  9, and pi = 1 "j=[1..k]. The entropy value at time T1 for the DS depicted in Figure 

4.1 is: H_acc T1= 3.1699  

At time T2 the values of the variables are: Lbd = 18, k = 14, pi =  2 for i Î {1, 6, 12, 13} and pi = 

1 for the remaining column configurations. The entropy value at time T2 for the DS depicted in 

Figure 4.2 is:  H_acc T2 =  4.1699.  As expected, H_acc T2  > H_acc T1. Similarly  Hmax T2= log2(18) 

>  Hmax T1 = log2(9)    

As expected, the value of the Acc measure indicates maximum Accuracy result (ACC(MDS) = 

100%) for both MDST1 and MDST2. 
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Figure 4.2 Big Dataset Illustration of Accuracy at T2 

To validate Tracking and Consistency criteria of the Accuracy measures on DS with duplicated 

records, we modify the MDS shown in Figure 4.1 (MDST1) and Figure 4.2(MDST2) as depicted in 

Figure 4.3 below: 

 
 

Figure 4.3: Illustration of Accuracy Measurement with duplicated records (T1 &T2) 

Given that there are duplicated records in Figure 4.3 at both time T1 and time T2 MDS, intuitively 

we would expect the Accuracy of MDS’T2 to be higher than the Accuracy of MDS’T1 due to the 

relatively lower number of duplicated records. Our intuition would also expect not only H_acc’T2 

>H_acc’T1, but also H_acc T1  > H_acc’T1  and  H_acc T2 > H_acc’T2 
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The above intuitive expectations are confirmed by the measurement results, where H_acc’T1  = 

2.7254 and H_acc’T2= 3.7254. 

The value of Acc measure is calculated using the formula (4):  

Acc (MDS’T1) = H_acc’T1  / Hmax’ T1, where Hmax’ T1 = 3.17, thus  

Acc (MDS’T1) = 86.97%. Similarly, Acc (MDS’T2) = 89.34% 

Based on the analysis of the above measurement results we can conclude that both Tracking, and 

Consistency criteria hold for the Accuracy measures, thus we proved their theoretical validity 

((Fenton, Bieman 2014),(IEEE Std 1061, 1998)). 

4.4.4 Accuracy Profile for MDS 
 
We propose to visualize the Accuracy indicator results by depicting the Acc values of MDS 

graphically; this will allow data engineers to easily trace the accuracy of individual DS and identify 

those MDS whose records need to be analyzed further and merged, where applicable. Figure 4.4 

illustrates the Accuracy Profile graph for the four MDS (MDST1, MDST2, MDS’T1 and 

MDS’T2). 

 
Figure 4.4: Illustration of the Accuracy Profile Graph for MDS 

 
Hence, Acc indicator of Validity not only allows objectively to compare different MDS in terms 

of their accuracy, but likewise visualizes the Accuracy measurement results to facilitate the 

decision-making of the Big Data users.  
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4.5 The Credibility Indicator (Cre) 

4.5.1 The Notion of Credibility 
 
The notion of credibility in ISO/IEC DIS 25024 standard represents “the degree to which data has 

attributes that are true and accepted by users in a specific context of use” (ISO/IEC DIS 25024, 

2015). In order to measure credibility, we assume the existence of up-to-date information on 

qualified sources. 

4.5.2 Base Measures and Derived Measures  
 
Base Measures. Let 𝑐𝑟𝑒!"#$%&: 𝐷𝑆 → [0…1] be a function that returns 1 if the source of a DS is 

qualified for use, or 0 otherwise. Two base measures are defined in the measurement model of 

credibility: 

● Number of DS in Big Data set (Nds). Nds is a simple counting of the total number of DS in 

MDS. 

● Number of credible DS in Big Data set (Nds_cr), where the measurement method is counting 

of DS with qualified sources: 

𝑁𝑑𝑠_𝑐𝑟(𝑀𝐷𝑆) = 	 ' 𝑐𝑟𝑒789:";(𝐷𝑆)
	

∀	=>	∈@=>

 

Derived measures. We define Credibility measure as a ratio of the total number of credible DS 

and all DS. The measurement function for Cre is specified as follows: 

𝐶𝑟𝑒	(𝑀𝐷𝑆) =
𝑁𝑑𝑠":(𝑀𝐷𝑆)
𝑁𝑑𝑠	(𝑀𝐷𝑆)

 

Regular collection of Cre measurement data would allow practitioners to gain timely valuable 

control over the credibility of the data sources in their MDS and eventually trace the MDS 

credibility over time. When calculating creadability its important to note that because we meaure 

Cre_source and Nds as our base measures the time complexity of this measure remains linear.
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4.5.3 Illustration of the Credibility Indicator 
 
We illustrate the Cre indicator through a simple extract of MDS at two-time frames. The first 

base measure we need to calculate is Nds, which is defined as the number of DS present in MDS: 

Nds = 3.  

Next, we assess the credibility of the DS sources, where cre_source (DS) is set to 0 or 1 value, 

depending on whether or not a specific DS is credible. In this example we assume that DS1 and 

DS3 are credible: 

cre_source (DS1) = cre_source (DS3) = 1 and, 

cre_source (DS2) = 0. 

We also assume that the credibility of the DS at times T1 and T2 remain the same. Next, we 

normalize the credibility of MDS by Nds. The measurement value of Cre (MDS) is ⅔ (or 66%), 

which indicates the proportion of credible DS. 

 

Figure 4.5: Illustration of Credibility with duplicated records (Time T1 and T2) 

4.5.4 Theoretical Validation of Credibility  
 

In this section we assess the Tracking and Consistency criteria of the Cre measures.  Intuitively, 

the more credible sources that exist in MDS, the higher the value of credibility in MDS. In order 

the validate the Cre measurement values against this intuitive expectation, we fix the value of Nds 

through time and track the changes of cre_source (DS) data. 

In the previous example (see section 5.3) the value of cre_source (DS) doesn’t change from T1 to 

T2, neither does cre (MDS), as expected. If we, however, assume that at time T2 the credibility of 
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DS’3 changes (cre_source (DS’3) = 1 at time T2), then we expect the credibility of the MDST2 to 

increase. The measurement value of cre (MDST2) proves that the intuitive expectation is preserved 

by the measurement value of Credibility indicators, which increased from 0.66 to 1 (meaning 

100% credible MDS). These calculations establish the theoretical validity of the Credibility 

measures, as required by the representational theory of measurement. 

4.6 The Compliance Indicator 
 

In this section we introduce a hierarchy of measures for compliance, which evaluate compliance 

at the record (REC), dataset (DS) and multiple datasets (MDS) levels reflecting the corresponding 

entities in the NIST hierarchy.  

4.6.1 Notion of Compliance 
 
Compliance is defined as the degree to which data has attributes that adhere to standards, 

conventions or regulations in force and similar rules relating to data quality in a specific context 

of use, according to ISO/IEC 25024 definition. This means that whether or not a data element is 

deemed as compliant depends on the judgment of the data scientists, the organization, standards 

and local laws and regulations. 

4.6.2 Base Measures and Derived Measures  

We define a function CompSource: Rec à [0...1] that returns 1 if the source record is compliant 

with the set of standards that have been set by the researchers; otherwise, the returned value is 0.  

Base Measure. The base measure 𝑟𝑒𝑐_𝑐𝑜𝑚𝑝 counts the number of compliant records in a DS, as 

defined below: 

𝑟𝑒𝑐_𝑐𝑜𝑚𝑝(𝐷𝑆) = '
∀	:;"	∈	=>

𝐶𝑜𝑚𝑝>89:";(𝑟𝑒𝑐) 

Derived Measures. The proposed derived measure for Compliance is defined as a ratio of the Big 

Data entities (records, DS, or MDS) that have values and/or format that conform to standards, 
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conventions or regulations, divided by the total number of data entities.  We propose two derived 

measures for the Compliance indicator measuring the above ratio at the level of a DS and the level 

of MDS as defined below: 

● DataSet Compliance 𝐷𝑆%"'(. The measurement function for Compliance along a DS is 

defined by DS_comp (DS) as follows, 

𝐷𝑆_𝑐𝑜𝑚𝑝(𝐷𝑆) =
𝑟𝑒𝑐_𝑐𝑜𝑚𝑝(𝐷𝑆)
𝐿𝑑𝑠𝑡	(𝐷𝑆)

 

where Ldst (DS) is the number of records in a specific DS.   

● Multiple DataSets Compliance 𝑀𝐷𝑆_𝐶𝑜𝑚𝑝 (MDS). Finally, we define a measurement 

function for quantifying objectively Compliance across all DS in MDS as follows: 

𝑀𝐷𝑆_𝐶𝑜𝑚𝑝	(𝑀𝐷𝑆) = 	
∑ 		
∀	=>	∈@=> 𝑁𝑟𝑒𝑐A8B0(𝐷𝑆)

𝑁𝑑𝑠	(𝑀𝐷𝑆)
 

Regular collection of Compliance measurement data would be necessary to flag data that does not 

comply with local laws and regulations. For instance, in the Healthcare industry, HIPPA in the 

USA or PIPEDA in Canada require compliance with their privacy and data security regulations by 

law, thus the measurement of compliance for such sensitive data will become imperative. When 

calculating Compliancce its important to note that because we meaure rec_comp, Ldst and Nds as 

our base measures the time complexity of this measure remains linear. 

4.6.3 Illustration of the Compliance Indicator  

Figure 4.6 shows the same data as in Figure 4.7, where the data that is non-compliant is 

highlighted. We assume that for this example, all data elements in Salary or Debt columns must 

be numerical (commas are allowed). In this example, rec_Comp (DS1) = 2, rec_Comp (DS2) = 1 

and rec_Comp (DS3) = 3 at time T1. The value of the Compliance Indicator at the DS level at time 

T1 is as follows: DS_Comp (DS1) = 0.66, DS_Comp (DS2) = 0.33 and DS_Comp (DS3) = 1. The 

result of the Compliance at time T1 in terms of MDS is defined to be the average compliance of 

all DS; MDS_Comp (MDST1) = 0.66. We perform the same steps to measure Compliance at 

record, DS and MDS levels in Time T2. Finally, MDS_Comp (MDST2) = 0.72. As expected, 

MDS_Comp (MDST2) > MDS_Comp (MDST1) = 0.66 
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Figure 4.6:  Illustration of non-compliant data in MDS 

4.6.4 Theoretical Validation of Compliance  

Based on the meaning of Compliance, the more credible datasets the Big Data contains, the larger 

the Cre indicator value. The perception of ‘more’ should be preserved in the mathematics of the 

measure: the more compliant records that exist in a particular dataset, the higher the rate of 

compliance as defined earlier.  We validate theoretically Compliance by fixing the value of Nds 

(MDS) to 3 and tracking the change in  (MDS) through time: We see from the example above that, 

as the value of  (DS1) and  (DS2) at the DS level increases from T1 to T2, Compliance at the MDS 

level increases from 0.66 to 0.72. which represents a 9% increase. This is to be expected: the 

percent change of records compliance in the DS increases respectively by 8.5% (DS1) and 9% 

(DS2). The above calculations establish the theoretical validity of the Compliance measures by 

demonstrating both the Tracking and Consistency criteria, as required by the representational 

theory of measurement. 

4.7 Hierarchy of the Validity Measures 

The objective of this section is to define the Validity indicator Mval that would allow objectively 

to compare different Big Data sets in terms of the indicators Accuracy, Credibility and 

Compliance, and to present graphically this new hierarchical measurement model tailored 

specifically to the Validity of Big Data. 
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4.7.1 Validity Indicator Mval 

Validity Indicator proposed in this research is defined as a vector Mval = (Acc (MDS), Cre (MDS), 

DS_comp(DS), MDS_comp(MDS)) that reflects correspondingly the accuracy, credibility  and 

compliance of the underlying data at the level of DS or MDS.  

4.7.2 The Measurement Hierarchy 

The measurement information model proposed in this work is a hierarchical structure linking the 

goal of Big Data Validity to the relevant entities and attributes of concern, such as an entropy of a 

MDS, number of records, number of DS, etc. In our approach, the Validity characteristics were 

decomposed through three layers as depicted in Figure 4.7. The measurement information model 

defines how the relevant attributes are quantified and converted to indicators that provide a basis 

for decision-making.   

4.8 Conclusion  

In this chapter, we proposed a new theoretically valid measurement information model to evaluate 

Validity of Big Data in the context of the MEGA framework, applicable to a variety of existing 

Big Data Pipelines (Bhardwaj, Ormandjieva, 2021).  Four levels of entities have been considered 

in the definitions of the measures, as derived from the NIST hierarchy: data element, record, DS, 

and MDS. The model elements are compliant with ISO/IEC/IEEE Std. 15939 guidelines for their 

definitions, where five base measures are first defined, assembled into four derived measures, 

evolving into four indicators. Theoretical validation of the Validity measures has been 

demonstrated. 

The model is suitable for Big Data in any forms of structured, unstructured, and semi-structured 

data. 
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Figure 4.7:  Hierarchical Measurement Model of Validity 

We illustrated the Validity measurement model by collecting measurement data on small examples 

and showed how the Validity indicators Accuracy, Credibility and Compliance can be used to 

monitor data quality issues that may arise. The relevance of such a model for the industry can be 

illustrated with simple examples of usage of these measures and indicators: 

● Accuracy (Acc) and its profile: Accuracy is useful to objectively compare MDS in terms 

of their information content, as well as to oversee variations of Big Data Accuracy over 

time. A decrease in Accuracy might trigger investigation as actions might be needed to 

merge duplicated (common) information. 

● Credibility (Cre) and its trend allows easy and objective comparisons of MDS in terms of 

their credibility. A Credibility trend showing a decrease might trigger investigation as a 

source of data could be damaged or unavailable.  

● Compliance (Comp) at DS and MDS levels, and the corresponding trends: Compliance 

allows to track an important characteristic of Validity at the level of record, DS and MDS; 

decrease in the measurement results over time might trigger investigation of the potential 

legal issues with the usage of the Big Data. 
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Our future research will enhance the theoretical findings presented in this chapter with empirical 

evidence through evaluation of these measures with open-access data and industry data.   
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Chapter 5 Measurement Information Model for 

Vincularity of Big Data  

5.1 Introduction  

In this chapter we propose a new hierarchical measurement of the Big Data quality characteristic 

referred to as Vincularity. The proposed measurement model is built upon; i) the NIST (National 

Institute of Standards and Technology) taxonomy towards to the standardization of big data 

technology (NIST 2018), ii) measurement principles described in ISO/IEC/IEEE Std. 15939 

(ISO/IEC/IEEE 15939, 2017), and iii) the hierarchical measurement models discussed in (Taleb, 

Dssouli & Serhani 2015) and (Ramaswamy, Lawson  & Gogineni, 2013). The newly proposed 

Vincularity measurements are validated theoretically using the representational theory of 

measurement (Fenton, Bieman 2014). 

5.2 Measurement Information Model for the Vincularity of Big Data 

Vincularity refers to the connectivity and linkage of data (Mahshewari, R., 2015). In essence, As 

Figure 10 shows below, Vincularity is directly mapped to the Traceability of Big Data. However, 

few studies have been done on the evaluation of data vincularity.  

5.2.1 Mapping of Vincularity to the ISO/IEC DIC 25024 Data Quality 

Characteristics  

Big Data Vincularity is measured in this thesis from the perspective of traceability which has been 

adapted and refined in order to provide an evaluation of the Big Data Vincularitywith respect to 

defined information needs of its measurement model. Figure 5.1 shows the relationship of our 

hierarchical measurement model and the Big Data characteristic of Vincularity.  
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Fig. 5.1.    Big Data Validity Mapping to ISO25024 data quality characteristics 

The measurement information model for the Vincularity of Big Data defines a single indicator for 

measuring traceability.  

5.3 Traceability Indicator (Trace) 

Big data traceability is essential for the Vincularity of Big Data. The users of big data sets may 

require that their data can be traced back to its original source in order to validate the 

trustworthiness of the data. 

5.3.1 Notion of Traceability  

In this thesis we define traceability by the ISO/IEC DIC 25024 definition. Traceability represents 

the degree to which data has attributes that provide an audit trail of access to the data and any 

modification in a specific context of use. (ISO/IEC DIS 25024, 2015.) 

5.3.2 Base Measures and Derived Measures  

In this thesis we introduce our evaluation of Vincularity measured at the level of multiple datasets 

(MDS) while Traceability is evaluated at the level of the dataset (DS). We measure Traceability at 

the level of the dataset by determining the amount of data records in a dataset that contain data 

elements that can be audited. For instance, if a data element exists within a record that cannot be 

traced, then it is said that the record isn’t traceable. For a record to be traceable, this thesis requires 
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that all data elements contained with a record be traceable. This method of evaluation has been 

adopted from ISO/IEC 25024 and we can describe it mathematically as follows: 

Let TraceSource: rec → [0...1] be a function that returns 1 if the source data record has metadata (or 

another form of audit) to track changes that have impacted all data elements contained within the 

record. We define rec_trace(DS) to be the number of traceable records in the dataset. More 

specifically it represents the number of record elements that have implemented some sort of 

traceability standard. 

𝑅𝑒𝑐C:!";(𝐷𝑆) = 	' 𝑡𝑟𝑎𝑐𝑒>89:";(𝑟𝑒𝑐)
∀	:;"	∈=>

 

The measurement function for Traceability along an entire dataset is defined by Trace (DS) and is 

as follows: 

𝑇𝑟𝑎𝑐𝑒(𝐷𝑆) = 	
𝑟𝑒𝑐D:!";(𝐷𝑆)
𝐿𝑑𝑠𝑡(𝐷𝑆)

 

Ldst(DS) represents the total number of records in the particular dataset, for a more detailed 

explanation on Ldst refer to (Ormandjieva, Omidbakhsh & Trudel 2021). Finally, we can average 

all the Traceability values across DS in MDS in order to derive Vincularity (Mvin), as follows: 

𝑀𝑣𝑖𝑛(𝑀𝐷𝑆) = 	
∑ 𝑇𝑟𝑎𝑐𝑒(𝐷𝑆)∀=>∈@=>

𝑁𝑑𝑠(𝑀𝐷𝑆)
 

Regular collection of Vincularity would allow practitioners to gain timely and valuable control 

over the traceability of the data sources in their MDS and gain greater confidence over their 

dataset’s quality. When calculating Traceability and Vincularity its important to note that because 

we meaure trace_source, Ldst and Nds as our base measures the time complexity of this measure 

remains linear. 
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5.3.3 Illustration of the Traceability Metric and Vincularity 

We can illustrate the measure of Vincularity through a simple extract of multiple datasets at two 

different time frames T1 and T2, where T2 > T1. 

 

 

Fig. 5.2.    Illustration of Accuracy measurement with duplicated records (time T1 and time T2). Table Title: 

MDS_1 

We first begin by assigning unique identifiers to the distinct data elements that need to be 

distinguished. In this case we have NameJill, NameAdam, NameJessica, NameMelvin, 

NameChris, NameBeth, NameJacky, NameBrook, NameCathy, NameRobin, NameLuffy, 

NameZoro, NameAce, NameJanella all represent the different data elements associated with the 

each of the 3 datasets at Time 1 and 2. This is done for all elements and so we end up having an 

additional list of values representing salary and debt: Salary: S_50000, S_75000, D_55000, 

S_55000, S_45000, S_4000, S_80000, S_15000, S_400, S_40000, S_70000, S_6000. Debt: 

D_10000, D_5000, D_1500, D_90, D_400, D_3000, D_90000, D_100, D_30000, D_0. 

We can also record a few more base measures that are necessary. Ldst is defined as the number of 

records in a dataset, therefore, Ldst(DS1_T1) = 3, Ldst(DS2_T1) = 3, Ldst(DS3_T1) = 6 and at 

T2 we get Ldst(DS1_T2) = 6, Ldst(DS2_T2) = 6, Ldst(DS3_T2) = 6. Finally, we can measure 

Nds, the number of datasets in MDS. In this case Nds(MDS) = 3, giving us 3 datasets in total. 

Fig. 5.3 shows the same data as shown in Fig. 5.2 but here the data highlighted in red is data that 

isn’t traceable. Because traceability is found at the level of the record, we can assume that if a data 

element is untraceable then the record itself can be labelled as untraceable. 
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Fig. 5.3.    Illustration of non-traceable data in MDS 

From this table we can record rec_trace (DS1) to be 2, rec_trace(DS2) to be 1 and rec_trace(DS3) 

to be 3 at T1. With this we can calculate Trace (DS1_T1) = 0.66. We simply repeat the same steps 

for each dataset, and we see that Trace (DS2_T)1 is 0.33 and Trace (DS3_T1) to be 1.00.  We 

repeat the same steps again when T2 can eventually be read. Here, Trace (DS1_T2) =0.66 Trace 

(DS2_T2) =0.50 and Trace (DS3_T2) to be 1.00. Traceability in terms of MDS is defined to be 

Vincularity (Mvin). We can calculate Vincularity by averaging the Traceability of datasets across 

MDS using Nds (MDS). We find that Mvin (T1) = 0.66 and that Mvin (T2) = 0.72. This shows us 

that as the ratio of untraceable records decreases, Vincularity increases.   

We propose to compare the Vincularity of MDS graphically to the Traceability of each of the 

dataset like in the example shown below in Figure 5.4. 

 

Figure 5.4.    Illustration of Vinculairty and Traceability using clustered bar graphs for MDS 

Graphical representations like the one shown in Figure 5.4 makes it significantly easier for data 

engineers to quickly find issues and monitor individual datasets and in this case, we see the 
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difference between Trace (DS1), Trace (DS2) and Trace (DS3) and can compare it to the 

Vincularity of MDS. The case here shows us how a significant increase in the Trace (DS1) from 

T1 to T2 gave us a moderate increase in out Vincularity at T2. We can also see visually how the 

measure of Traceability and Vincularity can objectively compare multiple datasets in terms of their 

traceability. 

5.3.4 Theoretical Validation of Traceability  

Vincularity is mapped directly to Traceability. We can theoretically validate the base measures of 

traceability to validate the measures of Traceability and Vincularity using the Tracking and 

Consitency Criterions.  

Traceability and Vincularity. The more traceable records that exist in a particular dataset, the 

higher the rate of traceability and Vincularity as defined earlier. 

We first validate the measure rec_trace (DS). Rec_trace (DS) is defined as the number of traceable 

records in DS. We know that because the base measure trace_source (DS) is a value that is either 

0 or 1 and that rec_trace is the summation of this value, we find that rec_trace acts as a count for 

traceability in DS. We see this in the example for section IV when we recorded that rec_trace 

(DS1) is 1 and at T2 it goes to 2, doubling in size. This means that the measure follows both the 

tracking criteria as it’s able to count traceability over time (T2>T1 as expected) and the 

Consistency Criterion (T2 increases by the expected value of 1). Knowing this, we can validate 

Traceability Trace (DS). Assuming Ldst (DS) stays the same, like in the example from Section IV 

we find that as the traceability of a dataset grows, so does Trace (DS), for example with 1 traceable 

item Trace (DS2_T1) is 33% (Ldst (DS2) = 3) and with 3 traceable items Trace (DS3_T1) is 100% 

(Ldst (DS3) = 3). Trace (DS) stays both consistent and allows for tracking, assuming that Ldst is 

static. This is the same case for Vincularity except we keep Nds (MDS) to be static. For example, 

Mvin (MDS_T1) = 0.66 and Mvin (MDS_T2) =0.72. This increase is to be expected because of 

the increase in Trace (DS2) changing from 33% to 50% between T1 and T2.   



44 
 

5.4 Hierarchy of the Vincularity Measure 

The objective of this section is to define the Vincularity indicator (Mvinc) that would allow 

objectively to compare different Big Data sets in terms of the Traceability indicator, and to present 

graphically this new hierarchical measurement model tailored specifically to the Vincularity of 

Big Data. 

5.4.1 Vincularity Indicator Mvin 

Vincularity Indicator proposed in this research is defined as 

𝑀𝑣𝑖𝑛(𝑀𝐷𝑆) = 	
∑ 𝑇𝑟𝑎𝑐𝑒(𝐷𝑆)∀=>∈@=>

𝑁𝑑𝑠(𝑀𝐷𝑆)
 

that reflects correspondingly the Traceability of MDS. 

5.4.2 The Measurement Hierarchy 

The measurement information model proposed in this work is a hierarchical structure linking the 

goal of Big Data Vincularity to the relevant entities and attributes of concern, such as the MDS, 

number of records, number of DS, etc. In our approach, the Vincularity characteristic was 

decomposed through a few layers as depicted in Figure 5.5. The measurement information model 

defines how the relevant attributes are quantified and converted to indicators that provide a basis 

for decision-making.   
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Figure 5.5:  Hierarchical Measurement Model of Vincularity 

5.5 Conclusion 

In this chapter, we proposed a new theoretically valid measurement information model to evaluate 

Vincularity of Big Data in the context of the MEGA framework, applicable to a variety of existing 

Big Data Pipelines (Bhardwaj, Ormandjieva, 2021).  Four levels of entities have been considered 

in the definitions of the measures, as derived from the NIST hierarchy: data element, record, DS, 

and MDS. The model elements are compliant with ISO/IEC/IEEE Std. 15939 guidelines for their 

definitions, where two base measures are first defined, assembled into two derived measures, 
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evolving into one indicator. Theoretical validation of the Vincularity measure has been 

demonstrated. 

The model is suitable for Big Data in any forms of structured, unstructured, and semi-structured 

data. 

We illustrated the Vincularity measurement model by collecting measurement data on small 

examples and showed how the Vincularity indicator (Traceability) can be used to monitor the 

linkage of data. The relevance of such a model for the industry can be illustrated with simple 

examples of usage of the traceability measure: 

● Traceability (Trace) at DS and MDS levels, and the corresponding trends: Traceability 

allows to track an important characteristic of Vincularity at the level of record, DS; 

decrease in the measurement results over time might trigger investigation of the potential 

misuse of the metadata or that of an unwanted source in the Big Data Pipeline. 

Our future research will enhance the theoretical findings presented in this chapter with empirical 

evidence through evaluation of these measures with open-access data and industry data.   
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Chapter 6 MEGA Architecture 

6.1 Introduction 

Having objective measures for the V’s of Big Data like Volume, Velocity, Veracity, Vincularity, 

Variety and Veracity is an important first step to understanding the quality of data. The next step 

is to have a framework that can be applied to Big Data systems and allow practitioners of Big Data 

to easily apply these measurements to their systems. This is where we propose a novel quality 

measurement framework called (MEGA), that can be used to apply these measures. The aim of the 

framework, beyond using the measures defined, is to continuously collect, analyze and report 

objective data and information on the underlying data. This can allow practitioners to potentially 

identify and flag issues that may arise throughout the Big Data process and allow practitioners to 

make any required changes before the data propagates further into the system. 

 

In this chapter, we introduce the motivations of this work, provide an overview of the framework, 

and present a case study to show its usefulness in a simulated scenario.  

6.2 Background and Related Work 

6.2.1 Comparison with Related Work 
 
The authors in (Pääkkönen & Ovaska 2015) propose a framework for managing Big Data quality 

by adding an additional layer to the Big Data Architecture proposed in (Pääkkönen & Pakkala 

2015). This framework establishes points at which quality policies can be used to evaluate Big 

Data Quality. It uses two primary policies, the organizational policy and decision-making policy. 

The organizational policy defines the selected data sources, quality attributes and metrics that can 

be evaluated during phases like data extraction and data pre-processing. The decision-making 

policy handles the rules associated with the decision-making phase of the pipeline. Our approach 

differs from the architecture described in (Pääkkönen & Ovaska 2015) in that we accommodate a 
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variety of existing Big Data Pipelines, while the focus of the authors in (Pääkkönen & Ovaska 

2015) is limited to a much narrower field of social media data. In our MEGA architecture, the 

quality policies are flexible enough to target a variety of Big Data applications, including IoT, 

health, agriculture, etc.  

 

A quality evaluation framework for a big data pre-processing service is proposed in (Taleb, Dssouli 

& Serhani 2015). This framework lacks the ability to define quality measurements in every stage 

of the Big Data Pipeline. In contrast, MEGA architecture allows data engineers and users to select 

V’s according to their needs and provides them with much more flexibility in how data can move 

through the pipeline, while data is being evaluated by the Big Data Quality layer.  

 

A conceptual framework for quality assessment and management of Biodiversity Information 

Standards (TDWG) is proposed in (Veiga, Saraiva, Chapman, et al. 2017). It serves as a common 

ground for a collaborative development of solutions in biodiversity informatics. The authors 

suggest a basic architecture for a computational platform based on this conceptual framework, 

which consists of three main parts: (1) registering and retrieving biodiversity data quality status 

(2) registering and retrieving methods and tools for meeting biodiversity informatics requirements, 

and (3) registering and retrieving biodiversity data quality needs. The conceptual framework 

described in (Veiga, Saraiva, Chapman, et al. 2017) differs significantly from our contribution in 

that it tackles the specific needs of the TDWG community. In addition, it is to be noted that the 

authors’ measurement terminology does not comply with the established by ISO/IEC/IEEE Std. 

15939 software measurement terminology and guidelines (ISO/IEC/IEEE 15939, 2017). 

The 3As Quality-in-Use model proposed in (Merino, Caballero, Rivas, Serrano & Piattini 2017) 

considerably differs from our approach in that it tackles Quality-in-Use of Big Data solutions, but 

not the quality characteristics of Big Data, which are the targeted in our work. Moreover, the 

implementation of the Quality-in-Use characteristics proposed in (Merino, Caballero, Rivas, 

Serrano & Piattini 2017) targets data at the record level only, while MEGA framework assesses a 

hierarchy of quality characteristics not only at data elements and record level, but also at a dataset 

and multiple datasets levels, which is more suitable for the quality characteristics (the V’s) of Big 

Data.  
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Figure 6.1.: Comparison of MEGA against other related works 

The proposed here measurement framework of Big Data MEGA is built upon the standard 

measurement principles described in ISO/IEC/IEEE Std. 15939 and the hierarchical measurement 

models discussed in (Ormandjieva, Omidbakhsh, & Trudel, 2020) and (Ormandjieva, 

Omidbakhsh, & Trudel, 2021). It automates the 3V’s measurement information model aimed at 

evaluating three aspects of Big Data – Volume, Velocity and Variety (Ormandjieva, Omidbakhsh, 

& Trudel, 2020), and the Veracity measurement information model (Ormandjieva, Omidbakhsh, 

& Trudel, 2021). The hierarchical measurement models are briefly reviewed next.    

6.2.2 Comparison Against Similar Patents 
 

United States Patent No.: US10572456B2: (Staeben, Maier, et.al, 2020) 
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Targets big data pipelines and extracts metrics directly from the data in the pipeline.  The major 

difference seems to be in the level of measurement:  their understanding of a metric is equivalent 

to “base measure” in the standard terminology followed in our work (such as the number of records 

processed successfully). There is no validation of the metrics in their work.  

 

United States Patent No.: US20190286617A1: (Hisham, Xiuzhan, et al., 2019) 

 

The goal of this invention is to link data elements within datasets to establish relationships between 

the data records in order to extract linkage data structures and consequently simplify the datasets 

or data structures. 

 

United States Patent No.: US 10,838,921 B2 (Mattelli et al., 2020)  

 

The Goal of this invention is to assess the complexity of data cleansing and governance, and 

criticality of data attributes to the to one or more enterprise dimensions in order to prioritize efforts 

and meet schedule in Information integration projects. US10572456B2 patent also targets big data 

pipelines and extracts metrics directly from the data in the pipeline.  One major difference seems 

to be in the level of measurement:  their notion of metrics is equivalent to “base measure” in the 

standard terminology followed in our work (i.e., the number of records processed successfully). 

There is no validation of the metrics in their work.  

 

In contrast, MEGA approach targets the quality characteristics specific to the “Big” aspect of data, 

the V’s.   the goal of our proposal is to extract measurement data on big Data’s quality 

characteristics Volume, Variety, Validity, etc.  (V’s), analyze the data and generate indicators of 

V's at every step on the big data pipelines.  The measurement process will be used to flag low 

quality data that is flowing through the pipelines, before it affects the decision-making. The 

proposed V’s are modeled as a hierarchy of measurements (base measures, derived measures, 

indicators – see the standard terminology in ISO 15939). The measures are validated theoretically, 

which eliminates systematic errors of the measurement results. Measurement methods for 
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collecting measurement data are objective thus do not depend on a particular set of data. MEGA 

Quality Indicators are constructed and reported automatically from the collected objective 

measurement data thus random error is eliminated, which increases the reliability and trust in the 

MEGA measurement results. 

 

United States Patent No.: US 9,984,235 B2 (Madera et al., 2018) 

 

The authors claim that there are only 4 V’s of Big Data. They propose to track changes of Veracity 

only. They claim that Veracity and Trustworthiness are the same notions. They quantify Veracity 

Key Performance Indicator as a trustworthy index score only.  In contrast, Veracity of big data 

commonly refers to the degree of data accuracy, trustfulness and precision (ref: Lukoianova, T., 

& Rubin, V. (2014). Veracity Roadmap: Is Big Data Objective, Truthful and Credible? Advances 

In Classification Research Online, 24(1). doi:10.7152/acro. v24i1.14671.). Therefore, Veracity is 

a multidimensional model. For instance, in MEGA approach we proposed a new 5-dimensional 

veracity model built upon NIST and ISO25024 standards. We do not measure trustworthiness of 

data as it is outside ISO25024’s scope.   

Their architecture is different from Big Data Pipelines thus is unrelated to our approach. 

 

United States Patent No.: US 10,191,962 B2 (Shkapenyuk et al., 2019)  

 

The main goal of this Patent is to identify outliers of data file content. In principle, this patent aims 

at solving a similar problem, that is, detecting data quality anomalies. The approach here is pure 

statistical analysis: the authors propose to capture random data errors (outliers) by generating 

models from historical similar data and analyzing the new data vs so named base models. Their 

approach will not detect systematic errors due to lack of goal-driven approach to measurement.  

In our approach, we also track measurements over time and detect anomalies. In contrast to their 

work, we first derive measurement models for Big Data specific quality characteristics – the V’s, 

defining   procedures for collecting the corresponding base measures and generating indicators of 

V’s. This assures that the generated indicators and their interpretation is tailor-made for the Big 

Data quality needs. Therefore, it will flag both random and systematic errors in the data flowing 

through the Big Data pipelines.   
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Their architecture is different from the Big Data Pipelines. Our Framework also differs in 

organization and uses more components for the User to specify their conditions. 

In addition, they do not use the standard Big Data terminology defined in NIST or standard 

measurement methodology defined in ISO15939 

6.3 System Architecture  

The objective of the proposed novel quality measurement framework for Big Data (MEGA) is to 

provide a flexible and scalable architecture that can be used on most Big Data Pipelines for the 

purpose of assessing Big Data quality in terms of the widely used 10V’s. The V’s measurement 

methods are designed to be collected and analyzed at any step of the process or throughout the 

entire pipeline, based on the users’ individual context of use. The MEGA solution proposed here 

is built around the Big Data Pipeline architecture described in (Pääkkönen & Pakkala 2015) and 

shown in Fig. 17, as well as the Big Data Quality Architecture described in (Pääkkönen & 

Ovaska 2015).  

 

The goal is to allow for the MEGA architecture to run in parallel to the Big Data Pipeline and to 

be used to halt the pipeline when data issues are flagged. This will permit the data engineers to 
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assess the quality of the data before certain steps in the process so as to avoid costly mistakes 

along the Pipeline.   

Fig 6.2. Big Data Architecture Diagram from 

In our approach, the Big Data Quality Architecture has been adopted and improved to allow for 

the use of additional quality characteristics and for a large variety of Big Data Systems. It’s also 

been improved to work with more flexibility at each step of the Big Data Pipeline. Fig. 6.3 depicts 

the overview of the proposed MEGA architecture; it also illustrates the flow of data. 

 

Comparing it to Fig. 6.2, data no longer travels from just left to right through each phase of the 

Pipeline. The Big Data Quality Framework now requests data from each phase based on a 

scheduling protocol, so that Big Data quality measurements of the V’s can be collected and 

analyzed at each step. This scheduling protocol is defined by the data engineer in the Quality Policy 

Manager (see the example shown in Fig. 6.4).  

 

The MEGA architectural solution allows for data to travel from the left to the right of the Big Data 

Pipeline unimpeded according to the scheduling protocol. This permits the Big Data Quality layer 

to measure attributes in parallel, while the pipeline continues processing data. 
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The Big Data Quality layer permits the user to halt the pipeline process until quality validation is 

completed, by specifying this in the Quality Policy Manager. The goal is to allow the user the most 

amount of freedom in terms of adapting the Big Data quality assessment to their specific needs   at 

each phase of the Pipeline.  
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Figure 6.3: Big Data Quality Architecture Diagram  
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6.4 Architecture Components  

6.4.1 Quality Policy Manager 

The Quality Policy Manager is, in essence, a configuration file for users to control the behaviour 

of the system. This includes which quality attributes should be measured and which data stores 

should be validated. Beyond that the Quality policy Manager also defines the scheduling process 

of the Big Data Quality Architecture on a step-by-step case. This means that, for example, the data 

extraction phase can be run for quality metrics on a daily basis while the data processing phase 

can be verified hourly. Additionally, verification of data quality can be defined by setting 

thresholds and defining what occurs if a threshold is to be passed. 

 

 

Figure 6.4: Example Quality Policy Manager Diagram 
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Figure 6.4 describes an example of how a Quality Policy Manager could be set up. In this example, 

we set the stage (or phase) that we want to validate, here it’s the Data Extraction phase. We define 

the data sources that we want to check, in this case, because we want to check all data sources we 

can just define ‘all’ as the value. We also set up our schedule to validate data every 24 hours, this 

tells our Quality Manager when to ping the pipeline and ask for data. Depending on the context, 

developers and users may want to adjust this to validate data quality every second or every week. 

Perhaps the most important section of this file will be defining the quality attributes to measure. 

These measures can be pre-defined in the Quality Attribute Manager and customized there.  Other 

things that can be done include allowing the pipeline to continue running or stopping until the data 

has been validated. Additionally, we can add thresholds to validate the data and notify the users of 

potential anomalies that have been identified. It is important to note however that these thresholds 

are to be determined by the data engineers themselves since these can be very context specific. 

 

6.4.2 Quality Manager 

The Quality Manager handles the framework as defined by the Quality Policy manager. This 

includes retrieving data from the Pipeline, making requests to the Metadata Manager, or providing 

data for the Attribute Evaluator. It also handles feedback to the Big Data System. In cases where 

the Big Data Pipeline needs to be paused or the user needs to be notified the Quality Manager will 

be responsible for handling these requests.  

6.4.3 Metadata Manager and Metadata Repository 

The Metadata Manager as described by (Pääkkönen & Ovaska 2015.) enables the extraction of 

metadata and access to metadata. It acts as the doorkeeper to the Metadata Repository, validating 

that the structure of the metadata is proper before saving or accessing information from the 

Metadata Repository.  

 

The Metadata Repository is a data store used to store the Big Data Quality measurements taken by 

the Quality Attribute Evaluator. Additionally, other metadata information can be stored depending 
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on how the user defines the Metadata Manager. Information like timestamps and visualization data 

can be saved to the metadata store for easy access later. 

6.4.4 Quality Attribute Evaluator 

The Attribute Evaluator measures base measures and calculates the necessary derived measures 

expressed by the Quality Policy Manager. To evaluate these base measures and derived measures 

the evaluator looks at how it has been defined in the Quality Attribute Manager and evaluates them 

accordingly.  

6.4.5 Quality Attribute Manager and Visualization Dashboard 

Like the Quality Policy Manager, the Quality Attribute Manager allows the user to define base 

measures and the derived measures based on those defined base measures. This gives the user the 

greatest amount of flexibility in what attributes and metrics are needed for their specific use case. 

Furthermore, the best visualization techniques can be defined from the Quality Attribute Manager. 

This will be useful later for the end-user to have an overview of what the metrics calculated.  

6.5 Multiphase Measurements  

The proposed architecture adds much more granularity to how Big Data Quality Measures can be 

taken in the context of an actual Big Data Pipeline. Specific data stores can be validated while 

others can be left untouched. Additionally, anomalies can be detected automatically by applying 

thresholds with statistical methods such as a standard normal deviation where the Quality Manager 

can halt the pipeline and notify the user should it be necessary.  
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Figure 6.5: Detailed Quality Diagram 
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Fig. 6.5 describes in more detail how the Big Data Quality Architecture functions. The Quality 

Manager will periodically get data from each of the available data stores based on the scheduling 

policy described in the Quality Policy Manager. Once data has been retrieved the Quality Manager 

will check with the Quality Policy Manager to determine which quality attributes need to be 

evaluated. Once done the data is sent to the Quality Evaluator and the metrics are measured then 

returned back to the Quality Manager to be saved. The Quality Manager passes the data onto the 

Metadata Manager where it is structured and stored in the Metadata Store. This all happens parallel 

to the Big Data Architecture pipeline.  
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6.6 Case Study  
 
A suitable example to illustrate the flexibility of the MEGA framework would require us to use 

data that is both real-time, time-stamped, freely available and traceable to a source for the purposes 

of reproducibility. We therefore opted to use stock market data from Yahoo’s Finance API to build 

out a simple Big Data Pipeline architecture that was used to insert our MEGA Framework onto it.  

6.6.1 Measuring Data Through the Pipeline 
 
Our MEGA Framework was used to collect data quality measurements each time a data frame was 

created or modified at some stage in the pipeline.  

 

The first step of the MEGA workflow is to select an appropriate measurement information model 

and to schedule the measurement data collection and analysis. In this example, we selected the 

6V’s measurement information model and implemented the measurement methods of its base 

measures Ndde, Lbd, Nrec, Lrec, Nds (please, refer to section II.A). These base measures were 

collected at each step of the Big Data Pipeline, including Data Extraction, Preprocessing, 

Processing, and Analysis.  

 

Additionally, we automated the calculations of the 3V’s derived measures and the corresponding 

indicators Mvol (Volume), Mvel (Velocity), Mvar (Variety), Mver (Veracity), Mval (Validity), & 

Mvinc (Vincularity). The above measurement procedures were implemented in the Quality 

Attribute Manager and described in the Quality Policy Manager. We scheduled the Quality Policy 

Manager to collect the measurement data at the end of each phase in the pipeline, except for the 

Data Analysis phase. Typically, we would recommend that measurement data to be collected at 

each stage and even at the end of the pipeline. However, in this case study we aim to show the 

flexibility of the MEGA framework in allowing the data engineers to choose where to collect and 

analyze the measurement data, and where they may feel it isn’t necessary in the context of their 

customized workflow. 



62 
 

6.6.2 Measuring Data Through the Pipeline  
 
The steps of the MEGA framework are designed to be easily learned and applied in different 

contexts of usage. 

 

The process starts with Data Extraction. In this step, we extracted pricing data for Apple (AAPL), 

Tesla (TSLA) and the S&P 500 from Yahoo’s Finance API using a datareader library provided 

by Pandas. The data we collected initially from each stock included the date, high, low, open, 

close, volume and adjusted close. This step is part of the data extraction phase. In our case study, 

the data extraction started with the time frame T1. T1 is defined as the time period between January 

1, 2021, and January 6, 2021. There were three-time frames in total, with each time frame lasting 

5 consecutive days and each new time frame beginning when the previous one ended. 

Data Preprocessing. In this step the pipeline is set to remove any unnecessary columns from the 

extracted dataframes; this meant removing ‘Adj Close’ for the Tesla and Apple data frames 

respectively. For the S&P 500 dataframe, all features except ‘Close’ were removed for the reason 

that in this pipeline our goal was to predict the next Close of the S&P 500 based on financial data 

from Tesla and Apple.  

Data Processing. This step involved using pandas' in-built merge library for T1 to T3 to merge 

three data frames corresponding to each of the tickers (TSLA, APPL, S&P 500) into one larger 

dataframe for further analysis. This new dataframe was also evaluated by the MEGA Framework 

and its measurement data, as well as the analysis results, were stored in the Metadata Repository.  

Data Analysis. This step involved splitting the data into test and training sets. The training set was 

used to train a KNN model where n_neighbors was set to 3, p to 1, and the metric used was 

‘minkowski’. As users, we decided that our Quality Policy Manager will not collect any 

measurement data in this step thus our Quality Manager did not request the pipeline for more data.  

Data Extraction, Data Preprocessing, Data Processing and Data Analysis steps are repeated 

sequentially for each time frame (T1 to T3 in this example). Once each phase completes its process, 

the MEGA framework collects base measures described in the Quality Policy Manager, by using 

the Quality Manager to request and retrieve the measurement data automatically from the pipeline. 

Once collected, the Metadata Manager records the measurement data acquired. Finally, we used 
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the Metadata Repository, along with the Quality Attribute Manager, to build visualizations of the 

6V’s indicators after collecting and analyzing the measurement data. These visualizations were 

defined by us for what we believe to be most relevant to the context of our work. In our case study 

we displayed the updated visualizations at the end of the pipeline; however, data engineers may 

choose to update a dashboard of important indicators in real time as new data is constantly being 

added. Either approach will work depending on the context and the needs of the data engineers 

and users.  

6.6.3 MEGA Results of Stock Analysis 
 
As mentioned previously, the Quality Attribute Manager is responsible for not only implementing 

the measurement methods for the base measures, but also for defining procedures for the 

measurement data’s statistical analysis and the visualization of the quality indicators. The case 

study that was implemented here depicts the visualizations of the 6V’s indicators to rapidly turn 

the collected measurement data into easy to interpret graphs, as shown below. 

 

Figure 6.6: Big Data Volume for Stock Analysis 

Fig. 6.6 visualizes the indicator Mvol gathered through T1 to T3. We see clearly here that, as 

data flows through the sequence of steps involved in our process, the amount of data decreases 

between the extraction, pre-processing, and processing phases. Data Volume Mvol may seem 
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rather trivial, however, if this were a real-time system and we noticed a lower than average or 

completely empty time frame, it may be a cause for serious concern, for instance, a server going 

down. In this case, we notice that pre-processing and processing are both doing their jobs at 

reducing our overall volume.  

 

 
Figure 6.7: Big Data Velocity for Stock Analysis 

Fig. 6.7 illustrates the Velocity (Mvel) measurement results. As we saw before, our pre-

processing and processing cause significant decreases in Volume with only the addition of new 

data from times T2 and T3 creating an increase. We also notice very quickly from our graph that 

the rate at which we lose data from each time frame is roughly the same. This is very good news 

as it’s to be expected since we filter the data in the same way during each phase.  
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Figure 6.8: Big Data Variety for Stock Analysis 

Fig. 6.8 illustrates the Variety (Mvar) measurement results. Because Variety is a multidimensional 

object, visualizations of the Mvar indicator are spread over multiple graphs, each illustrating a 

different measure. Mvar, as described in section II.B, is a tuple composed of Ndde, Lbd and Nds. 

These metrics serve as indicators that allow data engineers to measure and visualize the effect their 

automation has on the data. For instance, in Fig. 6.8 Ndde consistently has a drop occurring at the 

pre-processing phase. This is to be expected since we remove features (or columns) in the dataset. 

This explains why during the same phase Lbd remains constant. We see that the opposite occurred 

in the Processing phase. Merging datasets together reduces the number of records but keeps Ndde 

the same. Visualizing data quality characteristics is very beneficial for data engineers. For 

example, Mvol indicated that there was a significant reduction in our data volume, but the reason 

wasn’t obvious. The Mvar indicator showed that Nds was reduced from 3 to 1, as expected, because 

we merged these datasets.   However, the consequence of that was that Lbd was cut by a third.  

From this analysis we know that we would need 3 times the amount of information during data 

extraction in order to maintain the number of records we thought we would have for our ML model 

to work with. 
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Figure 6.9: Big Data Veracity For Stock Analysis 

As with Variety, Veracity is similarly a multidimensional object composed of five indicators. 

These include Accuracy, Completeness, Currentness, Credibility and Availability. The way in 

which these indicators are measured are specified in the paper (Ormandjieva, Omidbakhsh & 

Trudel, 2021). The first is indicator that is interesting to look at is Accuracy. As Accuracy is 

defined in section 4.4.2, we know that if it’s the case that Accuracy is 100%, then there are no 
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duplicate data rows. This is highly likely because in the case of stock data, the time stamp will 

always be unique in the time column, in that specific dataset. However, having the same time 

stamp across multiple datasets will occur, since the stock exchange opens and closes on the same 

days and times for every stock listed on the exchange. However, it’s highly unlikely for the Open, 

High, Low, Close, Adj Close and Volume values to all be the same across separate stocks. 

Additionally, none of our processing would change any of those results. Therefore, we can 

logically expect a high or perfect accuracy score.  

Completeness is another indicator related to Variety. In terms of Completeness at the level of 

MDS, Completeness checks for the percentage of rows with null values across MDS. Here, Figure 

6.8 shows us that even from the data source (the Yahoo Fainace API), we receive complete data 

and that our processing does not disturb that.  

Currentness, as implemented in (Ormandjieva, Omidbakhsh & Trudel, 2021) uses a box plot 

method to determine a range of acceptable data. We find T1 has a score of 0, throughout all 

processing phases. The fact the score does not change at any phase makes sense. Obviously, 

currentness is based on time stamps and those come directly from the moment the stock data was 

collected by the API. However, it is interesting that T1 is still 0 given that T2 and T3 are only a 

few days away. Upon further investigation we found that T1 only contains 2 datapoints and that 

their ages were 222 days old and 221 days old. Because of the methodology used the boxplot gave 

a range of 221.25 days old – 221.75 days old as the acceptable range. This is interesting as it acts 

as an example of where our measurements may not always be perfect. In this case, neither 221 nor 

222 fall within the acceptable range at T1. Of course, with more data points the range expands and 

we find that more can fit those acceptable ranges.  

Credibility is the next indicator to make up Veracity. Here credibility is defined as the ratio of 

“credible” data to all data, according to the formula from (Ormandjieva, Omidbakhsh & Trudel, 

2021).  Because all data comes from a reputable source (Yahoo’s API), we can assume that their 

data is credible. But in this instance, it’s important to note that we chose to believe that the data 

provided by the API is credible but determining credibility is difficult and researchers will have to 

come up with better more robust solutions at determining whether something is truly credible or 

not.  



68 
 

Finally, we have the last indicator for Veracity, Availability. Availability as defined here 

(Ormandjieva, Omidbakhsh & Trudel, 2021), in the context of a measurement is the ratio of 

successful requests to total requests made to a datastore. In this case, we find that there are never 

any situations in which the data was unavailable. This indicator, while simple is very important as 

it has the ability to show researchers times at which their data or the data of others that they rely 

upon may be down or unavailable all together. This can help quickly diagnose problems related to 

missing data from a specific datastore. 

 

Figure 6.10: Big Data Validity For Stock Analysis 

Figure 6.10 shows us the indicators used to determine Big Data Validity. Interestingly Validity 

shares some of its indicators with Veracity, these include Accuracy and Credibility and because 

we analyze the same data these visuals are the same, so they follow the same logic described 

earlier. Compliance, on the other hand, is new to Validity. Compliance is defined as how much the 

data itself adheres to any standards we place on it. In the case of stock data, we want to make sure 

that time stamps are formatted correctly and that the values are in USD. In this case, because we 

obtain our values from the Yahoo API, we find that our data is formatted correctly. In some other 
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situation it may be necessary for developers to have to manually write code using tools like RegEx 

to ensure that their data meets their specific needs.  

 

Figure 6.11: Big Data Vincularity For Stock Analysis 

Figure   6.11 shows the Big Data Vincularity. Since Vincularity is composed of only one indicator 

Traceability (at the level of MDS). Here, Traceability is defined as how much of the data we 

change is stored in metadata, so that we can see how data changes from each phase. Here, because 

of the way the code is written we made sure to store versions of the data before making changes 

on to the datasets. As such, we have perfectly traceable data. But it’s important to note that this is 

from the perspective of our own system.  Our data is originally taking from Yahoo’s API. How do 

we know what changes Yahoo’s systems have   made before we received the final version of the 

data? This is difficult to ask since we do not have internal information of how Yahoo Finance 

processes their data and in a way, this leaves an important part of traceability still on the table. In 

the future we’d like to solve this issue or a least provide more guidelines in dealing with visualizing 

traceability of data when its source is unknown. 
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6.7 Conclusion 
 
In this chapter we’ve described the MEGA architecture in detail and have demonstrated how it 

may be used to measure and analyze the underling data of a Big Data Pipeline that will be built or 

a pre-existing one. The architecture allows for the V’s of big Data to be used in real world systems 

and provides can sub-systems, such as the Quality Policy Manager, that can be customized to fit a 

variety of needs of users. This makes the architecture very powerful as it’s able to be flexible for 

a variety of problems that exist in the industry. 

 

The framework currently has been implemented and tested on 6 V’s (Volume, Velocity, Variety, 

Veracity, Validity and Vincularity). This is a good start but, in the future, we’d like to complete 

our development of objective measures and have metrics for the remaining V’s. We’d also like to 

implement these into our framework to hopefully allow users to have much greater insight into 

their systems and provide a greater overall metric for the “quality” of their Big Data systems. 

Additionally, in the future, our goal is to benchmark the performance cost of having the framework 

running while the pipeline runs in parallel. We believe that researchers understanding the 

performance cost of the system is important for how they may want to design their approach given 

their requirements. 
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Chapter 7 Conclusions and Future Work 
 

In this thesis, we presented a novel measurement framework MEGA for monitoring the quality 

characteristics of Big Data (the V’s). The newly proposed MEGA framework can be used for 

assessing the alignment of Big Data solutions to the needs of their users, guided by users’ best 

interests, before committing to any alternative. We proposed two new theoretically valid 

measurement information models to evaluate Validity and Vincularity of Big Data in the context 

of the MEGA framework. The models’ elements that we’ve developed are compliant with 

ISO/IEC/IEEE Std. 15939 guidelines for their definitions. We’ve demonstrated their theoretical 

validation and have shown that they can be used along side the four other indicators (Ormandjieva, 

Omidbakhsh, & Trudel, 2020) (Ormandjieva, Omidbakhsh, & Trudel, 2021). These models are 

suitable for Big Data in any forms of structured, unstructured, and semi-structured data.  

We described the proposed MEGA architecture applicable to a variety of existing Big Data 

Pipelines. Our MEGA solution takes into consideration the flexibility that would be required by 

the data engineers when measuring specific data and specific points in the Big Data pipeline. We 

illustrated the MEGA framework by collecting measurement data on V’s of Big Data from 

Yahoo’s Finance API stock market data and showed how the framework can be used to monitor 

data quality issues that may arise. 

We will also focus more heavily on testing the framework on a variety of different pipelines 

including handling real-time data streaming as well as trying to understand the overhead cost 

involved with using the Framework. We plan on building out the libraries for the framework in a 

two-month projected period, with testing taking 6 to 8 months. 

The proposed novel measurement framework MEGA is also forward-looking — considering not 

only the understanding of the Big Data quality characteristics that are generally accepted today 

(the V’s), but also exploring emerging new quality characteristics rooted in innovative usages of 

Big Data. These include having the pre-built libraries that can be used by developers and easily 

integrated instead of having a framework that is abstract. 



72 
 

 

References 
Allan Koch Veiga, A. M. (2017). A conceptual framework for quality assessment and 

management of biodiversity data. PLOS ONE, 12(6), 178731. From 
https://doi.org/10.1371/journal.pone.0178731 

Andreu-Perez, J., Poon, C., Merrifield, R., Wong, S., & Yang, G. (2015). Big Data for Health. 
IEEE Journal of Biomedical and Health Informatics, 19(4), 1193-1208. 

Bates, D., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in healthcare: 
Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 
33, 1123-1131. 

Bhardwaj, D., & Ormandjieva, O. (2021). Rigorous Measurement Model for Validity of Big 
Data: MEGA Approach. Proc. 25th International Database Engineering & Applications 
Symposium (IDEAS’21). 

Bhardwaj, D., & Ormandjieva, O. (2021). Toward a Novel Measurement Framework for Big 
Data (MEGA). 3rd IEEE International Workshop on Big Data Computation, Analysis & 
Applications (BDCAA 2021). Proc. IEEE 45th Annual Computers, Software, and 
Applications Conference (COMPSAC’21), 1580-15887. 

Cedrine, M., & Alain, M. (2017). US Patent No. US9858420B2.  

Emden, M. H. (1975). An analysis of complexity. Mathematisch Centrum Amsterdam, 86. 

Fenton, N., & Bieman, J. (n.d.). Software Metrics: A Rigorous and Practical Approach (3rd edn 
ed.). CRC Press. From https://doi.org/10.1201/b1746 

Gudivada, V., Apon, A., & Ding, J. (2017). Data quality considerations for big data and machine 
learning: Going beyond data cleaning and transformations. International Journal on 
Advances in Software, 10(1), 1-20. 

(1998). IEEE Standard for Software Quality Metrics Methodology. IEEE Std 1061-1998. 

Immonen, A., Pääkkönen, P., & Ovaska, E. (2015). Evaluating the quality of social media data in 
big data architecture. IEEE Access, 3, 2028-2043. 

(2015). ISO/IEC DIS 25024 Systems and Software Engineering- Systems and Software Quality 
Requirements and Evaluation (SQuaRE)-Measurement of data quality.  

(2017). ISO/IEC/IEEE International Standard - Systems and software engineering--
Measurement process. ISO/IEC/IEEE 15939:2017. 



73 
 

Jorge Merino, I. C. (2016). A data quality in use model for big data. Future Generation 
Computer Systems, 63, 123-130. 

Kelly, B., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 
205. 

Lee, J. (2013). Recent advances and trends in predictive manufacturing systems in big data 
environment. Manufacturing letters, 1(1), 38-41. 

(2018). NIST Big Data Interoperability Framework: Volume 1, Definitions. Volume2, Big Data 
Taxonomies. Commerce, NIST U.S. Department of Commerce. 

Omidbakhsh, M., & Ormandjieva, O. (202-). Toward A New Quality Measurement Model for 
Big Data. Proc. 9th International Conference on Data Science, Technology and 
Applications (DATA). 

Ormandjieva, O., Omidbakhsh, M., & Trudel, S. (2020). Measuring the 3V’s of Big Data: A 
Rigorous Approach. Proc. IWSM-MENSURA 2020: In Proc. Joint conference of the 30th 
International Workshop on Software Measurement (IWSM) and the 15th International 
Conference on Software Process and Product Measurement (MENSURA). 

Ormandjieva, O., Omidbakhsh, M., & Trudel, S. (2021). Measurement Model for Veracity of 
Big Data. The 7th International Symposium on Big Data Principles, Architectures & 
Applications (BDAA 2020). As part of 18th International Conference on High 
Performance Computing & Simulation (HPCS 2020). In Proc. HPCS 2020. 

Pääkkönen, P., & Pakkala, D. (2015). Reference architecture and classification of technologies, 
products and services for big data systems. Big Data Res. 

Pääkkönen, P., & Pakkala, D. (2015). Reference architecture and classification of technologies, 
products and services for big data systems,’. chicago: Big Data Res. 

Ramaswamy, L., Lawson, V., & Gogineni, S. (n.d.). Towards a quality-centric big data 
architecture for federated sensor services. Proc. IEEE Int. Congr. Big Data, 86-93. 

Rashidi, C. M. (2014). US Patent No. US20160147798A1.  

Shkapenyuk, V., Dasu, T., Srivastava, D., & Swayne, D. (2021). US Patent No. 16257936.  

Staeben, C., Maier, C., Savard, B., Wilbur., A., & BV, H. G. (2020). US Patent No. 
US20200159702A1.  

Taleb, I., Dssouli, R., & Serhani, M. (2015). Big data pre-processing: A quality framework. 
Proc. IEEE Int. Congr. Big Data, 191-198. 

Walker, R. (2015). From big data to big profits: Success with data and analytics. Oxford 
University Press. 



74 
 

Yu, S., & Song, G. (2016). Big data concepts, theories, and applications. (Y. Shui, & S. Guo, 
Eds.) Springer. 

Zhou, N., Huang, G., & Zhong, S. (2018). Big data validity evaluation based on MMTD. 
Mathematical Problems in Engineering, 6, 1-6. 

 
 

 


