
Approximation Algorithms for Broadcasting in Flower Graphs

Anne-Laure Ehresmann

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

September 2021

© Anne-Laure Ehresmann, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Anne-Laure Ehresmann

Entitled: Approximation Algorithms for Broadcasting in Flower Graphs

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to originality

and quality.

Signed by the Final Examining Committee:

Chair
Dr. L. Narayanan

Examiner
Dr. J. Opatrny

Examiner
Dr. D. Pankratov

Supervisor
Dr. H. Harutyunyan

Approved by
L. Narayanan, Chair
Department of Computer Science and Software Engineering

2021
M. Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Approximation Algorithms for Broadcasting in Flower Graphs

Anne-Laure Ehresmann

Over the last century, telecommunication networks have become the nervous system of our society. As

data is generated and stored on varied nodes, effective communication is imperative to ensure efficient use of

the network. Our ever-growing reliance on these increasingly large and complex networks make ineffective

communication strategies evermore apparent.

Broadcasting is a fundamental information-dissemination problem which models communication across a

connected graph in the following manner: a single vertex, the originator, seeks to pass some message along to

all other vertices in the graph. In general, research on broadcasting can be grouped in roughly two categories:

Firstly, given some particular graph and some particular vertex chosen to be originator, what is a broadcast

scheme that informs the entire graph in the minimum time possible? Secondly, given some number of nodes,

how can we arrange them in a particular network topology such that we can achieve minimal broadcast time

from any vertex? This thesis focuses on problems of the first category. Finding the minimum broadcast time

of any vertex in an arbitrary graph is NP-Complete, but efficient algorithms have been found for particular

graph families. In particular, polynomial time algorithms have been found for trees and some tree-like graphs:

unicyclic graphs, tree of cycles. Such algorithms have also been found for some graphs with no intersecting

cliques, such as fully connected trees and trees of cliques. Finally, graphs containing cycles with particular

restrictions were also studied, and efficient algorithms for necklace graphs and k-restricted cactus graphs were

also found. The question still stands however, of whether these restrictions may be too conservative, and

that efficient algorithms exist on broader classes of graphs. In particular, significant research has been made

towards finding an efficient broadcasting algorithm on cactus graphs, which has not been found so far.

This thesis studies the broadcasting problem on Flower graphs, which capture the difficulty of cactus graphs

in a simple graph family. Flower graphs, or k-cycle graphs, are graphs composed of k cycles all joined on

a single central vertex vc. The contributions of this thesis for broadcasting on flower graphs is two-fold: it

first improves the approximation ratio for broadcasting on flower graphs. It then provides a heuristic which

iii

performs significantly better in practice than the current best heuristic. We also demonstrate that our heuristic

finds the optimal broadcast time for particular subcases of flower graphs.

iv

Acknowledgments

There are several people without whom this thesis would not have been made possible, and to whom I would

like to express my sincere gratitude.

I would like to first deeply thank my professor and supervisor, Dr. Harutyunyan, for the guidance and

encouragement he provided during my completion of this research, and during my time at university as a

whole. It is his enthusiasm and genuine interest in his courses that led me to pursue academic research in

the first place. His continued efforts to support and advise me throughout these past two years have been

invaluable in completing this thesis and in my formation in academic research.

I would also like to thank Dr. Narayanan, who gave me my first research project and supervised my work on it

during my third summer at university. This led to a small contribution to a simple problem with a reachable

solution, yet with enough freedom to let me explore and challenge myself. She provided just the right amount

of direction, personal enthusiasm, and collaboration to captivate and develop my interest in research.

It would be amiss not to thank those involved in open science initiatives, who seek to make access to scientific

knowledge available to all without restrictions. Without their incessant efforts, I could not have completed

this thesis.

Last but not least, I deeply thank my family, whose unconditional love, support, and patience have accompanied

me throughout my entire life.

v

Contents

List of Figures viii

1 Introduction 1

1.1 Motivation behind the problem . 1

1.2 Statement of the problem . 3

2 Literature review 7

2.1 Broadcasting in various graph families . 7

2.1.1 The Tree T . 7

2.1.2 The Cycle Cn . 8

2.1.3 The Unicyclic graph . 8

2.1.4 The Tree of Cycles . 9

2.1.5 The Cactus graph . 10

2.1.6 The Necklace graph . 12

2.1.7 The k-restricted Cactus graphs . 13

2.1.8 The Flower graph . 14

2.1.9 The k-Path graph . 16

3 Theoretical results 17

3.1 Approximation in the general case . 17

3.1.1 Approximation when t is a parameter . 18

3.1.2 Subroutine for tightening the range of t values . 26

3.2 Improvement on Algorithm 1 . 29

3.3 Discussion on Algorithm 1, Algorithm 4, and BroadcastBucket 33

vi

4 A Heuristic for broadcasting on flower graphs 35

4.1 Preliminaries . 35

4.2 Intuition . 36

4.3 The Heuristic . 37

4.4 Running Time . 53

5 Simulation results 56

5.1 Preliminaries . 56

5.2 Data . 56

5.2.1 Comparisons of algorithm performances as cycle lengths increase, against lower bounds 57

5.2.2 Comparisons of algorithm performances as cycle quantity increase, against lower

bounds . 61

5.2.3 Comparisons of algorithm performances as cycle lengths increase, against optimal . 64

5.2.4 Comparisons of algorithm performances as cycle quantity increase, against optimal . 66

5.3 Discussion . 68

6 Discussion and Future Work 70

vii

List of Figures

Figure 2.1 Broadcasting in a tree. 7

Figure 2.2 Broadcasting in a cycle. 8

Figure 2.3 A Unicyclic graph. 9

Figure 2.4 A tree of cycles graph. 10

Figure 2.5 A Cactus graph. 10

Figure 2.6 A necklace graph on 7 cycles. 12

Figure 2.7 A general k-cycle graph. Each cycle may be of any length. 14

Figure 2.8 A k-path graph . 16

Figure 3.1 A broadcast scheme generated by Algorithm 1 with u = vc and t = b(vc,G). 23

Figure 4.1 A visual representation of the indices of two cycles C1 and C2, with with l1 >> t and

C2 with l2 << t. 40

Figure 5.1 Mean of rounds used by the broadcast schemes generated for each algorithm, where

each datapoint represents 1000 randomly-generated instances tested. Algorithm 1 is not

included, as its mean lies much further higher than the means of the other algorithms. 57

Figure 5.2 Max rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 58

Figure 5.3 Min rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 58

Figure 5.4 Mean difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7.

Algorithm 1 is not included as its mean difference lies much further down than the means of

the other algorithms. 59

Figure 5.5 Max difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7. . 60

viii

Figure 5.6 Min difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7. . 60

Figure 5.7 Mean of rounds used by the broadcast schemes generated for each algorithm, where

each datapoint represents 1000 randomly-generated instances tested. Algorithm 1 is not

included, as its mean lies much further higher than the means of the other algorithms. 61

Figure 5.8 Max rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 62

Figure 5.9 Min rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 62

Figure 5.10 Mean difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7.

Algorithm 1 is not included as its mean difference lies much further down than the means of

the other algorithms. 63

Figure 5.11 Max difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7. . 63

Figure 5.12 Min difference obtained by substracting the number of rounds used by the broadcast

schemes generated for each algorithm from the broadcast scheme generated by Heuristic 7. . 64

Figure 5.13 Mean of rounds used by the broadcast schemes generated for each algorithm tested. . 65

Figure 5.14 Max rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 65

Figure 5.15 Min rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 66

Figure 5.16 Mean of rounds used by the broadcast schemes generated for each algorithm tested. . 67

Figure 5.17 Max rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 67

Figure 5.18 Min rounds used by the broadcast schemes generated for each algorithm, where each

datapoint represents 1000 randomly-generated instances tested. 68

ix

Chapter 1

Introduction

1.1 Motivation behind the problem

As our society increasingly turns to computers to solve its problems, the demands for additional computing

power grow more and more ravenous. A single computer, even with our most technologically-advanced

hardware, can do little but chip away at some of the colossal tasks we throw at it. Instead, a common solution

is to break the task into smaller but more manageable constituent parts, and solve each of them simultaneously

on extensive computing networks. Once each individual part is completed, their results are merged into a

solution to the original problem. But many crucial decisions need to be taken before one can even attempt this

solution, all of which may tremendously affect the performance of the network when solving some particular

computing problem. Because of this, computing networks have appeared in very diverse forms: numerous

fields with radically different needs and constraints make use of them, and the networks they employ thus

appear in equally diverse forms that seek to address each of these needs and constraints. Just a few examples of

computing networks [28] [8] can be found in global telecommunication networks, cloud-computing networks

on the internet, parallel computing networks for distributed information-processing and scientific computing,

and industrial control systems for automation. When confronted with a large problem to be solved by a

computing network, some questions to consider are the following[35]:

• Given a particular problem, how do we decompose it?

• How do we split our computing resources across the network?

• What sort of memory model will we use?

• What sort of topology will we use?

1

• How do each node in the network communicate with each other?

• What algorithm can we use, such that we take full advantage of our computing network?

These are not easy decisions to make, especially if our problems come in varied forms. One can additionally

quickly see that answering one question will additionally affect our answer for other questions: for instance,

the topology of the network directly affects the management of computing tasks and communication of data

across the nodes of the network, as data movements are entirely dependent on the topology [13]. Similarly,

the communication strategy we choose will drastically affect which algorithms we can execute, and their

performance. Overall, a single poor decision can result in bottlenecking the entire process, and thus fail to

take full advantage of the resources provided by the network.

Our ability to make these decisions soundly is becoming even more crucial today: as the scale and quantity of

our computational problems grow, so does the complexity of the networks that we use to solve them, as well

as the emergent difficulties of parallel computing itself. More recently, the rapid explosion of big data [8] has

drastically increased the demand for efficient, powerful, and fast computing power, and widespread computing

networks are the only ones capable of providing the huge storage and computing resources required in an

acceptable timeframe.

One of the above-cited concerns was that of communication across the network. Such communication tasks

can be naively thought to require a negligible amount of work when compared to the actual computing task

itself, but a number of factors mean that a poor communication strategy will lead to a poor performance

overall [1]:

• Due to the high computing performance of current processors, communication is often more time-

consuming than the computing task itself [24], and this bottleneck is worsening; Technologically-

speaking, our capacity to telecommunicate is growing about half as fast as our capacity to complete

computing tasks [23].

• A large number of problems on the internet are purely communication tasks: that is, we merely seek to

disseminate some information as quickly and cheaply as possible [24].

• Our technologies are creating datasets of ever-increasing sizes, with created and copied data volume in

the world predicted to double at least every two years [8].

The speed at which nodes can communicate some data to other nodes thus has a huge effect on the performance

of the entire network for a given problem. We can separate the approaches to solve this bottleneck into roughly

2

two categories [36]: The first category seeks to reduce the quantity of data that needs to be transferred through

various data-reduction techniques. The second seeks to reduce the delay involved in sending a message. This

thesis is focused on the second approach.

1.2 Statement of the problem
Communication strategies have been studied under different models, the majority of which are surveyed

in [22]. Many of these models seek to accurately represent real-world conditions by simulating the parameters

and difficulties that come with simply seeking to pass a message across the network, such as: How many

nodes in the network start with the message, and how many (and which) nodes need to receive this message?

How large is the message? How long does it take to traverse the connection from one node to other? How

reliable are the channels between the nodes, and what can we do in case of faulty channels? How do we

handle an incomplete knowledge of the topology of the network? How can we take advantage of the fact that

we may be able to send a message to multiple other nodes at the same time? etc. [22]. However, numerous

communication problems remain exceedingly difficult even on the simplest models, and these hence remain

the most studied. In particular, the following two models are heavily studied:

• Gossiping: all-to-all information dissemination with each call involving exactly two nodes and no node

participating in more than one call at a time.

• Broadcasting: one-to-all information dissemination with each call involving exactly two nodes and no

node participating in more than one call at a time.

This thesis focuses on broadcasting. Broadcasting has a wide number of practical applications, but is also

an interesting problem purely theoretically as it remains one of the simplest communication problems, yet

still remains exceedingly difficult on some networks. In practice, in addition to applications in distributed

networks mentioned earlier, broadcasting is often particularly relevant on LANs, P2P networks, satellite

networks, and remains a crucial operation for the general maintenance of the internet[41].

Broadcasting [40] seeks to represent one-to-all information dissemination in a connected graph G(V,E)

where each vertex represents a particular computer or processor in the network, and each edge represents a

communication link between two such computers. In the typical graph model used for broadcasting, only one

edge between two vertices is allowed. In this problem, an originator vertex u is informed with some particular

message, and it needs to disseminate that message to all other vertices in the graph. This process is achieved

by making a series of calls between vertices subject to the following constraints:

• Each call takes exactly one unit of time.

3

• Each call must be between two neighbouring vertices.

• Each call must involve at least one informed vertex.

• Each vertex can participate in only one call per unit of time.

• In one unit of time, multiple calls can be performed in parallel.

Once a vertex has been informed with the message at some particular unit of time, it may, after this unit,

disseminate the message to any uninformed neighbours it may have. These themselves may disseminate it to

their own neighbours, and so on until all vertices in the graph have been informed with the message. Such a

series of calls, provided the above restrictions are respected and all vertices are informed by the end of this

series, is called a broadcast scheme of u.

The minimum number of time units required to completely inform all vertices of the graph G when starting

from some originator u is referred to as the broadcast time b(u,G) of u, often shortened merely to b(u). The

maximum broadcast time of any vertex u ∈V (G) is defined as the broadcast time b(G) of G.

Finding the broadcast time [40] of any vertex u in an arbitrary graph has been shown to be NP-Complete by

Slater et al., who then also show that we can determine the broadcast time of any vertex in a tree, as well as

the entire tree itself, in linear time.

Scheuermann and Wu [36] give a nonpolynomial-time dynamic programming formulation for determining

b(u) for any u in an arbitrary graph, but observing the obvious computational inefficiency of their solution,

additionally gave heuristics for obtaining efficient near-optimal broadcast schemes. A backtracking algorithm

based on this formulation was later found [37].

With respect to approximation, Schindelhauer showed in [38] that it is NP-hard to approximate b(u) within a

factor of 57/56− ε for arbitrary ε > 0. Elkin and Kortsarz improved this to a factor of (3− ε). They then

give the current best approximation algorithm for finding b(u) with O
(︁ log(|V |)

log log(|V |)
)︁

approximation, and which

runs in Õ(|E||V |).

Since we are limited in how well we can approximate the broadcast time of an arbitrary graph, but know

that there exists a polynomial-time algorithm for solving the broadcasting problem for a particular graph

family (trees), this spurs a number of questions, which are studied by a significant part of the literature on

broadcasting; That is, given a particular graph family,

• What is the broadcast time of any graph in this family?

• Can we efficiently find the broadcast time of any graph in this family, or is this problem NP-Complete

as well?

4

• If the former, how efficiently can an algorithm return an optimal broadcast scheme of any graph in this

family?

• If we fail to answer the above questions or if finding the broadcast time of any graph in this family is

NP-Complete, how well can we approximate the broadcast time of any graph in this family?

These questions have been answered for a number of graph families, and some of the major ones are discussed

in Section 2.

There exists another main category of research in the broadcasting literature based on the following observation:

on a graph G of n vertices, b(G)≥ ⌈log(n)⌉, since when starting with a single informed vertex, we can have at

most 2t informed nodes after t rounds. This happens if every vertex that was informed during some previous

round is able to make a call to an uninformed vertex every round hereafter until the entire network is informed.

If a graph G achieves b(G) = ⌈log(n)⌉, we refer to it as a broadcast graph. A simple way to design a broadcast

graph is of course to use a complete graph Kn, but observe that we can carefully remove some edges from

Kn and still maintain this optimal broadcast time. This spurs the following criteria [12] to determine how

effective G is with respect to the problem of broadcasting:

• Is G a broadcast graph?

• Is G using the minimum number of edges required to maintain its b(G) value?

If we manage to find a broadcast graph which optimally satisfies these two criteria, that is, for n vertices, it

has the fewest quantity of edges required to broadcast in ⌈log(n)⌉ units of time, we instead call this graph

a minimum broadcast graph (mbg). This quantity of edges for a particular number of vertices n is known

the broadcast function B(n). A significant part of the literature focuses on finding these values of B(n) and

designing such mbgs. See [22] for a survey on this. Such graphs have been found for all values of n < 33

except n = 23, 24, and 25 (see for instance [11][29][26][15] and their respective bibliographies) for several

other values of n < 128, for n = 58, 59, 60, 61, 63, 127[15], 1023, 4095[39]. Additionally, two graph families

were identified as minimum broadcast graphs: the hypercube with n = 2k for k ≥ 1 [11], and the Knödel

graphs with n = 2k− 2 for k ≥ 2 [3]. In general, finding these graphs has proven to be very difficult. As

a result, part of the research also has sought to construct broadcast graphs which still succeed in using a

relatively small number of edges, and also obtaining upper bounds on values of B(n) in the process. To

achieve this, most techniques combine known smaller mbg’s to generate a larger bg. See for instance [20]

which relies on the Knödel graphs for their graph construction.

5

Since this thesis does not focus on minimum broadcast graphs and their related problems, this area of research,

while directly related to ours, will not be covered further.

The high-level organisation of the thesis is summarised as follows:

First, Chapter 2 reviews the current literature on broadcasting in various relevant graph families. Special

attention is given to cactus graphs and flower graphs, two families with as of yet no existing polynomial

algorithm for obtaining the broadcast time of any graph in these families. Then, Chapter 3 provides a simple

approximation algorithm for achieving a 1.5-approximation ratio on flower graphs. It is then shown that

a small intuitive change can be made on this approximation algorithm to create a new algorithm which

maintains the previous approximation ratio, but achieves better results in practice. Chapter 4 gives a heuristic

using similar intuitions as the aforementioned small change. Chapter 5 provides simulations to compare

the performances of the new algorithms along with the ones in current literature, and a discussion on their

differences and weaknesses follows. Chapter 6 discusses future work.

6

Chapter 2

Literature review

2.1 Broadcasting in various graph families

Polynomial-time algorithms for finding the exact values of b(u) were found for a number of useful graph

families [14][4]. In this section, we start from the most basic graph structure studied under the broadcasting

model, the tree, and from there cover more complex structures until reaching the particular graph family with

which this thesis is concerned.

2.1.1 The Tree T

While a simple structure, it is useful to consider the broadcasting problem on trees, as the strategy used there

can also be applied on other graph families.

rstart

43 21

4 23

43

43

Figure 2.1: Broadcasting in a tree.

A tree T of n nodes and n− 1 edges is a connected acyclic graph. Given any tree T , a linear algorithm

provided in [40] returns the broadcast center of the tree. The broadcast center BC(G) of a graph G is the set

of all vertices with minimum broadcast time in G. In [40], Slater et al. proved the following two lemmas:

7

Lemma 1: For any tree T with |V (T)| ≥ 2, BC(T) consists of a star with at least two vertices.

Lemma 2: For any vertex v in a tree T but not in BC(T), let k be the minimum distance from v to any

vertex in BC(T). Then, b(v) = k+b(BC(T))

They combined these lemmas in an algorithm which determines the broadcast time of a single vertex in T ’s

broadcast center: starting from its leaves, it labels each vertex with what can be considered to be a “local”

broadcasting time: the time it takes to broadcast in that vertex and all its children, that is, vertices considered

in previous iterations. This local broadcasting time can be obtained by sorting; Then, it removes all leaves of

the graph, and moves on to the next iteration, where again it considers the leaves of the newly modified graph,

and so on. Special cases are to be considered when reaching the last iteration to ensure exactly one vertex

remains, but broadly speaking, the algorithm behaves in the above manner during all other iterations.

From the broadcast time of that vertex, the broadcast time of all other vertices can easily be obtained using

the above lemmas.

2.1.2 The Cycle Cn

A cycle on n vertices is a trail v1,v2, . . .vn where vi has an edge to vi+1 for every 1 ≤ i < n, and vn has an

edge to v1. We can observe that the broadcast time of Cn is directly related to its diameter D(G), that is, the

maximum distance between any two nodes of G. In cycles, D(G) = ⌊n
2⌋, and b(G) = ⌈n

2⌉.

rstart

12

23

3

Figure 2.2: Broadcasting in a cycle.

2.1.3 The Unicyclic graph

A unicyclic graph G of n nodes and n edges is a connected graph. Its cycle of length k is labelled Ck and

composed of vertices r1,r2, . . .rk, each a root of a subtree of G.

8

Tk

T1

T2

Ti

Tk−2

Tk−1

.

rk

r1

r2

ri

rk−2

rk−1

Figure 2.3: A Unicyclic graph.

Unicyclic graphs were studied under the context of broadcasting in [18], where a linear algorithm was given

for finding their broadcast time. Harutyunyan et al. show that for any unicyclic graph, this broadcast time can

be obtained by calculating the broadcast time of each substree, and finding the vertex called SBC(T) in each

tree’s broadcast center that is closest to the root of the tree.

They then demonstrate that they can use the broadcast center of each subtree to calculate the broadcast time

and broadcast center of any two trees T1 and T2, whose roots are joined by a single edge into a new tree

T1⊕T2. They do so using the following result:

Lemma 3: There exists a vertex u such that u ∈ BC(T1⊕T2)and u is on the path joining u1 = SBC(T1)

and u2 = SBC(T2)

The above lemma as well as summations based on the difference between B(T1) and B(T2), and the distance

between each original tree’s respective distance between their root their SBC can be used to determine

b(T1⊕T2) and BC(T1⊕T2) in constant time.

With this, [18] can slowly join the trees into all possible spannings trees possible, determine their broadcast

time and broadcast center, find the distance from the originator u to the broadcast center of each spanning tree,

and use that to find the minimum broadcast time of the entire unicyclic graph in O(n) time.

2.1.4 The Tree of Cycles

Pushing further into this category of graphs, we can add additional cycles but ensure they never share a vertex.

The Tree of Cycles is a graph with no intersecting cycles [19]. That is, there is only one unique path between

9

any two cycles. They can thus be visualised as a sort of tree of cycles.

Figure 2.4: A tree of cycles graph.

The linear algorithm for unicyclic graphs implies that a polynomial algorithm exists for this graph family as

well. Indeed, an optimal broadcast scheme in O(n) was given in [19] with an algorithm that, in short, solves

the problem recursively by considering each cycle individually when one is encountered, and then using the

obtained broadcast tree for that broadcast cycle as a part of the overarching broadcast tree.

2.1.5 The Cactus graph

Figure 2.5: A Cactus graph.

10

As shown above, the broadcasting problem can be solved in graphs with no intersecting cycles in linear

time. What about when cycles do intersect? It appears that it is difficult to find optimal broadcast schemes

in polynomial time for such general graph families. Instead, when such algorithms are found, it is often in

families with numerous restrictions on them, a few of which we present below. In particular, one family of

graphs of interest is that of cactus graphs: graphs where cycles share at most one vertex in common [25].

Cactus graphs have numerous applications: initially known as Husimi trees [25], they first showed their

use in the theory of condensation in statistical mechanics [42] [34] alongside Cayley trees. More recently,

cactus graphs have been used in genome comparisons [32] and genomic alignments [33] in computational

biology. Particular subcases of cactus graphs are also used: For instance, Christmas cactus graphs (connected

cactus graphs for which the removal of any vertex disconnects the graph into at most 2 components) are used

in greedy embeddings [27]. It is thus not only useful to investigate this family of graphs in the context of

broadcasting for theoretical results, but also for practical applications.

Intuitively, one may think that the restriction of cactus graphs, that of cycles sharing at most one vertex, is

easy to work with. This intuition comes from the fact that numerous other problems have been shown to have

polynomial-time algorithms on cactus graphs, and that numerous algorithms that function on trees can be

generalised to also work on cactus graphs. For instance, the following can be solved in polynomial time:

• Recognising a cactus graph [6].

• Finding a minimum dominating set in linear time [21].

• Computing the longest paths in linear time, in [31].

• Numerous facility-location problems: The obnoxious center problem on a weighted cactus graph

in O(cn) time on a cactus graph of n vertices and with c different vertex weights [43]. Improved

to O(nlog3(n)) in [2]. The weighted 1-center and weighted 2-center problem in O(nlog(n)) and

O(nlog2(n)), respectively, in [2].

• Computing the sum of all distances, using the generalisation of an algorithm originally designed for

trees[44].

However, no polynomial-time algorithm for finding the broadcast time of general cactus graphs has been

found, nor is it known if this is an NP-Hard problem. Instead optimal algorithms were found for subclasses of

cactus graphs (observe additionally that the above tree of cycles is a subcase of cactus graphs).

11

2.1.6 The Necklace graph

Necklace graphs [17] are a specific subcase of cactus graphs, composed of a series of cycles (of arbitrary

length) where each consecutive pair of cycles is connected by exactly one vertex. We highlight that the first

and last cycles are not connected: This case, what we may call a closed necklace graph, was discussed but not

solved in [17] for the broadcast problem.

Figure 2.6: A necklace graph on 7 cycles.

In [17], Harutyunyan et al. give an O(n) algorithm for finding a broadcast scheme in an arbitrary necklace

graph, assuming the originator is on one of the end cycles and is not a vertex shared by two cycles. The cases

when the originator is not one such vertex are built upon this case, and are given in [30].

To obtain their broadcast time, they first give a way of calculating the broadcast time of a graph composed of

a cycle with a tree attached to one of its vertices.

They then show that they use the two key results:

Lemma 4: For any originator u on a cycle CN and some graph G′ attached to a vertex v on CN (where

u ̸= v), a broadcast scheme can be obtained by first sending the information along the shorter path

towards v and then along the longer path.

Lemma 5: Let G′ be the subgraph of G obtained by removing one of the end cycles of G (that does

not contain the originator u). Broadcasting on G from u using, as part of our broadcasting routine,

12

a broadcast scheme on G′ that takes strictly greater than b(G′) rounds to complete, cannot result

in a broadcast scheme that uses fewer rounds than a broadcasting scheme that does use an optimal

broadcasting scheme on G′.

In other words, one can use an optimal solution to the subproblem (broadcasting on a subgraph of the necklace

graph) to build an optimal solution for the entire graph.

Using the first lemma, [17] give a linear algorithm for determining the broadcast time of a cycle with a tree

attached, and then use it and the second lemma to construct optimal broadcast graphs to subgraphs of the

necklace graph: They cut the furthest cycle (with respect to the originator’s cycle) at the midpoint, and then

consider the second-to-last cycle, now with a tree of two paths of same (or off by one) size attached to one of

its vertices. They find the broadcast time of this cycle, and repeat the process on this cycle, then considering

the broadcast time of the third-to-last cycle, and so on until a spanning broadcast tree for the entire graph is

obtained.

2.1.7 The k-restricted Cactus graphs

k-restricted cactus graphs are cactus graphs where every vertex is on at most k cycles.

Some theoretical results were obtained for 2-restricted cactus graphs by the authors of [17] in [30], but no

full algorithm was constructed. They demonstrated that the strategy used to obtain a broadcast scheme on

necklace graphs can be generalised to 2-cactus graphs: That is, if one considers a cactus graph G to be a cycle

C on i vertices with Ni 2-restricted cactus graphs as subgraphs rooted on each vertex on C, then provided that

one can obtain a broadcast tree for each subgraph, one can construct a broadcast tree for the entire graph G.

However, they were unable to obtain these trees in polynomial time.

In [7], a O(kk!n) algorithm is given by Čevnik et al. for finding the broadcast time of k-restricted cactus

graphs using the above logic. When k is assumed to be constant, this thus reduces down to a O(n) algorithm.

Observe additionally that the case for closed necklace graphs mentioned above can thus be solved in O(n)

running time using this algorithm, since necklace graphs have k = 2.

In [7], the authors first give an algorithm which works backward on a DFS-ordered cactus graph (rooted at the

originator u), slowly determining what they define to be the temporary broadcast time of a vertex, knowing the

temporary broadcast time of that vertex’s children, if any. The final temporary broadcast time calculated, that

of u, the first vertex in the DFS order, coincides with the broadcast time of u in the entirety of G. They then

give their algorithm to determine the broadcast time of the entire graph while retaining linear running-time,

instead of the naive O(n2). I refrain from summarizing their algorithm here, as it is too long to accurately

represent.

13

A key point to retain from the algorithm provided in [7] is where it gets the kk! factor from: when dealing with

finding a vertex shared by multiple cycle-like components (a cycle C and all subcacti rooted at any vertex in C),

they provide no strategy for deciding the order of which component to broadcast to, and instead merely check

every possible order of components (at most, k! possible orders). Since for each order, linear subalgorithms

need to be called for each component (at most k components), then they obtain their kk! running-time.

We can thus see that the area of interest for solving the broadcast problem on cactus graph is: how do we pick

which cycle to broadcast to, when broadcasting from a vertex that is shared to multiple cycles?

2.1.8 The Flower graph

Flower graphs, also called k-cycle graphs, seem to capture the difficulty found in cactus graphs: They are

graphs of k cycles of arbitrary length, all connected to one central vertex vc. One may initially assume flower

graphs to be simple to broadcast in, especially from the central vertex. And yet, no polynomial-time algorithm

has been found for broadcasting on flower graphs, nor is it known if it is an NP-Hard problem. To solve this

problem, attempts have been made at first finding the broadcast time of the central vertex vc in polynomial

time.

u

. . .
. . .

Ck

C1

C2

C3

Ci

Figure 2.7: A general k-cycle graph. Each cycle may be of any length.

In [5], lower bounds on the broadcast time were found both when the originator vertex is the central vertex as

well as when it is some arbitrary vertex on any cycle. In particular, the lower bounds for the central vertex are:

Lemma 6: Let Gk be a flower graph where the originator u is the central vertex vc. Let l1 ≥ l2 . . .≥ lk be

the number of vertices in the cycles C1,C2, . . .Ck, all excluding vc. Then,

i. b(u)≥ k+1

14

ii. b(u)≥ ⌈ l j+2 j−1
2 ⌉ for any j,1≤ j ≤ k.

iii. b(u)≥ ⌈2k+l j+2 j+1
4 ⌉ for any j,1≤ j ≤ k.

Additionally, let n be the total number of vertices in Gk. Then,

iv. if b(u)≥ 2k, then b(u)≥ ⌈ n−1
2k + k− 1

2⌉

v. if k+1≤ b(u)< 2k, then b(u)≥ ⌈
√︂

(2n− 7
4)−

1
2⌉

Applying their proofs for Lemma 6 in a very similar logic for the case when the originator is not the central

vertex, Bhabak et al. additionally gave these bounds:

Lemma 7: Let Gk be a flower graph where the originator u ̸= vc is on some cycle Cw. Let l1 ≥ l2 . . .≥ lk

be the number of vertices in the cycles C1,C2, . . .Ck, all excluding vc, and let d be the length of the

shortest path from u to vc. Then,

i. b(u)≥ d + k

ii. b(u)≥ d + ⌈ l j+2 j−2
2 ⌉ for any j,1≤ j ≤ k.

iii. b(u)≥ d + ⌈2k+l j+2 j−2
4 ⌉ for any j,1≤ j ≤ k.

They additionally gave a (2− ε) approximation algorithm for any vertex as originator with O(|V |+ k logk)

running time, named Scycle. temp. They then showed that it found an optimal broadcast time for particular

subfamilies of flower graphs, specifically, when:

• l j ≥ l j+1 +4 for all 1≤ j < k

• l j = l j+1 for all 1≤ j < k

They additionally provide an erroneous proof for the subcase l j = l j+2, and we warn that in fact, Scycle in

practice does not find optimal broadcast schemes for this particular subfamily.

In [10], a O(k logk log |V |) heuristic called BroadcastGuess was given for broadcasting with u = vc as

originator. It tended to find either optimal or nearly-optimal broadcast times on randomly generated flower

graphs, and in practice was shown to find a broadcast scheme that was as good as or better than the one found

by Scycle, but no theoretical results were found with respect to their heuristic’s broadcast scheme.

15

When broadcasting with u = vc, both algorithms from [5] and [10] make an initial decision of immediately

using the first round to inform the largest cycle, a decision which is known to be suboptimal for particular

flower graphs: that is, some cycle graphs have no optimal broadcast schemes that inform the largest cycle first.

However, both algorithms use significantly different strategies:

Scycle chooses which cycle to call depending on the number of uninformed vertices left in each cycle while

prioritising cycles which have never been called before.

Instead, BroadcastGuess uses a subroutine, BroadcastBucket, that takes in a number of rounds t as additional

parameter. BroadcastGuess uses binary search to find the smallest t value for which BroadcastBucket returns

a valid broadcast scheme. BroadcastBucket loops through all cycles in order of descending size, and assigns

them the earliest free round available. For each cycle, after assigning it one round, the subroutine verifies if

the cycle needs an additional round to be completely informed. If it does, the algorithm assigns the latest free

round it can, while still guaranteeing that the cycle is fully informed by the end of round t.

The rest of this thesis focuses on this graph family.

2.1.9 The k-Path graph

Before moving on to our contributions, there is one last family of graphs worth mentioning due to their clear

connection to flower graphs: k-path graphs are graphs composed of k paths of arbitrary lengths connected by

a vertex on both ends. Just like flower graphs, no polynomial-time algorithm has been found for determining

the broadcast time of k-path graphs, and these graphs seem to exhibit the same difficult as in flower graphs,

despite being a fairly simple topology.

Figure 2.8: A k-path graph

In [5], Bhabak provides a (4− ε)-approximation algorithm for finding an optimal broadcast scheme on any

originator in a k-path graph.

16

Chapter 3

Theoretical results

3.1 Approximation in the general case

In the following chapters, we use the following terminology: In a flower graph G of k cycles, we call li the

length of cycle Ci, which we use to refer to the number of vertices in Ci excluding the central vertex vc. Thus,

supposing that our originator u = vc, a cycle Ci has li vertices to be informed. We enumerate the cycles of

G by descending order of their lengths: Hence, for the cycles C1,C2, . . .Ck, we have l1 ≥ l2 ≥ . . . lk. When

dealing with the case where u = vc, we say that a cycle C is called or informed by the central vertex vc when

vc broadcasts to one of the vertices of C. When every vertex in a cycle is informed, we say that this cycle is

fully informed. At the beginning of the construction of some broadcast scheme on some t rounds R1,R2, . . .Rt ,

we initially consider our rounds to be unassigned. As we determine which cycle Ci should be called by vc

during some particular round R j, we say that R j is assigned to Ci. Likewise, if Ci has no rounds assigned

to it, we say that Ci is unassigned. Observe also that when vc calls Ci at some round R j, that call results in

having at most t− j+1 vertices in Ci informed by the time Rt finishes (excluding vc from our count, as it is

the originator). Obviously, when vc is the originator we can call each cycle twice, so if we call some Ci during

some rounds Rp and Rq, we can inform at most a total of 2t− p−q+2 vertices on Ci (again excluding vc).

We also note the following: First, li ≥ 2 for all Ci: li = 1 would imply a single cycle of two vertices (including

the originator) so a graph with multi-edges. This contradicts the graph model we are using, so such a cycle

cannot exist.

We also hereby assume that we are broadcasting in non-trivial flower graphs: that is, we have more vertices

than merely the originator. Note that a simple algorithm is given in [9] for recognising flower graphs, if

needed.

Since we assume that we are working with non-trivial flower graphs, then for any flower graph G and any

17

originator u ∈V (G), b(u,G)≥ 2: b(u,G) = 1 would imply a single cycle C1 with l1 = 1.

Using the same observation, we can also obtain an upper bound [4] for k: For any graph G with vc as

originator, vc must call each cycle at least once: 1≤ k ≤ b(vc,G). However, suppose we have k = b(vc,G)

cycles. Consider the cycle called at the very last round of an optimal broadcast scheme: vc cannot have called

it in another earlier round, otherwise it would be left with a cycle it never called. But if it this cycle is only

called by vc the last round yet is successfully fully informed, then it must have at most 2 vertices including vc:

thus, it must be using multi-edges. Hence, we have 1≤ k ≤ b(vc,G)−1.

3.1.1 Approximation when t is a parameter

In this section we describe Algorithm 1, a simple algorithm for broadcasting in a flower graph. It takes as

input a flower graph G, an originator u, and some broadcast time t. It either returns a broadcast scheme which

successfully informs the entire graph, or it returns False, indicating that it failed to generate a valid broadcast

scheme. We will first show that for any G and originator u ∈ V (G), Algorithm 1 can always generate a

broadcast scheme using at most ⌊1.5b(u,G)⌋ rounds when given the correct1 t value as input. We will then

wrap Algorithm 1 with a binary search on t to identify the smallest t value for which this algorithm succeeds,

thereby creating a (1.5)-approximation algorithm for finding the broadcast time of a flower graph.

Algorithm 1 separates the broadcasting problem on flower graphs in two cases: the first is when the originator

u = vc, the central vertex. In this case, it will attempt to generate a broadcast scheme using ⌊1.5t⌋ rounds.

The second is when the originator is some vertex u ̸= vc, a vertex that is on some cycle Cw. In this case, it

first determines which rounds are needed to inform Cw (and whether vc will need to broadcast to Cw or not).

Then, it will attempt to generate a broadcast scheme using vc as originator, for broadcasting in the subgraph

G′ = (V (G)−V (Cw),E(G)−E(Cw)) (doing this while taking into account any already assigned round that

is used by vc for Cw, if such a round was used). Assuming that the distance from u to vc is d, the broadcast

scheme for G′ (if successfully generated) will thus have to use (d + ⌊1.5t⌋) rounds. The combination of these

two schemes (the first to inform Cw, the second to inform G′ from vc) can be used to inform G completely,

if the algorithm was successful in generating both broadcast schemes. If successful, the number of rounds

used in total is dependent on the length of Cw relative to the number of rounds needed for G′. If unsuccessful,

False is returned.
1see Theorem 1

18

Algorithm 1 Approx⌊1.5⌋
Input: a flower graph G with central vertex vc and k cycles sorted from largest to smallest, an originator u,
and some value t
Output: A broadcast scheme on ⌊1.5t⌋ rounds or more, or the boolean value False

1: if u ̸= vc then

2: let d = distance(u,vc)

3: u broadcasts along the shorter path to vc at R1, and then broadcast along the longer path at R2

4: if lw > 2d + ⌊1.5t⌋−1 then ▷ Cw needs to be called by vc from the other side

5: if lw ≤ ⌊1.5t⌋+ ⌊0.5t⌋+2d then

6: assign round Rt+d to Cw

7: else

8: assign round Rd+1 to Cw

9: Set d = d +1

10: else let d = 0

11: for every cycle Ci (if the originator is u ̸= vc, every cycle Ci except Cw) do

12: if Rd+i is unassigned, assign Rd+i to Ci

13: else return False

14: if li > ⌊1.5t⌋− i+1 then ▷ Ci needs a second call from vc

15: if li ≤ ⌊1.5t⌋+ ⌊0.5t⌋−2i+2 then ▷ this t value is too small, exit

16: if Rt+d+i is unassigned, assign Rt+d+i to Ci

17: else return False

18: else return False

To prove that Algorithm 1 can generate valid broadcast schemes using at most ⌊1.5b(u,G)⌋ rounds, we will

need the following two lemmas:

Lemma 8: Given a flower graph G, some originator u ̸= vc on some cycle Cw, let G′ = (V (G)−

V (Cw),E(G)−E(Cw)) be the subgraph of G induced by removing Cw. Suppose d = distance(u,vc).

Then, b(u,G)≥ d +b(vc,G′)

Proof. By construction of G′, to inform G′, u must inform vc first and must then use a broadcast scheme that

informs G′ with vc as originator. Since d = distance(u,vc), then b(u,G)≥ d +b(vc,G′).

19

Lemma 9: Let G be a flower graph of k cycles. Let topt = b(vc,G), and let l1, l2 . . . lk ≥ 2 be the lengths

(excluding the central vertex) of each cycle C1,C2, . . .Ck in G. Then, for i = 1,2, . . .k, li ≤ 2topt −2i+1

Proof. We know by assumption that there exists a broadcast scheme with vc as originator which can fully

informs G using topt vertices. Consider any broadcast scheme for G on topt rounds.

Observe that when calling cycles of size li or larger, vc may only use rounds in the set

{R1, . . . ,Rmin(topt ,2topt−li+1)}:

When li ≤ topt +1 then topt ≤ 2topt − li +1, so the above statement claims that vc may “only” use rounds in

the set {R1, . . . ,Rtopt}, that is, all rounds. This case is thus irrelevant, since no restrictions are given by the

above statement.

Instead, when li > topt +1, consider attempting to use R2topt−li+2 to inform a cycle of size li or larger. This

round must exist since li > topt +1. If we use this round to inform Ci, we will have at least li− (topt− (2topt−

li +2)+1) = topt +1 vertices left to inform in this cycle. We thus cannot completely inform the cycle by

round topt using any other round for this cycle. So, for any broadcast scheme on topt rounds, R2topt−li+2 is not

used to inform any cycle of size li or larger. The same proof can be applied on any round after R2topt−li+2. Thus,

when informing cycles of size li or larger, we may only use rounds in the set {R1, . . . ,min(topt ,2topt− li +1)}.

We can now use this to our advantage: Consider again the two cases when li ≤ topt +1 and when li > topt +1:

We will show that in both cases, if we assume by contradiction that li > 2topt −2i+1, then we cannot fully

inform all cycles in the set {C1, . . . ,Ci} by round topt .

Since li > 2topt −2i+1 and cycles are ordered by their descending lengths, then we can conclude that we

have at least i cycles of length of at least 2topt−2i+2. So, we have at least i(2topt−2i+2) vertices to inform

in the set {C1, . . . ,Ci}.

First, consider the case when li ≤ topt + 1. In this case, we have no restrictions on the rounds that we

may use to inform any cycle in the set {C1, . . . ,Ci}. Observe that by having vc make calls on all rounds

{R1, . . .Rtopt}, we may thus at most inform topt +(topt−1)+(topt−2) . . .+1 vertices in G. This sum, the total

number of vertices that may possibly be informed by our calls, is
topt

∑
j=1

j = topt
2+topt
2 . Then, observe that since

topt +1≥ li > 2topt −2i+1, then i > topt
2 . Inserting i > topt

2 in i(2topt −2i+2), we get that we must inform

strictly more than topt
2 (2topt −2(topt

2)+2) = t2
opt+2topt

2 vertices. Thus, we simply cannot fully inform our cycles

with the number of vertices that we would be informing with rounds R1 to Rtopt .

Consider now the other case, li > topt + 1. In this case, it means that we cannot inform any cycle in the

20

set {C1, . . . ,Ci} using a single round: all of these cycles must be called twice to be fully informed by

Rtopt . Additionally, by the argument above, any cycle in the set {C1, . . . ,Ci} must use rounds in the set

{R1, . . . ,R2topt−li+1}. Thus, we can conclude that we have i ≤ 2topt−li+1
2 , otherwise we do not have enough

rounds to call each cycle in the set {C1, . . . ,Ci} twice, meaning there must be a cycle in this set that is not

fully informed by Rtopt .

But, by assumption li ≥ topt +2, so i≥ 2topt−li+2
2 >

2topt−li+1
2 . Contradiction.

So, in all cases, there does not exist a broadcast scheme for G on topt rounds. Contradiction, since it was

assumed that b(vc,G) = topt .

With the above two lemmas, we can now make the following claims:

Theorem 1: Subroutine (1.5)-approximation: Given a flower graph G, an originator u, and some

value t:

• if u = vc and t = b(vc,G), Algorithm 1 generates a ⌊1.5b(u,G)⌋ broadcast scheme.

• if u ̸= vc on some Cw, then let G′ = (V (G)−V (Cw),E(G)−E(Cw)). If t = b(vc,G′), Algorithm 1

generates a ⌊1.5b(u,G)⌋ broadcast scheme.

Proof.

Case 1: u = vc and t ≥ b(vc,G), total quantity of rounds: ⌊1.5t⌋

Note that even if in this case, d = 0 by line 10, we will still refer to d in our calculations as this case will be

used by the case when u ̸= vc, where d > 0.

We will first describe the broadcast scheme generated by Algorithm 1, and then explain how it is a valid

broadcast scheme that successfully informs G by round R⌊1.5t⌋.

Algorithm 1 loops on the set of cycles Ci from the largest cycle to the smallest one.

For every cycle Ci, it assigns them Rd+i. Thus, in total, it will assigns as first calls all rounds in the set

{Rd+1, . . .Rd+k}, with d + k ≤ d + t−2 as explained in Section 3.1.

For every cycle Ci, after having assigned it a first round, Algorithm 1 will decide if a second call from vc will

be granted. To do this, it verifies if li > ⌊1.5t⌋− i+1 on line 14. When is this condition guaranteed to be

false? In other words, for which cycles can we claim that Algorithm 1 will never grant them a second call?

Recall that by Lemma 9, li ≤ 2t−2i+1.

21

2t−2i+1≤ ⌊1.5t⌋− i+1

⌈0.5t⌉ ≤ i

Thus, Algorithm 1 will never grant a second call to any cycle Ci when i≥ ⌈0.5t⌉.

Consider instead the cycles Ci for i < ⌈0.5t⌉. For any such Ci, if li ≤ ⌊1.5t⌋− i+1, then Algorithm 1 merely

moves on to the next cycle (or returns the entire broadcast scheme if that was the last cycle) after having

assigned them Rd+i. Suppose instead that li > ⌊1.5t⌋− i+1. In this case, Algorithm 1 verifies on line 15

whether or not the t value it was given is too small with respect to the size of the cycle. Observe that when

t ≥ b(vc,G) as assumed in this case, then li ≤ 2b(vc,G)− 2i+ 1 ≤ ⌊1.5t⌋+ ⌊0.5t⌋− 2i+ 2 once again by

Lemma 9. Thus when t ≥ b(vc,G), line 15 will always resolve to True, and a second call on round Rt+d+i

will be granted. Since in this case, i < ⌈0.5t⌉, all possible rounds assigned as second calls are rounds in the

set {Rt+d+1, . . . ,Rt+d+⌈0.5t⌉−1}, with t +d + ⌈0.5t⌉−1≤ ⌊1.5t⌋+d.

Thus, if t ≥ b(vc,G), Algorithm 1 returns a broadcast scheme that resembles the one in Figure 3.1.

22

Rd+1 R⌈1.5t⌉+d+1

C1

C2

. . .

Rd+2

. . .
Rt+d+1

Rt+d+2

C1

C2

. . .

. . .

C⌈0.5t⌉

C⌈0.5t⌉+1

︷ ︸︸ ︷

Cycles here may get assigned second round

︷ ︸︸ ︷

Cycles here only get assigned one round

︸ ︷︷ ︸

Second calls will only be made in this set

Quantity of
vertices that

can be
informed as

this call

potential second call for C⌈0.5t⌉−1

︸ ︷︷ ︸

First calls will only be made in this set of rounds

of rounds, if they are required

a result of

Figure 3.1: A broadcast scheme generated by Algorithm 1 with u = vc and t = b(vc,G).

Having explained the broadcast scheme generated, we will now demonstrate that it successfully fully informs

G in at most ⌊1.5t⌋+d rounds.

Assume thus that we are using ⌊1.5t⌋+d rounds. As just shown, Algorithm 1 uses Rd+i to have vc inform Ci.

This call results in having at most ⌊1.5t⌋+d− (d + i)+1 = ⌊1.5t⌋− i+1 vertices informed in Ci (excluding

vc).

As shown above, if i≥ ⌈0.5t⌉, then li ≤ 2b(vc,G)−2i+1≤ ⌊1.5t⌋− i+1, so Ci is fully informed with this

single call by round Rd+i.

If instead li > ⌊1.5t⌋− i+1, then i < ⌈0.5t⌉, and Algorithm 1 additionally assign Rt+d+i to Ci.

This informs at most an additional ⌊1.5t⌋+ d− (t + d + i)+ 1 = ⌊1.5t⌋− t− i+ 1 vertices, for a total of

23

⌊1.5t⌋+ ⌊0.5t⌋−2i+2 ≥ 2t−2i+1 vertices informed by both calls. By Lemma 9 and since we’re using

t ≥ b(vc,G), Algorithm 1 always fully informs Ci using these two rounds, if needed.

Hence, in the case where when u = vc and t ≥ b(vc), the scheme generated by Algorithm 1 fully informs all

cycles by round R⌈1.5t⌉−1+d , and ⌈1.5t⌉−1+d ≤ ⌊1.5t⌋+d. When t = b(vc,G) and u = vc, this means that

we inform all cycles by round R⌊1.5b(vc,G)⌋+d with d = 0, and thus achieve a (1.5)-approximation in this case.

Note that because cycles are not guaranteed to need second calls, it is possible that vc ends up not making a

call on the last round (or some contiguous sequence of rounds that includes the last round). However, we still

need to use R⌊1.5t⌋ rounds to guarantee that all cycles are fully informed by the time the broadcast scheme

terminates.

Case 2: u ̸= vc and t ≥ b(vc,G′)

In the following proof, despite the fact that Algorithm 1 has the possibility of setting d = d + 1, we will

always use d = dist(u,vc), and merely account for this additional 1 explicitly in our sums if we need it.

u first broadcasts along its shorter path towards vc, and then to its longer path. Since d = distance(u,vc)

initially, vc will be informed at round Rd and start making calls at round Rd+1. Algorithm 1 needs to figure

out whether or not vc will broadcast to Cw, and when it does so.

After deciding if and when to broadcast to Cw, Algorithm 1 can fall back to Case 1, acting as if vc is the

originator in the subgraph G′, provided all the rounds needed by Case 1 are unassigned.

According to Algorithm 1, we have three possibilities for calling Cw from vc:

• lw < 2d+⌊1.5t⌋−1: vc does not broadcast to Cw. Thus, all rounds {Rd+1,Rd+⌊1.5t⌋} remain unassigned

and vc can start to broadcast to G′ at round Rd+1, and finish informing all vertices in V (G′) at Rd+⌊1.5t⌋,

as per Case 1.

• 2d+⌊1.5t⌋−1≤ lw ≤ ⌊1.5t⌋+⌊0.5t⌋+2d: vc broadcasts to Cw at round Rd+t , which is left unassigned

by Case 1, and like the above case, finishes informing all vertices in V (G′) at Rd+⌊1.5t⌋.

• ⌊1.5t⌋+ ⌊0.5t⌋+2d < lw: assuming d = dist(u,vc), vc broadcasts to Cw at round Rd′ = Rd+1 and thus

broadcasts to G′ starting at Rd+2 and finishes informing all vertices in V (G′) at Rd+⌊1.5t⌋+1.

We need to show that in all cases, we remain below or equal to ⌊1.5b(u,G)⌋ rounds by the time we fully

inform Cw and G′.

For now consider only the vertices in Cw that are informed thanks to the calls that u makes, regardless of

the call that vc may or may not make on Cw. By round Rd+⌊1.5t⌋, we have a total of 2d + ⌊1.5t⌋−1 vertices

24

informed in Cw (excluding vc), from the following sum:

• d vertices, consisting of u and the d−1 vertices on u’s shortest path to vc, in addition to:

• d + ⌊1.5t⌋− 1 vertices, consisting of vertices on the longer path from u to vc, which begins to be

informed at round R2 by u’s second call and can continue to be informed until the very last round,

which is at least Rd+⌊1.5t⌋.

Consider now the following subcases:

Subcase 2.1: lw ≤ ⌊1.5t⌋+ ⌊0.5t⌋+2d, total quantity of rounds: ⌊1.5t⌋+d

If lw ≤ 2d + ⌊1.5t⌋−1, Algorithm 1 just has vc ignore Cw as it will be fully informed by R⌊1.5t⌋+d , as per the

sum above.

If lw > 2d+⌊1.5t⌋−1, we can have vc broadcast to Cw using Rd+t , since, as seen in the proof of Case 1, Rd+t

will never used by vc to inform any cycle in G′ if t ≥ b(vc,G′). If we use it to have vc inform Cw, that brings

our total of vertices informed in Cw to 2d + ⌊1.5t⌋−1+
(︂
⌊1.5t⌋+d− (t +d)+1

)︂
= 2d + ⌊1.5t⌋+ ⌊0.5t⌋.

Since G′ is also completely informed by R⌊1.5t⌋+d and ⌊1.5t⌋+d < ⌊1.5b(u,G)⌋, then G is fully informed

before ⌊1.5b(u,G)⌋.

Subcase 2.2: lw > ⌊1.5t⌋+ ⌊0.5t⌋+2d, total quantity of rounds: max(d + ⌊1.5t⌋+1,⌊ lw
2 ⌋+1)

First observe that in this case, Cw must be the largest cycle in G: by Lemma 9, the largest cycle in G′ has its

length ≤ 2t−1 < ⌊1.5t⌋+ ⌊0.5t⌋+2d.

Then, since lw = ⌊1.5t⌋ + ⌊0.5t⌋ + 2d + x for some x ≥ 1, then by Lemma 6(ii.), b(u,G) ≥

⌈ ⌊1.5t⌋+⌊0.5t⌋+2d+x+1
2 ⌉ ≥ t +d + ⌈ x

2⌉.

Here, we merely have vc’s first call be to Cw’s other vertex. Then, vc can start informing G′ at Rd+2, and thus

G′ is completely informed by Rd+⌊1.5t⌋+1, and Cw is completely informed by R
⌊ lw

2 ⌋+1
.

If d + ⌊1.5t⌋+ 1 ≥ ⌊ lw
2 ⌋+ 1, this means that our broadcast scheme takes d + ⌊1.5t⌋+ 1 rounds total to

complete.

Then, observe: d + ⌊1.5t⌋+1 < 2d + ⌊1.5t⌋+ ⌈ x
2⌉ since d,x≥ 1

< ⌊1.5(t +2d + ⌈ x
2⌉)⌋

≤ ⌊1.5(d +b(u,G))⌋ by Lemma 6(ii.)

≤ ⌊1.5(b(u,G))⌋ by Lemma 8

25

If instead d + ⌊1.5t⌋+1 < ⌊ lw
2 ⌋+1, then our broadcast scheme instead takes ⌊ lw

2 ⌋+1 rounds to complete.

Since an optimal broadcast scheme for the entire G with vc as originator would need to inform the entirety of

Cw, then b(u,G)≥ ⌊ lw
2 ⌋+1: ⌊ lw

2 ⌋+1≤ b(u,G)

< ⌊1.5b(u,G)⌋

< ⌊1.5(d +b(u,G))⌋

≤ ⌊1.5(b(u,G))⌋ by Lemma 8

So, in all cases, when u ̸= vc and t = b(vc,G′), we obtain a broadcast scheme with 1.5(b(u,G)) rounds or

fewer.

Algorithm 1 has an O(k) running time, since it performs constant-time steps for every cycle, of which we

have k.

We can now wrap Algorithm 1 in a binary search that looks for the smallest t value for which Algorithm 1

sucessfully returns a broadcast scheme.

3.1.2 Subroutine for tightening the range of t values

Before giving the pseudocode for the binary search wrapper, we take the opportunity to comment on the range

of t values we will need to search. Instead of searching for t on a naively wide initial range of values, we can

use the lower bounds provided in [5] which are given in the previous section (see Lemma 6), as well as the

following simple upper bounds to tighten the range. We do note that this still however results in an O(|V |)

range of values for t.

Lemma 10: Let G be a flower graph with k cycles. Let l1, l2 . . . lk ≥ 2 be the lengths (excluding the

originator) of each cycle C1,C2, . . .Ck in G.

Then, if its central vertex vc is originator:

i. b(vc)≤ max
1≤i≤k

(li + i−1)

ii. b(vc)≤ max
1≤i≤k

(︁
2i+(⌊ li

2⌋+1)
)︁

Else some other vertex u on a cycle Cw is originator:

iii. b(u)≤ d + max
1≤i≤k

(li + i−1)

26

iv. b(u)≤ d + max
1≤i≤k

(︁
2i+(⌊ li

2⌋+1)
)︁

Proof. First consider when vc is the originator: Then, for case i., we can imagine a very simple broadcast

scheme which simply calls each cycle once by descending order of their lengths. Thus, C1 will be fully

informed at round l1, C2 will be fully informed by round l2 +1, and in general Ci will be fully informed by

round li + i−1. This achieves a broadcast scheme that uses at most max(li + i−1) rounds. For case ii., we

instead use a different very simple broadcast scheme, which uses two rounds for each cycle: rounds R1 and

R2 to inform C1, rounds R3 and R4 to inform C2, and in general rounds R2i−1 and R2i to inform round Ci.

Thus, C1 will be fully informed at round ⌊ l2
2 ⌋+1, C2 will be fully informed by round ⌊ l2

2 ⌋+5, and Ci will

be in general fully informed by round 2i+(⌊ li
2⌋+1). This achieves a broadcast scheme that uses at most

max(2i+(⌊ li
2⌋+1)) rounds.

Then, consider when u ̸= vc is the originator. Then, by Lemma 8, b(u)≥ d(u,vc)+b(vc). Suppose u makes

a call on its shorter path to vc, and thus informs vc at round d. For case iii., for any cycle C j, vc can begin

making calls on the remaining k−1 cycles starting at round d +1, thus we simply have vc make a call to C j

on round l j +d. As we make no prescription in our algorithm for a particular behaviour of vc when it reaches

the cycle Cw, we can make a loose upper bound of max(d + li + i−1).

In a very similar manner, case iv. can reach an upper bound of max(d +2i+(⌊ li
2⌋+1)) rounds.

Hence we can make the following subroutine for the range of our t values:

Algorithm 2 tRange
Input: a flower graph G with k cycles sorted by descending sizes and an originator u
Output: A lower and an upper bound on b(u)

1: if u is the central vertex vc then

2: le f t←max
(︂

k+1, max
1≤ j≤k

(⌈ l j+2 j−1
2 ⌉), max

1≤ j≤k
(⌈2k+l j+2 j+1

4 ⌉)
)︂

3: right←min
(︂

max
1≤i≤k

(li + i−1), max
1≤i≤k

(︁
2i+(⌊ li

2⌋+1)
)︁)︂

4: else u is some other vertex u on some cycle Cw

5: le f t←max
(︂

k+d, max
1≤ j≤k

(⌈ l j+2 j−2
2 ⌉), max

1≤ j≤k
(⌈2k+l j+2 j−2

4 ⌉)
)︂

6: right←min
(︂

max
1≤i≤k

(d + li + i−1), max
1≤i≤k

(︁
d +2i+(⌊ li

2⌋+1)
)︁)︂

7: return le f t,right

We can now combine the lower and upper bounds into a range within which the optimal t value is guaranteed

to be, a small result we need for an upcoming theorem.

27

Corollary 1: For any flower graph G with k cycles and an originator u, consider the values left, right

returned by Algorithm 2. Then, left ≤ b(u,G)≤ right.

Proof. Follows from Lemma 6 and Lemma 10.

We can use the above subroutine in our binary search wrapper:

Algorithm 3 BroadcastWrapper
Input: a flower graph G with k cycles, an originator x, and an algorithm that returns a valid broadcast scheme
or the boolean value False
Output: the smallest t value for which A(G,x, t) found a broadcast scheme, or the upper bound on b(x,G)
from tRange(G,x) if A(G,x, t) failed to find any broadcast schemes.

1: sort G’s cycles from largest to smallest lengths.

2: le f t,right← tRange(G,x)

3: BroadTime← right

4: while le f t ≤ right do

5: middle = ⌈ le f t+right
2 ⌉

6: PossibleBroadcastScheme← A(G,x,middle)

7: if PossibleBroadcastScheme is not False then

8: BroadTime← middle

9: right← middle−1

10: else

11: le f t← middle+1

12: return BroadTime

Theorem 2: (1.5)-approximation: Algorithm 3 with A = Algorithm 1 is a (1.5)-approximation al-

gorithm for any originator in the flower graph G.

Proof. Follows from Theorem 1 and Corollary1.

When using Algorithm 1, Algorithm 3 runs in O(k log(k))+O(k)+O(k log(|V |)) = O(k log(|V |)): it first

sorts the cycles from largest to smallest at line 1, then fetches the upper and lower bound by performing

constant-time operations on each cycle length at line 2, and finally performs a binary search on log(|V |) values

starting at line 4 and at each step, executes our O(k) Algorithm 1 at line 6.

28

3.2 Improvement on Algorithm 1

One can naturally see that a few minor modifications to Algorithm 1 can result in an improvement:

Recall that for the first ⌈0.5t⌉−1 cycles, Algorithm 1 may assign a second round to these cycles if they are

not fully informed using only Rd+i. If it does, it always assigns Rt+d+i to them, permitting us to make this

assignment with a constant-time operation and maintain our running time to O(k) for the entire algorithm.

Instead, we can choose to search (naively, in O(t) time) for the latest unassigned round that can be used to

still completely inform Ci by round t. This minor change often results in successfully finding a broadcast

scheme using fewer rounds than Algorithm 1 needs to find a valid broadcast scheme. However, since we use

fewer rounds, it may be that the second round we assign to some Ci ends up being a round that is intended to

be used as a first round or second round by a cycle that appears after Ci in the order of cycles. Thus, we need

to additionally keep a pointer to the earliest unassigned round to ensure no accidental ‘double booking’ of the

rounds is made.

We note that the BroadcastBucket heuristic given in [10] operates in nearly exactly the manner just described

above, with some caveats: It uses buckets to represent the rounds that vc will call vertices on, allowing for

multiple calls to be assigned to the same bucket. When assigning the second call to some cycle during some

particular round, the heuristic makes no attempt to strictly reserve that round to the cycle that claims it, and

instead stores the call in the bucket used to represent that round. If another other cycle later claims that same

round, it will insert the second call in that same bucket (thus now containing two calls). After having assigned

call(s) to buckets for every cycle, it merely counts whether it has enough unassigned rounds to satisfy each

cycle: A call in an already-occupied bucket can be moved to an earlier, but unassigned, bucket. If enough

unassigned buckets (that appear early enough) exist, then a valid broadcast scheme exists. This results in

nearly identical, but occasionally slightly different performances between the two algorithms (see Chapter 5).

Despite very similar behaviour to BroadcastBucket and thus very similar performances in practice, we still

judge it pertinent to describe Algorithm 4, as it can be easily shown to also achieve (1.5)-approximation ratio.

29

Algorithm 4 ImprovedApprox⌊1.5⌋
Input: a flower graph G with k cycles sorted from largest to smallest, an originator u, and some value t
Output: A broadcast scheme on ⌊1.5t⌋ rounds or more, or the boolean value False

1: if u ̸= vc then

2: let d = distance(u,vc) and t ′ = ⌊1.5t⌋+d

3: u broadcasts along the shorter path to vc at R1, and then broadcast along the longer path at R2

4: if lw > 2d + ⌊1.5t⌋−1 then ▷ Cw needs to be called by vc from the other side

5: if lw ≤ ⌊1.5t⌋+ ⌊0.5t⌋+2d then

6: assign round Rt+d to Cw

7: else

8: assign round Rd+1 to Cw

9: Set d = d +1 and t ′ = max(⌊1.5t⌋+d +1,⌊ lw
2 ⌋+1)

10: else let d = 0 and t ′ = ⌊1.5t⌋

11: let eur = d +1 ▷ eur is used to indicate the index of the earliest unassigned round

12: for every cycle Ci (if u is the originator, except Cw) do

13: assign Reur to Ci

14: if li > t ′− eur+1 then ▷ Ci needs to be assigned second round

15: If there exists at least one unassigned round R j where 1≤ j ≤ 2t ′− eur− li +2, assign the latest

such round to Ci

16: else return False

17: if such a round exists, set eur to the index of the earliest unassigned round, else return False

Theorem 3: 1.5− ε-approximation: Algorithm 3 with A = Algorithm 4 is a (1.5− ε)-approximation

algorithm for any originator in the flower graph G.

Proof. Consider first how Algorithm 1 and Algorithm 4 differ: Algorithm 4 uses t ′ to represent what we will

prove is an upper bound on the number of rounds used by the broadcast scheme. This value is obtained in

line 2,line 9, or line 10. Algorithm 4 also uses eur to represent the index of the earliest round that vc can use

to inform any vertex, but that as of yet still stands unassigned. It is first set in line 13, and then updated for

every cycle in line 17.

Algorithm uses these two values in line 14 to determine the number of rounds informed by the first call on Ci

and thus decide if a second call to Ci is required or not. If so, it again uses these values in line 15 to find the

30

latest round at which Ci can be called to be still completely informed by t ′.

We will first prove the claims we just made on the purposes of t ′ and eur to demonstrate that when Algorithm 4

returns a broadcast scheme, this broadcast scheme is valid and fully informs G by round t ′. We will then argue

that if Algorithm 1 manages to create a broadcast scheme for some particular t value, so will Algorithm 4,

thereby reaching a (1.5)-approximation.

First, we show that t ′ accurately represents the number of rounds used by the broadcast scheme. We ignore

instances when Algorithm 4 returns False since no broadcast scheme is returned. Suppose thus that this is an

instance where Algorithm 4 successfully returns a broadcast scheme. Recall the cases detailed in the proof for

Theorem 2, as they come up again here:

Case 3: u = vc and t = b(vc,G)

There, d = 0 and t ′ = ⌊1.5t⌋, as per line 10. Assume that the number of rounds used by our broadcast scheme

is at least t ′ = ⌊1.5t⌋.

For every cycle Ci, consider the sums of vertices accounted for by the round(s) assigned to Ci:

By the first call using Reur, at least ⌊1.5t⌋− eur + 1 vertices are informed. If li ≤ ⌊1.5t⌋− eur + 1, no

second round was assigned to Ci. This is fine, as we inform ⌊1.5t⌋− eur+ 1 vertices by round R⌊1.5t⌋. If

li > ⌊1.5t⌋−eur+1, then a second round was assigned to Ci: R j, with 1≤ j ≤ 2t ′−eur− li +2. This second

call informs t ′− (2t ′− eur− li +2)+1 =−t ′+ eur+ li−1 vertices by round t ′. Thus we have at least a total

of
(︁
t ′− eur+ 1

)︁
+
(︁
− t ′+ eur+ li− 1

)︁
= li vertices informed by round t ′. Since we are working with an

instance that successfully returned a broadcast scheme, than such a j must have existed: thus, we always fully

inform Ci. In the case where li is too large to be fully informed by ⌊1.5t⌋, no such R j would exist that would

satisfy the condition in line 15.

Case 4: u ̸= vc and t = b(vc,G′)

There, as in the proof for Theorem 2, we have two cases:

Subcase 4.1: lw ≤ ⌊1.5t⌋+ ⌊0.5t⌋+2d

Then, t ′ = ⌊1.5t⌋+d as per line 2.

By the same logic as in the proof for Theorem 2, Cw is fully informed by round d + ⌊1.5t⌋, possibly while

using Rd+t if lw > 2d + ⌊1.5t⌋−1. G′ must also be fully informed by round Rd+⌊1.5t⌋ even in the case where

Cw is granted a second call, as we assumed that Algorithm 4 returned a broadcast scheme, and as the lines 13

to 15 take into account the unavailability of rounds when selecting rounds to inform each Ci. Additionally, as

31

shown for Case 3, these rounds are selected such that every Ci considered (that is, G′) is fully informed by

round t ′.

Subcase 4.2: lw > ⌊1.5t⌋+ ⌊0.5t⌋+2d

By the same logic as in the proof for Theorem 2 and the proof of the subcase above, Cw is again informed by

round R
max(d+⌊1.5t⌋+1,⌊ lw

2 ⌋+1)
and G′ by Rd+⌊1.5t⌋+1.

Thus, t ′ accurately represents an upper bound on the number of rounds used by the broadcast scheme.

Suppose now that for some t value, Algorithm 1 returns a valid broadcast scheme. Observe by proof of

Theorem 2 that the quantity of rounds that is used by the broadcast scheme of Algorithm 1 is equal to the

value that t ′ is set to in Algorithm 4. This would thus mean that if Algorithm 4 returns a broadcast scheme,

then that broadcast scheme uses as many rounds as Algorithm 1. But we still need to prove that Algorithm 4

successfully does return such a broadcast scheme.

We demonstrate this by showing Algorithm 4 always has rounds to assign to its cycles in G.

In the case where u ̸= vc, the rounds assigned to Cw are the same in both algorithms, so we can safely assume

Cw will be fully informed by t ′ in Algorithm 4: the proof of Theorem 2 demonstrates this.

Then, for both cases u ̸= vc and u = vc, consider by strong induction on i the rounds chosen for Ci ̸=Cw in

both algorithms: For our base case, both algorithms use as their first round for C1, Reur = Rd+1. Then, if C1

needs a second call, then Algorithm 1 uses Rd+t+1, and Algorithm 4 uses Rd+t+1 or a later round.

For our induction step, we assume that after having made the round assignments for Ci and all previous cycles,

that the broadcast scheme slowly constructed by Algorihm 4 meets the following requirements:

• All rounds from {Rd+1, . . . ,Rd+i} are reserved, and all rounds {Rd+i+1, . . . ,Rd+t−1} are unassigned.

• There exists at least one unassigned round in the set {Rd+t+1, . . . ,Rd+t+i+1}

Observe that after our base case, the above is true: First, Rd+1 was used as the first round for C1, so

{Rd+2, . . . ,Rd+t−1} remain unassigned, making the first condition true. Secondly, if Algorithm 4 used Rd+t+1

as a second round for C1, then Rd+t+2 is unassigned, making the second condition true. If Algorithm 4 instead

used a later round as second round for C1, then Rd+t+1 remains unassigned.

Consider now the assignment for Ci+1: The earliest unassigned round useable by vc must be Rd+i+1, since

all rounds {Rd+1, . . . ,Rd+i} are reserved. So we grant Rd+i+1 to Ci+1. This makes {Rd+1, . . . ,Rd+i+1} all

reserved. It also maintains {Rd+i+2, . . . ,Rd+t−1} all unassigned.

Observe that Algorithm 1 also uses Rd+i+1 for Ci+1. If Ci+1 needs a second round, it assigns Rd+t+i+1 to it.

Since at least one round in the set {Rd+t+1, . . . ,Rd+t+i+1} is unassigned for Algorithm 4, then Algorithm 4 can

32

also make a valid second round assignment. If it assignes a round in the set {Rd+t+1, . . . ,Rd+t+i+1}, then this

means that there exists one unassigned round in the set {Rd+t+1, . . . ,Rd+t+i+2}: Rd+t+i+2 isn’t used. If instead

is uses a round that appears strictly after Rd+t+i+1, then that unassigned round in {Rd+t+1, . . . ,Rd+t+i+1} still

exists, so there exists a unassigned round in the set {Rd+t+1, . . . ,Rd+t+i+2}. We can continue this until all

cycles are assigned rounds.

Thus, whenever Algorithm 1 finds a valid broadcast scheme, so does Algorithm 4, and these schemes use the

same quantity of rounds, that is, t ′.

3.3 Discussion on Algorithm 1, Algorithm 4, and BroadcastBucket

Before considering the running time of Algorithm 4, it is useful to observe the differences between

BroadcastBucket and Algorithm 4:

First, remark that BroadcastBucket fails to get within (1.5)-approximation: BroadcastBucket requires two

calls to be made to every cycle, regardless of whether a cycle was fully informed by its first call. Therefore, at

best BroadcastBucket can only achieve a (2)-approximation ratio.

This can be very easily fixed by merely not giving a second round to cycles that don’t need it: if the first call

can fully inform a cycle by the given t value, then BroadcastBucket should immediately move on to the next

cycle. Since this modification is very simple, we will now assume BroadcastBucket to have this modification

applied, and we will identify this modified algorithm as BroadcastBucket∗.

When looking at the proof of Theorem 3, one can infer that a very similar proof may be applicable to

BroadcastBucket∗ and thus that it may achieve a (1.5)-approximation ratio, although we do not attempt this

as Algorithms 1 and 4 already achieve this approximation ratio, and Algorithm 4 obtains nearly exactly the

same broadcast times as BroadcastBucket∗ in practice (see Chapter 5)

The second fundamental difference appears when having to look for a second round if a cycle requires

it: For every Ci that needs it, Algorithm 4 will search for an unassigned round to use for second call (an

O(t) operation) immediately after assigning the first call to Reur. As explained before, BroadcastBucket∗

instead merely places the call temporarily in the latest bucket it can afford to, even if that bucket is already

occupied. After completing this loop on every cycle, BroadcastBucket∗ verifies it has enough unassigned

buckets such that it can rearrange the calls, and thus evading this t factor. This crucial difference may mean

that BroadcastBucket∗ in fact fails to get a (1.5)-approximation ratio due to some particular nemesis instances

that are particularly sensitive to this difference, but we have not verified this.

33

This difference comes into play when comparing their running times as well. First, consider the running time

of Algorithm 4:

For every cycle, Algorithm 4 may need to search for R j, the the latest round it can use while still being

completely informed by t ′. It also needs to update the value eur. These two actions naively take, in the worst

case, O(t) = O(|V |) time for each cycle. We can easily reduce the cost of each update operation on line 17 to

a constant factor with amortized analysis (and thus have it be an O(t) operation over the entire algorithm):

Let our operation on line 17 be as follows: Algorithm 4 performs a single constant time check operation to

verify if Reur is assigned. If this round is unassigned, eur does not change, and we can continue the execution

of the algorithm as usual. If this round is reverved, Algorithm 4 will make a series of move-check operations,

incrementing eur by one and verifying if Reur is assigned or not, repeating this incrementing and checking

until it finds a unassigned round. Once it does, Algorithm 4 can continue the execution of the algorithm

as usual. Observe that over the course of the entire algorithm, we make O(k) check operations and at most

only O(t) move-check operations: We only run a move-check operation if the previous check or move-check

operation found an assigned round, and we necessarily increment eur in this case. If eur > t, we return False.

Thus, line 17 makes at most O(k)+O(t) = O(t) constant-time operations.

Unfortunately, searching for R j still remains an O(t) operation (thus costing O(tk) over the entire algorithm,

due to the O(k) for-loop) since we reserve rounds without much restrictions: mostly any round before or at R j

could be the latest unassigned round available at some time.

Therefore, Algorithm 4 has an O(tk) = O(|V |k) running time. From this, Algorithm 3 has an O(|V |k log |V |)

running time when using Algorithm 4.

This is significantly worse than BroadcastBucket∗’s running time: O(k logk), and thus O(k logk log |V |) with

the binary search wrapper. We can however get rid of the logk factor that comes with searching for the earliest

unassigned round in BroadcastBucket∗ with amortized analysis in a similar manner to eur above: therefore,

we get that BroadcastBucket∗ has a O(t) running time, which, when wrapped with the binary search wrapper,

means a O(t log |V |) algorithm. For small values of k relative to |V |, this running time may be significantly

worse than O(k logk log |V |), but as k→ |V | this additional analysis is justified.

34

Chapter 4

A Heuristic for broadcasting on flower

graphs

4.1 Preliminaries

It was observed in [9] that approximation algorithm Scycle, the heuristic BroadcastBucket (and, it can be

observed, Algorithms 1 and 4) all make the assumption that when broadcasting from vc on any flower graph

G, that the first call vc makes should be to the largest cycle.

But this is not always the case: certain flower graphs have no optimal broadcast scheme with the first call

going to the largest cycle. An example of this is given in [9].

Given a particular flower graph G, can we identify patterns where a particular round must or must not be

assigned to a particular cycle in all optimal broadcast schemes? Heuristic 7, ImprovedBroadcastBucket, is a

heuristic which seeks to do exactly this. When Heuristic 7 fails to identify any possible decision, it instead

falls back to behaviour inspired from Algorithm 4.

Unlike Algorithm 1 and Algorithm 4, ImprovedBroadcastBucket only broadcasts from vc. We assume

that, in a similar manner to Algorithms 1 and 4, one can deal with cases where the originator u ̸= vc

on some cycle Cw by informing vc as quickly as possible and using the broadcast scheme generated on

G′ = (V (G)−V (Cw),E(G)−E(Cw)).

Similarly to Algorithms 1 and 4, it takes as input a flower graph G with k cycles, and an integer t, the

(suspected) broadcast time of G from vc, its central vertex. It then either returns False, indicating it was unable

to find a broadcast scheme for this t value, or it returns the scheme it managed to create for fully informing

the graph G from vc in t rounds. Using the wrapper from Algorithm 3, we can thus search for the smallest t

35

value for which we successfully find a broadcast time.

4.2 Intuition

Before giving our algorithm, we give the intuition behind the design. Suppose we are given some particular t

value, and want to inform all cycles by round t. Consider looking at each round from the point of view of a

particular cycle Ci.

Ci has two ways it may be fully informed by round Rt :

• vc makes a single call to a vertex of Ci. So long as it does so at round Rt−li+1 or earlier (assuming

such a round exists), then Ci will be fully informed by round Rt .

• vc makes two useful calls to Ci, one to each vertices adjacent to vc. This can occur if the first call

occurs at the earliest at Rt−li+2, requiring use to use a second call to finsih the cycle in time. How late

the second call can be made depends on how early the first call was. So long as vc makes the calls at

rounds Rt−li+1+x and Rt−x+1 at the latest, with 1≤ x < li, then Ci will be fully informed by round t.

Note that the above assumes that we do not assign any redundant calls: that is, if the first call to some Ci can

fully inform it by Rt , then no second call is made to Ci. Of course, for any optimal broadcast scheme that exists

and makes use of some redundant call, so does one exist without that redundant call, therefore this assumption

is reasonable. In the rest of this section, we typically say that we only make useful or non-redundant calls.

Essentially, for each cycle, there exists some number of candidate sets containing either one or two rounds

(which we will refer to as “single” or “pair” sets) which can be used to fully inform that cycle. Finding

a broadcast scheme on t rounds then becomes simply the task of selecting, for each cycle, one particular

candidate set such that we never have conflicting sets. Provided we have a way of considering all possible

candidate sets, then we can use these sets to both identify where a call to a particular cycle must occur, and

where a call to a particular cycle cannot occur (that is, the absence of some particular round(s) within all the

candidate sets of one cycle can lead us to make decisions about the the other rounds or other cycles). We

argue that one can thus look at these candidate sets to determine, for instance, that on some particular graph G

and some number of rounds t, the first round must not be used for the largest cycle.

While we are building our partial broadcast scheme (that is, as we slowly assign rounds to particular cycles),

considering all possible candidate sets and individually determining if a valid optimal scheme exists using

that particular set rapidly becomes too computationally expensive. Likewise however, merely assuming that a

particular candidate set can always be picked without considering the requirements of the other cycles, as

does Algorithms Scycle, BroadcastBucket, 1 or 4, can lead to locking ourselves into a partial broadcast scheme

36

that cannot achieve the optimal broadcast time of the graph.

We have noticed a number of easily-identifiable situations where, when considering which candidate set to

assign for some particular Ci, we can safely either:

• assign a particular candidate set to a particular cycle, guaranteeing that an optimal broadcast scheme

exists using the resulting partial broadcast scheme.

• rule out an entire group of candidate sets, guaranteeing that no optimal broadcast scheme exists using

any candidate set in the group.

On a high-level, ImprovedBroadcastBucket attempts to generate a broadcast scheme on exactly t rounds. It

seeks to represent the candidate sets available using a small set of indices created for each cycle, which it

places across the unassigned rounds according to particular rules described later. As it identifies situations

where candidate sets can be assuredly used or ruled out, it moves these indices around across the set of

unassigned rounds. The identification of these situations is done in a two-step process: First, it uses one set of

rules to increment or decrement each indices. Then, it uses a second set of rules to assign rounds depending

on the values of these indices. When none of the rules can be applied, it reverts to a default fallback behaviour,

which is occasionally unoptimal and occasionally optimal. We show through simulations that this fallback

rule is not optimal but manages to find near-optimal broadcast schemes. If at any point during execution,

the algorithm finds that a cycle remains without any rounds assigned to it, yet has no more candidate sets

remaining, it returns False, announcing that it failed to find a valid broadcast scheme.

4.3 The Heuristic

For our heuristic, we first need a formal way of representing a partial broadcast scheme. We also need a way

of identifying whether the partial scheme can be made into an complete broadcast scheme or not.

Definition 1: Partial Scheme: Given a flower graph G and a parameter t ≥ b(vc,G), we call a partial

scheme a set of calls from vc to vertices adjacent to vc.

We say that this partial scheme is valid if there exists a broadcast scheme that includes this set of calls,

and successfully informs G in t rounds.

When working on a valid partial scheme, when we assign some set of rounds to a particular cycle, we call

this assignment a valid assignment if our partial broadcast scheme remains valid after this assignment.

Observe that, intuitively, provided t ≥ b(vc,G), an empty partial scheme is initially valid. We can thus start

37

with an empty partial scheme, and then use assignment rules that always make valid assignments to obtain a

broadcast scheme.

We now highlight, relative to each unassigned Ci, that some particular rounds can be used to represent the

limit of which rounds belong in a candidate set. Using these rounds, one can determine relatively quickly

that whether a particular round can or cannot be used for a particular cycle, instead of having to verify the

compatibility of every possible candidate set.

As we add assignments to our partial broadcast scheme, these particular rounds may change since candidate

sets may become no longer viable.

Definition 2: Indices for a cycle Ci: For any unassigned cycle Ci in a flower graph G and a valid partial

broadcast scheme BR on t rounds, we define the following rounds:

• The latest-single-call-round: If it exists, the earliest round that meets the following two conditions:

• the round is unassigned in BR.

• For all broadcast schemes which fully inform G in t rounds and use all assignments in BR, if

they inform Ci using a single call, this call uses the latest-single-call-round or an earlier

round.

• The first-split-round: If it exists, the latest round that meets the following two conditions:

• the round is unassigned in BR.

• For all broadcast schemes which fully inform G in t rounds and use all assignments in BR, if

they inform Ci using two non-redundant calls, their first call uses latest-single-call-round or

a later round.

• The halfway-point: This round must exist for all unassigned rounds, else our partial scheme BR is

invalid. The earliest round that meets the following two conditions:

• the round is unassigned in BR.

• For all broadcast schemes which fully inform G in t rounds and use all assignments in BR,

their first (and possibly only) call to Ci uses halfway-point or an earlier round.

• The last-split-round: If it exists, the earliest round that meets the following two conditions:

• the round is unassigned in BR.

38

• For all broadcast schemes which fully inform G in t rounds and use all assignments in BR, if

they inform Ci using two non-redundant calls, their second call uses last-split-round or an

earlier round.

Note well that the above are defined only with respect to a particular valid partial broadcast scheme: In

other words, given some valid partial scheme BR, there could be some unassigned round Rx which can fully

inform Ci using a single call, but no existing complete broadcast scheme that uses all assignments in BR, and

also informs Ci using a single call made at round Rx. In this case, we can have our latest-single-call-round

necessarily appears strictly earlier than Rx.

Note additionally that for cycles containing exactly 3 vertices, since one cannot reasonably ponder whether to

call these cycles once or twice from vc. We thus acknowledge that the definition above doesn’t have much

meaning for cycles of exactly 3 vertices, but note that, if a graph has an optimal broadcast scheme on t rounds,

one can seek to find such a broadcast scheme by first using the latest calls vc can make (except during the very

last round) to inform any cycle on 3 vertices this graph has. This is in fact exactly what Heuristic 7 does.

Given a particular partial broadcast scheme BR, Heuristic 7 will attempt to determine whether or not the

rounds defined in Definition 2 exist and, if so, to approximate their location as closely as well as it can. For

every unassigned cycle Ci, it will define the variables Si, Fi, Hi, Pi, and Li respectively, which it will refer to as

the indices of Ci. These indices will meet the same requirements as in Definition 2, except that they may not

be the latest or earliest round that fullfill the requirements given in Definition 2: for instance, Heuristic 7 may

slightly overshoot the latest-single-call-round by instead referring to some RSi that appears significantly later.

As Heuristic 7 progresses, it will move these indices across to different rounds depending on the availability

and usefulness of the rounds, with respect to Ci.

Taking again the example of Si and the latest-single-call-round for a particular Ci, Heuristic 7 will try to find

the best value of Si it can infer, such that RSi gets as close to the true latest-single-call-round of Ci as possible

(provided it exists). It will additionally attempt to infer whether or not no such round exists, and delete Si if it

does infer this.

Refer to Figure 4.1 for a representation of the t rounds from the view of two potential cycles, C1 with l1 >> t

and C2 with l2 << t.

39

rS2

rF2
can be used with, at the latest, rL2

to inform C2

︸ ︷︷ ︸

t− l2

rF2 rH2
rt

at least one round

must be assigned
between [r1, rH2

]

to C2

︸ ︷︷ ︸

If our first call to C2 is here, it will require a second call
︸ ︷︷ ︸

If our first call to C2 is here, we can fully inform it with one call

rH1

rF1

r1 rL1 rL2

at least one round

must be assigned
between [R1, rH1

]

to C1

Both calls to C1 must be in here
︷ ︸︸ ︷

quantity of nodes
that can be
informed by this
call

At the latest, rF1

can be used with rL1

to inform C1

As rounds are reserved,
rS2

will shift left.

As rounds are
reserved, rF1

will
shift right.

As rounds are
reserved, rL1

will

shift left.

As rounds are
reserved, rH1

will
shift left.

Figure 4.1: A visual representation of the indices of two cycles C1 and C2, with with l1 >> t and C2 with
l2 << t.

To ensure that the indices always “overshoot” the rounds of Definition 2, we define the following requirements,

which we will always uphold:

Definition 3: Validity of Indices: For any unassigned cycle Ci in a flower graph G and a partial

broadcast scheme BR on t rounds, given any such index Si, Fi, Hi, Pi, or Li, we say that the index is valid

if for all complete broadcast schemes that use all assignments in BR and fully inform G in t rounds:

1. If the index is of type Si: If Ci is informed with one call then the call occurs at RSi or at an earlier

round, and Si ≤ Hi.

2. If the index is of type Fi or Li: If Ci is informed with two non-redundant calls, then the first call

occurs at RFi or a later round, and the second call occurs at RLi or an earlier round.

3. If the index is of type Hi or Pi: If Ci is informed with two non-redundant calls, then the first call

occurs at RHi or an earlier round. If the first call occurs exactly at RHi , then the second call occurs

40

at and RPi or later.

4. If the index is of type Hi: The first call to Ci is made at RHi or an earlier round.

5. If Si does not exist, then Ci is never informed with a single call.

6. If Fi does not exist, then Ci is only informed with a single call.

Note well that unlike Definition 2, we do not presume to work on a valid partial broadcast scheme. We merely

instead state that, if a valid broadcasts scheme exists, indices that follow the requirements in Definition 3 can

be used to somewhat reasonably simulate the rounds in Definition 2.

Notice also that we use the additional index Pi, which does not have an round it seeks to emulate in Definition 2.

We will instead use this index to more accurately determine whether or not we need to move Hi to an earlier

round.

At the beginning of Heuristic 7, we initialise these indices to the following values:

Definition 4: Indices Initialisation Procedure:

• Si:

• if li > t, don’t create Si

• if li ≤ t, Si := t− li +1

• Fi := max(1,t− li +2)

• Hi := t−⌊ li
2
⌋

• Pi := t−⌊ li
2
⌋+1

• Li := min(2t− li +1, t)

We first demonstrate that the above indices are initialised to be valid:

Lemma 11: Given a flower graph G and a broadcast time t ≥ b(vc,G), the indices generated by

Definition 4 are valid, as according to Definition 2.

Proof. Consider first claim 1 of Definition 3: if li > t, then we have to inform this cycle with two calls

since no single call can completely inform Ci in time, and we correctly represent this by not creating an Si.

Recall the lower bound of 2 on cycle length from Section 3.1. If 2 ≤ li ≤ t then 1 ≤ t− li + 1 ≤ t− 1, so

Rt−li+1 always exists. Using Rt−li+1 lets us inform t− (t− li +1)+1 = li vertices by Rt . Using a single call

41

occuring during any rounds after it will fail to fully inform Ci by Rt . Thus, after initialisating Si as dictacted in

Definition 4, Si correctly represents the index of the latest round that can fully inform Ci, if this is possible.

For Hi, since we can inform Ci with one call then Si exists. Since li ≥ 2, then Si = t− li +1 < t−⌊ li
2
⌋, so we

have that Si < Hi as required.

Consider now claim 2. Recall that a redundant call is a call that can be omitted from the broadcast scheme,

and Ci would still be fully informed by Rt . Observe first that since li ≥ 2 for all Ci, then t− li +2≤ t, so RFi

always exists.

By the above, it thus must be that our earliest first round occurs at Rt−li+2, otherwise our second call would be

redundant. Thus Fi’s initial value correctly refers to the earliest round that can be used to inform Ci, but that

requires a second call to be made to Ci. For the second call, observe first that it must be that 2t− li+1≥ 2: we

assumed that t ≥ b(vc,G), and we know By Lemma 9 that li ≤ 2b(vc,G)−2i+1≤ 2t−1→ 2t− li +1≥ 2.

This is intuitively logical: we cannot use R1 for our second call since the second call must occur after the first

call, and the earliest round that the first call can use is R1. Consider when 2t− li +1 < t: If we use any round

strictly after R2t−li+1, then that call informs t− (2t− li +2)+1 = li− t−1 rounds at most. Thus, our first

call needs to inform at least li− (li− t−1) = t +1 vertices, which isn’t possible with t rounds. Thus it must

be that our second call occurs at R2t−li+1 or earlier (but after the round for the first call, of course). Thus Li’s

initial value correctly refers to the latest round that can be used as a second call to Ci, and successfully inform

Ci if paired with an early-enough first call.

Next, consider claim 3. Observe that if we instead tried to use Rt−⌊ li
2 ⌋+1 as our first call we’d inform ⌊ li

2
⌋

vertices, and thus have ⌈ li
2
⌉ vertices left to inform. This cannot be fullfilled by any round strictly after RHi+1,

thus this value fails to meet our definition of Hi. Observe however that using Rt−⌊ li
2 ⌋

as our first call, we can

pair it with Rt−⌊ li
2 ⌋+1 and successfully fully inform Ci by Rt . Thus, Hi’s initial value correctly refers to the

latest round by which a call to Ci must have been made. Observe finally that RPi = RHi+1, which is the earliest

possible round we can use while still using a round that occurs strictly after RHi , so if RHi does end up being

used for Ci, the second call must occur at RPi or later.

Finally, consider claims 5 and 6: if li > t, then it is indeed true that we cannot inform Ci with a single call

since we can at most inform t vertices with a call at R1. Additionally, Fi always exists, therefore claim 6 is

always valid.

How to store and handle these indices will be discussed later when dealing with the running-time of the

algorithm. For now, we give a small subroutine for tightening the values of these indices as we assign rounds

in our algorithm:

42

Algorithm 5 LowerBoundSubroutine
Input: a flower graph G with k cycles sorted from largest to smallest, a partial broadcast scheme BR, valid
indices for all unassigned cycles of G
Output: updated, valid indices for all unassigned cycles of G, or False

1: UnassignedRoundsCount := 0, RoundsNeeded := 0, Le f tIndex := 1

2: Count := a k-sized integer array initially all set to 0

3: for j == 1 to t do

4: if R j is unassigned in BR then UnassignedRoundsCount += 1

5: for all indices Xi = j do

6: if Xi is of type Hi then Count[i] += 1, RoundsNeeded += 1

7: else if Xi is of type Li and Si does not exist then Count[i] += 1, RoundsNeeded += 1

8: if if UnassignedRoundsCount > 0 and UnassignedRoundsCount == RoundsNeeded then

9: for all unassigned Ci do

10: if Count[i] == 1 then

11: if Hi ≥ Le f tIndex and Hi > 2t− li− j+1 then

12: if there exists at least one unassigned round Rx where x <= 2t− li− j+1 then, set Hi

to the latest such round’s index, else Return False

13: else if Count[i] == 0 then

14: for Xi of type Si, Hi, or Li do

15: if Le f tIndex≤ Xi ≤ j then

16: if there exists at least one unassigned round Rx where x < Le f tIndex then, set Xi

to the latest such round’s index, else delete Xi

17: for Xi of type Fi or Pi do

18: if Le f tIndex≤ Xi ≤ j then

19: if there exists at least one unassigned round Rx where x > j then, set Xi to the

earliest such round’s index, else delete Xi

20: else if UnassignedRoundsCount < RoundsNeeded then Return False

21: UnassignedRoundsCount = 0, RoundsNeeded = 0, Le f tIndex = j+1

22: Reset all values in Count to 0

23: Return all indices

43

Lemma 12: Given a graph G, a partial broadcast scheme BR, a set of valid indices for all cycles

unassigned in BR, then:

• if Subroutine 5 returns False, then BR was invalid.

• if Subroutine 5 returns a set of indices, then these indices are still valid.

Proof. We first highlight that this lemma does not claim that Subroutine 5 detects all cases where no broadcast

scheme can be made using all rounds from BR, simply that the cases it does detect are indeed when BR is

invalid.

We now explain how Subroutine 5 actually behaves. In short, it completes a single pass on the set of rounds

from R1 to Rt with a pointer R j where j = 1, and where it slowly increments this pointer until reaching t.

During this pass, it keeps track of two counts: first, the number of unassigned rounds from R1 to R j, stored in

UnassignedRoundsCount. Second, the number of times a cycle declares it absolutely needs a round to be

assigned to it from the set {RLe f tIndex, . . . ,R j}, stored in RoundsNeeded. It also keeps track of which cycles

are declaring these instances, and how often they did so, using an array Count.

Whenever these UnassignedRoundsCount and RoundsNeeded are equal to each other (and are not 0), then

it can use this to make inferences about which candidate sets can be completely ruled out: For instance, if

some cycle Ci declared only needing exactly one round in {R1, . . .R j}, then using a candidate set that uses

two rounds in {R1, . . .R j} is out of the question: doing so would use an additional round for Ci that it didn’t

request, and would leave us with too few unassigned rounds in {R1, . . .R j} to fulfill the requirements of the

other unassigned cycles that declared needing rounds in {R1, . . .R j}.

Once Subroutine 5 moves the indices of each cycle to reflect these candidate sets being ruled out, it resets

UnassignedRoundsCount, RoundsNeeded, Count, and sets Le f tIndex = j+1. Indeed, we can now consider

that all of the unassigned rounds in the set {RLe f tIndex, . . . ,R j} are reserved, even if we aren’t exactly sure

how they are assigned yet: all we know is that some cycle Ci may be assigned 0, 1, or 2 rounds in this set

depending on its Count[i] value. Therefore, Subroutine 5 can now look for another equality of the two counts

at some later j′ > j, and therefore find another place where it can reserve all the unassigned rounds of the set

{R j+1, . . . ,R j′}.

If UnassignedRoundsCount ever goes below RoundsNeeded, then assuming we are correctly counting the

number of unassigned rounds needed, this would thus imply that no complete broadcast scheme on t rounds

and using all the assignments from BR can exist, since no broadcast scheme has enough unassigned rounds

44

before and including R j to fulfill the requirements of the unassigned cycles remaining.

If instead UnassignedRoundsCount remains equal to or above RoundsNeeded, then there can exist such

complete broadcast schemes. What we instead need to demonstrate is that our indices remain valid.

To do so, we need to do two things: First, we need to demonstrate that we are correctly counting the number

of cycles absolutely needed by the unassigned cycles.

Second, we need to, from this, demonstrate that the changes applied to the indices, which are applied when

the If statement at Line 8 is true, never invalidates an index.

Consider first the way in which we count the rounds needed by an unassigned Ci:

• At Line 6, we count the index Hi: by definition of the halfway-point and our assumption that the

indices given to us are valid, we know that we will indeed need at least one round by RHi with which

to make our first call. By the above, we know that all the rounds before RLe f tIndex are reserved, and

therefore cannot be used for us. Therefore, it is correct to increment the count here and claim we need a

round in the set {RLe f tIndex, . . . ,RHi}. One can make the argument that we should increment Pi as well,

however, this will be handled by another rule. Even when not incrementing Pi, we remain valid.

• At Line 7, we count the index Li only if Si does not exist: since our indices are valid, we first know that

we must inform Ci with two calls, and we know from Li’s validity that, at the latest, the second call

must occur that RLi . Wherever we incremented the count for Hi previously, this increment only counted

the first call. Similarly to the case for Hi, we know that all the rounds before RLe f tIndex are reserved,

and therefore cannot be used for us. Therefore, it is correct to increment the count here and claim we

need a round in the set {RLe f tIndex, . . . ,RFi}.

Therefore we correctly count the number of rounds needed by Ci.

We now show that the changes made when Line 8 is true never invalidate the indices.

Three changes are applied: The first is when Count == 1: in this case, at Line 12, if Hi ≥ Le f tIndex and

Hi > 2t− li− j+1, Hi is set to 2t− li− j+1.

Consider first under which conditions this is true: since Hi ≥ Le f tIndex, then we granted one round to Ci for

its first call. However, since Count[i] == 1, then either Li > j, or Si exists. In this case, we can effectively

rule out any instance where Ci is granted two rounds in the set {RLe f tIndex, . . . ,R j}: either Ci must be informed

with a single call made at RSi or earlier, or it is informed with two calls, the first of which occurs early enough

such that the second call is made at R j+1 or later. How early must this first call occur? The second call, at best,

45

can inform a total of t− (j+1)+1 vertices. Therefore, we have at least li− (t− (j+1)+1) left to inform

with the first call. Thus, it must be that our first call occurs at the latest at Rx where:

t− x+1≥ li− (t− (j+1)+1)

2t− li− j+1≥ x

Thus we can safely set Hi = 2t− li− j+1.

Consider now when Count[i] == 0. In this case, Ci cannot use any rounds in the set {RLe f tIndex, . . . ,R j}. If

we do use such a round for Ci, we will not have enough unassigned rounds left in the set to fullfill the demands

of the other unassigned cycles that declared needing rounds in the set. We can therefore safely move all of

Ci’s indices out of the set as complete valid broadcast scheme on t rounds and using all of BR’s assignments

can exist that would use such a round for Ci. Since Count[i] == 0, then RHi is not in this set, so we don’t need

to change its value. In the case of Si, Fi, Pi, or Li, we need to move them to the first available unassigned

round not in the set (if it exists) in the direction dependent on the type of index we are working with: Si and Li

move to earlier rounds, Pi and Fi moves to later rounds. If no such round exists, we can then instead remove

this index. Since using any round in {RLe f tIndex, . . . ,R j} for Ci would invalidate our partial broadcast scheme,

and since we move to the first available unassigned round not in the set, our indices remain valid.

Thus, Subroutine 5 returns valid indices.

We now give small additional rules for updating the indices:

Definition 5: Rules for Updating The Indices: For any Ci, Given any set of indices Si, Fi, Hi, and Li (or

none of them), and some partial broadcast scheme BR, then:

1. If Li > 2t +2− li−Fi, set Li to the index of the latest unassigned round that appears at least as

early as R2t+2−li−Fi .

2. if Fi == Li, delete Fi and Li.

3. if only one of Fi or Li exists, delete the other one.

4. if Si == Hi, delete Fi and Li.

5. if Hi > 2t +2− li +Pi, set Hi to the index of the latest unassigned round that appears at least as

early as R2t+2−li−Fi . Then, set Pi to the index of the latest unassigned round that appears at least

46

as early as RHi+1.

6. if Ci has no Si, Fi, and Li, return False.

Similarly to Lemma 12, we will demonstrate that these rules never invalidate valid indices:

Lemma 13: Given a graph G, a partial broadcast scheme BR, a set of valid indices for all cycles

unassigned in BR, then applying any rule in Definition 5 returns a set of valid indices.

Proof. Consider first Rule 1:

The rounds {RFi . . .RLi} are only useful to Ci if they can be paired with another round within that set. If some

solution used any round appearing before that set to inform Ci, then using any other round to inform Ci from

the other side would be redundant. By definition of RLi , no solution exists using any round appearing after

that set to inform Ci (unless that call is redundant, and thus can be ignored).

Consider thus instead the earliest round that Ci can use, which still needs a second call to completely inform

Ci by Rt . By definition, this round is RFi . This round can only inform t−Fi +1 vertices. This means that

our second call needs to be able to inform at least li− (t−Fi + 1) vertices: t− x+ 1 ≥ li− (t−Fi + 1)→

2t− li +2−Fi ≥ x. Thus, using some round strictly after R2t−li+2−Fi would mean we fail to fully inform Ci in

time. Instead, using such a round would force us to use a round strictly after RFi . The first such unassigned

round, if it exists, is RSi . This would make our second call redundant. Thus, we can safely set Li to the latest

unassigned round that appears at least as early as R2t−li+2−Fi .

Consider now Rule 2: Since Fi == Li, we cannot inform Ci using two (useful) calls. We must inform Ci using

a single call. Thus, we can safely remove Fi and Li since no broadcast scheme can usefully attempt to use any

round after RSi to inform Ci. Similar logic can be appled for Rules 3 and 4.

Consider now Rule 5: very similarly to Rule 1, RHi can only usefully be used in conjunction with a round RPi

or later. Thus, if Hi > 2t +2− li +Pi, then since we are assuming that Pi is valid (and no previous rule ever

invalidates Pi), then no round strictly after R2t+2−li+Pi can be usefully paired with RPi . We must move Hi to a

round with index at most 2t +2− li +Pi. However, having now done so, it is possible that some round that

appeared at or before Hi’s previous value can now be used as a valid second round. Thus, we must move Pi as

early as we can: to RHi+1.

Finally, for Rule 6, we can simply observe that if we no longer have either Si (and thus cannot inform Ci

with a single call) nor Fi and Li (and thus cannot inform Ci with two useful calls), then we cannot inform Ci

in t rounds with our current BR scheme. We need to exit out of this instance and try again with a larger t

value.

47

We now give the rules for assigning cycles based on the values of their indices. First, we give a similar rule to

Subroutine 5:

Algorithm 6 UpperBoundSubroutine
Input: a flower graph G with k cycles sorted from largest to smallest, a partial broadcast scheme BR, valid
indices for all unassigned cycles of G
Output: A partial scheme BR

1: UnassignedRoundsCount := 0, RoundsCanUse := 0

2: Count := a k-sized integer array initially all set to 0

3: for j == 1 to t do

4: if R j is unassigned in BR then UnassignedRoundsCount += 1

5: for all indices Xi = j do

6: if Xi is of type Hi or type Li, then Count[i] += 1, RoundsNeeded += 1

7: if if UnassignedRoundsCount > 0 and UnassignedRoundsCount < RoundsCanUse then

8: if there exists at least one unassigned Ci where Count[i] == 2 and Si exists then

9: Take the largest such Ci, and assign RSi to Ci in BR

10: Return BR

11: Return BR

Lemma 14: Given a graph G, a valid partial broadcast scheme BR, a set of valid indices for all cycles

unassigned in BR, then Subroutine 6 returns a valid partial broadcast scheme BR.

Proof. We refer to the proof of Lemma 12 for an explanation of the basic logic of the traversal of Subroutine 6,

since it works in a similar but simpler manner to Subroutine 5.

The key difference is the following: instead of counting the number of rounds that Ci needs in the set

{RLe f tIndex, . . . ,R j} (which, in this context, can be simplified to counting the number of rounds needed in

the set {R1, . . . ,R j}), Subroutine 6 counts using variable RoundsCanUse the number of rounds that Ci can at

most usefully use. That is, it assumes thus that BR decides to inform Ci using two calls instead of one. In

essence, we seek to identify whether or not we have enough unassigned rounds to call all cycles that can be

informed using two rounds: if not, then we can conclude that there is a cycle which must be called only once,

even if there does exist some unassigned rounds which it could usefully use to be fully informed by Rt .

Indeed, we verify two conditions: is Hi ≤ j? and: is Li ≤ j?

If the first condition is true, we will necessarily need (and thus can usefully use) one round in

48

{RLe f tIndex, . . . ,R j}. If the second condition is also true, we may inform Ci with a single call occuring

at or before RSi , or we can inform Ci with one call occuring at or before RHi and a second occuring at or

before RLi . Therefore we correctly calculate the guarantee that we can usefully use at most two rounds in

{R1, . . . ,R j}.

If UnassignedRoundsCount ever dips strictly below RoundsCanUse, We must therefore find a cycle which

can afford to give up such a round. Recall that we demonstrated in the proof of Lemma 12 that the way

to obtain the number of rounds a cycle needs in the set {R1, . . . ,R j} is by essentially verifying these two

conditions: is Hi ≤ j? and: is Li ≤ j and does Si not exist?

By comparing this with the way in which we count RoundsCanUse, we can see thus that the only moment

where these two counts differ is when Hi ≤ j, Li ≤ j, and Si exists: RoundsCanUse will allow Ci to reserve

an additional round, but not RoundsNeeded. Thus, we must use a cycle that meets this condition if we are to

inform it with only one round: taking a round away from a cycle where RoundsCanUse == RoundsNeeded

would mean creating an invalid partial broadcast scheme.

Suppose, by assumption, that BR is a valid partial broadcast scheme and our indices are valid. Suppose also

that we find some j wherein UnassignedRoundsCount < RoundsCanUse. If no cycle meets the condition

described above, then we merely return BR unchanged, which will thus remain valid.

If instead there does exist a cycle Ci such that Hi ≤ j and Li ≤ j and Si exists. Then, Count[i] == 2 and Si

exists, so Line 8’s condition is true. There, we take the largest Ci that meets the above condition, and assigns

to it RSi . We now claim that the resulting BR′ is still valid.

Suppose instead by contradiction that this BR′ is invalid. Then, it must also be that any broadcast scheme

which grants to Ci a round strictly before RSi is also invalid, otherwise we could simply take a valid broadcast

scheme which grants such a round to Ci, swap these two calls and obtain a valid broadcast scheme where

Ci is informed using RSi . However, BR is valid by assumption, therefore there does exist some particular set

of assignments we can add to BR to make a valid complete broadcast scheme. By definition and validity

of Si, it must thus be that in any such broadcast scheme, Ci is informed using two calls with the first call

occuring strictly after RSi . Consider any such complete broadcast scheme, call it BR̂. Since BR̂ made the

same assignments as BR, then it, too, had to deal with the issue explained above: that is, it had a list of cycles

which can potentially use, in total, RoundsCanUse rounds in the set {R1, . . . ,R j}, but it did not have enough

unassigned rounds in this set to grant all the cycles concerned the maximum quantity of rounds they requested.

Thus, it must have chosen some Cx where Count[x] == 2 and Sx existed, and informed with a single call

using RSx or an earlier round. Call this round Ry. It must be that y > Si: otherwise, in BR̂, we could merely

49

swap the calls for Ci for the call for Cx, and obtain a valid broadcast scheme. But, likewise, it must be that

lx isn’t smaller than li, otherwise we can swap Cx in the call for Ci and inform Cx fully with the two calls

that inform Ci, and thereby obtaining a complete broadcast scheme where Ci is informed with only one call.

Contradiction. Thus, a a valid broadcast scheme must exist where Ci is informed in round RSi .

Therefore, Subroutine 6 returns a valid partial broadcast scheme BR.

We now give a small set of additional rules for assigning cycles based on the values of their indices.

Definition 6: Assignment Rules: Given a graph G, a valid partial broadcast scheme BR, a set of valid

indices for all cycles unassigned in BR, then:

• If a cycle Ci is the largest unassigned cycle and Si exists, assign RSi to Ci.

• If a cycle no longer has any Fi and Si, assign RSi to Ci.

• If there exists a cycle Ci such that Si doesn’t exist, and:

• if Fi == Hi, then assign RFi and RLi to Ci.

• else if Pi == Li, then assign RHi and RPi to Ci.

Lemma 15: Given a graph G, a valid partial broadcast scheme BR, a set of valid indices for all cycles

unassigned in BR, then applying any of the rules in Definition 6 exactly once returns a valid partial

broadcast scheme BR.

Proof. For rule 6, consider the largest unassigned cycle Cl , and the earliest unassigned round R j. Since we

started with a valid partial broadcast scheme, there must be a some complete broadcast scheme that uses all

assignments of BR. Consider such a broadcast scheme BR̂, and suppose that in BR̂, Cl is not informed using

R j. Consider the cycle Cx that BR̂ does inform in R j: By assumption, lx ≤ ll . We thus can simply have Cx

use the rounds that BR̂ uses to inform Cl , and inform Cl with R j: since Si exists, Si ≥ j. So, if there exists a

complete broadcast scheme that can inform G in t rounds, then there must exist a complete broadcast scheme

that uses R j to inform Cl , that can inform G in t rounds.

By very similar logic, rule 6 only makes valid assignments.

Rule 6 essentially says: If you must split your cycle into two useful calls and only one round exists in the set

{Fi . . .Hi} or {Pi . . .Fi}, assign that round and the latest round that can be paired with it for Ci.

50

Consider first the case where Fi == Hi. Since Si doesn’t exist, then we must split our cycle in two calls.

Since Fi == Hi, then RHi must be used to inform Ci since no other rounds can be used for the first call, and

we know that a complete broadcast scheme exists since BR is assumed to be valid. Additionally, the latest

round that can be used with RHi to fully inform Ci is Li: Li would have its value decrease until it pointed to

t− (Ci− (t−Fi)) by Rule 1 when updating indices. It must also be that Li ̸= Fi, otherwise Rule 2 would have

remove Fi and Li. So, RLi is available for Ci, can be used with RHi to fully inform Ci, and is the latest round

available to be validly paired with Hi. A very similar logic can be used for the case where Pi == Li.

Thus, for all rules in Definition 6, we obtain a valid partial broadcast scheme when starting with a valid partial

broadcast scheme.

We highlight that any time after assigning a round to a cycle using one of the rules from Definition 6, then all

indices previously pointing to this round need to be updated to remain valid, since they are no longer pointing

to an unassigned round. We will do this in Heuristic 7.

We finally a default assignment rule, which we can use when we get stuck and cannot take a decision, chosen

based on the performance of Algorithm 4.

Definition 7: Default Rule: Assign to Ci RLi . Then, assign to Ci the latest unassigned round that can be

usefully paired with RLi .

Note that the the latest unassigned round that can be usefully paired with RLi is not always RFi , it is occasionally

RFi+1 depending on whether li is odd or even, and depending on the availability of rounds.

We now group all of the above together in our heuristic:

51

Algorithm 7 ImprovedBroadcastBucket
Input: a flower graph G with k cycles sorted from largest to smallest, and a broadcast time t
Output: A broadcast scheme for u, or the boolean value False

1: L = list of indices initialised with Definition 4

2: BR = [0]∗ t

3: Assign all cycles Ci of li = 2 to the latest rounds available (except the very last round), in any order.

4: while Some cycles are still unassigned do

5: OldIndices := L

6: L = LowerBoundSubroutine(G,BR,L)

7: if L = False then Return False

8: for every unassigned cycle Ci do

9: Apply all Rules of Definition 5 which can be applied.

10: for every unassigned cycle Ci do

11: if Ci does not have Si, Fi, and Li then Return False

12: for every Assignment Rule in {U pperBoundSubroutine, rules from Definition 6} do

13: Try to make an assignment in BR with the Assignment Rule

14: if the Assignment Rule made an assignment to some round R j then

15: for All 1≤ i≤ k, for any index Si, Hi, or Li = j do

16: if there exists at least one unassigned round Rx where x < Le f tIndex then, set all these

indices to the latest such round’s index, else delete these indices.

17: for All 1≤ i≤ k, for any index Pi or Fi = j do

18: if there exists at least one unassigned round Rx where x > Le f tIndex then, set all these

indices to the earliest such round’s index, else delete these indices.

19: Break out of Loop starting at line 10

20: if L == OldIndices and no Assignment Rule could be applied then

21: make an assignment in BR using Default Rule 7

22: Return BR

Theorem 4: Heuristic Validity: Given a broadcast scheme G and a value t = b(vc,G), Heuristic 7

returns an optimal broadcast scheme if it doesn’t return False and never falls back to its Default Rule.

Proof. According to Lemma 11, we initialise on valid indices. We also start with a valid broadcast scheme

52

BR, since our broadcasts scheme is empty and t ≥ b(vc,G).

According to Lemma 12 and 13, given a set of valid indices, the indices remain valid after having been

modified by their respective rules. According to Lemma 14 and 15, when given a set of valid indices and a

valid partial broadcast scheme BR, the assignments made keep by their respective rules keep BR valid.

Thus, Heuristic 7 returns an optimal broadcast scheme if it never falls back to its Default Rule.

One may question the utility of the above theorem, since, by definition, if t = b(vc,G) and Heuristic 7

successfully returns a broadcast scheme, then we have found an optimal broadcast scheme. However, the

intent behind it is simple: provided we can find enough rules such that we can always make some valid

assignment without falling back to some Default rule, then we can argue that our heuristic is an algorithm

which solves the broadcast problem on Flower Graphs. Unfortunately however, we were unable to find rules

which both cover all possible situations and can be proven to always make valid assignments. The strength of

this theorem lies in the idea that, should a new rule be found, that it can be added to the Heuristic 7 such that

we may perhaps eventually be able to prove that the Heuristic never has to fall back to a default rule.

4.4 Running Time

We now explain how to achieve a reasonable running time.

The crucial part is the data structure for referring to the indices of each unassigned cycle. In short, we will

maintain each index in two structures:

First, initialising all index values using Definition 4 is just an O(k) operation, since all values can be calculated

in constant time.

For storage, we may keep an array A such that we can access the value of each index for each cycle in O(1)

time, since all cycles will keep four indices (some of which may be simply set to some Null value, to indicate

their non-existence.)

We will secondly keep a linked list B of t buckets, with some bucket B[x] containing any index with value x.

For instance, if Hi = x, then it will be kept in bucket B[x]. Each bucket B[x] will maintain a flag to indicate

whether Rx is already assigned in our partial broadcast or not, and will maintain pointers to the closest previous

and next buckets referring to unassigned buckets. Every bucket will maintain the indices stored in them using

a binary heap, allowing O(log(k)) inserts and removals. Thus, we can update the value of an index in both A

and B in O(1)+O(log(k)).

Whenever a round is assigned to a cycle, its bucket can in O(t) time alert all other buckets that their previous

and next pointers may need to be updated. All other buckets need to be alerted: we need to ensure that even

53

the buckets representing an already-assigned round maintain correct pointers. Any bucket’s pointers may be

used by Subroutine 5, the Rules 5, or even Lines 15 and 17 in Heuristic 7 to determine where an index needs

to be moved to (what value it needs to be changed to). By maintaining these pointers up to date, we can thus

determine which bucket we need to move an index to (or if an index needs to be removed) in constant time,

making these operations cost a total of O(log(k)) purely to update the values in B.

Using this same intuition, we can conclude thus that Subroutine 5 is an O(t)+O(k logk) operation: We

traverse the t buckets and count how many unassigned buckets there are. Observe that for indices Si, Hi, or

Li, we may only move these indices to an earlier round. Thus, we can guarantee that we only need to move

them (costing O(logk)) at most once per execution of Subroutine 5. For Pi and Li, we can efficiently push

back our move such that it is only performed once per execution of Subroutine 5: Pi never affects the way

the Count[i] value is calculated, so we can simply store where we need to move Pi and only perform it at the

end of the execution of the subroutine. As for Li, while it does affect Count[i], we know that whenever we do

move this index, we move it on Line 18 to the first unassigned round that appears after our current R j. We

also know that we will reset our values on Line 20 immediately after finishing all moves for this j. Observe

that since Line 8 verifies that UnassignedRoundsCount > 0 and by the way that Count[i] is calculated, we

are guaranteed that for any Ci, if we added 1 to Count[i] because of Li during this particular instance when

Line 8 was True (that is, for this particular set of round {RLe f tIndex, . . . ,R j}), that we must again add 1 to

Count[i] on the next instance when Line 8 is True (that is, for the next set of rounds {R j+1, . . . ,R j′} for some

j′ > j where Line 8 is True). Thus, we can simply add 1 to Count[i] immediately, and avoid having to move

Li immediately, and instead locally remember that this particular Li is a value that is supposed to be within the

set {R j+1, . . . ,R j′}. We can keep repeating this until the end of this subroutine execution, at which point we

can perform our single move. Thus, this index also costs only O(logk) to move during the entire execution of

Subroutine 5.

For the rest of this subroutine, we have O(1) operations in the for-loop of Line 5, and a few initialisation and

reset operations on Lines 1, 2, and 20. Since these are done in the worst case on every round, we end up with

a O(tk)+O(k logk) subroutine.

All rules of Definition 5 can be checked in constant time, as is finding the new values for each index, since by

previous arguments we can merely obtain pointers to these earliest or latest unassigned rounds that appear at

or before some specific round. The actual movement of each index will take O(logk), as before. Since we

may check these for all cycles, we thus find that we can apply them in O(k logk) time.

Subroutine 6, in a similar but less complicated argument to the one for Subroutine 5, can be executed (ignoring

54

the assignment operation) in O(t)+O(k logk), since no reset operation takes place. Additionally, It performs

a single round assignment which will require O(t) operations to update all pointers of the other buckets, and

O(logk) operations to remove the indices of the assigned cycle.

All rules of Definition 6 can be checked in constant time, and their assignments, index removals, and

subsequent index moves of Lines 15 and Lines 17 can be done once again in O(t)+O(k logk) time.

The fallback rule we fall back to in case no index movement or assignment was made (which can be checked

in O(k) time) can be executed O(t)+O(k logk) time as well.

Thus, we are guaranteed to always make an assignment for every iteration of the while loop of Line 4. All

other operations are simply constant time, or simple assignments which cost less than the execution of the

while loop. Thus, provided we don’t return False, our Heuristic 7 can execute in O(k2 logk)+O(k2t). Pairing

it with the binary-search on t of Algorithm 3, we get an O(k2 logk log t)+O(k2t log t) heuristic.

55

Chapter 5

Simulation results

5.1 Preliminaries

We describe here the simulation results obtained from the comparisons of all algorithms when broadcasting.

For Algorithms 1,4,7, and BroadcastBucket*1, these were all run using the wrapper from Algorithm 3. We

first wanted to compare the performance of our algorithms with the algorithms from the literature. Recall from

Chapter 2 that approximation-algorithm Scycle finds the optimal values on particular subfamilies of flower

graphs. This spurs the following question: Where do our algorithms and heuristics succeed in finding an

optimal broadcast scheme? Where do they fail? Which algorithms perform better than others, and under which

conditions? What properties of particular subfamilies of flower graphs are difficult, and can this intuition lead

to further development towards a better (and perhaps optimal) broadcast scheme, or give an intuition for a

possible proof that the broadcast problem on flower graphs is NP-Hard?

For simplicity, we focused on two particular properties of flower graphs, and sought to measure the perform-

ance of our algorithms as these changed. In particular, we focus on the cycle lengths, and the quantity of

cycles. All simulations were made in Python. For the random generation of numbers to generate the graph

instances, we used NumPy [16].

5.2 Data

We first compared our algorithms on instances where the number of cycles stayed the same, but the size

of their cycles slowly increased. To attempt to capture a relatively diverse profile of graphs, we uniquely

randomly generated 1000 flower graphs of 5 cycles for each range of cycle lengths that we defined, and

measured the mean, maximum, and minimum values of the number of rounds used by the broadcast schemes

1recall BroadcastBucket∗ from Section 3.3

56

generated by each algorithm. We compared this value to the lower bounds provided in Lemma 6.

5.2.1 Comparisons of algorithm performances as cycle lengths increase, against lower bounds

Figure 5.1: Mean of rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested. Algorithm 1 is not included, as its mean lies much
further higher than the means of the other algorithms.

57

Figure 5.2: Max rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

Figure 5.3: Min rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

It becomes interesting to compare the results of other algorithms with respect to the results of Heuristic 4.

For this reason, for each instance tested, we subtracted the number of rounds they used from the number of

rounds used by the broadcast scheme generated by Heuristic 7. We highlight that the maximum and minimum

58

values plotted here represent the maximum number of rounds required for any instance within its respective

set of 1000 instances. Thus, even if two algorithms obtained the same maximum or minimum values, it is

entirely possible that these values were obtained on two completely difference instances: one cannot thus

conclude that these two algorithms can be argued to perform in a similar manner.

Figure 5.4: Mean difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7. Algorithm 1 is not included
as its mean difference lies much further down than the means of the other algorithms.

59

Figure 5.5: Max difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7.

Figure 5.6: Min difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7.

60

5.2.2 Comparisons of algorithm performances as cycle quantity increase, against lower

bounds

We next compared our algorithms on instances where the number of cycles stayed the same, but the size of

their cycles slowly increased from 5 cycles to 10 cycles. Again, we uniquely randomly generated 1000 flower

graphs using cycle lengths 2−50, and slowly increased the number of cycles used.

Figure 5.7: Mean of rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested. Algorithm 1 is not included, as its mean lies much
further higher than the means of the other algorithms.

61

Figure 5.8: Max rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

Figure 5.9: Min rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

Again, we compared the results of other algorithms with respect to the results of Heuristic 4, using the same

procedure as in the previous section.

62

Figure 5.10: Mean difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7. Algorithm 1 is not included
as its mean difference lies much further down than the means of the other algorithms.

Figure 5.11: Max difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7.

63

Figure 5.12: Min difference obtained by substracting the number of rounds used by the broadcast schemes
generated for each algorithm from the broadcast scheme generated by Heuristic 7.

5.2.3 Comparisons of algorithm performances as cycle lengths increase, against optimal

While this is useful, we don’t know how well the lower bounds fair compared to the true optimal schemes.

For smaller instances of flower graphs, we can actually brute-force our way to finding the optimal solution:

Observe that every broadcast scheme within a flower graph can actually be seen as a spider graph: a tree with

a central vertex and paths of varying lengths all attached to this central vertex by one of their end vertices. To

obtain the optimal broadcast time, one can thus generate every possible spider graph obtainable by cutting

one edge from every cycle, and broadcast in each spider graph from u. The spider graphs with the smallest

broadcast times can then be used as an optimal broadcast scheme for that flower graph. Of course, this method

becomes especially inefficient when there are cycles of the same size as isomorphic spider graphs will be

generated multiple times, but can be quickly alleviated by considering the combinations of paths possible,

regardless of which cycle it happens to be created on. We were thus able to find the optimal solution for a

large number of fairly small instances.

Using these instances, we can likewise check how close to ⌊1.5topt⌋ the solutions found by algorithms 1 and 4

are. In fact, we found that Algorithm 4 seems to perform even below a factor of ⌊1.25topt⌋, which we include

in our plots for comparison.

As before, all of the subsequent simulations are performed on 1000 randomly generated instances, this time

with smaller cycles of lengths 2−20 (as larger cycles take too long to bruteforce through).

64

Figure 5.13: Mean of rounds used by the broadcast schemes generated for each algorithm tested.

Figure 5.14: Max rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

65

Figure 5.15: Min rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

Since the previous section made comparisons to Heuristic 7 with a larger set of instances, we don’t do this

again here against the optimal values.

5.2.4 Comparisons of algorithm performances as cycle quantity increase, against optimal

As before, all of the subsequent simulations are performed on 1000 randomly generated instances, with

particular parameters in mind.

66

Figure 5.16: Mean of rounds used by the broadcast schemes generated for each algorithm tested.

Figure 5.17: Max rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

67

Figure 5.18: Min rounds used by the broadcast schemes generated for each algorithm, where each datapoint
represents 1000 randomly-generated instances tested.

5.3 Discussion

From the data above, we can conclude that Heuristic 7 is a well-performing heuristic: On small instances it

consistently finds, on average as per Figures 5.1 and 5.7, the most efficient broadcast schemes out of all other

algorithms. Additionally, this seems to stay true across a wide array of instances, even as we increase our

quantity of cycles or increase cycle lengths.

We can notice that as the cycle lengths are increased, all algorithms perform consistently, and judging by

Figure 5.2 and Figure 5.3, that there does not seem to be particular unexpected instances on which any

algorithm performs noticeably worse or noticeably better than in average, since all algorithms have their

maximum and minimums stay fairly linearly related to increase in cycle length.

It is particularly interesting to note instead that as the number of cycles increase yet remain with the same

range for cycle lengths, that Algorithms Scycle and BroadcastBucket∗ both seem to get increasingly worse

performances, unlike Heuristic 7, and difference can be especially seen in Figure 5.10. Yet, the performance

of Algorithm 4 stays linear: thus, we can conclude that the issues lies not in the choice of always assigning the

first call to the largest cycle, as Algorithm 4 makes this decision as well. It may be of interest to investigate

exactly which decisions penalize Scycle and BroadcastBucket∗ so strongly. It would be interesting to see if

this performance drop generalises to any instance that can be qualified to have a relatively large quantity of

68

cycles compared to their lengths.

Judging by Figure 5.9 and Figure 5.9, one can again conclude that the algorithms seem to stay within a similar

range of performance, growning linearly with the increase in cycle length.

One can see from the comparisons done against Heuristic 7, particularly in Figure 5.5 and 5.11, that it is

occasionally outclassed by Algorithm 4, Scycle, and Algorithm BroadcastBucket∗, and will find a broadcast

scheme that is slightly slower than the ones generated by these algorithms. Since we remain on fairly small

instances, we cannot claim whether or not this difference remains small or worsens for particular subfamilies

of flower graphs. Despite this, we can presume the possibility of a small, but easily fixable mistake in the

design of the heuristic. It would be worth it to identify which decisions penalise our heuristic, and particularly

whether this can be associated with the decisions made when using our default rule of Definition 7, (that is, if

the broadcast schemes generated by Algorithm 4, Scycle, or Algorithm BroadcastBucket∗ also make the same

assignments as Heuristic 7 when Heuristic 7 makes an assignment using one of its other rules, and if the main

differences in assignments always concern assignments made by the default rule), which would hint towards a

poorly-designed default rule.

Regarding the comparisons to the optimal values, we can notice a number of things: First, we can notice that

the lower bounds from 6 seem to be in practice very good at estimating the true optimal values, and seem

to be a good lower bound to test by. Secondly, with respect to approximation Algorithms 1 and 4, we find

that the latter performs in a satisfactory manner, especially given its efficient running time compared to other

algorithms, as well as its guarantee of a (1.5)-approximation ratio. In practice, we found that it occasionally

hit, but never crossed, a (1.25)-approximation ratio.

In practice, we found that Algorithm 1 seemed to hit its ⌊1.5topt⌋ bound often. Instead, we found that

Algorithm 4 never crossed a ⌊1.25topt⌋ bound, which would imply that a better approximation ratio may be

possible, however further investigation needs to be made.

One particular weakness of our simulations is the size of the instances: it unfortunately becomes significantly

expensive to run Heuristic 7 on larger instances, and thus becomes difficult to test on thousands of instances

of large sizes. It remains to be seen whether or not the performance of that heuristic, or any of the other

algorithms fall off drastically on signifcantly larger instances. Additionally, we only compare performances

as the range of cycle lengths increase, or as the quantity of cycles increase. Additional simulations would

greatly aid us in knowing how well Heuristic 7 performs with respect to the other algorithms.

69

Chapter 6

Discussion and Future Work

In this thesis, we reviewed broadcasting in a number of graph families: trees, then unicyclic graphs, then

particular subfamilies of cactus graphs, and finally to Flower graphs. We particularly focused on Flower

graphs, a graph family of high interest due to its relative simplicity, yet difficulty when it comes to finding an

optimal broadcasting algorithm. Flower graphs seem to capture the difficulty present in Cactus graphs, and

thus are a key to furthering broadcasting strategies in Cactus graphs and numerous other families that share

similar properties as cactus graphs. We developed Algorithm 1, an algorithm which can be wrapped with

a binary-search (given by Algorithm 3) on the value of b(u,G) to obtain a (1.5)-approximation algorithm.

This improves the current approximation ratio on Flower Graphs from 2, previously obtained by Scycle in [5].

We then identified improvements which could be made into a heuristic ImprovedBroadcastBucket, which we

compared to current heuristics in the literature, and showed that our heuristic often found significantly faster

broadcast schemes than the best-performing algorithms in the literature.

Crucially, the question of whether or not the Broadcast Problem is NP-Hard on flower graphs (as well as

cactus graphs) remains unsolved. We currently conclude that finding an optimal solution on flower graphs is a

difficult problem, and thus it would be worthwhile to explore the possibility of proving this problem to be

NP-Hard.

With respect to approximation on flower graphs, we have found that in practice the algorithm ImprovedApprox,

an improvisation on our (1.5)-approximation algorithm, tends to obtain broadcast schemes on a (1.25)-

approximation ratio. Thus, our next step would be to find out if this algorithm can indeed achieve a (1.25)-

approximation ratio, as it remains a highly efficient algorithm that in practice finds reasonable non-optimal

broadcast schemes.

As for our heuristic ImprovedBroadcastBucket, it would be interesting to exactly identify which subcases of

70

Flower graphs are optimally solved by ImprovedBroadcastBucket, and for which subcases ImprovedBroad-

castBucket instead needs some additional rounds to completely inform the graph. This could perhaps lead to

further intuition into the difficulty of Flower Graphs, as well as possible directions for improvements of the

heuristic.

Then, we can seek to extend the uses of our algorithms in other graph families. Obviously, developing

approximation algorithms as well as heuristics for finding the broadcast scheme on cactus graphs is worthwhile,

but other families are also highly related: Notably, solutions found on flower graphs have proven to be useful

for finding solutions on k-path graphs.

71

Bibliography

[1] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming, volume 11.

Addison-Wesley, Reading, Mass, 2000.

[2] B. Ben-Moshe, B. Bhattacharya, and Q. Shi. Efficient Algorithms for the Weighted 2-Center Problem

in a Cactus Graph. In Algorithms and Computation, volume 3827, pages 693–703. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005.

[3] J.-C. Bermond, H. A. Harutyunyan, A. L. Liestman, and S. Perennes. A Note on the Dimensionality of

Modified Knödel Graphs. International Journal of Foundations of Computer Science, 08(02):109–116,

June 1997.

[4] P. Bhabak. Approximation Algorithms for Broadcasting in Simple Graphs with Intersecting Cycles. PhD

thesis, Concordia University, 2014.

[5] P. Bhabak and H. A. Harutyunyan. Constant Approximation for Broadcasting in k-cycle Graph. In

Algorithms and Discrete Applied Mathematics, volume 8959, pages 21–32. Springer International

Publishing, Cham, 2015.

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete

Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[7] M. Čevnik and J. Žerovnik. Broadcasting on cactus graphs. Journal of Combinatorial Optimization,

33(1):292–316, Jan. 2017.

[8] M. Chen, S. Mao, and Y. Liu. Big Data: A Survey. Mobile Networks and Applications, 19(2):171–209,

Apr. 2014.

[9] N. Conlan. Heuristic Algorithms for Broadcasting in Cactus Graphs. PhD thesis, Concordia University,

2017.

72

[10] N. Conlan, H. A. Harutyunyan, and E. Maraachlian. Heuristic Algorithms with Near Optimal Broadcast-

ing in Cactus Graphs. In 2020 28th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), pages 253–257, Västerås, Sweden, Mar. 2020. IEEE.

[11] A. Farley, S. Hedetniemi, S. Mitchell, and A. Proskurowski. Minimum broadcast graphs. Discrete

Mathematics, 25(2):189–193, Feb. 1979.

[12] A. M. Farley. Minimal broadcast networks. Networks, 9(4):313–332, 24.

[13] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual networks. Discrete

Applied Mathematics, 53(1-3):79–133, Sept. 1994.

[14] H. Grigoryan. Problems Related to Broadcasting in Graphs. PhD thesis, Concordia University, 2013.

[15] H. Grigoryan and H. A. Harutyunyan. New Lower Bounds on Broadcast Function. In Algorithmic Aspects

in Information and Management, volume 8546, pages 174–184. Springer International Publishing, Cham,

2014.

[16] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,

J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,

J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,

H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–

362, Sept. 2020.

[17] H. Harutyunyan, G. Laza, and E. Maraachlian. Broadcasting in necklace graphs. In Proceedings of the

2009 C3S2E Conference on - C3S2E ’09, page 253, Montreal, Quebec, Canada, 2009. ACM Press.

[18] H. Harutyunyan and E. Maraachlian. Linear Algorithm for Broadcasting in Unicyclic Graphs: (Extended

Abstract). In Computing and Combinatorics, volume 4598, pages 372–382. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007.

[19] H. Harutyunyan and E. Maraachlian. Linear Algorithm for Broadcasting in Networks With No Inter-

secting Cycles. Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, PDPTA 2009, Las Vegas, Nevada, USA, July 13-17, 2009, 2 Volumes,

pages 296–301, Oct. 2009.

[20] H. A. Harutyunyan and A. L. Liestman. Upper bounds on the broadcast function using minimum

dominating sets. Discrete Mathematics, 312(20):2992–2996, Oct. 2012.

73

[21] S. Hedetniemi, R. Laskar, and J. Pfaff. A linear algorithm for finding a minimum dominating set in a

cactus. Discrete Applied Mathematics, 13(2-3):287–292, Mar. 1986.

[22] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A survey of gossiping and broadcasting in

communication networks. Networks, 18(4):319–349, 24.

[23] M. Hilbert and P. Lopez. The World’s Technological Capacity to Store, Communicate, and Compute

Information. Science, 332(6025):60–65, Apr. 2011.

[24] J. Hromkovič, R. Klasing, A. Pelc, P. Ružička, and W. Unger. Dissemination of Information in

Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. Springer,

Berlin ; New York, 2005.

[25] K. Husimi. Note on Mayers’ Theory of Cluster Integrals. The Journal of Chemical Physics, 18(5):682–

684, May 1950.

[26] R. Labahn. A minimum broadcast graph on 63 vertices. Discrete Applied Mathematics, 53(1-3):247–250,

1994.

[27] T. Leighton and A. Moitra. Some results on greedy embeddings in metric spaces. Discrete & Computa-

tional Geometry, 44(3):686–705, 2010.

[28] N. A. Lynch. Distributed Algorithms. Elsevier, 1996.

[29] M. Maheo and J.-F. Saclé. Some minimum broadcast graphs. Discrete Applied Mathematics, 53(1-

3):275–285, 1994.

[30] E. Maraachlian. Optimal Broadcasting in Treelike Graphs. PhD thesis, Concordia University, 2010.

[31] M. Markov, M. Ionut Andreica, K. Manev, and N. Tapus. A linear time algorithm for computing longest

paths in cactus graphs. Serdica Journal of Computing, 6(3):287p–298p, 2012.

[32] B. Paten, M. Diekhans, D. Earl, J. S. John, J. Ma, B. Suh, and D. Haussler. Cactus Graphs for Genome

Comparisons. Journal of Computational Biology, 18(3):469–481, Mar. 2011.

[33] B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler. Cactus: Algorithms for

genome multiple sequence alignment. Genome Research, 21(9):1512–1528, Sept. 2011.

[34] R. J. Riddell Jr. Contributions to the Theory of Condensation. University of Michigan, 1951.

74

[35] J. E. Savage. Models of Computation: Exploring the Power of Computing. Addison Wesley, Reading,

Mass, 1998.

[36] Scheuermann and Wu. Heuristic Algorithms for Broadcasting in Point-to-Point Computer Networks.

IEEE Transactions on Computers, C-33(9):804–811, Sept. 1984.

[37] P. Scheuermann and M. Edelberg. Optimal broadcasting in point-to-point computer networks. Dep.

Elec. Eng. Comput. Sci., Northwestern Univ., Evanston, IL, Tech. Rep, 1981.

[38] C. Schindelhauer. On the Inapproximability of Broadcasting Time (Extended Abstract). page 12.

[39] B. Shao. On K-Broadcasting in Graphs. PhD thesis, Concordia University, 2006.

[40] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information Dissemination in Trees. SIAM Journal

on Computing, 10(4):692–701, Nov. 1981.

[41] A. S. Tanenbaum, D. Wetherall, and N. Feamster. Computer Networks. Pearson, Harlow, United

Kingdom, sixth edition, global edition edition, 2021.

[42] G. E. Uhlenbeck and G. W. Ford. Lectures in Statistical Mechanics. Number 1 in Lectures in Applied

Mathematics. American Mathematical Soc, Providence, RI, 4. printing edition, 1974.

[43] B. Zmazek and J. Žerovnik. The obnoxious center problem on weighted cactus graphs. Discrete Applied

Mathematics, 136(2-3):377–386, Feb. 2004.

[44] B. Zmazek and J. Zerovnik. Estimating the Traffic on Weighted Cactus Networks in Linear Time. In

Ninth International Conference on Information Visualisation (IV’05), pages 536–541, London, England,

2005. IEEE.

75

	List of Figures
	Introduction
	Motivation behind the problem
	Statement of the problem

	Literature review
	Broadcasting in various graph families
	The Tree T
	Lemma 1
	Lemma 2

	The Cycle Cn
	The Unicyclic graph
	Lemma 3

	The Tree of Cycles
	The Cactus graph
	The Necklace graph
	Lemma 4
	Lemma 5

	The k-restricted Cactus graphs
	The Flower graph
	Lemma 6
	Lemma 7

	The k-Path graph

	Theoretical results
	Approximation in the general case
	Approximation when t is a parameter
	Algorithm 1
	Lemma 8
	Lemma 9
	Theorem 1

	Subroutine for tightening the range of t values
	Lemma 10
	Algorithm 2
	Algorithm 3
	Theorem 2

	Improvement on Algorithm 1
	Algorithm 4
	Theorem 3

	Discussion on Algorithm 1, Algorithm 4, and BroadcastBucket

	A Heuristic for broadcasting on flower graphs
	Preliminaries
	Intuition
	The Heuristic
	Definition 1
	Definition 2
	Definition 3
	Definition 4
	Lemma 11
	Subroutine 5
	Lemma 12
	Definition 5
	Lemma 13
	Subroutine 6
	Lemma 14
	Definition 6
	Lemma 15
	Definition 7
	Heuristic 7
	Theorem 4

	Running Time

	Simulation results
	Preliminaries
	Data
	Comparisons of algorithm performances as cycle lengths increase, against lower bounds
	Comparisons of algorithm performances as cycle quantity increase, against lower bounds
	Comparisons of algorithm performances as cycle lengths increase, against optimal
	Comparisons of algorithm performances as cycle quantity increase, against optimal

	Discussion

	Discussion and Future Work

