
Polynomials for Multidimensional Provenance in

Graph Databases

Tianyi Liu

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science)

Concordia University

Montréal, Québec, Canada

July 2021

© Tianyi Liu, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Tianyi Liu

Entitled: Polynomials for Multidimensional Provenance in Graph

Databases

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee :

Chair
Dr. Joey Paquet

Examiner
Dr. Joey Paquet

Examiner
Dr. Gregory Butler

Supervisor
Dr. Gösta Grahne

Supervisor
Dr. Nematollaah Shiri

Approved by

Lata Narayanan, Chair

Department of Computer Science and Software Engineering

2021

Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Polynomials for Multidimensional Provenance in Graph Databases

Tianyi Liu

In this thesis, we study the provenance of querying graph databases. Compared to

using the semiring of polynomials as the most general form of provenance for relational

databases (Green, Karvounarakis, & Tannen, 2007), we show that the most general

provenance for querying graph databases can be represented by regular expressions

over paths in the database. In this work we focus on the single-source provenance,

which is a more general representation and contains more information than the single-

source, single-target problem considered in (Ramusat, Maniu, & Senellart, 2018). We

present an algorithm that computes single-source multidimensional provenances for

graph databases, where each dimension represents an application provenance semir-

ing, and also propose a potential application, by using parse tree techniques and

deriving results for various application provenances.

iii

Acknowledgments

This work would not have been possible without the financial support of FRS and

NSERC. I am especially indebted Dr. Grahne and Dr. Shiri, who have guided me

through the darkness and been supportive of my research goals and who worked

actively to provide me with the exclusive academic time to pursue those goals.

I also want to thank my partner Xianen, my friends Miya, Sandeep, Aria. They

encouraged me and gave me a lot of advice that I really appreciate.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Problems and Motivation . 2

1.2 Thesis Contributions . 5

1.3 Thesis Outline . 6

2 Background and Related Work 7

2.1 Background . 7

2.1.1 Semirings and Homomorphism 7

2.1.2 Graph Theory . 12

2.1.3 Querying Graph Databases . 14

2.2 Related Works . 21

3 Polynomials for Multidimensional Provenance in Graph Databases 28

3.1 Semirings and Homomorphism . 29

3.1.1 Graph Databases and Kleene’s Algorithm 29

3.1.2 Homomorphism . 31

v

3.2 Proposed solution . 37

3.2.1 Preprocessing the Query FA . 38

3.2.2 Computing the Provenance . 40

3.2.3 Determining State Removal Order 44

3.2.4 Post-processing the Provenance Polynomials 46

4 Implementation 48

4.1 Phase 1: Converting RPQ to FA . 50

4.1.1 Syntax Tree . 50

4.1.2 Computing First, Last and Follow 53

4.2 Phase 2: Computing the Provenance of Query Results 58

4.3 Phase 3: Postprocessing the Multidimensional Provenance 65

5 Experiments 67

5.1 Equipment and Datasets . 67

5.2 Results and Analysis . 69

5.2.1 Main Results . 70

5.2.2 Comparison of Different Types of Queries 73

5.2.3 Comparing Different State Elimination Heuristics 75

6 Conclusion and Future Work 77

6.1 Conclusion . 77

6.2 Future Work . 78

References 80

vi

List of Figures

1 A social network . 4

2 Semiring examples . 9

3 A direct edge from node u to node v . 12

4 An example path . 12

5 A weighted graph database . 14

6 A graph database and query results . 17

7 A DFA . 19

8 An example finite automata . 21

9 A relational database and query results 23

10 A Provenance hierarchy tree . 31

11 A Glushkov finite automata . 39

12 A state elimination example . 42

13 A state elimination example where the intermediate state invovles self-

loop . 42

14 A state elimination example where multiple paths are invovled 42

15 A state elimination example where only the initial state and final state

are left . 43

16 A generalized transition graph . 45

vii

17 A parse tree . 47

18 Program architecture . 49

19 Retweet data (a) and the corresponding influence data (b) 69

20 Experiment results of Retweet Network 71

21 Experiment results of Yeast Network . 71

22 Experiment results of synthetic graph datasets 72

23 Execution times of different types of queries 74

24 Experiment results of state removal heuristics 76

viii

List of Tables

1 Regular expressions R1
ij . 20

2 Regular expressions R2
ij . 20

3 Examples of different types of queries 74

ix

Chapter 1

Introduction

For a few decades Graph Databases have been one of the trending areas in technology

academically and industrially. The relationship is considered as the first priority

in graph databases, where edges can be labeled, directed with more information,

while in relational databases, relationships are implied, and they are less suitable for

operations in, for example, the World Wide Web, since relational databases might

involve a large number of joins and lead to a high cost. The characteristics of graph

databases make them suitable in many applications nowadays, such as the Semantic

Web (Hayes & Gutierrez, 2004; Arenas & Pérez, 2011), bioinformatics (Fabregat et

al., 2018), and road transportation networks (Añez, De La Barra, & Pérez, 1996), etc.

Various query languages can be applied to graph database search, including regular

path queries (RPQ’s) (Barceló Baeza, 2013), which select nodes connected by paths,

of which the word matches the regular language over the labeling alphabet.

The provenance of a query result is used to record the lineage information of

1

the query result, and also the processes and methodology by which it was produced.

There is already existing research working on the provenance of querying relational

databases. Among them, (Green, Karvounarakis, & Tannen, 2007) provides a gen-

eral form of provenance with semirings, which are algebraic structures (K,+, ⋅,0,1)

such that (K,+,0) and (K, ⋅,1) are commutative monoids, using polynomial and for-

mal power series annotations to record the information about why and how query

results are generated. However, little research has been done with the provenance of

querying graph databases (Ramusat et al., 2018; Ramusat, Maniu, & Senellart, 2021).

Therefore we are trying to follow the framework of provenance semirings from (Green,

Karvounarakis, & Tannen, 2007) to enrich the semantics of the provenance of query

results in graph databases.

1.1 Problems and Motivation

The differences between relational databases and graph databases indicate that we

cannot apply the provenance for querying relational databases to graph databases

directly. Since most operations (except for set difference operation) are commutative

and also the sets in relational databases are unordered, the semirings mentioned

in (Green, Karvounarakis, & Tannen, 2007) are commutative semirings. The most

general form of the provenance of the relational database query result is the semirings

of polynomials (Green, Karvounarakis, & Tannen, 2007).

In comparison, one of the most important operations in graph databases, the

2

concatenation, should satisfy certain orders and is not commutative. Therefore, the

type of semiring we can use to represent the provenance of querying graph databases

will be different, and that leads us to the first problem we want to solve in this thesis,

which is what is the most general form of provenance for RPQ’s over graph databases?

Moreover, one of the characteristics of graph databases is that they allow multiple

properties over edges, which means a graph database may include multiple weights

for different dimensions, where the weight of a dimension is one specific application

value. However, each time when we want to compute the value from one dimension,

we need to query the graph database and get that value, for example, to get the

shortest paths from a source node to a target node. If next time we want to use the

same query and compute the value from a different dimension, we need to query the

graph database again, since the query results do not include the edge information.

Therefore, another question we would like to solve is to find a way to include multiple

dimensions information in the provenance to compute different values for different

purposes without recomputing the querying result.

To bring more light to it, (Hangal, MacLean, Lam, & Heer, 2010) observed that the

influence of one user over another is asymmetric, and most contemporary networks,

such as LinkedIn, only return the source-target path with the shortest distance, which

can not reflect social tie strength and influence. This problem implies the potential

need for multidimensional provenance.

3

John

Alice

Tom

Friend, 0.8, 1 Colleague, 0.8, 1

Friend, 0.5, 1

Figure 1: A social network

Figure 1 is part of a social network, which has three nodes representing users, and

edges representing the relationship and two different dimensions, one is the influence

value, and another one is the distance (in this example, it takes a constant-distance

setting which has a distance of 1 between every pair of nodes). If our query is

(Friend + Colleague)∗ and the source node is John, then there are two paths in

the result, one is (John,Friend,Alice)(Alice,Colleague, Tom) and another one is

(John,Friend, Tom). Now if we want to pick the path with the shortest distance,

we calculate the distance of each path by counting the number of edges along the

path, and the second path would be our answer because it has a distance of 1, which

is shorter than the first path with a distance of 2. However if we want to find the

path with the highest influence, we do the same calculation with the second element

of each edge, and get the first path as result this time. The influence of the first path

is 0.64, while the second one is 0.5. If we somehow record the edge information with

different dimensions as the provenance of the target Tom, then we should be able to

get these two results without computing the query result twice.

In this thesis, we are generalizing the provenance polynomials for multidimensional

4

provenance in graph databases, which to the best of our knowledge, has no similar

research to compare with. Therefore, our main goal is to provide the theoretical

definitions and proofs, and provide a feasible algorithm for computing the provenance

of querying graph databases.

1.2 Thesis Contributions

The contributions of this thesis are as follows:

� We study the semantic of relational databases and graph databases, and identify

a more detailed provenance semantic for querying graph databases.

� We study several existing algorithms that compute query results given regular

path queries and graph databases, the state elimination algorithm that com-

putes the regular expression for each query result, as well as the heuristics for

computing the state elimination order, which affects the size of the resulting

regular expressions. We compare two different heuristics and our results show

that one of them, namely the state weight heuristics of (Barceló Baeza, 2013)

has a better performance considering both time efficiency and the size of regular

expressions it generates.

� We propose an algorithm to compute the single-source multidimensional prove-

nance of the RPQ’s over graph databases, which is based on the state elimina-

tion algorithm. We also provide a postprocessing parse-tree method for different

5

purposes, which could provide potential benefits in practical scenarios. We eval-

uate the performance of the proposed algorithm and compare the performance

of different types of queries in terms of feasibility and the quality of provenance,

which is the size of the regular expression generated.

1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the research back-

ground and provides a survey of related works. Chapter 3 provides the semantics of

semirings, querying graph databases with multidimensional provenance and homo-

morphisms between semirings. Chapter 4 presents a design and implementation of

the proposed algorithms followed by a complexity analysis. Chapter 5 illustrates the

experiments and results of our proposed solutions using a library of real-life graphs

and also synthetic graphs. Concluding remarks and directions for possible future

works are discussed in Chapter 6.

6

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Semirings and Homomorphism

Following (Green, Karvounarakis, & Tannen, 2007), we consider the framework for

provenance based on the algebraic structure of semirings. A semiring (K,⊕,⊗,0,1)

has the properties such that:

� (K,⊕,0) is a commutative monoid with neutral element 0.

� (K,⊗,1) is a monoid with neutral element 1.

� Multiplication left and right distributes over addition ∀x, y, z ∈K:

– (x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

– z ⊗ (x⊕ y) = (z ⊗ x)⊕ (z ⊗ y).

7

� Multiplication by 0 annihilates K: ∀x ∈K,x⊗ 0 = 0⊗ x = 0.

And among the classes of semirings, we will focus on idempotent, k-closed, and star

semirings.

Definition 2.1 Let (K,⊕,⊗,0,1) be a semiring. An element a ∈ K is idempotent if

a⊕ a = a. K is said to be idempotent when all elements of K are idempotent.

Definition 2.2 Given k ≥ 0, a semiring (K,⊕,⊗,0,1) is said to be k-closed if ∀x ∈

K,⊕k+1
n=0xn = ⊕k

n=0xn.

Definition 2.3 A semiring K = (K,⊕,⊗,0,1) is complete if ∑i∈I(x ⋅xi) = x ⋅(∑i∈I xi),

and ∑i∈I(xi ⋅ x) = (∑i∈I xi) ⋅ x, for all x,xi ∈K and infinite I.

Definition 2.4 A complete star-semiring K is a structure (K,⊕,⊗,⊛, 0, 1), where

(K,⊕,⊗, 0, 1) is a complete semiring with idempotent ⊕, such that x⊛ = ⊕j≥0 xj,

where x0 = 1, xj+1 = x⊗ xj = xj ⊗ x for all j ≥ 0.

Definition 2.5 A mapping h ∶K →K ′ from the semiring K = (K,⊕,⊗,0,1) into the

semiring K′ = (K ′,⊕′,⊗′,0
′
,1
′
) is a homomorphism if (1) h(a⊕ b) = h(a)⊕′ h(b); (2)

h(a ⊗ b) = h(a) ⊗′ h(b); (3) h(0) = 0
′
and h(1) = 1

′
. A mapping of star semirings

is a semiring homomorphism that preserves the star operation additionally, which is

h(a⊛) = h(a)⊛′.

Here we list some of the useful semirings, and we use Figure 2(a) as an example,

where the source node is node 0, and the target node is node 2:

8

0 1 2

3

e1 e4

e2
e3

e5

(a) A directed graph

E Distance

e1 4
e2 1
e3 2
e4 2
e5 3

(b) Each edge is assigned with a dis-
tance value

E Access control level

e1 P
e2 C
e3 P
e4 S
e5 P

(c) Each edge is assigned with an ac-
cess level value

Figure 2: Semiring examples

Why-provenance semiring. (Why(X),∪,⋓,∅,{∅}). In graph databases, the

why-provenance of a target node is a set of all sets of edges that contribute to the

target node, which is also called the proof witness basis in (Buneman, Khanna, & Tan,

2001). The domain of the why provenance Why(X) is the set of sets of edges, and X

is the set of nodes, both of which come from the graph database. The ⊕ operation in

the why-provenance is the set union, while the ⊗ operation is defined as the pointwise

union, i.e. A⋓B = {a ∪ b ∶ a ∈ A, b ∈ B}, where A and B are sets of edges. The why-

provenance of node 2 in Figure 2(a) is {{e1, e5, e4},{e2, e3, e5, e4},{e1, e4},{e2, e3, e4}}.

Minimal witness basis semiring (Green, 2009). (irr(E),⊕,⊗,∅,{∅}), which

records the minimal witness basis (Buneman et al., 2001) of the query result. E is

the set of all edges from the graph database, and irr(E) is the set of irredundant

9

subsets of E, where a set W is in irr(E) if for any sets A,B ⊆W , neither is a subset

of the other. To get irr(W) for a set W ⊆ E, we can repeat checking every pair of

sets A,B ⊆W , and delete B from W if A ⊆ B. The ⊕ operation of two sets of edges

I, J is defined as I ⊕ J
def
= irr(I ∪ J), while the ⊗ operation of two sets of edges I, J

is defined as I ⊗ J
def
= irr(I ⋓ J). The minimal witnesses of node 2 in Figure 2(a) is

{{e1, e4},{e2, e3, e4}}, since {e1, e4} ⊆ {e1, e4, e5} and {e2, e3, e4} ⊆ {e2, e3, e5, e4}.

Lineage semiring. (Lin(X),∪,∪,∅,∅). Lineage is the simplest form of prove-

nance information, and it saves all distinct edges that contribute to the query result.

The domain Lin(X) is the set of all edges in the graph database, and X is the set of

nodes in the graph database. Both ⊕ and ⊗ operations are set unions. In Figure 2(a),

the lineage of node 2 is {e1, e2, e3, e4, e5}.

Tropical semiring. (R+ ∪ {∞},min,+,∗,∞,0). Tropical semiring is normally

dealing with traditional single-source or all-pair shortest-distance problems (Mohri,

2002), where its domain is to represent the distance for each edge. The ⊕ operation

is to take the shortest path of two paths, and the ⊗ operation is to calculate the

sum of two consecutive edges. For the star operation, x∗ = 0 for all x ∈ R+ ∪ {∞}.

Figure 2(b) shows the distance every edge is, and using this edge information we can

get the shortest distance from node 0 to node 2 is min(4+ 0+ 2,1+ 2+ 0+ 2) = 5, and

the shortest path is e2 → e3 → e4.

Influence semiring. ([0,1],max,×,∗,0,1). Influence semiring is used for prob-

lems that find the influence from one user to another on the social network, which

we have shown an example in Figure 1. The domain of the influence semiring is the

10

decimals ranging from 0 to 1 representing the influence value between users, where

the highest influence value is 1. The ⊕ operation is to pick the path with the most

significant influence value of two paths, where the ⊗ is to calculate the multiplication

of influence values of two consecutive edges. For all x ∈ [0,1], x∗ = 1.

Access control semiring. (A,min,max,∗,0, P) where A = {P,C,S, T, 0}. Here

P means ”public”, C is ”confidential”, S is ”secret”, T is ”top secret”, and 0 is ”secret

that nobody can access it” (Foster, Green, & Tannen, 2008). The order of these five

access levels is P < C < S < T < 0. The access control semiring is to compute the

access level of nodes in the graph database. The ⊕ operation is to choose the path

with a lower access level between two paths, while the ⊗ operation is to set the access

level of two consecutive edges as the highest value between them, and x∗ = P , for all

x ∈ A. Figure 2(c) shows the access level for each edge. To compute the access level

from node 0 to node 2, first we compute the access level of two paths e1 → e∗5 → e4 and

e2 → e3 → e∗5 → e4. The access level of the first path is max(max(P,P), S) = S, while

the the access level of the second path is max(max(max(C,P), P), S) = S. Then we

can get the access level from node 0 to node 2 by calculating min(S,S) = S.

Regular expression semiring. KE(G) = (E(G),+, ⋅,∗,∅, ϵ). Regular expression

is the most general provenance form of querying graph databases, where E(G) is the

set of all regular expressions over edges. The ⊕ operation is the union, the ⊗ operation

is the concatenation and the star operation ∗ is the Kleen closure. We will show the

homomorphism from regular expression to other semirings in the following chapters.

11

2.1.2 Graph Theory

An edge-labeled graph database G = (V,E) with a finite alphabet Σ, where V is a

finite set of nodes, and E ⊆ V × Σ × V is a set of edges. Each edge e in E can be

represented as e = (v,a, v′), where v, v′ ∈ V and a ∈ Σ. A directed graph is a graph in

which every edge has a direction, for example, e = (v,a, v′) shows that there is an edge

starting from node v to node v′. The vertices are to be thought of as objects, and

the edges as relations between the objects. That is, an edge (u,a, v) can be viewed

as a tuple (u, v) in a binary relation a.

u v
a

Figure 3: A direct edge from node u to node v

A path π in a graph databaseG is a sequence π = (v0,a1, v1)(v1,a2, v2) . . . (vn−1,an, vn)

of adjacent edges in G. We define the source of a path as firstπ = v0 and the target

of a path as lastπ = vn. The empty path is denoted by ϵ. The word represented by

a path π is the concatenation of labels along the path wordπ = a1a2 . . .an. The set

of all paths from v0 to vn in G is denoted Πv0,vn(G), and the set of all paths in G is

denoted Π(G).

v0 v1 vn−1 vnv2
a1 ana2 ...

Figure 4: An example path

A weighted graph G is a graph (V,E,w) in which every edge e ∈ E is associated

12

with a weight w[e], and w is a weight function, w ∶ E →K for semiring (K,⊕,⊗,0,1).

Then the weight of a path π = e1e2...en is w[π] ∶= ⊗n
i=1w[ei], and the weight of all the

path from node i to node j is w(i, j) ∶= ⊕π∈Πi,j(G)w[π]. Depending on the problems

we want to solve, the weight can be distance, security level, or probability, etc.

We can extend the weighted graph to the ones that contain multiple dimensions

of weights, based on the nature of graph databases that edges can have multiple

properties. An edge can be additionally labeled with a finite list of weights, and each

weight comes from a semiring. Then we will show that in Chapter 3, for each weighted

semiring, the weighted provenance can be obtained by a homomorphism from the most

general form, regular expressions (or we can call it provenance polynomials, which

is inherited from (Green, Karvounarakis, & Tannen, 2007)). Before introducing the

weights, we use (u,a, v) to represent the regular expression defining the language

{(u,a, v)}, and remark that the mapping h(u,a, v) = a maps the regular expressions

over edges homomorphically to regular expressions over Σ.

Let Ki, for i = 1, . . . , k, be a family of semirings. A weighted graph database

is a graph database (G,w1, . . . ,wk), where wi maps edges of G to elements of the

semiring Ki. We represent a semiring labeled edge (u,a, v) as (u,a, w̄, v), where

w̄ = (w1(u,a, v), . . . ,wk(u,a, v)).

13

1 2 3 4

5

6

7

a,P,2 b,C,2

d,S,3

d,S,5
a,S,1 c,T,1

b,P,3

Figure 5: A weighted graph database

Figure 5 shows a weighted graph database (G,w1,w2). K1 is the access control

semiring (A,min,max, 0, P), and K2 is the tropical semiring (R+∪{∞},min,+,∞,0).

An edge of the graph is a tuple of the form (s,a,w1,w2, t), where s, t ∈ V , a ∈ Σ, w1 ∈ A,

and w2 ∈ R+ ∪ {∞}.

2.1.3 Querying Graph Databases

A regular path query Q has the form RPQ(x, y) ∶= (x,R, y), where R is a regular

expression over Σ, which defines a language L(Q) ⊆ Σ∗, where Σ∗ is the set of all

words over Σ. When we apply the query Q to a graph database G, Q is satisfied

if and only if there exists at least one path π such that wordπ is in R. The formal

definition of the answer Q(G) is shown as follows,

Q(G) = {(firstπ, lastπ) ∶ π ∈ paths(G) and wordπ ∈ L(Q)}.

There are three main categories of problems associated with graphs, 1) one-pair

problem, which focuses on paths between a given pair of nodes; 2) single-source

14

problem, which focuses on paths from a given source node to the rest of the nodes; 3)

all-pairs problem, which focuses on paths between all pairs of nodes. In this thesis, we

focus on and study the single-source problem since it is more general, and it includes

the one-pair problem as a special case. In addition, the single-source problem can be

extended to the all-pairs problem. In this case, we assume that the graph database

has a designated source vertex1 vs, so the answer of Q applied to G will be all the

paths π started from vs and wordπ ∈ L(Q)

Q(G) = {lastπ ∶ π ∈ paths(G), firstπ = vs and wordπ ∈ L(Q)}.

Following the idea that an edge (u,a, v) represents a relational tuple a(u, v), the

join becomes the binary composition a(u, v)○b(v,w), and that is the edge concatena-

tion (u,a, v)(v,b,w). Therefore, we define the provenance of a target node v ∈ Q(G)

as all the paths π from the source node vs to v such that wordπ ∈ L(Q) :

Pv = {π ∶ π ∈ paths(G), firstπ = vs, lastπ = v, and wordπ ∈ L(Q)}.

Since there might be several paths from the source node to one of the target

nodes, we can represent them as a regular expression over edges. Given G = (V,E),

we can form a finite set of labeled edges, giving rise to the set E(G) of all regular

expressions over edges. Since regular expressions also include the Kleene closure ∗, we

finally arrive at a structure: KE(G) = (E(G),+, ⋅,∗,∅, ϵ) , which is known as a Kleene

1In practice, the source vertex would be part of the query, but for notational convenience, we
assume that the graph database has a unique source node.

15

Algebra (Kozen, 1997) or equivalently as a star-semiring. Formally, this means that

(E(G),+, ⋅,∅, ϵ) is a semiring and that r∗ = ϵ+rr∗ = ϵ+r∗r for all r ∈ E(G). We define

the provenance polynomial of v ∈ Q(G) as provv = r, where L(r) = Pv.

Now we go back to the example of Figure 5 for further illustration. Given a query

Q = a(b+c)d∗ and using node 1 as the single source. Since we have a single source

node, we can simplify the result set to only contain reachable target nodes. Therefore

we get the query result Q(G) = {3,4,5}. Here we compute the provenance of node 4,

which is

prov4 = ((1,a, P,2,2)(2,b,C,2,3) + (1,a, S,1,6)(6,c, T,1,3))(3,d, S,3,4),

and we can use it as an example to show how to apply homomorphisms from KE(G)

to Ki. K1 is the access control semiring. The homomorphism h1 ∶ KE(G) → K1

is defined by h1(s,a,w1,w2, t) = w1, h1(e1 + e2) = min(h1(e1), h1(e2)), h1(e1e2) =

max(h1(e1), h1(e2)), and h1(e∗) = P . The provenance for vertex 4 in access con-

trol semiring is h1(prov4) = max(min(max(P,C),max(S,T)), S) = S. Similarly, the

provenance for vertex 4 in the tropical semiring is min(2+ 2,1+ 1)+ 3 = 5. To get the

regular expression provenance for vertex 4, we use the previously mentioned homo-

morphism h, with h(prov4) = (ab+ac)d.

16

Bob

Amy

Bell

Leo

Fido

tea

R&B

friendOf

worksAt

colleagueOf

worksAt

likes

friendOf

likes

(a)

Bob Amy BellfriendOf worksAt

(b)

Bob

Amy

Leo Fido

friendOf colleagueOf

worksAt
friendOf

(c)

Figure 6: A graph database and query results

Figure 6 is another example where Figure 6(a) gives a graph G that records rela-

tionships between several users. Consider the source node as Bob, and a regular path

query (friendOf + colleagueOf)∗worksAt. The query result Q(G) = {Bell, F ido}

and the paths between the source node and the end nodes are shown in Figure 6(b)

and Figure 6(c).

From these paths in Figure 6(b) and Figure 6(c), we can get the prove-

nance polynomials of the target nodes in the query result separately. The prove-

nance of Bell is PBell = (Bob, friendOf,Amy)(Amy,worksAt,Bell), and the

provenance of Fido is PFido = ((Bob, friendOf,Amy)(Amy, colleagueOf,Simon) +

(Bob, friendOf,Simon))(Simon,worksAt,F ido). More details will be discussed in

17

Chapter 3.

One of the well-known methods to compute regular path queries over graph

databases is using automata (Goldman & Widom, 1997). First, we introduce the

associated DFA AQ of Q. Kleene’s theorem (Kleene, 2016) shows that regular ex-

pressions and finite automatons have the same expressive power, which allows us to

convert a finite automaton to a regular expression and vice versa. A deterministic

finite automata is AQ = {S,Σ, δ, s0, F}, where S is the set of states, Σ is the alphabet,

δ is the transition relation δ ⊆ S ×Σ × S, such that if (s,a, t) and (s,a, t′) in δ then

t = t′. s0 is the initial state and F is the set of final states. Once we get the FA con-

verted from the given query, we can compute the intersection of the graph database

G = (V,E,w) and AQ as the product graph PG×AQ
. The product graph PG×AQ

is an

NFA that is defined as PG×AQ
= (V × S,E′). Each new node in PG×AQ

is a pair of

nodes (v, s), one from the graph database v ∈ V , and another from the query FA

s ∈ S. Each edge can be represented as E′ = {((vi, si),a, (vj, sj)) ∶ a ∈ Σ, (vi,a, vj) ∈ E

and δ(si,a) = sj}, where for every edge e′ = ((vi, si),a, (vj, sj)) ∈ E′, the label of edge

e′ is the same as the label of edge e = (vi,a, vj) back to G.

Once we have the product graph PG×AQ
, we want the regular expression for each

answer node, since that is the most general form of the provenance. Kleene’s algo-

rithm (Kleene, 2016) transforms a given nondeterministic finite automaton (NFA) into

a regular expression. Given a NFA M = (Q,Σ, δ, q0, F), with Q = q0, ..., qn, Kleene’s

algorithm works by constructing a sequence of matrices Mk in which the entry Rk
ij is

a regular expression for all paths from vertex i to vertex j with no intermediate vertex

18

on the path (except possibly for the endpoints) that is numbered higher than k. R0
ij

is the sum of the labels of the edges from node i to j in M , and is ∅ if there are no

edges. Also, if i = j, we need to add ϵ to R0
ij since the path of length 0 is represented

by ϵ. To compute the Rk+1
ij , we use the formula Rk+1

ij = R
k
ij +R

k
ik ⋅ (R

k
kk)
∗ ⋅Rk

kj (Kleene,

2016).

1 2
1

0,10

Figure 7: A DFA

Here we use an example of converting an NFA to a regular expression, where the

FA M is shown in Figure 7, representing a language that accepts all strings with at

least one 1. For the first matric M0, we get the R0
ij of all pairs of vertices in M . We

can easily find that R0
12 is 1 since there is a direct path with label 1 from vertex 1 to

2. R0
11 is ϵ + 0 because the start state and the end state are the same one, and there

is a loop on state 1 with label 0. Similarly we have R0
22 = ϵ + 0 + 1 and R0

21 = ∅.

To start the induction, we need to compute the regular expressions that include

paths that go through state 1 first, and then states 1 and 2. First, with the rule R1
ij =

R0
ij +R

0
ik ⋅ (R

0
kk)
∗ ⋅R0

kj, the regular expressions are built and shown in Table 1, where

we apply the simplification rules (ϵ +R)∗ = R∗, ∅R = R∅ = ∅ and ∅ +R = R + ∅ = R.

19

By Direct Computation Simplified Version

R1
11 ϵ + 0 + (ϵ + 0)(ϵ + 0)∗(ϵ + 0) 0∗

R1
12 1 + (ϵ + 0)(ϵ + 0)∗1 0∗1

R1
21 ∅ +∅(ϵ + 0)∗(ϵ + 0) ∅

R1
22 ϵ + 0 + 1 + ∅(ϵ + 0)∗1 ϵ + 0 + 1

Table 1: Regular expressions R1
ij

Then, applying the inductive rule with k = 2 and we haveR2
ij = R

1
ij+R

1
ik⋅(R

1
kk)
∗⋅R1

kj.

Table 2 shows the final regular expressions, where R2
12 = 0∗1(0 + 1)∗ is the regular

expression equivalent to M , since state 1 is the initial state and state 2 is the only

final state.

By Direct Computation Simplified Version

R2
11 0∗ + 0∗1(ϵ + 0 + 1)∗∅ 0∗

R2
12 0∗1 + (0∗1)(ϵ + 0 + 1)∗(ϵ + 0 + 1) (0∗1)(0 + 1)∗

R2
21 ϵ + 0 + 1 + (ϵ + 0 + 1)(ϵ + 0 + 1)∗∅ ∅

R2
22 ϵ + 0 + 1 + (ϵ + 0 + 1)(ϵ + 0 + 1)∗(ϵ + 0 + 1) (0 + 1)∗

Table 2: Regular expressions R2
ij

However, the cost of Kleene’s algorithm is expensive. The time complexity is

O(n3) and the space complexity is O(n24n). So instead of using Kleene’s algorithm,

we can use a similar one called the state elimination algorithm, which is an algorithm

that can convert a finite automaton to a regular expression by removing intermediate

states one by one. To be more detailed, for each final state in the given FA, it keeps

eliminating non-initial non-final states one by one and updates transitions associated,

until only the initial and final states are left, when we can get the resulting regular ex-

pression. However the size of regular expressions generated from the state elimination

algorithm depends heavily on the removal order, which can make a huge difference.

20

q0 q1 q2 q4

q3

a

d

b

c

e

a c

Figure 8: An example finite automata

Figure 8 is an example FA where we want to get its equivalent regular expression.

We compute the length of a regular expression as the sum of letters and operators +,

⋅, and ∗ here and in the following chapters. A removal sequence q3 → q2 → q1 results in

regular expression a(c+ (d+ ac)b)∗(d+ ac)e, which has length of 20, whereas another

removal sequence q1 → q2 → q3 leads to the regular expression ac∗d(bc∗d)∗e + (ac∗a +

ac∗d(bc∗d)∗bc∗a)(c(bc∗d)∗bc∗a)∗c(bc∗d)∗e, which has a length of 75.

2.2 Related Works

Graph databases have been one of the trending areas in technology academically and

industrially since the late 1960s. Before graph databases appeared on the horizon,

relational databases were mainly used for storing and retrieving data, which depended

heavily on schemas and tables. That nature made it difficult to add or delete rela-

tionships between objects, or deal with the operations that involve a large number

of joints of large tables. The growing popularity of the internet and the explosion

of data generated an urgent demand for access to databases from the Web, so graph

21

databases were getting more and more attention. Comparing to relational databases,

graph databases are more focused on relationships between objects, where edges can

be labeled, directed with more information, and therefore it is more suitable in many

applications nowadays, such as the Semantic Web (Hayes & Gutierrez, 2004; Are-

nas & Pérez, 2011), bioinformatics (Fabregat et al., 2018), and road transportation

networks (Añez et al., 1996), etc.

Provenance has been studied in the past few decades, and it mainly answers why,

how, and where data is generated. A survey (Cheney, Chiticariu, & Tan, 2009) cov-

ers these three types of provenance. Why-provenance or the lineage (Cui, Widom,

& Wiener, 2000) of a query result is the set of contributing tuples to the output.

How-provenance (Green, Karvounarakis, & Tannen, 2007) tries to figure out how tu-

ples contribute to the output. In relational databases, where-provenance (Buneman

et al., 2001) is also a concerning problem since users want to detect which tables

are these involved tuples coming from. When we do the query processing over anno-

tated relations, operations over annotations are involved and propagated. Vicknair

et al. (Vicknair et al., 2010) compares the ability of recording and querying data

provenance between a relational database (MySQL) and a graph database (Neo4j).

Green et al. (Green, Karvounarakis, & Tannen, 2007) observed the similarity

of relational algebra operations over c-tables (Imieliński & Lipski, 1984), event ta-

bles (Fuhr & Rölleke, 1997; Zimányi, 1997), bag semantics and the why-provenance.

Therefore, they proposed the semiring of polynomials as the most general form of the

provenance of querying relational databases. To provide more semantic details, first,

22

they introduced K-relations, where K is a commutative semiring (K,+, ⋅,0,1), and

K-relation is a function R that annotates each tuple with elements in K. K-relations

can be transformed to another K’-relations by semiring homomorphism, and because

of that, it is possible to transform the most general provenance form, polynomials,

to other semirings for different purposes. The semirings of polynomials are defined

as follows: X be the set of tuple ids of a database instance I. The positive algebra

provenance semiring for I is the semiring of polynomials with variables from X and

coefficients from N, with the operations defined as usual: (N[X],+, ⋅,0,1). To illus-

trate the semiring of polynomials and its homomorphism, here we use the example

shown in (Green, Karvounarakis, & Tannen, 2007).

A B C

a b c p
d b e r
f g e s

(a) Relation with
annotation

A C

a c 2p2

a e pr
d c pr
d e 2r2+rs
f e 2r2+rs

(b) Query Result

A C

a c {p}
a e {p,r}
d c {p,r}
d e {r,s}
f e {r,s}

(c) Why provenance
(Why(X),∪,⋓,∅,{∅})

E

p 2
r 5
s 1

A C

a c 2 ⋅ 2 + 2 ⋅ 2 = 8
a e 2 ⋅ 5 = 10
d c 2 ⋅ 5 = 10
d e 5⋅5+5⋅5+5⋅1 = 55
f e 1 ⋅1+1 ⋅1+5 ⋅1 = 7

(d) Bag semantics (N,+, ⋅,0,1)

E

p 2
r 5
s 1

A C

a c min(2+2,2+2) = 4
a e 2 + 5 = 7
d c 2 + 5 = 7
d e min(5+ 5,5+ 5,5+

1) = 6
f e min(1+ 1,1+ 1,5+

1) = 2

(e) Tropical semiring (R+∪{∞},min,+,∞,0)

Figure 9: A relational database and query results

23

Given a query q(R)
def
= πAC(πABR & πBCR ∪ πACR & πBCR) and a relational

database in Figure 9(a), where each tuple is annotated with a unique id from the

set X = {p, r, s}. The result tuples and their provenance polynomials (which are

in the most general form) are shown in Table 9(b), and we can get the informa-

tion of the how-provenance and the why-provenance from these polynomials. For

example, the provenance of (d, e) is 2r2 + rs, which shows that there are two ways

to get (d, e) as result, one is to be computed by tuple r and itself twice, and the

other one uses r and s once. Then with the polynomial, we can do homomorphism

from N[X] → K, where K is other commutative semirings, and get different re-

sults. For instance, we can use the homomorphism from polynomials to the tropical

semiring, which includes h(p) = 2, h(r) = 5, h(s) = 1, h(x + y) = min(h(x), h(y)),

and h(xy) = h(x) + h(y). Then the result value of ac will be h(2p2) = h(p2 + p2) =

min(h(pp), h(pp)) =min(h(p)+h(p), h(p)+h(p)) =min(2+ 2,2+ 2) = 4. The rest of

tables in Figure 9 shows the homomorphism from N[X] to the why-provenance and

bag semantics respectively.

Also, Green et al. (Green, Karvounarakis, Ives, & Tannen, 2007) show the po-

tential utilization of provenance in incremental view maintenance, to be specific, for

updating deletion propagation without recomputing the query results. We can use

the example in Figure 9 to show how it works. Assuming Figure 9(a) is the origi-

nal relational database, and Figure 9(b) shows the query result, where the query is

q(R)
def
= πAC(πABR & πBCR ∪ πACR & πBCR). Now if at some points we delete the

tuple (d, b, e), which has the identifier r from the database, then we can update the

24

query result directly by setting r = 0. As a result, (a, e), (d, c), (d, e) and (f, e) will

be removed from the query result, which leaves (a, c) as the only answer.

Research was focused on the provenance over relational databases and datalog

queries initially, and later on, it is extended to other types of databases, such as XML

databases, graph databases, etc. Based on the different nature and also applications

of these databases, the definition and semirings are different. The provenance for

XML can be used for security applications and a general strong representation sys-

tems for incomplete and probabilistic annotated databases. It focuses more on the

lineage information, where and how provenance, since XML databases allow incom-

plete properties and it is hard to track back to the source tuples that contribute to

the results. In (Foster et al., 2008; Cheney, 2009), the semiring annotations go from

existing models of provenance for relational databases to XML and the query lan-

guages. As for RDF, (Li Ding & McGuinness, 2005) uses RDF molecule, which is the

finest and lossless component of an RDF graph, to track the provenance of the RDF

graph. (Dividino, Sizov, Staab, & Schueler, 2009) deals with multiple dimensions

for RDF, such as source, authorship, and certainty. (Flouris, Fundulaki, Pediaditis,

Theoharis, & Christophides, 2009) uses colors to capture the provenance of RDF.

Ramusat et al. (Ramusat et al., 2018, 2021) reduce the provenance of querying graph

databases to the reachability problem, and compare the performance of several al-

gorithms, such as Mohri’s algorithm, the node elimination algorithm and Dijkstra’s

algorithm. However, the provenance defined in their research is less general, for ex-

ample, the provenance generated does not contain the lineage information, and they

25

only consider the single-source, single-target problem.

Given a directed graph database and an RPQ, the provenance of querying graph

databases can be computed by constructing a product graph and converting it to

a regular expression. The Kleene theorem (Kleene, 2016) shows that every n-state

finite automaton over the alphabet Σ has an equivalent regular expression. Kleene’s

algorithm can be used to solve the all-pairs reachability problem, which computes

reachability information between arbitrary pairs of nodes in a directed graph. The

state elimination algorithm is one of the methods that convert FAs to regular expres-

sions, which can lead to an exponential size of result since the upper bound for the

size of result regular expression is O(nk4n) (Hopcroft, Motwani, & Ullman, 2006),

where n is the number of states and k is the number of alphabetic symbols. A lot of

research has been focused on the heuristics of the state removal sequence for the state

elimination algorithm to reduce the size of result regular expressions. (Delgado &

Morais, 2005) uses a greedy algorithm (DM algorithm) to calculate the state weight

and remove the state with the smallest weight for each round. (Han & Wood, 2007)

purposes a divide-and-conquer algorithm (HW algorithm) to split FAs horizontally

and vertically to obtain a shorter regular expression, based on bridge states and the

structural properties of FAs. The bridge state in an FA A in (Han & Wood, 2007)

is defined to satisfy three conditions: 1) the bridge state is a non-initial non-final

state; 2) the path of every string w ∈ L(A) must pass through the bridge state; 3)

the bridge state does not participate in any cycle except for a self-loop. However the

method depends heavily on the structure of the FA, and as experiments in (Moreira,

26

Nabais, & Reis, 2010) show that this HW algorithm is less effective when the size

and complexity of FAs increase, when bridge states become rarer. (Moreira et al.,

2010) counts the number of cycles passing through for each state, and eliminates

the state with the lowest number of cycles. Comparison has been made on perfor-

mance with DM algorithm and HW algorithm, where the experimental results show

that DM algorithm has a better performance at most times, while the counting-cycle

algorithm outperforms when the size of the alphabet and the number of states are

small. (Ramusat et al., 2021) applies a degree-based state removal heuristic, and our

experiments show that it has a similar execution time comparing to DM algorithm,

however, it leads to a longer regular expression on average.

27

Chapter 3

Polynomials for Multidimensional

Provenance in Graph Databases

We propose regular path expressions as the most general provenance representation of

querying graph databases, provide the homomorphism from regular path expressions

to several useful semirings, and we present an algorithm to compute the multidimen-

sional provenance polynomials of querying graph databases. Our algorithm is based

on the state elimination algorithm and the state weight heuristic for the state removal

order. Meanwhile, we use parse trees for post-processing the regular expressions to

get the application provenance values. The whole set of algorithms is suitable for

graphs with cycles, and it brings us the most general and detailed provenance.

28

3.1 Semirings and Homomorphism

To demonstrate that the most general form of querying graph databases is regular

expressions over edges, we will first show that the regular path expression is also

a complete star-semiring, then show the homomorphism from the set of all paths

of graphs to regular path expressions, and the homomorphism from regular path

expressions to several semirings.

3.1.1 Graph Databases and Kleene’s Algorithm

A graph database G = (V,E,Σ) is an edge-labelled directed graph, where V = 1, ..., n

is a finite set of vertices, Σ is a finite set of (predicate) labels, and E ⊆ V ×Σ×V is a

set of (directed) labelled edges. A path from vertex i to vertex j in a graph database

G is a sequence π = (i,a1, i1)(i1,a2, i2)...(in−1,an, j) of adjacent edges of G. We define

the source node of a path π as firstπ = i and the target node as lastπ = j. The empty

path is denoted ϵ.

A path π such that firstπ = i and lastπ = j will sometimes be denoted πi,j. The

set of all paths from i to j in G is denoted Πi,j(G), and the set of all paths in G is

denoted Π(G).

We consider the following operations on paths and sets of paths. Define ”⋅” by

concatenation, i.e. {π} ⋅ {π′} = {π′′}, where π′′ is the concatenation of π with π′

if lastπ = firstπ′ and {π} ⋅ {π′} = ∅ otherwise. For sets of paths P and P ′, their

concatenation P ⋅ P ′ is obtained by applying the concatenation point-wise P ⋅ P ′ =

29

⋃π∈P,π′∈P ′{π} ⋅ {π′}. Furthermore, let P ∗ = ∪j≥0P j, where P 0 = ϵ, P j+1 = P ⋅ P j, for

j ≥ 0. It can be easily verified that Kpaths(G) = (2Π(G),∪, ⋅,∗,∅, ϵ) is a complete star-

semiring. Let Πk
i,j(G) be the set of paths from i to j with intermediate vertices in

{1, ..., k}, where k ≤ n. Then clearly

Πk
i,j(G) = Π

k−1
i,j (G) ∪Π

k−1
i,k (G) ⋅Π

k−1
k,k (G)

∗ ⋅Πk−1
k,j (G) (1)

and Πi,j(G) = Πn
i,j(G).

For a labelled graph G = (V,E,Σ), we define the set E(G) of regular expressions

over edges in G by stating that ∅, ϵ, and (i,a, j) for each edge (i,a, j) ∈ E, are regular

expressions, and the set of regular expressions is closed with the operations ⋅, +, and

∗. Then KE(G) = (E(G),+, ⋅,∗,∅, ϵ) can be verified to be a complete star-semiring.

For e ∈ E(G), the language of e, denoted L(e), is defined in the usual way, with

L((i,a, j)) = {(i,a, j)}. We can now compute regular expressions from node i to

j as ei,j ∈ E(G) such that L(ei,j) includes all the paths that start with i and end

with j, which can also be represented as Πi,j(G). The expressions are computed

recursively as e0i,j,e
1
i,j, ...,e

n
i,j = ei,j as follows: Let (i,a1, j), (i,a2, j), ..., (i,ak, j) be all

the edges from node i to j in V . Then e0i,j = (i,a1, j) + (i,a2, j) + ... + (i,ak, j) and

e0i,i = (i,a1, i) + (i,a2, i) + ... + (i,ak, i). Recursively we then define

eki,j = e
k−1
i,j + e

k−1
i,k ⋅ (e

k−1
k,k)

∗ ⋅ ek−1k,j (2)

Where eki,j is a regular expression for all paths from node i to node j with no

30

intermediate node on the path that is numbered higher than k. The next proposition

is proved by induction, using equations (1) and (2).

Proposition 1 Let ei,j ∈ E(G). Then L(ei,j) = Πi,j(G).

3.1.2 Homomorphism

To show that the regular expression semiring KE(G) is the most general form of query-

ing graph databases, we need to prove that there is a homomorphism from KE(G) to

other useful semirings.

KE(G)

Why(X)

Lin(X) Minimal witness basis

Tropical Access control Influence

most informative

least informative

Figure 10: A Provenance hierarchy tree

We identify a provenance hierarchy tree for graph databases to show the infor-

mative level of different semirings, inspired from (Green, 2009) and we make a few

bit changes in Figure 10. In this hierarchy tree, the upper semiring has more infor-

mation recorded than the lower semiring, where the semiring of regular expressions

is the most informative one at the top. A path downward from semirings K1 to K2

31

indicates that there exists a surjective semiring homomorphism h ∶ K1 → K2. There

are seven semirings included in this hierarchy tree, which are

� the semiring of regular expressions (E(G),+, ⋅,∗,∅, ϵ)

� the Tropical semiring (R+ ∪ {∞},min,+,∗,∞,0)

� the Access Control semiring (A,min,max,∗,0, P)

� the Influence semiring ([0,1],max,×,∗,0,1)

� the Why-provenance semiring (Why(X),∪,⋓,∅,{∅})

� the Minimal witness basis semiring (irr(E),⊕,⊗,∅,{∅})

� the Lineage semiring (Lin(X),∪,∪,∅,∅)

The main difference between our provenance hierarchy tree and the one in (Green,

2009) is that ours does not include B[X] and Trio(X). Before we explain why, we give

the definitions of these two semirings and the semiring of polynomials from (Green,

2009).

Definition 3.1 (Provenance Polynomials). The provenance polynomials semiring

for X is the semiring of polynomials with variables from X and coefficients from N,

with the operations defined as usual: (N[X],+, ⋅,0,1).

Definition 3.2 (Boolean Provenance Polynomials). The Boolean provenance poly-

nomials semiring for X is the semiring of polynomials over variables X with Boolean

coefficients: (B[X],+, ⋅,0,1), where + represents set union and ⋅ represents bag union.

32

Definition 3.3 (Trio Semiring). The Trio semiring (Trio(X),+, ⋅,0,1) for X is the

quotient semiring of N[X] by ≈f , denoted Trio(X), where + represents bag union

and ⋅ represents set union. Denote by ≈f the equivalence relation on N[X] defined by

a ≈f b
def
= f(a) = f(b).

The provenance polynomials semiring can be treated as the most general prove-

nance for querying relational databases, while B[X] and Trio[X] provides informa-

tion of which bags of source tuples and how many times a given set of source tuples is

involved respectively. So B[X] can be obtained by removing the coefficient from the

provenance polynomials, while Trio[X] can be computed by dropping the exponents

from the provenance polynomials.

There are two reasons why the provenance hierarchy tree for graph databases does

not include B[X] and Trio[X]. In graph databases, B[X] is to compute the set of

bags of edges that contribute to the target nodes. Since the Kleene Star operator ∗ is

included in regular expressions, the size of the set is infinite as long as a star operator

appears in the regular expression, which makes B[X] less useful for graph databases.

Next, to compute Trio(X) from a semiring of regular expressions, we need to

remove the ”exponents” from the regular expressions, and that ”exponents” always

come from the star operator. Let f be the mapping from E(G) to Trio(X), e.g.,

f(a∗bc) = [{a, b, c}]. Also, since there is no ”coefficients” in regular expressions,

the bag has no duplicate elements. Therefore, we can find that this mapping is

the same one for the homomorphism from the semiring of regular expressions to the

why-semiring, and that is why there is no need to put Trio(X) into the provenance

33

hierarchy tree for graph databases.

With this revised hierarchy tree, we still need one more step before we start

doing the homomorphism, which is to show that E(G) is the quotient set of all

equivalent regular expressions. The semiring of regular expressions is defined as

KE(G) = (E(G),+, ⋅,∗,∅, ϵ), where E(G) is the set of all regular expressions over paths

in G, and it is already verified as a complete star-semiring. To extend it to a more

general semiring, here we introduce the concept of the equivalence relations. For

E,F ∈ E(G), E and F are equivalent, represented as E ⇔ F , if E and F can be

shown to be equivalent by the axioms of Kleene algebra (Kozen, 1997). Then ⇔ is

an equivalence relation. Let [E] denote the corresponding equivalence class of ex-

pression E, and extend the operators to equivalence classes in the standard way, for

example, [E] + [F] = [E + F]. Furthermore, let [E(G)] denote the quotient of E(G)

wrt ⇔. It is straightforward to verify that ([E(G)], +, ⋅, ⋆, ∅, ϵ) is a complete

star-semiring. Now we can prove the homomorphism in a general way.

Theorem 3.1 Suppose G = (V,E,Σ) is a graph database. Let K = (K,⊕,⊗,⊛, 0, 1)

be a complete star-semiring, h a mapping from the atomic regular expressions (i,a, j)

in E(G) to K, and ĥ it’s extension to a homomorphism from KE(G) to K. Then let

h′ be a mapping from E to K defined by h′(i,a, j) = h((i,a, j)), and ĥ′ it’s extension

to a homomorphism from Kpaths(G) to K. For every ei,j ∈ E(G), we then have

ĥ(ei,j) = ĥ′(Πi,j(G)).

34

Proof: We show by an induction of k that ĥ(eki,j) = ĥ
′(Πk

i,j). For the base case

ĥ(e0i,j) = ĥ((i,a1, j) + (i,a2, j) +⋯ + (i,ak, j))

= ĥ((i,a1, j))⊕ ĥ((i,a2, j))⊕⋯⊕ ĥ((i,ak, j))

= ĥ′({(i,a1, j)})⊕ ĥ′({(i,a2, j)})⊕⋯⊕ ĥ′({(i,ak, j)})

= ĥ′({(i,a1, j)} ∪ {(i,a2, j)} ∪ . . . ∪ {(i,ak, j)})

= ĥ′(Π0
i,j(G)).

Similarly we have ĥ(e0i,i) = ĥ
′(Π0

i,i). For the inductive step

ĥ(ek+1i,j) = ĥ(ek−1i,j + ek−1i,k ⋅ (e
k−1
k,k)

∗ ⋅ ek−1k,j)

= ĥ(ek−1i,j)⊕ ĥ(ek−1i,k)⊗ ĥ(ek−1k,k)
⊛
⊗ ĥ(ek−1k,j)

= ĥ′(Πk−1
i,j (G))⊕ ĥ′(Πk−1

i,k (G))⊗ ĥ′(Πk−1
k,k (G))

⊛
⊗ ĥ′(Πk−1

k,j (G))

= ĥ′(Πk−1
i,j (G) ∪Π

k−1
i,k (G) ⋅ (Π

k−1
k,k (G))

∗ ⋅Πk−1
k,j (G))

= ĥ′(Πk+1
i,j (G)).

Lemma 1 Let e ∈ E(G) and h,h′ as in Theorem 3.1. Then ĥ(e) = ĥ′(L(e)).

Proof: For the base case we have ĥ((i,a, j)) = ĥ′({(i,a, j)}) = ĥ′(L((i,a, j))). For

the inductive step ĥ(e1 + e2) = ĥ(e1) ⊕ ĥ(e2) = ĥ′(L(e1)) ⊕ ĥ′(L(e2)) = ĥ′(L(e1) ∪

L(e2)) = ĥ′(L(e1 + e2)). Similar reasoning for ⋅ and *.

Corollary 1 Let e ∈ E(G) such that L(e) = L(ei,j). Then ĥ(e) = ĥ′(Πi,j(G)).

35

Proof: ĥ(e) = ĥ′(L(e)) = ĥ′(L(ei,j)) = ĥ′(Πi,j(G)). The first equality is by Lemma

1 and the third by Proposition 1.

This theorem shows that given a graph G, the regular expression from node i

to j we get from Kleene’s algorithm or its equivalent ones, are equivalent to the

regular expression of all paths from node i to j in G, and it allows us to use Kleene’s

algorithm or the state elimination algorithm to compute the provenance of querying

graph databases. In the following, we show the homomorphism from the semiring

of regular expressions to the why-provenance semiring, the minimal witness semiring

and the lineage semiring.

Why-provenance semiring. Why-provenance semiring records the set of sets of

edges that contribute to the query results. Then one can verify that (22
V ×Σ×V

,∪,⋓,∅,{∅})

is a commutative idempotent semiring.

To do the homomorphism from the semiring of regular expressions to Why semir-

ing, we define a mapping h ∶ E(G) → 22
V ×Σ×V

by h(∅) = ∅, h(ϵ) = {∅}, h(a) = {{a}},

h(E + F) = h(E) ∪ h(F), h(E ⋅ F) = h(E)⋓ h(F), and h(E⋆) = h(E) ∪ {∅}. Then h

is a semiring homomorphism from ([E(G)], +, ⋅, ⋆, ∅, ϵ) to (22
V ×Σ×V

,∪,⋓,∅,{∅}).

Minimal witness basis semiring. Minimal witness basis semiring

(irr(E),⊕,⊗,∅,{∅}) records the sets of minimal witnesses that contribute to the

query results.

To do the homomorphism from the semiring of regular expressions to Minimal

witness semiring, we define a mapping h ∶ E(G) → irr(E) by h(∅) = ∅, h(ϵ) =

{∅}, h(a) = {{a}}, h(I + J) = irr(h(I) ∪ h(J)), h(I ⋅ J) = irr(h(I) ⋓ h(J)), and

36

h(I∗) = {∅}. Then h is a semiring homomorphism from ([E(G)], +, ⋅, ⋆, ∅, ϵ) to

(irr(E),⊕,⊗,∅,{∅}).

Lineage semiring. Lineage semiring (2V ×Σ×V ,∪,∪,∅,∅) records the set of edges

contributing to the query results, To apply the homomorphism from the semiring

of regular expressions to Lineage semiring, we define a mapping h ∶ E(G) → 2V ×Σ×V

by h(∅) = ∅, h(ϵ) = {∅}, h(a) = {a}, h(E + F) = h(E ⋅ F) = h(E) ∪ h(F), and

h(E∗) = h(E). Then h is a semiring homomorphism from ([E(G)], +, ⋅, ⋆, ∅, ϵ) to

(2V ×Σ×V ,∪,∪,∅,∅).

3.2 Proposed solution

Computing the product graph followed by the state elimination can generate the

equivalent regular expression of the Q(G). The basic idea is to keep the final states

in the product graph separate with no outgoing edges, and that can be ensured by

prepossessing. Then due to the fact that the removal sequence affects result regular

expressions significantly, we choose a heuristic that has been proven to have the best

performance on average. Finally, to deal with multidimensional provenance, we use

the parse tree technique to do the homomorphism and compute the result value.

Therefore, the proposed algorithm can be split into three phases, preprocessing the

query FA, computing Q(G), and post-processing the result regular expressions.

37

3.2.1 Preprocessing the Query FA

The first phase is to generate a FA from the given RPQ, and here we use the con-

cept of Glushkov automata (Caron & Ziadi, 2000), and Glushkov Construction Algo-

rithm (Glushkov, 1961; McNaughton & Yamada, 1960). Given a regular expression

with size n, Glushkov’s algorithm constructs an NFA with n + 1 states and it has no

ϵ−transitions by the following steps:

1. Linearize the regular expression by adding index to the symbols in the regular

expression. For example, E = a(ab)∗ + b∗c becomes E′ = a1(a2b3)∗ + b∗4c5. We

use a set Pos(E) to record the positions for this expression, and a mapping

function h to map the position to the symbol itself. In this example, Pos(E) =

{1,2,3,4,5}

2. Compute the sets First,Last,Follow, where First is the set of letters that

occurs as first letter of a word in L(E′), Last contains the set of letters that

end a word of L(E′), and Follow is the set of pair of symbols that occur

in words of L(E′). From the previous example, we can get First = {1,4,5},

Last = {1,3,5}, and Follow = {12,23,32,44,45}.

3. Compute the FA that represents the regular expression. The result FA is M =

(Q,Σ,{0}, F, δ), where Q = Pos(E)∪{0} such that 0 is not in Pos(E), and the

set of final states is Last if ϵ ∉ L(E) and Last ∪ {0} otherwise. The transition

function δ = {(x,h(y), y) ∶ x ∈ Pos(E) and xy ∈ F} ∪ {(0, h(x), x) ∶ x ∈ First}.

Then for each final state qf that has outgoing edges, we introduce new final state

38

q′f and new edges e = (qf , ϵ, q′f), and mark qf back to non-final state. The identifier of

q′f is related to qf for further processing. Figure 11(a) shows the result FA of example

regular expression E = a(ab)∗ + b∗c. Figure 11(a) contains 3 final states, 1, 3 and 5,

where 1 and 3 have outgoing edges. To process the FA, we introduce two new final

states and add edges from 1 and 3 to them with a label ϵ respectively. Figure 11(b)

shows the one after adding final states and edges to the previous FA.

0

1 2

4

5

3

a

b

c

a

b

a

b

c

(a) Result Glushkov FA

0

1 2

4

5

3

a

b

c

a

b

a

b

c

ϵ

ϵ

(b) After preprocessing

Figure 11: A Glushkov finite automata

39

3.2.2 Computing the Provenance

The second phase is to compute the product graph of a given graph database and

the query FA we get from Phase 1. Then we do the state elimination, using the state

weight heuristic.

A Finite State Automata (FA) is a 5-tuple A = (P,Σ, δ, ps, F), where P is a finite

set of states, Σ is a finite set of alphabet symbols (edge labels), δ ⊆ Q ×Σ ×Q is the

transition relation, ps ∈ Q is the start state, and F ⊆ P is a set of final states. Let

w = a1a2 . . .an where ai ∈ Σ, be a word in Σ∗. An accepting computation path of w in A

is a sequence (ps,a1, p1)(p1,a2, p2) . . . (pn−1,an, pf) of tuples of δ, where pf ∈ F . The

language accepted by A, denoted L(A), is the set of all words in Σ∗ for which there

exists an accepting computation path in A.

We now consider the problem of computing Q(G) and the provenance for each

object v ∈ Q(G). We start with an FA AQ = (P,Σ, δ, ps,{pf}), where L(AQ) =

L(Q). Without loss of generality we assume that AQ has no transitions into its start

state, that there is a single final state, and that the final state does not have any

outgoing transitions. Given a graph database G = (V,E, vs,w1, . . . ,wk), where vs is

the source node, and w1, w2 ... wk are weighted functions, we first consider G as

an FA AG = (V,Σ,E, vs, V). We then construct the product automaton AQ × AG =

(P × V, ρ, (ps, vs),{pf} × V), where

ρ = {(p, u),a, w̄, (q, v)) ∶ (p,a, q) ∈ δ, (u,a, w̄, v) ∈ E}.

40

It is a well known fact that L(AQ ×AG) = L(AQ) ∩ L(AG). Then we can define the

query result as

evalQ(G) = {v ∶ π is an accepting computation path in AQ ×AG and lastπ = (pf , v)}.

Proposition 2 evalQ(G) = Q(G),

Proof: Let v ∈ evalQ(G) with accepting computation path

π1 = ((ps, vs),a1, w̄1, (p1, v1)) . . . ((pn−1, vn−1),an, w̄n, (pf , v))

in AQ × AG. From the construction of AQ × AG it follows that the path π2 =

(vs,a1, w̄1, v1) . . . (vn−1,an, w̄n, v) is an accepting computation path in AG and thus

a path in G. Since lastπ2 = v, firstπ2 = vs, and wordπ2 = a1a2 . . .an ∈ L(Q), it follows

that v ∈ Q(G). The inclusion Q(G) ⊆ evalQ(G) is shown similarly.

Next, we consider the problem of computing the provenance polynomial ev for v ∈

evalQ(G). For this we use an extension of the well known state-elimination procedure

for obtaining a regular expression from an FA A = (P,Σ, δ, ps, F) (Brzozowski &

McCluskey, 1963). The basic method is based on viewing the label a in a transition

(p,a, q) as a regular expression denoting the language {a}. For each final state pf ∈ F

we construct a regular expression epf by removing all intermediate state q ∈ P∖{ps, pf}

one by one until only the initial state ps and the final state pf are left. For each pair

(p1,e1, q), (q,e2, p2) of transitions, we replace them with the transition (p1,e1e2, p2),

41

as shown in Figure 12.

p1 q p2
e1 e2

(a) Before eliminating q

p1 p2
e1 ⋅ e2

(b) After eliminating q

Figure 12: A state elimination example

If there is a self-loop (q,e3, q), the replaced transition is (p1,e1e∗3e2, p2), which is

shown below in Figure 13.

p1 p2qe1 e2

e3

(a) Before eliminating q

p1 p2
e1e

∗
3e2

(b) After eliminating q

Figure 13: A state elimination example where the intermediate state invovles self-loop

If there is another transition (p1,e4, p2) this is merged with the new transition

into (p1,e1e∗3e2 + e4, p2), as Figure 14 displays.

p1 p2qe1 e2

e3

e4

(a) Before eliminating q

p1 p2
e1e

∗
3e2 + e4

(b) After eliminating q

Figure 14: A state elimination example where multiple paths are invovled

After all pairs (p1,e1, q), (q,e2, p2) have been processed, the state q with its as-

sociated edges are removed. When all states in P ∖ {ps, pf} are removed and transi-

tions are replaced, we are left with (ps,e1, ps), (ps,e2, pf), (pf ,e3, pf), (pf ,e4, ps),

for some regular expressions e1,e2,e3, and e4. This gives us regular expression

42

epf = (e1 + e2e
∗
3e4)

∗e2e∗3. Figure 15 illustrates the final step. It is well known that

L(epf) = L(Apf), where Apf = (P,Σ, δ, ps,{pf}). The final regular expression for A is

then +pf ∈F epf .

ps pf

e2

e1 e3

e4

(a) Before computing

ps pf
(e1 + e2e

∗
3e4)

∗e2e∗3
(b) After computing

Figure 15: A state elimination example where only the initial state and final state
are left

To compute the provenance polynomial ev for v ∈ Q(G), we start with the FA

AQ × AG. First we replace each transition ((p, s),a, w̄, (q, t)) ∈ ρ with transition

((p, s), (s,a, w̄, t), (q, t)). Here (s,a, w̄, t) is to be seen as an atomic regular expres-

sion in E(G) over edges. Let’s call this FA B. Then we use the state-elimination

technique to each FA B(pf ,v), where (pf , v) ∈ {pf} × V , obtaining regular expression

ev =+(pf ,v)∈{pf}×V e(pf ,v)

Proposition 3 For v ∈ Q(G), L(ev) = Pv.

Proof: Let π ∈ Pv. Then π is a path in G, firstπ = vs, lastπ = v, and wordπ ∈ L(Q).

By construction, there is then an accepting computation path

π1 = ((ps, vs),a1, w̄1, (p1, v1)) . . . ((pn−1, vn−1),an, w̄n, (pf , v))

43

in AQ ×AG, and consequently

π2 = ((ps, vs), (vs,a1, w̄1, v1), (p1, v1)) . . . ((pn−1, vn−1), (vn−1,an, w̄n, v), (pf , v))

is an accepting computation path in B. Then wordπ2 ∈ L(B). Since L(B) = L(ev)

and wordπ2 = π it follows that π ∈ L(ev). Similarly, it is shown that L(ev) ⊆ Pv.

3.2.3 Determining State Removal Order

The size of the regular expression resulting from the state removal algorithm heavily

depends on the order in which states are removed. Several heuristics for determining

the removal order have been studied [7, 16, 20]. Experiments show that the heuristics

proposed by Delgado and Morais [7], the DM algorithm, produces the most compact

regular expressions. The DM algorithm repeatedly computes the weight of each state

and eliminates the state with the smallest weight. For states q1 and q2, let len(q1, q2)

denote the length of the label of the transition from q1 to q2. For a state q, let

p1, . . . , pm be the states from which there is a transition into q, and r1, . . . , rn states

into which there is an outgoing transition from q. At each intermediate step of the

state elimination algorithm, the weight of state q is computed as

weight(q) = (n − 1) ×
m

∑
i=1

len(p1, q) + (m − 1) ×
n

∑
i=1

len(q, ri) + (m × n − 1) × len(q, q).

44

q0 q1 ∶ 5 q2 ∶ 2 q4

q3 ∶ 0

e

a

b

cd

f

g

e

Figure 16: A generalized transition graph

Figure 16 is a FA with regular expressions as edge labels, which is in an intermediate

state for state removal, and we use the state weight heuristic DM to compute the removal

sequence. Using state q2 as an example, first we get the number of incoming edges and

outgoing edges from q2, that is, m = 1 and n = 2. Also, q2 has a loop of length 1. The

weight of q2 is determined as weight(q2) = (1−1)×1+(1−1)×1+(2−1)×1+(1×2−1)×1 = 2.

Similarly, we determine the weights of q1 and q3 as 5 and 0, respectively. This suggests the

state order removal q3 → q2 → q1, which yields the regular expression e(ag∗b)∗(ag∗f + cde),

with length 26. Note that in this example, using the removal order q1 → q2 → q3 would yield

the regular expression eb(g + cb)∗f + (ecd + eb(g + cb)∗ccd)e, whose length is 43.

Yann et al. (Ramusat et al., 2021) proposed a new state removal heuristic based

on the degree of each node. The degree of each node is defined as the sum of incoming

and outgoing edges from the node, and recomputed after a node with the minimum

degree is eliminated. Using the same example in Figure 16, the degree of q1, q2 and

q3 initially are 4, 5 and 2, respectively. After eliminating the node q3, which has the

minimum degree, the degree of q1 and q2 stays the same, which leads to removing q1

45

next and q2 in the end. The result regular expression is eb(g + cb)∗(f + ccde) + ecde,

which is of length 32.

3.2.4 Post-processing the Provenance Polynomials

The last phase includes the conversion from the regular expression of each destina-

tion node to parse tree, from which we can compute the actual result over different

semirings.

In (Green, Karvounarakis, & Tannen, 2007), the most general form of provenance

over relational databases is polynomials, which can be projected to different semirings

by homomorphism. The difference between polynomials and regular expressions is

that the latter does not support commutativity since it requires a certain order for

edges in each path. Given the fixed source node n1, the provenance of a target node

n2 is r = (n1, a,1,0.6, n3)(n3, c,2,0.2, n3)
∗(n3, b,3,0.5, n2)+ (n1, a,2,0.2, n2), wherein

each tuple, the second element is an edge label, and the third element belongs to

tropical semiring while the fourth element belongs to influential semiring. Now if

we want to compute the shortest distance from node n1 to n2, we will take the

homomorphism from r to tropical semiring, by replacing the concatenation operator

with plus, the union operator + with min , and the star operator a∗ with 0. Then

we extract the third element from each tuple in r, and compute the result value by

min(1 + 0 + 3,2) = 2. Similarly, if we want to get the influence from node n1 to n2,

we replace the operators accordingly, then the result influence will be max(0.6 × 1 ×

0.5,0.2) = 0.3.

46

Figure 17: A parse tree

This process can be done by parse tree. After we get a regular expression for each

target node, we create parse trees for them separately. For example, the parse tree of

the previous regular expression r is shown in Figure 17. Since it allows multidimen-

sional provenance, each leaf node of the parse tree may include multiple elements for

different semirings. Then during the homomorphism phase, we traverse the parse tree

and calculate the value by replacing operators based on the definition of the semir-

ing we choose and return the final value and its provenance as result. The complete

answer of tropical semiring for this example should be n2 ∶ 2, (n1, a,2,0.2, n2), while

the influence result is n2 ∶ 0.3, (n1, a,1,0.6, n3)(n3, b,3,0.5, n2).

47

Chapter 4

Implementation

In this chapter, we provide descriptions of procedures and functions used in the

development of the programs and used in our experiments to show the practical

merits of the ideas and techniques proposed in our work.

The program architecture is shown in Figure 18. Three main blocks are surrounded

by dashed frames, which correspond to (1) Phase 1: converting RPQ to FA, (2) Phase

2: eliminating intermediate states, and (3) Phase 3: generating parse trees, from left

to right respectively.

Algorithm 1 is our main algorithm ProvAl. Given a graph database G, an RPQ

Q and a fixed source node s, the ProvAl algorithm returns a HashMap, where the

key is the target node t that can be reached from the source node, and the value is

Pt, which is the provenance from the source node s to t.

48

Figure 18: Program architecture

The ProvAl algorithm is based on Glushkov’s algorithm and the state elimination

algorithm, where Glushkov’s algorithm is used to construct the automaton from the

given query. We modified and used the state elimination algorithm to compute the

regular expression from the source node to the end nodes of the product graph. In

addition, we applied the state weight heuristic method during the state elimination

process, which has been shown to have a better performance than other heuristics on

average.

Using the parse-tree technique, we also provide a postprocessing algorithm to deal

with multidimensional provenance.

49

Algorithm 1 The ProvAl algorithm

Input: A regular path query Q, and a graph database G with the source node s

Output: A HashMap of provenance regular expressions with the target node as the

key and regular expression as the value

1: construct a FA M representing Q, where q0 is the initial state;

2: preprocess M ;

3: build the product graph AM×G of M and G, where the start node is (s, q0);

4: apply state elimination until only the source node and final nodes are left, which

returns a HashMap result;

5: return result;

4.1 Phase 1: Converting RPQ to FA

To build a Glushkov FA from the given RPQ Q, we compute three sets First, Last

and Follow, which include the information of the first symbols, last symbols, and two

consecutive symbols that appear in L(Q). For computing these sets, we generate a

syntax tree based on the given query Q.

4.1.1 Syntax Tree

To create a syntax tree for generating the Glushkov FA, we use two stacks, one for

nodes and one for operators, and a set nodes which records all the nodes in the syntax

tree. Algorithm 2 shows details, where it first adds an index to each symbol in the

given query Q (line 2), e.g. a ⋅ b to a1 ⋅ b2, and then starts traversing the regular

expression Q (lines 3-23).

For each symbol in Q, if the current symbol is a character (from ’a’ to ’z’), it

50

creates a new node with the symbol and its index next to it (line 5-6), pushes it

onto the node stack and also adds it to nodes (lines 7-8). If the current symbol is

a left parenthesis, it simply pushes it to the operator stack (lines 10-11). When the

current symbol is a right parenthesis, it will start processing operations according to

the operator symbol at the top of the stack (line 14), until it sees a left parenthesis,

which is then popped out of the operator stack (line 16).

For the rest of the cases, when the current symbol is one of the operators, it checks

if the operator stack is empty or not, and also if the priority of the current operator

is lower than the operator at the top of the stack. If so, it pops the operator symbol

out of the stack and performs the operation accordingly. This process repeats until

the condition is not satisfied anymore, and then it pushes the current operator to

the operator stack (lines 18-21). After reading all the symbols in Q, if there are still

operators left in the operator stack, it continues to process the operations until all

the operators are popped (lines 24-26). In the end, the algorithm returns the set of

nodes in the syntax tree and the node at the top of the node stack (line 27), which is

the root of the syntax tree.

51

Algorithm 2 Syntax Tree algorithm

Input: A regular expression Q

Output: A syntax tree representing Q, and a set of nodes nodes

1: initialize a stack stackNode, operator, and a set nodes;

2: add index to each symbol in Q

3: for symbol s in Q do

4: if s is a character then

5: get the index n next to s;

6: create a new node newNode with value sn;

7: add newNode to the node set;

8: push newNode to the node stack;

9: i = i + 1;

10: else if s is the left parenthesis ’(’ then

11: push s to the operator stack;

12: else if s is the right parenthesis ’)’ then

13: while the top operator of the operator stack is not left parenthesis do

14: call function doOperation() and perform the operation;

15: end while

16: pop the left parenthesis out of the operator stack;

17: else

18: while the operator stack is not empty and if the priority of s is lower than

the top operator in operator do

19: call function doOperation() and perform the operation;

20: end while

21: push s to the operator stack;

22: end if

23: end for

24: while there are operators left in the operator stack do

25: call function doOperation() and perform the operation;

26: end while

27: return the set of nodes nodes and the top node of the node stack;

The function doOperation that operates for the top operator of the stack is shown

52

in Algorithm 3. First, it pops the top operator out of the stack and creates a new

node with the operator as the value (lines 2-3). If the top operator is ’&’ or ’∣’, it

pops two nodes from the node stack as its left child and right child (lines 5-8). If the

top operator is the star ’∗’, it only needs to pop one node from the stack and use it

as the left child of the new node ’∗’ (lines 10-11). In the end, it pushes the new node

to the node stack (line 13).

Algorithm 3 doOperation function

Input: The node stack, and the operator stack

1: if the operator stack is not empty then

2: pop the top operator out of the operator stack as the current operator;

3: create a new node with value as the current operator;

4: if the current operator is ’∣’ or ’&’ then

5: pop the top node out of the node stack as node2;

6: pop the top node out of the node stack as node1;

7: set node1 as the left child of the new node;

8: set node2 as the right child of the new node;

9: else

10: pop the top node out of the node stack as node;

11: set node as the left child of the new node;

12: end if

13: push the new node to the node stack;

14: end if

4.1.2 Computing First, Last and Follow

Here we adopt and implement the rules for computing the sets First, Last and Follow

proposed in (Caron & Ziadi, 2000), and then apply them to the syntax tree. First, we

consider computing the set First, which includes all possible symbols that appear as

53

the first letter in the language L(Q). For this, we use the rules from (Caron & Ziadi,

2000) shown below. Algorithm 4 shows more details when dealing with the syntax

tree.

1. First(∅) = First(ϵ) = ∅

2. First(x) = x

3. First(F +G) = First(F) ∪ First(G)

4.

First(F ⋅G) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

First(F), if ϵ ∉ L(F)

First(F) ∪ First(G), otherwise

5. First(E∗) = First(E+) = First(E)

In Algorithm 4, if the current node has no children and its value is neither null nor

empty string, we apply the second rule, First(x) = x (lines 2-5). Otherwise, there are

the following three cases, depending on the operator of the current node: (1) if the

current node is the star operator ’∗’, we need to compute the first letter set of its left

child (lines 8-9); (2) if the current node is the union operator ’∣’, then we determine

the first letter set of both its left child and right child and add it to the result set

(lines 11-13); (3) if the current node is the concatenation operator ’&’, here if the left

child does not generate an empty string, it only computes the first letter set of the

left child (lines 15-17). Otherwise, if the left child generates an empty string, it needs

to compute the right child and add the result to the result set (lines 18-20).

54

The rules for computing Last are very similar to those used for First, and the

only difference is the rule for concatenation.

First(F ⋅G) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

First(F), if ϵ ∉ L(F)

First(F) ∪ First(G), otherwise

Here if the right child can generate an empty string, then both the last letter sets of

left and right child should be added to the result set.

Algorithm 4 computeFirst function

Input: the current node
Output: A set of nodes First
1: if the current node has no children then
2: if the value of the current node is neither ∅ nor ϵ then
3: add the current node to First
4: end if
5: return First
6: else
7: if the value of the current node is ’*’ then
8: compute the set Firstleft of the left child of the current node;
9: set Firstleft as First of current node;
10: else if the value of the current node is ’∣’ then
11: compute the set Firstleft of the left child of the current node;
12: compute the set Firstright of the right child of the current node;
13: get the union of Firstleft and Firstright as First
14: else
15: compute the set Firstleft of the left child of the current node;
16: compute the set Firstright of the right child of the current node;
17: set Firstleft as First of the current node;
18: if the left child of the current node can generate an empty string then
19: add nodes from the Firstright to First
20: end if
21: end if
22: return First
23: end if

When creating new nodes in the syntax tree and computing First and Last, we

55

also update the First and Last sets for each node, which saves the information of the

first and last letters each node can generate. Using these First and Last information,

Function 5 traverses the syntax tree and updates the set Follow for each node. First,

it calls Function 6 (line 1), and continues to traverse its children on left and right

(lines 2-3), or traverses only its left child if the current node is the star operation (line

6).

Algorithm 5 Follow function

1: function Follow(curr)
2: computeFollow(curr);
3: if the current node curr has left and right child then
4: Follow(curr.leftChild);
5: Follow(curr.rightChild);
6: else if the value of the current node curr is ’*’ then
7: Follow(curr.leftChild);
8: end if
9: end function

Function 6 computes the follow set given the current node. If the current node

is the concatenation operator ’&’, it adds the nodes from First of the right child to

Follow of each node in Last of the left child (lines 2-8). If the current node is star

operator ’∗’, then it adds the nodes from First to Last, where both First and Last

are of the current node (lines 10-14).

56

Algorithm 6 computeFollow function

1: function computeFollow(curr)
2: if the value of the current node curr is ’&’ then
3: get the Last set of the left child of the current node as Lastleft;
4: get the First set of the right child of the current node as Firstright;
5: for each node n1 in Lastleft do
6: for each node n2 in Firstright do
7: add n2 to the Follow set of n1;
8: end for
9: end for
10: else if the value of the current node curr is ’*’ then
11: for each node n1 in Last of the current node do
12: for each node n2 in First of the current node do
13: add n2 to the Follow set of n1;
14: end for
15: end for
16: end if
17: end function

After computing the sets First, Last and Follow, we can build the FA by initial-

izing ∣Q∣+ 1 nodes with index as the node identifier. The identifier of the initial state

is 0 ∉ Σ, final states are nodes from Last, and transition functions are from Follow.

For each node first in First, there is an edge from 0 to first with h(first) (the

symbol of first) as the edge label.

Then we can preprocess the FA by making the final states that have no outgoing

edges, using Algorithm 7, where if any final state qf ∈ QF has any outgoing edges, it

creates a new final state (line 3), adds an ϵ−transition from qf to the new final state

(line 4), and changes qf back to the non-final state (line 5).

57

Algorithm 7 Preprocessing FA algorithm

Input: The RPQ Q which is represented as FA M

Output: A pre-processed FA

1: for final state qf of QF , which is a set of final states of M do

2: if qf has outgoing edges then

3: create a new final state qnewFinal;

4: create a new edge δ(qf , λ) = qnewFinal;

5: change qf to non-final state;

6: end if

7: end for

8: return M ;

4.2 Phase 2: Computing the Provenance of Query

Results

We now briefly review the State Elimination algorithm, which can be applied to solve

the single-source provenance problem. Given a FA, the algorithm first preprocesses

the FA to ensure the initial state q0 does not have incoming edges, which can be done

by introducing λ-productions. Then for each final state qf , we repeat removing the

state qi ∈ (Q∖U)∖ {q0, qf}, where U is the set of all states that are already removed,

while keeping the regular expressions of each path that passes through qi. For every

node qj where there is an edge (qj, qi) ∈ E, qk where there is an edge (qi, qk) ∈ E and

qj, qk ∉ U , we introduce a new edge (qj, qk) with Rji(Rii)
∗Rik as the regular expression

of the edge. In the end, when all the states are removed except for the initial state

and final state, we can get the regular expression for the paths from q0 to qf .

58

The size of the result regular expression obtained by the state elimination algo-

rithm depends on the order in which the states are removed. Among several heuristics

for state removal order (Delgado & Morais, 2005; Han & Wood, 2007; Moreira et al.,

2010), the heuristic proposed by Delgado and Morais (Delgado & Morais, 2005) is

the most efficient heuristic for the most general case, however, it has some limitations

for graph and query size. This algorithm to which we refer as DM determines the

weight of each state and eliminates the one with the lowest weight. The experimental

results which showed the statistical significance of the DM algorithm can be found

in (Gruber, Holzer, & Tautschnig, 2009; Moreira et al., 2010). To determine the

weight weight(q) of a state q at every iteration of the state elimination process, they

use the following formula:

weight(q) = (n − 1) ×
m

∑
i=1

len(p1, q) + (m − 1) ×
n

∑
i=1

len(q, ri) + (m × n − 1) × len(q, q)

which has been explained in detail in Chapter 3.

Function 8 shows details of the DM algorithm. The input includes the current

state currState, a list of states visited whose weight is already computed, and an

array weight which records the weight of each state. First, it checks if currState

has already been visited or not (line 1). If not, it adds currState to visited, and

starts computing its weight (lines 2-18). It initializes the number of outgoing and

incoming edges, the total weight of incoming and outgoing edges, and the weight

of the loop at currState (lines 3-8). Then it computes the weight of incoming edges

59

(lines 9-11), outgoing edges (lines 13-15), and the loop (line 17). After summing these

three weights up, it updates the weight of currState in weight (line 18), and keeps

computing if currState has any outgoing edges to other states (lines 19-23).

Algorithm 8 State weight function

1: function stateWeight(currState,visited,weight)

2: if currState is not in visited then

3: add currState to visited;

4: in = 0, out = 0, weightin = 0, weightout = 0, weightloop = 0, looplen = 0;

5: get all states that have an edge to currState as incoming;

6: get all states that currState has an edge to as outgoing;

7: in = incoming.size;

8: out = outgoing.size;

9: get the length of the regular expression of the loop on currState as looplen;

10: for state s in incoming do

11: get the length of edge label between (s, currState) as len;

12: weightin+ = len × (out − 1);

13: end for

14: for state t in outgoing do

15: get the length of the edge label between (currState, t) as len;

16: weightout+ = len × (in − 1);

17: end for

18: weightloop = looplen × (in × out − 1);

19: weight[currState] = weightin +weightout +weightloop;

20: if outgoing.size > 0 then

21: for state next in outgoing do

22: call updateOrder(next);

23: end for

24: end if

25: end if

26: end function

60

In our work, we combined using the state elimination algorithm, with the DM

heuristic. Our goal is to compute the provenance of each target node t, where s is

the single source given from the graph database. Rather than repeating the state

elimination process for each target node, in this thesis, we keep the initial state

and multiple final states that do not have outgoing edges when performing the state

elimination. The label of the edge from the initial state s to any one of the final states

t represents the provenance of t, and no outgoing edges from final states ensures that

we do not need to make a removal sequence for final states.

Algorithm 9 State elimination algorithm

Input: The RPQ Q which is represented as FA M , the graph database G

Output: A list of provenance regular expressions of the form t ∶ r

1: initialize a HashMap resultRegexList;

2: compute the product graph AM×G;

3: for each final state qf ∈ AM×G do

4: provqf = StateElimination(AM×G);

5: add qf and provqf to resultRegexList;

6: end for

7: return resultRegexList;

Algorithm 9 shows details of the original state elimination algorithm, while Algo-

rithm 10 shows the new one. In Algorithm 9, we need to perform the state elimination

for each final state (lines 3-6). However in Algorithm 10, since we already preprocess

the FA that represents the query, there will not be any final states with outgoing

edges in the product graph, therefore we can directly perform the state elimination

algorithm only once (line 2).

61

Algorithm 10 New state elimination algorithm

Input: The RPQ Q which is represented as FA M , the graph database G

Output: A list of provenance regular expressions of the form t ∶ r

1: compute the product graph AM×G;

2: resultRegexList = SE(AM×G);

3: return resultRegexList;

Algorithm 11 presents the state elimination part (lines 4-12) and generates the

final regular expressions for each target node (lines 13-25). First, it initializes a list

of visited nodes and a Hashmap for collecting result regular expressions (lines 1-2).

While there is any non-initial non-final state left in the product graph, it updates the

removal sequence first (line 4), and chooses the first unvisited node from the removal

order, and eliminates it from the product graph (lines 6-9). The steps of removing an

intermediate state and introducing new edges are described in Algorithm 12. Once

all nodes except the initial and final nodes are removed, it traverses the nodes that

are in the set of final states, extracting their regular expressions from the start node

(line 14). Since every node in the product graph is consisting of a graph node and

a FA state, we need to combine the regular expressions for the same graph node

together (lines 16-24). In the end, Algorithm 11 returns the Hashmap resultRegex

that records all provenance information of all target nodes (line 26).

62

Algorithm 11 Multi-target state elimination algorithm

Input: the product graph M

Output: A list of provenance regular expressions

1: initialize a new list visited;

2: initialize a new HashMap resultRegex;

3: while there is any intermediate state left do

4: update the removal order eliminateOrder;

5: for currState in eliminateOrder do

6: if currState is neither initial nor final and currState is not in visited then

7: add currState to visited;

8: eliminate currState;

9: break;

10: end if

11: end for

12: end while

13: for state finalState in finalStates do

14: get the regular expression R of paths from M.initialState to finalState;

15: get the id of finalState as stateId;

16: if resultRegex already records the provenance of finalState then

17: prevRegex = resultRegex.get(stateId);

18: prevRegex.add(R);

19: resultRegex.put(stateId, prevRegex);

20: else

21: initialize a new list newRegexList;

22: newRegexList.add(R);

23: resultRegex.put(stateId, newRegexList);

24: end if

25: end for

26: return resultRegex

Function 12 describes details of eliminating the intermediate state. Given the cur-

rent intermediate state currState, it gets the set of incoming states as incoming, the

set of outgoing states as outgoing, and the regular expression of the loop at currState

as provcurrState,currState (lines 1-3). For each state from in incoming and each state

63

to in outgoing, it generates the regular expression using provfrom,to, provfrom,currState,

provcurrState,currState, and provcurrState,to (lines 6-7). If states from and to are the

same, it updates the regular expression of the loop at state from (line 9). Otherwise,

it updates the regular expression of the edge starting from state from to state to

(line 11). Then it deletes the edge between state from and currState (lines 13), and

between currState and to (lines 15) respectively. The complexity of the revised state

elimination algorithm is O(n3).

Algorithm 12 Eliminate intermediate state function

1: function eliminateState(currState)

2: get all states that have an edge to currState as incoming;

3: get all states that currState has an edge to as outgoing;

4: get the loop of currState as provcurrState,currState;

5: for state from in incoming do

6: for state to in outgoing do

7: get the regular expressions provfrom,to, provfrom,currState, provcurrState,to;

8: newRegex = provfrom,to+provfrom,currStateprov∗currState,currStateprovcurrState,to;

9: if from and to are the same state then

10: set newRegex as the regular expression of loop of from;

11: else

12: set newRegex as the regular expression of the edge from from to

to;

13: end if

14: delete currState from the incoming states of to;

15: end for

16: delete currState from the outgoing states of from;

17: end for

18: end function

64

4.3 Phase 3: Postprocessing the Multidimensional

Provenance

We used Antlr1 in our research to implement the construction of parse trees and the

traversal visitors. Antlr is a versatile parser generator for processing text given an

input grammar and strings or text file. It generates a tree based on the grammar and

the input string, and then with a customized visitor, it traverses the tree with defined

operators in the visitor. It then returns the result value, and also the associated

regular path expression that leads to the result. One advantage of this visitor interface

is that we can define different visitors to deal with different semirings, which can be

defined explicitly in the grammar. Here we present the grammar we use for the

parse tree. The rules for expr include the concatenation, union and star operations,

as well as the parenthesis, and the single edge regular expression (tuple). We also

define several terminals, such as tuple that can include more than one semiring value,

PCSTO that is used for access control semiring, and INT and FLOAT for integers

and float numbers, respectively.

grammar Semi;

prog

: expr #printExpr

;

expr

: expr ’*’ #aster

| expr ’.’ expr #concate

| expr ’+’ expr #or

| tuple #tup

1https://www.antlr.org/

65

| LP expr RP #parens

;

tuple

: LP nodef=INT COMMA label=LABEL COMMA w1=FLOAT COMMA w2=INT

COMMA nodet=INT RP

;

LP : ’(’ ;

RP : ’)’ ;

PCST0 : [PCSTN];

INT: [0 -9]+;

LABEL : ([a-z]|’\u03BB ’);

FLOAT : INT ’.’ INT;

COMMA: ’,’;

WS : [\t\r\n]+ -> skip ;

The customized visitor realizes the homomorphism from the semiring of regular

expressions KE(G) = (E(G),+, ⋅,∗,∅, ϵ) to a certain application semiring. To be more

specific, it implements how the operators ⋅, +, and ∗ work when traversing the parse

tree. The visitor follows the structure of grammar that is shown above, so it needs

to override the functions of visiting expr, the star operation, the concatenation op-

eration, the union operation, the edge regular expression tuple, and the parentheses.

Since we need to record the set of paths that lead to the result value (e.g. the shortest

distance), we also include the regular path expression when traversing the parse tree.

66

Chapter 5

Experiments

In this chapter, we provide details of our experiments and report the effectiveness and

scalability results. In the experiments, we use both real-world and synthetic graph

databases. We also study the effect of queries with different sizes and structures, and

experimentally evaluate and compare the performance of two state removal heuristics.

5.1 Equipment and Datasets

The computer we use for the experiments is a typical PC which has 16GB of RAM

and runs Intel Core i5-8400 CPU.

For the datasets, we use two real-world sparse graph databases, the Retweet net-

work (De Domenico, Lima, Mougel, & Musolesi, 2013) from SNAP1, and the Yeast

protein-to-protein interaction network (Maniu, Senellart, & Jog, 2019). We start with

sparse graph databases to see how our algorithm performs. Since many real-world

1http://snap.stanford.edu/data/index.html

67

networks are sparse, such as social, computer, and biological networks, as well as

transportation and citation networks, etc., focusing on sparse graph databases can

lead to some practical potentials. We add different annotations to these datasets

based on different uses. In our experiments, we considered the tropical semiring, the

influence semiring and the access control semiring. We also created and used several

synthetic graph datasets with fixed alphabet size as 10. The yeast graph database

has 2,361 nodes and 7,182 edges.

Here we briefly describe the preprocessing steps for the retweet network data, we

use for the experiments. The original retweet network dataset is a directed graph

that contains 256,491 nodes and 328,132 edges, where each edge (A,n,B) indicates

that A retweets n times the posts from B. To build the influence graph based on the

original retweet dataset, we use the formula from (Hangal et al., 2010). To compute

the influence of user A on user B, it divides the numbers of times of B retweeting A

by the total number of retweets from B. The new directed influence graph consists

of edges (A,B) that shows the influence value of user A on user B.

Influence(A,B) =
Retweets(B,A)

∑X Retweets(B,X)

68

A C

B

D

2

6

64

(a) Retweet Network

A C

B

D

0.4 0.6

0.25

0.75

(b) Influence network

Figure 19: Retweet data (a) and the corresponding influence data (b)

Figure 19(a) shows an example of a given retweet network and Figure 19(b) shows

the influence graph obtained. The origin retweet network data has four users A, B,

C, and D, and each edge from user x to y represents how many times x retweets y.

It can be seen that B retweets A 4 times and retweets C 6 times. So to compute

the influence of A and C to B, first we determine the number of retweets from B,

which is 10. Then using the formula above, we get Influence(A,B) = 4/10 = 0.4,

and Influence(C,B) = 6/10 = 0.6. Similarly, the influence of D to A obtained is

0.75, while the influence of C to A is 0.25. Figure 19(b) shows the complete influence

graph data.

5.2 Results and Analysis

Our experimental study focuses on studying the feasibility and scalability of our pro-

posed state elimination algorithm. We measure the execution time and the size of

69

the resulting regular expressions. We also compare the heuristics of state elimina-

tion order between the DM algorithm and degree-based algorithm, introduced earlier

in Section 3. Since we consider the single-source problem, the results may be less

convincing if we only pick one or two nodes as the source node, especially when the

input graph database is large. Therefore, we record the results of using every node

as the source node, and report the average as the result for the smaller size of graph

databases. For larger graph databases, we take half or one-third of the nodes as the

source node and report the average results. We used three different queries for each

test.

5.2.1 Main Results

As can be seen from the experiment results shown in Figures 20 and 22, for the

Retweet graph and the synthetic datasets, the time to build the parse tree is negligible,

compared to the time for computing the query results, which involves building the

product graph and performing state elimination. This implies that after we get all

pairs of nodes with a fixed source node, computing certain information, such as the

shortest path or access level, between the source node and one of the target nodes can

benefit by using parse trees. However the result of the Yeast network in Figure 21 is

an exception from the conclusion above, where the time for computing product graph

and performing state elimination is close to the time for parse trees, and the execution

times are relatively small comparing to the execution times of other datasets. This

result is due to the graph structure of the Yeast network, which leads to a smaller

70

size of product graph and resulting regular expressions.

Query Size

Execution Time(second)

2 4 6 8 10

4

8

12

16

20

0

∣Q∣ Time for SE(s) Time for Parse(s) Length of RE

2 0.00010 0.00001 20
4 0.35 0.00003 64
6 4.39 0.00004 79
8 8.87 0.00004 109
10 17.89 0.00003 117

Figure 20: Experiment results of Retweet Network

Query Size

Execution Time(second)

2 4 6 8 10

3 ⋅ 10−4

6 ⋅ 10−4

9 ⋅ 10−4

1.2 ⋅ 10−3

0

∣Q∣ Time for SE(s) Time for Parse(s) Length of RE

2 0.00014 0.00011 16
4 0.00018 0.00009 26
6 0.00037 0.00007 48
8 0.00063 0.00005 59
10 0.00107 0.00004 56

Figure 21: Experiment results of Yeast Network

71

Query Size

Execution Time(second)

3 4 5

0.5

1

1.5

2

0

(a) ∣V ∣ = 1,000, ∣E∣ = 10,000

Query Size

Execution Time(second)

3 4 5

10

20

30

40

0

(b) ∣V ∣ = 5,000, ∣E∣ = 50,000

Query Size

Execution Time(second)

3 4 5

3

6

9

12

0

(c) ∣V ∣ = 10,000, ∣E∣ = 100,000

Graph Size ∣Q∣ Time for SE(s) Time for Parse(s) Length of RE

∣V ∣ = 1,000,
∣E∣ = 10,000

3 0.01 0.00004 273
4 1.65 0.00011 939
5 1.28 0.00009 930

∣V ∣ = 5,000,
∣E∣ = 50,000

3 11.73 0.00055 6688
4 22.24 0.00083 12572
5 36.29 0.00082 12145

∣V ∣ = 10,000,
∣E∣ = 100,000

3 0.67 0.00006 106
4 6.67 0.00028 184
5 9.63 0.00037 195

(d)

Figure 22: Experiment results of synthetic graph datasets

Figures 20, 21, and 22(a) - (c) show the execution time of querying five different

72

datasets, two of which are real-world graph databases: Figure 20 is the retweet graph,

and Figure 22 is the yeast graph. Figures 22(a) - (c) are synthetic graph databases

of different sizes: 22(a) with size ∣V ∣ = 1,000, ∣E∣ = 10,000, 22(b) with size ∣V ∣ =

5,000, ∣E∣ = 50,000, and 22(c) with size ∣V ∣ = 10,000, ∣E∣ = 100,000. For the real-world

graph databases, the execution time increases as the query size grows, and the growth

is not linear, as expected since the complexity of the state elimination algorithm is

exponential. However, from Figures 22(a) and 22(c) we can see that for some data,

the execution time is approaching linear, which indicates the potential and suitability

of the proposed new state elimination algorithm.

5.2.2 Comparison of Different Types of Queries

We also compare the execution time of different types of queries, using the synthetic

graph with 1,000 nodes and 10,000 edges. The result is shown in Figure 23.

Here we mainly compare five different types of queries within the same query size,

and give a generalized form for each type as follows. Additional information can be

found in Table 3:

1. the loop in the query has multiple edge labels, e.g., (a + b)∗c;

2. the loop in the query only has one edge label, e.g., ab∗c;

3. the loop in the query only has two consecutive edge labels, e.g., (ab)∗c;

4. the query has two or more branches, where the size of the longest component

is of size 2, e.g., a∗b + c;

73

5. the query has two or more branches, where the size of the longest component

is of size 3, e.g., ab∗c + d.

∣Q∣ = 3 ∣Q∣ = 4 ∣Q∣ = 5
0

1

2

3

∞
E
x
ec
u
ti
on

T
im

e(
S
ec
on

d
)

Figure 23: Execution times of different types of queries

Type of queries ∣Q∣ = 3 ∣Q∣ = 4 ∣Q∣ = 5

Loop that has multiple
edge labels

(a + b)∗c a(b + c)∗d (a + b)∗c(d + e)∗

Loop that has one edge
label

ab∗c ab∗cd∗ ab∗cd∗e

Loop that has two
consecutive edge labels

(ab)∗c a(bc)∗d (ab)∗c(de)∗

Query that has multiple
branches, and the longest
branch size is 2

a∗b + c ab∗ + cd∗ ab∗ + cd∗ + e

Query that has multiple
branches, and the longest
branch size is 3

none ab∗c + d ab∗c + de∗

Table 3: Examples of different types of queries

As shown in Figure 23, the first type of query always leads to indefinite execution,

which was expected due to the exponential results of generating product graphs. With

the presence of loops in the queries, those that contain loops with only a single edge

74

label needed a longer execution time than the loops that have more edge labels. For

query size ∣Q∣ = 4, the former execution time measured was up to 30 times more than

the later one. Besides, the second type of query that only contains a loop with a

single edge label had the longest execution times compared to other types of queries,

in general. The queries with more branches have a better execution time compared

to linear queries. A significant difference can be seen in the graph for ∣Q∣ = 4 and

∣Q∣ = 5.

5.2.3 Comparing Different State Elimination Heuristics

Since we use the same graph database, Yeast, as in (Ramusat et al., 2021), it is nat-

ural to compare their experiment results with ours. However, the problem studied

in (Ramusat et al., 2021) was the reachability problem and they directly used the

graph database and performed state elimination to get the provenance of paths be-

tween two random nodes. This might involve unnecessary state removal because not

every node is intermediate and relevant to the input pair of nodes. Therefore, here

we compare the two heuristics of state removal sequence, which are the state-weight

algorithm (DM algorithm) and the degree-based algorithm mentioned in (Ramusat et

al., 2021), using the Retweet graph and a synthetic graph data with size ∣V ∣ = 1,000

and ∣E∣ = 10,000.

From Figure 24, we can see that the execution times of the DM and the degree-

based algorithms are very similar, and the degree-based algorithm is slightly faster

than the DM algorithm when ∣Q∣ = 5 for the synthetic graph database(1.17s and 1.28s,

75

respectively), and when ∣Q∣ = 4 for both graph databases, where the execution time

for the degree-based algorithm is faster by 0.23s and 1.37s than the DM algorithm.

However, the DM algorithm generates shorter size regular expressions, which in turn

results in reduced memory cost for saving provenance information.

Query Size

Execution Time(second)

3 4 5

0.5

1

1.5

2

0

DM heuristic
Degree heuristic

(a) ∣V ∣ = 1,000, ∣E∣ = 10,000

Query Size

Execution Time(second)

3 4 5

3

6

9

12

0

DM heuristic
Degree heuristic

(b) ∣V ∣ = 256,491, ∣E∣ = 328,132

Graph Size Query Size
Execution time(s) Size of regular expression
DM Degree DM Degree

∣V ∣ = 1,000,
∣E∣ = 10,000

3 0.01 0.01 273 304
4 1.64 1.41 939 1,339
5 1.28 1.17 930 1,274

∣V ∣ = 256,491,
∣E∣ = 328,132

3 0.67 0.64 106 106
4 6.67 5.30 184 193
5 9.63 10.89 195 235

Figure 24: Experiment results of state removal heuristics

76

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The provenance of querying relational databases has been studied for the past few

decades. An interesting scenario would be to annotate the graph databases with

provenance, these annotations will be propagated to the results of queries over graph

databases, which can bring us meaningful information about how, why, where the

result has been computed, or security clearance, etc.

In this thesis, we provide a detailed set of definitions of provenance for query-

ing graph databases, including a refined version of the single-source provenance and

homomorphisms to various semirings. We then present a state-elimination-based al-

gorithm to compute the single-source multidimensional provenance of the RPQ over

graph databases and test it with both real-world and synthetic graph databases.

This new algorithm works well for certain types of queries, such as the ones that

77

have multiple branches, or the ones that have consecutive edge labels in one loop.

We also compare the performance of two heuristics for state removal sequence, where

the results show that they have a similar execution time with the small size of graph

databases while the DM algorithm generates a shorter regular expression, which saves

more memory in practical scenarios.

6.2 Future Work

Our future work includes exploring the provenance of querying graph databases with

more complex queries, such as C2RPQ. We already explored with a limited set of

queries in our experiments, however, there is unknown that needs to be further re-

searched, for example, additional applicable sets of queries.

On the other hand, the structure of input graph databases might also affect the

performance of querying results. In (Ramusat et al., 2021), Ramusat et al. observed

that lower treewidth of the graph leads to a better performance of querying graph

databases in practice. Therefore it is beneficial to identify how other graph structures

impact the efficiency of our algorithm, which will shed some light on finding the types

of real-world graph databases to which our algorithm is suitable.

Also, we would like to explore further how provenance can be used for incremental

maintenance. It has already been proven that maintenance of delete operations in

databases can benefit from provenance polynomials (Green, Karvounarakis, Ives, &

Tannen, 2007), however how provenance can simplify the insertion operations has

78

still not been evaluated, so it will be an interesting topic.

79

References

Añez, J., De La Barra, T., & Pérez, B. (1996). Dual graph representation of trans-

port networks. Transportation Research Part B: Methodological , 30 (3), 209-

216. Retrieved from https://www.sciencedirect.com/science/article/

pii/0191261595000240 doi: https://doi.org/10.1016/0191-2615(95)00024-0

Arenas, M., & Pérez, J. (2011). Querying semantic web data with SPARQL. In

Proceedings of the thirtieth acm sigmod-sigact-sigart symposium on principles of

database systems (p. 305–316). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/1989284.1989312 doi:

10.1145/1989284.1989312

Barceló Baeza, P. (2013). Querying graph databases. In Proceedings of the

32nd acm sigmod-sigact-sigai symposium on principles of database systems

(p. 175–188). New York, NY, USA: Association for Computing Machinery.

Retrieved from https://doi.org/10.1145/2463664.2465216 doi: 10.1145/

2463664.2465216

Brzozowski, J. A., & McCluskey, E. J. (1963). Signal flow graph techniques for

sequential circuit state diagrams. IEEE Trans. Electron. Comput., 12 (2), 67–76.

Retrieved from https://doi.org/10.1109/PGEC.1963.263416 doi: 10.1109/

PGEC.1963.263416

Buneman, P., Khanna, S., & Tan, W. C. (2001). Why and where: A characteriza-

tion of data provenance. In Proceedings of the 8th international conference on

database theory (p. 316–330). Berlin, Heidelberg: Springer-Verlag.

Caron, P., & Ziadi, D. (2000). Characterization of Glushkov automata.

Theoretical Computer Science, 233 (1), 75-90. Retrieved from https://

www.sciencedirect.com/science/article/pii/S030439759700296X doi:

https://doi.org/10.1016/S0304-3975(97)00296-X

Cheney, J. (2009). Provenance, XML, and the scientific web. Programming Language

80

https://www.sciencedirect.com/science/article/pii/0191261595000240
https://www.sciencedirect.com/science/article/pii/0191261595000240
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1109/PGEC.1963.263416
https://www.sciencedirect.com/science/article/pii/S030439759700296X
https://www.sciencedirect.com/science/article/pii/S030439759700296X

Techniques for XML (Plan-X).

Cheney, J., Chiticariu, L., & Tan, W.-c. (2009, 01). Provenance in databases: Why,

how, and where. Foundations and Trends in Databases , 1 , 379-474. doi: 10

.1561/1900000006

Cui, Y., Widom, J., & Wiener, J. L. (2000, June). Tracing the lineage of view

data in a warehousing environment. ACM Trans. Database Syst., 25 (2),

179–227. Retrieved from https://doi.org/10.1145/357775.357777 doi:

10.1145/357775.357777

De Domenico, M., Lima, A., Mougel, P., & Musolesi, M. (2013, Oct). The anatomy

of a scientific rumor. Scientific Reports , 3 (1). Retrieved from http://dx.doi

.org/10.1038/srep02980 doi: 10.1038/srep02980

Delgado, M., & Morais, J. (2005). Approximation to the smallest regular expression

for a given regular language. In M. Domaratzki, A. Okhotin, K. Salomaa,

& S. Yu (Eds.), Implementation and application of automata (pp. 312–314).

Berlin, Heidelberg: Springer Berlin Heidelberg.

Dividino, R., Sizov, S., Staab, S., & Schueler, B. (2009). Querying for provenance,

trust, uncertainty and other meta knowledge in RDF. Journal of Web Se-

mantics , 7 (3), 204-219. Retrieved from https://www.sciencedirect.com/

science/article/pii/S1570826809000237 (The Web of Data) doi: https://

doi.org/10.1016/j.websem.2009.07.004

Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping,

P., . . . Hermjakob, H. (2018, 01). Reactome graph database: Efficient access

to complex pathway data. PLOS Computational Biology , 14 , e1005968. doi:

10.1371/journal.pcbi.1005968

Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., & Christophides, V. (2009).

Coloring RDF triples to capture provenance. In Lecture notes in computer

science (Vol. 5823, p. 196). doi: 10.1007/978-3-642-04930-9/ 13

Foster, J. N., Green, T. J., & Tannen, V. (2008). Annotated XML: Queries and prove-

nance. In Proceedings of the twenty-seventh acm sigmod-sigact-sigart symposium

on principles of database systems (p. 271–280). New York, NY, USA: Associ-

ation for Computing Machinery. Retrieved from https://doi.org/10.1145/

1376916.1376954 doi: 10.1145/1376916.1376954

81

https://doi.org/10.1145/357775.357777
http://dx.doi.org/10.1038/srep02980
http://dx.doi.org/10.1038/srep02980
https://www.sciencedirect.com/science/article/pii/S1570826809000237
https://www.sciencedirect.com/science/article/pii/S1570826809000237
https://doi.org/10.1145/1376916.1376954
https://doi.org/10.1145/1376916.1376954

Fuhr, N., & Rölleke, T. (1997, January). A probabilistic relational algebra for the in-

tegration of information retrieval and database systems. ACM Trans. Inf. Syst.,

15 (1), 32–66. Retrieved from https://doi.org/10.1145/239041.239045 doi:

10.1145/239041.239045

Glushkov, V. M. (1961, oct). The abstract theory of automata. Russian Math-

ematical Surveys , 16 (5), 1–53. Retrieved from https://doi.org/10.1070/

rm1961v016n05abeh004112 doi: 10.1070/rm1961v016n05abeh004112

Goldman, R., & Widom, J. (1997). Dataguides: Enabling query formulation and

optimization in semistructured databases. In Proceedings of the 23rd interna-

tional conference on very large data bases (p. 436–445). San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Green, T. J. (2009). Containment of conjunctive queries on annotated rela-

tions. In Proceedings of the 12th international conference on database the-

ory (p. 296–309). New York, NY, USA: Association for Computing Ma-

chinery. Retrieved from https://doi.org/10.1145/1514894.1514930 doi:

10.1145/1514894.1514930

Green, T. J., Karvounarakis, G., Ives, Z. G., & Tannen, V. (2007). Update ex-

change with mappings and provenance. In Proceedings of the 33rd international

conference on very large data bases (p. 675–686). VLDB Endowment.

Green, T. J., Karvounarakis, G., & Tannen, V. (2007). Provenance semirings. In Pro-

ceedings of the twenty-sixth acm sigmod-sigact-sigart symposium on principles

of database systems (p. 31–40). New York, NY, USA: Association for Comput-

ing Machinery. Retrieved from https://doi.org/10.1145/1265530.1265535

doi: 10.1145/1265530.1265535

Gruber, H., Holzer, M., & Tautschnig, M. (2009). Short regular expressions from

finite automata: Empirical results. In Proceedings of the 14th international

conference on implementation and application of automata (p. 188–197). Berlin,

Heidelberg: Springer-Verlag. Retrieved from https://doi.org/10.1007/978

-3-642-02979-0 22 doi: 10.1007/978-3-642-02979-0 22

Han, Y.-S., & Wood, D. (2007). Obtaining shorter regular expressions

from finite-state automata. Theoretical Computer Science, 370 (1), 110-

120. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0304397506007523 doi: https://doi.org/10.1016/j.tcs.2006.09.025

82

https://doi.org/10.1145/239041.239045
https://doi.org/10.1070/rm1961v016n05abeh004112
https://doi.org/10.1070/rm1961v016n05abeh004112
https://doi.org/10.1145/1514894.1514930
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/978-3-642-02979-0_22
https://doi.org/10.1007/978-3-642-02979-0_22
https://www.sciencedirect.com/science/article/pii/S0304397506007523
https://www.sciencedirect.com/science/article/pii/S0304397506007523

Hangal, S., MacLean, D., Lam, M. S., & Heer, J. (2010). All friends are not equal:

Using weights in social graphs to improve search. In Workshop on social net-

work mining & analysis, acm kdd. Retrieved from http://vis.stanford.edu/

papers/weighted-social-graphs

Hayes, J., & Gutierrez, C. (2004). Bipartite graphs as intermediate model for RDF.

In Proceedings of the 3rd international conference on semantic web conference

(p. 47–61). Berlin, Heidelberg: Springer-Verlag. Retrieved from https://

doi.org/10.1007/978-3-540-30475-3 5 doi: 10.1007/978-3-540-30475-3 5

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata the-

ory, languages, and computation (3rd edition). USA: Addison-Wesley Longman

Publishing Co., Inc.

Imieliński, T., & Lipski, W. (1984, September). Incomplete information in relational

databases. J. ACM , 31 (4), 761–791. Retrieved from https://doi.org/10

.1145/1634.1886 doi: 10.1145/1634.1886

Kleene, S. C. (2016). Representation of events in nerve nets and finite automata.

In C. E. Shannon & J. McCarthy (Eds.), Automata studies. (am-34), volume

34 (pp. 3–42). Princeton University Press. Retrieved from https://doi.org/

10.1515/9781400882618-002 doi: doi:10.1515/9781400882618-002

Kozen, D. C. (1997). Automata and computability (1st ed.). Berlin, Heidelberg:

Springer-Verlag.

Li Ding, P. P. d. S., Yun Peng, & McGuinness, D. L. (2005, April). Tracking RDF

graph provenance using RDF molecules (Tech. Rep.). UMBC.

Maniu, S., Senellart, P., & Jog, S. (2019, March). An experimental study of

the treewidth of real-world graph data. In ICDT 2019 – 22nd International

Conference on Database Theory (p. 18). Lisbon, Portugal. Retrieved from

https://hal.inria.fr/hal-02087763 doi: 10.4230/LIPIcs.ICDT.2019.12

McNaughton, R., & Yamada, H. (1960). Regular expressions and state graphs for

automata. IRE Transactions on Electronic Computers , EC-9 (1), 39-47. doi:

10.1109/TEC.1960.5221603

Mohri, M. (2002, January). Semiring frameworks and algorithms for shortest-distance

problems. J. Autom. Lang. Comb., 7 (3), 321–350.

Moreira, N., Nabais, D., & Reis, R. (2010). State elimination ordering strategies:

Some experimental results. In I. McQuillan & G. Pighizzini (Eds.), Proceedings

83

http://vis.stanford.edu/papers/weighted-social-graphs
http://vis.stanford.edu/papers/weighted-social-graphs
https://doi.org/10.1007/978-3-540-30475-3_5
https://doi.org/10.1007/978-3-540-30475-3_5
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://hal.inria.fr/hal-02087763

twelfth annual workshop on descriptional complexity of formal systems, DCFS

2010, saskatoon, canada, 8-10th august 2010 (Vol. 31, pp. 139–148). Retrieved

from https://doi.org/10.4204/EPTCS.31.16 doi: 10.4204/EPTCS.31.16

Ramusat, Y., Maniu, S., & Senellart, P. (2018, July). Semiring provenance over

graph databases. In 10th USENIX workshop on the theory and practice of

provenance (tapp 2018). London: USENIX Association. Retrieved from

https://www.usenix.org/conference/tapp2018/presentation/ramusat

Ramusat, Y., Maniu, S., & Senellart, P. (2021, March). Provenance-based algorithms

for rich queries over graph databases. In EDBT 2021 - 24th International Con-

ference on Extending Database Technology. Nicosia / Virtual, Cyprus. Retrieved

from https://hal.inria.fr/hal-03140067

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., & Wilkins, D. (2010).

A comparison of a graph database and a relational database: A data prove-

nance perspective. In Proceedings of the 48th annual southeast regional con-

ference. New York, NY, USA: Association for Computing Machinery. Re-

trieved from https://doi.org/10.1145/1900008.1900067 doi: 10.1145/

1900008.1900067

Zimányi, E. (1997). Query evaluation in probabilistic relational databases.

Theoretical Computer Science, 171 (1), 179-219. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0304397596001296 doi:

https://doi.org/10.1016/S0304-3975(96)00129-6

84

https://doi.org/10.4204/EPTCS.31.16
https://www.usenix.org/conference/tapp2018/presentation/ramusat
https://hal.inria.fr/hal-03140067
https://doi.org/10.1145/1900008.1900067
https://www.sciencedirect.com/science/article/pii/S0304397596001296
https://www.sciencedirect.com/science/article/pii/S0304397596001296

	List of Figures
	List of Tables
	Introduction
	Problems and Motivation
	Thesis Contributions
	Thesis Outline

	Background and Related Work
	Background
	Semirings and Homomorphism
	Graph Theory
	Querying Graph Databases

	Related Works

	Polynomials for Multidimensional Provenance in Graph Databases
	Semirings and Homomorphism
	Graph Databases and Kleene's Algorithm
	Homomorphism

	Proposed solution
	Preprocessing the Query FA
	Computing the Provenance
	Determining State Removal Order
	Post-processing the Provenance Polynomials

	Implementation
	Phase 1: Converting RPQ to FA
	Syntax Tree
	Computing First, Last and Follow

	Phase 2: Computing the Provenance of Query Results
	Phase 3: Postprocessing the Multidimensional Provenance

	Experiments
	Equipment and Datasets
	Results and Analysis
	Main Results
	Comparison of Different Types of Queries
	Comparing Different State Elimination Heuristics

	Conclusion and Future Work
	Conclusion
	Future Work

	References

