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Abstract

Registration of Volumetric Ultrasound Images Using Siamese Neural Networks

Amir Pirhadi

In brain tumor resection, soft tissue deformation (i.e., brain shift) causes the pre-operative im-

ages to be invalid. Intra-operative ultrasound imaging is a non-invasive, portable, real-time, and

cost-efficient alternative to track the surgery. A robust registration method is required to accu-

rately align the post-resection and pre-resection ultrasound images for maximum tumor resection.

However, registering the ultrasound images before and after resection is challenging for two main

reasons. First, the tumor cavity after the surgery does not have correspondence in ultrasound images

before the resection. Second, the quality of the image reduces during the surgery due to the blood

clotting agents, air bubbles, and the saline water around the tumor.

This thesis proposes a robust non-rigid registration method based on a landmark tracking tech-

nique for brain shift correction in intra-operative ultrasound images. Some landmarks are selected

in pre-resection ultrasound image manually that allows user-interaction. A Siamese neural network

is adapted to track the annotated landmarks in the post-resection ultrasound image. The 2.5D ap-

proach enables 3D tracking and outlier detection. An optimal affine transformation is calculated

using Iterative re-weighted least square (IRLS), which automatically suppresses the outliers.

The proposed method is tested on two publicly available datasets of REtroSpective Evaluation

of Cerebral Tumors (RESECT) and Brain Images of Tumors for Evaluation (BITE). Mean target

registration error (mTRE) is exploited for registration evaluation. In the BITE dataset, the method

decreases the initial miss-alignment from 3.55±2.29 mm to 1.80±0.84 mm in pre/post-resection reg-

istration. In the RESECT dataset, mTRE is decreased from 3.55±1.76 mm and 3.49±1.56 mm to
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1.26±0.57 mm and 1.12±0.46 mm in pre/post-resection registration and pre/during-resection reg-

istration, respectively. The fine-tuning effect is also assessed and is shown the generality of the

method. The proposed method is compared to the state-of-the-art methods with statistical tests and

showed average comparable or better results. The great accuracy, flexibility, and time-efficiency of

the method make it an attractive option in real clinical applications that can increase the performance

in neurosurgery.
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Chapter 1

Introduction

1.1 Ultrasound Imaging

Ultrasound machines produce sound waves with a frequency range of 1-20 MHz, which is

higher than the audible limit of human hearing. Ultrasound imaging is a non-invasive, cost-efficient,

and portable modality that makes it a suitable alternative to other modalities in many medical appli-

cations. It has a variety of usage from diagnosis purposes like tumor detection and fetus monitoring

during pregnancy to therapeutic applications such as hemostasis, cataract surgery, blood clots re-

moval, cancer therapy, etc [5, 6].

If a piezoelectric material is mechanically excited, it generates an ultrasound wave. By applying

the ultrasound wave to the human body, it propagates into different organs that exhibit dissimilar

propagation impedance [7]. Attenuation causes a part of the wave to transfer to heat, and it has a

direct relation with the frequency [8]. The impedance difference causes a part of the wave to back-

propagate to a receiver. Knowing the speed of the wave and the time, we can calculate the depth of

different objects and organs inside the body. These piezoelectric materials are the critical elements

of transducers in ultrasound probes that transmit and receive ultrasound waves.

There are different types of ultrasound probes based on transducers arrangement. Linear, curvi-

linear, and phased array probes are the most popular options. They are utilized based on the depth,

location, and structure of the object of interest. The linear probes are presented with a linear ar-

rangement of the transducers as their name implied. Since they have a relatively higher frequency
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Figure 1.1: Different types of probes with specifying their frequency range. Image courtesy of:
https://ameultrasounds.com/blogs/ultrasound-series/probes-and-transducers

than other types, they are good choices for near-the-body surface applications like vascular imag-

ing. On the other hand, the curvilinear probes provide a larger field of view (FOV) and are used for

deeper objects like abdominal imaging. The phased array probes were demonstrated to have two

main advantages. First, by delaying the firing of different transducer elements, they can change the

focus without moving the probe. Second, a smaller transducer’s face gives the ability to capture

images from a small acoustical window. You can see an illustration of different probes in Fig. 1.1

The received echo from each transducer element of the probe creates a radio frequency (RF)

line. An RF image is not simply interpretable, so a 2D brightness image (B-mode) is computed by

processing the initial RF image (see Fig. 1.2). 3D images can be constructed from the 2D images

as well. High-frequency ultrasound probes provide higher resolution images than other modalities

like magnetic resonance (MR) and computed tomography (CT) images. However, higher frequency

means more attenuation and decreases the reachable depth. Despite the advantages of ultrasound

imaging, there are some downsides, such as providing low contrast images, inability to get through

the hard structures like bones, and containing noise and artifacts [9].
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Figure 1.2: A visual comparison between RF and B-mode images.

1.2 Image registration

Image registration is the process of overlaying two or more images into one coordinate sys-

tem [10]. Images are taken from different points of view, with different sensors, or at different

times. Each of the images contains valuable and complementary information, so overlaying them

would be of high benefit [11]. Image registration is widely used in many applications such as remote

sensing, computer vision and medical imaging [12].

Image registration is a necessary part of many medical applications. Motion correction, template

matching, and treatment follow-up are some of the examples. There are different imaging modalities

in medical imaging that each one demonstrates a specific feature. Fusion of different modalities

of the same scene would be more informative [13, 14]. In image-guided surgery (IGS), image

registration was shown to help the surgeon achieve more precise results. Tracking surgical tools

in the operating room, overlaying images to patient coordinate, and monitoring the operation site

is crucial in IGS and is possible with registration techniques [15–17]. Different modalities and

datasets show different natures, and each task requires specific accuracy and aims for a unique goal.

To address all the applications, the presence of one global registration method is irrational, and there

are different techniques required [18].

Image registration can be divided into different categories. Concerning the images modalities,
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there is multi-modal and uni-modal registration. In the case of the user-interaction, there is auto-

matic, semi-automatic, and manual registration. In terms of the algorithm, there are intensity-based

and feature-based registration. In the intensity-based methods, voxels intensities of the images are

used to be compared and matched between images. Unlike the intensity-based methods, some fea-

tures are extracted in the feature-based registration, and the registration is done based on them. The

feature-based methods are simpler, less computationally expensive, more robust to changing the

modality, and presence of artifacts compared to the intensity-based methods [19, 20]. They are also

more suitable in the cases of a large initial miss-alignment [21].

In feature-based methods, the anatomical structures of the images are captured during feature

extraction, and the corresponding features are matched to find the geometrical transformation. Gen-

erating an attribute vector in a patch-based manner for all the voxels in the image is a common

approach. In [22,23], they employed geometric moment invariant (GMI) feature vector. It is shown

that the GMI features are venerable to the presence of speckles in the ultrasound images. The inten-

sity value along with the gradient magnitude and Laplacian of Gaussian (LOG) are the other features

that showed a good performance in medical image registration applications [24, 25]. Utilizing the

scale-invariant feature transform (SIFT), [26] is another popular method in computer vision and the

medical field due to its ability to perform well in different image scales and orientations [27, 28].

Segmentation of the salient anatomical structures that keep their correspondence between the im-

ages showed promising results as well [29].

Deep learning methods have been widely used in the application of image registration in recent

years. It has been shown that the convolutional neural networks (CNN) are a superior alternative to

the classical feature extractor methods [12]. Their deep architecture allows deep feature extraction

from the images that is more descriptive and general than hand-crafted features like SIFT. They

are data-driven and end-to-end, so they usually do not need any pre-processing on the images.

Although the training phase is time-consuming, they have a fast performance in the inference phase.

In [30], they utilized an unsupervised learning strategy based on convolutional stacked auto-encoder

to perform deep feature extraction and matching for registering MR images.

Landmark detection and tracking provide proper guidance to the registration. Classical methods

like block-matching try to create a patch around the landmark and find its correspondence in the

4



Figure 1.3: Intra-operative ultrasound images overlaied on the pre-operative MRI. Data collected
from the RESECT dataset [1].

other image by using a comparison metric like correlation coefficient (CC) [31]. Since the deep

neural networks showed an excellent ability to capture the spatial structures in the image, they have

been used to find landmarks in varying medical image modalities [32, 33]. The Siamese neural

networks have gained popularity in computer vision tasks for landmark and object tracking. They

derive high-level features from the input images with respect to a similarity criteria. The Siamese

networks have been utilized in medical image registration as well and showed promising results in

terms of computational time and reducing the initial miss-alignment [34, 35].

Transformation is an essential part of a registration algorithm and is determined based on the

task. They can be classified into two main classes of rigid and non-rigid transformations. The

rigid transformation only consists of rotation and shift, so do not change the dimension of the

object. Rigid transformation is used for registering rigid structures like bones or as a preceding step

before non-rigid registration [19]. Non-rigid registration is more common because they can estimate

more complex deformations. The affine transformation with 12 parameters in 3D is a non-rigid

transformation that preserves collinearity. Ratios are stored, Lines would remain lines, and parallel

lines stay unchanged. Non-linear B-spline transformation is a more complex transformation that can

accomplish more accurate results. Unlike the affine transformation, it is local and more vulnerable

to local minima convergence.
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1.3 Brain shift correction

In tumor resection surgery after craniotomy and opening the dura, pre-operative images become

invalid due to the brain deformation (i.e., brain shift). Brain shift occurred due to many factors

like gravity, brain swallow, and drug administration. Intra-operative ultrasound images are a good

modality to track the surgery during the procedure. They do not need a dedicated operating room,

are non-invasive, and are cost-efficient. Tumor resection introduces more complex deformation

around the resection site and decreases the quality of the image by producing air bubbles, debris,

and blood clots. A robust non-rigid registration method is required to align the intra-operative

ultrasound images acquired in different stages of the surgery. Fig. 1.3 illustrates the brain shift in

intra-operative ultrasound images.

Tumor resection causes correspondence loss around the resection site and is considered as an

outlier during the registration. In [36], they manually segmented the tumor cavity before registration

and removed it to increase the performance. However, manual segmentation needs enormous time

and effort and is not feasible. In [37,38], Automatic outlier detection was done based on jacobian of

normalized cross-correlation (NCC) in different patches of the images. Automatic segmentation of

the anatomical structures that keep their correspondences during the surgery was done in [4, 39] by

utilizing the deep neural networks. Another method that showed an acceptable result in ultrasound-

ultrasound registration of neurosurgery is based on SIFT features that are tracked in 3D ultrasound

images before and after resection [3].

1.4 Thesis statement

This thesis aims to track the brain shift during tumor resection surgery using intra-operative ul-

trasound images. Having an end-to-end method that does not require pre-processing and extracting

hand-crafted features is beneficial. The other important factor in medical image registration appli-

cations is the computational complexity of the method to be feasible for clinical usage. For this

purpose, we exploited a non-rigid landmark-based registration. A Siamese network has been used

to extract deep features from the input images and enables accurate and fast landmark tracking. The

outline of this thesis is presented in 1.5.
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1.5 Thesis outline

Chapter 2 presents a robust feature-based registration method using a Siamese network to track

the brain shift in intra-operative ultrasound images of neurosurgery. Two outlier suppression algo-

rithms are employed, and the method is evaluated on a public dataset of retroSpective evaluation of

cerebral tumors (RESECT) [1] with 3D ultrasound images. The proposed method is compared to the

state-of-the-art methods on the same dataset and shows comparable accuracy and computation time

results. This work has been published in the International Workshop of Advances in Simplifying

Medical UltraSound (ASMUS) [40]

In Chapter 3, we extend our work by assessing the effect of fine-tuning the network on the

method’s performance. For further evaluation, the BITE public dataset is exploited along with the

RESECT dataset to show the ability of the proposed method to work on the images with different

acquisition settings. This work will be submitted to the International Journal for Computer Assisted

Radiology and Surgery (IJCARS).
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Chapter 2

Robust ultrasound-to-ultrasound

registration for intra-operative brain

shift correction with a Siamese neural

network

2.1 Introduction

In brain tumor surgery, soft tissue deformation, or brain shift, can result from many factors,

such as gravity and drug administration, and can greatly affect the quality and safety of the pro-

cedure. Intra-operative imaging is often used to track brain shift and the surgical progress. In

contrast to the high cost and special setups required by intra-operatie magnetic resonance imaging

(iMRI), intra-operative ultrasound (iUS) is a cost-effective and portable imaging modality that has

gained popularity in the clinic [41]. However, to help account for brain shift to update pre-surgical

plans [42] in commonly used surgical navigation system, robust and efficient image registration al-

gorithms are crucial. While so far most of the previous works [21, 43, 44] focus on the alignment

of pre-operative MRI and iUS obtained before dura-opening, very few have attempted to correct

additional tissue deformation during the procedure, which is also important to ensure clean removal
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of any residual tumour and thus increase the patient survival rate [45]. In this scenario, iUS-iUS

registration is required, and poses unique challenges from the more commonly seen MRI-iUS align-

ment. For example, in addition to continuous tissue deformation introduced from gravity and tissues

removal, the procedure can also significantly alter image features and reduce image quality in iUS

by introducing air bubbles, debris, and blood clots in the surgical site, rendering registration of pre-

and post-resection iUS images more challenging.

To tackle the discrepancies of iUS at different surgical stages, an attractive solution is based

on matching anatomical landmarks that are consistent between scans [46]. To date, a number of

medical image registration algorithms based on automatic landmark detection have been proposed.

Lu et al. [47] and Urschler et al. [48] used segmentation and corner detection for finding the global

shape information. Local keypoint selection and feature matching were done using scale-invariant

feature transform (SIFT). They applied their method on 2D US images of kidney and thoracic 3D

CT images respectively in the application of feature-based non-rigid registration. Machado et al. [3]

presented an optimal global feature mapping in 3D iUS images in neurosurgery using 3D SIFT-

Rank, which showed a large improvement in the alignment. However, the fully automatic aspect of

their work can potentially make it sensitive to selection of voxels in and around the tumor, which

usually do not match the post-resection scan.

Application of deep learning in medical image registration has rapidly increased during the

past few years. Canalini et al. [4] proposed segmentation-based registration of 3D iUS images in

neurosurgery. They segmented hyperechogenic regions of the brain that keep their correspondence

after resection and excluded the resection cavity. An attractive alternative to this approach is to

exploit Siamese networks, which require substantially less training data and have shown promising

results in tracking tasks in the computer vision field [49–51]. Gomariz et al. [34] took advantage of

this strength to develop a Siamese network for tracking 2D US images of the liver. Since landmark

locations are not expected to change drastically between frames, they utilized a temporal consistency

model to weight the similarity map around the previous landmark location.

In this article, we proposed a novel technique based on Siamese networks for landmark tracking

in the 3D iUS images. This network was chosen for two main reasons. First, it is an end-to-end

learning technique. Second, it works on new domains not seen by the network in the training stage
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as the network extracts general features from the inputs that are necessary for comparison [52]. To

allow interactivity and flexibility, in our method, template landmarks are first manually selected by

clinicians in pre-resection images. Then, with the Siamese network, matching landmarks can be

quickly identified after resection starts to continuously track brain shift. Our main contributions are

listed below:

1. Using a Siamese network in the application of landmark tracking for iUS-based brain shift

correction at different surgical stages (during and after resection).

2. Demonstrating the adoption of the Siamese network from natural images to US volumes without

re-training. This suggests its high adaptability to scans from different machines, imaging settings,

and anatomies.

3. Employing a 2.5D search scheme for efficient and robust 3D landmark tracking.

4. Fast registration with an iterative re-weighted least squares (IRLS) algorithms to ensure robust-

ness, rendering the method an attractive choice in neurosurgery.

2.2 Methods

To automatically match clinician-defined reference landmarks from pre-resection iUS scans in

those after resection starts, we are inspired by object tracking in videos with Siamese neural net-

works [51], where high-dimensional image features are represented robustly in more efficient form

with convolutional neural networks (CNNs). With the automatically identified matching landmark

pairs, an affine image alignment is then estimated. Here, we denote the pre-, during- and post-

resection US images as iUSpre, iUSduring and iUSpost, respectively.

2.2.1 Siamese Network

An overview of our fully convolutional Siamese network is shown in Fig. 1. In essence, the net-

work finds an embedding function Φ to extract a representative feature map of the input image. The

embedded images then would be passed through a cross-correlation layer as a similarity function, to

find the location of the template image inside the search image. It has been shown that this imple-

mentation is fully-convolutional based on the search image. That means translation is commutative
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Figure 2.1: Siamese network. The convolutional stage of AlexNet [2] was chosen for feature em-
bedding thanks to its memory efficiency and good performance, and cross-correlation is used as the
similarity function. Here, the x-y plane is used for demonstration.

as shown below.

Φ (Lτx) = LτΦ(x) (1)

whereL is the translation function with translation τ and x is the search image. The fully-convolutional

nature of the network enables us to use a large search image. The search image is divided into

sub-windows. These sub-windows are passed through the network. Similarity of the embedded

template image and all the translated sub-windows of search image would be evaluated in the cross-

correlation layer at once. In our method, we used the positions of the pre-selected landmarks in

iUSpre to find their correspondences in iUSduring and iUSpost.

2.2.2 Training

The network was trained on the ILSVRC17 dataset [53] for video object tracking purposes [54],

and no network fine-tuning was performed for our ultrasound application. Stochastic gradient de-

cent (SGD) with binary cross-entropy loss was used, and the learning rate was set to 0.01 with a

batch size of 8. The template image size is 127x127 and the search image size is 255x255. For

optimization, a binary ground truth (match vs. not a match) was generated by considering a radius
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of 4 pixels around the center of the similarity map. If the maximum similarity occurs within the

radius, it indicates a match. Otherwise, it is not.

2.2.3 Preprocessing

We used the RESECT database [1] to demonstrate our technique. Voxel sizes in the dataset dif-

fer among patients and even scans. As such, all US images were resampled to the smallest isotropic

resolution in the database, i.e., 0.14 × 0.14 × 0.14mm3. In iUSpre, pre-identified anatomical land-

marks will be used as references to find the corresponding ones in iUSduring or iUSpost. In the

case of iUSpre to iUSpost registration, iUSpre and iUSpost will serve as the template and search

images, respectively, and the images were cropped around the location of the reference landmark

according to the requirement of the network. Finally, all image intensity ranges were normalized to

[0,1].

2.2.4 The 2.5D approach

The network we used in this chapter obtains 2D images as inputs. However, our goal is to

find landmarks in 3D US images. Similar to the approach of Heinrich et al. [55], we performed

landmark matching in three orthogonal directions, or 2.5D. In each direction, a region of interest

(ROI) around a reference landmark in iUSpre and a larger one in iUSpost/iUSduring were selected

as template and search image respectively. To enable 3D search, the ROI in iUSpost/iUSduring was

swept forward and backward in that direction with a stride of 2, so the search images have one slice

overlap.

The location of the maximum correlation in the similarity map was considered as the desired

result. Since we had three searching directions by using the 2.5D approach, at the end, we have

3 predictions for each landmark’s location in iUSpost or iUSduring. A final decision was made

base on them. If at least two of these three predicted landmarks were located near each other (< 2

mm), the average of them would be considered as the result. Otherwise, the results were treated as

incorrect and were discarded.

12



2.2.5 Affine transformation

Affine transformation has been utilized for tissue shift correction in brain tumour resection

thanks to its ability to robustly improve global misalignment. Furthermore, it is simpler and faster

in comparison to more complex deformation models, such as free-form B-splines [21]. To estimate

a 12-parameter 3D affine transformation, at least 4 pairs of landmarks are required to solve a linear

system. Our landmark selection method usually provides at least 5 landmarks (Tables 1 and 2),

resulting in an over-determined linear system that can be solved.

In order to obtain the optimal 3D affine transformation while overcoming the potential influence

of outlier landmarks, we employed the iterative re-weighted least square (IRLS) method [56]. Here,

the Cauchy function (Eq. 5) has been chosen as the weighing function in the IRLS algorithm, where

small weights were assigned to the outliers in the linear equation [57] to mitigate their impacts. In

Eq. 2, ri is the residual after an iteration and R = 1 was selected manually.

w (ri) =
1

1 + (ri/R)2
(2)

2.2.6 Experimental setup

We validated our registration method using 17 clinical cases that have pre-, during- and post-

resection iUS images in the RESECT public database [1], where matching ground truth landmark

pairs have been provided by experts. Quantitative evaluation for our algorithm was performed

using mean target registration errors (mTREs) before and after registration using the ground truth

landmark pairs. The metric is shown in Eq.6.

mTRE =
1

N

N∑
i=1

∥∥T (xi) − x′i
∥∥ , (3)

where xi and x′i are the landmark pairs in the corresponding iUS scans, T is the affine transformation

estimated with the proposed method, andN is the total number of landmarks. Here, we used the full

set of landmark pairs from the original database to compute mTRE. The accuracy of our method was

compared against two recent nonlinear techniques [3, 4] that were validated on the same database.
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Table 2.1: mTREs of our method and two comparison methods [3, 4] for iUSpre vs. iUSpost
registration. Initial mTRE before registration and minimum achievable mTRE (with affine transfor-
mations) were calculated from the ground truth landmarks. Note that nonlinear registration results
can be lower than min achievable mTREs.

Patient
ID

No.
total
land-
marks

No.
selected
land-
marks

Initial mTRE
(mm)

After Siamese
based affine
(mm)

Canalini
et al.
(mm)

Machado
et al.
(mm)

Affine
Mini-
mum
achiev-
able
mTRE
(mm)

1 13 10 5.80 (3.62-7.22) 1.32 (0.47-4.06) 1.03 1.48 0.97
2 10 5 3.65 (1.71-6.72) 2.47 (0.45-4.35) 3.90 2.62 1.57
3 11 6 2.91 (1.53-4.30) 1.05 (0.28-1.79) 1.15 1.04 0.67
4 12 9 2.22 (1.25-2.94) 0.81 (0.21-1.43) 0.61 0.83 0.55
6 11 6 2.12 (0.75-3.82) 1.66 (0.29-3.72) 1.41 1.55 1.20
7 18 15 3.62 (1.19-5.93) 1.73 (0.41-4.39) 2.03 2.38 1.50
12 11 9 3.97 (2.58-6.35) 1.36 (0.25-3.42) 0.79 1.20 0.98
14 17 17 0.63 (0.17-1.76) 0.53 (0.28-0.90) 0.46 0.53 0.45
15 15 15 1.63 (0.62-2.69) 0.72 (0.25-1.84) 0.58 0.74 0.70
16 17 13 3.13 (0.82-5.41) 1.19 (0.42-2.92) 0.92 1.94 1.08
17 11 9 5.71 (4.25-8.03) 1.40 (0.49-4.20) 1.10 1.99 0.96
18 13 6 5.29 (2.94-9.26) 1.29 (0.45-2.90) 1.13 1.69 1.14
19 13 11 2.05 (0.43-3.24) 1.23 (0.32-5.28) 1.10 2.78 0.86
21 9 7 3.35 (2.34-5.64) 1.77 (0.76-3.71) 1.80 1.07 0.76
24 14 11 2.61 (1.96-3.41) 1.02 (0.35-2.54) 0.87 1.35 0.62
25 12 11 7.61 (6.40-10.25) 1.20 (0.29-2.42) 1.21 1.24 0.91
27 12 11 3.98 (3.09-4.82) 0.63 (0.20-1.06) 0.53 0.83 0.47
mean 13 10 3.55 1.26 1.21 1.49 0.90
std 1.76 0.48 0.81 0.67 0.33
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Figure 2.2: Visual comparison between image pairs before and after registration with our proposed
method. Cyan color = iUSpost and iUSduring and orange color = iUSpre. The arrows mark the
sulci regions of improved alignment.

Statistical tests were done to confirm the performance of our method.

2.3 Results

Tables 1 and 2 show the quantitative evaluation of mTREs, with the number of landmarks selected

by our method to obtain the affine transformations. On average, the tested cases in the RESECT

database have 13 and 21 landmarks per patient in iUSpre-iUSpost and iUSpre-iUSduring cases,

respectively. With automatic landmark selection using the Siamese network, we can obtain an

average of 10 and 18 landmarks per patient, respectively. With our registration method, the initial

misalignment of 3.55±1.76 mm was reduced to 1.26±0.48 mm between before and after resection,

and from 3.49±1.56 mm to 1.16±0.49 mm between before and during the resection. Furthermore,

the comparison between our method and those by Machado et al. [3] and Canalini et al. [4] are

shown in Tables 1 and 2. Overall, our proposed approach showed very similar performance to that

of Canalini et al. [39] and on average outperformed the method of Machado et al. [3] in iUSpre vs.

iUSpost registration. In addition, our results are also better in iUSpre vs. iUSduring registration than

Canalini et al. [4] on average (Machado et al. [3] didn’t perform iUSpre vs. iUSduring registration).
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Table 2.2: mTREs of our method and a comparison method [4] for iUSpre vs. iUSduring registra-
tion. Initial mTRE before registration and minimum achievable mTRE (with affine transformations)
are calculated based on the ground truth landmarks provided. Note that nonlinear registration results
can be lower than min achievable mTREs.

Patient
ID

No.
total
land-
marks

No.
selected
land-
marks

Initial mTRE
(mm)

After Siamese
based affine
(mm)

Canalini
et al.
(mm)

Affine
Mini-
mum
achiev-
able
mTRE
(mm)

1 34 33 2.32 (1.49-3.29) 0.88 (0.18-1.90) 0.64 0.83
2 16 11 3.10 (1.79-5.19) 1.43 (0.33-4.42) 1.50 1.21
3 17 17 1.93 (0.67-3.02) 0.79 (0.26-1.33) 0.77 0.70
4 19 17 4.00 (3.03-5.22) 0.89 (0.30-2.44) 0.80 0.74
6 21 17 5.19 (2.60-7.18) 1.77 (0.32-3.42) 5.17 1.47
7 22 19 4.69 (0.94-8.16) 2.46 (0.26-6.56) 1.98 1.82
12 24 23 3.39 (1.74-4.81) 1.12 (0.15-2.01) 0.84 1.04
14 22 22 0.71 (0.42-1.59) 0.50 (0.03-0.90) 0.41 0.47
15 21 21 2.04 (0.85-2.84) 0.68 (0.27-1.38) 0.60 0.58
16 19 10 3.19 (1.22-4.53) 1.51 (0.21-4.60) 1.26 1.10
17 17 11 6.32 (4.65-8.07) 1.54 (0.49-3.91) 1.49 0.97
18 23 16 5.06 (1.55-7.44) 1.33 (0.20-3.71) 1.18 1.10
19 21 20 2.06 (0.42-3.40) 1.03 (0.20-2.35) 0.96 0.90
21 18 14 5.10 (3.37-5.94) 1.25 (0.33-3.81) 1.11 0.97
24 21 19 1.76 (1.16-2.65) 0.78 (0.13-1.85) 0.67 0.64
25 20 19 3.60 (2.19-5.02) 0.72 (0.27-2.01) 0.55 0.65
27 16 16 4.93 (3.61-7.01) 0.96 (0.19-2.34) 0.87 0.57
mean 20 18 3.49 1.16 1.22 0.93
std 1.56 0.49 1.10 0.35
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We performed Wilcoxon rank sum tests on the mTREs before and after registration with the pro-

posed method, as well as on the same metric to compare between our method and those two recent

works [3,4]. The statistical tests showed that the reduction in mTREs with our technique was statis-

tically significant (p <0.001). In addition, in post-resection registration, our results are comparable

(p>0.05) to those by Machado et al. and Canalini et al. [3, 4] while our average mTRE reduction

is better than that of Machado et al. [3]. In during-resection registration, our results were compa-

rable to those of Cananili et al. [4](p=0.19), with a better average mTRE. Furthermore, qualitative

assessment of our method is illustrated in Fig. 2.2, where pre-resection and during-/post-resection

images are overlaid in cases of before and after registration for two patients. Note that anatomical

features (e.g., sulci) are shown as hyperintense edges in each image.

2.4 Discussion

In this chapter, we used the 12-parameter affine transformation for brain shift correction during

tumour resection. Although nonlinear deformation models, such as B-splines, can more precisely

adapt to local tissue deformation, the computational complexity is much higher. In addition, robust-

ness and reliability in intra-operative registration algorithms can be more valuable in the clinic, and

thus affine transformation appears more advantageous, considering its mTRE measures are compa-

rable to the non-linear counterparts [3, 4].

In the proposed algorithm, reference landmarks for tracking need to be identified first while in

previous fiducial point-based registration methods, automatic landmark selections were employed

based on image feature detection (e.g., SIFT). The involvement of manual interaction with the

image can help ensure the distribution of salient anatomical landmarks for optimal registration

quality [58], and improve the flexibility and robustness in real clinical applications. The proposed

method showed an excellent performance in reducing the initial misalignment in terms of mTREs.

On average, the results are comparable to or better than the recent state-of-the-art techniques [3, 4],

which were validated also on the RESECT database. For our method,the whole process of land-

mark matching and registration on NVIDIA GeForce GTX 1050 Ti GPU took about 45 sec in

post-resection registration and 70 sec in during-resection registration (due to a greater number of
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landmarks). The segmentation-based registration by Canalini et al. [4] takes 55 sec on average and

the SIFT-based registration by Machado et al. [3] is the fastest with 30 sec of average run time.

Thus, the computational time of our technique is highly promising in real clinical applications and

comparable to the state-of-the-art methods.

One limitation of our proposed method lies in the requirement of reference landmark tagging,

which can cost extra clinical time. However, as with affine transformation, the number of landmarks

doesn’t need to be large, and with the rich experience of the clinicians, this can be performed

robustly and quickly, especially considering that a typical neurosurgery lasts a few hours. This

also offers more flexibility for manual interaction. Although we present the proposed technique

for iUS-iUS registration, we believe that it can be adapted to MR-iUS registration, which will be

investigated in the future.

2.5 Conclusion

We have proposed a robust and efficient iUS-iUS registration technique based on anatomical

landmark detection to account for tissue shift in brain tumor surgery. The method demonstrated

excellent performance compared to the recent works, and can potentially improve the accuracy and

safety of the procedure. The Siamese network weights were trained on natural images without

domain-specific fine-tuning, rendering the method robust to scanner differences.
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Chapter 3

Robust landmark-based brain shift

correction with a Siamese neural

network in ultrasound-guided brain

tumor resection

3.1 Introduction

Pre-operative planning in neurosurgery is facilitated by pre-operative imaging of the brain, with

magnetic resonance imaging (MRI) being the main image modality [59]. During the surgery, brain

tissue deforms because of several reasons, including gravity, drug administration, brain swelling,

etc. This phenomenon is called brain shift. Intra-operative imaging is often used to track the brain

shift and update the surgical plan to ensure patient safety and outcomes of surgery [42]. Among

the common choices, intra-operative MRI (iMRI) is a high-cost option that, despite its good con-

trast, requires a dedicated operating room setup with MRI-compatible surgical tools, and thus it is

not widely available [60]. Intra-operative ultrasound (iUS), on the other hand, is a cost-effective,

portable, and flexible alternative [36, 37].
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Most surgical navigation systems utilize rigid transformations to track surgical tools in the op-

erating room and execute the image to patient alignment. However, the brain deforms non-rigidly

during the surgery as a result of the brain shift. Most of the works in the literature focus on reg-

istering pre-operative MR images to iUS images before dura opening to re-adjust the pre-surgical

planning [21, 43, 44]. The fact that the most important factor in patient survival rate is complete

resection with no residual tumor [45] suggests the importance of accurate registration techniques to

align intra-operative ultrasound images for the procedure.

Registration of iUS images has its unique challenges compared to MRI-iUS registration. During

the resection of the tumor, on top of continuous deformation of the brain near the resection site, the

quality of the iUS image decays by introducing artifacts like air bubbles, debris, and blood clots

around the tumor, making the evaluation of the surgical progress hard especially towards the end of

the surgery.

Landmark-based registration is a type of registration technique that is in contrast to the intensity-

based methods, which use the full image content (i.e., image intensities) for feature alignment. It

only requires a small number of corresponding key points annotated carefully between an image

pair. This technique is flexible and efficient while providing user-interaction whenever needed, en-

suring the landmark annotation quality and thus the accuracy and robustness of image registration.

This is particularly attractive for clinical procedures, such as brain shift correction in iUS-guided

brain tumor resection. Previously, Lu et al. [47] and Urschler et al. [48] both extracted the global

structural information using corner detection, and used scale-invariant feature transform (SIFT) for

local feature detection and matching. They tested their method on 2D US kidney images and 3D

Thoracic computed tomography (CT) images. Other features like gradient magnitude and Lapla-

cian of Gaussian (LOG) were also showed to be useful for landmark detection [24,25]. Machado et

al. [3] proposed to use SIFT points for automatic feature detection and matching in 3D iUS im-

ages. Their method is fast with good results, although the automatic key point selection makes it

prone to choosing landmarks near the tumor site, which can lose their correspondence after resec-

tion. To mitigate the impact of tissue resection in image registration, Canalini et al. [4] employed

a segmentation-base approach on iUS images using deep-learning to automatically segment the
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hyperechogenic features of the image (e.g., sulci) and used them as guidance features for the reg-

istration. To avoid the tumor area, they automatically extracted it before doing the segmentation.

Their results showed large improvement from the initial misalignment.

Deep-learning-based registration methods have attracted a lot of attention during the past a few

years due to their high speed. They are also data-driven and can extract relevant deep-features from

the input images instead of handcrafted ones that require additional processing steps. Landmark

detection has been done using deep neural networks in different medical image modalities, includ-

ing US images of prostate gland [32], as well as MR and CT images of the brain [33]. In terms of

landmark-based image registration, several deep learning-based methods have been developed, es-

pecially with the application of the Siamese networks, which were used in real-time object tracking

in videos. Gomariz et al. [34] utilized a Siamese network in 2D sequential liver US images to find

the matching landmarks in different frames. They proposed a temporal consistency model as the

landmark locations are not expected to change largely between frames. Grewal et al. [35] proposed

an end-to-end registration approach on 2D abdominal CT images with a Siamese network where

by adding a sampling layer to the network, landmark annotation is done automatically during the

registration. In our previous work [40], we leveraged a pre-trained Siamese network that had only

been trained on a large set of natural images to detect matching landmarks between 3D iUS scans at

different surgical stages to perform iUS-iUS registration for brain shift correction in neurosurgery.

Despite the fact that the employed network had not seen any US image before, our results were com-

parable, or in some cases, better than the state-of-the-art methods evaluated on the same RESECT

database [1]. In this work, we further extended our previous work [40] in two directions. First,

we investigate the effect of fine-tuning the network for landmark matching with domain-specific

data (i.e., iUS) through transfer learning. Second, we thoroughly assess the adaptability and per-

formance of the method by testing it on two public datasets of iUS-guided brain tumor resection,

which were collected with different ultrasound scanners and scanning settings (i.e., imaging depth

and transducer types) from different cohorts of patients and hospitals.Finally, the resulting technique

is compared against the state-of-the-art algorithms.
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3.2 Datasets

In this work, two publicly available datasets of iUS-guided brain tumor resection were used,

including REtroSpective Evaluation of Cerebral Tumors (RESECT) [1] and Brain Images of Tumors

for Evaluation (BITE) [61]. The RESECT dataset contains 23 patients with low-grade gliomas and

17 of them have pre-annotated landmarks for evaluation of iUS-iUS registration. It also contains

three stages of the surgery: before the resection starts, during the resection, and after removal of

the tumor. From now on in this chapter, we will refer to the iUS scans acquired at these stages

as iUSpre, iUSduring and iUSpost respectively. On the other hand, the BITE dataset contains 13

low-grade and high-grade glioma patients along with tagged landmarks by experts to evaluate iUs-

iUS registration. BITE dataset only has iUSpre and iUSpost and does not provide iUSduring for

evaluation. The RESECT database used more recent ultrasound scanners to provide higher quality

images than the BITE dataset, and as a result, more annotated landmark pairs are available for

registration assessment.

3.3 Methods

Our proposed technique is inspired by the application of the Siamese networks in object track-

ing tasks proposed by Bertinetto et al. [51]. Similar to tracking objects in natural scenes, our pro-

posed method matches hyperechogenic anatomical structures of the brain (e.g., sulci, gyri, and deep

grooves) between iUS images at different stages of brain tumor resection.

3.3.1 Siamese Neural Network

Siamese networks were designed to extract deep features from image pairs to compare them for

classification purposes [52]. They are usually constructed with two identical branches of convolu-

tional neural networks (CNNs) that share the same weights. In this work, we used the convolutional

stage of the AlexNet [2], which was built for natural image classification to extract image features

from a template and a search iUS image. These features are compared using a cross-correlation

layer at the end of the network. The architecture of the network is illustrated in Fig. 3.1.

This network has been shown to be fully-convolutional [51]. As a result, it enables the usage of
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a larger search image compared to the template image. The template image is cropped around the

target landmark in the first image, and for the search image, a larger crop as the region of interest

around the same location in the second image is done. In the cross-correlation layer, the extracted

deep features of all the sub-windows within the search image are simultaneously compared to that

of the template image. The sub-windows are acquired with 4 voxels shift within the search image.

This is known as the stride of the network. The distance of the corresponding landmark to the target

landmark is determined by finding the distance of the maximum correlation to the center of the

similarity map, multiplied by the stride.

We assume the spatial shift of landmarks between surgical stages are relatively limited after

dura-opening, and thus utilized a constraint function to confine the predicted landmark to be close

to the center of the similarity map and penalize large displacement. You can find the constraint

function in Eq. 4, in which L is the search range, d is the distance of the maximum correlation to

the center, and α = 0.4 was selected as a user-defined parameter.

C (d) = cos (
d× cos−1(α)

L
) : d < L (4)

In this work, manually annotated landmarks in the iUSpre image are used as templates to match

their location in iUSduring and iUSpost images.

3.3.2 Landmark matching with a 2.5D approach

In video object tracking, an object of interest is tracked frame-to-frame in 2D. To adopt the

same network in our 3D registration application, we took advantage of the 2.5D approach that was

utilized by Heinrich et al. [55]. This enabled us to track 3D objects with conventional 2D CNNs by

using three perpendicular directions from the 3D image.

The template and search images were generated by concatenating two adjacent image slices to

the target slice to imitate the 3 channels of RGB natural images. The search images were selected

with 2 voxels shift in each direction of the 2.5D approach, so each of the search images had one

slice in common with its neighbour search image.

In addition, we further implemented an outlier suppression technique for our 2.5D approach.
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Specifically, by leveraging three perpendicular directions, three predictions for a single landmark

were generated. The final spatial location of the particular landmark was calculated as the average

of the two or three predictions that were located close to each other(less than 3 mm). Otherwise,

in the case of no adjacent predictions, the landmark matching was not successful, and the operation

will move on to the next target landmark in the reference image (i.e., iUSpre).

3.3.3 Landmark-based tissue shift correction

To correct the brain shift, a spatial transformation is required to emulate the brain deformation.

Affine transformations have been illustrated to be a reliable option due to its simplicity and high-

speed performance in various applications. In contrast to more complex non-linear transformations,

affine transformation provides more robust results since they are less susceptible to local-minima

convergence in the optimization process [62].

In 3D space, a full affine transformation has 12 degrees of freedom (DOF). By providing four

pairs of corresponding points, all the 12 parameters can be estimated. However, the proposed land-

mark selection algorithm usually provides more than five corresponding landmark pairs that can be

used to solve an over-determined system of linear equations.

Since the affine transformation model can render global adjustment to the image, the presence of

outliers would mis-guided the registration and potentailly cause fatal errors for brain shift correction

in surgery. Therefore, we exploited an iterative re-weighted least square (IRLS) method [56] to

find the affine transformation while removing the outliers. Specifically, in each iteration of the

optimization, the distance of the estimated landmarks from the ground truth were calculated. The

estimated landmarks with larger distance from the ground truth were penalized more, and smaller

weights were assigned to them. The Cauchy function was deployed as the weighing function [57]

as you can find in Eq. 5 which ri is the residual of each point in each iteration.

w (ri) =
1

1 + (ri)
2 (5)
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Figure 3.1: The Siamese network architecture.

3.4 Experimental setup

3.4.1 Data preprocessing

Three-dimensional iUS images in the BITE dataset have the resolution of 0.3 × 0.3 × 0.3mm3

in comparison to those of the RESECT dataset, which are between 0.14 × 0.14 × 0.14mm3 and

0.24 × 0.24 × 0.24mm3 due to the use of different ultrasound transducers and imaging depths. To

unify the resolution, we resampled all the images to the lowest voxel dimension of 0.14 × 0.14 ×

0.14mm3.

Here, we set the template images to have the size of 127 × 127 × 3 voxels that were cropped

around the pre-annotated landmarks in iUSpre. Search images have the size of 255×255×3 voxels

that were selected in iUSduring or iUSpost as discussed in section 3.3.2 . Eventually, all the images

were normalized to be in the range [0,1].

3.4.2 Network fine-tuning

Transfer learning from the pre-trained deep neural networks on natural images to medical im-

ages is advantageous. Data collection and labeling, unlike natural imaging, is a difficult task in

medical imaging that restricts the available data for training. However, The difference between

the modality and quality of the natural and medical images would cause a performance decrease.

Transfer learning accompanied with a proper fine-tuning strategy would increase the performance
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Figure 3.2: Fine-tuning assessment on different layers of the network. The right graph shows the
Gaussian smoothed version of the actual graph on the left. The black circle indicates the elbow
point where the best model is selected from.

and generality of the network [63].

For our method, a pre-trained Siamese network on the ILSVRC17 dataset [53] of natural images

after domain-specific fine-tuning was used. Previously, we demonstrated the generalizability of the

pre-trained network by adopting it for the application of iUS-iUS registration without any fine-

tuning [40]. However, this work will further investigate the benefit of network fine-tuning through

transfer learning on the quality of landmark selection and the final registration accuracy.

The RESECT dataset provides 17 patients with a total of 570 manually annotated landmarks in

iUSpre images. The BITE dataset has 13 patients with a total of 130 annotated landmarks. By using

all the landmarks in both datasets, 700 landmarks were made available. Since the 2.5D approach

requires three pairs of images per landmark (for three perpendicular directions), 2100 image pairs

could be employed for fine-tuning. In each image pair, the template image was cropped around a

target landmark and the search image was cropped around the ground truth.

For our experiments, a five-fold cross-validation was utilized by splitting the data into the train-

ing, validation, and test groups in the proportion of 60%:20%:20%. To avoid data leakage, we

ensured that all the image pairs of a patient were present in just one of the three split groups. This
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strategy ensures the data in the test set were never seen before by the network in the train or valida-

tion set.

For the transfer learning procedure, binary cross-entropy was utilized as a loss function. The

similarity map was passed through a sigmoid function to be in the probability range of [0,1]. The

loss was calculated for each element of the similarity map by considering the elements near the

center (i.e., ground truth) in a radius of 4 pixels to be in a positive class (matched elements) and

elements out of the 6 pixels radius to be in the negative class (not-mathched elements). The middle

elements between these two radii were considered neutral, so they did not contribute in the opti-

mization. The average loss for all the elements was considered as the total loss for each image

pairs. Adam optimization with a learning rate of 5 × 10−5 was used with a batch size of 8. To

prevent over-fitting, we used an early stopping strategy in which the elbow point is determined in an

epoch that the loss would not decrease more than 0.0005 after 30 epochs. Data-augmentation was

employed to increase the number of training data and prevent over-fitting. More specifically, we

used random vertical and horizontal flipping and a random rotation in the range of [0-180] degrees

in each epoch on the training images.

We used pre-trained weights for the Siamese network for initialization. It was shown that fine-

tuning the last few layers and freezing the initial layers would decrease the chance of over-fitting

unless the source and target datasets are very different [64, 65]. To explore which of the five layers

in the CNN branch to fine-tune, we conducted experiments to perform transfer learning on different

ensemble of layers, beginning from just the last layer till all five layers. As the validation curve

in Fig. 3.3 shows, fine-tuning all the layers or the last four layers led to better performance. The

first layer of the CNN branch usually corresponds to low-level features that are the similar across

different datasets [66], so in our final model, the last four layers were used for fine-tuning, and the

weights of the first layer were frozen.

3.4.3 Quantitative evaluation criteria

A commonly used metric for quantitative evaluation of image regisration is mean target regis-

tration error (mTRE). The mTRE is the average of the Euclidean distances between landmarks of
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Figure 3.3: Landmark selection error with respect to the available ground truth. The cross sign in
each bar represents the average, and the small dots show the outliers. The average error is 1.01±0.39
mm, 1.08±0.37 mm, and 1.57±0.96 mm for the first, the second, and the third row, respectively.
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Table 3.1: mTREs of different methods [3, 4] in comparison to the proposed method for iUSpre vs.
iUSpost registration of the BITE dataset.

Patient
ID

No.
total
land-
marks

No.
selected
land-
marks

Initial mTRE
(mm)

Proposed
method (mm)

Canalini
et al.
(mm)

Machado
et al.
(mm)

Affine
Mini-
mum
achiev-
able
mTRE
(mm)

2 10 9 2.30 (0.57-5.42) 1.56 (0.47-4.03) 1.70 1.66 0.97
3 10 9 3.40 (0.00-5.09) 1.61 (0.35-3.45) 1.49 1.30 1.16
4 10 8 4.60 (2.96-5.88) 1.47 (0.56-2.83) 5.34 1.13 0.61
5 10 9 4.11 (2.58-5.52) 1.04 (0.42-2.19) 1.17 1.24 0.74
6 10 10 2.26 (1.36-3.10) 1.29 (0.43-2.62) 1.08 1.18 0.76
7 10 8 3.87 (2.60-5.07) 1.29 (0.28-2.14) 1.23 0.86 0.66
8 10 8 2.51 (0.67-3.93) 1.26 (0.36-2.93) 1.21 1.12 0.85
9 10 9 2.21 (1.00-4.59) 1.73 (0.11-4.7) 1.57 1.38 0.71
10 10 10 3.87 (0.98-6.68) 1.4 (0.3-2.91) 1.18 2.59 1.26
11 10 9 2.74 (0.44-8.22) 1.59 (0.32-3.93) 2.29 2.52 1.34
12 10 5 10.54 (7.85-13.04) 6.62

(1.08-15.15)
10.79 2.37 0.97

13 10 10 1.62 (1.33-2.21) 0.83 (0.54-1.47) 0.71 1.01 0.56
14 10 10 2.19 (0.59-3.99) 1.22 (0.34-2.05) 1.17 1.04 1.01
mean 10.00 8.77 3.55 1.76 2.38 1.49 0.89
std 2.29 1.48 2.78 0.60 0.25
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the fixed image and transformed landmarks of the moving image as demonstrated in Eq. 6

mTRE =
1

N

N∑
i=1

∥∥T (xi) − x′i
∥∥ , (6)

where x′i and xi represent landmarks of the fixed and moving images, respectively. T is the trans-

formation, and N shows the total number of landmarks in each case.

3.5 Results

3.5.1 Landmark selection accuracy

Figure 3.3 shows the landmark selection accuracy in all the cases in both public datasets. We

used pre-annotated landmarks provided in iUSpre images to track them after the resection starts in

iUSduring and iUSpost images. The errors were obtained by computing the distance between the

predicted landmarks and the ground truth. Overall, our landmark selection method could find the

corresponding landmarks with the accuracy of 1.08±0.37 mm and 1.57±0.96 mm for iUSpost track-

ing in RESECT and BITE databases, respectively. In the case of iUSduring landmark localization,

our method achieved an accuracy of 1.01±0.39 mm. By minimizing the landmark selection error, a

more accurate registration result is obtainable.

3.5.2 Image registration accuracy

Quantitative assessment of the registration is shown in Tables 3.1, 3.2 and 3.3. We compared

our method with two state-of-the-art methods [3, 4]. For our technique, selected landmarks from

the fine-tuned Siamese network were used to obtain the affine transformation, and we used the

total number of landmarks to calculate mTRE. In addition, the minimum achievable registration

results were also calculated by using the ground truth landmark pairs. In summary, our method

could reduce the mTRE from 3.55±2.29 mm to 1.76±1.48 mm in the BITE dataset for iUSpre to

iUSpost registration. In the RESECT dataset, we could decrease the mTRE from 3.55±1.76 mm to

1.22±0.46 mm and 3.49±1.56 mm to 1.11±0.43 mm in iUSpre to iUSpost registration and iUSpre

to iUSduring registration, respectively.
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Table 3.2: mTREs of different methods [3, 4] in comparison to the proposed method for iUSpre vs.
iUSpost registration of the RESECT dataset.

Patient
ID

No.
total
land-
marks

No.
selected
land-
marks

Initial mTRE
(mm)

Proposed
method (mm)

Canalini
et al.
(mm)

Machado
et al.
(mm)

Affine
Mini-
mum
achiev-
able
mTRE
(mm)

1 13 13 5.80 (3.62-7.22) 1.1 (0.43-2.82) 1.03 1.48 0.97
2 10 7 3.65 (1.71-6.72) 2.23 (0.57-5.05) 3.90 2.62 1.57
3 11 9 2.91 (1.53-4.30) 1.2 (0.48-2.21) 1.15 1.04 0.67
4 12 12 2.22 (1.25-2.94) 0.59 (0.08-1.11) 0.61 0.83 0.55
6 11 8 2.12 (0.75-3.82) 1.44 (0.68-2.95) 1.41 1.55 1.20
7 18 15 3.62 (1.19-5.93) 1.6 (0.52-4.87) 2.03 2.38 1.50
12 11 11 3.97 (2.58-6.35) 1.28 (0.47-4.17) 0.79 1.20 0.98
14 17 17 0.63 (0.17-1.76) 0.5 (0.23-0.86) 0.46 0.53 0.45
15 15 15 1.63 (0.62-2.69) 0.77 (0.36-2.16) 0.58 0.74 0.70
16 17 14 3.13 (0.82-5.41) 1.18 (0.41-2.47) 0.92 1.94 1.08
17 11 9 5.71 (4.25-8.03) 1.47 (0.55-4.06) 1.10 1.99 0.96
18 13 11 5.29 (2.94-9.26) 1.36 (0.45-3.27) 1.13 1.69 1.14
19 13 12 2.05 (0.43-3.24) 1.45 (0.37-5.06) 1.10 2.78 0.86
21 9 9 3.35 (2.34-5.64) 1.85 (0.85-4.03) 1.80 1.07 0.76
24 14 14 2.61 (1.96-3.41) 0.89 (0.09-2.61) 0.87 1.35 0.62
25 12 12 7.61 (6.40-10.25) 1.09 (0.34-1.96) 1.21 1.24 0.91
27 12 12 3.98 (3.09-4.82) 0.64 (0.19-1.21) 0.53 0.83 0.47
mean 12.88 11.76 3.55 1.22 1.21 1.49 0.90
std 1.76 0.46 0.81 0.67 0.33
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The readers can find the comparison of our method compared to other two methods in Fig. 3.5.

In terms of the mean values, in the BITE dataset, our proposed technique outperformed the method

of Canalini et al. [4], but the method of Machado et al. [3] showed a better performance. However,

in the RESECT dataset, our method presented a comparable result to Canalini et al. [4] method,

and a better result than Machado et al. [3]. The proposed method also demonstrated more robust

results by achieving a lower standard deviation in the average mTREs except in the case of the BITE

dataset that the method of Machado et al. [3] showed more robust results.

To confirm the observation, non-parametric Wilcoxon rank-sum test was deployed to further

evaluate the performance of our method in reducing the target registration error from the initial

misalignment. We also utilized the same test to compare our method against the two other recent

works as well [3, 4]. From the tests, our method showed a significant reduction from the initial

mTRE (p <0.001). In the case of iUSpre to iUSduring registration our method showed comparable

result with Canalini et al. [4] (p=0.41), although we achieved a lower mTRE on average. In the

iUSpre to iUSpost registration, our proposed method presented comparable results with the two

other methods for both the RESECT and BITE datasets (p >0.1). However, the average reduction

in the mTRE by our method is better than the method by Canalini et al. [4] in the BITE dataset. On

the other hand, in the RESECT dataset, the average target error of our method is lower than that of

Machado et al. [3], and comparable to Canalini et al. [4] method.

Fig. 3.4 illustrates the qualitative evaluation of the method. For easier interpretation, The im-

proved regions in the registered images are shown by arrows.

3.5.3 Impact of transfer learning

To better examine the benefit of the transfer learning, we compared the mTREs and landmark

selection error for the proposed system with and without transfer learning in Table 3.4 and 3.5,

respectively. As we can see, network fine-tuning improved the performance of the method on aver-

age. However, the mTRE results without fine-tuning were already close to the minimum achievable

results by the affine transformation, so we did not expect a significant improvement by utilizing

the fine-tuning. With the Wilcoxon rank-sum test, we compared the mTREs obtained with the two

different setups, and their differences were not statistically significant (p > 0.5) This is largely due
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Table 3.3: mTREs of a method [4] in comparison to the proposed method for iUSpre vs. iUSduring
registration of the RESECT dataset.

Patient
ID

No.
total
land-
marks

No.
selected
land-
marks

Initial mTRE
(mm)

Proposed
method (mm)

Canalini
et al.
(mm)

Affine
Mini-
mum
achiev-
able
mTRE
(mm)

1 34 34 2.32 (1.49-3.29) 0.87 (0.15-2.82) 0.64 0.83
2 16 14 3.1 (1.79-5.19) 1.61 (0.26-5.05) 1.50 1.21
3 17 17 1.93 (0.67-3.02) 0.79 (0.29-2.21) 0.77 0.70
4 19 19 4 (3.03-5.22) 0.88 (0.12-1.11) 0.80 0.74
6 21 20 5.19 (2.6-7.18) 1.57 (0.46-2.95) 5.17 1.47
7 22 22 4.69 (0.94-8.16) 2.2 (0.21-4.87) 1.98 1.82
12 24 24 3.39 (1.74-4.81) 1.15 (0.33-4.17) 0.84 1.04
14 22 22 0.71 (0.42-1.59) 0.51 (0.13-0.86) 0.41 0.47
15 21 21 2.04 (0.85-2.84) 0.67 (0.21-2.16) 0.60 0.58
16 19 19 3.19 (1.22-4.53) 1.31 (0.62-2.47) 1.26 1.10
17 17 15 6.32 (4.65-8.07) 1.52 (0.62-4.06) 1.49 0.97
18 23 19 5.06 (1.55-7.44) 1.28 (0.22-3.27) 1.18 1.10
19 21 20 2.06 (0.42-3.4) 1 (0.27-5.06) 0.96 0.90
21 18 18 5.1 (3.37-5.94) 1.09 (0.35-4.03) 1.11 0.97
24 21 21 1.76 (1.16-2.65) 0.86 (0.2-2.61) 0.67 0.64
25 20 20 3.6 (2.19-5.02) 0.71 (0.27-1.96) 0.55 0.65
27 16 16 4.93 (3.61-7.01) 0.84 (0.19-1.21) 0.87 0.57
mean 20.65 20.06 3.49 1.11 1.22 0.93
std 1.56 0.43 1.10 0.35
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Figure 3.4: Qualitative evaluation of the method. The cyan color image represents iUSpost in the
first and the third column and iUSduring in the second column. The red color image represents the
iUSpre before registration and after registration in the first and second row, respectively.
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Figure 3.5: Overal comparison between different methods on BITE and RESECT datasets. The
cross signs represent the mean values and the small dots demonstrate the outliers in the distributions.

to the spatial transformation model that we employed.

3.6 Discussion

In this work, the affine transformation was employed instead of non-linear counterparts because

it is faster and more robust, which is favorable in the clinical application, where reliability is highly

valued. Although the compared methods [3,4] took advantage of non-linear thin-plate spline (TPS)

transformation, our proposed method with affine transformation achieved comparable or better re-

sults on average. In addition, we used a 2.5D approach with an outlier detection strategy to localize

matching anatomical landmarks. Compared with 3D patch approaches for the same goal, our ap-

proach is more computationally efficient and allows us to leverage a large quantity of natural images

to pre-train the target networks to address the common issue of limited databases for clinical scans.

We validated our method with two datasets with distinct image characteristics due to different

choices of scanners, scanner settings, and patients and showed its high adaptability to work on
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Table 3.4: The average mTREs of different databases in millimeters, with and without fine tuning.
The fine tuning was done with all the data available in both databases.

With fine tuning without fine tuning p-value

RESECT iUSpre/iUSpost 1.22±0.46 1.27±0.48 0.82
RESECT iUSpre/iUSduring 1.11±0.43 1.14±0.47 0.82
BITE iUSpre/iUSpost 1.76±1.48 1.79±1.54 0.77

Table 3.5: The average landmark selection error of different databases in millimeters, with and
without fine tuning. The fine tuning was done with all the data available in both databases.

With fine tuning without fine tuning p-value

RESECT iUSpre/iUSpost 1.08±0.37 1.13±0.36 0.64
RESECT iUSpre/iUSduring 1.01±0.39 0.99±0.37 0.88
BITE iUSpre/iUSpost 1.57±0.96 1.72±1.29 0.85

images acquired with different setups and quality. On average, the technique’s performance is better

in the RESECT dataset as it provides higher image quality and has more landmarks as well.

To further adapt the pre-trained networks for domain specific applications, we performed trans-

fer learning with iUS images. Through our experiments, we decided that for the application, it is

beneficial to fine-tune the last four layers of the CNN branch while keeping the first frozen. This

demonstrate that there is still relatively large discrepancy between features in natural images and

ultrasound scans. Although this results imply that domain-specific fine-tuning is necessary, the

improvement in terms of registration accuracy is limited. This is partially due to the fact that we

used an affine transformation model. Based on the experimental results, depending on the accuracy

requirement of the application, the proposed framework can be deployed with a slight fine-tuning

with application-specific data or even without the procedure. In terms of registration speed, the

total landmark selection and registration took about 50 seconds on a NVIDIA GeForce GTX 1050

Ti GPU. In comparison to the segmentation-based method of Canalini et al. [4], and the SIFT-based

method of Machado et al. [3] that reported 55 and 30 seconds on average, the computational time

of the proposed method is promising.

There are still some limitations to our method. First, to achieve the registration, it requires

manual landmark annotation in iUSpre images as a reference, and is classified as a semi-automatic

image alignment technique. Although the manual landmark tagging adds extra time to the process,
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the user-interaction can ensure the optimal landmark annotation in salient regions of the image to

increase the flexibility and robustness of the method [58]. The extra time added by manual landmark

tagging is also negligible compared to a typical resection surgery that generally takes several hours.

In our future work, we will seek techniques to allow automatic landmark annotation in reference

images that captures salient key points that contain good anatomical significance and spatial distri-

bution. Second, although we have performed method validation on two existing public databases,

it will be ideal to further examine the impact of increased anatomical and image feature variability

with more patients on the improvement of transfer learning and registration accuracy. However,

this is currently confounded by the data availability. Finally, we will further extend our work for

inter-modal landmark matching, such as in the case of pre-operative MRI vs. iUS registration.

3.7 Conclusion

This chapter proposed a robust landmark-based registration method that can effectively cor-

rect the brain shift during resection surgery. The method demonstrated a comparable performance

related to other state-of-the-art methods. We also assessed the impact of transfer learning for our

proposed network on the registration results and showed high adaptability of the Siamese neural net-

works in different domains. Finally, the low computational time and high accuracy of our proposed

method makes it a robust choice for the relevant potential clinical applications.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, a robust feature-based registration method for brain shift correction in neuro-

surgery has been proposed. A Siamese network architecture was used with convolutional stage of

AlexNet as a feature extractor and cross-correlation as a similarity metric. Although the previous

works on medical image registration with the Siamese networks [34, 35] showed promising result,

they usually suffer from some limitations. They have utilized 2D images and assumed small defor-

mation in sequential images of liver and abdomen. The 2.5D technique enabled the method to be

used on 3D images. However, 3D models could be exploited but the 2.5D approach is relatively

faster and more memory efficient. By selecting the corresponding parts of the image like sulci,

small deformation assumption is no longer required and the method could track the large deforma-

tion during the tumor resection surgery.

The 2.5D technique followed by an IRLS algorithm provided a two-level outlier suppression

block that helped the method achieve more robust result. the proposed method was compared to two

other state of the are methods [3,4] tested on the same datasets and on average showed comparable or

better results. Although the compared methods utilized automatic landmark selection, the proposed

method by manual landmark annotation in iUSpre enabled more robust distribution of the landmarks

in salient parts of the image and gave more flexibility to the process. In terms of the computational

time, the proposed method provides similar results compared to the other methods.
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We performed the fine-tuning assessment by an intensive experiment to find the best tuning layer

and learning rate. The Siamese network presented an excellent performance in domain adaptability.

However, utilizing fine-tuning could make some improvement in general.

In conclusion, the proposed method demonstrated a significant result in brain shift correction

in favorable time duration. We showed that the method could achieve perfect results even without

any further fine-tuning, which implies the ability of the model to work on the images collected with

different acquisition settings.

4.2 Future Work

In this work, we investigated the application of landmark tracking with a Siamese neural net-

work in US-US registration. Although the method showed an acceptable computation time com-

pared to the actual duration of a resection surgery, it can be optimized further by a parallel imple-

mentation.

Decreasing the stride of the network by adding decoding layers on the extracted features would

help the method to achieve more accurate results. However, this technique will be time-consuming

and need to be thoroughly investigated in the future.

Manual landmark annotation gives flexibility to the clinician, but having a robust automatic

landmark detection method would make the process faster. Adding an automatic landmark detec-

tion algorithm based on deep learning methods could provide more landmarks in less time. More

properly distributed landmarks in the image enable more complex transformations to be used, such

as non-linear free-form B-spline deformation. However, in this work, we demonstrated the abil-

ity of the affine transformation to track the brain shift with comparable and better results than its

non-linear counterparts.

Domain adaptability of the Siamese network has been investigated in this work. Assessment of

the method on the other uni-modality registration applications like MRI to MRI registration would

be interesting. We believe the method can be extended to multi-modality applications by performing

some modifications to the model.

Limited training data and available ground truth in medical imaging restrict the application of
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deep learning. Utilizing unsupervised learning methods would help the method to use more training

data without any grand truth requirement. Another desirable modification is achievable by using

explainable deep learning methods. One of the drawbacks of deep learning methods in healthcare

arises from their inability to justify their results, where explainable models can be utilized to shed

light on inner workings of the deep models [67].
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